1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 [BPF_NETKIT_PRIMARY] = "netkit_primary", 130 [BPF_NETKIT_PEER] = "netkit_peer", 131 }; 132 133 static const char * const link_type_name[] = { 134 [BPF_LINK_TYPE_UNSPEC] = "unspec", 135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 136 [BPF_LINK_TYPE_TRACING] = "tracing", 137 [BPF_LINK_TYPE_CGROUP] = "cgroup", 138 [BPF_LINK_TYPE_ITER] = "iter", 139 [BPF_LINK_TYPE_NETNS] = "netns", 140 [BPF_LINK_TYPE_XDP] = "xdp", 141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 144 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 145 [BPF_LINK_TYPE_TCX] = "tcx", 146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 147 [BPF_LINK_TYPE_NETKIT] = "netkit", 148 }; 149 150 static const char * const map_type_name[] = { 151 [BPF_MAP_TYPE_UNSPEC] = "unspec", 152 [BPF_MAP_TYPE_HASH] = "hash", 153 [BPF_MAP_TYPE_ARRAY] = "array", 154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 165 [BPF_MAP_TYPE_DEVMAP] = "devmap", 166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 168 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 169 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 174 [BPF_MAP_TYPE_QUEUE] = "queue", 175 [BPF_MAP_TYPE_STACK] = "stack", 176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 184 }; 185 186 static const char * const prog_type_name[] = { 187 [BPF_PROG_TYPE_UNSPEC] = "unspec", 188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 189 [BPF_PROG_TYPE_KPROBE] = "kprobe", 190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 193 [BPF_PROG_TYPE_XDP] = "xdp", 194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 213 [BPF_PROG_TYPE_TRACING] = "tracing", 214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 215 [BPF_PROG_TYPE_EXT] = "ext", 216 [BPF_PROG_TYPE_LSM] = "lsm", 217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 218 [BPF_PROG_TYPE_SYSCALL] = "syscall", 219 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 220 }; 221 222 static int __base_pr(enum libbpf_print_level level, const char *format, 223 va_list args) 224 { 225 if (level == LIBBPF_DEBUG) 226 return 0; 227 228 return vfprintf(stderr, format, args); 229 } 230 231 static libbpf_print_fn_t __libbpf_pr = __base_pr; 232 233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 234 { 235 libbpf_print_fn_t old_print_fn; 236 237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 238 239 return old_print_fn; 240 } 241 242 __printf(2, 3) 243 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 244 { 245 va_list args; 246 int old_errno; 247 libbpf_print_fn_t print_fn; 248 249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 250 if (!print_fn) 251 return; 252 253 old_errno = errno; 254 255 va_start(args, format); 256 __libbpf_pr(level, format, args); 257 va_end(args); 258 259 errno = old_errno; 260 } 261 262 static void pr_perm_msg(int err) 263 { 264 struct rlimit limit; 265 char buf[100]; 266 267 if (err != -EPERM || geteuid() != 0) 268 return; 269 270 err = getrlimit(RLIMIT_MEMLOCK, &limit); 271 if (err) 272 return; 273 274 if (limit.rlim_cur == RLIM_INFINITY) 275 return; 276 277 if (limit.rlim_cur < 1024) 278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 279 else if (limit.rlim_cur < 1024*1024) 280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 281 else 282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 283 284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 285 buf); 286 } 287 288 #define STRERR_BUFSIZE 128 289 290 /* Copied from tools/perf/util/util.h */ 291 #ifndef zfree 292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 293 #endif 294 295 #ifndef zclose 296 # define zclose(fd) ({ \ 297 int ___err = 0; \ 298 if ((fd) >= 0) \ 299 ___err = close((fd)); \ 300 fd = -1; \ 301 ___err; }) 302 #endif 303 304 static inline __u64 ptr_to_u64(const void *ptr) 305 { 306 return (__u64) (unsigned long) ptr; 307 } 308 309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 310 { 311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 312 return 0; 313 } 314 315 __u32 libbpf_major_version(void) 316 { 317 return LIBBPF_MAJOR_VERSION; 318 } 319 320 __u32 libbpf_minor_version(void) 321 { 322 return LIBBPF_MINOR_VERSION; 323 } 324 325 const char *libbpf_version_string(void) 326 { 327 #define __S(X) #X 328 #define _S(X) __S(X) 329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 330 #undef _S 331 #undef __S 332 } 333 334 enum reloc_type { 335 RELO_LD64, 336 RELO_CALL, 337 RELO_DATA, 338 RELO_EXTERN_LD64, 339 RELO_EXTERN_CALL, 340 RELO_SUBPROG_ADDR, 341 RELO_CORE, 342 }; 343 344 struct reloc_desc { 345 enum reloc_type type; 346 int insn_idx; 347 union { 348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 349 struct { 350 int map_idx; 351 int sym_off; 352 int ext_idx; 353 }; 354 }; 355 }; 356 357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 358 enum sec_def_flags { 359 SEC_NONE = 0, 360 /* expected_attach_type is optional, if kernel doesn't support that */ 361 SEC_EXP_ATTACH_OPT = 1, 362 /* legacy, only used by libbpf_get_type_names() and 363 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 364 * This used to be associated with cgroup (and few other) BPF programs 365 * that were attachable through BPF_PROG_ATTACH command. Pretty 366 * meaningless nowadays, though. 367 */ 368 SEC_ATTACHABLE = 2, 369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 370 /* attachment target is specified through BTF ID in either kernel or 371 * other BPF program's BTF object 372 */ 373 SEC_ATTACH_BTF = 4, 374 /* BPF program type allows sleeping/blocking in kernel */ 375 SEC_SLEEPABLE = 8, 376 /* BPF program support non-linear XDP buffer */ 377 SEC_XDP_FRAGS = 16, 378 /* Setup proper attach type for usdt probes. */ 379 SEC_USDT = 32, 380 }; 381 382 struct bpf_sec_def { 383 char *sec; 384 enum bpf_prog_type prog_type; 385 enum bpf_attach_type expected_attach_type; 386 long cookie; 387 int handler_id; 388 389 libbpf_prog_setup_fn_t prog_setup_fn; 390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 391 libbpf_prog_attach_fn_t prog_attach_fn; 392 }; 393 394 /* 395 * bpf_prog should be a better name but it has been used in 396 * linux/filter.h. 397 */ 398 struct bpf_program { 399 char *name; 400 char *sec_name; 401 size_t sec_idx; 402 const struct bpf_sec_def *sec_def; 403 /* this program's instruction offset (in number of instructions) 404 * within its containing ELF section 405 */ 406 size_t sec_insn_off; 407 /* number of original instructions in ELF section belonging to this 408 * program, not taking into account subprogram instructions possible 409 * appended later during relocation 410 */ 411 size_t sec_insn_cnt; 412 /* Offset (in number of instructions) of the start of instruction 413 * belonging to this BPF program within its containing main BPF 414 * program. For the entry-point (main) BPF program, this is always 415 * zero. For a sub-program, this gets reset before each of main BPF 416 * programs are processed and relocated and is used to determined 417 * whether sub-program was already appended to the main program, and 418 * if yes, at which instruction offset. 419 */ 420 size_t sub_insn_off; 421 422 /* instructions that belong to BPF program; insns[0] is located at 423 * sec_insn_off instruction within its ELF section in ELF file, so 424 * when mapping ELF file instruction index to the local instruction, 425 * one needs to subtract sec_insn_off; and vice versa. 426 */ 427 struct bpf_insn *insns; 428 /* actual number of instruction in this BPF program's image; for 429 * entry-point BPF programs this includes the size of main program 430 * itself plus all the used sub-programs, appended at the end 431 */ 432 size_t insns_cnt; 433 434 struct reloc_desc *reloc_desc; 435 int nr_reloc; 436 437 /* BPF verifier log settings */ 438 char *log_buf; 439 size_t log_size; 440 __u32 log_level; 441 442 struct bpf_object *obj; 443 444 int fd; 445 bool autoload; 446 bool autoattach; 447 bool sym_global; 448 bool mark_btf_static; 449 enum bpf_prog_type type; 450 enum bpf_attach_type expected_attach_type; 451 int exception_cb_idx; 452 453 int prog_ifindex; 454 __u32 attach_btf_obj_fd; 455 __u32 attach_btf_id; 456 __u32 attach_prog_fd; 457 458 void *func_info; 459 __u32 func_info_rec_size; 460 __u32 func_info_cnt; 461 462 void *line_info; 463 __u32 line_info_rec_size; 464 __u32 line_info_cnt; 465 __u32 prog_flags; 466 }; 467 468 struct bpf_struct_ops { 469 const char *tname; 470 const struct btf_type *type; 471 struct bpf_program **progs; 472 __u32 *kern_func_off; 473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 474 void *data; 475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 476 * btf_vmlinux's format. 477 * struct bpf_struct_ops_tcp_congestion_ops { 478 * [... some other kernel fields ...] 479 * struct tcp_congestion_ops data; 480 * } 481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 483 * from "data". 484 */ 485 void *kern_vdata; 486 __u32 type_id; 487 }; 488 489 #define DATA_SEC ".data" 490 #define BSS_SEC ".bss" 491 #define RODATA_SEC ".rodata" 492 #define KCONFIG_SEC ".kconfig" 493 #define KSYMS_SEC ".ksyms" 494 #define STRUCT_OPS_SEC ".struct_ops" 495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 496 497 enum libbpf_map_type { 498 LIBBPF_MAP_UNSPEC, 499 LIBBPF_MAP_DATA, 500 LIBBPF_MAP_BSS, 501 LIBBPF_MAP_RODATA, 502 LIBBPF_MAP_KCONFIG, 503 }; 504 505 struct bpf_map_def { 506 unsigned int type; 507 unsigned int key_size; 508 unsigned int value_size; 509 unsigned int max_entries; 510 unsigned int map_flags; 511 }; 512 513 struct bpf_map { 514 struct bpf_object *obj; 515 char *name; 516 /* real_name is defined for special internal maps (.rodata*, 517 * .data*, .bss, .kconfig) and preserves their original ELF section 518 * name. This is important to be able to find corresponding BTF 519 * DATASEC information. 520 */ 521 char *real_name; 522 int fd; 523 int sec_idx; 524 size_t sec_offset; 525 int map_ifindex; 526 int inner_map_fd; 527 struct bpf_map_def def; 528 __u32 numa_node; 529 __u32 btf_var_idx; 530 __u32 btf_key_type_id; 531 __u32 btf_value_type_id; 532 __u32 btf_vmlinux_value_type_id; 533 enum libbpf_map_type libbpf_type; 534 void *mmaped; 535 struct bpf_struct_ops *st_ops; 536 struct bpf_map *inner_map; 537 void **init_slots; 538 int init_slots_sz; 539 char *pin_path; 540 bool pinned; 541 bool reused; 542 bool autocreate; 543 __u64 map_extra; 544 }; 545 546 enum extern_type { 547 EXT_UNKNOWN, 548 EXT_KCFG, 549 EXT_KSYM, 550 }; 551 552 enum kcfg_type { 553 KCFG_UNKNOWN, 554 KCFG_CHAR, 555 KCFG_BOOL, 556 KCFG_INT, 557 KCFG_TRISTATE, 558 KCFG_CHAR_ARR, 559 }; 560 561 struct extern_desc { 562 enum extern_type type; 563 int sym_idx; 564 int btf_id; 565 int sec_btf_id; 566 const char *name; 567 char *essent_name; 568 bool is_set; 569 bool is_weak; 570 union { 571 struct { 572 enum kcfg_type type; 573 int sz; 574 int align; 575 int data_off; 576 bool is_signed; 577 } kcfg; 578 struct { 579 unsigned long long addr; 580 581 /* target btf_id of the corresponding kernel var. */ 582 int kernel_btf_obj_fd; 583 int kernel_btf_id; 584 585 /* local btf_id of the ksym extern's type. */ 586 __u32 type_id; 587 /* BTF fd index to be patched in for insn->off, this is 588 * 0 for vmlinux BTF, index in obj->fd_array for module 589 * BTF 590 */ 591 __s16 btf_fd_idx; 592 } ksym; 593 }; 594 }; 595 596 struct module_btf { 597 struct btf *btf; 598 char *name; 599 __u32 id; 600 int fd; 601 int fd_array_idx; 602 }; 603 604 enum sec_type { 605 SEC_UNUSED = 0, 606 SEC_RELO, 607 SEC_BSS, 608 SEC_DATA, 609 SEC_RODATA, 610 }; 611 612 struct elf_sec_desc { 613 enum sec_type sec_type; 614 Elf64_Shdr *shdr; 615 Elf_Data *data; 616 }; 617 618 struct elf_state { 619 int fd; 620 const void *obj_buf; 621 size_t obj_buf_sz; 622 Elf *elf; 623 Elf64_Ehdr *ehdr; 624 Elf_Data *symbols; 625 Elf_Data *st_ops_data; 626 Elf_Data *st_ops_link_data; 627 size_t shstrndx; /* section index for section name strings */ 628 size_t strtabidx; 629 struct elf_sec_desc *secs; 630 size_t sec_cnt; 631 int btf_maps_shndx; 632 __u32 btf_maps_sec_btf_id; 633 int text_shndx; 634 int symbols_shndx; 635 int st_ops_shndx; 636 int st_ops_link_shndx; 637 }; 638 639 struct usdt_manager; 640 641 struct bpf_object { 642 char name[BPF_OBJ_NAME_LEN]; 643 char license[64]; 644 __u32 kern_version; 645 646 struct bpf_program *programs; 647 size_t nr_programs; 648 struct bpf_map *maps; 649 size_t nr_maps; 650 size_t maps_cap; 651 652 char *kconfig; 653 struct extern_desc *externs; 654 int nr_extern; 655 int kconfig_map_idx; 656 657 bool loaded; 658 bool has_subcalls; 659 bool has_rodata; 660 661 struct bpf_gen *gen_loader; 662 663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 664 struct elf_state efile; 665 666 struct btf *btf; 667 struct btf_ext *btf_ext; 668 669 /* Parse and load BTF vmlinux if any of the programs in the object need 670 * it at load time. 671 */ 672 struct btf *btf_vmlinux; 673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 674 * override for vmlinux BTF. 675 */ 676 char *btf_custom_path; 677 /* vmlinux BTF override for CO-RE relocations */ 678 struct btf *btf_vmlinux_override; 679 /* Lazily initialized kernel module BTFs */ 680 struct module_btf *btf_modules; 681 bool btf_modules_loaded; 682 size_t btf_module_cnt; 683 size_t btf_module_cap; 684 685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 686 char *log_buf; 687 size_t log_size; 688 __u32 log_level; 689 690 int *fd_array; 691 size_t fd_array_cap; 692 size_t fd_array_cnt; 693 694 struct usdt_manager *usdt_man; 695 696 char path[]; 697 }; 698 699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 708 709 void bpf_program__unload(struct bpf_program *prog) 710 { 711 if (!prog) 712 return; 713 714 zclose(prog->fd); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 bpf_program__unload(prog); 726 zfree(&prog->name); 727 zfree(&prog->sec_name); 728 zfree(&prog->insns); 729 zfree(&prog->reloc_desc); 730 731 prog->nr_reloc = 0; 732 prog->insns_cnt = 0; 733 prog->sec_idx = -1; 734 } 735 736 static bool insn_is_subprog_call(const struct bpf_insn *insn) 737 { 738 return BPF_CLASS(insn->code) == BPF_JMP && 739 BPF_OP(insn->code) == BPF_CALL && 740 BPF_SRC(insn->code) == BPF_K && 741 insn->src_reg == BPF_PSEUDO_CALL && 742 insn->dst_reg == 0 && 743 insn->off == 0; 744 } 745 746 static bool is_call_insn(const struct bpf_insn *insn) 747 { 748 return insn->code == (BPF_JMP | BPF_CALL); 749 } 750 751 static bool insn_is_pseudo_func(struct bpf_insn *insn) 752 { 753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 754 } 755 756 static int 757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 758 const char *name, size_t sec_idx, const char *sec_name, 759 size_t sec_off, void *insn_data, size_t insn_data_sz) 760 { 761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 763 sec_name, name, sec_off, insn_data_sz); 764 return -EINVAL; 765 } 766 767 memset(prog, 0, sizeof(*prog)); 768 prog->obj = obj; 769 770 prog->sec_idx = sec_idx; 771 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 773 /* insns_cnt can later be increased by appending used subprograms */ 774 prog->insns_cnt = prog->sec_insn_cnt; 775 776 prog->type = BPF_PROG_TYPE_UNSPEC; 777 prog->fd = -1; 778 prog->exception_cb_idx = -1; 779 780 /* libbpf's convention for SEC("?abc...") is that it's just like 781 * SEC("abc...") but the corresponding bpf_program starts out with 782 * autoload set to false. 783 */ 784 if (sec_name[0] == '?') { 785 prog->autoload = false; 786 /* from now on forget there was ? in section name */ 787 sec_name++; 788 } else { 789 prog->autoload = true; 790 } 791 792 prog->autoattach = true; 793 794 /* inherit object's log_level */ 795 prog->log_level = obj->log_level; 796 797 prog->sec_name = strdup(sec_name); 798 if (!prog->sec_name) 799 goto errout; 800 801 prog->name = strdup(name); 802 if (!prog->name) 803 goto errout; 804 805 prog->insns = malloc(insn_data_sz); 806 if (!prog->insns) 807 goto errout; 808 memcpy(prog->insns, insn_data, insn_data_sz); 809 810 return 0; 811 errout: 812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 813 bpf_program__exit(prog); 814 return -ENOMEM; 815 } 816 817 static int 818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 819 const char *sec_name, int sec_idx) 820 { 821 Elf_Data *symbols = obj->efile.symbols; 822 struct bpf_program *prog, *progs; 823 void *data = sec_data->d_buf; 824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 825 int nr_progs, err, i; 826 const char *name; 827 Elf64_Sym *sym; 828 829 progs = obj->programs; 830 nr_progs = obj->nr_programs; 831 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 832 833 for (i = 0; i < nr_syms; i++) { 834 sym = elf_sym_by_idx(obj, i); 835 836 if (sym->st_shndx != sec_idx) 837 continue; 838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 839 continue; 840 841 prog_sz = sym->st_size; 842 sec_off = sym->st_value; 843 844 name = elf_sym_str(obj, sym->st_name); 845 if (!name) { 846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 847 sec_name, sec_off); 848 return -LIBBPF_ERRNO__FORMAT; 849 } 850 851 if (sec_off + prog_sz > sec_sz) { 852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 853 sec_name, sec_off); 854 return -LIBBPF_ERRNO__FORMAT; 855 } 856 857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 859 return -ENOTSUP; 860 } 861 862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 864 865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 866 if (!progs) { 867 /* 868 * In this case the original obj->programs 869 * is still valid, so don't need special treat for 870 * bpf_close_object(). 871 */ 872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 873 sec_name, name); 874 return -ENOMEM; 875 } 876 obj->programs = progs; 877 878 prog = &progs[nr_progs]; 879 880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 881 sec_off, data + sec_off, prog_sz); 882 if (err) 883 return err; 884 885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 886 prog->sym_global = true; 887 888 /* if function is a global/weak symbol, but has restricted 889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 890 * as static to enable more permissive BPF verification mode 891 * with more outside context available to BPF verifier 892 */ 893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 895 prog->mark_btf_static = true; 896 897 nr_progs++; 898 obj->nr_programs = nr_progs; 899 } 900 901 return 0; 902 } 903 904 static const struct btf_member * 905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (btf_member_bit_offset(t, i) == bit_offset) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 static const struct btf_member * 919 find_member_by_name(const struct btf *btf, const struct btf_type *t, 920 const char *name) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 935 const char *name, __u32 kind); 936 937 static int 938 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 939 const struct btf_type **type, __u32 *type_id, 940 const struct btf_type **vtype, __u32 *vtype_id, 941 const struct btf_member **data_member) 942 { 943 const struct btf_type *kern_type, *kern_vtype; 944 const struct btf_member *kern_data_member; 945 __s32 kern_vtype_id, kern_type_id; 946 __u32 i; 947 948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 949 if (kern_type_id < 0) { 950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 951 tname); 952 return kern_type_id; 953 } 954 kern_type = btf__type_by_id(btf, kern_type_id); 955 956 /* Find the corresponding "map_value" type that will be used 957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 959 * btf_vmlinux. 960 */ 961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 962 tname, BTF_KIND_STRUCT); 963 if (kern_vtype_id < 0) { 964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 965 STRUCT_OPS_VALUE_PREFIX, tname); 966 return kern_vtype_id; 967 } 968 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 969 970 /* Find "struct tcp_congestion_ops" from 971 * struct bpf_struct_ops_tcp_congestion_ops { 972 * [ ... ] 973 * struct tcp_congestion_ops data; 974 * } 975 */ 976 kern_data_member = btf_members(kern_vtype); 977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 978 if (kern_data_member->type == kern_type_id) 979 break; 980 } 981 if (i == btf_vlen(kern_vtype)) { 982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 983 tname, STRUCT_OPS_VALUE_PREFIX, tname); 984 return -EINVAL; 985 } 986 987 *type = kern_type; 988 *type_id = kern_type_id; 989 *vtype = kern_vtype; 990 *vtype_id = kern_vtype_id; 991 *data_member = kern_data_member; 992 993 return 0; 994 } 995 996 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 997 { 998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 999 } 1000 1001 /* Init the map's fields that depend on kern_btf */ 1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1003 const struct btf *btf, 1004 const struct btf *kern_btf) 1005 { 1006 const struct btf_member *member, *kern_member, *kern_data_member; 1007 const struct btf_type *type, *kern_type, *kern_vtype; 1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1009 struct bpf_struct_ops *st_ops; 1010 void *data, *kern_data; 1011 const char *tname; 1012 int err; 1013 1014 st_ops = map->st_ops; 1015 type = st_ops->type; 1016 tname = st_ops->tname; 1017 err = find_struct_ops_kern_types(kern_btf, tname, 1018 &kern_type, &kern_type_id, 1019 &kern_vtype, &kern_vtype_id, 1020 &kern_data_member); 1021 if (err) 1022 return err; 1023 1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1026 1027 map->def.value_size = kern_vtype->size; 1028 map->btf_vmlinux_value_type_id = kern_vtype_id; 1029 1030 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1031 if (!st_ops->kern_vdata) 1032 return -ENOMEM; 1033 1034 data = st_ops->data; 1035 kern_data_off = kern_data_member->offset / 8; 1036 kern_data = st_ops->kern_vdata + kern_data_off; 1037 1038 member = btf_members(type); 1039 for (i = 0; i < btf_vlen(type); i++, member++) { 1040 const struct btf_type *mtype, *kern_mtype; 1041 __u32 mtype_id, kern_mtype_id; 1042 void *mdata, *kern_mdata; 1043 __s64 msize, kern_msize; 1044 __u32 moff, kern_moff; 1045 __u32 kern_member_idx; 1046 const char *mname; 1047 1048 mname = btf__name_by_offset(btf, member->name_off); 1049 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1050 if (!kern_member) { 1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 kern_member_idx = kern_member - btf_members(kern_type); 1057 if (btf_member_bitfield_size(type, i) || 1058 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1060 map->name, mname); 1061 return -ENOTSUP; 1062 } 1063 1064 moff = member->offset / 8; 1065 kern_moff = kern_member->offset / 8; 1066 1067 mdata = data + moff; 1068 kern_mdata = kern_data + kern_moff; 1069 1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1072 &kern_mtype_id); 1073 if (BTF_INFO_KIND(mtype->info) != 1074 BTF_INFO_KIND(kern_mtype->info)) { 1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1076 map->name, mname, BTF_INFO_KIND(mtype->info), 1077 BTF_INFO_KIND(kern_mtype->info)); 1078 return -ENOTSUP; 1079 } 1080 1081 if (btf_is_ptr(mtype)) { 1082 struct bpf_program *prog; 1083 1084 prog = st_ops->progs[i]; 1085 if (!prog) 1086 continue; 1087 1088 kern_mtype = skip_mods_and_typedefs(kern_btf, 1089 kern_mtype->type, 1090 &kern_mtype_id); 1091 1092 /* mtype->type must be a func_proto which was 1093 * guaranteed in bpf_object__collect_st_ops_relos(), 1094 * so only check kern_mtype for func_proto here. 1095 */ 1096 if (!btf_is_func_proto(kern_mtype)) { 1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1098 map->name, mname); 1099 return -ENOTSUP; 1100 } 1101 1102 prog->attach_btf_id = kern_type_id; 1103 prog->expected_attach_type = kern_member_idx; 1104 1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1106 1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1108 map->name, mname, prog->name, moff, 1109 kern_moff); 1110 1111 continue; 1112 } 1113 1114 msize = btf__resolve_size(btf, mtype_id); 1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1118 map->name, mname, (ssize_t)msize, 1119 (ssize_t)kern_msize); 1120 return -ENOTSUP; 1121 } 1122 1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1124 map->name, mname, (unsigned int)msize, 1125 moff, kern_moff); 1126 memcpy(kern_mdata, mdata, msize); 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1133 { 1134 struct bpf_map *map; 1135 size_t i; 1136 int err; 1137 1138 for (i = 0; i < obj->nr_maps; i++) { 1139 map = &obj->maps[i]; 1140 1141 if (!bpf_map__is_struct_ops(map)) 1142 continue; 1143 1144 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1145 obj->btf_vmlinux); 1146 if (err) 1147 return err; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1154 int shndx, Elf_Data *data, __u32 map_flags) 1155 { 1156 const struct btf_type *type, *datasec; 1157 const struct btf_var_secinfo *vsi; 1158 struct bpf_struct_ops *st_ops; 1159 const char *tname, *var_name; 1160 __s32 type_id, datasec_id; 1161 const struct btf *btf; 1162 struct bpf_map *map; 1163 __u32 i; 1164 1165 if (shndx == -1) 1166 return 0; 1167 1168 btf = obj->btf; 1169 datasec_id = btf__find_by_name_kind(btf, sec_name, 1170 BTF_KIND_DATASEC); 1171 if (datasec_id < 0) { 1172 pr_warn("struct_ops init: DATASEC %s not found\n", 1173 sec_name); 1174 return -EINVAL; 1175 } 1176 1177 datasec = btf__type_by_id(btf, datasec_id); 1178 vsi = btf_var_secinfos(datasec); 1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1180 type = btf__type_by_id(obj->btf, vsi->type); 1181 var_name = btf__name_by_offset(obj->btf, type->name_off); 1182 1183 type_id = btf__resolve_type(obj->btf, vsi->type); 1184 if (type_id < 0) { 1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1186 vsi->type, sec_name); 1187 return -EINVAL; 1188 } 1189 1190 type = btf__type_by_id(obj->btf, type_id); 1191 tname = btf__name_by_offset(obj->btf, type->name_off); 1192 if (!tname[0]) { 1193 pr_warn("struct_ops init: anonymous type is not supported\n"); 1194 return -ENOTSUP; 1195 } 1196 if (!btf_is_struct(type)) { 1197 pr_warn("struct_ops init: %s is not a struct\n", tname); 1198 return -EINVAL; 1199 } 1200 1201 map = bpf_object__add_map(obj); 1202 if (IS_ERR(map)) 1203 return PTR_ERR(map); 1204 1205 map->sec_idx = shndx; 1206 map->sec_offset = vsi->offset; 1207 map->name = strdup(var_name); 1208 if (!map->name) 1209 return -ENOMEM; 1210 1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1212 map->def.key_size = sizeof(int); 1213 map->def.value_size = type->size; 1214 map->def.max_entries = 1; 1215 map->def.map_flags = map_flags; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, sec_name); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1249 { 1250 int err; 1251 1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1253 obj->efile.st_ops_data, 0); 1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1255 obj->efile.st_ops_link_shndx, 1256 obj->efile.st_ops_link_data, 1257 BPF_F_LINK); 1258 return err; 1259 } 1260 1261 static struct bpf_object *bpf_object__new(const char *path, 1262 const void *obj_buf, 1263 size_t obj_buf_sz, 1264 const char *obj_name) 1265 { 1266 struct bpf_object *obj; 1267 char *end; 1268 1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1270 if (!obj) { 1271 pr_warn("alloc memory failed for %s\n", path); 1272 return ERR_PTR(-ENOMEM); 1273 } 1274 1275 strcpy(obj->path, path); 1276 if (obj_name) { 1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1278 } else { 1279 /* Using basename() GNU version which doesn't modify arg. */ 1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1281 end = strchr(obj->name, '.'); 1282 if (end) 1283 *end = 0; 1284 } 1285 1286 obj->efile.fd = -1; 1287 /* 1288 * Caller of this function should also call 1289 * bpf_object__elf_finish() after data collection to return 1290 * obj_buf to user. If not, we should duplicate the buffer to 1291 * avoid user freeing them before elf finish. 1292 */ 1293 obj->efile.obj_buf = obj_buf; 1294 obj->efile.obj_buf_sz = obj_buf_sz; 1295 obj->efile.btf_maps_shndx = -1; 1296 obj->efile.st_ops_shndx = -1; 1297 obj->efile.st_ops_link_shndx = -1; 1298 obj->kconfig_map_idx = -1; 1299 1300 obj->kern_version = get_kernel_version(); 1301 obj->loaded = false; 1302 1303 return obj; 1304 } 1305 1306 static void bpf_object__elf_finish(struct bpf_object *obj) 1307 { 1308 if (!obj->efile.elf) 1309 return; 1310 1311 elf_end(obj->efile.elf); 1312 obj->efile.elf = NULL; 1313 obj->efile.symbols = NULL; 1314 obj->efile.st_ops_data = NULL; 1315 obj->efile.st_ops_link_data = NULL; 1316 1317 zfree(&obj->efile.secs); 1318 obj->efile.sec_cnt = 0; 1319 zclose(obj->efile.fd); 1320 obj->efile.obj_buf = NULL; 1321 obj->efile.obj_buf_sz = 0; 1322 } 1323 1324 static int bpf_object__elf_init(struct bpf_object *obj) 1325 { 1326 Elf64_Ehdr *ehdr; 1327 int err = 0; 1328 Elf *elf; 1329 1330 if (obj->efile.elf) { 1331 pr_warn("elf: init internal error\n"); 1332 return -LIBBPF_ERRNO__LIBELF; 1333 } 1334 1335 if (obj->efile.obj_buf_sz > 0) { 1336 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1338 } else { 1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1340 if (obj->efile.fd < 0) { 1341 char errmsg[STRERR_BUFSIZE], *cp; 1342 1343 err = -errno; 1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1346 return err; 1347 } 1348 1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1350 } 1351 1352 if (!elf) { 1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__LIBELF; 1355 goto errout; 1356 } 1357 1358 obj->efile.elf = elf; 1359 1360 if (elf_kind(elf) != ELF_K_ELF) { 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1363 goto errout; 1364 } 1365 1366 if (gelf_getclass(elf) != ELFCLASS64) { 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1369 goto errout; 1370 } 1371 1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1373 if (!obj->efile.ehdr) { 1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1380 pr_warn("elf: failed to get section names section index for %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1388 pr_warn("elf: failed to get section names strings from %s: %s\n", 1389 obj->path, elf_errmsg(-1)); 1390 err = -LIBBPF_ERRNO__FORMAT; 1391 goto errout; 1392 } 1393 1394 /* Old LLVM set e_machine to EM_NONE */ 1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1397 err = -LIBBPF_ERRNO__FORMAT; 1398 goto errout; 1399 } 1400 1401 return 0; 1402 errout: 1403 bpf_object__elf_finish(obj); 1404 return err; 1405 } 1406 1407 static int bpf_object__check_endianness(struct bpf_object *obj) 1408 { 1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1411 return 0; 1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1414 return 0; 1415 #else 1416 # error "Unrecognized __BYTE_ORDER__" 1417 #endif 1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1419 return -LIBBPF_ERRNO__ENDIAN; 1420 } 1421 1422 static int 1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 if (!data) { 1426 pr_warn("invalid license section in %s\n", obj->path); 1427 return -LIBBPF_ERRNO__FORMAT; 1428 } 1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1430 * go over allowed ELF data section buffer 1431 */ 1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1433 pr_debug("license of %s is %s\n", obj->path, obj->license); 1434 return 0; 1435 } 1436 1437 static int 1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1439 { 1440 __u32 kver; 1441 1442 if (!data || size != sizeof(kver)) { 1443 pr_warn("invalid kver section in %s\n", obj->path); 1444 return -LIBBPF_ERRNO__FORMAT; 1445 } 1446 memcpy(&kver, data, sizeof(kver)); 1447 obj->kern_version = kver; 1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1449 return 0; 1450 } 1451 1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1453 { 1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1455 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1456 return true; 1457 return false; 1458 } 1459 1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1461 { 1462 Elf_Data *data; 1463 Elf_Scn *scn; 1464 1465 if (!name) 1466 return -EINVAL; 1467 1468 scn = elf_sec_by_name(obj, name); 1469 data = elf_sec_data(obj, scn); 1470 if (data) { 1471 *size = data->d_size; 1472 return 0; /* found it */ 1473 } 1474 1475 return -ENOENT; 1476 } 1477 1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1479 { 1480 Elf_Data *symbols = obj->efile.symbols; 1481 const char *sname; 1482 size_t si; 1483 1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1486 1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1488 continue; 1489 1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1492 continue; 1493 1494 sname = elf_sym_str(obj, sym->st_name); 1495 if (!sname) { 1496 pr_warn("failed to get sym name string for var %s\n", name); 1497 return ERR_PTR(-EIO); 1498 } 1499 if (strcmp(name, sname) == 0) 1500 return sym; 1501 } 1502 1503 return ERR_PTR(-ENOENT); 1504 } 1505 1506 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1507 { 1508 struct bpf_map *map; 1509 int err; 1510 1511 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1512 sizeof(*obj->maps), obj->nr_maps + 1); 1513 if (err) 1514 return ERR_PTR(err); 1515 1516 map = &obj->maps[obj->nr_maps++]; 1517 map->obj = obj; 1518 map->fd = -1; 1519 map->inner_map_fd = -1; 1520 map->autocreate = true; 1521 1522 return map; 1523 } 1524 1525 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1526 { 1527 const long page_sz = sysconf(_SC_PAGE_SIZE); 1528 size_t map_sz; 1529 1530 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1531 map_sz = roundup(map_sz, page_sz); 1532 return map_sz; 1533 } 1534 1535 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1536 { 1537 void *mmaped; 1538 1539 if (!map->mmaped) 1540 return -EINVAL; 1541 1542 if (old_sz == new_sz) 1543 return 0; 1544 1545 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1546 if (mmaped == MAP_FAILED) 1547 return -errno; 1548 1549 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1550 munmap(map->mmaped, old_sz); 1551 map->mmaped = mmaped; 1552 return 0; 1553 } 1554 1555 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1556 { 1557 char map_name[BPF_OBJ_NAME_LEN], *p; 1558 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1559 1560 /* This is one of the more confusing parts of libbpf for various 1561 * reasons, some of which are historical. The original idea for naming 1562 * internal names was to include as much of BPF object name prefix as 1563 * possible, so that it can be distinguished from similar internal 1564 * maps of a different BPF object. 1565 * As an example, let's say we have bpf_object named 'my_object_name' 1566 * and internal map corresponding to '.rodata' ELF section. The final 1567 * map name advertised to user and to the kernel will be 1568 * 'my_objec.rodata', taking first 8 characters of object name and 1569 * entire 7 characters of '.rodata'. 1570 * Somewhat confusingly, if internal map ELF section name is shorter 1571 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1572 * for the suffix, even though we only have 4 actual characters, and 1573 * resulting map will be called 'my_objec.bss', not even using all 15 1574 * characters allowed by the kernel. Oh well, at least the truncated 1575 * object name is somewhat consistent in this case. But if the map 1576 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1577 * (8 chars) and thus will be left with only first 7 characters of the 1578 * object name ('my_obje'). Happy guessing, user, that the final map 1579 * name will be "my_obje.kconfig". 1580 * Now, with libbpf starting to support arbitrarily named .rodata.* 1581 * and .data.* data sections, it's possible that ELF section name is 1582 * longer than allowed 15 chars, so we now need to be careful to take 1583 * only up to 15 first characters of ELF name, taking no BPF object 1584 * name characters at all. So '.rodata.abracadabra' will result in 1585 * '.rodata.abracad' kernel and user-visible name. 1586 * We need to keep this convoluted logic intact for .data, .bss and 1587 * .rodata maps, but for new custom .data.custom and .rodata.custom 1588 * maps we use their ELF names as is, not prepending bpf_object name 1589 * in front. We still need to truncate them to 15 characters for the 1590 * kernel. Full name can be recovered for such maps by using DATASEC 1591 * BTF type associated with such map's value type, though. 1592 */ 1593 if (sfx_len >= BPF_OBJ_NAME_LEN) 1594 sfx_len = BPF_OBJ_NAME_LEN - 1; 1595 1596 /* if there are two or more dots in map name, it's a custom dot map */ 1597 if (strchr(real_name + 1, '.') != NULL) 1598 pfx_len = 0; 1599 else 1600 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1601 1602 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1603 sfx_len, real_name); 1604 1605 /* sanitise map name to characters allowed by kernel */ 1606 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1607 if (!isalnum(*p) && *p != '_' && *p != '.') 1608 *p = '_'; 1609 1610 return strdup(map_name); 1611 } 1612 1613 static int 1614 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1615 1616 /* Internal BPF map is mmap()'able only if at least one of corresponding 1617 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1618 * variable and it's not marked as __hidden (which turns it into, effectively, 1619 * a STATIC variable). 