1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 enum kern_feature_id { 172 /* v4.14: kernel support for program & map names. */ 173 FEAT_PROG_NAME, 174 /* v5.2: kernel support for global data sections. */ 175 FEAT_GLOBAL_DATA, 176 /* BTF support */ 177 FEAT_BTF, 178 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 179 FEAT_BTF_FUNC, 180 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 181 FEAT_BTF_DATASEC, 182 /* BTF_FUNC_GLOBAL is supported */ 183 FEAT_BTF_GLOBAL_FUNC, 184 /* BPF_F_MMAPABLE is supported for arrays */ 185 FEAT_ARRAY_MMAP, 186 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 187 FEAT_EXP_ATTACH_TYPE, 188 /* bpf_probe_read_{kernel,user}[_str] helpers */ 189 FEAT_PROBE_READ_KERN, 190 /* BPF_PROG_BIND_MAP is supported */ 191 FEAT_PROG_BIND_MAP, 192 /* Kernel support for module BTFs */ 193 FEAT_MODULE_BTF, 194 /* BTF_KIND_FLOAT support */ 195 FEAT_BTF_FLOAT, 196 /* BPF perf link support */ 197 FEAT_PERF_LINK, 198 /* BTF_KIND_DECL_TAG support */ 199 FEAT_BTF_DECL_TAG, 200 /* BTF_KIND_TYPE_TAG support */ 201 FEAT_BTF_TYPE_TAG, 202 __FEAT_CNT, 203 }; 204 205 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id); 206 207 enum reloc_type { 208 RELO_LD64, 209 RELO_CALL, 210 RELO_DATA, 211 RELO_EXTERN_VAR, 212 RELO_EXTERN_FUNC, 213 RELO_SUBPROG_ADDR, 214 }; 215 216 struct reloc_desc { 217 enum reloc_type type; 218 int insn_idx; 219 int map_idx; 220 int sym_off; 221 }; 222 223 struct bpf_sec_def; 224 225 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 226 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie); 227 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 228 229 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 230 enum sec_def_flags { 231 SEC_NONE = 0, 232 /* expected_attach_type is optional, if kernel doesn't support that */ 233 SEC_EXP_ATTACH_OPT = 1, 234 /* legacy, only used by libbpf_get_type_names() and 235 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 236 * This used to be associated with cgroup (and few other) BPF programs 237 * that were attachable through BPF_PROG_ATTACH command. Pretty 238 * meaningless nowadays, though. 239 */ 240 SEC_ATTACHABLE = 2, 241 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 242 /* attachment target is specified through BTF ID in either kernel or 243 * other BPF program's BTF object */ 244 SEC_ATTACH_BTF = 4, 245 /* BPF program type allows sleeping/blocking in kernel */ 246 SEC_SLEEPABLE = 8, 247 /* allow non-strict prefix matching */ 248 SEC_SLOPPY_PFX = 16, 249 }; 250 251 struct bpf_sec_def { 252 const char *sec; 253 enum bpf_prog_type prog_type; 254 enum bpf_attach_type expected_attach_type; 255 long cookie; 256 257 init_fn_t init_fn; 258 preload_fn_t preload_fn; 259 attach_fn_t attach_fn; 260 }; 261 262 /* 263 * bpf_prog should be a better name but it has been used in 264 * linux/filter.h. 265 */ 266 struct bpf_program { 267 const struct bpf_sec_def *sec_def; 268 char *sec_name; 269 size_t sec_idx; 270 /* this program's instruction offset (in number of instructions) 271 * within its containing ELF section 272 */ 273 size_t sec_insn_off; 274 /* number of original instructions in ELF section belonging to this 275 * program, not taking into account subprogram instructions possible 276 * appended later during relocation 277 */ 278 size_t sec_insn_cnt; 279 /* Offset (in number of instructions) of the start of instruction 280 * belonging to this BPF program within its containing main BPF 281 * program. For the entry-point (main) BPF program, this is always 282 * zero. For a sub-program, this gets reset before each of main BPF 283 * programs are processed and relocated and is used to determined 284 * whether sub-program was already appended to the main program, and 285 * if yes, at which instruction offset. 286 */ 287 size_t sub_insn_off; 288 289 char *name; 290 /* name with / replaced by _; makes recursive pinning 291 * in bpf_object__pin_programs easier 292 */ 293 char *pin_name; 294 295 /* instructions that belong to BPF program; insns[0] is located at 296 * sec_insn_off instruction within its ELF section in ELF file, so 297 * when mapping ELF file instruction index to the local instruction, 298 * one needs to subtract sec_insn_off; and vice versa. 299 */ 300 struct bpf_insn *insns; 301 /* actual number of instruction in this BPF program's image; for 302 * entry-point BPF programs this includes the size of main program 303 * itself plus all the used sub-programs, appended at the end 304 */ 305 size_t insns_cnt; 306 307 struct reloc_desc *reloc_desc; 308 int nr_reloc; 309 int log_level; 310 311 struct { 312 int nr; 313 int *fds; 314 } instances; 315 bpf_program_prep_t preprocessor; 316 317 struct bpf_object *obj; 318 void *priv; 319 bpf_program_clear_priv_t clear_priv; 320 321 bool load; 322 bool mark_btf_static; 323 enum bpf_prog_type type; 324 enum bpf_attach_type expected_attach_type; 325 int prog_ifindex; 326 __u32 attach_btf_obj_fd; 327 __u32 attach_btf_id; 328 __u32 attach_prog_fd; 329 void *func_info; 330 __u32 func_info_rec_size; 331 __u32 func_info_cnt; 332 333 void *line_info; 334 __u32 line_info_rec_size; 335 __u32 line_info_cnt; 336 __u32 prog_flags; 337 }; 338 339 struct bpf_struct_ops { 340 const char *tname; 341 const struct btf_type *type; 342 struct bpf_program **progs; 343 __u32 *kern_func_off; 344 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 345 void *data; 346 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 347 * btf_vmlinux's format. 348 * struct bpf_struct_ops_tcp_congestion_ops { 349 * [... some other kernel fields ...] 350 * struct tcp_congestion_ops data; 351 * } 352 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 353 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 354 * from "data". 355 */ 356 void *kern_vdata; 357 __u32 type_id; 358 }; 359 360 #define DATA_SEC ".data" 361 #define BSS_SEC ".bss" 362 #define RODATA_SEC ".rodata" 363 #define KCONFIG_SEC ".kconfig" 364 #define KSYMS_SEC ".ksyms" 365 #define STRUCT_OPS_SEC ".struct_ops" 366 367 enum libbpf_map_type { 368 LIBBPF_MAP_UNSPEC, 369 LIBBPF_MAP_DATA, 370 LIBBPF_MAP_BSS, 371 LIBBPF_MAP_RODATA, 372 LIBBPF_MAP_KCONFIG, 373 }; 374 375 struct bpf_map { 376 char *name; 377 /* real_name is defined for special internal maps (.rodata*, 378 * .data*, .bss, .kconfig) and preserves their original ELF section 379 * name. This is important to be be able to find corresponding BTF 380 * DATASEC information. 381 */ 382 char *real_name; 383 int fd; 384 int sec_idx; 385 size_t sec_offset; 386 int map_ifindex; 387 int inner_map_fd; 388 struct bpf_map_def def; 389 __u32 numa_node; 390 __u32 btf_var_idx; 391 __u32 btf_key_type_id; 392 __u32 btf_value_type_id; 393 __u32 btf_vmlinux_value_type_id; 394 void *priv; 395 bpf_map_clear_priv_t clear_priv; 396 enum libbpf_map_type libbpf_type; 397 void *mmaped; 398 struct bpf_struct_ops *st_ops; 399 struct bpf_map *inner_map; 400 void **init_slots; 401 int init_slots_sz; 402 char *pin_path; 403 bool pinned; 404 bool reused; 405 __u64 map_extra; 406 }; 407 408 enum extern_type { 409 EXT_UNKNOWN, 410 EXT_KCFG, 411 EXT_KSYM, 412 }; 413 414 enum kcfg_type { 415 KCFG_UNKNOWN, 416 KCFG_CHAR, 417 KCFG_BOOL, 418 KCFG_INT, 419 KCFG_TRISTATE, 420 KCFG_CHAR_ARR, 421 }; 422 423 struct extern_desc { 424 enum extern_type type; 425 int sym_idx; 426 int btf_id; 427 int sec_btf_id; 428 const char *name; 429 bool is_set; 430 bool is_weak; 431 union { 432 struct { 433 enum kcfg_type type; 434 int sz; 435 int align; 436 int data_off; 437 bool is_signed; 438 } kcfg; 439 struct { 440 unsigned long long addr; 441 442 /* target btf_id of the corresponding kernel var. */ 443 int kernel_btf_obj_fd; 444 int kernel_btf_id; 445 446 /* local btf_id of the ksym extern's type. */ 447 __u32 type_id; 448 /* BTF fd index to be patched in for insn->off, this is 449 * 0 for vmlinux BTF, index in obj->fd_array for module 450 * BTF 451 */ 452 __s16 btf_fd_idx; 453 } ksym; 454 }; 455 }; 456 457 static LIST_HEAD(bpf_objects_list); 458 459 struct module_btf { 460 struct btf *btf; 461 char *name; 462 __u32 id; 463 int fd; 464 int fd_array_idx; 465 }; 466 467 enum sec_type { 468 SEC_UNUSED = 0, 469 SEC_RELO, 470 SEC_BSS, 471 SEC_DATA, 472 SEC_RODATA, 473 }; 474 475 struct elf_sec_desc { 476 enum sec_type sec_type; 477 Elf64_Shdr *shdr; 478 Elf_Data *data; 479 }; 480 481 struct elf_state { 482 int fd; 483 const void *obj_buf; 484 size_t obj_buf_sz; 485 Elf *elf; 486 Elf64_Ehdr *ehdr; 487 Elf_Data *symbols; 488 Elf_Data *st_ops_data; 489 size_t shstrndx; /* section index for section name strings */ 490 size_t strtabidx; 491 struct elf_sec_desc *secs; 492 int sec_cnt; 493 int maps_shndx; 494 int btf_maps_shndx; 495 __u32 btf_maps_sec_btf_id; 496 int text_shndx; 497 int symbols_shndx; 498 int st_ops_shndx; 499 }; 500 501 struct bpf_object { 502 char name[BPF_OBJ_NAME_LEN]; 503 char license[64]; 504 __u32 kern_version; 505 506 struct bpf_program *programs; 507 size_t nr_programs; 508 struct bpf_map *maps; 509 size_t nr_maps; 510 size_t maps_cap; 511 512 char *kconfig; 513 struct extern_desc *externs; 514 int nr_extern; 515 int kconfig_map_idx; 516 517 bool loaded; 518 bool has_subcalls; 519 bool has_rodata; 520 521 struct bpf_gen *gen_loader; 522 523 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 524 struct elf_state efile; 525 /* 526 * All loaded bpf_object are linked in a list, which is 527 * hidden to caller. bpf_objects__<func> handlers deal with 528 * all objects. 529 */ 530 struct list_head list; 531 532 struct btf *btf; 533 struct btf_ext *btf_ext; 534 535 /* Parse and load BTF vmlinux if any of the programs in the object need 536 * it at load time. 537 */ 538 struct btf *btf_vmlinux; 539 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 540 * override for vmlinux BTF. 541 */ 542 char *btf_custom_path; 543 /* vmlinux BTF override for CO-RE relocations */ 544 struct btf *btf_vmlinux_override; 545 /* Lazily initialized kernel module BTFs */ 546 struct module_btf *btf_modules; 547 bool btf_modules_loaded; 548 size_t btf_module_cnt; 549 size_t btf_module_cap; 550 551 void *priv; 552 bpf_object_clear_priv_t clear_priv; 553 554 int *fd_array; 555 size_t fd_array_cap; 556 size_t fd_array_cnt; 557 558 char path[]; 559 }; 560 561 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 562 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 563 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 564 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 565 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 566 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 567 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 568 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 569 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 570 571 void bpf_program__unload(struct bpf_program *prog) 572 { 573 int i; 574 575 if (!prog) 576 return; 577 578 /* 579 * If the object is opened but the program was never loaded, 580 * it is possible that prog->instances.nr == -1. 581 */ 582 if (prog->instances.nr > 0) { 583 for (i = 0; i < prog->instances.nr; i++) 584 zclose(prog->instances.fds[i]); 585 } else if (prog->instances.nr != -1) { 586 pr_warn("Internal error: instances.nr is %d\n", 587 prog->instances.nr); 588 } 589 590 prog->instances.nr = -1; 591 zfree(&prog->instances.fds); 592 593 zfree(&prog->func_info); 594 zfree(&prog->line_info); 595 } 596 597 static void bpf_program__exit(struct bpf_program *prog) 598 { 599 if (!prog) 600 return; 601 602 if (prog->clear_priv) 603 prog->clear_priv(prog, prog->priv); 604 605 prog->priv = NULL; 606 prog->clear_priv = NULL; 607 608 bpf_program__unload(prog); 609 zfree(&prog->name); 610 zfree(&prog->sec_name); 611 zfree(&prog->pin_name); 612 zfree(&prog->insns); 613 zfree(&prog->reloc_desc); 614 615 prog->nr_reloc = 0; 616 prog->insns_cnt = 0; 617 prog->sec_idx = -1; 618 } 619 620 static char *__bpf_program__pin_name(struct bpf_program *prog) 621 { 622 char *name, *p; 623 624 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 625 name = strdup(prog->name); 626 else 627 name = strdup(prog->sec_name); 628 629 if (!name) 630 return NULL; 631 632 p = name; 633 634 while ((p = strchr(p, '/'))) 635 *p = '_'; 636 637 return name; 638 } 639 640 static bool insn_is_subprog_call(const struct bpf_insn *insn) 641 { 642 return BPF_CLASS(insn->code) == BPF_JMP && 643 BPF_OP(insn->code) == BPF_CALL && 644 BPF_SRC(insn->code) == BPF_K && 645 insn->src_reg == BPF_PSEUDO_CALL && 646 insn->dst_reg == 0 && 647 insn->off == 0; 648 } 649 650 static bool is_call_insn(const struct bpf_insn *insn) 651 { 652 return insn->code == (BPF_JMP | BPF_CALL); 653 } 654 655 static bool insn_is_pseudo_func(struct bpf_insn *insn) 656 { 657 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 658 } 659 660 static int 661 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 662 const char *name, size_t sec_idx, const char *sec_name, 663 size_t sec_off, void *insn_data, size_t insn_data_sz) 664 { 665 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 666 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 667 sec_name, name, sec_off, insn_data_sz); 668 return -EINVAL; 669 } 670 671 memset(prog, 0, sizeof(*prog)); 672 prog->obj = obj; 673 674 prog->sec_idx = sec_idx; 675 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 676 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 677 /* insns_cnt can later be increased by appending used subprograms */ 678 prog->insns_cnt = prog->sec_insn_cnt; 679 680 prog->type = BPF_PROG_TYPE_UNSPEC; 681 prog->load = true; 682 683 prog->instances.fds = NULL; 684 prog->instances.nr = -1; 685 686 prog->sec_name = strdup(sec_name); 687 if (!prog->sec_name) 688 goto errout; 689 690 prog->name = strdup(name); 691 if (!prog->name) 692 goto errout; 693 694 prog->pin_name = __bpf_program__pin_name(prog); 695 if (!prog->pin_name) 696 goto errout; 697 698 prog->insns = malloc(insn_data_sz); 699 if (!prog->insns) 700 goto errout; 701 memcpy(prog->insns, insn_data, insn_data_sz); 702 703 return 0; 704 errout: 705 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 706 bpf_program__exit(prog); 707 return -ENOMEM; 708 } 709 710 static int 711 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 712 const char *sec_name, int sec_idx) 713 { 714 Elf_Data *symbols = obj->efile.symbols; 715 struct bpf_program *prog, *progs; 716 void *data = sec_data->d_buf; 717 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 718 int nr_progs, err, i; 719 const char *name; 720 Elf64_Sym *sym; 721 722 progs = obj->programs; 723 nr_progs = obj->nr_programs; 724 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 725 sec_off = 0; 726 727 for (i = 0; i < nr_syms; i++) { 728 sym = elf_sym_by_idx(obj, i); 729 730 if (sym->st_shndx != sec_idx) 731 continue; 732 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 733 continue; 734 735 prog_sz = sym->st_size; 736 sec_off = sym->st_value; 737 738 name = elf_sym_str(obj, sym->st_name); 739 if (!name) { 740 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 741 sec_name, sec_off); 742 return -LIBBPF_ERRNO__FORMAT; 743 } 744 745 if (sec_off + prog_sz > sec_sz) { 746 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 747 sec_name, sec_off); 748 return -LIBBPF_ERRNO__FORMAT; 749 } 750 751 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 752 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 753 return -ENOTSUP; 754 } 755 756 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 757 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 758 759 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 760 if (!progs) { 761 /* 762 * In this case the original obj->programs 763 * is still valid, so don't need special treat for 764 * bpf_close_object(). 765 */ 766 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 767 sec_name, name); 768 return -ENOMEM; 769 } 770 obj->programs = progs; 771 772 prog = &progs[nr_progs]; 773 774 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 775 sec_off, data + sec_off, prog_sz); 776 if (err) 777 return err; 778 779 /* if function is a global/weak symbol, but has restricted 780 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 781 * as static to enable more permissive BPF verification mode 782 * with more outside context available to BPF verifier 783 */ 784 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 785 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 786 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 787 prog->mark_btf_static = true; 788 789 nr_progs++; 790 obj->nr_programs = nr_progs; 791 } 792 793 return 0; 794 } 795 796 static __u32 get_kernel_version(void) 797 { 798 __u32 major, minor, patch; 799 struct utsname info; 800 801 uname(&info); 802 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 803 return 0; 804 return KERNEL_VERSION(major, minor, patch); 805 } 806 807 static const struct btf_member * 808 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 809 { 810 struct btf_member *m; 811 int i; 812 813 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 814 if (btf_member_bit_offset(t, i) == bit_offset) 815 return m; 816 } 817 818 return NULL; 819 } 820 821 static const struct btf_member * 822 find_member_by_name(const struct btf *btf, const struct btf_type *t, 823 const char *name) 824 { 825 struct btf_member *m; 826 int i; 827 828 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 829 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 830 return m; 831 } 832 833 return NULL; 834 } 835 836 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 837 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 838 const char *name, __u32 kind); 839 840 static int 841 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 842 const struct btf_type **type, __u32 *type_id, 843 const struct btf_type **vtype, __u32 *vtype_id, 844 const struct btf_member **data_member) 845 { 846 const struct btf_type *kern_type, *kern_vtype; 847 const struct btf_member *kern_data_member; 848 __s32 kern_vtype_id, kern_type_id; 849 __u32 i; 850 851 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 852 if (kern_type_id < 0) { 853 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 854 tname); 855 return kern_type_id; 856 } 857 kern_type = btf__type_by_id(btf, kern_type_id); 858 859 /* Find the corresponding "map_value" type that will be used 860 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 861 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 862 * btf_vmlinux. 863 */ 864 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 865 tname, BTF_KIND_STRUCT); 866 if (kern_vtype_id < 0) { 867 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 868 STRUCT_OPS_VALUE_PREFIX, tname); 869 return kern_vtype_id; 870 } 871 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 872 873 /* Find "struct tcp_congestion_ops" from 874 * struct bpf_struct_ops_tcp_congestion_ops { 875 * [ ... ] 876 * struct tcp_congestion_ops data; 877 * } 878 */ 879 kern_data_member = btf_members(kern_vtype); 880 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 881 if (kern_data_member->type == kern_type_id) 882 break; 883 } 884 if (i == btf_vlen(kern_vtype)) { 885 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 886 tname, STRUCT_OPS_VALUE_PREFIX, tname); 887 return -EINVAL; 888 } 889 890 *type = kern_type; 891 *type_id = kern_type_id; 892 *vtype = kern_vtype; 893 *vtype_id = kern_vtype_id; 894 *data_member = kern_data_member; 895 896 return 0; 897 } 898 899 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 900 { 901 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 902 } 903 904 /* Init the map's fields that depend on kern_btf */ 905 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 906 const struct btf *btf, 907 const struct btf *kern_btf) 908 { 909 const struct btf_member *member, *kern_member, *kern_data_member; 910 const struct btf_type *type, *kern_type, *kern_vtype; 911 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 912 struct bpf_struct_ops *st_ops; 913 void *data, *kern_data; 914 const char *tname; 915 int err; 916 917 st_ops = map->st_ops; 918 type = st_ops->type; 919 tname = st_ops->tname; 920 err = find_struct_ops_kern_types(kern_btf, tname, 921 &kern_type, &kern_type_id, 922 &kern_vtype, &kern_vtype_id, 923 &kern_data_member); 924 if (err) 925 return err; 926 927 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 928 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 929 930 map->def.value_size = kern_vtype->size; 931 map->btf_vmlinux_value_type_id = kern_vtype_id; 932 933 st_ops->kern_vdata = calloc(1, kern_vtype->size); 934 if (!st_ops->kern_vdata) 935 return -ENOMEM; 936 937 data = st_ops->data; 938 kern_data_off = kern_data_member->offset / 8; 939 kern_data = st_ops->kern_vdata + kern_data_off; 940 941 member = btf_members(type); 942 for (i = 0; i < btf_vlen(type); i++, member++) { 943 const struct btf_type *mtype, *kern_mtype; 944 __u32 mtype_id, kern_mtype_id; 945 void *mdata, *kern_mdata; 946 __s64 msize, kern_msize; 947 __u32 moff, kern_moff; 948 __u32 kern_member_idx; 949 const char *mname; 950 951 mname = btf__name_by_offset(btf, member->name_off); 952 kern_member = find_member_by_name(kern_btf, kern_type, mname); 953 if (!kern_member) { 954 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 955 map->name, mname); 956 return -ENOTSUP; 957 } 958 959 kern_member_idx = kern_member - btf_members(kern_type); 960 if (btf_member_bitfield_size(type, i) || 961 btf_member_bitfield_size(kern_type, kern_member_idx)) { 962 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 963 map->name, mname); 964 return -ENOTSUP; 965 } 966 967 moff = member->offset / 8; 968 kern_moff = kern_member->offset / 8; 969 970 mdata = data + moff; 971 kern_mdata = kern_data + kern_moff; 972 973 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 974 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 975 &kern_mtype_id); 976 if (BTF_INFO_KIND(mtype->info) != 977 BTF_INFO_KIND(kern_mtype->info)) { 978 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 979 map->name, mname, BTF_INFO_KIND(mtype->info), 980 BTF_INFO_KIND(kern_mtype->info)); 981 return -ENOTSUP; 982 } 983 984 if (btf_is_ptr(mtype)) { 985 struct bpf_program *prog; 986 987 prog = st_ops->progs[i]; 988 if (!prog) 989 continue; 990 991 kern_mtype = skip_mods_and_typedefs(kern_btf, 992 kern_mtype->type, 993 &kern_mtype_id); 994 995 /* mtype->type must be a func_proto which was 996 * guaranteed in bpf_object__collect_st_ops_relos(), 997 * so only check kern_mtype for func_proto here. 998 */ 999 if (!btf_is_func_proto(kern_mtype)) { 1000 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1001 map->name, mname); 1002 return -ENOTSUP; 1003 } 1004 1005 prog->attach_btf_id = kern_type_id; 1006 prog->expected_attach_type = kern_member_idx; 1007 1008 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1009 1010 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1011 map->name, mname, prog->name, moff, 1012 kern_moff); 1013 1014 continue; 1015 } 1016 1017 msize = btf__resolve_size(btf, mtype_id); 1018 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1019 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1020 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1021 map->name, mname, (ssize_t)msize, 1022 (ssize_t)kern_msize); 1023 return -ENOTSUP; 1024 } 1025 1026 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1027 map->name, mname, (unsigned int)msize, 1028 moff, kern_moff); 1029 memcpy(kern_mdata, mdata, msize); 1030 } 1031 1032 return 0; 1033 } 1034 1035 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1036 { 1037 struct bpf_map *map; 1038 size_t i; 1039 int err; 1040 1041 for (i = 0; i < obj->nr_maps; i++) { 1042 map = &obj->maps[i]; 1043 1044 if (!bpf_map__is_struct_ops(map)) 1045 continue; 1046 1047 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1048 obj->btf_vmlinux); 1049 if (err) 1050 return err; 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1057 { 1058 const struct btf_type *type, *datasec; 1059 const struct btf_var_secinfo *vsi; 1060 struct bpf_struct_ops *st_ops; 1061 const char *tname, *var_name; 1062 __s32 type_id, datasec_id; 1063 const struct btf *btf; 1064 struct bpf_map *map; 1065 __u32 i; 1066 1067 if (obj->efile.st_ops_shndx == -1) 1068 return 0; 1069 1070 btf = obj->btf; 1071 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1072 BTF_KIND_DATASEC); 1073 if (datasec_id < 0) { 1074 pr_warn("struct_ops init: DATASEC %s not found\n", 1075 STRUCT_OPS_SEC); 1076 return -EINVAL; 1077 } 1078 1079 datasec = btf__type_by_id(btf, datasec_id); 1080 vsi = btf_var_secinfos(datasec); 1081 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1082 type = btf__type_by_id(obj->btf, vsi->type); 1083 var_name = btf__name_by_offset(obj->btf, type->name_off); 1084 1085 type_id = btf__resolve_type(obj->btf, vsi->type); 1086 if (type_id < 0) { 1087 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1088 vsi->type, STRUCT_OPS_SEC); 1089 return -EINVAL; 1090 } 1091 1092 type = btf__type_by_id(obj->btf, type_id); 1093 tname = btf__name_by_offset(obj->btf, type->name_off); 1094 if (!tname[0]) { 1095 pr_warn("struct_ops init: anonymous type is not supported\n"); 1096 return -ENOTSUP; 1097 } 1098 if (!btf_is_struct(type)) { 1099 pr_warn("struct_ops init: %s is not a struct\n", tname); 1100 return -EINVAL; 1101 } 1102 1103 map = bpf_object__add_map(obj); 1104 if (IS_ERR(map)) 1105 return PTR_ERR(map); 1106 1107 map->sec_idx = obj->efile.st_ops_shndx; 1108 map->sec_offset = vsi->offset; 1109 map->name = strdup(var_name); 1110 if (!map->name) 1111 return -ENOMEM; 1112 1113 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1114 map->def.key_size = sizeof(int); 1115 map->def.value_size = type->size; 1116 map->def.max_entries = 1; 1117 1118 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1119 if (!map->st_ops) 1120 return -ENOMEM; 1121 st_ops = map->st_ops; 1122 st_ops->data = malloc(type->size); 1123 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1124 st_ops->kern_func_off = malloc(btf_vlen(type) * 1125 sizeof(*st_ops->kern_func_off)); 1126 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1127 return -ENOMEM; 1128 1129 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1130 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1131 var_name, STRUCT_OPS_SEC); 1132 return -EINVAL; 1133 } 1134 1135 memcpy(st_ops->data, 1136 obj->efile.st_ops_data->d_buf + vsi->offset, 1137 type->size); 1138 st_ops->tname = tname; 1139 st_ops->type = type; 1140 st_ops->type_id = type_id; 1141 1142 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1143 tname, type_id, var_name, vsi->offset); 1144 } 1145 1146 return 0; 1147 } 1148 1149 static struct bpf_object *bpf_object__new(const char *path, 1150 const void *obj_buf, 1151 size_t obj_buf_sz, 1152 const char *obj_name) 1153 { 1154 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1155 struct bpf_object *obj; 1156 char *end; 1157 1158 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1159 if (!obj) { 1160 pr_warn("alloc memory failed for %s\n", path); 1161 return ERR_PTR(-ENOMEM); 1162 } 1163 1164 strcpy(obj->path, path); 1165 if (obj_name) { 1166 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1167 obj->name[sizeof(obj->name) - 1] = 0; 1168 } else { 1169 /* Using basename() GNU version which doesn't modify arg. */ 1170 strncpy(obj->name, basename((void *)path), 1171 sizeof(obj->name) - 1); 1172 end = strchr(obj->name, '.'); 1173 if (end) 1174 *end = 0; 1175 } 1176 1177 obj->efile.fd = -1; 1178 /* 1179 * Caller of this function should also call 1180 * bpf_object__elf_finish() after data collection to return 1181 * obj_buf to user. If not, we should duplicate the buffer to 1182 * avoid user freeing them before elf finish. 1183 */ 1184 obj->efile.obj_buf = obj_buf; 1185 obj->efile.obj_buf_sz = obj_buf_sz; 1186 obj->efile.maps_shndx = -1; 1187 obj->efile.btf_maps_shndx = -1; 1188 obj->efile.st_ops_shndx = -1; 1189 obj->kconfig_map_idx = -1; 1190 1191 obj->kern_version = get_kernel_version(); 1192 obj->loaded = false; 1193 1194 INIT_LIST_HEAD(&obj->list); 1195 if (!strict) 1196 list_add(&obj->list, &bpf_objects_list); 1197 return obj; 1198 } 1199 1200 static void bpf_object__elf_finish(struct bpf_object *obj) 1201 { 1202 if (!obj->efile.elf) 1203 return; 1204 1205 if (obj->efile.elf) { 1206 elf_end(obj->efile.elf); 1207 obj->efile.elf = NULL; 1208 } 1209 obj->efile.symbols = NULL; 1210 obj->efile.st_ops_data = NULL; 1211 1212 zfree(&obj->efile.secs); 1213 obj->efile.sec_cnt = 0; 1214 zclose(obj->efile.fd); 1215 obj->efile.obj_buf = NULL; 1216 obj->efile.obj_buf_sz = 0; 1217 } 1218 1219 static int bpf_object__elf_init(struct bpf_object *obj) 1220 { 1221 Elf64_Ehdr *ehdr; 1222 int err = 0; 1223 Elf *elf; 1224 1225 if (obj->efile.elf) { 1226 pr_warn("elf: init internal error\n"); 1227 return -LIBBPF_ERRNO__LIBELF; 1228 } 1229 1230 if (obj->efile.obj_buf_sz > 0) { 1231 /* 1232 * obj_buf should have been validated by 1233 * bpf_object__open_buffer(). 1234 */ 1235 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1236 } else { 1237 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1238 if (obj->efile.fd < 0) { 1239 char errmsg[STRERR_BUFSIZE], *cp; 1240 1241 err = -errno; 1242 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1243 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1244 return err; 1245 } 1246 1247 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1248 } 1249 1250 if (!elf) { 1251 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1252 err = -LIBBPF_ERRNO__LIBELF; 1253 goto errout; 1254 } 1255 1256 obj->efile.elf = elf; 1257 1258 if (elf_kind(elf) != ELF_K_ELF) { 1259 err = -LIBBPF_ERRNO__FORMAT; 1260 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1261 goto errout; 1262 } 1263 1264 if (gelf_getclass(elf) != ELFCLASS64) { 1265 err = -LIBBPF_ERRNO__FORMAT; 1266 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1267 goto errout; 1268 } 1269 1270 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1271 if (!obj->efile.ehdr) { 1272 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1273 err = -LIBBPF_ERRNO__FORMAT; 1274 goto errout; 1275 } 1276 1277 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1278 pr_warn("elf: failed to get section names section index for %s: %s\n", 1279 obj->path, elf_errmsg(-1)); 1280 err = -LIBBPF_ERRNO__FORMAT; 1281 goto errout; 1282 } 1283 1284 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1285 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1286 pr_warn("elf: failed to get section names strings from %s: %s\n", 1287 obj->path, elf_errmsg(-1)); 1288 err = -LIBBPF_ERRNO__FORMAT; 1289 goto errout; 1290 } 1291 1292 /* Old LLVM set e_machine to EM_NONE */ 1293 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1294 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1295 err = -LIBBPF_ERRNO__FORMAT; 1296 goto errout; 1297 } 1298 1299 return 0; 1300 errout: 1301 bpf_object__elf_finish(obj); 1302 return err; 1303 } 1304 1305 static int bpf_object__check_endianness(struct bpf_object *obj) 1306 { 1307 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1308 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1309 return 0; 1310 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1311 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1312 return 0; 1313 #else 1314 # error "Unrecognized __BYTE_ORDER__" 1315 #endif 1316 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1317 return -LIBBPF_ERRNO__ENDIAN; 1318 } 1319 1320 static int 1321 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1322 { 1323 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1324 pr_debug("license of %s is %s\n", obj->path, obj->license); 1325 return 0; 1326 } 1327 1328 static int 1329 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1330 { 1331 __u32 kver; 1332 1333 if (size != sizeof(kver)) { 1334 pr_warn("invalid kver section in %s\n", obj->path); 1335 return -LIBBPF_ERRNO__FORMAT; 1336 } 1337 memcpy(&kver, data, sizeof(kver)); 1338 obj->kern_version = kver; 1339 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1340 return 0; 1341 } 1342 1343 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1344 { 1345 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1346 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1347 return true; 1348 return false; 1349 } 1350 1351 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1352 { 1353 int ret = -ENOENT; 1354 Elf_Data *data; 1355 Elf_Scn *scn; 1356 1357 *size = 0; 1358 if (!name) 1359 return -EINVAL; 1360 1361 scn = elf_sec_by_name(obj, name); 1362 data = elf_sec_data(obj, scn); 1363 if (data) { 1364 ret = 0; /* found it */ 1365 *size = data->d_size; 1366 } 1367 1368 return *size ? 0 : ret; 1369 } 1370 1371 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1372 { 1373 Elf_Data *symbols = obj->efile.symbols; 1374 const char *sname; 1375 size_t si; 1376 1377 if (!name || !off) 1378 return -EINVAL; 1379 1380 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1381 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1382 1383 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1384 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1385 continue; 1386 1387 sname = elf_sym_str(obj, sym->st_name); 1388 if (!sname) { 1389 pr_warn("failed to get sym name string for var %s\n", name); 1390 return -EIO; 1391 } 1392 if (strcmp(name, sname) == 0) { 1393 *off = sym->st_value; 1394 return 0; 1395 } 1396 } 1397 1398 return -ENOENT; 1399 } 1400 1401 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1402 { 1403 struct bpf_map *new_maps; 1404 size_t new_cap; 1405 int i; 1406 1407 if (obj->nr_maps < obj->maps_cap) 1408 return &obj->maps[obj->nr_maps++]; 1409 1410 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1411 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1412 if (!new_maps) { 1413 pr_warn("alloc maps for object failed\n"); 1414 return ERR_PTR(-ENOMEM); 1415 } 1416 1417 obj->maps_cap = new_cap; 1418 obj->maps = new_maps; 1419 1420 /* zero out new maps */ 1421 memset(obj->maps + obj->nr_maps, 0, 1422 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1423 /* 1424 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1425 * when failure (zclose won't close negative fd)). 1426 */ 1427 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1428 obj->maps[i].fd = -1; 1429 obj->maps[i].inner_map_fd = -1; 1430 } 1431 1432 return &obj->maps[obj->nr_maps++]; 1433 } 1434 1435 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1436 { 1437 long page_sz = sysconf(_SC_PAGE_SIZE); 1438 size_t map_sz; 1439 1440 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1441 map_sz = roundup(map_sz, page_sz); 1442 return map_sz; 1443 } 1444 1445 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1446 { 1447 char map_name[BPF_OBJ_NAME_LEN], *p; 1448 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1449 1450 /* This is one of the more confusing parts of libbpf for various 1451 * reasons, some of which are historical. The original idea for naming 1452 * internal names was to include as much of BPF object name prefix as 1453 * possible, so that it can be distinguished from similar internal 1454 * maps of a different BPF object. 1455 * As an example, let's say we have bpf_object named 'my_object_name' 1456 * and internal map corresponding to '.rodata' ELF section. The final 1457 * map name advertised to user and to the kernel will be 1458 * 'my_objec.rodata', taking first 8 characters of object name and 1459 * entire 7 characters of '.rodata'. 1460 * Somewhat confusingly, if internal map ELF section name is shorter 1461 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1462 * for the suffix, even though we only have 4 actual characters, and 1463 * resulting map will be called 'my_objec.bss', not even using all 15 1464 * characters allowed by the kernel. Oh well, at least the truncated 1465 * object name is somewhat consistent in this case. But if the map 1466 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1467 * (8 chars) and thus will be left with only first 7 characters of the 1468 * object name ('my_obje'). Happy guessing, user, that the final map 1469 * name will be "my_obje.kconfig". 1470 * Now, with libbpf starting to support arbitrarily named .rodata.* 1471 * and .data.* data sections, it's possible that ELF section name is 1472 * longer than allowed 15 chars, so we now need to be careful to take 1473 * only up to 15 first characters of ELF name, taking no BPF object 1474 * name characters at all. So '.rodata.abracadabra' will result in 1475 * '.rodata.abracad' kernel and user-visible name. 1476 * We need to keep this convoluted logic intact for .data, .bss and 1477 * .rodata maps, but for new custom .data.custom and .rodata.custom 1478 * maps we use their ELF names as is, not prepending bpf_object name 1479 * in front. We still need to truncate them to 15 characters for the 1480 * kernel. Full name can be recovered for such maps by using DATASEC 1481 * BTF type associated with such map's value type, though. 1482 */ 1483 if (sfx_len >= BPF_OBJ_NAME_LEN) 1484 sfx_len = BPF_OBJ_NAME_LEN - 1; 1485 1486 /* if there are two or more dots in map name, it's a custom dot map */ 1487 if (strchr(real_name + 1, '.') != NULL) 1488 pfx_len = 0; 1489 else 1490 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1491 1492 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1493 sfx_len, real_name); 1494 1495 /* sanitise map name to characters allowed by kernel */ 1496 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1497 if (!isalnum(*p) && *p != '_' && *p != '.') 