1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <sys/socket.h> 47 #include <linux/if_alg.h> 48 #include <linux/socket.h> 49 #include <libelf.h> 50 #include <gelf.h> 51 #include <zlib.h> 52 53 #include "libbpf.h" 54 #include "bpf.h" 55 #include "btf.h" 56 #include "str_error.h" 57 #include "libbpf_internal.h" 58 #include "hashmap.h" 59 #include "bpf_gen_internal.h" 60 #include "zip.h" 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define MAX_EVENT_NAME_LEN 64 67 68 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 69 70 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 71 72 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 73 * compilation if user enables corresponding warning. Disable it explicitly. 74 */ 75 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 76 77 #define __printf(a, b) __attribute__((format(printf, a, b))) 78 79 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 80 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 81 static int map_set_def_max_entries(struct bpf_map *map); 82 83 static const char * const attach_type_name[] = { 84 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 85 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 86 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 87 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 88 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 89 [BPF_CGROUP_DEVICE] = "cgroup_device", 90 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 91 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 92 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 93 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 94 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 95 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 96 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 97 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 98 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 99 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 100 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 101 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 102 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 103 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 104 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 105 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 106 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 107 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 108 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 109 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 110 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 111 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 112 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 113 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 114 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 115 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 116 [BPF_LIRC_MODE2] = "lirc_mode2", 117 [BPF_FLOW_DISSECTOR] = "flow_dissector", 118 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 119 [BPF_TRACE_FENTRY] = "trace_fentry", 120 [BPF_TRACE_FEXIT] = "trace_fexit", 121 [BPF_MODIFY_RETURN] = "modify_return", 122 [BPF_LSM_MAC] = "lsm_mac", 123 [BPF_LSM_CGROUP] = "lsm_cgroup", 124 [BPF_SK_LOOKUP] = "sk_lookup", 125 [BPF_TRACE_ITER] = "trace_iter", 126 [BPF_XDP_DEVMAP] = "xdp_devmap", 127 [BPF_XDP_CPUMAP] = "xdp_cpumap", 128 [BPF_XDP] = "xdp", 129 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 130 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 131 [BPF_PERF_EVENT] = "perf_event", 132 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 133 [BPF_STRUCT_OPS] = "struct_ops", 134 [BPF_NETFILTER] = "netfilter", 135 [BPF_TCX_INGRESS] = "tcx_ingress", 136 [BPF_TCX_EGRESS] = "tcx_egress", 137 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 138 [BPF_NETKIT_PRIMARY] = "netkit_primary", 139 [BPF_NETKIT_PEER] = "netkit_peer", 140 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 141 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 142 }; 143 144 static const char * const link_type_name[] = { 145 [BPF_LINK_TYPE_UNSPEC] = "unspec", 146 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 147 [BPF_LINK_TYPE_TRACING] = "tracing", 148 [BPF_LINK_TYPE_CGROUP] = "cgroup", 149 [BPF_LINK_TYPE_ITER] = "iter", 150 [BPF_LINK_TYPE_NETNS] = "netns", 151 [BPF_LINK_TYPE_XDP] = "xdp", 152 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 153 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 154 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 155 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 156 [BPF_LINK_TYPE_TCX] = "tcx", 157 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 158 [BPF_LINK_TYPE_NETKIT] = "netkit", 159 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 160 }; 161 162 static const char * const map_type_name[] = { 163 [BPF_MAP_TYPE_UNSPEC] = "unspec", 164 [BPF_MAP_TYPE_HASH] = "hash", 165 [BPF_MAP_TYPE_ARRAY] = "array", 166 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 167 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 168 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 169 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 170 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 171 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 172 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 173 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 174 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 175 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 176 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 177 [BPF_MAP_TYPE_DEVMAP] = "devmap", 178 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 179 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 180 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 181 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 182 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 183 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 184 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 185 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 186 [BPF_MAP_TYPE_QUEUE] = "queue", 187 [BPF_MAP_TYPE_STACK] = "stack", 188 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 189 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 190 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 191 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 192 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 193 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 194 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 195 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 196 [BPF_MAP_TYPE_ARENA] = "arena", 197 }; 198 199 static const char * const prog_type_name[] = { 200 [BPF_PROG_TYPE_UNSPEC] = "unspec", 201 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 202 [BPF_PROG_TYPE_KPROBE] = "kprobe", 203 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 204 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 205 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 206 [BPF_PROG_TYPE_XDP] = "xdp", 207 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 208 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 209 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 210 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 211 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 212 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 213 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 214 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 215 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 216 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 217 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 218 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 219 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 220 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 221 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 222 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 223 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 224 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 225 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 226 [BPF_PROG_TYPE_TRACING] = "tracing", 227 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 228 [BPF_PROG_TYPE_EXT] = "ext", 229 [BPF_PROG_TYPE_LSM] = "lsm", 230 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 231 [BPF_PROG_TYPE_SYSCALL] = "syscall", 232 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 233 }; 234 235 static int __base_pr(enum libbpf_print_level level, const char *format, 236 va_list args) 237 { 238 const char *env_var = "LIBBPF_LOG_LEVEL"; 239 static enum libbpf_print_level min_level = LIBBPF_INFO; 240 static bool initialized; 241 242 if (!initialized) { 243 char *verbosity; 244 245 initialized = true; 246 verbosity = getenv(env_var); 247 if (verbosity) { 248 if (strcasecmp(verbosity, "warn") == 0) 249 min_level = LIBBPF_WARN; 250 else if (strcasecmp(verbosity, "debug") == 0) 251 min_level = LIBBPF_DEBUG; 252 else if (strcasecmp(verbosity, "info") == 0) 253 min_level = LIBBPF_INFO; 254 else 255 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 256 env_var, verbosity); 257 } 258 } 259 260 /* if too verbose, skip logging */ 261 if (level > min_level) 262 return 0; 263 264 return vfprintf(stderr, format, args); 265 } 266 267 static libbpf_print_fn_t __libbpf_pr = __base_pr; 268 269 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 270 { 271 libbpf_print_fn_t old_print_fn; 272 273 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 274 275 return old_print_fn; 276 } 277 278 __printf(2, 3) 279 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 280 { 281 va_list args; 282 int old_errno; 283 libbpf_print_fn_t print_fn; 284 285 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 286 if (!print_fn) 287 return; 288 289 old_errno = errno; 290 291 va_start(args, format); 292 print_fn(level, format, args); 293 va_end(args); 294 295 errno = old_errno; 296 } 297 298 static void pr_perm_msg(int err) 299 { 300 struct rlimit limit; 301 char buf[100]; 302 303 if (err != -EPERM || geteuid() != 0) 304 return; 305 306 err = getrlimit(RLIMIT_MEMLOCK, &limit); 307 if (err) 308 return; 309 310 if (limit.rlim_cur == RLIM_INFINITY) 311 return; 312 313 if (limit.rlim_cur < 1024) 314 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 315 else if (limit.rlim_cur < 1024*1024) 316 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 317 else 318 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 319 320 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 321 buf); 322 } 323 324 #define STRERR_BUFSIZE 128 325 326 /* Copied from tools/perf/util/util.h */ 327 #ifndef zfree 328 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 329 #endif 330 331 #ifndef zclose 332 # define zclose(fd) ({ \ 333 int ___err = 0; \ 334 if ((fd) >= 0) \ 335 ___err = close((fd)); \ 336 fd = -1; \ 337 ___err; }) 338 #endif 339 340 static inline __u64 ptr_to_u64(const void *ptr) 341 { 342 return (__u64) (unsigned long) ptr; 343 } 344 345 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 346 { 347 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 348 return 0; 349 } 350 351 __u32 libbpf_major_version(void) 352 { 353 return LIBBPF_MAJOR_VERSION; 354 } 355 356 __u32 libbpf_minor_version(void) 357 { 358 return LIBBPF_MINOR_VERSION; 359 } 360 361 const char *libbpf_version_string(void) 362 { 363 #define __S(X) #X 364 #define _S(X) __S(X) 365 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 366 #undef _S 367 #undef __S 368 } 369 370 enum reloc_type { 371 RELO_LD64, 372 RELO_CALL, 373 RELO_DATA, 374 RELO_EXTERN_LD64, 375 RELO_EXTERN_CALL, 376 RELO_SUBPROG_ADDR, 377 RELO_CORE, 378 }; 379 380 struct reloc_desc { 381 enum reloc_type type; 382 int insn_idx; 383 union { 384 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 385 struct { 386 int map_idx; 387 int sym_off; 388 int ext_idx; 389 }; 390 }; 391 }; 392 393 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 394 enum sec_def_flags { 395 SEC_NONE = 0, 396 /* expected_attach_type is optional, if kernel doesn't support that */ 397 SEC_EXP_ATTACH_OPT = 1, 398 /* legacy, only used by libbpf_get_type_names() and 399 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 400 * This used to be associated with cgroup (and few other) BPF programs 401 * that were attachable through BPF_PROG_ATTACH command. Pretty 402 * meaningless nowadays, though. 403 */ 404 SEC_ATTACHABLE = 2, 405 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 406 /* attachment target is specified through BTF ID in either kernel or 407 * other BPF program's BTF object 408 */ 409 SEC_ATTACH_BTF = 4, 410 /* BPF program type allows sleeping/blocking in kernel */ 411 SEC_SLEEPABLE = 8, 412 /* BPF program support non-linear XDP buffer */ 413 SEC_XDP_FRAGS = 16, 414 /* Setup proper attach type for usdt probes. */ 415 SEC_USDT = 32, 416 }; 417 418 struct bpf_sec_def { 419 char *sec; 420 enum bpf_prog_type prog_type; 421 enum bpf_attach_type expected_attach_type; 422 long cookie; 423 int handler_id; 424 425 libbpf_prog_setup_fn_t prog_setup_fn; 426 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 427 libbpf_prog_attach_fn_t prog_attach_fn; 428 }; 429 430 /* 431 * bpf_prog should be a better name but it has been used in 432 * linux/filter.h. 433 */ 434 struct bpf_program { 435 char *name; 436 char *sec_name; 437 size_t sec_idx; 438 const struct bpf_sec_def *sec_def; 439 /* this program's instruction offset (in number of instructions) 440 * within its containing ELF section 441 */ 442 size_t sec_insn_off; 443 /* number of original instructions in ELF section belonging to this 444 * program, not taking into account subprogram instructions possible 445 * appended later during relocation 446 */ 447 size_t sec_insn_cnt; 448 /* Offset (in number of instructions) of the start of instruction 449 * belonging to this BPF program within its containing main BPF 450 * program. For the entry-point (main) BPF program, this is always 451 * zero. For a sub-program, this gets reset before each of main BPF 452 * programs are processed and relocated and is used to determined 453 * whether sub-program was already appended to the main program, and 454 * if yes, at which instruction offset. 455 */ 456 size_t sub_insn_off; 457 458 /* instructions that belong to BPF program; insns[0] is located at 459 * sec_insn_off instruction within its ELF section in ELF file, so 460 * when mapping ELF file instruction index to the local instruction, 461 * one needs to subtract sec_insn_off; and vice versa. 462 */ 463 struct bpf_insn *insns; 464 /* actual number of instruction in this BPF program's image; for 465 * entry-point BPF programs this includes the size of main program 466 * itself plus all the used sub-programs, appended at the end 467 */ 468 size_t insns_cnt; 469 470 struct reloc_desc *reloc_desc; 471 int nr_reloc; 472 473 /* BPF verifier log settings */ 474 char *log_buf; 475 size_t log_size; 476 __u32 log_level; 477 478 struct bpf_object *obj; 479 480 int fd; 481 bool autoload; 482 bool autoattach; 483 bool sym_global; 484 bool mark_btf_static; 485 enum bpf_prog_type type; 486 enum bpf_attach_type expected_attach_type; 487 int exception_cb_idx; 488 489 int prog_ifindex; 490 __u32 attach_btf_obj_fd; 491 __u32 attach_btf_id; 492 __u32 attach_prog_fd; 493 494 void *func_info; 495 __u32 func_info_rec_size; 496 __u32 func_info_cnt; 497 498 void *line_info; 499 __u32 line_info_rec_size; 500 __u32 line_info_cnt; 501 __u32 prog_flags; 502 __u8 hash[SHA256_DIGEST_LENGTH]; 503 }; 504 505 struct bpf_struct_ops { 506 struct bpf_program **progs; 507 __u32 *kern_func_off; 508 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 509 void *data; 510 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 511 * btf_vmlinux's format. 512 * struct bpf_struct_ops_tcp_congestion_ops { 513 * [... some other kernel fields ...] 514 * struct tcp_congestion_ops data; 515 * } 516 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 517 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 518 * from "data". 519 */ 520 void *kern_vdata; 521 __u32 type_id; 522 }; 523 524 #define DATA_SEC ".data" 525 #define BSS_SEC ".bss" 526 #define RODATA_SEC ".rodata" 527 #define KCONFIG_SEC ".kconfig" 528 #define KSYMS_SEC ".ksyms" 529 #define STRUCT_OPS_SEC ".struct_ops" 530 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 531 #define ARENA_SEC ".addr_space.1" 532 533 enum libbpf_map_type { 534 LIBBPF_MAP_UNSPEC, 535 LIBBPF_MAP_DATA, 536 LIBBPF_MAP_BSS, 537 LIBBPF_MAP_RODATA, 538 LIBBPF_MAP_KCONFIG, 539 }; 540 541 struct bpf_map_def { 542 unsigned int type; 543 unsigned int key_size; 544 unsigned int value_size; 545 unsigned int max_entries; 546 unsigned int map_flags; 547 }; 548 549 struct bpf_map { 550 struct bpf_object *obj; 551 char *name; 552 /* real_name is defined for special internal maps (.rodata*, 553 * .data*, .bss, .kconfig) and preserves their original ELF section 554 * name. This is important to be able to find corresponding BTF 555 * DATASEC information. 556 */ 557 char *real_name; 558 int fd; 559 int sec_idx; 560 size_t sec_offset; 561 int map_ifindex; 562 int inner_map_fd; 563 struct bpf_map_def def; 564 __u32 numa_node; 565 __u32 btf_var_idx; 566 int mod_btf_fd; 567 __u32 btf_key_type_id; 568 __u32 btf_value_type_id; 569 __u32 btf_vmlinux_value_type_id; 570 enum libbpf_map_type libbpf_type; 571 void *mmaped; 572 struct bpf_struct_ops *st_ops; 573 struct bpf_map *inner_map; 574 void **init_slots; 575 int init_slots_sz; 576 char *pin_path; 577 bool pinned; 578 bool reused; 579 bool autocreate; 580 bool autoattach; 581 __u64 map_extra; 582 struct bpf_program *excl_prog; 583 }; 584 585 enum extern_type { 586 EXT_UNKNOWN, 587 EXT_KCFG, 588 EXT_KSYM, 589 }; 590 591 enum kcfg_type { 592 KCFG_UNKNOWN, 593 KCFG_CHAR, 594 KCFG_BOOL, 595 KCFG_INT, 596 KCFG_TRISTATE, 597 KCFG_CHAR_ARR, 598 }; 599 600 struct extern_desc { 601 enum extern_type type; 602 int sym_idx; 603 int btf_id; 604 int sec_btf_id; 605 char *name; 606 char *essent_name; 607 bool is_set; 608 bool is_weak; 609 union { 610 struct { 611 enum kcfg_type type; 612 int sz; 613 int align; 614 int data_off; 615 bool is_signed; 616 } kcfg; 617 struct { 618 unsigned long long addr; 619 620 /* target btf_id of the corresponding kernel var. */ 621 int kernel_btf_obj_fd; 622 int kernel_btf_id; 623 624 /* local btf_id of the ksym extern's type. */ 625 __u32 type_id; 626 /* BTF fd index to be patched in for insn->off, this is 627 * 0 for vmlinux BTF, index in obj->fd_array for module 628 * BTF 629 */ 630 __s16 btf_fd_idx; 631 } ksym; 632 }; 633 }; 634 635 struct module_btf { 636 struct btf *btf; 637 char *name; 638 __u32 id; 639 int fd; 640 int fd_array_idx; 641 }; 642 643 enum sec_type { 644 SEC_UNUSED = 0, 645 SEC_RELO, 646 SEC_BSS, 647 SEC_DATA, 648 SEC_RODATA, 649 SEC_ST_OPS, 650 }; 651 652 struct elf_sec_desc { 653 enum sec_type sec_type; 654 Elf64_Shdr *shdr; 655 Elf_Data *data; 656 }; 657 658 struct elf_state { 659 int fd; 660 const void *obj_buf; 661 size_t obj_buf_sz; 662 Elf *elf; 663 Elf64_Ehdr *ehdr; 664 Elf_Data *symbols; 665 Elf_Data *arena_data; 666 size_t shstrndx; /* section index for section name strings */ 667 size_t strtabidx; 668 struct elf_sec_desc *secs; 669 size_t sec_cnt; 670 int btf_maps_shndx; 671 __u32 btf_maps_sec_btf_id; 672 int text_shndx; 673 int symbols_shndx; 674 bool has_st_ops; 675 int arena_data_shndx; 676 }; 677 678 struct usdt_manager; 679 680 enum bpf_object_state { 681 OBJ_OPEN, 682 OBJ_PREPARED, 683 OBJ_LOADED, 684 }; 685 686 struct bpf_object { 687 char name[BPF_OBJ_NAME_LEN]; 688 char license[64]; 689 __u32 kern_version; 690 691 enum bpf_object_state state; 692 struct bpf_program *programs; 693 size_t nr_programs; 694 struct bpf_map *maps; 695 size_t nr_maps; 696 size_t maps_cap; 697 698 char *kconfig; 699 struct extern_desc *externs; 700 int nr_extern; 701 int kconfig_map_idx; 702 703 bool has_subcalls; 704 bool has_rodata; 705 706 struct bpf_gen *gen_loader; 707 708 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 709 struct elf_state efile; 710 711 unsigned char byteorder; 712 713 struct btf *btf; 714 struct btf_ext *btf_ext; 715 716 /* Parse and load BTF vmlinux if any of the programs in the object need 717 * it at load time. 718 */ 719 struct btf *btf_vmlinux; 720 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 721 * override for vmlinux BTF. 722 */ 723 char *btf_custom_path; 724 /* vmlinux BTF override for CO-RE relocations */ 725 struct btf *btf_vmlinux_override; 726 /* Lazily initialized kernel module BTFs */ 727 struct module_btf *btf_modules; 728 bool btf_modules_loaded; 729 size_t btf_module_cnt; 730 size_t btf_module_cap; 731 732 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 733 char *log_buf; 734 size_t log_size; 735 __u32 log_level; 736 737 int *fd_array; 738 size_t fd_array_cap; 739 size_t fd_array_cnt; 740 741 struct usdt_manager *usdt_man; 742 743 int arena_map_idx; 744 void *arena_data; 745 size_t arena_data_sz; 746 747 struct kern_feature_cache *feat_cache; 748 char *token_path; 749 int token_fd; 750 751 char path[]; 752 }; 753 754 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 755 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 756 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 758 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 759 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 760 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 761 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 762 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 763 764 void bpf_program__unload(struct bpf_program *prog) 765 { 766 if (!prog) 767 return; 768 769 zclose(prog->fd); 770 771 zfree(&prog->func_info); 772 zfree(&prog->line_info); 773 } 774 775 static void bpf_program__exit(struct bpf_program *prog) 776 { 777 if (!prog) 778 return; 779 780 bpf_program__unload(prog); 781 zfree(&prog->name); 782 zfree(&prog->sec_name); 783 zfree(&prog->insns); 784 zfree(&prog->reloc_desc); 785 786 prog->nr_reloc = 0; 787 prog->insns_cnt = 0; 788 prog->sec_idx = -1; 789 } 790 791 static bool insn_is_subprog_call(const struct bpf_insn *insn) 792 { 793 return BPF_CLASS(insn->code) == BPF_JMP && 794 BPF_OP(insn->code) == BPF_CALL && 795 BPF_SRC(insn->code) == BPF_K && 796 insn->src_reg == BPF_PSEUDO_CALL && 797 insn->dst_reg == 0 && 798 insn->off == 0; 799 } 800 801 static bool is_call_insn(const struct bpf_insn *insn) 802 { 803 return insn->code == (BPF_JMP | BPF_CALL); 804 } 805 806 static bool insn_is_pseudo_func(struct bpf_insn *insn) 807 { 808 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 809 } 810 811 static int 812 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 813 const char *name, size_t sec_idx, const char *sec_name, 814 size_t sec_off, void *insn_data, size_t insn_data_sz) 815 { 816 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 817 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 818 sec_name, name, sec_off, insn_data_sz); 819 return -EINVAL; 820 } 821 822 memset(prog, 0, sizeof(*prog)); 823 prog->obj = obj; 824 825 prog->sec_idx = sec_idx; 826 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 827 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 828 /* insns_cnt can later be increased by appending used subprograms */ 829 prog->insns_cnt = prog->sec_insn_cnt; 830 831 prog->type = BPF_PROG_TYPE_UNSPEC; 832 prog->fd = -1; 833 prog->exception_cb_idx = -1; 834 835 /* libbpf's convention for SEC("?abc...") is that it's just like 836 * SEC("abc...") but the corresponding bpf_program starts out with 837 * autoload set to false. 838 */ 839 if (sec_name[0] == '?') { 840 prog->autoload = false; 841 /* from now on forget there was ? in section name */ 842 sec_name++; 843 } else { 844 prog->autoload = true; 845 } 846 847 prog->autoattach = true; 848 849 /* inherit object's log_level */ 850 prog->log_level = obj->log_level; 851 852 prog->sec_name = strdup(sec_name); 853 if (!prog->sec_name) 854 goto errout; 855 856 prog->name = strdup(name); 857 if (!prog->name) 858 goto errout; 859 860 prog->insns = malloc(insn_data_sz); 861 if (!prog->insns) 862 goto errout; 863 memcpy(prog->insns, insn_data, insn_data_sz); 864 865 return 0; 866 errout: 867 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 868 bpf_program__exit(prog); 869 return -ENOMEM; 870 } 871 872 static int 873 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 874 const char *sec_name, int sec_idx) 875 { 876 Elf_Data *symbols = obj->efile.symbols; 877 struct bpf_program *prog, *progs; 878 void *data = sec_data->d_buf; 879 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 880 int nr_progs, err, i; 881 const char *name; 882 Elf64_Sym *sym; 883 884 progs = obj->programs; 885 nr_progs = obj->nr_programs; 886 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 887 888 for (i = 0; i < nr_syms; i++) { 889 sym = elf_sym_by_idx(obj, i); 890 891 if (sym->st_shndx != sec_idx) 892 continue; 893 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 894 continue; 895 896 prog_sz = sym->st_size; 897 sec_off = sym->st_value; 898 899 name = elf_sym_str(obj, sym->st_name); 900 if (!name) { 901 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 902 sec_name, sec_off); 903 return -LIBBPF_ERRNO__FORMAT; 904 } 905 906 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 907 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 908 sec_name, sec_off); 909 return -LIBBPF_ERRNO__FORMAT; 910 } 911 912 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 913 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 914 return -ENOTSUP; 915 } 916 917 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 918 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 919 920 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 921 if (!progs) { 922 /* 923 * In this case the original obj->programs 924 * is still valid, so don't need special treat for 925 * bpf_close_object(). 926 */ 927 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 928 sec_name, name); 929 return -ENOMEM; 930 } 931 obj->programs = progs; 932 933 prog = &progs[nr_progs]; 934 935 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 936 sec_off, data + sec_off, prog_sz); 937 if (err) 938 return err; 939 940 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 941 prog->sym_global = true; 942 943 /* if function is a global/weak symbol, but has restricted 944 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 945 * as static to enable more permissive BPF verification mode 946 * with more outside context available to BPF verifier 947 */ 948 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 949 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 950 prog->mark_btf_static = true; 951 952 nr_progs++; 953 obj->nr_programs = nr_progs; 954 } 955 956 return 0; 957 } 958 959 static void bpf_object_bswap_progs(struct bpf_object *obj) 960 { 961 struct bpf_program *prog = obj->programs; 962 struct bpf_insn *insn; 963 int p, i; 964 965 for (p = 0; p < obj->nr_programs; p++, prog++) { 966 insn = prog->insns; 967 for (i = 0; i < prog->insns_cnt; i++, insn++) 968 bpf_insn_bswap(insn); 969 } 970 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 971 } 972 973 static const struct btf_member * 974 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 975 { 976 struct btf_member *m; 977 int i; 978 979 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 980 if (btf_member_bit_offset(t, i) == bit_offset) 981 return m; 982 } 983 984 return NULL; 985 } 986 987 static const struct btf_member * 988 find_member_by_name(const struct btf *btf, const struct btf_type *t, 989 const char *name) 990 { 991 struct btf_member *m; 992 int i; 993 994 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 995 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 996 return m; 997 } 998 999 return NULL; 1000 } 1001 1002 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 1003 __u16 kind, struct btf **res_btf, 1004 struct module_btf **res_mod_btf); 1005 1006 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1007 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1008 const char *name, __u32 kind); 1009 1010 static int 1011 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1012 struct module_btf **mod_btf, 1013 const struct btf_type **type, __u32 *type_id, 1014 const struct btf_type **vtype, __u32 *vtype_id, 1015 const struct btf_member **data_member) 1016 { 1017 const struct btf_type *kern_type, *kern_vtype; 1018 const struct btf_member *kern_data_member; 1019 struct btf *btf = NULL; 1020 __s32 kern_vtype_id, kern_type_id; 1021 char tname[256]; 1022 __u32 i; 1023 1024 snprintf(tname, sizeof(tname), "%.*s", 1025 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1026 1027 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1028 &btf, mod_btf); 1029 if (kern_type_id < 0) { 1030 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1031 tname); 1032 return kern_type_id; 1033 } 1034 kern_type = btf__type_by_id(btf, kern_type_id); 1035 1036 /* Find the corresponding "map_value" type that will be used 1037 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1038 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1039 * btf_vmlinux. 1040 */ 1041 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1042 tname, BTF_KIND_STRUCT); 1043 if (kern_vtype_id < 0) { 1044 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1045 STRUCT_OPS_VALUE_PREFIX, tname); 1046 return kern_vtype_id; 1047 } 1048 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1049 1050 /* Find "struct tcp_congestion_ops" from 1051 * struct bpf_struct_ops_tcp_congestion_ops { 1052 * [ ... ] 1053 * struct tcp_congestion_ops data; 1054 * } 1055 */ 1056 kern_data_member = btf_members(kern_vtype); 1057 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1058 if (kern_data_member->type == kern_type_id) 1059 break; 1060 } 1061 if (i == btf_vlen(kern_vtype)) { 1062 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1063 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1064 return -EINVAL; 1065 } 1066 1067 *type = kern_type; 1068 *type_id = kern_type_id; 1069 *vtype = kern_vtype; 1070 *vtype_id = kern_vtype_id; 1071 *data_member = kern_data_member; 1072 1073 return 0; 1074 } 1075 1076 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1077 { 1078 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1079 } 1080 1081 static bool is_valid_st_ops_program(struct bpf_object *obj, 1082 const struct bpf_program *prog) 1083 { 1084 int i; 1085 1086 for (i = 0; i < obj->nr_programs; i++) { 1087 if (&obj->programs[i] == prog) 1088 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1089 } 1090 1091 return false; 1092 } 1093 1094 /* For each struct_ops program P, referenced from some struct_ops map M, 1095 * enable P.autoload if there are Ms for which M.autocreate is true, 1096 * disable P.autoload if for all Ms M.autocreate is false. 1097 * Don't change P.autoload for programs that are not referenced from any maps. 1098 */ 1099 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1100 { 1101 struct bpf_program *prog, *slot_prog; 1102 struct bpf_map *map; 1103 int i, j, k, vlen; 1104 1105 for (i = 0; i < obj->nr_programs; ++i) { 1106 int should_load = false; 1107 int use_cnt = 0; 1108 1109 prog = &obj->programs[i]; 1110 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1111 continue; 1112 1113 for (j = 0; j < obj->nr_maps; ++j) { 1114 const struct btf_type *type; 1115 1116 map = &obj->maps[j]; 1117 if (!bpf_map__is_struct_ops(map)) 1118 continue; 1119 1120 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1121 vlen = btf_vlen(type); 1122 for (k = 0; k < vlen; ++k) { 1123 slot_prog = map->st_ops->progs[k]; 1124 if (prog != slot_prog) 1125 continue; 1126 1127 use_cnt++; 1128 if (map->autocreate) 1129 should_load = true; 1130 } 1131 } 1132 if (use_cnt) 1133 prog->autoload = should_load; 1134 } 1135 1136 return 0; 1137 } 1138 1139 /* Init the map's fields that depend on kern_btf */ 1140 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1141 { 1142 const struct btf_member *member, *kern_member, *kern_data_member; 1143 const struct btf_type *type, *kern_type, *kern_vtype; 1144 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1145 struct bpf_object *obj = map->obj; 1146 const struct btf *btf = obj->btf; 1147 struct bpf_struct_ops *st_ops; 1148 const struct btf *kern_btf; 1149 struct module_btf *mod_btf = NULL; 1150 void *data, *kern_data; 1151 const char *tname; 1152 int err; 1153 1154 st_ops = map->st_ops; 1155 type = btf__type_by_id(btf, st_ops->type_id); 1156 tname = btf__name_by_offset(btf, type->name_off); 1157 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1158 &kern_type, &kern_type_id, 1159 &kern_vtype, &kern_vtype_id, 1160 &kern_data_member); 1161 if (err) 1162 return err; 1163 1164 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1165 1166 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1167 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1168 1169 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1170 map->def.value_size = kern_vtype->size; 1171 map->btf_vmlinux_value_type_id = kern_vtype_id; 1172 1173 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1174 if (!st_ops->kern_vdata) 1175 return -ENOMEM; 1176 1177 data = st_ops->data; 1178 kern_data_off = kern_data_member->offset / 8; 1179 kern_data = st_ops->kern_vdata + kern_data_off; 1180 1181 member = btf_members(type); 1182 for (i = 0; i < btf_vlen(type); i++, member++) { 1183 const struct btf_type *mtype, *kern_mtype; 1184 __u32 mtype_id, kern_mtype_id; 1185 void *mdata, *kern_mdata; 1186 struct bpf_program *prog; 1187 __s64 msize, kern_msize; 1188 __u32 moff, kern_moff; 1189 __u32 kern_member_idx; 1190 const char *mname; 1191 1192 mname = btf__name_by_offset(btf, member->name_off); 1193 moff = member->offset / 8; 1194 mdata = data + moff; 1195 msize = btf__resolve_size(btf, member->type); 1196 if (msize < 0) { 1197 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1198 map->name, mname); 1199 return msize; 1200 } 1201 1202 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1203 if (!kern_member) { 1204 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1205 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1206 map->name, mname); 1207 return -ENOTSUP; 1208 } 1209 1210 if (st_ops->progs[i]) { 1211 /* If we had declaratively set struct_ops callback, we need to 1212 * force its autoload to false, because it doesn't have 1213 * a chance of succeeding from POV of the current struct_ops map. 1214 * If this program is still referenced somewhere else, though, 1215 * then bpf_object_adjust_struct_ops_autoload() will update its 1216 * autoload accordingly. 1217 */ 1218 st_ops->progs[i]->autoload = false; 1219 st_ops->progs[i] = NULL; 1220 } 1221 1222 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1223 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1224 map->name, mname); 1225 continue; 1226 } 1227 1228 kern_member_idx = kern_member - btf_members(kern_type); 1229 if (btf_member_bitfield_size(type, i) || 1230 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1231 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1232 map->name, mname); 1233 return -ENOTSUP; 1234 } 1235 1236 kern_moff = kern_member->offset / 8; 1237 kern_mdata = kern_data + kern_moff; 1238 1239 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1240 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1241 &kern_mtype_id); 1242 if (BTF_INFO_KIND(mtype->info) != 1243 BTF_INFO_KIND(kern_mtype->info)) { 1244 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1245 map->name, mname, BTF_INFO_KIND(mtype->info), 1246 BTF_INFO_KIND(kern_mtype->info)); 1247 return -ENOTSUP; 1248 } 1249 1250 if (btf_is_ptr(mtype)) { 1251 prog = *(void **)mdata; 1252 /* just like for !kern_member case above, reset declaratively 1253 * set (at compile time) program's autload to false, 1254 * if user replaced it with another program or NULL 1255 */ 1256 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1257 st_ops->progs[i]->autoload = false; 1258 1259 /* Update the value from the shadow type */ 1260 st_ops->progs[i] = prog; 1261 if (!prog) 1262 continue; 1263 1264 if (!is_valid_st_ops_program(obj, prog)) { 1265 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1266 map->name, mname); 1267 return -ENOTSUP; 1268 } 1269 1270 kern_mtype = skip_mods_and_typedefs(kern_btf, 1271 kern_mtype->type, 1272 &kern_mtype_id); 1273 1274 /* mtype->type must be a func_proto which was 1275 * guaranteed in bpf_object__collect_st_ops_relos(), 1276 * so only check kern_mtype for func_proto here. 1277 */ 1278 if (!btf_is_func_proto(kern_mtype)) { 1279 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1280 map->name, mname); 1281 return -ENOTSUP; 1282 } 1283 1284 if (mod_btf) 1285 prog->attach_btf_obj_fd = mod_btf->fd; 1286 1287 /* if we haven't yet processed this BPF program, record proper 1288 * attach_btf_id and member_idx 1289 */ 1290 if (!prog->attach_btf_id) { 1291 prog->attach_btf_id = kern_type_id; 1292 prog->expected_attach_type = kern_member_idx; 1293 } 1294 1295 /* struct_ops BPF prog can be re-used between multiple 1296 * .struct_ops & .struct_ops.link as long as it's the 1297 * same struct_ops struct definition and the same 1298 * function pointer field 1299 */ 1300 if (prog->attach_btf_id != kern_type_id) { 1301 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1302 map->name, mname, prog->name, prog->sec_name, prog->type, 1303 prog->attach_btf_id, kern_type_id); 1304 return -EINVAL; 1305 } 1306 if (prog->expected_attach_type != kern_member_idx) { 1307 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1308 map->name, mname, prog->name, prog->sec_name, prog->type, 1309 prog->expected_attach_type, kern_member_idx); 1310 return -EINVAL; 1311 } 1312 1313 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1314 1315 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1316 map->name, mname, prog->name, moff, 1317 kern_moff); 1318 1319 continue; 1320 } 1321 1322 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1323 if (kern_msize < 0 || msize != kern_msize) { 1324 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1325 map->name, mname, (ssize_t)msize, 1326 (ssize_t)kern_msize); 1327 return -ENOTSUP; 1328 } 1329 1330 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1331 map->name, mname, (unsigned int)msize, 1332 moff, kern_moff); 1333 memcpy(kern_mdata, mdata, msize); 1334 } 1335 1336 return 0; 1337 } 1338 1339 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1340 { 1341 struct bpf_map *map; 1342 size_t i; 1343 int err; 1344 1345 for (i = 0; i < obj->nr_maps; i++) { 1346 map = &obj->maps[i]; 1347 1348 if (!bpf_map__is_struct_ops(map)) 1349 continue; 1350 1351 if (!map->autocreate) 1352 continue; 1353 1354 err = bpf_map__init_kern_struct_ops(map); 1355 if (err) 1356 return err; 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1363 int shndx, Elf_Data *data) 1364 { 1365 const struct btf_type *type, *datasec; 1366 const struct btf_var_secinfo *vsi; 1367 struct bpf_struct_ops *st_ops; 1368 const char *tname, *var_name; 1369 __s32 type_id, datasec_id; 1370 const struct btf *btf; 1371 struct bpf_map *map; 1372 __u32 i; 1373 1374 if (shndx == -1) 1375 return 0; 1376 1377 btf = obj->btf; 1378 datasec_id = btf__find_by_name_kind(btf, sec_name, 1379 BTF_KIND_DATASEC); 1380 if (datasec_id < 0) { 1381 pr_warn("struct_ops init: DATASEC %s not found\n", 1382 sec_name); 1383 return -EINVAL; 1384 } 1385 1386 datasec = btf__type_by_id(btf, datasec_id); 1387 vsi = btf_var_secinfos(datasec); 1388 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1389 type = btf__type_by_id(obj->btf, vsi->type); 1390 var_name = btf__name_by_offset(obj->btf, type->name_off); 1391 1392 type_id = btf__resolve_type(obj->btf, vsi->type); 1393 if (type_id < 0) { 1394 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1395 vsi->type, sec_name); 1396 return -EINVAL; 1397 } 1398 1399 type = btf__type_by_id(obj->btf, type_id); 1400 tname = btf__name_by_offset(obj->btf, type->name_off); 1401 if (!tname[0]) { 1402 pr_warn("struct_ops init: anonymous type is not supported\n"); 1403 return -ENOTSUP; 1404 } 1405 if (!btf_is_struct(type)) { 1406 pr_warn("struct_ops init: %s is not a struct\n", tname); 1407 return -EINVAL; 1408 } 1409 1410 map = bpf_object__add_map(obj); 1411 if (IS_ERR(map)) 1412 return PTR_ERR(map); 1413 1414 map->sec_idx = shndx; 1415 map->sec_offset = vsi->offset; 1416 map->name = strdup(var_name); 1417 if (!map->name) 1418 return -ENOMEM; 1419 map->btf_value_type_id = type_id; 1420 1421 /* Follow same convention as for programs autoload: 1422 * SEC("?.struct_ops") means map is not created by default. 1423 */ 1424 if (sec_name[0] == '?') { 1425 map->autocreate = false; 1426 /* from now on forget there was ? in section name */ 1427 sec_name++; 1428 } 1429 1430 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1431 map->def.key_size = sizeof(int); 1432 map->def.value_size = type->size; 1433 map->def.max_entries = 1; 1434 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1435 map->autoattach = true; 1436 1437 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1438 if (!map->st_ops) 1439 return -ENOMEM; 1440 st_ops = map->st_ops; 1441 st_ops->data = malloc(type->size); 1442 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1443 st_ops->kern_func_off = malloc(btf_vlen(type) * 1444 sizeof(*st_ops->kern_func_off)); 1445 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1446 return -ENOMEM; 1447 1448 if (vsi->offset + type->size > data->d_size) { 1449 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1450 var_name, sec_name); 1451 return -EINVAL; 1452 } 1453 1454 memcpy(st_ops->data, 1455 data->d_buf + vsi->offset, 1456 type->size); 1457 st_ops->type_id = type_id; 1458 1459 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1460 tname, type_id, var_name, vsi->offset); 1461 } 1462 1463 return 0; 1464 } 1465 1466 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1467 { 1468 const char *sec_name; 1469 int sec_idx, err; 1470 1471 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1472 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1473 1474 if (desc->sec_type != SEC_ST_OPS) 1475 continue; 1476 1477 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1478 if (!sec_name) 1479 return -LIBBPF_ERRNO__FORMAT; 1480 1481 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1482 if (err) 1483 return err; 1484 } 1485 1486 return 0; 1487 } 1488 1489 static struct bpf_object *bpf_object__new(const char *path, 1490 const void *obj_buf, 1491 size_t obj_buf_sz, 1492 const char *obj_name) 1493 { 1494 struct bpf_object *obj; 1495 char *end; 1496 1497 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1498 if (!obj) { 1499 pr_warn("alloc memory failed for %s\n", path); 1500 return ERR_PTR(-ENOMEM); 1501 } 1502 1503 strcpy(obj->path, path); 1504 if (obj_name) { 1505 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1506 } else { 1507 /* Using basename() GNU version which doesn't modify arg. */ 1508 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1509 end = strchr(obj->name, '.'); 1510 if (end) 1511 *end = 0; 1512 } 1513 1514 obj->efile.fd = -1; 1515 /* 1516 * Caller of this function should also call 1517 * bpf_object__elf_finish() after data collection to return 1518 * obj_buf to user. If not, we should duplicate the buffer to 1519 * avoid user freeing them before elf finish. 1520 */ 1521 obj->efile.obj_buf = obj_buf; 1522 obj->efile.obj_buf_sz = obj_buf_sz; 1523 obj->efile.btf_maps_shndx = -1; 1524 obj->kconfig_map_idx = -1; 1525 obj->arena_map_idx = -1; 1526 1527 obj->kern_version = get_kernel_version(); 1528 obj->state = OBJ_OPEN; 1529 1530 return obj; 1531 } 1532 1533 static void bpf_object__elf_finish(struct bpf_object *obj) 1534 { 1535 if (!obj->efile.elf) 1536 return; 1537 1538 elf_end(obj->efile.elf); 1539 obj->efile.elf = NULL; 1540 obj->efile.ehdr = NULL; 1541 obj->efile.symbols = NULL; 1542 obj->efile.arena_data = NULL; 1543 1544 zfree(&obj->efile.secs); 1545 obj->efile.sec_cnt = 0; 1546 zclose(obj->efile.fd); 1547 obj->efile.obj_buf = NULL; 1548 obj->efile.obj_buf_sz = 0; 1549 } 1550 1551 static int bpf_object__elf_init(struct bpf_object *obj) 1552 { 1553 Elf64_Ehdr *ehdr; 1554 int err = 0; 1555 Elf *elf; 1556 1557 if (obj->efile.elf) { 1558 pr_warn("elf: init internal error\n"); 1559 return -LIBBPF_ERRNO__LIBELF; 1560 } 1561 1562 if (obj->efile.obj_buf_sz > 0) { 1563 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1564 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1565 } else { 1566 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1567 if (obj->efile.fd < 0) { 1568 err = -errno; 1569 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1570 return err; 1571 } 1572 1573 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1574 } 1575 1576 if (!elf) { 1577 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1578 err = -LIBBPF_ERRNO__LIBELF; 1579 goto errout; 1580 } 1581 1582 obj->efile.elf = elf; 1583 1584 if (elf_kind(elf) != ELF_K_ELF) { 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1587 goto errout; 1588 } 1589 1590 if (gelf_getclass(elf) != ELFCLASS64) { 1591 err = -LIBBPF_ERRNO__FORMAT; 1592 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1593 goto errout; 1594 } 1595 1596 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1597 if (!obj->efile.ehdr) { 1598 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1599 err = -LIBBPF_ERRNO__FORMAT; 1600 goto errout; 1601 } 1602 1603 /* Validate ELF object endianness... */ 1604 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1605 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1606 err = -LIBBPF_ERRNO__ENDIAN; 1607 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1608 goto errout; 1609 } 1610 /* and save after bpf_object_open() frees ELF data */ 1611 obj->byteorder = ehdr->e_ident[EI_DATA]; 1612 1613 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1614 pr_warn("elf: failed to get section names section index for %s: %s\n", 1615 obj->path, elf_errmsg(-1)); 1616 err = -LIBBPF_ERRNO__FORMAT; 1617 goto errout; 1618 } 1619 1620 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1621 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1622 pr_warn("elf: failed to get section names strings from %s: %s\n", 1623 obj->path, elf_errmsg(-1)); 1624 err = -LIBBPF_ERRNO__FORMAT; 1625 goto errout; 1626 } 1627 1628 /* Old LLVM set e_machine to EM_NONE */ 1629 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1630 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1631 err = -LIBBPF_ERRNO__FORMAT; 1632 goto errout; 1633 } 1634 1635 return 0; 1636 errout: 1637 bpf_object__elf_finish(obj); 1638 return err; 1639 } 1640 1641 static bool is_native_endianness(struct bpf_object *obj) 1642 { 1643 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1644 return obj->byteorder == ELFDATA2LSB; 1645 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1646 return obj->byteorder == ELFDATA2MSB; 1647 #else 1648 # error "Unrecognized __BYTE_ORDER__" 1649 #endif 1650 } 1651 1652 static int 1653 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1654 { 1655 if (!data) { 1656 pr_warn("invalid license section in %s\n", obj->path); 1657 return -LIBBPF_ERRNO__FORMAT; 1658 } 1659 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1660 * go over allowed ELF data section buffer 1661 */ 1662 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1663 pr_debug("license of %s is %s\n", obj->path, obj->license); 1664 return 0; 1665 } 1666 1667 static int 1668 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1669 { 1670 __u32 kver; 1671 1672 if (!data || size != sizeof(kver)) { 1673 pr_warn("invalid kver section in %s\n", obj->path); 1674 return -LIBBPF_ERRNO__FORMAT; 1675 } 1676 memcpy(&kver, data, sizeof(kver)); 1677 obj->kern_version = kver; 1678 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1679 return 0; 1680 } 1681 1682 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1683 { 1684 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1685 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1686 return true; 1687 return false; 1688 } 1689 1690 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1691 { 1692 Elf_Data *data; 1693 Elf_Scn *scn; 1694 1695 if (!name) 1696 return -EINVAL; 1697 1698 scn = elf_sec_by_name(obj, name); 1699 data = elf_sec_data(obj, scn); 1700 if (data) { 1701 *size = data->d_size; 1702 return 0; /* found it */ 1703 } 1704 1705 return -ENOENT; 1706 } 1707 1708 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1709 { 1710 Elf_Data *symbols = obj->efile.symbols; 1711 const char *sname; 1712 size_t si; 1713 1714 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1715 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1716 1717 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1718 continue; 1719 1720 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1721 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1722 continue; 1723 1724 sname = elf_sym_str(obj, sym->st_name); 1725 if (!sname) { 1726 pr_warn("failed to get sym name string for var %s\n", name); 1727 return ERR_PTR(-EIO); 1728 } 1729 if (strcmp(name, sname) == 0) 1730 return sym; 1731 } 1732 1733 return ERR_PTR(-ENOENT); 1734 } 1735 1736 #ifndef MFD_CLOEXEC 1737 #define MFD_CLOEXEC 0x0001U 1738 #endif 1739 #ifndef MFD_NOEXEC_SEAL 1740 #define MFD_NOEXEC_SEAL 0x0008U 1741 #endif 1742 1743 static int create_placeholder_fd(void) 1744 { 1745 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1746 const char *name = "libbpf-placeholder-fd"; 1747 int fd; 1748 1749 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1750 if (fd >= 0) 1751 return fd; 1752 else if (errno != EINVAL) 1753 return -errno; 1754 1755 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1756 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1757 if (fd < 0) 1758 return -errno; 1759 return fd; 1760 } 1761 1762 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1763 { 1764 struct bpf_map *map; 1765 int err; 1766 1767 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1768 sizeof(*obj->maps), obj->nr_maps + 1); 1769 if (err) 1770 return ERR_PTR(err); 1771 1772 map = &obj->maps[obj->nr_maps++]; 1773 map->obj = obj; 1774 /* Preallocate map FD without actually creating BPF map just yet. 1775 * These map FD "placeholders" will be reused later without changing 1776 * FD value when map is actually created in the kernel. 1777 * 1778 * This is useful to be able to perform BPF program relocations 1779 * without having to create BPF maps before that step. This allows us 1780 * to finalize and load BTF very late in BPF object's loading phase, 1781 * right before BPF maps have to be created and BPF programs have to 1782 * be loaded. By having these map FD placeholders we can perform all 1783 * the sanitizations, relocations, and any other adjustments before we 1784 * start creating actual BPF kernel objects (BTF, maps, progs). 1785 */ 1786 map->fd = create_placeholder_fd(); 1787 if (map->fd < 0) 1788 return ERR_PTR(map->fd); 1789 map->inner_map_fd = -1; 1790 map->autocreate = true; 1791 1792 return map; 1793 } 1794 1795 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1796 { 1797 const long page_sz = sysconf(_SC_PAGE_SIZE); 1798 size_t map_sz; 1799 1800 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1801 map_sz = roundup(map_sz, page_sz); 1802 return map_sz; 1803 } 1804 1805 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1806 { 1807 const long page_sz = sysconf(_SC_PAGE_SIZE); 1808 1809 switch (map->def.type) { 1810 case BPF_MAP_TYPE_ARRAY: 1811 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1812 case BPF_MAP_TYPE_ARENA: 1813 return page_sz * map->def.max_entries; 1814 default: 1815 return 0; /* not supported */ 1816 } 1817 } 1818 1819 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1820 { 1821 void *mmaped; 1822 1823 if (!map->mmaped) 1824 return -EINVAL; 1825 1826 if (old_sz == new_sz) 1827 return 0; 1828 1829 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1830 if (mmaped == MAP_FAILED) 1831 return -errno; 1832 1833 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1834 munmap(map->mmaped, old_sz); 1835 map->mmaped = mmaped; 1836 return 0; 1837 } 1838 1839 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1840 { 1841 char map_name[BPF_OBJ_NAME_LEN], *p; 1842 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1843 1844 /* This is one of the more confusing parts of libbpf for various 1845 * reasons, some of which are historical. The original idea for naming 1846 * internal names was to include as much of BPF object name prefix as 1847 * possible, so that it can be distinguished from similar internal 1848 * maps of a different BPF object. 