1620 */ 1621 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1622 { 1623 const struct btf_type *t, *vt; 1624 struct btf_var_secinfo *vsi; 1625 int i, n; 1626 1627 if (!map->btf_value_type_id) 1628 return false; 1629 1630 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1631 if (!btf_is_datasec(t)) 1632 return false; 1633 1634 vsi = btf_var_secinfos(t); 1635 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1636 vt = btf__type_by_id(obj->btf, vsi->type); 1637 if (!btf_is_var(vt)) 1638 continue; 1639 1640 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1641 return true; 1642 } 1643 1644 return false; 1645 } 1646 1647 static int 1648 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1649 const char *real_name, int sec_idx, void *data, size_t data_sz) 1650 { 1651 struct bpf_map_def *def; 1652 struct bpf_map *map; 1653 size_t mmap_sz; 1654 int err; 1655 1656 map = bpf_object__add_map(obj); 1657 if (IS_ERR(map)) 1658 return PTR_ERR(map); 1659 1660 map->libbpf_type = type; 1661 map->sec_idx = sec_idx; 1662 map->sec_offset = 0; 1663 map->real_name = strdup(real_name); 1664 map->name = internal_map_name(obj, real_name); 1665 if (!map->real_name || !map->name) { 1666 zfree(&map->real_name); 1667 zfree(&map->name); 1668 return -ENOMEM; 1669 } 1670 1671 def = &map->def; 1672 def->type = BPF_MAP_TYPE_ARRAY; 1673 def->key_size = sizeof(int); 1674 def->value_size = data_sz; 1675 def->max_entries = 1; 1676 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1677 ? BPF_F_RDONLY_PROG : 0; 1678 1679 /* failures are fine because of maps like .rodata.str1.1 */ 1680 (void) map_fill_btf_type_info(obj, map); 1681 1682 if (map_is_mmapable(obj, map)) 1683 def->map_flags |= BPF_F_MMAPABLE; 1684 1685 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1686 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1687 1688 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1689 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1690 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1691 if (map->mmaped == MAP_FAILED) { 1692 err = -errno; 1693 map->mmaped = NULL; 1694 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1695 map->name, err); 1696 zfree(&map->real_name); 1697 zfree(&map->name); 1698 return err; 1699 } 1700 1701 if (data) 1702 memcpy(map->mmaped, data, data_sz); 1703 1704 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1705 return 0; 1706 } 1707 1708 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1709 { 1710 struct elf_sec_desc *sec_desc; 1711 const char *sec_name; 1712 int err = 0, sec_idx; 1713 1714 /* 1715 * Populate obj->maps with libbpf internal maps. 1716 */ 1717 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1718 sec_desc = &obj->efile.secs[sec_idx]; 1719 1720 /* Skip recognized sections with size 0. */ 1721 if (!sec_desc->data || sec_desc->data->d_size == 0) 1722 continue; 1723 1724 switch (sec_desc->sec_type) { 1725 case SEC_DATA: 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1728 sec_name, sec_idx, 1729 sec_desc->data->d_buf, 1730 sec_desc->data->d_size); 1731 break; 1732 case SEC_RODATA: 1733 obj->has_rodata = true; 1734 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1735 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1736 sec_name, sec_idx, 1737 sec_desc->data->d_buf, 1738 sec_desc->data->d_size); 1739 break; 1740 case SEC_BSS: 1741 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1742 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1743 sec_name, sec_idx, 1744 NULL, 1745 sec_desc->data->d_size); 1746 break; 1747 default: 1748 /* skip */ 1749 break; 1750 } 1751 if (err) 1752 return err; 1753 } 1754 return 0; 1755 } 1756 1757 1758 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1759 const void *name) 1760 { 1761 int i; 1762 1763 for (i = 0; i < obj->nr_extern; i++) { 1764 if (strcmp(obj->externs[i].name, name) == 0) 1765 return &obj->externs[i]; 1766 } 1767 return NULL; 1768 } 1769 1770 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1771 char value) 1772 { 1773 switch (ext->kcfg.type) { 1774 case KCFG_BOOL: 1775 if (value == 'm') { 1776 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1777 ext->name, value); 1778 return -EINVAL; 1779 } 1780 *(bool *)ext_val = value == 'y' ? true : false; 1781 break; 1782 case KCFG_TRISTATE: 1783 if (value == 'y') 1784 *(enum libbpf_tristate *)ext_val = TRI_YES; 1785 else if (value == 'm') 1786 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1787 else /* value == 'n' */ 1788 *(enum libbpf_tristate *)ext_val = TRI_NO; 1789 break; 1790 case KCFG_CHAR: 1791 *(char *)ext_val = value; 1792 break; 1793 case KCFG_UNKNOWN: 1794 case KCFG_INT: 1795 case KCFG_CHAR_ARR: 1796 default: 1797 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1798 ext->name, value); 1799 return -EINVAL; 1800 } 1801 ext->is_set = true; 1802 return 0; 1803 } 1804 1805 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1806 const char *value) 1807 { 1808 size_t len; 1809 1810 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1811 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1812 ext->name, value); 1813 return -EINVAL; 1814 } 1815 1816 len = strlen(value); 1817 if (value[len - 1] != '"') { 1818 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1819 ext->name, value); 1820 return -EINVAL; 1821 } 1822 1823 /* strip quotes */ 1824 len -= 2; 1825 if (len >= ext->kcfg.sz) { 1826 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1827 ext->name, value, len, ext->kcfg.sz - 1); 1828 len = ext->kcfg.sz - 1; 1829 } 1830 memcpy(ext_val, value + 1, len); 1831 ext_val[len] = '\0'; 1832 ext->is_set = true; 1833 return 0; 1834 } 1835 1836 static int parse_u64(const char *value, __u64 *res) 1837 { 1838 char *value_end; 1839 int err; 1840 1841 errno = 0; 1842 *res = strtoull(value, &value_end, 0); 1843 if (errno) { 1844 err = -errno; 1845 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1846 return err; 1847 } 1848 if (*value_end) { 1849 pr_warn("failed to parse '%s' as integer completely\n", value); 1850 return -EINVAL; 1851 } 1852 return 0; 1853 } 1854 1855 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1856 { 1857 int bit_sz = ext->kcfg.sz * 8; 1858 1859 if (ext->kcfg.sz == 8) 1860 return true; 1861 1862 /* Validate that value stored in u64 fits in integer of `ext->sz` 1863 * bytes size without any loss of information. If the target integer 1864 * is signed, we rely on the following limits of integer type of 1865 * Y bits and subsequent transformation: 1866 * 1867 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1868 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1869 * 0 <= X + 2^(Y-1) < 2^Y 1870 * 1871 * For unsigned target integer, check that all the (64 - Y) bits are 1872 * zero. 1873 */ 1874 if (ext->kcfg.is_signed) 1875 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1876 else 1877 return (v >> bit_sz) == 0; 1878 } 1879 1880 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1881 __u64 value) 1882 { 1883 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1884 ext->kcfg.type != KCFG_BOOL) { 1885 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1886 ext->name, (unsigned long long)value); 1887 return -EINVAL; 1888 } 1889 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1890 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1891 ext->name, (unsigned long long)value); 1892 return -EINVAL; 1893 1894 } 1895 if (!is_kcfg_value_in_range(ext, value)) { 1896 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1897 ext->name, (unsigned long long)value, ext->kcfg.sz); 1898 return -ERANGE; 1899 } 1900 switch (ext->kcfg.sz) { 1901 case 1: 1902 *(__u8 *)ext_val = value; 1903 break; 1904 case 2: 1905 *(__u16 *)ext_val = value; 1906 break; 1907 case 4: 1908 *(__u32 *)ext_val = value; 1909 break; 1910 case 8: 1911 *(__u64 *)ext_val = value; 1912 break; 1913 default: 1914 return -EINVAL; 1915 } 1916 ext->is_set = true; 1917 return 0; 1918 } 1919 1920 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1921 char *buf, void *data) 1922 { 1923 struct extern_desc *ext; 1924 char *sep, *value; 1925 int len, err = 0; 1926 void *ext_val; 1927 __u64 num; 1928 1929 if (!str_has_pfx(buf, "CONFIG_")) 1930 return 0; 1931 1932 sep = strchr(buf, '='); 1933 if (!sep) { 1934 pr_warn("failed to parse '%s': no separator\n", buf); 1935 return -EINVAL; 1936 } 1937 1938 /* Trim ending '\n' */ 1939 len = strlen(buf); 1940 if (buf[len - 1] == '\n') 1941 buf[len - 1] = '\0'; 1942 /* Split on '=' and ensure that a value is present. */ 1943 *sep = '\0'; 1944 if (!sep[1]) { 1945 *sep = '='; 1946 pr_warn("failed to parse '%s': no value\n", buf); 1947 return -EINVAL; 1948 } 1949 1950 ext = find_extern_by_name(obj, buf); 1951 if (!ext || ext->is_set) 1952 return 0; 1953 1954 ext_val = data + ext->kcfg.data_off; 1955 value = sep + 1; 1956 1957 switch (*value) { 1958 case 'y': case 'n': case 'm': 1959 err = set_kcfg_value_tri(ext, ext_val, *value); 1960 break; 1961 case '"': 1962 err = set_kcfg_value_str(ext, ext_val, value); 1963 break; 1964 default: 1965 /* assume integer */ 1966 err = parse_u64(value, &num); 1967 if (err) { 1968 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1969 return err; 1970 } 1971 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1972 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1973 return -EINVAL; 1974 } 1975 err = set_kcfg_value_num(ext, ext_val, num); 1976 break; 1977 } 1978 if (err) 1979 return err; 1980 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1981 return 0; 1982 } 1983 1984 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1985 { 1986 char buf[PATH_MAX]; 1987 struct utsname uts; 1988 int len, err = 0; 1989 gzFile file; 1990 1991 uname(&uts); 1992 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1993 if (len < 0) 1994 return -EINVAL; 1995 else if (len >= PATH_MAX) 1996 return -ENAMETOOLONG; 1997 1998 /* gzopen also accepts uncompressed files. */ 1999 file = gzopen(buf, "re"); 2000 if (!file) 2001 file = gzopen("/proc/config.gz", "re"); 2002 2003 if (!file) { 2004 pr_warn("failed to open system Kconfig\n"); 2005 return -ENOENT; 2006 } 2007 2008 while (gzgets(file, buf, sizeof(buf))) { 2009 err = bpf_object__process_kconfig_line(obj, buf, data); 2010 if (err) { 2011 pr_warn("error parsing system Kconfig line '%s': %d\n", 2012 buf, err); 2013 goto out; 2014 } 2015 } 2016 2017 out: 2018 gzclose(file); 2019 return err; 2020 } 2021 2022 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2023 const char *config, void *data) 2024 { 2025 char buf[PATH_MAX]; 2026 int err = 0; 2027 FILE *file; 2028 2029 file = fmemopen((void *)config, strlen(config), "r"); 2030 if (!file) { 2031 err = -errno; 2032 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2033 return err; 2034 } 2035 2036 while (fgets(buf, sizeof(buf), file)) { 2037 err = bpf_object__process_kconfig_line(obj, buf, data); 2038 if (err) { 2039 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2040 buf, err); 2041 break; 2042 } 2043 } 2044 2045 fclose(file); 2046 return err; 2047 } 2048 2049 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2050 { 2051 struct extern_desc *last_ext = NULL, *ext; 2052 size_t map_sz; 2053 int i, err; 2054 2055 for (i = 0; i < obj->nr_extern; i++) { 2056 ext = &obj->externs[i]; 2057 if (ext->type == EXT_KCFG) 2058 last_ext = ext; 2059 } 2060 2061 if (!last_ext) 2062 return 0; 2063 2064 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2065 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2066 ".kconfig", obj->efile.symbols_shndx, 2067 NULL, map_sz); 2068 if (err) 2069 return err; 2070 2071 obj->kconfig_map_idx = obj->nr_maps - 1; 2072 2073 return 0; 2074 } 2075 2076 const struct btf_type * 2077 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2078 { 2079 const struct btf_type *t = btf__type_by_id(btf, id); 2080 2081 if (res_id) 2082 *res_id = id; 2083 2084 while (btf_is_mod(t) || btf_is_typedef(t)) { 2085 if (res_id) 2086 *res_id = t->type; 2087 t = btf__type_by_id(btf, t->type); 2088 } 2089 2090 return t; 2091 } 2092 2093 static const struct btf_type * 2094 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2095 { 2096 const struct btf_type *t; 2097 2098 t = skip_mods_and_typedefs(btf, id, NULL); 2099 if (!btf_is_ptr(t)) 2100 return NULL; 2101 2102 t = skip_mods_and_typedefs(btf, t->type, res_id); 2103 2104 return btf_is_func_proto(t) ? t : NULL; 2105 } 2106 2107 static const char *__btf_kind_str(__u16 kind) 2108 { 2109 switch (kind) { 2110 case BTF_KIND_UNKN: return "void"; 2111 case BTF_KIND_INT: return "int"; 2112 case BTF_KIND_PTR: return "ptr"; 2113 case BTF_KIND_ARRAY: return "array"; 2114 case BTF_KIND_STRUCT: return "struct"; 2115 case BTF_KIND_UNION: return "union"; 2116 case BTF_KIND_ENUM: return "enum"; 2117 case BTF_KIND_FWD: return "fwd"; 2118 case BTF_KIND_TYPEDEF: return "typedef"; 2119 case BTF_KIND_VOLATILE: return "volatile"; 2120 case BTF_KIND_CONST: return "const"; 2121 case BTF_KIND_RESTRICT: return "restrict"; 2122 case BTF_KIND_FUNC: return "func"; 2123 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2124 case BTF_KIND_VAR: return "var"; 2125 case BTF_KIND_DATASEC: return "datasec"; 2126 case BTF_KIND_FLOAT: return "float"; 2127 case BTF_KIND_DECL_TAG: return "decl_tag"; 2128 case BTF_KIND_TYPE_TAG: return "type_tag"; 2129 case BTF_KIND_ENUM64: return "enum64"; 2130 default: return "unknown"; 2131 } 2132 } 2133 2134 const char *btf_kind_str(const struct btf_type *t) 2135 { 2136 return __btf_kind_str(btf_kind(t)); 2137 } 2138 2139 /* 2140 * Fetch integer attribute of BTF map definition. Such attributes are 2141 * represented using a pointer to an array, in which dimensionality of array 2142 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2143 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2144 * type definition, while using only sizeof(void *) space in ELF data section. 2145 */ 2146 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2147 const struct btf_member *m, __u32 *res) 2148 { 2149 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2150 const char *name = btf__name_by_offset(btf, m->name_off); 2151 const struct btf_array *arr_info; 2152 const struct btf_type *arr_t; 2153 2154 if (!btf_is_ptr(t)) { 2155 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2156 map_name, name, btf_kind_str(t)); 2157 return false; 2158 } 2159 2160 arr_t = btf__type_by_id(btf, t->type); 2161 if (!arr_t) { 2162 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2163 map_name, name, t->type); 2164 return false; 2165 } 2166 if (!btf_is_array(arr_t)) { 2167 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2168 map_name, name, btf_kind_str(arr_t)); 2169 return false; 2170 } 2171 arr_info = btf_array(arr_t); 2172 *res = arr_info->nelems; 2173 return true; 2174 } 2175 2176 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2177 { 2178 int len; 2179 2180 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2181 if (len < 0) 2182 return -EINVAL; 2183 if (len >= buf_sz) 2184 return -ENAMETOOLONG; 2185 2186 return 0; 2187 } 2188 2189 static int build_map_pin_path(struct bpf_map *map, const char *path) 2190 { 2191 char buf[PATH_MAX]; 2192 int err; 2193 2194 if (!path) 2195 path = "/sys/fs/bpf"; 2196 2197 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2198 if (err) 2199 return err; 2200 2201 return bpf_map__set_pin_path(map, buf); 2202 } 2203 2204 /* should match definition in bpf_helpers.h */ 2205 enum libbpf_pin_type { 2206 LIBBPF_PIN_NONE, 2207 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2208 LIBBPF_PIN_BY_NAME, 2209 }; 2210 2211 int parse_btf_map_def(const char *map_name, struct btf *btf, 2212 const struct btf_type *def_t, bool strict, 2213 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2214 { 2215 const struct btf_type *t; 2216 const struct btf_member *m; 2217 bool is_inner = inner_def == NULL; 2218 int vlen, i; 2219 2220 vlen = btf_vlen(def_t); 2221 m = btf_members(def_t); 2222 for (i = 0; i < vlen; i++, m++) { 2223 const char *name = btf__name_by_offset(btf, m->name_off); 2224 2225 if (!name) { 2226 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2227 return -EINVAL; 2228 } 2229 if (strcmp(name, "type") == 0) { 2230 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2231 return -EINVAL; 2232 map_def->parts |= MAP_DEF_MAP_TYPE; 2233 } else if (strcmp(name, "max_entries") == 0) { 2234 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2235 return -EINVAL; 2236 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2237 } else if (strcmp(name, "map_flags") == 0) { 2238 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2239 return -EINVAL; 2240 map_def->parts |= MAP_DEF_MAP_FLAGS; 2241 } else if (strcmp(name, "numa_node") == 0) { 2242 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2243 return -EINVAL; 2244 map_def->parts |= MAP_DEF_NUMA_NODE; 2245 } else if (strcmp(name, "key_size") == 0) { 2246 __u32 sz; 2247 2248 if (!get_map_field_int(map_name, btf, m, &sz)) 2249 return -EINVAL; 2250 if (map_def->key_size && map_def->key_size != sz) { 2251 pr_warn("map '%s': conflicting key size %u != %u.\n", 2252 map_name, map_def->key_size, sz); 2253 return -EINVAL; 2254 } 2255 map_def->key_size = sz; 2256 map_def->parts |= MAP_DEF_KEY_SIZE; 2257 } else if (strcmp(name, "key") == 0) { 2258 __s64 sz; 2259 2260 t = btf__type_by_id(btf, m->type); 2261 if (!t) { 2262 pr_warn("map '%s': key type [%d] not found.\n", 2263 map_name, m->type); 2264 return -EINVAL; 2265 } 2266 if (!btf_is_ptr(t)) { 2267 pr_warn("map '%s': key spec is not PTR: %s.\n", 2268 map_name, btf_kind_str(t)); 2269 return -EINVAL; 2270 } 2271 sz = btf__resolve_size(btf, t->type); 2272 if (sz < 0) { 2273 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2274 map_name, t->type, (ssize_t)sz); 2275 return sz; 2276 } 2277 if (map_def->key_size && map_def->key_size != sz) { 2278 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2279 map_name, map_def->key_size, (ssize_t)sz); 2280 return -EINVAL; 2281 } 2282 map_def->key_size = sz; 2283 map_def->key_type_id = t->type; 2284 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2285 } else if (strcmp(name, "value_size") == 0) { 2286 __u32 sz; 2287 2288 if (!get_map_field_int(map_name, btf, m, &sz)) 2289 return -EINVAL; 2290 if (map_def->value_size && map_def->value_size != sz) { 2291 pr_warn("map '%s': conflicting value size %u != %u.\n", 2292 map_name, map_def->value_size, sz); 2293 return -EINVAL; 2294 } 2295 map_def->value_size = sz; 2296 map_def->parts |= MAP_DEF_VALUE_SIZE; 2297 } else if (strcmp(name, "value") == 0) { 2298 __s64 sz; 2299 2300 t = btf__type_by_id(btf, m->type); 2301 if (!t) { 2302 pr_warn("map '%s': value type [%d] not found.\n", 2303 map_name, m->type); 2304 return -EINVAL; 2305 } 2306 if (!btf_is_ptr(t)) { 2307 pr_warn("map '%s': value spec is not PTR: %s.\n", 2308 map_name, btf_kind_str(t)); 2309 return -EINVAL; 2310 } 2311 sz = btf__resolve_size(btf, t->type); 2312 if (sz < 0) { 2313 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2314 map_name, t->type, (ssize_t)sz); 2315 return sz; 2316 } 2317 if (map_def->value_size && map_def->value_size != sz) { 2318 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2319 map_name, map_def->value_size, (ssize_t)sz); 2320 return -EINVAL; 2321 } 2322 map_def->value_size = sz; 2323 map_def->value_type_id = t->type; 2324 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2325 } 2326 else if (strcmp(name, "values") == 0) { 2327 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2328 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2329 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2330 char inner_map_name[128]; 2331 int err; 2332 2333 if (is_inner) { 2334 pr_warn("map '%s': multi-level inner maps not supported.\n", 2335 map_name); 2336 return -ENOTSUP; 2337 } 2338 if (i != vlen - 1) { 2339 pr_warn("map '%s': '%s' member should be last.\n", 2340 map_name, name); 2341 return -EINVAL; 2342 } 2343 if (!is_map_in_map && !is_prog_array) { 2344 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2345 map_name); 2346 return -ENOTSUP; 2347 } 2348 if (map_def->value_size && map_def->value_size != 4) { 2349 pr_warn("map '%s': conflicting value size %u != 4.\n", 2350 map_name, map_def->value_size); 2351 return -EINVAL; 2352 } 2353 map_def->value_size = 4; 2354 t = btf__type_by_id(btf, m->type); 2355 if (!t) { 2356 pr_warn("map '%s': %s type [%d] not found.\n", 2357 map_name, desc, m->type); 2358 return -EINVAL; 2359 } 2360 if (!btf_is_array(t) || btf_array(t)->nelems) { 2361 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2362 map_name, desc); 2363 return -EINVAL; 2364 } 2365 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2366 if (!btf_is_ptr(t)) { 2367 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2368 map_name, desc, btf_kind_str(t)); 2369 return -EINVAL; 2370 } 2371 t = skip_mods_and_typedefs(btf, t->type, NULL); 2372 if (is_prog_array) { 2373 if (!btf_is_func_proto(t)) { 2374 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2375 map_name, btf_kind_str(t)); 2376 return -EINVAL; 2377 } 2378 continue; 2379 } 2380 if (!btf_is_struct(t)) { 2381 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2382 map_name, btf_kind_str(t)); 2383 return -EINVAL; 2384 } 2385 2386 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2387 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2388 if (err) 2389 return err; 2390 2391 map_def->parts |= MAP_DEF_INNER_MAP; 2392 } else if (strcmp(name, "pinning") == 0) { 2393 __u32 val; 2394 2395 if (is_inner) { 2396 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2397 return -EINVAL; 2398 } 2399 if (!get_map_field_int(map_name, btf, m, &val)) 2400 return -EINVAL; 2401 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2402 pr_warn("map '%s': invalid pinning value %u.\n", 2403 map_name, val); 2404 return -EINVAL; 2405 } 2406 map_def->pinning = val; 2407 map_def->parts |= MAP_DEF_PINNING; 2408 } else if (strcmp(name, "map_extra") == 0) { 2409 __u32 map_extra; 2410 2411 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2412 return -EINVAL; 2413 map_def->map_extra = map_extra; 2414 map_def->parts |= MAP_DEF_MAP_EXTRA; 2415 } else { 2416 if (strict) { 2417 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2418 return -ENOTSUP; 2419 } 2420 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2421 } 2422 } 2423 2424 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2425 pr_warn("map '%s': map type isn't specified.\n", map_name); 2426 return -EINVAL; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static size_t adjust_ringbuf_sz(size_t sz) 2433 { 2434 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2435 __u32 mul; 2436 2437 /* if user forgot to set any size, make sure they see error */ 2438 if (sz == 0) 2439 return 0; 2440 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2441 * a power-of-2 multiple of kernel's page size. If user diligently 2442 * satisified these conditions, pass the size through. 2443 */ 2444 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2445 return sz; 2446 2447 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2448 * user-set size to satisfy both user size request and kernel 2449 * requirements and substitute correct max_entries for map creation. 2450 */ 2451 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2452 if (mul * page_sz > sz) 2453 return mul * page_sz; 2454 } 2455 2456 /* if it's impossible to satisfy the conditions (i.e., user size is 2457 * very close to UINT_MAX but is not a power-of-2 multiple of 2458 * page_size) then just return original size and let kernel reject it 2459 */ 2460 return sz; 2461 } 2462 2463 static bool map_is_ringbuf(const struct bpf_map *map) 2464 { 2465 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2466 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2467 } 2468 2469 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2470 { 2471 map->def.type = def->map_type; 2472 map->def.key_size = def->key_size; 2473 map->def.value_size = def->value_size; 2474 map->def.max_entries = def->max_entries; 2475 map->def.map_flags = def->map_flags; 2476 map->map_extra = def->map_extra; 2477 2478 map->numa_node = def->numa_node; 2479 map->btf_key_type_id = def->key_type_id; 2480 map->btf_value_type_id = def->value_type_id; 2481 2482 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2483 if (map_is_ringbuf(map)) 2484 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2485 2486 if (def->parts & MAP_DEF_MAP_TYPE) 2487 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2488 2489 if (def->parts & MAP_DEF_KEY_TYPE) 2490 pr_debug("map '%s': found key [%u], sz = %u.\n", 2491 map->name, def->key_type_id, def->key_size); 2492 else if (def->parts & MAP_DEF_KEY_SIZE) 2493 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2494 2495 if (def->parts & MAP_DEF_VALUE_TYPE) 2496 pr_debug("map '%s': found value [%u], sz = %u.\n", 2497 map->name, def->value_type_id, def->value_size); 2498 else if (def->parts & MAP_DEF_VALUE_SIZE) 2499 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2500 2501 if (def->parts & MAP_DEF_MAX_ENTRIES) 2502 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2503 if (def->parts & MAP_DEF_MAP_FLAGS) 2504 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2505 if (def->parts & MAP_DEF_MAP_EXTRA) 2506 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2507 (unsigned long long)def->map_extra); 2508 if (def->parts & MAP_DEF_PINNING) 2509 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2510 if (def->parts & MAP_DEF_NUMA_NODE) 2511 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2512 2513 if (def->parts & MAP_DEF_INNER_MAP) 2514 pr_debug("map '%s': found inner map definition.\n", map->name); 2515 } 2516 2517 static const char *btf_var_linkage_str(__u32 linkage) 2518 { 2519 switch (linkage) { 2520 case BTF_VAR_STATIC: return "static"; 2521 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2522 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2523 default: return "unknown"; 2524 } 2525 } 2526 2527 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2528 const struct btf_type *sec, 2529 int var_idx, int sec_idx, 2530 const Elf_Data *data, bool strict, 2531 const char *pin_root_path) 2532 { 2533 struct btf_map_def map_def = {}, inner_def = {}; 2534 const struct btf_type *var, *def; 2535 const struct btf_var_secinfo *vi; 2536 const struct btf_var *var_extra; 2537 const char *map_name; 2538 struct bpf_map *map; 2539 int err; 2540 2541 vi = btf_var_secinfos(sec) + var_idx; 2542 var = btf__type_by_id(obj->btf, vi->type); 2543 var_extra = btf_var(var); 2544 map_name = btf__name_by_offset(obj->btf, var->name_off); 2545 2546 if (map_name == NULL || map_name[0] == '\0') { 2547 pr_warn("map #%d: empty name.\n", var_idx); 2548 return -EINVAL; 2549 } 2550 if ((__u64)vi->offset + vi->size > data->d_size) { 2551 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2552 return -EINVAL; 2553 } 2554 if (!btf_is_var(var)) { 2555 pr_warn("map '%s': unexpected var kind %s.\n", 2556 map_name, btf_kind_str(var)); 2557 return -EINVAL; 2558 } 2559 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2560 pr_warn("map '%s': unsupported map linkage %s.\n", 2561 map_name, btf_var_linkage_str(var_extra->linkage)); 2562 return -EOPNOTSUPP; 2563 } 2564 2565 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2566 if (!btf_is_struct(def)) { 2567 pr_warn("map '%s': unexpected def kind %s.\n", 2568 map_name, btf_kind_str(var)); 2569 return -EINVAL; 2570 } 2571 if (def->size > vi->size) { 2572 pr_warn("map '%s': invalid def size.\n", map_name); 2573 return -EINVAL; 2574 } 2575 2576 map = bpf_object__add_map(obj); 2577 if (IS_ERR(map)) 2578 return PTR_ERR(map); 2579 map->name = strdup(map_name); 2580 if (!map->name) { 2581 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2582 return -ENOMEM; 2583 } 2584 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2585 map->def.type = BPF_MAP_TYPE_UNSPEC; 2586 map->sec_idx = sec_idx; 2587 map->sec_offset = vi->offset; 2588 map->btf_var_idx = var_idx; 2589 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2590 map_name, map->sec_idx, map->sec_offset); 2591 2592 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2593 if (err) 2594 return err; 2595 2596 fill_map_from_def(map, &map_def); 2597 2598 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2599 err = build_map_pin_path(map, pin_root_path); 2600 if (err) { 2601 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2602 return err; 2603 } 2604 } 2605 2606 if (map_def.parts & MAP_DEF_INNER_MAP) { 2607 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2608 if (!map->inner_map) 2609 return -ENOMEM; 2610 map->inner_map->fd = -1; 2611 map->inner_map->sec_idx = sec_idx; 2612 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2613 if (!map->inner_map->name) 2614 return -ENOMEM; 2615 sprintf(map->inner_map->name, "%s.inner", map_name); 2616 2617 fill_map_from_def(map->inner_map, &inner_def); 2618 } 2619 2620 err = map_fill_btf_type_info(obj, map); 2621 if (err) 2622 return err; 2623 2624 return 0; 2625 } 2626 2627 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2628 const char *pin_root_path) 2629 { 2630 const struct btf_type *sec = NULL; 2631 int nr_types, i, vlen, err; 2632 const struct btf_type *t; 2633 const char *name; 2634 Elf_Data *data; 2635 Elf_Scn *scn; 2636 2637 if (obj->efile.btf_maps_shndx < 0) 2638 return 0; 2639 2640 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2641 data = elf_sec_data(obj, scn); 2642 if (!scn || !data) { 2643 pr_warn("elf: failed to get %s map definitions for %s\n", 2644 MAPS_ELF_SEC, obj->path); 2645 return -EINVAL; 2646 } 2647 2648 nr_types = btf__type_cnt(obj->btf); 2649 for (i = 1; i < nr_types; i++) { 2650 t = btf__type_by_id(obj->btf, i); 2651 if (!btf_is_datasec(t)) 2652 continue; 2653 name = btf__name_by_offset(obj->btf, t->name_off); 2654 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2655 sec = t; 2656 obj->efile.btf_maps_sec_btf_id = i; 2657 break; 2658 } 2659 } 2660 2661 if (!sec) { 2662 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2663 return -ENOENT; 2664 } 2665 2666 vlen = btf_vlen(sec); 2667 for (i = 0; i < vlen; i++) { 2668 err = bpf_object__init_user_btf_map(obj, sec, i, 2669 obj->efile.btf_maps_shndx, 2670 data, strict, 2671 pin_root_path); 2672 if (err) 2673 return err; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int bpf_object__init_maps(struct bpf_object *obj, 2680 const struct bpf_object_open_opts *opts) 2681 { 2682 const char *pin_root_path; 2683 bool strict; 2684 int err = 0; 2685 2686 strict = !OPTS_GET(opts, relaxed_maps, false); 2687 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2688 2689 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2690 err = err ?: bpf_object__init_global_data_maps(obj); 2691 err = err ?: bpf_object__init_kconfig_map(obj); 2692 err = err ?: bpf_object_init_struct_ops(obj); 2693 2694 return err; 2695 } 2696 2697 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2698 { 2699 Elf64_Shdr *sh; 2700 2701 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2702 if (!sh) 2703 return false; 2704 2705 return sh->sh_flags & SHF_EXECINSTR; 2706 } 2707 2708 static bool btf_needs_sanitization(struct bpf_object *obj) 2709 { 2710 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2711 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2712 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2713 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2714 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2715 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2716 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2717 2718 return !has_func || !has_datasec || !has_func_global || !has_float || 2719 !has_decl_tag || !has_type_tag || !has_enum64; 2720 } 2721 2722 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2723 { 2724 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2725 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2726 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2727 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2728 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2729 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2730 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2731 int enum64_placeholder_id = 0; 2732 struct btf_type *t; 2733 int i, j, vlen; 2734 2735 for (i = 1; i < btf__type_cnt(btf); i++) { 2736 t = (struct btf_type *)btf__type_by_id(btf, i); 2737 2738 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2739 /* replace VAR/DECL_TAG with INT */ 2740 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2741 /* 2742 * using size = 1 is the safest choice, 4 will be too 2743 * big and cause kernel BTF validation failure if 2744 * original variable took less than 4 bytes 2745 */ 2746 t->size = 1; 2747 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2748 } else if (!has_datasec && btf_is_datasec(t)) { 2749 /* replace DATASEC with STRUCT */ 2750 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2751 struct btf_member *m = btf_members(t); 2752 struct btf_type *vt; 2753 char *name; 2754 2755 name = (char *)btf__name_by_offset(btf, t->name_off); 2756 while (*name) { 2757 if (*name == '.') 2758 *name = '_'; 2759 name++; 2760 } 2761 2762 vlen = btf_vlen(t); 2763 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2764 for (j = 0; j < vlen; j++, v++, m++) { 2765 /* order of field assignments is important */ 2766 m->offset = v->offset * 8; 2767 m->type = v->type; 2768 /* preserve variable name as member name */ 2769 vt = (void *)btf__type_by_id(btf, v->type); 2770 m->name_off = vt->name_off; 2771 } 2772 } else if (!has_func && btf_is_func_proto(t)) { 2773 /* replace FUNC_PROTO with ENUM */ 2774 vlen = btf_vlen(t); 2775 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2776 t->size = sizeof(__u32); /* kernel enforced */ 2777 } else if (!has_func && btf_is_func(t)) { 2778 /* replace FUNC with TYPEDEF */ 2779 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2780 } else if (!has_func_global && btf_is_func(t)) { 2781 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2782 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2783 } else if (!has_float && btf_is_float(t)) { 2784 /* replace FLOAT with an equally-sized empty STRUCT; 2785 * since C compilers do not accept e.g. "float" as a 2786 * valid struct name, make it anonymous 2787 */ 2788 t->name_off = 0; 2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2790 } else if (!has_type_tag && btf_is_type_tag(t)) { 2791 /* replace TYPE_TAG with a CONST */ 2792 t->name_off = 0; 2793 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2794 } else if (!has_enum64 && btf_is_enum(t)) { 2795 /* clear the kflag */ 2796 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2797 } else if (!has_enum64 && btf_is_enum64(t)) { 2798 /* replace ENUM64 with a union */ 2799 struct btf_member *m; 2800 2801 if (enum64_placeholder_id == 0) { 2802 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2803 if (enum64_placeholder_id < 0) 2804 return enum64_placeholder_id; 2805 2806 t = (struct btf_type *)btf__type_by_id(btf, i); 2807 } 2808 2809 m = btf_members(t); 2810 vlen = btf_vlen(t); 2811 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2812 for (j = 0; j < vlen; j++, m++) { 2813 m->type = enum64_placeholder_id; 2814 m->offset = 0; 2815 } 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 static bool libbpf_needs_btf(const struct bpf_object *obj) 2823 { 2824 return obj->efile.btf_maps_shndx >= 0 || 2825 obj->efile.st_ops_shndx >= 0 || 2826 obj->efile.st_ops_link_shndx >= 0 || 2827 obj->nr_extern > 0; 2828 } 2829 2830 static bool kernel_needs_btf(const struct bpf_object *obj) 2831 { 2832 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2833 } 2834 2835 static int bpf_object__init_btf(struct bpf_object *obj, 2836 Elf_Data *btf_data, 2837 Elf_Data *btf_ext_data) 2838 { 2839 int err = -ENOENT; 2840 2841 if (btf_data) { 2842 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2843 err = libbpf_get_error(obj->btf); 2844 if (err) { 2845 obj->btf = NULL; 2846 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2847 goto out; 2848 } 2849 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2850 btf__set_pointer_size(obj->btf, 8); 2851 } 2852 if (btf_ext_data) { 2853 struct btf_ext_info *ext_segs[3]; 2854 int seg_num, sec_num; 2855 2856 if (!obj->btf) { 2857 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2858 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2859 goto out; 2860 } 2861 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2862 err = libbpf_get_error(obj->btf_ext); 2863 if (err) { 2864 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2865 BTF_EXT_ELF_SEC, err); 2866 obj->btf_ext = NULL; 2867 goto out; 2868 } 2869 2870 /* setup .BTF.ext to ELF section mapping */ 2871 ext_segs[0] = &obj->btf_ext->func_info; 2872 ext_segs[1] = &obj->btf_ext->line_info; 2873 ext_segs[2] = &obj->btf_ext->core_relo_info; 2874 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2875 struct btf_ext_info *seg = ext_segs[seg_num]; 2876 const struct btf_ext_info_sec *sec; 2877 const char *sec_name; 2878 Elf_Scn *scn; 2879 2880 if (seg->sec_cnt == 0) 2881 continue; 2882 2883 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2884 if (!seg->sec_idxs) { 2885 err = -ENOMEM; 2886 goto out; 2887 } 2888 2889 sec_num = 0; 2890 for_each_btf_ext_sec(seg, sec) { 2891 /* preventively increment index to avoid doing 2892 * this before every continue below 2893 */ 2894 sec_num++; 2895 2896 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2897 if (str_is_empty(sec_name)) 2898 continue; 2899 scn = elf_sec_by_name(obj, sec_name); 2900 if (!scn) 2901 continue; 2902 2903 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2904 } 2905 } 2906 } 2907 out: 2908 if (err && libbpf_needs_btf(obj)) { 2909 pr_warn("BTF is required, but is missing or corrupted.\n"); 2910 return err; 2911 } 2912 return 0; 2913 } 2914 2915 static int compare_vsi_off(const void *_a, const void *_b) 2916 { 2917 const struct btf_var_secinfo *a = _a; 2918 const struct btf_var_secinfo *b = _b; 2919 2920 return a->offset - b->offset; 2921 } 2922 2923 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2924 struct btf_type *t) 2925 { 2926 __u32 size = 0, i, vars = btf_vlen(t); 2927 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2928 struct btf_var_secinfo *vsi; 2929 bool fixup_offsets = false; 2930 int err; 2931 2932 if (!sec_name) { 2933 pr_debug("No name found in string section for DATASEC kind.\n"); 2934 return -ENOENT; 2935 } 2936 2937 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2938 * variable offsets set at the previous step. Further, not every 2939 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2940 * all fixups altogether for such sections and go straight to sorting 2941 * VARs within their DATASEC. 2942 */ 2943 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2944 goto sort_vars; 2945 2946 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2947 * fix this up. But BPF static linker already fixes this up and fills 2948 * all the sizes and offsets during static linking. So this step has 2949 * to be optional. But the STV_HIDDEN handling is non-optional for any 2950 * non-extern DATASEC, so the variable fixup loop below handles both 2951 * functions at the same time, paying the cost of BTF VAR <-> ELF 2952 * symbol matching just once. 2953 */ 2954 if (t->size == 0) { 2955 err = find_elf_sec_sz(obj, sec_name, &size); 2956 if (err || !size) { 2957 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2958 sec_name, size, err); 2959 return -ENOENT; 2960 } 2961 2962 t->size = size; 2963 fixup_offsets = true; 2964 } 2965 2966 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2967 const struct btf_type *t_var; 2968 struct btf_var *var; 2969 const char *var_name; 2970 Elf64_Sym *sym; 2971 2972 t_var = btf__type_by_id(btf, vsi->type); 2973 if (!t_var || !btf_is_var(t_var)) { 2974 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2975 return -EINVAL; 2976 } 2977 2978 var = btf_var(t_var); 2979 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2980 continue; 2981 2982 var_name = btf__name_by_offset(btf, t_var->name_off); 2983 if (!var_name) { 2984 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2985 sec_name, i); 2986 return -ENOENT; 2987 } 2988 2989 sym = find_elf_var_sym(obj, var_name); 2990 if (IS_ERR(sym)) { 2991 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2992 sec_name, var_name); 2993 return -ENOENT; 2994 } 2995 2996 if (fixup_offsets) 2997 vsi->offset = sym->st_value; 2998 2999 /* if variable is a global/weak symbol, but has restricted 3000 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3001 * as static. This follows similar logic for functions (BPF 3002 * subprogs) and influences libbpf's further decisions about 3003 * whether to make global data BPF array maps as 3004 * BPF_F_MMAPABLE. 3005 */ 3006 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3007 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3008 var->linkage = BTF_VAR_STATIC; 3009 } 3010 3011 sort_vars: 3012 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3013 return 0; 3014 } 3015 3016 static int bpf_object_fixup_btf(struct bpf_object *obj) 3017 { 3018 int i, n, err = 0; 3019 3020 if (!obj->btf) 3021 return 0; 3022 3023 n = btf__type_cnt(obj->btf); 3024 for (i = 1; i < n; i++) { 3025 struct btf_type *t = btf_type_by_id(obj->btf, i); 3026 3027 /* Loader needs to fix up some of the things compiler 3028 * couldn't get its hands on while emitting BTF. This 3029 * is section size and global variable offset. We use 3030 * the info from the ELF itself for this purpose. 3031 */ 3032 if (btf_is_datasec(t)) { 3033 err = btf_fixup_datasec(obj, obj->btf, t); 3034 if (err) 3035 return err; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3043 { 3044 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3045 prog->type == BPF_PROG_TYPE_LSM) 3046 return true; 3047 3048 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3049 * also need vmlinux BTF 3050 */ 3051 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3052 return true; 3053 3054 return false; 3055 } 3056 3057 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3058 { 3059 return bpf_map__is_struct_ops(map); 3060 } 3061 3062 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3063 { 3064 struct bpf_program *prog; 3065 struct bpf_map *map; 3066 int i; 3067 3068 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3069 * is not specified 3070 */ 3071 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3072 return true; 3073 3074 /* Support for typed ksyms needs kernel BTF */ 3075 for (i = 0; i < obj->nr_extern; i++) { 3076 const struct extern_desc *ext; 3077 3078 ext = &obj->externs[i]; 3079 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3080 return true; 3081 } 3082 3083 bpf_object__for_each_program(prog, obj) { 3084 if (!prog->autoload) 3085 continue; 3086 if (prog_needs_vmlinux_btf(prog)) 3087 return true; 3088 } 3089 3090 bpf_object__for_each_map(map, obj) { 3091 if (map_needs_vmlinux_btf(map)) 3092 return true; 3093 } 3094 3095 return false; 3096 } 3097 3098 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3099 { 3100 int err; 3101 3102 /* btf_vmlinux could be loaded earlier */ 3103 if (obj->btf_vmlinux || obj->gen_loader) 3104 return 0; 3105 3106 if (!force && !obj_needs_vmlinux_btf(obj)) 3107 return 0; 3108 3109 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3110 err = libbpf_get_error(obj->btf_vmlinux); 3111 if (err) { 3112 pr_warn("Error loading vmlinux BTF: %d\n", err); 3113 obj->btf_vmlinux = NULL; 3114 return err; 3115 } 3116 return 0; 3117 } 3118 3119 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3120 { 3121 struct btf *kern_btf = obj->btf; 3122 bool btf_mandatory, sanitize; 3123 int i, err = 0; 3124 3125 if (!obj->btf) 3126 return 0; 3127 3128 if (!kernel_supports(obj, FEAT_BTF)) { 3129 if (kernel_needs_btf(obj)) { 3130 err = -EOPNOTSUPP; 3131 goto report; 3132 } 3133 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3134 return 0; 3135 } 3136 3137 /* Even though some subprogs are global/weak, user might prefer more 3138 * permissive BPF verification process that BPF verifier performs for 3139 * static functions, taking into account more context from the caller 3140 * functions. In such case, they need to mark such subprogs with 3141 * __attribute__((visibility("hidden"))) and libbpf will adjust 3142 * corresponding FUNC BTF type to be marked as static and trigger more 3143 * involved BPF verification process. 3144 */ 3145 for (i = 0; i < obj->nr_programs; i++) { 3146 struct bpf_program *prog = &obj->programs[i]; 3147 struct btf_type *t; 3148 const char *name; 3149 int j, n; 3150 3151 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3152 continue; 3153 3154 n = btf__type_cnt(obj->btf); 3155 for (j = 1; j < n; j++) { 3156 t = btf_type_by_id(obj->btf, j); 3157 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3158 continue; 3159 3160 name = btf__str_by_offset(obj->btf, t->name_off); 3161 if (strcmp(name, prog->name) != 0) 3162 continue; 3163 3164 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3165 break; 3166 } 3167 } 3168 3169 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG)) 3170 goto skip_exception_cb; 3171 for (i = 0; i < obj->nr_programs; i++) { 3172 struct bpf_program *prog = &obj->programs[i]; 3173 int j, k, n; 3174 3175 if (prog_is_subprog(obj, prog)) 3176 continue; 3177 n = btf__type_cnt(obj->btf); 3178 for (j = 1; j < n; j++) { 3179 const char *str = "exception_callback:", *name; 3180 size_t len = strlen(str); 3181 struct btf_type *t; 3182 3183 t = btf_type_by_id(obj->btf, j); 3184 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 3185 continue; 3186 3187 name = btf__str_by_offset(obj->btf, t->name_off); 3188 if (strncmp(name, str, len)) 3189 continue; 3190 3191 t = btf_type_by_id(obj->btf, t->type); 3192 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3193 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 3194 prog->name); 3195 return -EINVAL; 3196 } 3197 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off))) 3198 continue; 3199 /* Multiple callbacks are specified for the same prog, 3200 * the verifier will eventually return an error for this 3201 * case, hence simply skip appending a subprog. 3202 */ 3203 if (prog->exception_cb_idx >= 0) { 3204 prog->exception_cb_idx = -1; 3205 break; 3206 } 3207 3208 name += len; 3209 if (str_is_empty(name)) { 3210 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 3211 prog->name); 3212 return -EINVAL; 3213 } 3214 3215 for (k = 0; k < obj->nr_programs; k++) { 3216 struct bpf_program *subprog = &obj->programs[k]; 3217 3218 if (!prog_is_subprog(obj, subprog)) 3219 continue; 3220 if (strcmp(name, subprog->name)) 3221 continue; 3222 /* Enforce non-hidden, as from verifier point of 3223 * view it expects global functions, whereas the 3224 * mark_btf_static fixes up linkage as static. 3225 */ 3226 if (!subprog->sym_global || subprog->mark_btf_static) { 3227 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 3228 prog->name, subprog->name); 3229 return -EINVAL; 3230 } 3231 /* Let's see if we already saw a static exception callback with the same name */ 3232 if (prog->exception_cb_idx >= 0) { 3233 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 3234 prog->name, subprog->name); 3235 return -EINVAL; 3236 } 3237 prog->exception_cb_idx = k; 3238 break; 3239 } 3240 3241 if (prog->exception_cb_idx >= 0) 3242 continue; 3243 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 3244 return -ENOENT; 3245 } 3246 } 3247 skip_exception_cb: 3248 3249 sanitize = btf_needs_sanitization(obj); 3250 if (sanitize) { 3251 const void *raw_data; 3252 __u32 sz; 3253 3254 /* clone BTF to sanitize a copy and leave the original intact */ 3255 raw_data = btf__raw_data(obj->btf, &sz); 3256 kern_btf = btf__new(raw_data, sz); 3257 err = libbpf_get_error(kern_btf); 3258 if (err) 3259 return err; 3260 3261 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3262 btf__set_pointer_size(obj->btf, 8); 3263 err = bpf_object__sanitize_btf(obj, kern_btf); 3264 if (err) 3265 return err; 3266 } 3267 3268 if (obj->gen_loader) { 3269 __u32 raw_size = 0; 3270 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3271 3272 if (!raw_data) 3273 return -ENOMEM; 3274 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3275 /* Pretend to have valid FD to pass various fd >= 0 checks. 3276 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3277 */ 3278 btf__set_fd(kern_btf, 0); 3279 } else { 3280 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3281 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3282 obj->log_level ? 