1498 *p = '_'; 1499 1500 return strdup(map_name); 1501 } 1502 1503 static int 1504 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1505 const char *real_name, int sec_idx, void *data, size_t data_sz) 1506 { 1507 struct bpf_map_def *def; 1508 struct bpf_map *map; 1509 int err; 1510 1511 map = bpf_object__add_map(obj); 1512 if (IS_ERR(map)) 1513 return PTR_ERR(map); 1514 1515 map->libbpf_type = type; 1516 map->sec_idx = sec_idx; 1517 map->sec_offset = 0; 1518 map->real_name = strdup(real_name); 1519 map->name = internal_map_name(obj, real_name); 1520 if (!map->real_name || !map->name) { 1521 zfree(&map->real_name); 1522 zfree(&map->name); 1523 return -ENOMEM; 1524 } 1525 1526 def = &map->def; 1527 def->type = BPF_MAP_TYPE_ARRAY; 1528 def->key_size = sizeof(int); 1529 def->value_size = data_sz; 1530 def->max_entries = 1; 1531 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1532 ? BPF_F_RDONLY_PROG : 0; 1533 def->map_flags |= BPF_F_MMAPABLE; 1534 1535 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1536 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1537 1538 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1539 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1540 if (map->mmaped == MAP_FAILED) { 1541 err = -errno; 1542 map->mmaped = NULL; 1543 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1544 map->name, err); 1545 zfree(&map->real_name); 1546 zfree(&map->name); 1547 return err; 1548 } 1549 1550 if (data) 1551 memcpy(map->mmaped, data, data_sz); 1552 1553 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1554 return 0; 1555 } 1556 1557 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1558 { 1559 struct elf_sec_desc *sec_desc; 1560 const char *sec_name; 1561 int err = 0, sec_idx; 1562 1563 /* 1564 * Populate obj->maps with libbpf internal maps. 1565 */ 1566 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1567 sec_desc = &obj->efile.secs[sec_idx]; 1568 1569 switch (sec_desc->sec_type) { 1570 case SEC_DATA: 1571 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1572 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1573 sec_name, sec_idx, 1574 sec_desc->data->d_buf, 1575 sec_desc->data->d_size); 1576 break; 1577 case SEC_RODATA: 1578 obj->has_rodata = true; 1579 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1580 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1581 sec_name, sec_idx, 1582 sec_desc->data->d_buf, 1583 sec_desc->data->d_size); 1584 break; 1585 case SEC_BSS: 1586 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1587 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1588 sec_name, sec_idx, 1589 NULL, 1590 sec_desc->data->d_size); 1591 break; 1592 default: 1593 /* skip */ 1594 break; 1595 } 1596 if (err) 1597 return err; 1598 } 1599 return 0; 1600 } 1601 1602 1603 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1604 const void *name) 1605 { 1606 int i; 1607 1608 for (i = 0; i < obj->nr_extern; i++) { 1609 if (strcmp(obj->externs[i].name, name) == 0) 1610 return &obj->externs[i]; 1611 } 1612 return NULL; 1613 } 1614 1615 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1616 char value) 1617 { 1618 switch (ext->kcfg.type) { 1619 case KCFG_BOOL: 1620 if (value == 'm') { 1621 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1622 ext->name, value); 1623 return -EINVAL; 1624 } 1625 *(bool *)ext_val = value == 'y' ? true : false; 1626 break; 1627 case KCFG_TRISTATE: 1628 if (value == 'y') 1629 *(enum libbpf_tristate *)ext_val = TRI_YES; 1630 else if (value == 'm') 1631 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1632 else /* value == 'n' */ 1633 *(enum libbpf_tristate *)ext_val = TRI_NO; 1634 break; 1635 case KCFG_CHAR: 1636 *(char *)ext_val = value; 1637 break; 1638 case KCFG_UNKNOWN: 1639 case KCFG_INT: 1640 case KCFG_CHAR_ARR: 1641 default: 1642 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1643 ext->name, value); 1644 return -EINVAL; 1645 } 1646 ext->is_set = true; 1647 return 0; 1648 } 1649 1650 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1651 const char *value) 1652 { 1653 size_t len; 1654 1655 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1656 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1657 return -EINVAL; 1658 } 1659 1660 len = strlen(value); 1661 if (value[len - 1] != '"') { 1662 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1663 ext->name, value); 1664 return -EINVAL; 1665 } 1666 1667 /* strip quotes */ 1668 len -= 2; 1669 if (len >= ext->kcfg.sz) { 1670 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1671 ext->name, value, len, ext->kcfg.sz - 1); 1672 len = ext->kcfg.sz - 1; 1673 } 1674 memcpy(ext_val, value + 1, len); 1675 ext_val[len] = '\0'; 1676 ext->is_set = true; 1677 return 0; 1678 } 1679 1680 static int parse_u64(const char *value, __u64 *res) 1681 { 1682 char *value_end; 1683 int err; 1684 1685 errno = 0; 1686 *res = strtoull(value, &value_end, 0); 1687 if (errno) { 1688 err = -errno; 1689 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1690 return err; 1691 } 1692 if (*value_end) { 1693 pr_warn("failed to parse '%s' as integer completely\n", value); 1694 return -EINVAL; 1695 } 1696 return 0; 1697 } 1698 1699 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1700 { 1701 int bit_sz = ext->kcfg.sz * 8; 1702 1703 if (ext->kcfg.sz == 8) 1704 return true; 1705 1706 /* Validate that value stored in u64 fits in integer of `ext->sz` 1707 * bytes size without any loss of information. If the target integer 1708 * is signed, we rely on the following limits of integer type of 1709 * Y bits and subsequent transformation: 1710 * 1711 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1712 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1713 * 0 <= X + 2^(Y-1) < 2^Y 1714 * 1715 * For unsigned target integer, check that all the (64 - Y) bits are 1716 * zero. 1717 */ 1718 if (ext->kcfg.is_signed) 1719 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1720 else 1721 return (v >> bit_sz) == 0; 1722 } 1723 1724 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1725 __u64 value) 1726 { 1727 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1728 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1729 ext->name, (unsigned long long)value); 1730 return -EINVAL; 1731 } 1732 if (!is_kcfg_value_in_range(ext, value)) { 1733 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1734 ext->name, (unsigned long long)value, ext->kcfg.sz); 1735 return -ERANGE; 1736 } 1737 switch (ext->kcfg.sz) { 1738 case 1: *(__u8 *)ext_val = value; break; 1739 case 2: *(__u16 *)ext_val = value; break; 1740 case 4: *(__u32 *)ext_val = value; break; 1741 case 8: *(__u64 *)ext_val = value; break; 1742 default: 1743 return -EINVAL; 1744 } 1745 ext->is_set = true; 1746 return 0; 1747 } 1748 1749 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1750 char *buf, void *data) 1751 { 1752 struct extern_desc *ext; 1753 char *sep, *value; 1754 int len, err = 0; 1755 void *ext_val; 1756 __u64 num; 1757 1758 if (!str_has_pfx(buf, "CONFIG_")) 1759 return 0; 1760 1761 sep = strchr(buf, '='); 1762 if (!sep) { 1763 pr_warn("failed to parse '%s': no separator\n", buf); 1764 return -EINVAL; 1765 } 1766 1767 /* Trim ending '\n' */ 1768 len = strlen(buf); 1769 if (buf[len - 1] == '\n') 1770 buf[len - 1] = '\0'; 1771 /* Split on '=' and ensure that a value is present. */ 1772 *sep = '\0'; 1773 if (!sep[1]) { 1774 *sep = '='; 1775 pr_warn("failed to parse '%s': no value\n", buf); 1776 return -EINVAL; 1777 } 1778 1779 ext = find_extern_by_name(obj, buf); 1780 if (!ext || ext->is_set) 1781 return 0; 1782 1783 ext_val = data + ext->kcfg.data_off; 1784 value = sep + 1; 1785 1786 switch (*value) { 1787 case 'y': case 'n': case 'm': 1788 err = set_kcfg_value_tri(ext, ext_val, *value); 1789 break; 1790 case '"': 1791 err = set_kcfg_value_str(ext, ext_val, value); 1792 break; 1793 default: 1794 /* assume integer */ 1795 err = parse_u64(value, &num); 1796 if (err) { 1797 pr_warn("extern (kcfg) %s=%s should be integer\n", 1798 ext->name, value); 1799 return err; 1800 } 1801 err = set_kcfg_value_num(ext, ext_val, num); 1802 break; 1803 } 1804 if (err) 1805 return err; 1806 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1807 return 0; 1808 } 1809 1810 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1811 { 1812 char buf[PATH_MAX]; 1813 struct utsname uts; 1814 int len, err = 0; 1815 gzFile file; 1816 1817 uname(&uts); 1818 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1819 if (len < 0) 1820 return -EINVAL; 1821 else if (len >= PATH_MAX) 1822 return -ENAMETOOLONG; 1823 1824 /* gzopen also accepts uncompressed files. */ 1825 file = gzopen(buf, "r"); 1826 if (!file) 1827 file = gzopen("/proc/config.gz", "r"); 1828 1829 if (!file) { 1830 pr_warn("failed to open system Kconfig\n"); 1831 return -ENOENT; 1832 } 1833 1834 while (gzgets(file, buf, sizeof(buf))) { 1835 err = bpf_object__process_kconfig_line(obj, buf, data); 1836 if (err) { 1837 pr_warn("error parsing system Kconfig line '%s': %d\n", 1838 buf, err); 1839 goto out; 1840 } 1841 } 1842 1843 out: 1844 gzclose(file); 1845 return err; 1846 } 1847 1848 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1849 const char *config, void *data) 1850 { 1851 char buf[PATH_MAX]; 1852 int err = 0; 1853 FILE *file; 1854 1855 file = fmemopen((void *)config, strlen(config), "r"); 1856 if (!file) { 1857 err = -errno; 1858 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1859 return err; 1860 } 1861 1862 while (fgets(buf, sizeof(buf), file)) { 1863 err = bpf_object__process_kconfig_line(obj, buf, data); 1864 if (err) { 1865 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1866 buf, err); 1867 break; 1868 } 1869 } 1870 1871 fclose(file); 1872 return err; 1873 } 1874 1875 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1876 { 1877 struct extern_desc *last_ext = NULL, *ext; 1878 size_t map_sz; 1879 int i, err; 1880 1881 for (i = 0; i < obj->nr_extern; i++) { 1882 ext = &obj->externs[i]; 1883 if (ext->type == EXT_KCFG) 1884 last_ext = ext; 1885 } 1886 1887 if (!last_ext) 1888 return 0; 1889 1890 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1891 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1892 ".kconfig", obj->efile.symbols_shndx, 1893 NULL, map_sz); 1894 if (err) 1895 return err; 1896 1897 obj->kconfig_map_idx = obj->nr_maps - 1; 1898 1899 return 0; 1900 } 1901 1902 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1903 { 1904 Elf_Data *symbols = obj->efile.symbols; 1905 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1906 Elf_Data *data = NULL; 1907 Elf_Scn *scn; 1908 1909 if (obj->efile.maps_shndx < 0) 1910 return 0; 1911 1912 if (!symbols) 1913 return -EINVAL; 1914 1915 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1916 data = elf_sec_data(obj, scn); 1917 if (!scn || !data) { 1918 pr_warn("elf: failed to get legacy map definitions for %s\n", 1919 obj->path); 1920 return -EINVAL; 1921 } 1922 1923 /* 1924 * Count number of maps. Each map has a name. 1925 * Array of maps is not supported: only the first element is 1926 * considered. 1927 * 1928 * TODO: Detect array of map and report error. 1929 */ 1930 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1931 for (i = 0; i < nr_syms; i++) { 1932 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1933 1934 if (sym->st_shndx != obj->efile.maps_shndx) 1935 continue; 1936 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1937 continue; 1938 nr_maps++; 1939 } 1940 /* Assume equally sized map definitions */ 1941 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1942 nr_maps, data->d_size, obj->path); 1943 1944 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1945 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1946 obj->path); 1947 return -EINVAL; 1948 } 1949 map_def_sz = data->d_size / nr_maps; 1950 1951 /* Fill obj->maps using data in "maps" section. */ 1952 for (i = 0; i < nr_syms; i++) { 1953 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1954 const char *map_name; 1955 struct bpf_map_def *def; 1956 struct bpf_map *map; 1957 1958 if (sym->st_shndx != obj->efile.maps_shndx) 1959 continue; 1960 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1961 continue; 1962 1963 map = bpf_object__add_map(obj); 1964 if (IS_ERR(map)) 1965 return PTR_ERR(map); 1966 1967 map_name = elf_sym_str(obj, sym->st_name); 1968 if (!map_name) { 1969 pr_warn("failed to get map #%d name sym string for obj %s\n", 1970 i, obj->path); 1971 return -LIBBPF_ERRNO__FORMAT; 1972 } 1973 1974 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 1975 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 1976 return -ENOTSUP; 1977 } 1978 1979 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1980 map->sec_idx = sym->st_shndx; 1981 map->sec_offset = sym->st_value; 1982 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1983 map_name, map->sec_idx, map->sec_offset); 1984 if (sym->st_value + map_def_sz > data->d_size) { 1985 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1986 obj->path, map_name); 1987 return -EINVAL; 1988 } 1989 1990 map->name = strdup(map_name); 1991 if (!map->name) { 1992 pr_warn("map '%s': failed to alloc map name\n", map_name); 1993 return -ENOMEM; 1994 } 1995 pr_debug("map %d is \"%s\"\n", i, map->name); 1996 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 1997 /* 1998 * If the definition of the map in the object file fits in 1999 * bpf_map_def, copy it. Any extra fields in our version 2000 * of bpf_map_def will default to zero as a result of the 2001 * calloc above. 2002 */ 2003 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2004 memcpy(&map->def, def, map_def_sz); 2005 } else { 2006 /* 2007 * Here the map structure being read is bigger than what 2008 * we expect, truncate if the excess bits are all zero. 2009 * If they are not zero, reject this map as 2010 * incompatible. 2011 */ 2012 char *b; 2013 2014 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2015 b < ((char *)def) + map_def_sz; b++) { 2016 if (*b != 0) { 2017 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2018 obj->path, map_name); 2019 if (strict) 2020 return -EINVAL; 2021 } 2022 } 2023 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2024 } 2025 } 2026 return 0; 2027 } 2028 2029 const struct btf_type * 2030 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2031 { 2032 const struct btf_type *t = btf__type_by_id(btf, id); 2033 2034 if (res_id) 2035 *res_id = id; 2036 2037 while (btf_is_mod(t) || btf_is_typedef(t)) { 2038 if (res_id) 2039 *res_id = t->type; 2040 t = btf__type_by_id(btf, t->type); 2041 } 2042 2043 return t; 2044 } 2045 2046 static const struct btf_type * 2047 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2048 { 2049 const struct btf_type *t; 2050 2051 t = skip_mods_and_typedefs(btf, id, NULL); 2052 if (!btf_is_ptr(t)) 2053 return NULL; 2054 2055 t = skip_mods_and_typedefs(btf, t->type, res_id); 2056 2057 return btf_is_func_proto(t) ? t : NULL; 2058 } 2059 2060 static const char *__btf_kind_str(__u16 kind) 2061 { 2062 switch (kind) { 2063 case BTF_KIND_UNKN: return "void"; 2064 case BTF_KIND_INT: return "int"; 2065 case BTF_KIND_PTR: return "ptr"; 2066 case BTF_KIND_ARRAY: return "array"; 2067 case BTF_KIND_STRUCT: return "struct"; 2068 case BTF_KIND_UNION: return "union"; 2069 case BTF_KIND_ENUM: return "enum"; 2070 case BTF_KIND_FWD: return "fwd"; 2071 case BTF_KIND_TYPEDEF: return "typedef"; 2072 case BTF_KIND_VOLATILE: return "volatile"; 2073 case BTF_KIND_CONST: return "const"; 2074 case BTF_KIND_RESTRICT: return "restrict"; 2075 case BTF_KIND_FUNC: return "func"; 2076 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2077 case BTF_KIND_VAR: return "var"; 2078 case BTF_KIND_DATASEC: return "datasec"; 2079 case BTF_KIND_FLOAT: return "float"; 2080 case BTF_KIND_DECL_TAG: return "decl_tag"; 2081 case BTF_KIND_TYPE_TAG: return "type_tag"; 2082 default: return "unknown"; 2083 } 2084 } 2085 2086 const char *btf_kind_str(const struct btf_type *t) 2087 { 2088 return __btf_kind_str(btf_kind(t)); 2089 } 2090 2091 /* 2092 * Fetch integer attribute of BTF map definition. Such attributes are 2093 * represented using a pointer to an array, in which dimensionality of array 2094 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2095 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2096 * type definition, while using only sizeof(void *) space in ELF data section. 2097 */ 2098 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2099 const struct btf_member *m, __u32 *res) 2100 { 2101 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2102 const char *name = btf__name_by_offset(btf, m->name_off); 2103 const struct btf_array *arr_info; 2104 const struct btf_type *arr_t; 2105 2106 if (!btf_is_ptr(t)) { 2107 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2108 map_name, name, btf_kind_str(t)); 2109 return false; 2110 } 2111 2112 arr_t = btf__type_by_id(btf, t->type); 2113 if (!arr_t) { 2114 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2115 map_name, name, t->type); 2116 return false; 2117 } 2118 if (!btf_is_array(arr_t)) { 2119 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2120 map_name, name, btf_kind_str(arr_t)); 2121 return false; 2122 } 2123 arr_info = btf_array(arr_t); 2124 *res = arr_info->nelems; 2125 return true; 2126 } 2127 2128 static int build_map_pin_path(struct bpf_map *map, const char *path) 2129 { 2130 char buf[PATH_MAX]; 2131 int len; 2132 2133 if (!path) 2134 path = "/sys/fs/bpf"; 2135 2136 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2137 if (len < 0) 2138 return -EINVAL; 2139 else if (len >= PATH_MAX) 2140 return -ENAMETOOLONG; 2141 2142 return bpf_map__set_pin_path(map, buf); 2143 } 2144 2145 int parse_btf_map_def(const char *map_name, struct btf *btf, 2146 const struct btf_type *def_t, bool strict, 2147 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2148 { 2149 const struct btf_type *t; 2150 const struct btf_member *m; 2151 bool is_inner = inner_def == NULL; 2152 int vlen, i; 2153 2154 vlen = btf_vlen(def_t); 2155 m = btf_members(def_t); 2156 for (i = 0; i < vlen; i++, m++) { 2157 const char *name = btf__name_by_offset(btf, m->name_off); 2158 2159 if (!name) { 2160 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2161 return -EINVAL; 2162 } 2163 if (strcmp(name, "type") == 0) { 2164 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2165 return -EINVAL; 2166 map_def->parts |= MAP_DEF_MAP_TYPE; 2167 } else if (strcmp(name, "max_entries") == 0) { 2168 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2169 return -EINVAL; 2170 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2171 } else if (strcmp(name, "map_flags") == 0) { 2172 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2173 return -EINVAL; 2174 map_def->parts |= MAP_DEF_MAP_FLAGS; 2175 } else if (strcmp(name, "numa_node") == 0) { 2176 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2177 return -EINVAL; 2178 map_def->parts |= MAP_DEF_NUMA_NODE; 2179 } else if (strcmp(name, "key_size") == 0) { 2180 __u32 sz; 2181 2182 if (!get_map_field_int(map_name, btf, m, &sz)) 2183 return -EINVAL; 2184 if (map_def->key_size && map_def->key_size != sz) { 2185 pr_warn("map '%s': conflicting key size %u != %u.\n", 2186 map_name, map_def->key_size, sz); 2187 return -EINVAL; 2188 } 2189 map_def->key_size = sz; 2190 map_def->parts |= MAP_DEF_KEY_SIZE; 2191 } else if (strcmp(name, "key") == 0) { 2192 __s64 sz; 2193 2194 t = btf__type_by_id(btf, m->type); 2195 if (!t) { 2196 pr_warn("map '%s': key type [%d] not found.\n", 2197 map_name, m->type); 2198 return -EINVAL; 2199 } 2200 if (!btf_is_ptr(t)) { 2201 pr_warn("map '%s': key spec is not PTR: %s.\n", 2202 map_name, btf_kind_str(t)); 2203 return -EINVAL; 2204 } 2205 sz = btf__resolve_size(btf, t->type); 2206 if (sz < 0) { 2207 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2208 map_name, t->type, (ssize_t)sz); 2209 return sz; 2210 } 2211 if (map_def->key_size && map_def->key_size != sz) { 2212 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2213 map_name, map_def->key_size, (ssize_t)sz); 2214 return -EINVAL; 2215 } 2216 map_def->key_size = sz; 2217 map_def->key_type_id = t->type; 2218 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2219 } else if (strcmp(name, "value_size") == 0) { 2220 __u32 sz; 2221 2222 if (!get_map_field_int(map_name, btf, m, &sz)) 2223 return -EINVAL; 2224 if (map_def->value_size && map_def->value_size != sz) { 2225 pr_warn("map '%s': conflicting value size %u != %u.\n", 2226 map_name, map_def->value_size, sz); 2227 return -EINVAL; 2228 } 2229 map_def->value_size = sz; 2230 map_def->parts |= MAP_DEF_VALUE_SIZE; 2231 } else if (strcmp(name, "value") == 0) { 2232 __s64 sz; 2233 2234 t = btf__type_by_id(btf, m->type); 2235 if (!t) { 2236 pr_warn("map '%s': value type [%d] not found.\n", 2237 map_name, m->type); 2238 return -EINVAL; 2239 } 2240 if (!btf_is_ptr(t)) { 2241 pr_warn("map '%s': value spec is not PTR: %s.\n", 2242 map_name, btf_kind_str(t)); 2243 return -EINVAL; 2244 } 2245 sz = btf__resolve_size(btf, t->type); 2246 if (sz < 0) { 2247 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2248 map_name, t->type, (ssize_t)sz); 2249 return sz; 2250 } 2251 if (map_def->value_size && map_def->value_size != sz) { 2252 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2253 map_name, map_def->value_size, (ssize_t)sz); 2254 return -EINVAL; 2255 } 2256 map_def->value_size = sz; 2257 map_def->value_type_id = t->type; 2258 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2259 } 2260 else if (strcmp(name, "values") == 0) { 2261 char inner_map_name[128]; 2262 int err; 2263 2264 if (is_inner) { 2265 pr_warn("map '%s': multi-level inner maps not supported.\n", 2266 map_name); 2267 return -ENOTSUP; 2268 } 2269 if (i != vlen - 1) { 2270 pr_warn("map '%s': '%s' member should be last.\n", 2271 map_name, name); 2272 return -EINVAL; 2273 } 2274 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2275 pr_warn("map '%s': should be map-in-map.\n", 2276 map_name); 2277 return -ENOTSUP; 2278 } 2279 if (map_def->value_size && map_def->value_size != 4) { 2280 pr_warn("map '%s': conflicting value size %u != 4.\n", 2281 map_name, map_def->value_size); 2282 return -EINVAL; 2283 } 2284 map_def->value_size = 4; 2285 t = btf__type_by_id(btf, m->type); 2286 if (!t) { 2287 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2288 map_name, m->type); 2289 return -EINVAL; 2290 } 2291 if (!btf_is_array(t) || btf_array(t)->nelems) { 2292 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2293 map_name); 2294 return -EINVAL; 2295 } 2296 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2297 if (!btf_is_ptr(t)) { 2298 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2299 map_name, btf_kind_str(t)); 2300 return -EINVAL; 2301 } 2302 t = skip_mods_and_typedefs(btf, t->type, NULL); 2303 if (!btf_is_struct(t)) { 2304 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2305 map_name, btf_kind_str(t)); 2306 return -EINVAL; 2307 } 2308 2309 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2310 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2311 if (err) 2312 return err; 2313 2314 map_def->parts |= MAP_DEF_INNER_MAP; 2315 } else if (strcmp(name, "pinning") == 0) { 2316 __u32 val; 2317 2318 if (is_inner) { 2319 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2320 return -EINVAL; 2321 } 2322 if (!get_map_field_int(map_name, btf, m, &val)) 2323 return -EINVAL; 2324 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2325 pr_warn("map '%s': invalid pinning value %u.\n", 2326 map_name, val); 2327 return -EINVAL; 2328 } 2329 map_def->pinning = val; 2330 map_def->parts |= MAP_DEF_PINNING; 2331 } else if (strcmp(name, "map_extra") == 0) { 2332 __u32 map_extra; 2333 2334 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2335 return -EINVAL; 2336 map_def->map_extra = map_extra; 2337 map_def->parts |= MAP_DEF_MAP_EXTRA; 2338 } else { 2339 if (strict) { 2340 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2341 return -ENOTSUP; 2342 } 2343 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2344 } 2345 } 2346 2347 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2348 pr_warn("map '%s': map type isn't specified.\n", map_name); 2349 return -EINVAL; 2350 } 2351 2352 return 0; 2353 } 2354 2355 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2356 { 2357 map->def.type = def->map_type; 2358 map->def.key_size = def->key_size; 2359 map->def.value_size = def->value_size; 2360 map->def.max_entries = def->max_entries; 2361 map->def.map_flags = def->map_flags; 2362 map->map_extra = def->map_extra; 2363 2364 map->numa_node = def->numa_node; 2365 map->btf_key_type_id = def->key_type_id; 2366 map->btf_value_type_id = def->value_type_id; 2367 2368 if (def->parts & MAP_DEF_MAP_TYPE) 2369 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2370 2371 if (def->parts & MAP_DEF_KEY_TYPE) 2372 pr_debug("map '%s': found key [%u], sz = %u.\n", 2373 map->name, def->key_type_id, def->key_size); 2374 else if (def->parts & MAP_DEF_KEY_SIZE) 2375 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2376 2377 if (def->parts & MAP_DEF_VALUE_TYPE) 2378 pr_debug("map '%s': found value [%u], sz = %u.\n", 2379 map->name, def->value_type_id, def->value_size); 2380 else if (def->parts & MAP_DEF_VALUE_SIZE) 2381 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2382 2383 if (def->parts & MAP_DEF_MAX_ENTRIES) 2384 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2385 if (def->parts & MAP_DEF_MAP_FLAGS) 2386 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2387 if (def->parts & MAP_DEF_MAP_EXTRA) 2388 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2389 (unsigned long long)def->map_extra); 2390 if (def->parts & MAP_DEF_PINNING) 2391 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2392 if (def->parts & MAP_DEF_NUMA_NODE) 2393 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2394 2395 if (def->parts & MAP_DEF_INNER_MAP) 2396 pr_debug("map '%s': found inner map definition.\n", map->name); 2397 } 2398 2399 static const char *btf_var_linkage_str(__u32 linkage) 2400 { 2401 switch (linkage) { 2402 case BTF_VAR_STATIC: return "static"; 2403 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2404 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2405 default: return "unknown"; 2406 } 2407 } 2408 2409 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2410 const struct btf_type *sec, 2411 int var_idx, int sec_idx, 2412 const Elf_Data *data, bool strict, 2413 const char *pin_root_path) 2414 { 2415 struct btf_map_def map_def = {}, inner_def = {}; 2416 const struct btf_type *var, *def; 2417 const struct btf_var_secinfo *vi; 2418 const struct btf_var *var_extra; 2419 const char *map_name; 2420 struct bpf_map *map; 2421 int err; 2422 2423 vi = btf_var_secinfos(sec) + var_idx; 2424 var = btf__type_by_id(obj->btf, vi->type); 2425 var_extra = btf_var(var); 2426 map_name = btf__name_by_offset(obj->btf, var->name_off); 2427 2428 if (map_name == NULL || map_name[0] == '\0') { 2429 pr_warn("map #%d: empty name.\n", var_idx); 2430 return -EINVAL; 2431 } 2432 if ((__u64)vi->offset + vi->size > data->d_size) { 2433 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2434 return -EINVAL; 2435 } 2436 if (!btf_is_var(var)) { 2437 pr_warn("map '%s': unexpected var kind %s.\n", 2438 map_name, btf_kind_str(var)); 2439 return -EINVAL; 2440 } 2441 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2442 pr_warn("map '%s': unsupported map linkage %s.\n", 2443 map_name, btf_var_linkage_str(var_extra->linkage)); 2444 return -EOPNOTSUPP; 2445 } 2446 2447 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2448 if (!btf_is_struct(def)) { 2449 pr_warn("map '%s': unexpected def kind %s.\n", 2450 map_name, btf_kind_str(var)); 2451 return -EINVAL; 2452 } 2453 if (def->size > vi->size) { 2454 pr_warn("map '%s': invalid def size.\n", map_name); 2455 return -EINVAL; 2456 } 2457 2458 map = bpf_object__add_map(obj); 2459 if (IS_ERR(map)) 2460 return PTR_ERR(map); 2461 map->name = strdup(map_name); 2462 if (!map->name) { 2463 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2464 return -ENOMEM; 2465 } 2466 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2467 map->def.type = BPF_MAP_TYPE_UNSPEC; 2468 map->sec_idx = sec_idx; 2469 map->sec_offset = vi->offset; 2470 map->btf_var_idx = var_idx; 2471 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2472 map_name, map->sec_idx, map->sec_offset); 2473 2474 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2475 if (err) 2476 return err; 2477 2478 fill_map_from_def(map, &map_def); 2479 2480 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2481 err = build_map_pin_path(map, pin_root_path); 2482 if (err) { 2483 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2484 return err; 2485 } 2486 } 2487 2488 if (map_def.parts & MAP_DEF_INNER_MAP) { 2489 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2490 if (!map->inner_map) 2491 return -ENOMEM; 2492 map->inner_map->fd = -1; 2493 map->inner_map->sec_idx = sec_idx; 2494 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2495 if (!map->inner_map->name) 2496 return -ENOMEM; 2497 sprintf(map->inner_map->name, "%s.inner", map_name); 2498 2499 fill_map_from_def(map->inner_map, &inner_def); 2500 } 2501 2502 return 0; 2503 } 2504 2505 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2506 const char *pin_root_path) 2507 { 2508 const struct btf_type *sec = NULL; 2509 int nr_types, i, vlen, err; 2510 const struct btf_type *t; 2511 const char *name; 2512 Elf_Data *data; 2513 Elf_Scn *scn; 2514 2515 if (obj->efile.btf_maps_shndx < 0) 2516 return 0; 2517 2518 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2519 data = elf_sec_data(obj, scn); 2520 if (!scn || !data) { 2521 pr_warn("elf: failed to get %s map definitions for %s\n", 2522 MAPS_ELF_SEC, obj->path); 2523 return -EINVAL; 2524 } 2525 2526 nr_types = btf__type_cnt(obj->btf); 2527 for (i = 1; i < nr_types; i++) { 2528 t = btf__type_by_id(obj->btf, i); 2529 if (!btf_is_datasec(t)) 2530 continue; 2531 name = btf__name_by_offset(obj->btf, t->name_off); 2532 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2533 sec = t; 2534 obj->efile.btf_maps_sec_btf_id = i; 2535 break; 2536 } 2537 } 2538 2539 if (!sec) { 2540 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2541 return -ENOENT; 2542 } 2543 2544 vlen = btf_vlen(sec); 2545 for (i = 0; i < vlen; i++) { 2546 err = bpf_object__init_user_btf_map(obj, sec, i, 2547 obj->efile.btf_maps_shndx, 2548 data, strict, 2549 pin_root_path); 2550 if (err) 2551 return err; 2552 } 2553 2554 return 0; 2555 } 2556 2557 static int bpf_object__init_maps(struct bpf_object *obj, 2558 const struct bpf_object_open_opts *opts) 2559 { 2560 const char *pin_root_path; 2561 bool strict; 2562 int err; 2563 2564 strict = !OPTS_GET(opts, relaxed_maps, false); 2565 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2566 2567 err = bpf_object__init_user_maps(obj, strict); 2568 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2569 err = err ?: bpf_object__init_global_data_maps(obj); 2570 err = err ?: bpf_object__init_kconfig_map(obj); 2571 err = err ?: bpf_object__init_struct_ops_maps(obj); 2572 2573 return err; 2574 } 2575 2576 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2577 { 2578 Elf64_Shdr *sh; 2579 2580 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2581 if (!sh) 2582 return false; 2583 2584 return sh->sh_flags & SHF_EXECINSTR; 2585 } 2586 2587 static bool btf_needs_sanitization(struct bpf_object *obj) 2588 { 2589 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2590 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2591 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2592 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2593 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2594 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2595 2596 return !has_func || !has_datasec || !has_func_global || !has_float || 2597 !has_decl_tag || !has_type_tag; 2598 } 2599 2600 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2601 { 2602 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2603 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2604 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2605 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2606 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2607 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2608 struct btf_type *t; 2609 int i, j, vlen; 2610 2611 for (i = 1; i < btf__type_cnt(btf); i++) { 2612 t = (struct btf_type *)btf__type_by_id(btf, i); 2613 2614 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2615 /* replace VAR/DECL_TAG with INT */ 2616 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2617 /* 2618 * using size = 1 is the safest choice, 4 will be too 2619 * big and cause kernel BTF validation failure if 2620 * original variable took less than 4 bytes 2621 */ 2622 t->size = 1; 2623 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2624 } else if (!has_datasec && btf_is_datasec(t)) { 2625 /* replace DATASEC with STRUCT */ 2626 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2627 struct btf_member *m = btf_members(t); 2628 struct btf_type *vt; 2629 char *name; 2630 2631 name = (char *)btf__name_by_offset(btf, t->name_off); 2632 while (*name) { 2633 if (*name == '.') 2634 *name = '_'; 2635 name++; 2636 } 2637 2638 vlen = btf_vlen(t); 2639 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2640 for (j = 0; j < vlen; j++, v++, m++) { 2641 /* order of field assignments is important */ 2642 m->offset = v->offset * 8; 2643 m->type = v->type; 2644 /* preserve variable name as member name */ 2645 vt = (void *)btf__type_by_id(btf, v->type); 2646 m->name_off = vt->name_off; 2647 } 2648 } else if (!has_func && btf_is_func_proto(t)) { 2649 /* replace FUNC_PROTO with ENUM */ 2650 vlen = btf_vlen(t); 2651 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2652 t->size = sizeof(__u32); /* kernel enforced */ 2653 } else if (!has_func && btf_is_func(t)) { 2654 /* replace FUNC with TYPEDEF */ 2655 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2656 } else if (!has_func_global && btf_is_func(t)) { 2657 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2658 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2659 } else if (!has_float && btf_is_float(t)) { 2660 /* replace FLOAT with an equally-sized empty STRUCT; 2661 * since C compilers do not accept e.g. "float" as a 2662 * valid struct name, make it anonymous 2663 */ 2664 t->name_off = 0; 2665 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2666 } else if (!has_type_tag && btf_is_type_tag(t)) { 2667 /* replace TYPE_TAG with a CONST */ 2668 t->name_off = 0; 2669 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2670 } 2671 } 2672 } 2673 2674 static bool libbpf_needs_btf(const struct bpf_object *obj) 2675 { 2676 return obj->efile.btf_maps_shndx >= 0 || 2677 obj->efile.st_ops_shndx >= 0 || 2678 obj->nr_extern > 0; 2679 } 2680 2681 static bool kernel_needs_btf(const struct bpf_object *obj) 2682 { 2683 return obj->efile.st_ops_shndx >= 0; 2684 } 2685 2686 static int bpf_object__init_btf(struct bpf_object *obj, 2687 Elf_Data *btf_data, 2688 Elf_Data *btf_ext_data) 2689 { 2690 int err = -ENOENT; 2691 2692 if (btf_data) { 2693 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2694 err = libbpf_get_error(obj->btf); 2695 if (err) { 2696 obj->btf = NULL; 2697 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2698 goto out; 2699 } 2700 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2701 btf__set_pointer_size(obj->btf, 8); 2702 } 2703 if (btf_ext_data) { 2704 if (!obj->btf) { 2705 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2706 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2707 goto out; 2708 } 2709 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2710 err = libbpf_get_error(obj->btf_ext); 2711 if (err) { 2712 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2713 BTF_EXT_ELF_SEC, err); 2714 obj->btf_ext = NULL; 2715 goto out; 2716 } 2717 } 2718 out: 2719 if (err && libbpf_needs_btf(obj)) { 2720 pr_warn("BTF is required, but is missing or corrupted.\n"); 2721 return err; 2722 } 2723 return 0; 2724 } 2725 2726 static int compare_vsi_off(const void *_a, const void *_b) 2727 { 2728 const struct btf_var_secinfo *a = _a; 2729 const struct btf_var_secinfo *b = _b; 2730 2731 return a->offset - b->offset; 2732 } 2733 2734 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2735 struct btf_type *t) 2736 { 2737 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2738 const char *name = btf__name_by_offset(btf, t->name_off); 2739 const struct btf_type *t_var; 2740 struct btf_var_secinfo *vsi; 2741 const struct btf_var *var; 2742 int ret; 2743 2744 if (!name) { 2745 pr_debug("No name found in string section for DATASEC kind.\n"); 2746 return -ENOENT; 2747 } 2748 2749 /* .extern datasec size and var offsets were set correctly during 2750 * extern collection step, so just skip straight to sorting variables 2751 */ 2752 if (t->size) 2753 goto sort_vars; 2754 2755 ret = find_elf_sec_sz(obj, name, &size); 2756 if (ret || !size || (t->size && t->size != size)) { 2757 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2758 return -ENOENT; 2759 } 2760 2761 t->size = size; 2762 2763 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2764 t_var = btf__type_by_id(btf, vsi->type); 2765 if (!t_var || !btf_is_var(t_var)) { 2766 pr_debug("Non-VAR type seen in section %s\n", name); 2767 return -EINVAL; 2768 } 2769 2770 var = btf_var(t_var); 2771 if (var->linkage == BTF_VAR_STATIC) 2772 continue; 2773 2774 name = btf__name_by_offset(btf, t_var->name_off); 2775 if (!name) { 2776 pr_debug("No name found in string section for VAR kind\n"); 2777 return -ENOENT; 2778 } 2779 2780 ret = find_elf_var_offset(obj, name, &off); 2781 if (ret) { 2782 pr_debug("No offset found in symbol table for VAR %s\n", 2783 name); 2784 return -ENOENT; 2785 } 2786 2787 vsi->offset = off; 2788 } 2789 2790 sort_vars: 2791 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2792 return 0; 2793 } 2794 2795 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2796 { 2797 int err = 0; 2798 __u32 i, n = btf__type_cnt(btf); 2799 2800 for (i = 1; i < n; i++) { 2801 struct btf_type *t = btf_type_by_id(btf, i); 2802 2803 /* Loader needs to fix up some of the things compiler 2804 * couldn't get its hands on while emitting BTF. This 2805 * is section size and global variable offset. We use 2806 * the info from the ELF itself for this purpose. 2807 */ 2808 if (btf_is_datasec(t)) { 2809 err = btf_fixup_datasec(obj, btf, t); 2810 if (err) 2811 break; 2812 } 2813 } 2814 2815 return libbpf_err(err); 2816 } 2817 2818 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2819 { 2820 return btf_finalize_data(obj, btf); 2821 } 2822 2823 static int bpf_object__finalize_btf(struct bpf_object *obj) 2824 { 2825 int err; 2826 2827 if (!obj->btf) 2828 return 0; 2829 2830 err = btf_finalize_data(obj, obj->btf); 2831 if (err) { 2832 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2833 return err; 2834 } 2835 2836 return 0; 2837 } 2838 2839 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2840 { 2841 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2842 prog->type == BPF_PROG_TYPE_LSM) 2843 return true; 2844 2845 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2846 * also need vmlinux BTF 2847 */ 2848 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2849 return true; 2850 2851 return false; 2852 } 2853 2854 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2855 { 2856 struct bpf_program *prog; 2857 int i; 2858 2859 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2860 * is not specified 2861 */ 2862 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2863 return true; 2864 2865 /* Support for typed ksyms needs kernel BTF */ 2866 for (i = 0; i < obj->nr_extern; i++) { 2867 const struct extern_desc *ext; 2868 2869 ext = &obj->externs[i]; 2870 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2871 return true; 2872 } 2873 2874 bpf_object__for_each_program(prog, obj) { 2875 if (!prog->load) 2876 continue; 2877 if (prog_needs_vmlinux_btf(prog)) 2878 return true; 2879 } 2880 2881 return false; 2882 } 2883 2884 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2885 { 2886 int err; 2887 2888 /* btf_vmlinux could be loaded earlier */ 2889 if (obj->btf_vmlinux || obj->gen_loader) 2890 return 0; 2891 2892 if (!force && !obj_needs_vmlinux_btf(obj)) 2893 return 0; 2894 2895 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2896 err = libbpf_get_error(obj->btf_vmlinux); 2897 if (err) { 2898 pr_warn("Error loading vmlinux BTF: %d\n", err); 2899 obj->btf_vmlinux = NULL; 2900 return err; 2901 } 2902 return 0; 2903 } 2904 2905 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2906 { 2907 struct btf *kern_btf = obj->btf; 2908 bool btf_mandatory, sanitize; 2909 int i, err = 0; 2910 2911 if (!obj->btf) 2912 return 0; 2913 2914 if (!kernel_supports(obj, FEAT_BTF)) { 2915 if (kernel_needs_btf(obj)) { 2916 err = -EOPNOTSUPP; 2917 goto report; 2918 } 2919 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2920 return 0; 2921 } 2922 2923 /* Even though some subprogs are global/weak, user might prefer more 2924 * permissive BPF verification process that BPF verifier performs for 2925 * static functions, taking into account more context from the caller 2926 * functions. In such case, they need to mark such subprogs with 2927 * __attribute__((visibility("hidden"))) and libbpf will adjust 2928 * corresponding FUNC BTF type to be marked as static and trigger more 2929 * involved BPF verification process. 2930 */ 2931 for (i = 0; i < obj->nr_programs; i++) { 2932 struct bpf_program *prog = &obj->programs[i]; 2933 struct btf_type *t; 2934 const char *name; 2935 int j, n; 2936 2937 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2938 continue; 2939 2940 n = btf__type_cnt(obj->btf); 2941 for (j = 1; j < n; j++) { 2942 t = btf_type_by_id(obj->btf, j); 2943 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2944 continue; 2945 2946 name = btf__str_by_offset(obj->btf, t->name_off); 2947 if (strcmp(name, prog->name) != 0) 2948 continue; 2949 2950 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2951 break; 2952 } 2953 } 2954 2955 sanitize = btf_needs_sanitization(obj); 2956 if (sanitize) { 2957 const void *raw_data; 2958 __u32 sz; 2959 2960 /* clone BTF to sanitize a copy and leave the original intact */ 2961 raw_data = btf__raw_data(obj->btf, &sz); 2962 kern_btf = btf__new(raw_data, sz); 2963 err = libbpf_get_error(kern_btf); 2964 if (err) 2965 return err; 2966 2967 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2968 btf__set_pointer_size(obj->btf, 8); 2969 bpf_object__sanitize_btf(obj, kern_btf); 2970 } 2971 2972 if (obj->gen_loader) { 2973 __u32 raw_size = 0; 2974 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 2975 2976 if (!raw_data) 2977 return -ENOMEM; 2978 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 2979 /* Pretend to have valid FD to pass various fd >= 0 checks. 2980 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 2981 */ 2982 btf__set_fd(kern_btf, 0); 2983 } else { 2984 err = btf__load_into_kernel(kern_btf); 2985 } 2986 if (sanitize) { 2987 if (!err) { 2988 /* move fd to libbpf's BTF */ 2989 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2990 btf__set_fd(kern_btf, -1); 2991 } 2992 btf__free(kern_btf); 2993 } 2994 report: 2995 if (err) { 2996 btf_mandatory = kernel_needs_btf(obj); 2997 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2998 btf_mandatory ? "BTF is mandatory, can't proceed." 