1849 * As an example, let's say we have bpf_object named 'my_object_name' 1850 * and internal map corresponding to '.rodata' ELF section. The final 1851 * map name advertised to user and to the kernel will be 1852 * 'my_objec.rodata', taking first 8 characters of object name and 1853 * entire 7 characters of '.rodata'. 1854 * Somewhat confusingly, if internal map ELF section name is shorter 1855 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1856 * for the suffix, even though we only have 4 actual characters, and 1857 * resulting map will be called 'my_objec.bss', not even using all 15 1858 * characters allowed by the kernel. Oh well, at least the truncated 1859 * object name is somewhat consistent in this case. But if the map 1860 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1861 * (8 chars) and thus will be left with only first 7 characters of the 1862 * object name ('my_obje'). Happy guessing, user, that the final map 1863 * name will be "my_obje.kconfig". 1864 * Now, with libbpf starting to support arbitrarily named .rodata.* 1865 * and .data.* data sections, it's possible that ELF section name is 1866 * longer than allowed 15 chars, so we now need to be careful to take 1867 * only up to 15 first characters of ELF name, taking no BPF object 1868 * name characters at all. So '.rodata.abracadabra' will result in 1869 * '.rodata.abracad' kernel and user-visible name. 1870 * We need to keep this convoluted logic intact for .data, .bss and 1871 * .rodata maps, but for new custom .data.custom and .rodata.custom 1872 * maps we use their ELF names as is, not prepending bpf_object name 1873 * in front. We still need to truncate them to 15 characters for the 1874 * kernel. Full name can be recovered for such maps by using DATASEC 1875 * BTF type associated with such map's value type, though. 1876 */ 1877 if (sfx_len >= BPF_OBJ_NAME_LEN) 1878 sfx_len = BPF_OBJ_NAME_LEN - 1; 1879 1880 /* if there are two or more dots in map name, it's a custom dot map */ 1881 if (strchr(real_name + 1, '.') != NULL) 1882 pfx_len = 0; 1883 else 1884 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1885 1886 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1887 sfx_len, real_name); 1888 1889 /* sanities map name to characters allowed by kernel */ 1890 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1891 if (!isalnum(*p) && *p != '_' && *p != '.') 1892 *p = '_'; 1893 1894 return strdup(map_name); 1895 } 1896 1897 static int 1898 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1899 1900 /* Internal BPF map is mmap()'able only if at least one of corresponding 1901 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1902 * variable and it's not marked as __hidden (which turns it into, effectively, 1903 * a STATIC variable). 1904 */ 1905 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1906 { 1907 const struct btf_type *t, *vt; 1908 struct btf_var_secinfo *vsi; 1909 int i, n; 1910 1911 if (!map->btf_value_type_id) 1912 return false; 1913 1914 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1915 if (!btf_is_datasec(t)) 1916 return false; 1917 1918 vsi = btf_var_secinfos(t); 1919 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1920 vt = btf__type_by_id(obj->btf, vsi->type); 1921 if (!btf_is_var(vt)) 1922 continue; 1923 1924 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1925 return true; 1926 } 1927 1928 return false; 1929 } 1930 1931 static int 1932 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1933 const char *real_name, int sec_idx, void *data, size_t data_sz) 1934 { 1935 struct bpf_map_def *def; 1936 struct bpf_map *map; 1937 size_t mmap_sz; 1938 int err; 1939 1940 map = bpf_object__add_map(obj); 1941 if (IS_ERR(map)) 1942 return PTR_ERR(map); 1943 1944 map->libbpf_type = type; 1945 map->sec_idx = sec_idx; 1946 map->sec_offset = 0; 1947 map->real_name = strdup(real_name); 1948 map->name = internal_map_name(obj, real_name); 1949 if (!map->real_name || !map->name) { 1950 zfree(&map->real_name); 1951 zfree(&map->name); 1952 return -ENOMEM; 1953 } 1954 1955 def = &map->def; 1956 def->type = BPF_MAP_TYPE_ARRAY; 1957 def->key_size = sizeof(int); 1958 def->value_size = data_sz; 1959 def->max_entries = 1; 1960 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1961 ? BPF_F_RDONLY_PROG : 0; 1962 1963 /* failures are fine because of maps like .rodata.str1.1 */ 1964 (void) map_fill_btf_type_info(obj, map); 1965 1966 if (map_is_mmapable(obj, map)) 1967 def->map_flags |= BPF_F_MMAPABLE; 1968 1969 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1970 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1971 1972 mmap_sz = bpf_map_mmap_sz(map); 1973 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1974 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1975 if (map->mmaped == MAP_FAILED) { 1976 err = -errno; 1977 map->mmaped = NULL; 1978 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1979 zfree(&map->real_name); 1980 zfree(&map->name); 1981 return err; 1982 } 1983 1984 if (data) 1985 memcpy(map->mmaped, data, data_sz); 1986 1987 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1988 return 0; 1989 } 1990 1991 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1992 { 1993 struct elf_sec_desc *sec_desc; 1994 const char *sec_name; 1995 int err = 0, sec_idx; 1996 1997 /* 1998 * Populate obj->maps with libbpf internal maps. 1999 */ 2000 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 2001 sec_desc = &obj->efile.secs[sec_idx]; 2002 2003 /* Skip recognized sections with size 0. */ 2004 if (!sec_desc->data || sec_desc->data->d_size == 0) 2005 continue; 2006 2007 switch (sec_desc->sec_type) { 2008 case SEC_DATA: 2009 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2010 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2011 sec_name, sec_idx, 2012 sec_desc->data->d_buf, 2013 sec_desc->data->d_size); 2014 break; 2015 case SEC_RODATA: 2016 obj->has_rodata = true; 2017 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2018 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2019 sec_name, sec_idx, 2020 sec_desc->data->d_buf, 2021 sec_desc->data->d_size); 2022 break; 2023 case SEC_BSS: 2024 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2025 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2026 sec_name, sec_idx, 2027 NULL, 2028 sec_desc->data->d_size); 2029 break; 2030 default: 2031 /* skip */ 2032 break; 2033 } 2034 if (err) 2035 return err; 2036 } 2037 return 0; 2038 } 2039 2040 2041 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2042 const void *name) 2043 { 2044 int i; 2045 2046 for (i = 0; i < obj->nr_extern; i++) { 2047 if (strcmp(obj->externs[i].name, name) == 0) 2048 return &obj->externs[i]; 2049 } 2050 return NULL; 2051 } 2052 2053 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2054 const void *name, int len) 2055 { 2056 const char *ext_name; 2057 int i; 2058 2059 for (i = 0; i < obj->nr_extern; i++) { 2060 ext_name = obj->externs[i].name; 2061 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2062 return &obj->externs[i]; 2063 } 2064 return NULL; 2065 } 2066 2067 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2068 char value) 2069 { 2070 switch (ext->kcfg.type) { 2071 case KCFG_BOOL: 2072 if (value == 'm') { 2073 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2074 ext->name, value); 2075 return -EINVAL; 2076 } 2077 *(bool *)ext_val = value == 'y' ? true : false; 2078 break; 2079 case KCFG_TRISTATE: 2080 if (value == 'y') 2081 *(enum libbpf_tristate *)ext_val = TRI_YES; 2082 else if (value == 'm') 2083 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2084 else /* value == 'n' */ 2085 *(enum libbpf_tristate *)ext_val = TRI_NO; 2086 break; 2087 case KCFG_CHAR: 2088 *(char *)ext_val = value; 2089 break; 2090 case KCFG_UNKNOWN: 2091 case KCFG_INT: 2092 case KCFG_CHAR_ARR: 2093 default: 2094 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2095 ext->name, value); 2096 return -EINVAL; 2097 } 2098 ext->is_set = true; 2099 return 0; 2100 } 2101 2102 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2103 const char *value) 2104 { 2105 size_t len; 2106 2107 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2108 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2109 ext->name, value); 2110 return -EINVAL; 2111 } 2112 2113 len = strlen(value); 2114 if (len < 2 || value[len - 1] != '"') { 2115 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2116 ext->name, value); 2117 return -EINVAL; 2118 } 2119 2120 /* strip quotes */ 2121 len -= 2; 2122 if (len >= ext->kcfg.sz) { 2123 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2124 ext->name, value, len, ext->kcfg.sz - 1); 2125 len = ext->kcfg.sz - 1; 2126 } 2127 memcpy(ext_val, value + 1, len); 2128 ext_val[len] = '\0'; 2129 ext->is_set = true; 2130 return 0; 2131 } 2132 2133 static int parse_u64(const char *value, __u64 *res) 2134 { 2135 char *value_end; 2136 int err; 2137 2138 errno = 0; 2139 *res = strtoull(value, &value_end, 0); 2140 if (errno) { 2141 err = -errno; 2142 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2143 return err; 2144 } 2145 if (*value_end) { 2146 pr_warn("failed to parse '%s' as integer completely\n", value); 2147 return -EINVAL; 2148 } 2149 return 0; 2150 } 2151 2152 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2153 { 2154 int bit_sz = ext->kcfg.sz * 8; 2155 2156 if (ext->kcfg.sz == 8) 2157 return true; 2158 2159 /* Validate that value stored in u64 fits in integer of `ext->sz` 2160 * bytes size without any loss of information. If the target integer 2161 * is signed, we rely on the following limits of integer type of 2162 * Y bits and subsequent transformation: 2163 * 2164 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2165 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2166 * 0 <= X + 2^(Y-1) < 2^Y 2167 * 2168 * For unsigned target integer, check that all the (64 - Y) bits are 2169 * zero. 2170 */ 2171 if (ext->kcfg.is_signed) 2172 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2173 else 2174 return (v >> bit_sz) == 0; 2175 } 2176 2177 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2178 __u64 value) 2179 { 2180 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2181 ext->kcfg.type != KCFG_BOOL) { 2182 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2183 ext->name, (unsigned long long)value); 2184 return -EINVAL; 2185 } 2186 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2187 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2188 ext->name, (unsigned long long)value); 2189 return -EINVAL; 2190 2191 } 2192 if (!is_kcfg_value_in_range(ext, value)) { 2193 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2194 ext->name, (unsigned long long)value, ext->kcfg.sz); 2195 return -ERANGE; 2196 } 2197 switch (ext->kcfg.sz) { 2198 case 1: 2199 *(__u8 *)ext_val = value; 2200 break; 2201 case 2: 2202 *(__u16 *)ext_val = value; 2203 break; 2204 case 4: 2205 *(__u32 *)ext_val = value; 2206 break; 2207 case 8: 2208 *(__u64 *)ext_val = value; 2209 break; 2210 default: 2211 return -EINVAL; 2212 } 2213 ext->is_set = true; 2214 return 0; 2215 } 2216 2217 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2218 char *buf, void *data) 2219 { 2220 struct extern_desc *ext; 2221 char *sep, *value; 2222 int len, err = 0; 2223 void *ext_val; 2224 __u64 num; 2225 2226 if (!str_has_pfx(buf, "CONFIG_")) 2227 return 0; 2228 2229 sep = strchr(buf, '='); 2230 if (!sep) { 2231 pr_warn("failed to parse '%s': no separator\n", buf); 2232 return -EINVAL; 2233 } 2234 2235 /* Trim ending '\n' */ 2236 len = strlen(buf); 2237 if (buf[len - 1] == '\n') 2238 buf[len - 1] = '\0'; 2239 /* Split on '=' and ensure that a value is present. */ 2240 *sep = '\0'; 2241 if (!sep[1]) { 2242 *sep = '='; 2243 pr_warn("failed to parse '%s': no value\n", buf); 2244 return -EINVAL; 2245 } 2246 2247 ext = find_extern_by_name(obj, buf); 2248 if (!ext || ext->is_set) 2249 return 0; 2250 2251 ext_val = data + ext->kcfg.data_off; 2252 value = sep + 1; 2253 2254 switch (*value) { 2255 case 'y': case 'n': case 'm': 2256 err = set_kcfg_value_tri(ext, ext_val, *value); 2257 break; 2258 case '"': 2259 err = set_kcfg_value_str(ext, ext_val, value); 2260 break; 2261 default: 2262 /* assume integer */ 2263 err = parse_u64(value, &num); 2264 if (err) { 2265 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2266 return err; 2267 } 2268 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2269 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2270 return -EINVAL; 2271 } 2272 err = set_kcfg_value_num(ext, ext_val, num); 2273 break; 2274 } 2275 if (err) 2276 return err; 2277 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2278 return 0; 2279 } 2280 2281 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2282 { 2283 char buf[PATH_MAX]; 2284 struct utsname uts; 2285 int len, err = 0; 2286 gzFile file; 2287 2288 uname(&uts); 2289 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2290 if (len < 0) 2291 return -EINVAL; 2292 else if (len >= PATH_MAX) 2293 return -ENAMETOOLONG; 2294 2295 /* gzopen also accepts uncompressed files. */ 2296 file = gzopen(buf, "re"); 2297 if (!file) 2298 file = gzopen("/proc/config.gz", "re"); 2299 2300 if (!file) { 2301 pr_warn("failed to open system Kconfig\n"); 2302 return -ENOENT; 2303 } 2304 2305 while (gzgets(file, buf, sizeof(buf))) { 2306 err = bpf_object__process_kconfig_line(obj, buf, data); 2307 if (err) { 2308 pr_warn("error parsing system Kconfig line '%s': %s\n", 2309 buf, errstr(err)); 2310 goto out; 2311 } 2312 } 2313 2314 out: 2315 gzclose(file); 2316 return err; 2317 } 2318 2319 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2320 const char *config, void *data) 2321 { 2322 char buf[PATH_MAX]; 2323 int err = 0; 2324 FILE *file; 2325 2326 file = fmemopen((void *)config, strlen(config), "r"); 2327 if (!file) { 2328 err = -errno; 2329 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2330 return err; 2331 } 2332 2333 while (fgets(buf, sizeof(buf), file)) { 2334 err = bpf_object__process_kconfig_line(obj, buf, data); 2335 if (err) { 2336 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2337 buf, errstr(err)); 2338 break; 2339 } 2340 } 2341 2342 fclose(file); 2343 return err; 2344 } 2345 2346 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2347 { 2348 struct extern_desc *last_ext = NULL, *ext; 2349 size_t map_sz; 2350 int i, err; 2351 2352 for (i = 0; i < obj->nr_extern; i++) { 2353 ext = &obj->externs[i]; 2354 if (ext->type == EXT_KCFG) 2355 last_ext = ext; 2356 } 2357 2358 if (!last_ext) 2359 return 0; 2360 2361 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2362 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2363 ".kconfig", obj->efile.symbols_shndx, 2364 NULL, map_sz); 2365 if (err) 2366 return err; 2367 2368 obj->kconfig_map_idx = obj->nr_maps - 1; 2369 2370 return 0; 2371 } 2372 2373 const struct btf_type * 2374 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2375 { 2376 const struct btf_type *t = btf__type_by_id(btf, id); 2377 2378 if (res_id) 2379 *res_id = id; 2380 2381 while (btf_is_mod(t) || btf_is_typedef(t)) { 2382 if (res_id) 2383 *res_id = t->type; 2384 t = btf__type_by_id(btf, t->type); 2385 } 2386 2387 return t; 2388 } 2389 2390 static const struct btf_type * 2391 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2392 { 2393 const struct btf_type *t; 2394 2395 t = skip_mods_and_typedefs(btf, id, NULL); 2396 if (!btf_is_ptr(t)) 2397 return NULL; 2398 2399 t = skip_mods_and_typedefs(btf, t->type, res_id); 2400 2401 return btf_is_func_proto(t) ? t : NULL; 2402 } 2403 2404 static const char *__btf_kind_str(__u16 kind) 2405 { 2406 switch (kind) { 2407 case BTF_KIND_UNKN: return "void"; 2408 case BTF_KIND_INT: return "int"; 2409 case BTF_KIND_PTR: return "ptr"; 2410 case BTF_KIND_ARRAY: return "array"; 2411 case BTF_KIND_STRUCT: return "struct"; 2412 case BTF_KIND_UNION: return "union"; 2413 case BTF_KIND_ENUM: return "enum"; 2414 case BTF_KIND_FWD: return "fwd"; 2415 case BTF_KIND_TYPEDEF: return "typedef"; 2416 case BTF_KIND_VOLATILE: return "volatile"; 2417 case BTF_KIND_CONST: return "const"; 2418 case BTF_KIND_RESTRICT: return "restrict"; 2419 case BTF_KIND_FUNC: return "func"; 2420 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2421 case BTF_KIND_VAR: return "var"; 2422 case BTF_KIND_DATASEC: return "datasec"; 2423 case BTF_KIND_FLOAT: return "float"; 2424 case BTF_KIND_DECL_TAG: return "decl_tag"; 2425 case BTF_KIND_TYPE_TAG: return "type_tag"; 2426 case BTF_KIND_ENUM64: return "enum64"; 2427 default: return "unknown"; 2428 } 2429 } 2430 2431 const char *btf_kind_str(const struct btf_type *t) 2432 { 2433 return __btf_kind_str(btf_kind(t)); 2434 } 2435 2436 /* 2437 * Fetch integer attribute of BTF map definition. Such attributes are 2438 * represented using a pointer to an array, in which dimensionality of array 2439 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2440 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2441 * type definition, while using only sizeof(void *) space in ELF data section. 2442 */ 2443 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2444 const struct btf_member *m, __u32 *res) 2445 { 2446 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2447 const char *name = btf__name_by_offset(btf, m->name_off); 2448 const struct btf_array *arr_info; 2449 const struct btf_type *arr_t; 2450 2451 if (!btf_is_ptr(t)) { 2452 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2453 map_name, name, btf_kind_str(t)); 2454 return false; 2455 } 2456 2457 arr_t = btf__type_by_id(btf, t->type); 2458 if (!arr_t) { 2459 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2460 map_name, name, t->type); 2461 return false; 2462 } 2463 if (!btf_is_array(arr_t)) { 2464 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2465 map_name, name, btf_kind_str(arr_t)); 2466 return false; 2467 } 2468 arr_info = btf_array(arr_t); 2469 *res = arr_info->nelems; 2470 return true; 2471 } 2472 2473 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2474 const struct btf_member *m, __u64 *res) 2475 { 2476 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2477 const char *name = btf__name_by_offset(btf, m->name_off); 2478 2479 if (btf_is_ptr(t)) { 2480 __u32 res32; 2481 bool ret; 2482 2483 ret = get_map_field_int(map_name, btf, m, &res32); 2484 if (ret) 2485 *res = (__u64)res32; 2486 return ret; 2487 } 2488 2489 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2490 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2491 map_name, name, btf_kind_str(t)); 2492 return false; 2493 } 2494 2495 if (btf_vlen(t) != 1) { 2496 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2497 map_name, name); 2498 return false; 2499 } 2500 2501 if (btf_is_enum(t)) { 2502 const struct btf_enum *e = btf_enum(t); 2503 2504 *res = e->val; 2505 } else { 2506 const struct btf_enum64 *e = btf_enum64(t); 2507 2508 *res = btf_enum64_value(e); 2509 } 2510 return true; 2511 } 2512 2513 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2514 { 2515 int len; 2516 2517 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2518 if (len < 0) 2519 return -EINVAL; 2520 if (len >= buf_sz) 2521 return -ENAMETOOLONG; 2522 2523 return 0; 2524 } 2525 2526 static int build_map_pin_path(struct bpf_map *map, const char *path) 2527 { 2528 char buf[PATH_MAX]; 2529 int err; 2530 2531 if (!path) 2532 path = BPF_FS_DEFAULT_PATH; 2533 2534 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2535 if (err) 2536 return err; 2537 2538 return bpf_map__set_pin_path(map, buf); 2539 } 2540 2541 /* should match definition in bpf_helpers.h */ 2542 enum libbpf_pin_type { 2543 LIBBPF_PIN_NONE, 2544 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2545 LIBBPF_PIN_BY_NAME, 2546 }; 2547 2548 int parse_btf_map_def(const char *map_name, struct btf *btf, 2549 const struct btf_type *def_t, bool strict, 2550 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2551 { 2552 const struct btf_type *t; 2553 const struct btf_member *m; 2554 bool is_inner = inner_def == NULL; 2555 int vlen, i; 2556 2557 vlen = btf_vlen(def_t); 2558 m = btf_members(def_t); 2559 for (i = 0; i < vlen; i++, m++) { 2560 const char *name = btf__name_by_offset(btf, m->name_off); 2561 2562 if (!name) { 2563 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2564 return -EINVAL; 2565 } 2566 if (strcmp(name, "type") == 0) { 2567 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2568 return -EINVAL; 2569 map_def->parts |= MAP_DEF_MAP_TYPE; 2570 } else if (strcmp(name, "max_entries") == 0) { 2571 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2572 return -EINVAL; 2573 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2574 } else if (strcmp(name, "map_flags") == 0) { 2575 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2576 return -EINVAL; 2577 map_def->parts |= MAP_DEF_MAP_FLAGS; 2578 } else if (strcmp(name, "numa_node") == 0) { 2579 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2580 return -EINVAL; 2581 map_def->parts |= MAP_DEF_NUMA_NODE; 2582 } else if (strcmp(name, "key_size") == 0) { 2583 __u32 sz; 2584 2585 if (!get_map_field_int(map_name, btf, m, &sz)) 2586 return -EINVAL; 2587 if (map_def->key_size && map_def->key_size != sz) { 2588 pr_warn("map '%s': conflicting key size %u != %u.\n", 2589 map_name, map_def->key_size, sz); 2590 return -EINVAL; 2591 } 2592 map_def->key_size = sz; 2593 map_def->parts |= MAP_DEF_KEY_SIZE; 2594 } else if (strcmp(name, "key") == 0) { 2595 __s64 sz; 2596 2597 t = btf__type_by_id(btf, m->type); 2598 if (!t) { 2599 pr_warn("map '%s': key type [%d] not found.\n", 2600 map_name, m->type); 2601 return -EINVAL; 2602 } 2603 if (!btf_is_ptr(t)) { 2604 pr_warn("map '%s': key spec is not PTR: %s.\n", 2605 map_name, btf_kind_str(t)); 2606 return -EINVAL; 2607 } 2608 sz = btf__resolve_size(btf, t->type); 2609 if (sz < 0) { 2610 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2611 map_name, t->type, (ssize_t)sz); 2612 return sz; 2613 } 2614 if (map_def->key_size && map_def->key_size != sz) { 2615 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2616 map_name, map_def->key_size, (ssize_t)sz); 2617 return -EINVAL; 2618 } 2619 map_def->key_size = sz; 2620 map_def->key_type_id = t->type; 2621 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2622 } else if (strcmp(name, "value_size") == 0) { 2623 __u32 sz; 2624 2625 if (!get_map_field_int(map_name, btf, m, &sz)) 2626 return -EINVAL; 2627 if (map_def->value_size && map_def->value_size != sz) { 2628 pr_warn("map '%s': conflicting value size %u != %u.\n", 2629 map_name, map_def->value_size, sz); 2630 return -EINVAL; 2631 } 2632 map_def->value_size = sz; 2633 map_def->parts |= MAP_DEF_VALUE_SIZE; 2634 } else if (strcmp(name, "value") == 0) { 2635 __s64 sz; 2636 2637 t = btf__type_by_id(btf, m->type); 2638 if (!t) { 2639 pr_warn("map '%s': value type [%d] not found.\n", 2640 map_name, m->type); 2641 return -EINVAL; 2642 } 2643 if (!btf_is_ptr(t)) { 2644 pr_warn("map '%s': value spec is not PTR: %s.\n", 2645 map_name, btf_kind_str(t)); 2646 return -EINVAL; 2647 } 2648 sz = btf__resolve_size(btf, t->type); 2649 if (sz < 0) { 2650 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2651 map_name, t->type, (ssize_t)sz); 2652 return sz; 2653 } 2654 if (map_def->value_size && map_def->value_size != sz) { 2655 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2656 map_name, map_def->value_size, (ssize_t)sz); 2657 return -EINVAL; 2658 } 2659 map_def->value_size = sz; 2660 map_def->value_type_id = t->type; 2661 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2662 } 2663 else if (strcmp(name, "values") == 0) { 2664 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2665 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2666 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2667 char inner_map_name[128]; 2668 int err; 2669 2670 if (is_inner) { 2671 pr_warn("map '%s': multi-level inner maps not supported.\n", 2672 map_name); 2673 return -ENOTSUP; 2674 } 2675 if (i != vlen - 1) { 2676 pr_warn("map '%s': '%s' member should be last.\n", 2677 map_name, name); 2678 return -EINVAL; 2679 } 2680 if (!is_map_in_map && !is_prog_array) { 2681 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2682 map_name); 2683 return -ENOTSUP; 2684 } 2685 if (map_def->value_size && map_def->value_size != 4) { 2686 pr_warn("map '%s': conflicting value size %u != 4.\n", 2687 map_name, map_def->value_size); 2688 return -EINVAL; 2689 } 2690 map_def->value_size = 4; 2691 t = btf__type_by_id(btf, m->type); 2692 if (!t) { 2693 pr_warn("map '%s': %s type [%d] not found.\n", 2694 map_name, desc, m->type); 2695 return -EINVAL; 2696 } 2697 if (!btf_is_array(t) || btf_array(t)->nelems) { 2698 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2699 map_name, desc); 2700 return -EINVAL; 2701 } 2702 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2703 if (!btf_is_ptr(t)) { 2704 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2705 map_name, desc, btf_kind_str(t)); 2706 return -EINVAL; 2707 } 2708 t = skip_mods_and_typedefs(btf, t->type, NULL); 2709 if (is_prog_array) { 2710 if (!btf_is_func_proto(t)) { 2711 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2712 map_name, btf_kind_str(t)); 2713 return -EINVAL; 2714 } 2715 continue; 2716 } 2717 if (!btf_is_struct(t)) { 2718 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2719 map_name, btf_kind_str(t)); 2720 return -EINVAL; 2721 } 2722 2723 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2724 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2725 if (err) 2726 return err; 2727 2728 map_def->parts |= MAP_DEF_INNER_MAP; 2729 } else if (strcmp(name, "pinning") == 0) { 2730 __u32 val; 2731 2732 if (is_inner) { 2733 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2734 return -EINVAL; 2735 } 2736 if (!get_map_field_int(map_name, btf, m, &val)) 2737 return -EINVAL; 2738 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2739 pr_warn("map '%s': invalid pinning value %u.\n", 2740 map_name, val); 2741 return -EINVAL; 2742 } 2743 map_def->pinning = val; 2744 map_def->parts |= MAP_DEF_PINNING; 2745 } else if (strcmp(name, "map_extra") == 0) { 2746 __u64 map_extra; 2747 2748 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2749 return -EINVAL; 2750 map_def->map_extra = map_extra; 2751 map_def->parts |= MAP_DEF_MAP_EXTRA; 2752 } else { 2753 if (strict) { 2754 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2755 return -ENOTSUP; 2756 } 2757 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2758 } 2759 } 2760 2761 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2762 pr_warn("map '%s': map type isn't specified.\n", map_name); 2763 return -EINVAL; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static size_t adjust_ringbuf_sz(size_t sz) 2770 { 2771 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2772 __u32 mul; 2773 2774 /* if user forgot to set any size, make sure they see error */ 2775 if (sz == 0) 2776 return 0; 2777 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2778 * a power-of-2 multiple of kernel's page size. If user diligently 2779 * satisified these conditions, pass the size through. 2780 */ 2781 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2782 return sz; 2783 2784 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2785 * user-set size to satisfy both user size request and kernel 2786 * requirements and substitute correct max_entries for map creation. 2787 */ 2788 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2789 if (mul * page_sz > sz) 2790 return mul * page_sz; 2791 } 2792 2793 /* if it's impossible to satisfy the conditions (i.e., user size is 2794 * very close to UINT_MAX but is not a power-of-2 multiple of 2795 * page_size) then just return original size and let kernel reject it 2796 */ 2797 return sz; 2798 } 2799 2800 static bool map_is_ringbuf(const struct bpf_map *map) 2801 { 2802 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2803 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2804 } 2805 2806 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2807 { 2808 map->def.type = def->map_type; 2809 map->def.key_size = def->key_size; 2810 map->def.value_size = def->value_size; 2811 map->def.max_entries = def->max_entries; 2812 map->def.map_flags = def->map_flags; 2813 map->map_extra = def->map_extra; 2814 2815 map->numa_node = def->numa_node; 2816 map->btf_key_type_id = def->key_type_id; 2817 map->btf_value_type_id = def->value_type_id; 2818 2819 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2820 if (map_is_ringbuf(map)) 2821 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2822 2823 if (def->parts & MAP_DEF_MAP_TYPE) 2824 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2825 2826 if (def->parts & MAP_DEF_KEY_TYPE) 2827 pr_debug("map '%s': found key [%u], sz = %u.\n", 2828 map->name, def->key_type_id, def->key_size); 2829 else if (def->parts & MAP_DEF_KEY_SIZE) 2830 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2831 2832 if (def->parts & MAP_DEF_VALUE_TYPE) 2833 pr_debug("map '%s': found value [%u], sz = %u.\n", 2834 map->name, def->value_type_id, def->value_size); 2835 else if (def->parts & MAP_DEF_VALUE_SIZE) 2836 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2837 2838 if (def->parts & MAP_DEF_MAX_ENTRIES) 2839 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2840 if (def->parts & MAP_DEF_MAP_FLAGS) 2841 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2842 if (def->parts & MAP_DEF_MAP_EXTRA) 2843 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2844 (unsigned long long)def->map_extra); 2845 if (def->parts & MAP_DEF_PINNING) 2846 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2847 if (def->parts & MAP_DEF_NUMA_NODE) 2848 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2849 2850 if (def->parts & MAP_DEF_INNER_MAP) 2851 pr_debug("map '%s': found inner map definition.\n", map->name); 2852 } 2853 2854 static const char *btf_var_linkage_str(__u32 linkage) 2855 { 2856 switch (linkage) { 2857 case BTF_VAR_STATIC: return "static"; 2858 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2859 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2860 default: return "unknown"; 2861 } 2862 } 2863 2864 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2865 const struct btf_type *sec, 2866 int var_idx, int sec_idx, 2867 const Elf_Data *data, bool strict, 2868 const char *pin_root_path) 2869 { 2870 struct btf_map_def map_def = {}, inner_def = {}; 2871 const struct btf_type *var, *def; 2872 const struct btf_var_secinfo *vi; 2873 const struct btf_var *var_extra; 2874 const char *map_name; 2875 struct bpf_map *map; 2876 int err; 2877 2878 vi = btf_var_secinfos(sec) + var_idx; 2879 var = btf__type_by_id(obj->btf, vi->type); 2880 var_extra = btf_var(var); 2881 map_name = btf__name_by_offset(obj->btf, var->name_off); 2882 2883 if (map_name == NULL || map_name[0] == '\0') { 2884 pr_warn("map #%d: empty name.\n", var_idx); 2885 return -EINVAL; 2886 } 2887 if ((__u64)vi->offset + vi->size > data->d_size) { 2888 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2889 return -EINVAL; 2890 } 2891 if (!btf_is_var(var)) { 2892 pr_warn("map '%s': unexpected var kind %s.\n", 2893 map_name, btf_kind_str(var)); 2894 return -EINVAL; 2895 } 2896 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2897 pr_warn("map '%s': unsupported map linkage %s.\n", 2898 map_name, btf_var_linkage_str(var_extra->linkage)); 2899 return -EOPNOTSUPP; 2900 } 2901 2902 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2903 if (!btf_is_struct(def)) { 2904 pr_warn("map '%s': unexpected def kind %s.\n", 2905 map_name, btf_kind_str(var)); 2906 return -EINVAL; 2907 } 2908 if (def->size > vi->size) { 2909 pr_warn("map '%s': invalid def size.\n", map_name); 2910 return -EINVAL; 2911 } 2912 2913 map = bpf_object__add_map(obj); 2914 if (IS_ERR(map)) 2915 return PTR_ERR(map); 2916 map->name = strdup(map_name); 2917 if (!map->name) { 2918 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2919 return -ENOMEM; 2920 } 2921 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2922 map->def.type = BPF_MAP_TYPE_UNSPEC; 2923 map->sec_idx = sec_idx; 2924 map->sec_offset = vi->offset; 2925 map->btf_var_idx = var_idx; 2926 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2927 map_name, map->sec_idx, map->sec_offset); 2928 2929 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2930 if (err) 2931 return err; 2932 2933 fill_map_from_def(map, &map_def); 2934 2935 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2936 err = build_map_pin_path(map, pin_root_path); 2937 if (err) { 2938 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2939 return err; 2940 } 2941 } 2942 2943 if (map_def.parts & MAP_DEF_INNER_MAP) { 2944 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2945 if (!map->inner_map) 2946 return -ENOMEM; 2947 map->inner_map->fd = create_placeholder_fd(); 2948 if (map->inner_map->fd < 0) 2949 return map->inner_map->fd; 2950 map->inner_map->sec_idx = sec_idx; 2951 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2952 if (!map->inner_map->name) 2953 return -ENOMEM; 2954 sprintf(map->inner_map->name, "%s.inner", map_name); 2955 2956 fill_map_from_def(map->inner_map, &inner_def); 2957 } 2958 2959 err = map_fill_btf_type_info(obj, map); 2960 if (err) 2961 return err; 2962 2963 return 0; 2964 } 2965 2966 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2967 const char *sec_name, int sec_idx, 2968 void *data, size_t data_sz) 2969 { 2970 const long page_sz = sysconf(_SC_PAGE_SIZE); 2971 size_t mmap_sz; 2972 2973 mmap_sz = bpf_map_mmap_sz(map); 2974 if (roundup(data_sz, page_sz) > mmap_sz) { 2975 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2976 sec_name, mmap_sz, data_sz); 2977 return -E2BIG; 2978 } 2979 2980 obj->arena_data = malloc(data_sz); 2981 if (!obj->arena_data) 2982 return -ENOMEM; 2983 memcpy(obj->arena_data, data, data_sz); 2984 obj->arena_data_sz = data_sz; 2985 2986 /* make bpf_map__init_value() work for ARENA maps */ 2987 map->mmaped = obj->arena_data; 2988 2989 return 0; 2990 } 2991 2992 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2993 const char *pin_root_path) 2994 { 2995 const struct btf_type *sec = NULL; 2996 int nr_types, i, vlen, err; 2997 const struct btf_type *t; 2998 const char *name; 2999 Elf_Data *data; 3000 Elf_Scn *scn; 3001 3002 if (obj->efile.btf_maps_shndx < 0) 3003 return 0; 3004 3005 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3006 data = elf_sec_data(obj, scn); 3007 if (!scn || !data) { 3008 pr_warn("elf: failed to get %s map definitions for %s\n", 3009 MAPS_ELF_SEC, obj->path); 3010 return -EINVAL; 3011 } 3012 3013 nr_types = btf__type_cnt(obj->btf); 3014 for (i = 1; i < nr_types; i++) { 3015 t = btf__type_by_id(obj->btf, i); 3016 if (!btf_is_datasec(t)) 3017 continue; 3018 name = btf__name_by_offset(obj->btf, t->name_off); 3019 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3020 sec = t; 3021 obj->efile.btf_maps_sec_btf_id = i; 3022 break; 3023 } 3024 } 3025 3026 if (!sec) { 3027 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3028 return -ENOENT; 3029 } 3030 3031 vlen = btf_vlen(sec); 3032 for (i = 0; i < vlen; i++) { 3033 err = bpf_object__init_user_btf_map(obj, sec, i, 3034 obj->efile.btf_maps_shndx, 3035 data, strict, 3036 pin_root_path); 3037 if (err) 3038 return err; 3039 } 3040 3041 for (i = 0; i < obj->nr_maps; i++) { 3042 struct bpf_map *map = &obj->maps[i]; 3043 3044 if (map->def.type != BPF_MAP_TYPE_ARENA) 3045 continue; 3046 3047 if (obj->arena_map_idx >= 0) { 3048 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3049 map->name, obj->maps[obj->arena_map_idx].name); 3050 return -EINVAL; 3051 } 3052 obj->arena_map_idx = i; 3053 3054 if (obj->efile.arena_data) { 3055 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3056 obj->efile.arena_data->d_buf, 3057 obj->efile.arena_data->d_size); 3058 if (err) 3059 return err; 3060 } 3061 } 3062 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3063 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3064 ARENA_SEC); 3065 return -ENOENT; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static int bpf_object__init_maps(struct bpf_object *obj, 3072 const struct bpf_object_open_opts *opts) 3073 { 3074 const char *pin_root_path; 3075 bool strict; 3076 int err = 0; 3077 3078 strict = !OPTS_GET(opts, relaxed_maps, false); 3079 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3080 3081 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3082 err = err ?: bpf_object__init_global_data_maps(obj); 3083 err = err ?: bpf_object__init_kconfig_map(obj); 3084 err = err ?: bpf_object_init_struct_ops(obj); 3085 3086 return err; 3087 } 3088 3089 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3090 { 3091 Elf64_Shdr *sh; 3092 3093 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3094 if (!sh) 3095 return false; 3096 3097 return sh->sh_flags & SHF_EXECINSTR; 3098 } 3099 3100 static bool starts_with_qmark(const char *s) 3101 { 3102 return s && s[0] == '?'; 3103 } 3104 3105 static bool btf_needs_sanitization(struct bpf_object *obj) 3106 { 3107 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3108 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3109 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3110 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3111 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3112 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3113 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3114 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3115 3116 return !has_func || !has_datasec || !has_func_global || !has_float || 3117 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3118 } 3119 3120 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3121 { 3122 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3123 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3124 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3125 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3126 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3127 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3128 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3129 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3130 int enum64_placeholder_id = 0; 3131 struct btf_type *t; 3132 int i, j, vlen; 3133 3134 for (i = 1; i < btf__type_cnt(btf); i++) { 3135 t = (struct btf_type *)btf__type_by_id(btf, i); 3136 3137 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3138 /* replace VAR/DECL_TAG with INT */ 3139 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3140 /* 3141 * using size = 1 is the safest choice, 4 will be too 3142 * big and cause kernel BTF validation failure if 3143 * original variable took less than 4 bytes 3144 */ 3145 t->size = 1; 3146 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3147 } else if (!has_datasec && btf_is_datasec(t)) { 3148 /* replace DATASEC with STRUCT */ 3149 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3150 struct btf_member *m = btf_members(t); 3151 struct btf_type *vt; 3152 char *name; 3153 3154 name = (char *)btf__name_by_offset(btf, t->name_off); 3155 while (*name) { 3156 if (*name == '.' || *name == '?') 3157 *name = '_'; 3158 name++; 3159 } 3160 3161 vlen = btf_vlen(t); 3162 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3163 for (j = 0; j < vlen; j++, v++, m++) { 3164 /* order of field assignments is important */ 3165 m->offset = v->offset * 8; 3166 m->type = v->type; 3167 /* preserve variable name as member name */ 3168 vt = (void *)btf__type_by_id(btf, v->type); 3169 m->name_off = vt->name_off; 3170 } 3171 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3172 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3173 /* replace '?' prefix with '_' for DATASEC names */ 3174 char *name; 3175 3176 name = (char *)btf__name_by_offset(btf, t->name_off); 3177 if (name[0] == '?') 3178 name[0] = '_'; 3179 } else if (!has_func && btf_is_func_proto(t)) { 3180 /* replace FUNC_PROTO with ENUM */ 3181 vlen = btf_vlen(t); 3182 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3183 t->size = sizeof(__u32); /* kernel enforced */ 3184 } else if (!has_func && btf_is_func(t)) { 3185 /* replace FUNC with TYPEDEF */ 3186 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3187 } else if (!has_func_global && btf_is_func(t)) { 3188 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3189 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3190 } else if (!has_float && btf_is_float(t)) { 3191 /* replace FLOAT with an equally-sized empty STRUCT; 3192 * since C compilers do not accept e.g. "float" as a 3193 * valid struct name, make it anonymous 3194 */ 3195 t->name_off = 0; 3196 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3197 } else if (!has_type_tag && btf_is_type_tag(t)) { 3198 /* replace TYPE_TAG with a CONST */ 3199 t->name_off = 0; 3200 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3201 } else if (!has_enum64 && btf_is_enum(t)) { 3202 /* clear the kflag */ 3203 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3204 } else if (!has_enum64 && btf_is_enum64(t)) { 3205 /* replace ENUM64 with a union */ 3206 struct btf_member *m; 3207 3208 if (enum64_placeholder_id == 0) { 3209 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3210 if (enum64_placeholder_id < 0) 3211 return enum64_placeholder_id; 3212 3213 t = (struct btf_type *)btf__type_by_id(btf, i); 3214 } 3215 3216 m = btf_members(t); 3217 vlen = btf_vlen(t); 3218 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3219 for (j = 0; j < vlen; j++, m++) { 3220 m->type = enum64_placeholder_id; 3221 m->offset = 0; 3222 } 3223 } 3224 } 3225 3226 return 0; 3227 } 3228 3229 static bool libbpf_needs_btf(const struct bpf_object *obj) 3230 { 3231 return obj->efile.btf_maps_shndx >= 0 || 3232 obj->efile.has_st_ops || 3233 obj->nr_extern > 0; 3234 } 3235 3236 static bool kernel_needs_btf(const struct bpf_object *obj) 3237 { 3238 return obj->efile.has_st_ops; 3239 } 3240 3241 static int bpf_object__init_btf(struct bpf_object *obj, 3242 Elf_Data *btf_data, 3243 Elf_Data *btf_ext_data) 3244 { 3245 int err = -ENOENT; 3246 3247 if (btf_data) { 3248 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3249 err = libbpf_get_error(obj->btf); 3250 if (err) { 3251 obj->btf = NULL; 3252 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3253 goto out; 3254 } 3255 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3256 btf__set_pointer_size(obj->btf, 8); 3257 } 3258 if (btf_ext_data) { 3259 struct btf_ext_info *ext_segs[3]; 3260 int seg_num, sec_num; 3261 3262 if (!obj->btf) { 3263 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3264 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3265 goto out; 3266 } 3267 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3268 err = libbpf_get_error(obj->btf_ext); 3269 if (err) { 3270 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3271 BTF_EXT_ELF_SEC, errstr(err)); 3272 obj->btf_ext = NULL; 3273 goto out; 3274 } 3275 3276 /* setup .BTF.ext to ELF section mapping */ 3277 ext_segs[0] = &obj->btf_ext->func_info; 3278 ext_segs[1] = &obj->btf_ext->line_info; 3279 ext_segs[2] = &obj->btf_ext->core_relo_info; 3280 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3281 struct btf_ext_info *seg = ext_segs[seg_num]; 3282 const struct btf_ext_info_sec *sec; 3283 const char *sec_name; 3284 Elf_Scn *scn; 3285 3286 if (seg->sec_cnt == 0) 3287 continue; 3288 3289 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3290 if (!seg->sec_idxs) { 3291 err = -ENOMEM; 3292 goto out; 3293 } 3294 3295 sec_num = 0; 3296 for_each_btf_ext_sec(seg, sec) { 3297 /* preventively increment index to avoid doing 3298 * this before every continue below 3299 */ 3300 sec_num++; 3301 3302 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3303 if (str_is_empty(sec_name)) 3304 continue; 3305 scn = elf_sec_by_name(obj, sec_name); 3306 if (!scn) 3307 continue; 3308 3309 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3310 } 3311 } 3312 } 3313 out: 3314 if (err && libbpf_needs_btf(obj)) { 3315 pr_warn("BTF is required, but is missing or corrupted.\n"); 3316 return err; 3317 } 3318 return 0; 3319 } 3320 3321 static int compare_vsi_off(const void *_a, const void *_b) 3322 { 3323 const struct btf_var_secinfo *a = _a; 3324 const struct btf_var_secinfo *b = _b; 3325 3326 return a->offset - b->offset; 3327 } 3328 3329 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3330 struct btf_type *t) 3331 { 3332 __u32 size = 0, i, vars = btf_vlen(t); 3333 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3334 struct btf_var_secinfo *vsi; 3335 bool fixup_offsets = false; 3336 int err; 3337 3338 if (!sec_name) { 3339 pr_debug("No name found in string section for DATASEC kind.\n"); 3340 return -ENOENT; 3341 } 3342 3343 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3344 * variable offsets set at the previous step. Further, not every 3345 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3346 * all fixups altogether for such sections and go straight to sorting 3347 * VARs within their DATASEC. 3348 */ 3349 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3350 goto sort_vars; 3351 3352 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3353 * fix this up. But BPF static linker already fixes this up and fills 3354 * all the sizes and offsets during static linking. So this step has 3355 * to be optional. But the STV_HIDDEN handling is non-optional for any 3356 * non-extern DATASEC, so the variable fixup loop below handles both 3357 * functions at the same time, paying the cost of BTF VAR <-> ELF 3358 * symbol matching just once. 3359 */ 3360 if (t->size == 0) { 3361 err = find_elf_sec_sz(obj, sec_name, &size); 3362 if (err || !size) { 3363 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3364 sec_name, size, errstr(err)); 3365 return -ENOENT; 3366 } 3367 3368 t->size = size; 3369 fixup_offsets = true; 3370 } 3371 3372 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3373 const struct btf_type *t_var; 3374 struct btf_var *var; 3375 const char *var_name; 3376 Elf64_Sym *sym; 3377 3378 t_var = btf__type_by_id(btf, vsi->type); 3379 if (!t_var || !btf_is_var(t_var)) { 3380 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3381 return -EINVAL; 3382 } 3383 3384 var = btf_var(t_var); 3385 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3386 continue; 3387 3388 var_name = btf__name_by_offset(btf, t_var->name_off); 3389 if (!var_name) { 3390 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3391 sec_name, i); 3392 return -ENOENT; 3393 } 3394 3395 sym = find_elf_var_sym(obj, var_name); 3396 if (IS_ERR(sym)) { 3397 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3398 sec_name, var_name); 3399 return -ENOENT; 3400 } 3401 3402 if (fixup_offsets) 3403 vsi->offset = sym->st_value; 3404 3405 /* if variable is a global/weak symbol, but has restricted 3406 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3407 * as static. This follows similar logic for functions (BPF 3408 * subprogs) and influences libbpf's further decisions about 3409 * whether to make global data BPF array maps as 3410 * BPF_F_MMAPABLE. 3411 */ 3412 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3413 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3414 var->linkage = BTF_VAR_STATIC; 3415 } 3416 3417 sort_vars: 3418 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3419 return 0; 3420 } 3421 3422 static int bpf_object_fixup_btf(struct bpf_object *obj) 3423 { 3424 int i, n, err = 0; 3425 3426 if (!obj->btf) 3427 return 0; 3428 3429 n = btf__type_cnt(obj->btf); 3430 for (i = 1; i < n; i++) { 3431 struct btf_type *t = btf_type_by_id(obj->btf, i); 3432 3433 /* Loader needs to fix up some of the things compiler 3434 * couldn't get its hands on while emitting BTF. This 3435 * is section size and global variable offset. We use 3436 * the info from the ELF itself for this purpose. 3437 */ 3438 if (btf_is_datasec(t)) { 3439 err = btf_fixup_datasec(obj, obj->btf, t); 3440 if (err) 3441 return err; 3442 } 3443 } 3444 3445 return 0; 3446 } 3447 3448 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3449 { 3450 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3451 prog->type == BPF_PROG_TYPE_LSM) 3452 return true; 3453 3454 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3455 * also need vmlinux BTF 3456 */ 3457 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3458 return true; 3459 3460 return false; 3461 } 3462 3463 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3464 { 3465 return bpf_map__is_struct_ops(map); 3466 } 3467 3468 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3469 { 3470 struct bpf_program *prog; 3471 struct bpf_map *map; 3472 int i; 3473 3474 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3475 * is not specified 3476 */ 3477 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3478 return true; 3479 3480 /* Support for typed ksyms needs kernel BTF */ 3481 for (i = 0; i < obj->nr_extern; i++) { 3482 const struct extern_desc *ext; 3483 3484 ext = &obj->externs[i]; 3485 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3486 return true; 3487 } 3488 3489 bpf_object__for_each_program(prog, obj) { 3490 if (!prog->autoload) 3491 continue; 3492 if (prog_needs_vmlinux_btf(prog)) 3493 return true; 3494 } 3495 3496 bpf_object__for_each_map(map, obj) { 3497 if (map_needs_vmlinux_btf(map)) 3498 return true; 3499 } 3500 3501 return false; 3502 } 3503 3504 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3505 { 3506 int err; 3507 3508 /* btf_vmlinux could be loaded earlier */ 3509 if (obj->btf_vmlinux || obj->gen_loader) 3510 return 0; 3511 3512 if (!force && !obj_needs_vmlinux_btf(obj)) 3513 return 0; 3514 3515 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3516 err = libbpf_get_error(obj->btf_vmlinux); 3517 if (err) { 3518 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3519 obj->btf_vmlinux = NULL; 3520 return err; 3521 } 3522 return 0; 3523 } 3524 3525 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3526 { 3527 struct btf *kern_btf = obj->btf; 3528 bool btf_mandatory, sanitize; 3529 int i, err = 0; 3530 3531 if (!obj->btf) 3532 return 0; 3533 3534 if (!kernel_supports(obj, FEAT_BTF)) { 3535 if (kernel_needs_btf(obj)) { 3536 err = -EOPNOTSUPP; 3537 goto report; 3538 } 3539 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3540 return 0; 3541 } 3542 3543 /* Even though some subprogs are global/weak, user might prefer more 3544 * permissive BPF verification process that BPF verifier performs for 3545 * static functions, taking into account more context from the caller 3546 * functions. In such case, they need to mark such subprogs with 3547 * __attribute__((visibility("hidden"))) and libbpf will adjust 3548 * corresponding FUNC BTF type to be marked as static and trigger more 3549 * involved BPF verification process. 3550 */ 3551 for (i = 0; i < obj->nr_programs; i++) { 3552 struct bpf_program *prog = &obj->programs[i]; 3553 struct btf_type *t; 3554 const char *name; 3555 int j, n; 3556 3557 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3558 continue; 3559 3560 n = btf__type_cnt(obj->btf); 3561 for (j = 1; j < n; j++) { 3562 t = btf_type_by_id(obj->btf, j); 3563 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3564 continue; 3565 3566 name = btf__str_by_offset(obj->btf, t->name_off); 3567 if (strcmp(name, prog->name) != 0) 3568 continue; 3569 3570 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3571 break; 3572 } 3573 } 3574 3575 sanitize = btf_needs_sanitization(obj); 3576 if (sanitize) { 3577 const void *raw_data; 3578 __u32 sz; 3579 3580 /* clone BTF to sanitize a copy and leave the original intact */ 3581 raw_data = btf__raw_data(obj->btf, &sz); 3582 kern_btf = btf__new(raw_data, sz); 3583 err = libbpf_get_error(kern_btf); 3584 if (err) 3585 return err; 3586 3587 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3588 btf__set_pointer_size(obj->btf, 8); 3589 err = bpf_object__sanitize_btf(obj, kern_btf); 3590 if (err) 3591 return err; 3592 } 3593 3594 if (obj->gen_loader) { 3595 __u32 raw_size = 0; 3596 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3597 3598 if (!raw_data) 3599 return -ENOMEM; 3600 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3601 /* Pretend to have valid FD to pass various fd >= 0 checks. 