1 : 0); 3283 } 3284 if (sanitize) { 3285 if (!err) { 3286 /* move fd to libbpf's BTF */ 3287 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3288 btf__set_fd(kern_btf, -1); 3289 } 3290 btf__free(kern_btf); 3291 } 3292 report: 3293 if (err) { 3294 btf_mandatory = kernel_needs_btf(obj); 3295 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3296 btf_mandatory ? "BTF is mandatory, can't proceed." 3297 : "BTF is optional, ignoring."); 3298 if (!btf_mandatory) 3299 err = 0; 3300 } 3301 return err; 3302 } 3303 3304 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3305 { 3306 const char *name; 3307 3308 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3309 if (!name) { 3310 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3311 off, obj->path, elf_errmsg(-1)); 3312 return NULL; 3313 } 3314 3315 return name; 3316 } 3317 3318 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3319 { 3320 const char *name; 3321 3322 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3323 if (!name) { 3324 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3325 off, obj->path, elf_errmsg(-1)); 3326 return NULL; 3327 } 3328 3329 return name; 3330 } 3331 3332 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3333 { 3334 Elf_Scn *scn; 3335 3336 scn = elf_getscn(obj->efile.elf, idx); 3337 if (!scn) { 3338 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3339 idx, obj->path, elf_errmsg(-1)); 3340 return NULL; 3341 } 3342 return scn; 3343 } 3344 3345 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3346 { 3347 Elf_Scn *scn = NULL; 3348 Elf *elf = obj->efile.elf; 3349 const char *sec_name; 3350 3351 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3352 sec_name = elf_sec_name(obj, scn); 3353 if (!sec_name) 3354 return NULL; 3355 3356 if (strcmp(sec_name, name) != 0) 3357 continue; 3358 3359 return scn; 3360 } 3361 return NULL; 3362 } 3363 3364 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3365 { 3366 Elf64_Shdr *shdr; 3367 3368 if (!scn) 3369 return NULL; 3370 3371 shdr = elf64_getshdr(scn); 3372 if (!shdr) { 3373 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3374 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3375 return NULL; 3376 } 3377 3378 return shdr; 3379 } 3380 3381 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3382 { 3383 const char *name; 3384 Elf64_Shdr *sh; 3385 3386 if (!scn) 3387 return NULL; 3388 3389 sh = elf_sec_hdr(obj, scn); 3390 if (!sh) 3391 return NULL; 3392 3393 name = elf_sec_str(obj, sh->sh_name); 3394 if (!name) { 3395 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3396 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3397 return NULL; 3398 } 3399 3400 return name; 3401 } 3402 3403 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3404 { 3405 Elf_Data *data; 3406 3407 if (!scn) 3408 return NULL; 3409 3410 data = elf_getdata(scn, 0); 3411 if (!data) { 3412 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3413 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3414 obj->path, elf_errmsg(-1)); 3415 return NULL; 3416 } 3417 3418 return data; 3419 } 3420 3421 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3422 { 3423 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3424 return NULL; 3425 3426 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3427 } 3428 3429 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3430 { 3431 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3432 return NULL; 3433 3434 return (Elf64_Rel *)data->d_buf + idx; 3435 } 3436 3437 static bool is_sec_name_dwarf(const char *name) 3438 { 3439 /* approximation, but the actual list is too long */ 3440 return str_has_pfx(name, ".debug_"); 3441 } 3442 3443 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3444 { 3445 /* no special handling of .strtab */ 3446 if (hdr->sh_type == SHT_STRTAB) 3447 return true; 3448 3449 /* ignore .llvm_addrsig section as well */ 3450 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3451 return true; 3452 3453 /* no subprograms will lead to an empty .text section, ignore it */ 3454 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3455 strcmp(name, ".text") == 0) 3456 return true; 3457 3458 /* DWARF sections */ 3459 if (is_sec_name_dwarf(name)) 3460 return true; 3461 3462 if (str_has_pfx(name, ".rel")) { 3463 name += sizeof(".rel") - 1; 3464 /* DWARF section relocations */ 3465 if (is_sec_name_dwarf(name)) 3466 return true; 3467 3468 /* .BTF and .BTF.ext don't need relocations */ 3469 if (strcmp(name, BTF_ELF_SEC) == 0 || 3470 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3471 return true; 3472 } 3473 3474 return false; 3475 } 3476 3477 static int cmp_progs(const void *_a, const void *_b) 3478 { 3479 const struct bpf_program *a = _a; 3480 const struct bpf_program *b = _b; 3481 3482 if (a->sec_idx != b->sec_idx) 3483 return a->sec_idx < b->sec_idx ? -1 : 1; 3484 3485 /* sec_insn_off can't be the same within the section */ 3486 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3487 } 3488 3489 static int bpf_object__elf_collect(struct bpf_object *obj) 3490 { 3491 struct elf_sec_desc *sec_desc; 3492 Elf *elf = obj->efile.elf; 3493 Elf_Data *btf_ext_data = NULL; 3494 Elf_Data *btf_data = NULL; 3495 int idx = 0, err = 0; 3496 const char *name; 3497 Elf_Data *data; 3498 Elf_Scn *scn; 3499 Elf64_Shdr *sh; 3500 3501 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3502 * section. Since section count retrieved by elf_getshdrnum() does 3503 * include sec #0, it is already the necessary size of an array to keep 3504 * all the sections. 3505 */ 3506 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3507 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3508 obj->path, elf_errmsg(-1)); 3509 return -LIBBPF_ERRNO__FORMAT; 3510 } 3511 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3512 if (!obj->efile.secs) 3513 return -ENOMEM; 3514 3515 /* a bunch of ELF parsing functionality depends on processing symbols, 3516 * so do the first pass and find the symbol table 3517 */ 3518 scn = NULL; 3519 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3520 sh = elf_sec_hdr(obj, scn); 3521 if (!sh) 3522 return -LIBBPF_ERRNO__FORMAT; 3523 3524 if (sh->sh_type == SHT_SYMTAB) { 3525 if (obj->efile.symbols) { 3526 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3527 return -LIBBPF_ERRNO__FORMAT; 3528 } 3529 3530 data = elf_sec_data(obj, scn); 3531 if (!data) 3532 return -LIBBPF_ERRNO__FORMAT; 3533 3534 idx = elf_ndxscn(scn); 3535 3536 obj->efile.symbols = data; 3537 obj->efile.symbols_shndx = idx; 3538 obj->efile.strtabidx = sh->sh_link; 3539 } 3540 } 3541 3542 if (!obj->efile.symbols) { 3543 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3544 obj->path); 3545 return -ENOENT; 3546 } 3547 3548 scn = NULL; 3549 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3550 idx = elf_ndxscn(scn); 3551 sec_desc = &obj->efile.secs[idx]; 3552 3553 sh = elf_sec_hdr(obj, scn); 3554 if (!sh) 3555 return -LIBBPF_ERRNO__FORMAT; 3556 3557 name = elf_sec_str(obj, sh->sh_name); 3558 if (!name) 3559 return -LIBBPF_ERRNO__FORMAT; 3560 3561 if (ignore_elf_section(sh, name)) 3562 continue; 3563 3564 data = elf_sec_data(obj, scn); 3565 if (!data) 3566 return -LIBBPF_ERRNO__FORMAT; 3567 3568 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3569 idx, name, (unsigned long)data->d_size, 3570 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3571 (int)sh->sh_type); 3572 3573 if (strcmp(name, "license") == 0) { 3574 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3575 if (err) 3576 return err; 3577 } else if (strcmp(name, "version") == 0) { 3578 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3579 if (err) 3580 return err; 3581 } else if (strcmp(name, "maps") == 0) { 3582 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3583 return -ENOTSUP; 3584 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3585 obj->efile.btf_maps_shndx = idx; 3586 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3587 if (sh->sh_type != SHT_PROGBITS) 3588 return -LIBBPF_ERRNO__FORMAT; 3589 btf_data = data; 3590 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3591 if (sh->sh_type != SHT_PROGBITS) 3592 return -LIBBPF_ERRNO__FORMAT; 3593 btf_ext_data = data; 3594 } else if (sh->sh_type == SHT_SYMTAB) { 3595 /* already processed during the first pass above */ 3596 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3597 if (sh->sh_flags & SHF_EXECINSTR) { 3598 if (strcmp(name, ".text") == 0) 3599 obj->efile.text_shndx = idx; 3600 err = bpf_object__add_programs(obj, data, name, idx); 3601 if (err) 3602 return err; 3603 } else if (strcmp(name, DATA_SEC) == 0 || 3604 str_has_pfx(name, DATA_SEC ".")) { 3605 sec_desc->sec_type = SEC_DATA; 3606 sec_desc->shdr = sh; 3607 sec_desc->data = data; 3608 } else if (strcmp(name, RODATA_SEC) == 0 || 3609 str_has_pfx(name, RODATA_SEC ".")) { 3610 sec_desc->sec_type = SEC_RODATA; 3611 sec_desc->shdr = sh; 3612 sec_desc->data = data; 3613 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3614 obj->efile.st_ops_data = data; 3615 obj->efile.st_ops_shndx = idx; 3616 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3617 obj->efile.st_ops_link_data = data; 3618 obj->efile.st_ops_link_shndx = idx; 3619 } else { 3620 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3621 idx, name); 3622 } 3623 } else if (sh->sh_type == SHT_REL) { 3624 int targ_sec_idx = sh->sh_info; /* points to other section */ 3625 3626 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3627 targ_sec_idx >= obj->efile.sec_cnt) 3628 return -LIBBPF_ERRNO__FORMAT; 3629 3630 /* Only do relo for section with exec instructions */ 3631 if (!section_have_execinstr(obj, targ_sec_idx) && 3632 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3633 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3634 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3635 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3636 idx, name, targ_sec_idx, 3637 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3638 continue; 3639 } 3640 3641 sec_desc->sec_type = SEC_RELO; 3642 sec_desc->shdr = sh; 3643 sec_desc->data = data; 3644 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3645 str_has_pfx(name, BSS_SEC "."))) { 3646 sec_desc->sec_type = SEC_BSS; 3647 sec_desc->shdr = sh; 3648 sec_desc->data = data; 3649 } else { 3650 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3651 (size_t)sh->sh_size); 3652 } 3653 } 3654 3655 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3656 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3657 return -LIBBPF_ERRNO__FORMAT; 3658 } 3659 3660 /* sort BPF programs by section name and in-section instruction offset 3661 * for faster search 3662 */ 3663 if (obj->nr_programs) 3664 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3665 3666 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3667 } 3668 3669 static bool sym_is_extern(const Elf64_Sym *sym) 3670 { 3671 int bind = ELF64_ST_BIND(sym->st_info); 3672 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3673 return sym->st_shndx == SHN_UNDEF && 3674 (bind == STB_GLOBAL || bind == STB_WEAK) && 3675 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3676 } 3677 3678 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3679 { 3680 int bind = ELF64_ST_BIND(sym->st_info); 3681 int type = ELF64_ST_TYPE(sym->st_info); 3682 3683 /* in .text section */ 3684 if (sym->st_shndx != text_shndx) 3685 return false; 3686 3687 /* local function */ 3688 if (bind == STB_LOCAL && type == STT_SECTION) 3689 return true; 3690 3691 /* global function */ 3692 return bind == STB_GLOBAL && type == STT_FUNC; 3693 } 3694 3695 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3696 { 3697 const struct btf_type *t; 3698 const char *tname; 3699 int i, n; 3700 3701 if (!btf) 3702 return -ESRCH; 3703 3704 n = btf__type_cnt(btf); 3705 for (i = 1; i < n; i++) { 3706 t = btf__type_by_id(btf, i); 3707 3708 if (!btf_is_var(t) && !btf_is_func(t)) 3709 continue; 3710 3711 tname = btf__name_by_offset(btf, t->name_off); 3712 if (strcmp(tname, ext_name)) 3713 continue; 3714 3715 if (btf_is_var(t) && 3716 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3717 return -EINVAL; 3718 3719 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3720 return -EINVAL; 3721 3722 return i; 3723 } 3724 3725 return -ENOENT; 3726 } 3727 3728 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3729 const struct btf_var_secinfo *vs; 3730 const struct btf_type *t; 3731 int i, j, n; 3732 3733 if (!btf) 3734 return -ESRCH; 3735 3736 n = btf__type_cnt(btf); 3737 for (i = 1; i < n; i++) { 3738 t = btf__type_by_id(btf, i); 3739 3740 if (!btf_is_datasec(t)) 3741 continue; 3742 3743 vs = btf_var_secinfos(t); 3744 for (j = 0; j < btf_vlen(t); j++, vs++) { 3745 if (vs->type == ext_btf_id) 3746 return i; 3747 } 3748 } 3749 3750 return -ENOENT; 3751 } 3752 3753 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3754 bool *is_signed) 3755 { 3756 const struct btf_type *t; 3757 const char *name; 3758 3759 t = skip_mods_and_typedefs(btf, id, NULL); 3760 name = btf__name_by_offset(btf, t->name_off); 3761 3762 if (is_signed) 3763 *is_signed = false; 3764 switch (btf_kind(t)) { 3765 case BTF_KIND_INT: { 3766 int enc = btf_int_encoding(t); 3767 3768 if (enc & BTF_INT_BOOL) 3769 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3770 if (is_signed) 3771 *is_signed = enc & BTF_INT_SIGNED; 3772 if (t->size == 1) 3773 return KCFG_CHAR; 3774 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3775 return KCFG_UNKNOWN; 3776 return KCFG_INT; 3777 } 3778 case BTF_KIND_ENUM: 3779 if (t->size != 4) 3780 return KCFG_UNKNOWN; 3781 if (strcmp(name, "libbpf_tristate")) 3782 return KCFG_UNKNOWN; 3783 return KCFG_TRISTATE; 3784 case BTF_KIND_ENUM64: 3785 if (strcmp(name, "libbpf_tristate")) 3786 return KCFG_UNKNOWN; 3787 return KCFG_TRISTATE; 3788 case BTF_KIND_ARRAY: 3789 if (btf_array(t)->nelems == 0) 3790 return KCFG_UNKNOWN; 3791 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3792 return KCFG_UNKNOWN; 3793 return KCFG_CHAR_ARR; 3794 default: 3795 return KCFG_UNKNOWN; 3796 } 3797 } 3798 3799 static int cmp_externs(const void *_a, const void *_b) 3800 { 3801 const struct extern_desc *a = _a; 3802 const struct extern_desc *b = _b; 3803 3804 if (a->type != b->type) 3805 return a->type < b->type ? -1 : 1; 3806 3807 if (a->type == EXT_KCFG) { 3808 /* descending order by alignment requirements */ 3809 if (a->kcfg.align != b->kcfg.align) 3810 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3811 /* ascending order by size, within same alignment class */ 3812 if (a->kcfg.sz != b->kcfg.sz) 3813 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3814 } 3815 3816 /* resolve ties by name */ 3817 return strcmp(a->name, b->name); 3818 } 3819 3820 static int find_int_btf_id(const struct btf *btf) 3821 { 3822 const struct btf_type *t; 3823 int i, n; 3824 3825 n = btf__type_cnt(btf); 3826 for (i = 1; i < n; i++) { 3827 t = btf__type_by_id(btf, i); 3828 3829 if (btf_is_int(t) && btf_int_bits(t) == 32) 3830 return i; 3831 } 3832 3833 return 0; 3834 } 3835 3836 static int add_dummy_ksym_var(struct btf *btf) 3837 { 3838 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3839 const struct btf_var_secinfo *vs; 3840 const struct btf_type *sec; 3841 3842 if (!btf) 3843 return 0; 3844 3845 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3846 BTF_KIND_DATASEC); 3847 if (sec_btf_id < 0) 3848 return 0; 3849 3850 sec = btf__type_by_id(btf, sec_btf_id); 3851 vs = btf_var_secinfos(sec); 3852 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3853 const struct btf_type *vt; 3854 3855 vt = btf__type_by_id(btf, vs->type); 3856 if (btf_is_func(vt)) 3857 break; 3858 } 3859 3860 /* No func in ksyms sec. No need to add dummy var. */ 3861 if (i == btf_vlen(sec)) 3862 return 0; 3863 3864 int_btf_id = find_int_btf_id(btf); 3865 dummy_var_btf_id = btf__add_var(btf, 3866 "dummy_ksym", 3867 BTF_VAR_GLOBAL_ALLOCATED, 3868 int_btf_id); 3869 if (dummy_var_btf_id < 0) 3870 pr_warn("cannot create a dummy_ksym var\n"); 3871 3872 return dummy_var_btf_id; 3873 } 3874 3875 static int bpf_object__collect_externs(struct bpf_object *obj) 3876 { 3877 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3878 const struct btf_type *t; 3879 struct extern_desc *ext; 3880 int i, n, off, dummy_var_btf_id; 3881 const char *ext_name, *sec_name; 3882 size_t ext_essent_len; 3883 Elf_Scn *scn; 3884 Elf64_Shdr *sh; 3885 3886 if (!obj->efile.symbols) 3887 return 0; 3888 3889 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3890 sh = elf_sec_hdr(obj, scn); 3891 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3892 return -LIBBPF_ERRNO__FORMAT; 3893 3894 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3895 if (dummy_var_btf_id < 0) 3896 return dummy_var_btf_id; 3897 3898 n = sh->sh_size / sh->sh_entsize; 3899 pr_debug("looking for externs among %d symbols...\n", n); 3900 3901 for (i = 0; i < n; i++) { 3902 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3903 3904 if (!sym) 3905 return -LIBBPF_ERRNO__FORMAT; 3906 if (!sym_is_extern(sym)) 3907 continue; 3908 ext_name = elf_sym_str(obj, sym->st_name); 3909 if (!ext_name || !ext_name[0]) 3910 continue; 3911 3912 ext = obj->externs; 3913 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3914 if (!ext) 3915 return -ENOMEM; 3916 obj->externs = ext; 3917 ext = &ext[obj->nr_extern]; 3918 memset(ext, 0, sizeof(*ext)); 3919 obj->nr_extern++; 3920 3921 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3922 if (ext->btf_id <= 0) { 3923 pr_warn("failed to find BTF for extern '%s': %d\n", 3924 ext_name, ext->btf_id); 3925 return ext->btf_id; 3926 } 3927 t = btf__type_by_id(obj->btf, ext->btf_id); 3928 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3929 ext->sym_idx = i; 3930 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3931 3932 ext_essent_len = bpf_core_essential_name_len(ext->name); 3933 ext->essent_name = NULL; 3934 if (ext_essent_len != strlen(ext->name)) { 3935 ext->essent_name = strndup(ext->name, ext_essent_len); 3936 if (!ext->essent_name) 3937 return -ENOMEM; 3938 } 3939 3940 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3941 if (ext->sec_btf_id <= 0) { 3942 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3943 ext_name, ext->btf_id, ext->sec_btf_id); 3944 return ext->sec_btf_id; 3945 } 3946 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3947 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3948 3949 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3950 if (btf_is_func(t)) { 3951 pr_warn("extern function %s is unsupported under %s section\n", 3952 ext->name, KCONFIG_SEC); 3953 return -ENOTSUP; 3954 } 3955 kcfg_sec = sec; 3956 ext->type = EXT_KCFG; 3957 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3958 if (ext->kcfg.sz <= 0) { 3959 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3960 ext_name, ext->kcfg.sz); 3961 return ext->kcfg.sz; 3962 } 3963 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3964 if (ext->kcfg.align <= 0) { 3965 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3966 ext_name, ext->kcfg.align); 3967 return -EINVAL; 3968 } 3969 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3970 &ext->kcfg.is_signed); 3971 if (ext->kcfg.type == KCFG_UNKNOWN) { 3972 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3973 return -ENOTSUP; 3974 } 3975 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3976 ksym_sec = sec; 3977 ext->type = EXT_KSYM; 3978 skip_mods_and_typedefs(obj->btf, t->type, 3979 &ext->ksym.type_id); 3980 } else { 3981 pr_warn("unrecognized extern section '%s'\n", sec_name); 3982 return -ENOTSUP; 3983 } 3984 } 3985 pr_debug("collected %d externs total\n", obj->nr_extern); 3986 3987 if (!obj->nr_extern) 3988 return 0; 3989 3990 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3991 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3992 3993 /* for .ksyms section, we need to turn all externs into allocated 3994 * variables in BTF to pass kernel verification; we do this by 3995 * pretending that each extern is a 8-byte variable 3996 */ 3997 if (ksym_sec) { 3998 /* find existing 4-byte integer type in BTF to use for fake 3999 * extern variables in DATASEC 4000 */ 4001 int int_btf_id = find_int_btf_id(obj->btf); 4002 /* For extern function, a dummy_var added earlier 4003 * will be used to replace the vs->type and 4004 * its name string will be used to refill 4005 * the missing param's name. 4006 */ 4007 const struct btf_type *dummy_var; 4008 4009 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4010 for (i = 0; i < obj->nr_extern; i++) { 4011 ext = &obj->externs[i]; 4012 if (ext->type != EXT_KSYM) 4013 continue; 4014 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4015 i, ext->sym_idx, ext->name); 4016 } 4017 4018 sec = ksym_sec; 4019 n = btf_vlen(sec); 4020 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4021 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4022 struct btf_type *vt; 4023 4024 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4025 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4026 ext = find_extern_by_name(obj, ext_name); 4027 if (!ext) { 4028 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4029 btf_kind_str(vt), ext_name); 4030 return -ESRCH; 4031 } 4032 if (btf_is_func(vt)) { 4033 const struct btf_type *func_proto; 4034 struct btf_param *param; 4035 int j; 4036 4037 func_proto = btf__type_by_id(obj->btf, 4038 vt->type); 4039 param = btf_params(func_proto); 4040 /* Reuse the dummy_var string if the 4041 * func proto does not have param name. 4042 */ 4043 for (j = 0; j < btf_vlen(func_proto); j++) 4044 if (param[j].type && !param[j].name_off) 4045 param[j].name_off = 4046 dummy_var->name_off; 4047 vs->type = dummy_var_btf_id; 4048 vt->info &= ~0xffff; 4049 vt->info |= BTF_FUNC_GLOBAL; 4050 } else { 4051 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4052 vt->type = int_btf_id; 4053 } 4054 vs->offset = off; 4055 vs->size = sizeof(int); 4056 } 4057 sec->size = off; 4058 } 4059 4060 if (kcfg_sec) { 4061 sec = kcfg_sec; 4062 /* for kcfg externs calculate their offsets within a .kconfig map */ 4063 off = 0; 4064 for (i = 0; i < obj->nr_extern; i++) { 4065 ext = &obj->externs[i]; 4066 if (ext->type != EXT_KCFG) 4067 continue; 4068 4069 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4070 off = ext->kcfg.data_off + ext->kcfg.sz; 4071 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4072 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4073 } 4074 sec->size = off; 4075 n = btf_vlen(sec); 4076 for (i = 0; i < n; i++) { 4077 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4078 4079 t = btf__type_by_id(obj->btf, vs->type); 4080 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4081 ext = find_extern_by_name(obj, ext_name); 4082 if (!ext) { 4083 pr_warn("failed to find extern definition for BTF var '%s'\n", 4084 ext_name); 4085 return -ESRCH; 4086 } 4087 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4088 vs->offset = ext->kcfg.data_off; 4089 } 4090 } 4091 return 0; 4092 } 4093 4094 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4095 { 4096 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4097 } 4098 4099 struct bpf_program * 4100 bpf_object__find_program_by_name(const struct bpf_object *obj, 4101 const char *name) 4102 { 4103 struct bpf_program *prog; 4104 4105 bpf_object__for_each_program(prog, obj) { 4106 if (prog_is_subprog(obj, prog)) 4107 continue; 4108 if (!strcmp(prog->name, name)) 4109 return prog; 4110 } 4111 return errno = ENOENT, NULL; 4112 } 4113 4114 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4115 int shndx) 4116 { 4117 switch (obj->efile.secs[shndx].sec_type) { 4118 case SEC_BSS: 4119 case SEC_DATA: 4120 case SEC_RODATA: 4121 return true; 4122 default: 4123 return false; 4124 } 4125 } 4126 4127 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4128 int shndx) 4129 { 4130 return shndx == obj->efile.btf_maps_shndx; 4131 } 4132 4133 static enum libbpf_map_type 4134 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4135 { 4136 if (shndx == obj->efile.symbols_shndx) 4137 return LIBBPF_MAP_KCONFIG; 4138 4139 switch (obj->efile.secs[shndx].sec_type) { 4140 case SEC_BSS: 4141 return LIBBPF_MAP_BSS; 4142 case SEC_DATA: 4143 return LIBBPF_MAP_DATA; 4144 case SEC_RODATA: 4145 return LIBBPF_MAP_RODATA; 4146 default: 4147 return LIBBPF_MAP_UNSPEC; 4148 } 4149 } 4150 4151 static int bpf_program__record_reloc(struct bpf_program *prog, 4152 struct reloc_desc *reloc_desc, 4153 __u32 insn_idx, const char *sym_name, 4154 const Elf64_Sym *sym, const Elf64_Rel *rel) 4155 { 4156 struct bpf_insn *insn = &prog->insns[insn_idx]; 4157 size_t map_idx, nr_maps = prog->obj->nr_maps; 4158 struct bpf_object *obj = prog->obj; 4159 __u32 shdr_idx = sym->st_shndx; 4160 enum libbpf_map_type type; 4161 const char *sym_sec_name; 4162 struct bpf_map *map; 4163 4164 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4165 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4166 prog->name, sym_name, insn_idx, insn->code); 4167 return -LIBBPF_ERRNO__RELOC; 4168 } 4169 4170 if (sym_is_extern(sym)) { 4171 int sym_idx = ELF64_R_SYM(rel->r_info); 4172 int i, n = obj->nr_extern; 4173 struct extern_desc *ext; 4174 4175 for (i = 0; i < n; i++) { 4176 ext = &obj->externs[i]; 4177 if (ext->sym_idx == sym_idx) 4178 break; 4179 } 4180 if (i >= n) { 4181 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4182 prog->name, sym_name, sym_idx); 4183 return -LIBBPF_ERRNO__RELOC; 4184 } 4185 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4186 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4187 if (insn->code == (BPF_JMP | BPF_CALL)) 4188 reloc_desc->type = RELO_EXTERN_CALL; 4189 else 4190 reloc_desc->type = RELO_EXTERN_LD64; 4191 reloc_desc->insn_idx = insn_idx; 4192 reloc_desc->ext_idx = i; 4193 return 0; 4194 } 4195 4196 /* sub-program call relocation */ 4197 if (is_call_insn(insn)) { 4198 if (insn->src_reg != BPF_PSEUDO_CALL) { 4199 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4200 return -LIBBPF_ERRNO__RELOC; 4201 } 4202 /* text_shndx can be 0, if no default "main" program exists */ 4203 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4204 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4205 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4206 prog->name, sym_name, sym_sec_name); 4207 return -LIBBPF_ERRNO__RELOC; 4208 } 4209 if (sym->st_value % BPF_INSN_SZ) { 4210 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4211 prog->name, sym_name, (size_t)sym->st_value); 4212 return -LIBBPF_ERRNO__RELOC; 4213 } 4214 reloc_desc->type = RELO_CALL; 4215 reloc_desc->insn_idx = insn_idx; 4216 reloc_desc->sym_off = sym->st_value; 4217 return 0; 4218 } 4219 4220 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4221 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4222 prog->name, sym_name, shdr_idx); 4223 return -LIBBPF_ERRNO__RELOC; 4224 } 4225 4226 /* loading subprog addresses */ 4227 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4228 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4229 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4230 */ 4231 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4232 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4233 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4234 return -LIBBPF_ERRNO__RELOC; 4235 } 4236 4237 reloc_desc->type = RELO_SUBPROG_ADDR; 4238 reloc_desc->insn_idx = insn_idx; 4239 reloc_desc->sym_off = sym->st_value; 4240 return 0; 4241 } 4242 4243 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4244 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4245 4246 /* generic map reference relocation */ 4247 if (type == LIBBPF_MAP_UNSPEC) { 4248 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4249 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4250 prog->name, sym_name, sym_sec_name); 4251 return -LIBBPF_ERRNO__RELOC; 4252 } 4253 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4254 map = &obj->maps[map_idx]; 4255 if (map->libbpf_type != type || 4256 map->sec_idx != sym->st_shndx || 4257 map->sec_offset != sym->st_value) 4258 continue; 4259 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4260 prog->name, map_idx, map->name, map->sec_idx, 4261 map->sec_offset, insn_idx); 4262 break; 4263 } 4264 if (map_idx >= nr_maps) { 4265 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4266 prog->name, sym_sec_name, (size_t)sym->st_value); 4267 return -LIBBPF_ERRNO__RELOC; 4268 } 4269 reloc_desc->type = RELO_LD64; 4270 reloc_desc->insn_idx = insn_idx; 4271 reloc_desc->map_idx = map_idx; 4272 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4273 return 0; 4274 } 4275 4276 /* global data map relocation */ 4277 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4278 pr_warn("prog '%s': bad data relo against section '%s'\n", 4279 prog->name, sym_sec_name); 4280 return -LIBBPF_ERRNO__RELOC; 4281 } 4282 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4283 map = &obj->maps[map_idx]; 4284 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4285 continue; 4286 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4287 prog->name, map_idx, map->name, map->sec_idx, 4288 map->sec_offset, insn_idx); 4289 break; 4290 } 4291 if (map_idx >= nr_maps) { 4292 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4293 prog->name, sym_sec_name); 4294 return -LIBBPF_ERRNO__RELOC; 4295 } 4296 4297 reloc_desc->type = RELO_DATA; 4298 reloc_desc->insn_idx = insn_idx; 4299 reloc_desc->map_idx = map_idx; 4300 reloc_desc->sym_off = sym->st_value; 4301 return 0; 4302 } 4303 4304 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4305 { 4306 return insn_idx >= prog->sec_insn_off && 4307 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4308 } 4309 4310 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4311 size_t sec_idx, size_t insn_idx) 4312 { 4313 int l = 0, r = obj->nr_programs - 1, m; 4314 struct bpf_program *prog; 4315 4316 if (!obj->nr_programs) 4317 return NULL; 4318 4319 while (l < r) { 4320 m = l + (r - l + 1) / 2; 4321 prog = &obj->programs[m]; 4322 4323 if (prog->sec_idx < sec_idx || 4324 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4325 l = m; 4326 else 4327 r = m - 1; 4328 } 4329 /* matching program could be at index l, but it still might be the 4330 * wrong one, so we need to double check conditions for the last time 4331 */ 4332 prog = &obj->programs[l]; 4333 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4334 return prog; 4335 return NULL; 4336 } 4337 4338 static int 4339 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4340 { 4341 const char *relo_sec_name, *sec_name; 4342 size_t sec_idx = shdr->sh_info, sym_idx; 4343 struct bpf_program *prog; 4344 struct reloc_desc *relos; 4345 int err, i, nrels; 4346 const char *sym_name; 4347 __u32 insn_idx; 4348 Elf_Scn *scn; 4349 Elf_Data *scn_data; 4350 Elf64_Sym *sym; 4351 Elf64_Rel *rel; 4352 4353 if (sec_idx >= obj->efile.sec_cnt) 4354 return -EINVAL; 4355 4356 scn = elf_sec_by_idx(obj, sec_idx); 4357 scn_data = elf_sec_data(obj, scn); 4358 if (!scn_data) 4359 return -LIBBPF_ERRNO__FORMAT; 4360 4361 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4362 sec_name = elf_sec_name(obj, scn); 4363 if (!relo_sec_name || !sec_name) 4364 return -EINVAL; 4365 4366 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4367 relo_sec_name, sec_idx, sec_name); 4368 nrels = shdr->sh_size / shdr->sh_entsize; 4369 4370 for (i = 0; i < nrels; i++) { 4371 rel = elf_rel_by_idx(data, i); 4372 if (!rel) { 4373 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4374 return -LIBBPF_ERRNO__FORMAT; 4375 } 4376 4377 sym_idx = ELF64_R_SYM(rel->r_info); 4378 sym = elf_sym_by_idx(obj, sym_idx); 4379 if (!sym) { 4380 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4381 relo_sec_name, sym_idx, i); 4382 return -LIBBPF_ERRNO__FORMAT; 4383 } 4384 4385 if (sym->st_shndx >= obj->efile.sec_cnt) { 4386 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4387 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4388 return -LIBBPF_ERRNO__FORMAT; 4389 } 4390 4391 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4392 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4393 relo_sec_name, (size_t)rel->r_offset, i); 4394 return -LIBBPF_ERRNO__FORMAT; 4395 } 4396 4397 insn_idx = rel->r_offset / BPF_INSN_SZ; 4398 /* relocations against static functions are recorded as 4399 * relocations against the section that contains a function; 4400 * in such case, symbol will be STT_SECTION and sym.st_name 4401 * will point to empty string (0), so fetch section name 4402 * instead 4403 */ 4404 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4405 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4406 else 4407 sym_name = elf_sym_str(obj, sym->st_name); 4408 sym_name = sym_name ?: "<?"; 4409 4410 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4411 relo_sec_name, i, insn_idx, sym_name); 4412 4413 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4414 if (!prog) { 4415 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4416 relo_sec_name, i, sec_name, insn_idx); 4417 continue; 4418 } 4419 4420 relos = libbpf_reallocarray(prog->reloc_desc, 4421 prog->nr_reloc + 1, sizeof(*relos)); 4422 if (!relos) 4423 return -ENOMEM; 4424 prog->reloc_desc = relos; 4425 4426 /* adjust insn_idx to local BPF program frame of reference */ 4427 insn_idx -= prog->sec_insn_off; 4428 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4429 insn_idx, sym_name, sym, rel); 4430 if (err) 4431 return err; 4432 4433 prog->nr_reloc++; 4434 } 4435 return 0; 4436 } 4437 4438 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4439 { 4440 int id; 4441 4442 if (!obj->btf) 4443 return -ENOENT; 4444 4445 /* if it's BTF-defined map, we don't need to search for type IDs. 4446 * For struct_ops map, it does not need btf_key_type_id and 4447 * btf_value_type_id. 4448 */ 4449 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4450 return 0; 4451 4452 /* 4453 * LLVM annotates global data differently in BTF, that is, 4454 * only as '.data', '.bss' or '.rodata'. 4455 */ 4456 if (!bpf_map__is_internal(map)) 4457 return -ENOENT; 4458 4459 id = btf__find_by_name(obj->btf, map->real_name); 4460 if (id < 0) 4461 return id; 4462 4463 map->btf_key_type_id = 0; 4464 map->btf_value_type_id = id; 4465 return 0; 4466 } 4467 4468 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4469 { 4470 char file[PATH_MAX], buff[4096]; 4471 FILE *fp; 4472 __u32 val; 4473 int err; 4474 4475 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4476 memset(info, 0, sizeof(*info)); 4477 4478 fp = fopen(file, "re"); 4479 if (!fp) { 4480 err = -errno; 4481 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4482 err); 4483 return err; 4484 } 4485 4486 while (fgets(buff, sizeof(buff), fp)) { 4487 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4488 info->type = val; 4489 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4490 info->key_size = val; 4491 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4492 info->value_size = val; 4493 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4494 info->max_entries = val; 4495 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4496 info->map_flags = val; 4497 } 4498 4499 fclose(fp); 4500 4501 return 0; 4502 } 4503 4504 bool bpf_map__autocreate(const struct bpf_map *map) 4505 { 4506 return map->autocreate; 4507 } 4508 4509 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4510 { 4511 if (map->obj->loaded) 4512 return libbpf_err(-EBUSY); 4513 4514 map->autocreate = autocreate; 4515 return 0; 4516 } 4517 4518 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4519 { 4520 struct bpf_map_info info; 4521 __u32 len = sizeof(info), name_len; 4522 int new_fd, err; 4523 char *new_name; 4524 4525 memset(&info, 0, len); 4526 err = bpf_map_get_info_by_fd(fd, &info, &len); 4527 if (err && errno == EINVAL) 4528 err = bpf_get_map_info_from_fdinfo(fd, &info); 4529 if (err) 4530 return libbpf_err(err); 4531 4532 name_len = strlen(info.name); 4533 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4534 new_name = strdup(map->name); 4535 else 4536 new_name = strdup(info.name); 4537 4538 if (!new_name) 4539 return libbpf_err(-errno); 4540 4541 /* 4542 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4543 * This is similar to what we do in ensure_good_fd(), but without 4544 * closing original FD. 4545 */ 4546 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4547 if (new_fd < 0) { 4548 err = -errno; 4549 goto err_free_new_name; 4550 } 4551 4552 err = zclose(map->fd); 4553 if (err) { 4554 err = -errno; 4555 goto err_close_new_fd; 4556 } 4557 free(map->name); 4558 4559 map->fd = new_fd; 4560 map->name = new_name; 4561 map->def.type = info.type; 4562 map->def.key_size = info.key_size; 4563 map->def.value_size = info.value_size; 4564 map->def.max_entries = info.max_entries; 4565 map->def.map_flags = info.map_flags; 4566 map->btf_key_type_id = info.btf_key_type_id; 4567 map->btf_value_type_id = info.btf_value_type_id; 4568 map->reused = true; 4569 map->map_extra = info.map_extra; 4570 4571 return 0; 4572 4573 err_close_new_fd: 4574 close(new_fd); 4575 err_free_new_name: 4576 free(new_name); 4577 return libbpf_err(err); 4578 } 4579 4580 __u32 bpf_map__max_entries(const struct bpf_map *map) 4581 { 4582 return map->def.max_entries; 4583 } 4584 4585 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4586 { 4587 if (!bpf_map_type__is_map_in_map(map->def.type)) 4588 return errno = EINVAL, NULL; 4589 4590 return map->inner_map; 4591 } 4592 4593 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4594 { 4595 if (map->obj->loaded) 4596 return libbpf_err(-EBUSY); 4597 4598 map->def.max_entries = max_entries; 4599 4600 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4601 if (map_is_ringbuf(map)) 4602 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4603 4604 return 0; 4605 } 4606 4607 static int 4608 bpf_object__probe_loading(struct bpf_object *obj) 4609 { 4610 char *cp, errmsg[STRERR_BUFSIZE]; 4611 struct bpf_insn insns[] = { 4612 BPF_MOV64_IMM(BPF_REG_0, 0), 4613 BPF_EXIT_INSN(), 4614 }; 4615 int ret, insn_cnt = ARRAY_SIZE(insns); 4616 4617 if (obj->gen_loader) 4618 return 0; 4619 4620 ret = bump_rlimit_memlock(); 4621 if (ret) 4622 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4623 4624 /* make sure basic loading works */ 4625 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4626 if (ret < 0) 4627 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4628 if (ret < 0) { 4629 ret = errno; 4630 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4631 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4632 "program. Make sure your kernel supports BPF " 4633 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4634 "set to big enough value.