2999 : "BTF is optional, ignoring."); 3000 if (!btf_mandatory) 3001 err = 0; 3002 } 3003 return err; 3004 } 3005 3006 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3007 { 3008 const char *name; 3009 3010 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3011 if (!name) { 3012 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3013 off, obj->path, elf_errmsg(-1)); 3014 return NULL; 3015 } 3016 3017 return name; 3018 } 3019 3020 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3021 { 3022 const char *name; 3023 3024 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3025 if (!name) { 3026 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3027 off, obj->path, elf_errmsg(-1)); 3028 return NULL; 3029 } 3030 3031 return name; 3032 } 3033 3034 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3035 { 3036 Elf_Scn *scn; 3037 3038 scn = elf_getscn(obj->efile.elf, idx); 3039 if (!scn) { 3040 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3041 idx, obj->path, elf_errmsg(-1)); 3042 return NULL; 3043 } 3044 return scn; 3045 } 3046 3047 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3048 { 3049 Elf_Scn *scn = NULL; 3050 Elf *elf = obj->efile.elf; 3051 const char *sec_name; 3052 3053 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3054 sec_name = elf_sec_name(obj, scn); 3055 if (!sec_name) 3056 return NULL; 3057 3058 if (strcmp(sec_name, name) != 0) 3059 continue; 3060 3061 return scn; 3062 } 3063 return NULL; 3064 } 3065 3066 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3067 { 3068 Elf64_Shdr *shdr; 3069 3070 if (!scn) 3071 return NULL; 3072 3073 shdr = elf64_getshdr(scn); 3074 if (!shdr) { 3075 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3076 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3077 return NULL; 3078 } 3079 3080 return shdr; 3081 } 3082 3083 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3084 { 3085 const char *name; 3086 Elf64_Shdr *sh; 3087 3088 if (!scn) 3089 return NULL; 3090 3091 sh = elf_sec_hdr(obj, scn); 3092 if (!sh) 3093 return NULL; 3094 3095 name = elf_sec_str(obj, sh->sh_name); 3096 if (!name) { 3097 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3098 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3099 return NULL; 3100 } 3101 3102 return name; 3103 } 3104 3105 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3106 { 3107 Elf_Data *data; 3108 3109 if (!scn) 3110 return NULL; 3111 3112 data = elf_getdata(scn, 0); 3113 if (!data) { 3114 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3115 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3116 obj->path, elf_errmsg(-1)); 3117 return NULL; 3118 } 3119 3120 return data; 3121 } 3122 3123 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3124 { 3125 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3126 return NULL; 3127 3128 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3129 } 3130 3131 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3132 { 3133 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3134 return NULL; 3135 3136 return (Elf64_Rel *)data->d_buf + idx; 3137 } 3138 3139 static bool is_sec_name_dwarf(const char *name) 3140 { 3141 /* approximation, but the actual list is too long */ 3142 return str_has_pfx(name, ".debug_"); 3143 } 3144 3145 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3146 { 3147 /* no special handling of .strtab */ 3148 if (hdr->sh_type == SHT_STRTAB) 3149 return true; 3150 3151 /* ignore .llvm_addrsig section as well */ 3152 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3153 return true; 3154 3155 /* no subprograms will lead to an empty .text section, ignore it */ 3156 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3157 strcmp(name, ".text") == 0) 3158 return true; 3159 3160 /* DWARF sections */ 3161 if (is_sec_name_dwarf(name)) 3162 return true; 3163 3164 if (str_has_pfx(name, ".rel")) { 3165 name += sizeof(".rel") - 1; 3166 /* DWARF section relocations */ 3167 if (is_sec_name_dwarf(name)) 3168 return true; 3169 3170 /* .BTF and .BTF.ext don't need relocations */ 3171 if (strcmp(name, BTF_ELF_SEC) == 0 || 3172 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3173 return true; 3174 } 3175 3176 return false; 3177 } 3178 3179 static int cmp_progs(const void *_a, const void *_b) 3180 { 3181 const struct bpf_program *a = _a; 3182 const struct bpf_program *b = _b; 3183 3184 if (a->sec_idx != b->sec_idx) 3185 return a->sec_idx < b->sec_idx ? -1 : 1; 3186 3187 /* sec_insn_off can't be the same within the section */ 3188 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3189 } 3190 3191 static int bpf_object__elf_collect(struct bpf_object *obj) 3192 { 3193 struct elf_sec_desc *sec_desc; 3194 Elf *elf = obj->efile.elf; 3195 Elf_Data *btf_ext_data = NULL; 3196 Elf_Data *btf_data = NULL; 3197 int idx = 0, err = 0; 3198 const char *name; 3199 Elf_Data *data; 3200 Elf_Scn *scn; 3201 Elf64_Shdr *sh; 3202 3203 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3204 * section. e_shnum does include sec #0, so e_shnum is the necessary 3205 * size of an array to keep all the sections. 3206 */ 3207 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3208 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3209 if (!obj->efile.secs) 3210 return -ENOMEM; 3211 3212 /* a bunch of ELF parsing functionality depends on processing symbols, 3213 * so do the first pass and find the symbol table 3214 */ 3215 scn = NULL; 3216 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3217 sh = elf_sec_hdr(obj, scn); 3218 if (!sh) 3219 return -LIBBPF_ERRNO__FORMAT; 3220 3221 if (sh->sh_type == SHT_SYMTAB) { 3222 if (obj->efile.symbols) { 3223 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3224 return -LIBBPF_ERRNO__FORMAT; 3225 } 3226 3227 data = elf_sec_data(obj, scn); 3228 if (!data) 3229 return -LIBBPF_ERRNO__FORMAT; 3230 3231 idx = elf_ndxscn(scn); 3232 3233 obj->efile.symbols = data; 3234 obj->efile.symbols_shndx = idx; 3235 obj->efile.strtabidx = sh->sh_link; 3236 } 3237 } 3238 3239 if (!obj->efile.symbols) { 3240 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3241 obj->path); 3242 return -ENOENT; 3243 } 3244 3245 scn = NULL; 3246 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3247 idx = elf_ndxscn(scn); 3248 sec_desc = &obj->efile.secs[idx]; 3249 3250 sh = elf_sec_hdr(obj, scn); 3251 if (!sh) 3252 return -LIBBPF_ERRNO__FORMAT; 3253 3254 name = elf_sec_str(obj, sh->sh_name); 3255 if (!name) 3256 return -LIBBPF_ERRNO__FORMAT; 3257 3258 if (ignore_elf_section(sh, name)) 3259 continue; 3260 3261 data = elf_sec_data(obj, scn); 3262 if (!data) 3263 return -LIBBPF_ERRNO__FORMAT; 3264 3265 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3266 idx, name, (unsigned long)data->d_size, 3267 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3268 (int)sh->sh_type); 3269 3270 if (strcmp(name, "license") == 0) { 3271 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3272 if (err) 3273 return err; 3274 } else if (strcmp(name, "version") == 0) { 3275 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3276 if (err) 3277 return err; 3278 } else if (strcmp(name, "maps") == 0) { 3279 obj->efile.maps_shndx = idx; 3280 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3281 obj->efile.btf_maps_shndx = idx; 3282 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3283 if (sh->sh_type != SHT_PROGBITS) 3284 return -LIBBPF_ERRNO__FORMAT; 3285 btf_data = data; 3286 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3287 if (sh->sh_type != SHT_PROGBITS) 3288 return -LIBBPF_ERRNO__FORMAT; 3289 btf_ext_data = data; 3290 } else if (sh->sh_type == SHT_SYMTAB) { 3291 /* already processed during the first pass above */ 3292 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3293 if (sh->sh_flags & SHF_EXECINSTR) { 3294 if (strcmp(name, ".text") == 0) 3295 obj->efile.text_shndx = idx; 3296 err = bpf_object__add_programs(obj, data, name, idx); 3297 if (err) 3298 return err; 3299 } else if (strcmp(name, DATA_SEC) == 0 || 3300 str_has_pfx(name, DATA_SEC ".")) { 3301 sec_desc->sec_type = SEC_DATA; 3302 sec_desc->shdr = sh; 3303 sec_desc->data = data; 3304 } else if (strcmp(name, RODATA_SEC) == 0 || 3305 str_has_pfx(name, RODATA_SEC ".")) { 3306 sec_desc->sec_type = SEC_RODATA; 3307 sec_desc->shdr = sh; 3308 sec_desc->data = data; 3309 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3310 obj->efile.st_ops_data = data; 3311 obj->efile.st_ops_shndx = idx; 3312 } else { 3313 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3314 idx, name); 3315 } 3316 } else if (sh->sh_type == SHT_REL) { 3317 int targ_sec_idx = sh->sh_info; /* points to other section */ 3318 3319 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3320 targ_sec_idx >= obj->efile.sec_cnt) 3321 return -LIBBPF_ERRNO__FORMAT; 3322 3323 /* Only do relo for section with exec instructions */ 3324 if (!section_have_execinstr(obj, targ_sec_idx) && 3325 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3326 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3327 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3328 idx, name, targ_sec_idx, 3329 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3330 continue; 3331 } 3332 3333 sec_desc->sec_type = SEC_RELO; 3334 sec_desc->shdr = sh; 3335 sec_desc->data = data; 3336 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3337 sec_desc->sec_type = SEC_BSS; 3338 sec_desc->shdr = sh; 3339 sec_desc->data = data; 3340 } else { 3341 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3342 (size_t)sh->sh_size); 3343 } 3344 } 3345 3346 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3347 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3348 return -LIBBPF_ERRNO__FORMAT; 3349 } 3350 3351 /* sort BPF programs by section name and in-section instruction offset 3352 * for faster search */ 3353 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3354 3355 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3356 } 3357 3358 static bool sym_is_extern(const Elf64_Sym *sym) 3359 { 3360 int bind = ELF64_ST_BIND(sym->st_info); 3361 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3362 return sym->st_shndx == SHN_UNDEF && 3363 (bind == STB_GLOBAL || bind == STB_WEAK) && 3364 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3365 } 3366 3367 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3368 { 3369 int bind = ELF64_ST_BIND(sym->st_info); 3370 int type = ELF64_ST_TYPE(sym->st_info); 3371 3372 /* in .text section */ 3373 if (sym->st_shndx != text_shndx) 3374 return false; 3375 3376 /* local function */ 3377 if (bind == STB_LOCAL && type == STT_SECTION) 3378 return true; 3379 3380 /* global function */ 3381 return bind == STB_GLOBAL && type == STT_FUNC; 3382 } 3383 3384 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3385 { 3386 const struct btf_type *t; 3387 const char *tname; 3388 int i, n; 3389 3390 if (!btf) 3391 return -ESRCH; 3392 3393 n = btf__type_cnt(btf); 3394 for (i = 1; i < n; i++) { 3395 t = btf__type_by_id(btf, i); 3396 3397 if (!btf_is_var(t) && !btf_is_func(t)) 3398 continue; 3399 3400 tname = btf__name_by_offset(btf, t->name_off); 3401 if (strcmp(tname, ext_name)) 3402 continue; 3403 3404 if (btf_is_var(t) && 3405 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3406 return -EINVAL; 3407 3408 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3409 return -EINVAL; 3410 3411 return i; 3412 } 3413 3414 return -ENOENT; 3415 } 3416 3417 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3418 const struct btf_var_secinfo *vs; 3419 const struct btf_type *t; 3420 int i, j, n; 3421 3422 if (!btf) 3423 return -ESRCH; 3424 3425 n = btf__type_cnt(btf); 3426 for (i = 1; i < n; i++) { 3427 t = btf__type_by_id(btf, i); 3428 3429 if (!btf_is_datasec(t)) 3430 continue; 3431 3432 vs = btf_var_secinfos(t); 3433 for (j = 0; j < btf_vlen(t); j++, vs++) { 3434 if (vs->type == ext_btf_id) 3435 return i; 3436 } 3437 } 3438 3439 return -ENOENT; 3440 } 3441 3442 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3443 bool *is_signed) 3444 { 3445 const struct btf_type *t; 3446 const char *name; 3447 3448 t = skip_mods_and_typedefs(btf, id, NULL); 3449 name = btf__name_by_offset(btf, t->name_off); 3450 3451 if (is_signed) 3452 *is_signed = false; 3453 switch (btf_kind(t)) { 3454 case BTF_KIND_INT: { 3455 int enc = btf_int_encoding(t); 3456 3457 if (enc & BTF_INT_BOOL) 3458 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3459 if (is_signed) 3460 *is_signed = enc & BTF_INT_SIGNED; 3461 if (t->size == 1) 3462 return KCFG_CHAR; 3463 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3464 return KCFG_UNKNOWN; 3465 return KCFG_INT; 3466 } 3467 case BTF_KIND_ENUM: 3468 if (t->size != 4) 3469 return KCFG_UNKNOWN; 3470 if (strcmp(name, "libbpf_tristate")) 3471 return KCFG_UNKNOWN; 3472 return KCFG_TRISTATE; 3473 case BTF_KIND_ARRAY: 3474 if (btf_array(t)->nelems == 0) 3475 return KCFG_UNKNOWN; 3476 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3477 return KCFG_UNKNOWN; 3478 return KCFG_CHAR_ARR; 3479 default: 3480 return KCFG_UNKNOWN; 3481 } 3482 } 3483 3484 static int cmp_externs(const void *_a, const void *_b) 3485 { 3486 const struct extern_desc *a = _a; 3487 const struct extern_desc *b = _b; 3488 3489 if (a->type != b->type) 3490 return a->type < b->type ? -1 : 1; 3491 3492 if (a->type == EXT_KCFG) { 3493 /* descending order by alignment requirements */ 3494 if (a->kcfg.align != b->kcfg.align) 3495 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3496 /* ascending order by size, within same alignment class */ 3497 if (a->kcfg.sz != b->kcfg.sz) 3498 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3499 } 3500 3501 /* resolve ties by name */ 3502 return strcmp(a->name, b->name); 3503 } 3504 3505 static int find_int_btf_id(const struct btf *btf) 3506 { 3507 const struct btf_type *t; 3508 int i, n; 3509 3510 n = btf__type_cnt(btf); 3511 for (i = 1; i < n; i++) { 3512 t = btf__type_by_id(btf, i); 3513 3514 if (btf_is_int(t) && btf_int_bits(t) == 32) 3515 return i; 3516 } 3517 3518 return 0; 3519 } 3520 3521 static int add_dummy_ksym_var(struct btf *btf) 3522 { 3523 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3524 const struct btf_var_secinfo *vs; 3525 const struct btf_type *sec; 3526 3527 if (!btf) 3528 return 0; 3529 3530 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3531 BTF_KIND_DATASEC); 3532 if (sec_btf_id < 0) 3533 return 0; 3534 3535 sec = btf__type_by_id(btf, sec_btf_id); 3536 vs = btf_var_secinfos(sec); 3537 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3538 const struct btf_type *vt; 3539 3540 vt = btf__type_by_id(btf, vs->type); 3541 if (btf_is_func(vt)) 3542 break; 3543 } 3544 3545 /* No func in ksyms sec. No need to add dummy var. */ 3546 if (i == btf_vlen(sec)) 3547 return 0; 3548 3549 int_btf_id = find_int_btf_id(btf); 3550 dummy_var_btf_id = btf__add_var(btf, 3551 "dummy_ksym", 3552 BTF_VAR_GLOBAL_ALLOCATED, 3553 int_btf_id); 3554 if (dummy_var_btf_id < 0) 3555 pr_warn("cannot create a dummy_ksym var\n"); 3556 3557 return dummy_var_btf_id; 3558 } 3559 3560 static int bpf_object__collect_externs(struct bpf_object *obj) 3561 { 3562 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3563 const struct btf_type *t; 3564 struct extern_desc *ext; 3565 int i, n, off, dummy_var_btf_id; 3566 const char *ext_name, *sec_name; 3567 Elf_Scn *scn; 3568 Elf64_Shdr *sh; 3569 3570 if (!obj->efile.symbols) 3571 return 0; 3572 3573 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3574 sh = elf_sec_hdr(obj, scn); 3575 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3576 return -LIBBPF_ERRNO__FORMAT; 3577 3578 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3579 if (dummy_var_btf_id < 0) 3580 return dummy_var_btf_id; 3581 3582 n = sh->sh_size / sh->sh_entsize; 3583 pr_debug("looking for externs among %d symbols...\n", n); 3584 3585 for (i = 0; i < n; i++) { 3586 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3587 3588 if (!sym) 3589 return -LIBBPF_ERRNO__FORMAT; 3590 if (!sym_is_extern(sym)) 3591 continue; 3592 ext_name = elf_sym_str(obj, sym->st_name); 3593 if (!ext_name || !ext_name[0]) 3594 continue; 3595 3596 ext = obj->externs; 3597 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3598 if (!ext) 3599 return -ENOMEM; 3600 obj->externs = ext; 3601 ext = &ext[obj->nr_extern]; 3602 memset(ext, 0, sizeof(*ext)); 3603 obj->nr_extern++; 3604 3605 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3606 if (ext->btf_id <= 0) { 3607 pr_warn("failed to find BTF for extern '%s': %d\n", 3608 ext_name, ext->btf_id); 3609 return ext->btf_id; 3610 } 3611 t = btf__type_by_id(obj->btf, ext->btf_id); 3612 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3613 ext->sym_idx = i; 3614 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3615 3616 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3617 if (ext->sec_btf_id <= 0) { 3618 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3619 ext_name, ext->btf_id, ext->sec_btf_id); 3620 return ext->sec_btf_id; 3621 } 3622 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3623 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3624 3625 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3626 if (btf_is_func(t)) { 3627 pr_warn("extern function %s is unsupported under %s section\n", 3628 ext->name, KCONFIG_SEC); 3629 return -ENOTSUP; 3630 } 3631 kcfg_sec = sec; 3632 ext->type = EXT_KCFG; 3633 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3634 if (ext->kcfg.sz <= 0) { 3635 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3636 ext_name, ext->kcfg.sz); 3637 return ext->kcfg.sz; 3638 } 3639 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3640 if (ext->kcfg.align <= 0) { 3641 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3642 ext_name, ext->kcfg.align); 3643 return -EINVAL; 3644 } 3645 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3646 &ext->kcfg.is_signed); 3647 if (ext->kcfg.type == KCFG_UNKNOWN) { 3648 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3649 return -ENOTSUP; 3650 } 3651 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3652 ksym_sec = sec; 3653 ext->type = EXT_KSYM; 3654 skip_mods_and_typedefs(obj->btf, t->type, 3655 &ext->ksym.type_id); 3656 } else { 3657 pr_warn("unrecognized extern section '%s'\n", sec_name); 3658 return -ENOTSUP; 3659 } 3660 } 3661 pr_debug("collected %d externs total\n", obj->nr_extern); 3662 3663 if (!obj->nr_extern) 3664 return 0; 3665 3666 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3667 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3668 3669 /* for .ksyms section, we need to turn all externs into allocated 3670 * variables in BTF to pass kernel verification; we do this by 3671 * pretending that each extern is a 8-byte variable 3672 */ 3673 if (ksym_sec) { 3674 /* find existing 4-byte integer type in BTF to use for fake 3675 * extern variables in DATASEC 3676 */ 3677 int int_btf_id = find_int_btf_id(obj->btf); 3678 /* For extern function, a dummy_var added earlier 3679 * will be used to replace the vs->type and 3680 * its name string will be used to refill 3681 * the missing param's name. 3682 */ 3683 const struct btf_type *dummy_var; 3684 3685 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3686 for (i = 0; i < obj->nr_extern; i++) { 3687 ext = &obj->externs[i]; 3688 if (ext->type != EXT_KSYM) 3689 continue; 3690 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3691 i, ext->sym_idx, ext->name); 3692 } 3693 3694 sec = ksym_sec; 3695 n = btf_vlen(sec); 3696 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3697 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3698 struct btf_type *vt; 3699 3700 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3701 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3702 ext = find_extern_by_name(obj, ext_name); 3703 if (!ext) { 3704 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3705 btf_kind_str(vt), ext_name); 3706 return -ESRCH; 3707 } 3708 if (btf_is_func(vt)) { 3709 const struct btf_type *func_proto; 3710 struct btf_param *param; 3711 int j; 3712 3713 func_proto = btf__type_by_id(obj->btf, 3714 vt->type); 3715 param = btf_params(func_proto); 3716 /* Reuse the dummy_var string if the 3717 * func proto does not have param name. 3718 */ 3719 for (j = 0; j < btf_vlen(func_proto); j++) 3720 if (param[j].type && !param[j].name_off) 3721 param[j].name_off = 3722 dummy_var->name_off; 3723 vs->type = dummy_var_btf_id; 3724 vt->info &= ~0xffff; 3725 vt->info |= BTF_FUNC_GLOBAL; 3726 } else { 3727 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3728 vt->type = int_btf_id; 3729 } 3730 vs->offset = off; 3731 vs->size = sizeof(int); 3732 } 3733 sec->size = off; 3734 } 3735 3736 if (kcfg_sec) { 3737 sec = kcfg_sec; 3738 /* for kcfg externs calculate their offsets within a .kconfig map */ 3739 off = 0; 3740 for (i = 0; i < obj->nr_extern; i++) { 3741 ext = &obj->externs[i]; 3742 if (ext->type != EXT_KCFG) 3743 continue; 3744 3745 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3746 off = ext->kcfg.data_off + ext->kcfg.sz; 3747 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3748 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3749 } 3750 sec->size = off; 3751 n = btf_vlen(sec); 3752 for (i = 0; i < n; i++) { 3753 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3754 3755 t = btf__type_by_id(obj->btf, vs->type); 3756 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3757 ext = find_extern_by_name(obj, ext_name); 3758 if (!ext) { 3759 pr_warn("failed to find extern definition for BTF var '%s'\n", 3760 ext_name); 3761 return -ESRCH; 3762 } 3763 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3764 vs->offset = ext->kcfg.data_off; 3765 } 3766 } 3767 return 0; 3768 } 3769 3770 struct bpf_program * 3771 bpf_object__find_program_by_title(const struct bpf_object *obj, 3772 const char *title) 3773 { 3774 struct bpf_program *pos; 3775 3776 bpf_object__for_each_program(pos, obj) { 3777 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3778 return pos; 3779 } 3780 return errno = ENOENT, NULL; 3781 } 3782 3783 static bool prog_is_subprog(const struct bpf_object *obj, 3784 const struct bpf_program *prog) 3785 { 3786 /* For legacy reasons, libbpf supports an entry-point BPF programs 3787 * without SEC() attribute, i.e., those in the .text section. But if 3788 * there are 2 or more such programs in the .text section, they all 3789 * must be subprograms called from entry-point BPF programs in 3790 * designated SEC()'tions, otherwise there is no way to distinguish 3791 * which of those programs should be loaded vs which are a subprogram. 3792 * Similarly, if there is a function/program in .text and at least one 3793 * other BPF program with custom SEC() attribute, then we just assume 3794 * .text programs are subprograms (even if they are not called from 3795 * other programs), because libbpf never explicitly supported mixing 3796 * SEC()-designated BPF programs and .text entry-point BPF programs. 3797 */ 3798 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3799 } 3800 3801 struct bpf_program * 3802 bpf_object__find_program_by_name(const struct bpf_object *obj, 3803 const char *name) 3804 { 3805 struct bpf_program *prog; 3806 3807 bpf_object__for_each_program(prog, obj) { 3808 if (prog_is_subprog(obj, prog)) 3809 continue; 3810 if (!strcmp(prog->name, name)) 3811 return prog; 3812 } 3813 return errno = ENOENT, NULL; 3814 } 3815 3816 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3817 int shndx) 3818 { 3819 switch (obj->efile.secs[shndx].sec_type) { 3820 case SEC_BSS: 3821 case SEC_DATA: 3822 case SEC_RODATA: 3823 return true; 3824 default: 3825 return false; 3826 } 3827 } 3828 3829 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3830 int shndx) 3831 { 3832 return shndx == obj->efile.maps_shndx || 3833 shndx == obj->efile.btf_maps_shndx; 3834 } 3835 3836 static enum libbpf_map_type 3837 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3838 { 3839 if (shndx == obj->efile.symbols_shndx) 3840 return LIBBPF_MAP_KCONFIG; 3841 3842 switch (obj->efile.secs[shndx].sec_type) { 3843 case SEC_BSS: 3844 return LIBBPF_MAP_BSS; 3845 case SEC_DATA: 3846 return LIBBPF_MAP_DATA; 3847 case SEC_RODATA: 3848 return LIBBPF_MAP_RODATA; 3849 default: 3850 return LIBBPF_MAP_UNSPEC; 3851 } 3852 } 3853 3854 static int bpf_program__record_reloc(struct bpf_program *prog, 3855 struct reloc_desc *reloc_desc, 3856 __u32 insn_idx, const char *sym_name, 3857 const Elf64_Sym *sym, const Elf64_Rel *rel) 3858 { 3859 struct bpf_insn *insn = &prog->insns[insn_idx]; 3860 size_t map_idx, nr_maps = prog->obj->nr_maps; 3861 struct bpf_object *obj = prog->obj; 3862 __u32 shdr_idx = sym->st_shndx; 3863 enum libbpf_map_type type; 3864 const char *sym_sec_name; 3865 struct bpf_map *map; 3866 3867 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3868 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3869 prog->name, sym_name, insn_idx, insn->code); 3870 return -LIBBPF_ERRNO__RELOC; 3871 } 3872 3873 if (sym_is_extern(sym)) { 3874 int sym_idx = ELF64_R_SYM(rel->r_info); 3875 int i, n = obj->nr_extern; 3876 struct extern_desc *ext; 3877 3878 for (i = 0; i < n; i++) { 3879 ext = &obj->externs[i]; 3880 if (ext->sym_idx == sym_idx) 3881 break; 3882 } 3883 if (i >= n) { 3884 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3885 prog->name, sym_name, sym_idx); 3886 return -LIBBPF_ERRNO__RELOC; 3887 } 3888 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3889 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3890 if (insn->code == (BPF_JMP | BPF_CALL)) 3891 reloc_desc->type = RELO_EXTERN_FUNC; 3892 else 3893 reloc_desc->type = RELO_EXTERN_VAR; 3894 reloc_desc->insn_idx = insn_idx; 3895 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3896 return 0; 3897 } 3898 3899 /* sub-program call relocation */ 3900 if (is_call_insn(insn)) { 3901 if (insn->src_reg != BPF_PSEUDO_CALL) { 3902 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3903 return -LIBBPF_ERRNO__RELOC; 3904 } 3905 /* text_shndx can be 0, if no default "main" program exists */ 3906 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3907 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3908 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3909 prog->name, sym_name, sym_sec_name); 3910 return -LIBBPF_ERRNO__RELOC; 3911 } 3912 if (sym->st_value % BPF_INSN_SZ) { 3913 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3914 prog->name, sym_name, (size_t)sym->st_value); 3915 return -LIBBPF_ERRNO__RELOC; 3916 } 3917 reloc_desc->type = RELO_CALL; 3918 reloc_desc->insn_idx = insn_idx; 3919 reloc_desc->sym_off = sym->st_value; 3920 return 0; 3921 } 3922 3923 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3924 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3925 prog->name, sym_name, shdr_idx); 3926 return -LIBBPF_ERRNO__RELOC; 3927 } 3928 3929 /* loading subprog addresses */ 3930 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3931 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3932 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3933 */ 3934 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3935 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3936 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3937 return -LIBBPF_ERRNO__RELOC; 3938 } 3939 3940 reloc_desc->type = RELO_SUBPROG_ADDR; 3941 reloc_desc->insn_idx = insn_idx; 3942 reloc_desc->sym_off = sym->st_value; 3943 return 0; 3944 } 3945 3946 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3947 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3948 3949 /* generic map reference relocation */ 3950 if (type == LIBBPF_MAP_UNSPEC) { 3951 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3952 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3953 prog->name, sym_name, sym_sec_name); 3954 return -LIBBPF_ERRNO__RELOC; 3955 } 3956 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3957 map = &obj->maps[map_idx]; 3958 if (map->libbpf_type != type || 3959 map->sec_idx != sym->st_shndx || 3960 map->sec_offset != sym->st_value) 3961 continue; 3962 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3963 prog->name, map_idx, map->name, map->sec_idx, 3964 map->sec_offset, insn_idx); 3965 break; 3966 } 3967 if (map_idx >= nr_maps) { 3968 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3969 prog->name, sym_sec_name, (size_t)sym->st_value); 3970 return -LIBBPF_ERRNO__RELOC; 3971 } 3972 reloc_desc->type = RELO_LD64; 3973 reloc_desc->insn_idx = insn_idx; 3974 reloc_desc->map_idx = map_idx; 3975 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3976 return 0; 3977 } 3978 3979 /* global data map relocation */ 3980 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3981 pr_warn("prog '%s': bad data relo against section '%s'\n", 3982 prog->name, sym_sec_name); 3983 return -LIBBPF_ERRNO__RELOC; 3984 } 3985 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3986 map = &obj->maps[map_idx]; 3987 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 3988 continue; 3989 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3990 prog->name, map_idx, map->name, map->sec_idx, 3991 map->sec_offset, insn_idx); 3992 break; 3993 } 3994 if (map_idx >= nr_maps) { 3995 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3996 prog->name, sym_sec_name); 3997 return -LIBBPF_ERRNO__RELOC; 3998 } 3999 4000 reloc_desc->type = RELO_DATA; 4001 reloc_desc->insn_idx = insn_idx; 4002 reloc_desc->map_idx = map_idx; 4003 reloc_desc->sym_off = sym->st_value; 4004 return 0; 4005 } 4006 4007 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4008 { 4009 return insn_idx >= prog->sec_insn_off && 4010 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4011 } 4012 4013 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4014 size_t sec_idx, size_t insn_idx) 4015 { 4016 int l = 0, r = obj->nr_programs - 1, m; 4017 struct bpf_program *prog; 4018 4019 while (l < r) { 4020 m = l + (r - l + 1) / 2; 4021 prog = &obj->programs[m]; 4022 4023 if (prog->sec_idx < sec_idx || 4024 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4025 l = m; 4026 else 4027 r = m - 1; 4028 } 4029 /* matching program could be at index l, but it still might be the 4030 * wrong one, so we need to double check conditions for the last time 4031 */ 4032 prog = &obj->programs[l]; 4033 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4034 return prog; 4035 return NULL; 4036 } 4037 4038 static int 4039 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4040 { 4041 const char *relo_sec_name, *sec_name; 4042 size_t sec_idx = shdr->sh_info, sym_idx; 4043 struct bpf_program *prog; 4044 struct reloc_desc *relos; 4045 int err, i, nrels; 4046 const char *sym_name; 4047 __u32 insn_idx; 4048 Elf_Scn *scn; 4049 Elf_Data *scn_data; 4050 Elf64_Sym *sym; 4051 Elf64_Rel *rel; 4052 4053 if (sec_idx >= obj->efile.sec_cnt) 4054 return -EINVAL; 4055 4056 scn = elf_sec_by_idx(obj, sec_idx); 4057 scn_data = elf_sec_data(obj, scn); 4058 4059 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4060 sec_name = elf_sec_name(obj, scn); 4061 if (!relo_sec_name || !sec_name) 4062 return -EINVAL; 4063 4064 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4065 relo_sec_name, sec_idx, sec_name); 4066 nrels = shdr->sh_size / shdr->sh_entsize; 4067 4068 for (i = 0; i < nrels; i++) { 4069 rel = elf_rel_by_idx(data, i); 4070 if (!rel) { 4071 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4072 return -LIBBPF_ERRNO__FORMAT; 4073 } 4074 4075 sym_idx = ELF64_R_SYM(rel->r_info); 4076 sym = elf_sym_by_idx(obj, sym_idx); 4077 if (!sym) { 4078 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4079 relo_sec_name, sym_idx, i); 4080 return -LIBBPF_ERRNO__FORMAT; 4081 } 4082 4083 if (sym->st_shndx >= obj->efile.sec_cnt) { 4084 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4085 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4086 return -LIBBPF_ERRNO__FORMAT; 4087 } 4088 4089 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4090 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4091 relo_sec_name, (size_t)rel->r_offset, i); 4092 return -LIBBPF_ERRNO__FORMAT; 4093 } 4094 4095 insn_idx = rel->r_offset / BPF_INSN_SZ; 4096 /* relocations against static functions are recorded as 4097 * relocations against the section that contains a function; 4098 * in such case, symbol will be STT_SECTION and sym.st_name 4099 * will point to empty string (0), so fetch section name 4100 * instead 4101 */ 4102 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4103 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4104 else 4105 sym_name = elf_sym_str(obj, sym->st_name); 4106 sym_name = sym_name ?: "<?"; 4107 4108 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4109 relo_sec_name, i, insn_idx, sym_name); 4110 4111 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4112 if (!prog) { 4113 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4114 relo_sec_name, i, sec_name, insn_idx); 4115 continue; 4116 } 4117 4118 relos = libbpf_reallocarray(prog->reloc_desc, 4119 prog->nr_reloc + 1, sizeof(*relos)); 4120 if (!relos) 4121 return -ENOMEM; 4122 prog->reloc_desc = relos; 4123 4124 /* adjust insn_idx to local BPF program frame of reference */ 4125 insn_idx -= prog->sec_insn_off; 4126 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4127 insn_idx, sym_name, sym, rel); 4128 if (err) 4129 return err; 4130 4131 prog->nr_reloc++; 4132 } 4133 return 0; 4134 } 4135 4136 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4137 { 4138 struct bpf_map_def *def = &map->def; 4139 __u32 key_type_id = 0, value_type_id = 0; 4140 int ret; 4141 4142 /* if it's BTF-defined map, we don't need to search for type IDs. 4143 * For struct_ops map, it does not need btf_key_type_id and 4144 * btf_value_type_id. 4145 */ 4146 if (map->sec_idx == obj->efile.btf_maps_shndx || 4147 bpf_map__is_struct_ops(map)) 4148 return 0; 4149 4150 if (!bpf_map__is_internal(map)) { 4151 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4152 def->value_size, &key_type_id, 4153 &value_type_id); 4154 } else { 4155 /* 4156 * LLVM annotates global data differently in BTF, that is, 4157 * only as '.data', '.bss' or '.rodata'. 4158 */ 4159 ret = btf__find_by_name(obj->btf, map->real_name); 4160 } 4161 if (ret < 0) 4162 return ret; 4163 4164 map->btf_key_type_id = key_type_id; 4165 map->btf_value_type_id = bpf_map__is_internal(map) ? 4166 ret : value_type_id; 4167 return 0; 4168 } 4169 4170 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4171 { 4172 char file[PATH_MAX], buff[4096]; 4173 FILE *fp; 4174 __u32 val; 4175 int err; 4176 4177 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4178 memset(info, 0, sizeof(*info)); 4179 4180 fp = fopen(file, "r"); 4181 if (!fp) { 4182 err = -errno; 4183 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4184 err); 4185 return err; 4186 } 4187 4188 while (fgets(buff, sizeof(buff), fp)) { 4189 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4190 info->type = val; 4191 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4192 info->key_size = val; 4193 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4194 info->value_size = val; 4195 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4196 info->max_entries = val; 4197 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4198 info->map_flags = val; 4199 } 4200 4201 fclose(fp); 4202 4203 return 0; 4204 } 4205 4206 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4207 { 4208 struct bpf_map_info info = {}; 4209 __u32 len = sizeof(info); 4210 int new_fd, err; 4211 char *new_name; 4212 4213 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4214 if (err && errno == EINVAL) 4215 err = bpf_get_map_info_from_fdinfo(fd, &info); 4216 if (err) 4217 return libbpf_err(err); 4218 4219 new_name = strdup(info.name); 4220 if (!new_name) 4221 return libbpf_err(-errno); 4222 4223 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4224 if (new_fd < 0) { 4225 err = -errno; 4226 goto err_free_new_name; 4227 } 4228 4229 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4230 if (new_fd < 0) { 4231 err = -errno; 4232 goto err_close_new_fd; 4233 } 4234 4235 err = zclose(map->fd); 4236 if (err) { 4237 err = -errno; 4238 goto err_close_new_fd; 4239 } 4240 free(map->name); 4241 4242 map->fd = new_fd; 4243 map->name = new_name; 4244 map->def.type = info.type; 4245 map->def.key_size = info.key_size; 4246 map->def.value_size = info.value_size; 4247 map->def.max_entries = info.max_entries; 4248 map->def.map_flags = info.map_flags; 4249 map->btf_key_type_id = info.btf_key_type_id; 4250 map->btf_value_type_id = info.btf_value_type_id; 4251 map->reused = true; 4252 map->map_extra = info.map_extra; 4253 4254 return 0; 4255 4256 err_close_new_fd: 4257 close(new_fd); 4258 err_free_new_name: 4259 free(new_name); 4260 return libbpf_err(err); 4261 } 4262 4263 __u32 bpf_map__max_entries(const struct bpf_map *map) 4264 { 4265 return map->def.max_entries; 4266 } 4267 4268 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4269 { 4270 if (!bpf_map_type__is_map_in_map(map->def.type)) 4271 return errno = EINVAL, NULL; 4272 4273 return map->inner_map; 4274 } 4275 4276 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4277 { 4278 if (map->fd >= 0) 4279 return libbpf_err(-EBUSY); 4280 map->def.max_entries = max_entries; 4281 return 0; 4282 } 4283 4284 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4285 { 4286 if (!map || !max_entries) 4287 return libbpf_err(-EINVAL); 4288 4289 return bpf_map__set_max_entries(map, max_entries); 4290 } 4291 4292 static int 4293 bpf_object__probe_loading(struct bpf_object *obj) 4294 { 4295 char *cp, errmsg[STRERR_BUFSIZE]; 4296 struct bpf_insn insns[] = { 4297 BPF_MOV64_IMM(BPF_REG_0, 0), 4298 BPF_EXIT_INSN(), 4299 }; 4300 int ret, insn_cnt = ARRAY_SIZE(insns); 4301 4302 if (obj->gen_loader) 4303 return 0; 4304 4305 /* make sure basic loading works */ 4306 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4307 if (ret < 0) 4308 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4309 if (ret < 0) { 4310 ret = errno; 4311 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4312 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4313 "program. Make sure your kernel supports BPF " 4314 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4315 "set to big enough value.