3602 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3603 */ 3604 btf__set_fd(kern_btf, 0); 3605 } else { 3606 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3607 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3608 obj->log_level ? 1 : 0, obj->token_fd); 3609 } 3610 if (sanitize) { 3611 if (!err) { 3612 /* move fd to libbpf's BTF */ 3613 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3614 btf__set_fd(kern_btf, -1); 3615 } 3616 btf__free(kern_btf); 3617 } 3618 report: 3619 if (err) { 3620 btf_mandatory = kernel_needs_btf(obj); 3621 if (btf_mandatory) { 3622 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3623 errstr(err)); 3624 } else { 3625 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3626 errstr(err)); 3627 err = 0; 3628 } 3629 } 3630 return err; 3631 } 3632 3633 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3634 { 3635 const char *name; 3636 3637 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3638 if (!name) { 3639 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3640 off, obj->path, elf_errmsg(-1)); 3641 return NULL; 3642 } 3643 3644 return name; 3645 } 3646 3647 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3648 { 3649 const char *name; 3650 3651 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3652 if (!name) { 3653 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3654 off, obj->path, elf_errmsg(-1)); 3655 return NULL; 3656 } 3657 3658 return name; 3659 } 3660 3661 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3662 { 3663 Elf_Scn *scn; 3664 3665 scn = elf_getscn(obj->efile.elf, idx); 3666 if (!scn) { 3667 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3668 idx, obj->path, elf_errmsg(-1)); 3669 return NULL; 3670 } 3671 return scn; 3672 } 3673 3674 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3675 { 3676 Elf_Scn *scn = NULL; 3677 Elf *elf = obj->efile.elf; 3678 const char *sec_name; 3679 3680 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3681 sec_name = elf_sec_name(obj, scn); 3682 if (!sec_name) 3683 return NULL; 3684 3685 if (strcmp(sec_name, name) != 0) 3686 continue; 3687 3688 return scn; 3689 } 3690 return NULL; 3691 } 3692 3693 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3694 { 3695 Elf64_Shdr *shdr; 3696 3697 if (!scn) 3698 return NULL; 3699 3700 shdr = elf64_getshdr(scn); 3701 if (!shdr) { 3702 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3703 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3704 return NULL; 3705 } 3706 3707 return shdr; 3708 } 3709 3710 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3711 { 3712 const char *name; 3713 Elf64_Shdr *sh; 3714 3715 if (!scn) 3716 return NULL; 3717 3718 sh = elf_sec_hdr(obj, scn); 3719 if (!sh) 3720 return NULL; 3721 3722 name = elf_sec_str(obj, sh->sh_name); 3723 if (!name) { 3724 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3725 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3726 return NULL; 3727 } 3728 3729 return name; 3730 } 3731 3732 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3733 { 3734 Elf_Data *data; 3735 3736 if (!scn) 3737 return NULL; 3738 3739 data = elf_getdata(scn, 0); 3740 if (!data) { 3741 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3742 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3743 obj->path, elf_errmsg(-1)); 3744 return NULL; 3745 } 3746 3747 return data; 3748 } 3749 3750 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3751 { 3752 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3753 return NULL; 3754 3755 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3756 } 3757 3758 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3759 { 3760 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3761 return NULL; 3762 3763 return (Elf64_Rel *)data->d_buf + idx; 3764 } 3765 3766 static bool is_sec_name_dwarf(const char *name) 3767 { 3768 /* approximation, but the actual list is too long */ 3769 return str_has_pfx(name, ".debug_"); 3770 } 3771 3772 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3773 { 3774 /* no special handling of .strtab */ 3775 if (hdr->sh_type == SHT_STRTAB) 3776 return true; 3777 3778 /* ignore .llvm_addrsig section as well */ 3779 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3780 return true; 3781 3782 /* no subprograms will lead to an empty .text section, ignore it */ 3783 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3784 strcmp(name, ".text") == 0) 3785 return true; 3786 3787 /* DWARF sections */ 3788 if (is_sec_name_dwarf(name)) 3789 return true; 3790 3791 if (str_has_pfx(name, ".rel")) { 3792 name += sizeof(".rel") - 1; 3793 /* DWARF section relocations */ 3794 if (is_sec_name_dwarf(name)) 3795 return true; 3796 3797 /* .BTF and .BTF.ext don't need relocations */ 3798 if (strcmp(name, BTF_ELF_SEC) == 0 || 3799 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3800 return true; 3801 } 3802 3803 return false; 3804 } 3805 3806 static int cmp_progs(const void *_a, const void *_b) 3807 { 3808 const struct bpf_program *a = _a; 3809 const struct bpf_program *b = _b; 3810 3811 if (a->sec_idx != b->sec_idx) 3812 return a->sec_idx < b->sec_idx ? -1 : 1; 3813 3814 /* sec_insn_off can't be the same within the section */ 3815 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3816 } 3817 3818 static int bpf_object__elf_collect(struct bpf_object *obj) 3819 { 3820 struct elf_sec_desc *sec_desc; 3821 Elf *elf = obj->efile.elf; 3822 Elf_Data *btf_ext_data = NULL; 3823 Elf_Data *btf_data = NULL; 3824 int idx = 0, err = 0; 3825 const char *name; 3826 Elf_Data *data; 3827 Elf_Scn *scn; 3828 Elf64_Shdr *sh; 3829 3830 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3831 * section. Since section count retrieved by elf_getshdrnum() does 3832 * include sec #0, it is already the necessary size of an array to keep 3833 * all the sections. 3834 */ 3835 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3836 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3837 obj->path, elf_errmsg(-1)); 3838 return -LIBBPF_ERRNO__FORMAT; 3839 } 3840 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3841 if (!obj->efile.secs) 3842 return -ENOMEM; 3843 3844 /* a bunch of ELF parsing functionality depends on processing symbols, 3845 * so do the first pass and find the symbol table 3846 */ 3847 scn = NULL; 3848 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3849 sh = elf_sec_hdr(obj, scn); 3850 if (!sh) 3851 return -LIBBPF_ERRNO__FORMAT; 3852 3853 if (sh->sh_type == SHT_SYMTAB) { 3854 if (obj->efile.symbols) { 3855 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3856 return -LIBBPF_ERRNO__FORMAT; 3857 } 3858 3859 data = elf_sec_data(obj, scn); 3860 if (!data) 3861 return -LIBBPF_ERRNO__FORMAT; 3862 3863 idx = elf_ndxscn(scn); 3864 3865 obj->efile.symbols = data; 3866 obj->efile.symbols_shndx = idx; 3867 obj->efile.strtabidx = sh->sh_link; 3868 } 3869 } 3870 3871 if (!obj->efile.symbols) { 3872 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3873 obj->path); 3874 return -ENOENT; 3875 } 3876 3877 scn = NULL; 3878 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3879 idx = elf_ndxscn(scn); 3880 sec_desc = &obj->efile.secs[idx]; 3881 3882 sh = elf_sec_hdr(obj, scn); 3883 if (!sh) 3884 return -LIBBPF_ERRNO__FORMAT; 3885 3886 name = elf_sec_str(obj, sh->sh_name); 3887 if (!name) 3888 return -LIBBPF_ERRNO__FORMAT; 3889 3890 if (ignore_elf_section(sh, name)) 3891 continue; 3892 3893 data = elf_sec_data(obj, scn); 3894 if (!data) 3895 return -LIBBPF_ERRNO__FORMAT; 3896 3897 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3898 idx, name, (unsigned long)data->d_size, 3899 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3900 (int)sh->sh_type); 3901 3902 if (strcmp(name, "license") == 0) { 3903 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3904 if (err) 3905 return err; 3906 } else if (strcmp(name, "version") == 0) { 3907 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3908 if (err) 3909 return err; 3910 } else if (strcmp(name, "maps") == 0) { 3911 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3912 return -ENOTSUP; 3913 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3914 obj->efile.btf_maps_shndx = idx; 3915 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3916 if (sh->sh_type != SHT_PROGBITS) 3917 return -LIBBPF_ERRNO__FORMAT; 3918 btf_data = data; 3919 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3920 if (sh->sh_type != SHT_PROGBITS) 3921 return -LIBBPF_ERRNO__FORMAT; 3922 btf_ext_data = data; 3923 } else if (sh->sh_type == SHT_SYMTAB) { 3924 /* already processed during the first pass above */ 3925 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3926 if (sh->sh_flags & SHF_EXECINSTR) { 3927 if (strcmp(name, ".text") == 0) 3928 obj->efile.text_shndx = idx; 3929 err = bpf_object__add_programs(obj, data, name, idx); 3930 if (err) 3931 return err; 3932 } else if (strcmp(name, DATA_SEC) == 0 || 3933 str_has_pfx(name, DATA_SEC ".")) { 3934 sec_desc->sec_type = SEC_DATA; 3935 sec_desc->shdr = sh; 3936 sec_desc->data = data; 3937 } else if (strcmp(name, RODATA_SEC) == 0 || 3938 str_has_pfx(name, RODATA_SEC ".")) { 3939 sec_desc->sec_type = SEC_RODATA; 3940 sec_desc->shdr = sh; 3941 sec_desc->data = data; 3942 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3943 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3944 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3945 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3946 sec_desc->sec_type = SEC_ST_OPS; 3947 sec_desc->shdr = sh; 3948 sec_desc->data = data; 3949 obj->efile.has_st_ops = true; 3950 } else if (strcmp(name, ARENA_SEC) == 0) { 3951 obj->efile.arena_data = data; 3952 obj->efile.arena_data_shndx = idx; 3953 } else { 3954 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3955 idx, name); 3956 } 3957 } else if (sh->sh_type == SHT_REL) { 3958 int targ_sec_idx = sh->sh_info; /* points to other section */ 3959 3960 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3961 targ_sec_idx >= obj->efile.sec_cnt) 3962 return -LIBBPF_ERRNO__FORMAT; 3963 3964 /* Only do relo for section with exec instructions */ 3965 if (!section_have_execinstr(obj, targ_sec_idx) && 3966 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3967 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3968 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3969 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3970 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3971 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3972 idx, name, targ_sec_idx, 3973 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3974 continue; 3975 } 3976 3977 sec_desc->sec_type = SEC_RELO; 3978 sec_desc->shdr = sh; 3979 sec_desc->data = data; 3980 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3981 str_has_pfx(name, BSS_SEC "."))) { 3982 sec_desc->sec_type = SEC_BSS; 3983 sec_desc->shdr = sh; 3984 sec_desc->data = data; 3985 } else { 3986 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3987 (size_t)sh->sh_size); 3988 } 3989 } 3990 3991 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3992 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3993 return -LIBBPF_ERRNO__FORMAT; 3994 } 3995 3996 /* change BPF program insns to native endianness for introspection */ 3997 if (!is_native_endianness(obj)) 3998 bpf_object_bswap_progs(obj); 3999 4000 /* sort BPF programs by section name and in-section instruction offset 4001 * for faster search 4002 */ 4003 if (obj->nr_programs) 4004 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4005 4006 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4007 } 4008 4009 static bool sym_is_extern(const Elf64_Sym *sym) 4010 { 4011 int bind = ELF64_ST_BIND(sym->st_info); 4012 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4013 return sym->st_shndx == SHN_UNDEF && 4014 (bind == STB_GLOBAL || bind == STB_WEAK) && 4015 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4016 } 4017 4018 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4019 { 4020 int bind = ELF64_ST_BIND(sym->st_info); 4021 int type = ELF64_ST_TYPE(sym->st_info); 4022 4023 /* in .text section */ 4024 if (sym->st_shndx != text_shndx) 4025 return false; 4026 4027 /* local function */ 4028 if (bind == STB_LOCAL && type == STT_SECTION) 4029 return true; 4030 4031 /* global function */ 4032 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4033 } 4034 4035 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4036 { 4037 const struct btf_type *t; 4038 const char *tname; 4039 int i, n; 4040 4041 if (!btf) 4042 return -ESRCH; 4043 4044 n = btf__type_cnt(btf); 4045 for (i = 1; i < n; i++) { 4046 t = btf__type_by_id(btf, i); 4047 4048 if (!btf_is_var(t) && !btf_is_func(t)) 4049 continue; 4050 4051 tname = btf__name_by_offset(btf, t->name_off); 4052 if (strcmp(tname, ext_name)) 4053 continue; 4054 4055 if (btf_is_var(t) && 4056 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4057 return -EINVAL; 4058 4059 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4060 return -EINVAL; 4061 4062 return i; 4063 } 4064 4065 return -ENOENT; 4066 } 4067 4068 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4069 const struct btf_var_secinfo *vs; 4070 const struct btf_type *t; 4071 int i, j, n; 4072 4073 if (!btf) 4074 return -ESRCH; 4075 4076 n = btf__type_cnt(btf); 4077 for (i = 1; i < n; i++) { 4078 t = btf__type_by_id(btf, i); 4079 4080 if (!btf_is_datasec(t)) 4081 continue; 4082 4083 vs = btf_var_secinfos(t); 4084 for (j = 0; j < btf_vlen(t); j++, vs++) { 4085 if (vs->type == ext_btf_id) 4086 return i; 4087 } 4088 } 4089 4090 return -ENOENT; 4091 } 4092 4093 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4094 bool *is_signed) 4095 { 4096 const struct btf_type *t; 4097 const char *name; 4098 4099 t = skip_mods_and_typedefs(btf, id, NULL); 4100 name = btf__name_by_offset(btf, t->name_off); 4101 4102 if (is_signed) 4103 *is_signed = false; 4104 switch (btf_kind(t)) { 4105 case BTF_KIND_INT: { 4106 int enc = btf_int_encoding(t); 4107 4108 if (enc & BTF_INT_BOOL) 4109 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4110 if (is_signed) 4111 *is_signed = enc & BTF_INT_SIGNED; 4112 if (t->size == 1) 4113 return KCFG_CHAR; 4114 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4115 return KCFG_UNKNOWN; 4116 return KCFG_INT; 4117 } 4118 case BTF_KIND_ENUM: 4119 if (t->size != 4) 4120 return KCFG_UNKNOWN; 4121 if (strcmp(name, "libbpf_tristate")) 4122 return KCFG_UNKNOWN; 4123 return KCFG_TRISTATE; 4124 case BTF_KIND_ENUM64: 4125 if (strcmp(name, "libbpf_tristate")) 4126 return KCFG_UNKNOWN; 4127 return KCFG_TRISTATE; 4128 case BTF_KIND_ARRAY: 4129 if (btf_array(t)->nelems == 0) 4130 return KCFG_UNKNOWN; 4131 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4132 return KCFG_UNKNOWN; 4133 return KCFG_CHAR_ARR; 4134 default: 4135 return KCFG_UNKNOWN; 4136 } 4137 } 4138 4139 static int cmp_externs(const void *_a, const void *_b) 4140 { 4141 const struct extern_desc *a = _a; 4142 const struct extern_desc *b = _b; 4143 4144 if (a->type != b->type) 4145 return a->type < b->type ? -1 : 1; 4146 4147 if (a->type == EXT_KCFG) { 4148 /* descending order by alignment requirements */ 4149 if (a->kcfg.align != b->kcfg.align) 4150 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4151 /* ascending order by size, within same alignment class */ 4152 if (a->kcfg.sz != b->kcfg.sz) 4153 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4154 } 4155 4156 /* resolve ties by name */ 4157 return strcmp(a->name, b->name); 4158 } 4159 4160 static int find_int_btf_id(const struct btf *btf) 4161 { 4162 const struct btf_type *t; 4163 int i, n; 4164 4165 n = btf__type_cnt(btf); 4166 for (i = 1; i < n; i++) { 4167 t = btf__type_by_id(btf, i); 4168 4169 if (btf_is_int(t) && btf_int_bits(t) == 32) 4170 return i; 4171 } 4172 4173 return 0; 4174 } 4175 4176 static int add_dummy_ksym_var(struct btf *btf) 4177 { 4178 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4179 const struct btf_var_secinfo *vs; 4180 const struct btf_type *sec; 4181 4182 if (!btf) 4183 return 0; 4184 4185 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4186 BTF_KIND_DATASEC); 4187 if (sec_btf_id < 0) 4188 return 0; 4189 4190 sec = btf__type_by_id(btf, sec_btf_id); 4191 vs = btf_var_secinfos(sec); 4192 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4193 const struct btf_type *vt; 4194 4195 vt = btf__type_by_id(btf, vs->type); 4196 if (btf_is_func(vt)) 4197 break; 4198 } 4199 4200 /* No func in ksyms sec. No need to add dummy var. */ 4201 if (i == btf_vlen(sec)) 4202 return 0; 4203 4204 int_btf_id = find_int_btf_id(btf); 4205 dummy_var_btf_id = btf__add_var(btf, 4206 "dummy_ksym", 4207 BTF_VAR_GLOBAL_ALLOCATED, 4208 int_btf_id); 4209 if (dummy_var_btf_id < 0) 4210 pr_warn("cannot create a dummy_ksym var\n"); 4211 4212 return dummy_var_btf_id; 4213 } 4214 4215 static int bpf_object__collect_externs(struct bpf_object *obj) 4216 { 4217 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4218 const struct btf_type *t; 4219 struct extern_desc *ext; 4220 int i, n, off, dummy_var_btf_id; 4221 const char *ext_name, *sec_name; 4222 size_t ext_essent_len; 4223 Elf_Scn *scn; 4224 Elf64_Shdr *sh; 4225 4226 if (!obj->efile.symbols) 4227 return 0; 4228 4229 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4230 sh = elf_sec_hdr(obj, scn); 4231 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4232 return -LIBBPF_ERRNO__FORMAT; 4233 4234 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4235 if (dummy_var_btf_id < 0) 4236 return dummy_var_btf_id; 4237 4238 n = sh->sh_size / sh->sh_entsize; 4239 pr_debug("looking for externs among %d symbols...\n", n); 4240 4241 for (i = 0; i < n; i++) { 4242 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4243 4244 if (!sym) 4245 return -LIBBPF_ERRNO__FORMAT; 4246 if (!sym_is_extern(sym)) 4247 continue; 4248 ext_name = elf_sym_str(obj, sym->st_name); 4249 if (!ext_name || !ext_name[0]) 4250 continue; 4251 4252 ext = obj->externs; 4253 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4254 if (!ext) 4255 return -ENOMEM; 4256 obj->externs = ext; 4257 ext = &ext[obj->nr_extern]; 4258 memset(ext, 0, sizeof(*ext)); 4259 obj->nr_extern++; 4260 4261 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4262 if (ext->btf_id <= 0) { 4263 pr_warn("failed to find BTF for extern '%s': %d\n", 4264 ext_name, ext->btf_id); 4265 return ext->btf_id; 4266 } 4267 t = btf__type_by_id(obj->btf, ext->btf_id); 4268 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4269 if (!ext->name) 4270 return -ENOMEM; 4271 ext->sym_idx = i; 4272 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4273 4274 ext_essent_len = bpf_core_essential_name_len(ext->name); 4275 ext->essent_name = NULL; 4276 if (ext_essent_len != strlen(ext->name)) { 4277 ext->essent_name = strndup(ext->name, ext_essent_len); 4278 if (!ext->essent_name) 4279 return -ENOMEM; 4280 } 4281 4282 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4283 if (ext->sec_btf_id <= 0) { 4284 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4285 ext_name, ext->btf_id, ext->sec_btf_id); 4286 return ext->sec_btf_id; 4287 } 4288 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4289 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4290 4291 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4292 if (btf_is_func(t)) { 4293 pr_warn("extern function %s is unsupported under %s section\n", 4294 ext->name, KCONFIG_SEC); 4295 return -ENOTSUP; 4296 } 4297 kcfg_sec = sec; 4298 ext->type = EXT_KCFG; 4299 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4300 if (ext->kcfg.sz <= 0) { 4301 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4302 ext_name, ext->kcfg.sz); 4303 return ext->kcfg.sz; 4304 } 4305 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4306 if (ext->kcfg.align <= 0) { 4307 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4308 ext_name, ext->kcfg.align); 4309 return -EINVAL; 4310 } 4311 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4312 &ext->kcfg.is_signed); 4313 if (ext->kcfg.type == KCFG_UNKNOWN) { 4314 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4315 return -ENOTSUP; 4316 } 4317 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4318 ksym_sec = sec; 4319 ext->type = EXT_KSYM; 4320 skip_mods_and_typedefs(obj->btf, t->type, 4321 &ext->ksym.type_id); 4322 } else { 4323 pr_warn("unrecognized extern section '%s'\n", sec_name); 4324 return -ENOTSUP; 4325 } 4326 } 4327 pr_debug("collected %d externs total\n", obj->nr_extern); 4328 4329 if (!obj->nr_extern) 4330 return 0; 4331 4332 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4333 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4334 4335 /* for .ksyms section, we need to turn all externs into allocated 4336 * variables in BTF to pass kernel verification; we do this by 4337 * pretending that each extern is a 8-byte variable 4338 */ 4339 if (ksym_sec) { 4340 /* find existing 4-byte integer type in BTF to use for fake 4341 * extern variables in DATASEC 4342 */ 4343 int int_btf_id = find_int_btf_id(obj->btf); 4344 /* For extern function, a dummy_var added earlier 4345 * will be used to replace the vs->type and 4346 * its name string will be used to refill 4347 * the missing param's name. 4348 */ 4349 const struct btf_type *dummy_var; 4350 4351 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4352 for (i = 0; i < obj->nr_extern; i++) { 4353 ext = &obj->externs[i]; 4354 if (ext->type != EXT_KSYM) 4355 continue; 4356 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4357 i, ext->sym_idx, ext->name); 4358 } 4359 4360 sec = ksym_sec; 4361 n = btf_vlen(sec); 4362 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4363 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4364 struct btf_type *vt; 4365 4366 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4367 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4368 ext = find_extern_by_name(obj, ext_name); 4369 if (!ext) { 4370 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4371 btf_kind_str(vt), ext_name); 4372 return -ESRCH; 4373 } 4374 if (btf_is_func(vt)) { 4375 const struct btf_type *func_proto; 4376 struct btf_param *param; 4377 int j; 4378 4379 func_proto = btf__type_by_id(obj->btf, 4380 vt->type); 4381 param = btf_params(func_proto); 4382 /* Reuse the dummy_var string if the 4383 * func proto does not have param name. 4384 */ 4385 for (j = 0; j < btf_vlen(func_proto); j++) 4386 if (param[j].type && !param[j].name_off) 4387 param[j].name_off = 4388 dummy_var->name_off; 4389 vs->type = dummy_var_btf_id; 4390 vt->info &= ~0xffff; 4391 vt->info |= BTF_FUNC_GLOBAL; 4392 } else { 4393 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4394 vt->type = int_btf_id; 4395 } 4396 vs->offset = off; 4397 vs->size = sizeof(int); 4398 } 4399 sec->size = off; 4400 } 4401 4402 if (kcfg_sec) { 4403 sec = kcfg_sec; 4404 /* for kcfg externs calculate their offsets within a .kconfig map */ 4405 off = 0; 4406 for (i = 0; i < obj->nr_extern; i++) { 4407 ext = &obj->externs[i]; 4408 if (ext->type != EXT_KCFG) 4409 continue; 4410 4411 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4412 off = ext->kcfg.data_off + ext->kcfg.sz; 4413 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4414 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4415 } 4416 sec->size = off; 4417 n = btf_vlen(sec); 4418 for (i = 0; i < n; i++) { 4419 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4420 4421 t = btf__type_by_id(obj->btf, vs->type); 4422 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4423 ext = find_extern_by_name(obj, ext_name); 4424 if (!ext) { 4425 pr_warn("failed to find extern definition for BTF var '%s'\n", 4426 ext_name); 4427 return -ESRCH; 4428 } 4429 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4430 vs->offset = ext->kcfg.data_off; 4431 } 4432 } 4433 return 0; 4434 } 4435 4436 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4437 { 4438 return prog->sec_idx == obj->efile.text_shndx; 4439 } 4440 4441 struct bpf_program * 4442 bpf_object__find_program_by_name(const struct bpf_object *obj, 4443 const char *name) 4444 { 4445 struct bpf_program *prog; 4446 4447 bpf_object__for_each_program(prog, obj) { 4448 if (prog_is_subprog(obj, prog)) 4449 continue; 4450 if (!strcmp(prog->name, name)) 4451 return prog; 4452 } 4453 return errno = ENOENT, NULL; 4454 } 4455 4456 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4457 int shndx) 4458 { 4459 switch (obj->efile.secs[shndx].sec_type) { 4460 case SEC_BSS: 4461 case SEC_DATA: 4462 case SEC_RODATA: 4463 return true; 4464 default: 4465 return false; 4466 } 4467 } 4468 4469 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4470 int shndx) 4471 { 4472 return shndx == obj->efile.btf_maps_shndx; 4473 } 4474 4475 static enum libbpf_map_type 4476 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4477 { 4478 if (shndx == obj->efile.symbols_shndx) 4479 return LIBBPF_MAP_KCONFIG; 4480 4481 switch (obj->efile.secs[shndx].sec_type) { 4482 case SEC_BSS: 4483 return LIBBPF_MAP_BSS; 4484 case SEC_DATA: 4485 return LIBBPF_MAP_DATA; 4486 case SEC_RODATA: 4487 return LIBBPF_MAP_RODATA; 4488 default: 4489 return LIBBPF_MAP_UNSPEC; 4490 } 4491 } 4492 4493 static int bpf_prog_compute_hash(struct bpf_program *prog) 4494 { 4495 struct bpf_insn *purged; 4496 int i, err; 4497 4498 purged = calloc(prog->insns_cnt, BPF_INSN_SZ); 4499 if (!purged) 4500 return -ENOMEM; 4501 4502 /* If relocations have been done, the map_fd needs to be 4503 * discarded for the digest calculation. 4504 */ 4505 for (i = 0; i < prog->insns_cnt; i++) { 4506 purged[i] = prog->insns[i]; 4507 if (purged[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 4508 (purged[i].src_reg == BPF_PSEUDO_MAP_FD || 4509 purged[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 4510 purged[i].imm = 0; 4511 i++; 4512 if (i >= prog->insns_cnt || 4513 prog->insns[i].code != 0 || 4514 prog->insns[i].dst_reg != 0 || 4515 prog->insns[i].src_reg != 0 || 4516 prog->insns[i].off != 0) { 4517 err = -EINVAL; 4518 goto out; 4519 } 4520 purged[i] = prog->insns[i]; 4521 purged[i].imm = 0; 4522 } 4523 } 4524 err = libbpf_sha256(purged, prog->insns_cnt * sizeof(struct bpf_insn), 4525 prog->hash, SHA256_DIGEST_LENGTH); 4526 out: 4527 free(purged); 4528 return err; 4529 } 4530 4531 static int bpf_program__record_reloc(struct bpf_program *prog, 4532 struct reloc_desc *reloc_desc, 4533 __u32 insn_idx, const char *sym_name, 4534 const Elf64_Sym *sym, const Elf64_Rel *rel) 4535 { 4536 struct bpf_insn *insn = &prog->insns[insn_idx]; 4537 size_t map_idx, nr_maps = prog->obj->nr_maps; 4538 struct bpf_object *obj = prog->obj; 4539 __u32 shdr_idx = sym->st_shndx; 4540 enum libbpf_map_type type; 4541 const char *sym_sec_name; 4542 struct bpf_map *map; 4543 4544 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4545 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4546 prog->name, sym_name, insn_idx, insn->code); 4547 return -LIBBPF_ERRNO__RELOC; 4548 } 4549 4550 if (sym_is_extern(sym)) { 4551 int sym_idx = ELF64_R_SYM(rel->r_info); 4552 int i, n = obj->nr_extern; 4553 struct extern_desc *ext; 4554 4555 for (i = 0; i < n; i++) { 4556 ext = &obj->externs[i]; 4557 if (ext->sym_idx == sym_idx) 4558 break; 4559 } 4560 if (i >= n) { 4561 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4562 prog->name, sym_name, sym_idx); 4563 return -LIBBPF_ERRNO__RELOC; 4564 } 4565 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4566 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4567 if (insn->code == (BPF_JMP | BPF_CALL)) 4568 reloc_desc->type = RELO_EXTERN_CALL; 4569 else 4570 reloc_desc->type = RELO_EXTERN_LD64; 4571 reloc_desc->insn_idx = insn_idx; 4572 reloc_desc->ext_idx = i; 4573 return 0; 4574 } 4575 4576 /* sub-program call relocation */ 4577 if (is_call_insn(insn)) { 4578 if (insn->src_reg != BPF_PSEUDO_CALL) { 4579 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4580 return -LIBBPF_ERRNO__RELOC; 4581 } 4582 /* text_shndx can be 0, if no default "main" program exists */ 4583 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4584 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4585 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4586 prog->name, sym_name, sym_sec_name); 4587 return -LIBBPF_ERRNO__RELOC; 4588 } 4589 if (sym->st_value % BPF_INSN_SZ) { 4590 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4591 prog->name, sym_name, (size_t)sym->st_value); 4592 return -LIBBPF_ERRNO__RELOC; 4593 } 4594 reloc_desc->type = RELO_CALL; 4595 reloc_desc->insn_idx = insn_idx; 4596 reloc_desc->sym_off = sym->st_value; 4597 return 0; 4598 } 4599 4600 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4601 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4602 prog->name, sym_name, shdr_idx); 4603 return -LIBBPF_ERRNO__RELOC; 4604 } 4605 4606 /* loading subprog addresses */ 4607 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4608 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4609 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4610 */ 4611 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4612 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4613 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4614 return -LIBBPF_ERRNO__RELOC; 4615 } 4616 4617 reloc_desc->type = RELO_SUBPROG_ADDR; 4618 reloc_desc->insn_idx = insn_idx; 4619 reloc_desc->sym_off = sym->st_value; 4620 return 0; 4621 } 4622 4623 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4624 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4625 4626 /* arena data relocation */ 4627 if (shdr_idx == obj->efile.arena_data_shndx) { 4628 if (obj->arena_map_idx < 0) { 4629 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n", 4630 prog->name, insn_idx); 4631 return -LIBBPF_ERRNO__RELOC; 4632 } 4633 reloc_desc->type = RELO_DATA; 4634 reloc_desc->insn_idx = insn_idx; 4635 reloc_desc->map_idx = obj->arena_map_idx; 4636 reloc_desc->sym_off = sym->st_value; 4637 4638 map = &obj->maps[obj->arena_map_idx]; 4639 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4640 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4641 map->sec_offset, insn_idx); 4642 return 0; 4643 } 4644 4645 /* generic map reference relocation */ 4646 if (type == LIBBPF_MAP_UNSPEC) { 4647 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4648 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4649 prog->name, sym_name, sym_sec_name); 4650 return -LIBBPF_ERRNO__RELOC; 4651 } 4652 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4653 map = &obj->maps[map_idx]; 4654 if (map->libbpf_type != type || 4655 map->sec_idx != sym->st_shndx || 4656 map->sec_offset != sym->st_value) 4657 continue; 4658 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4659 prog->name, map_idx, map->name, map->sec_idx, 4660 map->sec_offset, insn_idx); 4661 break; 4662 } 4663 if (map_idx >= nr_maps) { 4664 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4665 prog->name, sym_sec_name, (size_t)sym->st_value); 4666 return -LIBBPF_ERRNO__RELOC; 4667 } 4668 reloc_desc->type = RELO_LD64; 4669 reloc_desc->insn_idx = insn_idx; 4670 reloc_desc->map_idx = map_idx; 4671 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4672 return 0; 4673 } 4674 4675 /* global data map relocation */ 4676 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4677 pr_warn("prog '%s': bad data relo against section '%s'\n", 4678 prog->name, sym_sec_name); 4679 return -LIBBPF_ERRNO__RELOC; 4680 } 4681 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4682 map = &obj->maps[map_idx]; 4683 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4684 continue; 4685 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4686 prog->name, map_idx, map->name, map->sec_idx, 4687 map->sec_offset, insn_idx); 4688 break; 4689 } 4690 if (map_idx >= nr_maps) { 4691 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4692 prog->name, sym_sec_name); 4693 return -LIBBPF_ERRNO__RELOC; 4694 } 4695 4696 reloc_desc->type = RELO_DATA; 4697 reloc_desc->insn_idx = insn_idx; 4698 reloc_desc->map_idx = map_idx; 4699 reloc_desc->sym_off = sym->st_value; 4700 return 0; 4701 } 4702 4703 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4704 { 4705 return insn_idx >= prog->sec_insn_off && 4706 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4707 } 4708 4709 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4710 size_t sec_idx, size_t insn_idx) 4711 { 4712 int l = 0, r = obj->nr_programs - 1, m; 4713 struct bpf_program *prog; 4714 4715 if (!obj->nr_programs) 4716 return NULL; 4717 4718 while (l < r) { 4719 m = l + (r - l + 1) / 2; 4720 prog = &obj->programs[m]; 4721 4722 if (prog->sec_idx < sec_idx || 4723 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4724 l = m; 4725 else 4726 r = m - 1; 4727 } 4728 /* matching program could be at index l, but it still might be the 4729 * wrong one, so we need to double check conditions for the last time 4730 */ 4731 prog = &obj->programs[l]; 4732 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4733 return prog; 4734 return NULL; 4735 } 4736 4737 static int 4738 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4739 { 4740 const char *relo_sec_name, *sec_name; 4741 size_t sec_idx = shdr->sh_info, sym_idx; 4742 struct bpf_program *prog; 4743 struct reloc_desc *relos; 4744 int err, i, nrels; 4745 const char *sym_name; 4746 __u32 insn_idx; 4747 Elf_Scn *scn; 4748 Elf_Data *scn_data; 4749 Elf64_Sym *sym; 4750 Elf64_Rel *rel; 4751 4752 if (sec_idx >= obj->efile.sec_cnt) 4753 return -EINVAL; 4754 4755 scn = elf_sec_by_idx(obj, sec_idx); 4756 scn_data = elf_sec_data(obj, scn); 4757 if (!scn_data) 4758 return -LIBBPF_ERRNO__FORMAT; 4759 4760 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4761 sec_name = elf_sec_name(obj, scn); 4762 if (!relo_sec_name || !sec_name) 4763 return -EINVAL; 4764 4765 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4766 relo_sec_name, sec_idx, sec_name); 4767 nrels = shdr->sh_size / shdr->sh_entsize; 4768 4769 for (i = 0; i < nrels; i++) { 4770 rel = elf_rel_by_idx(data, i); 4771 if (!rel) { 4772 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4773 return -LIBBPF_ERRNO__FORMAT; 4774 } 4775 4776 sym_idx = ELF64_R_SYM(rel->r_info); 4777 sym = elf_sym_by_idx(obj, sym_idx); 4778 if (!sym) { 4779 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4780 relo_sec_name, sym_idx, i); 4781 return -LIBBPF_ERRNO__FORMAT; 4782 } 4783 4784 if (sym->st_shndx >= obj->efile.sec_cnt) { 4785 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4786 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4787 return -LIBBPF_ERRNO__FORMAT; 4788 } 4789 4790 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4791 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4792 relo_sec_name, (size_t)rel->r_offset, i); 4793 return -LIBBPF_ERRNO__FORMAT; 4794 } 4795 4796 insn_idx = rel->r_offset / BPF_INSN_SZ; 4797 /* relocations against static functions are recorded as 4798 * relocations against the section that contains a function; 4799 * in such case, symbol will be STT_SECTION and sym.st_name 4800 * will point to empty string (0), so fetch section name 4801 * instead 4802 */ 4803 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4804 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4805 else 4806 sym_name = elf_sym_str(obj, sym->st_name); 4807 sym_name = sym_name ?: "<?"; 4808 4809 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4810 relo_sec_name, i, insn_idx, sym_name); 4811 4812 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4813 if (!prog) { 4814 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4815 relo_sec_name, i, sec_name, insn_idx); 4816 continue; 4817 } 4818 4819 relos = libbpf_reallocarray(prog->reloc_desc, 4820 prog->nr_reloc + 1, sizeof(*relos)); 4821 if (!relos) 4822 return -ENOMEM; 4823 prog->reloc_desc = relos; 4824 4825 /* adjust insn_idx to local BPF program frame of reference */ 4826 insn_idx -= prog->sec_insn_off; 4827 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4828 insn_idx, sym_name, sym, rel); 4829 if (err) 4830 return err; 4831 4832 prog->nr_reloc++; 4833 } 4834 return 0; 4835 } 4836 4837 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4838 { 4839 int id; 4840 4841 if (!obj->btf) 4842 return -ENOENT; 4843 4844 /* if it's BTF-defined map, we don't need to search for type IDs. 4845 * For struct_ops map, it does not need btf_key_type_id and 4846 * btf_value_type_id. 4847 */ 4848 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4849 return 0; 4850 4851 /* 4852 * LLVM annotates global data differently in BTF, that is, 4853 * only as '.data', '.bss' or '.rodata'. 4854 */ 4855 if (!bpf_map__is_internal(map)) 4856 return -ENOENT; 4857 4858 id = btf__find_by_name(obj->btf, map->real_name); 4859 if (id < 0) 4860 return id; 4861 4862 map->btf_key_type_id = 0; 4863 map->btf_value_type_id = id; 4864 return 0; 4865 } 4866 4867 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4868 { 4869 char file[PATH_MAX], buff[4096]; 4870 FILE *fp; 4871 __u32 val; 4872 int err; 4873 4874 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4875 memset(info, 0, sizeof(*info)); 4876 4877 fp = fopen(file, "re"); 4878 if (!fp) { 4879 err = -errno; 4880 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4881 errstr(err)); 4882 return err; 4883 } 4884 4885 while (fgets(buff, sizeof(buff), fp)) { 4886 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4887 info->type = val; 4888 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4889 info->key_size = val; 4890 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4891 info->value_size = val; 4892 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4893 info->max_entries = val; 4894 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4895 info->map_flags = val; 4896 } 4897 4898 fclose(fp); 4899 4900 return 0; 4901 } 4902 4903 static bool map_is_created(const struct bpf_map *map) 4904 { 4905 return map->obj->state >= OBJ_PREPARED || map->reused; 4906 } 4907 4908 bool bpf_map__autocreate(const struct bpf_map *map) 4909 { 4910 return map->autocreate; 4911 } 4912 4913 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4914 { 4915 if (map_is_created(map)) 4916 return libbpf_err(-EBUSY); 4917 4918 map->autocreate = autocreate; 4919 return 0; 4920 } 4921 4922 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4923 { 4924 if (!bpf_map__is_struct_ops(map)) 4925 return libbpf_err(-EINVAL); 4926 4927 map->autoattach = autoattach; 4928 return 0; 4929 } 4930 4931 bool bpf_map__autoattach(const struct bpf_map *map) 4932 { 4933 return map->autoattach; 4934 } 4935 4936 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4937 { 4938 struct bpf_map_info info; 4939 __u32 len = sizeof(info), name_len; 4940 int new_fd, err; 4941 char *new_name; 4942 4943 memset(&info, 0, len); 4944 err = bpf_map_get_info_by_fd(fd, &info, &len); 4945 if (err && errno == EINVAL) 4946 err = bpf_get_map_info_from_fdinfo(fd, &info); 4947 if (err) 4948 return libbpf_err(err); 4949 4950 name_len = strlen(info.name); 4951 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4952 new_name = strdup(map->name); 4953 else 4954 new_name = strdup(info.name); 4955 4956 if (!new_name) 4957 return libbpf_err(-errno); 4958 4959 /* 4960 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4961 * This is similar to what we do in ensure_good_fd(), but without 4962 * closing original FD. 4963 */ 4964 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4965 if (new_fd < 0) { 4966 err = -errno; 4967 goto err_free_new_name; 4968 } 4969 4970 err = reuse_fd(map->fd, new_fd); 4971 if (err) 4972 goto err_free_new_name; 4973 4974 free(map->name); 4975 4976 map->name = new_name; 4977 map->def.type = info.type; 4978 map->def.key_size = info.key_size; 4979 map->def.value_size = info.value_size; 4980 map->def.max_entries = info.max_entries; 4981 map->def.map_flags = info.map_flags; 4982 map->btf_key_type_id = info.btf_key_type_id; 4983 map->btf_value_type_id = info.btf_value_type_id; 4984 map->reused = true; 4985 map->map_extra = info.map_extra; 4986 4987 return 0; 4988 4989 err_free_new_name: 4990 free(new_name); 4991 return libbpf_err(err); 4992 } 4993 4994 __u32 bpf_map__max_entries(const struct bpf_map *map) 4995 { 4996 return map->def.max_entries; 4997 } 4998 4999 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 5000 { 5001 if (!bpf_map_type__is_map_in_map(map->def.type)) 5002 return errno = EINVAL, NULL; 5003 5004 return map->inner_map; 5005 } 5006 5007 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 5008 { 5009 if (map_is_created(map)) 5010 return libbpf_err(-EBUSY); 5011 5012 map->def.max_entries = max_entries; 5013 5014 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 5015 if (map_is_ringbuf(map)) 5016 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5017 5018 return 0; 5019 } 5020 5021 static int bpf_object_prepare_token(struct bpf_object *obj) 5022 { 5023 const char *bpffs_path; 5024 int bpffs_fd = -1, token_fd, err; 5025 bool mandatory; 5026 enum libbpf_print_level level; 5027 5028 /* token is explicitly prevented */ 5029 if (obj->token_path && obj->token_path[0] == '\0') { 5030 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 5031 return 0; 5032 } 5033 5034 mandatory = obj->token_path != NULL; 5035 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 5036 5037 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 5038 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 5039 if (bpffs_fd < 0) { 5040 err = -errno; 5041 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 5042 obj->name, errstr(err), bpffs_path, 5043 mandatory ? "" : ", skipping optional step..."); 5044 return mandatory ? err : 0; 5045 } 5046 5047 token_fd = bpf_token_create(bpffs_fd, 0); 5048 close(bpffs_fd); 5049 if (token_fd < 0) { 5050 if (!mandatory && token_fd == -ENOENT) { 5051 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5052 obj->name, bpffs_path); 5053 return 0; 5054 } 5055 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5056 obj->name, token_fd, bpffs_path, 5057 mandatory ? "" : ", skipping optional step..."); 5058 return mandatory ? token_fd : 0; 5059 } 5060 5061 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5062 if (!obj->feat_cache) { 5063 close(token_fd); 5064 return -ENOMEM; 5065 } 5066 5067 obj->token_fd = token_fd; 5068 obj->feat_cache->token_fd = token_fd; 5069 5070 return 0; 5071 } 5072 5073 static int 5074 bpf_object__probe_loading(struct bpf_object *obj) 5075 { 5076 struct bpf_insn insns[] = { 5077 BPF_MOV64_IMM(BPF_REG_0, 0), 5078 BPF_EXIT_INSN(), 5079 }; 5080 int ret, insn_cnt = ARRAY_SIZE(insns); 5081 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5082 .token_fd = obj->token_fd, 5083 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5084 ); 5085 5086 if (obj->gen_loader) 5087 return 0; 5088 5089 ret = bump_rlimit_memlock(); 5090 if (ret) 5091 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5092 errstr(ret)); 5093 5094 /* make sure basic loading works */ 5095 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5096 if (ret < 0) 5097 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5098 if (ret < 0) { 5099 ret = errno; 5100 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5101 __func__, errstr(ret)); 5102 return -ret; 5103 } 5104 close(ret); 5105 5106 return 0; 5107 } 5108 5109 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5110 { 5111 if (obj->gen_loader) 5112 /* To generate loader program assume the latest kernel 5113 * to avoid doing extra prog_load, map_create syscalls. 5114 */ 5115 return true; 5116 5117 if (obj->token_fd) 5118 return feat_supported(obj->feat_cache, feat_id); 5119 5120 return feat_supported(NULL, feat_id); 5121 } 5122 5123 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5124 { 5125 struct bpf_map_info map_info; 5126 __u32 map_info_len = sizeof(map_info); 5127 int err; 5128 5129 memset(&map_info, 0, map_info_len); 5130 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5131 if (err && errno == EINVAL) 5132 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5133 if (err) { 5134 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5135 errstr(err)); 5136 return false; 5137 } 5138 5139 /* 5140 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with 5141 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time. 5142 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from 5143 * bpf_get_map_info_by_fd() when checking for compatibility with an 5144 * existing DEVMAP. 5145 */ 5146 if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH) 5147 map_info.map_flags &= ~BPF_F_RDONLY_PROG; 5148 5149 return (map_info.type == map->def.type && 5150 map_info.key_size == map->def.key_size && 5151 map_info.value_size == map->def.value_size && 5152 map_info.max_entries == map->def.max_entries && 5153 map_info.map_flags == map->def.map_flags && 5154 map_info.map_extra == map->map_extra); 5155 } 5156 5157 static int 5158 bpf_object__reuse_map(struct bpf_map *map) 5159 { 5160 int err, pin_fd; 5161 5162 pin_fd = bpf_obj_get(map->pin_path); 5163 if (pin_fd < 0) { 5164 err = -errno; 5165 if (err == -ENOENT) { 5166 pr_debug("found no pinned map to reuse at '%s'\n", 5167 map->pin_path); 5168 return 0; 5169 } 5170 5171 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5172 map->pin_path, errstr(err)); 5173 return err; 5174 } 5175 5176 if (!map_is_reuse_compat(map, pin_fd)) { 5177 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5178 map->pin_path); 5179 close(pin_fd); 5180 return -EINVAL; 5181 } 5182 5183 err = bpf_map__reuse_fd(map, pin_fd); 5184 close(pin_fd); 5185 if (err) 5186 return err; 5187 5188 map->pinned = true; 5189 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5190 5191 return 0; 5192 } 5193 5194 static int 5195 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5196 { 5197 enum libbpf_map_type map_type = map->libbpf_type; 5198 int err, zero = 0; 5199 size_t mmap_sz; 5200 5201 if (obj->gen_loader) { 5202 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5203 map->mmaped, map->def.value_size); 5204 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5205 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5206 return 0; 5207 } 5208 5209 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5210 if (err) { 5211 err = -errno; 5212 pr_warn("map '%s': failed to set initial contents: %s\n", 5213 bpf_map__name(map), errstr(err)); 5214 return err; 5215 } 5216 5217 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5218 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5219 err = bpf_map_freeze(map->fd); 5220 if (err) { 5221 err = -errno; 5222 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5223 bpf_map__name(map), errstr(err)); 5224 return err; 5225 } 5226 } 5227 5228 /* Remap anonymous mmap()-ed "map initialization image" as 5229 * a BPF map-backed mmap()-ed memory, but preserving the same 5230 * memory address. This will cause kernel to change process' 5231 * page table to point to a different piece of kernel memory, 5232 * but from userspace point of view memory address (and its 5233 * contents, being identical at this point) will stay the 5234 * same. This mapping will be released by bpf_object__close() 5235 * as per normal clean up procedure. 5236 */ 5237 mmap_sz = bpf_map_mmap_sz(map); 5238 if (map->def.map_flags & BPF_F_MMAPABLE) { 5239 void *mmaped; 5240 int prot; 5241 5242 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5243 prot = PROT_READ; 5244 else 5245 prot = PROT_READ | PROT_WRITE; 5246 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5247 if (mmaped == MAP_FAILED) { 5248 err = -errno; 5249 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5250 bpf_map__name(map), errstr(err)); 5251 return err; 5252 } 5253 map->mmaped = mmaped; 5254 } else if (map->mmaped) { 5255 munmap(map->mmaped, mmap_sz); 5256 map->mmaped = NULL; 5257 } 5258 5259 return 0; 5260 } 5261 5262 static void bpf_map__destroy(struct bpf_map *map); 5263 5264 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5265 { 5266 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5267 struct bpf_map_def *def = &map->def; 5268 const char *map_name = NULL; 5269 int err = 0, map_fd; 5270 5271 if (kernel_supports(obj, FEAT_PROG_NAME)) 5272 map_name = map->name; 5273 create_attr.map_ifindex = map->map_ifindex; 5274 create_attr.map_flags = def->map_flags; 5275 create_attr.numa_node = map->numa_node; 5276 create_attr.map_extra = map->map_extra; 5277 create_attr.token_fd = obj->token_fd; 5278 if (obj->token_fd) 5279 create_attr.map_flags |= BPF_F_TOKEN_FD; 5280 if (map->excl_prog) { 5281 err = bpf_prog_compute_hash(map->excl_prog); 5282 if (err) 5283 return err; 5284 5285 create_attr.excl_prog_hash = map->excl_prog->hash; 5286 create_attr.excl_prog_hash_size = SHA256_DIGEST_LENGTH; 5287 } 5288 5289 if (bpf_map__is_struct_ops(map)) { 5290 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5291 if (map->mod_btf_fd >= 0) { 5292 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5293 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5294 } 5295 } 5296 5297 if (obj->btf && btf__fd(obj->btf) >= 0) { 5298 create_attr.btf_fd = btf__fd(obj->btf); 5299 create_attr.btf_key_type_id = map->btf_key_type_id; 5300 create_attr.btf_value_type_id = map->btf_value_type_id; 5301 } 5302 5303 if (bpf_map_type__is_map_in_map(def->type)) { 5304 if (map->inner_map) { 5305 err = map_set_def_max_entries(map->inner_map); 5306 if (err) 5307 return err; 5308 err = bpf_object__create_map(obj, map->inner_map, true); 5309 if (err) { 5310 pr_warn("map '%s': failed to create inner map: %s\n", 5311 map->name, errstr(err)); 5312 return err; 5313 } 5314 map->inner_map_fd = map->inner_map->fd; 5315 } 5316 if (map->inner_map_fd >= 0) 5317 create_attr.inner_map_fd = map->inner_map_fd; 5318 } 5319 5320 switch (def->type) { 5321 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5322 case BPF_MAP_TYPE_CGROUP_ARRAY: 5323 case BPF_MAP_TYPE_STACK_TRACE: 5324 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5325 case BPF_MAP_TYPE_HASH_OF_MAPS: 5326 case BPF_MAP_TYPE_DEVMAP: 5327 case BPF_MAP_TYPE_DEVMAP_HASH: 5328 case BPF_MAP_TYPE_CPUMAP: 5329 case BPF_MAP_TYPE_XSKMAP: 5330 case BPF_MAP_TYPE_SOCKMAP: 5331 case BPF_MAP_TYPE_SOCKHASH: 5332 case BPF_MAP_TYPE_QUEUE: 5333 case BPF_MAP_TYPE_STACK: 5334 case BPF_MAP_TYPE_ARENA: 5335 create_attr.btf_fd = 0; 5336 create_attr.btf_key_type_id = 0; 5337 create_attr.btf_value_type_id = 0; 5338 map->btf_key_type_id = 0; 5339 map->btf_value_type_id = 0; 5340 break; 5341 case BPF_MAP_TYPE_STRUCT_OPS: 5342 create_attr.btf_value_type_id = 0; 5343 break; 5344 default: 5345 break; 5346 } 5347 5348 if (obj->gen_loader) { 5349 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5350 def->key_size, def->value_size, def->max_entries, 5351 &create_attr, is_inner ? -1 : map - obj->maps); 5352 /* We keep pretenting we have valid FD to pass various fd >= 0 5353 * checks by just keeping original placeholder FDs in place. 5354 * See bpf_object__add_map() comment. 5355 * This placeholder fd will not be used with any syscall and 5356 * will be reset to -1 eventually. 5357 */ 5358 map_fd = map->fd; 5359 } else { 5360 map_fd = bpf_map_create(def->type, map_name, 5361 def->key_size, def->value_size, 5362 def->max_entries, &create_attr); 5363 } 5364 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5365 err = -errno; 5366 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5367 map->name, errstr(err)); 5368 create_attr.btf_fd = 0; 5369 create_attr.btf_key_type_id = 0; 5370 create_attr.btf_value_type_id = 0; 5371 map->btf_key_type_id = 0; 5372 map->btf_value_type_id = 0; 5373 map_fd = bpf_map_create(def->type, map_name, 5374 def->key_size, def->value_size, 5375 def->max_entries, &create_attr); 5376 } 5377 5378 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5379 if (obj->gen_loader) 5380 map->inner_map->fd = -1; 5381 bpf_map__destroy(map->inner_map); 5382 zfree(&map->inner_map); 5383 } 5384 5385 if (map_fd < 0) 5386 return map_fd; 5387 5388 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5389 if (map->fd == map_fd) 5390 return 0; 5391 5392 /* Keep placeholder FD value but now point it to the BPF map object. 5393 * This way everything that relied on this map's FD (e.g., relocated 5394 * ldimm64 instructions) will stay valid and won't need adjustments. 