\n", __func__, cp, ret); 4635 return -ret; 4636 } 4637 close(ret); 4638 4639 return 0; 4640 } 4641 4642 static int probe_fd(int fd) 4643 { 4644 if (fd >= 0) 4645 close(fd); 4646 return fd >= 0; 4647 } 4648 4649 static int probe_kern_prog_name(void) 4650 { 4651 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4652 struct bpf_insn insns[] = { 4653 BPF_MOV64_IMM(BPF_REG_0, 0), 4654 BPF_EXIT_INSN(), 4655 }; 4656 union bpf_attr attr; 4657 int ret; 4658 4659 memset(&attr, 0, attr_sz); 4660 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4661 attr.license = ptr_to_u64("GPL"); 4662 attr.insns = ptr_to_u64(insns); 4663 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4664 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4665 4666 /* make sure loading with name works */ 4667 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4668 return probe_fd(ret); 4669 } 4670 4671 static int probe_kern_global_data(void) 4672 { 4673 char *cp, errmsg[STRERR_BUFSIZE]; 4674 struct bpf_insn insns[] = { 4675 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4676 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4677 BPF_MOV64_IMM(BPF_REG_0, 0), 4678 BPF_EXIT_INSN(), 4679 }; 4680 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4681 4682 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4683 if (map < 0) { 4684 ret = -errno; 4685 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4686 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4687 __func__, cp, -ret); 4688 return ret; 4689 } 4690 4691 insns[0].imm = map; 4692 4693 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4694 close(map); 4695 return probe_fd(ret); 4696 } 4697 4698 static int probe_kern_btf(void) 4699 { 4700 static const char strs[] = "\0int"; 4701 __u32 types[] = { 4702 /* int */ 4703 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4704 }; 4705 4706 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4707 strs, sizeof(strs))); 4708 } 4709 4710 static int probe_kern_btf_func(void) 4711 { 4712 static const char strs[] = "\0int\0x\0a"; 4713 /* void x(int a) {} */ 4714 __u32 types[] = { 4715 /* int */ 4716 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4717 /* FUNC_PROTO */ /* [2] */ 4718 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4719 BTF_PARAM_ENC(7, 1), 4720 /* FUNC x */ /* [3] */ 4721 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4722 }; 4723 4724 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4725 strs, sizeof(strs))); 4726 } 4727 4728 static int probe_kern_btf_func_global(void) 4729 { 4730 static const char strs[] = "\0int\0x\0a"; 4731 /* static void x(int a) {} */ 4732 __u32 types[] = { 4733 /* int */ 4734 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4735 /* FUNC_PROTO */ /* [2] */ 4736 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4737 BTF_PARAM_ENC(7, 1), 4738 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4739 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4740 }; 4741 4742 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4743 strs, sizeof(strs))); 4744 } 4745 4746 static int probe_kern_btf_datasec(void) 4747 { 4748 static const char strs[] = "\0x\0.data"; 4749 /* static int a; */ 4750 __u32 types[] = { 4751 /* int */ 4752 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4753 /* VAR x */ /* [2] */ 4754 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4755 BTF_VAR_STATIC, 4756 /* DATASEC val */ /* [3] */ 4757 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4758 BTF_VAR_SECINFO_ENC(2, 0, 4), 4759 }; 4760 4761 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4762 strs, sizeof(strs))); 4763 } 4764 4765 static int probe_kern_btf_float(void) 4766 { 4767 static const char strs[] = "\0float"; 4768 __u32 types[] = { 4769 /* float */ 4770 BTF_TYPE_FLOAT_ENC(1, 4), 4771 }; 4772 4773 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4774 strs, sizeof(strs))); 4775 } 4776 4777 static int probe_kern_btf_decl_tag(void) 4778 { 4779 static const char strs[] = "\0tag"; 4780 __u32 types[] = { 4781 /* int */ 4782 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4783 /* VAR x */ /* [2] */ 4784 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4785 BTF_VAR_STATIC, 4786 /* attr */ 4787 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4788 }; 4789 4790 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4791 strs, sizeof(strs))); 4792 } 4793 4794 static int probe_kern_btf_type_tag(void) 4795 { 4796 static const char strs[] = "\0tag"; 4797 __u32 types[] = { 4798 /* int */ 4799 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4800 /* attr */ 4801 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4802 /* ptr */ 4803 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4804 }; 4805 4806 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4807 strs, sizeof(strs))); 4808 } 4809 4810 static int probe_kern_array_mmap(void) 4811 { 4812 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4813 int fd; 4814 4815 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4816 return probe_fd(fd); 4817 } 4818 4819 static int probe_kern_exp_attach_type(void) 4820 { 4821 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4822 struct bpf_insn insns[] = { 4823 BPF_MOV64_IMM(BPF_REG_0, 0), 4824 BPF_EXIT_INSN(), 4825 }; 4826 int fd, insn_cnt = ARRAY_SIZE(insns); 4827 4828 /* use any valid combination of program type and (optional) 4829 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4830 * to see if kernel supports expected_attach_type field for 4831 * BPF_PROG_LOAD command 4832 */ 4833 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4834 return probe_fd(fd); 4835 } 4836 4837 static int probe_kern_probe_read_kernel(void) 4838 { 4839 struct bpf_insn insns[] = { 4840 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4841 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4842 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4843 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4844 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4845 BPF_EXIT_INSN(), 4846 }; 4847 int fd, insn_cnt = ARRAY_SIZE(insns); 4848 4849 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4850 return probe_fd(fd); 4851 } 4852 4853 static int probe_prog_bind_map(void) 4854 { 4855 char *cp, errmsg[STRERR_BUFSIZE]; 4856 struct bpf_insn insns[] = { 4857 BPF_MOV64_IMM(BPF_REG_0, 0), 4858 BPF_EXIT_INSN(), 4859 }; 4860 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4861 4862 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4863 if (map < 0) { 4864 ret = -errno; 4865 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4866 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4867 __func__, cp, -ret); 4868 return ret; 4869 } 4870 4871 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4872 if (prog < 0) { 4873 close(map); 4874 return 0; 4875 } 4876 4877 ret = bpf_prog_bind_map(prog, map, NULL); 4878 4879 close(map); 4880 close(prog); 4881 4882 return ret >= 0; 4883 } 4884 4885 static int probe_module_btf(void) 4886 { 4887 static const char strs[] = "\0int"; 4888 __u32 types[] = { 4889 /* int */ 4890 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4891 }; 4892 struct bpf_btf_info info; 4893 __u32 len = sizeof(info); 4894 char name[16]; 4895 int fd, err; 4896 4897 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4898 if (fd < 0) 4899 return 0; /* BTF not supported at all */ 4900 4901 memset(&info, 0, sizeof(info)); 4902 info.name = ptr_to_u64(name); 4903 info.name_len = sizeof(name); 4904 4905 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4906 * kernel's module BTF support coincides with support for 4907 * name/name_len fields in struct bpf_btf_info. 4908 */ 4909 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4910 close(fd); 4911 return !err; 4912 } 4913 4914 static int probe_perf_link(void) 4915 { 4916 struct bpf_insn insns[] = { 4917 BPF_MOV64_IMM(BPF_REG_0, 0), 4918 BPF_EXIT_INSN(), 4919 }; 4920 int prog_fd, link_fd, err; 4921 4922 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4923 insns, ARRAY_SIZE(insns), NULL); 4924 if (prog_fd < 0) 4925 return -errno; 4926 4927 /* use invalid perf_event FD to get EBADF, if link is supported; 4928 * otherwise EINVAL should be returned 4929 */ 4930 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4931 err = -errno; /* close() can clobber errno */ 4932 4933 if (link_fd >= 0) 4934 close(link_fd); 4935 close(prog_fd); 4936 4937 return link_fd < 0 && err == -EBADF; 4938 } 4939 4940 static int probe_uprobe_multi_link(void) 4941 { 4942 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4943 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4944 ); 4945 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4946 struct bpf_insn insns[] = { 4947 BPF_MOV64_IMM(BPF_REG_0, 0), 4948 BPF_EXIT_INSN(), 4949 }; 4950 int prog_fd, link_fd, err; 4951 unsigned long offset = 0; 4952 4953 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4954 insns, ARRAY_SIZE(insns), &load_opts); 4955 if (prog_fd < 0) 4956 return -errno; 4957 4958 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4959 link_opts.uprobe_multi.path = "/"; 4960 link_opts.uprobe_multi.offsets = &offset; 4961 link_opts.uprobe_multi.cnt = 1; 4962 4963 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4964 err = -errno; /* close() can clobber errno */ 4965 4966 if (link_fd >= 0) 4967 close(link_fd); 4968 close(prog_fd); 4969 4970 return link_fd < 0 && err == -EBADF; 4971 } 4972 4973 static int probe_kern_bpf_cookie(void) 4974 { 4975 struct bpf_insn insns[] = { 4976 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4977 BPF_EXIT_INSN(), 4978 }; 4979 int ret, insn_cnt = ARRAY_SIZE(insns); 4980 4981 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4982 return probe_fd(ret); 4983 } 4984 4985 static int probe_kern_btf_enum64(void) 4986 { 4987 static const char strs[] = "\0enum64"; 4988 __u32 types[] = { 4989 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4990 }; 4991 4992 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4993 strs, sizeof(strs))); 4994 } 4995 4996 static int probe_kern_syscall_wrapper(void); 4997 4998 enum kern_feature_result { 4999 FEAT_UNKNOWN = 0, 5000 FEAT_SUPPORTED = 1, 5001 FEAT_MISSING = 2, 5002 }; 5003 5004 typedef int (*feature_probe_fn)(void); 5005 5006 static struct kern_feature_desc { 5007 const char *desc; 5008 feature_probe_fn probe; 5009 enum kern_feature_result res; 5010 } feature_probes[__FEAT_CNT] = { 5011 [FEAT_PROG_NAME] = { 5012 "BPF program name", probe_kern_prog_name, 5013 }, 5014 [FEAT_GLOBAL_DATA] = { 5015 "global variables", probe_kern_global_data, 5016 }, 5017 [FEAT_BTF] = { 5018 "minimal BTF", probe_kern_btf, 5019 }, 5020 [FEAT_BTF_FUNC] = { 5021 "BTF functions", probe_kern_btf_func, 5022 }, 5023 [FEAT_BTF_GLOBAL_FUNC] = { 5024 "BTF global function", probe_kern_btf_func_global, 5025 }, 5026 [FEAT_BTF_DATASEC] = { 5027 "BTF data section and variable", probe_kern_btf_datasec, 5028 }, 5029 [FEAT_ARRAY_MMAP] = { 5030 "ARRAY map mmap()", probe_kern_array_mmap, 5031 }, 5032 [FEAT_EXP_ATTACH_TYPE] = { 5033 "BPF_PROG_LOAD expected_attach_type attribute", 5034 probe_kern_exp_attach_type, 5035 }, 5036 [FEAT_PROBE_READ_KERN] = { 5037 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 5038 }, 5039 [FEAT_PROG_BIND_MAP] = { 5040 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 5041 }, 5042 [FEAT_MODULE_BTF] = { 5043 "module BTF support", probe_module_btf, 5044 }, 5045 [FEAT_BTF_FLOAT] = { 5046 "BTF_KIND_FLOAT support", probe_kern_btf_float, 5047 }, 5048 [FEAT_PERF_LINK] = { 5049 "BPF perf link support", probe_perf_link, 5050 }, 5051 [FEAT_BTF_DECL_TAG] = { 5052 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 5053 }, 5054 [FEAT_BTF_TYPE_TAG] = { 5055 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 5056 }, 5057 [FEAT_MEMCG_ACCOUNT] = { 5058 "memcg-based memory accounting", probe_memcg_account, 5059 }, 5060 [FEAT_BPF_COOKIE] = { 5061 "BPF cookie support", probe_kern_bpf_cookie, 5062 }, 5063 [FEAT_BTF_ENUM64] = { 5064 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5065 }, 5066 [FEAT_SYSCALL_WRAPPER] = { 5067 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5068 }, 5069 [FEAT_UPROBE_MULTI_LINK] = { 5070 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5071 }, 5072 }; 5073 5074 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5075 { 5076 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5077 int ret; 5078 5079 if (obj && obj->gen_loader) 5080 /* To generate loader program assume the latest kernel 5081 * to avoid doing extra prog_load, map_create syscalls. 5082 */ 5083 return true; 5084 5085 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5086 ret = feat->probe(); 5087 if (ret > 0) { 5088 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5089 } else if (ret == 0) { 5090 WRITE_ONCE(feat->res, FEAT_MISSING); 5091 } else { 5092 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5093 WRITE_ONCE(feat->res, FEAT_MISSING); 5094 } 5095 } 5096 5097 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5098 } 5099 5100 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5101 { 5102 struct bpf_map_info map_info; 5103 char msg[STRERR_BUFSIZE]; 5104 __u32 map_info_len = sizeof(map_info); 5105 int err; 5106 5107 memset(&map_info, 0, map_info_len); 5108 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5109 if (err && errno == EINVAL) 5110 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5111 if (err) { 5112 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5113 libbpf_strerror_r(errno, msg, sizeof(msg))); 5114 return false; 5115 } 5116 5117 return (map_info.type == map->def.type && 5118 map_info.key_size == map->def.key_size && 5119 map_info.value_size == map->def.value_size && 5120 map_info.max_entries == map->def.max_entries && 5121 map_info.map_flags == map->def.map_flags && 5122 map_info.map_extra == map->map_extra); 5123 } 5124 5125 static int 5126 bpf_object__reuse_map(struct bpf_map *map) 5127 { 5128 char *cp, errmsg[STRERR_BUFSIZE]; 5129 int err, pin_fd; 5130 5131 pin_fd = bpf_obj_get(map->pin_path); 5132 if (pin_fd < 0) { 5133 err = -errno; 5134 if (err == -ENOENT) { 5135 pr_debug("found no pinned map to reuse at '%s'\n", 5136 map->pin_path); 5137 return 0; 5138 } 5139 5140 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5141 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5142 map->pin_path, cp); 5143 return err; 5144 } 5145 5146 if (!map_is_reuse_compat(map, pin_fd)) { 5147 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5148 map->pin_path); 5149 close(pin_fd); 5150 return -EINVAL; 5151 } 5152 5153 err = bpf_map__reuse_fd(map, pin_fd); 5154 close(pin_fd); 5155 if (err) 5156 return err; 5157 5158 map->pinned = true; 5159 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5160 5161 return 0; 5162 } 5163 5164 static int 5165 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5166 { 5167 enum libbpf_map_type map_type = map->libbpf_type; 5168 char *cp, errmsg[STRERR_BUFSIZE]; 5169 int err, zero = 0; 5170 5171 if (obj->gen_loader) { 5172 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5173 map->mmaped, map->def.value_size); 5174 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5175 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5176 return 0; 5177 } 5178 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5179 if (err) { 5180 err = -errno; 5181 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5182 pr_warn("Error setting initial map(%s) contents: %s\n", 5183 map->name, cp); 5184 return err; 5185 } 5186 5187 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5188 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5189 err = bpf_map_freeze(map->fd); 5190 if (err) { 5191 err = -errno; 5192 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5193 pr_warn("Error freezing map(%s) as read-only: %s\n", 5194 map->name, cp); 5195 return err; 5196 } 5197 } 5198 return 0; 5199 } 5200 5201 static void bpf_map__destroy(struct bpf_map *map); 5202 5203 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5204 { 5205 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5206 struct bpf_map_def *def = &map->def; 5207 const char *map_name = NULL; 5208 int err = 0; 5209 5210 if (kernel_supports(obj, FEAT_PROG_NAME)) 5211 map_name = map->name; 5212 create_attr.map_ifindex = map->map_ifindex; 5213 create_attr.map_flags = def->map_flags; 5214 create_attr.numa_node = map->numa_node; 5215 create_attr.map_extra = map->map_extra; 5216 5217 if (bpf_map__is_struct_ops(map)) 5218 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5219 5220 if (obj->btf && btf__fd(obj->btf) >= 0) { 5221 create_attr.btf_fd = btf__fd(obj->btf); 5222 create_attr.btf_key_type_id = map->btf_key_type_id; 5223 create_attr.btf_value_type_id = map->btf_value_type_id; 5224 } 5225 5226 if (bpf_map_type__is_map_in_map(def->type)) { 5227 if (map->inner_map) { 5228 err = bpf_object__create_map(obj, map->inner_map, true); 5229 if (err) { 5230 pr_warn("map '%s': failed to create inner map: %d\n", 5231 map->name, err); 5232 return err; 5233 } 5234 map->inner_map_fd = bpf_map__fd(map->inner_map); 5235 } 5236 if (map->inner_map_fd >= 0) 5237 create_attr.inner_map_fd = map->inner_map_fd; 5238 } 5239 5240 switch (def->type) { 5241 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5242 case BPF_MAP_TYPE_CGROUP_ARRAY: 5243 case BPF_MAP_TYPE_STACK_TRACE: 5244 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5245 case BPF_MAP_TYPE_HASH_OF_MAPS: 5246 case BPF_MAP_TYPE_DEVMAP: 5247 case BPF_MAP_TYPE_DEVMAP_HASH: 5248 case BPF_MAP_TYPE_CPUMAP: 5249 case BPF_MAP_TYPE_XSKMAP: 5250 case BPF_MAP_TYPE_SOCKMAP: 5251 case BPF_MAP_TYPE_SOCKHASH: 5252 case BPF_MAP_TYPE_QUEUE: 5253 case BPF_MAP_TYPE_STACK: 5254 create_attr.btf_fd = 0; 5255 create_attr.btf_key_type_id = 0; 5256 create_attr.btf_value_type_id = 0; 5257 map->btf_key_type_id = 0; 5258 map->btf_value_type_id = 0; 5259 default: 5260 break; 5261 } 5262 5263 if (obj->gen_loader) { 5264 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5265 def->key_size, def->value_size, def->max_entries, 5266 &create_attr, is_inner ? -1 : map - obj->maps); 5267 /* Pretend to have valid FD to pass various fd >= 0 checks. 5268 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5269 */ 5270 map->fd = 0; 5271 } else { 5272 map->fd = bpf_map_create(def->type, map_name, 5273 def->key_size, def->value_size, 5274 def->max_entries, &create_attr); 5275 } 5276 if (map->fd < 0 && (create_attr.btf_key_type_id || 5277 create_attr.btf_value_type_id)) { 5278 char *cp, errmsg[STRERR_BUFSIZE]; 5279 5280 err = -errno; 5281 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5282 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5283 map->name, cp, err); 5284 create_attr.btf_fd = 0; 5285 create_attr.btf_key_type_id = 0; 5286 create_attr.btf_value_type_id = 0; 5287 map->btf_key_type_id = 0; 5288 map->btf_value_type_id = 0; 5289 map->fd = bpf_map_create(def->type, map_name, 5290 def->key_size, def->value_size, 5291 def->max_entries, &create_attr); 5292 } 5293 5294 err = map->fd < 0 ? -errno : 0; 5295 5296 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5297 if (obj->gen_loader) 5298 map->inner_map->fd = -1; 5299 bpf_map__destroy(map->inner_map); 5300 zfree(&map->inner_map); 5301 } 5302 5303 return err; 5304 } 5305 5306 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5307 { 5308 const struct bpf_map *targ_map; 5309 unsigned int i; 5310 int fd, err = 0; 5311 5312 for (i = 0; i < map->init_slots_sz; i++) { 5313 if (!map->init_slots[i]) 5314 continue; 5315 5316 targ_map = map->init_slots[i]; 5317 fd = bpf_map__fd(targ_map); 5318 5319 if (obj->gen_loader) { 5320 bpf_gen__populate_outer_map(obj->gen_loader, 5321 map - obj->maps, i, 5322 targ_map - obj->maps); 5323 } else { 5324 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5325 } 5326 if (err) { 5327 err = -errno; 5328 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5329 map->name, i, targ_map->name, fd, err); 5330 return err; 5331 } 5332 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5333 map->name, i, targ_map->name, fd); 5334 } 5335 5336 zfree(&map->init_slots); 5337 map->init_slots_sz = 0; 5338 5339 return 0; 5340 } 5341 5342 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5343 { 5344 const struct bpf_program *targ_prog; 5345 unsigned int i; 5346 int fd, err; 5347 5348 if (obj->gen_loader) 5349 return -ENOTSUP; 5350 5351 for (i = 0; i < map->init_slots_sz; i++) { 5352 if (!map->init_slots[i]) 5353 continue; 5354 5355 targ_prog = map->init_slots[i]; 5356 fd = bpf_program__fd(targ_prog); 5357 5358 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5359 if (err) { 5360 err = -errno; 5361 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5362 map->name, i, targ_prog->name, fd, err); 5363 return err; 5364 } 5365 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5366 map->name, i, targ_prog->name, fd); 5367 } 5368 5369 zfree(&map->init_slots); 5370 map->init_slots_sz = 0; 5371 5372 return 0; 5373 } 5374 5375 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5376 { 5377 struct bpf_map *map; 5378 int i, err; 5379 5380 for (i = 0; i < obj->nr_maps; i++) { 5381 map = &obj->maps[i]; 5382 5383 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5384 continue; 5385 5386 err = init_prog_array_slots(obj, map); 5387 if (err < 0) { 5388 zclose(map->fd); 5389 return err; 5390 } 5391 } 5392 return 0; 5393 } 5394 5395 static int map_set_def_max_entries(struct bpf_map *map) 5396 { 5397 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5398 int nr_cpus; 5399 5400 nr_cpus = libbpf_num_possible_cpus(); 5401 if (nr_cpus < 0) { 5402 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5403 map->name, nr_cpus); 5404 return nr_cpus; 5405 } 5406 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5407 map->def.max_entries = nr_cpus; 5408 } 5409 5410 return 0; 5411 } 5412 5413 static int 5414 bpf_object__create_maps(struct bpf_object *obj) 5415 { 5416 struct bpf_map *map; 5417 char *cp, errmsg[STRERR_BUFSIZE]; 5418 unsigned int i, j; 5419 int err; 5420 bool retried; 5421 5422 for (i = 0; i < obj->nr_maps; i++) { 5423 map = &obj->maps[i]; 5424 5425 /* To support old kernels, we skip creating global data maps 5426 * (.rodata, .data, .kconfig, etc); later on, during program 5427 * loading, if we detect that at least one of the to-be-loaded 5428 * programs is referencing any global data map, we'll error 5429 * out with program name and relocation index logged. 5430 * This approach allows to accommodate Clang emitting 5431 * unnecessary .rodata.str1.1 sections for string literals, 5432 * but also it allows to have CO-RE applications that use 5433 * global variables in some of BPF programs, but not others. 5434 * If those global variable-using programs are not loaded at 5435 * runtime due to bpf_program__set_autoload(prog, false), 5436 * bpf_object loading will succeed just fine even on old 5437 * kernels. 5438 */ 5439 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5440 map->autocreate = false; 5441 5442 if (!map->autocreate) { 5443 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5444 continue; 5445 } 5446 5447 err = map_set_def_max_entries(map); 5448 if (err) 5449 goto err_out; 5450 5451 retried = false; 5452 retry: 5453 if (map->pin_path) { 5454 err = bpf_object__reuse_map(map); 5455 if (err) { 5456 pr_warn("map '%s': error reusing pinned map\n", 5457 map->name); 5458 goto err_out; 5459 } 5460 if (retried && map->fd < 0) { 5461 pr_warn("map '%s': cannot find pinned map\n", 5462 map->name); 5463 err = -ENOENT; 5464 goto err_out; 5465 } 5466 } 5467 5468 if (map->fd >= 0) { 5469 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5470 map->name, map->fd); 5471 } else { 5472 err = bpf_object__create_map(obj, map, false); 5473 if (err) 5474 goto err_out; 5475 5476 pr_debug("map '%s': created successfully, fd=%d\n", 5477 map->name, map->fd); 5478 5479 if (bpf_map__is_internal(map)) { 5480 err = bpf_object__populate_internal_map(obj, map); 5481 if (err < 0) { 5482 zclose(map->fd); 5483 goto err_out; 5484 } 5485 } 5486 5487 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5488 err = init_map_in_map_slots(obj, map); 5489 if (err < 0) { 5490 zclose(map->fd); 5491 goto err_out; 5492 } 5493 } 5494 } 5495 5496 if (map->pin_path && !map->pinned) { 5497 err = bpf_map__pin(map, NULL); 5498 if (err) { 5499 zclose(map->fd); 5500 if (!retried && err == -EEXIST) { 5501 retried = true; 5502 goto retry; 5503 } 5504 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5505 map->name, map->pin_path, err); 5506 goto err_out; 5507 } 5508 } 5509 } 5510 5511 return 0; 5512 5513 err_out: 5514 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5515 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5516 pr_perm_msg(err); 5517 for (j = 0; j < i; j++) 5518 zclose(obj->maps[j].fd); 5519 return err; 5520 } 5521 5522 static bool bpf_core_is_flavor_sep(const char *s) 5523 { 5524 /* check X___Y name pattern, where X and Y are not underscores */ 5525 return s[0] != '_' && /* X */ 5526 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5527 s[4] != '_'; /* Y */ 5528 } 5529 5530 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5531 * before last triple underscore. Struct name part after last triple 5532 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5533 */ 5534 size_t bpf_core_essential_name_len(const char *name) 5535 { 5536 size_t n = strlen(name); 5537 int i; 5538 5539 for (i = n - 5; i >= 0; i--) { 5540 if (bpf_core_is_flavor_sep(name + i)) 5541 return i + 1; 5542 } 5543 return n; 5544 } 5545 5546 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5547 { 5548 if (!cands) 5549 return; 5550 5551 free(cands->cands); 5552 free(cands); 5553 } 5554 5555 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5556 size_t local_essent_len, 5557 const struct btf *targ_btf, 5558 const char *targ_btf_name, 5559 int targ_start_id, 5560 struct bpf_core_cand_list *cands) 5561 { 5562 struct bpf_core_cand *new_cands, *cand; 5563 const struct btf_type *t, *local_t; 5564 const char *targ_name, *local_name; 5565 size_t targ_essent_len; 5566 int n, i; 5567 5568 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5569 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5570 5571 n = btf__type_cnt(targ_btf); 5572 for (i = targ_start_id; i < n; i++) { 5573 t = btf__type_by_id(targ_btf, i); 5574 if (!btf_kind_core_compat(t, local_t)) 5575 continue; 5576 5577 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5578 if (str_is_empty(targ_name)) 5579 continue; 5580 5581 targ_essent_len = bpf_core_essential_name_len(targ_name); 5582 if (targ_essent_len != local_essent_len) 5583 continue; 5584 5585 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5586 continue; 5587 5588 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5589 local_cand->id, btf_kind_str(local_t), 5590 local_name, i, btf_kind_str(t), targ_name, 5591 targ_btf_name); 5592 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5593 sizeof(*cands->cands)); 5594 if (!new_cands) 5595 return -ENOMEM; 5596 5597 cand = &new_cands[cands->len]; 5598 cand->btf = targ_btf; 5599 cand->id = i; 5600 5601 cands->cands = new_cands; 5602 cands->len++; 5603 } 5604 return 0; 5605 } 5606 5607 static int load_module_btfs(struct bpf_object *obj) 5608 { 5609 struct bpf_btf_info info; 5610 struct module_btf *mod_btf; 5611 struct btf *btf; 5612 char name[64]; 5613 __u32 id = 0, len; 5614 int err, fd; 5615 5616 if (obj->btf_modules_loaded) 5617 return 0; 5618 5619 if (obj->gen_loader) 5620 return 0; 5621 5622 /* don't do this again, even if we find no module BTFs */ 5623 obj->btf_modules_loaded = true; 5624 5625 /* kernel too old to support module BTFs */ 5626 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5627 return 0; 5628 5629 while (true) { 5630 err = bpf_btf_get_next_id(id, &id); 5631 if (err && errno == ENOENT) 5632 return 0; 5633 if (err && errno == EPERM) { 5634 pr_debug("skipping module BTFs loading, missing privileges\n"); 5635 return 0; 5636 } 5637 if (err) { 5638 err = -errno; 5639 pr_warn("failed to iterate BTF objects: %d\n", err); 5640 return err; 5641 } 5642 5643 fd = bpf_btf_get_fd_by_id(id); 5644 if (fd < 0) { 5645 if (errno == ENOENT) 5646 continue; /* expected race: BTF was unloaded */ 5647 err = -errno; 5648 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5649 return err; 5650 } 5651 5652 len = sizeof(info); 5653 memset(&info, 0, sizeof(info)); 5654 info.name = ptr_to_u64(name); 5655 info.name_len = sizeof(name); 5656 5657 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5658 if (err) { 5659 err = -errno; 5660 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5661 goto err_out; 5662 } 5663 5664 /* ignore non-module BTFs */ 5665 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5666 close(fd); 5667 continue; 5668 } 5669 5670 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5671 err = libbpf_get_error(btf); 5672 if (err) { 5673 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5674 name, id, err); 5675 goto err_out; 5676 } 5677 5678 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5679 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5680 if (err) 5681 goto err_out; 5682 5683 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5684 5685 mod_btf->btf = btf; 5686 mod_btf->id = id; 5687 mod_btf->fd = fd; 5688 mod_btf->name = strdup(name); 5689 if (!mod_btf->name) { 5690 err = -ENOMEM; 5691 goto err_out; 5692 } 5693 continue; 5694 5695 err_out: 5696 close(fd); 5697 return err; 5698 } 5699 5700 return 0; 5701 } 5702 5703 static struct bpf_core_cand_list * 5704 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5705 { 5706 struct bpf_core_cand local_cand = {}; 5707 struct bpf_core_cand_list *cands; 5708 const struct btf *main_btf; 5709 const struct btf_type *local_t; 5710 const char *local_name; 5711 size_t local_essent_len; 5712 int err, i; 5713 5714 local_cand.btf = local_btf; 5715 local_cand.id = local_type_id; 5716 local_t = btf__type_by_id(local_btf, local_type_id); 5717 if (!local_t) 5718 return ERR_PTR(-EINVAL); 5719 5720 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5721 if (str_is_empty(local_name)) 5722 return ERR_PTR(-EINVAL); 5723 local_essent_len = bpf_core_essential_name_len(local_name); 5724 5725 cands = calloc(1, sizeof(*cands)); 5726 if (!cands) 5727 return ERR_PTR(-ENOMEM); 5728 5729 /* Attempt to find target candidates in vmlinux BTF first */ 5730 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5731 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5732 if (err) 5733 goto err_out; 5734 5735 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5736 if (cands->len) 5737 return cands; 5738 5739 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5740 if (obj->btf_vmlinux_override) 5741 return cands; 5742 5743 /* now look through module BTFs, trying to still find candidates */ 5744 err = load_module_btfs(obj); 5745 if (err) 5746 goto err_out; 5747 5748 for (i = 0; i < obj->btf_module_cnt; i++) { 5749 err = bpf_core_add_cands(&local_cand, local_essent_len, 5750 obj->btf_modules[i].btf, 5751 obj->btf_modules[i].name, 5752 btf__type_cnt(obj->btf_vmlinux), 5753 cands); 5754 if (err) 5755 goto err_out; 5756 } 5757 5758 return cands; 5759 err_out: 5760 bpf_core_free_cands(cands); 5761 return ERR_PTR(err); 5762 } 5763 5764 /* Check local and target types for compatibility. This check is used for 5765 * type-based CO-RE relocations and follow slightly different rules than 5766 * field-based relocations. This function assumes that root types were already 5767 * checked for name match. Beyond that initial root-level name check, names 5768 * are completely ignored. Compatibility rules are as follows: 5769 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5770 * kind should match for local and target types (i.e., STRUCT is not 5771 * compatible with UNION); 5772 * - for ENUMs, the size is ignored; 5773 * - for INT, size and signedness are ignored; 5774 * - for ARRAY, dimensionality is ignored, element types are checked for 5775 * compatibility recursively; 5776 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5777 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5778 * - FUNC_PROTOs are compatible if they have compatible signature: same 5779 * number of input args and compatible return and argument types. 5780 * These rules are not set in stone and probably will be adjusted as we get 5781 * more experience with using BPF CO-RE relocations. 5782 */ 5783 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5784 const struct btf *targ_btf, __u32 targ_id) 5785 { 5786 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5787 } 5788 5789 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5790 const struct btf *targ_btf, __u32 targ_id) 5791 { 5792 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5793 } 5794 5795 static size_t bpf_core_hash_fn(const long key, void *ctx) 5796 { 5797 return key; 5798 } 5799 5800 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5801 { 5802 return k1 == k2; 5803 } 5804 5805 static int record_relo_core(struct bpf_program *prog, 5806 const struct bpf_core_relo *core_relo, int insn_idx) 5807 { 5808 struct reloc_desc *relos, *relo; 5809 5810 relos = libbpf_reallocarray(prog->reloc_desc, 5811 prog->nr_reloc + 1, sizeof(*relos)); 5812 if (!relos) 5813 return -ENOMEM; 5814 relo = &relos[prog->nr_reloc]; 5815 relo->type = RELO_CORE; 5816 relo->insn_idx = insn_idx; 5817 relo->core_relo = core_relo; 5818 prog->reloc_desc = relos; 5819 prog->nr_reloc++; 5820 return 0; 5821 } 5822 5823 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5824 { 5825 struct reloc_desc *relo; 5826 int i; 5827 5828 for (i = 0; i < prog->nr_reloc; i++) { 5829 relo = &prog->reloc_desc[i]; 5830 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5831 continue; 5832 5833 return relo->core_relo; 5834 } 5835 5836 return NULL; 5837 } 5838 5839 static int bpf_core_resolve_relo(struct bpf_program *prog, 5840 const struct bpf_core_relo *relo, 5841 int relo_idx, 5842 const struct btf *local_btf, 5843 struct hashmap *cand_cache, 5844 struct bpf_core_relo_res *targ_res) 5845 { 5846 struct bpf_core_spec specs_scratch[3] = {}; 5847 struct bpf_core_cand_list *cands = NULL; 5848 const char *prog_name = prog->name; 5849 const struct btf_type *local_type; 5850 const char *local_name; 5851 __u32 local_id = relo->type_id; 5852 int err; 5853 5854 local_type = btf__type_by_id(local_btf, local_id); 5855 if (!local_type) 5856 return -EINVAL; 5857 5858 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5859 if (!local_name) 5860 return -EINVAL; 5861 5862 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5863 !hashmap__find(cand_cache, local_id, &cands)) { 5864 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5865 if (IS_ERR(cands)) { 5866 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5867 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5868 local_name, PTR_ERR(cands)); 5869 return PTR_ERR(cands); 5870 } 5871 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5872 if (err) { 5873 bpf_core_free_cands(cands); 5874 return err; 5875 } 5876 } 5877 5878 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5879 targ_res); 5880 } 5881 5882 static int 5883 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5884 { 5885 const struct btf_ext_info_sec *sec; 5886 struct bpf_core_relo_res targ_res; 5887 const struct bpf_core_relo *rec; 5888 const struct btf_ext_info *seg; 5889 struct hashmap_entry *entry; 5890 struct hashmap *cand_cache = NULL; 5891 struct bpf_program *prog; 5892 struct bpf_insn *insn; 5893 const char *sec_name; 5894 int i, err = 0, insn_idx, sec_idx, sec_num; 5895 5896 if (obj->btf_ext->core_relo_info.len == 0) 5897 return 0; 5898 5899 if (targ_btf_path) { 5900 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5901 err = libbpf_get_error(obj->btf_vmlinux_override); 5902 if (err) { 5903 pr_warn("failed to parse target BTF: %d\n", err); 5904 return err; 5905 } 5906 } 5907 5908 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5909 if (IS_ERR(cand_cache)) { 5910 err = PTR_ERR(cand_cache); 5911 goto out; 5912 } 5913 5914 seg = &obj->btf_ext->core_relo_info; 5915 sec_num = 0; 5916 for_each_btf_ext_sec(seg, sec) { 5917 sec_idx = seg->sec_idxs[sec_num]; 5918 sec_num++; 5919 5920 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5921 if (str_is_empty(sec_name)) { 5922 err = -EINVAL; 5923 goto out; 5924 } 5925 5926 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5927 5928 for_each_btf_ext_rec(seg, sec, i, rec) { 5929 if (rec->insn_off % BPF_INSN_SZ) 5930 return -EINVAL; 5931 insn_idx = rec->insn_off / BPF_INSN_SZ; 5932 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5933 if (!prog) { 5934 /* When __weak subprog is "overridden" by another instance 5935 * of the subprog from a different object file, linker still 5936 * appends all the .BTF.ext info that used to belong to that 5937 * eliminated subprogram. 5938 * This is similar to what x86-64 linker does for relocations. 5939 * So just ignore such relocations just like we ignore 5940 * subprog instructions when discovering subprograms. 5941 */ 5942 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5943 sec_name, i, insn_idx); 5944 continue; 5945 } 5946 /* no need to apply CO-RE relocation if the program is 5947 * not going to be loaded 5948 */ 5949 if (!prog->autoload) 5950 continue; 5951 5952 /* adjust insn_idx from section frame of reference to the local 5953 * program's frame of reference; (sub-)program code is not yet 5954 * relocated, so it's enough to just subtract in-section offset 5955 */ 5956 insn_idx = insn_idx - prog->sec_insn_off; 5957 if (insn_idx >= prog->insns_cnt) 5958 return -EINVAL; 5959 insn = &prog->insns[insn_idx]; 5960 5961 err = record_relo_core(prog, rec, insn_idx); 5962 if (err) { 5963 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5964 prog->name, i, err); 5965 goto out; 5966 } 5967 5968 if (prog->obj->gen_loader) 5969 continue; 5970 5971 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5972 if (err) { 5973 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5974 prog->name, i, err); 5975 goto out; 5976 } 5977 5978 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5979 if (err) { 5980 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5981 prog->name, i, insn_idx, err); 5982 goto out; 5983 } 5984 } 5985 } 5986 5987 out: 5988 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5989 btf__free(obj->btf_vmlinux_override); 5990 obj->btf_vmlinux_override = NULL; 5991 5992 if (!IS_ERR_OR_NULL(cand_cache)) { 5993 hashmap__for_each_entry(cand_cache, entry, i) { 5994 bpf_core_free_cands(entry->pvalue); 5995 } 5996 hashmap__free(cand_cache); 5997 } 5998 return err; 5999 } 6000 6001 /* base map load ldimm64 special constant, used also for log fixup logic */ 6002 #define POISON_LDIMM64_MAP_BASE 2001000000 6003 #define POISON_LDIMM64_MAP_PFX "200100" 6004 6005 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6006 int insn_idx, struct bpf_insn *insn, 6007 int map_idx, const struct bpf_map *map) 6008 { 6009 int i; 6010 6011 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6012 prog->name, relo_idx, insn_idx, map_idx, map->name); 6013 6014 /* we turn single ldimm64 into two identical invalid calls */ 6015 for (i = 0; i < 2; i++) { 6016 insn->code = BPF_JMP | BPF_CALL; 6017 insn->dst_reg = 0; 6018 insn->src_reg = 0; 6019 insn->off = 0; 6020 /* if this instruction is reachable (not a dead code), 6021 * verifier will complain with something like: 6022 * invalid func unknown#2001000123 6023 * where lower 123 is map index into obj->maps[] array 6024 */ 6025 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6026 6027 insn++; 6028 } 6029 } 6030 6031 /* unresolved kfunc call special constant, used also for log fixup logic */ 6032 #define POISON_CALL_KFUNC_BASE 2002000000 6033 #define POISON_CALL_KFUNC_PFX "2002" 6034 6035 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6036 int insn_idx, struct bpf_insn *insn, 6037 int ext_idx, const struct extern_desc *ext) 6038 { 6039 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6040 prog->name, relo_idx, insn_idx, ext->name); 6041 6042 /* we turn kfunc call into invalid helper call with identifiable constant */ 6043 insn->code = BPF_JMP | BPF_CALL; 6044 insn->dst_reg = 0; 6045 insn->src_reg = 0; 6046 insn->off = 0; 6047 /* if this instruction is reachable (not a dead code), 6048 * verifier will complain with something like: 6049 * invalid func unknown#2001000123 6050 * where lower 123 is extern index into obj->externs[] array 6051 */ 6052 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6053 } 6054 6055 /* Relocate data references within program code: 6056 * - map references; 6057 * - global variable references; 6058 * - extern references. 6059 */ 6060 static int 6061 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6062 { 6063 int i; 6064 6065 for (i = 0; i < prog->nr_reloc; i++) { 6066 struct reloc_desc *relo = &prog->reloc_desc[i]; 6067 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6068 const struct bpf_map *map; 6069 struct extern_desc *ext; 6070 6071 switch (relo->type) { 6072 case RELO_LD64: 6073 map = &obj->maps[relo->map_idx]; 6074 if (obj->gen_loader) { 6075 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6076 insn[0].imm = relo->map_idx; 6077 } else if (map->autocreate) { 6078 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6079 insn[0].imm = map->fd; 6080 } else { 6081 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6082 relo->map_idx, map); 6083 } 6084 break; 6085 case RELO_DATA: 6086 map = &obj->maps[relo->map_idx]; 6087 insn[1].imm = insn[0].imm + relo->sym_off; 6088 if (obj->gen_loader) { 6089 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6090 insn[0].imm = relo->map_idx; 6091 } else if (map->autocreate) { 6092 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6093 insn[0].imm = map->fd; 6094 } else { 6095 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6096 relo->map_idx, map); 6097 } 6098 break; 6099 case RELO_EXTERN_LD64: 6100 ext = &obj->externs[relo->ext_idx]; 6101 if (ext->type == EXT_KCFG) { 6102 if (obj->gen_loader) { 6103 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6104 insn[0].imm = obj->kconfig_map_idx; 6105 } else { 6106 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6107 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6108 } 6109 insn[1].imm = ext->kcfg.data_off; 6110 } else /* EXT_KSYM */ { 6111 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6112 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6113 insn[0].imm = ext->ksym.kernel_btf_id; 6114 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6115 } else { /* typeless ksyms or unresolved typed ksyms */ 6116 insn[0].imm = (__u32)ext->ksym.addr; 6117 insn[1].imm = ext->ksym.addr >> 32; 6118 } 6119 } 6120 break; 6121 case RELO_EXTERN_CALL: 6122 ext = &obj->externs[relo->ext_idx]; 6123 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6124 if (ext->is_set) { 6125 insn[0].imm = ext->ksym.kernel_btf_id; 6126 insn[0].off = ext->ksym.btf_fd_idx; 6127 } else { /* unresolved weak kfunc call */ 6128 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6129 relo->ext_idx, ext); 6130 } 6131 break; 6132 case RELO_SUBPROG_ADDR: 6133 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6134 pr_warn("prog '%s': relo #%d: bad insn\n", 6135 prog->name, i); 6136 return -EINVAL; 6137 } 6138 /* handled already */ 6139 break; 6140 case RELO_CALL: 6141 /* handled already */ 6142 break; 6143 case RELO_CORE: 6144 /* will be handled by bpf_program_record_relos() */ 6145 break; 6146 default: 6147 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6148 prog->name, i, relo->type); 6149 return -EINVAL; 6150 } 6151 } 6152 6153 return 0; 6154 } 6155 6156 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6157 const struct bpf_program *prog, 6158 const struct btf_ext_info *ext_info, 6159 void **prog_info, __u32 *prog_rec_cnt, 6160 __u32 *prog_rec_sz) 6161 { 6162 void *copy_start = NULL, *copy_end = NULL; 6163 void *rec, *rec_end, *new_prog_info; 6164 const struct btf_ext_info_sec *sec; 6165 size_t old_sz, new_sz; 6166 int i, sec_num, sec_idx, off_adj; 6167 6168 sec_num = 0; 6169 for_each_btf_ext_sec(ext_info, sec) { 6170 sec_idx = ext_info->sec_idxs[sec_num]; 6171 sec_num++; 6172 if (prog->sec_idx != sec_idx) 6173 continue; 6174 6175 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6176 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6177 6178 if (insn_off < prog->sec_insn_off) 6179 continue; 6180 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6181 break; 6182 6183 if (!copy_start) 6184 copy_start = rec; 6185 copy_end = rec + ext_info->rec_size; 6186 } 6187 6188 if (!copy_start) 6189 return -ENOENT; 6190 6191 /* append func/line info of a given (sub-)program to the main 6192 * program func/line info 6193 */ 6194 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6195 new_sz = old_sz + (copy_end - copy_start); 6196 new_prog_info = realloc(*prog_info, new_sz); 6197 if (!new_prog_info) 6198 return -ENOMEM; 6199 *prog_info = new_prog_info; 6200 *prog_rec_cnt = new_sz / ext_info->rec_size; 6201 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6202 6203 /* Kernel instruction offsets are in units of 8-byte 6204 * instructions, while .BTF.ext instruction offsets generated 6205 * by Clang are in units of bytes. So convert Clang offsets 6206 * into kernel offsets and adjust offset according to program 6207 * relocated position. 