\n", __func__, cp, ret); 4316 return -ret; 4317 } 4318 close(ret); 4319 4320 return 0; 4321 } 4322 4323 static int probe_fd(int fd) 4324 { 4325 if (fd >= 0) 4326 close(fd); 4327 return fd >= 0; 4328 } 4329 4330 static int probe_kern_prog_name(void) 4331 { 4332 struct bpf_insn insns[] = { 4333 BPF_MOV64_IMM(BPF_REG_0, 0), 4334 BPF_EXIT_INSN(), 4335 }; 4336 int ret, insn_cnt = ARRAY_SIZE(insns); 4337 4338 /* make sure loading with name works */ 4339 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4340 return probe_fd(ret); 4341 } 4342 4343 static int probe_kern_global_data(void) 4344 { 4345 struct bpf_create_map_attr map_attr; 4346 char *cp, errmsg[STRERR_BUFSIZE]; 4347 struct bpf_insn insns[] = { 4348 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4349 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4350 BPF_MOV64_IMM(BPF_REG_0, 0), 4351 BPF_EXIT_INSN(), 4352 }; 4353 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4354 4355 memset(&map_attr, 0, sizeof(map_attr)); 4356 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4357 map_attr.key_size = sizeof(int); 4358 map_attr.value_size = 32; 4359 map_attr.max_entries = 1; 4360 4361 map = bpf_create_map_xattr(&map_attr); 4362 if (map < 0) { 4363 ret = -errno; 4364 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4365 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4366 __func__, cp, -ret); 4367 return ret; 4368 } 4369 4370 insns[0].imm = map; 4371 4372 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4373 close(map); 4374 return probe_fd(ret); 4375 } 4376 4377 static int probe_kern_btf(void) 4378 { 4379 static const char strs[] = "\0int"; 4380 __u32 types[] = { 4381 /* int */ 4382 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4383 }; 4384 4385 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4386 strs, sizeof(strs))); 4387 } 4388 4389 static int probe_kern_btf_func(void) 4390 { 4391 static const char strs[] = "\0int\0x\0a"; 4392 /* void x(int a) {} */ 4393 __u32 types[] = { 4394 /* int */ 4395 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4396 /* FUNC_PROTO */ /* [2] */ 4397 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4398 BTF_PARAM_ENC(7, 1), 4399 /* FUNC x */ /* [3] */ 4400 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4401 }; 4402 4403 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4404 strs, sizeof(strs))); 4405 } 4406 4407 static int probe_kern_btf_func_global(void) 4408 { 4409 static const char strs[] = "\0int\0x\0a"; 4410 /* static void x(int a) {} */ 4411 __u32 types[] = { 4412 /* int */ 4413 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4414 /* FUNC_PROTO */ /* [2] */ 4415 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4416 BTF_PARAM_ENC(7, 1), 4417 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4418 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4419 }; 4420 4421 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4422 strs, sizeof(strs))); 4423 } 4424 4425 static int probe_kern_btf_datasec(void) 4426 { 4427 static const char strs[] = "\0x\0.data"; 4428 /* static int a; */ 4429 __u32 types[] = { 4430 /* int */ 4431 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4432 /* VAR x */ /* [2] */ 4433 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4434 BTF_VAR_STATIC, 4435 /* DATASEC val */ /* [3] */ 4436 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4437 BTF_VAR_SECINFO_ENC(2, 0, 4), 4438 }; 4439 4440 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4441 strs, sizeof(strs))); 4442 } 4443 4444 static int probe_kern_btf_float(void) 4445 { 4446 static const char strs[] = "\0float"; 4447 __u32 types[] = { 4448 /* float */ 4449 BTF_TYPE_FLOAT_ENC(1, 4), 4450 }; 4451 4452 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4453 strs, sizeof(strs))); 4454 } 4455 4456 static int probe_kern_btf_decl_tag(void) 4457 { 4458 static const char strs[] = "\0tag"; 4459 __u32 types[] = { 4460 /* int */ 4461 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4462 /* VAR x */ /* [2] */ 4463 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4464 BTF_VAR_STATIC, 4465 /* attr */ 4466 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4467 }; 4468 4469 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4470 strs, sizeof(strs))); 4471 } 4472 4473 static int probe_kern_btf_type_tag(void) 4474 { 4475 static const char strs[] = "\0tag"; 4476 __u32 types[] = { 4477 /* int */ 4478 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4479 /* attr */ 4480 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4481 /* ptr */ 4482 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4483 }; 4484 4485 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4486 strs, sizeof(strs))); 4487 } 4488 4489 static int probe_kern_array_mmap(void) 4490 { 4491 struct bpf_create_map_attr attr = { 4492 .map_type = BPF_MAP_TYPE_ARRAY, 4493 .map_flags = BPF_F_MMAPABLE, 4494 .key_size = sizeof(int), 4495 .value_size = sizeof(int), 4496 .max_entries = 1, 4497 }; 4498 4499 return probe_fd(bpf_create_map_xattr(&attr)); 4500 } 4501 4502 static int probe_kern_exp_attach_type(void) 4503 { 4504 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4505 struct bpf_insn insns[] = { 4506 BPF_MOV64_IMM(BPF_REG_0, 0), 4507 BPF_EXIT_INSN(), 4508 }; 4509 int fd, insn_cnt = ARRAY_SIZE(insns); 4510 4511 /* use any valid combination of program type and (optional) 4512 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4513 * to see if kernel supports expected_attach_type field for 4514 * BPF_PROG_LOAD command 4515 */ 4516 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4517 return probe_fd(fd); 4518 } 4519 4520 static int probe_kern_probe_read_kernel(void) 4521 { 4522 struct bpf_insn insns[] = { 4523 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4524 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4525 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4526 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4527 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4528 BPF_EXIT_INSN(), 4529 }; 4530 int fd, insn_cnt = ARRAY_SIZE(insns); 4531 4532 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4533 return probe_fd(fd); 4534 } 4535 4536 static int probe_prog_bind_map(void) 4537 { 4538 struct bpf_create_map_attr map_attr; 4539 char *cp, errmsg[STRERR_BUFSIZE]; 4540 struct bpf_insn insns[] = { 4541 BPF_MOV64_IMM(BPF_REG_0, 0), 4542 BPF_EXIT_INSN(), 4543 }; 4544 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4545 4546 memset(&map_attr, 0, sizeof(map_attr)); 4547 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4548 map_attr.key_size = sizeof(int); 4549 map_attr.value_size = 32; 4550 map_attr.max_entries = 1; 4551 4552 map = bpf_create_map_xattr(&map_attr); 4553 if (map < 0) { 4554 ret = -errno; 4555 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4556 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4557 __func__, cp, -ret); 4558 return ret; 4559 } 4560 4561 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4562 if (prog < 0) { 4563 close(map); 4564 return 0; 4565 } 4566 4567 ret = bpf_prog_bind_map(prog, map, NULL); 4568 4569 close(map); 4570 close(prog); 4571 4572 return ret >= 0; 4573 } 4574 4575 static int probe_module_btf(void) 4576 { 4577 static const char strs[] = "\0int"; 4578 __u32 types[] = { 4579 /* int */ 4580 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4581 }; 4582 struct bpf_btf_info info; 4583 __u32 len = sizeof(info); 4584 char name[16]; 4585 int fd, err; 4586 4587 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4588 if (fd < 0) 4589 return 0; /* BTF not supported at all */ 4590 4591 memset(&info, 0, sizeof(info)); 4592 info.name = ptr_to_u64(name); 4593 info.name_len = sizeof(name); 4594 4595 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4596 * kernel's module BTF support coincides with support for 4597 * name/name_len fields in struct bpf_btf_info. 4598 */ 4599 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4600 close(fd); 4601 return !err; 4602 } 4603 4604 static int probe_perf_link(void) 4605 { 4606 struct bpf_insn insns[] = { 4607 BPF_MOV64_IMM(BPF_REG_0, 0), 4608 BPF_EXIT_INSN(), 4609 }; 4610 int prog_fd, link_fd, err; 4611 4612 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4613 insns, ARRAY_SIZE(insns), NULL); 4614 if (prog_fd < 0) 4615 return -errno; 4616 4617 /* use invalid perf_event FD to get EBADF, if link is supported; 4618 * otherwise EINVAL should be returned 4619 */ 4620 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4621 err = -errno; /* close() can clobber errno */ 4622 4623 if (link_fd >= 0) 4624 close(link_fd); 4625 close(prog_fd); 4626 4627 return link_fd < 0 && err == -EBADF; 4628 } 4629 4630 enum kern_feature_result { 4631 FEAT_UNKNOWN = 0, 4632 FEAT_SUPPORTED = 1, 4633 FEAT_MISSING = 2, 4634 }; 4635 4636 typedef int (*feature_probe_fn)(void); 4637 4638 static struct kern_feature_desc { 4639 const char *desc; 4640 feature_probe_fn probe; 4641 enum kern_feature_result res; 4642 } feature_probes[__FEAT_CNT] = { 4643 [FEAT_PROG_NAME] = { 4644 "BPF program name", probe_kern_prog_name, 4645 }, 4646 [FEAT_GLOBAL_DATA] = { 4647 "global variables", probe_kern_global_data, 4648 }, 4649 [FEAT_BTF] = { 4650 "minimal BTF", probe_kern_btf, 4651 }, 4652 [FEAT_BTF_FUNC] = { 4653 "BTF functions", probe_kern_btf_func, 4654 }, 4655 [FEAT_BTF_GLOBAL_FUNC] = { 4656 "BTF global function", probe_kern_btf_func_global, 4657 }, 4658 [FEAT_BTF_DATASEC] = { 4659 "BTF data section and variable", probe_kern_btf_datasec, 4660 }, 4661 [FEAT_ARRAY_MMAP] = { 4662 "ARRAY map mmap()", probe_kern_array_mmap, 4663 }, 4664 [FEAT_EXP_ATTACH_TYPE] = { 4665 "BPF_PROG_LOAD expected_attach_type attribute", 4666 probe_kern_exp_attach_type, 4667 }, 4668 [FEAT_PROBE_READ_KERN] = { 4669 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4670 }, 4671 [FEAT_PROG_BIND_MAP] = { 4672 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4673 }, 4674 [FEAT_MODULE_BTF] = { 4675 "module BTF support", probe_module_btf, 4676 }, 4677 [FEAT_BTF_FLOAT] = { 4678 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4679 }, 4680 [FEAT_PERF_LINK] = { 4681 "BPF perf link support", probe_perf_link, 4682 }, 4683 [FEAT_BTF_DECL_TAG] = { 4684 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4685 }, 4686 [FEAT_BTF_TYPE_TAG] = { 4687 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4688 }, 4689 }; 4690 4691 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4692 { 4693 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4694 int ret; 4695 4696 if (obj->gen_loader) 4697 /* To generate loader program assume the latest kernel 4698 * to avoid doing extra prog_load, map_create syscalls. 4699 */ 4700 return true; 4701 4702 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4703 ret = feat->probe(); 4704 if (ret > 0) { 4705 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4706 } else if (ret == 0) { 4707 WRITE_ONCE(feat->res, FEAT_MISSING); 4708 } else { 4709 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4710 WRITE_ONCE(feat->res, FEAT_MISSING); 4711 } 4712 } 4713 4714 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4715 } 4716 4717 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4718 { 4719 struct bpf_map_info map_info = {}; 4720 char msg[STRERR_BUFSIZE]; 4721 __u32 map_info_len; 4722 int err; 4723 4724 map_info_len = sizeof(map_info); 4725 4726 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4727 if (err && errno == EINVAL) 4728 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4729 if (err) { 4730 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4731 libbpf_strerror_r(errno, msg, sizeof(msg))); 4732 return false; 4733 } 4734 4735 return (map_info.type == map->def.type && 4736 map_info.key_size == map->def.key_size && 4737 map_info.value_size == map->def.value_size && 4738 map_info.max_entries == map->def.max_entries && 4739 map_info.map_flags == map->def.map_flags && 4740 map_info.map_extra == map->map_extra); 4741 } 4742 4743 static int 4744 bpf_object__reuse_map(struct bpf_map *map) 4745 { 4746 char *cp, errmsg[STRERR_BUFSIZE]; 4747 int err, pin_fd; 4748 4749 pin_fd = bpf_obj_get(map->pin_path); 4750 if (pin_fd < 0) { 4751 err = -errno; 4752 if (err == -ENOENT) { 4753 pr_debug("found no pinned map to reuse at '%s'\n", 4754 map->pin_path); 4755 return 0; 4756 } 4757 4758 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4759 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4760 map->pin_path, cp); 4761 return err; 4762 } 4763 4764 if (!map_is_reuse_compat(map, pin_fd)) { 4765 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4766 map->pin_path); 4767 close(pin_fd); 4768 return -EINVAL; 4769 } 4770 4771 err = bpf_map__reuse_fd(map, pin_fd); 4772 if (err) { 4773 close(pin_fd); 4774 return err; 4775 } 4776 map->pinned = true; 4777 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4778 4779 return 0; 4780 } 4781 4782 static int 4783 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4784 { 4785 enum libbpf_map_type map_type = map->libbpf_type; 4786 char *cp, errmsg[STRERR_BUFSIZE]; 4787 int err, zero = 0; 4788 4789 if (obj->gen_loader) { 4790 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4791 map->mmaped, map->def.value_size); 4792 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4793 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4794 return 0; 4795 } 4796 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4797 if (err) { 4798 err = -errno; 4799 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4800 pr_warn("Error setting initial map(%s) contents: %s\n", 4801 map->name, cp); 4802 return err; 4803 } 4804 4805 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4806 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4807 err = bpf_map_freeze(map->fd); 4808 if (err) { 4809 err = -errno; 4810 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4811 pr_warn("Error freezing map(%s) as read-only: %s\n", 4812 map->name, cp); 4813 return err; 4814 } 4815 } 4816 return 0; 4817 } 4818 4819 static void bpf_map__destroy(struct bpf_map *map); 4820 4821 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4822 { 4823 struct bpf_create_map_params create_attr; 4824 struct bpf_map_def *def = &map->def; 4825 int err = 0; 4826 4827 memset(&create_attr, 0, sizeof(create_attr)); 4828 4829 if (kernel_supports(obj, FEAT_PROG_NAME)) 4830 create_attr.name = map->name; 4831 create_attr.map_ifindex = map->map_ifindex; 4832 create_attr.map_type = def->type; 4833 create_attr.map_flags = def->map_flags; 4834 create_attr.key_size = def->key_size; 4835 create_attr.value_size = def->value_size; 4836 create_attr.numa_node = map->numa_node; 4837 create_attr.map_extra = map->map_extra; 4838 4839 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4840 int nr_cpus; 4841 4842 nr_cpus = libbpf_num_possible_cpus(); 4843 if (nr_cpus < 0) { 4844 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4845 map->name, nr_cpus); 4846 return nr_cpus; 4847 } 4848 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4849 create_attr.max_entries = nr_cpus; 4850 } else { 4851 create_attr.max_entries = def->max_entries; 4852 } 4853 4854 if (bpf_map__is_struct_ops(map)) 4855 create_attr.btf_vmlinux_value_type_id = 4856 map->btf_vmlinux_value_type_id; 4857 4858 create_attr.btf_fd = 0; 4859 create_attr.btf_key_type_id = 0; 4860 create_attr.btf_value_type_id = 0; 4861 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4862 create_attr.btf_fd = btf__fd(obj->btf); 4863 create_attr.btf_key_type_id = map->btf_key_type_id; 4864 create_attr.btf_value_type_id = map->btf_value_type_id; 4865 } 4866 4867 if (bpf_map_type__is_map_in_map(def->type)) { 4868 if (map->inner_map) { 4869 err = bpf_object__create_map(obj, map->inner_map, true); 4870 if (err) { 4871 pr_warn("map '%s': failed to create inner map: %d\n", 4872 map->name, err); 4873 return err; 4874 } 4875 map->inner_map_fd = bpf_map__fd(map->inner_map); 4876 } 4877 if (map->inner_map_fd >= 0) 4878 create_attr.inner_map_fd = map->inner_map_fd; 4879 } 4880 4881 switch (def->type) { 4882 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4883 case BPF_MAP_TYPE_CGROUP_ARRAY: 4884 case BPF_MAP_TYPE_STACK_TRACE: 4885 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4886 case BPF_MAP_TYPE_HASH_OF_MAPS: 4887 case BPF_MAP_TYPE_DEVMAP: 4888 case BPF_MAP_TYPE_DEVMAP_HASH: 4889 case BPF_MAP_TYPE_CPUMAP: 4890 case BPF_MAP_TYPE_XSKMAP: 4891 case BPF_MAP_TYPE_SOCKMAP: 4892 case BPF_MAP_TYPE_SOCKHASH: 4893 case BPF_MAP_TYPE_QUEUE: 4894 case BPF_MAP_TYPE_STACK: 4895 case BPF_MAP_TYPE_RINGBUF: 4896 create_attr.btf_fd = 0; 4897 create_attr.btf_key_type_id = 0; 4898 create_attr.btf_value_type_id = 0; 4899 map->btf_key_type_id = 0; 4900 map->btf_value_type_id = 0; 4901 default: 4902 break; 4903 } 4904 4905 if (obj->gen_loader) { 4906 bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps); 4907 /* Pretend to have valid FD to pass various fd >= 0 checks. 4908 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4909 */ 4910 map->fd = 0; 4911 } else { 4912 map->fd = libbpf__bpf_create_map_xattr(&create_attr); 4913 } 4914 if (map->fd < 0 && (create_attr.btf_key_type_id || 4915 create_attr.btf_value_type_id)) { 4916 char *cp, errmsg[STRERR_BUFSIZE]; 4917 4918 err = -errno; 4919 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4920 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4921 map->name, cp, err); 4922 create_attr.btf_fd = 0; 4923 create_attr.btf_key_type_id = 0; 4924 create_attr.btf_value_type_id = 0; 4925 map->btf_key_type_id = 0; 4926 map->btf_value_type_id = 0; 4927 map->fd = libbpf__bpf_create_map_xattr(&create_attr); 4928 } 4929 4930 err = map->fd < 0 ? -errno : 0; 4931 4932 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4933 if (obj->gen_loader) 4934 map->inner_map->fd = -1; 4935 bpf_map__destroy(map->inner_map); 4936 zfree(&map->inner_map); 4937 } 4938 4939 return err; 4940 } 4941 4942 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map) 4943 { 4944 const struct bpf_map *targ_map; 4945 unsigned int i; 4946 int fd, err = 0; 4947 4948 for (i = 0; i < map->init_slots_sz; i++) { 4949 if (!map->init_slots[i]) 4950 continue; 4951 4952 targ_map = map->init_slots[i]; 4953 fd = bpf_map__fd(targ_map); 4954 if (obj->gen_loader) { 4955 pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n", 4956 map - obj->maps, i, targ_map - obj->maps); 4957 return -ENOTSUP; 4958 } else { 4959 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4960 } 4961 if (err) { 4962 err = -errno; 4963 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4964 map->name, i, targ_map->name, 4965 fd, err); 4966 return err; 4967 } 4968 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4969 map->name, i, targ_map->name, fd); 4970 } 4971 4972 zfree(&map->init_slots); 4973 map->init_slots_sz = 0; 4974 4975 return 0; 4976 } 4977 4978 static int 4979 bpf_object__create_maps(struct bpf_object *obj) 4980 { 4981 struct bpf_map *map; 4982 char *cp, errmsg[STRERR_BUFSIZE]; 4983 unsigned int i, j; 4984 int err; 4985 bool retried; 4986 4987 for (i = 0; i < obj->nr_maps; i++) { 4988 map = &obj->maps[i]; 4989 4990 retried = false; 4991 retry: 4992 if (map->pin_path) { 4993 err = bpf_object__reuse_map(map); 4994 if (err) { 4995 pr_warn("map '%s': error reusing pinned map\n", 4996 map->name); 4997 goto err_out; 4998 } 4999 if (retried && map->fd < 0) { 5000 pr_warn("map '%s': cannot find pinned map\n", 5001 map->name); 5002 err = -ENOENT; 5003 goto err_out; 5004 } 5005 } 5006 5007 if (map->fd >= 0) { 5008 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5009 map->name, map->fd); 5010 } else { 5011 err = bpf_object__create_map(obj, map, false); 5012 if (err) 5013 goto err_out; 5014 5015 pr_debug("map '%s': created successfully, fd=%d\n", 5016 map->name, map->fd); 5017 5018 if (bpf_map__is_internal(map)) { 5019 err = bpf_object__populate_internal_map(obj, map); 5020 if (err < 0) { 5021 zclose(map->fd); 5022 goto err_out; 5023 } 5024 } 5025 5026 if (map->init_slots_sz) { 5027 err = init_map_slots(obj, map); 5028 if (err < 0) { 5029 zclose(map->fd); 5030 goto err_out; 5031 } 5032 } 5033 } 5034 5035 if (map->pin_path && !map->pinned) { 5036 err = bpf_map__pin(map, NULL); 5037 if (err) { 5038 zclose(map->fd); 5039 if (!retried && err == -EEXIST) { 5040 retried = true; 5041 goto retry; 5042 } 5043 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5044 map->name, map->pin_path, err); 5045 goto err_out; 5046 } 5047 } 5048 } 5049 5050 return 0; 5051 5052 err_out: 5053 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5054 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5055 pr_perm_msg(err); 5056 for (j = 0; j < i; j++) 5057 zclose(obj->maps[j].fd); 5058 return err; 5059 } 5060 5061 static bool bpf_core_is_flavor_sep(const char *s) 5062 { 5063 /* check X___Y name pattern, where X and Y are not underscores */ 5064 return s[0] != '_' && /* X */ 5065 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5066 s[4] != '_'; /* Y */ 5067 } 5068 5069 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5070 * before last triple underscore. Struct name part after last triple 5071 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5072 */ 5073 size_t bpf_core_essential_name_len(const char *name) 5074 { 5075 size_t n = strlen(name); 5076 int i; 5077 5078 for (i = n - 5; i >= 0; i--) { 5079 if (bpf_core_is_flavor_sep(name + i)) 5080 return i + 1; 5081 } 5082 return n; 5083 } 5084 5085 static void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5086 { 5087 free(cands->cands); 5088 free(cands); 5089 } 5090 5091 static int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5092 size_t local_essent_len, 5093 const struct btf *targ_btf, 5094 const char *targ_btf_name, 5095 int targ_start_id, 5096 struct bpf_core_cand_list *cands) 5097 { 5098 struct bpf_core_cand *new_cands, *cand; 5099 const struct btf_type *t; 5100 const char *targ_name; 5101 size_t targ_essent_len; 5102 int n, i; 5103 5104 n = btf__type_cnt(targ_btf); 5105 for (i = targ_start_id; i < n; i++) { 5106 t = btf__type_by_id(targ_btf, i); 5107 if (btf_kind(t) != btf_kind(local_cand->t)) 5108 continue; 5109 5110 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5111 if (str_is_empty(targ_name)) 5112 continue; 5113 5114 targ_essent_len = bpf_core_essential_name_len(targ_name); 5115 if (targ_essent_len != local_essent_len) 5116 continue; 5117 5118 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 5119 continue; 5120 5121 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5122 local_cand->id, btf_kind_str(local_cand->t), 5123 local_cand->name, i, btf_kind_str(t), targ_name, 5124 targ_btf_name); 5125 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5126 sizeof(*cands->cands)); 5127 if (!new_cands) 5128 return -ENOMEM; 5129 5130 cand = &new_cands[cands->len]; 5131 cand->btf = targ_btf; 5132 cand->t = t; 5133 cand->name = targ_name; 5134 cand->id = i; 5135 5136 cands->cands = new_cands; 5137 cands->len++; 5138 } 5139 return 0; 5140 } 5141 5142 static int load_module_btfs(struct bpf_object *obj) 5143 { 5144 struct bpf_btf_info info; 5145 struct module_btf *mod_btf; 5146 struct btf *btf; 5147 char name[64]; 5148 __u32 id = 0, len; 5149 int err, fd; 5150 5151 if (obj->btf_modules_loaded) 5152 return 0; 5153 5154 if (obj->gen_loader) 5155 return 0; 5156 5157 /* don't do this again, even if we find no module BTFs */ 5158 obj->btf_modules_loaded = true; 5159 5160 /* kernel too old to support module BTFs */ 5161 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5162 return 0; 5163 5164 while (true) { 5165 err = bpf_btf_get_next_id(id, &id); 5166 if (err && errno == ENOENT) 5167 return 0; 5168 if (err) { 5169 err = -errno; 5170 pr_warn("failed to iterate BTF objects: %d\n", err); 5171 return err; 5172 } 5173 5174 fd = bpf_btf_get_fd_by_id(id); 5175 if (fd < 0) { 5176 if (errno == ENOENT) 5177 continue; /* expected race: BTF was unloaded */ 5178 err = -errno; 5179 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5180 return err; 5181 } 5182 5183 len = sizeof(info); 5184 memset(&info, 0, sizeof(info)); 5185 info.name = ptr_to_u64(name); 5186 info.name_len = sizeof(name); 5187 5188 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5189 if (err) { 5190 err = -errno; 5191 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5192 goto err_out; 5193 } 5194 5195 /* ignore non-module BTFs */ 5196 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5197 close(fd); 5198 continue; 5199 } 5200 5201 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5202 err = libbpf_get_error(btf); 5203 if (err) { 5204 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5205 name, id, err); 5206 goto err_out; 5207 } 5208 5209 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5210 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5211 if (err) 5212 goto err_out; 5213 5214 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5215 5216 mod_btf->btf = btf; 5217 mod_btf->id = id; 5218 mod_btf->fd = fd; 5219 mod_btf->name = strdup(name); 5220 if (!mod_btf->name) { 5221 err = -ENOMEM; 5222 goto err_out; 5223 } 5224 continue; 5225 5226 err_out: 5227 close(fd); 5228 return err; 5229 } 5230 5231 return 0; 5232 } 5233 5234 static struct bpf_core_cand_list * 5235 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5236 { 5237 struct bpf_core_cand local_cand = {}; 5238 struct bpf_core_cand_list *cands; 5239 const struct btf *main_btf; 5240 size_t local_essent_len; 5241 int err, i; 5242 5243 local_cand.btf = local_btf; 5244 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5245 if (!local_cand.t) 5246 return ERR_PTR(-EINVAL); 5247 5248 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5249 if (str_is_empty(local_cand.name)) 5250 return ERR_PTR(-EINVAL); 5251 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5252 5253 cands = calloc(1, sizeof(*cands)); 5254 if (!cands) 5255 return ERR_PTR(-ENOMEM); 5256 5257 /* Attempt to find target candidates in vmlinux BTF first */ 5258 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5259 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5260 if (err) 5261 goto err_out; 5262 5263 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5264 if (cands->len) 5265 return cands; 5266 5267 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5268 if (obj->btf_vmlinux_override) 5269 return cands; 5270 5271 /* now look through module BTFs, trying to still find candidates */ 5272 err = load_module_btfs(obj); 5273 if (err) 5274 goto err_out; 5275 5276 for (i = 0; i < obj->btf_module_cnt; i++) { 5277 err = bpf_core_add_cands(&local_cand, local_essent_len, 5278 obj->btf_modules[i].btf, 5279 obj->btf_modules[i].name, 5280 btf__type_cnt(obj->btf_vmlinux), 5281 cands); 5282 if (err) 5283 goto err_out; 5284 } 5285 5286 return cands; 5287 err_out: 5288 bpf_core_free_cands(cands); 5289 return ERR_PTR(err); 5290 } 5291 5292 /* Check local and target types for compatibility. This check is used for 5293 * type-based CO-RE relocations and follow slightly different rules than 5294 * field-based relocations. This function assumes that root types were already 5295 * checked for name match. Beyond that initial root-level name check, names 5296 * are completely ignored. Compatibility rules are as follows: 5297 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5298 * kind should match for local and target types (i.e., STRUCT is not 5299 * compatible with UNION); 5300 * - for ENUMs, the size is ignored; 5301 * - for INT, size and signedness are ignored; 5302 * - for ARRAY, dimensionality is ignored, element types are checked for 5303 * compatibility recursively; 5304 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5305 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5306 * - FUNC_PROTOs are compatible if they have compatible signature: same 5307 * number of input args and compatible return and argument types. 5308 * These rules are not set in stone and probably will be adjusted as we get 5309 * more experience with using BPF CO-RE relocations. 5310 */ 5311 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5312 const struct btf *targ_btf, __u32 targ_id) 5313 { 5314 const struct btf_type *local_type, *targ_type; 5315 int depth = 32; /* max recursion depth */ 5316 5317 /* caller made sure that names match (ignoring flavor suffix) */ 5318 local_type = btf__type_by_id(local_btf, local_id); 5319 targ_type = btf__type_by_id(targ_btf, targ_id); 5320 if (btf_kind(local_type) != btf_kind(targ_type)) 5321 return 0; 5322 5323 recur: 5324 depth--; 5325 if (depth < 0) 5326 return -EINVAL; 5327 5328 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5329 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5330 if (!local_type || !targ_type) 5331 return -EINVAL; 5332 5333 if (btf_kind(local_type) != btf_kind(targ_type)) 5334 return 0; 5335 5336 switch (btf_kind(local_type)) { 5337 case BTF_KIND_UNKN: 5338 case BTF_KIND_STRUCT: 5339 case BTF_KIND_UNION: 5340 case BTF_KIND_ENUM: 5341 case BTF_KIND_FWD: 5342 return 1; 5343 case BTF_KIND_INT: 5344 /* just reject deprecated bitfield-like integers; all other 5345 * integers are by default compatible between each other 5346 */ 5347 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5348 case BTF_KIND_PTR: 5349 local_id = local_type->type; 5350 targ_id = targ_type->type; 5351 goto recur; 5352 case BTF_KIND_ARRAY: 5353 local_id = btf_array(local_type)->type; 5354 targ_id = btf_array(targ_type)->type; 5355 goto recur; 5356 case BTF_KIND_FUNC_PROTO: { 5357 struct btf_param *local_p = btf_params(local_type); 5358 struct btf_param *targ_p = btf_params(targ_type); 5359 __u16 local_vlen = btf_vlen(local_type); 5360 __u16 targ_vlen = btf_vlen(targ_type); 5361 int i, err; 5362 5363 if (local_vlen != targ_vlen) 5364 return 0; 5365 5366 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5367 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5368 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5369 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5370 if (err <= 0) 5371 return err; 5372 } 5373 5374 /* tail recurse for return type check */ 5375 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5376 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5377 goto recur; 5378 } 5379 default: 5380 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5381 btf_kind_str(local_type), local_id, targ_id); 5382 return 0; 5383 } 5384 } 5385 5386 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5387 { 5388 return (size_t)key; 5389 } 5390 5391 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5392 { 5393 return k1 == k2; 5394 } 5395 5396 static void *u32_as_hash_key(__u32 x) 5397 { 5398 return (void *)(uintptr_t)x; 5399 } 5400 5401 static int bpf_core_apply_relo(struct bpf_program *prog, 5402 const struct bpf_core_relo *relo, 5403 int relo_idx, 5404 const struct btf *local_btf, 5405 struct hashmap *cand_cache) 5406 { 5407 const void *type_key = u32_as_hash_key(relo->type_id); 5408 struct bpf_core_cand_list *cands = NULL; 5409 const char *prog_name = prog->name; 5410 const struct btf_type *local_type; 5411 const char *local_name; 5412 __u32 local_id = relo->type_id; 5413 struct bpf_insn *insn; 5414 int insn_idx, err; 5415 5416 if (relo->insn_off % BPF_INSN_SZ) 5417 return -EINVAL; 5418 insn_idx = relo->insn_off / BPF_INSN_SZ; 5419 /* adjust insn_idx from section frame of reference to the local 5420 * program's frame of reference; (sub-)program code is not yet 5421 * relocated, so it's enough to just subtract in-section offset 5422 */ 5423 insn_idx = insn_idx - prog->sec_insn_off; 5424 if (insn_idx >= prog->insns_cnt) 5425 return -EINVAL; 5426 insn = &prog->insns[insn_idx]; 5427 5428 local_type = btf__type_by_id(local_btf, local_id); 5429 if (!local_type) 5430 return -EINVAL; 5431 5432 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5433 if (!local_name) 5434 return -EINVAL; 5435 5436 if (prog->obj->gen_loader) { 5437 pr_warn("// TODO core_relo: prog %td insn[%d] %s kind %d\n", 5438 prog - prog->obj->programs, relo->insn_off / 8, 5439 local_name, relo->kind); 5440 return -ENOTSUP; 5441 } 5442 5443 if (relo->kind != BPF_TYPE_ID_LOCAL && 5444 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5445 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5446 if (IS_ERR(cands)) { 5447 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5448 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5449 local_name, PTR_ERR(cands)); 5450 return PTR_ERR(cands); 5451 } 5452 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5453 if (err) { 5454 bpf_core_free_cands(cands); 5455 return err; 5456 } 5457 } 5458 5459 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, relo_idx, local_btf, cands); 5460 } 5461 5462 static int 5463 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5464 { 5465 const struct btf_ext_info_sec *sec; 5466 const struct bpf_core_relo *rec; 5467 const struct btf_ext_info *seg; 5468 struct hashmap_entry *entry; 5469 struct hashmap *cand_cache = NULL; 5470 struct bpf_program *prog; 5471 const char *sec_name; 5472 int i, err = 0, insn_idx, sec_idx; 5473 5474 if (obj->btf_ext->core_relo_info.len == 0) 5475 return 0; 5476 5477 if (targ_btf_path) { 5478 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5479 err = libbpf_get_error(obj->btf_vmlinux_override); 5480 if (err) { 5481 pr_warn("failed to parse target BTF: %d\n", err); 5482 return err; 5483 } 5484 } 5485 5486 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5487 if (IS_ERR(cand_cache)) { 5488 err = PTR_ERR(cand_cache); 5489 goto out; 5490 } 5491 5492 seg = &obj->btf_ext->core_relo_info; 5493 for_each_btf_ext_sec(seg, sec) { 5494 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5495 if (str_is_empty(sec_name)) { 5496 err = -EINVAL; 5497 goto out; 5498 } 5499 /* bpf_object's ELF is gone by now so it's not easy to find 5500 * section index by section name, but we can find *any* 5501 * bpf_program within desired section name and use it's 5502 * prog->sec_idx to do a proper search by section index and 5503 * instruction offset 5504 */ 5505 prog = NULL; 5506 for (i = 0; i < obj->nr_programs; i++) { 5507 prog = &obj->programs[i]; 5508 if (strcmp(prog->sec_name, sec_name) == 0) 5509 break; 5510 } 5511 if (!prog) { 5512 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5513 return -ENOENT; 5514 } 5515 sec_idx = prog->sec_idx; 5516 5517 pr_debug("sec '%s': found %d CO-RE relocations\n", 5518 sec_name, sec->num_info); 5519 5520 for_each_btf_ext_rec(seg, sec, i, rec) { 5521 insn_idx = rec->insn_off / BPF_INSN_SZ; 5522 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5523 if (!prog) { 5524 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5525 sec_name, insn_idx, i); 5526 err = -EINVAL; 5527 goto out; 5528 } 5529 /* no need to apply CO-RE relocation if the program is 5530 * not going to be loaded 5531 */ 5532 if (!prog->load) 5533 continue; 5534 5535 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 5536 if (err) { 5537 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5538 prog->name, i, err); 5539 goto out; 5540 } 5541 } 5542 } 5543 5544 out: 5545 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5546 btf__free(obj->btf_vmlinux_override); 5547 obj->btf_vmlinux_override = NULL; 5548 5549 if (!IS_ERR_OR_NULL(cand_cache)) { 5550 hashmap__for_each_entry(cand_cache, entry, i) { 5551 bpf_core_free_cands(entry->value); 5552 } 5553 hashmap__free(cand_cache); 5554 } 5555 return err; 5556 } 5557 5558 /* Relocate data references within program code: 5559 * - map references; 5560 * - global variable references; 5561 * - extern references. 5562 */ 5563 static int 5564 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5565 { 5566 int i; 5567 5568 for (i = 0; i < prog->nr_reloc; i++) { 5569 struct reloc_desc *relo = &prog->reloc_desc[i]; 5570 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5571 struct extern_desc *ext; 5572 5573 switch (relo->type) { 5574 case RELO_LD64: 5575 if (obj->gen_loader) { 5576 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5577 insn[0].imm = relo->map_idx; 5578 } else { 5579 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5580 insn[0].imm = obj->maps[relo->map_idx].fd; 5581 } 5582 break; 5583 case RELO_DATA: 5584 insn[1].imm = insn[0].imm + relo->sym_off; 5585 if (obj->gen_loader) { 5586 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5587 insn[0].imm = relo->map_idx; 5588 } else { 5589 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5590 insn[0].imm = obj->maps[relo->map_idx].fd; 5591 } 5592 break; 5593 case RELO_EXTERN_VAR: 5594 ext = &obj->externs[relo->sym_off]; 5595 if (ext->type == EXT_KCFG) { 5596 if (obj->gen_loader) { 5597 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5598 insn[0].imm = obj->kconfig_map_idx; 5599 } else { 5600 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5601 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5602 } 5603 insn[1].imm = ext->kcfg.data_off; 5604 } else /* EXT_KSYM */ { 5605 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5606 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5607 insn[0].imm = ext->ksym.kernel_btf_id; 5608 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5609 } else { /* typeless ksyms or unresolved typed ksyms */ 5610 insn[0].imm = (__u32)ext->ksym.addr; 5611 insn[1].imm = ext->ksym.addr >> 32; 5612 } 5613 } 5614 break; 5615 case RELO_EXTERN_FUNC: 5616 ext = &obj->externs[relo->sym_off]; 5617 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5618 if (ext->is_set) { 5619 insn[0].imm = ext->ksym.kernel_btf_id; 5620 insn[0].off = ext->ksym.btf_fd_idx; 5621 } else { /* unresolved weak kfunc */ 5622 insn[0].imm = 0; 5623 insn[0].off = 0; 5624 } 5625 break; 5626 case RELO_SUBPROG_ADDR: 5627 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5628 pr_warn("prog '%s': relo #%d: bad insn\n", 5629 prog->name, i); 5630 return -EINVAL; 5631 } 5632 /* handled already */ 5633 break; 5634 case RELO_CALL: 5635 /* handled already */ 5636 break; 5637 default: 5638 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5639 prog->name, i, relo->type); 5640 return -EINVAL; 5641 } 5642 } 5643 5644 return 0; 5645 } 5646 5647 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5648 const struct bpf_program *prog, 5649 const struct btf_ext_info *ext_info, 5650 void **prog_info, __u32 *prog_rec_cnt, 5651 __u32 *prog_rec_sz) 5652 { 5653 void *copy_start = NULL, *copy_end = NULL; 5654 void *rec, *rec_end, *new_prog_info; 5655 const struct btf_ext_info_sec *sec; 5656 size_t old_sz, new_sz; 5657 const char *sec_name; 5658 int i, off_adj; 5659 5660 for_each_btf_ext_sec(ext_info, sec) { 5661 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5662 if (!sec_name) 5663 return -EINVAL; 5664 if (strcmp(sec_name, prog->sec_name) != 0) 5665 continue; 5666 5667 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5668 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5669 5670 if (insn_off < prog->sec_insn_off) 5671 continue; 5672 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5673 break; 5674 5675 if (!copy_start) 5676 copy_start = rec; 5677 copy_end = rec + ext_info->rec_size; 5678 } 5679 5680 if (!copy_start) 5681 return -ENOENT; 5682 5683 /* append func/line info of a given (sub-)program to the main 5684 * program func/line info 5685 */ 5686 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5687 new_sz = old_sz + (copy_end - copy_start); 5688 new_prog_info = realloc(*prog_info, new_sz); 5689 if (!new_prog_info) 5690 return -ENOMEM; 5691 *prog_info = new_prog_info; 5692 *prog_rec_cnt = new_sz / ext_info->rec_size; 5693 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5694 5695 /* Kernel instruction offsets are in units of 8-byte 5696 * instructions, while .BTF.ext instruction offsets generated 5697 * by Clang are in units of bytes. So convert Clang offsets 5698 * into kernel offsets and adjust offset according to program 5699 * relocated position. 5700 */ 5701 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5702 rec = new_prog_info + old_sz; 5703 rec_end = new_prog_info + new_sz; 5704 for (; rec < rec_end; rec += ext_info->rec_size) { 5705 __u32 *insn_off = rec; 5706 5707 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5708 } 5709 *prog_rec_sz = ext_info->rec_size; 5710 return 0; 5711 } 5712 5713 return -ENOENT; 5714 } 5715 5716 static int 5717 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5718 struct bpf_program *main_prog, 5719 const struct bpf_program *prog) 5720 { 5721 int err; 5722 5723 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5724 * supprot func/line info 5725 */ 5726 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5727 return 0; 5728 5729 /* only attempt func info relocation if main program's func_info 5730 * relocation was successful 5731 */ 5732 if (main_prog != prog && !main_prog->func_info) 5733 goto line_info; 5734 5735 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5736 &main_prog->func_info, 5737 &main_prog->func_info_cnt, 5738 &main_prog->func_info_rec_size); 5739 if (err) { 5740 if (err != -ENOENT) { 5741 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5742 prog->name, err); 5743 return err; 5744 } 5745 if (main_prog->func_info) { 5746 /* 5747 * Some info has already been found but has problem 5748 * in the last btf_ext reloc. Must have to error out. 5749 */ 5750 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5751 return err; 5752 } 5753 /* Have problem loading the very first info. Ignore the rest. */ 5754 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5755 prog->name); 5756 } 5757 5758 line_info: 5759 /* don't relocate line info if main program's relocation failed */ 5760 if (main_prog != prog && !main_prog->line_info) 5761 return 0; 5762 5763 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5764 &main_prog->line_info, 5765 &main_prog->line_info_cnt, 5766 &main_prog->line_info_rec_size); 5767 if (err) { 5768 if (err != -ENOENT) { 5769 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5770 prog->name, err); 5771 return err; 5772 } 5773 if (main_prog->line_info) { 5774 /* 5775 * Some info has already been found but has problem 5776 * in the last btf_ext reloc. Must have to error out. 5777 */ 5778 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5779 return err; 5780 } 5781 /* Have problem loading the very first info. Ignore the rest. */ 5782 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5783 prog->name); 5784 } 5785 return 0; 5786 } 5787 5788 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5789 { 5790 size_t insn_idx = *(const size_t *)key; 5791 const struct reloc_desc *relo = elem; 5792 5793 if (insn_idx == relo->insn_idx) 5794 return 0; 5795 return insn_idx < relo->insn_idx ? -1 : 1; 5796 } 5797 5798 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5799 { 5800 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5801 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5802 } 5803 5804 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5805 { 5806 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5807 struct reloc_desc *relos; 5808 int i; 5809 5810 if (main_prog == subprog) 5811 return 0; 5812 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5813 if (!relos) 5814 return -ENOMEM; 5815 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5816 sizeof(*relos) * subprog->nr_reloc); 5817 5818 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5819 relos[i].insn_idx += subprog->sub_insn_off; 5820 /* After insn_idx adjustment the 'relos' array is still sorted 5821 * by insn_idx and doesn't break bsearch. 