5395 * map->fd stays valid but now point to what map_fd points to. 5396 */ 5397 return reuse_fd(map->fd, map_fd); 5398 } 5399 5400 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5401 { 5402 const struct bpf_map *targ_map; 5403 unsigned int i; 5404 int fd, err = 0; 5405 5406 for (i = 0; i < map->init_slots_sz; i++) { 5407 if (!map->init_slots[i]) 5408 continue; 5409 5410 targ_map = map->init_slots[i]; 5411 fd = targ_map->fd; 5412 5413 if (obj->gen_loader) { 5414 bpf_gen__populate_outer_map(obj->gen_loader, 5415 map - obj->maps, i, 5416 targ_map - obj->maps); 5417 } else { 5418 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5419 } 5420 if (err) { 5421 err = -errno; 5422 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5423 map->name, i, targ_map->name, fd, errstr(err)); 5424 return err; 5425 } 5426 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5427 map->name, i, targ_map->name, fd); 5428 } 5429 5430 zfree(&map->init_slots); 5431 map->init_slots_sz = 0; 5432 5433 return 0; 5434 } 5435 5436 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5437 { 5438 const struct bpf_program *targ_prog; 5439 unsigned int i; 5440 int fd, err; 5441 5442 if (obj->gen_loader) 5443 return -ENOTSUP; 5444 5445 for (i = 0; i < map->init_slots_sz; i++) { 5446 if (!map->init_slots[i]) 5447 continue; 5448 5449 targ_prog = map->init_slots[i]; 5450 fd = bpf_program__fd(targ_prog); 5451 5452 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5453 if (err) { 5454 err = -errno; 5455 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5456 map->name, i, targ_prog->name, fd, errstr(err)); 5457 return err; 5458 } 5459 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5460 map->name, i, targ_prog->name, fd); 5461 } 5462 5463 zfree(&map->init_slots); 5464 map->init_slots_sz = 0; 5465 5466 return 0; 5467 } 5468 5469 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5470 { 5471 struct bpf_map *map; 5472 int i, err; 5473 5474 for (i = 0; i < obj->nr_maps; i++) { 5475 map = &obj->maps[i]; 5476 5477 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5478 continue; 5479 5480 err = init_prog_array_slots(obj, map); 5481 if (err < 0) 5482 return err; 5483 } 5484 return 0; 5485 } 5486 5487 static int map_set_def_max_entries(struct bpf_map *map) 5488 { 5489 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5490 int nr_cpus; 5491 5492 nr_cpus = libbpf_num_possible_cpus(); 5493 if (nr_cpus < 0) { 5494 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5495 map->name, nr_cpus); 5496 return nr_cpus; 5497 } 5498 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5499 map->def.max_entries = nr_cpus; 5500 } 5501 5502 return 0; 5503 } 5504 5505 static int 5506 bpf_object__create_maps(struct bpf_object *obj) 5507 { 5508 struct bpf_map *map; 5509 unsigned int i, j; 5510 int err; 5511 bool retried; 5512 5513 for (i = 0; i < obj->nr_maps; i++) { 5514 map = &obj->maps[i]; 5515 5516 /* To support old kernels, we skip creating global data maps 5517 * (.rodata, .data, .kconfig, etc); later on, during program 5518 * loading, if we detect that at least one of the to-be-loaded 5519 * programs is referencing any global data map, we'll error 5520 * out with program name and relocation index logged. 5521 * This approach allows to accommodate Clang emitting 5522 * unnecessary .rodata.str1.1 sections for string literals, 5523 * but also it allows to have CO-RE applications that use 5524 * global variables in some of BPF programs, but not others. 5525 * If those global variable-using programs are not loaded at 5526 * runtime due to bpf_program__set_autoload(prog, false), 5527 * bpf_object loading will succeed just fine even on old 5528 * kernels. 5529 */ 5530 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5531 map->autocreate = false; 5532 5533 if (!map->autocreate) { 5534 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5535 continue; 5536 } 5537 5538 err = map_set_def_max_entries(map); 5539 if (err) 5540 goto err_out; 5541 5542 retried = false; 5543 retry: 5544 if (map->pin_path) { 5545 err = bpf_object__reuse_map(map); 5546 if (err) { 5547 pr_warn("map '%s': error reusing pinned map\n", 5548 map->name); 5549 goto err_out; 5550 } 5551 if (retried && map->fd < 0) { 5552 pr_warn("map '%s': cannot find pinned map\n", 5553 map->name); 5554 err = -ENOENT; 5555 goto err_out; 5556 } 5557 } 5558 5559 if (map->reused) { 5560 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5561 map->name, map->fd); 5562 } else { 5563 err = bpf_object__create_map(obj, map, false); 5564 if (err) 5565 goto err_out; 5566 5567 pr_debug("map '%s': created successfully, fd=%d\n", 5568 map->name, map->fd); 5569 5570 if (bpf_map__is_internal(map)) { 5571 err = bpf_object__populate_internal_map(obj, map); 5572 if (err < 0) 5573 goto err_out; 5574 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5575 map->mmaped = mmap((void *)(long)map->map_extra, 5576 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5577 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5578 map->fd, 0); 5579 if (map->mmaped == MAP_FAILED) { 5580 err = -errno; 5581 map->mmaped = NULL; 5582 pr_warn("map '%s': failed to mmap arena: %s\n", 5583 map->name, errstr(err)); 5584 return err; 5585 } 5586 if (obj->arena_data) { 5587 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5588 zfree(&obj->arena_data); 5589 } 5590 } 5591 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5592 err = init_map_in_map_slots(obj, map); 5593 if (err < 0) 5594 goto err_out; 5595 } 5596 } 5597 5598 if (map->pin_path && !map->pinned) { 5599 err = bpf_map__pin(map, NULL); 5600 if (err) { 5601 if (!retried && err == -EEXIST) { 5602 retried = true; 5603 goto retry; 5604 } 5605 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5606 map->name, map->pin_path, errstr(err)); 5607 goto err_out; 5608 } 5609 } 5610 } 5611 5612 return 0; 5613 5614 err_out: 5615 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5616 pr_perm_msg(err); 5617 for (j = 0; j < i; j++) 5618 zclose(obj->maps[j].fd); 5619 return err; 5620 } 5621 5622 static bool bpf_core_is_flavor_sep(const char *s) 5623 { 5624 /* check X___Y name pattern, where X and Y are not underscores */ 5625 return s[0] != '_' && /* X */ 5626 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5627 s[4] != '_'; /* Y */ 5628 } 5629 5630 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5631 * before last triple underscore. Struct name part after last triple 5632 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5633 */ 5634 size_t bpf_core_essential_name_len(const char *name) 5635 { 5636 size_t n = strlen(name); 5637 int i; 5638 5639 for (i = n - 5; i >= 0; i--) { 5640 if (bpf_core_is_flavor_sep(name + i)) 5641 return i + 1; 5642 } 5643 return n; 5644 } 5645 5646 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5647 { 5648 if (!cands) 5649 return; 5650 5651 free(cands->cands); 5652 free(cands); 5653 } 5654 5655 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5656 size_t local_essent_len, 5657 const struct btf *targ_btf, 5658 const char *targ_btf_name, 5659 int targ_start_id, 5660 struct bpf_core_cand_list *cands) 5661 { 5662 struct bpf_core_cand *new_cands, *cand; 5663 const struct btf_type *t, *local_t; 5664 const char *targ_name, *local_name; 5665 size_t targ_essent_len; 5666 int n, i; 5667 5668 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5669 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5670 5671 n = btf__type_cnt(targ_btf); 5672 for (i = targ_start_id; i < n; i++) { 5673 t = btf__type_by_id(targ_btf, i); 5674 if (!btf_kind_core_compat(t, local_t)) 5675 continue; 5676 5677 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5678 if (str_is_empty(targ_name)) 5679 continue; 5680 5681 targ_essent_len = bpf_core_essential_name_len(targ_name); 5682 if (targ_essent_len != local_essent_len) 5683 continue; 5684 5685 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5686 continue; 5687 5688 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5689 local_cand->id, btf_kind_str(local_t), 5690 local_name, i, btf_kind_str(t), targ_name, 5691 targ_btf_name); 5692 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5693 sizeof(*cands->cands)); 5694 if (!new_cands) 5695 return -ENOMEM; 5696 5697 cand = &new_cands[cands->len]; 5698 cand->btf = targ_btf; 5699 cand->id = i; 5700 5701 cands->cands = new_cands; 5702 cands->len++; 5703 } 5704 return 0; 5705 } 5706 5707 static int load_module_btfs(struct bpf_object *obj) 5708 { 5709 struct bpf_btf_info info; 5710 struct module_btf *mod_btf; 5711 struct btf *btf; 5712 char name[64]; 5713 __u32 id = 0, len; 5714 int err, fd; 5715 5716 if (obj->btf_modules_loaded) 5717 return 0; 5718 5719 if (obj->gen_loader) 5720 return 0; 5721 5722 /* don't do this again, even if we find no module BTFs */ 5723 obj->btf_modules_loaded = true; 5724 5725 /* kernel too old to support module BTFs */ 5726 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5727 return 0; 5728 5729 while (true) { 5730 err = bpf_btf_get_next_id(id, &id); 5731 if (err && errno == ENOENT) 5732 return 0; 5733 if (err && errno == EPERM) { 5734 pr_debug("skipping module BTFs loading, missing privileges\n"); 5735 return 0; 5736 } 5737 if (err) { 5738 err = -errno; 5739 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5740 return err; 5741 } 5742 5743 fd = bpf_btf_get_fd_by_id(id); 5744 if (fd < 0) { 5745 if (errno == ENOENT) 5746 continue; /* expected race: BTF was unloaded */ 5747 err = -errno; 5748 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5749 return err; 5750 } 5751 5752 len = sizeof(info); 5753 memset(&info, 0, sizeof(info)); 5754 info.name = ptr_to_u64(name); 5755 info.name_len = sizeof(name); 5756 5757 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5758 if (err) { 5759 err = -errno; 5760 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5761 goto err_out; 5762 } 5763 5764 /* ignore non-module BTFs */ 5765 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5766 close(fd); 5767 continue; 5768 } 5769 5770 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5771 err = libbpf_get_error(btf); 5772 if (err) { 5773 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5774 name, id, errstr(err)); 5775 goto err_out; 5776 } 5777 5778 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5779 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5780 if (err) 5781 goto err_out; 5782 5783 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5784 5785 mod_btf->btf = btf; 5786 mod_btf->id = id; 5787 mod_btf->fd = fd; 5788 mod_btf->name = strdup(name); 5789 if (!mod_btf->name) { 5790 err = -ENOMEM; 5791 goto err_out; 5792 } 5793 continue; 5794 5795 err_out: 5796 close(fd); 5797 return err; 5798 } 5799 5800 return 0; 5801 } 5802 5803 static struct bpf_core_cand_list * 5804 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5805 { 5806 struct bpf_core_cand local_cand = {}; 5807 struct bpf_core_cand_list *cands; 5808 const struct btf *main_btf; 5809 const struct btf_type *local_t; 5810 const char *local_name; 5811 size_t local_essent_len; 5812 int err, i; 5813 5814 local_cand.btf = local_btf; 5815 local_cand.id = local_type_id; 5816 local_t = btf__type_by_id(local_btf, local_type_id); 5817 if (!local_t) 5818 return ERR_PTR(-EINVAL); 5819 5820 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5821 if (str_is_empty(local_name)) 5822 return ERR_PTR(-EINVAL); 5823 local_essent_len = bpf_core_essential_name_len(local_name); 5824 5825 cands = calloc(1, sizeof(*cands)); 5826 if (!cands) 5827 return ERR_PTR(-ENOMEM); 5828 5829 /* Attempt to find target candidates in vmlinux BTF first */ 5830 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5831 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5832 if (err) 5833 goto err_out; 5834 5835 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5836 if (cands->len) 5837 return cands; 5838 5839 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5840 if (obj->btf_vmlinux_override) 5841 return cands; 5842 5843 /* now look through module BTFs, trying to still find candidates */ 5844 err = load_module_btfs(obj); 5845 if (err) 5846 goto err_out; 5847 5848 for (i = 0; i < obj->btf_module_cnt; i++) { 5849 err = bpf_core_add_cands(&local_cand, local_essent_len, 5850 obj->btf_modules[i].btf, 5851 obj->btf_modules[i].name, 5852 btf__type_cnt(obj->btf_vmlinux), 5853 cands); 5854 if (err) 5855 goto err_out; 5856 } 5857 5858 return cands; 5859 err_out: 5860 bpf_core_free_cands(cands); 5861 return ERR_PTR(err); 5862 } 5863 5864 /* Check local and target types for compatibility. This check is used for 5865 * type-based CO-RE relocations and follow slightly different rules than 5866 * field-based relocations. This function assumes that root types were already 5867 * checked for name match. Beyond that initial root-level name check, names 5868 * are completely ignored. Compatibility rules are as follows: 5869 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5870 * kind should match for local and target types (i.e., STRUCT is not 5871 * compatible with UNION); 5872 * - for ENUMs, the size is ignored; 5873 * - for INT, size and signedness are ignored; 5874 * - for ARRAY, dimensionality is ignored, element types are checked for 5875 * compatibility recursively; 5876 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5877 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5878 * - FUNC_PROTOs are compatible if they have compatible signature: same 5879 * number of input args and compatible return and argument types. 5880 * These rules are not set in stone and probably will be adjusted as we get 5881 * more experience with using BPF CO-RE relocations. 5882 */ 5883 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5884 const struct btf *targ_btf, __u32 targ_id) 5885 { 5886 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5887 } 5888 5889 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5890 const struct btf *targ_btf, __u32 targ_id) 5891 { 5892 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5893 } 5894 5895 static size_t bpf_core_hash_fn(const long key, void *ctx) 5896 { 5897 return key; 5898 } 5899 5900 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5901 { 5902 return k1 == k2; 5903 } 5904 5905 static int record_relo_core(struct bpf_program *prog, 5906 const struct bpf_core_relo *core_relo, int insn_idx) 5907 { 5908 struct reloc_desc *relos, *relo; 5909 5910 relos = libbpf_reallocarray(prog->reloc_desc, 5911 prog->nr_reloc + 1, sizeof(*relos)); 5912 if (!relos) 5913 return -ENOMEM; 5914 relo = &relos[prog->nr_reloc]; 5915 relo->type = RELO_CORE; 5916 relo->insn_idx = insn_idx; 5917 relo->core_relo = core_relo; 5918 prog->reloc_desc = relos; 5919 prog->nr_reloc++; 5920 return 0; 5921 } 5922 5923 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5924 { 5925 struct reloc_desc *relo; 5926 int i; 5927 5928 for (i = 0; i < prog->nr_reloc; i++) { 5929 relo = &prog->reloc_desc[i]; 5930 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5931 continue; 5932 5933 return relo->core_relo; 5934 } 5935 5936 return NULL; 5937 } 5938 5939 static int bpf_core_resolve_relo(struct bpf_program *prog, 5940 const struct bpf_core_relo *relo, 5941 int relo_idx, 5942 const struct btf *local_btf, 5943 struct hashmap *cand_cache, 5944 struct bpf_core_relo_res *targ_res) 5945 { 5946 struct bpf_core_spec specs_scratch[3] = {}; 5947 struct bpf_core_cand_list *cands = NULL; 5948 const char *prog_name = prog->name; 5949 const struct btf_type *local_type; 5950 const char *local_name; 5951 __u32 local_id = relo->type_id; 5952 int err; 5953 5954 local_type = btf__type_by_id(local_btf, local_id); 5955 if (!local_type) 5956 return -EINVAL; 5957 5958 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5959 if (!local_name) 5960 return -EINVAL; 5961 5962 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5963 !hashmap__find(cand_cache, local_id, &cands)) { 5964 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5965 if (IS_ERR(cands)) { 5966 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5967 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5968 local_name, PTR_ERR(cands)); 5969 return PTR_ERR(cands); 5970 } 5971 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5972 if (err) { 5973 bpf_core_free_cands(cands); 5974 return err; 5975 } 5976 } 5977 5978 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5979 targ_res); 5980 } 5981 5982 static int 5983 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5984 { 5985 const struct btf_ext_info_sec *sec; 5986 struct bpf_core_relo_res targ_res; 5987 const struct bpf_core_relo *rec; 5988 const struct btf_ext_info *seg; 5989 struct hashmap_entry *entry; 5990 struct hashmap *cand_cache = NULL; 5991 struct bpf_program *prog; 5992 struct bpf_insn *insn; 5993 const char *sec_name; 5994 int i, err = 0, insn_idx, sec_idx, sec_num; 5995 5996 if (obj->btf_ext->core_relo_info.len == 0) 5997 return 0; 5998 5999 if (targ_btf_path) { 6000 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6001 err = libbpf_get_error(obj->btf_vmlinux_override); 6002 if (err) { 6003 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 6004 return err; 6005 } 6006 } 6007 6008 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6009 if (IS_ERR(cand_cache)) { 6010 err = PTR_ERR(cand_cache); 6011 goto out; 6012 } 6013 6014 seg = &obj->btf_ext->core_relo_info; 6015 sec_num = 0; 6016 for_each_btf_ext_sec(seg, sec) { 6017 sec_idx = seg->sec_idxs[sec_num]; 6018 sec_num++; 6019 6020 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6021 if (str_is_empty(sec_name)) { 6022 err = -EINVAL; 6023 goto out; 6024 } 6025 6026 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 6027 6028 for_each_btf_ext_rec(seg, sec, i, rec) { 6029 if (rec->insn_off % BPF_INSN_SZ) 6030 return -EINVAL; 6031 insn_idx = rec->insn_off / BPF_INSN_SZ; 6032 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6033 if (!prog) { 6034 /* When __weak subprog is "overridden" by another instance 6035 * of the subprog from a different object file, linker still 6036 * appends all the .BTF.ext info that used to belong to that 6037 * eliminated subprogram. 6038 * This is similar to what x86-64 linker does for relocations. 6039 * So just ignore such relocations just like we ignore 6040 * subprog instructions when discovering subprograms. 6041 */ 6042 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 6043 sec_name, i, insn_idx); 6044 continue; 6045 } 6046 /* no need to apply CO-RE relocation if the program is 6047 * not going to be loaded 6048 */ 6049 if (!prog->autoload) 6050 continue; 6051 6052 /* adjust insn_idx from section frame of reference to the local 6053 * program's frame of reference; (sub-)program code is not yet 6054 * relocated, so it's enough to just subtract in-section offset 6055 */ 6056 insn_idx = insn_idx - prog->sec_insn_off; 6057 if (insn_idx >= prog->insns_cnt) 6058 return -EINVAL; 6059 insn = &prog->insns[insn_idx]; 6060 6061 err = record_relo_core(prog, rec, insn_idx); 6062 if (err) { 6063 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 6064 prog->name, i, errstr(err)); 6065 goto out; 6066 } 6067 6068 if (prog->obj->gen_loader) 6069 continue; 6070 6071 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6072 if (err) { 6073 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6074 prog->name, i, errstr(err)); 6075 goto out; 6076 } 6077 6078 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6079 if (err) { 6080 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6081 prog->name, i, insn_idx, errstr(err)); 6082 goto out; 6083 } 6084 } 6085 } 6086 6087 out: 6088 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6089 btf__free(obj->btf_vmlinux_override); 6090 obj->btf_vmlinux_override = NULL; 6091 6092 if (!IS_ERR_OR_NULL(cand_cache)) { 6093 hashmap__for_each_entry(cand_cache, entry, i) { 6094 bpf_core_free_cands(entry->pvalue); 6095 } 6096 hashmap__free(cand_cache); 6097 } 6098 return err; 6099 } 6100 6101 /* base map load ldimm64 special constant, used also for log fixup logic */ 6102 #define POISON_LDIMM64_MAP_BASE 2001000000 6103 #define POISON_LDIMM64_MAP_PFX "200100" 6104 6105 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6106 int insn_idx, struct bpf_insn *insn, 6107 int map_idx, const struct bpf_map *map) 6108 { 6109 int i; 6110 6111 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6112 prog->name, relo_idx, insn_idx, map_idx, map->name); 6113 6114 /* we turn single ldimm64 into two identical invalid calls */ 6115 for (i = 0; i < 2; i++) { 6116 insn->code = BPF_JMP | BPF_CALL; 6117 insn->dst_reg = 0; 6118 insn->src_reg = 0; 6119 insn->off = 0; 6120 /* if this instruction is reachable (not a dead code), 6121 * verifier will complain with something like: 6122 * invalid func unknown#2001000123 6123 * where lower 123 is map index into obj->maps[] array 6124 */ 6125 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6126 6127 insn++; 6128 } 6129 } 6130 6131 /* unresolved kfunc call special constant, used also for log fixup logic */ 6132 #define POISON_CALL_KFUNC_BASE 2002000000 6133 #define POISON_CALL_KFUNC_PFX "2002" 6134 6135 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6136 int insn_idx, struct bpf_insn *insn, 6137 int ext_idx, const struct extern_desc *ext) 6138 { 6139 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6140 prog->name, relo_idx, insn_idx, ext->name); 6141 6142 /* we turn kfunc call into invalid helper call with identifiable constant */ 6143 insn->code = BPF_JMP | BPF_CALL; 6144 insn->dst_reg = 0; 6145 insn->src_reg = 0; 6146 insn->off = 0; 6147 /* if this instruction is reachable (not a dead code), 6148 * verifier will complain with something like: 6149 * invalid func unknown#2001000123 6150 * where lower 123 is extern index into obj->externs[] array 6151 */ 6152 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6153 } 6154 6155 /* Relocate data references within program code: 6156 * - map references; 6157 * - global variable references; 6158 * - extern references. 6159 */ 6160 static int 6161 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6162 { 6163 int i; 6164 6165 for (i = 0; i < prog->nr_reloc; i++) { 6166 struct reloc_desc *relo = &prog->reloc_desc[i]; 6167 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6168 const struct bpf_map *map; 6169 struct extern_desc *ext; 6170 6171 switch (relo->type) { 6172 case RELO_LD64: 6173 map = &obj->maps[relo->map_idx]; 6174 if (obj->gen_loader) { 6175 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6176 insn[0].imm = relo->map_idx; 6177 } else if (map->autocreate) { 6178 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6179 insn[0].imm = map->fd; 6180 } else { 6181 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6182 relo->map_idx, map); 6183 } 6184 break; 6185 case RELO_DATA: 6186 map = &obj->maps[relo->map_idx]; 6187 insn[1].imm = insn[0].imm + relo->sym_off; 6188 if (obj->gen_loader) { 6189 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6190 insn[0].imm = relo->map_idx; 6191 } else if (map->autocreate) { 6192 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6193 insn[0].imm = map->fd; 6194 } else { 6195 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6196 relo->map_idx, map); 6197 } 6198 break; 6199 case RELO_EXTERN_LD64: 6200 ext = &obj->externs[relo->ext_idx]; 6201 if (ext->type == EXT_KCFG) { 6202 if (obj->gen_loader) { 6203 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6204 insn[0].imm = obj->kconfig_map_idx; 6205 } else { 6206 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6207 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6208 } 6209 insn[1].imm = ext->kcfg.data_off; 6210 } else /* EXT_KSYM */ { 6211 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6212 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6213 insn[0].imm = ext->ksym.kernel_btf_id; 6214 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6215 } else { /* typeless ksyms or unresolved typed ksyms */ 6216 insn[0].imm = (__u32)ext->ksym.addr; 6217 insn[1].imm = ext->ksym.addr >> 32; 6218 } 6219 } 6220 break; 6221 case RELO_EXTERN_CALL: 6222 ext = &obj->externs[relo->ext_idx]; 6223 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6224 if (ext->is_set) { 6225 insn[0].imm = ext->ksym.kernel_btf_id; 6226 insn[0].off = ext->ksym.btf_fd_idx; 6227 } else { /* unresolved weak kfunc call */ 6228 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6229 relo->ext_idx, ext); 6230 } 6231 break; 6232 case RELO_SUBPROG_ADDR: 6233 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6234 pr_warn("prog '%s': relo #%d: bad insn\n", 6235 prog->name, i); 6236 return -EINVAL; 6237 } 6238 /* handled already */ 6239 break; 6240 case RELO_CALL: 6241 /* handled already */ 6242 break; 6243 case RELO_CORE: 6244 /* will be handled by bpf_program_record_relos() */ 6245 break; 6246 default: 6247 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6248 prog->name, i, relo->type); 6249 return -EINVAL; 6250 } 6251 } 6252 6253 return 0; 6254 } 6255 6256 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6257 const struct bpf_program *prog, 6258 const struct btf_ext_info *ext_info, 6259 void **prog_info, __u32 *prog_rec_cnt, 6260 __u32 *prog_rec_sz) 6261 { 6262 void *copy_start = NULL, *copy_end = NULL; 6263 void *rec, *rec_end, *new_prog_info; 6264 const struct btf_ext_info_sec *sec; 6265 size_t old_sz, new_sz; 6266 int i, sec_num, sec_idx, off_adj; 6267 6268 sec_num = 0; 6269 for_each_btf_ext_sec(ext_info, sec) { 6270 sec_idx = ext_info->sec_idxs[sec_num]; 6271 sec_num++; 6272 if (prog->sec_idx != sec_idx) 6273 continue; 6274 6275 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6276 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6277 6278 if (insn_off < prog->sec_insn_off) 6279 continue; 6280 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6281 break; 6282 6283 if (!copy_start) 6284 copy_start = rec; 6285 copy_end = rec + ext_info->rec_size; 6286 } 6287 6288 if (!copy_start) 6289 return -ENOENT; 6290 6291 /* append func/line info of a given (sub-)program to the main 6292 * program func/line info 6293 */ 6294 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6295 new_sz = old_sz + (copy_end - copy_start); 6296 new_prog_info = realloc(*prog_info, new_sz); 6297 if (!new_prog_info) 6298 return -ENOMEM; 6299 *prog_info = new_prog_info; 6300 *prog_rec_cnt = new_sz / ext_info->rec_size; 6301 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6302 6303 /* Kernel instruction offsets are in units of 8-byte 6304 * instructions, while .BTF.ext instruction offsets generated 6305 * by Clang are in units of bytes. So convert Clang offsets 6306 * into kernel offsets and adjust offset according to program 6307 * relocated position. 6308 */ 6309 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6310 rec = new_prog_info + old_sz; 6311 rec_end = new_prog_info + new_sz; 6312 for (; rec < rec_end; rec += ext_info->rec_size) { 6313 __u32 *insn_off = rec; 6314 6315 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6316 } 6317 *prog_rec_sz = ext_info->rec_size; 6318 return 0; 6319 } 6320 6321 return -ENOENT; 6322 } 6323 6324 static int 6325 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6326 struct bpf_program *main_prog, 6327 const struct bpf_program *prog) 6328 { 6329 int err; 6330 6331 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6332 * support func/line info 6333 */ 6334 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6335 return 0; 6336 6337 /* only attempt func info relocation if main program's func_info 6338 * relocation was successful 6339 */ 6340 if (main_prog != prog && !main_prog->func_info) 6341 goto line_info; 6342 6343 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6344 &main_prog->func_info, 6345 &main_prog->func_info_cnt, 6346 &main_prog->func_info_rec_size); 6347 if (err) { 6348 if (err != -ENOENT) { 6349 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6350 prog->name, errstr(err)); 6351 return err; 6352 } 6353 if (main_prog->func_info) { 6354 /* 6355 * Some info has already been found but has problem 6356 * in the last btf_ext reloc. Must have to error out. 6357 */ 6358 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6359 return err; 6360 } 6361 /* Have problem loading the very first info. Ignore the rest. */ 6362 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6363 prog->name); 6364 } 6365 6366 line_info: 6367 /* don't relocate line info if main program's relocation failed */ 6368 if (main_prog != prog && !main_prog->line_info) 6369 return 0; 6370 6371 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6372 &main_prog->line_info, 6373 &main_prog->line_info_cnt, 6374 &main_prog->line_info_rec_size); 6375 if (err) { 6376 if (err != -ENOENT) { 6377 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6378 prog->name, errstr(err)); 6379 return err; 6380 } 6381 if (main_prog->line_info) { 6382 /* 6383 * Some info has already been found but has problem 6384 * in the last btf_ext reloc. Must have to error out. 6385 */ 6386 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6387 return err; 6388 } 6389 /* Have problem loading the very first info. Ignore the rest. */ 6390 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6391 prog->name); 6392 } 6393 return 0; 6394 } 6395 6396 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6397 { 6398 size_t insn_idx = *(const size_t *)key; 6399 const struct reloc_desc *relo = elem; 6400 6401 if (insn_idx == relo->insn_idx) 6402 return 0; 6403 return insn_idx < relo->insn_idx ? -1 : 1; 6404 } 6405 6406 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6407 { 6408 if (!prog->nr_reloc) 6409 return NULL; 6410 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6411 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6412 } 6413 6414 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6415 { 6416 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6417 struct reloc_desc *relos; 6418 int i; 6419 6420 if (main_prog == subprog) 6421 return 0; 6422 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6423 /* if new count is zero, reallocarray can return a valid NULL result; 6424 * in this case the previous pointer will be freed, so we *have to* 6425 * reassign old pointer to the new value (even if it's NULL) 6426 */ 6427 if (!relos && new_cnt) 6428 return -ENOMEM; 6429 if (subprog->nr_reloc) 6430 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6431 sizeof(*relos) * subprog->nr_reloc); 6432 6433 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6434 relos[i].insn_idx += subprog->sub_insn_off; 6435 /* After insn_idx adjustment the 'relos' array is still sorted 6436 * by insn_idx and doesn't break bsearch. 6437 */ 6438 main_prog->reloc_desc = relos; 6439 main_prog->nr_reloc = new_cnt; 6440 return 0; 6441 } 6442 6443 static int 6444 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6445 struct bpf_program *subprog) 6446 { 6447 struct bpf_insn *insns; 6448 size_t new_cnt; 6449 int err; 6450 6451 subprog->sub_insn_off = main_prog->insns_cnt; 6452 6453 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6454 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6455 if (!insns) { 6456 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6457 return -ENOMEM; 6458 } 6459 main_prog->insns = insns; 6460 main_prog->insns_cnt = new_cnt; 6461 6462 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6463 subprog->insns_cnt * sizeof(*insns)); 6464 6465 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6466 main_prog->name, subprog->insns_cnt, subprog->name); 6467 6468 /* The subprog insns are now appended. Append its relos too. */ 6469 err = append_subprog_relos(main_prog, subprog); 6470 if (err) 6471 return err; 6472 return 0; 6473 } 6474 6475 static int 6476 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6477 struct bpf_program *prog) 6478 { 6479 size_t sub_insn_idx, insn_idx; 6480 struct bpf_program *subprog; 6481 struct reloc_desc *relo; 6482 struct bpf_insn *insn; 6483 int err; 6484 6485 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6486 if (err) 6487 return err; 6488 6489 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6490 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6491 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6492 continue; 6493 6494 relo = find_prog_insn_relo(prog, insn_idx); 6495 if (relo && relo->type == RELO_EXTERN_CALL) 6496 /* kfunc relocations will be handled later 6497 * in bpf_object__relocate_data() 6498 */ 6499 continue; 6500 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6501 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6502 prog->name, insn_idx, relo->type); 6503 return -LIBBPF_ERRNO__RELOC; 6504 } 6505 if (relo) { 6506 /* sub-program instruction index is a combination of 6507 * an offset of a symbol pointed to by relocation and 6508 * call instruction's imm field; for global functions, 6509 * call always has imm = -1, but for static functions 6510 * relocation is against STT_SECTION and insn->imm 6511 * points to a start of a static function 6512 * 6513 * for subprog addr relocation, the relo->sym_off + insn->imm is 6514 * the byte offset in the corresponding section. 6515 */ 6516 if (relo->type == RELO_CALL) 6517 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6518 else 6519 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6520 } else if (insn_is_pseudo_func(insn)) { 6521 /* 6522 * RELO_SUBPROG_ADDR relo is always emitted even if both 6523 * functions are in the same section, so it shouldn't reach here. 6524 */ 6525 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6526 prog->name, insn_idx); 6527 return -LIBBPF_ERRNO__RELOC; 6528 } else { 6529 /* if subprogram call is to a static function within 6530 * the same ELF section, there won't be any relocation 6531 * emitted, but it also means there is no additional 6532 * offset necessary, insns->imm is relative to 6533 * instruction's original position within the section 6534 */ 6535 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6536 } 6537 6538 /* we enforce that sub-programs should be in .text section */ 6539 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6540 if (!subprog) { 6541 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6542 prog->name); 6543 return -LIBBPF_ERRNO__RELOC; 6544 } 6545 6546 /* if it's the first call instruction calling into this 6547 * subprogram (meaning this subprog hasn't been processed 6548 * yet) within the context of current main program: 6549 * - append it at the end of main program's instructions blog; 6550 * - process is recursively, while current program is put on hold; 6551 * - if that subprogram calls some other not yet processes 6552 * subprogram, same thing will happen recursively until 6553 * there are no more unprocesses subprograms left to append 6554 * and relocate. 6555 */ 6556 if (subprog->sub_insn_off == 0) { 6557 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6558 if (err) 6559 return err; 6560 err = bpf_object__reloc_code(obj, main_prog, subprog); 6561 if (err) 6562 return err; 6563 } 6564 6565 /* main_prog->insns memory could have been re-allocated, so 6566 * calculate pointer again 6567 */ 6568 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6569 /* calculate correct instruction position within current main 6570 * prog; each main prog can have a different set of 6571 * subprograms appended (potentially in different order as 6572 * well), so position of any subprog can be different for 6573 * different main programs 6574 */ 6575 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6576 6577 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6578 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6579 } 6580 6581 return 0; 6582 } 6583 6584 /* 6585 * Relocate sub-program calls. 6586 * 6587 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6588 * main prog) is processed separately. For each subprog (non-entry functions, 6589 * that can be called from either entry progs or other subprogs) gets their 6590 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6591 * hasn't been yet appended and relocated within current main prog. Once its 6592 * relocated, sub_insn_off will point at the position within current main prog 6593 * where given subprog was appended. This will further be used to relocate all 6594 * the call instructions jumping into this subprog. 6595 * 6596 * We start with main program and process all call instructions. If the call 6597 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6598 * is zero), subprog instructions are appended at the end of main program's 6599 * instruction array. Then main program is "put on hold" while we recursively 6600 * process newly appended subprogram. If that subprogram calls into another 6601 * subprogram that hasn't been appended, new subprogram is appended again to 6602 * the *main* prog's instructions (subprog's instructions are always left 6603 * untouched, as they need to be in unmodified state for subsequent main progs 6604 * and subprog instructions are always sent only as part of a main prog) and 6605 * the process continues recursively. Once all the subprogs called from a main 6606 * prog or any of its subprogs are appended (and relocated), all their 6607 * positions within finalized instructions array are known, so it's easy to 6608 * rewrite call instructions with correct relative offsets, corresponding to 6609 * desired target subprog. 6610 * 6611 * Its important to realize that some subprogs might not be called from some 6612 * main prog and any of its called/used subprogs. Those will keep their 6613 * subprog->sub_insn_off as zero at all times and won't be appended to current 6614 * main prog and won't be relocated within the context of current main prog. 6615 * They might still be used from other main progs later. 6616 * 6617 * Visually this process can be shown as below. Suppose we have two main 6618 * programs mainA and mainB and BPF object contains three subprogs: subA, 6619 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6620 * subC both call subB: 6621 * 6622 * +--------+ +-------+ 6623 * | v v | 6624 * +--+---+ +--+-+-+ +---+--+ 6625 * | subA | | subB | | subC | 6626 * +--+---+ +------+ +---+--+ 6627 * ^ ^ 6628 * | | 6629 * +---+-------+ +------+----+ 6630 * | mainA | | mainB | 6631 * +-----------+ +-----------+ 6632 * 6633 * We'll start relocating mainA, will find subA, append it and start 6634 * processing sub A recursively: 6635 * 6636 * +-----------+------+ 6637 * | mainA | subA | 6638 * +-----------+------+ 6639 * 6640 * At this point we notice that subB is used from subA, so we append it and 6641 * relocate (there are no further subcalls from subB): 6642 * 6643 * +-----------+------+------+ 6644 * | mainA | subA | subB | 6645 * +-----------+------+------+ 6646 * 6647 * At this point, we relocate subA calls, then go one level up and finish with 6648 * relocatin mainA calls. mainA is done. 6649 * 6650 * For mainB process is similar but results in different order. We start with 6651 * mainB and skip subA and subB, as mainB never calls them (at least 6652 * directly), but we see subC is needed, so we append and start processing it: 6653 * 6654 * +-----------+------+ 6655 * | mainB | subC | 6656 * +-----------+------+ 6657 * Now we see subC needs subB, so we go back to it, append and relocate it: 6658 * 6659 * +-----------+------+------+ 6660 * | mainB | subC | subB | 6661 * +-----------+------+------+ 6662 * 6663 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6664 */ 6665 static int 6666 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6667 { 6668 struct bpf_program *subprog; 6669 int i, err; 6670 6671 /* mark all subprogs as not relocated (yet) within the context of 6672 * current main program 6673 */ 6674 for (i = 0; i < obj->nr_programs; i++) { 6675 subprog = &obj->programs[i]; 6676 if (!prog_is_subprog(obj, subprog)) 6677 continue; 6678 6679 subprog->sub_insn_off = 0; 6680 } 6681 6682 err = bpf_object__reloc_code(obj, prog, prog); 6683 if (err) 6684 return err; 6685 6686 return 0; 6687 } 6688 6689 static void 6690 bpf_object__free_relocs(struct bpf_object *obj) 6691 { 6692 struct bpf_program *prog; 6693 int i; 6694 6695 /* free up relocation descriptors */ 6696 for (i = 0; i < obj->nr_programs; i++) { 6697 prog = &obj->programs[i]; 6698 zfree(&prog->reloc_desc); 6699 prog->nr_reloc = 0; 6700 } 6701 } 6702 6703 static int cmp_relocs(const void *_a, const void *_b) 6704 { 6705 const struct reloc_desc *a = _a; 6706 const struct reloc_desc *b = _b; 6707 6708 if (a->insn_idx != b->insn_idx) 6709 return a->insn_idx < b->insn_idx ? -1 : 1; 6710 6711 /* no two relocations should have the same insn_idx, but ... */ 6712 if (a->type != b->type) 6713 return a->type < b->type ? -1 : 1; 6714 6715 return 0; 6716 } 6717 6718 static void bpf_object__sort_relos(struct bpf_object *obj) 6719 { 6720 int i; 6721 6722 for (i = 0; i < obj->nr_programs; i++) { 6723 struct bpf_program *p = &obj->programs[i]; 6724 6725 if (!p->nr_reloc) 6726 continue; 6727 6728 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6729 } 6730 } 6731 6732 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6733 { 6734 const char *str = "exception_callback:"; 6735 size_t pfx_len = strlen(str); 6736 int i, j, n; 6737 6738 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6739 return 0; 6740 6741 n = btf__type_cnt(obj->btf); 6742 for (i = 1; i < n; i++) { 6743 const char *name; 6744 struct btf_type *t; 6745 6746 t = btf_type_by_id(obj->btf, i); 6747 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6748 continue; 6749 6750 name = btf__str_by_offset(obj->btf, t->name_off); 6751 if (strncmp(name, str, pfx_len) != 0) 6752 continue; 6753 6754 t = btf_type_by_id(obj->btf, t->type); 6755 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6756 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6757 prog->name); 6758 return -EINVAL; 6759 } 6760 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6761 continue; 6762 /* Multiple callbacks are specified for the same prog, 6763 * the verifier will eventually return an error for this 6764 * case, hence simply skip appending a subprog. 6765 */ 6766 if (prog->exception_cb_idx >= 0) { 6767 prog->exception_cb_idx = -1; 6768 break; 6769 } 6770 6771 name += pfx_len; 6772 if (str_is_empty(name)) { 6773 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6774 prog->name); 6775 return -EINVAL; 6776 } 6777 6778 for (j = 0; j < obj->nr_programs; j++) { 6779 struct bpf_program *subprog = &obj->programs[j]; 6780 6781 if (!prog_is_subprog(obj, subprog)) 6782 continue; 6783 if (strcmp(name, subprog->name) != 0) 6784 continue; 6785 /* Enforce non-hidden, as from verifier point of 6786 * view it expects global functions, whereas the 6787 * mark_btf_static fixes up linkage as static. 6788 */ 6789 if (!subprog->sym_global || subprog->mark_btf_static) { 6790 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6791 prog->name, subprog->name); 6792 return -EINVAL; 6793 } 6794 /* Let's see if we already saw a static exception callback with the same name */ 6795 if (prog->exception_cb_idx >= 0) { 6796 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6797 prog->name, subprog->name); 6798 return -EINVAL; 6799 } 6800 prog->exception_cb_idx = j; 6801 break; 6802 } 6803 6804 if (prog->exception_cb_idx >= 0) 6805 continue; 6806 6807 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6808 return -ENOENT; 6809 } 6810 6811 return 0; 6812 } 6813 6814 static struct { 6815 enum bpf_prog_type prog_type; 6816 const char *ctx_name; 6817 } global_ctx_map[] = { 6818 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6819 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6820 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6821 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6822 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6823 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6824 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6825 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6826 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6827 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6828 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6829 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6830 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6831 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6832 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6833 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6834 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6835 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6836 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6837 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6838 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6839 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6840 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6841 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6842 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6843 /* all other program types don't have "named" context structs */ 6844 }; 6845 6846 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6847 * for below __builtin_types_compatible_p() checks; 6848 * with this approach we don't need any extra arch-specific #ifdef guards 6849 */ 6850 struct pt_regs; 6851 struct user_pt_regs; 6852 struct user_regs_struct; 6853 6854 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6855 const char *subprog_name, int arg_idx, 6856 int arg_type_id, const char *ctx_name) 6857 { 6858 const struct btf_type *t; 6859 const char *tname; 6860 6861 /* check if existing parameter already matches verifier expectations */ 6862 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6863 if (!btf_is_ptr(t)) 6864 goto out_warn; 6865 6866 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6867 * and perf_event programs, so check this case early on and forget 6868 * about it for subsequent checks 6869 */ 6870 while (btf_is_mod(t)) 6871 t = btf__type_by_id(btf, t->type); 6872 if (btf_is_typedef(t) && 6873 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6874 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6875 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6876 return false; /* canonical type for kprobe/perf_event */ 6877 } 6878 6879 /* now we can ignore typedefs moving forward */ 6880 t = skip_mods_and_typedefs(btf, t->type, NULL); 6881 6882 /* if it's `void *`, definitely fix up BTF info */ 6883 if (btf_is_void(t)) 6884 return true; 6885 6886 /* if it's already proper canonical type, no need to fix up */ 6887 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6888 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6889 return false; 6890 6891 /* special cases */ 6892 switch (prog->type) { 6893 case BPF_PROG_TYPE_KPROBE: 6894 /* `struct pt_regs *` is expected, but we need to fix up */ 6895 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6896 return true; 6897 break; 6898 case BPF_PROG_TYPE_PERF_EVENT: 6899 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6900 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6901 return true; 6902 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6903 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6904 return true; 6905 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6906 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6907 return true; 6908 break; 6909 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6910 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6911 /* allow u64* as ctx */ 6912 if (btf_is_int(t) && t->size == 8) 6913 return true; 6914 break; 6915 default: 6916 break; 6917 } 6918 6919 out_warn: 6920 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6921 prog->name, subprog_name, arg_idx, ctx_name); 6922 return false; 6923 } 6924 6925 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6926 { 6927 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6928 int i, err, arg_cnt, fn_name_off, linkage; 6929 struct btf_type *fn_t, *fn_proto_t, *t; 6930 struct btf_param *p; 6931 6932 /* caller already validated FUNC -> FUNC_PROTO validity */ 6933 fn_t = btf_type_by_id(btf, orig_fn_id); 6934 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6935 6936 /* Note that each btf__add_xxx() operation invalidates 6937 * all btf_type and string pointers, so we need to be 6938 * very careful when cloning BTF types. BTF type 6939 * pointers have to be always refetched. And to avoid 6940 * problems with invalidated string pointers, we 6941 * add empty strings initially, then just fix up 6942 * name_off offsets in place. Offsets are stable for 6943 * existing strings, so that works out. 6944 */ 6945 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6946 linkage = btf_func_linkage(fn_t); 6947 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6948 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6949 arg_cnt = btf_vlen(fn_proto_t); 6950 6951 /* clone FUNC_PROTO and its params */ 6952 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6953 if (fn_proto_id < 0) 6954 return -EINVAL; 6955 6956 for (i = 0; i < arg_cnt; i++) { 6957 int name_off; 6958 6959 /* copy original parameter data */ 6960 t = btf_type_by_id(btf, orig_proto_id); 6961 p = &btf_params(t)[i]; 6962 name_off = p->name_off; 6963 6964 err = btf__add_func_param(btf, "", p->type); 6965 if (err) 6966 return err; 6967 6968 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6969 p = &btf_params(fn_proto_t)[i]; 6970 p->name_off = name_off; /* use remembered str offset */ 6971 } 6972 6973 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6974 * entry program's name as a placeholder, which we replace immediately 6975 * with original name_off 6976 */ 6977 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6978 if (fn_id < 0) 6979 return -EINVAL; 6980 6981 fn_t = btf_type_by_id(btf, fn_id); 6982 fn_t->name_off = fn_name_off; /* reuse original string */ 6983 6984 return fn_id; 6985 } 6986 6987 /* Check if main program or global subprog's function prototype has `arg:ctx` 6988 * argument tags, and, if necessary, substitute correct type to match what BPF 6989 * verifier would expect, taking into account specific program type. This 6990 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6991 * have a native support for it in the verifier, making user's life much 6992 * easier. 