6208 */ 6209 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6210 rec = new_prog_info + old_sz; 6211 rec_end = new_prog_info + new_sz; 6212 for (; rec < rec_end; rec += ext_info->rec_size) { 6213 __u32 *insn_off = rec; 6214 6215 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6216 } 6217 *prog_rec_sz = ext_info->rec_size; 6218 return 0; 6219 } 6220 6221 return -ENOENT; 6222 } 6223 6224 static int 6225 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6226 struct bpf_program *main_prog, 6227 const struct bpf_program *prog) 6228 { 6229 int err; 6230 6231 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6232 * supprot func/line info 6233 */ 6234 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6235 return 0; 6236 6237 /* only attempt func info relocation if main program's func_info 6238 * relocation was successful 6239 */ 6240 if (main_prog != prog && !main_prog->func_info) 6241 goto line_info; 6242 6243 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6244 &main_prog->func_info, 6245 &main_prog->func_info_cnt, 6246 &main_prog->func_info_rec_size); 6247 if (err) { 6248 if (err != -ENOENT) { 6249 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6250 prog->name, err); 6251 return err; 6252 } 6253 if (main_prog->func_info) { 6254 /* 6255 * Some info has already been found but has problem 6256 * in the last btf_ext reloc. Must have to error out. 6257 */ 6258 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6259 return err; 6260 } 6261 /* Have problem loading the very first info. Ignore the rest. */ 6262 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6263 prog->name); 6264 } 6265 6266 line_info: 6267 /* don't relocate line info if main program's relocation failed */ 6268 if (main_prog != prog && !main_prog->line_info) 6269 return 0; 6270 6271 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6272 &main_prog->line_info, 6273 &main_prog->line_info_cnt, 6274 &main_prog->line_info_rec_size); 6275 if (err) { 6276 if (err != -ENOENT) { 6277 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6278 prog->name, err); 6279 return err; 6280 } 6281 if (main_prog->line_info) { 6282 /* 6283 * Some info has already been found but has problem 6284 * in the last btf_ext reloc. Must have to error out. 6285 */ 6286 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6287 return err; 6288 } 6289 /* Have problem loading the very first info. Ignore the rest. */ 6290 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6291 prog->name); 6292 } 6293 return 0; 6294 } 6295 6296 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6297 { 6298 size_t insn_idx = *(const size_t *)key; 6299 const struct reloc_desc *relo = elem; 6300 6301 if (insn_idx == relo->insn_idx) 6302 return 0; 6303 return insn_idx < relo->insn_idx ? -1 : 1; 6304 } 6305 6306 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6307 { 6308 if (!prog->nr_reloc) 6309 return NULL; 6310 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6311 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6312 } 6313 6314 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6315 { 6316 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6317 struct reloc_desc *relos; 6318 int i; 6319 6320 if (main_prog == subprog) 6321 return 0; 6322 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6323 /* if new count is zero, reallocarray can return a valid NULL result; 6324 * in this case the previous pointer will be freed, so we *have to* 6325 * reassign old pointer to the new value (even if it's NULL) 6326 */ 6327 if (!relos && new_cnt) 6328 return -ENOMEM; 6329 if (subprog->nr_reloc) 6330 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6331 sizeof(*relos) * subprog->nr_reloc); 6332 6333 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6334 relos[i].insn_idx += subprog->sub_insn_off; 6335 /* After insn_idx adjustment the 'relos' array is still sorted 6336 * by insn_idx and doesn't break bsearch. 6337 */ 6338 main_prog->reloc_desc = relos; 6339 main_prog->nr_reloc = new_cnt; 6340 return 0; 6341 } 6342 6343 static int 6344 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6345 struct bpf_program *subprog) 6346 { 6347 struct bpf_insn *insns; 6348 size_t new_cnt; 6349 int err; 6350 6351 subprog->sub_insn_off = main_prog->insns_cnt; 6352 6353 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6354 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6355 if (!insns) { 6356 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6357 return -ENOMEM; 6358 } 6359 main_prog->insns = insns; 6360 main_prog->insns_cnt = new_cnt; 6361 6362 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6363 subprog->insns_cnt * sizeof(*insns)); 6364 6365 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6366 main_prog->name, subprog->insns_cnt, subprog->name); 6367 6368 /* The subprog insns are now appended. Append its relos too. */ 6369 err = append_subprog_relos(main_prog, subprog); 6370 if (err) 6371 return err; 6372 return 0; 6373 } 6374 6375 static int 6376 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6377 struct bpf_program *prog) 6378 { 6379 size_t sub_insn_idx, insn_idx; 6380 struct bpf_program *subprog; 6381 struct reloc_desc *relo; 6382 struct bpf_insn *insn; 6383 int err; 6384 6385 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6386 if (err) 6387 return err; 6388 6389 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6390 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6391 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6392 continue; 6393 6394 relo = find_prog_insn_relo(prog, insn_idx); 6395 if (relo && relo->type == RELO_EXTERN_CALL) 6396 /* kfunc relocations will be handled later 6397 * in bpf_object__relocate_data() 6398 */ 6399 continue; 6400 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6401 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6402 prog->name, insn_idx, relo->type); 6403 return -LIBBPF_ERRNO__RELOC; 6404 } 6405 if (relo) { 6406 /* sub-program instruction index is a combination of 6407 * an offset of a symbol pointed to by relocation and 6408 * call instruction's imm field; for global functions, 6409 * call always has imm = -1, but for static functions 6410 * relocation is against STT_SECTION and insn->imm 6411 * points to a start of a static function 6412 * 6413 * for subprog addr relocation, the relo->sym_off + insn->imm is 6414 * the byte offset in the corresponding section. 6415 */ 6416 if (relo->type == RELO_CALL) 6417 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6418 else 6419 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6420 } else if (insn_is_pseudo_func(insn)) { 6421 /* 6422 * RELO_SUBPROG_ADDR relo is always emitted even if both 6423 * functions are in the same section, so it shouldn't reach here. 6424 */ 6425 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6426 prog->name, insn_idx); 6427 return -LIBBPF_ERRNO__RELOC; 6428 } else { 6429 /* if subprogram call is to a static function within 6430 * the same ELF section, there won't be any relocation 6431 * emitted, but it also means there is no additional 6432 * offset necessary, insns->imm is relative to 6433 * instruction's original position within the section 6434 */ 6435 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6436 } 6437 6438 /* we enforce that sub-programs should be in .text section */ 6439 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6440 if (!subprog) { 6441 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6442 prog->name); 6443 return -LIBBPF_ERRNO__RELOC; 6444 } 6445 6446 /* if it's the first call instruction calling into this 6447 * subprogram (meaning this subprog hasn't been processed 6448 * yet) within the context of current main program: 6449 * - append it at the end of main program's instructions blog; 6450 * - process is recursively, while current program is put on hold; 6451 * - if that subprogram calls some other not yet processes 6452 * subprogram, same thing will happen recursively until 6453 * there are no more unprocesses subprograms left to append 6454 * and relocate. 6455 */ 6456 if (subprog->sub_insn_off == 0) { 6457 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6458 if (err) 6459 return err; 6460 err = bpf_object__reloc_code(obj, main_prog, subprog); 6461 if (err) 6462 return err; 6463 } 6464 6465 /* main_prog->insns memory could have been re-allocated, so 6466 * calculate pointer again 6467 */ 6468 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6469 /* calculate correct instruction position within current main 6470 * prog; each main prog can have a different set of 6471 * subprograms appended (potentially in different order as 6472 * well), so position of any subprog can be different for 6473 * different main programs 6474 */ 6475 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6476 6477 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6478 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6479 } 6480 6481 return 0; 6482 } 6483 6484 /* 6485 * Relocate sub-program calls. 6486 * 6487 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6488 * main prog) is processed separately. For each subprog (non-entry functions, 6489 * that can be called from either entry progs or other subprogs) gets their 6490 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6491 * hasn't been yet appended and relocated within current main prog. Once its 6492 * relocated, sub_insn_off will point at the position within current main prog 6493 * where given subprog was appended. This will further be used to relocate all 6494 * the call instructions jumping into this subprog. 6495 * 6496 * We start with main program and process all call instructions. If the call 6497 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6498 * is zero), subprog instructions are appended at the end of main program's 6499 * instruction array. Then main program is "put on hold" while we recursively 6500 * process newly appended subprogram. If that subprogram calls into another 6501 * subprogram that hasn't been appended, new subprogram is appended again to 6502 * the *main* prog's instructions (subprog's instructions are always left 6503 * untouched, as they need to be in unmodified state for subsequent main progs 6504 * and subprog instructions are always sent only as part of a main prog) and 6505 * the process continues recursively. Once all the subprogs called from a main 6506 * prog or any of its subprogs are appended (and relocated), all their 6507 * positions within finalized instructions array are known, so it's easy to 6508 * rewrite call instructions with correct relative offsets, corresponding to 6509 * desired target subprog. 6510 * 6511 * Its important to realize that some subprogs might not be called from some 6512 * main prog and any of its called/used subprogs. Those will keep their 6513 * subprog->sub_insn_off as zero at all times and won't be appended to current 6514 * main prog and won't be relocated within the context of current main prog. 6515 * They might still be used from other main progs later. 6516 * 6517 * Visually this process can be shown as below. Suppose we have two main 6518 * programs mainA and mainB and BPF object contains three subprogs: subA, 6519 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6520 * subC both call subB: 6521 * 6522 * +--------+ +-------+ 6523 * | v v | 6524 * +--+---+ +--+-+-+ +---+--+ 6525 * | subA | | subB | | subC | 6526 * +--+---+ +------+ +---+--+ 6527 * ^ ^ 6528 * | | 6529 * +---+-------+ +------+----+ 6530 * | mainA | | mainB | 6531 * +-----------+ +-----------+ 6532 * 6533 * We'll start relocating mainA, will find subA, append it and start 6534 * processing sub A recursively: 6535 * 6536 * +-----------+------+ 6537 * | mainA | subA | 6538 * +-----------+------+ 6539 * 6540 * At this point we notice that subB is used from subA, so we append it and 6541 * relocate (there are no further subcalls from subB): 6542 * 6543 * +-----------+------+------+ 6544 * | mainA | subA | subB | 6545 * +-----------+------+------+ 6546 * 6547 * At this point, we relocate subA calls, then go one level up and finish with 6548 * relocatin mainA calls. mainA is done. 6549 * 6550 * For mainB process is similar but results in different order. We start with 6551 * mainB and skip subA and subB, as mainB never calls them (at least 6552 * directly), but we see subC is needed, so we append and start processing it: 6553 * 6554 * +-----------+------+ 6555 * | mainB | subC | 6556 * +-----------+------+ 6557 * Now we see subC needs subB, so we go back to it, append and relocate it: 6558 * 6559 * +-----------+------+------+ 6560 * | mainB | subC | subB | 6561 * +-----------+------+------+ 6562 * 6563 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6564 */ 6565 static int 6566 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6567 { 6568 struct bpf_program *subprog; 6569 int i, err; 6570 6571 /* mark all subprogs as not relocated (yet) within the context of 6572 * current main program 6573 */ 6574 for (i = 0; i < obj->nr_programs; i++) { 6575 subprog = &obj->programs[i]; 6576 if (!prog_is_subprog(obj, subprog)) 6577 continue; 6578 6579 subprog->sub_insn_off = 0; 6580 } 6581 6582 err = bpf_object__reloc_code(obj, prog, prog); 6583 if (err) 6584 return err; 6585 6586 return 0; 6587 } 6588 6589 static void 6590 bpf_object__free_relocs(struct bpf_object *obj) 6591 { 6592 struct bpf_program *prog; 6593 int i; 6594 6595 /* free up relocation descriptors */ 6596 for (i = 0; i < obj->nr_programs; i++) { 6597 prog = &obj->programs[i]; 6598 zfree(&prog->reloc_desc); 6599 prog->nr_reloc = 0; 6600 } 6601 } 6602 6603 static int cmp_relocs(const void *_a, const void *_b) 6604 { 6605 const struct reloc_desc *a = _a; 6606 const struct reloc_desc *b = _b; 6607 6608 if (a->insn_idx != b->insn_idx) 6609 return a->insn_idx < b->insn_idx ? -1 : 1; 6610 6611 /* no two relocations should have the same insn_idx, but ... */ 6612 if (a->type != b->type) 6613 return a->type < b->type ? -1 : 1; 6614 6615 return 0; 6616 } 6617 6618 static void bpf_object__sort_relos(struct bpf_object *obj) 6619 { 6620 int i; 6621 6622 for (i = 0; i < obj->nr_programs; i++) { 6623 struct bpf_program *p = &obj->programs[i]; 6624 6625 if (!p->nr_reloc) 6626 continue; 6627 6628 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6629 } 6630 } 6631 6632 static int 6633 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6634 { 6635 struct bpf_program *prog; 6636 size_t i, j; 6637 int err; 6638 6639 if (obj->btf_ext) { 6640 err = bpf_object__relocate_core(obj, targ_btf_path); 6641 if (err) { 6642 pr_warn("failed to perform CO-RE relocations: %d\n", 6643 err); 6644 return err; 6645 } 6646 bpf_object__sort_relos(obj); 6647 } 6648 6649 /* Before relocating calls pre-process relocations and mark 6650 * few ld_imm64 instructions that points to subprogs. 6651 * Otherwise bpf_object__reloc_code() later would have to consider 6652 * all ld_imm64 insns as relocation candidates. That would 6653 * reduce relocation speed, since amount of find_prog_insn_relo() 6654 * would increase and most of them will fail to find a relo. 6655 */ 6656 for (i = 0; i < obj->nr_programs; i++) { 6657 prog = &obj->programs[i]; 6658 for (j = 0; j < prog->nr_reloc; j++) { 6659 struct reloc_desc *relo = &prog->reloc_desc[j]; 6660 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6661 6662 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6663 if (relo->type == RELO_SUBPROG_ADDR) 6664 insn[0].src_reg = BPF_PSEUDO_FUNC; 6665 } 6666 } 6667 6668 /* relocate subprogram calls and append used subprograms to main 6669 * programs; each copy of subprogram code needs to be relocated 6670 * differently for each main program, because its code location might 6671 * have changed. 6672 * Append subprog relos to main programs to allow data relos to be 6673 * processed after text is completely relocated. 6674 */ 6675 for (i = 0; i < obj->nr_programs; i++) { 6676 prog = &obj->programs[i]; 6677 /* sub-program's sub-calls are relocated within the context of 6678 * its main program only 6679 */ 6680 if (prog_is_subprog(obj, prog)) 6681 continue; 6682 if (!prog->autoload) 6683 continue; 6684 6685 err = bpf_object__relocate_calls(obj, prog); 6686 if (err) { 6687 pr_warn("prog '%s': failed to relocate calls: %d\n", 6688 prog->name, err); 6689 return err; 6690 } 6691 6692 /* Now, also append exception callback if it has not been done already. */ 6693 if (prog->exception_cb_idx >= 0) { 6694 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6695 6696 /* Calling exception callback directly is disallowed, which the 6697 * verifier will reject later. In case it was processed already, 6698 * we can skip this step, otherwise for all other valid cases we 6699 * have to append exception callback now. 6700 */ 6701 if (subprog->sub_insn_off == 0) { 6702 err = bpf_object__append_subprog_code(obj, prog, subprog); 6703 if (err) 6704 return err; 6705 err = bpf_object__reloc_code(obj, prog, subprog); 6706 if (err) 6707 return err; 6708 } 6709 } 6710 } 6711 /* Process data relos for main programs */ 6712 for (i = 0; i < obj->nr_programs; i++) { 6713 prog = &obj->programs[i]; 6714 if (prog_is_subprog(obj, prog)) 6715 continue; 6716 if (!prog->autoload) 6717 continue; 6718 err = bpf_object__relocate_data(obj, prog); 6719 if (err) { 6720 pr_warn("prog '%s': failed to relocate data references: %d\n", 6721 prog->name, err); 6722 return err; 6723 } 6724 } 6725 6726 return 0; 6727 } 6728 6729 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6730 Elf64_Shdr *shdr, Elf_Data *data); 6731 6732 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6733 Elf64_Shdr *shdr, Elf_Data *data) 6734 { 6735 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6736 int i, j, nrels, new_sz; 6737 const struct btf_var_secinfo *vi = NULL; 6738 const struct btf_type *sec, *var, *def; 6739 struct bpf_map *map = NULL, *targ_map = NULL; 6740 struct bpf_program *targ_prog = NULL; 6741 bool is_prog_array, is_map_in_map; 6742 const struct btf_member *member; 6743 const char *name, *mname, *type; 6744 unsigned int moff; 6745 Elf64_Sym *sym; 6746 Elf64_Rel *rel; 6747 void *tmp; 6748 6749 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6750 return -EINVAL; 6751 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6752 if (!sec) 6753 return -EINVAL; 6754 6755 nrels = shdr->sh_size / shdr->sh_entsize; 6756 for (i = 0; i < nrels; i++) { 6757 rel = elf_rel_by_idx(data, i); 6758 if (!rel) { 6759 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6760 return -LIBBPF_ERRNO__FORMAT; 6761 } 6762 6763 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6764 if (!sym) { 6765 pr_warn(".maps relo #%d: symbol %zx not found\n", 6766 i, (size_t)ELF64_R_SYM(rel->r_info)); 6767 return -LIBBPF_ERRNO__FORMAT; 6768 } 6769 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6770 6771 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6772 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6773 (size_t)rel->r_offset, sym->st_name, name); 6774 6775 for (j = 0; j < obj->nr_maps; j++) { 6776 map = &obj->maps[j]; 6777 if (map->sec_idx != obj->efile.btf_maps_shndx) 6778 continue; 6779 6780 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6781 if (vi->offset <= rel->r_offset && 6782 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6783 break; 6784 } 6785 if (j == obj->nr_maps) { 6786 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6787 i, name, (size_t)rel->r_offset); 6788 return -EINVAL; 6789 } 6790 6791 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6792 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6793 type = is_map_in_map ? "map" : "prog"; 6794 if (is_map_in_map) { 6795 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6796 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6797 i, name); 6798 return -LIBBPF_ERRNO__RELOC; 6799 } 6800 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6801 map->def.key_size != sizeof(int)) { 6802 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6803 i, map->name, sizeof(int)); 6804 return -EINVAL; 6805 } 6806 targ_map = bpf_object__find_map_by_name(obj, name); 6807 if (!targ_map) { 6808 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6809 i, name); 6810 return -ESRCH; 6811 } 6812 } else if (is_prog_array) { 6813 targ_prog = bpf_object__find_program_by_name(obj, name); 6814 if (!targ_prog) { 6815 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6816 i, name); 6817 return -ESRCH; 6818 } 6819 if (targ_prog->sec_idx != sym->st_shndx || 6820 targ_prog->sec_insn_off * 8 != sym->st_value || 6821 prog_is_subprog(obj, targ_prog)) { 6822 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6823 i, name); 6824 return -LIBBPF_ERRNO__RELOC; 6825 } 6826 } else { 6827 return -EINVAL; 6828 } 6829 6830 var = btf__type_by_id(obj->btf, vi->type); 6831 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6832 if (btf_vlen(def) == 0) 6833 return -EINVAL; 6834 member = btf_members(def) + btf_vlen(def) - 1; 6835 mname = btf__name_by_offset(obj->btf, member->name_off); 6836 if (strcmp(mname, "values")) 6837 return -EINVAL; 6838 6839 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6840 if (rel->r_offset - vi->offset < moff) 6841 return -EINVAL; 6842 6843 moff = rel->r_offset - vi->offset - moff; 6844 /* here we use BPF pointer size, which is always 64 bit, as we 6845 * are parsing ELF that was built for BPF target 6846 */ 6847 if (moff % bpf_ptr_sz) 6848 return -EINVAL; 6849 moff /= bpf_ptr_sz; 6850 if (moff >= map->init_slots_sz) { 6851 new_sz = moff + 1; 6852 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6853 if (!tmp) 6854 return -ENOMEM; 6855 map->init_slots = tmp; 6856 memset(map->init_slots + map->init_slots_sz, 0, 6857 (new_sz - map->init_slots_sz) * host_ptr_sz); 6858 map->init_slots_sz = new_sz; 6859 } 6860 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6861 6862 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6863 i, map->name, moff, type, name); 6864 } 6865 6866 return 0; 6867 } 6868 6869 static int bpf_object__collect_relos(struct bpf_object *obj) 6870 { 6871 int i, err; 6872 6873 for (i = 0; i < obj->efile.sec_cnt; i++) { 6874 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6875 Elf64_Shdr *shdr; 6876 Elf_Data *data; 6877 int idx; 6878 6879 if (sec_desc->sec_type != SEC_RELO) 6880 continue; 6881 6882 shdr = sec_desc->shdr; 6883 data = sec_desc->data; 6884 idx = shdr->sh_info; 6885 6886 if (shdr->sh_type != SHT_REL) { 6887 pr_warn("internal error at %d\n", __LINE__); 6888 return -LIBBPF_ERRNO__INTERNAL; 6889 } 6890 6891 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6892 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6893 else if (idx == obj->efile.btf_maps_shndx) 6894 err = bpf_object__collect_map_relos(obj, shdr, data); 6895 else 6896 err = bpf_object__collect_prog_relos(obj, shdr, data); 6897 if (err) 6898 return err; 6899 } 6900 6901 bpf_object__sort_relos(obj); 6902 return 0; 6903 } 6904 6905 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6906 { 6907 if (BPF_CLASS(insn->code) == BPF_JMP && 6908 BPF_OP(insn->code) == BPF_CALL && 6909 BPF_SRC(insn->code) == BPF_K && 6910 insn->src_reg == 0 && 6911 insn->dst_reg == 0) { 6912 *func_id = insn->imm; 6913 return true; 6914 } 6915 return false; 6916 } 6917 6918 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6919 { 6920 struct bpf_insn *insn = prog->insns; 6921 enum bpf_func_id func_id; 6922 int i; 6923 6924 if (obj->gen_loader) 6925 return 0; 6926 6927 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6928 if (!insn_is_helper_call(insn, &func_id)) 6929 continue; 6930 6931 /* on kernels that don't yet support 6932 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6933 * to bpf_probe_read() which works well for old kernels 6934 */ 6935 switch (func_id) { 6936 case BPF_FUNC_probe_read_kernel: 6937 case BPF_FUNC_probe_read_user: 6938 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6939 insn->imm = BPF_FUNC_probe_read; 6940 break; 6941 case BPF_FUNC_probe_read_kernel_str: 6942 case BPF_FUNC_probe_read_user_str: 6943 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6944 insn->imm = BPF_FUNC_probe_read_str; 6945 break; 6946 default: 6947 break; 6948 } 6949 } 6950 return 0; 6951 } 6952 6953 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6954 int *btf_obj_fd, int *btf_type_id); 6955 6956 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6957 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6958 struct bpf_prog_load_opts *opts, long cookie) 6959 { 6960 enum sec_def_flags def = cookie; 6961 6962 /* old kernels might not support specifying expected_attach_type */ 6963 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6964 opts->expected_attach_type = 0; 6965 6966 if (def & SEC_SLEEPABLE) 6967 opts->prog_flags |= BPF_F_SLEEPABLE; 6968 6969 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6970 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6971 6972 /* special check for usdt to use uprobe_multi link */ 6973 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6974 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6975 6976 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6977 int btf_obj_fd = 0, btf_type_id = 0, err; 6978 const char *attach_name; 6979 6980 attach_name = strchr(prog->sec_name, '/'); 6981 if (!attach_name) { 6982 /* if BPF program is annotated with just SEC("fentry") 6983 * (or similar) without declaratively specifying 6984 * target, then it is expected that target will be 6985 * specified with bpf_program__set_attach_target() at 6986 * runtime before BPF object load step. If not, then 6987 * there is nothing to load into the kernel as BPF 6988 * verifier won't be able to validate BPF program 6989 * correctness anyways. 6990 */ 6991 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6992 prog->name); 6993 return -EINVAL; 6994 } 6995 attach_name++; /* skip over / */ 6996 6997 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6998 if (err) 6999 return err; 7000 7001 /* cache resolved BTF FD and BTF type ID in the prog */ 7002 prog->attach_btf_obj_fd = btf_obj_fd; 7003 prog->attach_btf_id = btf_type_id; 7004 7005 /* but by now libbpf common logic is not utilizing 7006 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7007 * this callback is called after opts were populated by 7008 * libbpf, so this callback has to update opts explicitly here 7009 */ 7010 opts->attach_btf_obj_fd = btf_obj_fd; 7011 opts->attach_btf_id = btf_type_id; 7012 } 7013 return 0; 7014 } 7015 7016 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7017 7018 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7019 struct bpf_insn *insns, int insns_cnt, 7020 const char *license, __u32 kern_version, int *prog_fd) 7021 { 7022 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7023 const char *prog_name = NULL; 7024 char *cp, errmsg[STRERR_BUFSIZE]; 7025 size_t log_buf_size = 0; 7026 char *log_buf = NULL, *tmp; 7027 int btf_fd, ret, err; 7028 bool own_log_buf = true; 7029 __u32 log_level = prog->log_level; 7030 7031 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7032 /* 7033 * The program type must be set. Most likely we couldn't find a proper 7034 * section definition at load time, and thus we didn't infer the type. 7035 */ 7036 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7037 prog->name, prog->sec_name); 7038 return -EINVAL; 7039 } 7040 7041 if (!insns || !insns_cnt) 7042 return -EINVAL; 7043 7044 if (kernel_supports(obj, FEAT_PROG_NAME)) 7045 prog_name = prog->name; 7046 load_attr.attach_prog_fd = prog->attach_prog_fd; 7047 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7048 load_attr.attach_btf_id = prog->attach_btf_id; 7049 load_attr.kern_version = kern_version; 7050 load_attr.prog_ifindex = prog->prog_ifindex; 7051 7052 /* specify func_info/line_info only if kernel supports them */ 7053 btf_fd = bpf_object__btf_fd(obj); 7054 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7055 load_attr.prog_btf_fd = btf_fd; 7056 load_attr.func_info = prog->func_info; 7057 load_attr.func_info_rec_size = prog->func_info_rec_size; 7058 load_attr.func_info_cnt = prog->func_info_cnt; 7059 load_attr.line_info = prog->line_info; 7060 load_attr.line_info_rec_size = prog->line_info_rec_size; 7061 load_attr.line_info_cnt = prog->line_info_cnt; 7062 } 7063 load_attr.log_level = log_level; 7064 load_attr.prog_flags = prog->prog_flags; 7065 load_attr.fd_array = obj->fd_array; 7066 7067 /* adjust load_attr if sec_def provides custom preload callback */ 7068 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7069 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7070 if (err < 0) { 7071 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7072 prog->name, err); 7073 return err; 7074 } 7075 insns = prog->insns; 7076 insns_cnt = prog->insns_cnt; 7077 } 7078 7079 /* allow prog_prepare_load_fn to change expected_attach_type */ 7080 load_attr.expected_attach_type = prog->expected_attach_type; 7081 7082 if (obj->gen_loader) { 7083 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7084 license, insns, insns_cnt, &load_attr, 7085 prog - obj->programs); 7086 *prog_fd = -1; 7087 return 0; 7088 } 7089 7090 retry_load: 7091 /* if log_level is zero, we don't request logs initially even if 7092 * custom log_buf is specified; if the program load fails, then we'll 7093 * bump log_level to 1 and use either custom log_buf or we'll allocate 7094 * our own and retry the load to get details on what failed 7095 */ 7096 if (log_level) { 7097 if (prog->log_buf) { 7098 log_buf = prog->log_buf; 7099 log_buf_size = prog->log_size; 7100 own_log_buf = false; 7101 } else if (obj->log_buf) { 7102 log_buf = obj->log_buf; 7103 log_buf_size = obj->log_size; 7104 own_log_buf = false; 7105 } else { 7106 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7107 tmp = realloc(log_buf, log_buf_size); 7108 if (!tmp) { 7109 ret = -ENOMEM; 7110 goto out; 7111 } 7112 log_buf = tmp; 7113 log_buf[0] = '\0'; 7114 own_log_buf = true; 7115 } 7116 } 7117 7118 load_attr.log_buf = log_buf; 7119 load_attr.log_size = log_buf_size; 7120 load_attr.log_level = log_level; 7121 7122 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7123 if (ret >= 0) { 7124 if (log_level && own_log_buf) { 7125 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7126 prog->name, log_buf); 7127 } 7128 7129 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7130 struct bpf_map *map; 7131 int i; 7132 7133 for (i = 0; i < obj->nr_maps; i++) { 7134 map = &prog->obj->maps[i]; 7135 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7136 continue; 7137 7138 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7139 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7140 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7141 prog->name, map->real_name, cp); 7142 /* Don't fail hard if can't bind rodata. */ 7143 } 7144 } 7145 } 7146 7147 *prog_fd = ret; 7148 ret = 0; 7149 goto out; 7150 } 7151 7152 if (log_level == 0) { 7153 log_level = 1; 7154 goto retry_load; 7155 } 7156 /* On ENOSPC, increase log buffer size and retry, unless custom 7157 * log_buf is specified. 7158 * Be careful to not overflow u32, though. Kernel's log buf size limit 7159 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7160 * multiply by 2 unless we are sure we'll fit within 32 bits. 7161 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7162 */ 7163 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7164 goto retry_load; 7165 7166 ret = -errno; 7167 7168 /* post-process verifier log to improve error descriptions */ 7169 fixup_verifier_log(prog, log_buf, log_buf_size); 7170 7171 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7172 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7173 pr_perm_msg(ret); 7174 7175 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7176 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7177 prog->name, log_buf); 7178 } 7179 7180 out: 7181 if (own_log_buf) 7182 free(log_buf); 7183 return ret; 7184 } 7185 7186 static char *find_prev_line(char *buf, char *cur) 7187 { 7188 char *p; 7189 7190 if (cur == buf) /* end of a log buf */ 7191 return NULL; 7192 7193 p = cur - 1; 7194 while (p - 1 >= buf && *(p - 1) != '\n') 7195 p--; 7196 7197 return p; 7198 } 7199 7200 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7201 char *orig, size_t orig_sz, const char *patch) 7202 { 7203 /* size of the remaining log content to the right from the to-be-replaced part */ 7204 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7205 size_t patch_sz = strlen(patch); 7206 7207 if (patch_sz != orig_sz) { 7208 /* If patch line(s) are longer than original piece of verifier log, 7209 * shift log contents by (patch_sz - orig_sz) bytes to the right 7210 * starting from after to-be-replaced part of the log. 7211 * 7212 * If patch line(s) are shorter than original piece of verifier log, 7213 * shift log contents by (orig_sz - patch_sz) bytes to the left 7214 * starting from after to-be-replaced part of the log 7215 * 7216 * We need to be careful about not overflowing available 7217 * buf_sz capacity. If that's the case, we'll truncate the end 7218 * of the original log, as necessary. 7219 */ 7220 if (patch_sz > orig_sz) { 7221 if (orig + patch_sz >= buf + buf_sz) { 7222 /* patch is big enough to cover remaining space completely */ 7223 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7224 rem_sz = 0; 7225 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7226 /* patch causes part of remaining log to be truncated */ 7227 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7228 } 7229 } 7230 /* shift remaining log to the right by calculated amount */ 7231 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7232 } 7233 7234 memcpy(orig, patch, patch_sz); 7235 } 7236 7237 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7238 char *buf, size_t buf_sz, size_t log_sz, 7239 char *line1, char *line2, char *line3) 7240 { 7241 /* Expected log for failed and not properly guarded CO-RE relocation: 7242 * line1 -> 123: (85) call unknown#195896080 7243 * line2 -> invalid func unknown#195896080 7244 * line3 -> <anything else or end of buffer> 7245 * 7246 * "123" is the index of the instruction that was poisoned. We extract 7247 * instruction index to find corresponding CO-RE relocation and 7248 * replace this part of the log with more relevant information about 7249 * failed CO-RE relocation. 7250 */ 7251 const struct bpf_core_relo *relo; 7252 struct bpf_core_spec spec; 7253 char patch[512], spec_buf[256]; 7254 int insn_idx, err, spec_len; 7255 7256 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7257 return; 7258 7259 relo = find_relo_core(prog, insn_idx); 7260 if (!relo) 7261 return; 7262 7263 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7264 if (err) 7265 return; 7266 7267 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7268 snprintf(patch, sizeof(patch), 7269 "%d: <invalid CO-RE relocation>\n" 7270 "failed to resolve CO-RE relocation %s%s\n", 7271 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7272 7273 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7274 } 7275 7276 static void fixup_log_missing_map_load(struct bpf_program *prog, 7277 char *buf, size_t buf_sz, size_t log_sz, 7278 char *line1, char *line2, char *line3) 7279 { 7280 /* Expected log for failed and not properly guarded map reference: 7281 * line1 -> 123: (85) call unknown#2001000345 7282 * line2 -> invalid func unknown#2001000345 7283 * line3 -> <anything else or end of buffer> 7284 * 7285 * "123" is the index of the instruction that was poisoned. 7286 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7287 */ 7288 struct bpf_object *obj = prog->obj; 7289 const struct bpf_map *map; 7290 int insn_idx, map_idx; 7291 char patch[128]; 7292 7293 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7294 return; 7295 7296 map_idx -= POISON_LDIMM64_MAP_BASE; 7297 if (map_idx < 0 || map_idx >= obj->nr_maps) 7298 return; 7299 map = &obj->maps[map_idx]; 7300 7301 snprintf(patch, sizeof(patch), 7302 "%d: <invalid BPF map reference>\n" 7303 "BPF map '%s' is referenced but wasn't created\n", 7304 insn_idx, map->name); 7305 7306 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7307 } 7308 7309 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7310 char *buf, size_t buf_sz, size_t log_sz, 7311 char *line1, char *line2, char *line3) 7312 { 7313 /* Expected log for failed and not properly guarded kfunc call: 7314 * line1 -> 123: (85) call unknown#2002000345 7315 * line2 -> invalid func unknown#2002000345 7316 * line3 -> <anything else or end of buffer> 7317 * 7318 * "123" is the index of the instruction that was poisoned. 7319 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7320 */ 7321 struct bpf_object *obj = prog->obj; 7322 const struct extern_desc *ext; 7323 int insn_idx, ext_idx; 7324 char patch[128]; 7325 7326 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7327 return; 7328 7329 ext_idx -= POISON_CALL_KFUNC_BASE; 7330 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7331 return; 7332 ext = &obj->externs[ext_idx]; 7333 7334 snprintf(patch, sizeof(patch), 7335 "%d: <invalid kfunc call>\n" 7336 "kfunc '%s' is referenced but wasn't resolved\n", 7337 insn_idx, ext->name); 7338 7339 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7340 } 7341 7342 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7343 { 7344 /* look for familiar error patterns in last N lines of the log */ 7345 const size_t max_last_line_cnt = 10; 7346 char *prev_line, *cur_line, *next_line; 7347 size_t log_sz; 7348 int i; 7349 7350 if (!buf) 7351 return; 7352 7353 log_sz = strlen(buf) + 1; 7354 next_line = buf + log_sz - 1; 7355 7356 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7357 cur_line = find_prev_line(buf, next_line); 7358 if (!cur_line) 7359 return; 7360 7361 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7362 prev_line = find_prev_line(buf, cur_line); 7363 if (!prev_line) 7364 continue; 7365 7366 /* failed CO-RE relocation case */ 7367 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7368 prev_line, cur_line, next_line); 7369 return; 7370 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7371 prev_line = find_prev_line(buf, cur_line); 7372 if (!prev_line) 7373 continue; 7374 7375 /* reference to uncreated BPF map */ 7376 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7377 prev_line, cur_line, next_line); 7378 return; 7379 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7380 prev_line = find_prev_line(buf, cur_line); 7381 if (!prev_line) 7382 continue; 7383 7384 /* reference to unresolved kfunc */ 7385 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7386 prev_line, cur_line, next_line); 7387 return; 7388 } 7389 } 7390 } 7391 7392 static int bpf_program_record_relos(struct bpf_program *prog) 7393 { 7394 struct bpf_object *obj = prog->obj; 7395 int i; 7396 7397 for (i = 0; i < prog->nr_reloc; i++) { 7398 struct reloc_desc *relo = &prog->reloc_desc[i]; 7399 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7400 int kind; 7401 7402 switch (relo->type) { 7403 case RELO_EXTERN_LD64: 7404 if (ext->type != EXT_KSYM) 7405 continue; 7406 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7407 BTF_KIND_VAR : BTF_KIND_FUNC; 7408 bpf_gen__record_extern(obj->gen_loader, ext->name, 7409 ext->is_weak, !ext->ksym.type_id, 7410 true, kind, relo->insn_idx); 7411 break; 7412 case RELO_EXTERN_CALL: 7413 bpf_gen__record_extern(obj->gen_loader, ext->name, 7414 ext->is_weak, false, false, BTF_KIND_FUNC, 7415 relo->insn_idx); 7416 break; 7417 case RELO_CORE: { 7418 struct bpf_core_relo cr = { 7419 .insn_off = relo->insn_idx * 8, 7420 .type_id = relo->core_relo->type_id, 7421 .access_str_off = relo->core_relo->access_str_off, 7422 .kind = relo->core_relo->kind, 7423 }; 7424 7425 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7426 break; 7427 } 7428 default: 7429 continue; 7430 } 7431 } 7432 return 0; 7433 } 7434 7435 static int 7436 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7437 { 7438 struct bpf_program *prog; 7439 size_t i; 7440 int err; 7441 7442 for (i = 0; i < obj->nr_programs; i++) { 7443 prog = &obj->programs[i]; 7444 err = bpf_object__sanitize_prog(obj, prog); 7445 if (err) 7446 return err; 7447 } 7448 7449 for (i = 0; i < obj->nr_programs; i++) { 7450 prog = &obj->programs[i]; 7451 if (prog_is_subprog(obj, prog)) 7452 continue; 7453 if (!prog->autoload) { 7454 pr_debug("prog '%s': skipped loading\n", prog->name); 7455 continue; 7456 } 7457 prog->log_level |= log_level; 7458 7459 if (obj->gen_loader) 7460 bpf_program_record_relos(prog); 7461 7462 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7463 obj->license, obj->kern_version, &prog->fd); 7464 if (err) { 7465 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7466 return err; 7467 } 7468 } 7469 7470 bpf_object__free_relocs(obj); 7471 return 0; 7472 } 7473 7474 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7475 7476 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7477 { 7478 struct bpf_program *prog; 7479 int err; 7480 7481 bpf_object__for_each_program(prog, obj) { 7482 prog->sec_def = find_sec_def(prog->sec_name); 7483 if (!prog->sec_def) { 7484 /* couldn't guess, but user might manually specify */ 7485 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7486 prog->name, prog->sec_name); 7487 continue; 7488 } 7489 7490 prog->type = prog->sec_def->prog_type; 7491 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7492 7493 /* sec_def can have custom callback which should be called 7494 * after bpf_program is initialized to adjust its properties 7495 */ 7496 if (prog->sec_def->prog_setup_fn) { 7497 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7498 if (err < 0) { 7499 pr_warn("prog '%s': failed to initialize: %d\n", 7500 prog->name, err); 7501 return err; 7502 } 7503 } 7504 } 7505 7506 return 0; 7507 } 7508 7509 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7510 const struct bpf_object_open_opts *opts) 7511 { 7512 const char *obj_name, *kconfig, *btf_tmp_path; 7513 struct bpf_object *obj; 7514 char tmp_name[64]; 7515 int err; 7516 char *log_buf; 7517 size_t log_size; 7518 __u32 log_level; 7519 7520 if (elf_version(EV_CURRENT) == EV_NONE) { 7521 pr_warn("failed to init libelf for %s\n", 7522 path ? : "(mem buf)"); 7523 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7524 } 7525 7526 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7527 return ERR_PTR(-EINVAL); 7528 7529 obj_name = OPTS_GET(opts, object_name, NULL); 7530 if (obj_buf) { 7531 if (!obj_name) { 7532 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7533 (unsigned long)obj_buf, 7534 (unsigned long)obj_buf_sz); 7535 obj_name = tmp_name; 7536 } 7537 path = obj_name; 7538 pr_debug("loading object '%s' from buffer\n", obj_name); 7539 } 7540 7541 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7542 log_size = OPTS_GET(opts, kernel_log_size, 0); 7543 log_level = OPTS_GET(opts, kernel_log_level, 0); 7544 if (log_size > UINT_MAX) 7545 return ERR_PTR(-EINVAL); 7546 if (log_size && !log_buf) 7547 return ERR_PTR(-EINVAL); 7548 7549 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7550 if (IS_ERR(obj)) 7551 return obj; 7552 7553 obj->log_buf = log_buf; 7554 obj->log_size = log_size; 7555 obj->log_level = log_level; 7556 7557 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7558 if (btf_tmp_path) { 7559 if (strlen(btf_tmp_path) >= PATH_MAX) { 7560 err = -ENAMETOOLONG; 7561 goto out; 7562 } 7563 obj->btf_custom_path = strdup(btf_tmp_path); 7564 if (!obj->btf_custom_path) { 7565 err = -ENOMEM; 7566 goto out; 7567 } 7568 } 7569 7570 kconfig = OPTS_GET(opts, kconfig, NULL); 7571 if (kconfig) { 7572 obj->kconfig = strdup(kconfig); 7573 if (!obj->kconfig) { 7574 err = -ENOMEM; 7575 goto out; 7576 } 7577 } 7578 7579 err = bpf_object__elf_init(obj); 7580 err = err ? : bpf_object__check_endianness(obj); 7581 err = err ? : bpf_object__elf_collect(obj); 7582 err = err ? : bpf_object__collect_externs(obj); 7583 err = err ? : bpf_object_fixup_btf(obj); 7584 err = err ? : bpf_object__init_maps(obj, opts); 7585 err = err ? : bpf_object_init_progs(obj, opts); 7586 err = err ? : bpf_object__collect_relos(obj); 7587 if (err) 7588 goto out; 7589 7590 bpf_object__elf_finish(obj); 7591 7592 return obj; 7593 out: 7594 bpf_object__close(obj); 7595 return ERR_PTR(err); 7596 } 7597 7598 struct bpf_object * 7599 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7600 { 7601 if (!path) 7602 return libbpf_err_ptr(-EINVAL); 7603 7604 pr_debug("loading %s\n", path); 7605 7606 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7607 } 7608 7609 struct bpf_object *bpf_object__open(const char *path) 7610 { 7611 return bpf_object__open_file(path, NULL); 7612 } 7613 7614 struct bpf_object * 7615 