1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 }; 136 137 static const char * const link_type_name[] = { 138 [BPF_LINK_TYPE_UNSPEC] = "unspec", 139 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 140 [BPF_LINK_TYPE_TRACING] = "tracing", 141 [BPF_LINK_TYPE_CGROUP] = "cgroup", 142 [BPF_LINK_TYPE_ITER] = "iter", 143 [BPF_LINK_TYPE_NETNS] = "netns", 144 [BPF_LINK_TYPE_XDP] = "xdp", 145 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 146 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 147 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 148 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 149 [BPF_LINK_TYPE_TCX] = "tcx", 150 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 151 [BPF_LINK_TYPE_NETKIT] = "netkit", 152 }; 153 154 static const char * const map_type_name[] = { 155 [BPF_MAP_TYPE_UNSPEC] = "unspec", 156 [BPF_MAP_TYPE_HASH] = "hash", 157 [BPF_MAP_TYPE_ARRAY] = "array", 158 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 159 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 160 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 161 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 162 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 163 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 164 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 165 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 166 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 167 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 168 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 169 [BPF_MAP_TYPE_DEVMAP] = "devmap", 170 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 171 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 172 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 173 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 174 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 175 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 176 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 177 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 178 [BPF_MAP_TYPE_QUEUE] = "queue", 179 [BPF_MAP_TYPE_STACK] = "stack", 180 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 181 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 182 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 183 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 184 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 185 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 186 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 187 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 188 [BPF_MAP_TYPE_ARENA] = "arena", 189 }; 190 191 static const char * const prog_type_name[] = { 192 [BPF_PROG_TYPE_UNSPEC] = "unspec", 193 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 194 [BPF_PROG_TYPE_KPROBE] = "kprobe", 195 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 196 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 197 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 198 [BPF_PROG_TYPE_XDP] = "xdp", 199 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 200 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 201 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 202 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 203 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 204 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 205 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 206 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 207 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 208 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 209 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 210 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 211 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 212 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 213 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 214 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 215 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 216 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 217 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 218 [BPF_PROG_TYPE_TRACING] = "tracing", 219 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 220 [BPF_PROG_TYPE_EXT] = "ext", 221 [BPF_PROG_TYPE_LSM] = "lsm", 222 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 223 [BPF_PROG_TYPE_SYSCALL] = "syscall", 224 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 225 }; 226 227 static int __base_pr(enum libbpf_print_level level, const char *format, 228 va_list args) 229 { 230 if (level == LIBBPF_DEBUG) 231 return 0; 232 233 return vfprintf(stderr, format, args); 234 } 235 236 static libbpf_print_fn_t __libbpf_pr = __base_pr; 237 238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 239 { 240 libbpf_print_fn_t old_print_fn; 241 242 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 243 244 return old_print_fn; 245 } 246 247 __printf(2, 3) 248 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 249 { 250 va_list args; 251 int old_errno; 252 libbpf_print_fn_t print_fn; 253 254 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 255 if (!print_fn) 256 return; 257 258 old_errno = errno; 259 260 va_start(args, format); 261 __libbpf_pr(level, format, args); 262 va_end(args); 263 264 errno = old_errno; 265 } 266 267 static void pr_perm_msg(int err) 268 { 269 struct rlimit limit; 270 char buf[100]; 271 272 if (err != -EPERM || geteuid() != 0) 273 return; 274 275 err = getrlimit(RLIMIT_MEMLOCK, &limit); 276 if (err) 277 return; 278 279 if (limit.rlim_cur == RLIM_INFINITY) 280 return; 281 282 if (limit.rlim_cur < 1024) 283 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 284 else if (limit.rlim_cur < 1024*1024) 285 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 286 else 287 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 288 289 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 290 buf); 291 } 292 293 #define STRERR_BUFSIZE 128 294 295 /* Copied from tools/perf/util/util.h */ 296 #ifndef zfree 297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 298 #endif 299 300 #ifndef zclose 301 # define zclose(fd) ({ \ 302 int ___err = 0; \ 303 if ((fd) >= 0) \ 304 ___err = close((fd)); \ 305 fd = -1; \ 306 ___err; }) 307 #endif 308 309 static inline __u64 ptr_to_u64(const void *ptr) 310 { 311 return (__u64) (unsigned long) ptr; 312 } 313 314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 315 { 316 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 317 return 0; 318 } 319 320 __u32 libbpf_major_version(void) 321 { 322 return LIBBPF_MAJOR_VERSION; 323 } 324 325 __u32 libbpf_minor_version(void) 326 { 327 return LIBBPF_MINOR_VERSION; 328 } 329 330 const char *libbpf_version_string(void) 331 { 332 #define __S(X) #X 333 #define _S(X) __S(X) 334 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 335 #undef _S 336 #undef __S 337 } 338 339 enum reloc_type { 340 RELO_LD64, 341 RELO_CALL, 342 RELO_DATA, 343 RELO_EXTERN_LD64, 344 RELO_EXTERN_CALL, 345 RELO_SUBPROG_ADDR, 346 RELO_CORE, 347 }; 348 349 struct reloc_desc { 350 enum reloc_type type; 351 int insn_idx; 352 union { 353 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 354 struct { 355 int map_idx; 356 int sym_off; 357 int ext_idx; 358 }; 359 }; 360 }; 361 362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 363 enum sec_def_flags { 364 SEC_NONE = 0, 365 /* expected_attach_type is optional, if kernel doesn't support that */ 366 SEC_EXP_ATTACH_OPT = 1, 367 /* legacy, only used by libbpf_get_type_names() and 368 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 369 * This used to be associated with cgroup (and few other) BPF programs 370 * that were attachable through BPF_PROG_ATTACH command. Pretty 371 * meaningless nowadays, though. 372 */ 373 SEC_ATTACHABLE = 2, 374 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 375 /* attachment target is specified through BTF ID in either kernel or 376 * other BPF program's BTF object 377 */ 378 SEC_ATTACH_BTF = 4, 379 /* BPF program type allows sleeping/blocking in kernel */ 380 SEC_SLEEPABLE = 8, 381 /* BPF program support non-linear XDP buffer */ 382 SEC_XDP_FRAGS = 16, 383 /* Setup proper attach type for usdt probes. */ 384 SEC_USDT = 32, 385 }; 386 387 struct bpf_sec_def { 388 char *sec; 389 enum bpf_prog_type prog_type; 390 enum bpf_attach_type expected_attach_type; 391 long cookie; 392 int handler_id; 393 394 libbpf_prog_setup_fn_t prog_setup_fn; 395 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 396 libbpf_prog_attach_fn_t prog_attach_fn; 397 }; 398 399 /* 400 * bpf_prog should be a better name but it has been used in 401 * linux/filter.h. 402 */ 403 struct bpf_program { 404 char *name; 405 char *sec_name; 406 size_t sec_idx; 407 const struct bpf_sec_def *sec_def; 408 /* this program's instruction offset (in number of instructions) 409 * within its containing ELF section 410 */ 411 size_t sec_insn_off; 412 /* number of original instructions in ELF section belonging to this 413 * program, not taking into account subprogram instructions possible 414 * appended later during relocation 415 */ 416 size_t sec_insn_cnt; 417 /* Offset (in number of instructions) of the start of instruction 418 * belonging to this BPF program within its containing main BPF 419 * program. For the entry-point (main) BPF program, this is always 420 * zero. For a sub-program, this gets reset before each of main BPF 421 * programs are processed and relocated and is used to determined 422 * whether sub-program was already appended to the main program, and 423 * if yes, at which instruction offset. 424 */ 425 size_t sub_insn_off; 426 427 /* instructions that belong to BPF program; insns[0] is located at 428 * sec_insn_off instruction within its ELF section in ELF file, so 429 * when mapping ELF file instruction index to the local instruction, 430 * one needs to subtract sec_insn_off; and vice versa. 431 */ 432 struct bpf_insn *insns; 433 /* actual number of instruction in this BPF program's image; for 434 * entry-point BPF programs this includes the size of main program 435 * itself plus all the used sub-programs, appended at the end 436 */ 437 size_t insns_cnt; 438 439 struct reloc_desc *reloc_desc; 440 int nr_reloc; 441 442 /* BPF verifier log settings */ 443 char *log_buf; 444 size_t log_size; 445 __u32 log_level; 446 447 struct bpf_object *obj; 448 449 int fd; 450 bool autoload; 451 bool autoattach; 452 bool sym_global; 453 bool mark_btf_static; 454 enum bpf_prog_type type; 455 enum bpf_attach_type expected_attach_type; 456 int exception_cb_idx; 457 458 int prog_ifindex; 459 __u32 attach_btf_obj_fd; 460 __u32 attach_btf_id; 461 __u32 attach_prog_fd; 462 463 void *func_info; 464 __u32 func_info_rec_size; 465 __u32 func_info_cnt; 466 467 void *line_info; 468 __u32 line_info_rec_size; 469 __u32 line_info_cnt; 470 __u32 prog_flags; 471 }; 472 473 struct bpf_struct_ops { 474 const char *tname; 475 const struct btf_type *type; 476 struct bpf_program **progs; 477 __u32 *kern_func_off; 478 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 479 void *data; 480 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 481 * btf_vmlinux's format. 482 * struct bpf_struct_ops_tcp_congestion_ops { 483 * [... some other kernel fields ...] 484 * struct tcp_congestion_ops data; 485 * } 486 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 487 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 488 * from "data". 489 */ 490 void *kern_vdata; 491 __u32 type_id; 492 }; 493 494 #define DATA_SEC ".data" 495 #define BSS_SEC ".bss" 496 #define RODATA_SEC ".rodata" 497 #define KCONFIG_SEC ".kconfig" 498 #define KSYMS_SEC ".ksyms" 499 #define STRUCT_OPS_SEC ".struct_ops" 500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 501 #define ARENA_SEC ".arena.1" 502 503 enum libbpf_map_type { 504 LIBBPF_MAP_UNSPEC, 505 LIBBPF_MAP_DATA, 506 LIBBPF_MAP_BSS, 507 LIBBPF_MAP_RODATA, 508 LIBBPF_MAP_KCONFIG, 509 }; 510 511 struct bpf_map_def { 512 unsigned int type; 513 unsigned int key_size; 514 unsigned int value_size; 515 unsigned int max_entries; 516 unsigned int map_flags; 517 }; 518 519 struct bpf_map { 520 struct bpf_object *obj; 521 char *name; 522 /* real_name is defined for special internal maps (.rodata*, 523 * .data*, .bss, .kconfig) and preserves their original ELF section 524 * name. This is important to be able to find corresponding BTF 525 * DATASEC information. 526 */ 527 char *real_name; 528 int fd; 529 int sec_idx; 530 size_t sec_offset; 531 int map_ifindex; 532 int inner_map_fd; 533 struct bpf_map_def def; 534 __u32 numa_node; 535 __u32 btf_var_idx; 536 int mod_btf_fd; 537 __u32 btf_key_type_id; 538 __u32 btf_value_type_id; 539 __u32 btf_vmlinux_value_type_id; 540 enum libbpf_map_type libbpf_type; 541 void *mmaped; 542 struct bpf_struct_ops *st_ops; 543 struct bpf_map *inner_map; 544 void **init_slots; 545 int init_slots_sz; 546 char *pin_path; 547 bool pinned; 548 bool reused; 549 bool autocreate; 550 __u64 map_extra; 551 }; 552 553 enum extern_type { 554 EXT_UNKNOWN, 555 EXT_KCFG, 556 EXT_KSYM, 557 }; 558 559 enum kcfg_type { 560 KCFG_UNKNOWN, 561 KCFG_CHAR, 562 KCFG_BOOL, 563 KCFG_INT, 564 KCFG_TRISTATE, 565 KCFG_CHAR_ARR, 566 }; 567 568 struct extern_desc { 569 enum extern_type type; 570 int sym_idx; 571 int btf_id; 572 int sec_btf_id; 573 const char *name; 574 char *essent_name; 575 bool is_set; 576 bool is_weak; 577 union { 578 struct { 579 enum kcfg_type type; 580 int sz; 581 int align; 582 int data_off; 583 bool is_signed; 584 } kcfg; 585 struct { 586 unsigned long long addr; 587 588 /* target btf_id of the corresponding kernel var. */ 589 int kernel_btf_obj_fd; 590 int kernel_btf_id; 591 592 /* local btf_id of the ksym extern's type. */ 593 __u32 type_id; 594 /* BTF fd index to be patched in for insn->off, this is 595 * 0 for vmlinux BTF, index in obj->fd_array for module 596 * BTF 597 */ 598 __s16 btf_fd_idx; 599 } ksym; 600 }; 601 }; 602 603 struct module_btf { 604 struct btf *btf; 605 char *name; 606 __u32 id; 607 int fd; 608 int fd_array_idx; 609 }; 610 611 enum sec_type { 612 SEC_UNUSED = 0, 613 SEC_RELO, 614 SEC_BSS, 615 SEC_DATA, 616 SEC_RODATA, 617 SEC_ST_OPS, 618 }; 619 620 struct elf_sec_desc { 621 enum sec_type sec_type; 622 Elf64_Shdr *shdr; 623 Elf_Data *data; 624 }; 625 626 struct elf_state { 627 int fd; 628 const void *obj_buf; 629 size_t obj_buf_sz; 630 Elf *elf; 631 Elf64_Ehdr *ehdr; 632 Elf_Data *symbols; 633 Elf_Data *arena_data; 634 size_t shstrndx; /* section index for section name strings */ 635 size_t strtabidx; 636 struct elf_sec_desc *secs; 637 size_t sec_cnt; 638 int btf_maps_shndx; 639 __u32 btf_maps_sec_btf_id; 640 int text_shndx; 641 int symbols_shndx; 642 bool has_st_ops; 643 int arena_data_shndx; 644 }; 645 646 struct usdt_manager; 647 648 struct bpf_object { 649 char name[BPF_OBJ_NAME_LEN]; 650 char license[64]; 651 __u32 kern_version; 652 653 struct bpf_program *programs; 654 size_t nr_programs; 655 struct bpf_map *maps; 656 size_t nr_maps; 657 size_t maps_cap; 658 659 char *kconfig; 660 struct extern_desc *externs; 661 int nr_extern; 662 int kconfig_map_idx; 663 664 bool loaded; 665 bool has_subcalls; 666 bool has_rodata; 667 668 struct bpf_gen *gen_loader; 669 670 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 671 struct elf_state efile; 672 673 struct btf *btf; 674 struct btf_ext *btf_ext; 675 676 /* Parse and load BTF vmlinux if any of the programs in the object need 677 * it at load time. 678 */ 679 struct btf *btf_vmlinux; 680 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 681 * override for vmlinux BTF. 682 */ 683 char *btf_custom_path; 684 /* vmlinux BTF override for CO-RE relocations */ 685 struct btf *btf_vmlinux_override; 686 /* Lazily initialized kernel module BTFs */ 687 struct module_btf *btf_modules; 688 bool btf_modules_loaded; 689 size_t btf_module_cnt; 690 size_t btf_module_cap; 691 692 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 693 char *log_buf; 694 size_t log_size; 695 __u32 log_level; 696 697 int *fd_array; 698 size_t fd_array_cap; 699 size_t fd_array_cnt; 700 701 struct usdt_manager *usdt_man; 702 703 struct bpf_map *arena_map; 704 void *arena_data; 705 size_t arena_data_sz; 706 707 struct kern_feature_cache *feat_cache; 708 char *token_path; 709 int token_fd; 710 711 char path[]; 712 }; 713 714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 723 724 void bpf_program__unload(struct bpf_program *prog) 725 { 726 if (!prog) 727 return; 728 729 zclose(prog->fd); 730 731 zfree(&prog->func_info); 732 zfree(&prog->line_info); 733 } 734 735 static void bpf_program__exit(struct bpf_program *prog) 736 { 737 if (!prog) 738 return; 739 740 bpf_program__unload(prog); 741 zfree(&prog->name); 742 zfree(&prog->sec_name); 743 zfree(&prog->insns); 744 zfree(&prog->reloc_desc); 745 746 prog->nr_reloc = 0; 747 prog->insns_cnt = 0; 748 prog->sec_idx = -1; 749 } 750 751 static bool insn_is_subprog_call(const struct bpf_insn *insn) 752 { 753 return BPF_CLASS(insn->code) == BPF_JMP && 754 BPF_OP(insn->code) == BPF_CALL && 755 BPF_SRC(insn->code) == BPF_K && 756 insn->src_reg == BPF_PSEUDO_CALL && 757 insn->dst_reg == 0 && 758 insn->off == 0; 759 } 760 761 static bool is_call_insn(const struct bpf_insn *insn) 762 { 763 return insn->code == (BPF_JMP | BPF_CALL); 764 } 765 766 static bool insn_is_pseudo_func(struct bpf_insn *insn) 767 { 768 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 769 } 770 771 static int 772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 773 const char *name, size_t sec_idx, const char *sec_name, 774 size_t sec_off, void *insn_data, size_t insn_data_sz) 775 { 776 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 777 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 778 sec_name, name, sec_off, insn_data_sz); 779 return -EINVAL; 780 } 781 782 memset(prog, 0, sizeof(*prog)); 783 prog->obj = obj; 784 785 prog->sec_idx = sec_idx; 786 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 787 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 788 /* insns_cnt can later be increased by appending used subprograms */ 789 prog->insns_cnt = prog->sec_insn_cnt; 790 791 prog->type = BPF_PROG_TYPE_UNSPEC; 792 prog->fd = -1; 793 prog->exception_cb_idx = -1; 794 795 /* libbpf's convention for SEC("?abc...") is that it's just like 796 * SEC("abc...") but the corresponding bpf_program starts out with 797 * autoload set to false. 798 */ 799 if (sec_name[0] == '?') { 800 prog->autoload = false; 801 /* from now on forget there was ? in section name */ 802 sec_name++; 803 } else { 804 prog->autoload = true; 805 } 806 807 prog->autoattach = true; 808 809 /* inherit object's log_level */ 810 prog->log_level = obj->log_level; 811 812 prog->sec_name = strdup(sec_name); 813 if (!prog->sec_name) 814 goto errout; 815 816 prog->name = strdup(name); 817 if (!prog->name) 818 goto errout; 819 820 prog->insns = malloc(insn_data_sz); 821 if (!prog->insns) 822 goto errout; 823 memcpy(prog->insns, insn_data, insn_data_sz); 824 825 return 0; 826 errout: 827 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 828 bpf_program__exit(prog); 829 return -ENOMEM; 830 } 831 832 static int 833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 834 const char *sec_name, int sec_idx) 835 { 836 Elf_Data *symbols = obj->efile.symbols; 837 struct bpf_program *prog, *progs; 838 void *data = sec_data->d_buf; 839 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 840 int nr_progs, err, i; 841 const char *name; 842 Elf64_Sym *sym; 843 844 progs = obj->programs; 845 nr_progs = obj->nr_programs; 846 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 847 848 for (i = 0; i < nr_syms; i++) { 849 sym = elf_sym_by_idx(obj, i); 850 851 if (sym->st_shndx != sec_idx) 852 continue; 853 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 854 continue; 855 856 prog_sz = sym->st_size; 857 sec_off = sym->st_value; 858 859 name = elf_sym_str(obj, sym->st_name); 860 if (!name) { 861 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 862 sec_name, sec_off); 863 return -LIBBPF_ERRNO__FORMAT; 864 } 865 866 if (sec_off + prog_sz > sec_sz) { 867 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 868 sec_name, sec_off); 869 return -LIBBPF_ERRNO__FORMAT; 870 } 871 872 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 873 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 874 return -ENOTSUP; 875 } 876 877 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 878 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 879 880 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 881 if (!progs) { 882 /* 883 * In this case the original obj->programs 884 * is still valid, so don't need special treat for 885 * bpf_close_object(). 886 */ 887 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 888 sec_name, name); 889 return -ENOMEM; 890 } 891 obj->programs = progs; 892 893 prog = &progs[nr_progs]; 894 895 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 896 sec_off, data + sec_off, prog_sz); 897 if (err) 898 return err; 899 900 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 901 prog->sym_global = true; 902 903 /* if function is a global/weak symbol, but has restricted 904 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 905 * as static to enable more permissive BPF verification mode 906 * with more outside context available to BPF verifier 907 */ 908 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 909 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 910 prog->mark_btf_static = true; 911 912 nr_progs++; 913 obj->nr_programs = nr_progs; 914 } 915 916 return 0; 917 } 918 919 static const struct btf_member * 920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (btf_member_bit_offset(t, i) == bit_offset) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 static const struct btf_member * 934 find_member_by_name(const struct btf *btf, const struct btf_type *t, 935 const char *name) 936 { 937 struct btf_member *m; 938 int i; 939 940 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 941 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 942 return m; 943 } 944 945 return NULL; 946 } 947 948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 949 __u16 kind, struct btf **res_btf, 950 struct module_btf **res_mod_btf); 951 952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 954 const char *name, __u32 kind); 955 956 static int 957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 958 struct module_btf **mod_btf, 959 const struct btf_type **type, __u32 *type_id, 960 const struct btf_type **vtype, __u32 *vtype_id, 961 const struct btf_member **data_member) 962 { 963 const struct btf_type *kern_type, *kern_vtype; 964 const struct btf_member *kern_data_member; 965 struct btf *btf; 966 __s32 kern_vtype_id, kern_type_id; 967 char tname[256]; 968 __u32 i; 969 970 snprintf(tname, sizeof(tname), "%.*s", 971 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 972 973 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 974 &btf, mod_btf); 975 if (kern_type_id < 0) { 976 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 977 tname); 978 return kern_type_id; 979 } 980 kern_type = btf__type_by_id(btf, kern_type_id); 981 982 /* Find the corresponding "map_value" type that will be used 983 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 984 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 985 * btf_vmlinux. 986 */ 987 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 988 tname, BTF_KIND_STRUCT); 989 if (kern_vtype_id < 0) { 990 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 991 STRUCT_OPS_VALUE_PREFIX, tname); 992 return kern_vtype_id; 993 } 994 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 995 996 /* Find "struct tcp_congestion_ops" from 997 * struct bpf_struct_ops_tcp_congestion_ops { 998 * [ ... ] 999 * struct tcp_congestion_ops data; 1000 * } 1001 */ 1002 kern_data_member = btf_members(kern_vtype); 1003 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1004 if (kern_data_member->type == kern_type_id) 1005 break; 1006 } 1007 if (i == btf_vlen(kern_vtype)) { 1008 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1009 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1010 return -EINVAL; 1011 } 1012 1013 *type = kern_type; 1014 *type_id = kern_type_id; 1015 *vtype = kern_vtype; 1016 *vtype_id = kern_vtype_id; 1017 *data_member = kern_data_member; 1018 1019 return 0; 1020 } 1021 1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1023 { 1024 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1025 } 1026 1027 static bool is_valid_st_ops_program(struct bpf_object *obj, 1028 const struct bpf_program *prog) 1029 { 1030 int i; 1031 1032 for (i = 0; i < obj->nr_programs; i++) { 1033 if (&obj->programs[i] == prog) 1034 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1035 } 1036 1037 return false; 1038 } 1039 1040 /* For each struct_ops program P, referenced from some struct_ops map M, 1041 * enable P.autoload if there are Ms for which M.autocreate is true, 1042 * disable P.autoload if for all Ms M.autocreate is false. 1043 * Don't change P.autoload for programs that are not referenced from any maps. 1044 */ 1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1046 { 1047 struct bpf_program *prog, *slot_prog; 1048 struct bpf_map *map; 1049 int i, j, k, vlen; 1050 1051 for (i = 0; i < obj->nr_programs; ++i) { 1052 int should_load = false; 1053 int use_cnt = 0; 1054 1055 prog = &obj->programs[i]; 1056 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1057 continue; 1058 1059 for (j = 0; j < obj->nr_maps; ++j) { 1060 map = &obj->maps[j]; 1061 if (!bpf_map__is_struct_ops(map)) 1062 continue; 1063 1064 vlen = btf_vlen(map->st_ops->type); 1065 for (k = 0; k < vlen; ++k) { 1066 slot_prog = map->st_ops->progs[k]; 1067 if (prog != slot_prog) 1068 continue; 1069 1070 use_cnt++; 1071 if (map->autocreate) 1072 should_load = true; 1073 } 1074 } 1075 if (use_cnt) 1076 prog->autoload = should_load; 1077 } 1078 1079 return 0; 1080 } 1081 1082 /* Init the map's fields that depend on kern_btf */ 1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1084 { 1085 const struct btf_member *member, *kern_member, *kern_data_member; 1086 const struct btf_type *type, *kern_type, *kern_vtype; 1087 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1088 struct bpf_object *obj = map->obj; 1089 const struct btf *btf = obj->btf; 1090 struct bpf_struct_ops *st_ops; 1091 const struct btf *kern_btf; 1092 struct module_btf *mod_btf; 1093 void *data, *kern_data; 1094 const char *tname; 1095 int err; 1096 1097 st_ops = map->st_ops; 1098 type = st_ops->type; 1099 tname = st_ops->tname; 1100 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1101 &kern_type, &kern_type_id, 1102 &kern_vtype, &kern_vtype_id, 1103 &kern_data_member); 1104 if (err) 1105 return err; 1106 1107 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1108 1109 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1110 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1111 1112 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1113 map->def.value_size = kern_vtype->size; 1114 map->btf_vmlinux_value_type_id = kern_vtype_id; 1115 1116 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1117 if (!st_ops->kern_vdata) 1118 return -ENOMEM; 1119 1120 data = st_ops->data; 1121 kern_data_off = kern_data_member->offset / 8; 1122 kern_data = st_ops->kern_vdata + kern_data_off; 1123 1124 member = btf_members(type); 1125 for (i = 0; i < btf_vlen(type); i++, member++) { 1126 const struct btf_type *mtype, *kern_mtype; 1127 __u32 mtype_id, kern_mtype_id; 1128 void *mdata, *kern_mdata; 1129 __s64 msize, kern_msize; 1130 __u32 moff, kern_moff; 1131 __u32 kern_member_idx; 1132 const char *mname; 1133 1134 mname = btf__name_by_offset(btf, member->name_off); 1135 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1136 if (!kern_member) { 1137 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1138 map->name, mname); 1139 return -ENOTSUP; 1140 } 1141 1142 kern_member_idx = kern_member - btf_members(kern_type); 1143 if (btf_member_bitfield_size(type, i) || 1144 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1145 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1146 map->name, mname); 1147 return -ENOTSUP; 1148 } 1149 1150 moff = member->offset / 8; 1151 kern_moff = kern_member->offset / 8; 1152 1153 mdata = data + moff; 1154 kern_mdata = kern_data + kern_moff; 1155 1156 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1157 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1158 &kern_mtype_id); 1159 if (BTF_INFO_KIND(mtype->info) != 1160 BTF_INFO_KIND(kern_mtype->info)) { 1161 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1162 map->name, mname, BTF_INFO_KIND(mtype->info), 1163 BTF_INFO_KIND(kern_mtype->info)); 1164 return -ENOTSUP; 1165 } 1166 1167 if (btf_is_ptr(mtype)) { 1168 struct bpf_program *prog; 1169 1170 /* Update the value from the shadow type */ 1171 prog = *(void **)mdata; 1172 st_ops->progs[i] = prog; 1173 if (!prog) 1174 continue; 1175 if (!is_valid_st_ops_program(obj, prog)) { 1176 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1177 map->name, mname); 1178 return -ENOTSUP; 1179 } 1180 1181 kern_mtype = skip_mods_and_typedefs(kern_btf, 1182 kern_mtype->type, 1183 &kern_mtype_id); 1184 1185 /* mtype->type must be a func_proto which was 1186 * guaranteed in bpf_object__collect_st_ops_relos(), 1187 * so only check kern_mtype for func_proto here. 1188 */ 1189 if (!btf_is_func_proto(kern_mtype)) { 1190 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1191 map->name, mname); 1192 return -ENOTSUP; 1193 } 1194 1195 if (mod_btf) 1196 prog->attach_btf_obj_fd = mod_btf->fd; 1197 1198 /* if we haven't yet processed this BPF program, record proper 1199 * attach_btf_id and member_idx 1200 */ 1201 if (!prog->attach_btf_id) { 1202 prog->attach_btf_id = kern_type_id; 1203 prog->expected_attach_type = kern_member_idx; 1204 } 1205 1206 /* struct_ops BPF prog can be re-used between multiple 1207 * .struct_ops & .struct_ops.link as long as it's the 1208 * same struct_ops struct definition and the same 1209 * function pointer field 1210 */ 1211 if (prog->attach_btf_id != kern_type_id) { 1212 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1213 map->name, mname, prog->name, prog->sec_name, prog->type, 1214 prog->attach_btf_id, kern_type_id); 1215 return -EINVAL; 1216 } 1217 if (prog->expected_attach_type != kern_member_idx) { 1218 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1219 map->name, mname, prog->name, prog->sec_name, prog->type, 1220 prog->expected_attach_type, kern_member_idx); 1221 return -EINVAL; 1222 } 1223 1224 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1225 1226 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1227 map->name, mname, prog->name, moff, 1228 kern_moff); 1229 1230 continue; 1231 } 1232 1233 msize = btf__resolve_size(btf, mtype_id); 1234 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1235 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1236 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1237 map->name, mname, (ssize_t)msize, 1238 (ssize_t)kern_msize); 1239 return -ENOTSUP; 1240 } 1241 1242 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1243 map->name, mname, (unsigned int)msize, 1244 moff, kern_moff); 1245 memcpy(kern_mdata, mdata, msize); 1246 } 1247 1248 return 0; 1249 } 1250 1251 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1252 { 1253 struct bpf_map *map; 1254 size_t i; 1255 int err; 1256 1257 for (i = 0; i < obj->nr_maps; i++) { 1258 map = &obj->maps[i]; 1259 1260 if (!bpf_map__is_struct_ops(map)) 1261 continue; 1262 1263 if (!map->autocreate) 1264 continue; 1265 1266 err = bpf_map__init_kern_struct_ops(map); 1267 if (err) 1268 return err; 1269 } 1270 1271 return 0; 1272 } 1273 1274 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1275 int shndx, Elf_Data *data) 1276 { 1277 const struct btf_type *type, *datasec; 1278 const struct btf_var_secinfo *vsi; 1279 struct bpf_struct_ops *st_ops; 1280 const char *tname, *var_name; 1281 __s32 type_id, datasec_id; 1282 const struct btf *btf; 1283 struct bpf_map *map; 1284 __u32 i; 1285 1286 if (shndx == -1) 1287 return 0; 1288 1289 btf = obj->btf; 1290 datasec_id = btf__find_by_name_kind(btf, sec_name, 1291 BTF_KIND_DATASEC); 1292 if (datasec_id < 0) { 1293 pr_warn("struct_ops init: DATASEC %s not found\n", 1294 sec_name); 1295 return -EINVAL; 1296 } 1297 1298 datasec = btf__type_by_id(btf, datasec_id); 1299 vsi = btf_var_secinfos(datasec); 1300 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1301 type = btf__type_by_id(obj->btf, vsi->type); 1302 var_name = btf__name_by_offset(obj->btf, type->name_off); 1303 1304 type_id = btf__resolve_type(obj->btf, vsi->type); 1305 if (type_id < 0) { 1306 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1307 vsi->type, sec_name); 1308 return -EINVAL; 1309 } 1310 1311 type = btf__type_by_id(obj->btf, type_id); 1312 tname = btf__name_by_offset(obj->btf, type->name_off); 1313 if (!tname[0]) { 1314 pr_warn("struct_ops init: anonymous type is not supported\n"); 1315 return -ENOTSUP; 1316 } 1317 if (!btf_is_struct(type)) { 1318 pr_warn("struct_ops init: %s is not a struct\n", tname); 1319 return -EINVAL; 1320 } 1321 1322 map = bpf_object__add_map(obj); 1323 if (IS_ERR(map)) 1324 return PTR_ERR(map); 1325 1326 map->sec_idx = shndx; 1327 map->sec_offset = vsi->offset; 1328 map->name = strdup(var_name); 1329 if (!map->name) 1330 return -ENOMEM; 1331 map->btf_value_type_id = type_id; 1332 1333 /* Follow same convention as for programs autoload: 1334 * SEC("?.struct_ops") means map is not created by default. 1335 */ 1336 if (sec_name[0] == '?') { 1337 map->autocreate = false; 1338 /* from now on forget there was ? in section name */ 1339 sec_name++; 1340 } 1341 1342 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1343 map->def.key_size = sizeof(int); 1344 map->def.value_size = type->size; 1345 map->def.max_entries = 1; 1346 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1347 1348 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1349 if (!map->st_ops) 1350 return -ENOMEM; 1351 st_ops = map->st_ops; 1352 st_ops->data = malloc(type->size); 1353 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1354 st_ops->kern_func_off = malloc(btf_vlen(type) * 1355 sizeof(*st_ops->kern_func_off)); 1356 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1357 return -ENOMEM; 1358 1359 if (vsi->offset + type->size > data->d_size) { 1360 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1361 var_name, sec_name); 1362 return -EINVAL; 1363 } 1364 1365 memcpy(st_ops->data, 1366 data->d_buf + vsi->offset, 1367 type->size); 1368 st_ops->tname = tname; 1369 st_ops->type = type; 1370 st_ops->type_id = type_id; 1371 1372 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1373 tname, type_id, var_name, vsi->offset); 1374 } 1375 1376 return 0; 1377 } 1378 1379 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1380 { 1381 const char *sec_name; 1382 int sec_idx, err; 1383 1384 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1385 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1386 1387 if (desc->sec_type != SEC_ST_OPS) 1388 continue; 1389 1390 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1391 if (!sec_name) 1392 return -LIBBPF_ERRNO__FORMAT; 1393 1394 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1395 if (err) 1396 return err; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static struct bpf_object *bpf_object__new(const char *path, 1403 const void *obj_buf, 1404 size_t obj_buf_sz, 1405 const char *obj_name) 1406 { 1407 struct bpf_object *obj; 1408 char *end; 1409 1410 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1411 if (!obj) { 1412 pr_warn("alloc memory failed for %s\n", path); 1413 return ERR_PTR(-ENOMEM); 1414 } 1415 1416 strcpy(obj->path, path); 1417 if (obj_name) { 1418 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1419 } else { 1420 /* Using basename() GNU version which doesn't modify arg. */ 1421 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1422 end = strchr(obj->name, '.'); 1423 if (end) 1424 *end = 0; 1425 } 1426 1427 obj->efile.fd = -1; 1428 /* 1429 * Caller of this function should also call 1430 * bpf_object__elf_finish() after data collection to return 1431 * obj_buf to user. If not, we should duplicate the buffer to 1432 * avoid user freeing them before elf finish. 1433 */ 1434 obj->efile.obj_buf = obj_buf; 1435 obj->efile.obj_buf_sz = obj_buf_sz; 1436 obj->efile.btf_maps_shndx = -1; 1437 obj->kconfig_map_idx = -1; 1438 1439 obj->kern_version = get_kernel_version(); 1440 obj->loaded = false; 1441 1442 return obj; 1443 } 1444 1445 static void bpf_object__elf_finish(struct bpf_object *obj) 1446 { 1447 if (!obj->efile.elf) 1448 return; 1449 1450 elf_end(obj->efile.elf); 1451 obj->efile.elf = NULL; 1452 obj->efile.symbols = NULL; 1453 obj->efile.arena_data = NULL; 1454 1455 zfree(&obj->efile.secs); 1456 obj->efile.sec_cnt = 0; 1457 zclose(obj->efile.fd); 1458 obj->efile.obj_buf = NULL; 1459 obj->efile.obj_buf_sz = 0; 1460 } 1461 1462 static int bpf_object__elf_init(struct bpf_object *obj) 1463 { 1464 Elf64_Ehdr *ehdr; 1465 int err = 0; 1466 Elf *elf; 1467 1468 if (obj->efile.elf) { 1469 pr_warn("elf: init internal error\n"); 1470 return -LIBBPF_ERRNO__LIBELF; 1471 } 1472 1473 if (obj->efile.obj_buf_sz > 0) { 1474 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1475 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1476 } else { 1477 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1478 if (obj->efile.fd < 0) { 1479 char errmsg[STRERR_BUFSIZE], *cp; 1480 1481 err = -errno; 1482 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1483 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1484 return err; 1485 } 1486 1487 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1488 } 1489 1490 if (!elf) { 1491 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1492 err = -LIBBPF_ERRNO__LIBELF; 1493 goto errout; 1494 } 1495 1496 obj->efile.elf = elf; 1497 1498 if (elf_kind(elf) != ELF_K_ELF) { 1499 err = -LIBBPF_ERRNO__FORMAT; 1500 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1501 goto errout; 1502 } 1503 1504 if (gelf_getclass(elf) != ELFCLASS64) { 1505 err = -LIBBPF_ERRNO__FORMAT; 1506 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1507 goto errout; 1508 } 1509 1510 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1511 if (!obj->efile.ehdr) { 1512 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1513 err = -LIBBPF_ERRNO__FORMAT; 1514 goto errout; 1515 } 1516 1517 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1518 pr_warn("elf: failed to get section names section index for %s: %s\n", 1519 obj->path, elf_errmsg(-1)); 1520 err = -LIBBPF_ERRNO__FORMAT; 1521 goto errout; 1522 } 1523 1524 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1525 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1526 pr_warn("elf: failed to get section names strings from %s: %s\n", 1527 obj->path, elf_errmsg(-1)); 1528 err = -LIBBPF_ERRNO__FORMAT; 1529 goto errout; 1530 } 1531 1532 /* Old LLVM set e_machine to EM_NONE */ 1533 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1534 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1535 err = -LIBBPF_ERRNO__FORMAT; 1536 goto errout; 1537 } 1538 1539 return 0; 1540 errout: 1541 bpf_object__elf_finish(obj); 1542 return err; 1543 } 1544 1545 static int bpf_object__check_endianness(struct bpf_object *obj) 1546 { 1547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1548 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1549 return 0; 1550 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1551 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1552 return 0; 1553 #else 1554 # error "Unrecognized __BYTE_ORDER__" 1555 #endif 1556 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1557 return -LIBBPF_ERRNO__ENDIAN; 1558 } 1559 1560 static int 1561 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1562 { 1563 if (!data) { 1564 pr_warn("invalid license section in %s\n", obj->path); 1565 return -LIBBPF_ERRNO__FORMAT; 1566 } 1567 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1568 * go over allowed ELF data section buffer 1569 */ 1570 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1571 pr_debug("license of %s is %s\n", obj->path, obj->license); 1572 return 0; 1573 } 1574 1575 static int 1576 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1577 { 1578 __u32 kver; 1579 1580 if (!data || size != sizeof(kver)) { 1581 pr_warn("invalid kver section in %s\n", obj->path); 1582 return -LIBBPF_ERRNO__FORMAT; 1583 } 1584 memcpy(&kver, data, sizeof(kver)); 1585 obj->kern_version = kver; 1586 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1587 return 0; 1588 } 1589 1590 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1591 { 1592 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1593 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1594 return true; 1595 return false; 1596 } 1597 1598 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1599 { 1600 Elf_Data *data; 1601 Elf_Scn *scn; 1602 1603 if (!name) 1604 return -EINVAL; 1605 1606 scn = elf_sec_by_name(obj, name); 1607 data = elf_sec_data(obj, scn); 1608 if (data) { 1609 *size = data->d_size; 1610 return 0; /* found it */ 1611 } 1612 1613 return -ENOENT; 1614 } 1615 1616 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1617 { 1618 Elf_Data *symbols = obj->efile.symbols; 1619 const char *sname; 1620 size_t si; 1621 1622 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1623 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1624 1625 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1626 continue; 1627 1628 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1629 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1630 continue; 1631 1632 sname = elf_sym_str(obj, sym->st_name); 1633 if (!sname) { 1634 pr_warn("failed to get sym name string for var %s\n", name); 1635 return ERR_PTR(-EIO); 1636 } 1637 if (strcmp(name, sname) == 0) 1638 return sym; 1639 } 1640 1641 return ERR_PTR(-ENOENT); 1642 } 1643 1644 /* Some versions of Android don't provide memfd_create() in their libc 1645 * implementation, so avoid complications and just go straight to Linux 1646 * syscall. 1647 */ 1648 static int sys_memfd_create(const char *name, unsigned flags) 1649 { 1650 return syscall(__NR_memfd_create, name, flags); 1651 } 1652 1653 static int create_placeholder_fd(void) 1654 { 1655 int fd; 1656 1657 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1658 if (fd < 0) 1659 return -errno; 1660 return fd; 1661 } 1662 1663 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1664 { 1665 struct bpf_map *map; 1666 int err; 1667 1668 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1669 sizeof(*obj->maps), obj->nr_maps + 1); 1670 if (err) 1671 return ERR_PTR(err); 1672 1673 map = &obj->maps[obj->nr_maps++]; 1674 map->obj = obj; 1675 /* Preallocate map FD without actually creating BPF map just yet. 1676 * These map FD "placeholders" will be reused later without changing 1677 * FD value when map is actually created in the kernel. 1678 * 1679 * This is useful to be able to perform BPF program relocations 1680 * without having to create BPF maps before that step. This allows us 1681 * to finalize and load BTF very late in BPF object's loading phase, 1682 * right before BPF maps have to be created and BPF programs have to 1683 * be loaded. By having these map FD placeholders we can perform all 1684 * the sanitizations, relocations, and any other adjustments before we 1685 * start creating actual BPF kernel objects (BTF, maps, progs). 1686 */ 1687 map->fd = create_placeholder_fd(); 1688 if (map->fd < 0) 1689 return ERR_PTR(map->fd); 1690 map->inner_map_fd = -1; 1691 map->autocreate = true; 1692 1693 return map; 1694 } 1695 1696 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1697 { 1698 const long page_sz = sysconf(_SC_PAGE_SIZE); 1699 size_t map_sz; 1700 1701 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1702 map_sz = roundup(map_sz, page_sz); 1703 return map_sz; 1704 } 1705 1706 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1707 { 1708 const long page_sz = sysconf(_SC_PAGE_SIZE); 1709 1710 switch (map->def.type) { 1711 case BPF_MAP_TYPE_ARRAY: 1712 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1713 case BPF_MAP_TYPE_ARENA: 1714 return page_sz * map->def.max_entries; 1715 default: 1716 return 0; /* not supported */ 1717 } 1718 } 1719 1720 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1721 { 1722 void *mmaped; 1723 1724 if (!map->mmaped) 1725 return -EINVAL; 1726 1727 if (old_sz == new_sz) 1728 return 0; 1729 1730 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1731 if (mmaped == MAP_FAILED) 1732 return -errno; 1733 1734 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1735 munmap(map->mmaped, old_sz); 1736 map->mmaped = mmaped; 1737 return 0; 1738 } 1739 1740 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1741 { 1742 char map_name[BPF_OBJ_NAME_LEN], *p; 1743 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1744 1745 /* This is one of the more confusing parts of libbpf for various 1746 * reasons, some of which are historical. The original idea for naming 1747 * internal names was to include as much of BPF object name prefix as 1748 * possible, so that it can be distinguished from similar internal 1749 * maps of a different BPF object. 1750 * As an example, let's say we have bpf_object named 'my_object_name' 1751 * and internal map corresponding to '.rodata' ELF section. The final 1752 * map name advertised to user and to the kernel will be 1753 * 'my_objec.rodata', taking first 8 characters of object name and 1754 * entire 7 characters of '.rodata'. 1755 * Somewhat confusingly, if internal map ELF section name is shorter 1756 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1757 * for the suffix, even though we only have 4 actual characters, and 1758 * resulting map will be called 'my_objec.bss', not even using all 15 1759 * characters allowed by the kernel. Oh well, at least the truncated 1760 * object name is somewhat consistent in this case. But if the map 1761 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1762 * (8 chars) and thus will be left with only first 7 characters of the 1763 * object name ('my_obje'). Happy guessing, user, that the final map 1764 * name will be "my_obje.kconfig". 1765 * Now, with libbpf starting to support arbitrarily named .rodata.* 1766 * and .data.* data sections, it's possible that ELF section name is 1767 * longer than allowed 15 chars, so we now need to be careful to take 1768 * only up to 15 first characters of ELF name, taking no BPF object 1769 * name characters at all. So '.rodata.abracadabra' will result in 1770 * '.rodata.abracad' kernel and user-visible name. 1771 * We need to keep this convoluted logic intact for .data, .bss and 1772 * .rodata maps, but for new custom .data.custom and .rodata.custom 1773 * maps we use their ELF names as is, not prepending bpf_object name 1774 * in front. We still need to truncate them to 15 characters for the 1775 * kernel. Full name can be recovered for such maps by using DATASEC 1776 * BTF type associated with such map's value type, though. 1777 */ 1778 if (sfx_len >= BPF_OBJ_NAME_LEN) 1779 sfx_len = BPF_OBJ_NAME_LEN - 1; 1780 1781 /* if there are two or more dots in map name, it's a custom dot map */ 1782 if (strchr(real_name + 1, '.') != NULL) 1783 pfx_len = 0; 1784 else 1785 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1786 1787 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1788 sfx_len, real_name); 1789 1790 /* sanitise map name to characters allowed by kernel */ 1791 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1792 if (!isalnum(*p) && *p != '_' && *p != '.') 1793 *p = '_'; 1794 1795 return strdup(map_name); 1796 } 1797 1798 static int 1799 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1800 1801 /* Internal BPF map is mmap()'able only if at least one of corresponding 1802 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1803 * variable and it's not marked as __hidden (which turns it into, effectively, 1804 * a STATIC variable). 