6993 */ 6994 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6995 { 6996 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6997 struct bpf_func_info_min *func_rec; 6998 struct btf_type *fn_t, *fn_proto_t; 6999 struct btf *btf = obj->btf; 7000 const struct btf_type *t; 7001 struct btf_param *p; 7002 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 7003 int i, n, arg_idx, arg_cnt, err, rec_idx; 7004 int *orig_ids; 7005 7006 /* no .BTF.ext, no problem */ 7007 if (!obj->btf_ext || !prog->func_info) 7008 return 0; 7009 7010 /* don't do any fix ups if kernel natively supports __arg_ctx */ 7011 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 7012 return 0; 7013 7014 /* some BPF program types just don't have named context structs, so 7015 * this fallback mechanism doesn't work for them 7016 */ 7017 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 7018 if (global_ctx_map[i].prog_type != prog->type) 7019 continue; 7020 ctx_name = global_ctx_map[i].ctx_name; 7021 break; 7022 } 7023 if (!ctx_name) 7024 return 0; 7025 7026 /* remember original func BTF IDs to detect if we already cloned them */ 7027 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 7028 if (!orig_ids) 7029 return -ENOMEM; 7030 for (i = 0; i < prog->func_info_cnt; i++) { 7031 func_rec = prog->func_info + prog->func_info_rec_size * i; 7032 orig_ids[i] = func_rec->type_id; 7033 } 7034 7035 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 7036 * of our subprogs; if yes and subprog is global and needs adjustment, 7037 * clone and adjust FUNC -> FUNC_PROTO combo 7038 */ 7039 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 7040 /* only DECL_TAG with "arg:ctx" value are interesting */ 7041 t = btf__type_by_id(btf, i); 7042 if (!btf_is_decl_tag(t)) 7043 continue; 7044 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 7045 continue; 7046 7047 /* only global funcs need adjustment, if at all */ 7048 orig_fn_id = t->type; 7049 fn_t = btf_type_by_id(btf, orig_fn_id); 7050 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 7051 continue; 7052 7053 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 7054 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7055 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 7056 continue; 7057 7058 /* find corresponding func_info record */ 7059 func_rec = NULL; 7060 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 7061 if (orig_ids[rec_idx] == t->type) { 7062 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 7063 break; 7064 } 7065 } 7066 /* current main program doesn't call into this subprog */ 7067 if (!func_rec) 7068 continue; 7069 7070 /* some more sanity checking of DECL_TAG */ 7071 arg_cnt = btf_vlen(fn_proto_t); 7072 arg_idx = btf_decl_tag(t)->component_idx; 7073 if (arg_idx < 0 || arg_idx >= arg_cnt) 7074 continue; 7075 7076 /* check if we should fix up argument type */ 7077 p = &btf_params(fn_proto_t)[arg_idx]; 7078 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7079 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7080 continue; 7081 7082 /* clone fn/fn_proto, unless we already did it for another arg */ 7083 if (func_rec->type_id == orig_fn_id) { 7084 int fn_id; 7085 7086 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7087 if (fn_id < 0) { 7088 err = fn_id; 7089 goto err_out; 7090 } 7091 7092 /* point func_info record to a cloned FUNC type */ 7093 func_rec->type_id = fn_id; 7094 } 7095 7096 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7097 * we do it just once per main BPF program, as all global 7098 * funcs share the same program type, so need only PTR -> 7099 * STRUCT type chain 7100 */ 7101 if (ptr_id == 0) { 7102 struct_id = btf__add_struct(btf, ctx_name, 0); 7103 ptr_id = btf__add_ptr(btf, struct_id); 7104 if (ptr_id < 0 || struct_id < 0) { 7105 err = -EINVAL; 7106 goto err_out; 7107 } 7108 } 7109 7110 /* for completeness, clone DECL_TAG and point it to cloned param */ 7111 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7112 if (tag_id < 0) { 7113 err = -EINVAL; 7114 goto err_out; 7115 } 7116 7117 /* all the BTF manipulations invalidated pointers, refetch them */ 7118 fn_t = btf_type_by_id(btf, func_rec->type_id); 7119 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7120 7121 /* fix up type ID pointed to by param */ 7122 p = &btf_params(fn_proto_t)[arg_idx]; 7123 p->type = ptr_id; 7124 } 7125 7126 free(orig_ids); 7127 return 0; 7128 err_out: 7129 free(orig_ids); 7130 return err; 7131 } 7132 7133 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7134 { 7135 struct bpf_program *prog; 7136 size_t i, j; 7137 int err; 7138 7139 if (obj->btf_ext) { 7140 err = bpf_object__relocate_core(obj, targ_btf_path); 7141 if (err) { 7142 pr_warn("failed to perform CO-RE relocations: %s\n", 7143 errstr(err)); 7144 return err; 7145 } 7146 bpf_object__sort_relos(obj); 7147 } 7148 7149 /* Before relocating calls pre-process relocations and mark 7150 * few ld_imm64 instructions that points to subprogs. 7151 * Otherwise bpf_object__reloc_code() later would have to consider 7152 * all ld_imm64 insns as relocation candidates. That would 7153 * reduce relocation speed, since amount of find_prog_insn_relo() 7154 * would increase and most of them will fail to find a relo. 7155 */ 7156 for (i = 0; i < obj->nr_programs; i++) { 7157 prog = &obj->programs[i]; 7158 for (j = 0; j < prog->nr_reloc; j++) { 7159 struct reloc_desc *relo = &prog->reloc_desc[j]; 7160 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7161 7162 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7163 if (relo->type == RELO_SUBPROG_ADDR) 7164 insn[0].src_reg = BPF_PSEUDO_FUNC; 7165 } 7166 } 7167 7168 /* relocate subprogram calls and append used subprograms to main 7169 * programs; each copy of subprogram code needs to be relocated 7170 * differently for each main program, because its code location might 7171 * have changed. 7172 * Append subprog relos to main programs to allow data relos to be 7173 * processed after text is completely relocated. 7174 */ 7175 for (i = 0; i < obj->nr_programs; i++) { 7176 prog = &obj->programs[i]; 7177 /* sub-program's sub-calls are relocated within the context of 7178 * its main program only 7179 */ 7180 if (prog_is_subprog(obj, prog)) 7181 continue; 7182 if (!prog->autoload) 7183 continue; 7184 7185 err = bpf_object__relocate_calls(obj, prog); 7186 if (err) { 7187 pr_warn("prog '%s': failed to relocate calls: %s\n", 7188 prog->name, errstr(err)); 7189 return err; 7190 } 7191 7192 err = bpf_prog_assign_exc_cb(obj, prog); 7193 if (err) 7194 return err; 7195 /* Now, also append exception callback if it has not been done already. */ 7196 if (prog->exception_cb_idx >= 0) { 7197 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7198 7199 /* Calling exception callback directly is disallowed, which the 7200 * verifier will reject later. In case it was processed already, 7201 * we can skip this step, otherwise for all other valid cases we 7202 * have to append exception callback now. 7203 */ 7204 if (subprog->sub_insn_off == 0) { 7205 err = bpf_object__append_subprog_code(obj, prog, subprog); 7206 if (err) 7207 return err; 7208 err = bpf_object__reloc_code(obj, prog, subprog); 7209 if (err) 7210 return err; 7211 } 7212 } 7213 } 7214 for (i = 0; i < obj->nr_programs; i++) { 7215 prog = &obj->programs[i]; 7216 if (prog_is_subprog(obj, prog)) 7217 continue; 7218 if (!prog->autoload) 7219 continue; 7220 7221 /* Process data relos for main programs */ 7222 err = bpf_object__relocate_data(obj, prog); 7223 if (err) { 7224 pr_warn("prog '%s': failed to relocate data references: %s\n", 7225 prog->name, errstr(err)); 7226 return err; 7227 } 7228 7229 /* Fix up .BTF.ext information, if necessary */ 7230 err = bpf_program_fixup_func_info(obj, prog); 7231 if (err) { 7232 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7233 prog->name, errstr(err)); 7234 return err; 7235 } 7236 } 7237 7238 return 0; 7239 } 7240 7241 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7242 Elf64_Shdr *shdr, Elf_Data *data); 7243 7244 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7245 Elf64_Shdr *shdr, Elf_Data *data) 7246 { 7247 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7248 int i, j, nrels, new_sz; 7249 const struct btf_var_secinfo *vi = NULL; 7250 const struct btf_type *sec, *var, *def; 7251 struct bpf_map *map = NULL, *targ_map = NULL; 7252 struct bpf_program *targ_prog = NULL; 7253 bool is_prog_array, is_map_in_map; 7254 const struct btf_member *member; 7255 const char *name, *mname, *type; 7256 unsigned int moff; 7257 Elf64_Sym *sym; 7258 Elf64_Rel *rel; 7259 void *tmp; 7260 7261 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7262 return -EINVAL; 7263 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7264 if (!sec) 7265 return -EINVAL; 7266 7267 nrels = shdr->sh_size / shdr->sh_entsize; 7268 for (i = 0; i < nrels; i++) { 7269 rel = elf_rel_by_idx(data, i); 7270 if (!rel) { 7271 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7272 return -LIBBPF_ERRNO__FORMAT; 7273 } 7274 7275 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7276 if (!sym) { 7277 pr_warn(".maps relo #%d: symbol %zx not found\n", 7278 i, (size_t)ELF64_R_SYM(rel->r_info)); 7279 return -LIBBPF_ERRNO__FORMAT; 7280 } 7281 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7282 7283 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7284 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7285 (size_t)rel->r_offset, sym->st_name, name); 7286 7287 for (j = 0; j < obj->nr_maps; j++) { 7288 map = &obj->maps[j]; 7289 if (map->sec_idx != obj->efile.btf_maps_shndx) 7290 continue; 7291 7292 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7293 if (vi->offset <= rel->r_offset && 7294 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7295 break; 7296 } 7297 if (j == obj->nr_maps) { 7298 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7299 i, name, (size_t)rel->r_offset); 7300 return -EINVAL; 7301 } 7302 7303 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7304 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7305 type = is_map_in_map ? "map" : "prog"; 7306 if (is_map_in_map) { 7307 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7308 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7309 i, name); 7310 return -LIBBPF_ERRNO__RELOC; 7311 } 7312 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7313 map->def.key_size != sizeof(int)) { 7314 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7315 i, map->name, sizeof(int)); 7316 return -EINVAL; 7317 } 7318 targ_map = bpf_object__find_map_by_name(obj, name); 7319 if (!targ_map) { 7320 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7321 i, name); 7322 return -ESRCH; 7323 } 7324 } else if (is_prog_array) { 7325 targ_prog = bpf_object__find_program_by_name(obj, name); 7326 if (!targ_prog) { 7327 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7328 i, name); 7329 return -ESRCH; 7330 } 7331 if (targ_prog->sec_idx != sym->st_shndx || 7332 targ_prog->sec_insn_off * 8 != sym->st_value || 7333 prog_is_subprog(obj, targ_prog)) { 7334 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7335 i, name); 7336 return -LIBBPF_ERRNO__RELOC; 7337 } 7338 } else { 7339 return -EINVAL; 7340 } 7341 7342 var = btf__type_by_id(obj->btf, vi->type); 7343 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7344 if (btf_vlen(def) == 0) 7345 return -EINVAL; 7346 member = btf_members(def) + btf_vlen(def) - 1; 7347 mname = btf__name_by_offset(obj->btf, member->name_off); 7348 if (strcmp(mname, "values")) 7349 return -EINVAL; 7350 7351 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7352 if (rel->r_offset - vi->offset < moff) 7353 return -EINVAL; 7354 7355 moff = rel->r_offset - vi->offset - moff; 7356 /* here we use BPF pointer size, which is always 64 bit, as we 7357 * are parsing ELF that was built for BPF target 7358 */ 7359 if (moff % bpf_ptr_sz) 7360 return -EINVAL; 7361 moff /= bpf_ptr_sz; 7362 if (moff >= map->init_slots_sz) { 7363 new_sz = moff + 1; 7364 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7365 if (!tmp) 7366 return -ENOMEM; 7367 map->init_slots = tmp; 7368 memset(map->init_slots + map->init_slots_sz, 0, 7369 (new_sz - map->init_slots_sz) * host_ptr_sz); 7370 map->init_slots_sz = new_sz; 7371 } 7372 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7373 7374 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7375 i, map->name, moff, type, name); 7376 } 7377 7378 return 0; 7379 } 7380 7381 static int bpf_object__collect_relos(struct bpf_object *obj) 7382 { 7383 int i, err; 7384 7385 for (i = 0; i < obj->efile.sec_cnt; i++) { 7386 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7387 Elf64_Shdr *shdr; 7388 Elf_Data *data; 7389 int idx; 7390 7391 if (sec_desc->sec_type != SEC_RELO) 7392 continue; 7393 7394 shdr = sec_desc->shdr; 7395 data = sec_desc->data; 7396 idx = shdr->sh_info; 7397 7398 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7399 pr_warn("internal error at %d\n", __LINE__); 7400 return -LIBBPF_ERRNO__INTERNAL; 7401 } 7402 7403 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7404 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7405 else if (idx == obj->efile.btf_maps_shndx) 7406 err = bpf_object__collect_map_relos(obj, shdr, data); 7407 else 7408 err = bpf_object__collect_prog_relos(obj, shdr, data); 7409 if (err) 7410 return err; 7411 } 7412 7413 bpf_object__sort_relos(obj); 7414 return 0; 7415 } 7416 7417 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7418 { 7419 if (BPF_CLASS(insn->code) == BPF_JMP && 7420 BPF_OP(insn->code) == BPF_CALL && 7421 BPF_SRC(insn->code) == BPF_K && 7422 insn->src_reg == 0 && 7423 insn->dst_reg == 0) { 7424 *func_id = insn->imm; 7425 return true; 7426 } 7427 return false; 7428 } 7429 7430 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7431 { 7432 struct bpf_insn *insn = prog->insns; 7433 enum bpf_func_id func_id; 7434 int i; 7435 7436 if (obj->gen_loader) 7437 return 0; 7438 7439 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7440 if (!insn_is_helper_call(insn, &func_id)) 7441 continue; 7442 7443 /* on kernels that don't yet support 7444 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7445 * to bpf_probe_read() which works well for old kernels 7446 */ 7447 switch (func_id) { 7448 case BPF_FUNC_probe_read_kernel: 7449 case BPF_FUNC_probe_read_user: 7450 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7451 insn->imm = BPF_FUNC_probe_read; 7452 break; 7453 case BPF_FUNC_probe_read_kernel_str: 7454 case BPF_FUNC_probe_read_user_str: 7455 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7456 insn->imm = BPF_FUNC_probe_read_str; 7457 break; 7458 default: 7459 break; 7460 } 7461 } 7462 return 0; 7463 } 7464 7465 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7466 int *btf_obj_fd, int *btf_type_id); 7467 7468 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7469 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7470 struct bpf_prog_load_opts *opts, long cookie) 7471 { 7472 enum sec_def_flags def = cookie; 7473 7474 /* old kernels might not support specifying expected_attach_type */ 7475 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7476 opts->expected_attach_type = 0; 7477 7478 if (def & SEC_SLEEPABLE) 7479 opts->prog_flags |= BPF_F_SLEEPABLE; 7480 7481 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7482 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7483 7484 /* special check for usdt to use uprobe_multi link */ 7485 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7486 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7487 * in prog, and expected_attach_type we set in kernel is from opts, so we 7488 * update both. 7489 */ 7490 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7491 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7492 } 7493 7494 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7495 int btf_obj_fd = 0, btf_type_id = 0, err; 7496 const char *attach_name; 7497 7498 attach_name = strchr(prog->sec_name, '/'); 7499 if (!attach_name) { 7500 /* if BPF program is annotated with just SEC("fentry") 7501 * (or similar) without declaratively specifying 7502 * target, then it is expected that target will be 7503 * specified with bpf_program__set_attach_target() at 7504 * runtime before BPF object load step. If not, then 7505 * there is nothing to load into the kernel as BPF 7506 * verifier won't be able to validate BPF program 7507 * correctness anyways. 7508 */ 7509 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7510 prog->name); 7511 return -EINVAL; 7512 } 7513 attach_name++; /* skip over / */ 7514 7515 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7516 if (err) 7517 return err; 7518 7519 /* cache resolved BTF FD and BTF type ID in the prog */ 7520 prog->attach_btf_obj_fd = btf_obj_fd; 7521 prog->attach_btf_id = btf_type_id; 7522 7523 /* but by now libbpf common logic is not utilizing 7524 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7525 * this callback is called after opts were populated by 7526 * libbpf, so this callback has to update opts explicitly here 7527 */ 7528 opts->attach_btf_obj_fd = btf_obj_fd; 7529 opts->attach_btf_id = btf_type_id; 7530 } 7531 return 0; 7532 } 7533 7534 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7535 7536 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7537 struct bpf_insn *insns, int insns_cnt, 7538 const char *license, __u32 kern_version, int *prog_fd) 7539 { 7540 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7541 const char *prog_name = NULL; 7542 size_t log_buf_size = 0; 7543 char *log_buf = NULL, *tmp; 7544 bool own_log_buf = true; 7545 __u32 log_level = prog->log_level; 7546 int ret, err; 7547 7548 /* Be more helpful by rejecting programs that can't be validated early 7549 * with more meaningful and actionable error message. 7550 */ 7551 switch (prog->type) { 7552 case BPF_PROG_TYPE_UNSPEC: 7553 /* 7554 * The program type must be set. Most likely we couldn't find a proper 7555 * section definition at load time, and thus we didn't infer the type. 7556 */ 7557 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7558 prog->name, prog->sec_name); 7559 return -EINVAL; 7560 case BPF_PROG_TYPE_STRUCT_OPS: 7561 if (prog->attach_btf_id == 0) { 7562 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7563 prog->name); 7564 return -EINVAL; 7565 } 7566 break; 7567 default: 7568 break; 7569 } 7570 7571 if (!insns || !insns_cnt) 7572 return -EINVAL; 7573 7574 if (kernel_supports(obj, FEAT_PROG_NAME)) 7575 prog_name = prog->name; 7576 load_attr.attach_prog_fd = prog->attach_prog_fd; 7577 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7578 load_attr.attach_btf_id = prog->attach_btf_id; 7579 load_attr.kern_version = kern_version; 7580 load_attr.prog_ifindex = prog->prog_ifindex; 7581 load_attr.expected_attach_type = prog->expected_attach_type; 7582 7583 /* specify func_info/line_info only if kernel supports them */ 7584 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7585 load_attr.prog_btf_fd = btf__fd(obj->btf); 7586 load_attr.func_info = prog->func_info; 7587 load_attr.func_info_rec_size = prog->func_info_rec_size; 7588 load_attr.func_info_cnt = prog->func_info_cnt; 7589 load_attr.line_info = prog->line_info; 7590 load_attr.line_info_rec_size = prog->line_info_rec_size; 7591 load_attr.line_info_cnt = prog->line_info_cnt; 7592 } 7593 load_attr.log_level = log_level; 7594 load_attr.prog_flags = prog->prog_flags; 7595 load_attr.fd_array = obj->fd_array; 7596 7597 load_attr.token_fd = obj->token_fd; 7598 if (obj->token_fd) 7599 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7600 7601 /* adjust load_attr if sec_def provides custom preload callback */ 7602 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7603 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7604 if (err < 0) { 7605 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7606 prog->name, errstr(err)); 7607 return err; 7608 } 7609 insns = prog->insns; 7610 insns_cnt = prog->insns_cnt; 7611 } 7612 7613 if (obj->gen_loader) { 7614 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7615 license, insns, insns_cnt, &load_attr, 7616 prog - obj->programs); 7617 *prog_fd = -1; 7618 return 0; 7619 } 7620 7621 retry_load: 7622 /* if log_level is zero, we don't request logs initially even if 7623 * custom log_buf is specified; if the program load fails, then we'll 7624 * bump log_level to 1 and use either custom log_buf or we'll allocate 7625 * our own and retry the load to get details on what failed 7626 */ 7627 if (log_level) { 7628 if (prog->log_buf) { 7629 log_buf = prog->log_buf; 7630 log_buf_size = prog->log_size; 7631 own_log_buf = false; 7632 } else if (obj->log_buf) { 7633 log_buf = obj->log_buf; 7634 log_buf_size = obj->log_size; 7635 own_log_buf = false; 7636 } else { 7637 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7638 tmp = realloc(log_buf, log_buf_size); 7639 if (!tmp) { 7640 ret = -ENOMEM; 7641 goto out; 7642 } 7643 log_buf = tmp; 7644 log_buf[0] = '\0'; 7645 own_log_buf = true; 7646 } 7647 } 7648 7649 load_attr.log_buf = log_buf; 7650 load_attr.log_size = log_buf_size; 7651 load_attr.log_level = log_level; 7652 7653 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7654 if (ret >= 0) { 7655 if (log_level && own_log_buf) { 7656 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7657 prog->name, log_buf); 7658 } 7659 7660 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7661 struct bpf_map *map; 7662 int i; 7663 7664 for (i = 0; i < obj->nr_maps; i++) { 7665 map = &prog->obj->maps[i]; 7666 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7667 continue; 7668 7669 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7670 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7671 prog->name, map->real_name, errstr(errno)); 7672 /* Don't fail hard if can't bind rodata. */ 7673 } 7674 } 7675 } 7676 7677 *prog_fd = ret; 7678 ret = 0; 7679 goto out; 7680 } 7681 7682 if (log_level == 0) { 7683 log_level = 1; 7684 goto retry_load; 7685 } 7686 /* On ENOSPC, increase log buffer size and retry, unless custom 7687 * log_buf is specified. 7688 * Be careful to not overflow u32, though. Kernel's log buf size limit 7689 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7690 * multiply by 2 unless we are sure we'll fit within 32 bits. 7691 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7692 */ 7693 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7694 goto retry_load; 7695 7696 ret = -errno; 7697 7698 /* post-process verifier log to improve error descriptions */ 7699 fixup_verifier_log(prog, log_buf, log_buf_size); 7700 7701 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7702 pr_perm_msg(ret); 7703 7704 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7705 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7706 prog->name, log_buf); 7707 } 7708 7709 out: 7710 if (own_log_buf) 7711 free(log_buf); 7712 return ret; 7713 } 7714 7715 static char *find_prev_line(char *buf, char *cur) 7716 { 7717 char *p; 7718 7719 if (cur == buf) /* end of a log buf */ 7720 return NULL; 7721 7722 p = cur - 1; 7723 while (p - 1 >= buf && *(p - 1) != '\n') 7724 p--; 7725 7726 return p; 7727 } 7728 7729 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7730 char *orig, size_t orig_sz, const char *patch) 7731 { 7732 /* size of the remaining log content to the right from the to-be-replaced part */ 7733 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7734 size_t patch_sz = strlen(patch); 7735 7736 if (patch_sz != orig_sz) { 7737 /* If patch line(s) are longer than original piece of verifier log, 7738 * shift log contents by (patch_sz - orig_sz) bytes to the right 7739 * starting from after to-be-replaced part of the log. 7740 * 7741 * If patch line(s) are shorter than original piece of verifier log, 7742 * shift log contents by (orig_sz - patch_sz) bytes to the left 7743 * starting from after to-be-replaced part of the log 7744 * 7745 * We need to be careful about not overflowing available 7746 * buf_sz capacity. If that's the case, we'll truncate the end 7747 * of the original log, as necessary. 7748 */ 7749 if (patch_sz > orig_sz) { 7750 if (orig + patch_sz >= buf + buf_sz) { 7751 /* patch is big enough to cover remaining space completely */ 7752 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7753 rem_sz = 0; 7754 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7755 /* patch causes part of remaining log to be truncated */ 7756 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7757 } 7758 } 7759 /* shift remaining log to the right by calculated amount */ 7760 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7761 } 7762 7763 memcpy(orig, patch, patch_sz); 7764 } 7765 7766 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7767 char *buf, size_t buf_sz, size_t log_sz, 7768 char *line1, char *line2, char *line3) 7769 { 7770 /* Expected log for failed and not properly guarded CO-RE relocation: 7771 * line1 -> 123: (85) call unknown#195896080 7772 * line2 -> invalid func unknown#195896080 7773 * line3 -> <anything else or end of buffer> 7774 * 7775 * "123" is the index of the instruction that was poisoned. We extract 7776 * instruction index to find corresponding CO-RE relocation and 7777 * replace this part of the log with more relevant information about 7778 * failed CO-RE relocation. 7779 */ 7780 const struct bpf_core_relo *relo; 7781 struct bpf_core_spec spec; 7782 char patch[512], spec_buf[256]; 7783 int insn_idx, err, spec_len; 7784 7785 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7786 return; 7787 7788 relo = find_relo_core(prog, insn_idx); 7789 if (!relo) 7790 return; 7791 7792 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7793 if (err) 7794 return; 7795 7796 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7797 snprintf(patch, sizeof(patch), 7798 "%d: <invalid CO-RE relocation>\n" 7799 "failed to resolve CO-RE relocation %s%s\n", 7800 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7801 7802 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7803 } 7804 7805 static void fixup_log_missing_map_load(struct bpf_program *prog, 7806 char *buf, size_t buf_sz, size_t log_sz, 7807 char *line1, char *line2, char *line3) 7808 { 7809 /* Expected log for failed and not properly guarded map reference: 7810 * line1 -> 123: (85) call unknown#2001000345 7811 * line2 -> invalid func unknown#2001000345 7812 * line3 -> <anything else or end of buffer> 7813 * 7814 * "123" is the index of the instruction that was poisoned. 7815 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7816 */ 7817 struct bpf_object *obj = prog->obj; 7818 const struct bpf_map *map; 7819 int insn_idx, map_idx; 7820 char patch[128]; 7821 7822 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7823 return; 7824 7825 map_idx -= POISON_LDIMM64_MAP_BASE; 7826 if (map_idx < 0 || map_idx >= obj->nr_maps) 7827 return; 7828 map = &obj->maps[map_idx]; 7829 7830 snprintf(patch, sizeof(patch), 7831 "%d: <invalid BPF map reference>\n" 7832 "BPF map '%s' is referenced but wasn't created\n", 7833 insn_idx, map->name); 7834 7835 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7836 } 7837 7838 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7839 char *buf, size_t buf_sz, size_t log_sz, 7840 char *line1, char *line2, char *line3) 7841 { 7842 /* Expected log for failed and not properly guarded kfunc call: 7843 * line1 -> 123: (85) call unknown#2002000345 7844 * line2 -> invalid func unknown#2002000345 7845 * line3 -> <anything else or end of buffer> 7846 * 7847 * "123" is the index of the instruction that was poisoned. 7848 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7849 */ 7850 struct bpf_object *obj = prog->obj; 7851 const struct extern_desc *ext; 7852 int insn_idx, ext_idx; 7853 char patch[128]; 7854 7855 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7856 return; 7857 7858 ext_idx -= POISON_CALL_KFUNC_BASE; 7859 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7860 return; 7861 ext = &obj->externs[ext_idx]; 7862 7863 snprintf(patch, sizeof(patch), 7864 "%d: <invalid kfunc call>\n" 7865 "kfunc '%s' is referenced but wasn't resolved\n", 7866 insn_idx, ext->name); 7867 7868 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7869 } 7870 7871 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7872 { 7873 /* look for familiar error patterns in last N lines of the log */ 7874 const size_t max_last_line_cnt = 10; 7875 char *prev_line, *cur_line, *next_line; 7876 size_t log_sz; 7877 int i; 7878 7879 if (!buf) 7880 return; 7881 7882 log_sz = strlen(buf) + 1; 7883 next_line = buf + log_sz - 1; 7884 7885 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7886 cur_line = find_prev_line(buf, next_line); 7887 if (!cur_line) 7888 return; 7889 7890 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7891 prev_line = find_prev_line(buf, cur_line); 7892 if (!prev_line) 7893 continue; 7894 7895 /* failed CO-RE relocation case */ 7896 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7897 prev_line, cur_line, next_line); 7898 return; 7899 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7900 prev_line = find_prev_line(buf, cur_line); 7901 if (!prev_line) 7902 continue; 7903 7904 /* reference to uncreated BPF map */ 7905 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7906 prev_line, cur_line, next_line); 7907 return; 7908 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7909 prev_line = find_prev_line(buf, cur_line); 7910 if (!prev_line) 7911 continue; 7912 7913 /* reference to unresolved kfunc */ 7914 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7915 prev_line, cur_line, next_line); 7916 return; 7917 } 7918 } 7919 } 7920 7921 static int bpf_program_record_relos(struct bpf_program *prog) 7922 { 7923 struct bpf_object *obj = prog->obj; 7924 int i; 7925 7926 for (i = 0; i < prog->nr_reloc; i++) { 7927 struct reloc_desc *relo = &prog->reloc_desc[i]; 7928 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7929 int kind; 7930 7931 switch (relo->type) { 7932 case RELO_EXTERN_LD64: 7933 if (ext->type != EXT_KSYM) 7934 continue; 7935 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7936 BTF_KIND_VAR : BTF_KIND_FUNC; 7937 bpf_gen__record_extern(obj->gen_loader, ext->name, 7938 ext->is_weak, !ext->ksym.type_id, 7939 true, kind, relo->insn_idx); 7940 break; 7941 case RELO_EXTERN_CALL: 7942 bpf_gen__record_extern(obj->gen_loader, ext->name, 7943 ext->is_weak, false, false, BTF_KIND_FUNC, 7944 relo->insn_idx); 7945 break; 7946 case RELO_CORE: { 7947 struct bpf_core_relo cr = { 7948 .insn_off = relo->insn_idx * 8, 7949 .type_id = relo->core_relo->type_id, 7950 .access_str_off = relo->core_relo->access_str_off, 7951 .kind = relo->core_relo->kind, 7952 }; 7953 7954 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7955 break; 7956 } 7957 default: 7958 continue; 7959 } 7960 } 7961 return 0; 7962 } 7963 7964 static int 7965 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7966 { 7967 struct bpf_program *prog; 7968 size_t i; 7969 int err; 7970 7971 for (i = 0; i < obj->nr_programs; i++) { 7972 prog = &obj->programs[i]; 7973 if (prog_is_subprog(obj, prog)) 7974 continue; 7975 if (!prog->autoload) { 7976 pr_debug("prog '%s': skipped loading\n", prog->name); 7977 continue; 7978 } 7979 prog->log_level |= log_level; 7980 7981 if (obj->gen_loader) 7982 bpf_program_record_relos(prog); 7983 7984 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7985 obj->license, obj->kern_version, &prog->fd); 7986 if (err) { 7987 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7988 return err; 7989 } 7990 } 7991 7992 bpf_object__free_relocs(obj); 7993 return 0; 7994 } 7995 7996 static int bpf_object_prepare_progs(struct bpf_object *obj) 7997 { 7998 struct bpf_program *prog; 7999 size_t i; 8000 int err; 8001 8002 for (i = 0; i < obj->nr_programs; i++) { 8003 prog = &obj->programs[i]; 8004 err = bpf_object__sanitize_prog(obj, prog); 8005 if (err) 8006 return err; 8007 } 8008 return 0; 8009 } 8010 8011 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 8012 8013 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 8014 { 8015 struct bpf_program *prog; 8016 int err; 8017 8018 bpf_object__for_each_program(prog, obj) { 8019 prog->sec_def = find_sec_def(prog->sec_name); 8020 if (!prog->sec_def) { 8021 /* couldn't guess, but user might manually specify */ 8022 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 8023 prog->name, prog->sec_name); 8024 continue; 8025 } 8026 8027 prog->type = prog->sec_def->prog_type; 8028 prog->expected_attach_type = prog->sec_def->expected_attach_type; 8029 8030 /* sec_def can have custom callback which should be called 8031 * after bpf_program is initialized to adjust its properties 8032 */ 8033 if (prog->sec_def->prog_setup_fn) { 8034 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 8035 if (err < 0) { 8036 pr_warn("prog '%s': failed to initialize: %s\n", 8037 prog->name, errstr(err)); 8038 return err; 8039 } 8040 } 8041 } 8042 8043 return 0; 8044 } 8045 8046 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 8047 const char *obj_name, 8048 const struct bpf_object_open_opts *opts) 8049 { 8050 const char *kconfig, *btf_tmp_path, *token_path; 8051 struct bpf_object *obj; 8052 int err; 8053 char *log_buf; 8054 size_t log_size; 8055 __u32 log_level; 8056 8057 if (obj_buf && !obj_name) 8058 return ERR_PTR(-EINVAL); 8059 8060 if (elf_version(EV_CURRENT) == EV_NONE) { 8061 pr_warn("failed to init libelf for %s\n", 8062 path ? : "(mem buf)"); 8063 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 8064 } 8065 8066 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8067 return ERR_PTR(-EINVAL); 8068 8069 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8070 if (obj_buf) { 8071 path = obj_name; 8072 pr_debug("loading object '%s' from buffer\n", obj_name); 8073 } else { 8074 pr_debug("loading object from %s\n", path); 8075 } 8076 8077 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8078 log_size = OPTS_GET(opts, kernel_log_size, 0); 8079 log_level = OPTS_GET(opts, kernel_log_level, 0); 8080 if (log_size > UINT_MAX) 8081 return ERR_PTR(-EINVAL); 8082 if (log_size && !log_buf) 8083 return ERR_PTR(-EINVAL); 8084 8085 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8086 /* if user didn't specify bpf_token_path explicitly, check if 8087 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8088 * option 8089 */ 8090 if (!token_path) 8091 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8092 if (token_path && strlen(token_path) >= PATH_MAX) 8093 return ERR_PTR(-ENAMETOOLONG); 8094 8095 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8096 if (IS_ERR(obj)) 8097 return obj; 8098 8099 obj->log_buf = log_buf; 8100 obj->log_size = log_size; 8101 obj->log_level = log_level; 8102 8103 if (token_path) { 8104 obj->token_path = strdup(token_path); 8105 if (!obj->token_path) { 8106 err = -ENOMEM; 8107 goto out; 8108 } 8109 } 8110 8111 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8112 if (btf_tmp_path) { 8113 if (strlen(btf_tmp_path) >= PATH_MAX) { 8114 err = -ENAMETOOLONG; 8115 goto out; 8116 } 8117 obj->btf_custom_path = strdup(btf_tmp_path); 8118 if (!obj->btf_custom_path) { 8119 err = -ENOMEM; 8120 goto out; 8121 } 8122 } 8123 8124 kconfig = OPTS_GET(opts, kconfig, NULL); 8125 if (kconfig) { 8126 obj->kconfig = strdup(kconfig); 8127 if (!obj->kconfig) { 8128 err = -ENOMEM; 8129 goto out; 8130 } 8131 } 8132 8133 err = bpf_object__elf_init(obj); 8134 err = err ? : bpf_object__elf_collect(obj); 8135 err = err ? : bpf_object__collect_externs(obj); 8136 err = err ? : bpf_object_fixup_btf(obj); 8137 err = err ? : bpf_object__init_maps(obj, opts); 8138 err = err ? : bpf_object_init_progs(obj, opts); 8139 err = err ? : bpf_object__collect_relos(obj); 8140 if (err) 8141 goto out; 8142 8143 bpf_object__elf_finish(obj); 8144 8145 return obj; 8146 out: 8147 bpf_object__close(obj); 8148 return ERR_PTR(err); 8149 } 8150 8151 struct bpf_object * 8152 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8153 { 8154 if (!path) 8155 return libbpf_err_ptr(-EINVAL); 8156 8157 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8158 } 8159 8160 struct bpf_object *bpf_object__open(const char *path) 8161 { 8162 return bpf_object__open_file(path, NULL); 8163 } 8164 8165 struct bpf_object * 8166 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8167 const struct bpf_object_open_opts *opts) 8168 { 8169 char tmp_name[64]; 8170 8171 if (!obj_buf || obj_buf_sz == 0) 8172 return libbpf_err_ptr(-EINVAL); 8173 8174 /* create a (quite useless) default "name" for this memory buffer object */ 8175 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8176 8177 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8178 } 8179 8180 static int bpf_object_unload(struct bpf_object *obj) 8181 { 8182 size_t i; 8183 8184 if (!obj) 8185 return libbpf_err(-EINVAL); 8186 8187 for (i = 0; i < obj->nr_maps; i++) { 8188 zclose(obj->maps[i].fd); 8189 if (obj->maps[i].st_ops) 8190 zfree(&obj->maps[i].st_ops->kern_vdata); 8191 } 8192 8193 for (i = 0; i < obj->nr_programs; i++) 8194 bpf_program__unload(&obj->programs[i]); 8195 8196 return 0; 8197 } 8198 8199 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8200 { 8201 struct bpf_map *m; 8202 8203 bpf_object__for_each_map(m, obj) { 8204 if (!bpf_map__is_internal(m)) 8205 continue; 8206 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8207 m->def.map_flags &= ~BPF_F_MMAPABLE; 8208 } 8209 8210 return 0; 8211 } 8212 8213 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8214 const char *sym_name, void *ctx); 8215 8216 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8217 { 8218 char sym_type, sym_name[500]; 8219 unsigned long long sym_addr; 8220 int ret, err = 0; 8221 FILE *f; 8222 8223 f = fopen("/proc/kallsyms", "re"); 8224 if (!f) { 8225 err = -errno; 8226 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8227 return err; 8228 } 8229 8230 while (true) { 8231 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8232 &sym_addr, &sym_type, sym_name); 8233 if (ret == EOF && feof(f)) 8234 break; 8235 if (ret != 3) { 8236 pr_warn("failed to read kallsyms entry: %d\n", ret); 8237 err = -EINVAL; 8238 break; 8239 } 8240 8241 err = cb(sym_addr, sym_type, sym_name, ctx); 8242 if (err) 8243 break; 8244 } 8245 8246 fclose(f); 8247 return err; 8248 } 8249 8250 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8251 const char *sym_name, void *ctx) 8252 { 8253 struct bpf_object *obj = ctx; 8254 const struct btf_type *t; 8255 struct extern_desc *ext; 8256 char *res; 8257 8258 res = strstr(sym_name, ".llvm."); 8259 if (sym_type == 'd' && res) 8260 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8261 else 8262 ext = find_extern_by_name(obj, sym_name); 8263 if (!ext || ext->type != EXT_KSYM) 8264 return 0; 8265 8266 t = btf__type_by_id(obj->btf, ext->btf_id); 8267 if (!btf_is_var(t)) 8268 return 0; 8269 8270 if (ext->is_set && ext->ksym.addr != sym_addr) { 8271 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8272 sym_name, ext->ksym.addr, sym_addr); 8273 return -EINVAL; 8274 } 8275 if (!ext->is_set) { 8276 ext->is_set = true; 8277 ext->ksym.addr = sym_addr; 8278 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8279 } 8280 return 0; 8281 } 8282 8283 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8284 { 8285 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8286 } 8287 8288 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8289 __u16 kind, struct btf **res_btf, 8290 struct module_btf **res_mod_btf) 8291 { 8292 struct module_btf *mod_btf; 8293 struct btf *btf; 8294 int i, id, err; 8295 8296 btf = obj->btf_vmlinux; 8297 mod_btf = NULL; 8298 id = btf__find_by_name_kind(btf, ksym_name, kind); 8299 8300 if (id == -ENOENT) { 8301 err = load_module_btfs(obj); 8302 if (err) 8303 return err; 8304 8305 for (i = 0; i < obj->btf_module_cnt; i++) { 8306 /* we assume module_btf's BTF FD is always >0 */ 8307 mod_btf = &obj->btf_modules[i]; 8308 btf = mod_btf->btf; 8309 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8310 if (id != -ENOENT) 8311 break; 8312 } 8313 } 8314 if (id <= 0) 8315 return -ESRCH; 8316 8317 *res_btf = btf; 8318 *res_mod_btf = mod_btf; 8319 return id; 8320 } 8321 8322 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8323 struct extern_desc *ext) 8324 { 8325 const struct btf_type *targ_var, *targ_type; 8326 __u32 targ_type_id, local_type_id; 8327 struct module_btf *mod_btf = NULL; 8328 const char *targ_var_name; 8329 struct btf *btf = NULL; 8330 int id, err; 8331 8332 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8333 if (id < 0) { 8334 if (id == -ESRCH && ext->is_weak) 8335 return 0; 8336 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8337 ext->name); 8338 return id; 8339 } 8340 8341 /* find local type_id */ 8342 local_type_id = ext->ksym.type_id; 8343 8344 /* find target type_id */ 8345 targ_var = btf__type_by_id(btf, id); 8346 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8347 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8348 8349 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8350 btf, targ_type_id); 8351 if (err <= 0) { 8352 const struct btf_type *local_type; 8353 const char *targ_name, *local_name; 8354 8355 local_type = btf__type_by_id(obj->btf, local_type_id); 8356 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8357 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8358 8359 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8360 ext->name, local_type_id, 8361 btf_kind_str(local_type), local_name, targ_type_id, 8362 btf_kind_str(targ_type), targ_name); 8363 return -EINVAL; 8364 } 8365 8366 ext->is_set = true; 8367 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8368 ext->ksym.kernel_btf_id = id; 8369 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8370 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8371 8372 return 0; 8373 } 8374 8375 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8376 struct extern_desc *ext) 8377 { 8378 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8379 struct module_btf *mod_btf = NULL; 8380 const struct btf_type *kern_func; 8381 struct btf *kern_btf = NULL; 8382 int ret; 8383 8384 local_func_proto_id = ext->ksym.type_id; 8385 8386 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8387 &mod_btf); 8388 if (kfunc_id < 0) { 8389 if (kfunc_id == -ESRCH && ext->is_weak) 8390 return 0; 8391 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8392 ext->name); 8393 return kfunc_id; 8394 } 8395 8396 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8397 kfunc_proto_id = kern_func->type; 8398 8399 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8400 kern_btf, kfunc_proto_id); 8401 if (ret <= 0) { 8402 if (ext->is_weak) 8403 return 0; 8404 8405 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8406 ext->name, local_func_proto_id, 8407 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8408 return -EINVAL; 8409 } 8410 8411 /* set index for module BTF fd in fd_array, if unset */ 8412 if (mod_btf && !mod_btf->fd_array_idx) { 8413 /* insn->off is s16 */ 8414 if (obj->fd_array_cnt == INT16_MAX) { 8415 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8416 ext->name, mod_btf->fd_array_idx); 8417 return -E2BIG; 8418 } 8419 /* Cannot use index 0 for module BTF fd */ 8420 if (!obj->fd_array_cnt) 8421 obj->fd_array_cnt = 1; 8422 8423 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8424 obj->fd_array_cnt + 1); 8425 if (ret) 8426 return ret; 8427 mod_btf->fd_array_idx = obj->fd_array_cnt; 8428 /* we assume module BTF FD is always >0 */ 8429 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8430 } 8431 8432 ext->is_set = true; 8433 ext->ksym.kernel_btf_id = kfunc_id; 8434 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8435 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8436 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8437 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8438 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8439 */ 8440 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8441 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8442 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8443 8444 return 0; 8445 } 8446 8447 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8448 { 8449 const struct btf_type *t; 8450 struct extern_desc *ext; 8451 int i, err; 8452 8453 for (i = 0; i < obj->nr_extern; i++) { 8454 ext = &obj->externs[i]; 8455 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8456 continue; 8457 8458 if (obj->gen_loader) { 8459 ext->is_set = true; 8460 ext->ksym.kernel_btf_obj_fd = 0; 8461 ext->ksym.kernel_btf_id = 0; 8462 continue; 8463 } 8464 t = btf__type_by_id(obj->btf, ext->btf_id); 8465 if (btf_is_var(t)) 8466 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8467 else 8468 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8469 if (err) 8470 return err; 8471 } 8472 return 0; 8473 } 8474 8475 static int bpf_object__resolve_externs(struct bpf_object *obj, 8476 const char *extra_kconfig) 8477 { 8478 bool need_config = false, need_kallsyms = false; 8479 bool need_vmlinux_btf = false; 8480 struct extern_desc *ext; 8481 void *kcfg_data = NULL; 8482 int err, i; 8483 8484 if (obj->nr_extern == 0) 8485 return 0; 8486 8487 if (obj->kconfig_map_idx >= 0) 8488 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8489 8490 for (i = 0; i < obj->nr_extern; i++) { 8491 ext = &obj->externs[i]; 8492 8493 if (ext->type == EXT_KSYM) { 8494 if (ext->ksym.type_id) 8495 need_vmlinux_btf = true; 8496 else 8497 need_kallsyms = true; 8498 continue; 8499 } else if (ext->type == EXT_KCFG) { 8500 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8501 __u64 value = 0; 8502 8503 /* Kconfig externs need actual /proc/config.gz */ 8504 if (str_has_pfx(ext->name, "CONFIG_")) { 8505 need_config = true; 8506 continue; 8507 } 8508 8509 /* Virtual kcfg externs are customly handled by libbpf */ 8510 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8511 value = get_kernel_version(); 8512 if (!value) { 8513 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8514 return -EINVAL; 8515 } 8516 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8517 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8518 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8519 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8520 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8521 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8522 * __kconfig externs, where LINUX_ ones are virtual and filled out 8523 * customly by libbpf (their values don't come from Kconfig). 8524 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8525 * __weak, it defaults to zero value, just like for CONFIG_xxx 8526 * externs. 8527 */ 8528 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8529 return -EINVAL; 8530 } 8531 8532 err = set_kcfg_value_num(ext, ext_ptr, value); 8533 if (err) 8534 return err; 8535 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8536 ext->name, (long long)value); 8537 } else { 8538 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8539 return -EINVAL; 8540 } 8541 } 8542 if (need_config && extra_kconfig) { 8543 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8544 if (err) 8545 return -EINVAL; 8546 need_config = false; 8547 for (i = 0; i < obj->nr_extern; i++) { 8548 ext = &obj->externs[i]; 8549 if (ext->type == EXT_KCFG && !ext->is_set) { 8550 need_config = true; 8551 break; 8552 } 8553 } 8554 } 8555 if (need_config) { 8556 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8557 if (err) 8558 return -EINVAL; 8559 } 8560 if (need_kallsyms) { 8561 err = bpf_object__read_kallsyms_file(obj); 8562 if (err) 8563 return -EINVAL; 8564 } 8565 if (need_vmlinux_btf) { 8566 err = bpf_object__resolve_ksyms_btf_id(obj); 8567 if (err) 8568 return -EINVAL; 8569 } 8570 for (i = 0; i < obj->nr_extern; i++) { 8571 ext = &obj->externs[i]; 8572 8573 if (!ext->is_set && !ext->is_weak) { 8574 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8575 return -ESRCH; 8576 } else if (!ext->is_set) { 8577 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8578 ext->name); 8579 } 8580 } 8581 8582 return 0; 8583 } 8584 8585 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8586 { 8587 const struct btf_type *type; 8588 struct bpf_struct_ops *st_ops; 8589 __u32 i; 8590 8591 st_ops = map->st_ops; 8592 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8593 for (i = 0; i < btf_vlen(type); i++) { 8594 struct bpf_program *prog = st_ops->progs[i]; 8595 void *kern_data; 8596 int prog_fd; 8597 8598 if (!prog) 8599 continue; 8600 8601 prog_fd = bpf_program__fd(prog); 8602 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8603 *(unsigned long *)kern_data = prog_fd; 8604 } 8605 } 8606 8607 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8608 { 8609 struct bpf_map *map; 8610 int i; 8611 8612 for (i = 0; i < obj->nr_maps; i++) { 8613 map = &obj->maps[i]; 8614 8615 if (!bpf_map__is_struct_ops(map)) 8616 continue; 8617 8618 if (!map->autocreate) 8619 continue; 8620 8621 bpf_map_prepare_vdata(map); 8622 } 8623 8624 return 0; 8625 } 8626 8627 static void bpf_object_unpin(struct bpf_object *obj) 8628 { 8629 int i; 8630 8631 /* unpin any maps that were auto-pinned during load */ 8632 for (i = 0; i < obj->nr_maps; i++) 8633 if (obj->maps[i].pinned && !obj->maps[i].reused) 8634 bpf_map__unpin(&obj->maps[i], NULL); 8635 } 8636 8637 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8638 { 8639 int i; 8640 8641 /* clean up fd_array */ 8642 zfree(&obj->fd_array); 8643 8644 /* clean up module BTFs */ 8645 for (i = 0; i < obj->btf_module_cnt; i++) { 8646 close(obj->btf_modules[i].fd); 8647 btf__free(obj->btf_modules[i].btf); 8648 free(obj->btf_modules[i].name); 8649 } 8650 obj->btf_module_cnt = 0; 8651 zfree(&obj->btf_modules); 8652 8653 /* clean up vmlinux BTF */ 8654 btf__free(obj->btf_vmlinux); 8655 obj->btf_vmlinux = NULL; 8656 } 8657 8658 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8659 { 8660 int err; 8661 8662 if (obj->state >= OBJ_PREPARED) { 8663 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8664 return -EINVAL; 8665 } 8666 8667 err = bpf_object_prepare_token(obj); 8668 err = err ? : bpf_object__probe_loading(obj); 8669 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8670 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8671 err = err ? : bpf_object__sanitize_maps(obj); 8672 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8673 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8674 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8675 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8676 err = err ? : bpf_object__create_maps(obj); 8677 err = err ? : bpf_object_prepare_progs(obj); 8678 8679 if (err) { 8680 bpf_object_unpin(obj); 8681 bpf_object_unload(obj); 8682 obj->state = OBJ_LOADED; 8683 return err; 8684 } 8685 8686 obj->state = OBJ_PREPARED; 8687 return 0; 8688 } 8689 8690 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8691 { 8692 int err; 8693 8694 if (!obj) 8695 return libbpf_err(-EINVAL); 8696 8697 if (obj->state >= OBJ_LOADED) { 8698 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8699 return libbpf_err(-EINVAL); 8700 } 8701 8702 /* Disallow kernel loading programs of non-native endianness but 8703 * permit cross-endian creation of "light skeleton". 