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7616 const struct bpf_object_open_opts *opts) 7617 { 7618 if (!obj_buf || obj_buf_sz == 0) 7619 return libbpf_err_ptr(-EINVAL); 7620 7621 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7622 } 7623 7624 static int bpf_object_unload(struct bpf_object *obj) 7625 { 7626 size_t i; 7627 7628 if (!obj) 7629 return libbpf_err(-EINVAL); 7630 7631 for (i = 0; i < obj->nr_maps; i++) { 7632 zclose(obj->maps[i].fd); 7633 if (obj->maps[i].st_ops) 7634 zfree(&obj->maps[i].st_ops->kern_vdata); 7635 } 7636 7637 for (i = 0; i < obj->nr_programs; i++) 7638 bpf_program__unload(&obj->programs[i]); 7639 7640 return 0; 7641 } 7642 7643 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7644 { 7645 struct bpf_map *m; 7646 7647 bpf_object__for_each_map(m, obj) { 7648 if (!bpf_map__is_internal(m)) 7649 continue; 7650 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7651 m->def.map_flags &= ~BPF_F_MMAPABLE; 7652 } 7653 7654 return 0; 7655 } 7656 7657 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7658 { 7659 char sym_type, sym_name[500]; 7660 unsigned long long sym_addr; 7661 int ret, err = 0; 7662 FILE *f; 7663 7664 f = fopen("/proc/kallsyms", "re"); 7665 if (!f) { 7666 err = -errno; 7667 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7668 return err; 7669 } 7670 7671 while (true) { 7672 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7673 &sym_addr, &sym_type, sym_name); 7674 if (ret == EOF && feof(f)) 7675 break; 7676 if (ret != 3) { 7677 pr_warn("failed to read kallsyms entry: %d\n", ret); 7678 err = -EINVAL; 7679 break; 7680 } 7681 7682 err = cb(sym_addr, sym_type, sym_name, ctx); 7683 if (err) 7684 break; 7685 } 7686 7687 fclose(f); 7688 return err; 7689 } 7690 7691 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7692 const char *sym_name, void *ctx) 7693 { 7694 struct bpf_object *obj = ctx; 7695 const struct btf_type *t; 7696 struct extern_desc *ext; 7697 7698 ext = find_extern_by_name(obj, sym_name); 7699 if (!ext || ext->type != EXT_KSYM) 7700 return 0; 7701 7702 t = btf__type_by_id(obj->btf, ext->btf_id); 7703 if (!btf_is_var(t)) 7704 return 0; 7705 7706 if (ext->is_set && ext->ksym.addr != sym_addr) { 7707 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7708 sym_name, ext->ksym.addr, sym_addr); 7709 return -EINVAL; 7710 } 7711 if (!ext->is_set) { 7712 ext->is_set = true; 7713 ext->ksym.addr = sym_addr; 7714 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7715 } 7716 return 0; 7717 } 7718 7719 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7720 { 7721 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7722 } 7723 7724 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7725 __u16 kind, struct btf **res_btf, 7726 struct module_btf **res_mod_btf) 7727 { 7728 struct module_btf *mod_btf; 7729 struct btf *btf; 7730 int i, id, err; 7731 7732 btf = obj->btf_vmlinux; 7733 mod_btf = NULL; 7734 id = btf__find_by_name_kind(btf, ksym_name, kind); 7735 7736 if (id == -ENOENT) { 7737 err = load_module_btfs(obj); 7738 if (err) 7739 return err; 7740 7741 for (i = 0; i < obj->btf_module_cnt; i++) { 7742 /* we assume module_btf's BTF FD is always >0 */ 7743 mod_btf = &obj->btf_modules[i]; 7744 btf = mod_btf->btf; 7745 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7746 if (id != -ENOENT) 7747 break; 7748 } 7749 } 7750 if (id <= 0) 7751 return -ESRCH; 7752 7753 *res_btf = btf; 7754 *res_mod_btf = mod_btf; 7755 return id; 7756 } 7757 7758 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7759 struct extern_desc *ext) 7760 { 7761 const struct btf_type *targ_var, *targ_type; 7762 __u32 targ_type_id, local_type_id; 7763 struct module_btf *mod_btf = NULL; 7764 const char *targ_var_name; 7765 struct btf *btf = NULL; 7766 int id, err; 7767 7768 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7769 if (id < 0) { 7770 if (id == -ESRCH && ext->is_weak) 7771 return 0; 7772 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7773 ext->name); 7774 return id; 7775 } 7776 7777 /* find local type_id */ 7778 local_type_id = ext->ksym.type_id; 7779 7780 /* find target type_id */ 7781 targ_var = btf__type_by_id(btf, id); 7782 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7783 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7784 7785 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7786 btf, targ_type_id); 7787 if (err <= 0) { 7788 const struct btf_type *local_type; 7789 const char *targ_name, *local_name; 7790 7791 local_type = btf__type_by_id(obj->btf, local_type_id); 7792 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7793 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7794 7795 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7796 ext->name, local_type_id, 7797 btf_kind_str(local_type), local_name, targ_type_id, 7798 btf_kind_str(targ_type), targ_name); 7799 return -EINVAL; 7800 } 7801 7802 ext->is_set = true; 7803 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7804 ext->ksym.kernel_btf_id = id; 7805 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7806 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7807 7808 return 0; 7809 } 7810 7811 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7812 struct extern_desc *ext) 7813 { 7814 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7815 struct module_btf *mod_btf = NULL; 7816 const struct btf_type *kern_func; 7817 struct btf *kern_btf = NULL; 7818 int ret; 7819 7820 local_func_proto_id = ext->ksym.type_id; 7821 7822 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7823 &mod_btf); 7824 if (kfunc_id < 0) { 7825 if (kfunc_id == -ESRCH && ext->is_weak) 7826 return 0; 7827 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7828 ext->name); 7829 return kfunc_id; 7830 } 7831 7832 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7833 kfunc_proto_id = kern_func->type; 7834 7835 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7836 kern_btf, kfunc_proto_id); 7837 if (ret <= 0) { 7838 if (ext->is_weak) 7839 return 0; 7840 7841 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7842 ext->name, local_func_proto_id, 7843 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7844 return -EINVAL; 7845 } 7846 7847 /* set index for module BTF fd in fd_array, if unset */ 7848 if (mod_btf && !mod_btf->fd_array_idx) { 7849 /* insn->off is s16 */ 7850 if (obj->fd_array_cnt == INT16_MAX) { 7851 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7852 ext->name, mod_btf->fd_array_idx); 7853 return -E2BIG; 7854 } 7855 /* Cannot use index 0 for module BTF fd */ 7856 if (!obj->fd_array_cnt) 7857 obj->fd_array_cnt = 1; 7858 7859 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7860 obj->fd_array_cnt + 1); 7861 if (ret) 7862 return ret; 7863 mod_btf->fd_array_idx = obj->fd_array_cnt; 7864 /* we assume module BTF FD is always >0 */ 7865 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7866 } 7867 7868 ext->is_set = true; 7869 ext->ksym.kernel_btf_id = kfunc_id; 7870 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7871 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7872 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7873 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7874 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7875 */ 7876 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7877 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7878 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7879 7880 return 0; 7881 } 7882 7883 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7884 { 7885 const struct btf_type *t; 7886 struct extern_desc *ext; 7887 int i, err; 7888 7889 for (i = 0; i < obj->nr_extern; i++) { 7890 ext = &obj->externs[i]; 7891 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7892 continue; 7893 7894 if (obj->gen_loader) { 7895 ext->is_set = true; 7896 ext->ksym.kernel_btf_obj_fd = 0; 7897 ext->ksym.kernel_btf_id = 0; 7898 continue; 7899 } 7900 t = btf__type_by_id(obj->btf, ext->btf_id); 7901 if (btf_is_var(t)) 7902 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7903 else 7904 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7905 if (err) 7906 return err; 7907 } 7908 return 0; 7909 } 7910 7911 static int bpf_object__resolve_externs(struct bpf_object *obj, 7912 const char *extra_kconfig) 7913 { 7914 bool need_config = false, need_kallsyms = false; 7915 bool need_vmlinux_btf = false; 7916 struct extern_desc *ext; 7917 void *kcfg_data = NULL; 7918 int err, i; 7919 7920 if (obj->nr_extern == 0) 7921 return 0; 7922 7923 if (obj->kconfig_map_idx >= 0) 7924 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7925 7926 for (i = 0; i < obj->nr_extern; i++) { 7927 ext = &obj->externs[i]; 7928 7929 if (ext->type == EXT_KSYM) { 7930 if (ext->ksym.type_id) 7931 need_vmlinux_btf = true; 7932 else 7933 need_kallsyms = true; 7934 continue; 7935 } else if (ext->type == EXT_KCFG) { 7936 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7937 __u64 value = 0; 7938 7939 /* Kconfig externs need actual /proc/config.gz */ 7940 if (str_has_pfx(ext->name, "CONFIG_")) { 7941 need_config = true; 7942 continue; 7943 } 7944 7945 /* Virtual kcfg externs are customly handled by libbpf */ 7946 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7947 value = get_kernel_version(); 7948 if (!value) { 7949 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7950 return -EINVAL; 7951 } 7952 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7953 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7954 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7955 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7956 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7957 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7958 * __kconfig externs, where LINUX_ ones are virtual and filled out 7959 * customly by libbpf (their values don't come from Kconfig). 7960 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7961 * __weak, it defaults to zero value, just like for CONFIG_xxx 7962 * externs. 7963 */ 7964 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7965 return -EINVAL; 7966 } 7967 7968 err = set_kcfg_value_num(ext, ext_ptr, value); 7969 if (err) 7970 return err; 7971 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7972 ext->name, (long long)value); 7973 } else { 7974 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7975 return -EINVAL; 7976 } 7977 } 7978 if (need_config && extra_kconfig) { 7979 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7980 if (err) 7981 return -EINVAL; 7982 need_config = false; 7983 for (i = 0; i < obj->nr_extern; i++) { 7984 ext = &obj->externs[i]; 7985 if (ext->type == EXT_KCFG && !ext->is_set) { 7986 need_config = true; 7987 break; 7988 } 7989 } 7990 } 7991 if (need_config) { 7992 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7993 if (err) 7994 return -EINVAL; 7995 } 7996 if (need_kallsyms) { 7997 err = bpf_object__read_kallsyms_file(obj); 7998 if (err) 7999 return -EINVAL; 8000 } 8001 if (need_vmlinux_btf) { 8002 err = bpf_object__resolve_ksyms_btf_id(obj); 8003 if (err) 8004 return -EINVAL; 8005 } 8006 for (i = 0; i < obj->nr_extern; i++) { 8007 ext = &obj->externs[i]; 8008 8009 if (!ext->is_set && !ext->is_weak) { 8010 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8011 return -ESRCH; 8012 } else if (!ext->is_set) { 8013 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8014 ext->name); 8015 } 8016 } 8017 8018 return 0; 8019 } 8020 8021 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8022 { 8023 struct bpf_struct_ops *st_ops; 8024 __u32 i; 8025 8026 st_ops = map->st_ops; 8027 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8028 struct bpf_program *prog = st_ops->progs[i]; 8029 void *kern_data; 8030 int prog_fd; 8031 8032 if (!prog) 8033 continue; 8034 8035 prog_fd = bpf_program__fd(prog); 8036 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8037 *(unsigned long *)kern_data = prog_fd; 8038 } 8039 } 8040 8041 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8042 { 8043 int i; 8044 8045 for (i = 0; i < obj->nr_maps; i++) 8046 if (bpf_map__is_struct_ops(&obj->maps[i])) 8047 bpf_map_prepare_vdata(&obj->maps[i]); 8048 8049 return 0; 8050 } 8051 8052 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8053 { 8054 int err, i; 8055 8056 if (!obj) 8057 return libbpf_err(-EINVAL); 8058 8059 if (obj->loaded) { 8060 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8061 return libbpf_err(-EINVAL); 8062 } 8063 8064 if (obj->gen_loader) 8065 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8066 8067 err = bpf_object__probe_loading(obj); 8068 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8069 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8070 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8071 err = err ? : bpf_object__sanitize_maps(obj); 8072 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8073 err = err ? : bpf_object__create_maps(obj); 8074 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8075 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8076 err = err ? : bpf_object_init_prog_arrays(obj); 8077 err = err ? : bpf_object_prepare_struct_ops(obj); 8078 8079 if (obj->gen_loader) { 8080 /* reset FDs */ 8081 if (obj->btf) 8082 btf__set_fd(obj->btf, -1); 8083 for (i = 0; i < obj->nr_maps; i++) 8084 obj->maps[i].fd = -1; 8085 if (!err) 8086 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8087 } 8088 8089 /* clean up fd_array */ 8090 zfree(&obj->fd_array); 8091 8092 /* clean up module BTFs */ 8093 for (i = 0; i < obj->btf_module_cnt; i++) { 8094 close(obj->btf_modules[i].fd); 8095 btf__free(obj->btf_modules[i].btf); 8096 free(obj->btf_modules[i].name); 8097 } 8098 free(obj->btf_modules); 8099 8100 /* clean up vmlinux BTF */ 8101 btf__free(obj->btf_vmlinux); 8102 obj->btf_vmlinux = NULL; 8103 8104 obj->loaded = true; /* doesn't matter if successfully or not */ 8105 8106 if (err) 8107 goto out; 8108 8109 return 0; 8110 out: 8111 /* unpin any maps that were auto-pinned during load */ 8112 for (i = 0; i < obj->nr_maps; i++) 8113 if (obj->maps[i].pinned && !obj->maps[i].reused) 8114 bpf_map__unpin(&obj->maps[i], NULL); 8115 8116 bpf_object_unload(obj); 8117 pr_warn("failed to load object '%s'\n", obj->path); 8118 return libbpf_err(err); 8119 } 8120 8121 int bpf_object__load(struct bpf_object *obj) 8122 { 8123 return bpf_object_load(obj, 0, NULL); 8124 } 8125 8126 static int make_parent_dir(const char *path) 8127 { 8128 char *cp, errmsg[STRERR_BUFSIZE]; 8129 char *dname, *dir; 8130 int err = 0; 8131 8132 dname = strdup(path); 8133 if (dname == NULL) 8134 return -ENOMEM; 8135 8136 dir = dirname(dname); 8137 if (mkdir(dir, 0700) && errno != EEXIST) 8138 err = -errno; 8139 8140 free(dname); 8141 if (err) { 8142 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8143 pr_warn("failed to mkdir %s: %s\n", path, cp); 8144 } 8145 return err; 8146 } 8147 8148 static int check_path(const char *path) 8149 { 8150 char *cp, errmsg[STRERR_BUFSIZE]; 8151 struct statfs st_fs; 8152 char *dname, *dir; 8153 int err = 0; 8154 8155 if (path == NULL) 8156 return -EINVAL; 8157 8158 dname = strdup(path); 8159 if (dname == NULL) 8160 return -ENOMEM; 8161 8162 dir = dirname(dname); 8163 if (statfs(dir, &st_fs)) { 8164 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8165 pr_warn("failed to statfs %s: %s\n", dir, cp); 8166 err = -errno; 8167 } 8168 free(dname); 8169 8170 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8171 pr_warn("specified path %s is not on BPF FS\n", path); 8172 err = -EINVAL; 8173 } 8174 8175 return err; 8176 } 8177 8178 int bpf_program__pin(struct bpf_program *prog, const char *path) 8179 { 8180 char *cp, errmsg[STRERR_BUFSIZE]; 8181 int err; 8182 8183 if (prog->fd < 0) { 8184 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8185 return libbpf_err(-EINVAL); 8186 } 8187 8188 err = make_parent_dir(path); 8189 if (err) 8190 return libbpf_err(err); 8191 8192 err = check_path(path); 8193 if (err) 8194 return libbpf_err(err); 8195 8196 if (bpf_obj_pin(prog->fd, path)) { 8197 err = -errno; 8198 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8199 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8200 return libbpf_err(err); 8201 } 8202 8203 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8204 return 0; 8205 } 8206 8207 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8208 { 8209 int err; 8210 8211 if (prog->fd < 0) { 8212 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8213 return libbpf_err(-EINVAL); 8214 } 8215 8216 err = check_path(path); 8217 if (err) 8218 return libbpf_err(err); 8219 8220 err = unlink(path); 8221 if (err) 8222 return libbpf_err(-errno); 8223 8224 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8225 return 0; 8226 } 8227 8228 int bpf_map__pin(struct bpf_map *map, const char *path) 8229 { 8230 char *cp, errmsg[STRERR_BUFSIZE]; 8231 int err; 8232 8233 if (map == NULL) { 8234 pr_warn("invalid map pointer\n"); 8235 return libbpf_err(-EINVAL); 8236 } 8237 8238 if (map->pin_path) { 8239 if (path && strcmp(path, map->pin_path)) { 8240 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8241 bpf_map__name(map), map->pin_path, path); 8242 return libbpf_err(-EINVAL); 8243 } else if (map->pinned) { 8244 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8245 bpf_map__name(map), map->pin_path); 8246 return 0; 8247 } 8248 } else { 8249 if (!path) { 8250 pr_warn("missing a path to pin map '%s' at\n", 8251 bpf_map__name(map)); 8252 return libbpf_err(-EINVAL); 8253 } else if (map->pinned) { 8254 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8255 return libbpf_err(-EEXIST); 8256 } 8257 8258 map->pin_path = strdup(path); 8259 if (!map->pin_path) { 8260 err = -errno; 8261 goto out_err; 8262 } 8263 } 8264 8265 err = make_parent_dir(map->pin_path); 8266 if (err) 8267 return libbpf_err(err); 8268 8269 err = check_path(map->pin_path); 8270 if (err) 8271 return libbpf_err(err); 8272 8273 if (bpf_obj_pin(map->fd, map->pin_path)) { 8274 err = -errno; 8275 goto out_err; 8276 } 8277 8278 map->pinned = true; 8279 pr_debug("pinned map '%s'\n", map->pin_path); 8280 8281 return 0; 8282 8283 out_err: 8284 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8285 pr_warn("failed to pin map: %s\n", cp); 8286 return libbpf_err(err); 8287 } 8288 8289 int bpf_map__unpin(struct bpf_map *map, const char *path) 8290 { 8291 int err; 8292 8293 if (map == NULL) { 8294 pr_warn("invalid map pointer\n"); 8295 return libbpf_err(-EINVAL); 8296 } 8297 8298 if (map->pin_path) { 8299 if (path && strcmp(path, map->pin_path)) { 8300 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8301 bpf_map__name(map), map->pin_path, path); 8302 return libbpf_err(-EINVAL); 8303 } 8304 path = map->pin_path; 8305 } else if (!path) { 8306 pr_warn("no path to unpin map '%s' from\n", 8307 bpf_map__name(map)); 8308 return libbpf_err(-EINVAL); 8309 } 8310 8311 err = check_path(path); 8312 if (err) 8313 return libbpf_err(err); 8314 8315 err = unlink(path); 8316 if (err != 0) 8317 return libbpf_err(-errno); 8318 8319 map->pinned = false; 8320 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8321 8322 return 0; 8323 } 8324 8325 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8326 { 8327 char *new = NULL; 8328 8329 if (path) { 8330 new = strdup(path); 8331 if (!new) 8332 return libbpf_err(-errno); 8333 } 8334 8335 free(map->pin_path); 8336 map->pin_path = new; 8337 return 0; 8338 } 8339 8340 __alias(bpf_map__pin_path) 8341 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8342 8343 const char *bpf_map__pin_path(const struct bpf_map *map) 8344 { 8345 return map->pin_path; 8346 } 8347 8348 bool bpf_map__is_pinned(const struct bpf_map *map) 8349 { 8350 return map->pinned; 8351 } 8352 8353 static void sanitize_pin_path(char *s) 8354 { 8355 /* bpffs disallows periods in path names */ 8356 while (*s) { 8357 if (*s == '.') 8358 *s = '_'; 8359 s++; 8360 } 8361 } 8362 8363 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8364 { 8365 struct bpf_map *map; 8366 int err; 8367 8368 if (!obj) 8369 return libbpf_err(-ENOENT); 8370 8371 if (!obj->loaded) { 8372 pr_warn("object not yet loaded; load it first\n"); 8373 return libbpf_err(-ENOENT); 8374 } 8375 8376 bpf_object__for_each_map(map, obj) { 8377 char *pin_path = NULL; 8378 char buf[PATH_MAX]; 8379 8380 if (!map->autocreate) 8381 continue; 8382 8383 if (path) { 8384 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8385 if (err) 8386 goto err_unpin_maps; 8387 sanitize_pin_path(buf); 8388 pin_path = buf; 8389 } else if (!map->pin_path) { 8390 continue; 8391 } 8392 8393 err = bpf_map__pin(map, pin_path); 8394 if (err) 8395 goto err_unpin_maps; 8396 } 8397 8398 return 0; 8399 8400 err_unpin_maps: 8401 while ((map = bpf_object__prev_map(obj, map))) { 8402 if (!map->pin_path) 8403 continue; 8404 8405 bpf_map__unpin(map, NULL); 8406 } 8407 8408 return libbpf_err(err); 8409 } 8410 8411 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8412 { 8413 struct bpf_map *map; 8414 int err; 8415 8416 if (!obj) 8417 return libbpf_err(-ENOENT); 8418 8419 bpf_object__for_each_map(map, obj) { 8420 char *pin_path = NULL; 8421 char buf[PATH_MAX]; 8422 8423 if (path) { 8424 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8425 if (err) 8426 return libbpf_err(err); 8427 sanitize_pin_path(buf); 8428 pin_path = buf; 8429 } else if (!map->pin_path) { 8430 continue; 8431 } 8432 8433 err = bpf_map__unpin(map, pin_path); 8434 if (err) 8435 return libbpf_err(err); 8436 } 8437 8438 return 0; 8439 } 8440 8441 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8442 { 8443 struct bpf_program *prog; 8444 char buf[PATH_MAX]; 8445 int err; 8446 8447 if (!obj) 8448 return libbpf_err(-ENOENT); 8449 8450 if (!obj->loaded) { 8451 pr_warn("object not yet loaded; load it first\n"); 8452 return libbpf_err(-ENOENT); 8453 } 8454 8455 bpf_object__for_each_program(prog, obj) { 8456 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8457 if (err) 8458 goto err_unpin_programs; 8459 8460 err = bpf_program__pin(prog, buf); 8461 if (err) 8462 goto err_unpin_programs; 8463 } 8464 8465 return 0; 8466 8467 err_unpin_programs: 8468 while ((prog = bpf_object__prev_program(obj, prog))) { 8469 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8470 continue; 8471 8472 bpf_program__unpin(prog, buf); 8473 } 8474 8475 return libbpf_err(err); 8476 } 8477 8478 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8479 { 8480 struct bpf_program *prog; 8481 int err; 8482 8483 if (!obj) 8484 return libbpf_err(-ENOENT); 8485 8486 bpf_object__for_each_program(prog, obj) { 8487 char buf[PATH_MAX]; 8488 8489 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8490 if (err) 8491 return libbpf_err(err); 8492 8493 err = bpf_program__unpin(prog, buf); 8494 if (err) 8495 return libbpf_err(err); 8496 } 8497 8498 return 0; 8499 } 8500 8501 int bpf_object__pin(struct bpf_object *obj, const char *path) 8502 { 8503 int err; 8504 8505 err = bpf_object__pin_maps(obj, path); 8506 if (err) 8507 return libbpf_err(err); 8508 8509 err = bpf_object__pin_programs(obj, path); 8510 if (err) { 8511 bpf_object__unpin_maps(obj, path); 8512 return libbpf_err(err); 8513 } 8514 8515 return 0; 8516 } 8517 8518 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8519 { 8520 int err; 8521 8522 err = bpf_object__unpin_programs(obj, path); 8523 if (err) 8524 return libbpf_err(err); 8525 8526 err = bpf_object__unpin_maps(obj, path); 8527 if (err) 8528 return libbpf_err(err); 8529 8530 return 0; 8531 } 8532 8533 static void bpf_map__destroy(struct bpf_map *map) 8534 { 8535 if (map->inner_map) { 8536 bpf_map__destroy(map->inner_map); 8537 zfree(&map->inner_map); 8538 } 8539 8540 zfree(&map->init_slots); 8541 map->init_slots_sz = 0; 8542 8543 if (map->mmaped) { 8544 size_t mmap_sz; 8545 8546 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8547 munmap(map->mmaped, mmap_sz); 8548 map->mmaped = NULL; 8549 } 8550 8551 if (map->st_ops) { 8552 zfree(&map->st_ops->data); 8553 zfree(&map->st_ops->progs); 8554 zfree(&map->st_ops->kern_func_off); 8555 zfree(&map->st_ops); 8556 } 8557 8558 zfree(&map->name); 8559 zfree(&map->real_name); 8560 zfree(&map->pin_path); 8561 8562 if (map->fd >= 0) 8563 zclose(map->fd); 8564 } 8565 8566 void bpf_object__close(struct bpf_object *obj) 8567 { 8568 size_t i; 8569 8570 if (IS_ERR_OR_NULL(obj)) 8571 return; 8572 8573 usdt_manager_free(obj->usdt_man); 8574 obj->usdt_man = NULL; 8575 8576 bpf_gen__free(obj->gen_loader); 8577 bpf_object__elf_finish(obj); 8578 bpf_object_unload(obj); 8579 btf__free(obj->btf); 8580 btf__free(obj->btf_vmlinux); 8581 btf_ext__free(obj->btf_ext); 8582 8583 for (i = 0; i < obj->nr_maps; i++) 8584 bpf_map__destroy(&obj->maps[i]); 8585 8586 zfree(&obj->btf_custom_path); 8587 zfree(&obj->kconfig); 8588 8589 for (i = 0; i < obj->nr_extern; i++) 8590 zfree(&obj->externs[i].essent_name); 8591 8592 zfree(&obj->externs); 8593 obj->nr_extern = 0; 8594 8595 zfree(&obj->maps); 8596 obj->nr_maps = 0; 8597 8598 if (obj->programs && obj->nr_programs) { 8599 for (i = 0; i < obj->nr_programs; i++) 8600 bpf_program__exit(&obj->programs[i]); 8601 } 8602 zfree(&obj->programs); 8603 8604 free(obj); 8605 } 8606 8607 const char *bpf_object__name(const struct bpf_object *obj) 8608 { 8609 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8610 } 8611 8612 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8613 { 8614 return obj ? obj->kern_version : 0; 8615 } 8616 8617 struct btf *bpf_object__btf(const struct bpf_object *obj) 8618 { 8619 return obj ? obj->btf : NULL; 8620 } 8621 8622 int bpf_object__btf_fd(const struct bpf_object *obj) 8623 { 8624 return obj->btf ? btf__fd(obj->btf) : -1; 8625 } 8626 8627 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8628 { 8629 if (obj->loaded) 8630 return libbpf_err(-EINVAL); 8631 8632 obj->kern_version = kern_version; 8633 8634 return 0; 8635 } 8636 8637 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8638 { 8639 struct bpf_gen *gen; 8640 8641 if (!opts) 8642 return -EFAULT; 8643 if (!OPTS_VALID(opts, gen_loader_opts)) 8644 return -EINVAL; 8645 gen = calloc(sizeof(*gen), 1); 8646 if (!gen) 8647 return -ENOMEM; 8648 gen->opts = opts; 8649 obj->gen_loader = gen; 8650 return 0; 8651 } 8652 8653 static struct bpf_program * 8654 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8655 bool forward) 8656 { 8657 size_t nr_programs = obj->nr_programs; 8658 ssize_t idx; 8659 8660 if (!nr_programs) 8661 return NULL; 8662 8663 if (!p) 8664 /* Iter from the beginning */ 8665 return forward ? &obj->programs[0] : 8666 &obj->programs[nr_programs - 1]; 8667 8668 if (p->obj != obj) { 8669 pr_warn("error: program handler doesn't match object\n"); 8670 return errno = EINVAL, NULL; 8671 } 8672 8673 idx = (p - obj->programs) + (forward ? 1 : -1); 8674 if (idx >= obj->nr_programs || idx < 0) 8675 return NULL; 8676 return &obj->programs[idx]; 8677 } 8678 8679 struct bpf_program * 8680 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8681 { 8682 struct bpf_program *prog = prev; 8683 8684 do { 8685 prog = __bpf_program__iter(prog, obj, true); 8686 } while (prog && prog_is_subprog(obj, prog)); 8687 8688 return prog; 8689 } 8690 8691 struct bpf_program * 8692 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8693 { 8694 struct bpf_program *prog = next; 8695 8696 do { 8697 prog = __bpf_program__iter(prog, obj, false); 8698 } while (prog && prog_is_subprog(obj, prog)); 8699 8700 return prog; 8701 } 8702 8703 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8704 { 8705 prog->prog_ifindex = ifindex; 8706 } 8707 8708 const char *bpf_program__name(const struct bpf_program *prog) 8709 { 8710 return prog->name; 8711 } 8712 8713 const char *bpf_program__section_name(const struct bpf_program *prog) 8714 { 8715 return prog->sec_name; 8716 } 8717 8718 bool bpf_program__autoload(const struct bpf_program *prog) 8719 { 8720 return prog->autoload; 8721 } 8722 8723 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8724 { 8725 if (prog->obj->loaded) 8726 return libbpf_err(-EINVAL); 8727 8728 prog->autoload = autoload; 8729 return 0; 8730 } 8731 8732 bool bpf_program__autoattach(const struct bpf_program *prog) 8733 { 8734 return prog->autoattach; 8735 } 8736 8737 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8738 { 8739 prog->autoattach = autoattach; 8740 } 8741 8742 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8743 { 8744 return prog->insns; 8745 } 8746 8747 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8748 { 8749 return prog->insns_cnt; 8750 } 8751 8752 int bpf_program__set_insns(struct bpf_program *prog, 8753 struct bpf_insn *new_insns, size_t new_insn_cnt) 8754 { 8755 struct bpf_insn *insns; 8756 8757 if (prog->obj->loaded) 8758 return -EBUSY; 8759 8760 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8761 /* NULL is a valid return from reallocarray if the new count is zero */ 8762 if (!insns && new_insn_cnt) { 8763 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8764 return -ENOMEM; 8765 } 8766 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8767 8768 prog->insns = insns; 8769 prog->insns_cnt = new_insn_cnt; 8770 return 0; 8771 } 8772 8773 int bpf_program__fd(const struct bpf_program *prog) 8774 { 8775 if (!prog) 8776 return libbpf_err(-EINVAL); 8777 8778 if (prog->fd < 0) 8779 return libbpf_err(-ENOENT); 8780 8781 return prog->fd; 8782 } 8783 8784 __alias(bpf_program__type) 8785 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8786 8787 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8788 { 8789 return prog->type; 8790 } 8791 8792 static size_t custom_sec_def_cnt; 8793 static struct bpf_sec_def *custom_sec_defs; 8794 static struct bpf_sec_def custom_fallback_def; 8795 static bool has_custom_fallback_def; 8796 static int last_custom_sec_def_handler_id; 8797 8798 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8799 { 8800 if (prog->obj->loaded) 8801 return libbpf_err(-EBUSY); 8802 8803 /* if type is not changed, do nothing */ 8804 if (prog->type == type) 8805 return 0; 8806 8807 prog->type = type; 8808 8809 /* If a program type was changed, we need to reset associated SEC() 8810 * handler, as it will be invalid now. The only exception is a generic 8811 * fallback handler, which by definition is program type-agnostic and 8812 * is a catch-all custom handler, optionally set by the application, 8813 * so should be able to handle any type of BPF program. 8814 */ 8815 if (prog->sec_def != &custom_fallback_def) 8816 prog->sec_def = NULL; 8817 return 0; 8818 } 8819 8820 __alias(bpf_program__expected_attach_type) 8821 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8822 8823 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8824 { 8825 return prog->expected_attach_type; 8826 } 8827 8828 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8829 enum bpf_attach_type type) 8830 { 8831 if (prog->obj->loaded) 8832 return libbpf_err(-EBUSY); 8833 8834 prog->expected_attach_type = type; 8835 return 0; 8836 } 8837 8838 __u32 bpf_program__flags(const struct bpf_program *prog) 8839 { 8840 return prog->prog_flags; 8841 } 8842 8843 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8844 { 8845 if (prog->obj->loaded) 8846 return libbpf_err(-EBUSY); 8847 8848 prog->prog_flags = flags; 8849 return 0; 8850 } 8851 8852 __u32 bpf_program__log_level(const struct bpf_program *prog) 8853 { 8854 return prog->log_level; 8855 } 8856 8857 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8858 { 8859 if (prog->obj->loaded) 8860 return libbpf_err(-EBUSY); 8861 8862 prog->log_level = log_level; 8863 return 0; 8864 } 8865 8866 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8867 { 8868 *log_size = prog->log_size; 8869 return prog->log_buf; 8870 } 8871 8872 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8873 { 8874 if (log_size && !log_buf) 8875 return -EINVAL; 8876 if (prog->log_size > UINT_MAX) 8877 return -EINVAL; 8878 if (prog->obj->loaded) 8879 return -EBUSY; 8880 8881 prog->log_buf = log_buf; 8882 prog->log_size = log_size; 8883 return 0; 8884 } 8885 8886 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8887 .sec = (char *)sec_pfx, \ 8888 .prog_type = BPF_PROG_TYPE_##ptype, \ 8889 .expected_attach_type = atype, \ 8890 .cookie = (long)(flags), \ 8891 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8892 __VA_ARGS__ \ 8893 } 8894 8895 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8896 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8897 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8898 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8899 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8900 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8901 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8902 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8903 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8904 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8905 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8906 8907 static const struct bpf_sec_def section_defs[] = { 8908 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8909 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8910 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8911 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8912 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8913 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8914 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8915 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8916 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8917 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8918 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8919 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8920 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8921 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8922 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8923 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8924 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8925 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8926 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8927 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8928 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8929 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8930 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8931 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8932 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8933 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8934 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 8935 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 8936 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8937 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8938 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8939 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8940 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8941 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8942 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8943 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8944 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8945 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8946 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8947 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8948 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8949 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8950 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8951 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8952 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8953 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8954 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8955 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8956 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8957 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8958 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8959 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8960 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8961 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8962 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8963 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8964 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8965 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8966 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8967 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8968 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8969 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8970 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8971 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8972 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8973 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8974 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8975 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8976 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8977 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8978 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8979 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8980 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8981 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8982 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8983 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8984 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8985 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8986 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 8987 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8988 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8989 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 8990 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8991 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8992 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 8993 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8994 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8995 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 8996 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8997 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8998 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 8999 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9000 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9001 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9002 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9003 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9004 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9005 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9006 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9007 }; 9008 9009 int libbpf_register_prog_handler(const char *sec, 9010 enum bpf_prog_type prog_type, 9011 enum bpf_attach_type exp_attach_type, 9012 const struct libbpf_prog_handler_opts *opts) 9013 { 9014 struct bpf_sec_def *sec_def; 9015 9016 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9017 return libbpf_err(-EINVAL); 9018 9019 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9020 return libbpf_err(-E2BIG); 9021 9022 if (sec) { 9023 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9024 sizeof(*sec_def)); 9025 if (!sec_def) 9026 return libbpf_err(-ENOMEM); 9027 9028 custom_sec_defs = sec_def; 9029 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9030 } else { 9031 if (has_custom_fallback_def) 9032 return libbpf_err(-EBUSY); 9033 9034 sec_def = &custom_fallback_def; 9035 } 9036 9037 sec_def->sec = sec ? strdup(sec) : NULL; 9038 if (sec && !sec_def->sec) 9039 return libbpf_err(-ENOMEM); 9040 9041 sec_def->prog_type = prog_type; 9042 sec_def->expected_attach_type = exp_attach_type; 9043 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9044 9045 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9046 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9047 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9048 9049 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9050 9051 if (sec) 9052 custom_sec_def_cnt++; 9053 else 9054 has_custom_fallback_def = true; 9055 9056 return sec_def->handler_id; 9057 } 9058 9059 int libbpf_unregister_prog_handler(int handler_id) 9060 { 9061 struct bpf_sec_def *sec_defs; 9062 int i; 9063 9064 if (handler_id <= 0) 9065 return libbpf_err(-EINVAL); 9066 9067 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9068 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9069 has_custom_fallback_def = false; 9070 return 0; 9071 } 9072 9073 for (i = 0; i < custom_sec_def_cnt; i++) { 9074 if (custom_sec_defs[i].handler_id == handler_id) 9075 break; 9076 } 9077 9078 if (i == custom_sec_def_cnt) 9079 return libbpf_err(-ENOENT); 9080 9081 free(custom_sec_defs[i].sec); 9082 for (i = i + 1; i < custom_sec_def_cnt; i++) 9083 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9084 custom_sec_def_cnt--; 9085 9086 /* try to shrink the array, but it's ok if we couldn't */ 9087 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9088 /* if new count is zero, reallocarray can return a valid NULL result; 9089 * in this case the previous pointer will be freed, so we *have to* 9090 * reassign old pointer to the new value (even if it's NULL) 9091 */ 9092 if (sec_defs || custom_sec_def_cnt == 0) 9093 custom_sec_defs = sec_defs; 9094 9095 return 0; 9096 } 9097 9098 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9099 { 9100 size_t len = strlen(sec_def->sec); 9101 9102 /* "type/" always has to have proper SEC("type/extras") form */ 9103 if (sec_def->sec[len - 1] == '/') { 9104 if (str_has_pfx(sec_name, sec_def->sec)) 9105 return true; 9106 return false; 9107 } 9108 9109 /* "type+" means it can be either exact SEC("type") or 9110 * well-formed SEC("type/extras") with proper '/' separator 9111 */ 9112 if (sec_def->sec[len - 1] == '+') { 9113 len--; 9114 /* not even a prefix */ 9115 if (strncmp(sec_name, sec_def->sec, len) != 0) 9116 return false; 9117 /* exact match or has '/' separator */ 9118 if (sec_name[len] == '\0' || sec_name[len] == '/') 9119 return true; 9120 return false; 9121 } 9122 9123 return strcmp(sec_name, sec_def->sec) == 0; 9124 } 9125 9126 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9127 { 9128 const struct bpf_sec_def *sec_def; 9129 int i, n; 9130 9131 n = custom_sec_def_cnt; 9132 for (i = 0; i < n; i++) { 9133 sec_def = &custom_sec_defs[i]; 9134 if (sec_def_matches(sec_def, sec_name)) 9135 return sec_def; 9136 } 9137 9138 n = ARRAY_SIZE(section_defs); 9139 for (i = 0; i < n; i++) { 9140 sec_def = §ion_defs[i]; 9141 if (sec_def_matches(sec_def, sec_name)) 9142 return sec_def; 9143 } 9144 9145 if (has_custom_fallback_def) 9146 return &custom_fallback_def; 9147 9148 return NULL; 9149 } 9150 9151 #define MAX_TYPE_NAME_SIZE 32 9152 9153 static char *libbpf_get_type_names(bool attach_type) 9154 { 9155 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9156 char *buf; 9157 9158 buf = malloc(len); 9159 if (!buf) 9160 return NULL; 9161 9162 