1805 */ 1806 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1807 { 1808 const struct btf_type *t, *vt; 1809 struct btf_var_secinfo *vsi; 1810 int i, n; 1811 1812 if (!map->btf_value_type_id) 1813 return false; 1814 1815 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1816 if (!btf_is_datasec(t)) 1817 return false; 1818 1819 vsi = btf_var_secinfos(t); 1820 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1821 vt = btf__type_by_id(obj->btf, vsi->type); 1822 if (!btf_is_var(vt)) 1823 continue; 1824 1825 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1826 return true; 1827 } 1828 1829 return false; 1830 } 1831 1832 static int 1833 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1834 const char *real_name, int sec_idx, void *data, size_t data_sz) 1835 { 1836 struct bpf_map_def *def; 1837 struct bpf_map *map; 1838 size_t mmap_sz; 1839 int err; 1840 1841 map = bpf_object__add_map(obj); 1842 if (IS_ERR(map)) 1843 return PTR_ERR(map); 1844 1845 map->libbpf_type = type; 1846 map->sec_idx = sec_idx; 1847 map->sec_offset = 0; 1848 map->real_name = strdup(real_name); 1849 map->name = internal_map_name(obj, real_name); 1850 if (!map->real_name || !map->name) { 1851 zfree(&map->real_name); 1852 zfree(&map->name); 1853 return -ENOMEM; 1854 } 1855 1856 def = &map->def; 1857 def->type = BPF_MAP_TYPE_ARRAY; 1858 def->key_size = sizeof(int); 1859 def->value_size = data_sz; 1860 def->max_entries = 1; 1861 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1862 ? BPF_F_RDONLY_PROG : 0; 1863 1864 /* failures are fine because of maps like .rodata.str1.1 */ 1865 (void) map_fill_btf_type_info(obj, map); 1866 1867 if (map_is_mmapable(obj, map)) 1868 def->map_flags |= BPF_F_MMAPABLE; 1869 1870 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1871 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1872 1873 mmap_sz = bpf_map_mmap_sz(map); 1874 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1875 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1876 if (map->mmaped == MAP_FAILED) { 1877 err = -errno; 1878 map->mmaped = NULL; 1879 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1880 map->name, err); 1881 zfree(&map->real_name); 1882 zfree(&map->name); 1883 return err; 1884 } 1885 1886 if (data) 1887 memcpy(map->mmaped, data, data_sz); 1888 1889 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1890 return 0; 1891 } 1892 1893 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1894 { 1895 struct elf_sec_desc *sec_desc; 1896 const char *sec_name; 1897 int err = 0, sec_idx; 1898 1899 /* 1900 * Populate obj->maps with libbpf internal maps. 1901 */ 1902 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1903 sec_desc = &obj->efile.secs[sec_idx]; 1904 1905 /* Skip recognized sections with size 0. */ 1906 if (!sec_desc->data || sec_desc->data->d_size == 0) 1907 continue; 1908 1909 switch (sec_desc->sec_type) { 1910 case SEC_DATA: 1911 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1912 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1913 sec_name, sec_idx, 1914 sec_desc->data->d_buf, 1915 sec_desc->data->d_size); 1916 break; 1917 case SEC_RODATA: 1918 obj->has_rodata = true; 1919 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1920 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1921 sec_name, sec_idx, 1922 sec_desc->data->d_buf, 1923 sec_desc->data->d_size); 1924 break; 1925 case SEC_BSS: 1926 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1927 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1928 sec_name, sec_idx, 1929 NULL, 1930 sec_desc->data->d_size); 1931 break; 1932 default: 1933 /* skip */ 1934 break; 1935 } 1936 if (err) 1937 return err; 1938 } 1939 return 0; 1940 } 1941 1942 1943 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1944 const void *name) 1945 { 1946 int i; 1947 1948 for (i = 0; i < obj->nr_extern; i++) { 1949 if (strcmp(obj->externs[i].name, name) == 0) 1950 return &obj->externs[i]; 1951 } 1952 return NULL; 1953 } 1954 1955 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1956 char value) 1957 { 1958 switch (ext->kcfg.type) { 1959 case KCFG_BOOL: 1960 if (value == 'm') { 1961 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1962 ext->name, value); 1963 return -EINVAL; 1964 } 1965 *(bool *)ext_val = value == 'y' ? true : false; 1966 break; 1967 case KCFG_TRISTATE: 1968 if (value == 'y') 1969 *(enum libbpf_tristate *)ext_val = TRI_YES; 1970 else if (value == 'm') 1971 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1972 else /* value == 'n' */ 1973 *(enum libbpf_tristate *)ext_val = TRI_NO; 1974 break; 1975 case KCFG_CHAR: 1976 *(char *)ext_val = value; 1977 break; 1978 case KCFG_UNKNOWN: 1979 case KCFG_INT: 1980 case KCFG_CHAR_ARR: 1981 default: 1982 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1983 ext->name, value); 1984 return -EINVAL; 1985 } 1986 ext->is_set = true; 1987 return 0; 1988 } 1989 1990 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1991 const char *value) 1992 { 1993 size_t len; 1994 1995 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1996 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1997 ext->name, value); 1998 return -EINVAL; 1999 } 2000 2001 len = strlen(value); 2002 if (value[len - 1] != '"') { 2003 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2004 ext->name, value); 2005 return -EINVAL; 2006 } 2007 2008 /* strip quotes */ 2009 len -= 2; 2010 if (len >= ext->kcfg.sz) { 2011 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2012 ext->name, value, len, ext->kcfg.sz - 1); 2013 len = ext->kcfg.sz - 1; 2014 } 2015 memcpy(ext_val, value + 1, len); 2016 ext_val[len] = '\0'; 2017 ext->is_set = true; 2018 return 0; 2019 } 2020 2021 static int parse_u64(const char *value, __u64 *res) 2022 { 2023 char *value_end; 2024 int err; 2025 2026 errno = 0; 2027 *res = strtoull(value, &value_end, 0); 2028 if (errno) { 2029 err = -errno; 2030 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2031 return err; 2032 } 2033 if (*value_end) { 2034 pr_warn("failed to parse '%s' as integer completely\n", value); 2035 return -EINVAL; 2036 } 2037 return 0; 2038 } 2039 2040 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2041 { 2042 int bit_sz = ext->kcfg.sz * 8; 2043 2044 if (ext->kcfg.sz == 8) 2045 return true; 2046 2047 /* Validate that value stored in u64 fits in integer of `ext->sz` 2048 * bytes size without any loss of information. If the target integer 2049 * is signed, we rely on the following limits of integer type of 2050 * Y bits and subsequent transformation: 2051 * 2052 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2053 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2054 * 0 <= X + 2^(Y-1) < 2^Y 2055 * 2056 * For unsigned target integer, check that all the (64 - Y) bits are 2057 * zero. 2058 */ 2059 if (ext->kcfg.is_signed) 2060 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2061 else 2062 return (v >> bit_sz) == 0; 2063 } 2064 2065 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2066 __u64 value) 2067 { 2068 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2069 ext->kcfg.type != KCFG_BOOL) { 2070 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2071 ext->name, (unsigned long long)value); 2072 return -EINVAL; 2073 } 2074 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2075 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2076 ext->name, (unsigned long long)value); 2077 return -EINVAL; 2078 2079 } 2080 if (!is_kcfg_value_in_range(ext, value)) { 2081 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2082 ext->name, (unsigned long long)value, ext->kcfg.sz); 2083 return -ERANGE; 2084 } 2085 switch (ext->kcfg.sz) { 2086 case 1: 2087 *(__u8 *)ext_val = value; 2088 break; 2089 case 2: 2090 *(__u16 *)ext_val = value; 2091 break; 2092 case 4: 2093 *(__u32 *)ext_val = value; 2094 break; 2095 case 8: 2096 *(__u64 *)ext_val = value; 2097 break; 2098 default: 2099 return -EINVAL; 2100 } 2101 ext->is_set = true; 2102 return 0; 2103 } 2104 2105 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2106 char *buf, void *data) 2107 { 2108 struct extern_desc *ext; 2109 char *sep, *value; 2110 int len, err = 0; 2111 void *ext_val; 2112 __u64 num; 2113 2114 if (!str_has_pfx(buf, "CONFIG_")) 2115 return 0; 2116 2117 sep = strchr(buf, '='); 2118 if (!sep) { 2119 pr_warn("failed to parse '%s': no separator\n", buf); 2120 return -EINVAL; 2121 } 2122 2123 /* Trim ending '\n' */ 2124 len = strlen(buf); 2125 if (buf[len - 1] == '\n') 2126 buf[len - 1] = '\0'; 2127 /* Split on '=' and ensure that a value is present. */ 2128 *sep = '\0'; 2129 if (!sep[1]) { 2130 *sep = '='; 2131 pr_warn("failed to parse '%s': no value\n", buf); 2132 return -EINVAL; 2133 } 2134 2135 ext = find_extern_by_name(obj, buf); 2136 if (!ext || ext->is_set) 2137 return 0; 2138 2139 ext_val = data + ext->kcfg.data_off; 2140 value = sep + 1; 2141 2142 switch (*value) { 2143 case 'y': case 'n': case 'm': 2144 err = set_kcfg_value_tri(ext, ext_val, *value); 2145 break; 2146 case '"': 2147 err = set_kcfg_value_str(ext, ext_val, value); 2148 break; 2149 default: 2150 /* assume integer */ 2151 err = parse_u64(value, &num); 2152 if (err) { 2153 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2154 return err; 2155 } 2156 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2157 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2158 return -EINVAL; 2159 } 2160 err = set_kcfg_value_num(ext, ext_val, num); 2161 break; 2162 } 2163 if (err) 2164 return err; 2165 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2166 return 0; 2167 } 2168 2169 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2170 { 2171 char buf[PATH_MAX]; 2172 struct utsname uts; 2173 int len, err = 0; 2174 gzFile file; 2175 2176 uname(&uts); 2177 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2178 if (len < 0) 2179 return -EINVAL; 2180 else if (len >= PATH_MAX) 2181 return -ENAMETOOLONG; 2182 2183 /* gzopen also accepts uncompressed files. */ 2184 file = gzopen(buf, "re"); 2185 if (!file) 2186 file = gzopen("/proc/config.gz", "re"); 2187 2188 if (!file) { 2189 pr_warn("failed to open system Kconfig\n"); 2190 return -ENOENT; 2191 } 2192 2193 while (gzgets(file, buf, sizeof(buf))) { 2194 err = bpf_object__process_kconfig_line(obj, buf, data); 2195 if (err) { 2196 pr_warn("error parsing system Kconfig line '%s': %d\n", 2197 buf, err); 2198 goto out; 2199 } 2200 } 2201 2202 out: 2203 gzclose(file); 2204 return err; 2205 } 2206 2207 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2208 const char *config, void *data) 2209 { 2210 char buf[PATH_MAX]; 2211 int err = 0; 2212 FILE *file; 2213 2214 file = fmemopen((void *)config, strlen(config), "r"); 2215 if (!file) { 2216 err = -errno; 2217 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2218 return err; 2219 } 2220 2221 while (fgets(buf, sizeof(buf), file)) { 2222 err = bpf_object__process_kconfig_line(obj, buf, data); 2223 if (err) { 2224 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2225 buf, err); 2226 break; 2227 } 2228 } 2229 2230 fclose(file); 2231 return err; 2232 } 2233 2234 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2235 { 2236 struct extern_desc *last_ext = NULL, *ext; 2237 size_t map_sz; 2238 int i, err; 2239 2240 for (i = 0; i < obj->nr_extern; i++) { 2241 ext = &obj->externs[i]; 2242 if (ext->type == EXT_KCFG) 2243 last_ext = ext; 2244 } 2245 2246 if (!last_ext) 2247 return 0; 2248 2249 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2250 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2251 ".kconfig", obj->efile.symbols_shndx, 2252 NULL, map_sz); 2253 if (err) 2254 return err; 2255 2256 obj->kconfig_map_idx = obj->nr_maps - 1; 2257 2258 return 0; 2259 } 2260 2261 const struct btf_type * 2262 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2263 { 2264 const struct btf_type *t = btf__type_by_id(btf, id); 2265 2266 if (res_id) 2267 *res_id = id; 2268 2269 while (btf_is_mod(t) || btf_is_typedef(t)) { 2270 if (res_id) 2271 *res_id = t->type; 2272 t = btf__type_by_id(btf, t->type); 2273 } 2274 2275 return t; 2276 } 2277 2278 static const struct btf_type * 2279 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2280 { 2281 const struct btf_type *t; 2282 2283 t = skip_mods_and_typedefs(btf, id, NULL); 2284 if (!btf_is_ptr(t)) 2285 return NULL; 2286 2287 t = skip_mods_and_typedefs(btf, t->type, res_id); 2288 2289 return btf_is_func_proto(t) ? t : NULL; 2290 } 2291 2292 static const char *__btf_kind_str(__u16 kind) 2293 { 2294 switch (kind) { 2295 case BTF_KIND_UNKN: return "void"; 2296 case BTF_KIND_INT: return "int"; 2297 case BTF_KIND_PTR: return "ptr"; 2298 case BTF_KIND_ARRAY: return "array"; 2299 case BTF_KIND_STRUCT: return "struct"; 2300 case BTF_KIND_UNION: return "union"; 2301 case BTF_KIND_ENUM: return "enum"; 2302 case BTF_KIND_FWD: return "fwd"; 2303 case BTF_KIND_TYPEDEF: return "typedef"; 2304 case BTF_KIND_VOLATILE: return "volatile"; 2305 case BTF_KIND_CONST: return "const"; 2306 case BTF_KIND_RESTRICT: return "restrict"; 2307 case BTF_KIND_FUNC: return "func"; 2308 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2309 case BTF_KIND_VAR: return "var"; 2310 case BTF_KIND_DATASEC: return "datasec"; 2311 case BTF_KIND_FLOAT: return "float"; 2312 case BTF_KIND_DECL_TAG: return "decl_tag"; 2313 case BTF_KIND_TYPE_TAG: return "type_tag"; 2314 case BTF_KIND_ENUM64: return "enum64"; 2315 default: return "unknown"; 2316 } 2317 } 2318 2319 const char *btf_kind_str(const struct btf_type *t) 2320 { 2321 return __btf_kind_str(btf_kind(t)); 2322 } 2323 2324 /* 2325 * Fetch integer attribute of BTF map definition. Such attributes are 2326 * represented using a pointer to an array, in which dimensionality of array 2327 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2328 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2329 * type definition, while using only sizeof(void *) space in ELF data section. 2330 */ 2331 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2332 const struct btf_member *m, __u32 *res) 2333 { 2334 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2335 const char *name = btf__name_by_offset(btf, m->name_off); 2336 const struct btf_array *arr_info; 2337 const struct btf_type *arr_t; 2338 2339 if (!btf_is_ptr(t)) { 2340 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2341 map_name, name, btf_kind_str(t)); 2342 return false; 2343 } 2344 2345 arr_t = btf__type_by_id(btf, t->type); 2346 if (!arr_t) { 2347 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2348 map_name, name, t->type); 2349 return false; 2350 } 2351 if (!btf_is_array(arr_t)) { 2352 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2353 map_name, name, btf_kind_str(arr_t)); 2354 return false; 2355 } 2356 arr_info = btf_array(arr_t); 2357 *res = arr_info->nelems; 2358 return true; 2359 } 2360 2361 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2362 const struct btf_member *m, __u64 *res) 2363 { 2364 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2365 const char *name = btf__name_by_offset(btf, m->name_off); 2366 2367 if (btf_is_ptr(t)) { 2368 __u32 res32; 2369 bool ret; 2370 2371 ret = get_map_field_int(map_name, btf, m, &res32); 2372 if (ret) 2373 *res = (__u64)res32; 2374 return ret; 2375 } 2376 2377 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2378 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2379 map_name, name, btf_kind_str(t)); 2380 return false; 2381 } 2382 2383 if (btf_vlen(t) != 1) { 2384 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2385 map_name, name); 2386 return false; 2387 } 2388 2389 if (btf_is_enum(t)) { 2390 const struct btf_enum *e = btf_enum(t); 2391 2392 *res = e->val; 2393 } else { 2394 const struct btf_enum64 *e = btf_enum64(t); 2395 2396 *res = btf_enum64_value(e); 2397 } 2398 return true; 2399 } 2400 2401 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2402 { 2403 int len; 2404 2405 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2406 if (len < 0) 2407 return -EINVAL; 2408 if (len >= buf_sz) 2409 return -ENAMETOOLONG; 2410 2411 return 0; 2412 } 2413 2414 static int build_map_pin_path(struct bpf_map *map, const char *path) 2415 { 2416 char buf[PATH_MAX]; 2417 int err; 2418 2419 if (!path) 2420 path = BPF_FS_DEFAULT_PATH; 2421 2422 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2423 if (err) 2424 return err; 2425 2426 return bpf_map__set_pin_path(map, buf); 2427 } 2428 2429 /* should match definition in bpf_helpers.h */ 2430 enum libbpf_pin_type { 2431 LIBBPF_PIN_NONE, 2432 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2433 LIBBPF_PIN_BY_NAME, 2434 }; 2435 2436 int parse_btf_map_def(const char *map_name, struct btf *btf, 2437 const struct btf_type *def_t, bool strict, 2438 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2439 { 2440 const struct btf_type *t; 2441 const struct btf_member *m; 2442 bool is_inner = inner_def == NULL; 2443 int vlen, i; 2444 2445 vlen = btf_vlen(def_t); 2446 m = btf_members(def_t); 2447 for (i = 0; i < vlen; i++, m++) { 2448 const char *name = btf__name_by_offset(btf, m->name_off); 2449 2450 if (!name) { 2451 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2452 return -EINVAL; 2453 } 2454 if (strcmp(name, "type") == 0) { 2455 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2456 return -EINVAL; 2457 map_def->parts |= MAP_DEF_MAP_TYPE; 2458 } else if (strcmp(name, "max_entries") == 0) { 2459 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2460 return -EINVAL; 2461 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2462 } else if (strcmp(name, "map_flags") == 0) { 2463 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2464 return -EINVAL; 2465 map_def->parts |= MAP_DEF_MAP_FLAGS; 2466 } else if (strcmp(name, "numa_node") == 0) { 2467 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2468 return -EINVAL; 2469 map_def->parts |= MAP_DEF_NUMA_NODE; 2470 } else if (strcmp(name, "key_size") == 0) { 2471 __u32 sz; 2472 2473 if (!get_map_field_int(map_name, btf, m, &sz)) 2474 return -EINVAL; 2475 if (map_def->key_size && map_def->key_size != sz) { 2476 pr_warn("map '%s': conflicting key size %u != %u.\n", 2477 map_name, map_def->key_size, sz); 2478 return -EINVAL; 2479 } 2480 map_def->key_size = sz; 2481 map_def->parts |= MAP_DEF_KEY_SIZE; 2482 } else if (strcmp(name, "key") == 0) { 2483 __s64 sz; 2484 2485 t = btf__type_by_id(btf, m->type); 2486 if (!t) { 2487 pr_warn("map '%s': key type [%d] not found.\n", 2488 map_name, m->type); 2489 return -EINVAL; 2490 } 2491 if (!btf_is_ptr(t)) { 2492 pr_warn("map '%s': key spec is not PTR: %s.\n", 2493 map_name, btf_kind_str(t)); 2494 return -EINVAL; 2495 } 2496 sz = btf__resolve_size(btf, t->type); 2497 if (sz < 0) { 2498 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2499 map_name, t->type, (ssize_t)sz); 2500 return sz; 2501 } 2502 if (map_def->key_size && map_def->key_size != sz) { 2503 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2504 map_name, map_def->key_size, (ssize_t)sz); 2505 return -EINVAL; 2506 } 2507 map_def->key_size = sz; 2508 map_def->key_type_id = t->type; 2509 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2510 } else if (strcmp(name, "value_size") == 0) { 2511 __u32 sz; 2512 2513 if (!get_map_field_int(map_name, btf, m, &sz)) 2514 return -EINVAL; 2515 if (map_def->value_size && map_def->value_size != sz) { 2516 pr_warn("map '%s': conflicting value size %u != %u.\n", 2517 map_name, map_def->value_size, sz); 2518 return -EINVAL; 2519 } 2520 map_def->value_size = sz; 2521 map_def->parts |= MAP_DEF_VALUE_SIZE; 2522 } else if (strcmp(name, "value") == 0) { 2523 __s64 sz; 2524 2525 t = btf__type_by_id(btf, m->type); 2526 if (!t) { 2527 pr_warn("map '%s': value type [%d] not found.\n", 2528 map_name, m->type); 2529 return -EINVAL; 2530 } 2531 if (!btf_is_ptr(t)) { 2532 pr_warn("map '%s': value spec is not PTR: %s.\n", 2533 map_name, btf_kind_str(t)); 2534 return -EINVAL; 2535 } 2536 sz = btf__resolve_size(btf, t->type); 2537 if (sz < 0) { 2538 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2539 map_name, t->type, (ssize_t)sz); 2540 return sz; 2541 } 2542 if (map_def->value_size && map_def->value_size != sz) { 2543 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2544 map_name, map_def->value_size, (ssize_t)sz); 2545 return -EINVAL; 2546 } 2547 map_def->value_size = sz; 2548 map_def->value_type_id = t->type; 2549 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2550 } 2551 else if (strcmp(name, "values") == 0) { 2552 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2553 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2554 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2555 char inner_map_name[128]; 2556 int err; 2557 2558 if (is_inner) { 2559 pr_warn("map '%s': multi-level inner maps not supported.\n", 2560 map_name); 2561 return -ENOTSUP; 2562 } 2563 if (i != vlen - 1) { 2564 pr_warn("map '%s': '%s' member should be last.\n", 2565 map_name, name); 2566 return -EINVAL; 2567 } 2568 if (!is_map_in_map && !is_prog_array) { 2569 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2570 map_name); 2571 return -ENOTSUP; 2572 } 2573 if (map_def->value_size && map_def->value_size != 4) { 2574 pr_warn("map '%s': conflicting value size %u != 4.\n", 2575 map_name, map_def->value_size); 2576 return -EINVAL; 2577 } 2578 map_def->value_size = 4; 2579 t = btf__type_by_id(btf, m->type); 2580 if (!t) { 2581 pr_warn("map '%s': %s type [%d] not found.\n", 2582 map_name, desc, m->type); 2583 return -EINVAL; 2584 } 2585 if (!btf_is_array(t) || btf_array(t)->nelems) { 2586 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2587 map_name, desc); 2588 return -EINVAL; 2589 } 2590 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2591 if (!btf_is_ptr(t)) { 2592 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2593 map_name, desc, btf_kind_str(t)); 2594 return -EINVAL; 2595 } 2596 t = skip_mods_and_typedefs(btf, t->type, NULL); 2597 if (is_prog_array) { 2598 if (!btf_is_func_proto(t)) { 2599 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2600 map_name, btf_kind_str(t)); 2601 return -EINVAL; 2602 } 2603 continue; 2604 } 2605 if (!btf_is_struct(t)) { 2606 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2607 map_name, btf_kind_str(t)); 2608 return -EINVAL; 2609 } 2610 2611 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2612 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2613 if (err) 2614 return err; 2615 2616 map_def->parts |= MAP_DEF_INNER_MAP; 2617 } else if (strcmp(name, "pinning") == 0) { 2618 __u32 val; 2619 2620 if (is_inner) { 2621 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2622 return -EINVAL; 2623 } 2624 if (!get_map_field_int(map_name, btf, m, &val)) 2625 return -EINVAL; 2626 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2627 pr_warn("map '%s': invalid pinning value %u.\n", 2628 map_name, val); 2629 return -EINVAL; 2630 } 2631 map_def->pinning = val; 2632 map_def->parts |= MAP_DEF_PINNING; 2633 } else if (strcmp(name, "map_extra") == 0) { 2634 __u64 map_extra; 2635 2636 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2637 return -EINVAL; 2638 map_def->map_extra = map_extra; 2639 map_def->parts |= MAP_DEF_MAP_EXTRA; 2640 } else { 2641 if (strict) { 2642 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2643 return -ENOTSUP; 2644 } 2645 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2646 } 2647 } 2648 2649 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2650 pr_warn("map '%s': map type isn't specified.\n", map_name); 2651 return -EINVAL; 2652 } 2653 2654 return 0; 2655 } 2656 2657 static size_t adjust_ringbuf_sz(size_t sz) 2658 { 2659 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2660 __u32 mul; 2661 2662 /* if user forgot to set any size, make sure they see error */ 2663 if (sz == 0) 2664 return 0; 2665 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2666 * a power-of-2 multiple of kernel's page size. If user diligently 2667 * satisified these conditions, pass the size through. 2668 */ 2669 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2670 return sz; 2671 2672 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2673 * user-set size to satisfy both user size request and kernel 2674 * requirements and substitute correct max_entries for map creation. 2675 */ 2676 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2677 if (mul * page_sz > sz) 2678 return mul * page_sz; 2679 } 2680 2681 /* if it's impossible to satisfy the conditions (i.e., user size is 2682 * very close to UINT_MAX but is not a power-of-2 multiple of 2683 * page_size) then just return original size and let kernel reject it 2684 */ 2685 return sz; 2686 } 2687 2688 static bool map_is_ringbuf(const struct bpf_map *map) 2689 { 2690 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2691 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2692 } 2693 2694 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2695 { 2696 map->def.type = def->map_type; 2697 map->def.key_size = def->key_size; 2698 map->def.value_size = def->value_size; 2699 map->def.max_entries = def->max_entries; 2700 map->def.map_flags = def->map_flags; 2701 map->map_extra = def->map_extra; 2702 2703 map->numa_node = def->numa_node; 2704 map->btf_key_type_id = def->key_type_id; 2705 map->btf_value_type_id = def->value_type_id; 2706 2707 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2708 if (map_is_ringbuf(map)) 2709 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2710 2711 if (def->parts & MAP_DEF_MAP_TYPE) 2712 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2713 2714 if (def->parts & MAP_DEF_KEY_TYPE) 2715 pr_debug("map '%s': found key [%u], sz = %u.\n", 2716 map->name, def->key_type_id, def->key_size); 2717 else if (def->parts & MAP_DEF_KEY_SIZE) 2718 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2719 2720 if (def->parts & MAP_DEF_VALUE_TYPE) 2721 pr_debug("map '%s': found value [%u], sz = %u.\n", 2722 map->name, def->value_type_id, def->value_size); 2723 else if (def->parts & MAP_DEF_VALUE_SIZE) 2724 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2725 2726 if (def->parts & MAP_DEF_MAX_ENTRIES) 2727 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2728 if (def->parts & MAP_DEF_MAP_FLAGS) 2729 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2730 if (def->parts & MAP_DEF_MAP_EXTRA) 2731 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2732 (unsigned long long)def->map_extra); 2733 if (def->parts & MAP_DEF_PINNING) 2734 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2735 if (def->parts & MAP_DEF_NUMA_NODE) 2736 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2737 2738 if (def->parts & MAP_DEF_INNER_MAP) 2739 pr_debug("map '%s': found inner map definition.\n", map->name); 2740 } 2741 2742 static const char *btf_var_linkage_str(__u32 linkage) 2743 { 2744 switch (linkage) { 2745 case BTF_VAR_STATIC: return "static"; 2746 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2747 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2748 default: return "unknown"; 2749 } 2750 } 2751 2752 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2753 const struct btf_type *sec, 2754 int var_idx, int sec_idx, 2755 const Elf_Data *data, bool strict, 2756 const char *pin_root_path) 2757 { 2758 struct btf_map_def map_def = {}, inner_def = {}; 2759 const struct btf_type *var, *def; 2760 const struct btf_var_secinfo *vi; 2761 const struct btf_var *var_extra; 2762 const char *map_name; 2763 struct bpf_map *map; 2764 int err; 2765 2766 vi = btf_var_secinfos(sec) + var_idx; 2767 var = btf__type_by_id(obj->btf, vi->type); 2768 var_extra = btf_var(var); 2769 map_name = btf__name_by_offset(obj->btf, var->name_off); 2770 2771 if (map_name == NULL || map_name[0] == '\0') { 2772 pr_warn("map #%d: empty name.\n", var_idx); 2773 return -EINVAL; 2774 } 2775 if ((__u64)vi->offset + vi->size > data->d_size) { 2776 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2777 return -EINVAL; 2778 } 2779 if (!btf_is_var(var)) { 2780 pr_warn("map '%s': unexpected var kind %s.\n", 2781 map_name, btf_kind_str(var)); 2782 return -EINVAL; 2783 } 2784 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2785 pr_warn("map '%s': unsupported map linkage %s.\n", 2786 map_name, btf_var_linkage_str(var_extra->linkage)); 2787 return -EOPNOTSUPP; 2788 } 2789 2790 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2791 if (!btf_is_struct(def)) { 2792 pr_warn("map '%s': unexpected def kind %s.\n", 2793 map_name, btf_kind_str(var)); 2794 return -EINVAL; 2795 } 2796 if (def->size > vi->size) { 2797 pr_warn("map '%s': invalid def size.\n", map_name); 2798 return -EINVAL; 2799 } 2800 2801 map = bpf_object__add_map(obj); 2802 if (IS_ERR(map)) 2803 return PTR_ERR(map); 2804 map->name = strdup(map_name); 2805 if (!map->name) { 2806 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2807 return -ENOMEM; 2808 } 2809 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2810 map->def.type = BPF_MAP_TYPE_UNSPEC; 2811 map->sec_idx = sec_idx; 2812 map->sec_offset = vi->offset; 2813 map->btf_var_idx = var_idx; 2814 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2815 map_name, map->sec_idx, map->sec_offset); 2816 2817 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2818 if (err) 2819 return err; 2820 2821 fill_map_from_def(map, &map_def); 2822 2823 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2824 err = build_map_pin_path(map, pin_root_path); 2825 if (err) { 2826 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2827 return err; 2828 } 2829 } 2830 2831 if (map_def.parts & MAP_DEF_INNER_MAP) { 2832 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2833 if (!map->inner_map) 2834 return -ENOMEM; 2835 map->inner_map->fd = create_placeholder_fd(); 2836 if (map->inner_map->fd < 0) 2837 return map->inner_map->fd; 2838 map->inner_map->sec_idx = sec_idx; 2839 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2840 if (!map->inner_map->name) 2841 return -ENOMEM; 2842 sprintf(map->inner_map->name, "%s.inner", map_name); 2843 2844 fill_map_from_def(map->inner_map, &inner_def); 2845 } 2846 2847 err = map_fill_btf_type_info(obj, map); 2848 if (err) 2849 return err; 2850 2851 return 0; 2852 } 2853 2854 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2855 const char *sec_name, int sec_idx, 2856 void *data, size_t data_sz) 2857 { 2858 const long page_sz = sysconf(_SC_PAGE_SIZE); 2859 size_t mmap_sz; 2860 2861 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2862 if (roundup(data_sz, page_sz) > mmap_sz) { 2863 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2864 sec_name, mmap_sz, data_sz); 2865 return -E2BIG; 2866 } 2867 2868 obj->arena_data = malloc(data_sz); 2869 if (!obj->arena_data) 2870 return -ENOMEM; 2871 memcpy(obj->arena_data, data, data_sz); 2872 obj->arena_data_sz = data_sz; 2873 2874 /* make bpf_map__init_value() work for ARENA maps */ 2875 map->mmaped = obj->arena_data; 2876 2877 return 0; 2878 } 2879 2880 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2881 const char *pin_root_path) 2882 { 2883 const struct btf_type *sec = NULL; 2884 int nr_types, i, vlen, err; 2885 const struct btf_type *t; 2886 const char *name; 2887 Elf_Data *data; 2888 Elf_Scn *scn; 2889 2890 if (obj->efile.btf_maps_shndx < 0) 2891 return 0; 2892 2893 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2894 data = elf_sec_data(obj, scn); 2895 if (!scn || !data) { 2896 pr_warn("elf: failed to get %s map definitions for %s\n", 2897 MAPS_ELF_SEC, obj->path); 2898 return -EINVAL; 2899 } 2900 2901 nr_types = btf__type_cnt(obj->btf); 2902 for (i = 1; i < nr_types; i++) { 2903 t = btf__type_by_id(obj->btf, i); 2904 if (!btf_is_datasec(t)) 2905 continue; 2906 name = btf__name_by_offset(obj->btf, t->name_off); 2907 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2908 sec = t; 2909 obj->efile.btf_maps_sec_btf_id = i; 2910 break; 2911 } 2912 } 2913 2914 if (!sec) { 2915 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2916 return -ENOENT; 2917 } 2918 2919 vlen = btf_vlen(sec); 2920 for (i = 0; i < vlen; i++) { 2921 err = bpf_object__init_user_btf_map(obj, sec, i, 2922 obj->efile.btf_maps_shndx, 2923 data, strict, 2924 pin_root_path); 2925 if (err) 2926 return err; 2927 } 2928 2929 for (i = 0; i < obj->nr_maps; i++) { 2930 struct bpf_map *map = &obj->maps[i]; 2931 2932 if (map->def.type != BPF_MAP_TYPE_ARENA) 2933 continue; 2934 2935 if (obj->arena_map) { 2936 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 2937 map->name, obj->arena_map->name); 2938 return -EINVAL; 2939 } 2940 obj->arena_map = map; 2941 2942 if (obj->efile.arena_data) { 2943 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 2944 obj->efile.arena_data->d_buf, 2945 obj->efile.arena_data->d_size); 2946 if (err) 2947 return err; 2948 } 2949 } 2950 if (obj->efile.arena_data && !obj->arena_map) { 2951 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 2952 ARENA_SEC); 2953 return -ENOENT; 2954 } 2955 2956 return 0; 2957 } 2958 2959 static int bpf_object__init_maps(struct bpf_object *obj, 2960 const struct bpf_object_open_opts *opts) 2961 { 2962 const char *pin_root_path; 2963 bool strict; 2964 int err = 0; 2965 2966 strict = !OPTS_GET(opts, relaxed_maps, false); 2967 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2968 2969 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2970 err = err ?: bpf_object__init_global_data_maps(obj); 2971 err = err ?: bpf_object__init_kconfig_map(obj); 2972 err = err ?: bpf_object_init_struct_ops(obj); 2973 2974 return err; 2975 } 2976 2977 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2978 { 2979 Elf64_Shdr *sh; 2980 2981 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2982 if (!sh) 2983 return false; 2984 2985 return sh->sh_flags & SHF_EXECINSTR; 2986 } 2987 2988 static bool starts_with_qmark(const char *s) 2989 { 2990 return s && s[0] == '?'; 2991 } 2992 2993 static bool btf_needs_sanitization(struct bpf_object *obj) 2994 { 2995 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2996 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2997 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2998 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2999 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3000 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3001 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3002 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3003 3004 return !has_func || !has_datasec || !has_func_global || !has_float || 3005 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3006 } 3007 3008 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3009 { 3010 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3011 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3012 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3013 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3014 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3015 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3016 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3017 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3018 int enum64_placeholder_id = 0; 3019 struct btf_type *t; 3020 int i, j, vlen; 3021 3022 for (i = 1; i < btf__type_cnt(btf); i++) { 3023 t = (struct btf_type *)btf__type_by_id(btf, i); 3024 3025 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3026 /* replace VAR/DECL_TAG with INT */ 3027 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3028 /* 3029 * using size = 1 is the safest choice, 4 will be too 3030 * big and cause kernel BTF validation failure if 3031 * original variable took less than 4 bytes 3032 */ 3033 t->size = 1; 3034 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3035 } else if (!has_datasec && btf_is_datasec(t)) { 3036 /* replace DATASEC with STRUCT */ 3037 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3038 struct btf_member *m = btf_members(t); 3039 struct btf_type *vt; 3040 char *name; 3041 3042 name = (char *)btf__name_by_offset(btf, t->name_off); 3043 while (*name) { 3044 if (*name == '.' || *name == '?') 3045 *name = '_'; 3046 name++; 3047 } 3048 3049 vlen = btf_vlen(t); 3050 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3051 for (j = 0; j < vlen; j++, v++, m++) { 3052 /* order of field assignments is important */ 3053 m->offset = v->offset * 8; 3054 m->type = v->type; 3055 /* preserve variable name as member name */ 3056 vt = (void *)btf__type_by_id(btf, v->type); 3057 m->name_off = vt->name_off; 3058 } 3059 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3060 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3061 /* replace '?' prefix with '_' for DATASEC names */ 3062 char *name; 3063 3064 name = (char *)btf__name_by_offset(btf, t->name_off); 3065 if (name[0] == '?') 3066 name[0] = '_'; 3067 } else if (!has_func && btf_is_func_proto(t)) { 3068 /* replace FUNC_PROTO with ENUM */ 3069 vlen = btf_vlen(t); 3070 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3071 t->size = sizeof(__u32); /* kernel enforced */ 3072 } else if (!has_func && btf_is_func(t)) { 3073 /* replace FUNC with TYPEDEF */ 3074 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3075 } else if (!has_func_global && btf_is_func(t)) { 3076 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3077 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3078 } else if (!has_float && btf_is_float(t)) { 3079 /* replace FLOAT with an equally-sized empty STRUCT; 3080 * since C compilers do not accept e.g. "float" as a 3081 * valid struct name, make it anonymous 3082 */ 3083 t->name_off = 0; 3084 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3085 } else if (!has_type_tag && btf_is_type_tag(t)) { 3086 /* replace TYPE_TAG with a CONST */ 3087 t->name_off = 0; 3088 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3089 } else if (!has_enum64 && btf_is_enum(t)) { 3090 /* clear the kflag */ 3091 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3092 } else if (!has_enum64 && btf_is_enum64(t)) { 3093 /* replace ENUM64 with a union */ 3094 struct btf_member *m; 3095 3096 if (enum64_placeholder_id == 0) { 3097 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3098 if (enum64_placeholder_id < 0) 3099 return enum64_placeholder_id; 3100 3101 t = (struct btf_type *)btf__type_by_id(btf, i); 3102 } 3103 3104 m = btf_members(t); 3105 vlen = btf_vlen(t); 3106 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3107 for (j = 0; j < vlen; j++, m++) { 3108 m->type = enum64_placeholder_id; 3109 m->offset = 0; 3110 } 3111 } 3112 } 3113 3114 return 0; 3115 } 3116 3117 static bool libbpf_needs_btf(const struct bpf_object *obj) 3118 { 3119 return obj->efile.btf_maps_shndx >= 0 || 3120 obj->efile.has_st_ops || 3121 obj->nr_extern > 0; 3122 } 3123 3124 static bool kernel_needs_btf(const struct bpf_object *obj) 3125 { 3126 return obj->efile.has_st_ops; 3127 } 3128 3129 static int bpf_object__init_btf(struct bpf_object *obj, 3130 Elf_Data *btf_data, 3131 Elf_Data *btf_ext_data) 3132 { 3133 int err = -ENOENT; 3134 3135 if (btf_data) { 3136 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3137 err = libbpf_get_error(obj->btf); 3138 if (err) { 3139 obj->btf = NULL; 3140 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3141 goto out; 3142 } 3143 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3144 btf__set_pointer_size(obj->btf, 8); 3145 } 3146 if (btf_ext_data) { 3147 struct btf_ext_info *ext_segs[3]; 3148 int seg_num, sec_num; 3149 3150 if (!obj->btf) { 3151 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3152 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3153 goto out; 3154 } 3155 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3156 err = libbpf_get_error(obj->btf_ext); 3157 if (err) { 3158 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3159 BTF_EXT_ELF_SEC, err); 3160 obj->btf_ext = NULL; 3161 goto out; 3162 } 3163 3164 /* setup .BTF.ext to ELF section mapping */ 3165 ext_segs[0] = &obj->btf_ext->func_info; 3166 ext_segs[1] = &obj->btf_ext->line_info; 3167 ext_segs[2] = &obj->btf_ext->core_relo_info; 3168 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3169 struct btf_ext_info *seg = ext_segs[seg_num]; 3170 const struct btf_ext_info_sec *sec; 3171 const char *sec_name; 3172 Elf_Scn *scn; 3173 3174 if (seg->sec_cnt == 0) 3175 continue; 3176 3177 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3178 if (!seg->sec_idxs) { 3179 err = -ENOMEM; 3180 goto out; 3181 } 3182 3183 sec_num = 0; 3184 for_each_btf_ext_sec(seg, sec) { 3185 /* preventively increment index to avoid doing 3186 * this before every continue below 3187 */ 3188 sec_num++; 3189 3190 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3191 if (str_is_empty(sec_name)) 3192 continue; 3193 scn = elf_sec_by_name(obj, sec_name); 3194 if (!scn) 3195 continue; 3196 3197 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3198 } 3199 } 3200 } 3201 out: 3202 if (err && libbpf_needs_btf(obj)) { 3203 pr_warn("BTF is required, but is missing or corrupted.\n"); 3204 return err; 3205 } 3206 return 0; 3207 } 3208 3209 static int compare_vsi_off(const void *_a, const void *_b) 3210 { 3211 const struct btf_var_secinfo *a = _a; 3212 const struct btf_var_secinfo *b = _b; 3213 3214 return a->offset - b->offset; 3215 } 3216 3217 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3218 struct btf_type *t) 3219 { 3220 __u32 size = 0, i, vars = btf_vlen(t); 3221 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3222 struct btf_var_secinfo *vsi; 3223 bool fixup_offsets = false; 3224 int err; 3225 3226 if (!sec_name) { 3227 pr_debug("No name found in string section for DATASEC kind.\n"); 3228 return -ENOENT; 3229 } 3230 3231 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3232 * variable offsets set at the previous step. Further, not every 3233 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3234 * all fixups altogether for such sections and go straight to sorting 3235 * VARs within their DATASEC. 3236 */ 3237 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3238 goto sort_vars; 3239 3240 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3241 * fix this up. But BPF static linker already fixes this up and fills 3242 * all the sizes and offsets during static linking. So this step has 3243 * to be optional. But the STV_HIDDEN handling is non-optional for any 3244 * non-extern DATASEC, so the variable fixup loop below handles both 3245 * functions at the same time, paying the cost of BTF VAR <-> ELF 3246 * symbol matching just once. 3247 */ 3248 if (t->size == 0) { 3249 err = find_elf_sec_sz(obj, sec_name, &size); 3250 if (err || !size) { 3251 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3252 sec_name, size, err); 3253 return -ENOENT; 3254 } 3255 3256 t->size = size; 3257 fixup_offsets = true; 3258 } 3259 3260 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3261 const struct btf_type *t_var; 3262 struct btf_var *var; 3263 const char *var_name; 3264 Elf64_Sym *sym; 3265 3266 t_var = btf__type_by_id(btf, vsi->type); 3267 if (!t_var || !btf_is_var(t_var)) { 3268 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3269 return -EINVAL; 3270 } 3271 3272 var = btf_var(t_var); 3273 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3274 continue; 3275 3276 var_name = btf__name_by_offset(btf, t_var->name_off); 3277 if (!var_name) { 3278 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3279 sec_name, i); 3280 return -ENOENT; 3281 } 3282 3283 sym = find_elf_var_sym(obj, var_name); 3284 if (IS_ERR(sym)) { 3285 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3286 sec_name, var_name); 3287 return -ENOENT; 3288 } 3289 3290 if (fixup_offsets) 3291 vsi->offset = sym->st_value; 3292 3293 /* if variable is a global/weak symbol, but has restricted 3294 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3295 * as static. This follows similar logic for functions (BPF 3296 * subprogs) and influences libbpf's further decisions about 3297 * whether to make global data BPF array maps as 3298 * BPF_F_MMAPABLE. 3299 */ 3300 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3301 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3302 var->linkage = BTF_VAR_STATIC; 3303 } 3304 3305 sort_vars: 3306 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3307 return 0; 3308 } 3309 3310 static int bpf_object_fixup_btf(struct bpf_object *obj) 3311 { 3312 int i, n, err = 0; 3313 3314 if (!obj->btf) 3315 return 0; 3316 3317 n = btf__type_cnt(obj->btf); 3318 for (i = 1; i < n; i++) { 3319 struct btf_type *t = btf_type_by_id(obj->btf, i); 3320 3321 /* Loader needs to fix up some of the things compiler 3322 * couldn't get its hands on while emitting BTF. This 3323 * is section size and global variable offset. We use 3324 * the info from the ELF itself for this purpose. 3325 */ 3326 if (btf_is_datasec(t)) { 3327 err = btf_fixup_datasec(obj, obj->btf, t); 3328 if (err) 3329 return err; 3330 } 3331 } 3332 3333 return 0; 3334 } 3335 3336 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3337 { 3338 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3339 prog->type == BPF_PROG_TYPE_LSM) 3340 return true; 3341 3342 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3343 * also need vmlinux BTF 3344 */ 3345 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3346 return true; 3347 3348 return false; 3349 } 3350 3351 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3352 { 3353 return bpf_map__is_struct_ops(map); 3354 } 3355 3356 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3357 { 3358 struct bpf_program *prog; 3359 struct bpf_map *map; 3360 int i; 3361 3362 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3363 * is not specified 3364 */ 3365 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3366 return true; 3367 3368 /* Support for typed ksyms needs kernel BTF */ 3369 for (i = 0; i < obj->nr_extern; i++) { 3370 const struct extern_desc *ext; 3371 3372 ext = &obj->externs[i]; 3373 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3374 return true; 3375 } 3376 3377 bpf_object__for_each_program(prog, obj) { 3378 if (!prog->autoload) 3379 continue; 3380 if (prog_needs_vmlinux_btf(prog)) 3381 return true; 3382 } 3383 3384 bpf_object__for_each_map(map, obj) { 3385 if (map_needs_vmlinux_btf(map)) 3386 return true; 3387 } 3388 3389 return false; 3390 } 3391 3392 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3393 { 3394 int err; 3395 3396 /* btf_vmlinux could be loaded earlier */ 3397 if (obj->btf_vmlinux || obj->gen_loader) 3398 return 0; 3399 3400 if (!force && !obj_needs_vmlinux_btf(obj)) 3401 return 0; 3402 3403 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3404 err = libbpf_get_error(obj->btf_vmlinux); 3405 if (err) { 3406 pr_warn("Error loading vmlinux BTF: %d\n", err); 3407 obj->btf_vmlinux = NULL; 3408 return err; 3409 } 3410 return 0; 3411 } 3412 3413 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3414 { 3415 struct btf *kern_btf = obj->btf; 3416 bool btf_mandatory, sanitize; 3417 int i, err = 0; 3418 3419 if (!obj->btf) 3420 return 0; 3421 3422 if (!kernel_supports(obj, FEAT_BTF)) { 3423 if (kernel_needs_btf(obj)) { 3424 err = -EOPNOTSUPP; 3425 goto report; 3426 } 3427 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3428 return 0; 3429 } 3430 3431 /* Even though some subprogs are global/weak, user might prefer more 3432 * permissive BPF verification process that BPF verifier performs for 3433 * static functions, taking into account more context from the caller 3434 * functions. In such case, they need to mark such subprogs with 3435 * __attribute__((visibility("hidden"))) and libbpf will adjust 3436 * corresponding FUNC BTF type to be marked as static and trigger more 3437 * involved BPF verification process. 3438 */ 3439 for (i = 0; i < obj->nr_programs; i++) { 3440 struct bpf_program *prog = &obj->programs[i]; 3441 struct btf_type *t; 3442 const char *name; 3443 int j, n; 3444 3445 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3446 continue; 3447 3448 n = btf__type_cnt(obj->btf); 3449 for (j = 1; j < n; j++) { 3450 t = btf_type_by_id(obj->btf, j); 3451 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3452 continue; 3453 3454 name = btf__str_by_offset(obj->btf, t->name_off); 3455 if (strcmp(name, prog->name) != 0) 3456 continue; 3457 3458 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3459 break; 3460 } 3461 } 3462 3463 sanitize = btf_needs_sanitization(obj); 3464 if (sanitize) { 3465 const void *raw_data; 3466 __u32 sz; 3467 3468 /* clone BTF to sanitize a copy and leave the original intact */ 3469 raw_data = btf__raw_data(obj->btf, &sz); 3470 kern_btf = btf__new(raw_data, sz); 3471 err = libbpf_get_error(kern_btf); 3472 if (err) 3473 return err; 3474 3475 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3476 btf__set_pointer_size(obj->btf, 8); 3477 err = bpf_object__sanitize_btf(obj, kern_btf); 3478 if (err) 3479 return err; 3480 } 3481 3482 if (obj->gen_loader) { 3483 __u32 raw_size = 0; 3484 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3485 3486 if (!raw_data) 3487 return -ENOMEM; 3488 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3489 /* Pretend to have valid FD to pass various fd >= 0 checks. 3490 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3491 */ 3492 btf__set_fd(kern_btf, 0); 3493 } else { 3494 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3495 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3496 obj->log_level ? 1 : 0, obj->token_fd); 3497 } 3498 if (sanitize) { 3499 if (!err) { 3500 /* move fd to libbpf's BTF */ 3501 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3502 btf__set_fd(kern_btf, -1); 3503 } 3504 btf__free(kern_btf); 3505 } 3506 report: 3507 if (err) { 3508 btf_mandatory = kernel_needs_btf(obj); 3509 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3510 btf_mandatory ? "BTF is mandatory, can't proceed." 