8704 */ 8705 if (obj->gen_loader) { 8706 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8707 } else if (!is_native_endianness(obj)) { 8708 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8709 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8710 } 8711 8712 if (obj->state < OBJ_PREPARED) { 8713 err = bpf_object_prepare(obj, target_btf_path); 8714 if (err) 8715 return libbpf_err(err); 8716 } 8717 err = bpf_object__load_progs(obj, extra_log_level); 8718 err = err ? : bpf_object_init_prog_arrays(obj); 8719 err = err ? : bpf_object_prepare_struct_ops(obj); 8720 8721 if (obj->gen_loader) { 8722 /* reset FDs */ 8723 if (obj->btf) 8724 btf__set_fd(obj->btf, -1); 8725 if (!err) 8726 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8727 } 8728 8729 bpf_object_post_load_cleanup(obj); 8730 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8731 8732 if (err) { 8733 bpf_object_unpin(obj); 8734 bpf_object_unload(obj); 8735 pr_warn("failed to load object '%s'\n", obj->path); 8736 return libbpf_err(err); 8737 } 8738 8739 return 0; 8740 } 8741 8742 int bpf_object__prepare(struct bpf_object *obj) 8743 { 8744 return libbpf_err(bpf_object_prepare(obj, NULL)); 8745 } 8746 8747 int bpf_object__load(struct bpf_object *obj) 8748 { 8749 return bpf_object_load(obj, 0, NULL); 8750 } 8751 8752 static int make_parent_dir(const char *path) 8753 { 8754 char *dname, *dir; 8755 int err = 0; 8756 8757 dname = strdup(path); 8758 if (dname == NULL) 8759 return -ENOMEM; 8760 8761 dir = dirname(dname); 8762 if (mkdir(dir, 0700) && errno != EEXIST) 8763 err = -errno; 8764 8765 free(dname); 8766 if (err) { 8767 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8768 } 8769 return err; 8770 } 8771 8772 static int check_path(const char *path) 8773 { 8774 struct statfs st_fs; 8775 char *dname, *dir; 8776 int err = 0; 8777 8778 if (path == NULL) 8779 return -EINVAL; 8780 8781 dname = strdup(path); 8782 if (dname == NULL) 8783 return -ENOMEM; 8784 8785 dir = dirname(dname); 8786 if (statfs(dir, &st_fs)) { 8787 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8788 err = -errno; 8789 } 8790 free(dname); 8791 8792 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8793 pr_warn("specified path %s is not on BPF FS\n", path); 8794 err = -EINVAL; 8795 } 8796 8797 return err; 8798 } 8799 8800 int bpf_program__pin(struct bpf_program *prog, const char *path) 8801 { 8802 int err; 8803 8804 if (prog->fd < 0) { 8805 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8806 return libbpf_err(-EINVAL); 8807 } 8808 8809 err = make_parent_dir(path); 8810 if (err) 8811 return libbpf_err(err); 8812 8813 err = check_path(path); 8814 if (err) 8815 return libbpf_err(err); 8816 8817 if (bpf_obj_pin(prog->fd, path)) { 8818 err = -errno; 8819 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8820 return libbpf_err(err); 8821 } 8822 8823 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8824 return 0; 8825 } 8826 8827 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8828 { 8829 int err; 8830 8831 if (prog->fd < 0) { 8832 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8833 return libbpf_err(-EINVAL); 8834 } 8835 8836 err = check_path(path); 8837 if (err) 8838 return libbpf_err(err); 8839 8840 err = unlink(path); 8841 if (err) 8842 return libbpf_err(-errno); 8843 8844 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8845 return 0; 8846 } 8847 8848 int bpf_map__pin(struct bpf_map *map, const char *path) 8849 { 8850 int err; 8851 8852 if (map == NULL) { 8853 pr_warn("invalid map pointer\n"); 8854 return libbpf_err(-EINVAL); 8855 } 8856 8857 if (map->fd < 0) { 8858 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8859 return libbpf_err(-EINVAL); 8860 } 8861 8862 if (map->pin_path) { 8863 if (path && strcmp(path, map->pin_path)) { 8864 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8865 bpf_map__name(map), map->pin_path, path); 8866 return libbpf_err(-EINVAL); 8867 } else if (map->pinned) { 8868 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8869 bpf_map__name(map), map->pin_path); 8870 return 0; 8871 } 8872 } else { 8873 if (!path) { 8874 pr_warn("missing a path to pin map '%s' at\n", 8875 bpf_map__name(map)); 8876 return libbpf_err(-EINVAL); 8877 } else if (map->pinned) { 8878 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8879 return libbpf_err(-EEXIST); 8880 } 8881 8882 map->pin_path = strdup(path); 8883 if (!map->pin_path) { 8884 err = -errno; 8885 goto out_err; 8886 } 8887 } 8888 8889 err = make_parent_dir(map->pin_path); 8890 if (err) 8891 return libbpf_err(err); 8892 8893 err = check_path(map->pin_path); 8894 if (err) 8895 return libbpf_err(err); 8896 8897 if (bpf_obj_pin(map->fd, map->pin_path)) { 8898 err = -errno; 8899 goto out_err; 8900 } 8901 8902 map->pinned = true; 8903 pr_debug("pinned map '%s'\n", map->pin_path); 8904 8905 return 0; 8906 8907 out_err: 8908 pr_warn("failed to pin map: %s\n", errstr(err)); 8909 return libbpf_err(err); 8910 } 8911 8912 int bpf_map__unpin(struct bpf_map *map, const char *path) 8913 { 8914 int err; 8915 8916 if (map == NULL) { 8917 pr_warn("invalid map pointer\n"); 8918 return libbpf_err(-EINVAL); 8919 } 8920 8921 if (map->pin_path) { 8922 if (path && strcmp(path, map->pin_path)) { 8923 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8924 bpf_map__name(map), map->pin_path, path); 8925 return libbpf_err(-EINVAL); 8926 } 8927 path = map->pin_path; 8928 } else if (!path) { 8929 pr_warn("no path to unpin map '%s' from\n", 8930 bpf_map__name(map)); 8931 return libbpf_err(-EINVAL); 8932 } 8933 8934 err = check_path(path); 8935 if (err) 8936 return libbpf_err(err); 8937 8938 err = unlink(path); 8939 if (err != 0) 8940 return libbpf_err(-errno); 8941 8942 map->pinned = false; 8943 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8944 8945 return 0; 8946 } 8947 8948 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8949 { 8950 char *new = NULL; 8951 8952 if (path) { 8953 new = strdup(path); 8954 if (!new) 8955 return libbpf_err(-errno); 8956 } 8957 8958 free(map->pin_path); 8959 map->pin_path = new; 8960 return 0; 8961 } 8962 8963 __alias(bpf_map__pin_path) 8964 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8965 8966 const char *bpf_map__pin_path(const struct bpf_map *map) 8967 { 8968 return map->pin_path; 8969 } 8970 8971 bool bpf_map__is_pinned(const struct bpf_map *map) 8972 { 8973 return map->pinned; 8974 } 8975 8976 static void sanitize_pin_path(char *s) 8977 { 8978 /* bpffs disallows periods in path names */ 8979 while (*s) { 8980 if (*s == '.') 8981 *s = '_'; 8982 s++; 8983 } 8984 } 8985 8986 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8987 { 8988 struct bpf_map *map; 8989 int err; 8990 8991 if (!obj) 8992 return libbpf_err(-ENOENT); 8993 8994 if (obj->state < OBJ_PREPARED) { 8995 pr_warn("object not yet loaded; load it first\n"); 8996 return libbpf_err(-ENOENT); 8997 } 8998 8999 bpf_object__for_each_map(map, obj) { 9000 char *pin_path = NULL; 9001 char buf[PATH_MAX]; 9002 9003 if (!map->autocreate) 9004 continue; 9005 9006 if (path) { 9007 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9008 if (err) 9009 goto err_unpin_maps; 9010 sanitize_pin_path(buf); 9011 pin_path = buf; 9012 } else if (!map->pin_path) { 9013 continue; 9014 } 9015 9016 err = bpf_map__pin(map, pin_path); 9017 if (err) 9018 goto err_unpin_maps; 9019 } 9020 9021 return 0; 9022 9023 err_unpin_maps: 9024 while ((map = bpf_object__prev_map(obj, map))) { 9025 if (!map->pin_path) 9026 continue; 9027 9028 bpf_map__unpin(map, NULL); 9029 } 9030 9031 return libbpf_err(err); 9032 } 9033 9034 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 9035 { 9036 struct bpf_map *map; 9037 int err; 9038 9039 if (!obj) 9040 return libbpf_err(-ENOENT); 9041 9042 bpf_object__for_each_map(map, obj) { 9043 char *pin_path = NULL; 9044 char buf[PATH_MAX]; 9045 9046 if (path) { 9047 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9048 if (err) 9049 return libbpf_err(err); 9050 sanitize_pin_path(buf); 9051 pin_path = buf; 9052 } else if (!map->pin_path) { 9053 continue; 9054 } 9055 9056 err = bpf_map__unpin(map, pin_path); 9057 if (err) 9058 return libbpf_err(err); 9059 } 9060 9061 return 0; 9062 } 9063 9064 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 9065 { 9066 struct bpf_program *prog; 9067 char buf[PATH_MAX]; 9068 int err; 9069 9070 if (!obj) 9071 return libbpf_err(-ENOENT); 9072 9073 if (obj->state < OBJ_LOADED) { 9074 pr_warn("object not yet loaded; load it first\n"); 9075 return libbpf_err(-ENOENT); 9076 } 9077 9078 bpf_object__for_each_program(prog, obj) { 9079 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9080 if (err) 9081 goto err_unpin_programs; 9082 9083 err = bpf_program__pin(prog, buf); 9084 if (err) 9085 goto err_unpin_programs; 9086 } 9087 9088 return 0; 9089 9090 err_unpin_programs: 9091 while ((prog = bpf_object__prev_program(obj, prog))) { 9092 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9093 continue; 9094 9095 bpf_program__unpin(prog, buf); 9096 } 9097 9098 return libbpf_err(err); 9099 } 9100 9101 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9102 { 9103 struct bpf_program *prog; 9104 int err; 9105 9106 if (!obj) 9107 return libbpf_err(-ENOENT); 9108 9109 bpf_object__for_each_program(prog, obj) { 9110 char buf[PATH_MAX]; 9111 9112 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9113 if (err) 9114 return libbpf_err(err); 9115 9116 err = bpf_program__unpin(prog, buf); 9117 if (err) 9118 return libbpf_err(err); 9119 } 9120 9121 return 0; 9122 } 9123 9124 int bpf_object__pin(struct bpf_object *obj, const char *path) 9125 { 9126 int err; 9127 9128 err = bpf_object__pin_maps(obj, path); 9129 if (err) 9130 return libbpf_err(err); 9131 9132 err = bpf_object__pin_programs(obj, path); 9133 if (err) { 9134 bpf_object__unpin_maps(obj, path); 9135 return libbpf_err(err); 9136 } 9137 9138 return 0; 9139 } 9140 9141 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9142 { 9143 int err; 9144 9145 err = bpf_object__unpin_programs(obj, path); 9146 if (err) 9147 return libbpf_err(err); 9148 9149 err = bpf_object__unpin_maps(obj, path); 9150 if (err) 9151 return libbpf_err(err); 9152 9153 return 0; 9154 } 9155 9156 static void bpf_map__destroy(struct bpf_map *map) 9157 { 9158 if (map->inner_map) { 9159 bpf_map__destroy(map->inner_map); 9160 zfree(&map->inner_map); 9161 } 9162 9163 zfree(&map->init_slots); 9164 map->init_slots_sz = 0; 9165 9166 if (map->mmaped && map->mmaped != map->obj->arena_data) 9167 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9168 map->mmaped = NULL; 9169 9170 if (map->st_ops) { 9171 zfree(&map->st_ops->data); 9172 zfree(&map->st_ops->progs); 9173 zfree(&map->st_ops->kern_func_off); 9174 zfree(&map->st_ops); 9175 } 9176 9177 zfree(&map->name); 9178 zfree(&map->real_name); 9179 zfree(&map->pin_path); 9180 9181 if (map->fd >= 0) 9182 zclose(map->fd); 9183 } 9184 9185 void bpf_object__close(struct bpf_object *obj) 9186 { 9187 size_t i; 9188 9189 if (IS_ERR_OR_NULL(obj)) 9190 return; 9191 9192 /* 9193 * if user called bpf_object__prepare() without ever getting to 9194 * bpf_object__load(), we need to clean up stuff that is normally 9195 * cleaned up at the end of loading step 9196 */ 9197 bpf_object_post_load_cleanup(obj); 9198 9199 usdt_manager_free(obj->usdt_man); 9200 obj->usdt_man = NULL; 9201 9202 bpf_gen__free(obj->gen_loader); 9203 bpf_object__elf_finish(obj); 9204 bpf_object_unload(obj); 9205 btf__free(obj->btf); 9206 btf__free(obj->btf_vmlinux); 9207 btf_ext__free(obj->btf_ext); 9208 9209 for (i = 0; i < obj->nr_maps; i++) 9210 bpf_map__destroy(&obj->maps[i]); 9211 9212 zfree(&obj->btf_custom_path); 9213 zfree(&obj->kconfig); 9214 9215 for (i = 0; i < obj->nr_extern; i++) { 9216 zfree(&obj->externs[i].name); 9217 zfree(&obj->externs[i].essent_name); 9218 } 9219 9220 zfree(&obj->externs); 9221 obj->nr_extern = 0; 9222 9223 zfree(&obj->maps); 9224 obj->nr_maps = 0; 9225 9226 if (obj->programs && obj->nr_programs) { 9227 for (i = 0; i < obj->nr_programs; i++) 9228 bpf_program__exit(&obj->programs[i]); 9229 } 9230 zfree(&obj->programs); 9231 9232 zfree(&obj->feat_cache); 9233 zfree(&obj->token_path); 9234 if (obj->token_fd > 0) 9235 close(obj->token_fd); 9236 9237 zfree(&obj->arena_data); 9238 9239 free(obj); 9240 } 9241 9242 const char *bpf_object__name(const struct bpf_object *obj) 9243 { 9244 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9245 } 9246 9247 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9248 { 9249 return obj ? obj->kern_version : 0; 9250 } 9251 9252 int bpf_object__token_fd(const struct bpf_object *obj) 9253 { 9254 return obj->token_fd ?: -1; 9255 } 9256 9257 struct btf *bpf_object__btf(const struct bpf_object *obj) 9258 { 9259 return obj ? obj->btf : NULL; 9260 } 9261 9262 int bpf_object__btf_fd(const struct bpf_object *obj) 9263 { 9264 return obj->btf ? btf__fd(obj->btf) : -1; 9265 } 9266 9267 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9268 { 9269 if (obj->state >= OBJ_LOADED) 9270 return libbpf_err(-EINVAL); 9271 9272 obj->kern_version = kern_version; 9273 9274 return 0; 9275 } 9276 9277 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9278 { 9279 struct bpf_gen *gen; 9280 9281 if (!opts) 9282 return libbpf_err(-EFAULT); 9283 if (!OPTS_VALID(opts, gen_loader_opts)) 9284 return libbpf_err(-EINVAL); 9285 gen = calloc(1, sizeof(*gen)); 9286 if (!gen) 9287 return libbpf_err(-ENOMEM); 9288 gen->opts = opts; 9289 gen->swapped_endian = !is_native_endianness(obj); 9290 obj->gen_loader = gen; 9291 return 0; 9292 } 9293 9294 static struct bpf_program * 9295 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9296 bool forward) 9297 { 9298 size_t nr_programs = obj->nr_programs; 9299 ssize_t idx; 9300 9301 if (!nr_programs) 9302 return NULL; 9303 9304 if (!p) 9305 /* Iter from the beginning */ 9306 return forward ? &obj->programs[0] : 9307 &obj->programs[nr_programs - 1]; 9308 9309 if (p->obj != obj) { 9310 pr_warn("error: program handler doesn't match object\n"); 9311 return errno = EINVAL, NULL; 9312 } 9313 9314 idx = (p - obj->programs) + (forward ? 1 : -1); 9315 if (idx >= obj->nr_programs || idx < 0) 9316 return NULL; 9317 return &obj->programs[idx]; 9318 } 9319 9320 struct bpf_program * 9321 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9322 { 9323 struct bpf_program *prog = prev; 9324 9325 do { 9326 prog = __bpf_program__iter(prog, obj, true); 9327 } while (prog && prog_is_subprog(obj, prog)); 9328 9329 return prog; 9330 } 9331 9332 struct bpf_program * 9333 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9334 { 9335 struct bpf_program *prog = next; 9336 9337 do { 9338 prog = __bpf_program__iter(prog, obj, false); 9339 } while (prog && prog_is_subprog(obj, prog)); 9340 9341 return prog; 9342 } 9343 9344 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9345 { 9346 prog->prog_ifindex = ifindex; 9347 } 9348 9349 const char *bpf_program__name(const struct bpf_program *prog) 9350 { 9351 return prog->name; 9352 } 9353 9354 const char *bpf_program__section_name(const struct bpf_program *prog) 9355 { 9356 return prog->sec_name; 9357 } 9358 9359 bool bpf_program__autoload(const struct bpf_program *prog) 9360 { 9361 return prog->autoload; 9362 } 9363 9364 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9365 { 9366 if (prog->obj->state >= OBJ_LOADED) 9367 return libbpf_err(-EINVAL); 9368 9369 prog->autoload = autoload; 9370 return 0; 9371 } 9372 9373 bool bpf_program__autoattach(const struct bpf_program *prog) 9374 { 9375 return prog->autoattach; 9376 } 9377 9378 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9379 { 9380 prog->autoattach = autoattach; 9381 } 9382 9383 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9384 { 9385 return prog->insns; 9386 } 9387 9388 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9389 { 9390 return prog->insns_cnt; 9391 } 9392 9393 int bpf_program__set_insns(struct bpf_program *prog, 9394 struct bpf_insn *new_insns, size_t new_insn_cnt) 9395 { 9396 struct bpf_insn *insns; 9397 9398 if (prog->obj->state >= OBJ_LOADED) 9399 return libbpf_err(-EBUSY); 9400 9401 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9402 /* NULL is a valid return from reallocarray if the new count is zero */ 9403 if (!insns && new_insn_cnt) { 9404 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9405 return libbpf_err(-ENOMEM); 9406 } 9407 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9408 9409 prog->insns = insns; 9410 prog->insns_cnt = new_insn_cnt; 9411 return 0; 9412 } 9413 9414 int bpf_program__fd(const struct bpf_program *prog) 9415 { 9416 if (!prog) 9417 return libbpf_err(-EINVAL); 9418 9419 if (prog->fd < 0) 9420 return libbpf_err(-ENOENT); 9421 9422 return prog->fd; 9423 } 9424 9425 __alias(bpf_program__type) 9426 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9427 9428 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9429 { 9430 return prog->type; 9431 } 9432 9433 static size_t custom_sec_def_cnt; 9434 static struct bpf_sec_def *custom_sec_defs; 9435 static struct bpf_sec_def custom_fallback_def; 9436 static bool has_custom_fallback_def; 9437 static int last_custom_sec_def_handler_id; 9438 9439 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9440 { 9441 if (prog->obj->state >= OBJ_LOADED) 9442 return libbpf_err(-EBUSY); 9443 9444 /* if type is not changed, do nothing */ 9445 if (prog->type == type) 9446 return 0; 9447 9448 prog->type = type; 9449 9450 /* If a program type was changed, we need to reset associated SEC() 9451 * handler, as it will be invalid now. The only exception is a generic 9452 * fallback handler, which by definition is program type-agnostic and 9453 * is a catch-all custom handler, optionally set by the application, 9454 * so should be able to handle any type of BPF program. 9455 */ 9456 if (prog->sec_def != &custom_fallback_def) 9457 prog->sec_def = NULL; 9458 return 0; 9459 } 9460 9461 __alias(bpf_program__expected_attach_type) 9462 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9463 9464 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9465 { 9466 return prog->expected_attach_type; 9467 } 9468 9469 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9470 enum bpf_attach_type type) 9471 { 9472 if (prog->obj->state >= OBJ_LOADED) 9473 return libbpf_err(-EBUSY); 9474 9475 prog->expected_attach_type = type; 9476 return 0; 9477 } 9478 9479 __u32 bpf_program__flags(const struct bpf_program *prog) 9480 { 9481 return prog->prog_flags; 9482 } 9483 9484 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9485 { 9486 if (prog->obj->state >= OBJ_LOADED) 9487 return libbpf_err(-EBUSY); 9488 9489 prog->prog_flags = flags; 9490 return 0; 9491 } 9492 9493 __u32 bpf_program__log_level(const struct bpf_program *prog) 9494 { 9495 return prog->log_level; 9496 } 9497 9498 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9499 { 9500 if (prog->obj->state >= OBJ_LOADED) 9501 return libbpf_err(-EBUSY); 9502 9503 prog->log_level = log_level; 9504 return 0; 9505 } 9506 9507 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9508 { 9509 *log_size = prog->log_size; 9510 return prog->log_buf; 9511 } 9512 9513 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9514 { 9515 if (log_size && !log_buf) 9516 return libbpf_err(-EINVAL); 9517 if (prog->log_size > UINT_MAX) 9518 return libbpf_err(-EINVAL); 9519 if (prog->obj->state >= OBJ_LOADED) 9520 return libbpf_err(-EBUSY); 9521 9522 prog->log_buf = log_buf; 9523 prog->log_size = log_size; 9524 return 0; 9525 } 9526 9527 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9528 { 9529 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9530 return libbpf_err_ptr(-EOPNOTSUPP); 9531 return prog->func_info; 9532 } 9533 9534 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9535 { 9536 return prog->func_info_cnt; 9537 } 9538 9539 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9540 { 9541 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9542 return libbpf_err_ptr(-EOPNOTSUPP); 9543 return prog->line_info; 9544 } 9545 9546 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9547 { 9548 return prog->line_info_cnt; 9549 } 9550 9551 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9552 .sec = (char *)sec_pfx, \ 9553 .prog_type = BPF_PROG_TYPE_##ptype, \ 9554 .expected_attach_type = atype, \ 9555 .cookie = (long)(flags), \ 9556 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9557 __VA_ARGS__ \ 9558 } 9559 9560 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9561 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9562 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9563 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9564 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9565 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9566 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9567 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9568 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9569 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9570 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9571 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9572 9573 static const struct bpf_sec_def section_defs[] = { 9574 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9575 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9576 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9577 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9578 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9579 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9580 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9581 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9582 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9583 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9584 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9585 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9586 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9587 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9588 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9589 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9590 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9591 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9592 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9593 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9594 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9595 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9596 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9597 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9598 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9599 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9600 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9601 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9602 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9603 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9604 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9605 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9606 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9607 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9608 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9609 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9610 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9611 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9612 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9613 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9614 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9615 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9616 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9617 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9618 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9619 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9620 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9621 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9622 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9623 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9624 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9625 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9626 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9627 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9628 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9629 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9630 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9631 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9632 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9633 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9634 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9635 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9636 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9637 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9638 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9639 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9640 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9641 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9642 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9643 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9644 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9645 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9646 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9647 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9648 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9649 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9650 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9651 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9652 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9653 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9654 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9655 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9656 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9657 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9658 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9659 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9660 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9661 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9662 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9663 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9664 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9665 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9666 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9667 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9668 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9669 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9670 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9671 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9672 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9673 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9674 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9675 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9676 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9677 }; 9678 9679 int libbpf_register_prog_handler(const char *sec, 9680 enum bpf_prog_type prog_type, 9681 enum bpf_attach_type exp_attach_type, 9682 const struct libbpf_prog_handler_opts *opts) 9683 { 9684 struct bpf_sec_def *sec_def; 9685 9686 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9687 return libbpf_err(-EINVAL); 9688 9689 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9690 return libbpf_err(-E2BIG); 9691 9692 if (sec) { 9693 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9694 sizeof(*sec_def)); 9695 if (!sec_def) 9696 return libbpf_err(-ENOMEM); 9697 9698 custom_sec_defs = sec_def; 9699 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9700 } else { 9701 if (has_custom_fallback_def) 9702 return libbpf_err(-EBUSY); 9703 9704 sec_def = &custom_fallback_def; 9705 } 9706 9707 sec_def->sec = sec ? strdup(sec) : NULL; 9708 if (sec && !sec_def->sec) 9709 return libbpf_err(-ENOMEM); 9710 9711 sec_def->prog_type = prog_type; 9712 sec_def->expected_attach_type = exp_attach_type; 9713 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9714 9715 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9716 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9717 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9718 9719 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9720 9721 if (sec) 9722 custom_sec_def_cnt++; 9723 else 9724 has_custom_fallback_def = true; 9725 9726 return sec_def->handler_id; 9727 } 9728 9729 int libbpf_unregister_prog_handler(int handler_id) 9730 { 9731 struct bpf_sec_def *sec_defs; 9732 int i; 9733 9734 if (handler_id <= 0) 9735 return libbpf_err(-EINVAL); 9736 9737 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9738 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9739 has_custom_fallback_def = false; 9740 return 0; 9741 } 9742 9743 for (i = 0; i < custom_sec_def_cnt; i++) { 9744 if (custom_sec_defs[i].handler_id == handler_id) 9745 break; 9746 } 9747 9748 if (i == custom_sec_def_cnt) 9749 return libbpf_err(-ENOENT); 9750 9751 free(custom_sec_defs[i].sec); 9752 for (i = i + 1; i < custom_sec_def_cnt; i++) 9753 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9754 custom_sec_def_cnt--; 9755 9756 /* try to shrink the array, but it's ok if we couldn't */ 9757 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9758 /* if new count is zero, reallocarray can return a valid NULL result; 9759 * in this case the previous pointer will be freed, so we *have to* 9760 * reassign old pointer to the new value (even if it's NULL) 9761 */ 9762 if (sec_defs || custom_sec_def_cnt == 0) 9763 custom_sec_defs = sec_defs; 9764 9765 return 0; 9766 } 9767 9768 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9769 { 9770 size_t len = strlen(sec_def->sec); 9771 9772 /* "type/" always has to have proper SEC("type/extras") form */ 9773 if (sec_def->sec[len - 1] == '/') { 9774 if (str_has_pfx(sec_name, sec_def->sec)) 9775 return true; 9776 return false; 9777 } 9778 9779 /* "type+" means it can be either exact SEC("type") or 9780 * well-formed SEC("type/extras") with proper '/' separator 9781 */ 9782 if (sec_def->sec[len - 1] == '+') { 9783 len--; 9784 /* not even a prefix */ 9785 if (strncmp(sec_name, sec_def->sec, len) != 0) 9786 return false; 9787 /* exact match or has '/' separator */ 9788 if (sec_name[len] == '\0' || sec_name[len] == '/') 9789 return true; 9790 return false; 9791 } 9792 9793 return strcmp(sec_name, sec_def->sec) == 0; 9794 } 9795 9796 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9797 { 9798 const struct bpf_sec_def *sec_def; 9799 int i, n; 9800 9801 n = custom_sec_def_cnt; 9802 for (i = 0; i < n; i++) { 9803 sec_def = &custom_sec_defs[i]; 9804 if (sec_def_matches(sec_def, sec_name)) 9805 return sec_def; 9806 } 9807 9808 n = ARRAY_SIZE(section_defs); 9809 for (i = 0; i < n; i++) { 9810 sec_def = §ion_defs[i]; 9811 if (sec_def_matches(sec_def, sec_name)) 9812 return sec_def; 9813 } 9814 9815 if (has_custom_fallback_def) 9816 return &custom_fallback_def; 9817 9818 return NULL; 9819 } 9820 9821 #define MAX_TYPE_NAME_SIZE 32 9822 9823 static char *libbpf_get_type_names(bool attach_type) 9824 { 9825 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9826 char *buf; 9827 9828 buf = malloc(len); 9829 if (!buf) 9830 return NULL; 9831 9832 buf[0] = '\0'; 9833 /* Forge string buf with all available names */ 9834 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9835 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9836 9837 if (attach_type) { 9838 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9839 continue; 9840 9841 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9842 continue; 9843 } 9844 9845 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9846 free(buf); 9847 return NULL; 9848 } 9849 strcat(buf, " "); 9850 strcat(buf, section_defs[i].sec); 9851 } 9852 9853 return buf; 9854 } 9855 9856 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9857 enum bpf_attach_type *expected_attach_type) 9858 { 9859 const struct bpf_sec_def *sec_def; 9860 char *type_names; 9861 9862 if (!name) 9863 return libbpf_err(-EINVAL); 9864 9865 sec_def = find_sec_def(name); 9866 if (sec_def) { 9867 *prog_type = sec_def->prog_type; 9868 *expected_attach_type = sec_def->expected_attach_type; 9869 return 0; 9870 } 9871 9872 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9873 type_names = libbpf_get_type_names(false); 9874 if (type_names != NULL) { 9875 pr_debug("supported section(type) names are:%s\n", type_names); 9876 free(type_names); 9877 } 9878 9879 return libbpf_err(-ESRCH); 9880 } 9881 9882 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9883 { 9884 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9885 return NULL; 9886 9887 return attach_type_name[t]; 9888 } 9889 9890 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9891 { 9892 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9893 return NULL; 9894 9895 return link_type_name[t]; 9896 } 9897 9898 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9899 { 9900 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9901 return NULL; 9902 9903 return map_type_name[t]; 9904 } 9905 9906 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9907 { 9908 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9909 return NULL; 9910 9911 return prog_type_name[t]; 9912 } 9913 9914 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9915 int sec_idx, 9916 size_t offset) 9917 { 9918 struct bpf_map *map; 9919 size_t i; 9920 9921 for (i = 0; i < obj->nr_maps; i++) { 9922 map = &obj->maps[i]; 9923 if (!bpf_map__is_struct_ops(map)) 9924 continue; 9925 if (map->sec_idx == sec_idx && 9926 map->sec_offset <= offset && 9927 offset - map->sec_offset < map->def.value_size) 9928 return map; 9929 } 9930 9931 return NULL; 9932 } 9933 9934 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9935 * st_ops->data for shadow type. 9936 */ 9937 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9938 Elf64_Shdr *shdr, Elf_Data *data) 9939 { 9940 const struct btf_type *type; 9941 const struct btf_member *member; 9942 struct bpf_struct_ops *st_ops; 9943 struct bpf_program *prog; 9944 unsigned int shdr_idx; 9945 const struct btf *btf; 9946 struct bpf_map *map; 9947 unsigned int moff, insn_idx; 9948 const char *name; 9949 __u32 member_idx; 9950 Elf64_Sym *sym; 9951 Elf64_Rel *rel; 9952 int i, nrels; 9953 9954 btf = obj->btf; 9955 nrels = shdr->sh_size / shdr->sh_entsize; 9956 for (i = 0; i < nrels; i++) { 9957 rel = elf_rel_by_idx(data, i); 9958 if (!rel) { 9959 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9960 return -LIBBPF_ERRNO__FORMAT; 9961 } 9962 9963 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9964 if (!sym) { 9965 pr_warn("struct_ops reloc: symbol %zx not found\n", 9966 (size_t)ELF64_R_SYM(rel->r_info)); 9967 return -LIBBPF_ERRNO__FORMAT; 9968 } 9969 9970 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9971 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9972 if (!map) { 9973 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9974 (size_t)rel->r_offset); 9975 return -EINVAL; 9976 } 9977 9978 moff = rel->r_offset - map->sec_offset; 9979 shdr_idx = sym->st_shndx; 9980 st_ops = map->st_ops; 9981 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9982 map->name, 9983 (long long)(rel->r_info >> 32), 9984 (long long)sym->st_value, 9985 shdr_idx, (size_t)rel->r_offset, 9986 map->sec_offset, sym->st_name, name); 9987 9988 if (shdr_idx >= SHN_LORESERVE) { 9989 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9990 map->name, (size_t)rel->r_offset, shdr_idx); 9991 return -LIBBPF_ERRNO__RELOC; 9992 } 9993 if (sym->st_value % BPF_INSN_SZ) { 9994 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9995 map->name, (unsigned long long)sym->st_value); 9996 return -LIBBPF_ERRNO__FORMAT; 9997 } 9998 insn_idx = sym->st_value / BPF_INSN_SZ; 9999 10000 type = btf__type_by_id(btf, st_ops->type_id); 10001 member = find_member_by_offset(type, moff * 8); 10002 if (!member) { 10003 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 10004 map->name, moff); 10005 return -EINVAL; 10006 } 10007 member_idx = member - btf_members(type); 10008 name = btf__name_by_offset(btf, member->name_off); 10009 10010 if (!resolve_func_ptr(btf, member->type, NULL)) { 10011 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 10012 map->name, name); 10013 return -EINVAL; 10014 } 10015 10016 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 10017 if (!prog) { 10018 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 10019 map->name, shdr_idx, name); 10020 return -EINVAL; 10021 } 10022 10023 /* prevent the use of BPF prog with invalid type */ 10024 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 10025 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 10026 map->name, prog->name); 10027 return -EINVAL; 10028 } 10029 10030 st_ops->progs[member_idx] = prog; 10031 10032 /* st_ops->data will be exposed to users, being returned by 10033 * bpf_map__initial_value() as a pointer to the shadow 10034 * type. All function pointers in the original struct type 10035 * should be converted to a pointer to struct bpf_program 10036 * in the shadow type. 10037 */ 10038 *((struct bpf_program **)(st_ops->data + moff)) = prog; 10039 } 10040 10041 return 0; 10042 } 10043 10044 #define BTF_TRACE_PREFIX "btf_trace_" 10045 #define BTF_LSM_PREFIX "bpf_lsm_" 10046 #define BTF_ITER_PREFIX "bpf_iter_" 10047 #define BTF_MAX_NAME_SIZE 128 10048 10049 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 10050 const char **prefix, int *kind) 10051 { 10052 switch (attach_type) { 10053 case BPF_TRACE_RAW_TP: 10054 *prefix = BTF_TRACE_PREFIX; 10055 *kind = BTF_KIND_TYPEDEF; 10056 break; 10057 case BPF_LSM_MAC: 10058 case BPF_LSM_CGROUP: 10059 *prefix = BTF_LSM_PREFIX; 10060 *kind = BTF_KIND_FUNC; 10061 break; 10062 case BPF_TRACE_ITER: 10063 *prefix = BTF_ITER_PREFIX; 10064 *kind = BTF_KIND_FUNC; 10065 break; 10066 default: 10067 *prefix = ""; 10068 *kind = BTF_KIND_FUNC; 10069 } 10070 } 10071 10072 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10073 const char *name, __u32 kind) 10074 { 10075 char btf_type_name[BTF_MAX_NAME_SIZE]; 10076 int ret; 10077 10078 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10079 "%s%s", prefix, name); 10080 /* snprintf returns the number of characters written excluding the 10081 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10082 * indicates truncation. 10083 */ 10084 if (ret < 0 || ret >= sizeof(btf_type_name)) 10085 return -ENAMETOOLONG; 10086 return btf__find_by_name_kind(btf, btf_type_name, kind); 10087 } 10088 10089 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10090 enum bpf_attach_type attach_type) 10091 { 10092 const char *prefix; 10093 int kind; 10094 10095 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10096 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10097 } 10098 10099 int libbpf_find_vmlinux_btf_id(const char *name, 10100 enum bpf_attach_type attach_type) 10101 { 10102 struct btf *btf; 10103 int err; 10104 10105 btf = btf__load_vmlinux_btf(); 10106 err = libbpf_get_error(btf); 10107 if (err) { 10108 pr_warn("vmlinux BTF is not found\n"); 10109 return libbpf_err(err); 10110 } 10111 10112 err = find_attach_btf_id(btf, name, attach_type); 10113 if (err <= 0) 10114 pr_warn("%s is not found in vmlinux BTF\n", name); 10115 10116 btf__free(btf); 10117 return libbpf_err(err); 10118 } 10119 10120 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10121 { 10122 struct bpf_prog_info info; 10123 __u32 info_len = sizeof(info); 10124 struct btf *btf; 10125 int err; 10126 10127 memset(&info, 0, info_len); 10128 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10129 if (err) { 10130 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10131 attach_prog_fd, errstr(err)); 10132 return err; 10133 } 10134 10135 err = -EINVAL; 10136 if (!info.btf_id) { 10137 pr_warn("The target program doesn't have BTF\n"); 10138 goto out; 10139 } 10140 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10141 err = libbpf_get_error(btf); 10142 if (err) { 10143 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10144 goto out; 10145 } 10146 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10147 btf__free(btf); 10148 if (err <= 0) { 10149 pr_warn("%s is not found in prog's BTF\n", name); 10150 goto out; 10151 } 10152 out: 10153 return err; 10154 } 10155 10156 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10157 enum bpf_attach_type attach_type, 10158 int *btf_obj_fd, int *btf_type_id) 10159 { 10160 int ret, i, mod_len = 0; 10161 const char *fn_name, *mod_name = NULL; 10162 10163 fn_name = strchr(attach_name, ':'); 10164 if (fn_name) { 10165 mod_name = attach_name; 10166 mod_len = fn_name - mod_name; 10167 fn_name++; 10168 } 10169 10170 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10171 ret = find_attach_btf_id(obj->btf_vmlinux, 10172 mod_name ? fn_name : attach_name, 10173 attach_type); 10174 if (ret > 0) { 10175 *btf_obj_fd = 0; /* vmlinux BTF */ 10176 *btf_type_id = ret; 10177 return 0; 10178 } 10179 if (ret != -ENOENT) 10180 return ret; 10181 } 10182 10183 ret = load_module_btfs(obj); 10184 if (ret) 10185 return ret; 10186 10187 for (i = 0; i < obj->btf_module_cnt; i++) { 10188 const struct module_btf *mod = &obj->btf_modules[i]; 10189 10190 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10191 continue; 10192 10193 ret = find_attach_btf_id(mod->btf, 10194 mod_name ? fn_name : attach_name, 10195 attach_type); 10196 if (ret > 0) { 10197 *btf_obj_fd = mod->fd; 10198 *btf_type_id = ret; 10199 return 0; 10200 } 10201 if (ret == -ENOENT) 10202 continue; 10203 10204 return ret; 10205 } 10206 10207 return -ESRCH; 10208 } 10209 10210 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10211 int *btf_obj_fd, int *btf_type_id) 10212 { 10213 enum bpf_attach_type attach_type = prog->expected_attach_type; 10214 __u32 attach_prog_fd = prog->attach_prog_fd; 10215 int err = 0; 10216 10217 /* BPF program's BTF ID */ 10218 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10219 if (!attach_prog_fd) { 10220 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10221 return -EINVAL; 10222 } 10223 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10224 if (err < 0) { 10225 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10226 prog->name, attach_prog_fd, attach_name, errstr(err)); 10227 return err; 10228 } 10229 *btf_obj_fd = 0; 10230 *btf_type_id = err; 10231 return 0; 10232 } 10233 10234 /* kernel/module BTF ID */ 10235 if (prog->obj->gen_loader) { 10236 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10237 *btf_obj_fd = 0; 10238 *btf_type_id = 1; 10239 } else { 10240 err = find_kernel_btf_id(prog->obj, attach_name, 10241 attach_type, btf_obj_fd, 10242 btf_type_id); 10243 } 10244 if (err) { 10245 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10246 prog->name, attach_name, errstr(err)); 10247 return err; 10248 } 10249 return 0; 10250 } 10251 10252 int libbpf_attach_type_by_name(const char *name, 10253 enum bpf_attach_type *attach_type) 10254 { 10255 char *type_names; 10256 const struct bpf_sec_def *sec_def; 10257 10258 if (!name) 10259 return libbpf_err(-EINVAL); 10260 10261 sec_def = find_sec_def(name); 10262 if (!sec_def) { 10263 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10264 type_names = libbpf_get_type_names(true); 10265 if (type_names != NULL) { 10266 pr_debug("attachable section(type) names are:%s\n", type_names); 10267 free(type_names); 10268 } 10269 10270 return libbpf_err(-EINVAL); 10271 } 10272 10273 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10274 return libbpf_err(-EINVAL); 10275 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10276 return libbpf_err(-EINVAL); 10277 10278 *attach_type = sec_def->expected_attach_type; 10279 return 0; 10280 } 10281 10282 int bpf_map__fd(const struct bpf_map *map) 10283 { 10284 if (!map) 10285 return libbpf_err(-EINVAL); 10286 if (!map_is_created(map)) 10287 return -1; 10288 return map->fd; 10289 } 10290 10291 static bool map_uses_real_name(const struct bpf_map *map) 10292 { 10293 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10294 * their user-visible name differs from kernel-visible name. Users see 10295 * such map's corresponding ELF section name as a map name. 10296 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10297 * maps to know which name has to be returned to the user. 10298 */ 10299 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10300 return true; 10301 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10302 return true; 10303 return false; 10304 } 10305 10306 const char *bpf_map__name(const struct bpf_map *map) 10307 { 10308 if (!map) 10309 return NULL; 10310 10311 if (map_uses_real_name(map)) 10312 return map->real_name; 10313 10314 return map->name; 10315 } 10316 10317 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10318 { 10319 return map->def.type; 10320 } 10321 10322 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10323 { 10324 if (map_is_created(map)) 10325 return libbpf_err(-EBUSY); 10326 map->def.type = type; 10327 return 0; 10328 } 10329 10330 __u32 bpf_map__map_flags(const struct bpf_map *map) 10331 { 10332 return map->def.map_flags; 10333 } 10334 10335 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10336 { 10337 if (map_is_created(map)) 10338 return libbpf_err(-EBUSY); 10339 map->def.map_flags = flags; 10340 return 0; 10341 } 10342 10343 __u64 bpf_map__map_extra(const struct bpf_map *map) 10344 { 10345 return map->map_extra; 10346 } 10347 10348 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10349 { 10350 if (map_is_created(map)) 10351 return libbpf_err(-EBUSY); 10352 map->map_extra = map_extra; 10353 return 0; 10354 } 10355 10356 __u32 bpf_map__numa_node(const struct bpf_map *map) 10357 { 10358 return map->numa_node; 10359 } 10360 10361 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10362 { 10363 if (map_is_created(map)) 10364 return libbpf_err(-EBUSY); 10365 map->numa_node = numa_node; 10366 return 0; 10367 } 10368 10369 __u32 bpf_map__key_size(const struct bpf_map *map) 10370 { 10371 return map->def.key_size; 10372 } 10373 10374 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10375 { 10376 if (map_is_created(map)) 10377 return libbpf_err(-EBUSY); 10378 map->def.key_size = size; 10379 return 0; 10380 } 10381 10382 __u32 bpf_map__value_size(const struct bpf_map *map) 10383 { 10384 return map->def.value_size; 10385 } 10386 10387 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10388 { 10389 struct btf *btf; 10390 struct btf_type *datasec_type, *var_type; 10391 struct btf_var_secinfo *var; 10392 const struct btf_type *array_type; 10393 const struct btf_array *array; 10394 int vlen, element_sz, new_array_id; 10395 __u32 nr_elements; 10396 10397 /* check btf existence */ 10398 btf = bpf_object__btf(map->obj); 10399 if (!btf) 10400 return -ENOENT; 10401 10402 /* verify map is datasec */ 10403 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10404 if (!btf_is_datasec(datasec_type)) { 10405 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10406 bpf_map__name(map)); 10407 return -EINVAL; 10408 } 10409 10410 /* verify datasec has at least one var */ 10411 vlen = btf_vlen(datasec_type); 10412 if (vlen == 0) { 10413 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10414 bpf_map__name(map)); 10415 return -EINVAL; 10416 } 10417 10418 /* verify last var in the datasec is an array */ 10419 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10420 var_type = btf_type_by_id(btf, var->type); 10421 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10422 if (!btf_is_array(array_type)) { 10423 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10424 bpf_map__name(map)); 10425 return -EINVAL; 10426 } 10427 10428 /* verify request size aligns with array */ 10429 array = btf_array(array_type); 10430 element_sz = btf__resolve_size(btf, array->type); 10431 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10432 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10433 bpf_map__name(map), element_sz, size); 10434 return -EINVAL; 10435 } 10436 10437 /* create a new array based on the existing array, but with new length */ 10438 nr_elements = (size - var->offset) / element_sz; 10439 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10440 if (new_array_id < 0) 10441 return new_array_id; 10442 10443 /* adding a new btf type invalidates existing pointers to btf objects, 10444 * so refresh pointers before proceeding 10445 */ 10446 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10447 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10448 var_type = btf_type_by_id(btf, var->type); 10449 10450 /* finally update btf info */ 10451 datasec_type->size = size; 10452 var->size = size - var->offset; 10453 var_type->type = new_array_id; 10454 10455 return 0; 10456 } 10457 10458 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10459 { 10460 if (map_is_created(map)) 10461 return libbpf_err(-EBUSY); 10462 10463 if (map->mmaped) { 10464 size_t mmap_old_sz, mmap_new_sz; 10465 int err; 10466 10467 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10468 return libbpf_err(-EOPNOTSUPP); 10469 10470 mmap_old_sz = bpf_map_mmap_sz(map); 10471 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10472 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10473 if (err) { 10474 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10475 bpf_map__name(map), errstr(err)); 10476 return libbpf_err(err); 10477 } 10478 err = map_btf_datasec_resize(map, size); 10479 if (err && err != -ENOENT) { 10480 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10481 bpf_map__name(map), errstr(err)); 10482 map->btf_value_type_id = 0; 10483 map->btf_key_type_id = 0; 10484 } 10485 } 10486 10487 map->def.value_size = size; 10488 return 0; 10489 } 10490 10491 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10492 { 10493 return map ? map->btf_key_type_id : 0; 10494 } 10495 10496 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10497 { 10498 return map ? map->btf_value_type_id : 0; 10499 } 10500 10501 int bpf_map__set_initial_value(struct bpf_map *map, 10502 const void *data, size_t size) 10503 { 10504 size_t actual_sz; 10505 10506 if (map_is_created(map)) 10507 return libbpf_err(-EBUSY); 10508 10509 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10510 return libbpf_err(-EINVAL); 10511 10512 if (map->def.type == BPF_MAP_TYPE_ARENA) 10513 actual_sz = map->obj->arena_data_sz; 10514 else 10515 actual_sz = map->def.value_size; 10516 if (size != actual_sz) 10517 return libbpf_err(-EINVAL); 10518 10519 memcpy(map->mmaped, data, size); 10520 return 0; 10521 } 10522 10523 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10524 { 10525 if (bpf_map__is_struct_ops(map)) { 10526 if (psize) 10527 *psize = map->def.value_size; 10528 return map->st_ops->data; 10529 } 10530 10531 if (!map->mmaped) 10532 return NULL; 10533 10534 if (map->def.type == BPF_MAP_TYPE_ARENA) 10535 *psize = map->obj->arena_data_sz; 10536 else 10537 *psize = map->def.value_size; 10538 10539 return map->mmaped; 10540 } 10541 10542 bool bpf_map__is_internal(const struct bpf_map *map) 10543 { 10544 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10545 } 10546 10547 __u32 bpf_map__ifindex(const struct bpf_map *map) 10548 { 10549 return map->map_ifindex; 10550 } 10551 10552 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10553 { 10554 if (map_is_created(map)) 10555 return libbpf_err(-EBUSY); 10556 map->map_ifindex = ifindex; 10557 return 0; 10558 } 10559 10560 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10561 { 10562 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10563 pr_warn("error: unsupported map type\n"); 10564 return libbpf_err(-EINVAL); 10565 } 10566 if (map->inner_map_fd != -1) { 10567 pr_warn("error: inner_map_fd already specified\n"); 10568 return libbpf_err(-EINVAL); 10569 } 10570 if (map->inner_map) { 10571 bpf_map__destroy(map->inner_map); 10572 zfree(&map->inner_map); 10573 } 10574 map->inner_map_fd = fd; 10575 return 0; 10576 } 10577 10578 int bpf_map__set_exclusive_program(struct bpf_map *map, struct bpf_program *prog) 10579 { 10580 if (map_is_created(map)) { 10581 pr_warn("exclusive programs must be set before map creation\n"); 10582 return libbpf_err(-EINVAL); 10583 } 10584 10585 if (map->obj != prog->obj) { 10586 pr_warn("excl_prog and map must be from the same bpf object\n"); 10587 return libbpf_err(-EINVAL); 10588 } 10589 10590 map->excl_prog = prog; 10591 return 0; 10592 } 10593 10594 struct bpf_program *bpf_map__exclusive_program(struct bpf_map *map) 10595 { 10596 return map->excl_prog; 10597 } 10598 10599 static struct bpf_map * 10600 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10601 { 10602 ssize_t idx; 10603 struct bpf_map *s, *e; 10604 10605 if (!obj || !obj->maps) 10606 return errno = EINVAL, NULL; 10607 10608 s = obj->maps; 10609 e = obj->maps + obj->nr_maps; 10610 10611 if ((m < s) || (m >= e)) { 10612 pr_warn("error in %s: map handler doesn't belong to object\n", 10613 __func__); 10614 return errno = EINVAL, NULL; 10615 } 10616 10617 idx = (m - obj->maps) + i; 10618 if (idx >= obj->nr_maps || idx < 0) 10619 return NULL; 10620 return &obj->maps[idx]; 10621 } 10622 10623 struct bpf_map * 10624 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10625 { 10626 if (prev == NULL && obj != NULL) 10627 return obj->maps; 10628 10629 return __bpf_map__iter(prev, obj, 1); 10630 } 10631 10632 struct bpf_map * 10633 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10634 { 10635 if (next == NULL && obj != NULL) { 10636 if (!obj->nr_maps) 10637 return NULL; 10638 return obj->maps + obj->nr_maps - 1; 10639 } 10640 10641 return __bpf_map__iter(next, obj, -1); 10642 } 10643 10644 struct bpf_map * 10645 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10646 { 10647 struct bpf_map *pos; 10648 10649 bpf_object__for_each_map(pos, obj) { 10650 /* if it's a special internal map name (which always starts 10651 * with dot) then check if that special name matches the 10652 * real map name (ELF section name) 10653 */ 10654 if (name[0] == '.') { 10655 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10656 return pos; 10657 continue; 10658 } 10659 /* otherwise map name has to be an exact match */ 10660 if (map_uses_real_name(pos)) { 10661 if (strcmp(pos->real_name, name) == 0) 10662 return pos; 10663 continue; 10664 } 10665 if (strcmp(pos->name, name) == 0) 10666 return pos; 10667 } 10668 return errno = ENOENT, NULL; 10669 } 10670 10671 int 10672 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10673 { 10674 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10675 } 10676 10677 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10678 size_t value_sz, bool check_value_sz) 10679 { 10680 if (!map_is_created(map)) /* map is not yet created */ 10681 return -ENOENT; 10682 10683 if (map->def.key_size != key_sz) { 10684 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10685 map->name, key_sz, map->def.key_size); 10686 return -EINVAL; 10687 } 10688 10689 if (map->fd < 0) { 10690 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10691 return -EINVAL; 10692 } 10693 10694 if (!check_value_sz) 10695 return 0; 10696 10697 switch (map->def.type) { 10698 case BPF_MAP_TYPE_PERCPU_ARRAY: 10699 case BPF_MAP_TYPE_PERCPU_HASH: 10700 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10701 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10702 int num_cpu = libbpf_num_possible_cpus(); 10703 size_t elem_sz = roundup(map->def.value_size, 8); 10704 10705 if (value_sz != num_cpu * elem_sz) { 10706 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10707 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10708 return -EINVAL; 10709 } 10710 break; 10711 } 10712 default: 10713 if (map->def.value_size != value_sz) { 10714 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10715 map->name, value_sz, map->def.value_size); 10716 return -EINVAL; 10717 } 10718 break; 10719 } 10720 return 0; 10721 } 10722 10723 int bpf_map__lookup_elem(const struct bpf_map *map, 10724 const void *key, size_t key_sz, 10725 void *value, size_t value_sz, __u64 flags) 10726 { 10727 int err; 10728 10729 err = validate_map_op(map, key_sz, value_sz, true); 10730 if (err) 10731 return libbpf_err(err); 10732 10733 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10734 } 10735 10736 int bpf_map__update_elem(const struct bpf_map *map, 10737 const void *key, size_t key_sz, 10738 const void *value, size_t value_sz, __u64 flags) 10739 { 10740 int err; 10741 10742 err = validate_map_op(map, key_sz, value_sz, true); 10743 if (err) 10744 return libbpf_err(err); 10745 10746 return bpf_map_update_elem(map->fd, key, value, flags); 10747 } 10748 10749 int bpf_map__delete_elem(const struct bpf_map *map, 10750 const void *key, size_t key_sz, __u64 flags) 10751 { 10752 int err; 10753 10754 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10755 if (err) 10756 return libbpf_err(err); 10757 10758 return bpf_map_delete_elem_flags(map->fd, key, flags); 10759 } 10760 10761 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10762 const void *key, size_t key_sz, 10763 void *value, size_t value_sz, __u64 flags) 10764 { 10765 int err; 10766 10767 err = validate_map_op(map, key_sz, value_sz, true); 10768 if (err) 10769 return libbpf_err(err); 10770 10771 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10772 } 10773 10774 int bpf_map__get_next_key(const struct bpf_map *map, 10775 const void *cur_key, void *next_key, size_t key_sz) 10776 { 10777 int err; 10778 10779 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10780 if (err) 10781 return libbpf_err(err); 10782 10783 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10784 } 10785 10786 long libbpf_get_error(const void *ptr) 10787 { 10788 if (!IS_ERR_OR_NULL(ptr)) 10789 return 0; 10790 10791 if (IS_ERR(ptr)) 10792 errno = -PTR_ERR(ptr); 10793 10794 /* If ptr == NULL, then errno should be already set by the failing 10795 * API, because libbpf never returns NULL on success and it now always 10796 * sets errno on error. So no extra errno handling for ptr == NULL 10797 * case. 10798 */ 10799 return -errno; 10800 } 10801 10802 /* Replace link's underlying BPF program with the new one */ 10803 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10804 { 10805 int ret; 10806 int prog_fd = bpf_program__fd(prog); 10807 10808 if (prog_fd < 0) { 10809 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10810 prog->name); 10811 return libbpf_err(-EINVAL); 10812 } 10813 10814 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10815 return libbpf_err_errno(ret); 10816 } 10817 10818 /* Release "ownership" of underlying BPF resource (typically, BPF program 10819 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10820 * link, when destructed through bpf_link__destroy() call won't attempt to 10821 * detach/unregisted that BPF resource. This is useful in situations where, 10822 * say, attached BPF program has to outlive userspace program that attached it 10823 * in the system. Depending on type of BPF program, though, there might be 10824 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10825 * exit of userspace program doesn't trigger automatic detachment and clean up 10826 * inside the kernel. 