5822 */ 5823 main_prog->reloc_desc = relos; 5824 main_prog->nr_reloc = new_cnt; 5825 return 0; 5826 } 5827 5828 static int 5829 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5830 struct bpf_program *prog) 5831 { 5832 size_t sub_insn_idx, insn_idx, new_cnt; 5833 struct bpf_program *subprog; 5834 struct bpf_insn *insns, *insn; 5835 struct reloc_desc *relo; 5836 int err; 5837 5838 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5839 if (err) 5840 return err; 5841 5842 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5843 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5844 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 5845 continue; 5846 5847 relo = find_prog_insn_relo(prog, insn_idx); 5848 if (relo && relo->type == RELO_EXTERN_FUNC) 5849 /* kfunc relocations will be handled later 5850 * in bpf_object__relocate_data() 5851 */ 5852 continue; 5853 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 5854 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 5855 prog->name, insn_idx, relo->type); 5856 return -LIBBPF_ERRNO__RELOC; 5857 } 5858 if (relo) { 5859 /* sub-program instruction index is a combination of 5860 * an offset of a symbol pointed to by relocation and 5861 * call instruction's imm field; for global functions, 5862 * call always has imm = -1, but for static functions 5863 * relocation is against STT_SECTION and insn->imm 5864 * points to a start of a static function 5865 * 5866 * for subprog addr relocation, the relo->sym_off + insn->imm is 5867 * the byte offset in the corresponding section. 5868 */ 5869 if (relo->type == RELO_CALL) 5870 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 5871 else 5872 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 5873 } else if (insn_is_pseudo_func(insn)) { 5874 /* 5875 * RELO_SUBPROG_ADDR relo is always emitted even if both 5876 * functions are in the same section, so it shouldn't reach here. 5877 */ 5878 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 5879 prog->name, insn_idx); 5880 return -LIBBPF_ERRNO__RELOC; 5881 } else { 5882 /* if subprogram call is to a static function within 5883 * the same ELF section, there won't be any relocation 5884 * emitted, but it also means there is no additional 5885 * offset necessary, insns->imm is relative to 5886 * instruction's original position within the section 5887 */ 5888 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 5889 } 5890 5891 /* we enforce that sub-programs should be in .text section */ 5892 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 5893 if (!subprog) { 5894 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 5895 prog->name); 5896 return -LIBBPF_ERRNO__RELOC; 5897 } 5898 5899 /* if it's the first call instruction calling into this 5900 * subprogram (meaning this subprog hasn't been processed 5901 * yet) within the context of current main program: 5902 * - append it at the end of main program's instructions blog; 5903 * - process is recursively, while current program is put on hold; 5904 * - if that subprogram calls some other not yet processes 5905 * subprogram, same thing will happen recursively until 5906 * there are no more unprocesses subprograms left to append 5907 * and relocate. 5908 */ 5909 if (subprog->sub_insn_off == 0) { 5910 subprog->sub_insn_off = main_prog->insns_cnt; 5911 5912 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 5913 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 5914 if (!insns) { 5915 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 5916 return -ENOMEM; 5917 } 5918 main_prog->insns = insns; 5919 main_prog->insns_cnt = new_cnt; 5920 5921 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 5922 subprog->insns_cnt * sizeof(*insns)); 5923 5924 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 5925 main_prog->name, subprog->insns_cnt, subprog->name); 5926 5927 /* The subprog insns are now appended. Append its relos too. */ 5928 err = append_subprog_relos(main_prog, subprog); 5929 if (err) 5930 return err; 5931 err = bpf_object__reloc_code(obj, main_prog, subprog); 5932 if (err) 5933 return err; 5934 } 5935 5936 /* main_prog->insns memory could have been re-allocated, so 5937 * calculate pointer again 5938 */ 5939 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5940 /* calculate correct instruction position within current main 5941 * prog; each main prog can have a different set of 5942 * subprograms appended (potentially in different order as 5943 * well), so position of any subprog can be different for 5944 * different main programs */ 5945 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 5946 5947 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 5948 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 5949 } 5950 5951 return 0; 5952 } 5953 5954 /* 5955 * Relocate sub-program calls. 5956 * 5957 * Algorithm operates as follows. Each entry-point BPF program (referred to as 5958 * main prog) is processed separately. For each subprog (non-entry functions, 5959 * that can be called from either entry progs or other subprogs) gets their 5960 * sub_insn_off reset to zero. This serves as indicator that this subprogram 5961 * hasn't been yet appended and relocated within current main prog. Once its 5962 * relocated, sub_insn_off will point at the position within current main prog 5963 * where given subprog was appended. This will further be used to relocate all 5964 * the call instructions jumping into this subprog. 5965 * 5966 * We start with main program and process all call instructions. If the call 5967 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 5968 * is zero), subprog instructions are appended at the end of main program's 5969 * instruction array. Then main program is "put on hold" while we recursively 5970 * process newly appended subprogram. If that subprogram calls into another 5971 * subprogram that hasn't been appended, new subprogram is appended again to 5972 * the *main* prog's instructions (subprog's instructions are always left 5973 * untouched, as they need to be in unmodified state for subsequent main progs 5974 * and subprog instructions are always sent only as part of a main prog) and 5975 * the process continues recursively. Once all the subprogs called from a main 5976 * prog or any of its subprogs are appended (and relocated), all their 5977 * positions within finalized instructions array are known, so it's easy to 5978 * rewrite call instructions with correct relative offsets, corresponding to 5979 * desired target subprog. 5980 * 5981 * Its important to realize that some subprogs might not be called from some 5982 * main prog and any of its called/used subprogs. Those will keep their 5983 * subprog->sub_insn_off as zero at all times and won't be appended to current 5984 * main prog and won't be relocated within the context of current main prog. 5985 * They might still be used from other main progs later. 5986 * 5987 * Visually this process can be shown as below. Suppose we have two main 5988 * programs mainA and mainB and BPF object contains three subprogs: subA, 5989 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 5990 * subC both call subB: 5991 * 5992 * +--------+ +-------+ 5993 * | v v | 5994 * +--+---+ +--+-+-+ +---+--+ 5995 * | subA | | subB | | subC | 5996 * +--+---+ +------+ +---+--+ 5997 * ^ ^ 5998 * | | 5999 * +---+-------+ +------+----+ 6000 * | mainA | | mainB | 6001 * +-----------+ +-----------+ 6002 * 6003 * We'll start relocating mainA, will find subA, append it and start 6004 * processing sub A recursively: 6005 * 6006 * +-----------+------+ 6007 * | mainA | subA | 6008 * +-----------+------+ 6009 * 6010 * At this point we notice that subB is used from subA, so we append it and 6011 * relocate (there are no further subcalls from subB): 6012 * 6013 * +-----------+------+------+ 6014 * | mainA | subA | subB | 6015 * +-----------+------+------+ 6016 * 6017 * At this point, we relocate subA calls, then go one level up and finish with 6018 * relocatin mainA calls. mainA is done. 6019 * 6020 * For mainB process is similar but results in different order. We start with 6021 * mainB and skip subA and subB, as mainB never calls them (at least 6022 * directly), but we see subC is needed, so we append and start processing it: 6023 * 6024 * +-----------+------+ 6025 * | mainB | subC | 6026 * +-----------+------+ 6027 * Now we see subC needs subB, so we go back to it, append and relocate it: 6028 * 6029 * +-----------+------+------+ 6030 * | mainB | subC | subB | 6031 * +-----------+------+------+ 6032 * 6033 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6034 */ 6035 static int 6036 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6037 { 6038 struct bpf_program *subprog; 6039 int i, err; 6040 6041 /* mark all subprogs as not relocated (yet) within the context of 6042 * current main program 6043 */ 6044 for (i = 0; i < obj->nr_programs; i++) { 6045 subprog = &obj->programs[i]; 6046 if (!prog_is_subprog(obj, subprog)) 6047 continue; 6048 6049 subprog->sub_insn_off = 0; 6050 } 6051 6052 err = bpf_object__reloc_code(obj, prog, prog); 6053 if (err) 6054 return err; 6055 6056 6057 return 0; 6058 } 6059 6060 static void 6061 bpf_object__free_relocs(struct bpf_object *obj) 6062 { 6063 struct bpf_program *prog; 6064 int i; 6065 6066 /* free up relocation descriptors */ 6067 for (i = 0; i < obj->nr_programs; i++) { 6068 prog = &obj->programs[i]; 6069 zfree(&prog->reloc_desc); 6070 prog->nr_reloc = 0; 6071 } 6072 } 6073 6074 static int 6075 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6076 { 6077 struct bpf_program *prog; 6078 size_t i, j; 6079 int err; 6080 6081 if (obj->btf_ext) { 6082 err = bpf_object__relocate_core(obj, targ_btf_path); 6083 if (err) { 6084 pr_warn("failed to perform CO-RE relocations: %d\n", 6085 err); 6086 return err; 6087 } 6088 } 6089 6090 /* Before relocating calls pre-process relocations and mark 6091 * few ld_imm64 instructions that points to subprogs. 6092 * Otherwise bpf_object__reloc_code() later would have to consider 6093 * all ld_imm64 insns as relocation candidates. That would 6094 * reduce relocation speed, since amount of find_prog_insn_relo() 6095 * would increase and most of them will fail to find a relo. 6096 */ 6097 for (i = 0; i < obj->nr_programs; i++) { 6098 prog = &obj->programs[i]; 6099 for (j = 0; j < prog->nr_reloc; j++) { 6100 struct reloc_desc *relo = &prog->reloc_desc[j]; 6101 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6102 6103 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6104 if (relo->type == RELO_SUBPROG_ADDR) 6105 insn[0].src_reg = BPF_PSEUDO_FUNC; 6106 } 6107 } 6108 6109 /* relocate subprogram calls and append used subprograms to main 6110 * programs; each copy of subprogram code needs to be relocated 6111 * differently for each main program, because its code location might 6112 * have changed. 6113 * Append subprog relos to main programs to allow data relos to be 6114 * processed after text is completely relocated. 6115 */ 6116 for (i = 0; i < obj->nr_programs; i++) { 6117 prog = &obj->programs[i]; 6118 /* sub-program's sub-calls are relocated within the context of 6119 * its main program only 6120 */ 6121 if (prog_is_subprog(obj, prog)) 6122 continue; 6123 6124 err = bpf_object__relocate_calls(obj, prog); 6125 if (err) { 6126 pr_warn("prog '%s': failed to relocate calls: %d\n", 6127 prog->name, err); 6128 return err; 6129 } 6130 } 6131 /* Process data relos for main programs */ 6132 for (i = 0; i < obj->nr_programs; i++) { 6133 prog = &obj->programs[i]; 6134 if (prog_is_subprog(obj, prog)) 6135 continue; 6136 err = bpf_object__relocate_data(obj, prog); 6137 if (err) { 6138 pr_warn("prog '%s': failed to relocate data references: %d\n", 6139 prog->name, err); 6140 return err; 6141 } 6142 } 6143 if (!obj->gen_loader) 6144 bpf_object__free_relocs(obj); 6145 return 0; 6146 } 6147 6148 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6149 Elf64_Shdr *shdr, Elf_Data *data); 6150 6151 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6152 Elf64_Shdr *shdr, Elf_Data *data) 6153 { 6154 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6155 int i, j, nrels, new_sz; 6156 const struct btf_var_secinfo *vi = NULL; 6157 const struct btf_type *sec, *var, *def; 6158 struct bpf_map *map = NULL, *targ_map; 6159 const struct btf_member *member; 6160 const char *name, *mname; 6161 unsigned int moff; 6162 Elf64_Sym *sym; 6163 Elf64_Rel *rel; 6164 void *tmp; 6165 6166 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6167 return -EINVAL; 6168 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6169 if (!sec) 6170 return -EINVAL; 6171 6172 nrels = shdr->sh_size / shdr->sh_entsize; 6173 for (i = 0; i < nrels; i++) { 6174 rel = elf_rel_by_idx(data, i); 6175 if (!rel) { 6176 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6177 return -LIBBPF_ERRNO__FORMAT; 6178 } 6179 6180 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6181 if (!sym) { 6182 pr_warn(".maps relo #%d: symbol %zx not found\n", 6183 i, (size_t)ELF64_R_SYM(rel->r_info)); 6184 return -LIBBPF_ERRNO__FORMAT; 6185 } 6186 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6187 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6188 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6189 i, name); 6190 return -LIBBPF_ERRNO__RELOC; 6191 } 6192 6193 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6194 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6195 (size_t)rel->r_offset, sym->st_name, name); 6196 6197 for (j = 0; j < obj->nr_maps; j++) { 6198 map = &obj->maps[j]; 6199 if (map->sec_idx != obj->efile.btf_maps_shndx) 6200 continue; 6201 6202 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6203 if (vi->offset <= rel->r_offset && 6204 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6205 break; 6206 } 6207 if (j == obj->nr_maps) { 6208 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6209 i, name, (size_t)rel->r_offset); 6210 return -EINVAL; 6211 } 6212 6213 if (!bpf_map_type__is_map_in_map(map->def.type)) 6214 return -EINVAL; 6215 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6216 map->def.key_size != sizeof(int)) { 6217 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6218 i, map->name, sizeof(int)); 6219 return -EINVAL; 6220 } 6221 6222 targ_map = bpf_object__find_map_by_name(obj, name); 6223 if (!targ_map) 6224 return -ESRCH; 6225 6226 var = btf__type_by_id(obj->btf, vi->type); 6227 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6228 if (btf_vlen(def) == 0) 6229 return -EINVAL; 6230 member = btf_members(def) + btf_vlen(def) - 1; 6231 mname = btf__name_by_offset(obj->btf, member->name_off); 6232 if (strcmp(mname, "values")) 6233 return -EINVAL; 6234 6235 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6236 if (rel->r_offset - vi->offset < moff) 6237 return -EINVAL; 6238 6239 moff = rel->r_offset - vi->offset - moff; 6240 /* here we use BPF pointer size, which is always 64 bit, as we 6241 * are parsing ELF that was built for BPF target 6242 */ 6243 if (moff % bpf_ptr_sz) 6244 return -EINVAL; 6245 moff /= bpf_ptr_sz; 6246 if (moff >= map->init_slots_sz) { 6247 new_sz = moff + 1; 6248 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6249 if (!tmp) 6250 return -ENOMEM; 6251 map->init_slots = tmp; 6252 memset(map->init_slots + map->init_slots_sz, 0, 6253 (new_sz - map->init_slots_sz) * host_ptr_sz); 6254 map->init_slots_sz = new_sz; 6255 } 6256 map->init_slots[moff] = targ_map; 6257 6258 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6259 i, map->name, moff, name); 6260 } 6261 6262 return 0; 6263 } 6264 6265 static int cmp_relocs(const void *_a, const void *_b) 6266 { 6267 const struct reloc_desc *a = _a; 6268 const struct reloc_desc *b = _b; 6269 6270 if (a->insn_idx != b->insn_idx) 6271 return a->insn_idx < b->insn_idx ? -1 : 1; 6272 6273 /* no two relocations should have the same insn_idx, but ... */ 6274 if (a->type != b->type) 6275 return a->type < b->type ? -1 : 1; 6276 6277 return 0; 6278 } 6279 6280 static int bpf_object__collect_relos(struct bpf_object *obj) 6281 { 6282 int i, err; 6283 6284 for (i = 0; i < obj->efile.sec_cnt; i++) { 6285 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6286 Elf64_Shdr *shdr; 6287 Elf_Data *data; 6288 int idx; 6289 6290 if (sec_desc->sec_type != SEC_RELO) 6291 continue; 6292 6293 shdr = sec_desc->shdr; 6294 data = sec_desc->data; 6295 idx = shdr->sh_info; 6296 6297 if (shdr->sh_type != SHT_REL) { 6298 pr_warn("internal error at %d\n", __LINE__); 6299 return -LIBBPF_ERRNO__INTERNAL; 6300 } 6301 6302 if (idx == obj->efile.st_ops_shndx) 6303 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6304 else if (idx == obj->efile.btf_maps_shndx) 6305 err = bpf_object__collect_map_relos(obj, shdr, data); 6306 else 6307 err = bpf_object__collect_prog_relos(obj, shdr, data); 6308 if (err) 6309 return err; 6310 } 6311 6312 for (i = 0; i < obj->nr_programs; i++) { 6313 struct bpf_program *p = &obj->programs[i]; 6314 6315 if (!p->nr_reloc) 6316 continue; 6317 6318 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6319 } 6320 return 0; 6321 } 6322 6323 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6324 { 6325 if (BPF_CLASS(insn->code) == BPF_JMP && 6326 BPF_OP(insn->code) == BPF_CALL && 6327 BPF_SRC(insn->code) == BPF_K && 6328 insn->src_reg == 0 && 6329 insn->dst_reg == 0) { 6330 *func_id = insn->imm; 6331 return true; 6332 } 6333 return false; 6334 } 6335 6336 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6337 { 6338 struct bpf_insn *insn = prog->insns; 6339 enum bpf_func_id func_id; 6340 int i; 6341 6342 if (obj->gen_loader) 6343 return 0; 6344 6345 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6346 if (!insn_is_helper_call(insn, &func_id)) 6347 continue; 6348 6349 /* on kernels that don't yet support 6350 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6351 * to bpf_probe_read() which works well for old kernels 6352 */ 6353 switch (func_id) { 6354 case BPF_FUNC_probe_read_kernel: 6355 case BPF_FUNC_probe_read_user: 6356 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6357 insn->imm = BPF_FUNC_probe_read; 6358 break; 6359 case BPF_FUNC_probe_read_kernel_str: 6360 case BPF_FUNC_probe_read_user_str: 6361 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6362 insn->imm = BPF_FUNC_probe_read_str; 6363 break; 6364 default: 6365 break; 6366 } 6367 } 6368 return 0; 6369 } 6370 6371 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6372 int *btf_obj_fd, int *btf_type_id); 6373 6374 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6375 static int libbpf_preload_prog(struct bpf_program *prog, 6376 struct bpf_prog_load_opts *opts, long cookie) 6377 { 6378 enum sec_def_flags def = cookie; 6379 6380 /* old kernels might not support specifying expected_attach_type */ 6381 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6382 opts->expected_attach_type = 0; 6383 6384 if (def & SEC_SLEEPABLE) 6385 opts->prog_flags |= BPF_F_SLEEPABLE; 6386 6387 if ((prog->type == BPF_PROG_TYPE_TRACING || 6388 prog->type == BPF_PROG_TYPE_LSM || 6389 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6390 int btf_obj_fd = 0, btf_type_id = 0, err; 6391 const char *attach_name; 6392 6393 attach_name = strchr(prog->sec_name, '/') + 1; 6394 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6395 if (err) 6396 return err; 6397 6398 /* cache resolved BTF FD and BTF type ID in the prog */ 6399 prog->attach_btf_obj_fd = btf_obj_fd; 6400 prog->attach_btf_id = btf_type_id; 6401 6402 /* but by now libbpf common logic is not utilizing 6403 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6404 * this callback is called after opts were populated by 6405 * libbpf, so this callback has to update opts explicitly here 6406 */ 6407 opts->attach_btf_obj_fd = btf_obj_fd; 6408 opts->attach_btf_id = btf_type_id; 6409 } 6410 return 0; 6411 } 6412 6413 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6414 struct bpf_insn *insns, int insns_cnt, 6415 const char *license, __u32 kern_version, 6416 int *prog_fd) 6417 { 6418 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6419 const char *prog_name = NULL; 6420 char *cp, errmsg[STRERR_BUFSIZE]; 6421 size_t log_buf_size = 0; 6422 char *log_buf = NULL; 6423 int btf_fd, ret, err; 6424 6425 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6426 /* 6427 * The program type must be set. Most likely we couldn't find a proper 6428 * section definition at load time, and thus we didn't infer the type. 6429 */ 6430 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6431 prog->name, prog->sec_name); 6432 return -EINVAL; 6433 } 6434 6435 if (!insns || !insns_cnt) 6436 return -EINVAL; 6437 6438 load_attr.expected_attach_type = prog->expected_attach_type; 6439 if (kernel_supports(obj, FEAT_PROG_NAME)) 6440 prog_name = prog->name; 6441 load_attr.attach_btf_id = prog->attach_btf_id; 6442 load_attr.attach_prog_fd = prog->attach_prog_fd; 6443 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6444 load_attr.attach_btf_id = prog->attach_btf_id; 6445 load_attr.kern_version = kern_version; 6446 load_attr.prog_ifindex = prog->prog_ifindex; 6447 6448 /* specify func_info/line_info only if kernel supports them */ 6449 btf_fd = bpf_object__btf_fd(obj); 6450 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6451 load_attr.prog_btf_fd = btf_fd; 6452 load_attr.func_info = prog->func_info; 6453 load_attr.func_info_rec_size = prog->func_info_rec_size; 6454 load_attr.func_info_cnt = prog->func_info_cnt; 6455 load_attr.line_info = prog->line_info; 6456 load_attr.line_info_rec_size = prog->line_info_rec_size; 6457 load_attr.line_info_cnt = prog->line_info_cnt; 6458 } 6459 load_attr.log_level = prog->log_level; 6460 load_attr.prog_flags = prog->prog_flags; 6461 load_attr.fd_array = obj->fd_array; 6462 6463 /* adjust load_attr if sec_def provides custom preload callback */ 6464 if (prog->sec_def && prog->sec_def->preload_fn) { 6465 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6466 if (err < 0) { 6467 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6468 prog->name, err); 6469 return err; 6470 } 6471 } 6472 6473 if (obj->gen_loader) { 6474 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6475 license, insns, insns_cnt, &load_attr, 6476 prog - obj->programs); 6477 *prog_fd = -1; 6478 return 0; 6479 } 6480 retry_load: 6481 if (log_buf_size) { 6482 log_buf = malloc(log_buf_size); 6483 if (!log_buf) 6484 return -ENOMEM; 6485 6486 *log_buf = 0; 6487 } 6488 6489 load_attr.log_buf = log_buf; 6490 load_attr.log_size = log_buf_size; 6491 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6492 6493 if (ret >= 0) { 6494 if (log_buf && load_attr.log_level) 6495 pr_debug("verifier log:\n%s", log_buf); 6496 6497 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6498 struct bpf_map *map; 6499 int i; 6500 6501 for (i = 0; i < obj->nr_maps; i++) { 6502 map = &prog->obj->maps[i]; 6503 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6504 continue; 6505 6506 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6507 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6508 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6509 prog->name, cp); 6510 /* Don't fail hard if can't bind rodata. */ 6511 } 6512 } 6513 } 6514 6515 *prog_fd = ret; 6516 ret = 0; 6517 goto out; 6518 } 6519 6520 if (!log_buf || errno == ENOSPC) { 6521 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6522 log_buf_size << 1); 6523 6524 free(log_buf); 6525 goto retry_load; 6526 } 6527 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6528 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6529 pr_warn("load bpf program failed: %s\n", cp); 6530 pr_perm_msg(ret); 6531 6532 if (log_buf && log_buf[0] != '\0') { 6533 ret = -LIBBPF_ERRNO__VERIFY; 6534 pr_warn("-- BEGIN DUMP LOG ---\n"); 6535 pr_warn("\n%s\n", log_buf); 6536 pr_warn("-- END LOG --\n"); 6537 } else if (insns_cnt >= BPF_MAXINSNS) { 6538 pr_warn("Program too large (%d insns), at most %d insns\n", 6539 insns_cnt, BPF_MAXINSNS); 6540 ret = -LIBBPF_ERRNO__PROG2BIG; 6541 } else if (prog->type != BPF_PROG_TYPE_KPROBE) { 6542 /* Wrong program type? */ 6543 int fd; 6544 6545 load_attr.expected_attach_type = 0; 6546 load_attr.log_buf = NULL; 6547 load_attr.log_size = 0; 6548 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, prog_name, license, 6549 insns, insns_cnt, &load_attr); 6550 if (fd >= 0) { 6551 close(fd); 6552 ret = -LIBBPF_ERRNO__PROGTYPE; 6553 goto out; 6554 } 6555 } 6556 6557 out: 6558 free(log_buf); 6559 return ret; 6560 } 6561 6562 static int bpf_program__record_externs(struct bpf_program *prog) 6563 { 6564 struct bpf_object *obj = prog->obj; 6565 int i; 6566 6567 for (i = 0; i < prog->nr_reloc; i++) { 6568 struct reloc_desc *relo = &prog->reloc_desc[i]; 6569 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6570 6571 switch (relo->type) { 6572 case RELO_EXTERN_VAR: 6573 if (ext->type != EXT_KSYM) 6574 continue; 6575 bpf_gen__record_extern(obj->gen_loader, ext->name, 6576 ext->is_weak, !ext->ksym.type_id, 6577 BTF_KIND_VAR, relo->insn_idx); 6578 break; 6579 case RELO_EXTERN_FUNC: 6580 bpf_gen__record_extern(obj->gen_loader, ext->name, 6581 ext->is_weak, false, BTF_KIND_FUNC, 6582 relo->insn_idx); 6583 break; 6584 default: 6585 continue; 6586 } 6587 } 6588 return 0; 6589 } 6590 6591 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6592 const char *license, __u32 kern_ver) 6593 { 6594 int err = 0, fd, i; 6595 6596 if (obj->loaded) { 6597 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6598 return libbpf_err(-EINVAL); 6599 } 6600 6601 if (prog->instances.nr < 0 || !prog->instances.fds) { 6602 if (prog->preprocessor) { 6603 pr_warn("Internal error: can't load program '%s'\n", 6604 prog->name); 6605 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6606 } 6607 6608 prog->instances.fds = malloc(sizeof(int)); 6609 if (!prog->instances.fds) { 6610 pr_warn("Not enough memory for BPF fds\n"); 6611 return libbpf_err(-ENOMEM); 6612 } 6613 prog->instances.nr = 1; 6614 prog->instances.fds[0] = -1; 6615 } 6616 6617 if (!prog->preprocessor) { 6618 if (prog->instances.nr != 1) { 6619 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6620 prog->name, prog->instances.nr); 6621 } 6622 if (obj->gen_loader) 6623 bpf_program__record_externs(prog); 6624 err = bpf_object_load_prog_instance(obj, prog, 6625 prog->insns, prog->insns_cnt, 6626 license, kern_ver, &fd); 6627 if (!err) 6628 prog->instances.fds[0] = fd; 6629 goto out; 6630 } 6631 6632 for (i = 0; i < prog->instances.nr; i++) { 6633 struct bpf_prog_prep_result result; 6634 bpf_program_prep_t preprocessor = prog->preprocessor; 6635 6636 memset(&result, 0, sizeof(result)); 6637 err = preprocessor(prog, i, prog->insns, 6638 prog->insns_cnt, &result); 6639 if (err) { 6640 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6641 i, prog->name); 6642 goto out; 6643 } 6644 6645 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6646 pr_debug("Skip loading the %dth instance of program '%s'\n", 6647 i, prog->name); 6648 prog->instances.fds[i] = -1; 6649 if (result.pfd) 6650 *result.pfd = -1; 6651 continue; 6652 } 6653 6654 err = bpf_object_load_prog_instance(obj, prog, 6655 result.new_insn_ptr, result.new_insn_cnt, 6656 license, kern_ver, &fd); 6657 if (err) { 6658 pr_warn("Loading the %dth instance of program '%s' failed\n", 6659 i, prog->name); 6660 goto out; 6661 } 6662 6663 if (result.pfd) 6664 *result.pfd = fd; 6665 prog->instances.fds[i] = fd; 6666 } 6667 out: 6668 if (err) 6669 pr_warn("failed to load program '%s'\n", prog->name); 6670 return libbpf_err(err); 6671 } 6672 6673 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6674 { 6675 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6676 } 6677 6678 static int 6679 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6680 { 6681 struct bpf_program *prog; 6682 size_t i; 6683 int err; 6684 6685 for (i = 0; i < obj->nr_programs; i++) { 6686 prog = &obj->programs[i]; 6687 err = bpf_object__sanitize_prog(obj, prog); 6688 if (err) 6689 return err; 6690 } 6691 6692 for (i = 0; i < obj->nr_programs; i++) { 6693 prog = &obj->programs[i]; 6694 if (prog_is_subprog(obj, prog)) 6695 continue; 6696 if (!prog->load) { 6697 pr_debug("prog '%s': skipped loading\n", prog->name); 6698 continue; 6699 } 6700 prog->log_level |= log_level; 6701 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6702 if (err) 6703 return err; 6704 } 6705 if (obj->gen_loader) 6706 bpf_object__free_relocs(obj); 6707 return 0; 6708 } 6709 6710 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6711 6712 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6713 { 6714 struct bpf_program *prog; 6715 int err; 6716 6717 bpf_object__for_each_program(prog, obj) { 6718 prog->sec_def = find_sec_def(prog->sec_name); 6719 if (!prog->sec_def) { 6720 /* couldn't guess, but user might manually specify */ 6721 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6722 prog->name, prog->sec_name); 6723 continue; 6724 } 6725 6726 bpf_program__set_type(prog, prog->sec_def->prog_type); 6727 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6728 6729 #pragma GCC diagnostic push 6730 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6731 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6732 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6733 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6734 #pragma GCC diagnostic pop 6735 6736 /* sec_def can have custom callback which should be called 6737 * after bpf_program is initialized to adjust its properties 6738 */ 6739 if (prog->sec_def->init_fn) { 6740 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6741 if (err < 0) { 6742 pr_warn("prog '%s': failed to initialize: %d\n", 6743 prog->name, err); 6744 return err; 6745 } 6746 } 6747 } 6748 6749 return 0; 6750 } 6751 6752 static struct bpf_object * 6753 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6754 const struct bpf_object_open_opts *opts) 6755 { 6756 const char *obj_name, *kconfig, *btf_tmp_path; 6757 struct bpf_object *obj; 6758 char tmp_name[64]; 6759 int err; 6760 6761 if (elf_version(EV_CURRENT) == EV_NONE) { 6762 pr_warn("failed to init libelf for %s\n", 6763 path ? : "(mem buf)"); 6764 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6765 } 6766 6767 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6768 return ERR_PTR(-EINVAL); 6769 6770 obj_name = OPTS_GET(opts, object_name, NULL); 6771 if (obj_buf) { 6772 if (!obj_name) { 6773 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6774 (unsigned long)obj_buf, 6775 (unsigned long)obj_buf_sz); 6776 obj_name = tmp_name; 6777 } 6778 path = obj_name; 6779 pr_debug("loading object '%s' from buffer\n", obj_name); 6780 } 6781 6782 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6783 if (IS_ERR(obj)) 6784 return obj; 6785 6786 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 6787 if (btf_tmp_path) { 6788 if (strlen(btf_tmp_path) >= PATH_MAX) { 6789 err = -ENAMETOOLONG; 6790 goto out; 6791 } 6792 obj->btf_custom_path = strdup(btf_tmp_path); 6793 if (!obj->btf_custom_path) { 6794 err = -ENOMEM; 6795 goto out; 6796 } 6797 } 6798 6799 kconfig = OPTS_GET(opts, kconfig, NULL); 6800 if (kconfig) { 6801 obj->kconfig = strdup(kconfig); 6802 if (!obj->kconfig) { 6803 err = -ENOMEM; 6804 goto out; 6805 } 6806 } 6807 6808 err = bpf_object__elf_init(obj); 6809 err = err ? : bpf_object__check_endianness(obj); 6810 err = err ? : bpf_object__elf_collect(obj); 6811 err = err ? : bpf_object__collect_externs(obj); 6812 err = err ? : bpf_object__finalize_btf(obj); 6813 err = err ? : bpf_object__init_maps(obj, opts); 6814 err = err ? : bpf_object_init_progs(obj, opts); 6815 err = err ? : bpf_object__collect_relos(obj); 6816 if (err) 6817 goto out; 6818 6819 bpf_object__elf_finish(obj); 6820 6821 return obj; 6822 out: 6823 bpf_object__close(obj); 6824 return ERR_PTR(err); 6825 } 6826 6827 static struct bpf_object * 6828 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6829 { 6830 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6831 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6832 ); 6833 6834 /* param validation */ 6835 if (!attr->file) 6836 return NULL; 6837 6838 pr_debug("loading %s\n", attr->file); 6839 return __bpf_object__open(attr->file, NULL, 0, &opts); 6840 } 6841 6842 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6843 { 6844 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 6845 } 6846 6847 struct bpf_object *bpf_object__open(const char *path) 6848 { 6849 struct bpf_object_open_attr attr = { 6850 .file = path, 6851 .prog_type = BPF_PROG_TYPE_UNSPEC, 6852 }; 6853 6854 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 6855 } 6856 6857 struct bpf_object * 6858 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6859 { 6860 if (!path) 6861 return libbpf_err_ptr(-EINVAL); 6862 6863 pr_debug("loading %s\n", path); 6864 6865 return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts)); 6866 } 6867 6868 struct bpf_object * 6869 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6870 const struct bpf_object_open_opts *opts) 6871 { 6872 if (!obj_buf || obj_buf_sz == 0) 6873 return libbpf_err_ptr(-EINVAL); 6874 6875 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts)); 6876 } 6877 6878 struct bpf_object * 6879 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6880 const char *name) 6881 { 6882 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6883 .object_name = name, 6884 /* wrong default, but backwards-compatible */ 6885 .relaxed_maps = true, 6886 ); 6887 6888 /* returning NULL is wrong, but backwards-compatible */ 6889 if (!obj_buf || obj_buf_sz == 0) 6890 return errno = EINVAL, NULL; 6891 6892 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts)); 6893 } 6894 6895 static int bpf_object_unload(struct bpf_object *obj) 6896 { 6897 size_t i; 6898 6899 if (!obj) 6900 return libbpf_err(-EINVAL); 6901 6902 for (i = 0; i < obj->nr_maps; i++) { 6903 zclose(obj->maps[i].fd); 6904 if (obj->maps[i].st_ops) 6905 zfree(&obj->maps[i].st_ops->kern_vdata); 6906 } 6907 6908 for (i = 0; i < obj->nr_programs; i++) 6909 bpf_program__unload(&obj->programs[i]); 6910 6911 return 0; 6912 } 6913 6914 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 6915 6916 static int bpf_object__sanitize_maps(struct bpf_object *obj) 6917 { 6918 struct bpf_map *m; 6919 6920 bpf_object__for_each_map(m, obj) { 6921 if (!bpf_map__is_internal(m)) 6922 continue; 6923 if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) { 6924 pr_warn("kernel doesn't support global data\n"); 6925 return -ENOTSUP; 6926 } 6927 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 6928 m->def.map_flags ^= BPF_F_MMAPABLE; 6929 } 6930 6931 return 0; 6932 } 6933 6934 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 6935 { 6936 char sym_type, sym_name[500]; 6937 unsigned long long sym_addr; 6938 const struct btf_type *t; 6939 struct extern_desc *ext; 6940 int ret, err = 0; 6941 FILE *f; 6942 6943 f = fopen("/proc/kallsyms", "r"); 6944 if (!f) { 6945 err = -errno; 6946 pr_warn("failed to open /proc/kallsyms: %d\n", err); 6947 return err; 6948 } 6949 6950 while (true) { 6951 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 6952 &sym_addr, &sym_type, sym_name); 6953 if (ret == EOF && feof(f)) 6954 break; 6955 if (ret != 3) { 6956 pr_warn("failed to read kallsyms entry: %d\n", ret); 6957 err = -EINVAL; 6958 goto out; 6959 } 6960 6961 ext = find_extern_by_name(obj, sym_name); 6962 if (!ext || ext->type != EXT_KSYM) 6963 continue; 6964 6965 t = btf__type_by_id(obj->btf, ext->btf_id); 6966 if (!btf_is_var(t)) 6967 continue; 6968 6969 if (ext->is_set && ext->ksym.addr != sym_addr) { 6970 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 6971 sym_name, ext->ksym.addr, sym_addr); 6972 err = -EINVAL; 6973 goto out; 6974 } 6975 if (!ext->is_set) { 6976 ext->is_set = true; 6977 ext->ksym.addr = sym_addr; 6978 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 6979 } 6980 } 6981 6982 out: 6983 fclose(f); 6984 return err; 6985 } 6986 6987 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 6988 __u16 kind, struct btf **res_btf, 6989 struct module_btf **res_mod_btf) 6990 { 6991 struct module_btf *mod_btf; 6992 struct btf *btf; 6993 int i, id, err; 6994 6995 btf = obj->btf_vmlinux; 6996 mod_btf = NULL; 6997 id = btf__find_by_name_kind(btf, ksym_name, kind); 6998 6999 if (id == -ENOENT) { 7000 err = load_module_btfs(obj); 7001 if (err) 7002 return err; 7003 7004 for (i = 0; i < obj->btf_module_cnt; i++) { 7005 /* we assume module_btf's BTF FD is always >0 */ 7006 mod_btf = &obj->btf_modules[i]; 7007 btf = mod_btf->btf; 7008 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7009 if (id != -ENOENT) 7010 break; 7011 } 7012 } 7013 if (id <= 0) 7014 return -ESRCH; 7015 7016 *res_btf = btf; 7017 *res_mod_btf = mod_btf; 7018 return id; 7019 } 7020 7021 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7022 struct extern_desc *ext) 7023 { 7024 const struct btf_type *targ_var, *targ_type; 7025 __u32 targ_type_id, local_type_id; 7026 struct module_btf *mod_btf = NULL; 7027 const char *targ_var_name; 7028 struct btf *btf = NULL; 7029 int id, err; 7030 7031 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7032 if (id < 0) { 7033 if (id == -ESRCH && ext->is_weak) 7034 return 0; 7035 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7036 ext->name); 7037 return id; 7038 } 7039 7040 /* find local type_id */ 7041 local_type_id = ext->ksym.type_id; 7042 7043 /* find target type_id */ 7044 targ_var = btf__type_by_id(btf, id); 7045 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7046 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7047 7048 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7049 btf, targ_type_id); 7050 if (err <= 0) { 7051 const struct btf_type *local_type; 7052 const char *targ_name, *local_name; 7053 7054 local_type = btf__type_by_id(obj->btf, local_type_id); 7055 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7056 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7057 7058 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7059 ext->name, local_type_id, 7060 btf_kind_str(local_type), local_name, targ_type_id, 7061 btf_kind_str(targ_type), targ_name); 7062 return -EINVAL; 7063 } 7064 7065 ext->is_set = true; 7066 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7067 ext->ksym.kernel_btf_id = id; 7068 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7069 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7070 7071 return 0; 7072 } 7073 7074 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7075 struct extern_desc *ext) 7076 { 7077 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7078 struct module_btf *mod_btf = NULL; 7079 const struct btf_type *kern_func; 7080 struct btf *kern_btf = NULL; 7081 int ret; 7082 7083 local_func_proto_id = ext->ksym.type_id; 7084 7085 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7086 if (kfunc_id < 0) { 7087 if (kfunc_id == -ESRCH && ext->is_weak) 7088 return 0; 7089 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7090 ext->name); 7091 return kfunc_id; 7092 } 7093 7094 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7095 kfunc_proto_id = kern_func->type; 7096 7097 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7098 kern_btf, kfunc_proto_id); 7099 if (ret <= 0) { 7100 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7101 ext->name, local_func_proto_id, kfunc_proto_id); 7102 return -EINVAL; 7103 } 7104 7105 /* set index for module BTF fd in fd_array, if unset */ 7106 if (mod_btf && !mod_btf->fd_array_idx) { 7107 /* insn->off is s16 */ 7108 if (obj->fd_array_cnt == INT16_MAX) { 7109 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7110 ext->name, mod_btf->fd_array_idx); 7111 return -E2BIG; 7112 } 7113 /* Cannot use index 0 for module BTF fd */ 7114 if (!obj->fd_array_cnt) 7115 obj->fd_array_cnt = 1; 7116 7117 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7118 obj->fd_array_cnt + 1); 7119 if (ret) 7120 return ret; 7121 mod_btf->fd_array_idx = obj->fd_array_cnt; 7122 /* we assume module BTF FD is always >0 */ 7123 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7124 } 7125 7126 ext->is_set = true; 7127 ext->ksym.kernel_btf_id = kfunc_id; 7128 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7129 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7130 ext->name, kfunc_id); 7131 7132 return 0; 7133 } 7134 7135 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7136 { 7137 const struct btf_type *t; 7138 struct extern_desc *ext; 7139 int i, err; 7140 7141 for (i = 0; i < obj->nr_extern; i++) { 7142 ext = &obj->externs[i]; 7143 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7144 continue; 7145 7146 if (obj->gen_loader) { 7147 ext->is_set = true; 7148 ext->ksym.kernel_btf_obj_fd = 0; 7149 ext->ksym.kernel_btf_id = 0; 7150 continue; 7151 } 7152 t = btf__type_by_id(obj->btf, ext->btf_id); 7153 if (btf_is_var(t)) 7154 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7155 else 7156 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7157 if (err) 7158 return err; 7159 } 7160 return 0; 7161 } 7162 7163 static int bpf_object__resolve_externs(struct bpf_object *obj, 7164 const char *extra_kconfig) 7165 { 7166 bool need_config = false, need_kallsyms = false; 7167 bool need_vmlinux_btf = false; 7168 struct extern_desc *ext; 7169 void *kcfg_data = NULL; 7170 int err, i; 7171 7172 if (obj->nr_extern == 0) 7173 return 0; 7174 7175 if (obj->kconfig_map_idx >= 0) 7176 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7177 7178 for (i = 0; i < obj->nr_extern; i++) { 7179 ext = &obj->externs[i]; 7180 7181 if (ext->type == EXT_KCFG && 7182 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7183 void *ext_val = kcfg_data + ext->kcfg.data_off; 7184 __u32 kver = get_kernel_version(); 7185 7186 if (!kver) { 7187 pr_warn("failed to get kernel version\n"); 7188 return -EINVAL; 7189 } 7190 err = set_kcfg_value_num(ext, ext_val, kver); 7191 if (err) 7192 return err; 7193 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7194 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7195 need_config = true; 7196 } else if (ext->type == EXT_KSYM) { 7197 if (ext->ksym.type_id) 7198 need_vmlinux_btf = true; 7199 else 7200 need_kallsyms = true; 7201 } else { 7202 pr_warn("unrecognized extern '%s'\n", ext->name); 7203 return -EINVAL; 7204 } 7205 } 7206 if (need_config && extra_kconfig) { 7207 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7208 if (err) 7209 return -EINVAL; 7210 need_config = false; 7211 for (i = 0; i < obj->nr_extern; i++) { 7212 ext = &obj->externs[i]; 7213 if (ext->type == EXT_KCFG && !ext->is_set) { 7214 need_config = true; 7215 break; 7216 } 7217 } 7218 } 7219 if (need_config) { 7220 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7221 if (err) 7222 return -EINVAL; 7223 } 7224 if (need_kallsyms) { 7225 err = bpf_object__read_kallsyms_file(obj); 7226 if (err) 7227 return -EINVAL; 7228 } 7229 if (need_vmlinux_btf) { 7230 err = bpf_object__resolve_ksyms_btf_id(obj); 7231 if (err) 7232 return -EINVAL; 7233 } 7234 for (i = 0; i < obj->nr_extern; i++) { 7235 ext = &obj->externs[i]; 7236 7237 if (!ext->is_set && !ext->is_weak) { 7238 pr_warn("extern %s (strong) not resolved\n", ext->name); 7239 return -ESRCH; 7240 } else if (!ext->is_set) { 7241 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7242 ext->name); 7243 } 7244 } 7245 7246 return 0; 7247 } 7248 7249 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7250 { 7251 struct bpf_object *obj; 7252 int err, i; 7253 7254 if (!attr) 7255 return libbpf_err(-EINVAL); 7256 obj = attr->obj; 7257 if (!obj) 7258 return libbpf_err(-EINVAL); 7259 7260 if (obj->loaded) { 7261 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7262 return libbpf_err(-EINVAL); 7263 } 7264 7265 if (obj->gen_loader) 7266 bpf_gen__init(obj->gen_loader, attr->log_level, obj->nr_programs, obj->nr_maps); 7267 7268 err = bpf_object__probe_loading(obj); 7269 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7270 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7271 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7272 err = err ? : bpf_object__sanitize_maps(obj); 7273 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7274 err = err ? : bpf_object__create_maps(obj); 7275 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : attr->target_btf_path); 7276 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7277 7278 if (obj->gen_loader) { 7279 /* reset FDs */ 7280 if (obj->btf) 7281 btf__set_fd(obj->btf, -1); 7282 for (i = 0; i < obj->nr_maps; i++) 7283 obj->maps[i].fd = -1; 7284 if (!err) 7285 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7286 } 7287 7288 /* clean up fd_array */ 7289 zfree(&obj->fd_array); 7290 7291 /* clean up module BTFs */ 7292 for (i = 0; i < obj->btf_module_cnt; i++) { 7293 close(obj->btf_modules[i].fd); 7294 btf__free(obj->btf_modules[i].btf); 7295 free(obj->btf_modules[i].name); 7296 } 7297 free(obj->btf_modules); 7298 7299 /* clean up vmlinux BTF */ 7300 btf__free(obj->btf_vmlinux); 7301 obj->btf_vmlinux = NULL; 7302 7303 obj->loaded = true; /* doesn't matter if successfully or not */ 7304 7305 if (err) 7306 goto out; 7307 7308 return 0; 7309 out: 7310 /* unpin any maps that were auto-pinned during load */ 7311 for (i = 0; i < obj->nr_maps; i++) 7312 if (obj->maps[i].pinned && !obj->maps[i].reused) 7313 bpf_map__unpin(&obj->maps[i], NULL); 7314 7315 bpf_object_unload(obj); 7316 pr_warn("failed to load object '%s'\n", obj->path); 7317 return libbpf_err(err); 7318 } 7319 7320 int bpf_object__load(struct bpf_object *obj) 7321 { 7322 struct bpf_object_load_attr attr = { 7323 .obj = obj, 7324 }; 7325 7326 return bpf_object__load_xattr(&attr); 7327 } 7328 7329 static int make_parent_dir(const char *path) 7330 { 7331 char *cp, errmsg[STRERR_BUFSIZE]; 7332 char *dname, *dir; 7333 int err = 0; 7334 7335 dname = strdup(path); 7336 if (dname == NULL) 7337 return -ENOMEM; 7338 7339 dir = dirname(dname); 7340 if (mkdir(dir, 0700) && errno != EEXIST) 7341 err = -errno; 7342 7343 free(dname); 7344 if (err) { 7345 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7346 pr_warn("failed to mkdir %s: %s\n", path, cp); 7347 } 7348 return err; 7349 } 7350 7351 static int check_path(const char *path) 7352 { 7353 char *cp, errmsg[STRERR_BUFSIZE]; 7354 struct statfs st_fs; 7355 char *dname, *dir; 7356 int err = 0; 7357 7358 if (path == NULL) 7359 return -EINVAL; 7360 7361 dname = strdup(path); 7362 if (dname == NULL) 7363 return -ENOMEM; 7364 7365 dir = dirname(dname); 7366 if (statfs(dir, &st_fs)) { 7367 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7368 pr_warn("failed to statfs %s: %s\n", dir, cp); 7369 err = -errno; 7370 } 7371 free(dname); 7372 7373 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7374 pr_warn("specified path %s is not on BPF FS\n", path); 7375 err = -EINVAL; 7376 } 7377 7378 return err; 7379 } 7380 7381 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7382 { 7383 char *cp, errmsg[STRERR_BUFSIZE]; 7384 int err; 7385 7386 err = make_parent_dir(path); 7387 if (err) 7388 return libbpf_err(err); 7389 7390 err = check_path(path); 7391 if (err) 7392 return libbpf_err(err); 7393 7394 if (prog == NULL) { 7395 pr_warn("invalid program pointer\n"); 7396 return libbpf_err(-EINVAL); 7397 } 7398 7399 if (instance < 0 || instance >= prog->instances.nr) { 7400 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7401 instance, prog->name, prog->instances.nr); 7402 return libbpf_err(-EINVAL); 7403 } 7404 7405 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7406 err = -errno; 7407 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7408 pr_warn("failed to pin program: %s\n", cp); 7409 return libbpf_err(err); 7410 } 7411 pr_debug("pinned program '%s'\n", path); 7412 7413 return 0; 7414 } 7415 7416 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7417 { 7418 int err; 7419 7420 err = check_path(path); 7421 if (err) 7422 return libbpf_err(err); 7423 7424 if (prog == NULL) { 7425 pr_warn("invalid program pointer\n"); 7426 return libbpf_err(-EINVAL); 7427 } 7428 7429 if (instance < 0 || instance >= prog->instances.nr) { 7430 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7431 instance, prog->name, prog->instances.nr); 7432 return libbpf_err(-EINVAL); 7433 } 7434 7435 err = unlink(path); 7436 if (err != 0) 7437 return libbpf_err(-errno); 7438 7439 pr_debug("unpinned program '%s'\n", path); 7440 7441 return 0; 7442 } 7443 7444 __attribute__((alias("bpf_program_pin_instance"))) 7445 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7446 7447 __attribute__((alias("bpf_program_unpin_instance"))) 7448 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7449 7450 int bpf_program__pin(struct bpf_program *prog, const char *path) 7451 { 7452 int i, err; 7453 7454 err = make_parent_dir(path); 7455 if (err) 7456 return libbpf_err(err); 7457 7458 err = check_path(path); 7459 if (err) 7460 return libbpf_err(err); 7461 7462 if (prog == NULL) { 7463 pr_warn("invalid program pointer\n"); 7464 return libbpf_err(-EINVAL); 7465 } 7466 7467 if (prog->instances.nr <= 0) { 7468 pr_warn("no instances of prog %s to pin\n", prog->name); 7469 return libbpf_err(-EINVAL); 7470 } 7471 7472 if (prog->instances.nr == 1) { 7473 /* don't create subdirs when pinning single instance */ 7474 return bpf_program_pin_instance(prog, path, 0); 7475 } 7476 7477 for (i = 0; i < prog->instances.nr; i++) { 7478 char buf[PATH_MAX]; 7479 int len; 7480 7481 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7482 if (len < 0) { 7483 err = -EINVAL; 7484 goto err_unpin; 7485 } else if (len >= PATH_MAX) { 7486 err = -ENAMETOOLONG; 7487 goto err_unpin; 7488 } 7489 7490 err = bpf_program_pin_instance(prog, buf, i); 7491 if (err) 7492 goto err_unpin; 7493 } 7494 7495 return 0; 7496 7497 err_unpin: 7498 for (i = i - 1; i >= 0; i--) { 7499 char buf[PATH_MAX]; 7500 int len; 7501 7502 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7503 if (len < 0) 7504 continue; 7505 else if (len >= PATH_MAX) 7506 continue; 7507 7508 bpf_program_unpin_instance(prog, buf, i); 7509 } 7510 7511 rmdir(path); 7512 7513 return libbpf_err(err); 7514 } 7515 7516 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7517 { 7518 int i, err; 7519 7520 err = check_path(path); 7521 if (err) 7522 return libbpf_err(err); 7523 7524 if (prog == NULL) { 7525 pr_warn("invalid program pointer\n"); 7526 return libbpf_err(-EINVAL); 7527 } 7528 7529 if (prog->instances.nr <= 0) { 7530 pr_warn("no instances of prog %s to pin\n", prog->name); 7531 return libbpf_err(-EINVAL); 7532 } 7533 7534 if (prog->instances.nr == 1) { 7535 /* don't create subdirs when pinning single instance */ 7536 return bpf_program_unpin_instance(prog, path, 0); 7537 } 7538 7539 for (i = 0; i < prog->instances.nr; i++) { 7540 char buf[PATH_MAX]; 7541 int len; 7542 7543 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7544 if (len < 0) 7545 return libbpf_err(-EINVAL); 7546 else if (len >= PATH_MAX) 7547 return libbpf_err(-ENAMETOOLONG); 7548 7549 err = bpf_program_unpin_instance(prog, buf, i); 7550 if (err) 7551 return err; 7552 } 7553 7554 err = rmdir(path); 7555 if (err) 7556 return libbpf_err(-errno); 7557 7558 return 0; 7559 } 7560 7561 int bpf_map__pin(struct bpf_map *map, const char *path) 7562 { 7563 char *cp, errmsg[STRERR_BUFSIZE]; 7564 int err; 7565 7566 if (map == NULL) { 7567 pr_warn("invalid map pointer\n"); 7568 return libbpf_err(-EINVAL); 7569 } 7570 7571 if (map->pin_path) { 7572 if (path && strcmp(path, map->pin_path)) { 7573 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7574 bpf_map__name(map), map->pin_path, path); 7575 return libbpf_err(-EINVAL); 7576 } else if (map->pinned) { 7577 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7578 bpf_map__name(map), map->pin_path); 7579 return 0; 7580 } 7581 } else { 7582 if (!path) { 7583 pr_warn("missing a path to pin map '%s' at\n", 7584 bpf_map__name(map)); 7585 return libbpf_err(-EINVAL); 7586 } else if (map->pinned) { 7587 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7588 return libbpf_err(-EEXIST); 7589 } 7590 7591 map->pin_path = strdup(path); 7592 if (!map->pin_path) { 7593 err = -errno; 7594 goto out_err; 7595 } 7596 } 7597 7598 err = make_parent_dir(map->pin_path); 7599 if (err) 7600 return libbpf_err(err); 7601 7602 err = check_path(map->pin_path); 7603 if (err) 7604 return libbpf_err(err); 7605 7606 if (bpf_obj_pin(map->fd, map->pin_path)) { 7607 err = -errno; 7608 goto out_err; 7609 } 7610 7611 map->pinned = true; 7612 pr_debug("pinned map '%s'\n", map->pin_path); 7613 7614 return 0; 7615 7616 out_err: 7617 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7618 pr_warn("failed to pin map: %s\n", cp); 7619 return libbpf_err(err); 7620 } 7621 7622 int bpf_map__unpin(struct bpf_map *map, const char *path) 7623 { 7624 int err; 7625 7626 if (map == NULL) { 7627 pr_warn("invalid map pointer\n"); 7628 return libbpf_err(-EINVAL); 7629 } 7630 7631 if (map->pin_path) { 7632 if (path && strcmp(path, map->pin_path)) { 7633 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7634 bpf_map__name(map), map->pin_path, path); 7635 return libbpf_err(-EINVAL); 7636 } 7637 path = map->pin_path; 7638 } else if (!path) { 7639 pr_warn("no path to unpin map '%s' from\n", 7640 bpf_map__name(map)); 7641 return libbpf_err(-EINVAL); 7642 } 7643 7644 err = check_path(path); 7645 if (err) 7646 return libbpf_err(err); 7647 7648 err = unlink(path); 7649 if (err != 0) 7650 return libbpf_err(-errno); 7651 7652 map->pinned = false; 7653 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7654 7655 return 0; 7656 } 7657 7658 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7659 { 7660 char *new = NULL; 7661 7662 if (path) { 7663 new = strdup(path); 7664 if (!new) 7665 return libbpf_err(-errno); 7666 } 7667 7668 free(map->pin_path); 7669 map->pin_path = new; 7670 return 0; 7671 } 7672 7673 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7674 { 7675 return map->pin_path; 7676 } 7677 7678 const char *bpf_map__pin_path(const struct bpf_map *map) 7679 { 7680 return map->pin_path; 7681 } 7682 7683 bool bpf_map__is_pinned(const struct bpf_map *map) 7684 { 7685 return map->pinned; 7686 } 7687 7688 static void sanitize_pin_path(char *s) 7689 { 7690 /* bpffs disallows periods in path names */ 7691 while (*s) { 7692 if (*s == '.') 7693 *s = '_'; 7694 s++; 7695 } 7696 } 7697 7698 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7699 { 7700 struct bpf_map *map; 7701 int err; 7702 7703 if (!obj) 7704 return libbpf_err(-ENOENT); 7705 7706 if (!obj->loaded) { 7707 pr_warn("object not yet loaded; load it first\n"); 7708 return libbpf_err(-ENOENT); 7709 } 7710 7711 bpf_object__for_each_map(map, obj) { 7712 char *pin_path = NULL; 7713 char buf[PATH_MAX]; 7714 7715 if (path) { 7716 int len; 7717 7718 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7719 bpf_map__name(map)); 7720 if (len < 0) { 7721 err = -EINVAL; 7722 goto err_unpin_maps; 7723 } else if (len >= PATH_MAX) { 7724 err = -ENAMETOOLONG; 7725 goto err_unpin_maps; 7726 } 7727 sanitize_pin_path(buf); 7728 pin_path = buf; 7729 } else if (!map->pin_path) { 7730 continue; 7731 } 7732 7733 err = bpf_map__pin(map, pin_path); 7734 if (err) 7735 goto err_unpin_maps; 7736 } 7737 7738 return 0; 7739 7740 err_unpin_maps: 7741 while ((map = bpf_object__prev_map(obj, map))) { 7742 if (!map->pin_path) 7743 continue; 7744 7745 bpf_map__unpin(map, NULL); 7746 } 7747 7748 return libbpf_err(err); 7749 } 7750 7751 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7752 { 7753 struct bpf_map *map; 7754 int err; 7755 7756 if (!obj) 7757 return libbpf_err(-ENOENT); 7758 7759 bpf_object__for_each_map(map, obj) { 7760 char *pin_path = NULL; 7761 char buf[PATH_MAX]; 7762 7763 if (path) { 7764 int len; 7765 7766 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7767 bpf_map__name(map)); 7768 if (len < 0) 7769 return libbpf_err(-EINVAL); 7770 else if (len >= PATH_MAX) 7771 return libbpf_err(-ENAMETOOLONG); 7772 sanitize_pin_path(buf); 7773 pin_path = buf; 7774 } else if (!map->pin_path) { 7775 continue; 7776 } 7777 7778 err = bpf_map__unpin(map, pin_path); 7779 if (err) 7780 return libbpf_err(err); 7781 } 7782 7783 return 0; 7784 } 7785 7786 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7787 { 7788 struct bpf_program *prog; 7789 int err; 7790 7791 if (!obj) 7792 return libbpf_err(-ENOENT); 7793 7794 if (!obj->loaded) { 7795 pr_warn("object not yet loaded; load it first\n"); 7796 return libbpf_err(-ENOENT); 7797 } 7798 7799 bpf_object__for_each_program(prog, obj) { 7800 char buf[PATH_MAX]; 7801 int len; 7802 7803 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7804 prog->pin_name); 7805 if (len < 0) { 7806 err = -EINVAL; 7807 goto err_unpin_programs; 7808 } else if (len >= PATH_MAX) { 7809 err = -ENAMETOOLONG; 7810 goto err_unpin_programs; 7811 } 7812 7813 err = bpf_program__pin(prog, buf); 7814 if (err) 7815 goto err_unpin_programs; 7816 } 7817 7818 return 0; 7819 7820 err_unpin_programs: 7821 while ((prog = bpf_object__prev_program(obj, prog))) { 7822 char buf[PATH_MAX]; 7823 int len; 7824 7825 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7826 prog->pin_name); 7827 if (len < 0) 7828 continue; 7829 else if (len >= PATH_MAX) 7830 continue; 7831 7832 bpf_program__unpin(prog, buf); 7833 } 7834 7835 return libbpf_err(err); 7836 } 7837 7838 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7839 { 7840 struct bpf_program *prog; 7841 int err; 7842 7843 if (!obj) 7844 return libbpf_err(-ENOENT); 7845 7846 bpf_object__for_each_program(prog, obj) { 7847 char buf[PATH_MAX]; 7848 int len; 7849 7850 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7851 prog->pin_name); 7852 if (len < 0) 7853 return libbpf_err(-EINVAL); 7854 else if (len >= PATH_MAX) 7855 return libbpf_err(-ENAMETOOLONG); 7856 7857 err = bpf_program__unpin(prog, buf); 7858 if (err) 7859 return libbpf_err(err); 7860 } 7861 7862 return 0; 7863 } 7864 7865 int bpf_object__pin(struct bpf_object *obj, const char *path) 7866 { 7867 int err; 7868 7869 err = bpf_object__pin_maps(obj, path); 7870 if (err) 7871 return libbpf_err(err); 7872 7873 err = bpf_object__pin_programs(obj, path); 7874 if (err) { 7875 bpf_object__unpin_maps(obj, path); 7876 return libbpf_err(err); 7877 } 7878 7879 return 0; 7880 } 7881 7882 static void bpf_map__destroy(struct bpf_map *map) 7883 { 7884 if (map->clear_priv) 7885 map->clear_priv(map, map->priv); 7886 map->priv = NULL; 7887 map->clear_priv = NULL; 7888 7889 if (map->inner_map) { 7890 bpf_map__destroy(map->inner_map); 7891 zfree(&map->inner_map); 7892 } 7893 7894 zfree(&map->init_slots); 7895 map->init_slots_sz = 0; 7896 7897 if (map->mmaped) { 7898 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7899 map->mmaped = NULL; 7900 } 7901 7902 if (map->st_ops) { 7903 zfree(&map->st_ops->data); 7904 zfree(&map->st_ops->progs); 7905 zfree(&map->st_ops->kern_func_off); 7906 zfree(&map->st_ops); 7907 } 7908 7909 zfree(&map->name); 7910 zfree(&map->real_name); 7911 zfree(&map->pin_path); 7912 7913 if (map->fd >= 0) 7914 zclose(map->fd); 7915 } 7916 7917 void bpf_object__close(struct bpf_object *obj) 7918 { 7919 size_t i; 7920 7921 if (IS_ERR_OR_NULL(obj)) 7922 return; 7923 7924 if (obj->clear_priv) 7925 obj->clear_priv(obj, obj->priv); 7926 7927 bpf_gen__free(obj->gen_loader); 7928 bpf_object__elf_finish(obj); 7929 bpf_object_unload(obj); 7930 btf__free(obj->btf); 7931 btf_ext__free(obj->btf_ext); 7932 7933 for (i = 0; i < obj->nr_maps; i++) 7934 bpf_map__destroy(&obj->maps[i]); 7935 7936 zfree(&obj->btf_custom_path); 7937 zfree(&obj->kconfig); 7938 zfree(&obj->externs); 7939 obj->nr_extern = 0; 7940 7941 zfree(&obj->maps); 7942 obj->nr_maps = 0; 7943 7944 if (obj->programs && obj->nr_programs) { 7945 for (i = 0; i < obj->nr_programs; i++) 7946 bpf_program__exit(&obj->programs[i]); 7947 } 7948 zfree(&obj->programs); 7949 7950 list_del(&obj->list); 7951 free(obj); 7952 } 7953 7954 struct bpf_object * 7955 bpf_object__next(struct bpf_object *prev) 7956 { 7957 struct bpf_object *next; 7958 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 7959 7960 if (strict) 7961 return NULL; 7962 7963 if (!prev) 7964 next = list_first_entry(&bpf_objects_list, 7965 struct bpf_object, 7966 list); 7967 else 7968 next = list_next_entry(prev, list); 7969 7970 /* Empty list is noticed here so don't need checking on entry. */ 7971 if (&next->list == &bpf_objects_list) 7972 return NULL; 7973 7974 return next; 7975 } 7976 7977 const char *bpf_object__name(const struct bpf_object *obj) 7978 { 7979 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 7980 } 7981 7982 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7983 { 7984 return obj ? obj->kern_version : 0; 7985 } 7986 7987 struct btf *bpf_object__btf(const struct bpf_object *obj) 7988 { 7989 return obj ? obj->btf : NULL; 7990 } 7991 7992 int bpf_object__btf_fd(const struct bpf_object *obj) 7993 { 7994 return obj->btf ? btf__fd(obj->btf) : -1; 7995 } 7996 7997 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 7998 { 7999 if (obj->loaded) 8000 return libbpf_err(-EINVAL); 8001 8002 obj->kern_version = kern_version; 8003 8004 return 0; 8005 } 8006 8007 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8008 bpf_object_clear_priv_t clear_priv) 8009 { 8010 if (obj->priv && obj->clear_priv) 8011 obj->clear_priv(obj, obj->priv); 8012 8013 obj->priv = priv; 8014 obj->clear_priv = clear_priv; 8015 return 0; 8016 } 8017 8018 void *bpf_object__priv(const struct bpf_object *obj) 8019 { 8020 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8021 } 8022 8023 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8024 { 8025 struct bpf_gen *gen; 8026 8027 if (!opts) 8028 return -EFAULT; 8029 if (!OPTS_VALID(opts, gen_loader_opts)) 8030 return -EINVAL; 8031 gen = calloc(sizeof(*gen), 1); 8032 if (!gen) 8033 return -ENOMEM; 8034 gen->opts = opts; 8035 obj->gen_loader = gen; 8036 return 0; 8037 } 8038 8039 static struct bpf_program * 8040 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8041 bool forward) 8042 { 8043 size_t nr_programs = obj->nr_programs; 8044 ssize_t idx; 8045 8046 if (!nr_programs) 8047 return NULL; 8048 8049 if (!p) 8050 /* Iter from the beginning */ 8051 return forward ? &obj->programs[0] : 8052 &obj->programs[nr_programs - 1]; 8053 8054 if (p->obj != obj) { 8055 pr_warn("error: program handler doesn't match object\n"); 8056 return errno = EINVAL, NULL; 8057 } 8058 8059 idx = (p - obj->programs) + (forward ? 1 : -1); 8060 if (idx >= obj->nr_programs || idx < 0) 8061 return NULL; 8062 return &obj->programs[idx]; 8063 } 8064 8065 struct bpf_program * 8066 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8067 { 8068 return bpf_object__next_program(obj, prev); 8069 } 8070 8071 struct bpf_program * 8072 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8073 { 8074 struct bpf_program *prog = prev; 8075 8076 do { 8077 prog = __bpf_program__iter(prog, obj, true); 8078 } while (prog && prog_is_subprog(obj, prog)); 8079 8080 return prog; 8081 } 8082 8083 struct bpf_program * 8084 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8085 { 8086 return bpf_object__prev_program(obj, next); 8087 } 8088 8089 struct bpf_program * 8090 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8091 { 8092 struct bpf_program *prog = next; 8093 8094 do { 8095 prog = __bpf_program__iter(prog, obj, false); 8096 } while (prog && prog_is_subprog(obj, prog)); 8097 8098 return prog; 8099 } 8100 8101 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8102 bpf_program_clear_priv_t clear_priv) 8103 { 8104 if (prog->priv && prog->clear_priv) 8105 prog->clear_priv(prog, prog->priv); 8106 8107 prog->priv = priv; 8108 prog->clear_priv = clear_priv; 8109 return 0; 8110 } 8111 8112 void *bpf_program__priv(const struct bpf_program *prog) 8113 { 8114 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8115 } 8116 8117 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8118 { 8119 prog->prog_ifindex = ifindex; 8120 } 8121 8122 const char *bpf_program__name(const struct bpf_program *prog) 8123 { 8124 return prog->name; 8125 } 8126 8127 const char *bpf_program__section_name(const struct bpf_program *prog) 8128 { 8129 return prog->sec_name; 8130 } 8131 8132 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8133 { 8134 const char *title; 8135 8136 title = prog->sec_name; 8137 if (needs_copy) { 8138 title = strdup(title); 8139 if (!title) { 8140 pr_warn("failed to strdup program title\n"); 8141 return libbpf_err_ptr(-ENOMEM); 8142 } 8143 } 8144 8145 return title; 8146 } 8147 8148 bool bpf_program__autoload(const struct bpf_program *prog) 8149 { 8150 return prog->load; 8151 } 8152 8153 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8154 { 8155 if (prog->obj->loaded) 8156 return libbpf_err(-EINVAL); 8157 8158 prog->load = autoload; 8159 return 0; 8160 } 8161 8162 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8163 8164 int bpf_program__fd(const struct bpf_program *prog) 8165 { 8166 return bpf_program_nth_fd(prog, 0); 8167 } 8168 8169 size_t bpf_program__size(const struct bpf_program *prog) 8170 { 8171 return prog->insns_cnt * BPF_INSN_SZ; 8172 } 8173 8174 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8175 { 8176 return prog->insns; 8177 } 8178 8179 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8180 { 8181 return prog->insns_cnt; 8182 } 8183 8184 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8185 bpf_program_prep_t prep) 8186 { 8187 int *instances_fds; 8188 8189 if (nr_instances <= 0 || !prep) 8190 return libbpf_err(-EINVAL); 8191 8192 if (prog->instances.nr > 0 || prog->instances.fds) { 8193 pr_warn("Can't set pre-processor after loading\n"); 8194 return libbpf_err(-EINVAL); 8195 } 8196 8197 instances_fds = malloc(sizeof(int) * nr_instances); 8198 if (!instances_fds) { 8199 pr_warn("alloc memory failed for fds\n"); 8200 return libbpf_err(-ENOMEM); 8201 } 8202 8203 /* fill all fd with -1 */ 8204 memset(instances_fds, -1, sizeof(int) * nr_instances); 8205 8206 prog->instances.nr = nr_instances; 8207 prog->instances.fds = instances_fds; 8208 prog->preprocessor = prep; 8209 return 0; 8210 } 8211 8212 __attribute__((alias("bpf_program_nth_fd"))) 8213 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8214 8215 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8216 { 8217 int fd; 8218 8219 if (!prog) 8220 return libbpf_err(-EINVAL); 8221 8222 if (n >= prog->instances.nr || n < 0) { 8223 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8224 n, prog->name, prog->instances.nr); 8225 return libbpf_err(-EINVAL); 8226 } 8227 8228 fd = prog->instances.fds[n]; 8229 if (fd < 0) { 8230 pr_warn("%dth instance of program '%s' is invalid\n", 8231 n, prog->name); 8232 return libbpf_err(-ENOENT); 8233 } 8234 8235 return fd; 8236 } 8237 8238 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8239 { 8240 return prog->type; 8241 } 8242 8243 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8244 { 8245 prog->type = type; 8246 } 8247 8248 static bool bpf_program__is_type(const struct bpf_program *prog, 8249 enum bpf_prog_type type) 8250 { 8251 return prog ? (prog->type == type) : false; 8252 } 8253 8254 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8255 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8256 { \ 8257 if (!prog) \ 8258 return libbpf_err(-EINVAL); \ 8259 bpf_program__set_type(prog, TYPE); \ 8260 return 0; \ 8261 } \ 8262 \ 8263 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8264 { \ 8265 return bpf_program__is_type(prog, TYPE); \ 8266 } \ 8267 8268 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8269 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8270 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8271 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8272 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8273 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8274 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8275 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8276 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8277 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8278 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8279 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8280 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8281 8282 enum bpf_attach_type 8283 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8284 { 8285 return prog->expected_attach_type; 8286 } 8287 8288 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8289 enum bpf_attach_type type) 8290 { 8291 prog->expected_attach_type = type; 8292 } 8293 8294 __u32 bpf_program__flags(const struct bpf_program *prog) 8295 { 8296 return prog->prog_flags; 8297 } 8298 8299 int bpf_program__set_extra_flags(struct bpf_program *prog, __u32 extra_flags) 8300 { 8301 if (prog->obj->loaded) 8302 return libbpf_err(-EBUSY); 8303 8304 prog->prog_flags |= extra_flags; 8305 return 0; 8306 } 8307 8308 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8309 .sec = sec_pfx, \ 8310 .prog_type = BPF_PROG_TYPE_##ptype, \ 8311 .expected_attach_type = atype, \ 8312 .cookie = (long)(flags), \ 8313 .preload_fn = libbpf_preload_prog, \ 8314 __VA_ARGS__ \ 8315 } 8316 8317 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8318 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8319 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8320 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8321 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8322 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8323 8324 static const struct bpf_sec_def section_defs[] = { 8325 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8326 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8327 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8328 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8329 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8330 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8331 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8332 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8333 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX), 8334 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8335 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8336 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8337 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8338 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8339 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8340 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8341 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8342 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8343 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8344 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8345 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8346 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8347 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8348 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8349 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8350 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8351 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8352 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8353 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8354 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8355 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8356 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8357 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8358 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8359 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8360 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8361 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8362 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8363 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8364 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8365 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8366 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8367 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8368 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8369 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8370 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8371 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8372 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8373 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8374 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8375 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8376 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8377 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8378 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8379 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8380 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8381 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8382 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8383 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8384 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8385 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8386 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8387 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8388 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8389 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8390 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8391 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8392 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8393 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8394 }; 8395 8396 #define MAX_TYPE_NAME_SIZE 32 8397 8398 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8399 { 8400 const struct bpf_sec_def *sec_def; 8401 enum sec_def_flags sec_flags; 8402 int i, n = ARRAY_SIZE(section_defs), len; 8403 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8404 8405 for (i = 0; i < n; i++) { 8406 sec_def = §ion_defs[i]; 8407 sec_flags = sec_def->cookie; 8408 len = strlen(sec_def->sec); 8409 8410 /* "type/" always has to have proper SEC("type/extras") form */ 8411 if (sec_def->sec[len - 1] == '/') { 8412 if (str_has_pfx(sec_name, sec_def->sec)) 8413 return sec_def; 8414 continue; 8415 } 8416 8417 /* "type+" means it can be either exact SEC("type") or 8418 * well-formed SEC("type/extras") with proper '/' separator 8419 */ 8420 if (sec_def->sec[len - 1] == '+') { 8421 len--; 8422 /* not even a prefix */ 8423 if (strncmp(sec_name, sec_def->sec, len) != 0) 8424 continue; 8425 /* exact match or has '/' separator */ 8426 if (sec_name[len] == '\0' || sec_name[len] == '/') 8427 return sec_def; 8428 continue; 8429 } 8430 8431 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8432 * matches, unless strict section name mode 8433 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8434 * match has to be exact. 8435 */ 8436 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8437 if (str_has_pfx(sec_name, sec_def->sec)) 8438 return sec_def; 8439 continue; 8440 } 8441 8442 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8443 * SEC("syscall")) are exact matches in both modes. 8444 */ 8445 if (strcmp(sec_name, sec_def->sec) == 0) 8446 return sec_def; 8447 } 8448 return NULL; 8449 } 8450 8451 static char *libbpf_get_type_names(bool attach_type) 8452 { 8453 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8454 char *buf; 8455 8456 buf = malloc(len); 8457 if (!buf) 8458 return NULL; 8459 8460 buf[0] = '\0'; 8461 /* Forge string buf with all available names */ 8462 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8463 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8464 8465 if (attach_type) { 8466 if (sec_def->preload_fn != libbpf_preload_prog) 8467 continue; 8468 8469 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8470 continue; 8471 } 8472 8473 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8474 free(buf); 8475 return NULL; 8476 } 8477 strcat(buf, " "); 8478 strcat(buf, section_defs[i].sec); 8479 } 8480 8481 return buf; 8482 } 8483 8484 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8485 enum bpf_attach_type *expected_attach_type) 8486 { 8487 const struct bpf_sec_def *sec_def; 8488 char *type_names; 8489 8490 if (!name) 8491 return libbpf_err(-EINVAL); 8492 8493 sec_def = find_sec_def(name); 8494 if (sec_def) { 8495 *prog_type = sec_def->prog_type; 8496 *expected_attach_type = sec_def->expected_attach_type; 8497 return 0; 8498 } 8499 8500 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8501 type_names = libbpf_get_type_names(false); 8502 if (type_names != NULL) { 8503 pr_debug("supported section(type) names are:%s\n", type_names); 8504 free(type_names); 8505 } 8506 8507 return libbpf_err(-ESRCH); 8508 } 8509 8510 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8511 size_t offset) 8512 { 8513 struct bpf_map *map; 8514 size_t i; 8515 8516 for (i = 0; i < obj->nr_maps; i++) { 8517 map = &obj->maps[i]; 8518 if (!bpf_map__is_struct_ops(map)) 8519 continue; 8520 if (map->sec_offset <= offset && 8521 offset - map->sec_offset < map->def.value_size) 8522 return map; 8523 } 8524 8525 return NULL; 8526 } 8527 8528 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8529 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8530 Elf64_Shdr *shdr, Elf_Data *data) 8531 { 8532 const struct btf_member *member; 8533 struct bpf_struct_ops *st_ops; 8534 struct bpf_program *prog; 8535 unsigned int shdr_idx; 8536 const struct btf *btf; 8537 struct bpf_map *map; 8538 unsigned int moff, insn_idx; 8539 const char *name; 8540 __u32 member_idx; 8541 Elf64_Sym *sym; 8542 Elf64_Rel *rel; 8543 int i, nrels; 8544 8545 btf = obj->btf; 8546 nrels = shdr->sh_size / shdr->sh_entsize; 8547 for (i = 0; i < nrels; i++) { 8548 rel = elf_rel_by_idx(data, i); 8549 if (!rel) { 8550 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8551 return -LIBBPF_ERRNO__FORMAT; 8552 } 8553 8554 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8555 if (!sym) { 8556 pr_warn("struct_ops reloc: symbol %zx not found\n", 8557 (size_t)ELF64_R_SYM(rel->r_info)); 8558 return -LIBBPF_ERRNO__FORMAT; 8559 } 8560 8561 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8562 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8563 if (!map) { 8564 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8565 (size_t)rel->r_offset); 8566 return -EINVAL; 8567 } 8568 8569 moff = rel->r_offset - map->sec_offset; 8570 shdr_idx = sym->st_shndx; 8571 st_ops = map->st_ops; 8572 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8573 map->name, 8574 (long long)(rel->r_info >> 32), 8575 (long long)sym->st_value, 8576 shdr_idx, (size_t)rel->r_offset, 8577 map->sec_offset, sym->st_name, name); 8578 8579 if (shdr_idx >= SHN_LORESERVE) { 8580 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8581 map->name, (size_t)rel->r_offset, shdr_idx); 8582 return -LIBBPF_ERRNO__RELOC; 8583 } 8584 if (sym->st_value % BPF_INSN_SZ) { 8585 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8586 map->name, (unsigned long long)sym->st_value); 8587 return -LIBBPF_ERRNO__FORMAT; 8588 } 8589 insn_idx = sym->st_value / BPF_INSN_SZ; 8590 8591 member = find_member_by_offset(st_ops->type, moff * 8); 8592 if (!member) { 8593 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8594 map->name, moff); 8595 return -EINVAL; 8596 } 8597 member_idx = member - btf_members(st_ops->type); 8598 name = btf__name_by_offset(btf, member->name_off); 8599 8600 if (!resolve_func_ptr(btf, member->type, NULL)) { 8601 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8602 map->name, name); 8603 return -EINVAL; 8604 } 8605 8606 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8607 if (!prog) { 8608 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8609 map->name, shdr_idx, name); 8610 return -EINVAL; 8611 } 8612 8613 /* prevent the use of BPF prog with invalid type */ 8614 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8615 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8616 map->name, prog->name); 8617 return -EINVAL; 8618 } 8619 8620 /* if we haven't yet processed this BPF program, record proper 8621 * attach_btf_id and member_idx 8622 */ 8623 if (!prog->attach_btf_id) { 8624 prog->attach_btf_id = st_ops->type_id; 8625 prog->expected_attach_type = member_idx; 8626 } 8627 8628 /* struct_ops BPF prog can be re-used between multiple 8629 * .struct_ops as long as it's the same struct_ops struct 8630 * definition and the same function pointer field 8631 */ 8632 if (prog->attach_btf_id != st_ops->type_id || 8633 prog->expected_attach_type != member_idx) { 8634 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8635 map->name, prog->name, prog->sec_name, prog->type, 8636 prog->attach_btf_id, prog->expected_attach_type, name); 8637 return -EINVAL; 8638 } 8639 8640 st_ops->progs[member_idx] = prog; 8641 } 8642 8643 return 0; 8644 } 8645 8646 #define BTF_TRACE_PREFIX "btf_trace_" 8647 #define BTF_LSM_PREFIX "bpf_lsm_" 8648 #define BTF_ITER_PREFIX "bpf_iter_" 8649 #define BTF_MAX_NAME_SIZE 128 8650 8651 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8652 const char **prefix, int *kind) 8653 { 8654 switch (attach_type) { 8655 case BPF_TRACE_RAW_TP: 8656 *prefix = BTF_TRACE_PREFIX; 8657 *kind = BTF_KIND_TYPEDEF; 8658 break; 8659 case BPF_LSM_MAC: 8660 *prefix = BTF_LSM_PREFIX; 8661 *kind = BTF_KIND_FUNC; 8662 break; 8663 case BPF_TRACE_ITER: 8664 *prefix = BTF_ITER_PREFIX; 8665 *kind = BTF_KIND_FUNC; 8666 break; 8667 default: 8668 *prefix = ""; 8669 *kind = BTF_KIND_FUNC; 8670 } 8671 } 8672 8673 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8674 const char *name, __u32 kind) 8675 { 8676 char btf_type_name[BTF_MAX_NAME_SIZE]; 8677 int ret; 8678 8679 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8680 "%s%s", prefix, name); 8681 /* snprintf returns the number of characters written excluding the 8682 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8683 * indicates truncation. 