3511 : "BTF is optional, ignoring."); 3512 if (!btf_mandatory) 3513 err = 0; 3514 } 3515 return err; 3516 } 3517 3518 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3519 { 3520 const char *name; 3521 3522 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3523 if (!name) { 3524 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3525 off, obj->path, elf_errmsg(-1)); 3526 return NULL; 3527 } 3528 3529 return name; 3530 } 3531 3532 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3533 { 3534 const char *name; 3535 3536 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3537 if (!name) { 3538 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3539 off, obj->path, elf_errmsg(-1)); 3540 return NULL; 3541 } 3542 3543 return name; 3544 } 3545 3546 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3547 { 3548 Elf_Scn *scn; 3549 3550 scn = elf_getscn(obj->efile.elf, idx); 3551 if (!scn) { 3552 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3553 idx, obj->path, elf_errmsg(-1)); 3554 return NULL; 3555 } 3556 return scn; 3557 } 3558 3559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3560 { 3561 Elf_Scn *scn = NULL; 3562 Elf *elf = obj->efile.elf; 3563 const char *sec_name; 3564 3565 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3566 sec_name = elf_sec_name(obj, scn); 3567 if (!sec_name) 3568 return NULL; 3569 3570 if (strcmp(sec_name, name) != 0) 3571 continue; 3572 3573 return scn; 3574 } 3575 return NULL; 3576 } 3577 3578 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3579 { 3580 Elf64_Shdr *shdr; 3581 3582 if (!scn) 3583 return NULL; 3584 3585 shdr = elf64_getshdr(scn); 3586 if (!shdr) { 3587 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3588 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3589 return NULL; 3590 } 3591 3592 return shdr; 3593 } 3594 3595 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3596 { 3597 const char *name; 3598 Elf64_Shdr *sh; 3599 3600 if (!scn) 3601 return NULL; 3602 3603 sh = elf_sec_hdr(obj, scn); 3604 if (!sh) 3605 return NULL; 3606 3607 name = elf_sec_str(obj, sh->sh_name); 3608 if (!name) { 3609 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3610 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3611 return NULL; 3612 } 3613 3614 return name; 3615 } 3616 3617 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3618 { 3619 Elf_Data *data; 3620 3621 if (!scn) 3622 return NULL; 3623 3624 data = elf_getdata(scn, 0); 3625 if (!data) { 3626 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3627 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3628 obj->path, elf_errmsg(-1)); 3629 return NULL; 3630 } 3631 3632 return data; 3633 } 3634 3635 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3636 { 3637 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3638 return NULL; 3639 3640 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3641 } 3642 3643 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3644 { 3645 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3646 return NULL; 3647 3648 return (Elf64_Rel *)data->d_buf + idx; 3649 } 3650 3651 static bool is_sec_name_dwarf(const char *name) 3652 { 3653 /* approximation, but the actual list is too long */ 3654 return str_has_pfx(name, ".debug_"); 3655 } 3656 3657 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3658 { 3659 /* no special handling of .strtab */ 3660 if (hdr->sh_type == SHT_STRTAB) 3661 return true; 3662 3663 /* ignore .llvm_addrsig section as well */ 3664 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3665 return true; 3666 3667 /* no subprograms will lead to an empty .text section, ignore it */ 3668 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3669 strcmp(name, ".text") == 0) 3670 return true; 3671 3672 /* DWARF sections */ 3673 if (is_sec_name_dwarf(name)) 3674 return true; 3675 3676 if (str_has_pfx(name, ".rel")) { 3677 name += sizeof(".rel") - 1; 3678 /* DWARF section relocations */ 3679 if (is_sec_name_dwarf(name)) 3680 return true; 3681 3682 /* .BTF and .BTF.ext don't need relocations */ 3683 if (strcmp(name, BTF_ELF_SEC) == 0 || 3684 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3685 return true; 3686 } 3687 3688 return false; 3689 } 3690 3691 static int cmp_progs(const void *_a, const void *_b) 3692 { 3693 const struct bpf_program *a = _a; 3694 const struct bpf_program *b = _b; 3695 3696 if (a->sec_idx != b->sec_idx) 3697 return a->sec_idx < b->sec_idx ? -1 : 1; 3698 3699 /* sec_insn_off can't be the same within the section */ 3700 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3701 } 3702 3703 static int bpf_object__elf_collect(struct bpf_object *obj) 3704 { 3705 struct elf_sec_desc *sec_desc; 3706 Elf *elf = obj->efile.elf; 3707 Elf_Data *btf_ext_data = NULL; 3708 Elf_Data *btf_data = NULL; 3709 int idx = 0, err = 0; 3710 const char *name; 3711 Elf_Data *data; 3712 Elf_Scn *scn; 3713 Elf64_Shdr *sh; 3714 3715 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3716 * section. Since section count retrieved by elf_getshdrnum() does 3717 * include sec #0, it is already the necessary size of an array to keep 3718 * all the sections. 3719 */ 3720 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3721 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3722 obj->path, elf_errmsg(-1)); 3723 return -LIBBPF_ERRNO__FORMAT; 3724 } 3725 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3726 if (!obj->efile.secs) 3727 return -ENOMEM; 3728 3729 /* a bunch of ELF parsing functionality depends on processing symbols, 3730 * so do the first pass and find the symbol table 3731 */ 3732 scn = NULL; 3733 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3734 sh = elf_sec_hdr(obj, scn); 3735 if (!sh) 3736 return -LIBBPF_ERRNO__FORMAT; 3737 3738 if (sh->sh_type == SHT_SYMTAB) { 3739 if (obj->efile.symbols) { 3740 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3741 return -LIBBPF_ERRNO__FORMAT; 3742 } 3743 3744 data = elf_sec_data(obj, scn); 3745 if (!data) 3746 return -LIBBPF_ERRNO__FORMAT; 3747 3748 idx = elf_ndxscn(scn); 3749 3750 obj->efile.symbols = data; 3751 obj->efile.symbols_shndx = idx; 3752 obj->efile.strtabidx = sh->sh_link; 3753 } 3754 } 3755 3756 if (!obj->efile.symbols) { 3757 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3758 obj->path); 3759 return -ENOENT; 3760 } 3761 3762 scn = NULL; 3763 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3764 idx = elf_ndxscn(scn); 3765 sec_desc = &obj->efile.secs[idx]; 3766 3767 sh = elf_sec_hdr(obj, scn); 3768 if (!sh) 3769 return -LIBBPF_ERRNO__FORMAT; 3770 3771 name = elf_sec_str(obj, sh->sh_name); 3772 if (!name) 3773 return -LIBBPF_ERRNO__FORMAT; 3774 3775 if (ignore_elf_section(sh, name)) 3776 continue; 3777 3778 data = elf_sec_data(obj, scn); 3779 if (!data) 3780 return -LIBBPF_ERRNO__FORMAT; 3781 3782 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3783 idx, name, (unsigned long)data->d_size, 3784 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3785 (int)sh->sh_type); 3786 3787 if (strcmp(name, "license") == 0) { 3788 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3789 if (err) 3790 return err; 3791 } else if (strcmp(name, "version") == 0) { 3792 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3793 if (err) 3794 return err; 3795 } else if (strcmp(name, "maps") == 0) { 3796 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3797 return -ENOTSUP; 3798 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3799 obj->efile.btf_maps_shndx = idx; 3800 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3801 if (sh->sh_type != SHT_PROGBITS) 3802 return -LIBBPF_ERRNO__FORMAT; 3803 btf_data = data; 3804 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3805 if (sh->sh_type != SHT_PROGBITS) 3806 return -LIBBPF_ERRNO__FORMAT; 3807 btf_ext_data = data; 3808 } else if (sh->sh_type == SHT_SYMTAB) { 3809 /* already processed during the first pass above */ 3810 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3811 if (sh->sh_flags & SHF_EXECINSTR) { 3812 if (strcmp(name, ".text") == 0) 3813 obj->efile.text_shndx = idx; 3814 err = bpf_object__add_programs(obj, data, name, idx); 3815 if (err) 3816 return err; 3817 } else if (strcmp(name, DATA_SEC) == 0 || 3818 str_has_pfx(name, DATA_SEC ".")) { 3819 sec_desc->sec_type = SEC_DATA; 3820 sec_desc->shdr = sh; 3821 sec_desc->data = data; 3822 } else if (strcmp(name, RODATA_SEC) == 0 || 3823 str_has_pfx(name, RODATA_SEC ".")) { 3824 sec_desc->sec_type = SEC_RODATA; 3825 sec_desc->shdr = sh; 3826 sec_desc->data = data; 3827 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3828 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3829 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3830 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3831 sec_desc->sec_type = SEC_ST_OPS; 3832 sec_desc->shdr = sh; 3833 sec_desc->data = data; 3834 obj->efile.has_st_ops = true; 3835 } else if (strcmp(name, ARENA_SEC) == 0) { 3836 obj->efile.arena_data = data; 3837 obj->efile.arena_data_shndx = idx; 3838 } else { 3839 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3840 idx, name); 3841 } 3842 } else if (sh->sh_type == SHT_REL) { 3843 int targ_sec_idx = sh->sh_info; /* points to other section */ 3844 3845 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3846 targ_sec_idx >= obj->efile.sec_cnt) 3847 return -LIBBPF_ERRNO__FORMAT; 3848 3849 /* Only do relo for section with exec instructions */ 3850 if (!section_have_execinstr(obj, targ_sec_idx) && 3851 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3852 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3853 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3854 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3855 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3856 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3857 idx, name, targ_sec_idx, 3858 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3859 continue; 3860 } 3861 3862 sec_desc->sec_type = SEC_RELO; 3863 sec_desc->shdr = sh; 3864 sec_desc->data = data; 3865 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3866 str_has_pfx(name, BSS_SEC "."))) { 3867 sec_desc->sec_type = SEC_BSS; 3868 sec_desc->shdr = sh; 3869 sec_desc->data = data; 3870 } else { 3871 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3872 (size_t)sh->sh_size); 3873 } 3874 } 3875 3876 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3877 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3878 return -LIBBPF_ERRNO__FORMAT; 3879 } 3880 3881 /* sort BPF programs by section name and in-section instruction offset 3882 * for faster search 3883 */ 3884 if (obj->nr_programs) 3885 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3886 3887 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3888 } 3889 3890 static bool sym_is_extern(const Elf64_Sym *sym) 3891 { 3892 int bind = ELF64_ST_BIND(sym->st_info); 3893 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3894 return sym->st_shndx == SHN_UNDEF && 3895 (bind == STB_GLOBAL || bind == STB_WEAK) && 3896 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3897 } 3898 3899 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3900 { 3901 int bind = ELF64_ST_BIND(sym->st_info); 3902 int type = ELF64_ST_TYPE(sym->st_info); 3903 3904 /* in .text section */ 3905 if (sym->st_shndx != text_shndx) 3906 return false; 3907 3908 /* local function */ 3909 if (bind == STB_LOCAL && type == STT_SECTION) 3910 return true; 3911 3912 /* global function */ 3913 return bind == STB_GLOBAL && type == STT_FUNC; 3914 } 3915 3916 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3917 { 3918 const struct btf_type *t; 3919 const char *tname; 3920 int i, n; 3921 3922 if (!btf) 3923 return -ESRCH; 3924 3925 n = btf__type_cnt(btf); 3926 for (i = 1; i < n; i++) { 3927 t = btf__type_by_id(btf, i); 3928 3929 if (!btf_is_var(t) && !btf_is_func(t)) 3930 continue; 3931 3932 tname = btf__name_by_offset(btf, t->name_off); 3933 if (strcmp(tname, ext_name)) 3934 continue; 3935 3936 if (btf_is_var(t) && 3937 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3938 return -EINVAL; 3939 3940 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3941 return -EINVAL; 3942 3943 return i; 3944 } 3945 3946 return -ENOENT; 3947 } 3948 3949 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3950 const struct btf_var_secinfo *vs; 3951 const struct btf_type *t; 3952 int i, j, n; 3953 3954 if (!btf) 3955 return -ESRCH; 3956 3957 n = btf__type_cnt(btf); 3958 for (i = 1; i < n; i++) { 3959 t = btf__type_by_id(btf, i); 3960 3961 if (!btf_is_datasec(t)) 3962 continue; 3963 3964 vs = btf_var_secinfos(t); 3965 for (j = 0; j < btf_vlen(t); j++, vs++) { 3966 if (vs->type == ext_btf_id) 3967 return i; 3968 } 3969 } 3970 3971 return -ENOENT; 3972 } 3973 3974 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3975 bool *is_signed) 3976 { 3977 const struct btf_type *t; 3978 const char *name; 3979 3980 t = skip_mods_and_typedefs(btf, id, NULL); 3981 name = btf__name_by_offset(btf, t->name_off); 3982 3983 if (is_signed) 3984 *is_signed = false; 3985 switch (btf_kind(t)) { 3986 case BTF_KIND_INT: { 3987 int enc = btf_int_encoding(t); 3988 3989 if (enc & BTF_INT_BOOL) 3990 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3991 if (is_signed) 3992 *is_signed = enc & BTF_INT_SIGNED; 3993 if (t->size == 1) 3994 return KCFG_CHAR; 3995 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3996 return KCFG_UNKNOWN; 3997 return KCFG_INT; 3998 } 3999 case BTF_KIND_ENUM: 4000 if (t->size != 4) 4001 return KCFG_UNKNOWN; 4002 if (strcmp(name, "libbpf_tristate")) 4003 return KCFG_UNKNOWN; 4004 return KCFG_TRISTATE; 4005 case BTF_KIND_ENUM64: 4006 if (strcmp(name, "libbpf_tristate")) 4007 return KCFG_UNKNOWN; 4008 return KCFG_TRISTATE; 4009 case BTF_KIND_ARRAY: 4010 if (btf_array(t)->nelems == 0) 4011 return KCFG_UNKNOWN; 4012 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4013 return KCFG_UNKNOWN; 4014 return KCFG_CHAR_ARR; 4015 default: 4016 return KCFG_UNKNOWN; 4017 } 4018 } 4019 4020 static int cmp_externs(const void *_a, const void *_b) 4021 { 4022 const struct extern_desc *a = _a; 4023 const struct extern_desc *b = _b; 4024 4025 if (a->type != b->type) 4026 return a->type < b->type ? -1 : 1; 4027 4028 if (a->type == EXT_KCFG) { 4029 /* descending order by alignment requirements */ 4030 if (a->kcfg.align != b->kcfg.align) 4031 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4032 /* ascending order by size, within same alignment class */ 4033 if (a->kcfg.sz != b->kcfg.sz) 4034 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4035 } 4036 4037 /* resolve ties by name */ 4038 return strcmp(a->name, b->name); 4039 } 4040 4041 static int find_int_btf_id(const struct btf *btf) 4042 { 4043 const struct btf_type *t; 4044 int i, n; 4045 4046 n = btf__type_cnt(btf); 4047 for (i = 1; i < n; i++) { 4048 t = btf__type_by_id(btf, i); 4049 4050 if (btf_is_int(t) && btf_int_bits(t) == 32) 4051 return i; 4052 } 4053 4054 return 0; 4055 } 4056 4057 static int add_dummy_ksym_var(struct btf *btf) 4058 { 4059 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4060 const struct btf_var_secinfo *vs; 4061 const struct btf_type *sec; 4062 4063 if (!btf) 4064 return 0; 4065 4066 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4067 BTF_KIND_DATASEC); 4068 if (sec_btf_id < 0) 4069 return 0; 4070 4071 sec = btf__type_by_id(btf, sec_btf_id); 4072 vs = btf_var_secinfos(sec); 4073 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4074 const struct btf_type *vt; 4075 4076 vt = btf__type_by_id(btf, vs->type); 4077 if (btf_is_func(vt)) 4078 break; 4079 } 4080 4081 /* No func in ksyms sec. No need to add dummy var. */ 4082 if (i == btf_vlen(sec)) 4083 return 0; 4084 4085 int_btf_id = find_int_btf_id(btf); 4086 dummy_var_btf_id = btf__add_var(btf, 4087 "dummy_ksym", 4088 BTF_VAR_GLOBAL_ALLOCATED, 4089 int_btf_id); 4090 if (dummy_var_btf_id < 0) 4091 pr_warn("cannot create a dummy_ksym var\n"); 4092 4093 return dummy_var_btf_id; 4094 } 4095 4096 static int bpf_object__collect_externs(struct bpf_object *obj) 4097 { 4098 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4099 const struct btf_type *t; 4100 struct extern_desc *ext; 4101 int i, n, off, dummy_var_btf_id; 4102 const char *ext_name, *sec_name; 4103 size_t ext_essent_len; 4104 Elf_Scn *scn; 4105 Elf64_Shdr *sh; 4106 4107 if (!obj->efile.symbols) 4108 return 0; 4109 4110 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4111 sh = elf_sec_hdr(obj, scn); 4112 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4113 return -LIBBPF_ERRNO__FORMAT; 4114 4115 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4116 if (dummy_var_btf_id < 0) 4117 return dummy_var_btf_id; 4118 4119 n = sh->sh_size / sh->sh_entsize; 4120 pr_debug("looking for externs among %d symbols...\n", n); 4121 4122 for (i = 0; i < n; i++) { 4123 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4124 4125 if (!sym) 4126 return -LIBBPF_ERRNO__FORMAT; 4127 if (!sym_is_extern(sym)) 4128 continue; 4129 ext_name = elf_sym_str(obj, sym->st_name); 4130 if (!ext_name || !ext_name[0]) 4131 continue; 4132 4133 ext = obj->externs; 4134 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4135 if (!ext) 4136 return -ENOMEM; 4137 obj->externs = ext; 4138 ext = &ext[obj->nr_extern]; 4139 memset(ext, 0, sizeof(*ext)); 4140 obj->nr_extern++; 4141 4142 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4143 if (ext->btf_id <= 0) { 4144 pr_warn("failed to find BTF for extern '%s': %d\n", 4145 ext_name, ext->btf_id); 4146 return ext->btf_id; 4147 } 4148 t = btf__type_by_id(obj->btf, ext->btf_id); 4149 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4150 ext->sym_idx = i; 4151 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4152 4153 ext_essent_len = bpf_core_essential_name_len(ext->name); 4154 ext->essent_name = NULL; 4155 if (ext_essent_len != strlen(ext->name)) { 4156 ext->essent_name = strndup(ext->name, ext_essent_len); 4157 if (!ext->essent_name) 4158 return -ENOMEM; 4159 } 4160 4161 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4162 if (ext->sec_btf_id <= 0) { 4163 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4164 ext_name, ext->btf_id, ext->sec_btf_id); 4165 return ext->sec_btf_id; 4166 } 4167 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4168 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4169 4170 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4171 if (btf_is_func(t)) { 4172 pr_warn("extern function %s is unsupported under %s section\n", 4173 ext->name, KCONFIG_SEC); 4174 return -ENOTSUP; 4175 } 4176 kcfg_sec = sec; 4177 ext->type = EXT_KCFG; 4178 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4179 if (ext->kcfg.sz <= 0) { 4180 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4181 ext_name, ext->kcfg.sz); 4182 return ext->kcfg.sz; 4183 } 4184 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4185 if (ext->kcfg.align <= 0) { 4186 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4187 ext_name, ext->kcfg.align); 4188 return -EINVAL; 4189 } 4190 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4191 &ext->kcfg.is_signed); 4192 if (ext->kcfg.type == KCFG_UNKNOWN) { 4193 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4194 return -ENOTSUP; 4195 } 4196 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4197 ksym_sec = sec; 4198 ext->type = EXT_KSYM; 4199 skip_mods_and_typedefs(obj->btf, t->type, 4200 &ext->ksym.type_id); 4201 } else { 4202 pr_warn("unrecognized extern section '%s'\n", sec_name); 4203 return -ENOTSUP; 4204 } 4205 } 4206 pr_debug("collected %d externs total\n", obj->nr_extern); 4207 4208 if (!obj->nr_extern) 4209 return 0; 4210 4211 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4212 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4213 4214 /* for .ksyms section, we need to turn all externs into allocated 4215 * variables in BTF to pass kernel verification; we do this by 4216 * pretending that each extern is a 8-byte variable 4217 */ 4218 if (ksym_sec) { 4219 /* find existing 4-byte integer type in BTF to use for fake 4220 * extern variables in DATASEC 4221 */ 4222 int int_btf_id = find_int_btf_id(obj->btf); 4223 /* For extern function, a dummy_var added earlier 4224 * will be used to replace the vs->type and 4225 * its name string will be used to refill 4226 * the missing param's name. 4227 */ 4228 const struct btf_type *dummy_var; 4229 4230 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4231 for (i = 0; i < obj->nr_extern; i++) { 4232 ext = &obj->externs[i]; 4233 if (ext->type != EXT_KSYM) 4234 continue; 4235 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4236 i, ext->sym_idx, ext->name); 4237 } 4238 4239 sec = ksym_sec; 4240 n = btf_vlen(sec); 4241 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4242 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4243 struct btf_type *vt; 4244 4245 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4246 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4247 ext = find_extern_by_name(obj, ext_name); 4248 if (!ext) { 4249 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4250 btf_kind_str(vt), ext_name); 4251 return -ESRCH; 4252 } 4253 if (btf_is_func(vt)) { 4254 const struct btf_type *func_proto; 4255 struct btf_param *param; 4256 int j; 4257 4258 func_proto = btf__type_by_id(obj->btf, 4259 vt->type); 4260 param = btf_params(func_proto); 4261 /* Reuse the dummy_var string if the 4262 * func proto does not have param name. 4263 */ 4264 for (j = 0; j < btf_vlen(func_proto); j++) 4265 if (param[j].type && !param[j].name_off) 4266 param[j].name_off = 4267 dummy_var->name_off; 4268 vs->type = dummy_var_btf_id; 4269 vt->info &= ~0xffff; 4270 vt->info |= BTF_FUNC_GLOBAL; 4271 } else { 4272 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4273 vt->type = int_btf_id; 4274 } 4275 vs->offset = off; 4276 vs->size = sizeof(int); 4277 } 4278 sec->size = off; 4279 } 4280 4281 if (kcfg_sec) { 4282 sec = kcfg_sec; 4283 /* for kcfg externs calculate their offsets within a .kconfig map */ 4284 off = 0; 4285 for (i = 0; i < obj->nr_extern; i++) { 4286 ext = &obj->externs[i]; 4287 if (ext->type != EXT_KCFG) 4288 continue; 4289 4290 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4291 off = ext->kcfg.data_off + ext->kcfg.sz; 4292 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4293 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4294 } 4295 sec->size = off; 4296 n = btf_vlen(sec); 4297 for (i = 0; i < n; i++) { 4298 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4299 4300 t = btf__type_by_id(obj->btf, vs->type); 4301 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4302 ext = find_extern_by_name(obj, ext_name); 4303 if (!ext) { 4304 pr_warn("failed to find extern definition for BTF var '%s'\n", 4305 ext_name); 4306 return -ESRCH; 4307 } 4308 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4309 vs->offset = ext->kcfg.data_off; 4310 } 4311 } 4312 return 0; 4313 } 4314 4315 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4316 { 4317 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4318 } 4319 4320 struct bpf_program * 4321 bpf_object__find_program_by_name(const struct bpf_object *obj, 4322 const char *name) 4323 { 4324 struct bpf_program *prog; 4325 4326 bpf_object__for_each_program(prog, obj) { 4327 if (prog_is_subprog(obj, prog)) 4328 continue; 4329 if (!strcmp(prog->name, name)) 4330 return prog; 4331 } 4332 return errno = ENOENT, NULL; 4333 } 4334 4335 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4336 int shndx) 4337 { 4338 switch (obj->efile.secs[shndx].sec_type) { 4339 case SEC_BSS: 4340 case SEC_DATA: 4341 case SEC_RODATA: 4342 return true; 4343 default: 4344 return false; 4345 } 4346 } 4347 4348 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4349 int shndx) 4350 { 4351 return shndx == obj->efile.btf_maps_shndx; 4352 } 4353 4354 static enum libbpf_map_type 4355 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4356 { 4357 if (shndx == obj->efile.symbols_shndx) 4358 return LIBBPF_MAP_KCONFIG; 4359 4360 switch (obj->efile.secs[shndx].sec_type) { 4361 case SEC_BSS: 4362 return LIBBPF_MAP_BSS; 4363 case SEC_DATA: 4364 return LIBBPF_MAP_DATA; 4365 case SEC_RODATA: 4366 return LIBBPF_MAP_RODATA; 4367 default: 4368 return LIBBPF_MAP_UNSPEC; 4369 } 4370 } 4371 4372 static int bpf_program__record_reloc(struct bpf_program *prog, 4373 struct reloc_desc *reloc_desc, 4374 __u32 insn_idx, const char *sym_name, 4375 const Elf64_Sym *sym, const Elf64_Rel *rel) 4376 { 4377 struct bpf_insn *insn = &prog->insns[insn_idx]; 4378 size_t map_idx, nr_maps = prog->obj->nr_maps; 4379 struct bpf_object *obj = prog->obj; 4380 __u32 shdr_idx = sym->st_shndx; 4381 enum libbpf_map_type type; 4382 const char *sym_sec_name; 4383 struct bpf_map *map; 4384 4385 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4386 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4387 prog->name, sym_name, insn_idx, insn->code); 4388 return -LIBBPF_ERRNO__RELOC; 4389 } 4390 4391 if (sym_is_extern(sym)) { 4392 int sym_idx = ELF64_R_SYM(rel->r_info); 4393 int i, n = obj->nr_extern; 4394 struct extern_desc *ext; 4395 4396 for (i = 0; i < n; i++) { 4397 ext = &obj->externs[i]; 4398 if (ext->sym_idx == sym_idx) 4399 break; 4400 } 4401 if (i >= n) { 4402 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4403 prog->name, sym_name, sym_idx); 4404 return -LIBBPF_ERRNO__RELOC; 4405 } 4406 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4407 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4408 if (insn->code == (BPF_JMP | BPF_CALL)) 4409 reloc_desc->type = RELO_EXTERN_CALL; 4410 else 4411 reloc_desc->type = RELO_EXTERN_LD64; 4412 reloc_desc->insn_idx = insn_idx; 4413 reloc_desc->ext_idx = i; 4414 return 0; 4415 } 4416 4417 /* sub-program call relocation */ 4418 if (is_call_insn(insn)) { 4419 if (insn->src_reg != BPF_PSEUDO_CALL) { 4420 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4421 return -LIBBPF_ERRNO__RELOC; 4422 } 4423 /* text_shndx can be 0, if no default "main" program exists */ 4424 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4425 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4426 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4427 prog->name, sym_name, sym_sec_name); 4428 return -LIBBPF_ERRNO__RELOC; 4429 } 4430 if (sym->st_value % BPF_INSN_SZ) { 4431 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4432 prog->name, sym_name, (size_t)sym->st_value); 4433 return -LIBBPF_ERRNO__RELOC; 4434 } 4435 reloc_desc->type = RELO_CALL; 4436 reloc_desc->insn_idx = insn_idx; 4437 reloc_desc->sym_off = sym->st_value; 4438 return 0; 4439 } 4440 4441 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4442 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4443 prog->name, sym_name, shdr_idx); 4444 return -LIBBPF_ERRNO__RELOC; 4445 } 4446 4447 /* loading subprog addresses */ 4448 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4449 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4450 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4451 */ 4452 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4453 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4454 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4455 return -LIBBPF_ERRNO__RELOC; 4456 } 4457 4458 reloc_desc->type = RELO_SUBPROG_ADDR; 4459 reloc_desc->insn_idx = insn_idx; 4460 reloc_desc->sym_off = sym->st_value; 4461 return 0; 4462 } 4463 4464 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4465 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4466 4467 /* arena data relocation */ 4468 if (shdr_idx == obj->efile.arena_data_shndx) { 4469 reloc_desc->type = RELO_DATA; 4470 reloc_desc->insn_idx = insn_idx; 4471 reloc_desc->map_idx = obj->arena_map - obj->maps; 4472 reloc_desc->sym_off = sym->st_value; 4473 return 0; 4474 } 4475 4476 /* generic map reference relocation */ 4477 if (type == LIBBPF_MAP_UNSPEC) { 4478 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4479 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4480 prog->name, sym_name, sym_sec_name); 4481 return -LIBBPF_ERRNO__RELOC; 4482 } 4483 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4484 map = &obj->maps[map_idx]; 4485 if (map->libbpf_type != type || 4486 map->sec_idx != sym->st_shndx || 4487 map->sec_offset != sym->st_value) 4488 continue; 4489 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4490 prog->name, map_idx, map->name, map->sec_idx, 4491 map->sec_offset, insn_idx); 4492 break; 4493 } 4494 if (map_idx >= nr_maps) { 4495 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4496 prog->name, sym_sec_name, (size_t)sym->st_value); 4497 return -LIBBPF_ERRNO__RELOC; 4498 } 4499 reloc_desc->type = RELO_LD64; 4500 reloc_desc->insn_idx = insn_idx; 4501 reloc_desc->map_idx = map_idx; 4502 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4503 return 0; 4504 } 4505 4506 /* global data map relocation */ 4507 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4508 pr_warn("prog '%s': bad data relo against section '%s'\n", 4509 prog->name, sym_sec_name); 4510 return -LIBBPF_ERRNO__RELOC; 4511 } 4512 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4513 map = &obj->maps[map_idx]; 4514 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4515 continue; 4516 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4517 prog->name, map_idx, map->name, map->sec_idx, 4518 map->sec_offset, insn_idx); 4519 break; 4520 } 4521 if (map_idx >= nr_maps) { 4522 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4523 prog->name, sym_sec_name); 4524 return -LIBBPF_ERRNO__RELOC; 4525 } 4526 4527 reloc_desc->type = RELO_DATA; 4528 reloc_desc->insn_idx = insn_idx; 4529 reloc_desc->map_idx = map_idx; 4530 reloc_desc->sym_off = sym->st_value; 4531 return 0; 4532 } 4533 4534 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4535 { 4536 return insn_idx >= prog->sec_insn_off && 4537 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4538 } 4539 4540 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4541 size_t sec_idx, size_t insn_idx) 4542 { 4543 int l = 0, r = obj->nr_programs - 1, m; 4544 struct bpf_program *prog; 4545 4546 if (!obj->nr_programs) 4547 return NULL; 4548 4549 while (l < r) { 4550 m = l + (r - l + 1) / 2; 4551 prog = &obj->programs[m]; 4552 4553 if (prog->sec_idx < sec_idx || 4554 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4555 l = m; 4556 else 4557 r = m - 1; 4558 } 4559 /* matching program could be at index l, but it still might be the 4560 * wrong one, so we need to double check conditions for the last time 4561 */ 4562 prog = &obj->programs[l]; 4563 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4564 return prog; 4565 return NULL; 4566 } 4567 4568 static int 4569 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4570 { 4571 const char *relo_sec_name, *sec_name; 4572 size_t sec_idx = shdr->sh_info, sym_idx; 4573 struct bpf_program *prog; 4574 struct reloc_desc *relos; 4575 int err, i, nrels; 4576 const char *sym_name; 4577 __u32 insn_idx; 4578 Elf_Scn *scn; 4579 Elf_Data *scn_data; 4580 Elf64_Sym *sym; 4581 Elf64_Rel *rel; 4582 4583 if (sec_idx >= obj->efile.sec_cnt) 4584 return -EINVAL; 4585 4586 scn = elf_sec_by_idx(obj, sec_idx); 4587 scn_data = elf_sec_data(obj, scn); 4588 if (!scn_data) 4589 return -LIBBPF_ERRNO__FORMAT; 4590 4591 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4592 sec_name = elf_sec_name(obj, scn); 4593 if (!relo_sec_name || !sec_name) 4594 return -EINVAL; 4595 4596 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4597 relo_sec_name, sec_idx, sec_name); 4598 nrels = shdr->sh_size / shdr->sh_entsize; 4599 4600 for (i = 0; i < nrels; i++) { 4601 rel = elf_rel_by_idx(data, i); 4602 if (!rel) { 4603 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4604 return -LIBBPF_ERRNO__FORMAT; 4605 } 4606 4607 sym_idx = ELF64_R_SYM(rel->r_info); 4608 sym = elf_sym_by_idx(obj, sym_idx); 4609 if (!sym) { 4610 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4611 relo_sec_name, sym_idx, i); 4612 return -LIBBPF_ERRNO__FORMAT; 4613 } 4614 4615 if (sym->st_shndx >= obj->efile.sec_cnt) { 4616 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4617 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4618 return -LIBBPF_ERRNO__FORMAT; 4619 } 4620 4621 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4622 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4623 relo_sec_name, (size_t)rel->r_offset, i); 4624 return -LIBBPF_ERRNO__FORMAT; 4625 } 4626 4627 insn_idx = rel->r_offset / BPF_INSN_SZ; 4628 /* relocations against static functions are recorded as 4629 * relocations against the section that contains a function; 4630 * in such case, symbol will be STT_SECTION and sym.st_name 4631 * will point to empty string (0), so fetch section name 4632 * instead 4633 */ 4634 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4635 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4636 else 4637 sym_name = elf_sym_str(obj, sym->st_name); 4638 sym_name = sym_name ?: "<?"; 4639 4640 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4641 relo_sec_name, i, insn_idx, sym_name); 4642 4643 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4644 if (!prog) { 4645 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4646 relo_sec_name, i, sec_name, insn_idx); 4647 continue; 4648 } 4649 4650 relos = libbpf_reallocarray(prog->reloc_desc, 4651 prog->nr_reloc + 1, sizeof(*relos)); 4652 if (!relos) 4653 return -ENOMEM; 4654 prog->reloc_desc = relos; 4655 4656 /* adjust insn_idx to local BPF program frame of reference */ 4657 insn_idx -= prog->sec_insn_off; 4658 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4659 insn_idx, sym_name, sym, rel); 4660 if (err) 4661 return err; 4662 4663 prog->nr_reloc++; 4664 } 4665 return 0; 4666 } 4667 4668 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4669 { 4670 int id; 4671 4672 if (!obj->btf) 4673 return -ENOENT; 4674 4675 /* if it's BTF-defined map, we don't need to search for type IDs. 4676 * For struct_ops map, it does not need btf_key_type_id and 4677 * btf_value_type_id. 4678 */ 4679 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4680 return 0; 4681 4682 /* 4683 * LLVM annotates global data differently in BTF, that is, 4684 * only as '.data', '.bss' or '.rodata'. 4685 */ 4686 if (!bpf_map__is_internal(map)) 4687 return -ENOENT; 4688 4689 id = btf__find_by_name(obj->btf, map->real_name); 4690 if (id < 0) 4691 return id; 4692 4693 map->btf_key_type_id = 0; 4694 map->btf_value_type_id = id; 4695 return 0; 4696 } 4697 4698 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4699 { 4700 char file[PATH_MAX], buff[4096]; 4701 FILE *fp; 4702 __u32 val; 4703 int err; 4704 4705 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4706 memset(info, 0, sizeof(*info)); 4707 4708 fp = fopen(file, "re"); 4709 if (!fp) { 4710 err = -errno; 4711 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4712 err); 4713 return err; 4714 } 4715 4716 while (fgets(buff, sizeof(buff), fp)) { 4717 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4718 info->type = val; 4719 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4720 info->key_size = val; 4721 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4722 info->value_size = val; 4723 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4724 info->max_entries = val; 4725 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4726 info->map_flags = val; 4727 } 4728 4729 fclose(fp); 4730 4731 return 0; 4732 } 4733 4734 bool bpf_map__autocreate(const struct bpf_map *map) 4735 { 4736 return map->autocreate; 4737 } 4738 4739 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4740 { 4741 if (map->obj->loaded) 4742 return libbpf_err(-EBUSY); 4743 4744 map->autocreate = autocreate; 4745 return 0; 4746 } 4747 4748 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4749 { 4750 struct bpf_map_info info; 4751 __u32 len = sizeof(info), name_len; 4752 int new_fd, err; 4753 char *new_name; 4754 4755 memset(&info, 0, len); 4756 err = bpf_map_get_info_by_fd(fd, &info, &len); 4757 if (err && errno == EINVAL) 4758 err = bpf_get_map_info_from_fdinfo(fd, &info); 4759 if (err) 4760 return libbpf_err(err); 4761 4762 name_len = strlen(info.name); 4763 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4764 new_name = strdup(map->name); 4765 else 4766 new_name = strdup(info.name); 4767 4768 if (!new_name) 4769 return libbpf_err(-errno); 4770 4771 /* 4772 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4773 * This is similar to what we do in ensure_good_fd(), but without 4774 * closing original FD. 4775 */ 4776 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4777 if (new_fd < 0) { 4778 err = -errno; 4779 goto err_free_new_name; 4780 } 4781 4782 err = reuse_fd(map->fd, new_fd); 4783 if (err) 4784 goto err_free_new_name; 4785 4786 free(map->name); 4787 4788 map->name = new_name; 4789 map->def.type = info.type; 4790 map->def.key_size = info.key_size; 4791 map->def.value_size = info.value_size; 4792 map->def.max_entries = info.max_entries; 4793 map->def.map_flags = info.map_flags; 4794 map->btf_key_type_id = info.btf_key_type_id; 4795 map->btf_value_type_id = info.btf_value_type_id; 4796 map->reused = true; 4797 map->map_extra = info.map_extra; 4798 4799 return 0; 4800 4801 err_free_new_name: 4802 free(new_name); 4803 return libbpf_err(err); 4804 } 4805 4806 __u32 bpf_map__max_entries(const struct bpf_map *map) 4807 { 4808 return map->def.max_entries; 4809 } 4810 4811 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4812 { 4813 if (!bpf_map_type__is_map_in_map(map->def.type)) 4814 return errno = EINVAL, NULL; 4815 4816 return map->inner_map; 4817 } 4818 4819 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4820 { 4821 if (map->obj->loaded) 4822 return libbpf_err(-EBUSY); 4823 4824 map->def.max_entries = max_entries; 4825 4826 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4827 if (map_is_ringbuf(map)) 4828 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4829 4830 return 0; 4831 } 4832 4833 static int bpf_object_prepare_token(struct bpf_object *obj) 4834 { 4835 const char *bpffs_path; 4836 int bpffs_fd = -1, token_fd, err; 4837 bool mandatory; 4838 enum libbpf_print_level level; 4839 4840 /* token is explicitly prevented */ 4841 if (obj->token_path && obj->token_path[0] == '\0') { 4842 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4843 return 0; 4844 } 4845 4846 mandatory = obj->token_path != NULL; 4847 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4848 4849 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4850 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4851 if (bpffs_fd < 0) { 4852 err = -errno; 4853 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4854 obj->name, err, bpffs_path, 4855 mandatory ? "" : ", skipping optional step..."); 4856 return mandatory ? err : 0; 4857 } 4858 4859 token_fd = bpf_token_create(bpffs_fd, 0); 4860 close(bpffs_fd); 4861 if (token_fd < 0) { 4862 if (!mandatory && token_fd == -ENOENT) { 4863 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4864 obj->name, bpffs_path); 4865 return 0; 4866 } 4867 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4868 obj->name, token_fd, bpffs_path, 4869 mandatory ? "" : ", skipping optional step..."); 4870 return mandatory ? token_fd : 0; 4871 } 4872 4873 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4874 if (!obj->feat_cache) { 4875 close(token_fd); 4876 return -ENOMEM; 4877 } 4878 4879 obj->token_fd = token_fd; 4880 obj->feat_cache->token_fd = token_fd; 4881 4882 return 0; 4883 } 4884 4885 static int 4886 bpf_object__probe_loading(struct bpf_object *obj) 4887 { 4888 char *cp, errmsg[STRERR_BUFSIZE]; 4889 struct bpf_insn insns[] = { 4890 BPF_MOV64_IMM(BPF_REG_0, 0), 4891 BPF_EXIT_INSN(), 4892 }; 4893 int ret, insn_cnt = ARRAY_SIZE(insns); 4894 LIBBPF_OPTS(bpf_prog_load_opts, opts, 4895 .token_fd = obj->token_fd, 4896 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 4897 ); 4898 4899 if (obj->gen_loader) 4900 return 0; 4901 4902 ret = bump_rlimit_memlock(); 4903 if (ret) 4904 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4905 4906 /* make sure basic loading works */ 4907 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 4908 if (ret < 0) 4909 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 4910 if (ret < 0) { 4911 ret = errno; 4912 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4913 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4914 "program. Make sure your kernel supports BPF " 4915 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4916 "set to big enough value.\n", __func__, cp, ret); 4917 return -ret; 4918 } 4919 close(ret); 4920 4921 return 0; 4922 } 4923 4924 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4925 { 4926 if (obj->gen_loader) 4927 /* To generate loader program assume the latest kernel 4928 * to avoid doing extra prog_load, map_create syscalls. 4929 */ 4930 return true; 4931 4932 if (obj->token_fd) 4933 return feat_supported(obj->feat_cache, feat_id); 4934 4935 return feat_supported(NULL, feat_id); 4936 } 4937 4938 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4939 { 4940 struct bpf_map_info map_info; 4941 char msg[STRERR_BUFSIZE]; 4942 __u32 map_info_len = sizeof(map_info); 4943 int err; 4944 4945 memset(&map_info, 0, map_info_len); 4946 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4947 if (err && errno == EINVAL) 4948 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4949 if (err) { 4950 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4951 libbpf_strerror_r(errno, msg, sizeof(msg))); 4952 return false; 4953 } 4954 4955 return (map_info.type == map->def.type && 4956 map_info.key_size == map->def.key_size && 4957 map_info.value_size == map->def.value_size && 4958 map_info.max_entries == map->def.max_entries && 4959 map_info.map_flags == map->def.map_flags && 4960 map_info.map_extra == map->map_extra); 4961 } 4962 4963 static int 4964 bpf_object__reuse_map(struct bpf_map *map) 4965 { 4966 char *cp, errmsg[STRERR_BUFSIZE]; 4967 int err, pin_fd; 4968 4969 pin_fd = bpf_obj_get(map->pin_path); 4970 if (pin_fd < 0) { 4971 err = -errno; 4972 if (err == -ENOENT) { 4973 pr_debug("found no pinned map to reuse at '%s'\n", 4974 map->pin_path); 4975 return 0; 4976 } 4977 4978 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4979 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4980 map->pin_path, cp); 4981 return err; 4982 } 4983 4984 if (!map_is_reuse_compat(map, pin_fd)) { 4985 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4986 map->pin_path); 4987 close(pin_fd); 4988 return -EINVAL; 4989 } 4990 4991 err = bpf_map__reuse_fd(map, pin_fd); 4992 close(pin_fd); 4993 if (err) 4994 return err; 4995 4996 map->pinned = true; 4997 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4998 4999 return 0; 5000 } 5001 5002 static int 5003 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5004 { 5005 enum libbpf_map_type map_type = map->libbpf_type; 5006 char *cp, errmsg[STRERR_BUFSIZE]; 5007 int err, zero = 0; 5008 5009 if (obj->gen_loader) { 5010 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5011 map->mmaped, map->def.value_size); 5012 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5013 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5014 return 0; 5015 } 5016 5017 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5018 if (err) { 5019 err = -errno; 5020 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5021 pr_warn("Error setting initial map(%s) contents: %s\n", 5022 map->name, cp); 5023 return err; 5024 } 5025 5026 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5027 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5028 err = bpf_map_freeze(map->fd); 5029 if (err) { 5030 err = -errno; 5031 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5032 pr_warn("Error freezing map(%s) as read-only: %s\n", 5033 map->name, cp); 5034 return err; 5035 } 5036 } 5037 return 0; 5038 } 5039 5040 static void bpf_map__destroy(struct bpf_map *map); 5041 5042 static bool map_is_created(const struct bpf_map *map) 5043 { 5044 return map->obj->loaded || map->reused; 5045 } 5046 5047 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5048 { 5049 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5050 struct bpf_map_def *def = &map->def; 5051 const char *map_name = NULL; 5052 int err = 0, map_fd; 5053 5054 if (kernel_supports(obj, FEAT_PROG_NAME)) 5055 map_name = map->name; 5056 create_attr.map_ifindex = map->map_ifindex; 5057 create_attr.map_flags = def->map_flags; 5058 create_attr.numa_node = map->numa_node; 5059 create_attr.map_extra = map->map_extra; 5060 create_attr.token_fd = obj->token_fd; 5061 if (obj->token_fd) 5062 create_attr.map_flags |= BPF_F_TOKEN_FD; 5063 5064 if (bpf_map__is_struct_ops(map)) { 5065 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5066 if (map->mod_btf_fd >= 0) { 5067 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5068 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5069 } 5070 } 5071 5072 if (obj->btf && btf__fd(obj->btf) >= 0) { 5073 create_attr.btf_fd = btf__fd(obj->btf); 5074 create_attr.btf_key_type_id = map->btf_key_type_id; 5075 create_attr.btf_value_type_id = map->btf_value_type_id; 5076 } 5077 5078 if (bpf_map_type__is_map_in_map(def->type)) { 5079 if (map->inner_map) { 5080 err = map_set_def_max_entries(map->inner_map); 5081 if (err) 5082 return err; 5083 err = bpf_object__create_map(obj, map->inner_map, true); 5084 if (err) { 5085 pr_warn("map '%s': failed to create inner map: %d\n", 5086 map->name, err); 5087 return err; 5088 } 5089 map->inner_map_fd = map->inner_map->fd; 5090 } 5091 if (map->inner_map_fd >= 0) 5092 create_attr.inner_map_fd = map->inner_map_fd; 5093 } 5094 5095 switch (def->type) { 5096 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5097 case BPF_MAP_TYPE_CGROUP_ARRAY: 5098 case BPF_MAP_TYPE_STACK_TRACE: 5099 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5100 case BPF_MAP_TYPE_HASH_OF_MAPS: 5101 case BPF_MAP_TYPE_DEVMAP: 5102 case BPF_MAP_TYPE_DEVMAP_HASH: 5103 case BPF_MAP_TYPE_CPUMAP: 5104 case BPF_MAP_TYPE_XSKMAP: 5105 case BPF_MAP_TYPE_SOCKMAP: 5106 case BPF_MAP_TYPE_SOCKHASH: 5107 case BPF_MAP_TYPE_QUEUE: 5108 case BPF_MAP_TYPE_STACK: 5109 case BPF_MAP_TYPE_ARENA: 5110 create_attr.btf_fd = 0; 5111 create_attr.btf_key_type_id = 0; 5112 create_attr.btf_value_type_id = 0; 5113 map->btf_key_type_id = 0; 5114 map->btf_value_type_id = 0; 5115 break; 5116 case BPF_MAP_TYPE_STRUCT_OPS: 5117 create_attr.btf_value_type_id = 0; 5118 break; 5119 default: 5120 break; 5121 } 5122 5123 if (obj->gen_loader) { 5124 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5125 def->key_size, def->value_size, def->max_entries, 5126 &create_attr, is_inner ? -1 : map - obj->maps); 5127 /* We keep pretenting we have valid FD to pass various fd >= 0 5128 * checks by just keeping original placeholder FDs in place. 5129 * See bpf_object__add_map() comment. 5130 * This placeholder fd will not be used with any syscall and 5131 * will be reset to -1 eventually. 5132 */ 5133 map_fd = map->fd; 5134 } else { 5135 map_fd = bpf_map_create(def->type, map_name, 5136 def->key_size, def->value_size, 5137 def->max_entries, &create_attr); 5138 } 5139 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5140 char *cp, errmsg[STRERR_BUFSIZE]; 5141 5142 err = -errno; 5143 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5144 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5145 map->name, cp, err); 5146 create_attr.btf_fd = 0; 5147 create_attr.btf_key_type_id = 0; 5148 create_attr.btf_value_type_id = 0; 5149 map->btf_key_type_id = 0; 5150 map->btf_value_type_id = 0; 5151 map_fd = bpf_map_create(def->type, map_name, 5152 def->key_size, def->value_size, 5153 def->max_entries, &create_attr); 5154 } 5155 5156 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5157 if (obj->gen_loader) 5158 map->inner_map->fd = -1; 5159 bpf_map__destroy(map->inner_map); 5160 zfree(&map->inner_map); 5161 } 5162 5163 if (map_fd < 0) 5164 return map_fd; 5165 5166 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5167 if (map->fd == map_fd) 5168 return 0; 5169 5170 /* Keep placeholder FD value but now point it to the BPF map object. 5171 * This way everything that relied on this map's FD (e.g., relocated 5172 * ldimm64 instructions) will stay valid and won't need adjustments. 5173 * map->fd stays valid but now point to what map_fd points to. 5174 */ 5175 return reuse_fd(map->fd, map_fd); 5176 } 5177 5178 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5179 { 5180 const struct bpf_map *targ_map; 5181 unsigned int i; 5182 int fd, err = 0; 5183 5184 for (i = 0; i < map->init_slots_sz; i++) { 5185 if (!map->init_slots[i]) 5186 continue; 5187 5188 targ_map = map->init_slots[i]; 5189 fd = targ_map->fd; 5190 5191 if (obj->gen_loader) { 5192 bpf_gen__populate_outer_map(obj->gen_loader, 5193 map - obj->maps, i, 5194 targ_map - obj->maps); 5195 } else { 5196 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5197 } 5198 if (err) { 5199 err = -errno; 5200 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5201 map->name, i, targ_map->name, fd, err); 5202 return err; 5203 } 5204 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5205 map->name, i, targ_map->name, fd); 5206 } 5207 5208 zfree(&map->init_slots); 5209 map->init_slots_sz = 0; 5210 5211 return 0; 5212 } 5213 5214 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5215 { 5216 const struct bpf_program *targ_prog; 5217 unsigned int i; 5218 int fd, err; 5219 5220 if (obj->gen_loader) 5221 return -ENOTSUP; 5222 5223 for (i = 0; i < map->init_slots_sz; i++) { 5224 if (!map->init_slots[i]) 5225 continue; 5226 5227 targ_prog = map->init_slots[i]; 5228 fd = bpf_program__fd(targ_prog); 5229 5230 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5231 if (err) { 5232 err = -errno; 5233 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5234 map->name, i, targ_prog->name, fd, err); 5235 return err; 5236 } 5237 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5238 map->name, i, targ_prog->name, fd); 5239 } 5240 5241 zfree(&map->init_slots); 5242 map->init_slots_sz = 0; 5243 5244 return 0; 5245 } 5246 5247 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5248 { 5249 struct bpf_map *map; 5250 int i, err; 5251 5252 for (i = 0; i < obj->nr_maps; i++) { 5253 map = &obj->maps[i]; 5254 5255 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5256 continue; 5257 5258 err = init_prog_array_slots(obj, map); 5259 if (err < 0) 5260 return err; 5261 } 5262 return 0; 5263 } 5264 5265 static int map_set_def_max_entries(struct bpf_map *map) 5266 { 5267 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5268 int nr_cpus; 5269 5270 nr_cpus = libbpf_num_possible_cpus(); 5271 if (nr_cpus < 0) { 5272 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5273 map->name, nr_cpus); 5274 return nr_cpus; 5275 } 5276 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5277 map->def.max_entries = nr_cpus; 5278 } 5279 5280 return 0; 5281 } 5282 5283 static int 5284 bpf_object__create_maps(struct bpf_object *obj) 5285 { 5286 struct bpf_map *map; 5287 char *cp, errmsg[STRERR_BUFSIZE]; 5288 unsigned int i, j; 5289 int err; 5290 bool retried; 5291 5292 for (i = 0; i < obj->nr_maps; i++) { 5293 map = &obj->maps[i]; 5294 5295 /* To support old kernels, we skip creating global data maps 5296 * (.rodata, .data, .kconfig, etc); later on, during program 5297 * loading, if we detect that at least one of the to-be-loaded 5298 * programs is referencing any global data map, we'll error 5299 * out with program name and relocation index logged. 