10827 */ 10828 void bpf_link__disconnect(struct bpf_link *link) 10829 { 10830 link->disconnected = true; 10831 } 10832 10833 int bpf_link__destroy(struct bpf_link *link) 10834 { 10835 int err = 0; 10836 10837 if (IS_ERR_OR_NULL(link)) 10838 return 0; 10839 10840 if (!link->disconnected && link->detach) 10841 err = link->detach(link); 10842 if (link->pin_path) 10843 free(link->pin_path); 10844 if (link->dealloc) 10845 link->dealloc(link); 10846 else 10847 free(link); 10848 10849 return libbpf_err(err); 10850 } 10851 10852 int bpf_link__fd(const struct bpf_link *link) 10853 { 10854 return link->fd; 10855 } 10856 10857 const char *bpf_link__pin_path(const struct bpf_link *link) 10858 { 10859 return link->pin_path; 10860 } 10861 10862 static int bpf_link__detach_fd(struct bpf_link *link) 10863 { 10864 return libbpf_err_errno(close(link->fd)); 10865 } 10866 10867 struct bpf_link *bpf_link__open(const char *path) 10868 { 10869 struct bpf_link *link; 10870 int fd; 10871 10872 fd = bpf_obj_get(path); 10873 if (fd < 0) { 10874 fd = -errno; 10875 pr_warn("failed to open link at %s: %d\n", path, fd); 10876 return libbpf_err_ptr(fd); 10877 } 10878 10879 link = calloc(1, sizeof(*link)); 10880 if (!link) { 10881 close(fd); 10882 return libbpf_err_ptr(-ENOMEM); 10883 } 10884 link->detach = &bpf_link__detach_fd; 10885 link->fd = fd; 10886 10887 link->pin_path = strdup(path); 10888 if (!link->pin_path) { 10889 bpf_link__destroy(link); 10890 return libbpf_err_ptr(-ENOMEM); 10891 } 10892 10893 return link; 10894 } 10895 10896 int bpf_link__detach(struct bpf_link *link) 10897 { 10898 return bpf_link_detach(link->fd) ? -errno : 0; 10899 } 10900 10901 int bpf_link__pin(struct bpf_link *link, const char *path) 10902 { 10903 int err; 10904 10905 if (link->pin_path) 10906 return libbpf_err(-EBUSY); 10907 err = make_parent_dir(path); 10908 if (err) 10909 return libbpf_err(err); 10910 err = check_path(path); 10911 if (err) 10912 return libbpf_err(err); 10913 10914 link->pin_path = strdup(path); 10915 if (!link->pin_path) 10916 return libbpf_err(-ENOMEM); 10917 10918 if (bpf_obj_pin(link->fd, link->pin_path)) { 10919 err = -errno; 10920 zfree(&link->pin_path); 10921 return libbpf_err(err); 10922 } 10923 10924 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10925 return 0; 10926 } 10927 10928 int bpf_link__unpin(struct bpf_link *link) 10929 { 10930 int err; 10931 10932 if (!link->pin_path) 10933 return libbpf_err(-EINVAL); 10934 10935 err = unlink(link->pin_path); 10936 if (err != 0) 10937 return -errno; 10938 10939 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10940 zfree(&link->pin_path); 10941 return 0; 10942 } 10943 10944 struct bpf_link_perf { 10945 struct bpf_link link; 10946 int perf_event_fd; 10947 /* legacy kprobe support: keep track of probe identifier and type */ 10948 char *legacy_probe_name; 10949 bool legacy_is_kprobe; 10950 bool legacy_is_retprobe; 10951 }; 10952 10953 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10954 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10955 10956 static int bpf_link_perf_detach(struct bpf_link *link) 10957 { 10958 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10959 int err = 0; 10960 10961 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10962 err = -errno; 10963 10964 if (perf_link->perf_event_fd != link->fd) 10965 close(perf_link->perf_event_fd); 10966 close(link->fd); 10967 10968 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10969 if (perf_link->legacy_probe_name) { 10970 if (perf_link->legacy_is_kprobe) { 10971 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10972 perf_link->legacy_is_retprobe); 10973 } else { 10974 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10975 perf_link->legacy_is_retprobe); 10976 } 10977 } 10978 10979 return err; 10980 } 10981 10982 static void bpf_link_perf_dealloc(struct bpf_link *link) 10983 { 10984 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10985 10986 free(perf_link->legacy_probe_name); 10987 free(perf_link); 10988 } 10989 10990 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10991 const struct bpf_perf_event_opts *opts) 10992 { 10993 struct bpf_link_perf *link; 10994 int prog_fd, link_fd = -1, err; 10995 bool force_ioctl_attach; 10996 10997 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10998 return libbpf_err_ptr(-EINVAL); 10999 11000 if (pfd < 0) { 11001 pr_warn("prog '%s': invalid perf event FD %d\n", 11002 prog->name, pfd); 11003 return libbpf_err_ptr(-EINVAL); 11004 } 11005 prog_fd = bpf_program__fd(prog); 11006 if (prog_fd < 0) { 11007 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11008 prog->name); 11009 return libbpf_err_ptr(-EINVAL); 11010 } 11011 11012 link = calloc(1, sizeof(*link)); 11013 if (!link) 11014 return libbpf_err_ptr(-ENOMEM); 11015 link->link.detach = &bpf_link_perf_detach; 11016 link->link.dealloc = &bpf_link_perf_dealloc; 11017 link->perf_event_fd = pfd; 11018 11019 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 11020 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 11021 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 11022 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 11023 11024 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 11025 if (link_fd < 0) { 11026 err = -errno; 11027 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 11028 prog->name, pfd, errstr(err)); 11029 goto err_out; 11030 } 11031 link->link.fd = link_fd; 11032 } else { 11033 if (OPTS_GET(opts, bpf_cookie, 0)) { 11034 pr_warn("prog '%s': user context value is not supported\n", prog->name); 11035 err = -EOPNOTSUPP; 11036 goto err_out; 11037 } 11038 11039 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 11040 err = -errno; 11041 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 11042 prog->name, pfd, errstr(err)); 11043 if (err == -EPROTO) 11044 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 11045 prog->name, pfd); 11046 goto err_out; 11047 } 11048 link->link.fd = pfd; 11049 } 11050 11051 if (!OPTS_GET(opts, dont_enable, false)) { 11052 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11053 err = -errno; 11054 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 11055 prog->name, pfd, errstr(err)); 11056 goto err_out; 11057 } 11058 } 11059 11060 return &link->link; 11061 err_out: 11062 if (link_fd >= 0) 11063 close(link_fd); 11064 free(link); 11065 return libbpf_err_ptr(err); 11066 } 11067 11068 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 11069 { 11070 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 11071 } 11072 11073 /* 11074 * this function is expected to parse integer in the range of [0, 2^31-1] from 11075 * given file using scanf format string fmt. If actual parsed value is 11076 * negative, the result might be indistinguishable from error 11077 */ 11078 static int parse_uint_from_file(const char *file, const char *fmt) 11079 { 11080 int err, ret; 11081 FILE *f; 11082 11083 f = fopen(file, "re"); 11084 if (!f) { 11085 err = -errno; 11086 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 11087 return err; 11088 } 11089 err = fscanf(f, fmt, &ret); 11090 if (err != 1) { 11091 err = err == EOF ? -EIO : -errno; 11092 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11093 fclose(f); 11094 return err; 11095 } 11096 fclose(f); 11097 return ret; 11098 } 11099 11100 static int determine_kprobe_perf_type(void) 11101 { 11102 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11103 11104 return parse_uint_from_file(file, "%d\n"); 11105 } 11106 11107 static int determine_uprobe_perf_type(void) 11108 { 11109 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11110 11111 return parse_uint_from_file(file, "%d\n"); 11112 } 11113 11114 static int determine_kprobe_retprobe_bit(void) 11115 { 11116 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11117 11118 return parse_uint_from_file(file, "config:%d\n"); 11119 } 11120 11121 static int determine_uprobe_retprobe_bit(void) 11122 { 11123 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11124 11125 return parse_uint_from_file(file, "config:%d\n"); 11126 } 11127 11128 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11129 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11130 11131 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11132 uint64_t offset, int pid, size_t ref_ctr_off) 11133 { 11134 const size_t attr_sz = sizeof(struct perf_event_attr); 11135 struct perf_event_attr attr; 11136 int type, pfd; 11137 11138 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11139 return -EINVAL; 11140 11141 memset(&attr, 0, attr_sz); 11142 11143 type = uprobe ? determine_uprobe_perf_type() 11144 : determine_kprobe_perf_type(); 11145 if (type < 0) { 11146 pr_warn("failed to determine %s perf type: %s\n", 11147 uprobe ? "uprobe" : "kprobe", 11148 errstr(type)); 11149 return type; 11150 } 11151 if (retprobe) { 11152 int bit = uprobe ? determine_uprobe_retprobe_bit() 11153 : determine_kprobe_retprobe_bit(); 11154 11155 if (bit < 0) { 11156 pr_warn("failed to determine %s retprobe bit: %s\n", 11157 uprobe ? "uprobe" : "kprobe", 11158 errstr(bit)); 11159 return bit; 11160 } 11161 attr.config |= 1 << bit; 11162 } 11163 attr.size = attr_sz; 11164 attr.type = type; 11165 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11166 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11167 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11168 11169 /* pid filter is meaningful only for uprobes */ 11170 pfd = syscall(__NR_perf_event_open, &attr, 11171 pid < 0 ? -1 : pid /* pid */, 11172 pid == -1 ? 0 : -1 /* cpu */, 11173 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11174 return pfd >= 0 ? pfd : -errno; 11175 } 11176 11177 static int append_to_file(const char *file, const char *fmt, ...) 11178 { 11179 int fd, n, err = 0; 11180 va_list ap; 11181 char buf[1024]; 11182 11183 va_start(ap, fmt); 11184 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11185 va_end(ap); 11186 11187 if (n < 0 || n >= sizeof(buf)) 11188 return -EINVAL; 11189 11190 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11191 if (fd < 0) 11192 return -errno; 11193 11194 if (write(fd, buf, n) < 0) 11195 err = -errno; 11196 11197 close(fd); 11198 return err; 11199 } 11200 11201 #define DEBUGFS "/sys/kernel/debug/tracing" 11202 #define TRACEFS "/sys/kernel/tracing" 11203 11204 static bool use_debugfs(void) 11205 { 11206 static int has_debugfs = -1; 11207 11208 if (has_debugfs < 0) 11209 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11210 11211 return has_debugfs == 1; 11212 } 11213 11214 static const char *tracefs_path(void) 11215 { 11216 return use_debugfs() ? DEBUGFS : TRACEFS; 11217 } 11218 11219 static const char *tracefs_kprobe_events(void) 11220 { 11221 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11222 } 11223 11224 static const char *tracefs_uprobe_events(void) 11225 { 11226 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11227 } 11228 11229 static const char *tracefs_available_filter_functions(void) 11230 { 11231 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11232 : TRACEFS"/available_filter_functions"; 11233 } 11234 11235 static const char *tracefs_available_filter_functions_addrs(void) 11236 { 11237 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11238 : TRACEFS"/available_filter_functions_addrs"; 11239 } 11240 11241 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11242 const char *name, size_t offset) 11243 { 11244 static int index = 0; 11245 int i; 11246 11247 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11248 __sync_fetch_and_add(&index, 1), name, offset); 11249 11250 /* sanitize name in the probe name */ 11251 for (i = 0; buf[i]; i++) { 11252 if (!isalnum(buf[i])) 11253 buf[i] = '_'; 11254 } 11255 } 11256 11257 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11258 const char *kfunc_name, size_t offset) 11259 { 11260 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11261 retprobe ? 'r' : 'p', 11262 retprobe ? "kretprobes" : "kprobes", 11263 probe_name, kfunc_name, offset); 11264 } 11265 11266 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11267 { 11268 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11269 retprobe ? "kretprobes" : "kprobes", probe_name); 11270 } 11271 11272 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11273 { 11274 char file[256]; 11275 11276 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11277 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11278 11279 return parse_uint_from_file(file, "%d\n"); 11280 } 11281 11282 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11283 const char *kfunc_name, size_t offset, int pid) 11284 { 11285 const size_t attr_sz = sizeof(struct perf_event_attr); 11286 struct perf_event_attr attr; 11287 int type, pfd, err; 11288 11289 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11290 if (err < 0) { 11291 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11292 kfunc_name, offset, 11293 errstr(err)); 11294 return err; 11295 } 11296 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11297 if (type < 0) { 11298 err = type; 11299 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11300 kfunc_name, offset, 11301 errstr(err)); 11302 goto err_clean_legacy; 11303 } 11304 11305 memset(&attr, 0, attr_sz); 11306 attr.size = attr_sz; 11307 attr.config = type; 11308 attr.type = PERF_TYPE_TRACEPOINT; 11309 11310 pfd = syscall(__NR_perf_event_open, &attr, 11311 pid < 0 ? -1 : pid, /* pid */ 11312 pid == -1 ? 0 : -1, /* cpu */ 11313 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11314 if (pfd < 0) { 11315 err = -errno; 11316 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11317 errstr(err)); 11318 goto err_clean_legacy; 11319 } 11320 return pfd; 11321 11322 err_clean_legacy: 11323 /* Clear the newly added legacy kprobe_event */ 11324 remove_kprobe_event_legacy(probe_name, retprobe); 11325 return err; 11326 } 11327 11328 static const char *arch_specific_syscall_pfx(void) 11329 { 11330 #if defined(__x86_64__) 11331 return "x64"; 11332 #elif defined(__i386__) 11333 return "ia32"; 11334 #elif defined(__s390x__) 11335 return "s390x"; 11336 #elif defined(__s390__) 11337 return "s390"; 11338 #elif defined(__arm__) 11339 return "arm"; 11340 #elif defined(__aarch64__) 11341 return "arm64"; 11342 #elif defined(__mips__) 11343 return "mips"; 11344 #elif defined(__riscv) 11345 return "riscv"; 11346 #elif defined(__powerpc__) 11347 return "powerpc"; 11348 #elif defined(__powerpc64__) 11349 return "powerpc64"; 11350 #else 11351 return NULL; 11352 #endif 11353 } 11354 11355 int probe_kern_syscall_wrapper(int token_fd) 11356 { 11357 char syscall_name[64]; 11358 const char *ksys_pfx; 11359 11360 ksys_pfx = arch_specific_syscall_pfx(); 11361 if (!ksys_pfx) 11362 return 0; 11363 11364 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11365 11366 if (determine_kprobe_perf_type() >= 0) { 11367 int pfd; 11368 11369 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11370 if (pfd >= 0) 11371 close(pfd); 11372 11373 return pfd >= 0 ? 1 : 0; 11374 } else { /* legacy mode */ 11375 char probe_name[MAX_EVENT_NAME_LEN]; 11376 11377 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11378 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11379 return 0; 11380 11381 (void)remove_kprobe_event_legacy(probe_name, false); 11382 return 1; 11383 } 11384 } 11385 11386 struct bpf_link * 11387 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11388 const char *func_name, 11389 const struct bpf_kprobe_opts *opts) 11390 { 11391 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11392 enum probe_attach_mode attach_mode; 11393 char *legacy_probe = NULL; 11394 struct bpf_link *link; 11395 size_t offset; 11396 bool retprobe, legacy; 11397 int pfd, err; 11398 11399 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11400 return libbpf_err_ptr(-EINVAL); 11401 11402 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11403 retprobe = OPTS_GET(opts, retprobe, false); 11404 offset = OPTS_GET(opts, offset, 0); 11405 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11406 11407 legacy = determine_kprobe_perf_type() < 0; 11408 switch (attach_mode) { 11409 case PROBE_ATTACH_MODE_LEGACY: 11410 legacy = true; 11411 pe_opts.force_ioctl_attach = true; 11412 break; 11413 case PROBE_ATTACH_MODE_PERF: 11414 if (legacy) 11415 return libbpf_err_ptr(-ENOTSUP); 11416 pe_opts.force_ioctl_attach = true; 11417 break; 11418 case PROBE_ATTACH_MODE_LINK: 11419 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11420 return libbpf_err_ptr(-ENOTSUP); 11421 break; 11422 case PROBE_ATTACH_MODE_DEFAULT: 11423 break; 11424 default: 11425 return libbpf_err_ptr(-EINVAL); 11426 } 11427 11428 if (!legacy) { 11429 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11430 func_name, offset, 11431 -1 /* pid */, 0 /* ref_ctr_off */); 11432 } else { 11433 char probe_name[MAX_EVENT_NAME_LEN]; 11434 11435 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11436 func_name, offset); 11437 11438 legacy_probe = strdup(probe_name); 11439 if (!legacy_probe) 11440 return libbpf_err_ptr(-ENOMEM); 11441 11442 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11443 offset, -1 /* pid */); 11444 } 11445 if (pfd < 0) { 11446 err = -errno; 11447 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11448 prog->name, retprobe ? "kretprobe" : "kprobe", 11449 func_name, offset, 11450 errstr(err)); 11451 goto err_out; 11452 } 11453 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11454 err = libbpf_get_error(link); 11455 if (err) { 11456 close(pfd); 11457 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11458 prog->name, retprobe ? "kretprobe" : "kprobe", 11459 func_name, offset, 11460 errstr(err)); 11461 goto err_clean_legacy; 11462 } 11463 if (legacy) { 11464 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11465 11466 perf_link->legacy_probe_name = legacy_probe; 11467 perf_link->legacy_is_kprobe = true; 11468 perf_link->legacy_is_retprobe = retprobe; 11469 } 11470 11471 return link; 11472 11473 err_clean_legacy: 11474 if (legacy) 11475 remove_kprobe_event_legacy(legacy_probe, retprobe); 11476 err_out: 11477 free(legacy_probe); 11478 return libbpf_err_ptr(err); 11479 } 11480 11481 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11482 bool retprobe, 11483 const char *func_name) 11484 { 11485 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11486 .retprobe = retprobe, 11487 ); 11488 11489 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11490 } 11491 11492 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11493 const char *syscall_name, 11494 const struct bpf_ksyscall_opts *opts) 11495 { 11496 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11497 char func_name[128]; 11498 11499 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11500 return libbpf_err_ptr(-EINVAL); 11501 11502 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11503 /* arch_specific_syscall_pfx() should never return NULL here 11504 * because it is guarded by kernel_supports(). However, since 11505 * compiler does not know that we have an explicit conditional 11506 * as well. 11507 */ 11508 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11509 arch_specific_syscall_pfx() ? : "", syscall_name); 11510 } else { 11511 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11512 } 11513 11514 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11515 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11516 11517 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11518 } 11519 11520 /* Adapted from perf/util/string.c */ 11521 bool glob_match(const char *str, const char *pat) 11522 { 11523 while (*str && *pat && *pat != '*') { 11524 if (*pat == '?') { /* Matches any single character */ 11525 str++; 11526 pat++; 11527 continue; 11528 } 11529 if (*str != *pat) 11530 return false; 11531 str++; 11532 pat++; 11533 } 11534 /* Check wild card */ 11535 if (*pat == '*') { 11536 while (*pat == '*') 11537 pat++; 11538 if (!*pat) /* Tail wild card matches all */ 11539 return true; 11540 while (*str) 11541 if (glob_match(str++, pat)) 11542 return true; 11543 } 11544 return !*str && !*pat; 11545 } 11546 11547 struct kprobe_multi_resolve { 11548 const char *pattern; 11549 unsigned long *addrs; 11550 size_t cap; 11551 size_t cnt; 11552 }; 11553 11554 struct avail_kallsyms_data { 11555 char **syms; 11556 size_t cnt; 11557 struct kprobe_multi_resolve *res; 11558 }; 11559 11560 static int avail_func_cmp(const void *a, const void *b) 11561 { 11562 return strcmp(*(const char **)a, *(const char **)b); 11563 } 11564 11565 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11566 const char *sym_name, void *ctx) 11567 { 11568 struct avail_kallsyms_data *data = ctx; 11569 struct kprobe_multi_resolve *res = data->res; 11570 int err; 11571 11572 if (!glob_match(sym_name, res->pattern)) 11573 return 0; 11574 11575 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11576 /* Some versions of kernel strip out .llvm.<hash> suffix from 11577 * function names reported in available_filter_functions, but 11578 * don't do so for kallsyms. While this is clearly a kernel 11579 * bug (fixed by [0]) we try to accommodate that in libbpf to 11580 * make multi-kprobe usability a bit better: if no match is 11581 * found, we will strip .llvm. suffix and try one more time. 11582 * 11583 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11584 */ 11585 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11586 11587 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11588 return 0; 11589 11590 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11591 * coercion differences and get proper `const char **` pointer 11592 * which avail_func_cmp() expects 11593 */ 11594 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11595 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11596 return 0; 11597 } 11598 11599 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11600 if (err) 11601 return err; 11602 11603 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11604 return 0; 11605 } 11606 11607 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11608 { 11609 const char *available_functions_file = tracefs_available_filter_functions(); 11610 struct avail_kallsyms_data data; 11611 char sym_name[500]; 11612 FILE *f; 11613 int err = 0, ret, i; 11614 char **syms = NULL; 11615 size_t cap = 0, cnt = 0; 11616 11617 f = fopen(available_functions_file, "re"); 11618 if (!f) { 11619 err = -errno; 11620 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11621 return err; 11622 } 11623 11624 while (true) { 11625 char *name; 11626 11627 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11628 if (ret == EOF && feof(f)) 11629 break; 11630 11631 if (ret != 1) { 11632 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11633 err = -EINVAL; 11634 goto cleanup; 11635 } 11636 11637 if (!glob_match(sym_name, res->pattern)) 11638 continue; 11639 11640 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11641 if (err) 11642 goto cleanup; 11643 11644 name = strdup(sym_name); 11645 if (!name) { 11646 err = -errno; 11647 goto cleanup; 11648 } 11649 11650 syms[cnt++] = name; 11651 } 11652 11653 /* no entries found, bail out */ 11654 if (cnt == 0) { 11655 err = -ENOENT; 11656 goto cleanup; 11657 } 11658 11659 /* sort available functions */ 11660 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11661 11662 data.syms = syms; 11663 data.res = res; 11664 data.cnt = cnt; 11665 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11666 11667 if (res->cnt == 0) 11668 err = -ENOENT; 11669 11670 cleanup: 11671 for (i = 0; i < cnt; i++) 11672 free((char *)syms[i]); 11673 free(syms); 11674 11675 fclose(f); 11676 return err; 11677 } 11678 11679 static bool has_available_filter_functions_addrs(void) 11680 { 11681 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11682 } 11683 11684 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11685 { 11686 const char *available_path = tracefs_available_filter_functions_addrs(); 11687 char sym_name[500]; 11688 FILE *f; 11689 int ret, err = 0; 11690 unsigned long long sym_addr; 11691 11692 f = fopen(available_path, "re"); 11693 if (!f) { 11694 err = -errno; 11695 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11696 return err; 11697 } 11698 11699 while (true) { 11700 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11701 if (ret == EOF && feof(f)) 11702 break; 11703 11704 if (ret != 2) { 11705 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11706 ret); 11707 err = -EINVAL; 11708 goto cleanup; 11709 } 11710 11711 if (!glob_match(sym_name, res->pattern)) 11712 continue; 11713 11714 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11715 sizeof(*res->addrs), res->cnt + 1); 11716 if (err) 11717 goto cleanup; 11718 11719 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11720 } 11721 11722 if (res->cnt == 0) 11723 err = -ENOENT; 11724 11725 cleanup: 11726 fclose(f); 11727 return err; 11728 } 11729 11730 struct bpf_link * 11731 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11732 const char *pattern, 11733 const struct bpf_kprobe_multi_opts *opts) 11734 { 11735 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11736 struct kprobe_multi_resolve res = { 11737 .pattern = pattern, 11738 }; 11739 enum bpf_attach_type attach_type; 11740 struct bpf_link *link = NULL; 11741 const unsigned long *addrs; 11742 int err, link_fd, prog_fd; 11743 bool retprobe, session, unique_match; 11744 const __u64 *cookies; 11745 const char **syms; 11746 size_t cnt; 11747 11748 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11749 return libbpf_err_ptr(-EINVAL); 11750 11751 prog_fd = bpf_program__fd(prog); 11752 if (prog_fd < 0) { 11753 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11754 prog->name); 11755 return libbpf_err_ptr(-EINVAL); 11756 } 11757 11758 syms = OPTS_GET(opts, syms, false); 11759 addrs = OPTS_GET(opts, addrs, false); 11760 cnt = OPTS_GET(opts, cnt, false); 11761 cookies = OPTS_GET(opts, cookies, false); 11762 unique_match = OPTS_GET(opts, unique_match, false); 11763 11764 if (!pattern && !addrs && !syms) 11765 return libbpf_err_ptr(-EINVAL); 11766 if (pattern && (addrs || syms || cookies || cnt)) 11767 return libbpf_err_ptr(-EINVAL); 11768 if (!pattern && !cnt) 11769 return libbpf_err_ptr(-EINVAL); 11770 if (!pattern && unique_match) 11771 return libbpf_err_ptr(-EINVAL); 11772 if (addrs && syms) 11773 return libbpf_err_ptr(-EINVAL); 11774 11775 if (pattern) { 11776 if (has_available_filter_functions_addrs()) 11777 err = libbpf_available_kprobes_parse(&res); 11778 else 11779 err = libbpf_available_kallsyms_parse(&res); 11780 if (err) 11781 goto error; 11782 11783 if (unique_match && res.cnt != 1) { 11784 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11785 prog->name, pattern, res.cnt); 11786 err = -EINVAL; 11787 goto error; 11788 } 11789 11790 addrs = res.addrs; 11791 cnt = res.cnt; 11792 } 11793 11794 retprobe = OPTS_GET(opts, retprobe, false); 11795 session = OPTS_GET(opts, session, false); 11796 11797 if (retprobe && session) 11798 return libbpf_err_ptr(-EINVAL); 11799 11800 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11801 11802 lopts.kprobe_multi.syms = syms; 11803 lopts.kprobe_multi.addrs = addrs; 11804 lopts.kprobe_multi.cookies = cookies; 11805 lopts.kprobe_multi.cnt = cnt; 11806 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11807 11808 link = calloc(1, sizeof(*link)); 11809 if (!link) { 11810 err = -ENOMEM; 11811 goto error; 11812 } 11813 link->detach = &bpf_link__detach_fd; 11814 11815 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11816 if (link_fd < 0) { 11817 err = -errno; 11818 pr_warn("prog '%s': failed to attach: %s\n", 11819 prog->name, errstr(err)); 11820 goto error; 11821 } 11822 link->fd = link_fd; 11823 free(res.addrs); 11824 return link; 11825 11826 error: 11827 free(link); 11828 free(res.addrs); 11829 return libbpf_err_ptr(err); 11830 } 11831 11832 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11833 { 11834 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11835 unsigned long offset = 0; 11836 const char *func_name; 11837 char *func; 11838 int n; 11839 11840 *link = NULL; 11841 11842 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11843 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11844 return 0; 11845 11846 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11847 if (opts.retprobe) 11848 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11849 else 11850 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11851 11852 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11853 if (n < 1) { 11854 pr_warn("kprobe name is invalid: %s\n", func_name); 11855 return -EINVAL; 11856 } 11857 if (opts.retprobe && offset != 0) { 11858 free(func); 11859 pr_warn("kretprobes do not support offset specification\n"); 11860 return -EINVAL; 11861 } 11862 11863 opts.offset = offset; 11864 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11865 free(func); 11866 return libbpf_get_error(*link); 11867 } 11868 11869 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11870 { 11871 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11872 const char *syscall_name; 11873 11874 *link = NULL; 11875 11876 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11877 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11878 return 0; 11879 11880 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11881 if (opts.retprobe) 11882 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11883 else 11884 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11885 11886 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11887 return *link ? 0 : -errno; 11888 } 11889 11890 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11891 { 11892 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11893 const char *spec; 11894 char *pattern; 11895 int n; 11896 11897 *link = NULL; 11898 11899 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11900 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11901 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11902 return 0; 11903 11904 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11905 if (opts.retprobe) 11906 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11907 else 11908 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11909 11910 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11911 if (n < 1) { 11912 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11913 return -EINVAL; 11914 } 11915 11916 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11917 free(pattern); 11918 return libbpf_get_error(*link); 11919 } 11920 11921 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11922 struct bpf_link **link) 11923 { 11924 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11925 const char *spec; 11926 char *pattern; 11927 int n; 11928 11929 *link = NULL; 11930 11931 /* no auto-attach for SEC("kprobe.session") */ 11932 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11933 return 0; 11934 11935 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11936 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11937 if (n < 1) { 11938 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11939 return -EINVAL; 11940 } 11941 11942 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11943 free(pattern); 11944 return *link ? 0 : -errno; 11945 } 11946 11947 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11948 { 11949 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11950 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11951 int n, ret = -EINVAL; 11952 11953 *link = NULL; 11954 11955 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11956 &probe_type, &binary_path, &func_name); 11957 switch (n) { 11958 case 1: 11959 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11960 ret = 0; 11961 break; 11962 case 3: 11963 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11964 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11965 11966 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11967 ret = libbpf_get_error(*link); 11968 break; 11969 default: 11970 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11971 prog->sec_name); 11972 break; 11973 } 11974 free(probe_type); 11975 free(binary_path); 11976 free(func_name); 11977 return ret; 11978 } 11979 11980 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11981 const char *binary_path, size_t offset) 11982 { 11983 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11984 retprobe ? 'r' : 'p', 11985 retprobe ? "uretprobes" : "uprobes", 11986 probe_name, binary_path, offset); 11987 } 11988 11989 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11990 { 11991 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11992 retprobe ? "uretprobes" : "uprobes", probe_name); 11993 } 11994 11995 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11996 { 11997 char file[512]; 11998 11999 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12000 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 12001 12002 return parse_uint_from_file(file, "%d\n"); 12003 } 12004 12005 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 12006 const char *binary_path, size_t offset, int pid) 12007 { 12008 const size_t attr_sz = sizeof(struct perf_event_attr); 12009 struct perf_event_attr attr; 12010 int type, pfd, err; 12011 12012 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 12013 if (err < 0) { 12014 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 12015 binary_path, (size_t)offset, errstr(err)); 12016 return err; 12017 } 12018 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 12019 if (type < 0) { 12020 err = type; 12021 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 12022 binary_path, offset, errstr(err)); 12023 goto err_clean_legacy; 12024 } 12025 12026 memset(&attr, 0, attr_sz); 12027 attr.size = attr_sz; 12028 attr.config = type; 12029 attr.type = PERF_TYPE_TRACEPOINT; 12030 12031 pfd = syscall(__NR_perf_event_open, &attr, 12032 pid < 0 ? -1 : pid, /* pid */ 12033 pid == -1 ? 0 : -1, /* cpu */ 12034 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12035 if (pfd < 0) { 12036 err = -errno; 12037 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 12038 goto err_clean_legacy; 12039 } 12040 return pfd; 12041 12042 err_clean_legacy: 12043 /* Clear the newly added legacy uprobe_event */ 12044 remove_uprobe_event_legacy(probe_name, retprobe); 12045 return err; 12046 } 12047 12048 /* Find offset of function name in archive specified by path. Currently 12049 * supported are .zip files that do not compress their contents, as used on 12050 * Android in the form of APKs, for example. "file_name" is the name of the ELF 12051 * file inside the archive. "func_name" matches symbol name or name@@LIB for 12052 * library functions. 12053 * 12054 * An overview of the APK format specifically provided here: 12055 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 12056 */ 12057 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 12058 const char *func_name) 12059 { 12060 struct zip_archive *archive; 12061 struct zip_entry entry; 12062 long ret; 12063 Elf *elf; 12064 12065 archive = zip_archive_open(archive_path); 12066 if (IS_ERR(archive)) { 12067 ret = PTR_ERR(archive); 12068 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 12069 return ret; 12070 } 12071 12072 ret = zip_archive_find_entry(archive, file_name, &entry); 12073 if (ret) { 12074 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 12075 archive_path, ret); 12076 goto out; 12077 } 12078 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 12079 (unsigned long)entry.data_offset); 12080 12081 if (entry.compression) { 12082 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 12083 archive_path); 12084 ret = -LIBBPF_ERRNO__FORMAT; 12085 goto out; 12086 } 12087 12088 elf = elf_memory((void *)entry.data, entry.data_length); 12089 if (!elf) { 12090 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12091 elf_errmsg(-1)); 12092 ret = -LIBBPF_ERRNO__LIBELF; 12093 goto out; 12094 } 12095 12096 ret = elf_find_func_offset(elf, file_name, func_name); 12097 if (ret > 0) { 12098 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12099 func_name, file_name, archive_path, entry.data_offset, ret, 12100 ret + entry.data_offset); 12101 ret += entry.data_offset; 12102 } 12103 elf_end(elf); 12104 12105 out: 12106 zip_archive_close(archive); 12107 return ret; 12108 } 12109 12110 static const char *arch_specific_lib_paths(void) 12111 { 12112 /* 12113 * Based on https://packages.debian.org/sid/libc6. 12114 * 12115 * Assume that the traced program is built for the same architecture 12116 * as libbpf, which should cover the vast majority of cases. 12117 */ 12118 #if defined(__x86_64__) 12119 return "/lib/x86_64-linux-gnu"; 12120 #elif defined(__i386__) 12121 return "/lib/i386-linux-gnu"; 12122 #elif defined(__s390x__) 12123 return "/lib/s390x-linux-gnu"; 12124 #elif defined(__s390__) 12125 return "/lib/s390-linux-gnu"; 12126 #elif defined(__arm__) && defined(__SOFTFP__) 12127 return "/lib/arm-linux-gnueabi"; 12128 #elif defined(__arm__) && !defined(__SOFTFP__) 12129 return "/lib/arm-linux-gnueabihf"; 12130 #elif defined(__aarch64__) 12131 return "/lib/aarch64-linux-gnu"; 12132 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12133 return "/lib/mips64el-linux-gnuabi64"; 12134 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12135 return "/lib/mipsel-linux-gnu"; 12136 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12137 return "/lib/powerpc64le-linux-gnu"; 12138 #elif defined(__sparc__) && defined(__arch64__) 12139 return "/lib/sparc64-linux-gnu"; 12140 #elif defined(__riscv) && __riscv_xlen == 64 12141 return "/lib/riscv64-linux-gnu"; 12142 #else 12143 return NULL; 12144 #endif 12145 } 12146 12147 /* Get full path to program/shared library. */ 12148 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12149 { 12150 const char *search_paths[3] = {}; 12151 int i, perm; 12152 12153 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12154 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12155 search_paths[1] = "/usr/lib64:/usr/lib"; 12156 search_paths[2] = arch_specific_lib_paths(); 12157 perm = R_OK; 12158 } else { 12159 search_paths[0] = getenv("PATH"); 12160 search_paths[1] = "/usr/bin:/usr/sbin"; 12161 perm = R_OK | X_OK; 12162 } 12163 12164 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12165 const char *s; 12166 12167 if (!search_paths[i]) 12168 continue; 12169 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12170 char *next_path; 12171 int seg_len; 12172 12173 if (s[0] == ':') 12174 s++; 12175 next_path = strchr(s, ':'); 12176 seg_len = next_path ? next_path - s : strlen(s); 12177 if (!seg_len) 12178 continue; 12179 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12180 /* ensure it has required permissions */ 12181 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12182 continue; 12183 pr_debug("resolved '%s' to '%s'\n", file, result); 12184 return 0; 12185 } 12186 } 12187 return -ENOENT; 12188 } 12189 12190 struct bpf_link * 12191 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12192 pid_t pid, 12193 const char *path, 12194 const char *func_pattern, 12195 const struct bpf_uprobe_multi_opts *opts) 12196 { 12197 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12198 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12199 unsigned long *resolved_offsets = NULL; 12200 enum bpf_attach_type attach_type; 12201 int err = 0, link_fd, prog_fd; 12202 struct bpf_link *link = NULL; 12203 char full_path[PATH_MAX]; 12204 bool retprobe, session; 12205 const __u64 *cookies; 12206 const char **syms; 12207 size_t cnt; 12208 12209 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12210 return libbpf_err_ptr(-EINVAL); 12211 12212 prog_fd = bpf_program__fd(prog); 12213 if (prog_fd < 0) { 12214 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12215 prog->name); 12216 return libbpf_err_ptr(-EINVAL); 12217 } 12218 12219 syms = OPTS_GET(opts, syms, NULL); 12220 offsets = OPTS_GET(opts, offsets, NULL); 12221 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12222 cookies = OPTS_GET(opts, cookies, NULL); 12223 cnt = OPTS_GET(opts, cnt, 0); 12224 retprobe = OPTS_GET(opts, retprobe, false); 12225 session = OPTS_GET(opts, session, false); 12226 12227 /* 12228 * User can specify 2 mutually exclusive set of inputs: 12229 * 12230 * 1) use only path/func_pattern/pid arguments 12231 * 12232 * 2) use path/pid with allowed combinations of: 12233 * syms/offsets/ref_ctr_offsets/cookies/cnt 12234 * 12235 * - syms and offsets are mutually exclusive 12236 * - ref_ctr_offsets and cookies are optional 12237 * 12238 * Any other usage results in error. 12239 */ 12240 12241 if (!path) 12242 return libbpf_err_ptr(-EINVAL); 12243 if (!func_pattern && cnt == 0) 12244 return libbpf_err_ptr(-EINVAL); 12245 12246 if (func_pattern) { 12247 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12248 return libbpf_err_ptr(-EINVAL); 12249 } else { 12250 if (!!syms == !!offsets) 12251 return libbpf_err_ptr(-EINVAL); 12252 } 12253 12254 if (retprobe && session) 12255 return libbpf_err_ptr(-EINVAL); 12256 12257 if (func_pattern) { 12258 if (!strchr(path, '/')) { 12259 err = resolve_full_path(path, full_path, sizeof(full_path)); 12260 if (err) { 12261 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12262 prog->name, path, errstr(err)); 12263 return libbpf_err_ptr(err); 12264 } 12265 path = full_path; 12266 } 12267 12268 err = elf_resolve_pattern_offsets(path, func_pattern, 12269 &resolved_offsets, &cnt); 12270 if (err < 0) 12271 return libbpf_err_ptr(err); 12272 offsets = resolved_offsets; 12273 } else if (syms) { 12274 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12275 if (err < 0) 12276 return libbpf_err_ptr(err); 12277 offsets = resolved_offsets; 12278 } 12279 12280 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12281 12282 lopts.uprobe_multi.path = path; 12283 lopts.uprobe_multi.offsets = offsets; 12284 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12285 lopts.uprobe_multi.cookies = cookies; 12286 lopts.uprobe_multi.cnt = cnt; 12287 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12288 12289 if (pid == 0) 12290 pid = getpid(); 12291 if (pid > 0) 12292 lopts.uprobe_multi.pid = pid; 12293 12294 link = calloc(1, sizeof(*link)); 12295 if (!link) { 12296 err = -ENOMEM; 12297 goto error; 12298 } 12299 link->detach = &bpf_link__detach_fd; 12300 12301 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12302 if (link_fd < 0) { 12303 err = -errno; 12304 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12305 prog->name, errstr(err)); 12306 goto error; 12307 } 12308 link->fd = link_fd; 12309 free(resolved_offsets); 12310 return link; 12311 12312 error: 12313 free(resolved_offsets); 12314 free(link); 12315 return libbpf_err_ptr(err); 12316 } 12317 12318 LIBBPF_API struct bpf_link * 12319 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12320 const char *binary_path, size_t func_offset, 12321 const struct bpf_uprobe_opts *opts) 12322 { 12323 const char *archive_path = NULL, *archive_sep = NULL; 12324 char *legacy_probe = NULL; 12325 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12326 enum probe_attach_mode attach_mode; 12327 char full_path[PATH_MAX]; 12328 struct bpf_link *link; 12329 size_t ref_ctr_off; 12330 int pfd, err; 12331 bool retprobe, legacy; 12332 const char *func_name; 12333 12334 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12335 return libbpf_err_ptr(-EINVAL); 12336 12337 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12338 retprobe = OPTS_GET(opts, retprobe, false); 12339 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12340 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12341 12342 if (!binary_path) 12343 return libbpf_err_ptr(-EINVAL); 12344 12345 /* Check if "binary_path" refers to an archive. */ 12346 archive_sep = strstr(binary_path, "!/"); 12347 if (archive_sep) { 12348 full_path[0] = '\0'; 12349 libbpf_strlcpy(full_path, binary_path, 12350 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12351 archive_path = full_path; 12352 binary_path = archive_sep + 2; 12353 } else if (!strchr(binary_path, '/')) { 12354 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12355 if (err) { 12356 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12357 prog->name, binary_path, errstr(err)); 12358 return libbpf_err_ptr(err); 12359 } 12360 binary_path = full_path; 12361 } 12362 func_name = OPTS_GET(opts, func_name, NULL); 12363 if (func_name) { 12364 long sym_off; 12365 12366 if (archive_path) { 12367 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12368 func_name); 12369 binary_path = archive_path; 12370 } else { 12371 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12372 } 12373 if (sym_off < 0) 12374 return libbpf_err_ptr(sym_off); 12375 func_offset += sym_off; 12376 } 12377 12378 legacy = determine_uprobe_perf_type() < 0; 12379 switch (attach_mode) { 12380 case PROBE_ATTACH_MODE_LEGACY: 12381 legacy = true; 12382 pe_opts.force_ioctl_attach = true; 12383 break; 12384 case PROBE_ATTACH_MODE_PERF: 12385 if (legacy) 12386 return libbpf_err_ptr(-ENOTSUP); 12387 pe_opts.force_ioctl_attach = true; 12388 break; 12389 case PROBE_ATTACH_MODE_LINK: 12390 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12391 return libbpf_err_ptr(-ENOTSUP); 12392 break; 12393 case PROBE_ATTACH_MODE_DEFAULT: 12394 break; 12395 default: 12396 return libbpf_err_ptr(-EINVAL); 12397 } 12398 12399 if (!legacy) { 12400 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12401 func_offset, pid, ref_ctr_off); 12402 } else { 12403 char probe_name[MAX_EVENT_NAME_LEN]; 12404 12405 if (ref_ctr_off) 12406 return libbpf_err_ptr(-EINVAL); 12407 12408 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12409 strrchr(binary_path, '/') ? : binary_path, 12410 func_offset); 12411 12412 legacy_probe = strdup(probe_name); 12413 if (!legacy_probe) 12414 return libbpf_err_ptr(-ENOMEM); 12415 12416 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12417 binary_path, func_offset, pid); 12418 } 12419 if (pfd < 0) { 12420 err = -errno; 12421 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12422 prog->name, retprobe ? "uretprobe" : "uprobe", 12423 binary_path, func_offset, 12424 errstr(err)); 12425 goto err_out; 12426 } 12427 12428 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12429 err = libbpf_get_error(link); 12430 if (err) { 12431 close(pfd); 12432 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12433 prog->name, retprobe ? "uretprobe" : "uprobe", 12434 binary_path, func_offset, 12435 errstr(err)); 12436 goto err_clean_legacy; 12437 } 12438 if (legacy) { 12439 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12440 12441 perf_link->legacy_probe_name = legacy_probe; 12442 perf_link->legacy_is_kprobe = false; 12443 perf_link->legacy_is_retprobe = retprobe; 12444 } 12445 return link; 12446 12447 err_clean_legacy: 12448 if (legacy) 12449 remove_uprobe_event_legacy(legacy_probe, retprobe); 12450 err_out: 12451 free(legacy_probe); 12452 return libbpf_err_ptr(err); 12453 } 12454 12455 /* Format of u[ret]probe section definition supporting auto-attach: 12456 * u[ret]probe/binary:function[+offset] 12457 * 12458 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12459 * full binary path via bpf_program__attach_uprobe_opts. 12460 * 12461 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12462 * specified (and auto-attach is not possible) or the above format is specified for 12463 * auto-attach. 