buf[0] = '\0'; 9163 /* Forge string buf with all available names */ 9164 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9165 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9166 9167 if (attach_type) { 9168 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9169 continue; 9170 9171 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9172 continue; 9173 } 9174 9175 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9176 free(buf); 9177 return NULL; 9178 } 9179 strcat(buf, " "); 9180 strcat(buf, section_defs[i].sec); 9181 } 9182 9183 return buf; 9184 } 9185 9186 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9187 enum bpf_attach_type *expected_attach_type) 9188 { 9189 const struct bpf_sec_def *sec_def; 9190 char *type_names; 9191 9192 if (!name) 9193 return libbpf_err(-EINVAL); 9194 9195 sec_def = find_sec_def(name); 9196 if (sec_def) { 9197 *prog_type = sec_def->prog_type; 9198 *expected_attach_type = sec_def->expected_attach_type; 9199 return 0; 9200 } 9201 9202 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9203 type_names = libbpf_get_type_names(false); 9204 if (type_names != NULL) { 9205 pr_debug("supported section(type) names are:%s\n", type_names); 9206 free(type_names); 9207 } 9208 9209 return libbpf_err(-ESRCH); 9210 } 9211 9212 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9213 { 9214 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9215 return NULL; 9216 9217 return attach_type_name[t]; 9218 } 9219 9220 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9221 { 9222 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9223 return NULL; 9224 9225 return link_type_name[t]; 9226 } 9227 9228 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9229 { 9230 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9231 return NULL; 9232 9233 return map_type_name[t]; 9234 } 9235 9236 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9237 { 9238 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9239 return NULL; 9240 9241 return prog_type_name[t]; 9242 } 9243 9244 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9245 int sec_idx, 9246 size_t offset) 9247 { 9248 struct bpf_map *map; 9249 size_t i; 9250 9251 for (i = 0; i < obj->nr_maps; i++) { 9252 map = &obj->maps[i]; 9253 if (!bpf_map__is_struct_ops(map)) 9254 continue; 9255 if (map->sec_idx == sec_idx && 9256 map->sec_offset <= offset && 9257 offset - map->sec_offset < map->def.value_size) 9258 return map; 9259 } 9260 9261 return NULL; 9262 } 9263 9264 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9265 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9266 Elf64_Shdr *shdr, Elf_Data *data) 9267 { 9268 const struct btf_member *member; 9269 struct bpf_struct_ops *st_ops; 9270 struct bpf_program *prog; 9271 unsigned int shdr_idx; 9272 const struct btf *btf; 9273 struct bpf_map *map; 9274 unsigned int moff, insn_idx; 9275 const char *name; 9276 __u32 member_idx; 9277 Elf64_Sym *sym; 9278 Elf64_Rel *rel; 9279 int i, nrels; 9280 9281 btf = obj->btf; 9282 nrels = shdr->sh_size / shdr->sh_entsize; 9283 for (i = 0; i < nrels; i++) { 9284 rel = elf_rel_by_idx(data, i); 9285 if (!rel) { 9286 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9287 return -LIBBPF_ERRNO__FORMAT; 9288 } 9289 9290 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9291 if (!sym) { 9292 pr_warn("struct_ops reloc: symbol %zx not found\n", 9293 (size_t)ELF64_R_SYM(rel->r_info)); 9294 return -LIBBPF_ERRNO__FORMAT; 9295 } 9296 9297 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9298 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9299 if (!map) { 9300 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9301 (size_t)rel->r_offset); 9302 return -EINVAL; 9303 } 9304 9305 moff = rel->r_offset - map->sec_offset; 9306 shdr_idx = sym->st_shndx; 9307 st_ops = map->st_ops; 9308 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9309 map->name, 9310 (long long)(rel->r_info >> 32), 9311 (long long)sym->st_value, 9312 shdr_idx, (size_t)rel->r_offset, 9313 map->sec_offset, sym->st_name, name); 9314 9315 if (shdr_idx >= SHN_LORESERVE) { 9316 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9317 map->name, (size_t)rel->r_offset, shdr_idx); 9318 return -LIBBPF_ERRNO__RELOC; 9319 } 9320 if (sym->st_value % BPF_INSN_SZ) { 9321 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9322 map->name, (unsigned long long)sym->st_value); 9323 return -LIBBPF_ERRNO__FORMAT; 9324 } 9325 insn_idx = sym->st_value / BPF_INSN_SZ; 9326 9327 member = find_member_by_offset(st_ops->type, moff * 8); 9328 if (!member) { 9329 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9330 map->name, moff); 9331 return -EINVAL; 9332 } 9333 member_idx = member - btf_members(st_ops->type); 9334 name = btf__name_by_offset(btf, member->name_off); 9335 9336 if (!resolve_func_ptr(btf, member->type, NULL)) { 9337 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9338 map->name, name); 9339 return -EINVAL; 9340 } 9341 9342 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9343 if (!prog) { 9344 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9345 map->name, shdr_idx, name); 9346 return -EINVAL; 9347 } 9348 9349 /* prevent the use of BPF prog with invalid type */ 9350 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9351 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9352 map->name, prog->name); 9353 return -EINVAL; 9354 } 9355 9356 /* if we haven't yet processed this BPF program, record proper 9357 * attach_btf_id and member_idx 9358 */ 9359 if (!prog->attach_btf_id) { 9360 prog->attach_btf_id = st_ops->type_id; 9361 prog->expected_attach_type = member_idx; 9362 } 9363 9364 /* struct_ops BPF prog can be re-used between multiple 9365 * .struct_ops & .struct_ops.link as long as it's the 9366 * same struct_ops struct definition and the same 9367 * function pointer field 9368 */ 9369 if (prog->attach_btf_id != st_ops->type_id || 9370 prog->expected_attach_type != member_idx) { 9371 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9372 map->name, prog->name, prog->sec_name, prog->type, 9373 prog->attach_btf_id, prog->expected_attach_type, name); 9374 return -EINVAL; 9375 } 9376 9377 st_ops->progs[member_idx] = prog; 9378 } 9379 9380 return 0; 9381 } 9382 9383 #define BTF_TRACE_PREFIX "btf_trace_" 9384 #define BTF_LSM_PREFIX "bpf_lsm_" 9385 #define BTF_ITER_PREFIX "bpf_iter_" 9386 #define BTF_MAX_NAME_SIZE 128 9387 9388 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9389 const char **prefix, int *kind) 9390 { 9391 switch (attach_type) { 9392 case BPF_TRACE_RAW_TP: 9393 *prefix = BTF_TRACE_PREFIX; 9394 *kind = BTF_KIND_TYPEDEF; 9395 break; 9396 case BPF_LSM_MAC: 9397 case BPF_LSM_CGROUP: 9398 *prefix = BTF_LSM_PREFIX; 9399 *kind = BTF_KIND_FUNC; 9400 break; 9401 case BPF_TRACE_ITER: 9402 *prefix = BTF_ITER_PREFIX; 9403 *kind = BTF_KIND_FUNC; 9404 break; 9405 default: 9406 *prefix = ""; 9407 *kind = BTF_KIND_FUNC; 9408 } 9409 } 9410 9411 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9412 const char *name, __u32 kind) 9413 { 9414 char btf_type_name[BTF_MAX_NAME_SIZE]; 9415 int ret; 9416 9417 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9418 "%s%s", prefix, name); 9419 /* snprintf returns the number of characters written excluding the 9420 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9421 * indicates truncation. 9422 */ 9423 if (ret < 0 || ret >= sizeof(btf_type_name)) 9424 return -ENAMETOOLONG; 9425 return btf__find_by_name_kind(btf, btf_type_name, kind); 9426 } 9427 9428 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9429 enum bpf_attach_type attach_type) 9430 { 9431 const char *prefix; 9432 int kind; 9433 9434 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9435 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9436 } 9437 9438 int libbpf_find_vmlinux_btf_id(const char *name, 9439 enum bpf_attach_type attach_type) 9440 { 9441 struct btf *btf; 9442 int err; 9443 9444 btf = btf__load_vmlinux_btf(); 9445 err = libbpf_get_error(btf); 9446 if (err) { 9447 pr_warn("vmlinux BTF is not found\n"); 9448 return libbpf_err(err); 9449 } 9450 9451 err = find_attach_btf_id(btf, name, attach_type); 9452 if (err <= 0) 9453 pr_warn("%s is not found in vmlinux BTF\n", name); 9454 9455 btf__free(btf); 9456 return libbpf_err(err); 9457 } 9458 9459 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9460 { 9461 struct bpf_prog_info info; 9462 __u32 info_len = sizeof(info); 9463 struct btf *btf; 9464 int err; 9465 9466 memset(&info, 0, info_len); 9467 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9468 if (err) { 9469 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9470 attach_prog_fd, err); 9471 return err; 9472 } 9473 9474 err = -EINVAL; 9475 if (!info.btf_id) { 9476 pr_warn("The target program doesn't have BTF\n"); 9477 goto out; 9478 } 9479 btf = btf__load_from_kernel_by_id(info.btf_id); 9480 err = libbpf_get_error(btf); 9481 if (err) { 9482 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9483 goto out; 9484 } 9485 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9486 btf__free(btf); 9487 if (err <= 0) { 9488 pr_warn("%s is not found in prog's BTF\n", name); 9489 goto out; 9490 } 9491 out: 9492 return err; 9493 } 9494 9495 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9496 enum bpf_attach_type attach_type, 9497 int *btf_obj_fd, int *btf_type_id) 9498 { 9499 int ret, i; 9500 9501 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9502 if (ret > 0) { 9503 *btf_obj_fd = 0; /* vmlinux BTF */ 9504 *btf_type_id = ret; 9505 return 0; 9506 } 9507 if (ret != -ENOENT) 9508 return ret; 9509 9510 ret = load_module_btfs(obj); 9511 if (ret) 9512 return ret; 9513 9514 for (i = 0; i < obj->btf_module_cnt; i++) { 9515 const struct module_btf *mod = &obj->btf_modules[i]; 9516 9517 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9518 if (ret > 0) { 9519 *btf_obj_fd = mod->fd; 9520 *btf_type_id = ret; 9521 return 0; 9522 } 9523 if (ret == -ENOENT) 9524 continue; 9525 9526 return ret; 9527 } 9528 9529 return -ESRCH; 9530 } 9531 9532 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9533 int *btf_obj_fd, int *btf_type_id) 9534 { 9535 enum bpf_attach_type attach_type = prog->expected_attach_type; 9536 __u32 attach_prog_fd = prog->attach_prog_fd; 9537 int err = 0; 9538 9539 /* BPF program's BTF ID */ 9540 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9541 if (!attach_prog_fd) { 9542 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9543 return -EINVAL; 9544 } 9545 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9546 if (err < 0) { 9547 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9548 prog->name, attach_prog_fd, attach_name, err); 9549 return err; 9550 } 9551 *btf_obj_fd = 0; 9552 *btf_type_id = err; 9553 return 0; 9554 } 9555 9556 /* kernel/module BTF ID */ 9557 if (prog->obj->gen_loader) { 9558 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9559 *btf_obj_fd = 0; 9560 *btf_type_id = 1; 9561 } else { 9562 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9563 } 9564 if (err) { 9565 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9566 prog->name, attach_name, err); 9567 return err; 9568 } 9569 return 0; 9570 } 9571 9572 int libbpf_attach_type_by_name(const char *name, 9573 enum bpf_attach_type *attach_type) 9574 { 9575 char *type_names; 9576 const struct bpf_sec_def *sec_def; 9577 9578 if (!name) 9579 return libbpf_err(-EINVAL); 9580 9581 sec_def = find_sec_def(name); 9582 if (!sec_def) { 9583 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9584 type_names = libbpf_get_type_names(true); 9585 if (type_names != NULL) { 9586 pr_debug("attachable section(type) names are:%s\n", type_names); 9587 free(type_names); 9588 } 9589 9590 return libbpf_err(-EINVAL); 9591 } 9592 9593 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9594 return libbpf_err(-EINVAL); 9595 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9596 return libbpf_err(-EINVAL); 9597 9598 *attach_type = sec_def->expected_attach_type; 9599 return 0; 9600 } 9601 9602 int bpf_map__fd(const struct bpf_map *map) 9603 { 9604 return map ? map->fd : libbpf_err(-EINVAL); 9605 } 9606 9607 static bool map_uses_real_name(const struct bpf_map *map) 9608 { 9609 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9610 * their user-visible name differs from kernel-visible name. Users see 9611 * such map's corresponding ELF section name as a map name. 9612 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9613 * maps to know which name has to be returned to the user. 9614 */ 9615 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9616 return true; 9617 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9618 return true; 9619 return false; 9620 } 9621 9622 const char *bpf_map__name(const struct bpf_map *map) 9623 { 9624 if (!map) 9625 return NULL; 9626 9627 if (map_uses_real_name(map)) 9628 return map->real_name; 9629 9630 return map->name; 9631 } 9632 9633 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9634 { 9635 return map->def.type; 9636 } 9637 9638 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9639 { 9640 if (map->fd >= 0) 9641 return libbpf_err(-EBUSY); 9642 map->def.type = type; 9643 return 0; 9644 } 9645 9646 __u32 bpf_map__map_flags(const struct bpf_map *map) 9647 { 9648 return map->def.map_flags; 9649 } 9650 9651 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9652 { 9653 if (map->fd >= 0) 9654 return libbpf_err(-EBUSY); 9655 map->def.map_flags = flags; 9656 return 0; 9657 } 9658 9659 __u64 bpf_map__map_extra(const struct bpf_map *map) 9660 { 9661 return map->map_extra; 9662 } 9663 9664 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9665 { 9666 if (map->fd >= 0) 9667 return libbpf_err(-EBUSY); 9668 map->map_extra = map_extra; 9669 return 0; 9670 } 9671 9672 __u32 bpf_map__numa_node(const struct bpf_map *map) 9673 { 9674 return map->numa_node; 9675 } 9676 9677 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9678 { 9679 if (map->fd >= 0) 9680 return libbpf_err(-EBUSY); 9681 map->numa_node = numa_node; 9682 return 0; 9683 } 9684 9685 __u32 bpf_map__key_size(const struct bpf_map *map) 9686 { 9687 return map->def.key_size; 9688 } 9689 9690 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9691 { 9692 if (map->fd >= 0) 9693 return libbpf_err(-EBUSY); 9694 map->def.key_size = size; 9695 return 0; 9696 } 9697 9698 __u32 bpf_map__value_size(const struct bpf_map *map) 9699 { 9700 return map->def.value_size; 9701 } 9702 9703 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9704 { 9705 struct btf *btf; 9706 struct btf_type *datasec_type, *var_type; 9707 struct btf_var_secinfo *var; 9708 const struct btf_type *array_type; 9709 const struct btf_array *array; 9710 int vlen, element_sz, new_array_id; 9711 __u32 nr_elements; 9712 9713 /* check btf existence */ 9714 btf = bpf_object__btf(map->obj); 9715 if (!btf) 9716 return -ENOENT; 9717 9718 /* verify map is datasec */ 9719 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9720 if (!btf_is_datasec(datasec_type)) { 9721 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9722 bpf_map__name(map)); 9723 return -EINVAL; 9724 } 9725 9726 /* verify datasec has at least one var */ 9727 vlen = btf_vlen(datasec_type); 9728 if (vlen == 0) { 9729 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9730 bpf_map__name(map)); 9731 return -EINVAL; 9732 } 9733 9734 /* verify last var in the datasec is an array */ 9735 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9736 var_type = btf_type_by_id(btf, var->type); 9737 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9738 if (!btf_is_array(array_type)) { 9739 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9740 bpf_map__name(map)); 9741 return -EINVAL; 9742 } 9743 9744 /* verify request size aligns with array */ 9745 array = btf_array(array_type); 9746 element_sz = btf__resolve_size(btf, array->type); 9747 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9748 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9749 bpf_map__name(map), element_sz, size); 9750 return -EINVAL; 9751 } 9752 9753 /* create a new array based on the existing array, but with new length */ 9754 nr_elements = (size - var->offset) / element_sz; 9755 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9756 if (new_array_id < 0) 9757 return new_array_id; 9758 9759 /* adding a new btf type invalidates existing pointers to btf objects, 9760 * so refresh pointers before proceeding 9761 */ 9762 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9763 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9764 var_type = btf_type_by_id(btf, var->type); 9765 9766 /* finally update btf info */ 9767 datasec_type->size = size; 9768 var->size = size - var->offset; 9769 var_type->type = new_array_id; 9770 9771 return 0; 9772 } 9773 9774 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9775 { 9776 if (map->fd >= 0) 9777 return libbpf_err(-EBUSY); 9778 9779 if (map->mmaped) { 9780 int err; 9781 size_t mmap_old_sz, mmap_new_sz; 9782 9783 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9784 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9785 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9786 if (err) { 9787 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9788 bpf_map__name(map), err); 9789 return err; 9790 } 9791 err = map_btf_datasec_resize(map, size); 9792 if (err && err != -ENOENT) { 9793 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9794 bpf_map__name(map), err); 9795 map->btf_value_type_id = 0; 9796 map->btf_key_type_id = 0; 9797 } 9798 } 9799 9800 map->def.value_size = size; 9801 return 0; 9802 } 9803 9804 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9805 { 9806 return map ? map->btf_key_type_id : 0; 9807 } 9808 9809 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9810 { 9811 return map ? map->btf_value_type_id : 0; 9812 } 9813 9814 int bpf_map__set_initial_value(struct bpf_map *map, 9815 const void *data, size_t size) 9816 { 9817 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9818 size != map->def.value_size || map->fd >= 0) 9819 return libbpf_err(-EINVAL); 9820 9821 memcpy(map->mmaped, data, size); 9822 return 0; 9823 } 9824 9825 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9826 { 9827 if (!map->mmaped) 9828 return NULL; 9829 *psize = map->def.value_size; 9830 return map->mmaped; 9831 } 9832 9833 bool bpf_map__is_internal(const struct bpf_map *map) 9834 { 9835 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9836 } 9837 9838 __u32 bpf_map__ifindex(const struct bpf_map *map) 9839 { 9840 return map->map_ifindex; 9841 } 9842 9843 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9844 { 9845 if (map->fd >= 0) 9846 return libbpf_err(-EBUSY); 9847 map->map_ifindex = ifindex; 9848 return 0; 9849 } 9850 9851 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9852 { 9853 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9854 pr_warn("error: unsupported map type\n"); 9855 return libbpf_err(-EINVAL); 9856 } 9857 if (map->inner_map_fd != -1) { 9858 pr_warn("error: inner_map_fd already specified\n"); 9859 return libbpf_err(-EINVAL); 9860 } 9861 if (map->inner_map) { 9862 bpf_map__destroy(map->inner_map); 9863 zfree(&map->inner_map); 9864 } 9865 map->inner_map_fd = fd; 9866 return 0; 9867 } 9868 9869 static struct bpf_map * 9870 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9871 { 9872 ssize_t idx; 9873 struct bpf_map *s, *e; 9874 9875 if (!obj || !obj->maps) 9876 return errno = EINVAL, NULL; 9877 9878 s = obj->maps; 9879 e = obj->maps + obj->nr_maps; 9880 9881 if ((m < s) || (m >= e)) { 9882 pr_warn("error in %s: map handler doesn't belong to object\n", 9883 __func__); 9884 return errno = EINVAL, NULL; 9885 } 9886 9887 idx = (m - obj->maps) + i; 9888 if (idx >= obj->nr_maps || idx < 0) 9889 return NULL; 9890 return &obj->maps[idx]; 9891 } 9892 9893 struct bpf_map * 9894 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9895 { 9896 if (prev == NULL) 9897 return obj->maps; 9898 9899 return __bpf_map__iter(prev, obj, 1); 9900 } 9901 9902 struct bpf_map * 9903 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9904 { 9905 if (next == NULL) { 9906 if (!obj->nr_maps) 9907 return NULL; 9908 return obj->maps + obj->nr_maps - 1; 9909 } 9910 9911 return __bpf_map__iter(next, obj, -1); 9912 } 9913 9914 struct bpf_map * 9915 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9916 { 9917 struct bpf_map *pos; 9918 9919 bpf_object__for_each_map(pos, obj) { 9920 /* if it's a special internal map name (which always starts 9921 * with dot) then check if that special name matches the 9922 * real map name (ELF section name) 9923 */ 9924 if (name[0] == '.') { 9925 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9926 return pos; 9927 continue; 9928 } 9929 /* otherwise map name has to be an exact match */ 9930 if (map_uses_real_name(pos)) { 9931 if (strcmp(pos->real_name, name) == 0) 9932 return pos; 9933 continue; 9934 } 9935 if (strcmp(pos->name, name) == 0) 9936 return pos; 9937 } 9938 return errno = ENOENT, NULL; 9939 } 9940 9941 int 9942 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9943 { 9944 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9945 } 9946 9947 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9948 size_t value_sz, bool check_value_sz) 9949 { 9950 if (map->fd <= 0) 9951 return -ENOENT; 9952 9953 if (map->def.key_size != key_sz) { 9954 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9955 map->name, key_sz, map->def.key_size); 9956 return -EINVAL; 9957 } 9958 9959 if (!check_value_sz) 9960 return 0; 9961 9962 switch (map->def.type) { 9963 case BPF_MAP_TYPE_PERCPU_ARRAY: 9964 case BPF_MAP_TYPE_PERCPU_HASH: 9965 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9966 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9967 int num_cpu = libbpf_num_possible_cpus(); 9968 size_t elem_sz = roundup(map->def.value_size, 8); 9969 9970 if (value_sz != num_cpu * elem_sz) { 9971 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9972 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9973 return -EINVAL; 9974 } 9975 break; 9976 } 9977 default: 9978 if (map->def.value_size != value_sz) { 9979 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9980 map->name, value_sz, map->def.value_size); 9981 return -EINVAL; 9982 } 9983 break; 9984 } 9985 return 0; 9986 } 9987 9988 int bpf_map__lookup_elem(const struct bpf_map *map, 9989 const void *key, size_t key_sz, 9990 void *value, size_t value_sz, __u64 flags) 9991 { 9992 int err; 9993 9994 err = validate_map_op(map, key_sz, value_sz, true); 9995 if (err) 9996 return libbpf_err(err); 9997 9998 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9999 } 10000 10001 int bpf_map__update_elem(const struct bpf_map *map, 10002 const void *key, size_t key_sz, 10003 const void *value, size_t value_sz, __u64 flags) 10004 { 10005 int err; 10006 10007 err = validate_map_op(map, key_sz, value_sz, true); 10008 if (err) 10009 return libbpf_err(err); 10010 10011 return bpf_map_update_elem(map->fd, key, value, flags); 10012 } 10013 10014 int bpf_map__delete_elem(const struct bpf_map *map, 10015 const void *key, size_t key_sz, __u64 flags) 10016 { 10017 int err; 10018 10019 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10020 if (err) 10021 return libbpf_err(err); 10022 10023 return bpf_map_delete_elem_flags(map->fd, key, flags); 10024 } 10025 10026 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10027 const void *key, size_t key_sz, 10028 void *value, size_t value_sz, __u64 flags) 10029 { 10030 int err; 10031 10032 err = validate_map_op(map, key_sz, value_sz, true); 10033 if (err) 10034 return libbpf_err(err); 10035 10036 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10037 } 10038 10039 int bpf_map__get_next_key(const struct bpf_map *map, 10040 const void *cur_key, void *next_key, size_t key_sz) 10041 { 10042 int err; 10043 10044 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10045 if (err) 10046 return libbpf_err(err); 10047 10048 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10049 } 10050 10051 long libbpf_get_error(const void *ptr) 10052 { 10053 if (!IS_ERR_OR_NULL(ptr)) 10054 return 0; 10055 10056 if (IS_ERR(ptr)) 10057 errno = -PTR_ERR(ptr); 10058 10059 /* If ptr == NULL, then errno should be already set by the failing 10060 * API, because libbpf never returns NULL on success and it now always 10061 * sets errno on error. So no extra errno handling for ptr == NULL 10062 * case. 10063 */ 10064 return -errno; 10065 } 10066 10067 /* Replace link's underlying BPF program with the new one */ 10068 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10069 { 10070 int ret; 10071 10072 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10073 return libbpf_err_errno(ret); 10074 } 10075 10076 /* Release "ownership" of underlying BPF resource (typically, BPF program 10077 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10078 * link, when destructed through bpf_link__destroy() call won't attempt to 10079 * detach/unregisted that BPF resource. This is useful in situations where, 10080 * say, attached BPF program has to outlive userspace program that attached it 10081 * in the system. Depending on type of BPF program, though, there might be 10082 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10083 * exit of userspace program doesn't trigger automatic detachment and clean up 10084 * inside the kernel. 10085 */ 10086 void bpf_link__disconnect(struct bpf_link *link) 10087 { 10088 link->disconnected = true; 10089 } 10090 10091 int bpf_link__destroy(struct bpf_link *link) 10092 { 10093 int err = 0; 10094 10095 if (IS_ERR_OR_NULL(link)) 10096 return 0; 10097 10098 if (!link->disconnected && link->detach) 10099 err = link->detach(link); 10100 if (link->pin_path) 10101 free(link->pin_path); 10102 if (link->dealloc) 10103 link->dealloc(link); 10104 else 10105 free(link); 10106 10107 return libbpf_err(err); 10108 } 10109 10110 int bpf_link__fd(const struct bpf_link *link) 10111 { 10112 return link->fd; 10113 } 10114 10115 const char *bpf_link__pin_path(const struct bpf_link *link) 10116 { 10117 return link->pin_path; 10118 } 10119 10120 static int bpf_link__detach_fd(struct bpf_link *link) 10121 { 10122 return libbpf_err_errno(close(link->fd)); 10123 } 10124 10125 struct bpf_link *bpf_link__open(const char *path) 10126 { 10127 struct bpf_link *link; 10128 int fd; 10129 10130 fd = bpf_obj_get(path); 10131 if (fd < 0) { 10132 fd = -errno; 10133 pr_warn("failed to open link at %s: %d\n", path, fd); 10134 return libbpf_err_ptr(fd); 10135 } 10136 10137 link = calloc(1, sizeof(*link)); 10138 if (!link) { 10139 close(fd); 10140 return libbpf_err_ptr(-ENOMEM); 10141 } 10142 link->detach = &bpf_link__detach_fd; 10143 link->fd = fd; 10144 10145 link->pin_path = strdup(path); 10146 if (!link->pin_path) { 10147 bpf_link__destroy(link); 10148 return libbpf_err_ptr(-ENOMEM); 10149 } 10150 10151 return link; 10152 } 10153 10154 int bpf_link__detach(struct bpf_link *link) 10155 { 10156 return bpf_link_detach(link->fd) ? -errno : 0; 10157 } 10158 10159 int bpf_link__pin(struct bpf_link *link, const char *path) 10160 { 10161 int err; 10162 10163 if (link->pin_path) 10164 return libbpf_err(-EBUSY); 10165 err = make_parent_dir(path); 10166 if (err) 10167 return libbpf_err(err); 10168 err = check_path(path); 10169 if (err) 10170 return libbpf_err(err); 10171 10172 link->pin_path = strdup(path); 10173 if (!link->pin_path) 10174 return libbpf_err(-ENOMEM); 10175 10176 if (bpf_obj_pin(link->fd, link->pin_path)) { 10177 err = -errno; 10178 zfree(&link->pin_path); 10179 return libbpf_err(err); 10180 } 10181 10182 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10183 return 0; 10184 } 10185 10186 int bpf_link__unpin(struct bpf_link *link) 10187 { 10188 int err; 10189 10190 if (!link->pin_path) 10191 return libbpf_err(-EINVAL); 10192 10193 err = unlink(link->pin_path); 10194 if (err != 0) 10195 return -errno; 10196 10197 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10198 zfree(&link->pin_path); 10199 return 0; 10200 } 10201 10202 struct bpf_link_perf { 10203 struct bpf_link link; 10204 int perf_event_fd; 10205 /* legacy kprobe support: keep track of probe identifier and type */ 10206 char *legacy_probe_name; 10207 bool legacy_is_kprobe; 10208 bool legacy_is_retprobe; 10209 }; 10210 10211 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10212 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10213 10214 static int bpf_link_perf_detach(struct bpf_link *link) 10215 { 10216 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10217 int err = 0; 10218 10219 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10220 err = -errno; 10221 10222 if (perf_link->perf_event_fd != link->fd) 10223 close(perf_link->perf_event_fd); 10224 close(link->fd); 10225 10226 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10227 if (perf_link->legacy_probe_name) { 10228 if (perf_link->legacy_is_kprobe) { 10229 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10230 perf_link->legacy_is_retprobe); 10231 } else { 10232 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10233 perf_link->legacy_is_retprobe); 10234 } 10235 } 10236 10237 return err; 10238 } 10239 10240 static void bpf_link_perf_dealloc(struct bpf_link *link) 10241 { 10242 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10243 10244 free(perf_link->legacy_probe_name); 10245 free(perf_link); 10246 } 10247 10248 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10249 const struct bpf_perf_event_opts *opts) 10250 { 10251 char errmsg[STRERR_BUFSIZE]; 10252 struct bpf_link_perf *link; 10253 int prog_fd, link_fd = -1, err; 10254 bool force_ioctl_attach; 10255 10256 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10257 return libbpf_err_ptr(-EINVAL); 10258 10259 if (pfd < 0) { 10260 pr_warn("prog '%s': invalid perf event FD %d\n", 10261 prog->name, pfd); 10262 return libbpf_err_ptr(-EINVAL); 10263 } 10264 prog_fd = bpf_program__fd(prog); 10265 if (prog_fd < 0) { 10266 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10267 prog->name); 10268 return libbpf_err_ptr(-EINVAL); 10269 } 10270 10271 link = calloc(1, sizeof(*link)); 10272 if (!link) 10273 return libbpf_err_ptr(-ENOMEM); 10274 link->link.detach = &bpf_link_perf_detach; 10275 link->link.dealloc = &bpf_link_perf_dealloc; 10276 link->perf_event_fd = pfd; 10277 10278 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10279 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10280 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10281 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10282 10283 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10284 if (link_fd < 0) { 10285 err = -errno; 10286 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10287 prog->name, pfd, 10288 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10289 goto err_out; 10290 } 10291 link->link.fd = link_fd; 10292 } else { 10293 if (OPTS_GET(opts, bpf_cookie, 0)) { 10294 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10295 err = -EOPNOTSUPP; 10296 goto err_out; 10297 } 10298 10299 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10300 err = -errno; 10301 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10302 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10303 if (err == -EPROTO) 10304 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10305 prog->name, pfd); 10306 goto err_out; 10307 } 10308 link->link.fd = pfd; 10309 } 10310 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10311 err = -errno; 10312 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10313 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10314 goto err_out; 10315 } 10316 10317 return &link->link; 10318 err_out: 10319 if (link_fd >= 0) 10320 close(link_fd); 10321 free(link); 10322 return libbpf_err_ptr(err); 10323 } 10324 10325 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10326 { 10327 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10328 } 10329 10330 /* 10331 * this function is expected to parse integer in the range of [0, 2^31-1] from 10332 * given file using scanf format string fmt. If actual parsed value is 10333 * negative, the result might be indistinguishable from error 10334 */ 10335 static int parse_uint_from_file(const char *file, const char *fmt) 10336 { 10337 char buf[STRERR_BUFSIZE]; 10338 int err, ret; 10339 FILE *f; 10340 10341 f = fopen(file, "re"); 10342 if (!f) { 10343 err = -errno; 10344 pr_debug("failed to open '%s': %s\n", file, 10345 libbpf_strerror_r(err, buf, sizeof(buf))); 10346 return err; 10347 } 10348 err = fscanf(f, fmt, &ret); 10349 if (err != 1) { 10350 err = err == EOF ? -EIO : -errno; 10351 pr_debug("failed to parse '%s': %s\n", file, 10352 libbpf_strerror_r(err, buf, sizeof(buf))); 10353 fclose(f); 10354 return err; 10355 } 10356 fclose(f); 10357 return ret; 10358 } 10359 10360 static int determine_kprobe_perf_type(void) 10361 { 10362 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10363 10364 return parse_uint_from_file(file, "%d\n"); 10365 } 10366 10367 static int determine_uprobe_perf_type(void) 10368 { 10369 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10370 10371 return parse_uint_from_file(file, "%d\n"); 10372 } 10373 10374 static int determine_kprobe_retprobe_bit(void) 10375 { 10376 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10377 10378 return parse_uint_from_file(file, "config:%d\n"); 10379 } 10380 10381 static int determine_uprobe_retprobe_bit(void) 10382 { 10383 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10384 10385 return parse_uint_from_file(file, "config:%d\n"); 10386 } 10387 10388 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10389 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10390 10391 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10392 uint64_t offset, int pid, size_t ref_ctr_off) 10393 { 10394 const size_t attr_sz = sizeof(struct perf_event_attr); 10395 struct perf_event_attr attr; 10396 char errmsg[STRERR_BUFSIZE]; 10397 int type, pfd; 10398 10399 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10400 return -EINVAL; 10401 10402 memset(&attr, 0, attr_sz); 10403 10404 type = uprobe ? determine_uprobe_perf_type() 10405 : determine_kprobe_perf_type(); 10406 if (type < 0) { 10407 pr_warn("failed to determine %s perf type: %s\n", 10408 uprobe ? "uprobe" : "kprobe", 10409 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10410 return type; 10411 } 10412 if (retprobe) { 10413 int bit = uprobe ? determine_uprobe_retprobe_bit() 10414 : determine_kprobe_retprobe_bit(); 10415 10416 if (bit < 0) { 10417 pr_warn("failed to determine %s retprobe bit: %s\n", 10418 uprobe ? "uprobe" : "kprobe", 10419 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10420 return bit; 10421 } 10422 attr.config |= 1 << bit; 10423 } 10424 attr.size = attr_sz; 10425 attr.type = type; 10426 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10427 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10428 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10429 10430 /* pid filter is meaningful only for uprobes */ 10431 pfd = syscall(__NR_perf_event_open, &attr, 10432 pid < 0 ? -1 : pid /* pid */, 10433 pid == -1 ? 0 : -1 /* cpu */, 10434 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10435 return pfd >= 0 ? pfd : -errno; 10436 } 10437 10438 static int append_to_file(const char *file, const char *fmt, ...) 10439 { 10440 int fd, n, err = 0; 10441 va_list ap; 10442 char buf[1024]; 10443 10444 va_start(ap, fmt); 10445 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10446 va_end(ap); 10447 10448 if (n < 0 || n >= sizeof(buf)) 10449 return -EINVAL; 10450 10451 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10452 if (fd < 0) 10453 return -errno; 10454 10455 if (write(fd, buf, n) < 0) 10456 err = -errno; 10457 10458 close(fd); 10459 return err; 10460 } 10461 10462 #define DEBUGFS "/sys/kernel/debug/tracing" 10463 #define TRACEFS "/sys/kernel/tracing" 10464 10465 static bool use_debugfs(void) 10466 { 10467 static int has_debugfs = -1; 10468 10469 if (has_debugfs < 0) 10470 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10471 10472 return has_debugfs == 1; 10473 } 10474 10475 static const char *tracefs_path(void) 10476 { 10477 return use_debugfs() ? DEBUGFS : TRACEFS; 10478 } 10479 10480 static const char *tracefs_kprobe_events(void) 10481 { 10482 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10483 } 10484 10485 static const char *tracefs_uprobe_events(void) 10486 { 10487 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10488 } 10489 10490 static const char *tracefs_available_filter_functions(void) 10491 { 10492 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10493 : TRACEFS"/available_filter_functions"; 10494 } 10495 10496 static const char *tracefs_available_filter_functions_addrs(void) 10497 { 10498 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10499 : TRACEFS"/available_filter_functions_addrs"; 10500 } 10501 10502 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10503 const char *kfunc_name, size_t offset) 10504 { 10505 static int index = 0; 10506 int i; 10507 10508 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10509 __sync_fetch_and_add(&index, 1)); 10510 10511 /* sanitize binary_path in the probe name */ 10512 for (i = 0; buf[i]; i++) { 10513 if (!isalnum(buf[i])) 10514 buf[i] = '_'; 10515 } 10516 } 10517 10518 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10519 const char *kfunc_name, size_t offset) 10520 { 10521 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10522 retprobe ? 'r' : 'p', 10523 retprobe ? "kretprobes" : "kprobes", 10524 probe_name, kfunc_name, offset); 10525 } 10526 10527 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10528 { 10529 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10530 retprobe ? "kretprobes" : "kprobes", probe_name); 10531 } 10532 10533 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10534 { 10535 char file[256]; 10536 10537 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10538 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10539 10540 return parse_uint_from_file(file, "%d\n"); 10541 } 10542 10543 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10544 const char *kfunc_name, size_t offset, int pid) 10545 { 10546 const size_t attr_sz = sizeof(struct perf_event_attr); 10547 struct perf_event_attr attr; 10548 char errmsg[STRERR_BUFSIZE]; 10549 int type, pfd, err; 10550 10551 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10552 if (err < 0) { 10553 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10554 kfunc_name, offset, 10555 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10556 return err; 10557 } 10558 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10559 if (type < 0) { 10560 err = type; 10561 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10562 kfunc_name, offset, 10563 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10564 goto err_clean_legacy; 10565 } 10566 10567 memset(&attr, 0, attr_sz); 10568 attr.size = attr_sz; 10569 attr.config = type; 10570 attr.type = PERF_TYPE_TRACEPOINT; 10571 10572 pfd = syscall(__NR_perf_event_open, &attr, 10573 pid < 0 ? -1 : pid, /* pid */ 10574 pid == -1 ? 0 : -1, /* cpu */ 10575 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10576 if (pfd < 0) { 10577 err = -errno; 10578 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10579 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10580 goto err_clean_legacy; 10581 } 10582 return pfd; 10583 10584 err_clean_legacy: 10585 /* Clear the newly added legacy kprobe_event */ 10586 remove_kprobe_event_legacy(probe_name, retprobe); 10587 return err; 10588 } 10589 10590 static const char *arch_specific_syscall_pfx(void) 10591 { 10592 #if defined(__x86_64__) 10593 return "x64"; 10594 #elif defined(__i386__) 10595 return "ia32"; 10596 #elif defined(__s390x__) 10597 return "s390x"; 10598 #elif defined(__s390__) 10599 return "s390"; 10600 #elif defined(__arm__) 10601 return "arm"; 10602 #elif defined(__aarch64__) 10603 return "arm64"; 10604 #elif defined(__mips__) 10605 return "mips"; 10606 #elif defined(__riscv) 10607 return "riscv"; 10608 #elif defined(__powerpc__) 10609 return "powerpc"; 10610 #elif defined(__powerpc64__) 10611 return "powerpc64"; 10612 #else 10613 return NULL; 10614 #endif 10615 } 10616 10617 static int probe_kern_syscall_wrapper(void) 10618 { 10619 char syscall_name[64]; 10620 const char *ksys_pfx; 10621 10622 ksys_pfx = arch_specific_syscall_pfx(); 10623 if (!ksys_pfx) 10624 return 0; 10625 10626 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10627 10628 if (determine_kprobe_perf_type() >= 0) { 10629 int pfd; 10630 10631 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10632 if (pfd >= 0) 10633 close(pfd); 10634 10635 return pfd >= 0 ? 