5300 * This approach allows to accommodate Clang emitting 5301 * unnecessary .rodata.str1.1 sections for string literals, 5302 * but also it allows to have CO-RE applications that use 5303 * global variables in some of BPF programs, but not others. 5304 * If those global variable-using programs are not loaded at 5305 * runtime due to bpf_program__set_autoload(prog, false), 5306 * bpf_object loading will succeed just fine even on old 5307 * kernels. 5308 */ 5309 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5310 map->autocreate = false; 5311 5312 if (!map->autocreate) { 5313 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5314 continue; 5315 } 5316 5317 err = map_set_def_max_entries(map); 5318 if (err) 5319 goto err_out; 5320 5321 retried = false; 5322 retry: 5323 if (map->pin_path) { 5324 err = bpf_object__reuse_map(map); 5325 if (err) { 5326 pr_warn("map '%s': error reusing pinned map\n", 5327 map->name); 5328 goto err_out; 5329 } 5330 if (retried && map->fd < 0) { 5331 pr_warn("map '%s': cannot find pinned map\n", 5332 map->name); 5333 err = -ENOENT; 5334 goto err_out; 5335 } 5336 } 5337 5338 if (map->reused) { 5339 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5340 map->name, map->fd); 5341 } else { 5342 err = bpf_object__create_map(obj, map, false); 5343 if (err) 5344 goto err_out; 5345 5346 pr_debug("map '%s': created successfully, fd=%d\n", 5347 map->name, map->fd); 5348 5349 if (bpf_map__is_internal(map)) { 5350 err = bpf_object__populate_internal_map(obj, map); 5351 if (err < 0) 5352 goto err_out; 5353 } 5354 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5355 map->mmaped = mmap((void *)map->map_extra, bpf_map_mmap_sz(map), 5356 PROT_READ | PROT_WRITE, 5357 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5358 map->fd, 0); 5359 if (map->mmaped == MAP_FAILED) { 5360 err = -errno; 5361 map->mmaped = NULL; 5362 pr_warn("map '%s': failed to mmap arena: %d\n", 5363 map->name, err); 5364 return err; 5365 } 5366 if (obj->arena_data) { 5367 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5368 zfree(&obj->arena_data); 5369 } 5370 } 5371 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5372 err = init_map_in_map_slots(obj, map); 5373 if (err < 0) 5374 goto err_out; 5375 } 5376 } 5377 5378 if (map->pin_path && !map->pinned) { 5379 err = bpf_map__pin(map, NULL); 5380 if (err) { 5381 if (!retried && err == -EEXIST) { 5382 retried = true; 5383 goto retry; 5384 } 5385 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5386 map->name, map->pin_path, err); 5387 goto err_out; 5388 } 5389 } 5390 } 5391 5392 return 0; 5393 5394 err_out: 5395 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5396 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5397 pr_perm_msg(err); 5398 for (j = 0; j < i; j++) 5399 zclose(obj->maps[j].fd); 5400 return err; 5401 } 5402 5403 static bool bpf_core_is_flavor_sep(const char *s) 5404 { 5405 /* check X___Y name pattern, where X and Y are not underscores */ 5406 return s[0] != '_' && /* X */ 5407 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5408 s[4] != '_'; /* Y */ 5409 } 5410 5411 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5412 * before last triple underscore. Struct name part after last triple 5413 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5414 */ 5415 size_t bpf_core_essential_name_len(const char *name) 5416 { 5417 size_t n = strlen(name); 5418 int i; 5419 5420 for (i = n - 5; i >= 0; i--) { 5421 if (bpf_core_is_flavor_sep(name + i)) 5422 return i + 1; 5423 } 5424 return n; 5425 } 5426 5427 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5428 { 5429 if (!cands) 5430 return; 5431 5432 free(cands->cands); 5433 free(cands); 5434 } 5435 5436 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5437 size_t local_essent_len, 5438 const struct btf *targ_btf, 5439 const char *targ_btf_name, 5440 int targ_start_id, 5441 struct bpf_core_cand_list *cands) 5442 { 5443 struct bpf_core_cand *new_cands, *cand; 5444 const struct btf_type *t, *local_t; 5445 const char *targ_name, *local_name; 5446 size_t targ_essent_len; 5447 int n, i; 5448 5449 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5450 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5451 5452 n = btf__type_cnt(targ_btf); 5453 for (i = targ_start_id; i < n; i++) { 5454 t = btf__type_by_id(targ_btf, i); 5455 if (!btf_kind_core_compat(t, local_t)) 5456 continue; 5457 5458 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5459 if (str_is_empty(targ_name)) 5460 continue; 5461 5462 targ_essent_len = bpf_core_essential_name_len(targ_name); 5463 if (targ_essent_len != local_essent_len) 5464 continue; 5465 5466 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5467 continue; 5468 5469 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5470 local_cand->id, btf_kind_str(local_t), 5471 local_name, i, btf_kind_str(t), targ_name, 5472 targ_btf_name); 5473 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5474 sizeof(*cands->cands)); 5475 if (!new_cands) 5476 return -ENOMEM; 5477 5478 cand = &new_cands[cands->len]; 5479 cand->btf = targ_btf; 5480 cand->id = i; 5481 5482 cands->cands = new_cands; 5483 cands->len++; 5484 } 5485 return 0; 5486 } 5487 5488 static int load_module_btfs(struct bpf_object *obj) 5489 { 5490 struct bpf_btf_info info; 5491 struct module_btf *mod_btf; 5492 struct btf *btf; 5493 char name[64]; 5494 __u32 id = 0, len; 5495 int err, fd; 5496 5497 if (obj->btf_modules_loaded) 5498 return 0; 5499 5500 if (obj->gen_loader) 5501 return 0; 5502 5503 /* don't do this again, even if we find no module BTFs */ 5504 obj->btf_modules_loaded = true; 5505 5506 /* kernel too old to support module BTFs */ 5507 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5508 return 0; 5509 5510 while (true) { 5511 err = bpf_btf_get_next_id(id, &id); 5512 if (err && errno == ENOENT) 5513 return 0; 5514 if (err && errno == EPERM) { 5515 pr_debug("skipping module BTFs loading, missing privileges\n"); 5516 return 0; 5517 } 5518 if (err) { 5519 err = -errno; 5520 pr_warn("failed to iterate BTF objects: %d\n", err); 5521 return err; 5522 } 5523 5524 fd = bpf_btf_get_fd_by_id(id); 5525 if (fd < 0) { 5526 if (errno == ENOENT) 5527 continue; /* expected race: BTF was unloaded */ 5528 err = -errno; 5529 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5530 return err; 5531 } 5532 5533 len = sizeof(info); 5534 memset(&info, 0, sizeof(info)); 5535 info.name = ptr_to_u64(name); 5536 info.name_len = sizeof(name); 5537 5538 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5539 if (err) { 5540 err = -errno; 5541 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5542 goto err_out; 5543 } 5544 5545 /* ignore non-module BTFs */ 5546 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5547 close(fd); 5548 continue; 5549 } 5550 5551 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5552 err = libbpf_get_error(btf); 5553 if (err) { 5554 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5555 name, id, err); 5556 goto err_out; 5557 } 5558 5559 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5560 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5561 if (err) 5562 goto err_out; 5563 5564 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5565 5566 mod_btf->btf = btf; 5567 mod_btf->id = id; 5568 mod_btf->fd = fd; 5569 mod_btf->name = strdup(name); 5570 if (!mod_btf->name) { 5571 err = -ENOMEM; 5572 goto err_out; 5573 } 5574 continue; 5575 5576 err_out: 5577 close(fd); 5578 return err; 5579 } 5580 5581 return 0; 5582 } 5583 5584 static struct bpf_core_cand_list * 5585 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5586 { 5587 struct bpf_core_cand local_cand = {}; 5588 struct bpf_core_cand_list *cands; 5589 const struct btf *main_btf; 5590 const struct btf_type *local_t; 5591 const char *local_name; 5592 size_t local_essent_len; 5593 int err, i; 5594 5595 local_cand.btf = local_btf; 5596 local_cand.id = local_type_id; 5597 local_t = btf__type_by_id(local_btf, local_type_id); 5598 if (!local_t) 5599 return ERR_PTR(-EINVAL); 5600 5601 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5602 if (str_is_empty(local_name)) 5603 return ERR_PTR(-EINVAL); 5604 local_essent_len = bpf_core_essential_name_len(local_name); 5605 5606 cands = calloc(1, sizeof(*cands)); 5607 if (!cands) 5608 return ERR_PTR(-ENOMEM); 5609 5610 /* Attempt to find target candidates in vmlinux BTF first */ 5611 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5612 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5613 if (err) 5614 goto err_out; 5615 5616 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5617 if (cands->len) 5618 return cands; 5619 5620 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5621 if (obj->btf_vmlinux_override) 5622 return cands; 5623 5624 /* now look through module BTFs, trying to still find candidates */ 5625 err = load_module_btfs(obj); 5626 if (err) 5627 goto err_out; 5628 5629 for (i = 0; i < obj->btf_module_cnt; i++) { 5630 err = bpf_core_add_cands(&local_cand, local_essent_len, 5631 obj->btf_modules[i].btf, 5632 obj->btf_modules[i].name, 5633 btf__type_cnt(obj->btf_vmlinux), 5634 cands); 5635 if (err) 5636 goto err_out; 5637 } 5638 5639 return cands; 5640 err_out: 5641 bpf_core_free_cands(cands); 5642 return ERR_PTR(err); 5643 } 5644 5645 /* Check local and target types for compatibility. This check is used for 5646 * type-based CO-RE relocations and follow slightly different rules than 5647 * field-based relocations. This function assumes that root types were already 5648 * checked for name match. Beyond that initial root-level name check, names 5649 * are completely ignored. Compatibility rules are as follows: 5650 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5651 * kind should match for local and target types (i.e., STRUCT is not 5652 * compatible with UNION); 5653 * - for ENUMs, the size is ignored; 5654 * - for INT, size and signedness are ignored; 5655 * - for ARRAY, dimensionality is ignored, element types are checked for 5656 * compatibility recursively; 5657 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5658 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5659 * - FUNC_PROTOs are compatible if they have compatible signature: same 5660 * number of input args and compatible return and argument types. 5661 * These rules are not set in stone and probably will be adjusted as we get 5662 * more experience with using BPF CO-RE relocations. 5663 */ 5664 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5665 const struct btf *targ_btf, __u32 targ_id) 5666 { 5667 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5668 } 5669 5670 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5671 const struct btf *targ_btf, __u32 targ_id) 5672 { 5673 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5674 } 5675 5676 static size_t bpf_core_hash_fn(const long key, void *ctx) 5677 { 5678 return key; 5679 } 5680 5681 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5682 { 5683 return k1 == k2; 5684 } 5685 5686 static int record_relo_core(struct bpf_program *prog, 5687 const struct bpf_core_relo *core_relo, int insn_idx) 5688 { 5689 struct reloc_desc *relos, *relo; 5690 5691 relos = libbpf_reallocarray(prog->reloc_desc, 5692 prog->nr_reloc + 1, sizeof(*relos)); 5693 if (!relos) 5694 return -ENOMEM; 5695 relo = &relos[prog->nr_reloc]; 5696 relo->type = RELO_CORE; 5697 relo->insn_idx = insn_idx; 5698 relo->core_relo = core_relo; 5699 prog->reloc_desc = relos; 5700 prog->nr_reloc++; 5701 return 0; 5702 } 5703 5704 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5705 { 5706 struct reloc_desc *relo; 5707 int i; 5708 5709 for (i = 0; i < prog->nr_reloc; i++) { 5710 relo = &prog->reloc_desc[i]; 5711 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5712 continue; 5713 5714 return relo->core_relo; 5715 } 5716 5717 return NULL; 5718 } 5719 5720 static int bpf_core_resolve_relo(struct bpf_program *prog, 5721 const struct bpf_core_relo *relo, 5722 int relo_idx, 5723 const struct btf *local_btf, 5724 struct hashmap *cand_cache, 5725 struct bpf_core_relo_res *targ_res) 5726 { 5727 struct bpf_core_spec specs_scratch[3] = {}; 5728 struct bpf_core_cand_list *cands = NULL; 5729 const char *prog_name = prog->name; 5730 const struct btf_type *local_type; 5731 const char *local_name; 5732 __u32 local_id = relo->type_id; 5733 int err; 5734 5735 local_type = btf__type_by_id(local_btf, local_id); 5736 if (!local_type) 5737 return -EINVAL; 5738 5739 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5740 if (!local_name) 5741 return -EINVAL; 5742 5743 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5744 !hashmap__find(cand_cache, local_id, &cands)) { 5745 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5746 if (IS_ERR(cands)) { 5747 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5748 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5749 local_name, PTR_ERR(cands)); 5750 return PTR_ERR(cands); 5751 } 5752 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5753 if (err) { 5754 bpf_core_free_cands(cands); 5755 return err; 5756 } 5757 } 5758 5759 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5760 targ_res); 5761 } 5762 5763 static int 5764 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5765 { 5766 const struct btf_ext_info_sec *sec; 5767 struct bpf_core_relo_res targ_res; 5768 const struct bpf_core_relo *rec; 5769 const struct btf_ext_info *seg; 5770 struct hashmap_entry *entry; 5771 struct hashmap *cand_cache = NULL; 5772 struct bpf_program *prog; 5773 struct bpf_insn *insn; 5774 const char *sec_name; 5775 int i, err = 0, insn_idx, sec_idx, sec_num; 5776 5777 if (obj->btf_ext->core_relo_info.len == 0) 5778 return 0; 5779 5780 if (targ_btf_path) { 5781 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5782 err = libbpf_get_error(obj->btf_vmlinux_override); 5783 if (err) { 5784 pr_warn("failed to parse target BTF: %d\n", err); 5785 return err; 5786 } 5787 } 5788 5789 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5790 if (IS_ERR(cand_cache)) { 5791 err = PTR_ERR(cand_cache); 5792 goto out; 5793 } 5794 5795 seg = &obj->btf_ext->core_relo_info; 5796 sec_num = 0; 5797 for_each_btf_ext_sec(seg, sec) { 5798 sec_idx = seg->sec_idxs[sec_num]; 5799 sec_num++; 5800 5801 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5802 if (str_is_empty(sec_name)) { 5803 err = -EINVAL; 5804 goto out; 5805 } 5806 5807 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5808 5809 for_each_btf_ext_rec(seg, sec, i, rec) { 5810 if (rec->insn_off % BPF_INSN_SZ) 5811 return -EINVAL; 5812 insn_idx = rec->insn_off / BPF_INSN_SZ; 5813 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5814 if (!prog) { 5815 /* When __weak subprog is "overridden" by another instance 5816 * of the subprog from a different object file, linker still 5817 * appends all the .BTF.ext info that used to belong to that 5818 * eliminated subprogram. 5819 * This is similar to what x86-64 linker does for relocations. 5820 * So just ignore such relocations just like we ignore 5821 * subprog instructions when discovering subprograms. 5822 */ 5823 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5824 sec_name, i, insn_idx); 5825 continue; 5826 } 5827 /* no need to apply CO-RE relocation if the program is 5828 * not going to be loaded 5829 */ 5830 if (!prog->autoload) 5831 continue; 5832 5833 /* adjust insn_idx from section frame of reference to the local 5834 * program's frame of reference; (sub-)program code is not yet 5835 * relocated, so it's enough to just subtract in-section offset 5836 */ 5837 insn_idx = insn_idx - prog->sec_insn_off; 5838 if (insn_idx >= prog->insns_cnt) 5839 return -EINVAL; 5840 insn = &prog->insns[insn_idx]; 5841 5842 err = record_relo_core(prog, rec, insn_idx); 5843 if (err) { 5844 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5845 prog->name, i, err); 5846 goto out; 5847 } 5848 5849 if (prog->obj->gen_loader) 5850 continue; 5851 5852 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5853 if (err) { 5854 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5855 prog->name, i, err); 5856 goto out; 5857 } 5858 5859 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5860 if (err) { 5861 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5862 prog->name, i, insn_idx, err); 5863 goto out; 5864 } 5865 } 5866 } 5867 5868 out: 5869 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5870 btf__free(obj->btf_vmlinux_override); 5871 obj->btf_vmlinux_override = NULL; 5872 5873 if (!IS_ERR_OR_NULL(cand_cache)) { 5874 hashmap__for_each_entry(cand_cache, entry, i) { 5875 bpf_core_free_cands(entry->pvalue); 5876 } 5877 hashmap__free(cand_cache); 5878 } 5879 return err; 5880 } 5881 5882 /* base map load ldimm64 special constant, used also for log fixup logic */ 5883 #define POISON_LDIMM64_MAP_BASE 2001000000 5884 #define POISON_LDIMM64_MAP_PFX "200100" 5885 5886 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5887 int insn_idx, struct bpf_insn *insn, 5888 int map_idx, const struct bpf_map *map) 5889 { 5890 int i; 5891 5892 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5893 prog->name, relo_idx, insn_idx, map_idx, map->name); 5894 5895 /* we turn single ldimm64 into two identical invalid calls */ 5896 for (i = 0; i < 2; i++) { 5897 insn->code = BPF_JMP | BPF_CALL; 5898 insn->dst_reg = 0; 5899 insn->src_reg = 0; 5900 insn->off = 0; 5901 /* if this instruction is reachable (not a dead code), 5902 * verifier will complain with something like: 5903 * invalid func unknown#2001000123 5904 * where lower 123 is map index into obj->maps[] array 5905 */ 5906 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5907 5908 insn++; 5909 } 5910 } 5911 5912 /* unresolved kfunc call special constant, used also for log fixup logic */ 5913 #define POISON_CALL_KFUNC_BASE 2002000000 5914 #define POISON_CALL_KFUNC_PFX "2002" 5915 5916 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5917 int insn_idx, struct bpf_insn *insn, 5918 int ext_idx, const struct extern_desc *ext) 5919 { 5920 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5921 prog->name, relo_idx, insn_idx, ext->name); 5922 5923 /* we turn kfunc call into invalid helper call with identifiable constant */ 5924 insn->code = BPF_JMP | BPF_CALL; 5925 insn->dst_reg = 0; 5926 insn->src_reg = 0; 5927 insn->off = 0; 5928 /* if this instruction is reachable (not a dead code), 5929 * verifier will complain with something like: 5930 * invalid func unknown#2001000123 5931 * where lower 123 is extern index into obj->externs[] array 5932 */ 5933 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5934 } 5935 5936 /* Relocate data references within program code: 5937 * - map references; 5938 * - global variable references; 5939 * - extern references. 5940 */ 5941 static int 5942 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5943 { 5944 int i; 5945 5946 for (i = 0; i < prog->nr_reloc; i++) { 5947 struct reloc_desc *relo = &prog->reloc_desc[i]; 5948 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5949 const struct bpf_map *map; 5950 struct extern_desc *ext; 5951 5952 switch (relo->type) { 5953 case RELO_LD64: 5954 map = &obj->maps[relo->map_idx]; 5955 if (obj->gen_loader) { 5956 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5957 insn[0].imm = relo->map_idx; 5958 } else if (map->autocreate) { 5959 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5960 insn[0].imm = map->fd; 5961 } else { 5962 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5963 relo->map_idx, map); 5964 } 5965 break; 5966 case RELO_DATA: 5967 map = &obj->maps[relo->map_idx]; 5968 insn[1].imm = insn[0].imm + relo->sym_off; 5969 if (obj->gen_loader) { 5970 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5971 insn[0].imm = relo->map_idx; 5972 } else if (map->autocreate) { 5973 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5974 insn[0].imm = map->fd; 5975 } else { 5976 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5977 relo->map_idx, map); 5978 } 5979 break; 5980 case RELO_EXTERN_LD64: 5981 ext = &obj->externs[relo->ext_idx]; 5982 if (ext->type == EXT_KCFG) { 5983 if (obj->gen_loader) { 5984 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5985 insn[0].imm = obj->kconfig_map_idx; 5986 } else { 5987 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5988 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5989 } 5990 insn[1].imm = ext->kcfg.data_off; 5991 } else /* EXT_KSYM */ { 5992 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5993 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5994 insn[0].imm = ext->ksym.kernel_btf_id; 5995 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5996 } else { /* typeless ksyms or unresolved typed ksyms */ 5997 insn[0].imm = (__u32)ext->ksym.addr; 5998 insn[1].imm = ext->ksym.addr >> 32; 5999 } 6000 } 6001 break; 6002 case RELO_EXTERN_CALL: 6003 ext = &obj->externs[relo->ext_idx]; 6004 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6005 if (ext->is_set) { 6006 insn[0].imm = ext->ksym.kernel_btf_id; 6007 insn[0].off = ext->ksym.btf_fd_idx; 6008 } else { /* unresolved weak kfunc call */ 6009 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6010 relo->ext_idx, ext); 6011 } 6012 break; 6013 case RELO_SUBPROG_ADDR: 6014 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6015 pr_warn("prog '%s': relo #%d: bad insn\n", 6016 prog->name, i); 6017 return -EINVAL; 6018 } 6019 /* handled already */ 6020 break; 6021 case RELO_CALL: 6022 /* handled already */ 6023 break; 6024 case RELO_CORE: 6025 /* will be handled by bpf_program_record_relos() */ 6026 break; 6027 default: 6028 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6029 prog->name, i, relo->type); 6030 return -EINVAL; 6031 } 6032 } 6033 6034 return 0; 6035 } 6036 6037 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6038 const struct bpf_program *prog, 6039 const struct btf_ext_info *ext_info, 6040 void **prog_info, __u32 *prog_rec_cnt, 6041 __u32 *prog_rec_sz) 6042 { 6043 void *copy_start = NULL, *copy_end = NULL; 6044 void *rec, *rec_end, *new_prog_info; 6045 const struct btf_ext_info_sec *sec; 6046 size_t old_sz, new_sz; 6047 int i, sec_num, sec_idx, off_adj; 6048 6049 sec_num = 0; 6050 for_each_btf_ext_sec(ext_info, sec) { 6051 sec_idx = ext_info->sec_idxs[sec_num]; 6052 sec_num++; 6053 if (prog->sec_idx != sec_idx) 6054 continue; 6055 6056 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6057 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6058 6059 if (insn_off < prog->sec_insn_off) 6060 continue; 6061 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6062 break; 6063 6064 if (!copy_start) 6065 copy_start = rec; 6066 copy_end = rec + ext_info->rec_size; 6067 } 6068 6069 if (!copy_start) 6070 return -ENOENT; 6071 6072 /* append func/line info of a given (sub-)program to the main 6073 * program func/line info 6074 */ 6075 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6076 new_sz = old_sz + (copy_end - copy_start); 6077 new_prog_info = realloc(*prog_info, new_sz); 6078 if (!new_prog_info) 6079 return -ENOMEM; 6080 *prog_info = new_prog_info; 6081 *prog_rec_cnt = new_sz / ext_info->rec_size; 6082 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6083 6084 /* Kernel instruction offsets are in units of 8-byte 6085 * instructions, while .BTF.ext instruction offsets generated 6086 * by Clang are in units of bytes. So convert Clang offsets 6087 * into kernel offsets and adjust offset according to program 6088 * relocated position. 6089 */ 6090 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6091 rec = new_prog_info + old_sz; 6092 rec_end = new_prog_info + new_sz; 6093 for (; rec < rec_end; rec += ext_info->rec_size) { 6094 __u32 *insn_off = rec; 6095 6096 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6097 } 6098 *prog_rec_sz = ext_info->rec_size; 6099 return 0; 6100 } 6101 6102 return -ENOENT; 6103 } 6104 6105 static int 6106 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6107 struct bpf_program *main_prog, 6108 const struct bpf_program *prog) 6109 { 6110 int err; 6111 6112 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6113 * support func/line info 6114 */ 6115 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6116 return 0; 6117 6118 /* only attempt func info relocation if main program's func_info 6119 * relocation was successful 6120 */ 6121 if (main_prog != prog && !main_prog->func_info) 6122 goto line_info; 6123 6124 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6125 &main_prog->func_info, 6126 &main_prog->func_info_cnt, 6127 &main_prog->func_info_rec_size); 6128 if (err) { 6129 if (err != -ENOENT) { 6130 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6131 prog->name, err); 6132 return err; 6133 } 6134 if (main_prog->func_info) { 6135 /* 6136 * Some info has already been found but has problem 6137 * in the last btf_ext reloc. Must have to error out. 6138 */ 6139 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6140 return err; 6141 } 6142 /* Have problem loading the very first info. Ignore the rest. */ 6143 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6144 prog->name); 6145 } 6146 6147 line_info: 6148 /* don't relocate line info if main program's relocation failed */ 6149 if (main_prog != prog && !main_prog->line_info) 6150 return 0; 6151 6152 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6153 &main_prog->line_info, 6154 &main_prog->line_info_cnt, 6155 &main_prog->line_info_rec_size); 6156 if (err) { 6157 if (err != -ENOENT) { 6158 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6159 prog->name, err); 6160 return err; 6161 } 6162 if (main_prog->line_info) { 6163 /* 6164 * Some info has already been found but has problem 6165 * in the last btf_ext reloc. Must have to error out. 6166 */ 6167 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6168 return err; 6169 } 6170 /* Have problem loading the very first info. Ignore the rest. */ 6171 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6172 prog->name); 6173 } 6174 return 0; 6175 } 6176 6177 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6178 { 6179 size_t insn_idx = *(const size_t *)key; 6180 const struct reloc_desc *relo = elem; 6181 6182 if (insn_idx == relo->insn_idx) 6183 return 0; 6184 return insn_idx < relo->insn_idx ? -1 : 1; 6185 } 6186 6187 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6188 { 6189 if (!prog->nr_reloc) 6190 return NULL; 6191 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6192 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6193 } 6194 6195 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6196 { 6197 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6198 struct reloc_desc *relos; 6199 int i; 6200 6201 if (main_prog == subprog) 6202 return 0; 6203 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6204 /* if new count is zero, reallocarray can return a valid NULL result; 6205 * in this case the previous pointer will be freed, so we *have to* 6206 * reassign old pointer to the new value (even if it's NULL) 6207 */ 6208 if (!relos && new_cnt) 6209 return -ENOMEM; 6210 if (subprog->nr_reloc) 6211 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6212 sizeof(*relos) * subprog->nr_reloc); 6213 6214 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6215 relos[i].insn_idx += subprog->sub_insn_off; 6216 /* After insn_idx adjustment the 'relos' array is still sorted 6217 * by insn_idx and doesn't break bsearch. 6218 */ 6219 main_prog->reloc_desc = relos; 6220 main_prog->nr_reloc = new_cnt; 6221 return 0; 6222 } 6223 6224 static int 6225 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6226 struct bpf_program *subprog) 6227 { 6228 struct bpf_insn *insns; 6229 size_t new_cnt; 6230 int err; 6231 6232 subprog->sub_insn_off = main_prog->insns_cnt; 6233 6234 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6235 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6236 if (!insns) { 6237 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6238 return -ENOMEM; 6239 } 6240 main_prog->insns = insns; 6241 main_prog->insns_cnt = new_cnt; 6242 6243 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6244 subprog->insns_cnt * sizeof(*insns)); 6245 6246 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6247 main_prog->name, subprog->insns_cnt, subprog->name); 6248 6249 /* The subprog insns are now appended. Append its relos too. */ 6250 err = append_subprog_relos(main_prog, subprog); 6251 if (err) 6252 return err; 6253 return 0; 6254 } 6255 6256 static int 6257 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6258 struct bpf_program *prog) 6259 { 6260 size_t sub_insn_idx, insn_idx; 6261 struct bpf_program *subprog; 6262 struct reloc_desc *relo; 6263 struct bpf_insn *insn; 6264 int err; 6265 6266 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6267 if (err) 6268 return err; 6269 6270 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6271 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6272 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6273 continue; 6274 6275 relo = find_prog_insn_relo(prog, insn_idx); 6276 if (relo && relo->type == RELO_EXTERN_CALL) 6277 /* kfunc relocations will be handled later 6278 * in bpf_object__relocate_data() 6279 */ 6280 continue; 6281 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6282 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6283 prog->name, insn_idx, relo->type); 6284 return -LIBBPF_ERRNO__RELOC; 6285 } 6286 if (relo) { 6287 /* sub-program instruction index is a combination of 6288 * an offset of a symbol pointed to by relocation and 6289 * call instruction's imm field; for global functions, 6290 * call always has imm = -1, but for static functions 6291 * relocation is against STT_SECTION and insn->imm 6292 * points to a start of a static function 6293 * 6294 * for subprog addr relocation, the relo->sym_off + insn->imm is 6295 * the byte offset in the corresponding section. 6296 */ 6297 if (relo->type == RELO_CALL) 6298 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6299 else 6300 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6301 } else if (insn_is_pseudo_func(insn)) { 6302 /* 6303 * RELO_SUBPROG_ADDR relo is always emitted even if both 6304 * functions are in the same section, so it shouldn't reach here. 6305 */ 6306 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6307 prog->name, insn_idx); 6308 return -LIBBPF_ERRNO__RELOC; 6309 } else { 6310 /* if subprogram call is to a static function within 6311 * the same ELF section, there won't be any relocation 6312 * emitted, but it also means there is no additional 6313 * offset necessary, insns->imm is relative to 6314 * instruction's original position within the section 6315 */ 6316 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6317 } 6318 6319 /* we enforce that sub-programs should be in .text section */ 6320 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6321 if (!subprog) { 6322 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6323 prog->name); 6324 return -LIBBPF_ERRNO__RELOC; 6325 } 6326 6327 /* if it's the first call instruction calling into this 6328 * subprogram (meaning this subprog hasn't been processed 6329 * yet) within the context of current main program: 6330 * - append it at the end of main program's instructions blog; 6331 * - process is recursively, while current program is put on hold; 6332 * - if that subprogram calls some other not yet processes 6333 * subprogram, same thing will happen recursively until 6334 * there are no more unprocesses subprograms left to append 6335 * and relocate. 6336 */ 6337 if (subprog->sub_insn_off == 0) { 6338 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6339 if (err) 6340 return err; 6341 err = bpf_object__reloc_code(obj, main_prog, subprog); 6342 if (err) 6343 return err; 6344 } 6345 6346 /* main_prog->insns memory could have been re-allocated, so 6347 * calculate pointer again 6348 */ 6349 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6350 /* calculate correct instruction position within current main 6351 * prog; each main prog can have a different set of 6352 * subprograms appended (potentially in different order as 6353 * well), so position of any subprog can be different for 6354 * different main programs 6355 */ 6356 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6357 6358 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6359 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6360 } 6361 6362 return 0; 6363 } 6364 6365 /* 6366 * Relocate sub-program calls. 6367 * 6368 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6369 * main prog) is processed separately. For each subprog (non-entry functions, 6370 * that can be called from either entry progs or other subprogs) gets their 6371 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6372 * hasn't been yet appended and relocated within current main prog. Once its 6373 * relocated, sub_insn_off will point at the position within current main prog 6374 * where given subprog was appended. This will further be used to relocate all 6375 * the call instructions jumping into this subprog. 6376 * 6377 * We start with main program and process all call instructions. If the call 6378 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6379 * is zero), subprog instructions are appended at the end of main program's 6380 * instruction array. Then main program is "put on hold" while we recursively 6381 * process newly appended subprogram. If that subprogram calls into another 6382 * subprogram that hasn't been appended, new subprogram is appended again to 6383 * the *main* prog's instructions (subprog's instructions are always left 6384 * untouched, as they need to be in unmodified state for subsequent main progs 6385 * and subprog instructions are always sent only as part of a main prog) and 6386 * the process continues recursively. Once all the subprogs called from a main 6387 * prog or any of its subprogs are appended (and relocated), all their 6388 * positions within finalized instructions array are known, so it's easy to 6389 * rewrite call instructions with correct relative offsets, corresponding to 6390 * desired target subprog. 6391 * 6392 * Its important to realize that some subprogs might not be called from some 6393 * main prog and any of its called/used subprogs. Those will keep their 6394 * subprog->sub_insn_off as zero at all times and won't be appended to current 6395 * main prog and won't be relocated within the context of current main prog. 6396 * They might still be used from other main progs later. 6397 * 6398 * Visually this process can be shown as below. Suppose we have two main 6399 * programs mainA and mainB and BPF object contains three subprogs: subA, 6400 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6401 * subC both call subB: 6402 * 6403 * +--------+ +-------+ 6404 * | v v | 6405 * +--+---+ +--+-+-+ +---+--+ 6406 * | subA | | subB | | subC | 6407 * +--+---+ +------+ +---+--+ 6408 * ^ ^ 6409 * | | 6410 * +---+-------+ +------+----+ 6411 * | mainA | | mainB | 6412 * +-----------+ +-----------+ 6413 * 6414 * We'll start relocating mainA, will find subA, append it and start 6415 * processing sub A recursively: 6416 * 6417 * +-----------+------+ 6418 * | mainA | subA | 6419 * +-----------+------+ 6420 * 6421 * At this point we notice that subB is used from subA, so we append it and 6422 * relocate (there are no further subcalls from subB): 6423 * 6424 * +-----------+------+------+ 6425 * | mainA | subA | subB | 6426 * +-----------+------+------+ 6427 * 6428 * At this point, we relocate subA calls, then go one level up and finish with 6429 * relocatin mainA calls. mainA is done. 6430 * 6431 * For mainB process is similar but results in different order. We start with 6432 * mainB and skip subA and subB, as mainB never calls them (at least 6433 * directly), but we see subC is needed, so we append and start processing it: 6434 * 6435 * +-----------+------+ 6436 * | mainB | subC | 6437 * +-----------+------+ 6438 * Now we see subC needs subB, so we go back to it, append and relocate it: 6439 * 6440 * +-----------+------+------+ 6441 * | mainB | subC | subB | 6442 * +-----------+------+------+ 6443 * 6444 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6445 */ 6446 static int 6447 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6448 { 6449 struct bpf_program *subprog; 6450 int i, err; 6451 6452 /* mark all subprogs as not relocated (yet) within the context of 6453 * current main program 6454 */ 6455 for (i = 0; i < obj->nr_programs; i++) { 6456 subprog = &obj->programs[i]; 6457 if (!prog_is_subprog(obj, subprog)) 6458 continue; 6459 6460 subprog->sub_insn_off = 0; 6461 } 6462 6463 err = bpf_object__reloc_code(obj, prog, prog); 6464 if (err) 6465 return err; 6466 6467 return 0; 6468 } 6469 6470 static void 6471 bpf_object__free_relocs(struct bpf_object *obj) 6472 { 6473 struct bpf_program *prog; 6474 int i; 6475 6476 /* free up relocation descriptors */ 6477 for (i = 0; i < obj->nr_programs; i++) { 6478 prog = &obj->programs[i]; 6479 zfree(&prog->reloc_desc); 6480 prog->nr_reloc = 0; 6481 } 6482 } 6483 6484 static int cmp_relocs(const void *_a, const void *_b) 6485 { 6486 const struct reloc_desc *a = _a; 6487 const struct reloc_desc *b = _b; 6488 6489 if (a->insn_idx != b->insn_idx) 6490 return a->insn_idx < b->insn_idx ? -1 : 1; 6491 6492 /* no two relocations should have the same insn_idx, but ... */ 6493 if (a->type != b->type) 6494 return a->type < b->type ? -1 : 1; 6495 6496 return 0; 6497 } 6498 6499 static void bpf_object__sort_relos(struct bpf_object *obj) 6500 { 6501 int i; 6502 6503 for (i = 0; i < obj->nr_programs; i++) { 6504 struct bpf_program *p = &obj->programs[i]; 6505 6506 if (!p->nr_reloc) 6507 continue; 6508 6509 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6510 } 6511 } 6512 6513 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6514 { 6515 const char *str = "exception_callback:"; 6516 size_t pfx_len = strlen(str); 6517 int i, j, n; 6518 6519 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6520 return 0; 6521 6522 n = btf__type_cnt(obj->btf); 6523 for (i = 1; i < n; i++) { 6524 const char *name; 6525 struct btf_type *t; 6526 6527 t = btf_type_by_id(obj->btf, i); 6528 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6529 continue; 6530 6531 name = btf__str_by_offset(obj->btf, t->name_off); 6532 if (strncmp(name, str, pfx_len) != 0) 6533 continue; 6534 6535 t = btf_type_by_id(obj->btf, t->type); 6536 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6537 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6538 prog->name); 6539 return -EINVAL; 6540 } 6541 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6542 continue; 6543 /* Multiple callbacks are specified for the same prog, 6544 * the verifier will eventually return an error for this 6545 * case, hence simply skip appending a subprog. 6546 */ 6547 if (prog->exception_cb_idx >= 0) { 6548 prog->exception_cb_idx = -1; 6549 break; 6550 } 6551 6552 name += pfx_len; 6553 if (str_is_empty(name)) { 6554 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6555 prog->name); 6556 return -EINVAL; 6557 } 6558 6559 for (j = 0; j < obj->nr_programs; j++) { 6560 struct bpf_program *subprog = &obj->programs[j]; 6561 6562 if (!prog_is_subprog(obj, subprog)) 6563 continue; 6564 if (strcmp(name, subprog->name) != 0) 6565 continue; 6566 /* Enforce non-hidden, as from verifier point of 6567 * view it expects global functions, whereas the 6568 * mark_btf_static fixes up linkage as static. 6569 */ 6570 if (!subprog->sym_global || subprog->mark_btf_static) { 6571 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6572 prog->name, subprog->name); 6573 return -EINVAL; 6574 } 6575 /* Let's see if we already saw a static exception callback with the same name */ 6576 if (prog->exception_cb_idx >= 0) { 6577 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6578 prog->name, subprog->name); 6579 return -EINVAL; 6580 } 6581 prog->exception_cb_idx = j; 6582 break; 6583 } 6584 6585 if (prog->exception_cb_idx >= 0) 6586 continue; 6587 6588 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6589 return -ENOENT; 6590 } 6591 6592 return 0; 6593 } 6594 6595 static struct { 6596 enum bpf_prog_type prog_type; 6597 const char *ctx_name; 6598 } global_ctx_map[] = { 6599 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6600 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6601 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6602 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6603 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6604 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6605 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6606 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6607 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6608 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6609 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6610 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6611 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6612 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6613 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6614 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6615 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6616 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6617 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6618 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6619 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6620 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6621 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6622 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6623 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6624 /* all other program types don't have "named" context structs */ 6625 }; 6626 6627 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6628 * for below __builtin_types_compatible_p() checks; 6629 * with this approach we don't need any extra arch-specific #ifdef guards 6630 */ 6631 struct pt_regs; 6632 struct user_pt_regs; 6633 struct user_regs_struct; 6634 6635 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6636 const char *subprog_name, int arg_idx, 6637 int arg_type_id, const char *ctx_name) 6638 { 6639 const struct btf_type *t; 6640 const char *tname; 6641 6642 /* check if existing parameter already matches verifier expectations */ 6643 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6644 if (!btf_is_ptr(t)) 6645 goto out_warn; 6646 6647 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6648 * and perf_event programs, so check this case early on and forget 6649 * about it for subsequent checks 6650 */ 6651 while (btf_is_mod(t)) 6652 t = btf__type_by_id(btf, t->type); 6653 if (btf_is_typedef(t) && 6654 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6655 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6656 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6657 return false; /* canonical type for kprobe/perf_event */ 6658 } 6659 6660 /* now we can ignore typedefs moving forward */ 6661 t = skip_mods_and_typedefs(btf, t->type, NULL); 6662 6663 /* if it's `void *`, definitely fix up BTF info */ 6664 if (btf_is_void(t)) 6665 return true; 6666 6667 /* if it's already proper canonical type, no need to fix up */ 6668 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6669 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6670 return false; 6671 6672 /* special cases */ 6673 switch (prog->type) { 6674 case BPF_PROG_TYPE_KPROBE: 6675 /* `struct pt_regs *` is expected, but we need to fix up */ 6676 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6677 return true; 6678 break; 6679 case BPF_PROG_TYPE_PERF_EVENT: 6680 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6681 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6682 return true; 6683 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6684 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6685 return true; 6686 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6687 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6688 return true; 6689 break; 6690 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6691 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6692 /* allow u64* as ctx */ 6693 if (btf_is_int(t) && t->size == 8) 6694 return true; 6695 break; 6696 default: 6697 break; 6698 } 6699 6700 out_warn: 6701 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6702 prog->name, subprog_name, arg_idx, ctx_name); 6703 return false; 6704 } 6705 6706 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6707 { 6708 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6709 int i, err, arg_cnt, fn_name_off, linkage; 6710 struct btf_type *fn_t, *fn_proto_t, *t; 6711 struct btf_param *p; 6712 6713 /* caller already validated FUNC -> FUNC_PROTO validity */ 6714 fn_t = btf_type_by_id(btf, orig_fn_id); 6715 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6716 6717 /* Note that each btf__add_xxx() operation invalidates 6718 * all btf_type and string pointers, so we need to be 6719 * very careful when cloning BTF types. BTF type 6720 * pointers have to be always refetched. And to avoid 6721 * problems with invalidated string pointers, we 6722 * add empty strings initially, then just fix up 6723 * name_off offsets in place. Offsets are stable for 6724 * existing strings, so that works out. 6725 */ 6726 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6727 linkage = btf_func_linkage(fn_t); 6728 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6729 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6730 arg_cnt = btf_vlen(fn_proto_t); 6731 6732 /* clone FUNC_PROTO and its params */ 6733 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6734 if (fn_proto_id < 0) 6735 return -EINVAL; 6736 6737 for (i = 0; i < arg_cnt; i++) { 6738 int name_off; 6739 6740 /* copy original parameter data */ 6741 t = btf_type_by_id(btf, orig_proto_id); 6742 p = &btf_params(t)[i]; 6743 name_off = p->name_off; 6744 6745 err = btf__add_func_param(btf, "", p->type); 6746 if (err) 6747 return err; 6748 6749 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6750 p = &btf_params(fn_proto_t)[i]; 6751 p->name_off = name_off; /* use remembered str offset */ 6752 } 6753 6754 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6755 * entry program's name as a placeholder, which we replace immediately 6756 * with original name_off 6757 */ 6758 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6759 if (fn_id < 0) 6760 return -EINVAL; 6761 6762 fn_t = btf_type_by_id(btf, fn_id); 6763 fn_t->name_off = fn_name_off; /* reuse original string */ 6764 6765 return fn_id; 6766 } 6767 6768 /* Check if main program or global subprog's function prototype has `arg:ctx` 6769 * argument tags, and, if necessary, substitute correct type to match what BPF 6770 * verifier would expect, taking into account specific program type. This 6771 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6772 * have a native support for it in the verifier, making user's life much 6773 * easier. 