8684 */ 8685 if (ret < 0 || ret >= sizeof(btf_type_name)) 8686 return -ENAMETOOLONG; 8687 return btf__find_by_name_kind(btf, btf_type_name, kind); 8688 } 8689 8690 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8691 enum bpf_attach_type attach_type) 8692 { 8693 const char *prefix; 8694 int kind; 8695 8696 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8697 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8698 } 8699 8700 int libbpf_find_vmlinux_btf_id(const char *name, 8701 enum bpf_attach_type attach_type) 8702 { 8703 struct btf *btf; 8704 int err; 8705 8706 btf = btf__load_vmlinux_btf(); 8707 err = libbpf_get_error(btf); 8708 if (err) { 8709 pr_warn("vmlinux BTF is not found\n"); 8710 return libbpf_err(err); 8711 } 8712 8713 err = find_attach_btf_id(btf, name, attach_type); 8714 if (err <= 0) 8715 pr_warn("%s is not found in vmlinux BTF\n", name); 8716 8717 btf__free(btf); 8718 return libbpf_err(err); 8719 } 8720 8721 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8722 { 8723 struct bpf_prog_info info = {}; 8724 __u32 info_len = sizeof(info); 8725 struct btf *btf; 8726 int err; 8727 8728 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8729 if (err) { 8730 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8731 attach_prog_fd, err); 8732 return err; 8733 } 8734 8735 err = -EINVAL; 8736 if (!info.btf_id) { 8737 pr_warn("The target program doesn't have BTF\n"); 8738 goto out; 8739 } 8740 btf = btf__load_from_kernel_by_id(info.btf_id); 8741 err = libbpf_get_error(btf); 8742 if (err) { 8743 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 8744 goto out; 8745 } 8746 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8747 btf__free(btf); 8748 if (err <= 0) { 8749 pr_warn("%s is not found in prog's BTF\n", name); 8750 goto out; 8751 } 8752 out: 8753 return err; 8754 } 8755 8756 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8757 enum bpf_attach_type attach_type, 8758 int *btf_obj_fd, int *btf_type_id) 8759 { 8760 int ret, i; 8761 8762 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8763 if (ret > 0) { 8764 *btf_obj_fd = 0; /* vmlinux BTF */ 8765 *btf_type_id = ret; 8766 return 0; 8767 } 8768 if (ret != -ENOENT) 8769 return ret; 8770 8771 ret = load_module_btfs(obj); 8772 if (ret) 8773 return ret; 8774 8775 for (i = 0; i < obj->btf_module_cnt; i++) { 8776 const struct module_btf *mod = &obj->btf_modules[i]; 8777 8778 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8779 if (ret > 0) { 8780 *btf_obj_fd = mod->fd; 8781 *btf_type_id = ret; 8782 return 0; 8783 } 8784 if (ret == -ENOENT) 8785 continue; 8786 8787 return ret; 8788 } 8789 8790 return -ESRCH; 8791 } 8792 8793 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 8794 int *btf_obj_fd, int *btf_type_id) 8795 { 8796 enum bpf_attach_type attach_type = prog->expected_attach_type; 8797 __u32 attach_prog_fd = prog->attach_prog_fd; 8798 int err = 0; 8799 8800 /* BPF program's BTF ID */ 8801 if (attach_prog_fd) { 8802 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 8803 if (err < 0) { 8804 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 8805 attach_prog_fd, attach_name, err); 8806 return err; 8807 } 8808 *btf_obj_fd = 0; 8809 *btf_type_id = err; 8810 return 0; 8811 } 8812 8813 /* kernel/module BTF ID */ 8814 if (prog->obj->gen_loader) { 8815 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 8816 *btf_obj_fd = 0; 8817 *btf_type_id = 1; 8818 } else { 8819 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 8820 } 8821 if (err) { 8822 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 8823 return err; 8824 } 8825 return 0; 8826 } 8827 8828 int libbpf_attach_type_by_name(const char *name, 8829 enum bpf_attach_type *attach_type) 8830 { 8831 char *type_names; 8832 const struct bpf_sec_def *sec_def; 8833 8834 if (!name) 8835 return libbpf_err(-EINVAL); 8836 8837 sec_def = find_sec_def(name); 8838 if (!sec_def) { 8839 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8840 type_names = libbpf_get_type_names(true); 8841 if (type_names != NULL) { 8842 pr_debug("attachable section(type) names are:%s\n", type_names); 8843 free(type_names); 8844 } 8845 8846 return libbpf_err(-EINVAL); 8847 } 8848 8849 if (sec_def->preload_fn != libbpf_preload_prog) 8850 return libbpf_err(-EINVAL); 8851 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8852 return libbpf_err(-EINVAL); 8853 8854 *attach_type = sec_def->expected_attach_type; 8855 return 0; 8856 } 8857 8858 int bpf_map__fd(const struct bpf_map *map) 8859 { 8860 return map ? map->fd : libbpf_err(-EINVAL); 8861 } 8862 8863 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8864 { 8865 return map ? &map->def : libbpf_err_ptr(-EINVAL); 8866 } 8867 8868 static bool map_uses_real_name(const struct bpf_map *map) 8869 { 8870 /* Since libbpf started to support custom .data.* and .rodata.* maps, 8871 * their user-visible name differs from kernel-visible name. Users see 8872 * such map's corresponding ELF section name as a map name. 8873 * This check distinguishes .data/.rodata from .data.* and .rodata.* 8874 * maps to know which name has to be returned to the user. 8875 */ 8876 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 8877 return true; 8878 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 8879 return true; 8880 return false; 8881 } 8882 8883 const char *bpf_map__name(const struct bpf_map *map) 8884 { 8885 if (!map) 8886 return NULL; 8887 8888 if (map_uses_real_name(map)) 8889 return map->real_name; 8890 8891 return map->name; 8892 } 8893 8894 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8895 { 8896 return map->def.type; 8897 } 8898 8899 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8900 { 8901 if (map->fd >= 0) 8902 return libbpf_err(-EBUSY); 8903 map->def.type = type; 8904 return 0; 8905 } 8906 8907 __u32 bpf_map__map_flags(const struct bpf_map *map) 8908 { 8909 return map->def.map_flags; 8910 } 8911 8912 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8913 { 8914 if (map->fd >= 0) 8915 return libbpf_err(-EBUSY); 8916 map->def.map_flags = flags; 8917 return 0; 8918 } 8919 8920 __u64 bpf_map__map_extra(const struct bpf_map *map) 8921 { 8922 return map->map_extra; 8923 } 8924 8925 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 8926 { 8927 if (map->fd >= 0) 8928 return libbpf_err(-EBUSY); 8929 map->map_extra = map_extra; 8930 return 0; 8931 } 8932 8933 __u32 bpf_map__numa_node(const struct bpf_map *map) 8934 { 8935 return map->numa_node; 8936 } 8937 8938 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8939 { 8940 if (map->fd >= 0) 8941 return libbpf_err(-EBUSY); 8942 map->numa_node = numa_node; 8943 return 0; 8944 } 8945 8946 __u32 bpf_map__key_size(const struct bpf_map *map) 8947 { 8948 return map->def.key_size; 8949 } 8950 8951 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8952 { 8953 if (map->fd >= 0) 8954 return libbpf_err(-EBUSY); 8955 map->def.key_size = size; 8956 return 0; 8957 } 8958 8959 __u32 bpf_map__value_size(const struct bpf_map *map) 8960 { 8961 return map->def.value_size; 8962 } 8963 8964 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8965 { 8966 if (map->fd >= 0) 8967 return libbpf_err(-EBUSY); 8968 map->def.value_size = size; 8969 return 0; 8970 } 8971 8972 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8973 { 8974 return map ? map->btf_key_type_id : 0; 8975 } 8976 8977 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8978 { 8979 return map ? map->btf_value_type_id : 0; 8980 } 8981 8982 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8983 bpf_map_clear_priv_t clear_priv) 8984 { 8985 if (!map) 8986 return libbpf_err(-EINVAL); 8987 8988 if (map->priv) { 8989 if (map->clear_priv) 8990 map->clear_priv(map, map->priv); 8991 } 8992 8993 map->priv = priv; 8994 map->clear_priv = clear_priv; 8995 return 0; 8996 } 8997 8998 void *bpf_map__priv(const struct bpf_map *map) 8999 { 9000 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9001 } 9002 9003 int bpf_map__set_initial_value(struct bpf_map *map, 9004 const void *data, size_t size) 9005 { 9006 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9007 size != map->def.value_size || map->fd >= 0) 9008 return libbpf_err(-EINVAL); 9009 9010 memcpy(map->mmaped, data, size); 9011 return 0; 9012 } 9013 9014 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9015 { 9016 if (!map->mmaped) 9017 return NULL; 9018 *psize = map->def.value_size; 9019 return map->mmaped; 9020 } 9021 9022 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9023 { 9024 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9025 } 9026 9027 bool bpf_map__is_internal(const struct bpf_map *map) 9028 { 9029 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9030 } 9031 9032 __u32 bpf_map__ifindex(const struct bpf_map *map) 9033 { 9034 return map->map_ifindex; 9035 } 9036 9037 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9038 { 9039 if (map->fd >= 0) 9040 return libbpf_err(-EBUSY); 9041 map->map_ifindex = ifindex; 9042 return 0; 9043 } 9044 9045 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9046 { 9047 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9048 pr_warn("error: unsupported map type\n"); 9049 return libbpf_err(-EINVAL); 9050 } 9051 if (map->inner_map_fd != -1) { 9052 pr_warn("error: inner_map_fd already specified\n"); 9053 return libbpf_err(-EINVAL); 9054 } 9055 if (map->inner_map) { 9056 bpf_map__destroy(map->inner_map); 9057 zfree(&map->inner_map); 9058 } 9059 map->inner_map_fd = fd; 9060 return 0; 9061 } 9062 9063 static struct bpf_map * 9064 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9065 { 9066 ssize_t idx; 9067 struct bpf_map *s, *e; 9068 9069 if (!obj || !obj->maps) 9070 return errno = EINVAL, NULL; 9071 9072 s = obj->maps; 9073 e = obj->maps + obj->nr_maps; 9074 9075 if ((m < s) || (m >= e)) { 9076 pr_warn("error in %s: map handler doesn't belong to object\n", 9077 __func__); 9078 return errno = EINVAL, NULL; 9079 } 9080 9081 idx = (m - obj->maps) + i; 9082 if (idx >= obj->nr_maps || idx < 0) 9083 return NULL; 9084 return &obj->maps[idx]; 9085 } 9086 9087 struct bpf_map * 9088 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9089 { 9090 return bpf_object__next_map(obj, prev); 9091 } 9092 9093 struct bpf_map * 9094 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9095 { 9096 if (prev == NULL) 9097 return obj->maps; 9098 9099 return __bpf_map__iter(prev, obj, 1); 9100 } 9101 9102 struct bpf_map * 9103 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9104 { 9105 return bpf_object__prev_map(obj, next); 9106 } 9107 9108 struct bpf_map * 9109 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9110 { 9111 if (next == NULL) { 9112 if (!obj->nr_maps) 9113 return NULL; 9114 return obj->maps + obj->nr_maps - 1; 9115 } 9116 9117 return __bpf_map__iter(next, obj, -1); 9118 } 9119 9120 struct bpf_map * 9121 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9122 { 9123 struct bpf_map *pos; 9124 9125 bpf_object__for_each_map(pos, obj) { 9126 /* if it's a special internal map name (which always starts 9127 * with dot) then check if that special name matches the 9128 * real map name (ELF section name) 9129 */ 9130 if (name[0] == '.') { 9131 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9132 return pos; 9133 continue; 9134 } 9135 /* otherwise map name has to be an exact match */ 9136 if (map_uses_real_name(pos)) { 9137 if (strcmp(pos->real_name, name) == 0) 9138 return pos; 9139 continue; 9140 } 9141 if (strcmp(pos->name, name) == 0) 9142 return pos; 9143 } 9144 return errno = ENOENT, NULL; 9145 } 9146 9147 int 9148 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9149 { 9150 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9151 } 9152 9153 struct bpf_map * 9154 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9155 { 9156 return libbpf_err_ptr(-ENOTSUP); 9157 } 9158 9159 long libbpf_get_error(const void *ptr) 9160 { 9161 if (!IS_ERR_OR_NULL(ptr)) 9162 return 0; 9163 9164 if (IS_ERR(ptr)) 9165 errno = -PTR_ERR(ptr); 9166 9167 /* If ptr == NULL, then errno should be already set by the failing 9168 * API, because libbpf never returns NULL on success and it now always 9169 * sets errno on error. So no extra errno handling for ptr == NULL 9170 * case. 9171 */ 9172 return -errno; 9173 } 9174 9175 __attribute__((alias("bpf_prog_load_xattr2"))) 9176 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9177 struct bpf_object **pobj, int *prog_fd); 9178 9179 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9180 struct bpf_object **pobj, int *prog_fd) 9181 { 9182 struct bpf_object_open_attr open_attr = {}; 9183 struct bpf_program *prog, *first_prog = NULL; 9184 struct bpf_object *obj; 9185 struct bpf_map *map; 9186 int err; 9187 9188 if (!attr) 9189 return libbpf_err(-EINVAL); 9190 if (!attr->file) 9191 return libbpf_err(-EINVAL); 9192 9193 open_attr.file = attr->file; 9194 open_attr.prog_type = attr->prog_type; 9195 9196 obj = bpf_object__open_xattr(&open_attr); 9197 err = libbpf_get_error(obj); 9198 if (err) 9199 return libbpf_err(-ENOENT); 9200 9201 bpf_object__for_each_program(prog, obj) { 9202 enum bpf_attach_type attach_type = attr->expected_attach_type; 9203 /* 9204 * to preserve backwards compatibility, bpf_prog_load treats 9205 * attr->prog_type, if specified, as an override to whatever 9206 * bpf_object__open guessed 9207 */ 9208 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9209 bpf_program__set_type(prog, attr->prog_type); 9210 bpf_program__set_expected_attach_type(prog, 9211 attach_type); 9212 } 9213 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9214 /* 9215 * we haven't guessed from section name and user 9216 * didn't provide a fallback type, too bad... 9217 */ 9218 bpf_object__close(obj); 9219 return libbpf_err(-EINVAL); 9220 } 9221 9222 prog->prog_ifindex = attr->ifindex; 9223 prog->log_level = attr->log_level; 9224 prog->prog_flags |= attr->prog_flags; 9225 if (!first_prog) 9226 first_prog = prog; 9227 } 9228 9229 bpf_object__for_each_map(map, obj) { 9230 if (!bpf_map__is_offload_neutral(map)) 9231 map->map_ifindex = attr->ifindex; 9232 } 9233 9234 if (!first_prog) { 9235 pr_warn("object file doesn't contain bpf program\n"); 9236 bpf_object__close(obj); 9237 return libbpf_err(-ENOENT); 9238 } 9239 9240 err = bpf_object__load(obj); 9241 if (err) { 9242 bpf_object__close(obj); 9243 return libbpf_err(err); 9244 } 9245 9246 *pobj = obj; 9247 *prog_fd = bpf_program__fd(first_prog); 9248 return 0; 9249 } 9250 9251 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9252 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9253 struct bpf_object **pobj, int *prog_fd) 9254 { 9255 struct bpf_prog_load_attr attr; 9256 9257 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9258 attr.file = file; 9259 attr.prog_type = type; 9260 attr.expected_attach_type = 0; 9261 9262 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9263 } 9264 9265 struct bpf_link { 9266 int (*detach)(struct bpf_link *link); 9267 void (*dealloc)(struct bpf_link *link); 9268 char *pin_path; /* NULL, if not pinned */ 9269 int fd; /* hook FD, -1 if not applicable */ 9270 bool disconnected; 9271 }; 9272 9273 /* Replace link's underlying BPF program with the new one */ 9274 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9275 { 9276 int ret; 9277 9278 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9279 return libbpf_err_errno(ret); 9280 } 9281 9282 /* Release "ownership" of underlying BPF resource (typically, BPF program 9283 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9284 * link, when destructed through bpf_link__destroy() call won't attempt to 9285 * detach/unregisted that BPF resource. This is useful in situations where, 9286 * say, attached BPF program has to outlive userspace program that attached it 9287 * in the system. Depending on type of BPF program, though, there might be 9288 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9289 * exit of userspace program doesn't trigger automatic detachment and clean up 9290 * inside the kernel. 9291 */ 9292 void bpf_link__disconnect(struct bpf_link *link) 9293 { 9294 link->disconnected = true; 9295 } 9296 9297 int bpf_link__destroy(struct bpf_link *link) 9298 { 9299 int err = 0; 9300 9301 if (IS_ERR_OR_NULL(link)) 9302 return 0; 9303 9304 if (!link->disconnected && link->detach) 9305 err = link->detach(link); 9306 if (link->pin_path) 9307 free(link->pin_path); 9308 if (link->dealloc) 9309 link->dealloc(link); 9310 else 9311 free(link); 9312 9313 return libbpf_err(err); 9314 } 9315 9316 int bpf_link__fd(const struct bpf_link *link) 9317 { 9318 return link->fd; 9319 } 9320 9321 const char *bpf_link__pin_path(const struct bpf_link *link) 9322 { 9323 return link->pin_path; 9324 } 9325 9326 static int bpf_link__detach_fd(struct bpf_link *link) 9327 { 9328 return libbpf_err_errno(close(link->fd)); 9329 } 9330 9331 struct bpf_link *bpf_link__open(const char *path) 9332 { 9333 struct bpf_link *link; 9334 int fd; 9335 9336 fd = bpf_obj_get(path); 9337 if (fd < 0) { 9338 fd = -errno; 9339 pr_warn("failed to open link at %s: %d\n", path, fd); 9340 return libbpf_err_ptr(fd); 9341 } 9342 9343 link = calloc(1, sizeof(*link)); 9344 if (!link) { 9345 close(fd); 9346 return libbpf_err_ptr(-ENOMEM); 9347 } 9348 link->detach = &bpf_link__detach_fd; 9349 link->fd = fd; 9350 9351 link->pin_path = strdup(path); 9352 if (!link->pin_path) { 9353 bpf_link__destroy(link); 9354 return libbpf_err_ptr(-ENOMEM); 9355 } 9356 9357 return link; 9358 } 9359 9360 int bpf_link__detach(struct bpf_link *link) 9361 { 9362 return bpf_link_detach(link->fd) ? -errno : 0; 9363 } 9364 9365 int bpf_link__pin(struct bpf_link *link, const char *path) 9366 { 9367 int err; 9368 9369 if (link->pin_path) 9370 return libbpf_err(-EBUSY); 9371 err = make_parent_dir(path); 9372 if (err) 9373 return libbpf_err(err); 9374 err = check_path(path); 9375 if (err) 9376 return libbpf_err(err); 9377 9378 link->pin_path = strdup(path); 9379 if (!link->pin_path) 9380 return libbpf_err(-ENOMEM); 9381 9382 if (bpf_obj_pin(link->fd, link->pin_path)) { 9383 err = -errno; 9384 zfree(&link->pin_path); 9385 return libbpf_err(err); 9386 } 9387 9388 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9389 return 0; 9390 } 9391 9392 int bpf_link__unpin(struct bpf_link *link) 9393 { 9394 int err; 9395 9396 if (!link->pin_path) 9397 return libbpf_err(-EINVAL); 9398 9399 err = unlink(link->pin_path); 9400 if (err != 0) 9401 return -errno; 9402 9403 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9404 zfree(&link->pin_path); 9405 return 0; 9406 } 9407 9408 struct bpf_link_perf { 9409 struct bpf_link link; 9410 int perf_event_fd; 9411 /* legacy kprobe support: keep track of probe identifier and type */ 9412 char *legacy_probe_name; 9413 bool legacy_is_kprobe; 9414 bool legacy_is_retprobe; 9415 }; 9416 9417 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9418 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9419 9420 static int bpf_link_perf_detach(struct bpf_link *link) 9421 { 9422 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9423 int err = 0; 9424 9425 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9426 err = -errno; 9427 9428 if (perf_link->perf_event_fd != link->fd) 9429 close(perf_link->perf_event_fd); 9430 close(link->fd); 9431 9432 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9433 if (perf_link->legacy_probe_name) { 9434 if (perf_link->legacy_is_kprobe) { 9435 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9436 perf_link->legacy_is_retprobe); 9437 } else { 9438 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9439 perf_link->legacy_is_retprobe); 9440 } 9441 } 9442 9443 return err; 9444 } 9445 9446 static void bpf_link_perf_dealloc(struct bpf_link *link) 9447 { 9448 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9449 9450 free(perf_link->legacy_probe_name); 9451 free(perf_link); 9452 } 9453 9454 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9455 const struct bpf_perf_event_opts *opts) 9456 { 9457 char errmsg[STRERR_BUFSIZE]; 9458 struct bpf_link_perf *link; 9459 int prog_fd, link_fd = -1, err; 9460 9461 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9462 return libbpf_err_ptr(-EINVAL); 9463 9464 if (pfd < 0) { 9465 pr_warn("prog '%s': invalid perf event FD %d\n", 9466 prog->name, pfd); 9467 return libbpf_err_ptr(-EINVAL); 9468 } 9469 prog_fd = bpf_program__fd(prog); 9470 if (prog_fd < 0) { 9471 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9472 prog->name); 9473 return libbpf_err_ptr(-EINVAL); 9474 } 9475 9476 link = calloc(1, sizeof(*link)); 9477 if (!link) 9478 return libbpf_err_ptr(-ENOMEM); 9479 link->link.detach = &bpf_link_perf_detach; 9480 link->link.dealloc = &bpf_link_perf_dealloc; 9481 link->perf_event_fd = pfd; 9482 9483 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9484 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9485 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9486 9487 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9488 if (link_fd < 0) { 9489 err = -errno; 9490 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9491 prog->name, pfd, 9492 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9493 goto err_out; 9494 } 9495 link->link.fd = link_fd; 9496 } else { 9497 if (OPTS_GET(opts, bpf_cookie, 0)) { 9498 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9499 err = -EOPNOTSUPP; 9500 goto err_out; 9501 } 9502 9503 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9504 err = -errno; 9505 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9506 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9507 if (err == -EPROTO) 9508 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9509 prog->name, pfd); 9510 goto err_out; 9511 } 9512 link->link.fd = pfd; 9513 } 9514 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9515 err = -errno; 9516 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9517 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9518 goto err_out; 9519 } 9520 9521 return &link->link; 9522 err_out: 9523 if (link_fd >= 0) 9524 close(link_fd); 9525 free(link); 9526 return libbpf_err_ptr(err); 9527 } 9528 9529 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9530 { 9531 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9532 } 9533 9534 /* 9535 * this function is expected to parse integer in the range of [0, 2^31-1] from 9536 * given file using scanf format string fmt. If actual parsed value is 9537 * negative, the result might be indistinguishable from error 9538 */ 9539 static int parse_uint_from_file(const char *file, const char *fmt) 9540 { 9541 char buf[STRERR_BUFSIZE]; 9542 int err, ret; 9543 FILE *f; 9544 9545 f = fopen(file, "r"); 9546 if (!f) { 9547 err = -errno; 9548 pr_debug("failed to open '%s': %s\n", file, 9549 libbpf_strerror_r(err, buf, sizeof(buf))); 9550 return err; 9551 } 9552 err = fscanf(f, fmt, &ret); 9553 if (err != 1) { 9554 err = err == EOF ? -EIO : -errno; 9555 pr_debug("failed to parse '%s': %s\n", file, 9556 libbpf_strerror_r(err, buf, sizeof(buf))); 9557 fclose(f); 9558 return err; 9559 } 9560 fclose(f); 9561 return ret; 9562 } 9563 9564 static int determine_kprobe_perf_type(void) 9565 { 9566 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9567 9568 return parse_uint_from_file(file, "%d\n"); 9569 } 9570 9571 static int determine_uprobe_perf_type(void) 9572 { 9573 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9574 9575 return parse_uint_from_file(file, "%d\n"); 9576 } 9577 9578 static int determine_kprobe_retprobe_bit(void) 9579 { 9580 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9581 9582 return parse_uint_from_file(file, "config:%d\n"); 9583 } 9584 9585 static int determine_uprobe_retprobe_bit(void) 9586 { 9587 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9588 9589 return parse_uint_from_file(file, "config:%d\n"); 9590 } 9591 9592 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9593 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9594 9595 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9596 uint64_t offset, int pid, size_t ref_ctr_off) 9597 { 9598 struct perf_event_attr attr = {}; 9599 char errmsg[STRERR_BUFSIZE]; 9600 int type, pfd, err; 9601 9602 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9603 return -EINVAL; 9604 9605 type = uprobe ? determine_uprobe_perf_type() 9606 : determine_kprobe_perf_type(); 9607 if (type < 0) { 9608 pr_warn("failed to determine %s perf type: %s\n", 9609 uprobe ? "uprobe" : "kprobe", 9610 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9611 return type; 9612 } 9613 if (retprobe) { 9614 int bit = uprobe ? determine_uprobe_retprobe_bit() 9615 : determine_kprobe_retprobe_bit(); 9616 9617 if (bit < 0) { 9618 pr_warn("failed to determine %s retprobe bit: %s\n", 9619 uprobe ? "uprobe" : "kprobe", 9620 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9621 return bit; 9622 } 9623 attr.config |= 1 << bit; 9624 } 9625 attr.size = sizeof(attr); 9626 attr.type = type; 9627 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9628 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9629 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9630 9631 /* pid filter is meaningful only for uprobes */ 9632 pfd = syscall(__NR_perf_event_open, &attr, 9633 pid < 0 ? -1 : pid /* pid */, 9634 pid == -1 ? 0 : -1 /* cpu */, 9635 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9636 if (pfd < 0) { 9637 err = -errno; 9638 pr_warn("%s perf_event_open() failed: %s\n", 9639 uprobe ? "uprobe" : "kprobe", 9640 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9641 return err; 9642 } 9643 return pfd; 9644 } 9645 9646 static int append_to_file(const char *file, const char *fmt, ...) 9647 { 9648 int fd, n, err = 0; 9649 va_list ap; 9650 9651 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9652 if (fd < 0) 9653 return -errno; 9654 9655 va_start(ap, fmt); 9656 n = vdprintf(fd, fmt, ap); 9657 va_end(ap); 9658 9659 if (n < 0) 9660 err = -errno; 9661 9662 close(fd); 9663 return err; 9664 } 9665 9666 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9667 const char *kfunc_name, size_t offset) 9668 { 9669 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), kfunc_name, offset); 9670 } 9671 9672 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9673 const char *kfunc_name, size_t offset) 9674 { 9675 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9676 9677 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9678 retprobe ? 'r' : 'p', 9679 retprobe ? "kretprobes" : "kprobes", 9680 probe_name, kfunc_name, offset); 9681 } 9682 9683 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9684 { 9685 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9686 9687 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9688 } 9689 9690 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9691 { 9692 char file[256]; 9693 9694 snprintf(file, sizeof(file), 9695 "/sys/kernel/debug/tracing/events/%s/%s/id", 9696 retprobe ? "kretprobes" : "kprobes", probe_name); 9697 9698 return parse_uint_from_file(file, "%d\n"); 9699 } 9700 9701 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9702 const char *kfunc_name, size_t offset, int pid) 9703 { 9704 struct perf_event_attr attr = {}; 9705 char errmsg[STRERR_BUFSIZE]; 9706 int type, pfd, err; 9707 9708 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9709 if (err < 0) { 9710 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9711 kfunc_name, offset, 9712 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9713 return err; 9714 } 9715 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9716 if (type < 0) { 9717 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9718 kfunc_name, offset, 9719 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9720 return type; 9721 } 9722 attr.size = sizeof(attr); 9723 attr.config = type; 9724 attr.type = PERF_TYPE_TRACEPOINT; 9725 9726 pfd = syscall(__NR_perf_event_open, &attr, 9727 pid < 0 ? -1 : pid, /* pid */ 9728 pid == -1 ? 0 : -1, /* cpu */ 9729 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9730 if (pfd < 0) { 9731 err = -errno; 9732 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9733 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9734 return err; 9735 } 9736 return pfd; 9737 } 9738 9739 struct bpf_link * 9740 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 9741 const char *func_name, 9742 const struct bpf_kprobe_opts *opts) 9743 { 9744 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9745 char errmsg[STRERR_BUFSIZE]; 9746 char *legacy_probe = NULL; 9747 struct bpf_link *link; 9748 size_t offset; 9749 bool retprobe, legacy; 9750 int pfd, err; 9751 9752 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 9753 return libbpf_err_ptr(-EINVAL); 9754 9755 retprobe = OPTS_GET(opts, retprobe, false); 9756 offset = OPTS_GET(opts, offset, 0); 9757 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9758 9759 legacy = determine_kprobe_perf_type() < 0; 9760 if (!legacy) { 9761 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 9762 func_name, offset, 9763 -1 /* pid */, 0 /* ref_ctr_off */); 9764 } else { 9765 char probe_name[256]; 9766 9767 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 9768 func_name, offset); 9769 9770 legacy_probe = strdup(func_name); 9771 if (!legacy_probe) 9772 return libbpf_err_ptr(-ENOMEM); 9773 9774 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 9775 offset, -1 /* pid */); 9776 } 9777 if (pfd < 0) { 9778 err = -errno; 9779 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 9780 prog->name, retprobe ? "kretprobe" : "kprobe", 9781 func_name, offset, 9782 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9783 goto err_out; 9784 } 9785 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9786 err = libbpf_get_error(link); 9787 if (err) { 9788 close(pfd); 9789 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 9790 prog->name, retprobe ? "kretprobe" : "kprobe", 9791 func_name, offset, 9792 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9793 goto err_out; 9794 } 9795 if (legacy) { 9796 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9797 9798 perf_link->legacy_probe_name = legacy_probe; 9799 perf_link->legacy_is_kprobe = true; 9800 perf_link->legacy_is_retprobe = retprobe; 9801 } 9802 9803 return link; 9804 err_out: 9805 free(legacy_probe); 9806 return libbpf_err_ptr(err); 9807 } 9808 9809 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 9810 bool retprobe, 9811 const char *func_name) 9812 { 9813 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 9814 .retprobe = retprobe, 9815 ); 9816 9817 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 9818 } 9819 9820 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 9821 { 9822 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 9823 unsigned long offset = 0; 9824 struct bpf_link *link; 9825 const char *func_name; 9826 char *func; 9827 int n, err; 9828 9829 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 9830 if (opts.retprobe) 9831 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 9832 else 9833 func_name = prog->sec_name + sizeof("kprobe/") - 1; 9834 9835 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 9836 if (n < 1) { 9837 err = -EINVAL; 9838 pr_warn("kprobe name is invalid: %s\n", func_name); 9839 return libbpf_err_ptr(err); 9840 } 9841 if (opts.retprobe && offset != 0) { 9842 free(func); 9843 err = -EINVAL; 9844 pr_warn("kretprobes do not support offset specification\n"); 9845 return libbpf_err_ptr(err); 9846 } 9847 9848 opts.offset = offset; 9849 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 9850 free(func); 9851 return link; 9852 } 9853 9854 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 9855 const char *binary_path, uint64_t offset) 9856 { 9857 int i; 9858 9859 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 9860 9861 /* sanitize binary_path in the probe name */ 9862 for (i = 0; buf[i]; i++) { 9863 if (!isalnum(buf[i])) 9864 buf[i] = '_'; 9865 } 9866 } 9867 9868 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 9869 const char *binary_path, size_t offset) 9870 { 9871 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9872 9873 return append_to_file(file, "%c:%s/%s %s:0x%zx", 9874 retprobe ? 'r' : 'p', 9875 retprobe ? "uretprobes" : "uprobes", 9876 probe_name, binary_path, offset); 9877 } 9878 9879 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 9880 { 9881 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9882 9883 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 9884 } 9885 9886 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9887 { 9888 char file[512]; 9889 9890 snprintf(file, sizeof(file), 9891 "/sys/kernel/debug/tracing/events/%s/%s/id", 9892 retprobe ? "uretprobes" : "uprobes", probe_name); 9893 9894 return parse_uint_from_file(file, "%d\n"); 9895 } 9896 9897 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 9898 const char *binary_path, size_t offset, int pid) 9899 { 9900 struct perf_event_attr attr; 9901 int type, pfd, err; 9902 9903 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 9904 if (err < 0) { 9905 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 9906 binary_path, (size_t)offset, err); 9907 return err; 9908 } 9909 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 9910 if (type < 0) { 9911 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 9912 binary_path, offset, err); 9913 return type; 9914 } 9915 9916 memset(&attr, 0, sizeof(attr)); 9917 attr.size = sizeof(attr); 9918 attr.config = type; 9919 attr.type = PERF_TYPE_TRACEPOINT; 9920 9921 pfd = syscall(__NR_perf_event_open, &attr, 9922 pid < 0 ? -1 : pid, /* pid */ 9923 pid == -1 ? 0 : -1, /* cpu */ 9924 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9925 if (pfd < 0) { 9926 err = -errno; 9927 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 9928 return err; 9929 } 9930 return pfd; 9931 } 9932 9933 LIBBPF_API struct bpf_link * 9934 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 9935 const char *binary_path, size_t func_offset, 9936 const struct bpf_uprobe_opts *opts) 9937 { 9938 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9939 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 9940 struct bpf_link *link; 9941 size_t ref_ctr_off; 9942 int pfd, err; 9943 bool retprobe, legacy; 9944 9945 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 9946 return libbpf_err_ptr(-EINVAL); 9947 9948 retprobe = OPTS_GET(opts, retprobe, false); 9949 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 9950 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9951 9952 legacy = determine_uprobe_perf_type() < 0; 9953 if (!legacy) { 9954 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 9955 func_offset, pid, ref_ctr_off); 9956 } else { 9957 char probe_name[512]; 9958 9959 if (ref_ctr_off) 9960 return libbpf_err_ptr(-EINVAL); 9961 9962 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 9963 binary_path, func_offset); 9964 9965 legacy_probe = strdup(probe_name); 9966 if (!legacy_probe) 9967 return libbpf_err_ptr(-ENOMEM); 9968 9969 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 9970 binary_path, func_offset, pid); 9971 } 9972 if (pfd < 0) { 9973 err = -errno; 9974 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9975 prog->name, retprobe ? "uretprobe" : "uprobe", 9976 binary_path, func_offset, 9977 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9978 goto err_out; 9979 } 9980 9981 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9982 err = libbpf_get_error(link); 9983 if (err) { 9984 close(pfd); 9985 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9986 prog->name, retprobe ? "uretprobe" : "uprobe", 9987 binary_path, func_offset, 9988 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9989 goto err_out; 9990 } 9991 if (legacy) { 9992 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9993 9994 perf_link->legacy_probe_name = legacy_probe; 9995 perf_link->legacy_is_kprobe = false; 9996 perf_link->legacy_is_retprobe = retprobe; 9997 } 9998 return link; 9999 err_out: 10000 free(legacy_probe); 10001 return libbpf_err_ptr(err); 10002 10003 } 10004 10005 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10006 bool retprobe, pid_t pid, 10007 const char *binary_path, 10008 size_t func_offset) 10009 { 10010 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10011 10012 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10013 } 10014 10015 static int determine_tracepoint_id(const char *tp_category, 10016 const char *tp_name) 10017 { 10018 char file[PATH_MAX]; 10019 int ret; 10020 10021 ret = snprintf(file, sizeof(file), 10022 "/sys/kernel/debug/tracing/events/%s/%s/id", 10023 tp_category, tp_name); 10024 if (ret < 0) 10025 return -errno; 10026 if (ret >= sizeof(file)) { 10027 pr_debug("tracepoint %s/%s path is too long\n", 10028 tp_category, tp_name); 10029 return -E2BIG; 10030 } 10031 return parse_uint_from_file(file, "%d\n"); 10032 } 10033 10034 static int perf_event_open_tracepoint(const char *tp_category, 10035 const char *tp_name) 10036 { 10037 struct perf_event_attr attr = {}; 10038 char errmsg[STRERR_BUFSIZE]; 10039 int tp_id, pfd, err; 10040 10041 tp_id = determine_tracepoint_id(tp_category, tp_name); 10042 if (tp_id < 0) { 10043 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10044 tp_category, tp_name, 10045 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10046 return tp_id; 10047 } 10048 10049 attr.type = PERF_TYPE_TRACEPOINT; 10050 attr.size = sizeof(attr); 10051 attr.config = tp_id; 10052 10053 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10054 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10055 if (pfd < 0) { 10056 err = -errno; 10057 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10058 tp_category, tp_name, 10059 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10060 return err; 10061 } 10062 return pfd; 10063 } 10064 10065 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10066 const char *tp_category, 10067 const char *tp_name, 10068 const struct bpf_tracepoint_opts *opts) 10069 { 10070 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10071 char errmsg[STRERR_BUFSIZE]; 10072 struct bpf_link *link; 10073 int pfd, err; 10074 10075 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10076 return libbpf_err_ptr(-EINVAL); 10077 10078 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10079 10080 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10081 if (pfd < 0) { 10082 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10083 prog->name, tp_category, tp_name, 10084 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10085 return libbpf_err_ptr(pfd); 10086 } 10087 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10088 err = libbpf_get_error(link); 10089 if (err) { 10090 close(pfd); 10091 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10092 prog->name, tp_category, tp_name, 10093 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10094 return libbpf_err_ptr(err); 10095 } 10096 return link; 10097 } 10098 10099 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10100 const char *tp_category, 10101 const char *tp_name) 10102 { 10103 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10104 } 10105 10106 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10107 { 10108 char *sec_name, *tp_cat, *tp_name; 10109 struct bpf_link *link; 10110 10111 sec_name = strdup(prog->sec_name); 10112 if (!sec_name) 10113 return libbpf_err_ptr(-ENOMEM); 10114 10115 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10116 if (str_has_pfx(prog->sec_name, "tp/")) 10117 tp_cat = sec_name + sizeof("tp/") - 1; 10118 else 10119 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10120 tp_name = strchr(tp_cat, '/'); 10121 if (!tp_name) { 10122 free(sec_name); 10123 return libbpf_err_ptr(-EINVAL); 10124 } 10125 *tp_name = '\0'; 10126 tp_name++; 10127 10128 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10129 free(sec_name); 10130 return link; 10131 } 10132 10133 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10134 