12464 */ 12465 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12466 { 12467 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12468 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12469 int n, c, ret = -EINVAL; 12470 long offset = 0; 12471 12472 *link = NULL; 12473 12474 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12475 &probe_type, &binary_path, &func_name); 12476 switch (n) { 12477 case 1: 12478 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12479 ret = 0; 12480 break; 12481 case 2: 12482 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12483 prog->name, prog->sec_name); 12484 break; 12485 case 3: 12486 /* check if user specifies `+offset`, if yes, this should be 12487 * the last part of the string, make sure sscanf read to EOL 12488 */ 12489 func_off = strrchr(func_name, '+'); 12490 if (func_off) { 12491 n = sscanf(func_off, "+%li%n", &offset, &c); 12492 if (n == 1 && *(func_off + c) == '\0') 12493 func_off[0] = '\0'; 12494 else 12495 offset = 0; 12496 } 12497 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12498 strcmp(probe_type, "uretprobe.s") == 0; 12499 if (opts.retprobe && offset != 0) { 12500 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12501 prog->name); 12502 break; 12503 } 12504 opts.func_name = func_name; 12505 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12506 ret = libbpf_get_error(*link); 12507 break; 12508 default: 12509 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12510 prog->sec_name); 12511 break; 12512 } 12513 free(probe_type); 12514 free(binary_path); 12515 free(func_name); 12516 12517 return ret; 12518 } 12519 12520 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12521 bool retprobe, pid_t pid, 12522 const char *binary_path, 12523 size_t func_offset) 12524 { 12525 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12526 12527 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12528 } 12529 12530 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12531 pid_t pid, const char *binary_path, 12532 const char *usdt_provider, const char *usdt_name, 12533 const struct bpf_usdt_opts *opts) 12534 { 12535 char resolved_path[512]; 12536 struct bpf_object *obj = prog->obj; 12537 struct bpf_link *link; 12538 __u64 usdt_cookie; 12539 int err; 12540 12541 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12542 return libbpf_err_ptr(-EINVAL); 12543 12544 if (bpf_program__fd(prog) < 0) { 12545 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12546 prog->name); 12547 return libbpf_err_ptr(-EINVAL); 12548 } 12549 12550 if (!binary_path) 12551 return libbpf_err_ptr(-EINVAL); 12552 12553 if (!strchr(binary_path, '/')) { 12554 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12555 if (err) { 12556 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12557 prog->name, binary_path, errstr(err)); 12558 return libbpf_err_ptr(err); 12559 } 12560 binary_path = resolved_path; 12561 } 12562 12563 /* USDT manager is instantiated lazily on first USDT attach. It will 12564 * be destroyed together with BPF object in bpf_object__close(). 12565 */ 12566 if (IS_ERR(obj->usdt_man)) 12567 return libbpf_ptr(obj->usdt_man); 12568 if (!obj->usdt_man) { 12569 obj->usdt_man = usdt_manager_new(obj); 12570 if (IS_ERR(obj->usdt_man)) 12571 return libbpf_ptr(obj->usdt_man); 12572 } 12573 12574 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12575 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12576 usdt_provider, usdt_name, usdt_cookie); 12577 err = libbpf_get_error(link); 12578 if (err) 12579 return libbpf_err_ptr(err); 12580 return link; 12581 } 12582 12583 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12584 { 12585 char *path = NULL, *provider = NULL, *name = NULL; 12586 const char *sec_name; 12587 int n, err; 12588 12589 sec_name = bpf_program__section_name(prog); 12590 if (strcmp(sec_name, "usdt") == 0) { 12591 /* no auto-attach for just SEC("usdt") */ 12592 *link = NULL; 12593 return 0; 12594 } 12595 12596 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12597 if (n != 3) { 12598 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12599 sec_name); 12600 err = -EINVAL; 12601 } else { 12602 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12603 provider, name, NULL); 12604 err = libbpf_get_error(*link); 12605 } 12606 free(path); 12607 free(provider); 12608 free(name); 12609 return err; 12610 } 12611 12612 static int determine_tracepoint_id(const char *tp_category, 12613 const char *tp_name) 12614 { 12615 char file[PATH_MAX]; 12616 int ret; 12617 12618 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12619 tracefs_path(), tp_category, tp_name); 12620 if (ret < 0) 12621 return -errno; 12622 if (ret >= sizeof(file)) { 12623 pr_debug("tracepoint %s/%s path is too long\n", 12624 tp_category, tp_name); 12625 return -E2BIG; 12626 } 12627 return parse_uint_from_file(file, "%d\n"); 12628 } 12629 12630 static int perf_event_open_tracepoint(const char *tp_category, 12631 const char *tp_name) 12632 { 12633 const size_t attr_sz = sizeof(struct perf_event_attr); 12634 struct perf_event_attr attr; 12635 int tp_id, pfd, err; 12636 12637 tp_id = determine_tracepoint_id(tp_category, tp_name); 12638 if (tp_id < 0) { 12639 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12640 tp_category, tp_name, 12641 errstr(tp_id)); 12642 return tp_id; 12643 } 12644 12645 memset(&attr, 0, attr_sz); 12646 attr.type = PERF_TYPE_TRACEPOINT; 12647 attr.size = attr_sz; 12648 attr.config = tp_id; 12649 12650 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12651 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12652 if (pfd < 0) { 12653 err = -errno; 12654 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12655 tp_category, tp_name, 12656 errstr(err)); 12657 return err; 12658 } 12659 return pfd; 12660 } 12661 12662 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12663 const char *tp_category, 12664 const char *tp_name, 12665 const struct bpf_tracepoint_opts *opts) 12666 { 12667 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12668 struct bpf_link *link; 12669 int pfd, err; 12670 12671 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12672 return libbpf_err_ptr(-EINVAL); 12673 12674 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12675 12676 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12677 if (pfd < 0) { 12678 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12679 prog->name, tp_category, tp_name, 12680 errstr(pfd)); 12681 return libbpf_err_ptr(pfd); 12682 } 12683 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12684 err = libbpf_get_error(link); 12685 if (err) { 12686 close(pfd); 12687 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12688 prog->name, tp_category, tp_name, 12689 errstr(err)); 12690 return libbpf_err_ptr(err); 12691 } 12692 return link; 12693 } 12694 12695 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12696 const char *tp_category, 12697 const char *tp_name) 12698 { 12699 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12700 } 12701 12702 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12703 { 12704 char *sec_name, *tp_cat, *tp_name; 12705 12706 *link = NULL; 12707 12708 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12709 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12710 return 0; 12711 12712 sec_name = strdup(prog->sec_name); 12713 if (!sec_name) 12714 return -ENOMEM; 12715 12716 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12717 if (str_has_pfx(prog->sec_name, "tp/")) 12718 tp_cat = sec_name + sizeof("tp/") - 1; 12719 else 12720 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12721 tp_name = strchr(tp_cat, '/'); 12722 if (!tp_name) { 12723 free(sec_name); 12724 return -EINVAL; 12725 } 12726 *tp_name = '\0'; 12727 tp_name++; 12728 12729 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12730 free(sec_name); 12731 return libbpf_get_error(*link); 12732 } 12733 12734 struct bpf_link * 12735 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12736 const char *tp_name, 12737 struct bpf_raw_tracepoint_opts *opts) 12738 { 12739 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12740 struct bpf_link *link; 12741 int prog_fd, pfd; 12742 12743 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12744 return libbpf_err_ptr(-EINVAL); 12745 12746 prog_fd = bpf_program__fd(prog); 12747 if (prog_fd < 0) { 12748 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12749 return libbpf_err_ptr(-EINVAL); 12750 } 12751 12752 link = calloc(1, sizeof(*link)); 12753 if (!link) 12754 return libbpf_err_ptr(-ENOMEM); 12755 link->detach = &bpf_link__detach_fd; 12756 12757 raw_opts.tp_name = tp_name; 12758 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12759 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12760 if (pfd < 0) { 12761 pfd = -errno; 12762 free(link); 12763 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12764 prog->name, tp_name, errstr(pfd)); 12765 return libbpf_err_ptr(pfd); 12766 } 12767 link->fd = pfd; 12768 return link; 12769 } 12770 12771 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12772 const char *tp_name) 12773 { 12774 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12775 } 12776 12777 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12778 { 12779 static const char *const prefixes[] = { 12780 "raw_tp", 12781 "raw_tracepoint", 12782 "raw_tp.w", 12783 "raw_tracepoint.w", 12784 }; 12785 size_t i; 12786 const char *tp_name = NULL; 12787 12788 *link = NULL; 12789 12790 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12791 size_t pfx_len; 12792 12793 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12794 continue; 12795 12796 pfx_len = strlen(prefixes[i]); 12797 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12798 if (prog->sec_name[pfx_len] == '\0') 12799 return 0; 12800 12801 if (prog->sec_name[pfx_len] != '/') 12802 continue; 12803 12804 tp_name = prog->sec_name + pfx_len + 1; 12805 break; 12806 } 12807 12808 if (!tp_name) { 12809 pr_warn("prog '%s': invalid section name '%s'\n", 12810 prog->name, prog->sec_name); 12811 return -EINVAL; 12812 } 12813 12814 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12815 return libbpf_get_error(*link); 12816 } 12817 12818 /* Common logic for all BPF program types that attach to a btf_id */ 12819 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12820 const struct bpf_trace_opts *opts) 12821 { 12822 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12823 struct bpf_link *link; 12824 int prog_fd, pfd; 12825 12826 if (!OPTS_VALID(opts, bpf_trace_opts)) 12827 return libbpf_err_ptr(-EINVAL); 12828 12829 prog_fd = bpf_program__fd(prog); 12830 if (prog_fd < 0) { 12831 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12832 return libbpf_err_ptr(-EINVAL); 12833 } 12834 12835 link = calloc(1, sizeof(*link)); 12836 if (!link) 12837 return libbpf_err_ptr(-ENOMEM); 12838 link->detach = &bpf_link__detach_fd; 12839 12840 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12841 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12842 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12843 if (pfd < 0) { 12844 pfd = -errno; 12845 free(link); 12846 pr_warn("prog '%s': failed to attach: %s\n", 12847 prog->name, errstr(pfd)); 12848 return libbpf_err_ptr(pfd); 12849 } 12850 link->fd = pfd; 12851 return link; 12852 } 12853 12854 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12855 { 12856 return bpf_program__attach_btf_id(prog, NULL); 12857 } 12858 12859 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12860 const struct bpf_trace_opts *opts) 12861 { 12862 return bpf_program__attach_btf_id(prog, opts); 12863 } 12864 12865 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12866 { 12867 return bpf_program__attach_btf_id(prog, NULL); 12868 } 12869 12870 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12871 { 12872 *link = bpf_program__attach_trace(prog); 12873 return libbpf_get_error(*link); 12874 } 12875 12876 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12877 { 12878 *link = bpf_program__attach_lsm(prog); 12879 return libbpf_get_error(*link); 12880 } 12881 12882 static struct bpf_link * 12883 bpf_program_attach_fd(const struct bpf_program *prog, 12884 int target_fd, const char *target_name, 12885 const struct bpf_link_create_opts *opts) 12886 { 12887 enum bpf_attach_type attach_type; 12888 struct bpf_link *link; 12889 int prog_fd, link_fd; 12890 12891 prog_fd = bpf_program__fd(prog); 12892 if (prog_fd < 0) { 12893 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12894 return libbpf_err_ptr(-EINVAL); 12895 } 12896 12897 link = calloc(1, sizeof(*link)); 12898 if (!link) 12899 return libbpf_err_ptr(-ENOMEM); 12900 link->detach = &bpf_link__detach_fd; 12901 12902 attach_type = bpf_program__expected_attach_type(prog); 12903 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12904 if (link_fd < 0) { 12905 link_fd = -errno; 12906 free(link); 12907 pr_warn("prog '%s': failed to attach to %s: %s\n", 12908 prog->name, target_name, 12909 errstr(link_fd)); 12910 return libbpf_err_ptr(link_fd); 12911 } 12912 link->fd = link_fd; 12913 return link; 12914 } 12915 12916 struct bpf_link * 12917 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12918 { 12919 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12920 } 12921 12922 struct bpf_link * 12923 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12924 { 12925 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12926 } 12927 12928 struct bpf_link * 12929 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12930 { 12931 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12932 } 12933 12934 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12935 { 12936 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12937 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12938 } 12939 12940 struct bpf_link * 12941 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd, 12942 const struct bpf_cgroup_opts *opts) 12943 { 12944 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12945 __u32 relative_id; 12946 int relative_fd; 12947 12948 if (!OPTS_VALID(opts, bpf_cgroup_opts)) 12949 return libbpf_err_ptr(-EINVAL); 12950 12951 relative_id = OPTS_GET(opts, relative_id, 0); 12952 relative_fd = OPTS_GET(opts, relative_fd, 0); 12953 12954 if (relative_fd && relative_id) { 12955 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12956 prog->name); 12957 return libbpf_err_ptr(-EINVAL); 12958 } 12959 12960 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0); 12961 link_create_opts.cgroup.relative_fd = relative_fd; 12962 link_create_opts.cgroup.relative_id = relative_id; 12963 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12964 12965 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts); 12966 } 12967 12968 struct bpf_link * 12969 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12970 const struct bpf_tcx_opts *opts) 12971 { 12972 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12973 __u32 relative_id; 12974 int relative_fd; 12975 12976 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12977 return libbpf_err_ptr(-EINVAL); 12978 12979 relative_id = OPTS_GET(opts, relative_id, 0); 12980 relative_fd = OPTS_GET(opts, relative_fd, 0); 12981 12982 /* validate we don't have unexpected combinations of non-zero fields */ 12983 if (!ifindex) { 12984 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12985 prog->name); 12986 return libbpf_err_ptr(-EINVAL); 12987 } 12988 if (relative_fd && relative_id) { 12989 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12990 prog->name); 12991 return libbpf_err_ptr(-EINVAL); 12992 } 12993 12994 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12995 link_create_opts.tcx.relative_fd = relative_fd; 12996 link_create_opts.tcx.relative_id = relative_id; 12997 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12998 12999 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 13000 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 13001 } 13002 13003 struct bpf_link * 13004 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 13005 const struct bpf_netkit_opts *opts) 13006 { 13007 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13008 __u32 relative_id; 13009 int relative_fd; 13010 13011 if (!OPTS_VALID(opts, bpf_netkit_opts)) 13012 return libbpf_err_ptr(-EINVAL); 13013 13014 relative_id = OPTS_GET(opts, relative_id, 0); 13015 relative_fd = OPTS_GET(opts, relative_fd, 0); 13016 13017 /* validate we don't have unexpected combinations of non-zero fields */ 13018 if (!ifindex) { 13019 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 13020 prog->name); 13021 return libbpf_err_ptr(-EINVAL); 13022 } 13023 if (relative_fd && relative_id) { 13024 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 13025 prog->name); 13026 return libbpf_err_ptr(-EINVAL); 13027 } 13028 13029 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 13030 link_create_opts.netkit.relative_fd = relative_fd; 13031 link_create_opts.netkit.relative_id = relative_id; 13032 link_create_opts.flags = OPTS_GET(opts, flags, 0); 13033 13034 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 13035 } 13036 13037 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 13038 int target_fd, 13039 const char *attach_func_name) 13040 { 13041 int btf_id; 13042 13043 if (!!target_fd != !!attach_func_name) { 13044 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 13045 prog->name); 13046 return libbpf_err_ptr(-EINVAL); 13047 } 13048 13049 if (prog->type != BPF_PROG_TYPE_EXT) { 13050 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 13051 prog->name); 13052 return libbpf_err_ptr(-EINVAL); 13053 } 13054 13055 if (target_fd) { 13056 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 13057 13058 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 13059 if (btf_id < 0) 13060 return libbpf_err_ptr(btf_id); 13061 13062 target_opts.target_btf_id = btf_id; 13063 13064 return bpf_program_attach_fd(prog, target_fd, "freplace", 13065 &target_opts); 13066 } else { 13067 /* no target, so use raw_tracepoint_open for compatibility 13068 * with old kernels 13069 */ 13070 return bpf_program__attach_trace(prog); 13071 } 13072 } 13073 13074 struct bpf_link * 13075 bpf_program__attach_iter(const struct bpf_program *prog, 13076 const struct bpf_iter_attach_opts *opts) 13077 { 13078 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13079 struct bpf_link *link; 13080 int prog_fd, link_fd; 13081 __u32 target_fd = 0; 13082 13083 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 13084 return libbpf_err_ptr(-EINVAL); 13085 13086 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 13087 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 13088 13089 prog_fd = bpf_program__fd(prog); 13090 if (prog_fd < 0) { 13091 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13092 return libbpf_err_ptr(-EINVAL); 13093 } 13094 13095 link = calloc(1, sizeof(*link)); 13096 if (!link) 13097 return libbpf_err_ptr(-ENOMEM); 13098 link->detach = &bpf_link__detach_fd; 13099 13100 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 13101 &link_create_opts); 13102 if (link_fd < 0) { 13103 link_fd = -errno; 13104 free(link); 13105 pr_warn("prog '%s': failed to attach to iterator: %s\n", 13106 prog->name, errstr(link_fd)); 13107 return libbpf_err_ptr(link_fd); 13108 } 13109 link->fd = link_fd; 13110 return link; 13111 } 13112 13113 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13114 { 13115 *link = bpf_program__attach_iter(prog, NULL); 13116 return libbpf_get_error(*link); 13117 } 13118 13119 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13120 const struct bpf_netfilter_opts *opts) 13121 { 13122 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13123 struct bpf_link *link; 13124 int prog_fd, link_fd; 13125 13126 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13127 return libbpf_err_ptr(-EINVAL); 13128 13129 prog_fd = bpf_program__fd(prog); 13130 if (prog_fd < 0) { 13131 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13132 return libbpf_err_ptr(-EINVAL); 13133 } 13134 13135 link = calloc(1, sizeof(*link)); 13136 if (!link) 13137 return libbpf_err_ptr(-ENOMEM); 13138 13139 link->detach = &bpf_link__detach_fd; 13140 13141 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13142 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13143 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13144 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13145 13146 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13147 if (link_fd < 0) { 13148 link_fd = -errno; 13149 free(link); 13150 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13151 prog->name, errstr(link_fd)); 13152 return libbpf_err_ptr(link_fd); 13153 } 13154 link->fd = link_fd; 13155 13156 return link; 13157 } 13158 13159 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13160 { 13161 struct bpf_link *link = NULL; 13162 int err; 13163 13164 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13165 return libbpf_err_ptr(-EOPNOTSUPP); 13166 13167 if (bpf_program__fd(prog) < 0) { 13168 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13169 prog->name); 13170 return libbpf_err_ptr(-EINVAL); 13171 } 13172 13173 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13174 if (err) 13175 return libbpf_err_ptr(err); 13176 13177 /* When calling bpf_program__attach() explicitly, auto-attach support 13178 * is expected to work, so NULL returned link is considered an error. 13179 * This is different for skeleton's attach, see comment in 13180 * bpf_object__attach_skeleton(). 13181 */ 13182 if (!link) 13183 return libbpf_err_ptr(-EOPNOTSUPP); 13184 13185 return link; 13186 } 13187 13188 struct bpf_link_struct_ops { 13189 struct bpf_link link; 13190 int map_fd; 13191 }; 13192 13193 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13194 { 13195 struct bpf_link_struct_ops *st_link; 13196 __u32 zero = 0; 13197 13198 st_link = container_of(link, struct bpf_link_struct_ops, link); 13199 13200 if (st_link->map_fd < 0) 13201 /* w/o a real link */ 13202 return bpf_map_delete_elem(link->fd, &zero); 13203 13204 return close(link->fd); 13205 } 13206 13207 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13208 { 13209 struct bpf_link_struct_ops *link; 13210 __u32 zero = 0; 13211 int err, fd; 13212 13213 if (!bpf_map__is_struct_ops(map)) { 13214 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13215 return libbpf_err_ptr(-EINVAL); 13216 } 13217 13218 if (map->fd < 0) { 13219 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13220 return libbpf_err_ptr(-EINVAL); 13221 } 13222 13223 link = calloc(1, sizeof(*link)); 13224 if (!link) 13225 return libbpf_err_ptr(-EINVAL); 13226 13227 /* kern_vdata should be prepared during the loading phase. */ 13228 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13229 /* It can be EBUSY if the map has been used to create or 13230 * update a link before. We don't allow updating the value of 13231 * a struct_ops once it is set. That ensures that the value 13232 * never changed. So, it is safe to skip EBUSY. 13233 */ 13234 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13235 free(link); 13236 return libbpf_err_ptr(err); 13237 } 13238 13239 link->link.detach = bpf_link__detach_struct_ops; 13240 13241 if (!(map->def.map_flags & BPF_F_LINK)) { 13242 /* w/o a real link */ 13243 link->link.fd = map->fd; 13244 link->map_fd = -1; 13245 return &link->link; 13246 } 13247 13248 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13249 if (fd < 0) { 13250 free(link); 13251 return libbpf_err_ptr(fd); 13252 } 13253 13254 link->link.fd = fd; 13255 link->map_fd = map->fd; 13256 13257 return &link->link; 13258 } 13259 13260 /* 13261 * Swap the back struct_ops of a link with a new struct_ops map. 13262 */ 13263 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13264 { 13265 struct bpf_link_struct_ops *st_ops_link; 13266 __u32 zero = 0; 13267 int err; 13268 13269 if (!bpf_map__is_struct_ops(map)) 13270 return libbpf_err(-EINVAL); 13271 13272 if (map->fd < 0) { 13273 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13274 return libbpf_err(-EINVAL); 13275 } 13276 13277 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13278 /* Ensure the type of a link is correct */ 13279 if (st_ops_link->map_fd < 0) 13280 return libbpf_err(-EINVAL); 13281 13282 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13283 /* It can be EBUSY if the map has been used to create or 13284 * update a link before. We don't allow updating the value of 13285 * a struct_ops once it is set. That ensures that the value 13286 * never changed. So, it is safe to skip EBUSY. 13287 */ 13288 if (err && err != -EBUSY) 13289 return err; 13290 13291 err = bpf_link_update(link->fd, map->fd, NULL); 13292 if (err < 0) 13293 return err; 13294 13295 st_ops_link->map_fd = map->fd; 13296 13297 return 0; 13298 } 13299 13300 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13301 void *private_data); 13302 13303 static enum bpf_perf_event_ret 13304 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13305 void **copy_mem, size_t *copy_size, 13306 bpf_perf_event_print_t fn, void *private_data) 13307 { 13308 struct perf_event_mmap_page *header = mmap_mem; 13309 __u64 data_head = ring_buffer_read_head(header); 13310 __u64 data_tail = header->data_tail; 13311 void *base = ((__u8 *)header) + page_size; 13312 int ret = LIBBPF_PERF_EVENT_CONT; 13313 struct perf_event_header *ehdr; 13314 size_t ehdr_size; 13315 13316 while (data_head != data_tail) { 13317 ehdr = base + (data_tail & (mmap_size - 1)); 13318 ehdr_size = ehdr->size; 13319 13320 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13321 void *copy_start = ehdr; 13322 size_t len_first = base + mmap_size - copy_start; 13323 size_t len_secnd = ehdr_size - len_first; 13324 13325 if (*copy_size < ehdr_size) { 13326 free(*copy_mem); 13327 *copy_mem = malloc(ehdr_size); 13328 if (!*copy_mem) { 13329 *copy_size = 0; 13330 ret = LIBBPF_PERF_EVENT_ERROR; 13331 break; 13332 } 13333 *copy_size = ehdr_size; 13334 } 13335 13336 memcpy(*copy_mem, copy_start, len_first); 13337 memcpy(*copy_mem + len_first, base, len_secnd); 13338 ehdr = *copy_mem; 13339 } 13340 13341 ret = fn(ehdr, private_data); 13342 data_tail += ehdr_size; 13343 if (ret != LIBBPF_PERF_EVENT_CONT) 13344 break; 13345 } 13346 13347 ring_buffer_write_tail(header, data_tail); 13348 return libbpf_err(ret); 13349 } 13350 13351 struct perf_buffer; 13352 13353 struct perf_buffer_params { 13354 struct perf_event_attr *attr; 13355 /* if event_cb is specified, it takes precendence */ 13356 perf_buffer_event_fn event_cb; 13357 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13358 perf_buffer_sample_fn sample_cb; 13359 perf_buffer_lost_fn lost_cb; 13360 void *ctx; 13361 int cpu_cnt; 13362 int *cpus; 13363 int *map_keys; 13364 }; 13365 13366 struct perf_cpu_buf { 13367 struct perf_buffer *pb; 13368 void *base; /* mmap()'ed memory */ 13369 void *buf; /* for reconstructing segmented data */ 13370 size_t buf_size; 13371 int fd; 13372 int cpu; 13373 int map_key; 13374 }; 13375 13376 struct perf_buffer { 13377 perf_buffer_event_fn event_cb; 13378 perf_buffer_sample_fn sample_cb; 13379 perf_buffer_lost_fn lost_cb; 13380 void *ctx; /* passed into callbacks */ 13381 13382 size_t page_size; 13383 size_t mmap_size; 13384 struct perf_cpu_buf **cpu_bufs; 13385 struct epoll_event *events; 13386 int cpu_cnt; /* number of allocated CPU buffers */ 13387 int epoll_fd; /* perf event FD */ 13388 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13389 }; 13390 13391 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13392 struct perf_cpu_buf *cpu_buf) 13393 { 13394 if (!cpu_buf) 13395 return; 13396 if (cpu_buf->base && 13397 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13398 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13399 if (cpu_buf->fd >= 0) { 13400 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13401 close(cpu_buf->fd); 13402 } 13403 free(cpu_buf->buf); 13404 free(cpu_buf); 13405 } 13406 13407 void perf_buffer__free(struct perf_buffer *pb) 13408 { 13409 int i; 13410 13411 if (IS_ERR_OR_NULL(pb)) 13412 return; 13413 if (pb->cpu_bufs) { 13414 for (i = 0; i < pb->cpu_cnt; i++) { 13415 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13416 13417 if (!cpu_buf) 13418 continue; 13419 13420 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13421 perf_buffer__free_cpu_buf(pb, cpu_buf); 13422 } 13423 free(pb->cpu_bufs); 13424 } 13425 if (pb->epoll_fd >= 0) 13426 close(pb->epoll_fd); 13427 free(pb->events); 13428 free(pb); 13429 } 13430 13431 static struct perf_cpu_buf * 13432 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13433 int cpu, int map_key) 13434 { 13435 struct perf_cpu_buf *cpu_buf; 13436 int err; 13437 13438 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13439 if (!cpu_buf) 13440 return ERR_PTR(-ENOMEM); 13441 13442 cpu_buf->pb = pb; 13443 cpu_buf->cpu = cpu; 13444 cpu_buf->map_key = map_key; 13445 13446 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13447 -1, PERF_FLAG_FD_CLOEXEC); 13448 if (cpu_buf->fd < 0) { 13449 err = -errno; 13450 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13451 cpu, errstr(err)); 13452 goto error; 13453 } 13454 13455 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13456 PROT_READ | PROT_WRITE, MAP_SHARED, 13457 cpu_buf->fd, 0); 13458 if (cpu_buf->base == MAP_FAILED) { 13459 cpu_buf->base = NULL; 13460 err = -errno; 13461 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13462 cpu, errstr(err)); 13463 goto error; 13464 } 13465 13466 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13467 err = -errno; 13468 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13469 cpu, errstr(err)); 13470 goto error; 13471 } 13472 13473 return cpu_buf; 13474 13475 error: 13476 perf_buffer__free_cpu_buf(pb, cpu_buf); 13477 return (struct perf_cpu_buf *)ERR_PTR(err); 13478 } 13479 13480 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13481 struct perf_buffer_params *p); 13482 13483 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13484 perf_buffer_sample_fn sample_cb, 13485 perf_buffer_lost_fn lost_cb, 13486 void *ctx, 13487 const struct perf_buffer_opts *opts) 13488 { 13489 const size_t attr_sz = sizeof(struct perf_event_attr); 13490 struct perf_buffer_params p = {}; 13491 struct perf_event_attr attr; 13492 __u32 sample_period; 13493 13494 if (!OPTS_VALID(opts, perf_buffer_opts)) 13495 return libbpf_err_ptr(-EINVAL); 13496 13497 sample_period = OPTS_GET(opts, sample_period, 1); 13498 if (!sample_period) 13499 sample_period = 1; 13500 13501 memset(&attr, 0, attr_sz); 13502 attr.size = attr_sz; 13503 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13504 attr.type = PERF_TYPE_SOFTWARE; 13505 attr.sample_type = PERF_SAMPLE_RAW; 13506 attr.wakeup_events = sample_period; 13507 13508 p.attr = &attr; 13509 p.sample_cb = sample_cb; 13510 p.lost_cb = lost_cb; 13511 p.ctx = ctx; 13512 13513 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13514 } 13515 13516 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13517 struct perf_event_attr *attr, 13518 perf_buffer_event_fn event_cb, void *ctx, 13519 const struct perf_buffer_raw_opts *opts) 13520 { 13521 struct perf_buffer_params p = {}; 13522 13523 if (!attr) 13524 return libbpf_err_ptr(-EINVAL); 13525 13526 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13527 return libbpf_err_ptr(-EINVAL); 13528 13529 p.attr = attr; 13530 p.event_cb = event_cb; 13531 p.ctx = ctx; 13532 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13533 p.cpus = OPTS_GET(opts, cpus, NULL); 13534 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13535 13536 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13537 } 13538 13539 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13540 struct perf_buffer_params *p) 13541 { 13542 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13543 struct bpf_map_info map; 13544 struct perf_buffer *pb; 13545 bool *online = NULL; 13546 __u32 map_info_len; 13547 int err, i, j, n; 13548 13549 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13550 pr_warn("page count should be power of two, but is %zu\n", 13551 page_cnt); 13552 return ERR_PTR(-EINVAL); 13553 } 13554 13555 /* best-effort sanity checks */ 13556 memset(&map, 0, sizeof(map)); 13557 map_info_len = sizeof(map); 13558 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13559 if (err) { 13560 err = -errno; 13561 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13562 * -EBADFD, -EFAULT, or -E2BIG on real error 13563 */ 13564 if (err != -EINVAL) { 13565 pr_warn("failed to get map info for map FD %d: %s\n", 13566 map_fd, errstr(err)); 13567 return ERR_PTR(err); 13568 } 13569 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13570 map_fd); 13571 } else { 13572 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13573 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13574 map.name); 13575 return ERR_PTR(-EINVAL); 13576 } 13577 } 13578 13579 pb = calloc(1, sizeof(*pb)); 13580 if (!pb) 13581 return ERR_PTR(-ENOMEM); 13582 13583 pb->event_cb = p->event_cb; 13584 pb->sample_cb = p->sample_cb; 13585 pb->lost_cb = p->lost_cb; 13586 pb->ctx = p->ctx; 13587 13588 pb->page_size = getpagesize(); 13589 pb->mmap_size = pb->page_size * page_cnt; 13590 pb->map_fd = map_fd; 13591 13592 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13593 if (pb->epoll_fd < 0) { 13594 err = -errno; 13595 pr_warn("failed to create epoll instance: %s\n", 13596 errstr(err)); 13597 goto error; 13598 } 13599 13600 if (p->cpu_cnt > 0) { 13601 pb->cpu_cnt = p->cpu_cnt; 13602 } else { 13603 pb->cpu_cnt = libbpf_num_possible_cpus(); 13604 if (pb->cpu_cnt < 0) { 13605 err = pb->cpu_cnt; 13606 goto error; 13607 } 13608 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13609 pb->cpu_cnt = map.max_entries; 13610 } 13611 13612 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13613 if (!pb->events) { 13614 err = -ENOMEM; 13615 pr_warn("failed to allocate events: out of memory\n"); 13616 goto error; 13617 } 13618 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13619 if (!pb->cpu_bufs) { 13620 err = -ENOMEM; 13621 pr_warn("failed to allocate buffers: out of memory\n"); 13622 goto error; 13623 } 13624 13625 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13626 if (err) { 13627 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13628 goto error; 13629 } 13630 13631 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13632 struct perf_cpu_buf *cpu_buf; 13633 int cpu, map_key; 13634 13635 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13636 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13637 13638 /* in case user didn't explicitly requested particular CPUs to 13639 * be attached to, skip offline/not present CPUs 13640 */ 13641 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13642 continue; 13643 13644 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13645 if (IS_ERR(cpu_buf)) { 13646 err = PTR_ERR(cpu_buf); 13647 goto error; 13648 } 13649 13650 pb->cpu_bufs[j] = cpu_buf; 13651 13652 err = bpf_map_update_elem(pb->map_fd, &map_key, 13653 &cpu_buf->fd, 0); 13654 if (err) { 13655 err = -errno; 13656 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13657 cpu, map_key, cpu_buf->fd, 13658 errstr(err)); 13659 goto error; 13660 } 13661 13662 pb->events[j].events = EPOLLIN; 13663 pb->events[j].data.ptr = cpu_buf; 13664 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13665 &pb->events[j]) < 0) { 13666 err = -errno; 13667 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13668 cpu, cpu_buf->fd, 13669 errstr(err)); 13670 goto error; 13671 } 13672 j++; 13673 } 13674 pb->cpu_cnt = j; 13675 free(online); 13676 13677 return pb; 13678 13679 error: 13680 free(online); 13681 if (pb) 13682 perf_buffer__free(pb); 13683 return ERR_PTR(err); 13684 } 13685 13686 struct perf_sample_raw { 13687 struct perf_event_header header; 13688 uint32_t size; 13689 char data[]; 13690 }; 13691 13692 struct perf_sample_lost { 13693 struct perf_event_header header; 13694 uint64_t id; 13695 uint64_t lost; 13696 uint64_t sample_id; 13697 }; 13698 13699 static enum bpf_perf_event_ret 13700 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13701 { 13702 struct perf_cpu_buf *cpu_buf = ctx; 13703 struct perf_buffer *pb = cpu_buf->pb; 13704 void *data = e; 13705 13706 /* user wants full control over parsing perf event */ 13707 if (pb->event_cb) 13708 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13709 13710 switch (e->type) { 13711 case PERF_RECORD_SAMPLE: { 13712 struct perf_sample_raw *s = data; 13713 13714 if (pb->sample_cb) 13715 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13716 break; 13717 } 13718 case PERF_RECORD_LOST: { 13719 struct perf_sample_lost *s = data; 13720 13721 if (pb->lost_cb) 13722 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13723 break; 13724 } 13725 default: 13726 pr_warn("unknown perf sample type %d\n", e->type); 13727 return LIBBPF_PERF_EVENT_ERROR; 13728 } 13729 return LIBBPF_PERF_EVENT_CONT; 13730 } 13731 13732 static int perf_buffer__process_records(struct perf_buffer *pb, 13733 struct perf_cpu_buf *cpu_buf) 13734 { 13735 enum bpf_perf_event_ret ret; 13736 13737 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13738 pb->page_size, &cpu_buf->buf, 13739 &cpu_buf->buf_size, 13740 perf_buffer__process_record, cpu_buf); 13741 if (ret != LIBBPF_PERF_EVENT_CONT) 13742 return ret; 13743 return 0; 13744 } 13745 13746 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13747 { 13748 return pb->epoll_fd; 13749 } 13750 13751 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13752 { 13753 int i, cnt, err; 13754 13755 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13756 if (cnt < 0) 13757 return -errno; 13758 13759 for (i = 0; i < cnt; i++) { 13760 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13761 13762 err = perf_buffer__process_records(pb, cpu_buf); 13763 if (err) { 13764 pr_warn("error while processing records: %s\n", errstr(err)); 13765 return libbpf_err(err); 13766 } 13767 } 13768 return cnt; 13769 } 13770 13771 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13772 * manager. 13773 */ 13774 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13775 { 13776 return pb->cpu_cnt; 13777 } 13778 13779 /* 13780 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13781 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13782 * select()/poll()/epoll() Linux syscalls. 13783 */ 13784 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13785 { 13786 struct perf_cpu_buf *cpu_buf; 13787 13788 if (buf_idx >= pb->cpu_cnt) 13789 return libbpf_err(-EINVAL); 13790 13791 cpu_buf = pb->cpu_bufs[buf_idx]; 13792 if (!cpu_buf) 13793 return libbpf_err(-ENOENT); 13794 13795 return cpu_buf->fd; 13796 } 13797 13798 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13799 { 13800 struct perf_cpu_buf *cpu_buf; 13801 13802 if (buf_idx >= pb->cpu_cnt) 13803 return libbpf_err(-EINVAL); 13804 13805 cpu_buf = pb->cpu_bufs[buf_idx]; 13806 if (!cpu_buf) 13807 return libbpf_err(-ENOENT); 13808 13809 *buf = cpu_buf->base; 13810 *buf_size = pb->mmap_size; 13811 return 0; 13812 } 13813 13814 /* 13815 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13816 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13817 * consume, do nothing and return success. 13818 * Returns: 13819 * - 0 on success; 13820 * - <0 on failure. 13821 */ 13822 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13823 { 13824 struct perf_cpu_buf *cpu_buf; 13825 13826 if (buf_idx >= pb->cpu_cnt) 13827 return libbpf_err(-EINVAL); 13828 13829 cpu_buf = pb->cpu_bufs[buf_idx]; 13830 if (!cpu_buf) 13831 return libbpf_err(-ENOENT); 13832 13833 return perf_buffer__process_records(pb, cpu_buf); 13834 } 13835 13836 int perf_buffer__consume(struct perf_buffer *pb) 13837 { 13838 int i, err; 13839 13840 for (i = 0; i < pb->cpu_cnt; i++) { 13841 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13842 13843 if (!cpu_buf) 13844 continue; 13845 13846 err = perf_buffer__process_records(pb, cpu_buf); 13847 if (err) { 13848 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13849 i, errstr(err)); 13850 return libbpf_err(err); 13851 } 13852 } 13853 return 0; 13854 } 13855 13856 int bpf_program__set_attach_target(struct bpf_program *prog, 13857 int attach_prog_fd, 13858 const char *attach_func_name) 13859 { 13860 int btf_obj_fd = 0, btf_id = 0, err; 13861 13862 if (!prog || attach_prog_fd < 0) 13863 return libbpf_err(-EINVAL); 13864 13865 if (prog->obj->state >= OBJ_LOADED) 13866 return libbpf_err(-EINVAL); 13867 13868 if (attach_prog_fd && !attach_func_name) { 13869 /* remember attach_prog_fd and let bpf_program__load() find 13870 * BTF ID during the program load 13871 */ 13872 prog->attach_prog_fd = attach_prog_fd; 13873 return 0; 13874 } 13875 13876 if (attach_prog_fd) { 13877 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13878 attach_prog_fd, prog->obj->token_fd); 13879 if (btf_id < 0) 13880 return libbpf_err(btf_id); 13881 } else { 13882 if (!attach_func_name) 13883 return libbpf_err(-EINVAL); 13884 13885 /* load btf_vmlinux, if not yet */ 13886 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13887 if (err) 13888 return libbpf_err(err); 13889 err = find_kernel_btf_id(prog->obj, attach_func_name, 13890 prog->expected_attach_type, 13891 &btf_obj_fd, &btf_id); 13892 if (err) 13893 return libbpf_err(err); 13894 } 13895 13896 prog->attach_btf_id = btf_id; 13897 prog->attach_btf_obj_fd = btf_obj_fd; 13898 prog->attach_prog_fd = attach_prog_fd; 13899 return 0; 13900 } 13901 13902 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13903 { 13904 int err = 0, n, len, start, end = -1; 13905 bool *tmp; 13906 13907 *mask = NULL; 13908 *mask_sz = 0; 13909 13910 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13911 while (*s) { 13912 if (*s == ',' || *s == '\n') { 13913 s++; 13914 continue; 13915 } 13916 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13917 if (n <= 0 || n > 2) { 13918 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13919 err = -EINVAL; 13920 goto cleanup; 13921 } else if (n == 1) { 13922 end = start; 13923 } 13924 if (start < 0 || start > end) { 13925 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13926 start, end, s); 13927 err = -EINVAL; 13928 goto cleanup; 13929 } 13930 tmp = realloc(*mask, end + 1); 13931 if (!tmp) { 13932 err = -ENOMEM; 13933 goto cleanup; 13934 } 13935 *mask = tmp; 13936 memset(tmp + *mask_sz, 0, start - *mask_sz); 13937 memset(tmp + start, 1, end - start + 1); 13938 *mask_sz = end + 1; 13939 s += len; 13940 } 13941 if (!*mask_sz) { 13942 pr_warn("Empty CPU range\n"); 13943 return -EINVAL; 13944 } 13945 return 0; 13946 cleanup: 13947 free(*mask); 13948 *mask = NULL; 13949 return err; 13950 } 13951 13952 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13953 { 13954 int fd, err = 0, len; 13955 char buf[128]; 13956 13957 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13958 if (fd < 0) { 13959 err = -errno; 13960 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13961 return err; 13962 } 13963 len = read(fd, buf, sizeof(buf)); 13964 close(fd); 13965 if (len <= 0) { 13966 err = len ? -errno : -EINVAL; 13967 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13968 return err; 13969 } 13970 if (len >= sizeof(buf)) { 13971 pr_warn("CPU mask is too big in file %s\n", fcpu); 13972 return -E2BIG; 13973 } 13974 buf[len] = '\0'; 13975 13976 return parse_cpu_mask_str(buf, mask, mask_sz); 13977 } 13978 13979 int libbpf_num_possible_cpus(void) 13980 { 13981 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13982 static int cpus; 13983 int err, n, i, tmp_cpus; 13984 bool *mask; 13985 13986 tmp_cpus = READ_ONCE(cpus); 13987 if (tmp_cpus > 0) 13988 return tmp_cpus; 13989 13990 err = parse_cpu_mask_file(fcpu, &mask, &n); 13991 if (err) 13992 return libbpf_err(err); 13993 13994 tmp_cpus = 0; 13995 for (i = 0; i < n; i++) { 13996 if (mask[i]) 13997 tmp_cpus++; 13998 } 13999 free(mask); 14000 14001 WRITE_ONCE(cpus, tmp_cpus); 14002 return tmp_cpus; 14003 } 14004 14005 static int populate_skeleton_maps(const struct bpf_object *obj, 14006 struct bpf_map_skeleton *maps, 14007 size_t map_cnt, size_t map_skel_sz) 14008 { 14009 int i; 14010 14011 for (i = 0; i < map_cnt; i++) { 14012 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 14013 struct bpf_map **map = map_skel->map; 14014 const char *name = map_skel->name; 14015 void **mmaped = map_skel->mmaped; 14016 14017 *map = bpf_object__find_map_by_name(obj, name); 14018 if (!*map) { 14019 pr_warn("failed to find skeleton map '%s'\n", name); 14020 return -ESRCH; 14021 } 14022 14023 /* externs shouldn't be pre-setup from user code */ 14024 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 14025 *mmaped = (*map)->mmaped; 14026 } 14027 return 0; 14028 } 14029 14030 static int populate_skeleton_progs(const struct bpf_object *obj, 14031 struct bpf_prog_skeleton *progs, 14032 size_t prog_cnt, size_t prog_skel_sz) 14033 { 14034 int i; 14035 14036 for (i = 0; i < prog_cnt; i++) { 14037 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 14038 struct bpf_program **prog = prog_skel->prog; 14039 const char *name = prog_skel->name; 14040 14041 *prog = bpf_object__find_program_by_name(obj, name); 14042 if (!*prog) { 14043 pr_warn("failed to find skeleton program '%s'\n", name); 14044 return -ESRCH; 14045 } 14046 } 14047 return 0; 14048 } 14049 14050 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 14051 const struct bpf_object_open_opts *opts) 14052 { 14053 struct bpf_object *obj; 14054 int err; 14055 14056 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 14057 if (IS_ERR(obj)) { 14058 err = PTR_ERR(obj); 14059 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 14060 s->name, errstr(err)); 14061 return libbpf_err(err); 14062 } 14063 14064 *s->obj = obj; 14065 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 14066 if (err) { 14067 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 14068 return libbpf_err(err); 14069 } 14070 14071 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14072 if (err) { 14073 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 14074 return libbpf_err(err); 14075 } 14076 14077 return 0; 14078 } 14079 14080 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 14081 { 14082 int err, len, var_idx, i; 14083 const char *var_name; 14084 const struct bpf_map *map; 14085 struct btf *btf; 14086 __u32 map_type_id; 14087 const struct btf_type *map_type, *var_type; 14088 const struct bpf_var_skeleton *var_skel; 14089 struct btf_var_secinfo *var; 14090 14091 if (!s->obj) 14092 return libbpf_err(-EINVAL); 14093 14094 btf = bpf_object__btf(s->obj); 14095 if (!btf) { 14096 pr_warn("subskeletons require BTF at runtime (object %s)\n", 14097 bpf_object__name(s->obj)); 14098 return libbpf_err(-errno); 14099 } 14100 14101 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 14102 if (err) { 14103 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14104 return libbpf_err(err); 14105 } 14106 14107 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14108 if (err) { 14109 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14110 return libbpf_err(err); 14111 } 14112 14113 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 14114 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 14115 map = *var_skel->map; 14116 map_type_id = bpf_map__btf_value_type_id(map); 14117 map_type = btf__type_by_id(btf, map_type_id); 14118 14119 if (!btf_is_datasec(map_type)) { 14120 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14121 bpf_map__name(map), 14122 __btf_kind_str(btf_kind(map_type))); 14123 return libbpf_err(-EINVAL); 14124 } 14125 14126 len = btf_vlen(map_type); 14127 var = btf_var_secinfos(map_type); 14128 for (i = 0; i < len; i++, var++) { 14129 var_type = btf__type_by_id(btf, var->type); 14130 var_name = btf__name_by_offset(btf, var_type->name_off); 14131 if (strcmp(var_name, var_skel->name) == 0) { 14132 *var_skel->addr = map->mmaped + var->offset; 14133 break; 14134 } 14135 } 14136 } 14137 return 0; 14138 } 14139 14140 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14141 { 14142 if (!s) 14143 return; 14144 free(s->maps); 14145 free(s->progs); 14146 free(s->vars); 14147 free(s); 14148 } 14149 14150 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14151 { 14152 int i, err; 14153 14154 err = bpf_object__load(*s->obj); 14155 if (err) { 14156 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14157 return libbpf_err(err); 14158 } 14159 14160 for (i = 0; i < s->map_cnt; i++) { 14161 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14162 struct bpf_map *map = *map_skel->map; 14163 14164 if (!map_skel->mmaped) 14165 continue; 14166 14167 *map_skel->mmaped = map->mmaped; 14168 } 14169 14170 return 0; 14171 } 14172 14173 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14174 { 14175 int i, err; 14176 14177 for (i = 0; i < s->prog_cnt; i++) { 14178 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14179 struct bpf_program *prog = *prog_skel->prog; 14180 struct bpf_link **link = prog_skel->link; 14181 14182 if (!prog->autoload || !prog->autoattach) 14183 continue; 14184 14185 /* auto-attaching not supported for this program */ 14186 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14187 continue; 14188 14189 /* if user already set the link manually, don't attempt auto-attach */ 14190 if (*link) 14191 continue; 14192 14193 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14194 if (err) { 14195 pr_warn("prog '%s': failed to auto-attach: %s\n", 14196 bpf_program__name(prog), errstr(err)); 14197 return libbpf_err(err); 14198 } 14199 14200 /* It's possible that for some SEC() definitions auto-attach 14201 * is supported in some cases (e.g., if definition completely 14202 * specifies target information), but is not in other cases. 14203 * SEC("uprobe") is one such case. If user specified target 14204 * binary and function name, such BPF program can be 14205 * auto-attached. But if not, it shouldn't trigger skeleton's 14206 * attach to fail. It should just be skipped. 14207 * attach_fn signals such case with returning 0 (no error) and 14208 * setting link to NULL. 14209 */ 14210 } 14211 14212 14213 for (i = 0; i < s->map_cnt; i++) { 14214 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14215 struct bpf_map *map = *map_skel->map; 14216 struct bpf_link **link; 14217 14218 if (!map->autocreate || !map->autoattach) 14219 continue; 14220 14221 /* only struct_ops maps can be attached */ 14222 if (!bpf_map__is_struct_ops(map)) 14223 continue; 14224 14225 /* skeleton is created with earlier version of bpftool, notify user */ 14226 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14227 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14228 bpf_map__name(map)); 14229 continue; 14230 } 14231 14232 link = map_skel->link; 14233 if (!link) { 14234 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14235 bpf_map__name(map)); 14236 continue; 14237 } 14238 14239 if (*link) 14240 continue; 14241 14242 *link = bpf_map__attach_struct_ops(map); 14243 if (!*link) { 14244 err = -errno; 14245 pr_warn("map '%s': failed to auto-attach: %s\n", 14246 bpf_map__name(map), errstr(err)); 14247 return libbpf_err(err); 14248 } 14249 } 14250 14251 return 0; 14252 } 14253 14254 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14255 { 14256 int i; 14257 14258 for (i = 0; i < s->prog_cnt; i++) { 14259 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14260 struct bpf_link **link = prog_skel->link; 14261 14262 bpf_link__destroy(*link); 14263 *link = NULL; 14264 } 14265 14266 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14267 return; 14268 14269 for (i = 0; i < s->map_cnt; i++) { 14270 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14271 struct bpf_link **link = map_skel->link; 14272 14273 if (link) { 14274 bpf_link__destroy(*link); 14275 *link = NULL; 14276 } 14277 } 14278 } 14279 14280 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14281 { 14282 if (!s) 14283 return; 14284 14285 bpf_object__detach_skeleton(s); 14286 if (s->obj) 14287 bpf_object__close(*s->obj); 14288 free(s->maps); 14289 free(s->progs); 14290 free(s); 14291 } 14292 14293 int libbpf_sha256(const void *data, size_t data_sz, void *sha_out, size_t sha_out_sz) 14294 { 14295 struct sockaddr_alg sa = { 14296 .salg_family = AF_ALG, 14297 .salg_type = "hash", 14298 .salg_name = "sha256" 14299 }; 14300 int sock_fd = -1; 14301 int op_fd = -1; 14302 int err = 0; 14303 14304 if (sha_out_sz != SHA256_DIGEST_LENGTH) { 14305 pr_warn("sha_out_sz should be exactly 32 bytes for a SHA256 digest"); 14306 return -EINVAL; 14307 } 14308 14309 sock_fd = socket(AF_ALG, SOCK_SEQPACKET, 0); 14310 if (sock_fd < 0) { 14311 err = -errno; 14312 pr_warn("failed to create AF_ALG socket for SHA256: %s\n", errstr(err)); 14313 return err; 14314 } 14315 14316 if (bind(sock_fd, (struct sockaddr *)&sa, sizeof(sa)) < 0) { 14317 err = -errno; 14318 pr_warn("failed to bind to AF_ALG socket for SHA256: %s\n", errstr(err)); 14319 goto out; 14320 } 14321 14322 op_fd = accept(sock_fd, NULL, 0); 14323 if (op_fd < 0) { 14324 err = -errno; 14325 pr_warn("failed to accept from AF_ALG socket for SHA256: %s\n", errstr(err)); 14326 goto out; 14327 } 14328 14329 if (write(op_fd, data, data_sz) != data_sz) { 14330 err = -errno; 14331 pr_warn("failed to write data to AF_ALG socket for SHA256: %s\n", errstr(err)); 14332 goto out; 14333 } 14334 14335 if (read(op_fd, sha_out, SHA256_DIGEST_LENGTH) != SHA256_DIGEST_LENGTH) { 14336 err = -errno; 14337 pr_warn("failed to read SHA256 from AF_ALG socket: %s\n", errstr(err)); 14338 goto out; 14339 } 14340 14341 out: 14342 if (op_fd >= 0) 14343 close(op_fd); 14344 if (sock_fd >= 0) 14345 close(sock_fd); 14346 return err; 14347 } 14348