6774 */ 6775 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6776 { 6777 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6778 struct bpf_func_info_min *func_rec; 6779 struct btf_type *fn_t, *fn_proto_t; 6780 struct btf *btf = obj->btf; 6781 const struct btf_type *t; 6782 struct btf_param *p; 6783 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6784 int i, n, arg_idx, arg_cnt, err, rec_idx; 6785 int *orig_ids; 6786 6787 /* no .BTF.ext, no problem */ 6788 if (!obj->btf_ext || !prog->func_info) 6789 return 0; 6790 6791 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6792 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6793 return 0; 6794 6795 /* some BPF program types just don't have named context structs, so 6796 * this fallback mechanism doesn't work for them 6797 */ 6798 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6799 if (global_ctx_map[i].prog_type != prog->type) 6800 continue; 6801 ctx_name = global_ctx_map[i].ctx_name; 6802 break; 6803 } 6804 if (!ctx_name) 6805 return 0; 6806 6807 /* remember original func BTF IDs to detect if we already cloned them */ 6808 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6809 if (!orig_ids) 6810 return -ENOMEM; 6811 for (i = 0; i < prog->func_info_cnt; i++) { 6812 func_rec = prog->func_info + prog->func_info_rec_size * i; 6813 orig_ids[i] = func_rec->type_id; 6814 } 6815 6816 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6817 * of our subprogs; if yes and subprog is global and needs adjustment, 6818 * clone and adjust FUNC -> FUNC_PROTO combo 6819 */ 6820 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6821 /* only DECL_TAG with "arg:ctx" value are interesting */ 6822 t = btf__type_by_id(btf, i); 6823 if (!btf_is_decl_tag(t)) 6824 continue; 6825 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6826 continue; 6827 6828 /* only global funcs need adjustment, if at all */ 6829 orig_fn_id = t->type; 6830 fn_t = btf_type_by_id(btf, orig_fn_id); 6831 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6832 continue; 6833 6834 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6835 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6836 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6837 continue; 6838 6839 /* find corresponding func_info record */ 6840 func_rec = NULL; 6841 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6842 if (orig_ids[rec_idx] == t->type) { 6843 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6844 break; 6845 } 6846 } 6847 /* current main program doesn't call into this subprog */ 6848 if (!func_rec) 6849 continue; 6850 6851 /* some more sanity checking of DECL_TAG */ 6852 arg_cnt = btf_vlen(fn_proto_t); 6853 arg_idx = btf_decl_tag(t)->component_idx; 6854 if (arg_idx < 0 || arg_idx >= arg_cnt) 6855 continue; 6856 6857 /* check if we should fix up argument type */ 6858 p = &btf_params(fn_proto_t)[arg_idx]; 6859 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6860 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6861 continue; 6862 6863 /* clone fn/fn_proto, unless we already did it for another arg */ 6864 if (func_rec->type_id == orig_fn_id) { 6865 int fn_id; 6866 6867 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6868 if (fn_id < 0) { 6869 err = fn_id; 6870 goto err_out; 6871 } 6872 6873 /* point func_info record to a cloned FUNC type */ 6874 func_rec->type_id = fn_id; 6875 } 6876 6877 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6878 * we do it just once per main BPF program, as all global 6879 * funcs share the same program type, so need only PTR -> 6880 * STRUCT type chain 6881 */ 6882 if (ptr_id == 0) { 6883 struct_id = btf__add_struct(btf, ctx_name, 0); 6884 ptr_id = btf__add_ptr(btf, struct_id); 6885 if (ptr_id < 0 || struct_id < 0) { 6886 err = -EINVAL; 6887 goto err_out; 6888 } 6889 } 6890 6891 /* for completeness, clone DECL_TAG and point it to cloned param */ 6892 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6893 if (tag_id < 0) { 6894 err = -EINVAL; 6895 goto err_out; 6896 } 6897 6898 /* all the BTF manipulations invalidated pointers, refetch them */ 6899 fn_t = btf_type_by_id(btf, func_rec->type_id); 6900 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6901 6902 /* fix up type ID pointed to by param */ 6903 p = &btf_params(fn_proto_t)[arg_idx]; 6904 p->type = ptr_id; 6905 } 6906 6907 free(orig_ids); 6908 return 0; 6909 err_out: 6910 free(orig_ids); 6911 return err; 6912 } 6913 6914 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6915 { 6916 struct bpf_program *prog; 6917 size_t i, j; 6918 int err; 6919 6920 if (obj->btf_ext) { 6921 err = bpf_object__relocate_core(obj, targ_btf_path); 6922 if (err) { 6923 pr_warn("failed to perform CO-RE relocations: %d\n", 6924 err); 6925 return err; 6926 } 6927 bpf_object__sort_relos(obj); 6928 } 6929 6930 /* Before relocating calls pre-process relocations and mark 6931 * few ld_imm64 instructions that points to subprogs. 6932 * Otherwise bpf_object__reloc_code() later would have to consider 6933 * all ld_imm64 insns as relocation candidates. That would 6934 * reduce relocation speed, since amount of find_prog_insn_relo() 6935 * would increase and most of them will fail to find a relo. 6936 */ 6937 for (i = 0; i < obj->nr_programs; i++) { 6938 prog = &obj->programs[i]; 6939 for (j = 0; j < prog->nr_reloc; j++) { 6940 struct reloc_desc *relo = &prog->reloc_desc[j]; 6941 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6942 6943 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6944 if (relo->type == RELO_SUBPROG_ADDR) 6945 insn[0].src_reg = BPF_PSEUDO_FUNC; 6946 } 6947 } 6948 6949 /* relocate subprogram calls and append used subprograms to main 6950 * programs; each copy of subprogram code needs to be relocated 6951 * differently for each main program, because its code location might 6952 * have changed. 6953 * Append subprog relos to main programs to allow data relos to be 6954 * processed after text is completely relocated. 6955 */ 6956 for (i = 0; i < obj->nr_programs; i++) { 6957 prog = &obj->programs[i]; 6958 /* sub-program's sub-calls are relocated within the context of 6959 * its main program only 6960 */ 6961 if (prog_is_subprog(obj, prog)) 6962 continue; 6963 if (!prog->autoload) 6964 continue; 6965 6966 err = bpf_object__relocate_calls(obj, prog); 6967 if (err) { 6968 pr_warn("prog '%s': failed to relocate calls: %d\n", 6969 prog->name, err); 6970 return err; 6971 } 6972 6973 err = bpf_prog_assign_exc_cb(obj, prog); 6974 if (err) 6975 return err; 6976 /* Now, also append exception callback if it has not been done already. */ 6977 if (prog->exception_cb_idx >= 0) { 6978 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6979 6980 /* Calling exception callback directly is disallowed, which the 6981 * verifier will reject later. In case it was processed already, 6982 * we can skip this step, otherwise for all other valid cases we 6983 * have to append exception callback now. 6984 */ 6985 if (subprog->sub_insn_off == 0) { 6986 err = bpf_object__append_subprog_code(obj, prog, subprog); 6987 if (err) 6988 return err; 6989 err = bpf_object__reloc_code(obj, prog, subprog); 6990 if (err) 6991 return err; 6992 } 6993 } 6994 } 6995 for (i = 0; i < obj->nr_programs; i++) { 6996 prog = &obj->programs[i]; 6997 if (prog_is_subprog(obj, prog)) 6998 continue; 6999 if (!prog->autoload) 7000 continue; 7001 7002 /* Process data relos for main programs */ 7003 err = bpf_object__relocate_data(obj, prog); 7004 if (err) { 7005 pr_warn("prog '%s': failed to relocate data references: %d\n", 7006 prog->name, err); 7007 return err; 7008 } 7009 7010 /* Fix up .BTF.ext information, if necessary */ 7011 err = bpf_program_fixup_func_info(obj, prog); 7012 if (err) { 7013 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7014 prog->name, err); 7015 return err; 7016 } 7017 } 7018 7019 return 0; 7020 } 7021 7022 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7023 Elf64_Shdr *shdr, Elf_Data *data); 7024 7025 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7026 Elf64_Shdr *shdr, Elf_Data *data) 7027 { 7028 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7029 int i, j, nrels, new_sz; 7030 const struct btf_var_secinfo *vi = NULL; 7031 const struct btf_type *sec, *var, *def; 7032 struct bpf_map *map = NULL, *targ_map = NULL; 7033 struct bpf_program *targ_prog = NULL; 7034 bool is_prog_array, is_map_in_map; 7035 const struct btf_member *member; 7036 const char *name, *mname, *type; 7037 unsigned int moff; 7038 Elf64_Sym *sym; 7039 Elf64_Rel *rel; 7040 void *tmp; 7041 7042 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7043 return -EINVAL; 7044 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7045 if (!sec) 7046 return -EINVAL; 7047 7048 nrels = shdr->sh_size / shdr->sh_entsize; 7049 for (i = 0; i < nrels; i++) { 7050 rel = elf_rel_by_idx(data, i); 7051 if (!rel) { 7052 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7053 return -LIBBPF_ERRNO__FORMAT; 7054 } 7055 7056 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7057 if (!sym) { 7058 pr_warn(".maps relo #%d: symbol %zx not found\n", 7059 i, (size_t)ELF64_R_SYM(rel->r_info)); 7060 return -LIBBPF_ERRNO__FORMAT; 7061 } 7062 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7063 7064 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7065 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7066 (size_t)rel->r_offset, sym->st_name, name); 7067 7068 for (j = 0; j < obj->nr_maps; j++) { 7069 map = &obj->maps[j]; 7070 if (map->sec_idx != obj->efile.btf_maps_shndx) 7071 continue; 7072 7073 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7074 if (vi->offset <= rel->r_offset && 7075 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7076 break; 7077 } 7078 if (j == obj->nr_maps) { 7079 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7080 i, name, (size_t)rel->r_offset); 7081 return -EINVAL; 7082 } 7083 7084 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7085 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7086 type = is_map_in_map ? "map" : "prog"; 7087 if (is_map_in_map) { 7088 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7089 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7090 i, name); 7091 return -LIBBPF_ERRNO__RELOC; 7092 } 7093 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7094 map->def.key_size != sizeof(int)) { 7095 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7096 i, map->name, sizeof(int)); 7097 return -EINVAL; 7098 } 7099 targ_map = bpf_object__find_map_by_name(obj, name); 7100 if (!targ_map) { 7101 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7102 i, name); 7103 return -ESRCH; 7104 } 7105 } else if (is_prog_array) { 7106 targ_prog = bpf_object__find_program_by_name(obj, name); 7107 if (!targ_prog) { 7108 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7109 i, name); 7110 return -ESRCH; 7111 } 7112 if (targ_prog->sec_idx != sym->st_shndx || 7113 targ_prog->sec_insn_off * 8 != sym->st_value || 7114 prog_is_subprog(obj, targ_prog)) { 7115 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7116 i, name); 7117 return -LIBBPF_ERRNO__RELOC; 7118 } 7119 } else { 7120 return -EINVAL; 7121 } 7122 7123 var = btf__type_by_id(obj->btf, vi->type); 7124 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7125 if (btf_vlen(def) == 0) 7126 return -EINVAL; 7127 member = btf_members(def) + btf_vlen(def) - 1; 7128 mname = btf__name_by_offset(obj->btf, member->name_off); 7129 if (strcmp(mname, "values")) 7130 return -EINVAL; 7131 7132 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7133 if (rel->r_offset - vi->offset < moff) 7134 return -EINVAL; 7135 7136 moff = rel->r_offset - vi->offset - moff; 7137 /* here we use BPF pointer size, which is always 64 bit, as we 7138 * are parsing ELF that was built for BPF target 7139 */ 7140 if (moff % bpf_ptr_sz) 7141 return -EINVAL; 7142 moff /= bpf_ptr_sz; 7143 if (moff >= map->init_slots_sz) { 7144 new_sz = moff + 1; 7145 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7146 if (!tmp) 7147 return -ENOMEM; 7148 map->init_slots = tmp; 7149 memset(map->init_slots + map->init_slots_sz, 0, 7150 (new_sz - map->init_slots_sz) * host_ptr_sz); 7151 map->init_slots_sz = new_sz; 7152 } 7153 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7154 7155 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7156 i, map->name, moff, type, name); 7157 } 7158 7159 return 0; 7160 } 7161 7162 static int bpf_object__collect_relos(struct bpf_object *obj) 7163 { 7164 int i, err; 7165 7166 for (i = 0; i < obj->efile.sec_cnt; i++) { 7167 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7168 Elf64_Shdr *shdr; 7169 Elf_Data *data; 7170 int idx; 7171 7172 if (sec_desc->sec_type != SEC_RELO) 7173 continue; 7174 7175 shdr = sec_desc->shdr; 7176 data = sec_desc->data; 7177 idx = shdr->sh_info; 7178 7179 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7180 pr_warn("internal error at %d\n", __LINE__); 7181 return -LIBBPF_ERRNO__INTERNAL; 7182 } 7183 7184 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7185 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7186 else if (idx == obj->efile.btf_maps_shndx) 7187 err = bpf_object__collect_map_relos(obj, shdr, data); 7188 else 7189 err = bpf_object__collect_prog_relos(obj, shdr, data); 7190 if (err) 7191 return err; 7192 } 7193 7194 bpf_object__sort_relos(obj); 7195 return 0; 7196 } 7197 7198 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7199 { 7200 if (BPF_CLASS(insn->code) == BPF_JMP && 7201 BPF_OP(insn->code) == BPF_CALL && 7202 BPF_SRC(insn->code) == BPF_K && 7203 insn->src_reg == 0 && 7204 insn->dst_reg == 0) { 7205 *func_id = insn->imm; 7206 return true; 7207 } 7208 return false; 7209 } 7210 7211 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7212 { 7213 struct bpf_insn *insn = prog->insns; 7214 enum bpf_func_id func_id; 7215 int i; 7216 7217 if (obj->gen_loader) 7218 return 0; 7219 7220 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7221 if (!insn_is_helper_call(insn, &func_id)) 7222 continue; 7223 7224 /* on kernels that don't yet support 7225 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7226 * to bpf_probe_read() which works well for old kernels 7227 */ 7228 switch (func_id) { 7229 case BPF_FUNC_probe_read_kernel: 7230 case BPF_FUNC_probe_read_user: 7231 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7232 insn->imm = BPF_FUNC_probe_read; 7233 break; 7234 case BPF_FUNC_probe_read_kernel_str: 7235 case BPF_FUNC_probe_read_user_str: 7236 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7237 insn->imm = BPF_FUNC_probe_read_str; 7238 break; 7239 default: 7240 break; 7241 } 7242 } 7243 return 0; 7244 } 7245 7246 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7247 int *btf_obj_fd, int *btf_type_id); 7248 7249 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7250 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7251 struct bpf_prog_load_opts *opts, long cookie) 7252 { 7253 enum sec_def_flags def = cookie; 7254 7255 /* old kernels might not support specifying expected_attach_type */ 7256 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7257 opts->expected_attach_type = 0; 7258 7259 if (def & SEC_SLEEPABLE) 7260 opts->prog_flags |= BPF_F_SLEEPABLE; 7261 7262 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7263 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7264 7265 /* special check for usdt to use uprobe_multi link */ 7266 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7267 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7268 7269 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7270 int btf_obj_fd = 0, btf_type_id = 0, err; 7271 const char *attach_name; 7272 7273 attach_name = strchr(prog->sec_name, '/'); 7274 if (!attach_name) { 7275 /* if BPF program is annotated with just SEC("fentry") 7276 * (or similar) without declaratively specifying 7277 * target, then it is expected that target will be 7278 * specified with bpf_program__set_attach_target() at 7279 * runtime before BPF object load step. If not, then 7280 * there is nothing to load into the kernel as BPF 7281 * verifier won't be able to validate BPF program 7282 * correctness anyways. 7283 */ 7284 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7285 prog->name); 7286 return -EINVAL; 7287 } 7288 attach_name++; /* skip over / */ 7289 7290 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7291 if (err) 7292 return err; 7293 7294 /* cache resolved BTF FD and BTF type ID in the prog */ 7295 prog->attach_btf_obj_fd = btf_obj_fd; 7296 prog->attach_btf_id = btf_type_id; 7297 7298 /* but by now libbpf common logic is not utilizing 7299 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7300 * this callback is called after opts were populated by 7301 * libbpf, so this callback has to update opts explicitly here 7302 */ 7303 opts->attach_btf_obj_fd = btf_obj_fd; 7304 opts->attach_btf_id = btf_type_id; 7305 } 7306 return 0; 7307 } 7308 7309 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7310 7311 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7312 struct bpf_insn *insns, int insns_cnt, 7313 const char *license, __u32 kern_version, int *prog_fd) 7314 { 7315 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7316 const char *prog_name = NULL; 7317 char *cp, errmsg[STRERR_BUFSIZE]; 7318 size_t log_buf_size = 0; 7319 char *log_buf = NULL, *tmp; 7320 int btf_fd, ret, err; 7321 bool own_log_buf = true; 7322 __u32 log_level = prog->log_level; 7323 7324 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7325 /* 7326 * The program type must be set. Most likely we couldn't find a proper 7327 * section definition at load time, and thus we didn't infer the type. 7328 */ 7329 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7330 prog->name, prog->sec_name); 7331 return -EINVAL; 7332 } 7333 7334 if (!insns || !insns_cnt) 7335 return -EINVAL; 7336 7337 if (kernel_supports(obj, FEAT_PROG_NAME)) 7338 prog_name = prog->name; 7339 load_attr.attach_prog_fd = prog->attach_prog_fd; 7340 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7341 load_attr.attach_btf_id = prog->attach_btf_id; 7342 load_attr.kern_version = kern_version; 7343 load_attr.prog_ifindex = prog->prog_ifindex; 7344 7345 /* specify func_info/line_info only if kernel supports them */ 7346 btf_fd = btf__fd(obj->btf); 7347 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7348 load_attr.prog_btf_fd = btf_fd; 7349 load_attr.func_info = prog->func_info; 7350 load_attr.func_info_rec_size = prog->func_info_rec_size; 7351 load_attr.func_info_cnt = prog->func_info_cnt; 7352 load_attr.line_info = prog->line_info; 7353 load_attr.line_info_rec_size = prog->line_info_rec_size; 7354 load_attr.line_info_cnt = prog->line_info_cnt; 7355 } 7356 load_attr.log_level = log_level; 7357 load_attr.prog_flags = prog->prog_flags; 7358 load_attr.fd_array = obj->fd_array; 7359 7360 load_attr.token_fd = obj->token_fd; 7361 if (obj->token_fd) 7362 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7363 7364 /* adjust load_attr if sec_def provides custom preload callback */ 7365 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7366 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7367 if (err < 0) { 7368 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7369 prog->name, err); 7370 return err; 7371 } 7372 insns = prog->insns; 7373 insns_cnt = prog->insns_cnt; 7374 } 7375 7376 /* allow prog_prepare_load_fn to change expected_attach_type */ 7377 load_attr.expected_attach_type = prog->expected_attach_type; 7378 7379 if (obj->gen_loader) { 7380 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7381 license, insns, insns_cnt, &load_attr, 7382 prog - obj->programs); 7383 *prog_fd = -1; 7384 return 0; 7385 } 7386 7387 retry_load: 7388 /* if log_level is zero, we don't request logs initially even if 7389 * custom log_buf is specified; if the program load fails, then we'll 7390 * bump log_level to 1 and use either custom log_buf or we'll allocate 7391 * our own and retry the load to get details on what failed 7392 */ 7393 if (log_level) { 7394 if (prog->log_buf) { 7395 log_buf = prog->log_buf; 7396 log_buf_size = prog->log_size; 7397 own_log_buf = false; 7398 } else if (obj->log_buf) { 7399 log_buf = obj->log_buf; 7400 log_buf_size = obj->log_size; 7401 own_log_buf = false; 7402 } else { 7403 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7404 tmp = realloc(log_buf, log_buf_size); 7405 if (!tmp) { 7406 ret = -ENOMEM; 7407 goto out; 7408 } 7409 log_buf = tmp; 7410 log_buf[0] = '\0'; 7411 own_log_buf = true; 7412 } 7413 } 7414 7415 load_attr.log_buf = log_buf; 7416 load_attr.log_size = log_buf_size; 7417 load_attr.log_level = log_level; 7418 7419 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7420 if (ret >= 0) { 7421 if (log_level && own_log_buf) { 7422 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7423 prog->name, log_buf); 7424 } 7425 7426 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7427 struct bpf_map *map; 7428 int i; 7429 7430 for (i = 0; i < obj->nr_maps; i++) { 7431 map = &prog->obj->maps[i]; 7432 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7433 continue; 7434 7435 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7436 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7437 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7438 prog->name, map->real_name, cp); 7439 /* Don't fail hard if can't bind rodata. */ 7440 } 7441 } 7442 } 7443 7444 *prog_fd = ret; 7445 ret = 0; 7446 goto out; 7447 } 7448 7449 if (log_level == 0) { 7450 log_level = 1; 7451 goto retry_load; 7452 } 7453 /* On ENOSPC, increase log buffer size and retry, unless custom 7454 * log_buf is specified. 7455 * Be careful to not overflow u32, though. Kernel's log buf size limit 7456 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7457 * multiply by 2 unless we are sure we'll fit within 32 bits. 7458 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7459 */ 7460 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7461 goto retry_load; 7462 7463 ret = -errno; 7464 7465 /* post-process verifier log to improve error descriptions */ 7466 fixup_verifier_log(prog, log_buf, log_buf_size); 7467 7468 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7469 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7470 pr_perm_msg(ret); 7471 7472 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7473 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7474 prog->name, log_buf); 7475 } 7476 7477 out: 7478 if (own_log_buf) 7479 free(log_buf); 7480 return ret; 7481 } 7482 7483 static char *find_prev_line(char *buf, char *cur) 7484 { 7485 char *p; 7486 7487 if (cur == buf) /* end of a log buf */ 7488 return NULL; 7489 7490 p = cur - 1; 7491 while (p - 1 >= buf && *(p - 1) != '\n') 7492 p--; 7493 7494 return p; 7495 } 7496 7497 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7498 char *orig, size_t orig_sz, const char *patch) 7499 { 7500 /* size of the remaining log content to the right from the to-be-replaced part */ 7501 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7502 size_t patch_sz = strlen(patch); 7503 7504 if (patch_sz != orig_sz) { 7505 /* If patch line(s) are longer than original piece of verifier log, 7506 * shift log contents by (patch_sz - orig_sz) bytes to the right 7507 * starting from after to-be-replaced part of the log. 7508 * 7509 * If patch line(s) are shorter than original piece of verifier log, 7510 * shift log contents by (orig_sz - patch_sz) bytes to the left 7511 * starting from after to-be-replaced part of the log 7512 * 7513 * We need to be careful about not overflowing available 7514 * buf_sz capacity. If that's the case, we'll truncate the end 7515 * of the original log, as necessary. 7516 */ 7517 if (patch_sz > orig_sz) { 7518 if (orig + patch_sz >= buf + buf_sz) { 7519 /* patch is big enough to cover remaining space completely */ 7520 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7521 rem_sz = 0; 7522 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7523 /* patch causes part of remaining log to be truncated */ 7524 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7525 } 7526 } 7527 /* shift remaining log to the right by calculated amount */ 7528 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7529 } 7530 7531 memcpy(orig, patch, patch_sz); 7532 } 7533 7534 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7535 char *buf, size_t buf_sz, size_t log_sz, 7536 char *line1, char *line2, char *line3) 7537 { 7538 /* Expected log for failed and not properly guarded CO-RE relocation: 7539 * line1 -> 123: (85) call unknown#195896080 7540 * line2 -> invalid func unknown#195896080 7541 * line3 -> <anything else or end of buffer> 7542 * 7543 * "123" is the index of the instruction that was poisoned. We extract 7544 * instruction index to find corresponding CO-RE relocation and 7545 * replace this part of the log with more relevant information about 7546 * failed CO-RE relocation. 7547 */ 7548 const struct bpf_core_relo *relo; 7549 struct bpf_core_spec spec; 7550 char patch[512], spec_buf[256]; 7551 int insn_idx, err, spec_len; 7552 7553 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7554 return; 7555 7556 relo = find_relo_core(prog, insn_idx); 7557 if (!relo) 7558 return; 7559 7560 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7561 if (err) 7562 return; 7563 7564 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7565 snprintf(patch, sizeof(patch), 7566 "%d: <invalid CO-RE relocation>\n" 7567 "failed to resolve CO-RE relocation %s%s\n", 7568 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7569 7570 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7571 } 7572 7573 static void fixup_log_missing_map_load(struct bpf_program *prog, 7574 char *buf, size_t buf_sz, size_t log_sz, 7575 char *line1, char *line2, char *line3) 7576 { 7577 /* Expected log for failed and not properly guarded map reference: 7578 * line1 -> 123: (85) call unknown#2001000345 7579 * line2 -> invalid func unknown#2001000345 7580 * line3 -> <anything else or end of buffer> 7581 * 7582 * "123" is the index of the instruction that was poisoned. 7583 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7584 */ 7585 struct bpf_object *obj = prog->obj; 7586 const struct bpf_map *map; 7587 int insn_idx, map_idx; 7588 char patch[128]; 7589 7590 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7591 return; 7592 7593 map_idx -= POISON_LDIMM64_MAP_BASE; 7594 if (map_idx < 0 || map_idx >= obj->nr_maps) 7595 return; 7596 map = &obj->maps[map_idx]; 7597 7598 snprintf(patch, sizeof(patch), 7599 "%d: <invalid BPF map reference>\n" 7600 "BPF map '%s' is referenced but wasn't created\n", 7601 insn_idx, map->name); 7602 7603 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7604 } 7605 7606 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7607 char *buf, size_t buf_sz, size_t log_sz, 7608 char *line1, char *line2, char *line3) 7609 { 7610 /* Expected log for failed and not properly guarded kfunc call: 7611 * line1 -> 123: (85) call unknown#2002000345 7612 * line2 -> invalid func unknown#2002000345 7613 * line3 -> <anything else or end of buffer> 7614 * 7615 * "123" is the index of the instruction that was poisoned. 7616 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7617 */ 7618 struct bpf_object *obj = prog->obj; 7619 const struct extern_desc *ext; 7620 int insn_idx, ext_idx; 7621 char patch[128]; 7622 7623 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7624 return; 7625 7626 ext_idx -= POISON_CALL_KFUNC_BASE; 7627 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7628 return; 7629 ext = &obj->externs[ext_idx]; 7630 7631 snprintf(patch, sizeof(patch), 7632 "%d: <invalid kfunc call>\n" 7633 "kfunc '%s' is referenced but wasn't resolved\n", 7634 insn_idx, ext->name); 7635 7636 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7637 } 7638 7639 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7640 { 7641 /* look for familiar error patterns in last N lines of the log */ 7642 const size_t max_last_line_cnt = 10; 7643 char *prev_line, *cur_line, *next_line; 7644 size_t log_sz; 7645 int i; 7646 7647 if (!buf) 7648 return; 7649 7650 log_sz = strlen(buf) + 1; 7651 next_line = buf + log_sz - 1; 7652 7653 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7654 cur_line = find_prev_line(buf, next_line); 7655 if (!cur_line) 7656 return; 7657 7658 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7659 prev_line = find_prev_line(buf, cur_line); 7660 if (!prev_line) 7661 continue; 7662 7663 /* failed CO-RE relocation case */ 7664 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7665 prev_line, cur_line, next_line); 7666 return; 7667 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7668 prev_line = find_prev_line(buf, cur_line); 7669 if (!prev_line) 7670 continue; 7671 7672 /* reference to uncreated BPF map */ 7673 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7674 prev_line, cur_line, next_line); 7675 return; 7676 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7677 prev_line = find_prev_line(buf, cur_line); 7678 if (!prev_line) 7679 continue; 7680 7681 /* reference to unresolved kfunc */ 7682 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7683 prev_line, cur_line, next_line); 7684 return; 7685 } 7686 } 7687 } 7688 7689 static int bpf_program_record_relos(struct bpf_program *prog) 7690 { 7691 struct bpf_object *obj = prog->obj; 7692 int i; 7693 7694 for (i = 0; i < prog->nr_reloc; i++) { 7695 struct reloc_desc *relo = &prog->reloc_desc[i]; 7696 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7697 int kind; 7698 7699 switch (relo->type) { 7700 case RELO_EXTERN_LD64: 7701 if (ext->type != EXT_KSYM) 7702 continue; 7703 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7704 BTF_KIND_VAR : BTF_KIND_FUNC; 7705 bpf_gen__record_extern(obj->gen_loader, ext->name, 7706 ext->is_weak, !ext->ksym.type_id, 7707 true, kind, relo->insn_idx); 7708 break; 7709 case RELO_EXTERN_CALL: 7710 bpf_gen__record_extern(obj->gen_loader, ext->name, 7711 ext->is_weak, false, false, BTF_KIND_FUNC, 7712 relo->insn_idx); 7713 break; 7714 case RELO_CORE: { 7715 struct bpf_core_relo cr = { 7716 .insn_off = relo->insn_idx * 8, 7717 .type_id = relo->core_relo->type_id, 7718 .access_str_off = relo->core_relo->access_str_off, 7719 .kind = relo->core_relo->kind, 7720 }; 7721 7722 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7723 break; 7724 } 7725 default: 7726 continue; 7727 } 7728 } 7729 return 0; 7730 } 7731 7732 static int 7733 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7734 { 7735 struct bpf_program *prog; 7736 size_t i; 7737 int err; 7738 7739 for (i = 0; i < obj->nr_programs; i++) { 7740 prog = &obj->programs[i]; 7741 err = bpf_object__sanitize_prog(obj, prog); 7742 if (err) 7743 return err; 7744 } 7745 7746 for (i = 0; i < obj->nr_programs; i++) { 7747 prog = &obj->programs[i]; 7748 if (prog_is_subprog(obj, prog)) 7749 continue; 7750 if (!prog->autoload) { 7751 pr_debug("prog '%s': skipped loading\n", prog->name); 7752 continue; 7753 } 7754 prog->log_level |= log_level; 7755 7756 if (obj->gen_loader) 7757 bpf_program_record_relos(prog); 7758 7759 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7760 obj->license, obj->kern_version, &prog->fd); 7761 if (err) { 7762 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7763 return err; 7764 } 7765 } 7766 7767 bpf_object__free_relocs(obj); 7768 return 0; 7769 } 7770 7771 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7772 7773 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7774 { 7775 struct bpf_program *prog; 7776 int err; 7777 7778 bpf_object__for_each_program(prog, obj) { 7779 prog->sec_def = find_sec_def(prog->sec_name); 7780 if (!prog->sec_def) { 7781 /* couldn't guess, but user might manually specify */ 7782 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7783 prog->name, prog->sec_name); 7784 continue; 7785 } 7786 7787 prog->type = prog->sec_def->prog_type; 7788 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7789 7790 /* sec_def can have custom callback which should be called 7791 * after bpf_program is initialized to adjust its properties 7792 */ 7793 if (prog->sec_def->prog_setup_fn) { 7794 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7795 if (err < 0) { 7796 pr_warn("prog '%s': failed to initialize: %d\n", 7797 prog->name, err); 7798 return err; 7799 } 7800 } 7801 } 7802 7803 return 0; 7804 } 7805 7806 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7807 const struct bpf_object_open_opts *opts) 7808 { 7809 const char *obj_name, *kconfig, *btf_tmp_path, *token_path; 7810 struct bpf_object *obj; 7811 char tmp_name[64]; 7812 int err; 7813 char *log_buf; 7814 size_t log_size; 7815 __u32 log_level; 7816 7817 if (elf_version(EV_CURRENT) == EV_NONE) { 7818 pr_warn("failed to init libelf for %s\n", 7819 path ? : "(mem buf)"); 7820 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7821 } 7822 7823 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7824 return ERR_PTR(-EINVAL); 7825 7826 obj_name = OPTS_GET(opts, object_name, NULL); 7827 if (obj_buf) { 7828 if (!obj_name) { 7829 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7830 (unsigned long)obj_buf, 7831 (unsigned long)obj_buf_sz); 7832 obj_name = tmp_name; 7833 } 7834 path = obj_name; 7835 pr_debug("loading object '%s' from buffer\n", obj_name); 7836 } 7837 7838 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7839 log_size = OPTS_GET(opts, kernel_log_size, 0); 7840 log_level = OPTS_GET(opts, kernel_log_level, 0); 7841 if (log_size > UINT_MAX) 7842 return ERR_PTR(-EINVAL); 7843 if (log_size && !log_buf) 7844 return ERR_PTR(-EINVAL); 7845 7846 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7847 /* if user didn't specify bpf_token_path explicitly, check if 7848 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7849 * option 7850 */ 7851 if (!token_path) 7852 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7853 if (token_path && strlen(token_path) >= PATH_MAX) 7854 return ERR_PTR(-ENAMETOOLONG); 7855 7856 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7857 if (IS_ERR(obj)) 7858 return obj; 7859 7860 obj->log_buf = log_buf; 7861 obj->log_size = log_size; 7862 obj->log_level = log_level; 7863 7864 if (token_path) { 7865 obj->token_path = strdup(token_path); 7866 if (!obj->token_path) { 7867 err = -ENOMEM; 7868 goto out; 7869 } 7870 } 7871 7872 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7873 if (btf_tmp_path) { 7874 if (strlen(btf_tmp_path) >= PATH_MAX) { 7875 err = -ENAMETOOLONG; 7876 goto out; 7877 } 7878 obj->btf_custom_path = strdup(btf_tmp_path); 7879 if (!obj->btf_custom_path) { 7880 err = -ENOMEM; 7881 goto out; 7882 } 7883 } 7884 7885 kconfig = OPTS_GET(opts, kconfig, NULL); 7886 if (kconfig) { 7887 obj->kconfig = strdup(kconfig); 7888 if (!obj->kconfig) { 7889 err = -ENOMEM; 7890 goto out; 7891 } 7892 } 7893 7894 err = bpf_object__elf_init(obj); 7895 err = err ? : bpf_object__check_endianness(obj); 7896 err = err ? : bpf_object__elf_collect(obj); 7897 err = err ? : bpf_object__collect_externs(obj); 7898 err = err ? : bpf_object_fixup_btf(obj); 7899 err = err ? : bpf_object__init_maps(obj, opts); 7900 err = err ? : bpf_object_init_progs(obj, opts); 7901 err = err ? : bpf_object__collect_relos(obj); 7902 if (err) 7903 goto out; 7904 7905 bpf_object__elf_finish(obj); 7906 7907 return obj; 7908 out: 7909 bpf_object__close(obj); 7910 return ERR_PTR(err); 7911 } 7912 7913 struct bpf_object * 7914 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7915 { 7916 if (!path) 7917 return libbpf_err_ptr(-EINVAL); 7918 7919 pr_debug("loading %s\n", path); 7920 7921 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7922 } 7923 7924 struct bpf_object *bpf_object__open(const char *path) 7925 { 7926 return bpf_object__open_file(path, NULL); 7927 } 7928 7929 struct bpf_object * 7930 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7931 const struct bpf_object_open_opts *opts) 7932 { 7933 if (!obj_buf || obj_buf_sz == 0) 7934 return libbpf_err_ptr(-EINVAL); 7935 7936 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7937 } 7938 7939 static int bpf_object_unload(struct bpf_object *obj) 7940 { 7941 size_t i; 7942 7943 if (!obj) 7944 return libbpf_err(-EINVAL); 7945 7946 for (i = 0; i < obj->nr_maps; i++) { 7947 zclose(obj->maps[i].fd); 7948 if (obj->maps[i].st_ops) 7949 zfree(&obj->maps[i].st_ops->kern_vdata); 7950 } 7951 7952 for (i = 0; i < obj->nr_programs; i++) 7953 bpf_program__unload(&obj->programs[i]); 7954 7955 return 0; 7956 } 7957 7958 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7959 { 7960 struct bpf_map *m; 7961 7962 bpf_object__for_each_map(m, obj) { 7963 if (!bpf_map__is_internal(m)) 7964 continue; 7965 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7966 m->def.map_flags &= ~BPF_F_MMAPABLE; 7967 } 7968 7969 return 0; 7970 } 7971 7972 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7973 { 7974 char sym_type, sym_name[500]; 7975 unsigned long long sym_addr; 7976 int ret, err = 0; 7977 FILE *f; 7978 7979 f = fopen("/proc/kallsyms", "re"); 7980 if (!f) { 7981 err = -errno; 7982 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7983 return err; 7984 } 7985 7986 while (true) { 7987 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7988 &sym_addr, &sym_type, sym_name); 7989 if (ret == EOF && feof(f)) 7990 break; 7991 if (ret != 3) { 7992 pr_warn("failed to read kallsyms entry: %d\n", ret); 7993 err = -EINVAL; 7994 break; 7995 } 7996 7997 err = cb(sym_addr, sym_type, sym_name, ctx); 7998 if (err) 7999 break; 8000 } 8001 8002 fclose(f); 8003 return err; 8004 } 8005 8006 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8007 const char *sym_name, void *ctx) 8008 { 8009 struct bpf_object *obj = ctx; 8010 const struct btf_type *t; 8011 struct extern_desc *ext; 8012 8013 ext = find_extern_by_name(obj, sym_name); 8014 if (!ext || ext->type != EXT_KSYM) 8015 return 0; 8016 8017 t = btf__type_by_id(obj->btf, ext->btf_id); 8018 if (!btf_is_var(t)) 8019 return 0; 8020 8021 if (ext->is_set && ext->ksym.addr != sym_addr) { 8022 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8023 sym_name, ext->ksym.addr, sym_addr); 8024 return -EINVAL; 8025 } 8026 if (!ext->is_set) { 8027 ext->is_set = true; 8028 ext->ksym.addr = sym_addr; 8029 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8030 } 8031 return 0; 8032 } 8033 8034 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8035 { 8036 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8037 } 8038 8039 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8040 __u16 kind, struct btf **res_btf, 8041 struct module_btf **res_mod_btf) 8042 { 8043 struct module_btf *mod_btf; 8044 struct btf *btf; 8045 int i, id, err; 8046 8047 btf = obj->btf_vmlinux; 8048 mod_btf = NULL; 8049 id = btf__find_by_name_kind(btf, ksym_name, kind); 8050 8051 if (id == -ENOENT) { 8052 err = load_module_btfs(obj); 8053 if (err) 8054 return err; 8055 8056 for (i = 0; i < obj->btf_module_cnt; i++) { 8057 /* we assume module_btf's BTF FD is always >0 */ 8058 mod_btf = &obj->btf_modules[i]; 8059 btf = mod_btf->btf; 8060 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8061 if (id != -ENOENT) 8062 break; 8063 } 8064 } 8065 if (id <= 0) 8066 return -ESRCH; 8067 8068 *res_btf = btf; 8069 *res_mod_btf = mod_btf; 8070 return id; 8071 } 8072 8073 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8074 struct extern_desc *ext) 8075 { 8076 const struct btf_type *targ_var, *targ_type; 8077 __u32 targ_type_id, local_type_id; 8078 struct module_btf *mod_btf = NULL; 8079 const char *targ_var_name; 8080 struct btf *btf = NULL; 8081 int id, err; 8082 8083 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8084 if (id < 0) { 8085 if (id == -ESRCH && ext->is_weak) 8086 return 0; 8087 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8088 ext->name); 8089 return id; 8090 } 8091 8092 /* find local type_id */ 8093 local_type_id = ext->ksym.type_id; 8094 8095 /* find target type_id */ 8096 targ_var = btf__type_by_id(btf, id); 8097 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8098 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8099 8100 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8101 btf, targ_type_id); 8102 if (err <= 0) { 8103 const struct btf_type *local_type; 8104 const char *targ_name, *local_name; 8105 8106 local_type = btf__type_by_id(obj->btf, local_type_id); 8107 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8108 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8109 8110 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8111 ext->name, local_type_id, 8112 btf_kind_str(local_type), local_name, targ_type_id, 8113 btf_kind_str(targ_type), targ_name); 8114 return -EINVAL; 8115 } 8116 8117 ext->is_set = true; 8118 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8119 ext->ksym.kernel_btf_id = id; 8120 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8121 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8122 8123 return 0; 8124 } 8125 8126 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8127 struct extern_desc *ext) 8128 { 8129 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8130 struct module_btf *mod_btf = NULL; 8131 const struct btf_type *kern_func; 8132 struct btf *kern_btf = NULL; 8133 int ret; 8134 8135 local_func_proto_id = ext->ksym.type_id; 8136 8137 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8138 &mod_btf); 8139 if (kfunc_id < 0) { 8140 if (kfunc_id == -ESRCH && ext->is_weak) 8141 return 0; 8142 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8143 ext->name); 8144 return kfunc_id; 8145 } 8146 8147 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8148 kfunc_proto_id = kern_func->type; 8149 8150 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8151 kern_btf, kfunc_proto_id); 8152 if (ret <= 0) { 8153 if (ext->is_weak) 8154 return 0; 8155 8156 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8157 ext->name, local_func_proto_id, 8158 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8159 return -EINVAL; 8160 } 8161 8162 /* set index for module BTF fd in fd_array, if unset */ 8163 if (mod_btf && !mod_btf->fd_array_idx) { 8164 /* insn->off is s16 */ 8165 if (obj->fd_array_cnt == INT16_MAX) { 8166 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8167 ext->name, mod_btf->fd_array_idx); 8168 return -E2BIG; 8169 } 8170 /* Cannot use index 0 for module BTF fd */ 8171 if (!obj->fd_array_cnt) 8172 obj->fd_array_cnt = 1; 8173 8174 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8175 obj->fd_array_cnt + 1); 8176 if (ret) 8177 return ret; 8178 mod_btf->fd_array_idx = obj->fd_array_cnt; 8179 /* we assume module BTF FD is always >0 */ 8180 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8181 } 8182 8183 ext->is_set = true; 8184 ext->ksym.kernel_btf_id = kfunc_id; 8185 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8186 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8187 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8188 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8189 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8190 */ 8191 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8192 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8193 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8194 8195 return 0; 8196 } 8197 8198 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8199 { 8200 const struct btf_type *t; 8201 struct extern_desc *ext; 8202 int i, err; 8203 8204 for (i = 0; i < obj->nr_extern; i++) { 8205 ext = &obj->externs[i]; 8206 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8207 continue; 8208 8209 if (obj->gen_loader) { 8210 ext->is_set = true; 8211 ext->ksym.kernel_btf_obj_fd = 0; 8212 ext->ksym.kernel_btf_id = 0; 8213 continue; 8214 } 8215 t = btf__type_by_id(obj->btf, ext->btf_id); 8216 if (btf_is_var(t)) 8217 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8218 else 8219 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8220 if (err) 8221 return err; 8222 } 8223 return 0; 8224 } 8225 8226 static int bpf_object__resolve_externs(struct bpf_object *obj, 8227 const char *extra_kconfig) 8228 { 8229 bool need_config = false, need_kallsyms = false; 8230 bool need_vmlinux_btf = false; 8231 struct extern_desc *ext; 8232 void *kcfg_data = NULL; 8233 int err, i; 8234 8235 if (obj->nr_extern == 0) 8236 return 0; 8237 8238 if (obj->kconfig_map_idx >= 0) 8239 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8240 8241 for (i = 0; i < obj->nr_extern; i++) { 8242 ext = &obj->externs[i]; 8243 8244 if (ext->type == EXT_KSYM) { 8245 if (ext->ksym.type_id) 8246 need_vmlinux_btf = true; 8247 else 8248 need_kallsyms = true; 8249 continue; 8250 } else if (ext->type == EXT_KCFG) { 8251 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8252 __u64 value = 0; 8253 8254 /* Kconfig externs need actual /proc/config.gz */ 8255 if (str_has_pfx(ext->name, "CONFIG_")) { 8256 need_config = true; 8257 continue; 8258 } 8259 8260 /* Virtual kcfg externs are customly handled by libbpf */ 8261 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8262 value = get_kernel_version(); 8263 if (!value) { 8264 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8265 return -EINVAL; 8266 } 8267 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8268 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8269 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8270 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8271 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8272 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8273 * __kconfig externs, where LINUX_ ones are virtual and filled out 8274 * customly by libbpf (their values don't come from Kconfig). 8275 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8276 * __weak, it defaults to zero value, just like for CONFIG_xxx 8277 * externs. 8278 */ 8279 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8280 return -EINVAL; 8281 } 8282 8283 err = set_kcfg_value_num(ext, ext_ptr, value); 8284 if (err) 8285 return err; 8286 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8287 ext->name, (long long)value); 8288 } else { 8289 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8290 return -EINVAL; 8291 } 8292 } 8293 if (need_config && extra_kconfig) { 8294 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8295 if (err) 8296 return -EINVAL; 8297 need_config = false; 8298 for (i = 0; i < obj->nr_extern; i++) { 8299 ext = &obj->externs[i]; 8300 if (ext->type == EXT_KCFG && !ext->is_set) { 8301 need_config = true; 8302 break; 8303 } 8304 } 8305 } 8306 if (need_config) { 8307 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8308 if (err) 8309 return -EINVAL; 8310 } 8311 if (need_kallsyms) { 8312 err = bpf_object__read_kallsyms_file(obj); 8313 if (err) 8314 return -EINVAL; 8315 } 8316 if (need_vmlinux_btf) { 8317 err = bpf_object__resolve_ksyms_btf_id(obj); 8318 if (err) 8319 return -EINVAL; 8320 } 8321 for (i = 0; i < obj->nr_extern; i++) { 8322 ext = &obj->externs[i]; 8323 8324 if (!ext->is_set && !ext->is_weak) { 8325 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8326 return -ESRCH; 8327 } else if (!ext->is_set) { 8328 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8329 ext->name); 8330 } 8331 } 8332 8333 return 0; 8334 } 8335 8336 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8337 { 8338 struct bpf_struct_ops *st_ops; 8339 __u32 i; 8340 8341 st_ops = map->st_ops; 8342 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8343 struct bpf_program *prog = st_ops->progs[i]; 8344 void *kern_data; 8345 int prog_fd; 8346 8347 if (!prog) 8348 continue; 8349 8350 prog_fd = bpf_program__fd(prog); 8351 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8352 *(unsigned long *)kern_data = prog_fd; 8353 } 8354 } 8355 8356 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8357 { 8358 struct bpf_map *map; 8359 int i; 8360 8361 for (i = 0; i < obj->nr_maps; i++) { 8362 map = &obj->maps[i]; 8363 8364 if (!bpf_map__is_struct_ops(map)) 8365 continue; 8366 8367 if (!map->autocreate) 8368 continue; 8369 8370 bpf_map_prepare_vdata(map); 8371 } 8372 8373 return 0; 8374 } 8375 8376 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8377 { 8378 int err, i; 8379 8380 if (!obj) 8381 return libbpf_err(-EINVAL); 8382 8383 if (obj->loaded) { 8384 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8385 return libbpf_err(-EINVAL); 8386 } 8387 8388 if (obj->gen_loader) 8389 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8390 8391 err = bpf_object_prepare_token(obj); 8392 err = err ? : bpf_object__probe_loading(obj); 8393 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8394 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8395 err = err ? : bpf_object__sanitize_maps(obj); 8396 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8397 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8398 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8399 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8400 err = err ? : bpf_object__create_maps(obj); 8401 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8402 err = err ? : bpf_object_init_prog_arrays(obj); 8403 err = err ? : bpf_object_prepare_struct_ops(obj); 8404 8405 if (obj->gen_loader) { 8406 /* reset FDs */ 8407 if (obj->btf) 8408 btf__set_fd(obj->btf, -1); 8409 if (!err) 8410 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8411 } 8412 8413 /* clean up fd_array */ 8414 zfree(&obj->fd_array); 8415 8416 /* clean up module BTFs */ 8417 for (i = 0; i < obj->btf_module_cnt; i++) { 8418 close(obj->btf_modules[i].fd); 8419 btf__free(obj->btf_modules[i].btf); 8420 free(obj->btf_modules[i].name); 8421 } 8422 free(obj->btf_modules); 8423 8424 /* clean up vmlinux BTF */ 8425 btf__free(obj->btf_vmlinux); 8426 obj->btf_vmlinux = NULL; 8427 8428 obj->loaded = true; /* doesn't matter if successfully or not */ 8429 8430 if (err) 8431 goto out; 8432 8433 return 0; 8434 out: 8435 /* unpin any maps that were auto-pinned during load */ 8436 for (i = 0; i < obj->nr_maps; i++) 8437 if (obj->maps[i].pinned && !obj->maps[i].reused) 8438 bpf_map__unpin(&obj->maps[i], NULL); 8439 8440 bpf_object_unload(obj); 8441 pr_warn("failed to load object '%s'\n", obj->path); 8442 return libbpf_err(err); 8443 } 8444 8445 int bpf_object__load(struct bpf_object *obj) 8446 { 8447 return bpf_object_load(obj, 0, NULL); 8448 } 8449 8450 static int make_parent_dir(const char *path) 8451 { 8452 char *cp, errmsg[STRERR_BUFSIZE]; 8453 char *dname, *dir; 8454 int err = 0; 8455 8456 dname = strdup(path); 8457 if (dname == NULL) 8458 return -ENOMEM; 8459 8460 dir = dirname(dname); 8461 if (mkdir(dir, 0700) && errno != EEXIST) 8462 err = -errno; 8463 8464 free(dname); 8465 if (err) { 8466 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8467 pr_warn("failed to mkdir %s: %s\n", path, cp); 8468 } 8469 return err; 8470 } 8471 8472 static int check_path(const char *path) 8473 { 8474 char *cp, errmsg[STRERR_BUFSIZE]; 8475 struct statfs st_fs; 8476 char *dname, *dir; 8477 int err = 0; 8478 8479 if (path == NULL) 8480 return -EINVAL; 8481 8482 dname = strdup(path); 8483 if (dname == NULL) 8484 return -ENOMEM; 8485 8486 dir = dirname(dname); 8487 if (statfs(dir, &st_fs)) { 8488 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8489 pr_warn("failed to statfs %s: %s\n", dir, cp); 8490 err = -errno; 8491 } 8492 free(dname); 8493 8494 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8495 pr_warn("specified path %s is not on BPF FS\n", path); 8496 err = -EINVAL; 8497 } 8498 8499 return err; 8500 } 8501 8502 int bpf_program__pin(struct bpf_program *prog, const char *path) 8503 { 8504 char *cp, errmsg[STRERR_BUFSIZE]; 8505 int err; 8506 8507 if (prog->fd < 0) { 8508 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8509 return libbpf_err(-EINVAL); 8510 } 8511 8512 err = make_parent_dir(path); 8513 if (err) 8514 return libbpf_err(err); 8515 8516 err = check_path(path); 8517 if (err) 8518 return libbpf_err(err); 8519 8520 if (bpf_obj_pin(prog->fd, path)) { 8521 err = -errno; 8522 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8523 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8524 return libbpf_err(err); 8525 } 8526 8527 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8528 return 0; 8529 } 8530 8531 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8532 { 8533 int err; 8534 8535 if (prog->fd < 0) { 8536 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8537 return libbpf_err(-EINVAL); 8538 } 8539 8540 err = check_path(path); 8541 if (err) 8542 return libbpf_err(err); 8543 8544 err = unlink(path); 8545 if (err) 8546 return libbpf_err(-errno); 8547 8548 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8549 return 0; 8550 } 8551 8552 int bpf_map__pin(struct bpf_map *map, const char *path) 8553 { 8554 char *cp, errmsg[STRERR_BUFSIZE]; 8555 int err; 8556 8557 if (map == NULL) { 8558 pr_warn("invalid map pointer\n"); 8559 return libbpf_err(-EINVAL); 8560 } 8561 8562 if (map->pin_path) { 8563 if (path && strcmp(path, map->pin_path)) { 8564 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8565 bpf_map__name(map), map->pin_path, path); 8566 return libbpf_err(-EINVAL); 8567 } else if (map->pinned) { 8568 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8569 bpf_map__name(map), map->pin_path); 8570 return 0; 8571 } 8572 } else { 8573 if (!path) { 8574 pr_warn("missing a path to pin map '%s' at\n", 8575 bpf_map__name(map)); 8576 return libbpf_err(-EINVAL); 8577 } else if (map->pinned) { 8578 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8579 return libbpf_err(-EEXIST); 8580 } 8581 8582 map->pin_path = strdup(path); 8583 if (!map->pin_path) { 8584 err = -errno; 8585 goto out_err; 8586 } 8587 } 8588 8589 err = make_parent_dir(map->pin_path); 8590 if (err) 8591 return libbpf_err(err); 8592 8593 err = check_path(map->pin_path); 8594 if (err) 8595 return libbpf_err(err); 8596 8597 if (bpf_obj_pin(map->fd, map->pin_path)) { 8598 err = -errno; 8599 goto out_err; 8600 } 8601 8602 map->pinned = true; 8603 pr_debug("pinned map '%s'\n", map->pin_path); 8604 8605 return 0; 8606 8607 out_err: 8608 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8609 pr_warn("failed to pin map: %s\n", cp); 8610 return libbpf_err(err); 8611 } 8612 8613 int bpf_map__unpin(struct bpf_map *map, const char *path) 8614 { 8615 int err; 8616 8617 if (map == NULL) { 8618 pr_warn("invalid map pointer\n"); 8619 return libbpf_err(-EINVAL); 8620 } 8621 8622 if (map->pin_path) { 8623 if (path && strcmp(path, map->pin_path)) { 8624 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8625 bpf_map__name(map), map->pin_path, path); 8626 return libbpf_err(-EINVAL); 8627 } 8628 path = map->pin_path; 8629 } else if (!path) { 8630 pr_warn("no path to unpin map '%s' from\n", 8631 bpf_map__name(map)); 8632 return libbpf_err(-EINVAL); 8633 } 8634 8635 err = check_path(path); 8636 if (err) 8637 return libbpf_err(err); 8638 8639 err = unlink(path); 8640 if (err != 0) 8641 return libbpf_err(-errno); 8642 8643 map->pinned = false; 8644 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8645 8646 return 0; 8647 } 8648 8649 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8650 { 8651 char *new = NULL; 8652 8653 if (path) { 8654 new = strdup(path); 8655 if (!new) 8656 return libbpf_err(-errno); 8657 } 8658 8659 free(map->pin_path); 8660 map->pin_path = new; 8661 return 0; 8662 } 8663 8664 __alias(bpf_map__pin_path) 8665 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8666 8667 const char *bpf_map__pin_path(const struct bpf_map *map) 8668 { 8669 return map->pin_path; 8670 } 8671 8672 bool bpf_map__is_pinned(const struct bpf_map *map) 8673 { 8674 return map->pinned; 8675 } 8676 8677 static void sanitize_pin_path(char *s) 8678 { 8679 /* bpffs disallows periods in path names */ 8680 while (*s) { 8681 if (*s == '.') 