const char *tp_name) 10135 { 10136 char errmsg[STRERR_BUFSIZE]; 10137 struct bpf_link *link; 10138 int prog_fd, pfd; 10139 10140 prog_fd = bpf_program__fd(prog); 10141 if (prog_fd < 0) { 10142 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10143 return libbpf_err_ptr(-EINVAL); 10144 } 10145 10146 link = calloc(1, sizeof(*link)); 10147 if (!link) 10148 return libbpf_err_ptr(-ENOMEM); 10149 link->detach = &bpf_link__detach_fd; 10150 10151 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10152 if (pfd < 0) { 10153 pfd = -errno; 10154 free(link); 10155 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10156 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10157 return libbpf_err_ptr(pfd); 10158 } 10159 link->fd = pfd; 10160 return link; 10161 } 10162 10163 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10164 { 10165 static const char *const prefixes[] = { 10166 "raw_tp/", 10167 "raw_tracepoint/", 10168 "raw_tp.w/", 10169 "raw_tracepoint.w/", 10170 }; 10171 size_t i; 10172 const char *tp_name = NULL; 10173 10174 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10175 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10176 tp_name = prog->sec_name + strlen(prefixes[i]); 10177 break; 10178 } 10179 } 10180 if (!tp_name) { 10181 pr_warn("prog '%s': invalid section name '%s'\n", 10182 prog->name, prog->sec_name); 10183 return libbpf_err_ptr(-EINVAL); 10184 } 10185 10186 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10187 } 10188 10189 /* Common logic for all BPF program types that attach to a btf_id */ 10190 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10191 { 10192 char errmsg[STRERR_BUFSIZE]; 10193 struct bpf_link *link; 10194 int prog_fd, pfd; 10195 10196 prog_fd = bpf_program__fd(prog); 10197 if (prog_fd < 0) { 10198 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10199 return libbpf_err_ptr(-EINVAL); 10200 } 10201 10202 link = calloc(1, sizeof(*link)); 10203 if (!link) 10204 return libbpf_err_ptr(-ENOMEM); 10205 link->detach = &bpf_link__detach_fd; 10206 10207 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10208 if (pfd < 0) { 10209 pfd = -errno; 10210 free(link); 10211 pr_warn("prog '%s': failed to attach: %s\n", 10212 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10213 return libbpf_err_ptr(pfd); 10214 } 10215 link->fd = pfd; 10216 return (struct bpf_link *)link; 10217 } 10218 10219 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10220 { 10221 return bpf_program__attach_btf_id(prog); 10222 } 10223 10224 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10225 { 10226 return bpf_program__attach_btf_id(prog); 10227 } 10228 10229 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10230 { 10231 return bpf_program__attach_trace(prog); 10232 } 10233 10234 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10235 { 10236 return bpf_program__attach_lsm(prog); 10237 } 10238 10239 static struct bpf_link * 10240 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10241 const char *target_name) 10242 { 10243 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10244 .target_btf_id = btf_id); 10245 enum bpf_attach_type attach_type; 10246 char errmsg[STRERR_BUFSIZE]; 10247 struct bpf_link *link; 10248 int prog_fd, link_fd; 10249 10250 prog_fd = bpf_program__fd(prog); 10251 if (prog_fd < 0) { 10252 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10253 return libbpf_err_ptr(-EINVAL); 10254 } 10255 10256 link = calloc(1, sizeof(*link)); 10257 if (!link) 10258 return libbpf_err_ptr(-ENOMEM); 10259 link->detach = &bpf_link__detach_fd; 10260 10261 attach_type = bpf_program__get_expected_attach_type(prog); 10262 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10263 if (link_fd < 0) { 10264 link_fd = -errno; 10265 free(link); 10266 pr_warn("prog '%s': failed to attach to %s: %s\n", 10267 prog->name, target_name, 10268 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10269 return libbpf_err_ptr(link_fd); 10270 } 10271 link->fd = link_fd; 10272 return link; 10273 } 10274 10275 struct bpf_link * 10276 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10277 { 10278 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10279 } 10280 10281 struct bpf_link * 10282 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10283 { 10284 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10285 } 10286 10287 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10288 { 10289 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10290 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10291 } 10292 10293 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10294 int target_fd, 10295 const char *attach_func_name) 10296 { 10297 int btf_id; 10298 10299 if (!!target_fd != !!attach_func_name) { 10300 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10301 prog->name); 10302 return libbpf_err_ptr(-EINVAL); 10303 } 10304 10305 if (prog->type != BPF_PROG_TYPE_EXT) { 10306 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10307 prog->name); 10308 return libbpf_err_ptr(-EINVAL); 10309 } 10310 10311 if (target_fd) { 10312 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10313 if (btf_id < 0) 10314 return libbpf_err_ptr(btf_id); 10315 10316 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10317 } else { 10318 /* no target, so use raw_tracepoint_open for compatibility 10319 * with old kernels 10320 */ 10321 return bpf_program__attach_trace(prog); 10322 } 10323 } 10324 10325 struct bpf_link * 10326 bpf_program__attach_iter(const struct bpf_program *prog, 10327 const struct bpf_iter_attach_opts *opts) 10328 { 10329 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10330 char errmsg[STRERR_BUFSIZE]; 10331 struct bpf_link *link; 10332 int prog_fd, link_fd; 10333 __u32 target_fd = 0; 10334 10335 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10336 return libbpf_err_ptr(-EINVAL); 10337 10338 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10339 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10340 10341 prog_fd = bpf_program__fd(prog); 10342 if (prog_fd < 0) { 10343 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10344 return libbpf_err_ptr(-EINVAL); 10345 } 10346 10347 link = calloc(1, sizeof(*link)); 10348 if (!link) 10349 return libbpf_err_ptr(-ENOMEM); 10350 link->detach = &bpf_link__detach_fd; 10351 10352 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10353 &link_create_opts); 10354 if (link_fd < 0) { 10355 link_fd = -errno; 10356 free(link); 10357 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10358 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10359 return libbpf_err_ptr(link_fd); 10360 } 10361 link->fd = link_fd; 10362 return link; 10363 } 10364 10365 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10366 { 10367 return bpf_program__attach_iter(prog, NULL); 10368 } 10369 10370 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10371 { 10372 if (!prog->sec_def || !prog->sec_def->attach_fn) 10373 return libbpf_err_ptr(-ESRCH); 10374 10375 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10376 } 10377 10378 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10379 { 10380 __u32 zero = 0; 10381 10382 if (bpf_map_delete_elem(link->fd, &zero)) 10383 return -errno; 10384 10385 return 0; 10386 } 10387 10388 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10389 { 10390 struct bpf_struct_ops *st_ops; 10391 struct bpf_link *link; 10392 __u32 i, zero = 0; 10393 int err; 10394 10395 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10396 return libbpf_err_ptr(-EINVAL); 10397 10398 link = calloc(1, sizeof(*link)); 10399 if (!link) 10400 return libbpf_err_ptr(-EINVAL); 10401 10402 st_ops = map->st_ops; 10403 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10404 struct bpf_program *prog = st_ops->progs[i]; 10405 void *kern_data; 10406 int prog_fd; 10407 10408 if (!prog) 10409 continue; 10410 10411 prog_fd = bpf_program__fd(prog); 10412 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10413 *(unsigned long *)kern_data = prog_fd; 10414 } 10415 10416 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10417 if (err) { 10418 err = -errno; 10419 free(link); 10420 return libbpf_err_ptr(err); 10421 } 10422 10423 link->detach = bpf_link__detach_struct_ops; 10424 link->fd = map->fd; 10425 10426 return link; 10427 } 10428 10429 enum bpf_perf_event_ret 10430 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10431 void **copy_mem, size_t *copy_size, 10432 bpf_perf_event_print_t fn, void *private_data) 10433 { 10434 struct perf_event_mmap_page *header = mmap_mem; 10435 __u64 data_head = ring_buffer_read_head(header); 10436 __u64 data_tail = header->data_tail; 10437 void *base = ((__u8 *)header) + page_size; 10438 int ret = LIBBPF_PERF_EVENT_CONT; 10439 struct perf_event_header *ehdr; 10440 size_t ehdr_size; 10441 10442 while (data_head != data_tail) { 10443 ehdr = base + (data_tail & (mmap_size - 1)); 10444 ehdr_size = ehdr->size; 10445 10446 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10447 void *copy_start = ehdr; 10448 size_t len_first = base + mmap_size - copy_start; 10449 size_t len_secnd = ehdr_size - len_first; 10450 10451 if (*copy_size < ehdr_size) { 10452 free(*copy_mem); 10453 *copy_mem = malloc(ehdr_size); 10454 if (!*copy_mem) { 10455 *copy_size = 0; 10456 ret = LIBBPF_PERF_EVENT_ERROR; 10457 break; 10458 } 10459 *copy_size = ehdr_size; 10460 } 10461 10462 memcpy(*copy_mem, copy_start, len_first); 10463 memcpy(*copy_mem + len_first, base, len_secnd); 10464 ehdr = *copy_mem; 10465 } 10466 10467 ret = fn(ehdr, private_data); 10468 data_tail += ehdr_size; 10469 if (ret != LIBBPF_PERF_EVENT_CONT) 10470 break; 10471 } 10472 10473 ring_buffer_write_tail(header, data_tail); 10474 return libbpf_err(ret); 10475 } 10476 10477 struct perf_buffer; 10478 10479 struct perf_buffer_params { 10480 struct perf_event_attr *attr; 10481 /* if event_cb is specified, it takes precendence */ 10482 perf_buffer_event_fn event_cb; 10483 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10484 perf_buffer_sample_fn sample_cb; 10485 perf_buffer_lost_fn lost_cb; 10486 void *ctx; 10487 int cpu_cnt; 10488 int *cpus; 10489 int *map_keys; 10490 }; 10491 10492 struct perf_cpu_buf { 10493 struct perf_buffer *pb; 10494 void *base; /* mmap()'ed memory */ 10495 void *buf; /* for reconstructing segmented data */ 10496 size_t buf_size; 10497 int fd; 10498 int cpu; 10499 int map_key; 10500 }; 10501 10502 struct perf_buffer { 10503 perf_buffer_event_fn event_cb; 10504 perf_buffer_sample_fn sample_cb; 10505 perf_buffer_lost_fn lost_cb; 10506 void *ctx; /* passed into callbacks */ 10507 10508 size_t page_size; 10509 size_t mmap_size; 10510 struct perf_cpu_buf **cpu_bufs; 10511 struct epoll_event *events; 10512 int cpu_cnt; /* number of allocated CPU buffers */ 10513 int epoll_fd; /* perf event FD */ 10514 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10515 }; 10516 10517 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10518 struct perf_cpu_buf *cpu_buf) 10519 { 10520 if (!cpu_buf) 10521 return; 10522 if (cpu_buf->base && 10523 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10524 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10525 if (cpu_buf->fd >= 0) { 10526 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10527 close(cpu_buf->fd); 10528 } 10529 free(cpu_buf->buf); 10530 free(cpu_buf); 10531 } 10532 10533 void perf_buffer__free(struct perf_buffer *pb) 10534 { 10535 int i; 10536 10537 if (IS_ERR_OR_NULL(pb)) 10538 return; 10539 if (pb->cpu_bufs) { 10540 for (i = 0; i < pb->cpu_cnt; i++) { 10541 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10542 10543 if (!cpu_buf) 10544 continue; 10545 10546 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10547 perf_buffer__free_cpu_buf(pb, cpu_buf); 10548 } 10549 free(pb->cpu_bufs); 10550 } 10551 if (pb->epoll_fd >= 0) 10552 close(pb->epoll_fd); 10553 free(pb->events); 10554 free(pb); 10555 } 10556 10557 static struct perf_cpu_buf * 10558 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10559 int cpu, int map_key) 10560 { 10561 struct perf_cpu_buf *cpu_buf; 10562 char msg[STRERR_BUFSIZE]; 10563 int err; 10564 10565 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10566 if (!cpu_buf) 10567 return ERR_PTR(-ENOMEM); 10568 10569 cpu_buf->pb = pb; 10570 cpu_buf->cpu = cpu; 10571 cpu_buf->map_key = map_key; 10572 10573 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10574 -1, PERF_FLAG_FD_CLOEXEC); 10575 if (cpu_buf->fd < 0) { 10576 err = -errno; 10577 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10578 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10579 goto error; 10580 } 10581 10582 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10583 PROT_READ | PROT_WRITE, MAP_SHARED, 10584 cpu_buf->fd, 0); 10585 if (cpu_buf->base == MAP_FAILED) { 10586 cpu_buf->base = NULL; 10587 err = -errno; 10588 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10589 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10590 goto error; 10591 } 10592 10593 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10594 err = -errno; 10595 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10596 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10597 goto error; 10598 } 10599 10600 return cpu_buf; 10601 10602 error: 10603 perf_buffer__free_cpu_buf(pb, cpu_buf); 10604 return (struct perf_cpu_buf *)ERR_PTR(err); 10605 } 10606 10607 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10608 struct perf_buffer_params *p); 10609 10610 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 10611 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 10612 perf_buffer_sample_fn sample_cb, 10613 perf_buffer_lost_fn lost_cb, 10614 void *ctx, 10615 const struct perf_buffer_opts *opts) 10616 { 10617 struct perf_buffer_params p = {}; 10618 struct perf_event_attr attr = {}; 10619 10620 if (!OPTS_VALID(opts, perf_buffer_opts)) 10621 return libbpf_err_ptr(-EINVAL); 10622 10623 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10624 attr.type = PERF_TYPE_SOFTWARE; 10625 attr.sample_type = PERF_SAMPLE_RAW; 10626 attr.sample_period = 1; 10627 attr.wakeup_events = 1; 10628 10629 p.attr = &attr; 10630 p.sample_cb = sample_cb; 10631 p.lost_cb = lost_cb; 10632 p.ctx = ctx; 10633 10634 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10635 } 10636 10637 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 10638 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 10639 const struct perf_buffer_opts *opts) 10640 { 10641 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 10642 opts ? opts->sample_cb : NULL, 10643 opts ? opts->lost_cb : NULL, 10644 opts ? opts->ctx : NULL, 10645 NULL); 10646 } 10647 10648 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 10649 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 10650 struct perf_event_attr *attr, 10651 perf_buffer_event_fn event_cb, void *ctx, 10652 const struct perf_buffer_raw_opts *opts) 10653 { 10654 struct perf_buffer_params p = {}; 10655 10656 if (page_cnt == 0 || !attr) 10657 return libbpf_err_ptr(-EINVAL); 10658 10659 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 10660 return libbpf_err_ptr(-EINVAL); 10661 10662 p.attr = attr; 10663 p.event_cb = event_cb; 10664 p.ctx = ctx; 10665 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 10666 p.cpus = OPTS_GET(opts, cpus, NULL); 10667 p.map_keys = OPTS_GET(opts, map_keys, NULL); 10668 10669 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10670 } 10671 10672 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 10673 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 10674 const struct perf_buffer_raw_opts *opts) 10675 { 10676 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 10677 .cpu_cnt = opts->cpu_cnt, 10678 .cpus = opts->cpus, 10679 .map_keys = opts->map_keys, 10680 ); 10681 10682 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 10683 opts->event_cb, opts->ctx, &inner_opts); 10684 } 10685 10686 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10687 struct perf_buffer_params *p) 10688 { 10689 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10690 struct bpf_map_info map; 10691 char msg[STRERR_BUFSIZE]; 10692 struct perf_buffer *pb; 10693 bool *online = NULL; 10694 __u32 map_info_len; 10695 int err, i, j, n; 10696 10697 if (page_cnt & (page_cnt - 1)) { 10698 pr_warn("page count should be power of two, but is %zu\n", 10699 page_cnt); 10700 return ERR_PTR(-EINVAL); 10701 } 10702 10703 /* best-effort sanity checks */ 10704 memset(&map, 0, sizeof(map)); 10705 map_info_len = sizeof(map); 10706 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10707 if (err) { 10708 err = -errno; 10709 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10710 * -EBADFD, -EFAULT, or -E2BIG on real error 10711 */ 10712 if (err != -EINVAL) { 10713 pr_warn("failed to get map info for map FD %d: %s\n", 10714 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10715 return ERR_PTR(err); 10716 } 10717 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10718 map_fd); 10719 } else { 10720 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10721 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10722 map.name); 10723 return ERR_PTR(-EINVAL); 10724 } 10725 } 10726 10727 pb = calloc(1, sizeof(*pb)); 10728 if (!pb) 10729 return ERR_PTR(-ENOMEM); 10730 10731 pb->event_cb = p->event_cb; 10732 pb->sample_cb = p->sample_cb; 10733 pb->lost_cb = p->lost_cb; 10734 pb->ctx = p->ctx; 10735 10736 pb->page_size = getpagesize(); 10737 pb->mmap_size = pb->page_size * page_cnt; 10738 pb->map_fd = map_fd; 10739 10740 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10741 if (pb->epoll_fd < 0) { 10742 err = -errno; 10743 pr_warn("failed to create epoll instance: %s\n", 10744 libbpf_strerror_r(err, msg, sizeof(msg))); 10745 goto error; 10746 } 10747 10748 if (p->cpu_cnt > 0) { 10749 pb->cpu_cnt = p->cpu_cnt; 10750 } else { 10751 pb->cpu_cnt = libbpf_num_possible_cpus(); 10752 if (pb->cpu_cnt < 0) { 10753 err = pb->cpu_cnt; 10754 goto error; 10755 } 10756 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10757 pb->cpu_cnt = map.max_entries; 10758 } 10759 10760 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10761 if (!pb->events) { 10762 err = -ENOMEM; 10763 pr_warn("failed to allocate events: out of memory\n"); 10764 goto error; 10765 } 10766 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10767 if (!pb->cpu_bufs) { 10768 err = -ENOMEM; 10769 pr_warn("failed to allocate buffers: out of memory\n"); 10770 goto error; 10771 } 10772 10773 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10774 if (err) { 10775 pr_warn("failed to get online CPU mask: %d\n", err); 10776 goto error; 10777 } 10778 10779 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10780 struct perf_cpu_buf *cpu_buf; 10781 int cpu, map_key; 10782 10783 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10784 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10785 10786 /* in case user didn't explicitly requested particular CPUs to 10787 * be attached to, skip offline/not present CPUs 10788 */ 10789 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10790 continue; 10791 10792 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10793 if (IS_ERR(cpu_buf)) { 10794 err = PTR_ERR(cpu_buf); 10795 goto error; 10796 } 10797 10798 pb->cpu_bufs[j] = cpu_buf; 10799 10800 err = bpf_map_update_elem(pb->map_fd, &map_key, 10801 &cpu_buf->fd, 0); 10802 if (err) { 10803 err = -errno; 10804 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10805 cpu, map_key, cpu_buf->fd, 10806 libbpf_strerror_r(err, msg, sizeof(msg))); 10807 goto error; 10808 } 10809 10810 pb->events[j].events = EPOLLIN; 10811 pb->events[j].data.ptr = cpu_buf; 10812 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10813 &pb->events[j]) < 0) { 10814 err = -errno; 10815 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10816 cpu, cpu_buf->fd, 10817 libbpf_strerror_r(err, msg, sizeof(msg))); 10818 goto error; 10819 } 10820 j++; 10821 } 10822 pb->cpu_cnt = j; 10823 free(online); 10824 10825 return pb; 10826 10827 error: 10828 free(online); 10829 if (pb) 10830 perf_buffer__free(pb); 10831 return ERR_PTR(err); 10832 } 10833 10834 struct perf_sample_raw { 10835 struct perf_event_header header; 10836 uint32_t size; 10837 char data[]; 10838 }; 10839 10840 struct perf_sample_lost { 10841 struct perf_event_header header; 10842 uint64_t id; 10843 uint64_t lost; 10844 uint64_t sample_id; 10845 }; 10846 10847 static enum bpf_perf_event_ret 10848 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10849 { 10850 struct perf_cpu_buf *cpu_buf = ctx; 10851 struct perf_buffer *pb = cpu_buf->pb; 10852 void *data = e; 10853 10854 /* user wants full control over parsing perf event */ 10855 if (pb->event_cb) 10856 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10857 10858 switch (e->type) { 10859 case PERF_RECORD_SAMPLE: { 10860 struct perf_sample_raw *s = data; 10861 10862 if (pb->sample_cb) 10863 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10864 break; 10865 } 10866 case PERF_RECORD_LOST: { 10867 struct perf_sample_lost *s = data; 10868 10869 if (pb->lost_cb) 10870 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10871 break; 10872 } 10873 default: 10874 pr_warn("unknown perf sample type %d\n", e->type); 10875 return LIBBPF_PERF_EVENT_ERROR; 10876 } 10877 return LIBBPF_PERF_EVENT_CONT; 10878 } 10879 10880 static int perf_buffer__process_records(struct perf_buffer *pb, 10881 struct perf_cpu_buf *cpu_buf) 10882 { 10883 enum bpf_perf_event_ret ret; 10884 10885 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10886 pb->page_size, &cpu_buf->buf, 10887 &cpu_buf->buf_size, 10888 perf_buffer__process_record, cpu_buf); 10889 if (ret != LIBBPF_PERF_EVENT_CONT) 10890 return ret; 10891 return 0; 10892 } 10893 10894 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10895 { 10896 return pb->epoll_fd; 10897 } 10898 10899 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10900 { 10901 int i, cnt, err; 10902 10903 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10904 if (cnt < 0) 10905 return -errno; 10906 10907 for (i = 0; i < cnt; i++) { 10908 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10909 10910 err = perf_buffer__process_records(pb, cpu_buf); 10911 if (err) { 10912 pr_warn("error while processing records: %d\n", err); 10913 return libbpf_err(err); 10914 } 10915 } 10916 return cnt; 10917 } 10918 10919 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10920 * manager. 10921 */ 10922 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10923 { 10924 return pb->cpu_cnt; 10925 } 10926 10927 /* 10928 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10929 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10930 * select()/poll()/epoll() Linux syscalls. 10931 */ 10932 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10933 { 10934 struct perf_cpu_buf *cpu_buf; 10935 10936 if (buf_idx >= pb->cpu_cnt) 10937 return libbpf_err(-EINVAL); 10938 10939 cpu_buf = pb->cpu_bufs[buf_idx]; 10940 if (!cpu_buf) 10941 return libbpf_err(-ENOENT); 10942 10943 return cpu_buf->fd; 10944 } 10945 10946 /* 10947 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10948 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10949 * consume, do nothing and return success. 10950 * Returns: 10951 * - 0 on success; 10952 * - <0 on failure. 10953 */ 10954 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10955 { 10956 struct perf_cpu_buf *cpu_buf; 10957 10958 if (buf_idx >= pb->cpu_cnt) 10959 return libbpf_err(-EINVAL); 10960 10961 cpu_buf = pb->cpu_bufs[buf_idx]; 10962 if (!cpu_buf) 10963 return libbpf_err(-ENOENT); 10964 10965 return perf_buffer__process_records(pb, cpu_buf); 10966 } 10967 10968 int perf_buffer__consume(struct perf_buffer *pb) 10969 { 10970 int i, err; 10971 10972 for (i = 0; i < pb->cpu_cnt; i++) { 10973 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10974 10975 if (!cpu_buf) 10976 continue; 10977 10978 err = perf_buffer__process_records(pb, cpu_buf); 10979 if (err) { 10980 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10981 return libbpf_err(err); 10982 } 10983 } 10984 return 0; 10985 } 10986 10987 struct bpf_prog_info_array_desc { 10988 int array_offset; /* e.g. offset of jited_prog_insns */ 10989 int count_offset; /* e.g. offset of jited_prog_len */ 10990 int size_offset; /* > 0: offset of rec size, 10991 * < 0: fix size of -size_offset 10992 */ 10993 }; 10994 10995 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10996 [BPF_PROG_INFO_JITED_INSNS] = { 10997 offsetof(struct bpf_prog_info, jited_prog_insns), 10998 offsetof(struct bpf_prog_info, jited_prog_len), 10999 -1, 11000 }, 11001 [BPF_PROG_INFO_XLATED_INSNS] = { 11002 offsetof(struct bpf_prog_info, xlated_prog_insns), 11003 offsetof(struct bpf_prog_info, xlated_prog_len), 11004 -1, 11005 }, 11006 [BPF_PROG_INFO_MAP_IDS] = { 11007 offsetof(struct bpf_prog_info, map_ids), 11008 offsetof(struct bpf_prog_info, nr_map_ids), 11009 -(int)sizeof(__u32), 11010 }, 11011 [BPF_PROG_INFO_JITED_KSYMS] = { 11012 offsetof(struct bpf_prog_info, jited_ksyms), 11013 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11014 -(int)sizeof(__u64), 11015 }, 11016 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11017 offsetof(struct bpf_prog_info, jited_func_lens), 11018 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11019 -(int)sizeof(__u32), 11020 }, 11021 [BPF_PROG_INFO_FUNC_INFO] = { 11022 offsetof(struct bpf_prog_info, func_info), 11023 offsetof(struct bpf_prog_info, nr_func_info), 11024 offsetof(struct bpf_prog_info, func_info_rec_size), 11025 }, 11026 [BPF_PROG_INFO_LINE_INFO] = { 11027 offsetof(struct bpf_prog_info, line_info), 11028 offsetof(struct bpf_prog_info, nr_line_info), 11029 offsetof(struct bpf_prog_info, line_info_rec_size), 11030 }, 11031 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11032 offsetof(struct bpf_prog_info, jited_line_info), 11033 offsetof(struct bpf_prog_info, nr_jited_line_info), 11034 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11035 }, 11036 [BPF_PROG_INFO_PROG_TAGS] = { 11037 offsetof(struct bpf_prog_info, prog_tags), 11038 offsetof(struct bpf_prog_info, nr_prog_tags), 11039 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11040 }, 11041 11042 }; 11043 11044 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11045 int offset) 11046 { 11047 __u32 *array = (__u32 *)info; 11048 11049 if (offset >= 0) 11050 return array[offset / sizeof(__u32)]; 11051 return -(int)offset; 11052 } 11053 11054 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11055 int offset) 11056 { 11057 __u64 *array = (__u64 *)info; 11058 11059 if (offset >= 0) 11060 return array[offset / sizeof(__u64)]; 11061 return -(int)offset; 11062 } 11063 11064 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11065 __u32 val) 11066 { 11067 __u32 *array = (__u32 *)info; 11068 11069 if (offset >= 0) 11070 array[offset / sizeof(__u32)] = val; 11071 } 11072 11073 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11074 __u64 val) 11075 { 11076 __u64 *array = (__u64 *)info; 11077 11078 if (offset >= 0) 11079 array[offset / sizeof(__u64)] = val; 11080 } 11081 11082 struct bpf_prog_info_linear * 11083 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11084 { 11085 struct bpf_prog_info_linear *info_linear; 11086 struct bpf_prog_info info = {}; 11087 __u32 info_len = sizeof(info); 11088 __u32 data_len = 0; 11089 int i, err; 11090 void *ptr; 11091 11092 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11093 return libbpf_err_ptr(-EINVAL); 11094 11095 /* step 1: get array dimensions */ 11096 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11097 if (err) { 11098 pr_debug("can't get prog info: %s", strerror(errno)); 11099 return libbpf_err_ptr(-EFAULT); 11100 } 11101 11102 /* step 2: calculate total size of all arrays */ 11103 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11104 bool include_array = (arrays & (1UL << i)) > 0; 11105 struct bpf_prog_info_array_desc *desc; 11106 __u32 count, size; 11107 11108 desc = bpf_prog_info_array_desc + i; 11109 11110 /* kernel is too old to support this field */ 11111 if (info_len < desc->array_offset + sizeof(__u32) || 11112 info_len < desc->count_offset + sizeof(__u32) || 11113 (desc->size_offset > 0 && info_len < desc->size_offset)) 11114 include_array = false; 11115 11116 if (!include_array) { 11117 arrays &= ~(1UL << i); /* clear the bit */ 11118 continue; 11119 } 11120 11121 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11122 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11123 11124 data_len += count * size; 11125 } 11126 11127 /* step 3: allocate continuous memory */ 11128 data_len = roundup(data_len, sizeof(__u64)); 11129 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11130 if (!info_linear) 11131 return libbpf_err_ptr(-ENOMEM); 11132 11133 /* step 4: fill data to info_linear->info */ 11134 info_linear->arrays = arrays; 11135 memset(&info_linear->info, 0, sizeof(info)); 11136 ptr = info_linear->data; 11137 11138 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11139 struct bpf_prog_info_array_desc *desc; 11140 __u32 count, size; 11141 11142 if ((arrays & (1UL << i)) == 0) 11143 continue; 11144 11145 desc = bpf_prog_info_array_desc + i; 11146 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11147 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11148 bpf_prog_info_set_offset_u32(&info_linear->info, 11149 desc->count_offset, count); 11150 bpf_prog_info_set_offset_u32(&info_linear->info, 11151 desc->size_offset, size); 11152 bpf_prog_info_set_offset_u64(&info_linear->info, 11153 desc->array_offset, 11154 ptr_to_u64(ptr)); 11155 ptr += count * size; 11156 } 11157 11158 /* step 5: call syscall again to get required arrays */ 11159 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11160 if (err) { 11161 pr_debug("can't get prog info: %s", strerror(errno)); 11162 free(info_linear); 11163 return libbpf_err_ptr(-EFAULT); 11164 } 11165 11166 /* step 6: verify the data */ 11167 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11168 struct bpf_prog_info_array_desc *desc; 11169 __u32 v1, v2; 11170 11171 if ((arrays & (1UL << i)) == 0) 11172 continue; 11173 11174 desc = bpf_prog_info_array_desc + i; 11175 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11176 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11177 desc->count_offset); 11178 if (v1 != v2) 11179 pr_warn("%s: mismatch in element count\n", __func__); 11180 11181 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11182 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11183 desc->size_offset); 11184 if (v1 != v2) 11185 pr_warn("%s: mismatch in rec size\n", __func__); 11186 } 11187 11188 /* step 7: update info_len and data_len */ 11189 info_linear->info_len = sizeof(struct bpf_prog_info); 11190 info_linear->data_len = data_len; 11191 11192 return info_linear; 11193 } 11194 11195 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11196 { 11197 int i; 11198 11199 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11200 struct bpf_prog_info_array_desc *desc; 11201 __u64 addr, offs; 11202 11203 if ((info_linear->arrays & (1UL << i)) == 0) 11204 continue; 11205 11206 desc = bpf_prog_info_array_desc + i; 11207 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11208 desc->array_offset); 11209 offs = addr - ptr_to_u64(info_linear->data); 11210 bpf_prog_info_set_offset_u64(&info_linear->info, 11211 desc->array_offset, offs); 11212 } 11213 } 11214 11215 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11216 { 11217 int i; 11218 11219 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11220 struct bpf_prog_info_array_desc *desc; 11221 __u64 addr, offs; 11222 11223 if ((info_linear->arrays & (1UL << i)) == 0) 11224 continue; 11225 11226 desc = bpf_prog_info_array_desc + i; 11227 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11228 desc->array_offset); 11229 addr = offs + ptr_to_u64(info_linear->data); 11230 bpf_prog_info_set_offset_u64(&info_linear->info, 11231 desc->array_offset, addr); 11232 } 11233 } 11234 11235 int bpf_program__set_attach_target(struct bpf_program *prog, 11236 int attach_prog_fd, 11237 const char *attach_func_name) 11238 { 11239 int btf_obj_fd = 0, btf_id = 0, err; 11240 11241 if (!prog || attach_prog_fd < 0) 11242 return libbpf_err(-EINVAL); 11243 11244 if (prog->obj->loaded) 11245 return libbpf_err(-EINVAL); 11246 11247 if (attach_prog_fd && !attach_func_name) { 11248 /* remember attach_prog_fd and let bpf_program__load() find 11249 * BTF ID during the program load 11250 */ 11251 prog->attach_prog_fd = attach_prog_fd; 11252 return 0; 11253 } 11254 11255 if (attach_prog_fd) { 11256 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11257 attach_prog_fd); 11258 if (btf_id < 0) 11259 return libbpf_err(btf_id); 11260 } else { 11261 if (!attach_func_name) 11262 return libbpf_err(-EINVAL); 11263 11264 /* load btf_vmlinux, if not yet */ 11265 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11266 if (err) 11267 return libbpf_err(err); 11268 err = find_kernel_btf_id(prog->obj, attach_func_name, 11269 prog->expected_attach_type, 11270 &btf_obj_fd, &btf_id); 11271 if (err) 11272 return libbpf_err(err); 11273 } 11274 11275 prog->attach_btf_id = btf_id; 11276 prog->attach_btf_obj_fd = btf_obj_fd; 11277 prog->attach_prog_fd = attach_prog_fd; 11278 return 0; 11279 } 11280 11281 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11282 { 11283 int err = 0, n, len, start, end = -1; 11284 bool *tmp; 11285 11286 *mask = NULL; 11287 *mask_sz = 0; 11288 11289 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11290 while (*s) { 11291 if (*s == ',' || *s == '\n') { 11292 s++; 11293 continue; 11294 } 11295 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11296 if (n <= 0 || n > 2) { 11297 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11298 err = -EINVAL; 11299 goto cleanup; 11300 } else if (n == 1) { 11301 end = start; 11302 } 11303 if (start < 0 || start > end) { 11304 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11305 start, end, s); 11306 err = -EINVAL; 11307 goto cleanup; 11308 } 11309 tmp = realloc(*mask, end + 1); 11310 if (!tmp) { 11311 err = -ENOMEM; 11312 goto cleanup; 11313 } 11314 *mask = tmp; 11315 memset(tmp + *mask_sz, 0, start - *mask_sz); 11316 memset(tmp + start, 1, end - start + 1); 11317 *mask_sz = end + 1; 11318 s += len; 11319 } 11320 if (!*mask_sz) { 11321 pr_warn("Empty CPU range\n"); 11322 return -EINVAL; 11323 } 11324 return 0; 11325 cleanup: 11326 free(*mask); 11327 *mask = NULL; 11328 return err; 11329 } 11330 11331 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11332 { 11333 int fd, err = 0, len; 11334 char buf[128]; 11335 11336 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11337 if (fd < 0) { 11338 err = -errno; 11339 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11340 return err; 11341 } 11342 len = read(fd, buf, sizeof(buf)); 11343 close(fd); 11344 if (len <= 0) { 11345 err = len ? -errno : -EINVAL; 11346 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11347 return err; 11348 } 11349 if (len >= sizeof(buf)) { 11350 pr_warn("CPU mask is too big in file %s\n", fcpu); 11351 return -E2BIG; 11352 } 11353 buf[len] = '\0'; 11354 11355 return parse_cpu_mask_str(buf, mask, mask_sz); 11356 } 11357 11358 int libbpf_num_possible_cpus(void) 11359 { 11360 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11361 static int cpus; 11362 int err, n, i, tmp_cpus; 11363 bool *mask; 11364 11365 tmp_cpus = READ_ONCE(cpus); 11366 if (tmp_cpus > 0) 11367 return tmp_cpus; 11368 11369 err = parse_cpu_mask_file(fcpu, &mask, &n); 11370 if (err) 11371 return libbpf_err(err); 11372 11373 tmp_cpus = 0; 11374 for (i = 0; i < n; i++) { 11375 if (mask[i]) 11376 tmp_cpus++; 11377 } 11378 free(mask); 11379 11380 WRITE_ONCE(cpus, tmp_cpus); 11381 return tmp_cpus; 11382 } 11383 11384 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11385 const struct bpf_object_open_opts *opts) 11386 { 11387 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11388 .object_name = s->name, 11389 ); 11390 struct bpf_object *obj; 11391 int i, err; 11392 11393 /* Attempt to preserve opts->object_name, unless overriden by user 11394 * explicitly. Overwriting object name for skeletons is discouraged, 11395 * as it breaks global data maps, because they contain object name 11396 * prefix as their own map name prefix. When skeleton is generated, 11397 * bpftool is making an assumption that this name will stay the same. 11398 */ 11399 if (opts) { 11400 memcpy(&skel_opts, opts, sizeof(*opts)); 11401 if (!opts->object_name) 11402 skel_opts.object_name = s->name; 11403 } 11404 11405 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11406 err = libbpf_get_error(obj); 11407 if (err) { 11408 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11409 s->name, err); 11410 return libbpf_err(err); 11411 } 11412 11413 *s->obj = obj; 11414 11415 for (i = 0; i < s->map_cnt; i++) { 11416 struct bpf_map **map = s->maps[i].map; 11417 const char *name = s->maps[i].name; 11418 void **mmaped = s->maps[i].mmaped; 11419 11420 *map = bpf_object__find_map_by_name(obj, name); 11421 if (!*map) { 11422 pr_warn("failed to find skeleton map '%s'\n", name); 11423 return libbpf_err(-ESRCH); 11424 } 11425 11426 /* externs shouldn't be pre-setup from user code */ 11427 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11428 *mmaped = (*map)->mmaped; 11429 } 11430 11431 for (i = 0; i < s->prog_cnt; i++) { 11432 struct bpf_program **prog = s->progs[i].prog; 11433 const char *name = s->progs[i].name; 11434 11435 *prog = bpf_object__find_program_by_name(obj, name); 11436 if (!*prog) { 11437 pr_warn("failed to find skeleton program '%s'\n", name); 11438 return libbpf_err(-ESRCH); 11439 } 11440 } 11441 11442 return 0; 11443 } 11444 11445 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11446 { 11447 int i, err; 11448 11449 err = bpf_object__load(*s->obj); 11450 if (err) { 11451 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11452 return libbpf_err(err); 11453 } 11454 11455 for (i = 0; i < s->map_cnt; i++) { 11456 struct bpf_map *map = *s->maps[i].map; 11457 size_t mmap_sz = bpf_map_mmap_sz(map); 11458 int prot, map_fd = bpf_map__fd(map); 11459 void **mmaped = s->maps[i].mmaped; 11460 11461 if (!mmaped) 11462 continue; 11463 11464 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11465 *mmaped = NULL; 11466 continue; 11467 } 11468 11469 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11470 prot = PROT_READ; 11471 else 11472 prot = PROT_READ | PROT_WRITE; 11473 11474 /* Remap anonymous mmap()-ed "map initialization image" as 11475 * a BPF map-backed mmap()-ed memory, but preserving the same 11476 * memory address. This will cause kernel to change process' 11477 * page table to point to a different piece of kernel memory, 11478 * but from userspace point of view memory address (and its 11479 * contents, being identical at this point) will stay the 11480 * same. This mapping will be released by bpf_object__close() 11481 * as per normal clean up procedure, so we don't need to worry 11482 * about it from skeleton's clean up perspective. 11483 */ 11484 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11485 MAP_SHARED | MAP_FIXED, map_fd, 0); 11486 if (*mmaped == MAP_FAILED) { 11487 err = -errno; 11488 *mmaped = NULL; 11489 pr_warn("failed to re-mmap() map '%s': %d\n", 11490 bpf_map__name(map), err); 11491 return libbpf_err(err); 11492 } 11493 } 11494 11495 return 0; 11496 } 11497 11498 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11499 { 11500 int i, err; 11501 11502 for (i = 0; i < s->prog_cnt; i++) { 11503 struct bpf_program *prog = *s->progs[i].prog; 11504 struct bpf_link **link = s->progs[i].link; 11505 11506 if (!prog->load) 11507 continue; 11508 11509 /* auto-attaching not supported for this program */ 11510 if (!prog->sec_def || !prog->sec_def->attach_fn) 11511 continue; 11512 11513 *link = bpf_program__attach(prog); 11514 err = libbpf_get_error(*link); 11515 if (err) { 11516 pr_warn("failed to auto-attach program '%s': %d\n", 11517 bpf_program__name(prog), err); 11518 return libbpf_err(err); 11519 } 11520 } 11521 11522 return 0; 11523 } 11524 11525 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11526 { 11527 int i; 11528 11529 for (i = 0; i < s->prog_cnt; i++) { 11530 struct bpf_link **link = s->progs[i].link; 11531 11532 bpf_link__destroy(*link); 11533 *link = NULL; 11534 } 11535 } 11536 11537 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11538 { 11539 if (s->progs) 11540 bpf_object__detach_skeleton(s); 11541 if (s->obj) 11542 bpf_object__close(*s->obj); 11543 free(s->maps); 11544 free(s->progs); 11545 free(s); 11546 } 11547