8682 *s = '_'; 8683 s++; 8684 } 8685 } 8686 8687 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8688 { 8689 struct bpf_map *map; 8690 int err; 8691 8692 if (!obj) 8693 return libbpf_err(-ENOENT); 8694 8695 if (!obj->loaded) { 8696 pr_warn("object not yet loaded; load it first\n"); 8697 return libbpf_err(-ENOENT); 8698 } 8699 8700 bpf_object__for_each_map(map, obj) { 8701 char *pin_path = NULL; 8702 char buf[PATH_MAX]; 8703 8704 if (!map->autocreate) 8705 continue; 8706 8707 if (path) { 8708 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8709 if (err) 8710 goto err_unpin_maps; 8711 sanitize_pin_path(buf); 8712 pin_path = buf; 8713 } else if (!map->pin_path) { 8714 continue; 8715 } 8716 8717 err = bpf_map__pin(map, pin_path); 8718 if (err) 8719 goto err_unpin_maps; 8720 } 8721 8722 return 0; 8723 8724 err_unpin_maps: 8725 while ((map = bpf_object__prev_map(obj, map))) { 8726 if (!map->pin_path) 8727 continue; 8728 8729 bpf_map__unpin(map, NULL); 8730 } 8731 8732 return libbpf_err(err); 8733 } 8734 8735 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8736 { 8737 struct bpf_map *map; 8738 int err; 8739 8740 if (!obj) 8741 return libbpf_err(-ENOENT); 8742 8743 bpf_object__for_each_map(map, obj) { 8744 char *pin_path = NULL; 8745 char buf[PATH_MAX]; 8746 8747 if (path) { 8748 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8749 if (err) 8750 return libbpf_err(err); 8751 sanitize_pin_path(buf); 8752 pin_path = buf; 8753 } else if (!map->pin_path) { 8754 continue; 8755 } 8756 8757 err = bpf_map__unpin(map, pin_path); 8758 if (err) 8759 return libbpf_err(err); 8760 } 8761 8762 return 0; 8763 } 8764 8765 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8766 { 8767 struct bpf_program *prog; 8768 char buf[PATH_MAX]; 8769 int err; 8770 8771 if (!obj) 8772 return libbpf_err(-ENOENT); 8773 8774 if (!obj->loaded) { 8775 pr_warn("object not yet loaded; load it first\n"); 8776 return libbpf_err(-ENOENT); 8777 } 8778 8779 bpf_object__for_each_program(prog, obj) { 8780 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8781 if (err) 8782 goto err_unpin_programs; 8783 8784 err = bpf_program__pin(prog, buf); 8785 if (err) 8786 goto err_unpin_programs; 8787 } 8788 8789 return 0; 8790 8791 err_unpin_programs: 8792 while ((prog = bpf_object__prev_program(obj, prog))) { 8793 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8794 continue; 8795 8796 bpf_program__unpin(prog, buf); 8797 } 8798 8799 return libbpf_err(err); 8800 } 8801 8802 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8803 { 8804 struct bpf_program *prog; 8805 int err; 8806 8807 if (!obj) 8808 return libbpf_err(-ENOENT); 8809 8810 bpf_object__for_each_program(prog, obj) { 8811 char buf[PATH_MAX]; 8812 8813 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8814 if (err) 8815 return libbpf_err(err); 8816 8817 err = bpf_program__unpin(prog, buf); 8818 if (err) 8819 return libbpf_err(err); 8820 } 8821 8822 return 0; 8823 } 8824 8825 int bpf_object__pin(struct bpf_object *obj, const char *path) 8826 { 8827 int err; 8828 8829 err = bpf_object__pin_maps(obj, path); 8830 if (err) 8831 return libbpf_err(err); 8832 8833 err = bpf_object__pin_programs(obj, path); 8834 if (err) { 8835 bpf_object__unpin_maps(obj, path); 8836 return libbpf_err(err); 8837 } 8838 8839 return 0; 8840 } 8841 8842 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8843 { 8844 int err; 8845 8846 err = bpf_object__unpin_programs(obj, path); 8847 if (err) 8848 return libbpf_err(err); 8849 8850 err = bpf_object__unpin_maps(obj, path); 8851 if (err) 8852 return libbpf_err(err); 8853 8854 return 0; 8855 } 8856 8857 static void bpf_map__destroy(struct bpf_map *map) 8858 { 8859 if (map->inner_map) { 8860 bpf_map__destroy(map->inner_map); 8861 zfree(&map->inner_map); 8862 } 8863 8864 zfree(&map->init_slots); 8865 map->init_slots_sz = 0; 8866 8867 if (map->mmaped && map->mmaped != map->obj->arena_data) 8868 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8869 map->mmaped = NULL; 8870 8871 if (map->st_ops) { 8872 zfree(&map->st_ops->data); 8873 zfree(&map->st_ops->progs); 8874 zfree(&map->st_ops->kern_func_off); 8875 zfree(&map->st_ops); 8876 } 8877 8878 zfree(&map->name); 8879 zfree(&map->real_name); 8880 zfree(&map->pin_path); 8881 8882 if (map->fd >= 0) 8883 zclose(map->fd); 8884 } 8885 8886 void bpf_object__close(struct bpf_object *obj) 8887 { 8888 size_t i; 8889 8890 if (IS_ERR_OR_NULL(obj)) 8891 return; 8892 8893 usdt_manager_free(obj->usdt_man); 8894 obj->usdt_man = NULL; 8895 8896 bpf_gen__free(obj->gen_loader); 8897 bpf_object__elf_finish(obj); 8898 bpf_object_unload(obj); 8899 btf__free(obj->btf); 8900 btf__free(obj->btf_vmlinux); 8901 btf_ext__free(obj->btf_ext); 8902 8903 for (i = 0; i < obj->nr_maps; i++) 8904 bpf_map__destroy(&obj->maps[i]); 8905 8906 zfree(&obj->btf_custom_path); 8907 zfree(&obj->kconfig); 8908 8909 for (i = 0; i < obj->nr_extern; i++) 8910 zfree(&obj->externs[i].essent_name); 8911 8912 zfree(&obj->externs); 8913 obj->nr_extern = 0; 8914 8915 zfree(&obj->maps); 8916 obj->nr_maps = 0; 8917 8918 if (obj->programs && obj->nr_programs) { 8919 for (i = 0; i < obj->nr_programs; i++) 8920 bpf_program__exit(&obj->programs[i]); 8921 } 8922 zfree(&obj->programs); 8923 8924 zfree(&obj->feat_cache); 8925 zfree(&obj->token_path); 8926 if (obj->token_fd > 0) 8927 close(obj->token_fd); 8928 8929 zfree(&obj->arena_data); 8930 8931 free(obj); 8932 } 8933 8934 const char *bpf_object__name(const struct bpf_object *obj) 8935 { 8936 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8937 } 8938 8939 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8940 { 8941 return obj ? obj->kern_version : 0; 8942 } 8943 8944 struct btf *bpf_object__btf(const struct bpf_object *obj) 8945 { 8946 return obj ? obj->btf : NULL; 8947 } 8948 8949 int bpf_object__btf_fd(const struct bpf_object *obj) 8950 { 8951 return obj->btf ? btf__fd(obj->btf) : -1; 8952 } 8953 8954 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8955 { 8956 if (obj->loaded) 8957 return libbpf_err(-EINVAL); 8958 8959 obj->kern_version = kern_version; 8960 8961 return 0; 8962 } 8963 8964 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8965 { 8966 struct bpf_gen *gen; 8967 8968 if (!opts) 8969 return -EFAULT; 8970 if (!OPTS_VALID(opts, gen_loader_opts)) 8971 return -EINVAL; 8972 gen = calloc(sizeof(*gen), 1); 8973 if (!gen) 8974 return -ENOMEM; 8975 gen->opts = opts; 8976 obj->gen_loader = gen; 8977 return 0; 8978 } 8979 8980 static struct bpf_program * 8981 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8982 bool forward) 8983 { 8984 size_t nr_programs = obj->nr_programs; 8985 ssize_t idx; 8986 8987 if (!nr_programs) 8988 return NULL; 8989 8990 if (!p) 8991 /* Iter from the beginning */ 8992 return forward ? &obj->programs[0] : 8993 &obj->programs[nr_programs - 1]; 8994 8995 if (p->obj != obj) { 8996 pr_warn("error: program handler doesn't match object\n"); 8997 return errno = EINVAL, NULL; 8998 } 8999 9000 idx = (p - obj->programs) + (forward ? 1 : -1); 9001 if (idx >= obj->nr_programs || idx < 0) 9002 return NULL; 9003 return &obj->programs[idx]; 9004 } 9005 9006 struct bpf_program * 9007 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9008 { 9009 struct bpf_program *prog = prev; 9010 9011 do { 9012 prog = __bpf_program__iter(prog, obj, true); 9013 } while (prog && prog_is_subprog(obj, prog)); 9014 9015 return prog; 9016 } 9017 9018 struct bpf_program * 9019 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9020 { 9021 struct bpf_program *prog = next; 9022 9023 do { 9024 prog = __bpf_program__iter(prog, obj, false); 9025 } while (prog && prog_is_subprog(obj, prog)); 9026 9027 return prog; 9028 } 9029 9030 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9031 { 9032 prog->prog_ifindex = ifindex; 9033 } 9034 9035 const char *bpf_program__name(const struct bpf_program *prog) 9036 { 9037 return prog->name; 9038 } 9039 9040 const char *bpf_program__section_name(const struct bpf_program *prog) 9041 { 9042 return prog->sec_name; 9043 } 9044 9045 bool bpf_program__autoload(const struct bpf_program *prog) 9046 { 9047 return prog->autoload; 9048 } 9049 9050 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9051 { 9052 if (prog->obj->loaded) 9053 return libbpf_err(-EINVAL); 9054 9055 prog->autoload = autoload; 9056 return 0; 9057 } 9058 9059 bool bpf_program__autoattach(const struct bpf_program *prog) 9060 { 9061 return prog->autoattach; 9062 } 9063 9064 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9065 { 9066 prog->autoattach = autoattach; 9067 } 9068 9069 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9070 { 9071 return prog->insns; 9072 } 9073 9074 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9075 { 9076 return prog->insns_cnt; 9077 } 9078 9079 int bpf_program__set_insns(struct bpf_program *prog, 9080 struct bpf_insn *new_insns, size_t new_insn_cnt) 9081 { 9082 struct bpf_insn *insns; 9083 9084 if (prog->obj->loaded) 9085 return -EBUSY; 9086 9087 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9088 /* NULL is a valid return from reallocarray if the new count is zero */ 9089 if (!insns && new_insn_cnt) { 9090 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9091 return -ENOMEM; 9092 } 9093 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9094 9095 prog->insns = insns; 9096 prog->insns_cnt = new_insn_cnt; 9097 return 0; 9098 } 9099 9100 int bpf_program__fd(const struct bpf_program *prog) 9101 { 9102 if (!prog) 9103 return libbpf_err(-EINVAL); 9104 9105 if (prog->fd < 0) 9106 return libbpf_err(-ENOENT); 9107 9108 return prog->fd; 9109 } 9110 9111 __alias(bpf_program__type) 9112 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9113 9114 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9115 { 9116 return prog->type; 9117 } 9118 9119 static size_t custom_sec_def_cnt; 9120 static struct bpf_sec_def *custom_sec_defs; 9121 static struct bpf_sec_def custom_fallback_def; 9122 static bool has_custom_fallback_def; 9123 static int last_custom_sec_def_handler_id; 9124 9125 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9126 { 9127 if (prog->obj->loaded) 9128 return libbpf_err(-EBUSY); 9129 9130 /* if type is not changed, do nothing */ 9131 if (prog->type == type) 9132 return 0; 9133 9134 prog->type = type; 9135 9136 /* If a program type was changed, we need to reset associated SEC() 9137 * handler, as it will be invalid now. The only exception is a generic 9138 * fallback handler, which by definition is program type-agnostic and 9139 * is a catch-all custom handler, optionally set by the application, 9140 * so should be able to handle any type of BPF program. 9141 */ 9142 if (prog->sec_def != &custom_fallback_def) 9143 prog->sec_def = NULL; 9144 return 0; 9145 } 9146 9147 __alias(bpf_program__expected_attach_type) 9148 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9149 9150 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9151 { 9152 return prog->expected_attach_type; 9153 } 9154 9155 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9156 enum bpf_attach_type type) 9157 { 9158 if (prog->obj->loaded) 9159 return libbpf_err(-EBUSY); 9160 9161 prog->expected_attach_type = type; 9162 return 0; 9163 } 9164 9165 __u32 bpf_program__flags(const struct bpf_program *prog) 9166 { 9167 return prog->prog_flags; 9168 } 9169 9170 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9171 { 9172 if (prog->obj->loaded) 9173 return libbpf_err(-EBUSY); 9174 9175 prog->prog_flags = flags; 9176 return 0; 9177 } 9178 9179 __u32 bpf_program__log_level(const struct bpf_program *prog) 9180 { 9181 return prog->log_level; 9182 } 9183 9184 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9185 { 9186 if (prog->obj->loaded) 9187 return libbpf_err(-EBUSY); 9188 9189 prog->log_level = log_level; 9190 return 0; 9191 } 9192 9193 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9194 { 9195 *log_size = prog->log_size; 9196 return prog->log_buf; 9197 } 9198 9199 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9200 { 9201 if (log_size && !log_buf) 9202 return -EINVAL; 9203 if (prog->log_size > UINT_MAX) 9204 return -EINVAL; 9205 if (prog->obj->loaded) 9206 return -EBUSY; 9207 9208 prog->log_buf = log_buf; 9209 prog->log_size = log_size; 9210 return 0; 9211 } 9212 9213 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9214 .sec = (char *)sec_pfx, \ 9215 .prog_type = BPF_PROG_TYPE_##ptype, \ 9216 .expected_attach_type = atype, \ 9217 .cookie = (long)(flags), \ 9218 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9219 __VA_ARGS__ \ 9220 } 9221 9222 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9223 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9224 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9225 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9226 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9227 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9229 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9230 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9231 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9232 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9233 9234 static const struct bpf_sec_def section_defs[] = { 9235 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9236 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9237 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9238 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9239 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9240 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9241 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9242 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9243 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9244 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9245 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9246 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9247 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9248 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9249 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9250 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9251 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9252 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9253 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9254 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9255 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9256 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9257 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9258 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9259 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9260 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9261 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9262 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9263 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9264 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9265 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9266 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9267 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9268 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9269 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9270 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9271 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9272 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9273 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9274 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9275 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9276 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9277 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9278 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9279 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9280 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9281 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9282 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9283 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9284 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9285 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9286 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9287 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9288 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9289 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9290 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9291 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9292 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9293 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9294 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9295 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9296 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9297 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9298 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9299 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9300 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9301 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9302 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9303 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9304 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9305 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9306 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9307 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9308 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9309 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9310 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9311 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9312 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9313 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9314 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9315 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9316 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9317 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9318 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9319 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9320 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9321 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9322 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9323 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9324 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9325 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9326 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9327 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9328 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9329 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9330 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9331 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9332 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9333 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9334 }; 9335 9336 int libbpf_register_prog_handler(const char *sec, 9337 enum bpf_prog_type prog_type, 9338 enum bpf_attach_type exp_attach_type, 9339 const struct libbpf_prog_handler_opts *opts) 9340 { 9341 struct bpf_sec_def *sec_def; 9342 9343 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9344 return libbpf_err(-EINVAL); 9345 9346 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9347 return libbpf_err(-E2BIG); 9348 9349 if (sec) { 9350 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9351 sizeof(*sec_def)); 9352 if (!sec_def) 9353 return libbpf_err(-ENOMEM); 9354 9355 custom_sec_defs = sec_def; 9356 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9357 } else { 9358 if (has_custom_fallback_def) 9359 return libbpf_err(-EBUSY); 9360 9361 sec_def = &custom_fallback_def; 9362 } 9363 9364 sec_def->sec = sec ? strdup(sec) : NULL; 9365 if (sec && !sec_def->sec) 9366 return libbpf_err(-ENOMEM); 9367 9368 sec_def->prog_type = prog_type; 9369 sec_def->expected_attach_type = exp_attach_type; 9370 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9371 9372 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9373 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9374 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9375 9376 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9377 9378 if (sec) 9379 custom_sec_def_cnt++; 9380 else 9381 has_custom_fallback_def = true; 9382 9383 return sec_def->handler_id; 9384 } 9385 9386 int libbpf_unregister_prog_handler(int handler_id) 9387 { 9388 struct bpf_sec_def *sec_defs; 9389 int i; 9390 9391 if (handler_id <= 0) 9392 return libbpf_err(-EINVAL); 9393 9394 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9395 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9396 has_custom_fallback_def = false; 9397 return 0; 9398 } 9399 9400 for (i = 0; i < custom_sec_def_cnt; i++) { 9401 if (custom_sec_defs[i].handler_id == handler_id) 9402 break; 9403 } 9404 9405 if (i == custom_sec_def_cnt) 9406 return libbpf_err(-ENOENT); 9407 9408 free(custom_sec_defs[i].sec); 9409 for (i = i + 1; i < custom_sec_def_cnt; i++) 9410 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9411 custom_sec_def_cnt--; 9412 9413 /* try to shrink the array, but it's ok if we couldn't */ 9414 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9415 /* if new count is zero, reallocarray can return a valid NULL result; 9416 * in this case the previous pointer will be freed, so we *have to* 9417 * reassign old pointer to the new value (even if it's NULL) 9418 */ 9419 if (sec_defs || custom_sec_def_cnt == 0) 9420 custom_sec_defs = sec_defs; 9421 9422 return 0; 9423 } 9424 9425 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9426 { 9427 size_t len = strlen(sec_def->sec); 9428 9429 /* "type/" always has to have proper SEC("type/extras") form */ 9430 if (sec_def->sec[len - 1] == '/') { 9431 if (str_has_pfx(sec_name, sec_def->sec)) 9432 return true; 9433 return false; 9434 } 9435 9436 /* "type+" means it can be either exact SEC("type") or 9437 * well-formed SEC("type/extras") with proper '/' separator 9438 */ 9439 if (sec_def->sec[len - 1] == '+') { 9440 len--; 9441 /* not even a prefix */ 9442 if (strncmp(sec_name, sec_def->sec, len) != 0) 9443 return false; 9444 /* exact match or has '/' separator */ 9445 if (sec_name[len] == '\0' || sec_name[len] == '/') 9446 return true; 9447 return false; 9448 } 9449 9450 return strcmp(sec_name, sec_def->sec) == 0; 9451 } 9452 9453 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9454 { 9455 const struct bpf_sec_def *sec_def; 9456 int i, n; 9457 9458 n = custom_sec_def_cnt; 9459 for (i = 0; i < n; i++) { 9460 sec_def = &custom_sec_defs[i]; 9461 if (sec_def_matches(sec_def, sec_name)) 9462 return sec_def; 9463 } 9464 9465 n = ARRAY_SIZE(section_defs); 9466 for (i = 0; i < n; i++) { 9467 sec_def = §ion_defs[i]; 9468 if (sec_def_matches(sec_def, sec_name)) 9469 return sec_def; 9470 } 9471 9472 if (has_custom_fallback_def) 9473 return &custom_fallback_def; 9474 9475 return NULL; 9476 } 9477 9478 #define MAX_TYPE_NAME_SIZE 32 9479 9480 static char *libbpf_get_type_names(bool attach_type) 9481 { 9482 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9483 char *buf; 9484 9485 buf = malloc(len); 9486 if (!buf) 9487 return NULL; 9488 9489 buf[0] = '\0'; 9490 /* Forge string buf with all available names */ 9491 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9492 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9493 9494 if (attach_type) { 9495 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9496 continue; 9497 9498 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9499 continue; 9500 } 9501 9502 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9503 free(buf); 9504 return NULL; 9505 } 9506 strcat(buf, " "); 9507 strcat(buf, section_defs[i].sec); 9508 } 9509 9510 return buf; 9511 } 9512 9513 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9514 enum bpf_attach_type *expected_attach_type) 9515 { 9516 const struct bpf_sec_def *sec_def; 9517 char *type_names; 9518 9519 if (!name) 9520 return libbpf_err(-EINVAL); 9521 9522 sec_def = find_sec_def(name); 9523 if (sec_def) { 9524 *prog_type = sec_def->prog_type; 9525 *expected_attach_type = sec_def->expected_attach_type; 9526 return 0; 9527 } 9528 9529 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9530 type_names = libbpf_get_type_names(false); 9531 if (type_names != NULL) { 9532 pr_debug("supported section(type) names are:%s\n", type_names); 9533 free(type_names); 9534 } 9535 9536 return libbpf_err(-ESRCH); 9537 } 9538 9539 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9540 { 9541 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9542 return NULL; 9543 9544 return attach_type_name[t]; 9545 } 9546 9547 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9548 { 9549 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9550 return NULL; 9551 9552 return link_type_name[t]; 9553 } 9554 9555 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9556 { 9557 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9558 return NULL; 9559 9560 return map_type_name[t]; 9561 } 9562 9563 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9564 { 9565 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9566 return NULL; 9567 9568 return prog_type_name[t]; 9569 } 9570 9571 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9572 int sec_idx, 9573 size_t offset) 9574 { 9575 struct bpf_map *map; 9576 size_t i; 9577 9578 for (i = 0; i < obj->nr_maps; i++) { 9579 map = &obj->maps[i]; 9580 if (!bpf_map__is_struct_ops(map)) 9581 continue; 9582 if (map->sec_idx == sec_idx && 9583 map->sec_offset <= offset && 9584 offset - map->sec_offset < map->def.value_size) 9585 return map; 9586 } 9587 9588 return NULL; 9589 } 9590 9591 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9592 * st_ops->data for shadow type. 9593 */ 9594 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9595 Elf64_Shdr *shdr, Elf_Data *data) 9596 { 9597 const struct btf_member *member; 9598 struct bpf_struct_ops *st_ops; 9599 struct bpf_program *prog; 9600 unsigned int shdr_idx; 9601 const struct btf *btf; 9602 struct bpf_map *map; 9603 unsigned int moff, insn_idx; 9604 const char *name; 9605 __u32 member_idx; 9606 Elf64_Sym *sym; 9607 Elf64_Rel *rel; 9608 int i, nrels; 9609 9610 btf = obj->btf; 9611 nrels = shdr->sh_size / shdr->sh_entsize; 9612 for (i = 0; i < nrels; i++) { 9613 rel = elf_rel_by_idx(data, i); 9614 if (!rel) { 9615 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9616 return -LIBBPF_ERRNO__FORMAT; 9617 } 9618 9619 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9620 if (!sym) { 9621 pr_warn("struct_ops reloc: symbol %zx not found\n", 9622 (size_t)ELF64_R_SYM(rel->r_info)); 9623 return -LIBBPF_ERRNO__FORMAT; 9624 } 9625 9626 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9627 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9628 if (!map) { 9629 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9630 (size_t)rel->r_offset); 9631 return -EINVAL; 9632 } 9633 9634 moff = rel->r_offset - map->sec_offset; 9635 shdr_idx = sym->st_shndx; 9636 st_ops = map->st_ops; 9637 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9638 map->name, 9639 (long long)(rel->r_info >> 32), 9640 (long long)sym->st_value, 9641 shdr_idx, (size_t)rel->r_offset, 9642 map->sec_offset, sym->st_name, name); 9643 9644 if (shdr_idx >= SHN_LORESERVE) { 9645 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9646 map->name, (size_t)rel->r_offset, shdr_idx); 9647 return -LIBBPF_ERRNO__RELOC; 9648 } 9649 if (sym->st_value % BPF_INSN_SZ) { 9650 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9651 map->name, (unsigned long long)sym->st_value); 9652 return -LIBBPF_ERRNO__FORMAT; 9653 } 9654 insn_idx = sym->st_value / BPF_INSN_SZ; 9655 9656 member = find_member_by_offset(st_ops->type, moff * 8); 9657 if (!member) { 9658 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9659 map->name, moff); 9660 return -EINVAL; 9661 } 9662 member_idx = member - btf_members(st_ops->type); 9663 name = btf__name_by_offset(btf, member->name_off); 9664 9665 if (!resolve_func_ptr(btf, member->type, NULL)) { 9666 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9667 map->name, name); 9668 return -EINVAL; 9669 } 9670 9671 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9672 if (!prog) { 9673 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9674 map->name, shdr_idx, name); 9675 return -EINVAL; 9676 } 9677 9678 /* prevent the use of BPF prog with invalid type */ 9679 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9680 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9681 map->name, prog->name); 9682 return -EINVAL; 9683 } 9684 9685 st_ops->progs[member_idx] = prog; 9686 9687 /* st_ops->data will be exposed to users, being returned by 9688 * bpf_map__initial_value() as a pointer to the shadow 9689 * type. All function pointers in the original struct type 9690 * should be converted to a pointer to struct bpf_program 9691 * in the shadow type. 9692 */ 9693 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9694 } 9695 9696 return 0; 9697 } 9698 9699 #define BTF_TRACE_PREFIX "btf_trace_" 9700 #define BTF_LSM_PREFIX "bpf_lsm_" 9701 #define BTF_ITER_PREFIX "bpf_iter_" 9702 #define BTF_MAX_NAME_SIZE 128 9703 9704 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9705 const char **prefix, int *kind) 9706 { 9707 switch (attach_type) { 9708 case BPF_TRACE_RAW_TP: 9709 *prefix = BTF_TRACE_PREFIX; 9710 *kind = BTF_KIND_TYPEDEF; 9711 break; 9712 case BPF_LSM_MAC: 9713 case BPF_LSM_CGROUP: 9714 *prefix = BTF_LSM_PREFIX; 9715 *kind = BTF_KIND_FUNC; 9716 break; 9717 case BPF_TRACE_ITER: 9718 *prefix = BTF_ITER_PREFIX; 9719 *kind = BTF_KIND_FUNC; 9720 break; 9721 default: 9722 *prefix = ""; 9723 *kind = BTF_KIND_FUNC; 9724 } 9725 } 9726 9727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9728 const char *name, __u32 kind) 9729 { 9730 char btf_type_name[BTF_MAX_NAME_SIZE]; 9731 int ret; 9732 9733 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9734 "%s%s", prefix, name); 9735 /* snprintf returns the number of characters written excluding the 9736 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9737 * indicates truncation. 9738 */ 9739 if (ret < 0 || ret >= sizeof(btf_type_name)) 9740 return -ENAMETOOLONG; 9741 return btf__find_by_name_kind(btf, btf_type_name, kind); 9742 } 9743 9744 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9745 enum bpf_attach_type attach_type) 9746 { 9747 const char *prefix; 9748 int kind; 9749 9750 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9751 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9752 } 9753 9754 int libbpf_find_vmlinux_btf_id(const char *name, 9755 enum bpf_attach_type attach_type) 9756 { 9757 struct btf *btf; 9758 int err; 9759 9760 btf = btf__load_vmlinux_btf(); 9761 err = libbpf_get_error(btf); 9762 if (err) { 9763 pr_warn("vmlinux BTF is not found\n"); 9764 return libbpf_err(err); 9765 } 9766 9767 err = find_attach_btf_id(btf, name, attach_type); 9768 if (err <= 0) 9769 pr_warn("%s is not found in vmlinux BTF\n", name); 9770 9771 btf__free(btf); 9772 return libbpf_err(err); 9773 } 9774 9775 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9776 { 9777 struct bpf_prog_info info; 9778 __u32 info_len = sizeof(info); 9779 struct btf *btf; 9780 int err; 9781 9782 memset(&info, 0, info_len); 9783 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9784 if (err) { 9785 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9786 attach_prog_fd, err); 9787 return err; 9788 } 9789 9790 err = -EINVAL; 9791 if (!info.btf_id) { 9792 pr_warn("The target program doesn't have BTF\n"); 9793 goto out; 9794 } 9795 btf = btf__load_from_kernel_by_id(info.btf_id); 9796 err = libbpf_get_error(btf); 9797 if (err) { 9798 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9799 goto out; 9800 } 9801 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9802 btf__free(btf); 9803 if (err <= 0) { 9804 pr_warn("%s is not found in prog's BTF\n", name); 9805 goto out; 9806 } 9807 out: 9808 return err; 9809 } 9810 9811 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9812 enum bpf_attach_type attach_type, 9813 int *btf_obj_fd, int *btf_type_id) 9814 { 9815 int ret, i; 9816 9817 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9818 if (ret > 0) { 9819 *btf_obj_fd = 0; /* vmlinux BTF */ 9820 *btf_type_id = ret; 9821 return 0; 9822 } 9823 if (ret != -ENOENT) 9824 return ret; 9825 9826 ret = load_module_btfs(obj); 9827 if (ret) 9828 return ret; 9829 9830 for (i = 0; i < obj->btf_module_cnt; i++) { 9831 const struct module_btf *mod = &obj->btf_modules[i]; 9832 9833 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9834 if (ret > 0) { 9835 *btf_obj_fd = mod->fd; 9836 *btf_type_id = ret; 9837 return 0; 9838 } 9839 if (ret == -ENOENT) 9840 continue; 9841 9842 return ret; 9843 } 9844 9845 return -ESRCH; 9846 } 9847 9848 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9849 int *btf_obj_fd, int *btf_type_id) 9850 { 9851 enum bpf_attach_type attach_type = prog->expected_attach_type; 9852 __u32 attach_prog_fd = prog->attach_prog_fd; 9853 int err = 0; 9854 9855 /* BPF program's BTF ID */ 9856 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9857 if (!attach_prog_fd) { 9858 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9859 return -EINVAL; 9860 } 9861 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9862 if (err < 0) { 9863 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9864 prog->name, attach_prog_fd, attach_name, err); 9865 return err; 9866 } 9867 *btf_obj_fd = 0; 9868 *btf_type_id = err; 9869 return 0; 9870 } 9871 9872 /* kernel/module BTF ID */ 9873 if (prog->obj->gen_loader) { 9874 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9875 *btf_obj_fd = 0; 9876 *btf_type_id = 1; 9877 } else { 9878 err = find_kernel_btf_id(prog->obj, attach_name, 9879 attach_type, btf_obj_fd, 9880 btf_type_id); 9881 } 9882 if (err) { 9883 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9884 prog->name, attach_name, err); 9885 return err; 9886 } 9887 return 0; 9888 } 9889 9890 int libbpf_attach_type_by_name(const char *name, 9891 enum bpf_attach_type *attach_type) 9892 { 9893 char *type_names; 9894 const struct bpf_sec_def *sec_def; 9895 9896 if (!name) 9897 return libbpf_err(-EINVAL); 9898 9899 sec_def = find_sec_def(name); 9900 if (!sec_def) { 9901 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9902 type_names = libbpf_get_type_names(true); 9903 if (type_names != NULL) { 9904 pr_debug("attachable section(type) names are:%s\n", type_names); 9905 free(type_names); 9906 } 9907 9908 return libbpf_err(-EINVAL); 9909 } 9910 9911 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9912 return libbpf_err(-EINVAL); 9913 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9914 return libbpf_err(-EINVAL); 9915 9916 *attach_type = sec_def->expected_attach_type; 9917 return 0; 9918 } 9919 9920 int bpf_map__fd(const struct bpf_map *map) 9921 { 9922 if (!map) 9923 return libbpf_err(-EINVAL); 9924 if (!map_is_created(map)) 9925 return -1; 9926 return map->fd; 9927 } 9928 9929 static bool map_uses_real_name(const struct bpf_map *map) 9930 { 9931 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9932 * their user-visible name differs from kernel-visible name. Users see 9933 * such map's corresponding ELF section name as a map name. 9934 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9935 * maps to know which name has to be returned to the user. 9936 */ 9937 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9938 return true; 9939 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9940 return true; 9941 return false; 9942 } 9943 9944 const char *bpf_map__name(const struct bpf_map *map) 9945 { 9946 if (!map) 9947 return NULL; 9948 9949 if (map_uses_real_name(map)) 9950 return map->real_name; 9951 9952 return map->name; 9953 } 9954 9955 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9956 { 9957 return map->def.type; 9958 } 9959 9960 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9961 { 9962 if (map_is_created(map)) 9963 return libbpf_err(-EBUSY); 9964 map->def.type = type; 9965 return 0; 9966 } 9967 9968 __u32 bpf_map__map_flags(const struct bpf_map *map) 9969 { 9970 return map->def.map_flags; 9971 } 9972 9973 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9974 { 9975 if (map_is_created(map)) 9976 return libbpf_err(-EBUSY); 9977 map->def.map_flags = flags; 9978 return 0; 9979 } 9980 9981 __u64 bpf_map__map_extra(const struct bpf_map *map) 9982 { 9983 return map->map_extra; 9984 } 9985 9986 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9987 { 9988 if (map_is_created(map)) 9989 return libbpf_err(-EBUSY); 9990 map->map_extra = map_extra; 9991 return 0; 9992 } 9993 9994 __u32 bpf_map__numa_node(const struct bpf_map *map) 9995 { 9996 return map->numa_node; 9997 } 9998 9999 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10000 { 10001 if (map_is_created(map)) 10002 return libbpf_err(-EBUSY); 10003 map->numa_node = numa_node; 10004 return 0; 10005 } 10006 10007 __u32 bpf_map__key_size(const struct bpf_map *map) 10008 { 10009 return map->def.key_size; 10010 } 10011 10012 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10013 { 10014 if (map_is_created(map)) 10015 return libbpf_err(-EBUSY); 10016 map->def.key_size = size; 10017 return 0; 10018 } 10019 10020 __u32 bpf_map__value_size(const struct bpf_map *map) 10021 { 10022 return map->def.value_size; 10023 } 10024 10025 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10026 { 10027 struct btf *btf; 10028 struct btf_type *datasec_type, *var_type; 10029 struct btf_var_secinfo *var; 10030 const struct btf_type *array_type; 10031 const struct btf_array *array; 10032 int vlen, element_sz, new_array_id; 10033 __u32 nr_elements; 10034 10035 /* check btf existence */ 10036 btf = bpf_object__btf(map->obj); 10037 if (!btf) 10038 return -ENOENT; 10039 10040 /* verify map is datasec */ 10041 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10042 if (!btf_is_datasec(datasec_type)) { 10043 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10044 bpf_map__name(map)); 10045 return -EINVAL; 10046 } 10047 10048 /* verify datasec has at least one var */ 10049 vlen = btf_vlen(datasec_type); 10050 if (vlen == 0) { 10051 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10052 bpf_map__name(map)); 10053 return -EINVAL; 10054 } 10055 10056 /* verify last var in the datasec is an array */ 10057 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10058 var_type = btf_type_by_id(btf, var->type); 10059 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10060 if (!btf_is_array(array_type)) { 10061 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10062 bpf_map__name(map)); 10063 return -EINVAL; 10064 } 10065 10066 /* verify request size aligns with array */ 10067 array = btf_array(array_type); 10068 element_sz = btf__resolve_size(btf, array->type); 10069 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10070 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10071 bpf_map__name(map), element_sz, size); 10072 return -EINVAL; 10073 } 10074 10075 /* create a new array based on the existing array, but with new length */ 10076 nr_elements = (size - var->offset) / element_sz; 10077 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10078 if (new_array_id < 0) 10079 return new_array_id; 10080 10081 /* adding a new btf type invalidates existing pointers to btf objects, 10082 * so refresh pointers before proceeding 10083 */ 10084 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10085 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10086 var_type = btf_type_by_id(btf, var->type); 10087 10088 /* finally update btf info */ 10089 datasec_type->size = size; 10090 var->size = size - var->offset; 10091 var_type->type = new_array_id; 10092 10093 return 0; 10094 } 10095 10096 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10097 { 10098 if (map->obj->loaded || map->reused) 10099 return libbpf_err(-EBUSY); 10100 10101 if (map->mmaped) { 10102 size_t mmap_old_sz, mmap_new_sz; 10103 int err; 10104 10105 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10106 return -EOPNOTSUPP; 10107 10108 mmap_old_sz = bpf_map_mmap_sz(map); 10109 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10110 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10111 if (err) { 10112 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10113 bpf_map__name(map), err); 10114 return err; 10115 } 10116 err = map_btf_datasec_resize(map, size); 10117 if (err && err != -ENOENT) { 10118 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10119 bpf_map__name(map), err); 10120 map->btf_value_type_id = 0; 10121 map->btf_key_type_id = 0; 10122 } 10123 } 10124 10125 map->def.value_size = size; 10126 return 0; 10127 } 10128 10129 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10130 { 10131 return map ? map->btf_key_type_id : 0; 10132 } 10133 10134 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10135 { 10136 return map ? map->btf_value_type_id : 0; 10137 } 10138 10139 int bpf_map__set_initial_value(struct bpf_map *map, 10140 const void *data, size_t size) 10141 { 10142 size_t actual_sz; 10143 10144 if (map->obj->loaded || map->reused) 10145 return libbpf_err(-EBUSY); 10146 10147 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10148 return libbpf_err(-EINVAL); 10149 10150 if (map->def.type == BPF_MAP_TYPE_ARENA) 10151 actual_sz = map->obj->arena_data_sz; 10152 else 10153 actual_sz = map->def.value_size; 10154 if (size != actual_sz) 10155 return libbpf_err(-EINVAL); 10156 10157 memcpy(map->mmaped, data, size); 10158 return 0; 10159 } 10160 10161 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10162 { 10163 if (bpf_map__is_struct_ops(map)) { 10164 if (psize) 10165 *psize = map->def.value_size; 10166 return map->st_ops->data; 10167 } 10168 10169 if (!map->mmaped) 10170 return NULL; 10171 10172 if (map->def.type == BPF_MAP_TYPE_ARENA) 10173 *psize = map->obj->arena_data_sz; 10174 else 10175 *psize = map->def.value_size; 10176 10177 return map->mmaped; 10178 } 10179 10180 bool bpf_map__is_internal(const struct bpf_map *map) 10181 { 10182 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10183 } 10184 10185 __u32 bpf_map__ifindex(const struct bpf_map *map) 10186 { 10187 return map->map_ifindex; 10188 } 10189 10190 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10191 { 10192 if (map_is_created(map)) 10193 return libbpf_err(-EBUSY); 10194 map->map_ifindex = ifindex; 10195 return 0; 10196 } 10197 10198 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10199 { 10200 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10201 pr_warn("error: unsupported map type\n"); 10202 return libbpf_err(-EINVAL); 10203 } 10204 if (map->inner_map_fd != -1) { 10205 pr_warn("error: inner_map_fd already specified\n"); 10206 return libbpf_err(-EINVAL); 10207 } 10208 if (map->inner_map) { 10209 bpf_map__destroy(map->inner_map); 10210 zfree(&map->inner_map); 10211 } 10212 map->inner_map_fd = fd; 10213 return 0; 10214 } 10215 10216 static struct bpf_map * 10217 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10218 { 10219 ssize_t idx; 10220 struct bpf_map *s, *e; 10221 10222 if (!obj || !obj->maps) 10223 return errno = EINVAL, NULL; 10224 10225 s = obj->maps; 10226 e = obj->maps + obj->nr_maps; 10227 10228 if ((m < s) || (m >= e)) { 10229 pr_warn("error in %s: map handler doesn't belong to object\n", 10230 __func__); 10231 return errno = EINVAL, NULL; 10232 } 10233 10234 idx = (m - obj->maps) + i; 10235 if (idx >= obj->nr_maps || idx < 0) 10236 return NULL; 10237 return &obj->maps[idx]; 10238 } 10239 10240 struct bpf_map * 10241 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10242 { 10243 if (prev == NULL) 10244 return obj->maps; 10245 10246 return __bpf_map__iter(prev, obj, 1); 10247 } 10248 10249 struct bpf_map * 10250 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10251 { 10252 if (next == NULL) { 10253 if (!obj->nr_maps) 10254 return NULL; 10255 return obj->maps + obj->nr_maps - 1; 10256 } 10257 10258 return __bpf_map__iter(next, obj, -1); 10259 } 10260 10261 struct bpf_map * 10262 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10263 { 10264 struct bpf_map *pos; 10265 10266 bpf_object__for_each_map(pos, obj) { 10267 /* if it's a special internal map name (which always starts 10268 * with dot) then check if that special name matches the 10269 * real map name (ELF section name) 10270 */ 10271 if (name[0] == '.') { 10272 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10273 return pos; 10274 continue; 10275 } 10276 /* otherwise map name has to be an exact match */ 10277 if (map_uses_real_name(pos)) { 10278 if (strcmp(pos->real_name, name) == 0) 10279 return pos; 10280 continue; 10281 } 10282 if (strcmp(pos->name, name) == 0) 10283 return pos; 10284 } 10285 return errno = ENOENT, NULL; 10286 } 10287 10288 int 10289 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10290 { 10291 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10292 } 10293 10294 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10295 size_t value_sz, bool check_value_sz) 10296 { 10297 if (!map_is_created(map)) /* map is not yet created */ 10298 return -ENOENT; 10299 10300 if (map->def.key_size != key_sz) { 10301 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10302 map->name, key_sz, map->def.key_size); 10303 return -EINVAL; 10304 } 10305 10306 if (!check_value_sz) 10307 return 0; 10308 10309 switch (map->def.type) { 10310 case BPF_MAP_TYPE_PERCPU_ARRAY: 10311 case BPF_MAP_TYPE_PERCPU_HASH: 10312 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10313 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10314 int num_cpu = libbpf_num_possible_cpus(); 10315 size_t elem_sz = roundup(map->def.value_size, 8); 10316 10317 if (value_sz != num_cpu * elem_sz) { 10318 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10319 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10320 return -EINVAL; 10321 } 10322 break; 10323 } 10324 default: 10325 if (map->def.value_size != value_sz) { 10326 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10327 map->name, value_sz, map->def.value_size); 10328 return -EINVAL; 10329 } 10330 break; 10331 } 10332 return 0; 10333 } 10334 10335 int bpf_map__lookup_elem(const struct bpf_map *map, 10336 const void *key, size_t key_sz, 10337 void *value, size_t value_sz, __u64 flags) 10338 { 10339 int err; 10340 10341 err = validate_map_op(map, key_sz, value_sz, true); 10342 if (err) 10343 return libbpf_err(err); 10344 10345 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10346 } 10347 10348 int bpf_map__update_elem(const struct bpf_map *map, 10349 const void *key, size_t key_sz, 10350 const void *value, size_t value_sz, __u64 flags) 10351 { 10352 int err; 10353 10354 err = validate_map_op(map, key_sz, value_sz, true); 10355 if (err) 10356 return libbpf_err(err); 10357 10358 return bpf_map_update_elem(map->fd, key, value, flags); 10359 } 10360 10361 int bpf_map__delete_elem(const struct bpf_map *map, 10362 const void *key, size_t key_sz, __u64 flags) 10363 { 10364 int err; 10365 10366 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10367 if (err) 10368 return libbpf_err(err); 10369 10370 return bpf_map_delete_elem_flags(map->fd, key, flags); 10371 } 10372 10373 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10374 const void *key, size_t key_sz, 10375 void *value, size_t value_sz, __u64 flags) 10376 { 10377 int err; 10378 10379 err = validate_map_op(map, key_sz, value_sz, true); 10380 if (err) 10381 return libbpf_err(err); 10382 10383 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10384 } 10385 10386 int bpf_map__get_next_key(const struct bpf_map *map, 10387 const void *cur_key, void *next_key, size_t key_sz) 10388 { 10389 int err; 10390 10391 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10392 if (err) 10393 return libbpf_err(err); 10394 10395 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10396 } 10397 10398 long libbpf_get_error(const void *ptr) 10399 { 10400 if (!IS_ERR_OR_NULL(ptr)) 10401 return 0; 10402 10403 if (IS_ERR(ptr)) 10404 errno = -PTR_ERR(ptr); 10405 10406 /* If ptr == NULL, then errno should be already set by the failing 10407 * API, because libbpf never returns NULL on success and it now always 10408 * sets errno on error. So no extra errno handling for ptr == NULL 10409 * case. 10410 */ 10411 return -errno; 10412 } 10413 10414 /* Replace link's underlying BPF program with the new one */ 10415 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10416 { 10417 int ret; 10418 10419 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10420 return libbpf_err_errno(ret); 10421 } 10422 10423 /* Release "ownership" of underlying BPF resource (typically, BPF program 10424 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10425 * link, when destructed through bpf_link__destroy() call won't attempt to 10426 * detach/unregisted that BPF resource. This is useful in situations where, 10427 * say, attached BPF program has to outlive userspace program that attached it 10428 * in the system. Depending on type of BPF program, though, there might be 10429 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10430 * exit of userspace program doesn't trigger automatic detachment and clean up 10431 * inside the kernel. 10432 */ 10433 void bpf_link__disconnect(struct bpf_link *link) 10434 { 10435 link->disconnected = true; 10436 } 10437 10438 int bpf_link__destroy(struct bpf_link *link) 10439 { 10440 int err = 0; 10441 10442 if (IS_ERR_OR_NULL(link)) 10443 return 0; 10444 10445 if (!link->disconnected && link->detach) 10446 err = link->detach(link); 10447 if (link->pin_path) 10448 free(link->pin_path); 10449 if (link->dealloc) 10450 link->dealloc(link); 10451 else 10452 free(link); 10453 10454 return libbpf_err(err); 10455 } 10456 10457 int bpf_link__fd(const struct bpf_link *link) 10458 { 10459 return link->fd; 10460 } 10461 10462 const char *bpf_link__pin_path(const struct bpf_link *link) 10463 { 10464 return link->pin_path; 10465 } 10466 10467 static int bpf_link__detach_fd(struct bpf_link *link) 10468 { 10469 return libbpf_err_errno(close(link->fd)); 10470 } 10471 10472 struct bpf_link *bpf_link__open(const char *path) 10473 { 10474 struct bpf_link *link; 10475 int fd; 10476 10477 fd = bpf_obj_get(path); 10478 if (fd < 0) { 10479 fd = -errno; 10480 pr_warn("failed to open link at %s: %d\n", path, fd); 10481 return libbpf_err_ptr(fd); 10482 } 10483 10484 link = calloc(1, sizeof(*link)); 10485 if (!link) { 10486 close(fd); 10487 return libbpf_err_ptr(-ENOMEM); 10488 } 10489 link->detach = &bpf_link__detach_fd; 10490 link->fd = fd; 10491 10492 link->pin_path = strdup(path); 10493 if (!link->pin_path) { 10494 bpf_link__destroy(link); 10495 return libbpf_err_ptr(-ENOMEM); 10496 } 10497 10498 return link; 10499 } 10500 10501 int bpf_link__detach(struct bpf_link *link) 10502 { 10503 return bpf_link_detach(link->fd) ? -errno : 0; 10504 } 10505 10506 int bpf_link__pin(struct bpf_link *link, const char *path) 10507 { 10508 int err; 10509 10510 if (link->pin_path) 10511 return libbpf_err(-EBUSY); 10512 err = make_parent_dir(path); 10513 if (err) 10514 return libbpf_err(err); 10515 err = check_path(path); 10516 if (err) 10517 return libbpf_err(err); 10518 10519 link->pin_path = strdup(path); 10520 if (!link->pin_path) 10521 return libbpf_err(-ENOMEM); 10522 10523 if (bpf_obj_pin(link->fd, link->pin_path)) { 10524 err = -errno; 10525 zfree(&link->pin_path); 10526 return libbpf_err(err); 10527 } 10528 10529 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10530 return 0; 10531 } 10532 10533 int bpf_link__unpin(struct bpf_link *link) 10534 { 10535 int err; 10536 10537 if (!link->pin_path) 10538 return libbpf_err(-EINVAL); 10539 10540 err = unlink(link->pin_path); 10541 if (err != 0) 10542 return -errno; 10543 10544 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10545 zfree(&link->pin_path); 10546 return 0; 10547 } 10548 10549 struct bpf_link_perf { 10550 struct bpf_link link; 10551 int perf_event_fd; 10552 /* legacy kprobe support: keep track of probe identifier and type */ 10553 char *legacy_probe_name; 10554 bool legacy_is_kprobe; 10555 bool legacy_is_retprobe; 10556 }; 10557 10558 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10559 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10560 10561 static int bpf_link_perf_detach(struct bpf_link *link) 10562 { 10563 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10564 int err = 0; 10565 10566 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10567 err = -errno; 10568 10569 if (perf_link->perf_event_fd != link->fd) 10570 close(perf_link->perf_event_fd); 10571 close(link->fd); 10572 10573 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10574 if (perf_link->legacy_probe_name) { 10575 if (perf_link->legacy_is_kprobe) { 10576 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10577 perf_link->legacy_is_retprobe); 10578 } else { 10579 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10580 perf_link->legacy_is_retprobe); 10581 } 10582 } 10583 10584 return err; 10585 } 10586 10587 static void bpf_link_perf_dealloc(struct bpf_link *link) 10588 { 10589 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10590 10591 free(perf_link->legacy_probe_name); 10592 free(perf_link); 10593 } 10594 10595 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10596 const struct bpf_perf_event_opts *opts) 10597 { 10598 char errmsg[STRERR_BUFSIZE]; 10599 struct bpf_link_perf *link; 10600 int prog_fd, link_fd = -1, err; 10601 bool force_ioctl_attach; 10602 10603 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10604 return libbpf_err_ptr(-EINVAL); 10605 10606 if (pfd < 0) { 10607 pr_warn("prog '%s': invalid perf event FD %d\n", 10608 prog->name, pfd); 10609 return libbpf_err_ptr(-EINVAL); 10610 } 10611 prog_fd = bpf_program__fd(prog); 10612 if (prog_fd < 0) { 10613 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10614 prog->name); 10615 return libbpf_err_ptr(-EINVAL); 10616 } 10617 10618 link = calloc(1, sizeof(*link)); 10619 if (!link) 10620 return libbpf_err_ptr(-ENOMEM); 10621 link->link.detach = &bpf_link_perf_detach; 10622 link->link.dealloc = &bpf_link_perf_dealloc; 10623 link->perf_event_fd = pfd; 10624 10625 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10626 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10627 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10628 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10629 10630 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10631 if (link_fd < 0) { 10632 err = -errno; 10633 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10634 prog->name, pfd, 10635 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10636 goto err_out; 10637 } 10638 link->link.fd = link_fd; 10639 } else { 10640 if (OPTS_GET(opts, bpf_cookie, 0)) { 10641 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10642 err = -EOPNOTSUPP; 10643 goto err_out; 10644 } 10645 10646 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10647 err = -errno; 10648 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10649 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10650 if (err == -EPROTO) 10651 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10652 prog->name, pfd); 10653 goto err_out; 10654 } 10655 link->link.fd = pfd; 10656 } 10657 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10658 err = -errno; 10659 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10660 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10661 goto err_out; 10662 } 10663 10664 return &link->link; 10665 err_out: 10666 if (link_fd >= 0) 10667 close(link_fd); 10668 free(link); 10669 return libbpf_err_ptr(err); 10670 } 10671 10672 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10673 { 10674 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10675 } 10676 10677 /* 10678 * this function is expected to parse integer in the range of [0, 2^31-1] from 10679 * given file using scanf format string fmt. If actual parsed value is 10680 * negative, the result might be indistinguishable from error 10681 */ 10682 static int parse_uint_from_file(const char *file, const char *fmt) 10683 { 10684 char buf[STRERR_BUFSIZE]; 10685 int err, ret; 10686 FILE *f; 10687 10688 f = fopen(file, "re"); 10689 if (!f) { 10690 err = -errno; 10691 pr_debug("failed to open '%s': %s\n", file, 10692 libbpf_strerror_r(err, buf, sizeof(buf))); 10693 return err; 10694 } 10695 err = fscanf(f, fmt, &ret); 10696 if (err != 1) { 10697 err = err == EOF ? -EIO : -errno; 10698 pr_debug("failed to parse '%s': %s\n", file, 10699 libbpf_strerror_r(err, buf, sizeof(buf))); 10700 fclose(f); 10701 return err; 10702 } 10703 fclose(f); 10704 return ret; 10705 } 10706 10707 static int determine_kprobe_perf_type(void) 10708 { 10709 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10710 10711 return parse_uint_from_file(file, "%d\n"); 10712 } 10713 10714 static int determine_uprobe_perf_type(void) 10715 { 10716 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10717 10718 return parse_uint_from_file(file, "%d\n"); 10719 } 10720 10721 static int determine_kprobe_retprobe_bit(void) 10722 { 10723 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10724 10725 return parse_uint_from_file(file, "config:%d\n"); 10726 } 10727 10728 static int determine_uprobe_retprobe_bit(void) 10729 { 10730 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10731 10732 return parse_uint_from_file(file, "config:%d\n"); 10733 } 10734 10735 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10736 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10737 10738 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10739 uint64_t offset, int pid, size_t ref_ctr_off) 10740 { 10741 const size_t attr_sz = sizeof(struct perf_event_attr); 10742 struct perf_event_attr attr; 10743 char errmsg[STRERR_BUFSIZE]; 10744 int type, pfd; 10745 10746 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10747 return -EINVAL; 10748 10749 memset(&attr, 0, attr_sz); 10750 10751 type = uprobe ? determine_uprobe_perf_type() 10752 : determine_kprobe_perf_type(); 10753 if (type < 0) { 10754 pr_warn("failed to determine %s perf type: %s\n", 10755 uprobe ? "uprobe" : "kprobe", 10756 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10757 return type; 10758 } 10759 if (retprobe) { 10760 int bit = uprobe ? determine_uprobe_retprobe_bit() 10761 : determine_kprobe_retprobe_bit(); 10762 10763 if (bit < 0) { 10764 pr_warn("failed to determine %s retprobe bit: %s\n", 10765 uprobe ? "uprobe" : "kprobe", 10766 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10767 return bit; 10768 } 10769 attr.config |= 1 << bit; 10770 } 10771 attr.size = attr_sz; 10772 attr.type = type; 10773 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10774 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10775 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10776 10777 /* pid filter is meaningful only for uprobes */ 10778 pfd = syscall(__NR_perf_event_open, &attr, 10779 pid < 0 ? -1 : pid /* pid */, 10780 pid == -1 ? 0 : -1 /* cpu */, 10781 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10782 return pfd >= 0 ? pfd : -errno; 10783 } 10784 10785 static int append_to_file(const char *file, const char *fmt, ...) 10786 { 10787 int fd, n, err = 0; 10788 va_list ap; 10789 char buf[1024]; 10790 10791 va_start(ap, fmt); 10792 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10793 va_end(ap); 10794 10795 if (n < 0 || n >= sizeof(buf)) 10796 return -EINVAL; 10797 10798 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10799 if (fd < 0) 10800 return -errno; 10801 10802 if (write(fd, buf, n) < 0) 10803 err = -errno; 10804 10805 close(fd); 10806 return err; 10807 } 10808 10809 #define DEBUGFS "/sys/kernel/debug/tracing" 10810 #define TRACEFS "/sys/kernel/tracing" 10811 10812 static bool use_debugfs(void) 10813 { 10814 static int has_debugfs = -1; 10815 10816 if (has_debugfs < 0) 10817 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10818 10819 return has_debugfs == 1; 10820 } 10821 10822 static const char *tracefs_path(void) 10823 { 10824 return use_debugfs() ? DEBUGFS : TRACEFS; 10825 } 10826 10827 static const char *tracefs_kprobe_events(void) 10828 { 10829 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10830 } 10831 10832 static const char *tracefs_uprobe_events(void) 10833 { 10834 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10835 } 10836 10837 static const char *tracefs_available_filter_functions(void) 10838 { 10839 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10840 : TRACEFS"/available_filter_functions"; 10841 } 10842 10843 static const char *tracefs_available_filter_functions_addrs(void) 10844 { 10845 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10846 : TRACEFS"/available_filter_functions_addrs"; 10847 } 10848 10849 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10850 const char *kfunc_name, size_t offset) 10851 { 10852 static int index = 0; 10853 int i; 10854 10855 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10856 __sync_fetch_and_add(&index, 1)); 10857 10858 /* sanitize binary_path in the probe name */ 10859 for (i = 0; buf[i]; i++) { 10860 if (!isalnum(buf[i])) 10861 buf[i] = '_'; 10862 } 10863 } 10864 10865 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10866 const char *kfunc_name, size_t offset) 10867 { 10868 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10869 retprobe ? 'r' : 'p', 10870 retprobe ? "kretprobes" : "kprobes", 10871 probe_name, kfunc_name, offset); 10872 } 10873 10874 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10875 { 10876 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10877 retprobe ? "kretprobes" : "kprobes", probe_name); 10878 } 10879 10880 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10881 { 10882 char file[256]; 10883 10884 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10885 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10886 10887 return parse_uint_from_file(file, "%d\n"); 10888 } 10889 10890 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10891 const char *kfunc_name, size_t offset, int pid) 10892 { 10893 const size_t attr_sz = sizeof(struct perf_event_attr); 10894 struct perf_event_attr attr; 10895 char errmsg[STRERR_BUFSIZE]; 10896 int type, pfd, err; 10897 10898 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10899 if (err < 0) { 10900 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10901 kfunc_name, offset, 10902 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10903 return err; 10904 } 10905 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10906 if (type < 0) { 10907 err = type; 10908 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10909 kfunc_name, offset, 10910 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10911 goto err_clean_legacy; 10912 } 10913 10914 memset(&attr, 0, attr_sz); 10915 attr.size = attr_sz; 10916 attr.config = type; 10917 attr.type = PERF_TYPE_TRACEPOINT; 10918 10919 pfd = syscall(__NR_perf_event_open, &attr, 10920 pid < 0 ? -1 : pid, /* pid */ 10921 pid == -1 ? 0 : -1, /* cpu */ 10922 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10923 if (pfd < 0) { 10924 err = -errno; 10925 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10926 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10927 goto err_clean_legacy; 10928 } 10929 return pfd; 10930 10931 err_clean_legacy: 10932 /* Clear the newly added legacy kprobe_event */ 10933 remove_kprobe_event_legacy(probe_name, retprobe); 10934 return err; 10935 } 10936 10937 static const char *arch_specific_syscall_pfx(void) 10938 { 10939 #if defined(__x86_64__) 10940 return "x64"; 10941 #elif defined(__i386__) 10942 return "ia32"; 10943 #elif defined(__s390x__) 10944 return "s390x"; 10945 #elif defined(__s390__) 10946 return "s390"; 10947 #elif defined(__arm__) 10948 return "arm"; 10949 #elif defined(__aarch64__) 10950 return "arm64"; 10951 #elif defined(__mips__) 10952 return "mips"; 10953 #elif defined(__riscv) 10954 return "riscv"; 10955 #elif defined(__powerpc__) 10956 return "powerpc"; 10957 #elif defined(__powerpc64__) 10958 return "powerpc64"; 10959 #else 10960 return NULL; 10961 #endif 10962 } 10963 10964 int probe_kern_syscall_wrapper(int token_fd) 10965 { 10966 char syscall_name[64]; 10967 const char *ksys_pfx; 10968 10969 ksys_pfx = arch_specific_syscall_pfx(); 10970 if (!ksys_pfx) 10971 return 0; 10972 10973 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10974 10975 if (determine_kprobe_perf_type() >= 0) { 10976 int pfd; 10977 10978 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10979 if (pfd >= 0) 10980 close(pfd); 10981 10982 return pfd >= 0 ? 1 : 0; 10983 } else { /* legacy mode */ 10984 char probe_name[128]; 10985 10986 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10987 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10988 return 0; 10989 10990 (void)remove_kprobe_event_legacy(probe_name, false); 10991 return 1; 10992 } 10993 } 10994 10995 struct bpf_link * 10996 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10997 const char *func_name, 10998 const struct bpf_kprobe_opts *opts) 10999 { 11000 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11001 enum probe_attach_mode attach_mode; 11002 char errmsg[STRERR_BUFSIZE]; 11003 char *legacy_probe = NULL; 11004 struct bpf_link *link; 11005 size_t offset; 11006 bool retprobe, legacy; 11007 int pfd, err; 11008 11009 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11010 return libbpf_err_ptr(-EINVAL); 11011 11012 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11013 retprobe = OPTS_GET(opts, retprobe, false); 11014 offset = OPTS_GET(opts, offset, 0); 11015 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11016 11017 legacy = determine_kprobe_perf_type() < 0; 11018 switch (attach_mode) { 11019 case PROBE_ATTACH_MODE_LEGACY: 11020 legacy = true; 11021 pe_opts.force_ioctl_attach = true; 11022 break; 11023 case PROBE_ATTACH_MODE_PERF: 11024 if (legacy) 11025 return libbpf_err_ptr(-ENOTSUP); 11026 pe_opts.force_ioctl_attach = true; 11027 break; 11028 case PROBE_ATTACH_MODE_LINK: 11029 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11030 return libbpf_err_ptr(-ENOTSUP); 11031 break; 11032 case PROBE_ATTACH_MODE_DEFAULT: 11033 break; 11034 default: 11035 return libbpf_err_ptr(-EINVAL); 11036 } 11037 11038 if (!legacy) { 11039 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11040 func_name, offset, 11041 -1 /* pid */, 0 /* ref_ctr_off */); 11042 } else { 11043 char probe_name[256]; 11044 11045 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11046 func_name, offset); 11047 11048 legacy_probe = strdup(probe_name); 11049 if (!legacy_probe) 11050 return libbpf_err_ptr(-ENOMEM); 11051 11052 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11053 offset, -1 /* pid */); 11054 } 11055 if (pfd < 0) { 11056 err = -errno; 11057 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11058 prog->name, retprobe ? "kretprobe" : "kprobe", 11059 func_name, offset, 11060 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11061 goto err_out; 11062 } 11063 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11064 err = libbpf_get_error(link); 11065 if (err) { 11066 close(pfd); 11067 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11068 prog->name, retprobe ? "kretprobe" : "kprobe", 11069 func_name, offset, 11070 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11071 goto err_clean_legacy; 11072 } 11073 if (legacy) { 11074 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11075 11076 perf_link->legacy_probe_name = legacy_probe; 11077 perf_link->legacy_is_kprobe = true; 11078 perf_link->legacy_is_retprobe = retprobe; 11079 } 11080 11081 return link; 11082 11083 err_clean_legacy: 11084 if (legacy) 11085 remove_kprobe_event_legacy(legacy_probe, retprobe); 11086 err_out: 11087 free(legacy_probe); 11088 return libbpf_err_ptr(err); 11089 } 11090 11091 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11092 bool retprobe, 11093 const char *func_name) 11094 { 11095 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11096 .retprobe = retprobe, 11097 ); 11098 11099 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11100 } 11101 11102 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11103 const char *syscall_name, 11104 const struct bpf_ksyscall_opts *opts) 11105 { 11106 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11107 char func_name[128]; 11108 11109 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11110 return libbpf_err_ptr(-EINVAL); 11111 11112 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11113 /* arch_specific_syscall_pfx() should never return NULL here 11114 * because it is guarded by kernel_supports(). However, since 11115 * compiler does not know that we have an explicit conditional 11116 * as well. 11117 */ 11118 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11119 arch_specific_syscall_pfx() ? : "", syscall_name); 11120 } else { 11121 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11122 } 11123 11124 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11125 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11126 11127 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11128 } 11129 11130 /* Adapted from perf/util/string.c */ 11131 bool glob_match(const char *str, const char *pat) 11132 { 11133 while (*str && *pat && *pat != '*') { 11134 if (*pat == '?') { /* Matches any single character */ 11135 str++; 11136 pat++; 11137 continue; 11138 } 11139 if (*str != *pat) 11140 return false; 11141 str++; 11142 pat++; 11143 } 11144 /* Check wild card */ 11145 if (*pat == '*') { 11146 while (*pat == '*') 11147 pat++; 11148 if (!*pat) /* Tail wild card matches all */ 11149 return true; 11150 while (*str) 11151 if (glob_match(str++, pat)) 11152 return true; 11153 } 11154 return !*str && !*pat; 11155 } 11156 11157 struct kprobe_multi_resolve { 11158 const char *pattern; 11159 unsigned long *addrs; 11160 size_t cap; 11161 size_t cnt; 11162 }; 11163 11164 struct avail_kallsyms_data { 11165 char **syms; 11166 size_t cnt; 11167 struct kprobe_multi_resolve *res; 11168 }; 11169 11170 static int avail_func_cmp(const void *a, const void *b) 11171 { 11172 return strcmp(*(const char **)a, *(const char **)b); 11173 } 11174 11175 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11176 const char *sym_name, void *ctx) 11177 { 11178 struct avail_kallsyms_data *data = ctx; 11179 struct kprobe_multi_resolve *res = data->res; 11180 int err; 11181 11182 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11183 return 0; 11184 11185 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11186 if (err) 11187 return err; 11188 11189 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11190 return 0; 11191 } 11192 11193 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11194 { 11195 const char *available_functions_file = tracefs_available_filter_functions(); 11196 struct avail_kallsyms_data data; 11197 char sym_name[500]; 11198 FILE *f; 11199 int err = 0, ret, i; 11200 char **syms = NULL; 11201 size_t cap = 0, cnt = 0; 11202 11203 f = fopen(available_functions_file, "re"); 11204 if (!f) { 11205 err = -errno; 11206 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11207 return err; 11208 } 11209 11210 while (true) { 11211 char *name; 11212 11213 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11214 if (ret == EOF && feof(f)) 11215 break; 11216 11217 if (ret != 1) { 11218 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11219 err = -EINVAL; 11220 goto cleanup; 11221 } 11222 11223 if (!glob_match(sym_name, res->pattern)) 11224 continue; 11225 11226 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11227 if (err) 11228 goto cleanup; 11229 11230 name = strdup(sym_name); 11231 if (!name) { 11232 err = -errno; 11233 goto cleanup; 11234 } 11235 11236 syms[cnt++] = name; 11237 } 11238 11239 /* no entries found, bail out */ 11240 if (cnt == 0) { 11241 err = -ENOENT; 11242 goto cleanup; 11243 } 11244 11245 /* sort available functions */ 11246 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11247 11248 data.syms = syms; 11249 data.res = res; 11250 data.cnt = cnt; 11251 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11252 11253 if (res->cnt == 0) 11254 err = -ENOENT; 11255 11256 cleanup: 11257 for (i = 0; i < cnt; i++) 11258 free((char *)syms[i]); 11259 free(syms); 11260 11261 fclose(f); 11262 return err; 11263 } 11264 11265 static bool has_available_filter_functions_addrs(void) 11266 { 11267 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11268 } 11269 11270 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11271 { 11272 const char *available_path = tracefs_available_filter_functions_addrs(); 11273 char sym_name[500]; 11274 FILE *f; 11275 int ret, err = 0; 11276 unsigned long long sym_addr; 11277 11278 f = fopen(available_path, "re"); 11279 if (!f) { 11280 err = -errno; 11281 pr_warn("failed to open %s: %d\n", available_path, err); 11282 return err; 11283 } 11284 11285 while (true) { 11286 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11287 if (ret == EOF && feof(f)) 11288 break; 11289 11290 if (ret != 2) { 11291 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11292 ret); 11293 err = -EINVAL; 11294 goto cleanup; 11295 } 11296 11297 if (!glob_match(sym_name, res->pattern)) 11298 continue; 11299 11300 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11301 sizeof(*res->addrs), res->cnt + 1); 11302 if (err) 11303 goto cleanup; 11304 11305 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11306 } 11307 11308 if (res->cnt == 0) 11309 err = -ENOENT; 11310 11311 cleanup: 11312 fclose(f); 11313 return err; 11314 } 11315 11316 struct bpf_link * 11317 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11318 const char *pattern, 11319 const struct bpf_kprobe_multi_opts *opts) 11320 { 11321 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11322 struct kprobe_multi_resolve res = { 11323 .pattern = pattern, 11324 }; 11325 struct bpf_link *link = NULL; 11326 char errmsg[STRERR_BUFSIZE]; 11327 const unsigned long *addrs; 11328 int err, link_fd, prog_fd; 11329 const __u64 *cookies; 11330 const char **syms; 11331 bool retprobe; 11332 size_t cnt; 11333 11334 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11335 return libbpf_err_ptr(-EINVAL); 11336 11337 syms = OPTS_GET(opts, syms, false); 11338 addrs = OPTS_GET(opts, addrs, false); 11339 cnt = OPTS_GET(opts, cnt, false); 11340 cookies = OPTS_GET(opts, cookies, false); 11341 11342 if (!pattern && !addrs && !syms) 11343 return libbpf_err_ptr(-EINVAL); 11344 if (pattern && (addrs || syms || cookies || cnt)) 11345 return libbpf_err_ptr(-EINVAL); 11346 if (!pattern && !cnt) 11347 return libbpf_err_ptr(-EINVAL); 11348 if (addrs && syms) 11349 return libbpf_err_ptr(-EINVAL); 11350 11351 if (pattern) { 11352 if (has_available_filter_functions_addrs()) 11353 err = libbpf_available_kprobes_parse(&res); 11354 else 11355 err = libbpf_available_kallsyms_parse(&res); 11356 if (err) 11357 goto error; 11358 addrs = res.addrs; 11359 cnt = res.cnt; 11360 } 11361 11362 retprobe = OPTS_GET(opts, retprobe, false); 11363 11364 lopts.kprobe_multi.syms = syms; 11365 lopts.kprobe_multi.addrs = addrs; 11366 lopts.kprobe_multi.cookies = cookies; 11367 lopts.kprobe_multi.cnt = cnt; 11368 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11369 11370 link = calloc(1, sizeof(*link)); 11371 if (!link) { 11372 err = -ENOMEM; 11373 goto error; 11374 } 11375 link->detach = &bpf_link__detach_fd; 11376 11377 prog_fd = bpf_program__fd(prog); 11378 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11379 if (link_fd < 0) { 11380 err = -errno; 11381 pr_warn("prog '%s': failed to attach: %s\n", 11382 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11383 goto error; 11384 } 11385 link->fd = link_fd; 11386 free(res.addrs); 11387 return link; 11388 11389 error: 11390 free(link); 11391 free(res.addrs); 11392 return libbpf_err_ptr(err); 11393 } 11394 11395 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11396 { 11397 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11398 unsigned long offset = 0; 11399 const char *func_name; 11400 char *func; 11401 int n; 11402 11403 *link = NULL; 11404 11405 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11406 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11407 return 0; 11408 11409 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11410 if (opts.retprobe) 11411 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11412 else 11413 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11414 11415 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11416 if (n < 1) { 11417 pr_warn("kprobe name is invalid: %s\n", func_name); 11418 return -EINVAL; 11419 } 11420 if (opts.retprobe && offset != 0) { 11421 free(func); 11422 pr_warn("kretprobes do not support offset specification\n"); 11423 return -EINVAL; 11424 } 11425 11426 opts.offset = offset; 11427 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11428 free(func); 11429 return libbpf_get_error(*link); 11430 } 11431 11432 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11433 { 11434 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11435 const char *syscall_name; 11436 11437 *link = NULL; 11438 11439 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11440 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11441 return 0; 11442 11443 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11444 if (opts.retprobe) 11445 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11446 else 11447 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11448 11449 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11450 return *link ? 0 : -errno; 11451 } 11452 11453 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11454 { 11455 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11456 const char *spec; 11457 char *pattern; 11458 int n; 11459 11460 *link = NULL; 11461 11462 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11463 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11464 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11465 return 0; 11466 11467 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11468 if (opts.retprobe) 11469 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11470 else 11471 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11472 11473 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11474 if (n < 1) { 11475 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11476 return -EINVAL; 11477 } 11478 11479 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11480 free(pattern); 11481 return libbpf_get_error(*link); 11482 } 11483 11484 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11485 { 11486 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11487 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11488 int n, ret = -EINVAL; 11489 11490 *link = NULL; 11491 11492 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11493 &probe_type, &binary_path, &func_name); 11494 switch (n) { 11495 case 1: 11496 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11497 ret = 0; 11498 break; 11499 case 3: 11500 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11501 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11502 ret = libbpf_get_error(*link); 11503 break; 11504 default: 11505 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11506 prog->sec_name); 11507 break; 11508 } 11509 free(probe_type); 11510 free(binary_path); 11511 free(func_name); 11512 return ret; 11513 } 11514 11515 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11516 const char *binary_path, uint64_t offset) 11517 { 11518 int i; 11519 11520 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11521 11522 /* sanitize binary_path in the probe name */ 11523 for (i = 0; buf[i]; i++) { 11524 if (!isalnum(buf[i])) 11525 buf[i] = '_'; 11526 } 11527 } 11528 11529 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11530 const char *binary_path, size_t offset) 11531 { 11532 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11533 retprobe ? 'r' : 'p', 11534 retprobe ? "uretprobes" : "uprobes", 11535 probe_name, binary_path, offset); 11536 } 11537 11538 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11539 { 11540 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11541 retprobe ? "uretprobes" : "uprobes", probe_name); 11542 } 11543 11544 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11545 { 11546 char file[512]; 11547 11548 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11549 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11550 11551 return parse_uint_from_file(file, "%d\n"); 11552 } 11553 11554 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11555 const char *binary_path, size_t offset, int pid) 11556 { 11557 const size_t attr_sz = sizeof(struct perf_event_attr); 11558 struct perf_event_attr attr; 11559 int type, pfd, err; 11560 11561 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11562 if (err < 0) { 11563 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11564 binary_path, (size_t)offset, err); 11565 return err; 11566 } 11567 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11568 if (type < 0) { 11569 err = type; 11570 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11571 binary_path, offset, err); 11572 goto err_clean_legacy; 11573 } 11574 11575 memset(&attr, 0, attr_sz); 11576 attr.size = attr_sz; 11577 attr.config = type; 11578 attr.type = PERF_TYPE_TRACEPOINT; 11579 11580 pfd = syscall(__NR_perf_event_open, &attr, 11581 pid < 0 ? -1 : pid, /* pid */ 11582 pid == -1 ? 0 : -1, /* cpu */ 11583 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11584 if (pfd < 0) { 11585 err = -errno; 11586 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11587 goto err_clean_legacy; 11588 } 11589 return pfd; 11590 11591 err_clean_legacy: 11592 /* Clear the newly added legacy uprobe_event */ 11593 remove_uprobe_event_legacy(probe_name, retprobe); 11594 return err; 11595 } 11596 11597 /* Find offset of function name in archive specified by path. Currently 11598 * supported are .zip files that do not compress their contents, as used on 11599 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11600 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11601 * library functions. 11602 * 11603 * An overview of the APK format specifically provided here: 11604 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11605 */ 11606 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11607 const char *func_name) 11608 { 11609 struct zip_archive *archive; 11610 struct zip_entry entry; 11611 long ret; 11612 Elf *elf; 11613 11614 archive = zip_archive_open(archive_path); 11615 if (IS_ERR(archive)) { 11616 ret = PTR_ERR(archive); 11617 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11618 return ret; 11619 } 11620 11621 ret = zip_archive_find_entry(archive, file_name, &entry); 11622 if (ret) { 11623 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11624 archive_path, ret); 11625 goto out; 11626 } 11627 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11628 (unsigned long)entry.data_offset); 11629 11630 if (entry.compression) { 11631 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11632 archive_path); 11633 ret = -LIBBPF_ERRNO__FORMAT; 11634 goto out; 11635 } 11636 11637 elf = elf_memory((void *)entry.data, entry.data_length); 11638 if (!elf) { 11639 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11640 elf_errmsg(-1)); 11641 ret = -LIBBPF_ERRNO__LIBELF; 11642 goto out; 11643 } 11644 11645 ret = elf_find_func_offset(elf, file_name, func_name); 11646 if (ret > 0) { 11647 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11648 func_name, file_name, archive_path, entry.data_offset, ret, 11649 ret + entry.data_offset); 11650 ret += entry.data_offset; 11651 } 11652 elf_end(elf); 11653 11654 out: 11655 zip_archive_close(archive); 11656 return ret; 11657 } 11658 11659 static const char *arch_specific_lib_paths(void) 11660 { 11661 /* 11662 * Based on https://packages.debian.org/sid/libc6. 11663 * 11664 * Assume that the traced program is built for the same architecture 11665 * as libbpf, which should cover the vast majority of cases. 11666 */ 11667 #if defined(__x86_64__) 11668 return "/lib/x86_64-linux-gnu"; 11669 #elif defined(__i386__) 11670 return "/lib/i386-linux-gnu"; 11671 #elif defined(__s390x__) 11672 return "/lib/s390x-linux-gnu"; 11673 #elif defined(__s390__) 11674 return "/lib/s390-linux-gnu"; 11675 #elif defined(__arm__) && defined(__SOFTFP__) 11676 return "/lib/arm-linux-gnueabi"; 11677 #elif defined(__arm__) && !defined(__SOFTFP__) 11678 return "/lib/arm-linux-gnueabihf"; 11679 #elif defined(__aarch64__) 11680 return "/lib/aarch64-linux-gnu"; 11681 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11682 return "/lib/mips64el-linux-gnuabi64"; 11683 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11684 return "/lib/mipsel-linux-gnu"; 11685 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11686 return "/lib/powerpc64le-linux-gnu"; 11687 #elif defined(__sparc__) && defined(__arch64__) 11688 return "/lib/sparc64-linux-gnu"; 11689 #elif defined(__riscv) && __riscv_xlen == 64 11690 return "/lib/riscv64-linux-gnu"; 11691 #else 11692 return NULL; 11693 #endif 11694 } 11695 11696 /* Get full path to program/shared library. */ 11697 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11698 { 11699 const char *search_paths[3] = {}; 11700 int i, perm; 11701 11702 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11703 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11704 search_paths[1] = "/usr/lib64:/usr/lib"; 11705 search_paths[2] = arch_specific_lib_paths(); 11706 perm = R_OK; 11707 } else { 11708 search_paths[0] = getenv("PATH"); 11709 search_paths[1] = "/usr/bin:/usr/sbin"; 11710 perm = R_OK | X_OK; 11711 } 11712 11713 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11714 const char *s; 11715 11716 if (!search_paths[i]) 11717 continue; 11718 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11719 char *next_path; 11720 int seg_len; 11721 11722 if (s[0] == ':') 11723 s++; 11724 next_path = strchr(s, ':'); 11725 seg_len = next_path ? next_path - s : strlen(s); 11726 if (!seg_len) 11727 continue; 11728 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11729 /* ensure it has required permissions */ 11730 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11731 continue; 11732 pr_debug("resolved '%s' to '%s'\n", file, result); 11733 return 0; 11734 } 11735 } 11736 return -ENOENT; 11737 } 11738 11739 struct bpf_link * 11740 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11741 pid_t pid, 11742 const char *path, 11743 const char *func_pattern, 11744 const struct bpf_uprobe_multi_opts *opts) 11745 { 11746 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11747 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11748 unsigned long *resolved_offsets = NULL; 11749 int err = 0, link_fd, prog_fd; 11750 struct bpf_link *link = NULL; 11751 char errmsg[STRERR_BUFSIZE]; 11752 char full_path[PATH_MAX]; 11753 const __u64 *cookies; 11754 const char **syms; 11755 size_t cnt; 11756 11757 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11758 return libbpf_err_ptr(-EINVAL); 11759 11760 syms = OPTS_GET(opts, syms, NULL); 11761 offsets = OPTS_GET(opts, offsets, NULL); 11762 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11763 cookies = OPTS_GET(opts, cookies, NULL); 11764 cnt = OPTS_GET(opts, cnt, 0); 11765 11766 /* 11767 * User can specify 2 mutually exclusive set of inputs: 11768 * 11769 * 1) use only path/func_pattern/pid arguments 11770 * 11771 * 2) use path/pid with allowed combinations of: 11772 * syms/offsets/ref_ctr_offsets/cookies/cnt 11773 * 11774 * - syms and offsets are mutually exclusive 11775 * - ref_ctr_offsets and cookies are optional 11776 * 11777 * Any other usage results in error. 11778 */ 11779 11780 if (!path) 11781 return libbpf_err_ptr(-EINVAL); 11782 if (!func_pattern && cnt == 0) 11783 return libbpf_err_ptr(-EINVAL); 11784 11785 if (func_pattern) { 11786 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11787 return libbpf_err_ptr(-EINVAL); 11788 } else { 11789 if (!!syms == !!offsets) 11790 return libbpf_err_ptr(-EINVAL); 11791 } 11792 11793 if (func_pattern) { 11794 if (!strchr(path, '/')) { 11795 err = resolve_full_path(path, full_path, sizeof(full_path)); 11796 if (err) { 11797 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11798 prog->name, path, err); 11799 return libbpf_err_ptr(err); 11800 } 11801 path = full_path; 11802 } 11803 11804 err = elf_resolve_pattern_offsets(path, func_pattern, 11805 &resolved_offsets, &cnt); 11806 if (err < 0) 11807 return libbpf_err_ptr(err); 11808 offsets = resolved_offsets; 11809 } else if (syms) { 11810 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11811 if (err < 0) 11812 return libbpf_err_ptr(err); 11813 offsets = resolved_offsets; 11814 } 11815 11816 lopts.uprobe_multi.path = path; 11817 lopts.uprobe_multi.offsets = offsets; 11818 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11819 lopts.uprobe_multi.cookies = cookies; 11820 lopts.uprobe_multi.cnt = cnt; 11821 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11822 11823 if (pid == 0) 11824 pid = getpid(); 11825 if (pid > 0) 11826 lopts.uprobe_multi.pid = pid; 11827 11828 link = calloc(1, sizeof(*link)); 11829 if (!link) { 11830 err = -ENOMEM; 11831 goto error; 11832 } 11833 link->detach = &bpf_link__detach_fd; 11834 11835 prog_fd = bpf_program__fd(prog); 11836 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11837 if (link_fd < 0) { 11838 err = -errno; 11839 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11840 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11841 goto error; 11842 } 11843 link->fd = link_fd; 11844 free(resolved_offsets); 11845 return link; 11846 11847 error: 11848 free(resolved_offsets); 11849 free(link); 11850 return libbpf_err_ptr(err); 11851 } 11852 11853 LIBBPF_API struct bpf_link * 11854 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11855 const char *binary_path, size_t func_offset, 11856 const struct bpf_uprobe_opts *opts) 11857 { 11858 const char *archive_path = NULL, *archive_sep = NULL; 11859 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11860 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11861 enum probe_attach_mode attach_mode; 11862 char full_path[PATH_MAX]; 11863 struct bpf_link *link; 11864 size_t ref_ctr_off; 11865 int pfd, err; 11866 bool retprobe, legacy; 11867 const char *func_name; 11868 11869 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11870 return libbpf_err_ptr(-EINVAL); 11871 11872 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11873 retprobe = OPTS_GET(opts, retprobe, false); 11874 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11875 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11876 11877 if (!binary_path) 11878 return libbpf_err_ptr(-EINVAL); 11879 11880 /* Check if "binary_path" refers to an archive. */ 11881 archive_sep = strstr(binary_path, "!/"); 11882 if (archive_sep) { 11883 full_path[0] = '\0'; 11884 libbpf_strlcpy(full_path, binary_path, 11885 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11886 archive_path = full_path; 11887 binary_path = archive_sep + 2; 11888 } else if (!strchr(binary_path, '/')) { 11889 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11890 if (err) { 11891 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11892 prog->name, binary_path, err); 11893 return libbpf_err_ptr(err); 11894 } 11895 binary_path = full_path; 11896 } 11897 func_name = OPTS_GET(opts, func_name, NULL); 11898 if (func_name) { 11899 long sym_off; 11900 11901 if (archive_path) { 11902 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11903 func_name); 11904 binary_path = archive_path; 11905 } else { 11906 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11907 } 11908 if (sym_off < 0) 11909 return libbpf_err_ptr(sym_off); 11910 func_offset += sym_off; 11911 } 11912 11913 legacy = determine_uprobe_perf_type() < 0; 11914 switch (attach_mode) { 11915 case PROBE_ATTACH_MODE_LEGACY: 11916 legacy = true; 11917 pe_opts.force_ioctl_attach = true; 11918 break; 11919 case PROBE_ATTACH_MODE_PERF: 11920 if (legacy) 11921 return libbpf_err_ptr(-ENOTSUP); 11922 pe_opts.force_ioctl_attach = true; 11923 break; 11924 case PROBE_ATTACH_MODE_LINK: 11925 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11926 return libbpf_err_ptr(-ENOTSUP); 11927 break; 11928 case PROBE_ATTACH_MODE_DEFAULT: 11929 break; 11930 default: 11931 return libbpf_err_ptr(-EINVAL); 11932 } 11933 11934 if (!legacy) { 11935 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11936 func_offset, pid, ref_ctr_off); 11937 } else { 11938 char probe_name[PATH_MAX + 64]; 11939 11940 if (ref_ctr_off) 11941 return libbpf_err_ptr(-EINVAL); 11942 11943 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11944 binary_path, func_offset); 11945 11946 legacy_probe = strdup(probe_name); 11947 if (!legacy_probe) 11948 return libbpf_err_ptr(-ENOMEM); 11949 11950 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11951 binary_path, func_offset, pid); 11952 } 11953 if (pfd < 0) { 11954 err = -errno; 11955 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11956 prog->name, retprobe ? "uretprobe" : "uprobe", 11957 binary_path, func_offset, 11958 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11959 goto err_out; 11960 } 11961 11962 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11963 err = libbpf_get_error(link); 11964 if (err) { 11965 close(pfd); 11966 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11967 prog->name, retprobe ? "uretprobe" : "uprobe", 11968 binary_path, func_offset, 11969 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11970 goto err_clean_legacy; 11971 } 11972 if (legacy) { 11973 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11974 11975 perf_link->legacy_probe_name = legacy_probe; 11976 perf_link->legacy_is_kprobe = false; 11977 perf_link->legacy_is_retprobe = retprobe; 11978 } 11979 return link; 11980 11981 err_clean_legacy: 11982 if (legacy) 11983 remove_uprobe_event_legacy(legacy_probe, retprobe); 11984 err_out: 11985 free(legacy_probe); 11986 return libbpf_err_ptr(err); 11987 } 11988 11989 /* Format of u[ret]probe section definition supporting auto-attach: 11990 * u[ret]probe/binary:function[+offset] 11991 * 11992 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11993 * full binary path via bpf_program__attach_uprobe_opts. 11994 * 11995 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11996 * specified (and auto-attach is not possible) or the above format is specified for 11997 * auto-attach. 11998 */ 11999 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12000 { 12001 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12002 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12003 int n, c, ret = -EINVAL; 12004 long offset = 0; 12005 12006 *link = NULL; 12007 12008 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12009 &probe_type, &binary_path, &func_name); 12010 switch (n) { 12011 case 1: 12012 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12013 ret = 0; 12014 break; 12015 case 2: 12016 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12017 prog->name, prog->sec_name); 12018 break; 12019 case 3: 12020 /* check if user specifies `+offset`, if yes, this should be 12021 * the last part of the string, make sure sscanf read to EOL 12022 */ 12023 func_off = strrchr(func_name, '+'); 12024 if (func_off) { 12025 n = sscanf(func_off, "+%li%n", &offset, &c); 12026 if (n == 1 && *(func_off + c) == '\0') 12027 func_off[0] = '\0'; 12028 else 12029 offset = 0; 12030 } 12031 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12032 strcmp(probe_type, "uretprobe.s") == 0; 12033 if (opts.retprobe && offset != 0) { 12034 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12035 prog->name); 12036 break; 12037 } 12038 opts.func_name = func_name; 12039 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12040 ret = libbpf_get_error(*link); 12041 break; 12042 default: 12043 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12044 prog->sec_name); 12045 break; 12046 } 12047 free(probe_type); 12048 free(binary_path); 12049 free(func_name); 12050 12051 return ret; 12052 } 12053 12054 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12055 bool retprobe, pid_t pid, 12056 const char *binary_path, 12057 size_t func_offset) 12058 { 12059 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12060 12061 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12062 } 12063 12064 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12065 pid_t pid, const char *binary_path, 12066 const char *usdt_provider, const char *usdt_name, 12067 const struct bpf_usdt_opts *opts) 12068 { 12069 char resolved_path[512]; 12070 struct bpf_object *obj = prog->obj; 12071 struct bpf_link *link; 12072 __u64 usdt_cookie; 12073 int err; 12074 12075 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12076 return libbpf_err_ptr(-EINVAL); 12077 12078 if (bpf_program__fd(prog) < 0) { 12079 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 12080 prog->name); 12081 return libbpf_err_ptr(-EINVAL); 12082 } 12083 12084 if (!binary_path) 12085 return libbpf_err_ptr(-EINVAL); 12086 12087 if (!strchr(binary_path, '/')) { 12088 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12089 if (err) { 12090 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12091 prog->name, binary_path, err); 12092 return libbpf_err_ptr(err); 12093 } 12094 binary_path = resolved_path; 12095 } 12096 12097 /* USDT manager is instantiated lazily on first USDT attach. It will 12098 * be destroyed together with BPF object in bpf_object__close(). 12099 */ 12100 if (IS_ERR(obj->usdt_man)) 12101 return libbpf_ptr(obj->usdt_man); 12102 if (!obj->usdt_man) { 12103 obj->usdt_man = usdt_manager_new(obj); 12104 if (IS_ERR(obj->usdt_man)) 12105 return libbpf_ptr(obj->usdt_man); 12106 } 12107 12108 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12109 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12110 usdt_provider, usdt_name, usdt_cookie); 12111 err = libbpf_get_error(link); 12112 if (err) 12113 return libbpf_err_ptr(err); 12114 return link; 12115 } 12116 12117 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12118 { 12119 char *path = NULL, *provider = NULL, *name = NULL; 12120 const char *sec_name; 12121 int n, err; 12122 12123 sec_name = bpf_program__section_name(prog); 12124 if (strcmp(sec_name, "usdt") == 0) { 12125 /* no auto-attach for just SEC("usdt") */ 12126 *link = NULL; 12127 return 0; 12128 } 12129 12130 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12131 if (n != 3) { 12132 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12133 sec_name); 12134 err = -EINVAL; 12135 } else { 12136 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12137 provider, name, NULL); 12138 err = libbpf_get_error(*link); 12139 } 12140 free(path); 12141 free(provider); 12142 free(name); 12143 return err; 12144 } 12145 12146 static int determine_tracepoint_id(const char *tp_category, 12147 const char *tp_name) 12148 { 12149 char file[PATH_MAX]; 12150 int ret; 12151 12152 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12153 tracefs_path(), tp_category, tp_name); 12154 if (ret < 0) 12155 return -errno; 12156 if (ret >= sizeof(file)) { 12157 pr_debug("tracepoint %s/%s path is too long\n", 12158 tp_category, tp_name); 12159 return -E2BIG; 12160 } 12161 return parse_uint_from_file(file, "%d\n"); 12162 } 12163 12164 static int perf_event_open_tracepoint(const char *tp_category, 12165 const char *tp_name) 12166 { 12167 const size_t attr_sz = sizeof(struct perf_event_attr); 12168 struct perf_event_attr attr; 12169 char errmsg[STRERR_BUFSIZE]; 12170 int tp_id, pfd, err; 12171 12172 tp_id = determine_tracepoint_id(tp_category, tp_name); 12173 if (tp_id < 0) { 12174 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12175 tp_category, tp_name, 12176 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12177 return tp_id; 12178 } 12179 12180 memset(&attr, 0, attr_sz); 12181 attr.type = PERF_TYPE_TRACEPOINT; 12182 attr.size = attr_sz; 12183 attr.config = tp_id; 12184 12185 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12186 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12187 if (pfd < 0) { 12188 err = -errno; 12189 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12190 tp_category, tp_name, 12191 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12192 return err; 12193 } 12194 return pfd; 12195 } 12196 12197 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12198 const char *tp_category, 12199 const char *tp_name, 12200 const struct bpf_tracepoint_opts *opts) 12201 { 12202 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12203 char errmsg[STRERR_BUFSIZE]; 12204 struct bpf_link *link; 12205 int pfd, err; 12206 12207 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12208 return libbpf_err_ptr(-EINVAL); 12209 12210 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12211 12212 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12213 if (pfd < 0) { 12214 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12215 prog->name, tp_category, tp_name, 12216 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12217 return libbpf_err_ptr(pfd); 12218 } 12219 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12220 err = libbpf_get_error(link); 12221 if (err) { 12222 close(pfd); 12223 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12224 prog->name, tp_category, tp_name, 12225 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12226 return libbpf_err_ptr(err); 12227 } 12228 return link; 12229 } 12230 12231 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12232 const char *tp_category, 12233 const char *tp_name) 12234 { 12235 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12236 } 12237 12238 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12239 { 12240 char *sec_name, *tp_cat, *tp_name; 12241 12242 *link = NULL; 12243 12244 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12245 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12246 return 0; 12247 12248 sec_name = strdup(prog->sec_name); 12249 if (!sec_name) 12250 return -ENOMEM; 12251 12252 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12253 if (str_has_pfx(prog->sec_name, "tp/")) 12254 tp_cat = sec_name + sizeof("tp/") - 1; 12255 else 12256 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12257 tp_name = strchr(tp_cat, '/'); 12258 if (!tp_name) { 12259 free(sec_name); 12260 return -EINVAL; 12261 } 12262 *tp_name = '\0'; 12263 tp_name++; 12264 12265 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12266 free(sec_name); 12267 return libbpf_get_error(*link); 12268 } 12269 12270 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12271 const char *tp_name) 12272 { 12273 char errmsg[STRERR_BUFSIZE]; 12274 struct bpf_link *link; 12275 int prog_fd, pfd; 12276 12277 prog_fd = bpf_program__fd(prog); 12278 if (prog_fd < 0) { 12279 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12280 return libbpf_err_ptr(-EINVAL); 12281 } 12282 12283 link = calloc(1, sizeof(*link)); 12284 if (!link) 12285 return libbpf_err_ptr(-ENOMEM); 12286 link->detach = &bpf_link__detach_fd; 12287 12288 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 12289 if (pfd < 0) { 12290 pfd = -errno; 12291 free(link); 12292 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12293 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12294 return libbpf_err_ptr(pfd); 12295 } 12296 link->fd = pfd; 12297 return link; 12298 } 12299 12300 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12301 { 12302 static const char *const prefixes[] = { 12303 "raw_tp", 12304 "raw_tracepoint", 12305 "raw_tp.w", 12306 "raw_tracepoint.w", 12307 }; 12308 size_t i; 12309 const char *tp_name = NULL; 12310 12311 *link = NULL; 12312 12313 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12314 size_t pfx_len; 12315 12316 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12317 continue; 12318 12319 pfx_len = strlen(prefixes[i]); 12320 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12321 if (prog->sec_name[pfx_len] == '\0') 12322 return 0; 12323 12324 if (prog->sec_name[pfx_len] != '/') 12325 continue; 12326 12327 tp_name = prog->sec_name + pfx_len + 1; 12328 break; 12329 } 12330 12331 if (!tp_name) { 12332 pr_warn("prog '%s': invalid section name '%s'\n", 12333 prog->name, prog->sec_name); 12334 return -EINVAL; 12335 } 12336 12337 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12338 return libbpf_get_error(*link); 12339 } 12340 12341 /* Common logic for all BPF program types that attach to a btf_id */ 12342 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12343 const struct bpf_trace_opts *opts) 12344 { 12345 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12346 char errmsg[STRERR_BUFSIZE]; 12347 struct bpf_link *link; 12348 int prog_fd, pfd; 12349 12350 if (!OPTS_VALID(opts, bpf_trace_opts)) 12351 return libbpf_err_ptr(-EINVAL); 12352 12353 prog_fd = bpf_program__fd(prog); 12354 if (prog_fd < 0) { 12355 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12356 return libbpf_err_ptr(-EINVAL); 12357 } 12358 12359 link = calloc(1, sizeof(*link)); 12360 if (!link) 12361 return libbpf_err_ptr(-ENOMEM); 12362 link->detach = &bpf_link__detach_fd; 12363 12364 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12365 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12366 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12367 if (pfd < 0) { 12368 pfd = -errno; 12369 free(link); 12370 pr_warn("prog '%s': failed to attach: %s\n", 12371 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12372 return libbpf_err_ptr(pfd); 12373 } 12374 link->fd = pfd; 12375 return link; 12376 } 12377 12378 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12379 { 12380 return bpf_program__attach_btf_id(prog, NULL); 12381 } 12382 12383 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12384 const struct bpf_trace_opts *opts) 12385 { 12386 return bpf_program__attach_btf_id(prog, opts); 12387 } 12388 12389 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12390 { 12391 return bpf_program__attach_btf_id(prog, NULL); 12392 } 12393 12394 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12395 { 12396 *link = bpf_program__attach_trace(prog); 12397 return libbpf_get_error(*link); 12398 } 12399 12400 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12401 { 12402 *link = bpf_program__attach_lsm(prog); 12403 return libbpf_get_error(*link); 12404 } 12405 12406 static struct bpf_link * 12407 bpf_program_attach_fd(const struct bpf_program *prog, 12408 int target_fd, const char *target_name, 12409 const struct bpf_link_create_opts *opts) 12410 { 12411 enum bpf_attach_type attach_type; 12412 char errmsg[STRERR_BUFSIZE]; 12413 struct bpf_link *link; 12414 int prog_fd, link_fd; 12415 12416 prog_fd = bpf_program__fd(prog); 12417 if (prog_fd < 0) { 12418 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12419 return libbpf_err_ptr(-EINVAL); 12420 } 12421 12422 link = calloc(1, sizeof(*link)); 12423 if (!link) 12424 return libbpf_err_ptr(-ENOMEM); 12425 link->detach = &bpf_link__detach_fd; 12426 12427 attach_type = bpf_program__expected_attach_type(prog); 12428 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12429 if (link_fd < 0) { 12430 link_fd = -errno; 12431 free(link); 12432 pr_warn("prog '%s': failed to attach to %s: %s\n", 12433 prog->name, target_name, 12434 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12435 return libbpf_err_ptr(link_fd); 12436 } 12437 link->fd = link_fd; 12438 return link; 12439 } 12440 12441 struct bpf_link * 12442 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12443 { 12444 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12445 } 12446 12447 struct bpf_link * 12448 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12449 { 12450 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12451 } 12452 12453 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12454 { 12455 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12456 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12457 } 12458 12459 struct bpf_link * 12460 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12461 const struct bpf_tcx_opts *opts) 12462 { 12463 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12464 __u32 relative_id; 12465 int relative_fd; 12466 12467 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12468 return libbpf_err_ptr(-EINVAL); 12469 12470 relative_id = OPTS_GET(opts, relative_id, 0); 12471 relative_fd = OPTS_GET(opts, relative_fd, 0); 12472 12473 /* validate we don't have unexpected combinations of non-zero fields */ 12474 if (!ifindex) { 12475 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12476 prog->name); 12477 return libbpf_err_ptr(-EINVAL); 12478 } 12479 if (relative_fd && relative_id) { 12480 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12481 prog->name); 12482 return libbpf_err_ptr(-EINVAL); 12483 } 12484 12485 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12486 link_create_opts.tcx.relative_fd = relative_fd; 12487 link_create_opts.tcx.relative_id = relative_id; 12488 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12489 12490 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12491 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12492 } 12493 12494 struct bpf_link * 12495 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12496 const struct bpf_netkit_opts *opts) 12497 { 12498 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12499 __u32 relative_id; 12500 int relative_fd; 12501 12502 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12503 return libbpf_err_ptr(-EINVAL); 12504 12505 relative_id = OPTS_GET(opts, relative_id, 0); 12506 relative_fd = OPTS_GET(opts, relative_fd, 0); 12507 12508 /* validate we don't have unexpected combinations of non-zero fields */ 12509 if (!ifindex) { 12510 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12511 prog->name); 12512 return libbpf_err_ptr(-EINVAL); 12513 } 12514 if (relative_fd && relative_id) { 12515 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12516 prog->name); 12517 return libbpf_err_ptr(-EINVAL); 12518 } 12519 12520 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12521 link_create_opts.netkit.relative_fd = relative_fd; 12522 link_create_opts.netkit.relative_id = relative_id; 12523 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12524 12525 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12526 } 12527 12528 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12529 int target_fd, 12530 const char *attach_func_name) 12531 { 12532 int btf_id; 12533 12534 if (!!target_fd != !!attach_func_name) { 12535 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12536 prog->name); 12537 return libbpf_err_ptr(-EINVAL); 12538 } 12539 12540 if (prog->type != BPF_PROG_TYPE_EXT) { 12541 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12542 prog->name); 12543 return libbpf_err_ptr(-EINVAL); 12544 } 12545 12546 if (target_fd) { 12547 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12548 12549 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12550 if (btf_id < 0) 12551 return libbpf_err_ptr(btf_id); 12552 12553 target_opts.target_btf_id = btf_id; 12554 12555 return bpf_program_attach_fd(prog, target_fd, "freplace", 12556 &target_opts); 12557 } else { 12558 /* no target, so use raw_tracepoint_open for compatibility 12559 * with old kernels 12560 */ 12561 return bpf_program__attach_trace(prog); 12562 } 12563 } 12564 12565 struct bpf_link * 12566 bpf_program__attach_iter(const struct bpf_program *prog, 12567 const struct bpf_iter_attach_opts *opts) 12568 { 12569 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12570 char errmsg[STRERR_BUFSIZE]; 12571 struct bpf_link *link; 12572 int prog_fd, link_fd; 12573 __u32 target_fd = 0; 12574 12575 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12576 return libbpf_err_ptr(-EINVAL); 12577 12578 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12579 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12580 12581 prog_fd = bpf_program__fd(prog); 12582 if (prog_fd < 0) { 12583 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12584 return libbpf_err_ptr(-EINVAL); 12585 } 12586 12587 link = calloc(1, sizeof(*link)); 12588 if (!link) 12589 return libbpf_err_ptr(-ENOMEM); 12590 link->detach = &bpf_link__detach_fd; 12591 12592 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12593 &link_create_opts); 12594 if (link_fd < 0) { 12595 link_fd = -errno; 12596 free(link); 12597 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12598 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12599 return libbpf_err_ptr(link_fd); 12600 } 12601 link->fd = link_fd; 12602 return link; 12603 } 12604 12605 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12606 { 12607 *link = bpf_program__attach_iter(prog, NULL); 12608 return libbpf_get_error(*link); 12609 } 12610 12611 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12612 const struct bpf_netfilter_opts *opts) 12613 { 12614 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12615 struct bpf_link *link; 12616 int prog_fd, link_fd; 12617 12618 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12619 return libbpf_err_ptr(-EINVAL); 12620 12621 prog_fd = bpf_program__fd(prog); 12622 if (prog_fd < 0) { 12623 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12624 return libbpf_err_ptr(-EINVAL); 12625 } 12626 12627 link = calloc(1, sizeof(*link)); 12628 if (!link) 12629 return libbpf_err_ptr(-ENOMEM); 12630 12631 link->detach = &bpf_link__detach_fd; 12632 12633 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12634 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12635 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12636 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12637 12638 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12639 if (link_fd < 0) { 12640 char errmsg[STRERR_BUFSIZE]; 12641 12642 link_fd = -errno; 12643 free(link); 12644 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12645 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12646 return libbpf_err_ptr(link_fd); 12647 } 12648 link->fd = link_fd; 12649 12650 return link; 12651 } 12652 12653 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12654 { 12655 struct bpf_link *link = NULL; 12656 int err; 12657 12658 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12659 return libbpf_err_ptr(-EOPNOTSUPP); 12660 12661 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12662 if (err) 12663 return libbpf_err_ptr(err); 12664 12665 /* When calling bpf_program__attach() explicitly, auto-attach support 12666 * is expected to work, so NULL returned link is considered an error. 12667 * This is different for skeleton's attach, see comment in 12668 * bpf_object__attach_skeleton(). 12669 */ 12670 if (!link) 12671 return libbpf_err_ptr(-EOPNOTSUPP); 12672 12673 return link; 12674 } 12675 12676 struct bpf_link_struct_ops { 12677 struct bpf_link link; 12678 int map_fd; 12679 }; 12680 12681 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12682 { 12683 struct bpf_link_struct_ops *st_link; 12684 __u32 zero = 0; 12685 12686 st_link = container_of(link, struct bpf_link_struct_ops, link); 12687 12688 if (st_link->map_fd < 0) 12689 /* w/o a real link */ 12690 return bpf_map_delete_elem(link->fd, &zero); 12691 12692 return close(link->fd); 12693 } 12694 12695 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12696 { 12697 struct bpf_link_struct_ops *link; 12698 __u32 zero = 0; 12699 int err, fd; 12700 12701 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12702 return libbpf_err_ptr(-EINVAL); 12703 12704 link = calloc(1, sizeof(*link)); 12705 if (!link) 12706 return libbpf_err_ptr(-EINVAL); 12707 12708 /* kern_vdata should be prepared during the loading phase. */ 12709 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12710 /* It can be EBUSY if the map has been used to create or 12711 * update a link before. We don't allow updating the value of 12712 * a struct_ops once it is set. That ensures that the value 12713 * never changed. So, it is safe to skip EBUSY. 12714 */ 12715 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12716 free(link); 12717 return libbpf_err_ptr(err); 12718 } 12719 12720 link->link.detach = bpf_link__detach_struct_ops; 12721 12722 if (!(map->def.map_flags & BPF_F_LINK)) { 12723 /* w/o a real link */ 12724 link->link.fd = map->fd; 12725 link->map_fd = -1; 12726 return &link->link; 12727 } 12728 12729 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12730 if (fd < 0) { 12731 free(link); 12732 return libbpf_err_ptr(fd); 12733 } 12734 12735 link->link.fd = fd; 12736 link->map_fd = map->fd; 12737 12738 return &link->link; 12739 } 12740 12741 /* 12742 * Swap the back struct_ops of a link with a new struct_ops map. 12743 */ 12744 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12745 { 12746 struct bpf_link_struct_ops *st_ops_link; 12747 __u32 zero = 0; 12748 int err; 12749 12750 if (!bpf_map__is_struct_ops(map) || !map_is_created(map)) 12751 return -EINVAL; 12752 12753 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12754 /* Ensure the type of a link is correct */ 12755 if (st_ops_link->map_fd < 0) 12756 return -EINVAL; 12757 12758 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12759 /* It can be EBUSY if the map has been used to create or 12760 * update a link before. We don't allow updating the value of 12761 * a struct_ops once it is set. That ensures that the value 12762 * never changed. So, it is safe to skip EBUSY. 12763 */ 12764 if (err && err != -EBUSY) 12765 return err; 12766 12767 err = bpf_link_update(link->fd, map->fd, NULL); 12768 if (err < 0) 12769 return err; 12770 12771 st_ops_link->map_fd = map->fd; 12772 12773 return 0; 12774 } 12775 12776 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12777 void *private_data); 12778 12779 static enum bpf_perf_event_ret 12780 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12781 void **copy_mem, size_t *copy_size, 12782 bpf_perf_event_print_t fn, void *private_data) 12783 { 12784 struct perf_event_mmap_page *header = mmap_mem; 12785 __u64 data_head = ring_buffer_read_head(header); 12786 __u64 data_tail = header->data_tail; 12787 void *base = ((__u8 *)header) + page_size; 12788 int ret = LIBBPF_PERF_EVENT_CONT; 12789 struct perf_event_header *ehdr; 12790 size_t ehdr_size; 12791 12792 while (data_head != data_tail) { 12793 ehdr = base + (data_tail & (mmap_size - 1)); 12794 ehdr_size = ehdr->size; 12795 12796 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12797 void *copy_start = ehdr; 12798 size_t len_first = base + mmap_size - copy_start; 12799 size_t len_secnd = ehdr_size - len_first; 12800 12801 if (*copy_size < ehdr_size) { 12802 free(*copy_mem); 12803 *copy_mem = malloc(ehdr_size); 12804 if (!*copy_mem) { 12805 *copy_size = 0; 12806 ret = LIBBPF_PERF_EVENT_ERROR; 12807 break; 12808 } 12809 *copy_size = ehdr_size; 12810 } 12811 12812 memcpy(*copy_mem, copy_start, len_first); 12813 memcpy(*copy_mem + len_first, base, len_secnd); 12814 ehdr = *copy_mem; 12815 } 12816 12817 ret = fn(ehdr, private_data); 12818 data_tail += ehdr_size; 12819 if (ret != LIBBPF_PERF_EVENT_CONT) 12820 break; 12821 } 12822 12823 ring_buffer_write_tail(header, data_tail); 12824 return libbpf_err(ret); 12825 } 12826 12827 struct perf_buffer; 12828 12829 struct perf_buffer_params { 12830 struct perf_event_attr *attr; 12831 /* if event_cb is specified, it takes precendence */ 12832 perf_buffer_event_fn event_cb; 12833 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12834 perf_buffer_sample_fn sample_cb; 12835 perf_buffer_lost_fn lost_cb; 12836 void *ctx; 12837 int cpu_cnt; 12838 int *cpus; 12839 int *map_keys; 12840 }; 12841 12842 struct perf_cpu_buf { 12843 struct perf_buffer *pb; 12844 void *base; /* mmap()'ed memory */ 12845 void *buf; /* for reconstructing segmented data */ 12846 size_t buf_size; 12847 int fd; 12848 int cpu; 12849 int map_key; 12850 }; 12851 12852 struct perf_buffer { 12853 perf_buffer_event_fn event_cb; 12854 perf_buffer_sample_fn sample_cb; 12855 perf_buffer_lost_fn lost_cb; 12856 void *ctx; /* passed into callbacks */ 12857 12858 size_t page_size; 12859 size_t mmap_size; 12860 struct perf_cpu_buf **cpu_bufs; 12861 struct epoll_event *events; 12862 int cpu_cnt; /* number of allocated CPU buffers */ 12863 int epoll_fd; /* perf event FD */ 12864 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12865 }; 12866 12867 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12868 struct perf_cpu_buf *cpu_buf) 12869 { 12870 if (!cpu_buf) 12871 return; 12872 if (cpu_buf->base && 12873 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12874 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12875 if (cpu_buf->fd >= 0) { 12876 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12877 close(cpu_buf->fd); 12878 } 12879 free(cpu_buf->buf); 12880 free(cpu_buf); 12881 } 12882 12883 void perf_buffer__free(struct perf_buffer *pb) 12884 { 12885 int i; 12886 12887 if (IS_ERR_OR_NULL(pb)) 12888 return; 12889 if (pb->cpu_bufs) { 12890 for (i = 0; i < pb->cpu_cnt; i++) { 12891 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12892 12893 if (!cpu_buf) 12894 continue; 12895 12896 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12897 perf_buffer__free_cpu_buf(pb, cpu_buf); 12898 } 12899 free(pb->cpu_bufs); 12900 } 12901 if (pb->epoll_fd >= 0) 12902 close(pb->epoll_fd); 12903 free(pb->events); 12904 free(pb); 12905 } 12906 12907 static struct perf_cpu_buf * 12908 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12909 int cpu, int map_key) 12910 { 12911 struct perf_cpu_buf *cpu_buf; 12912 char msg[STRERR_BUFSIZE]; 12913 int err; 12914 12915 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12916 if (!cpu_buf) 12917 return ERR_PTR(-ENOMEM); 12918 12919 cpu_buf->pb = pb; 12920 cpu_buf->cpu = cpu; 12921 cpu_buf->map_key = map_key; 12922 12923 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12924 -1, PERF_FLAG_FD_CLOEXEC); 12925 if (cpu_buf->fd < 0) { 12926 err = -errno; 12927 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12928 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12929 goto error; 12930 } 12931 12932 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12933 PROT_READ | PROT_WRITE, MAP_SHARED, 12934 cpu_buf->fd, 0); 12935 if (cpu_buf->base == MAP_FAILED) { 12936 cpu_buf->base = NULL; 12937 err = -errno; 12938 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12939 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12940 goto error; 12941 } 12942 12943 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12944 err = -errno; 12945 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12946 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12947 goto error; 12948 } 12949 12950 return cpu_buf; 12951 12952 error: 12953 perf_buffer__free_cpu_buf(pb, cpu_buf); 12954 return (struct perf_cpu_buf *)ERR_PTR(err); 12955 } 12956 12957 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12958 struct perf_buffer_params *p); 12959 12960 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12961 perf_buffer_sample_fn sample_cb, 12962 perf_buffer_lost_fn lost_cb, 12963 void *ctx, 12964 const struct perf_buffer_opts *opts) 12965 { 12966 const size_t attr_sz = sizeof(struct perf_event_attr); 12967 struct perf_buffer_params p = {}; 12968 struct perf_event_attr attr; 12969 __u32 sample_period; 12970 12971 if (!OPTS_VALID(opts, perf_buffer_opts)) 12972 return libbpf_err_ptr(-EINVAL); 12973 12974 sample_period = OPTS_GET(opts, sample_period, 1); 12975 if (!sample_period) 12976 sample_period = 1; 12977 12978 memset(&attr, 0, attr_sz); 12979 attr.size = attr_sz; 12980 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12981 attr.type = PERF_TYPE_SOFTWARE; 12982 attr.sample_type = PERF_SAMPLE_RAW; 12983 attr.sample_period = sample_period; 12984 attr.wakeup_events = sample_period; 12985 12986 p.attr = &attr; 12987 p.sample_cb = sample_cb; 12988 p.lost_cb = lost_cb; 12989 p.ctx = ctx; 12990 12991 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12992 } 12993 12994 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12995 struct perf_event_attr *attr, 12996 perf_buffer_event_fn event_cb, void *ctx, 12997 const struct perf_buffer_raw_opts *opts) 12998 { 12999 struct perf_buffer_params p = {}; 13000 13001 if (!attr) 13002 return libbpf_err_ptr(-EINVAL); 13003 13004 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13005 return libbpf_err_ptr(-EINVAL); 13006 13007 p.attr = attr; 13008 p.event_cb = event_cb; 13009 p.ctx = ctx; 13010 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13011 p.cpus = OPTS_GET(opts, cpus, NULL); 13012 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13013 13014 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13015 } 13016 13017 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13018 struct perf_buffer_params *p) 13019 { 13020 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13021 struct bpf_map_info map; 13022 char msg[STRERR_BUFSIZE]; 13023 struct perf_buffer *pb; 13024 bool *online = NULL; 13025 __u32 map_info_len; 13026 int err, i, j, n; 13027 13028 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13029 pr_warn("page count should be power of two, but is %zu\n", 13030 page_cnt); 13031 return ERR_PTR(-EINVAL); 13032 } 13033 13034 /* best-effort sanity checks */ 13035 memset(&map, 0, sizeof(map)); 13036 map_info_len = sizeof(map); 13037 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13038 if (err) { 13039 err = -errno; 13040 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13041 * -EBADFD, -EFAULT, or -E2BIG on real error 13042 */ 13043 if (err != -EINVAL) { 13044 pr_warn("failed to get map info for map FD %d: %s\n", 13045 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13046 return ERR_PTR(err); 13047 } 13048 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13049 map_fd); 13050 } else { 13051 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13052 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13053 map.name); 13054 return ERR_PTR(-EINVAL); 13055 } 13056 } 13057 13058 pb = calloc(1, sizeof(*pb)); 13059 if (!pb) 13060 return ERR_PTR(-ENOMEM); 13061 13062 pb->event_cb = p->event_cb; 13063 pb->sample_cb = p->sample_cb; 13064 pb->lost_cb = p->lost_cb; 13065 pb->ctx = p->ctx; 13066 13067 pb->page_size = getpagesize(); 13068 pb->mmap_size = pb->page_size * page_cnt; 13069 pb->map_fd = map_fd; 13070 13071 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13072 if (pb->epoll_fd < 0) { 13073 err = -errno; 13074 pr_warn("failed to create epoll instance: %s\n", 13075 libbpf_strerror_r(err, msg, sizeof(msg))); 13076 goto error; 13077 } 13078 13079 if (p->cpu_cnt > 0) { 13080 pb->cpu_cnt = p->cpu_cnt; 13081 } else { 13082 pb->cpu_cnt = libbpf_num_possible_cpus(); 13083 if (pb->cpu_cnt < 0) { 13084 err = pb->cpu_cnt; 13085 goto error; 13086 } 13087 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13088 pb->cpu_cnt = map.max_entries; 13089 } 13090 13091 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13092 if (!pb->events) { 13093 err = -ENOMEM; 13094 pr_warn("failed to allocate events: out of memory\n"); 13095 goto error; 13096 } 13097 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13098 if (!pb->cpu_bufs) { 13099 err = -ENOMEM; 13100 pr_warn("failed to allocate buffers: out of memory\n"); 13101 goto error; 13102 } 13103 13104 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13105 if (err) { 13106 pr_warn("failed to get online CPU mask: %d\n", err); 13107 goto error; 13108 } 13109 13110 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13111 struct perf_cpu_buf *cpu_buf; 13112 int cpu, map_key; 13113 13114 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13115 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13116 13117 /* in case user didn't explicitly requested particular CPUs to 13118 * be attached to, skip offline/not present CPUs 13119 */ 13120 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13121 continue; 13122 13123 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13124 if (IS_ERR(cpu_buf)) { 13125 err = PTR_ERR(cpu_buf); 13126 goto error; 13127 } 13128 13129 pb->cpu_bufs[j] = cpu_buf; 13130 13131 err = bpf_map_update_elem(pb->map_fd, &map_key, 13132 &cpu_buf->fd, 0); 13133 if (err) { 13134 err = -errno; 13135 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13136 cpu, map_key, cpu_buf->fd, 13137 libbpf_strerror_r(err, msg, sizeof(msg))); 13138 goto error; 13139 } 13140 13141 pb->events[j].events = EPOLLIN; 13142 pb->events[j].data.ptr = cpu_buf; 13143 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13144 &pb->events[j]) < 0) { 13145 err = -errno; 13146 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13147 cpu, cpu_buf->fd, 13148 libbpf_strerror_r(err, msg, sizeof(msg))); 13149 goto error; 13150 } 13151 j++; 13152 } 13153 pb->cpu_cnt = j; 13154 free(online); 13155 13156 return pb; 13157 13158 error: 13159 free(online); 13160 if (pb) 13161 perf_buffer__free(pb); 13162 return ERR_PTR(err); 13163 } 13164 13165 struct perf_sample_raw { 13166 struct perf_event_header header; 13167 uint32_t size; 13168 char data[]; 13169 }; 13170 13171 struct perf_sample_lost { 13172 struct perf_event_header header; 13173 uint64_t id; 13174 uint64_t lost; 13175 uint64_t sample_id; 13176 }; 13177 13178 static enum bpf_perf_event_ret 13179 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13180 { 13181 struct perf_cpu_buf *cpu_buf = ctx; 13182 struct perf_buffer *pb = cpu_buf->pb; 13183 void *data = e; 13184 13185 /* user wants full control over parsing perf event */ 13186 if (pb->event_cb) 13187 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13188 13189 switch (e->type) { 13190 case PERF_RECORD_SAMPLE: { 13191 struct perf_sample_raw *s = data; 13192 13193 if (pb->sample_cb) 13194 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13195 break; 13196 } 13197 case PERF_RECORD_LOST: { 13198 struct perf_sample_lost *s = data; 13199 13200 if (pb->lost_cb) 13201 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13202 break; 13203 } 13204 default: 13205 pr_warn("unknown perf sample type %d\n", e->type); 13206 return LIBBPF_PERF_EVENT_ERROR; 13207 } 13208 return LIBBPF_PERF_EVENT_CONT; 13209 } 13210 13211 static int perf_buffer__process_records(struct perf_buffer *pb, 13212 struct perf_cpu_buf *cpu_buf) 13213 { 13214 enum bpf_perf_event_ret ret; 13215 13216 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13217 pb->page_size, &cpu_buf->buf, 13218 &cpu_buf->buf_size, 13219 perf_buffer__process_record, cpu_buf); 13220 if (ret != LIBBPF_PERF_EVENT_CONT) 13221 return ret; 13222 return 0; 13223 } 13224 13225 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13226 { 13227 return pb->epoll_fd; 13228 } 13229 13230 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13231 { 13232 int i, cnt, err; 13233 13234 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13235 if (cnt < 0) 13236 return -errno; 13237 13238 for (i = 0; i < cnt; i++) { 13239 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13240 13241 err = perf_buffer__process_records(pb, cpu_buf); 13242 if (err) { 13243 pr_warn("error while processing records: %d\n", err); 13244 return libbpf_err(err); 13245 } 13246 } 13247 return cnt; 13248 } 13249 13250 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13251 * manager. 13252 */ 13253 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13254 { 13255 return pb->cpu_cnt; 13256 } 13257 13258 /* 13259 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13260 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13261 * select()/poll()/epoll() Linux syscalls. 13262 */ 13263 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13264 { 13265 struct perf_cpu_buf *cpu_buf; 13266 13267 if (buf_idx >= pb->cpu_cnt) 13268 return libbpf_err(-EINVAL); 13269 13270 cpu_buf = pb->cpu_bufs[buf_idx]; 13271 if (!cpu_buf) 13272 return libbpf_err(-ENOENT); 13273 13274 return cpu_buf->fd; 13275 } 13276 13277 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13278 { 13279 struct perf_cpu_buf *cpu_buf; 13280 13281 if (buf_idx >= pb->cpu_cnt) 13282 return libbpf_err(-EINVAL); 13283 13284 cpu_buf = pb->cpu_bufs[buf_idx]; 13285 if (!cpu_buf) 13286 return libbpf_err(-ENOENT); 13287 13288 *buf = cpu_buf->base; 13289 *buf_size = pb->mmap_size; 13290 return 0; 13291 } 13292 13293 /* 13294 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13295 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13296 * consume, do nothing and return success. 13297 * Returns: 13298 * - 0 on success; 13299 * - <0 on failure. 13300 */ 13301 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13302 { 13303 struct perf_cpu_buf *cpu_buf; 13304 13305 if (buf_idx >= pb->cpu_cnt) 13306 return libbpf_err(-EINVAL); 13307 13308 cpu_buf = pb->cpu_bufs[buf_idx]; 13309 if (!cpu_buf) 13310 return libbpf_err(-ENOENT); 13311 13312 return perf_buffer__process_records(pb, cpu_buf); 13313 } 13314 13315 int perf_buffer__consume(struct perf_buffer *pb) 13316 { 13317 int i, err; 13318 13319 for (i = 0; i < pb->cpu_cnt; i++) { 13320 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13321 13322 if (!cpu_buf) 13323 continue; 13324 13325 err = perf_buffer__process_records(pb, cpu_buf); 13326 if (err) { 13327 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13328 return libbpf_err(err); 13329 } 13330 } 13331 return 0; 13332 } 13333 13334 int bpf_program__set_attach_target(struct bpf_program *prog, 13335 int attach_prog_fd, 13336 const char *attach_func_name) 13337 { 13338 int btf_obj_fd = 0, btf_id = 0, err; 13339 13340 if (!prog || attach_prog_fd < 0) 13341 return libbpf_err(-EINVAL); 13342 13343 if (prog->obj->loaded) 13344 return libbpf_err(-EINVAL); 13345 13346 if (attach_prog_fd && !attach_func_name) { 13347 /* remember attach_prog_fd and let bpf_program__load() find 13348 * BTF ID during the program load 13349 */ 13350 prog->attach_prog_fd = attach_prog_fd; 13351 return 0; 13352 } 13353 13354 if (attach_prog_fd) { 13355 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13356 attach_prog_fd); 13357 if (btf_id < 0) 13358 return libbpf_err(btf_id); 13359 } else { 13360 if (!attach_func_name) 13361 return libbpf_err(-EINVAL); 13362 13363 /* load btf_vmlinux, if not yet */ 13364 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13365 if (err) 13366 return libbpf_err(err); 13367 err = find_kernel_btf_id(prog->obj, attach_func_name, 13368 prog->expected_attach_type, 13369 &btf_obj_fd, &btf_id); 13370 if (err) 13371 return libbpf_err(err); 13372 } 13373 13374 prog->attach_btf_id = btf_id; 13375 prog->attach_btf_obj_fd = btf_obj_fd; 13376 prog->attach_prog_fd = attach_prog_fd; 13377 return 0; 13378 } 13379 13380 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13381 { 13382 int err = 0, n, len, start, end = -1; 13383 bool *tmp; 13384 13385 *mask = NULL; 13386 *mask_sz = 0; 13387 13388 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13389 while (*s) { 13390 if (*s == ',' || *s == '\n') { 13391 s++; 13392 continue; 13393 } 13394 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13395 if (n <= 0 || n > 2) { 13396 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13397 err = -EINVAL; 13398 goto cleanup; 13399 } else if (n == 1) { 13400 end = start; 13401 } 13402 if (start < 0 || start > end) { 13403 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13404 start, end, s); 13405 err = -EINVAL; 13406 goto cleanup; 13407 } 13408 tmp = realloc(*mask, end + 1); 13409 if (!tmp) { 13410 err = -ENOMEM; 13411 goto cleanup; 13412 } 13413 *mask = tmp; 13414 memset(tmp + *mask_sz, 0, start - *mask_sz); 13415 memset(tmp + start, 1, end - start + 1); 13416 *mask_sz = end + 1; 13417 s += len; 13418 } 13419 if (!*mask_sz) { 13420 pr_warn("Empty CPU range\n"); 13421 return -EINVAL; 13422 } 13423 return 0; 13424 cleanup: 13425 free(*mask); 13426 *mask = NULL; 13427 return err; 13428 } 13429 13430 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13431 { 13432 int fd, err = 0, len; 13433 char buf[128]; 13434 13435 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13436 if (fd < 0) { 13437 err = -errno; 13438 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13439 return err; 13440 } 13441 len = read(fd, buf, sizeof(buf)); 13442 close(fd); 13443 if (len <= 0) { 13444 err = len ? -errno : -EINVAL; 13445 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13446 return err; 13447 } 13448 if (len >= sizeof(buf)) { 13449 pr_warn("CPU mask is too big in file %s\n", fcpu); 13450 return -E2BIG; 13451 } 13452 buf[len] = '\0'; 13453 13454 return parse_cpu_mask_str(buf, mask, mask_sz); 13455 } 13456 13457 int libbpf_num_possible_cpus(void) 13458 { 13459 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13460 static int cpus; 13461 int err, n, i, tmp_cpus; 13462 bool *mask; 13463 13464 tmp_cpus = READ_ONCE(cpus); 13465 if (tmp_cpus > 0) 13466 return tmp_cpus; 13467 13468 err = parse_cpu_mask_file(fcpu, &mask, &n); 13469 if (err) 13470 return libbpf_err(err); 13471 13472 tmp_cpus = 0; 13473 for (i = 0; i < n; i++) { 13474 if (mask[i]) 13475 tmp_cpus++; 13476 } 13477 free(mask); 13478 13479 WRITE_ONCE(cpus, tmp_cpus); 13480 return tmp_cpus; 13481 } 13482 13483 static int populate_skeleton_maps(const struct bpf_object *obj, 13484 struct bpf_map_skeleton *maps, 13485 size_t map_cnt) 13486 { 13487 int i; 13488 13489 for (i = 0; i < map_cnt; i++) { 13490 struct bpf_map **map = maps[i].map; 13491 const char *name = maps[i].name; 13492 void **mmaped = maps[i].mmaped; 13493 13494 *map = bpf_object__find_map_by_name(obj, name); 13495 if (!*map) { 13496 pr_warn("failed to find skeleton map '%s'\n", name); 13497 return -ESRCH; 13498 } 13499 13500 /* externs shouldn't be pre-setup from user code */ 13501 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13502 *mmaped = (*map)->mmaped; 13503 } 13504 return 0; 13505 } 13506 13507 static int populate_skeleton_progs(const struct bpf_object *obj, 13508 struct bpf_prog_skeleton *progs, 13509 size_t prog_cnt) 13510 { 13511 int i; 13512 13513 for (i = 0; i < prog_cnt; i++) { 13514 struct bpf_program **prog = progs[i].prog; 13515 const char *name = progs[i].name; 13516 13517 *prog = bpf_object__find_program_by_name(obj, name); 13518 if (!*prog) { 13519 pr_warn("failed to find skeleton program '%s'\n", name); 13520 return -ESRCH; 13521 } 13522 } 13523 return 0; 13524 } 13525 13526 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13527 const struct bpf_object_open_opts *opts) 13528 { 13529 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13530 .object_name = s->name, 13531 ); 13532 struct bpf_object *obj; 13533 int err; 13534 13535 /* Attempt to preserve opts->object_name, unless overriden by user 13536 * explicitly. Overwriting object name for skeletons is discouraged, 13537 * as it breaks global data maps, because they contain object name 13538 * prefix as their own map name prefix. When skeleton is generated, 13539 * bpftool is making an assumption that this name will stay the same. 13540 */ 13541 if (opts) { 13542 memcpy(&skel_opts, opts, sizeof(*opts)); 13543 if (!opts->object_name) 13544 skel_opts.object_name = s->name; 13545 } 13546 13547 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13548 err = libbpf_get_error(obj); 13549 if (err) { 13550 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13551 s->name, err); 13552 return libbpf_err(err); 13553 } 13554 13555 *s->obj = obj; 13556 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13557 if (err) { 13558 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13559 return libbpf_err(err); 13560 } 13561 13562 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13563 if (err) { 13564 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13565 return libbpf_err(err); 13566 } 13567 13568 return 0; 13569 } 13570 13571 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13572 { 13573 int err, len, var_idx, i; 13574 const char *var_name; 13575 const struct bpf_map *map; 13576 struct btf *btf; 13577 __u32 map_type_id; 13578 const struct btf_type *map_type, *var_type; 13579 const struct bpf_var_skeleton *var_skel; 13580 struct btf_var_secinfo *var; 13581 13582 if (!s->obj) 13583 return libbpf_err(-EINVAL); 13584 13585 btf = bpf_object__btf(s->obj); 13586 if (!btf) { 13587 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13588 bpf_object__name(s->obj)); 13589 return libbpf_err(-errno); 13590 } 13591 13592 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13593 if (err) { 13594 pr_warn("failed to populate subskeleton maps: %d\n", err); 13595 return libbpf_err(err); 13596 } 13597 13598 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13599 if (err) { 13600 pr_warn("failed to populate subskeleton maps: %d\n", err); 13601 return libbpf_err(err); 13602 } 13603 13604 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13605 var_skel = &s->vars[var_idx]; 13606 map = *var_skel->map; 13607 map_type_id = bpf_map__btf_value_type_id(map); 13608 map_type = btf__type_by_id(btf, map_type_id); 13609 13610 if (!btf_is_datasec(map_type)) { 13611 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13612 bpf_map__name(map), 13613 __btf_kind_str(btf_kind(map_type))); 13614 return libbpf_err(-EINVAL); 13615 } 13616 13617 len = btf_vlen(map_type); 13618 var = btf_var_secinfos(map_type); 13619 for (i = 0; i < len; i++, var++) { 13620 var_type = btf__type_by_id(btf, var->type); 13621 var_name = btf__name_by_offset(btf, var_type->name_off); 13622 if (strcmp(var_name, var_skel->name) == 0) { 13623 *var_skel->addr = map->mmaped + var->offset; 13624 break; 13625 } 13626 } 13627 } 13628 return 0; 13629 } 13630 13631 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13632 { 13633 if (!s) 13634 return; 13635 free(s->maps); 13636 free(s->progs); 13637 free(s->vars); 13638 free(s); 13639 } 13640 13641 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13642 { 13643 int i, err; 13644 13645 err = bpf_object__load(*s->obj); 13646 if (err) { 13647 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13648 return libbpf_err(err); 13649 } 13650 13651 for (i = 0; i < s->map_cnt; i++) { 13652 struct bpf_map *map = *s->maps[i].map; 13653 size_t mmap_sz = bpf_map_mmap_sz(map); 13654 int prot, map_fd = map->fd; 13655 void **mmaped = s->maps[i].mmaped; 13656 13657 if (!mmaped) 13658 continue; 13659 13660 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13661 *mmaped = NULL; 13662 continue; 13663 } 13664 13665 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13666 *mmaped = map->mmaped; 13667 continue; 13668 } 13669 13670 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13671 prot = PROT_READ; 13672 else 13673 prot = PROT_READ | PROT_WRITE; 13674 13675 /* Remap anonymous mmap()-ed "map initialization image" as 13676 * a BPF map-backed mmap()-ed memory, but preserving the same 13677 * memory address. This will cause kernel to change process' 13678 * page table to point to a different piece of kernel memory, 13679 * but from userspace point of view memory address (and its 13680 * contents, being identical at this point) will stay the 13681 * same. This mapping will be released by bpf_object__close() 13682 * as per normal clean up procedure, so we don't need to worry 13683 * about it from skeleton's clean up perspective. 13684 */ 13685 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13686 if (*mmaped == MAP_FAILED) { 13687 err = -errno; 13688 *mmaped = NULL; 13689 pr_warn("failed to re-mmap() map '%s': %d\n", 13690 bpf_map__name(map), err); 13691 return libbpf_err(err); 13692 } 13693 } 13694 13695 return 0; 13696 } 13697 13698 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13699 { 13700 int i, err; 13701 13702 for (i = 0; i < s->prog_cnt; i++) { 13703 struct bpf_program *prog = *s->progs[i].prog; 13704 struct bpf_link **link = s->progs[i].link; 13705 13706 if (!prog->autoload || !prog->autoattach) 13707 continue; 13708 13709 /* auto-attaching not supported for this program */ 13710 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13711 continue; 13712 13713 /* if user already set the link manually, don't attempt auto-attach */ 13714 if (*link) 13715 continue; 13716 13717 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13718 if (err) { 13719 pr_warn("prog '%s': failed to auto-attach: %d\n", 13720 bpf_program__name(prog), err); 13721 return libbpf_err(err); 13722 } 13723 13724 /* It's possible that for some SEC() definitions auto-attach 13725 * is supported in some cases (e.g., if definition completely 13726 * specifies target information), but is not in other cases. 13727 * SEC("uprobe") is one such case. If user specified target 13728 * binary and function name, such BPF program can be 13729 * auto-attached. But if not, it shouldn't trigger skeleton's 13730 * attach to fail. It should just be skipped. 13731 * attach_fn signals such case with returning 0 (no error) and 13732 * setting link to NULL. 13733 */ 13734 } 13735 13736 return 0; 13737 } 13738 13739 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13740 { 13741 int i; 13742 13743 for (i = 0; i < s->prog_cnt; i++) { 13744 struct bpf_link **link = s->progs[i].link; 13745 13746 bpf_link__destroy(*link); 13747 *link = NULL; 13748 } 13749 } 13750 13751 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13752 { 13753 if (!s) 13754 return; 13755 13756 if (s->progs) 13757 bpf_object__detach_skeleton(s); 13758 if (s->obj) 13759 bpf_object__close(*s->obj); 13760 free(s->maps); 13761 free(s->progs); 13762 free(s); 13763 } 13764