1 : 0; 10636 } else { /* legacy mode */ 10637 char probe_name[128]; 10638 10639 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10640 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10641 return 0; 10642 10643 (void)remove_kprobe_event_legacy(probe_name, false); 10644 return 1; 10645 } 10646 } 10647 10648 struct bpf_link * 10649 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10650 const char *func_name, 10651 const struct bpf_kprobe_opts *opts) 10652 { 10653 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10654 enum probe_attach_mode attach_mode; 10655 char errmsg[STRERR_BUFSIZE]; 10656 char *legacy_probe = NULL; 10657 struct bpf_link *link; 10658 size_t offset; 10659 bool retprobe, legacy; 10660 int pfd, err; 10661 10662 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10663 return libbpf_err_ptr(-EINVAL); 10664 10665 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10666 retprobe = OPTS_GET(opts, retprobe, false); 10667 offset = OPTS_GET(opts, offset, 0); 10668 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10669 10670 legacy = determine_kprobe_perf_type() < 0; 10671 switch (attach_mode) { 10672 case PROBE_ATTACH_MODE_LEGACY: 10673 legacy = true; 10674 pe_opts.force_ioctl_attach = true; 10675 break; 10676 case PROBE_ATTACH_MODE_PERF: 10677 if (legacy) 10678 return libbpf_err_ptr(-ENOTSUP); 10679 pe_opts.force_ioctl_attach = true; 10680 break; 10681 case PROBE_ATTACH_MODE_LINK: 10682 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10683 return libbpf_err_ptr(-ENOTSUP); 10684 break; 10685 case PROBE_ATTACH_MODE_DEFAULT: 10686 break; 10687 default: 10688 return libbpf_err_ptr(-EINVAL); 10689 } 10690 10691 if (!legacy) { 10692 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10693 func_name, offset, 10694 -1 /* pid */, 0 /* ref_ctr_off */); 10695 } else { 10696 char probe_name[256]; 10697 10698 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10699 func_name, offset); 10700 10701 legacy_probe = strdup(probe_name); 10702 if (!legacy_probe) 10703 return libbpf_err_ptr(-ENOMEM); 10704 10705 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10706 offset, -1 /* pid */); 10707 } 10708 if (pfd < 0) { 10709 err = -errno; 10710 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10711 prog->name, retprobe ? "kretprobe" : "kprobe", 10712 func_name, offset, 10713 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10714 goto err_out; 10715 } 10716 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10717 err = libbpf_get_error(link); 10718 if (err) { 10719 close(pfd); 10720 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10721 prog->name, retprobe ? "kretprobe" : "kprobe", 10722 func_name, offset, 10723 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10724 goto err_clean_legacy; 10725 } 10726 if (legacy) { 10727 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10728 10729 perf_link->legacy_probe_name = legacy_probe; 10730 perf_link->legacy_is_kprobe = true; 10731 perf_link->legacy_is_retprobe = retprobe; 10732 } 10733 10734 return link; 10735 10736 err_clean_legacy: 10737 if (legacy) 10738 remove_kprobe_event_legacy(legacy_probe, retprobe); 10739 err_out: 10740 free(legacy_probe); 10741 return libbpf_err_ptr(err); 10742 } 10743 10744 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10745 bool retprobe, 10746 const char *func_name) 10747 { 10748 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10749 .retprobe = retprobe, 10750 ); 10751 10752 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10753 } 10754 10755 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10756 const char *syscall_name, 10757 const struct bpf_ksyscall_opts *opts) 10758 { 10759 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10760 char func_name[128]; 10761 10762 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10763 return libbpf_err_ptr(-EINVAL); 10764 10765 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10766 /* arch_specific_syscall_pfx() should never return NULL here 10767 * because it is guarded by kernel_supports(). However, since 10768 * compiler does not know that we have an explicit conditional 10769 * as well. 10770 */ 10771 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10772 arch_specific_syscall_pfx() ? : "", syscall_name); 10773 } else { 10774 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10775 } 10776 10777 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10778 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10779 10780 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10781 } 10782 10783 /* Adapted from perf/util/string.c */ 10784 bool glob_match(const char *str, const char *pat) 10785 { 10786 while (*str && *pat && *pat != '*') { 10787 if (*pat == '?') { /* Matches any single character */ 10788 str++; 10789 pat++; 10790 continue; 10791 } 10792 if (*str != *pat) 10793 return false; 10794 str++; 10795 pat++; 10796 } 10797 /* Check wild card */ 10798 if (*pat == '*') { 10799 while (*pat == '*') 10800 pat++; 10801 if (!*pat) /* Tail wild card matches all */ 10802 return true; 10803 while (*str) 10804 if (glob_match(str++, pat)) 10805 return true; 10806 } 10807 return !*str && !*pat; 10808 } 10809 10810 struct kprobe_multi_resolve { 10811 const char *pattern; 10812 unsigned long *addrs; 10813 size_t cap; 10814 size_t cnt; 10815 }; 10816 10817 struct avail_kallsyms_data { 10818 char **syms; 10819 size_t cnt; 10820 struct kprobe_multi_resolve *res; 10821 }; 10822 10823 static int avail_func_cmp(const void *a, const void *b) 10824 { 10825 return strcmp(*(const char **)a, *(const char **)b); 10826 } 10827 10828 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10829 const char *sym_name, void *ctx) 10830 { 10831 struct avail_kallsyms_data *data = ctx; 10832 struct kprobe_multi_resolve *res = data->res; 10833 int err; 10834 10835 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10836 return 0; 10837 10838 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10839 if (err) 10840 return err; 10841 10842 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10843 return 0; 10844 } 10845 10846 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10847 { 10848 const char *available_functions_file = tracefs_available_filter_functions(); 10849 struct avail_kallsyms_data data; 10850 char sym_name[500]; 10851 FILE *f; 10852 int err = 0, ret, i; 10853 char **syms = NULL; 10854 size_t cap = 0, cnt = 0; 10855 10856 f = fopen(available_functions_file, "re"); 10857 if (!f) { 10858 err = -errno; 10859 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10860 return err; 10861 } 10862 10863 while (true) { 10864 char *name; 10865 10866 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10867 if (ret == EOF && feof(f)) 10868 break; 10869 10870 if (ret != 1) { 10871 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10872 err = -EINVAL; 10873 goto cleanup; 10874 } 10875 10876 if (!glob_match(sym_name, res->pattern)) 10877 continue; 10878 10879 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10880 if (err) 10881 goto cleanup; 10882 10883 name = strdup(sym_name); 10884 if (!name) { 10885 err = -errno; 10886 goto cleanup; 10887 } 10888 10889 syms[cnt++] = name; 10890 } 10891 10892 /* no entries found, bail out */ 10893 if (cnt == 0) { 10894 err = -ENOENT; 10895 goto cleanup; 10896 } 10897 10898 /* sort available functions */ 10899 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10900 10901 data.syms = syms; 10902 data.res = res; 10903 data.cnt = cnt; 10904 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10905 10906 if (res->cnt == 0) 10907 err = -ENOENT; 10908 10909 cleanup: 10910 for (i = 0; i < cnt; i++) 10911 free((char *)syms[i]); 10912 free(syms); 10913 10914 fclose(f); 10915 return err; 10916 } 10917 10918 static bool has_available_filter_functions_addrs(void) 10919 { 10920 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10921 } 10922 10923 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10924 { 10925 const char *available_path = tracefs_available_filter_functions_addrs(); 10926 char sym_name[500]; 10927 FILE *f; 10928 int ret, err = 0; 10929 unsigned long long sym_addr; 10930 10931 f = fopen(available_path, "re"); 10932 if (!f) { 10933 err = -errno; 10934 pr_warn("failed to open %s: %d\n", available_path, err); 10935 return err; 10936 } 10937 10938 while (true) { 10939 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10940 if (ret == EOF && feof(f)) 10941 break; 10942 10943 if (ret != 2) { 10944 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10945 ret); 10946 err = -EINVAL; 10947 goto cleanup; 10948 } 10949 10950 if (!glob_match(sym_name, res->pattern)) 10951 continue; 10952 10953 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10954 sizeof(*res->addrs), res->cnt + 1); 10955 if (err) 10956 goto cleanup; 10957 10958 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10959 } 10960 10961 if (res->cnt == 0) 10962 err = -ENOENT; 10963 10964 cleanup: 10965 fclose(f); 10966 return err; 10967 } 10968 10969 struct bpf_link * 10970 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10971 const char *pattern, 10972 const struct bpf_kprobe_multi_opts *opts) 10973 { 10974 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10975 struct kprobe_multi_resolve res = { 10976 .pattern = pattern, 10977 }; 10978 struct bpf_link *link = NULL; 10979 char errmsg[STRERR_BUFSIZE]; 10980 const unsigned long *addrs; 10981 int err, link_fd, prog_fd; 10982 const __u64 *cookies; 10983 const char **syms; 10984 bool retprobe; 10985 size_t cnt; 10986 10987 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10988 return libbpf_err_ptr(-EINVAL); 10989 10990 syms = OPTS_GET(opts, syms, false); 10991 addrs = OPTS_GET(opts, addrs, false); 10992 cnt = OPTS_GET(opts, cnt, false); 10993 cookies = OPTS_GET(opts, cookies, false); 10994 10995 if (!pattern && !addrs && !syms) 10996 return libbpf_err_ptr(-EINVAL); 10997 if (pattern && (addrs || syms || cookies || cnt)) 10998 return libbpf_err_ptr(-EINVAL); 10999 if (!pattern && !cnt) 11000 return libbpf_err_ptr(-EINVAL); 11001 if (addrs && syms) 11002 return libbpf_err_ptr(-EINVAL); 11003 11004 if (pattern) { 11005 if (has_available_filter_functions_addrs()) 11006 err = libbpf_available_kprobes_parse(&res); 11007 else 11008 err = libbpf_available_kallsyms_parse(&res); 11009 if (err) 11010 goto error; 11011 addrs = res.addrs; 11012 cnt = res.cnt; 11013 } 11014 11015 retprobe = OPTS_GET(opts, retprobe, false); 11016 11017 lopts.kprobe_multi.syms = syms; 11018 lopts.kprobe_multi.addrs = addrs; 11019 lopts.kprobe_multi.cookies = cookies; 11020 lopts.kprobe_multi.cnt = cnt; 11021 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11022 11023 link = calloc(1, sizeof(*link)); 11024 if (!link) { 11025 err = -ENOMEM; 11026 goto error; 11027 } 11028 link->detach = &bpf_link__detach_fd; 11029 11030 prog_fd = bpf_program__fd(prog); 11031 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11032 if (link_fd < 0) { 11033 err = -errno; 11034 pr_warn("prog '%s': failed to attach: %s\n", 11035 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11036 goto error; 11037 } 11038 link->fd = link_fd; 11039 free(res.addrs); 11040 return link; 11041 11042 error: 11043 free(link); 11044 free(res.addrs); 11045 return libbpf_err_ptr(err); 11046 } 11047 11048 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11049 { 11050 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11051 unsigned long offset = 0; 11052 const char *func_name; 11053 char *func; 11054 int n; 11055 11056 *link = NULL; 11057 11058 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11059 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11060 return 0; 11061 11062 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11063 if (opts.retprobe) 11064 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11065 else 11066 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11067 11068 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11069 if (n < 1) { 11070 pr_warn("kprobe name is invalid: %s\n", func_name); 11071 return -EINVAL; 11072 } 11073 if (opts.retprobe && offset != 0) { 11074 free(func); 11075 pr_warn("kretprobes do not support offset specification\n"); 11076 return -EINVAL; 11077 } 11078 11079 opts.offset = offset; 11080 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11081 free(func); 11082 return libbpf_get_error(*link); 11083 } 11084 11085 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11086 { 11087 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11088 const char *syscall_name; 11089 11090 *link = NULL; 11091 11092 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11093 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11094 return 0; 11095 11096 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11097 if (opts.retprobe) 11098 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11099 else 11100 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11101 11102 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11103 return *link ? 0 : -errno; 11104 } 11105 11106 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11107 { 11108 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11109 const char *spec; 11110 char *pattern; 11111 int n; 11112 11113 *link = NULL; 11114 11115 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11116 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11117 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11118 return 0; 11119 11120 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11121 if (opts.retprobe) 11122 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11123 else 11124 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11125 11126 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11127 if (n < 1) { 11128 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11129 return -EINVAL; 11130 } 11131 11132 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11133 free(pattern); 11134 return libbpf_get_error(*link); 11135 } 11136 11137 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11138 { 11139 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11140 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11141 int n, ret = -EINVAL; 11142 11143 *link = NULL; 11144 11145 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11146 &probe_type, &binary_path, &func_name); 11147 switch (n) { 11148 case 1: 11149 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11150 ret = 0; 11151 break; 11152 case 3: 11153 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11154 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11155 ret = libbpf_get_error(*link); 11156 break; 11157 default: 11158 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11159 prog->sec_name); 11160 break; 11161 } 11162 free(probe_type); 11163 free(binary_path); 11164 free(func_name); 11165 return ret; 11166 } 11167 11168 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11169 const char *binary_path, uint64_t offset) 11170 { 11171 int i; 11172 11173 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11174 11175 /* sanitize binary_path in the probe name */ 11176 for (i = 0; buf[i]; i++) { 11177 if (!isalnum(buf[i])) 11178 buf[i] = '_'; 11179 } 11180 } 11181 11182 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11183 const char *binary_path, size_t offset) 11184 { 11185 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11186 retprobe ? 'r' : 'p', 11187 retprobe ? "uretprobes" : "uprobes", 11188 probe_name, binary_path, offset); 11189 } 11190 11191 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11192 { 11193 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11194 retprobe ? "uretprobes" : "uprobes", probe_name); 11195 } 11196 11197 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11198 { 11199 char file[512]; 11200 11201 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11202 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11203 11204 return parse_uint_from_file(file, "%d\n"); 11205 } 11206 11207 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11208 const char *binary_path, size_t offset, int pid) 11209 { 11210 const size_t attr_sz = sizeof(struct perf_event_attr); 11211 struct perf_event_attr attr; 11212 int type, pfd, err; 11213 11214 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11215 if (err < 0) { 11216 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11217 binary_path, (size_t)offset, err); 11218 return err; 11219 } 11220 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11221 if (type < 0) { 11222 err = type; 11223 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11224 binary_path, offset, err); 11225 goto err_clean_legacy; 11226 } 11227 11228 memset(&attr, 0, attr_sz); 11229 attr.size = attr_sz; 11230 attr.config = type; 11231 attr.type = PERF_TYPE_TRACEPOINT; 11232 11233 pfd = syscall(__NR_perf_event_open, &attr, 11234 pid < 0 ? -1 : pid, /* pid */ 11235 pid == -1 ? 0 : -1, /* cpu */ 11236 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11237 if (pfd < 0) { 11238 err = -errno; 11239 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11240 goto err_clean_legacy; 11241 } 11242 return pfd; 11243 11244 err_clean_legacy: 11245 /* Clear the newly added legacy uprobe_event */ 11246 remove_uprobe_event_legacy(probe_name, retprobe); 11247 return err; 11248 } 11249 11250 /* Find offset of function name in archive specified by path. Currently 11251 * supported are .zip files that do not compress their contents, as used on 11252 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11253 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11254 * library functions. 11255 * 11256 * An overview of the APK format specifically provided here: 11257 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11258 */ 11259 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11260 const char *func_name) 11261 { 11262 struct zip_archive *archive; 11263 struct zip_entry entry; 11264 long ret; 11265 Elf *elf; 11266 11267 archive = zip_archive_open(archive_path); 11268 if (IS_ERR(archive)) { 11269 ret = PTR_ERR(archive); 11270 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11271 return ret; 11272 } 11273 11274 ret = zip_archive_find_entry(archive, file_name, &entry); 11275 if (ret) { 11276 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11277 archive_path, ret); 11278 goto out; 11279 } 11280 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11281 (unsigned long)entry.data_offset); 11282 11283 if (entry.compression) { 11284 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11285 archive_path); 11286 ret = -LIBBPF_ERRNO__FORMAT; 11287 goto out; 11288 } 11289 11290 elf = elf_memory((void *)entry.data, entry.data_length); 11291 if (!elf) { 11292 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11293 elf_errmsg(-1)); 11294 ret = -LIBBPF_ERRNO__LIBELF; 11295 goto out; 11296 } 11297 11298 ret = elf_find_func_offset(elf, file_name, func_name); 11299 if (ret > 0) { 11300 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11301 func_name, file_name, archive_path, entry.data_offset, ret, 11302 ret + entry.data_offset); 11303 ret += entry.data_offset; 11304 } 11305 elf_end(elf); 11306 11307 out: 11308 zip_archive_close(archive); 11309 return ret; 11310 } 11311 11312 static const char *arch_specific_lib_paths(void) 11313 { 11314 /* 11315 * Based on https://packages.debian.org/sid/libc6. 11316 * 11317 * Assume that the traced program is built for the same architecture 11318 * as libbpf, which should cover the vast majority of cases. 11319 */ 11320 #if defined(__x86_64__) 11321 return "/lib/x86_64-linux-gnu"; 11322 #elif defined(__i386__) 11323 return "/lib/i386-linux-gnu"; 11324 #elif defined(__s390x__) 11325 return "/lib/s390x-linux-gnu"; 11326 #elif defined(__s390__) 11327 return "/lib/s390-linux-gnu"; 11328 #elif defined(__arm__) && defined(__SOFTFP__) 11329 return "/lib/arm-linux-gnueabi"; 11330 #elif defined(__arm__) && !defined(__SOFTFP__) 11331 return "/lib/arm-linux-gnueabihf"; 11332 #elif defined(__aarch64__) 11333 return "/lib/aarch64-linux-gnu"; 11334 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11335 return "/lib/mips64el-linux-gnuabi64"; 11336 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11337 return "/lib/mipsel-linux-gnu"; 11338 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11339 return "/lib/powerpc64le-linux-gnu"; 11340 #elif defined(__sparc__) && defined(__arch64__) 11341 return "/lib/sparc64-linux-gnu"; 11342 #elif defined(__riscv) && __riscv_xlen == 64 11343 return "/lib/riscv64-linux-gnu"; 11344 #else 11345 return NULL; 11346 #endif 11347 } 11348 11349 /* Get full path to program/shared library. */ 11350 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11351 { 11352 const char *search_paths[3] = {}; 11353 int i, perm; 11354 11355 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11356 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11357 search_paths[1] = "/usr/lib64:/usr/lib"; 11358 search_paths[2] = arch_specific_lib_paths(); 11359 perm = R_OK; 11360 } else { 11361 search_paths[0] = getenv("PATH"); 11362 search_paths[1] = "/usr/bin:/usr/sbin"; 11363 perm = R_OK | X_OK; 11364 } 11365 11366 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11367 const char *s; 11368 11369 if (!search_paths[i]) 11370 continue; 11371 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11372 char *next_path; 11373 int seg_len; 11374 11375 if (s[0] == ':') 11376 s++; 11377 next_path = strchr(s, ':'); 11378 seg_len = next_path ? next_path - s : strlen(s); 11379 if (!seg_len) 11380 continue; 11381 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11382 /* ensure it has required permissions */ 11383 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11384 continue; 11385 pr_debug("resolved '%s' to '%s'\n", file, result); 11386 return 0; 11387 } 11388 } 11389 return -ENOENT; 11390 } 11391 11392 struct bpf_link * 11393 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11394 pid_t pid, 11395 const char *path, 11396 const char *func_pattern, 11397 const struct bpf_uprobe_multi_opts *opts) 11398 { 11399 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11400 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11401 unsigned long *resolved_offsets = NULL; 11402 int err = 0, link_fd, prog_fd; 11403 struct bpf_link *link = NULL; 11404 char errmsg[STRERR_BUFSIZE]; 11405 char full_path[PATH_MAX]; 11406 const __u64 *cookies; 11407 const char **syms; 11408 size_t cnt; 11409 11410 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11411 return libbpf_err_ptr(-EINVAL); 11412 11413 syms = OPTS_GET(opts, syms, NULL); 11414 offsets = OPTS_GET(opts, offsets, NULL); 11415 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11416 cookies = OPTS_GET(opts, cookies, NULL); 11417 cnt = OPTS_GET(opts, cnt, 0); 11418 11419 /* 11420 * User can specify 2 mutually exclusive set of inputs: 11421 * 11422 * 1) use only path/func_pattern/pid arguments 11423 * 11424 * 2) use path/pid with allowed combinations of: 11425 * syms/offsets/ref_ctr_offsets/cookies/cnt 11426 * 11427 * - syms and offsets are mutually exclusive 11428 * - ref_ctr_offsets and cookies are optional 11429 * 11430 * Any other usage results in error. 11431 */ 11432 11433 if (!path) 11434 return libbpf_err_ptr(-EINVAL); 11435 if (!func_pattern && cnt == 0) 11436 return libbpf_err_ptr(-EINVAL); 11437 11438 if (func_pattern) { 11439 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11440 return libbpf_err_ptr(-EINVAL); 11441 } else { 11442 if (!!syms == !!offsets) 11443 return libbpf_err_ptr(-EINVAL); 11444 } 11445 11446 if (func_pattern) { 11447 if (!strchr(path, '/')) { 11448 err = resolve_full_path(path, full_path, sizeof(full_path)); 11449 if (err) { 11450 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11451 prog->name, path, err); 11452 return libbpf_err_ptr(err); 11453 } 11454 path = full_path; 11455 } 11456 11457 err = elf_resolve_pattern_offsets(path, func_pattern, 11458 &resolved_offsets, &cnt); 11459 if (err < 0) 11460 return libbpf_err_ptr(err); 11461 offsets = resolved_offsets; 11462 } else if (syms) { 11463 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11464 if (err < 0) 11465 return libbpf_err_ptr(err); 11466 offsets = resolved_offsets; 11467 } 11468 11469 lopts.uprobe_multi.path = path; 11470 lopts.uprobe_multi.offsets = offsets; 11471 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11472 lopts.uprobe_multi.cookies = cookies; 11473 lopts.uprobe_multi.cnt = cnt; 11474 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11475 11476 if (pid == 0) 11477 pid = getpid(); 11478 if (pid > 0) 11479 lopts.uprobe_multi.pid = pid; 11480 11481 link = calloc(1, sizeof(*link)); 11482 if (!link) { 11483 err = -ENOMEM; 11484 goto error; 11485 } 11486 link->detach = &bpf_link__detach_fd; 11487 11488 prog_fd = bpf_program__fd(prog); 11489 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11490 if (link_fd < 0) { 11491 err = -errno; 11492 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11493 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11494 goto error; 11495 } 11496 link->fd = link_fd; 11497 free(resolved_offsets); 11498 return link; 11499 11500 error: 11501 free(resolved_offsets); 11502 free(link); 11503 return libbpf_err_ptr(err); 11504 } 11505 11506 LIBBPF_API struct bpf_link * 11507 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11508 const char *binary_path, size_t func_offset, 11509 const struct bpf_uprobe_opts *opts) 11510 { 11511 const char *archive_path = NULL, *archive_sep = NULL; 11512 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11513 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11514 enum probe_attach_mode attach_mode; 11515 char full_path[PATH_MAX]; 11516 struct bpf_link *link; 11517 size_t ref_ctr_off; 11518 int pfd, err; 11519 bool retprobe, legacy; 11520 const char *func_name; 11521 11522 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11523 return libbpf_err_ptr(-EINVAL); 11524 11525 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11526 retprobe = OPTS_GET(opts, retprobe, false); 11527 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11528 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11529 11530 if (!binary_path) 11531 return libbpf_err_ptr(-EINVAL); 11532 11533 /* Check if "binary_path" refers to an archive. */ 11534 archive_sep = strstr(binary_path, "!/"); 11535 if (archive_sep) { 11536 full_path[0] = '\0'; 11537 libbpf_strlcpy(full_path, binary_path, 11538 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11539 archive_path = full_path; 11540 binary_path = archive_sep + 2; 11541 } else if (!strchr(binary_path, '/')) { 11542 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11543 if (err) { 11544 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11545 prog->name, binary_path, err); 11546 return libbpf_err_ptr(err); 11547 } 11548 binary_path = full_path; 11549 } 11550 func_name = OPTS_GET(opts, func_name, NULL); 11551 if (func_name) { 11552 long sym_off; 11553 11554 if (archive_path) { 11555 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11556 func_name); 11557 binary_path = archive_path; 11558 } else { 11559 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11560 } 11561 if (sym_off < 0) 11562 return libbpf_err_ptr(sym_off); 11563 func_offset += sym_off; 11564 } 11565 11566 legacy = determine_uprobe_perf_type() < 0; 11567 switch (attach_mode) { 11568 case PROBE_ATTACH_MODE_LEGACY: 11569 legacy = true; 11570 pe_opts.force_ioctl_attach = true; 11571 break; 11572 case PROBE_ATTACH_MODE_PERF: 11573 if (legacy) 11574 return libbpf_err_ptr(-ENOTSUP); 11575 pe_opts.force_ioctl_attach = true; 11576 break; 11577 case PROBE_ATTACH_MODE_LINK: 11578 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11579 return libbpf_err_ptr(-ENOTSUP); 11580 break; 11581 case PROBE_ATTACH_MODE_DEFAULT: 11582 break; 11583 default: 11584 return libbpf_err_ptr(-EINVAL); 11585 } 11586 11587 if (!legacy) { 11588 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11589 func_offset, pid, ref_ctr_off); 11590 } else { 11591 char probe_name[PATH_MAX + 64]; 11592 11593 if (ref_ctr_off) 11594 return libbpf_err_ptr(-EINVAL); 11595 11596 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11597 binary_path, func_offset); 11598 11599 legacy_probe = strdup(probe_name); 11600 if (!legacy_probe) 11601 return libbpf_err_ptr(-ENOMEM); 11602 11603 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11604 binary_path, func_offset, pid); 11605 } 11606 if (pfd < 0) { 11607 err = -errno; 11608 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11609 prog->name, retprobe ? "uretprobe" : "uprobe", 11610 binary_path, func_offset, 11611 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11612 goto err_out; 11613 } 11614 11615 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11616 err = libbpf_get_error(link); 11617 if (err) { 11618 close(pfd); 11619 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11620 prog->name, retprobe ? "uretprobe" : "uprobe", 11621 binary_path, func_offset, 11622 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11623 goto err_clean_legacy; 11624 } 11625 if (legacy) { 11626 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11627 11628 perf_link->legacy_probe_name = legacy_probe; 11629 perf_link->legacy_is_kprobe = false; 11630 perf_link->legacy_is_retprobe = retprobe; 11631 } 11632 return link; 11633 11634 err_clean_legacy: 11635 if (legacy) 11636 remove_uprobe_event_legacy(legacy_probe, retprobe); 11637 err_out: 11638 free(legacy_probe); 11639 return libbpf_err_ptr(err); 11640 } 11641 11642 /* Format of u[ret]probe section definition supporting auto-attach: 11643 * u[ret]probe/binary:function[+offset] 11644 * 11645 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11646 * full binary path via bpf_program__attach_uprobe_opts. 11647 * 11648 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11649 * specified (and auto-attach is not possible) or the above format is specified for 11650 * auto-attach. 11651 */ 11652 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11653 { 11654 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11655 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 11656 int n, c, ret = -EINVAL; 11657 long offset = 0; 11658 11659 *link = NULL; 11660 11661 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11662 &probe_type, &binary_path, &func_name); 11663 switch (n) { 11664 case 1: 11665 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11666 ret = 0; 11667 break; 11668 case 2: 11669 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11670 prog->name, prog->sec_name); 11671 break; 11672 case 3: 11673 /* check if user specifies `+offset`, if yes, this should be 11674 * the last part of the string, make sure sscanf read to EOL 11675 */ 11676 func_off = strrchr(func_name, '+'); 11677 if (func_off) { 11678 n = sscanf(func_off, "+%li%n", &offset, &c); 11679 if (n == 1 && *(func_off + c) == '\0') 11680 func_off[0] = '\0'; 11681 else 11682 offset = 0; 11683 } 11684 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11685 strcmp(probe_type, "uretprobe.s") == 0; 11686 if (opts.retprobe && offset != 0) { 11687 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11688 prog->name); 11689 break; 11690 } 11691 opts.func_name = func_name; 11692 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11693 ret = libbpf_get_error(*link); 11694 break; 11695 default: 11696 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11697 prog->sec_name); 11698 break; 11699 } 11700 free(probe_type); 11701 free(binary_path); 11702 free(func_name); 11703 11704 return ret; 11705 } 11706 11707 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11708 bool retprobe, pid_t pid, 11709 const char *binary_path, 11710 size_t func_offset) 11711 { 11712 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11713 11714 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11715 } 11716 11717 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11718 pid_t pid, const char *binary_path, 11719 const char *usdt_provider, const char *usdt_name, 11720 const struct bpf_usdt_opts *opts) 11721 { 11722 char resolved_path[512]; 11723 struct bpf_object *obj = prog->obj; 11724 struct bpf_link *link; 11725 __u64 usdt_cookie; 11726 int err; 11727 11728 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11729 return libbpf_err_ptr(-EINVAL); 11730 11731 if (bpf_program__fd(prog) < 0) { 11732 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11733 prog->name); 11734 return libbpf_err_ptr(-EINVAL); 11735 } 11736 11737 if (!binary_path) 11738 return libbpf_err_ptr(-EINVAL); 11739 11740 if (!strchr(binary_path, '/')) { 11741 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11742 if (err) { 11743 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11744 prog->name, binary_path, err); 11745 return libbpf_err_ptr(err); 11746 } 11747 binary_path = resolved_path; 11748 } 11749 11750 /* USDT manager is instantiated lazily on first USDT attach. It will 11751 * be destroyed together with BPF object in bpf_object__close(). 11752 */ 11753 if (IS_ERR(obj->usdt_man)) 11754 return libbpf_ptr(obj->usdt_man); 11755 if (!obj->usdt_man) { 11756 obj->usdt_man = usdt_manager_new(obj); 11757 if (IS_ERR(obj->usdt_man)) 11758 return libbpf_ptr(obj->usdt_man); 11759 } 11760 11761 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11762 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11763 usdt_provider, usdt_name, usdt_cookie); 11764 err = libbpf_get_error(link); 11765 if (err) 11766 return libbpf_err_ptr(err); 11767 return link; 11768 } 11769 11770 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11771 { 11772 char *path = NULL, *provider = NULL, *name = NULL; 11773 const char *sec_name; 11774 int n, err; 11775 11776 sec_name = bpf_program__section_name(prog); 11777 if (strcmp(sec_name, "usdt") == 0) { 11778 /* no auto-attach for just SEC("usdt") */ 11779 *link = NULL; 11780 return 0; 11781 } 11782 11783 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11784 if (n != 3) { 11785 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11786 sec_name); 11787 err = -EINVAL; 11788 } else { 11789 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11790 provider, name, NULL); 11791 err = libbpf_get_error(*link); 11792 } 11793 free(path); 11794 free(provider); 11795 free(name); 11796 return err; 11797 } 11798 11799 static int determine_tracepoint_id(const char *tp_category, 11800 const char *tp_name) 11801 { 11802 char file[PATH_MAX]; 11803 int ret; 11804 11805 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11806 tracefs_path(), tp_category, tp_name); 11807 if (ret < 0) 11808 return -errno; 11809 if (ret >= sizeof(file)) { 11810 pr_debug("tracepoint %s/%s path is too long\n", 11811 tp_category, tp_name); 11812 return -E2BIG; 11813 } 11814 return parse_uint_from_file(file, "%d\n"); 11815 } 11816 11817 static int perf_event_open_tracepoint(const char *tp_category, 11818 const char *tp_name) 11819 { 11820 const size_t attr_sz = sizeof(struct perf_event_attr); 11821 struct perf_event_attr attr; 11822 char errmsg[STRERR_BUFSIZE]; 11823 int tp_id, pfd, err; 11824 11825 tp_id = determine_tracepoint_id(tp_category, tp_name); 11826 if (tp_id < 0) { 11827 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11828 tp_category, tp_name, 11829 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11830 return tp_id; 11831 } 11832 11833 memset(&attr, 0, attr_sz); 11834 attr.type = PERF_TYPE_TRACEPOINT; 11835 attr.size = attr_sz; 11836 attr.config = tp_id; 11837 11838 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11839 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11840 if (pfd < 0) { 11841 err = -errno; 11842 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11843 tp_category, tp_name, 11844 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11845 return err; 11846 } 11847 return pfd; 11848 } 11849 11850 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11851 const char *tp_category, 11852 const char *tp_name, 11853 const struct bpf_tracepoint_opts *opts) 11854 { 11855 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11856 char errmsg[STRERR_BUFSIZE]; 11857 struct bpf_link *link; 11858 int pfd, err; 11859 11860 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11861 return libbpf_err_ptr(-EINVAL); 11862 11863 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11864 11865 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11866 if (pfd < 0) { 11867 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11868 prog->name, tp_category, tp_name, 11869 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11870 return libbpf_err_ptr(pfd); 11871 } 11872 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11873 err = libbpf_get_error(link); 11874 if (err) { 11875 close(pfd); 11876 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11877 prog->name, tp_category, tp_name, 11878 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11879 return libbpf_err_ptr(err); 11880 } 11881 return link; 11882 } 11883 11884 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11885 const char *tp_category, 11886 const char *tp_name) 11887 { 11888 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11889 } 11890 11891 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11892 { 11893 char *sec_name, *tp_cat, *tp_name; 11894 11895 *link = NULL; 11896 11897 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11898 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11899 return 0; 11900 11901 sec_name = strdup(prog->sec_name); 11902 if (!sec_name) 11903 return -ENOMEM; 11904 11905 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11906 if (str_has_pfx(prog->sec_name, "tp/")) 11907 tp_cat = sec_name + sizeof("tp/") - 1; 11908 else 11909 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11910 tp_name = strchr(tp_cat, '/'); 11911 if (!tp_name) { 11912 free(sec_name); 11913 return -EINVAL; 11914 } 11915 *tp_name = '\0'; 11916 tp_name++; 11917 11918 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11919 free(sec_name); 11920 return libbpf_get_error(*link); 11921 } 11922 11923 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11924 const char *tp_name) 11925 { 11926 char errmsg[STRERR_BUFSIZE]; 11927 struct bpf_link *link; 11928 int prog_fd, pfd; 11929 11930 prog_fd = bpf_program__fd(prog); 11931 if (prog_fd < 0) { 11932 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11933 return libbpf_err_ptr(-EINVAL); 11934 } 11935 11936 link = calloc(1, sizeof(*link)); 11937 if (!link) 11938 return libbpf_err_ptr(-ENOMEM); 11939 link->detach = &bpf_link__detach_fd; 11940 11941 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11942 if (pfd < 0) { 11943 pfd = -errno; 11944 free(link); 11945 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11946 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11947 return libbpf_err_ptr(pfd); 11948 } 11949 link->fd = pfd; 11950 return link; 11951 } 11952 11953 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11954 { 11955 static const char *const prefixes[] = { 11956 "raw_tp", 11957 "raw_tracepoint", 11958 "raw_tp.w", 11959 "raw_tracepoint.w", 11960 }; 11961 size_t i; 11962 const char *tp_name = NULL; 11963 11964 *link = NULL; 11965 11966 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11967 size_t pfx_len; 11968 11969 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11970 continue; 11971 11972 pfx_len = strlen(prefixes[i]); 11973 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11974 if (prog->sec_name[pfx_len] == '\0') 11975 return 0; 11976 11977 if (prog->sec_name[pfx_len] != '/') 11978 continue; 11979 11980 tp_name = prog->sec_name + pfx_len + 1; 11981 break; 11982 } 11983 11984 if (!tp_name) { 11985 pr_warn("prog '%s': invalid section name '%s'\n", 11986 prog->name, prog->sec_name); 11987 return -EINVAL; 11988 } 11989 11990 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11991 return libbpf_get_error(*link); 11992 } 11993 11994 /* Common logic for all BPF program types that attach to a btf_id */ 11995 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11996 const struct bpf_trace_opts *opts) 11997 { 11998 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11999 char errmsg[STRERR_BUFSIZE]; 12000 struct bpf_link *link; 12001 int prog_fd, pfd; 12002 12003 if (!OPTS_VALID(opts, bpf_trace_opts)) 12004 return libbpf_err_ptr(-EINVAL); 12005 12006 prog_fd = bpf_program__fd(prog); 12007 if (prog_fd < 0) { 12008 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12009 return libbpf_err_ptr(-EINVAL); 12010 } 12011 12012 link = calloc(1, sizeof(*link)); 12013 if (!link) 12014 return libbpf_err_ptr(-ENOMEM); 12015 link->detach = &bpf_link__detach_fd; 12016 12017 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12018 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12019 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12020 if (pfd < 0) { 12021 pfd = -errno; 12022 free(link); 12023 pr_warn("prog '%s': failed to attach: %s\n", 12024 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12025 return libbpf_err_ptr(pfd); 12026 } 12027 link->fd = pfd; 12028 return link; 12029 } 12030 12031 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12032 { 12033 return bpf_program__attach_btf_id(prog, NULL); 12034 } 12035 12036 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12037 const struct bpf_trace_opts *opts) 12038 { 12039 return bpf_program__attach_btf_id(prog, opts); 12040 } 12041 12042 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12043 { 12044 return bpf_program__attach_btf_id(prog, NULL); 12045 } 12046 12047 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12048 { 12049 *link = bpf_program__attach_trace(prog); 12050 return libbpf_get_error(*link); 12051 } 12052 12053 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12054 { 12055 *link = bpf_program__attach_lsm(prog); 12056 return libbpf_get_error(*link); 12057 } 12058 12059 static struct bpf_link * 12060 bpf_program_attach_fd(const struct bpf_program *prog, 12061 int target_fd, const char *target_name, 12062 const struct bpf_link_create_opts *opts) 12063 { 12064 enum bpf_attach_type attach_type; 12065 char errmsg[STRERR_BUFSIZE]; 12066 struct bpf_link *link; 12067 int prog_fd, link_fd; 12068 12069 prog_fd = bpf_program__fd(prog); 12070 if (prog_fd < 0) { 12071 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12072 return libbpf_err_ptr(-EINVAL); 12073 } 12074 12075 link = calloc(1, sizeof(*link)); 12076 if (!link) 12077 return libbpf_err_ptr(-ENOMEM); 12078 link->detach = &bpf_link__detach_fd; 12079 12080 attach_type = bpf_program__expected_attach_type(prog); 12081 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12082 if (link_fd < 0) { 12083 link_fd = -errno; 12084 free(link); 12085 pr_warn("prog '%s': failed to attach to %s: %s\n", 12086 prog->name, target_name, 12087 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12088 return libbpf_err_ptr(link_fd); 12089 } 12090 link->fd = link_fd; 12091 return link; 12092 } 12093 12094 struct bpf_link * 12095 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12096 { 12097 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12098 } 12099 12100 struct bpf_link * 12101 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12102 { 12103 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12104 } 12105 12106 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12107 { 12108 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12109 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12110 } 12111 12112 struct bpf_link * 12113 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12114 const struct bpf_tcx_opts *opts) 12115 { 12116 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12117 __u32 relative_id; 12118 int relative_fd; 12119 12120 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12121 return libbpf_err_ptr(-EINVAL); 12122 12123 relative_id = OPTS_GET(opts, relative_id, 0); 12124 relative_fd = OPTS_GET(opts, relative_fd, 0); 12125 12126 /* validate we don't have unexpected combinations of non-zero fields */ 12127 if (!ifindex) { 12128 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12129 prog->name); 12130 return libbpf_err_ptr(-EINVAL); 12131 } 12132 if (relative_fd && relative_id) { 12133 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12134 prog->name); 12135 return libbpf_err_ptr(-EINVAL); 12136 } 12137 12138 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12139 link_create_opts.tcx.relative_fd = relative_fd; 12140 link_create_opts.tcx.relative_id = relative_id; 12141 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12142 12143 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12144 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12145 } 12146 12147 struct bpf_link * 12148 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12149 const struct bpf_netkit_opts *opts) 12150 { 12151 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12152 __u32 relative_id; 12153 int relative_fd; 12154 12155 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12156 return libbpf_err_ptr(-EINVAL); 12157 12158 relative_id = OPTS_GET(opts, relative_id, 0); 12159 relative_fd = OPTS_GET(opts, relative_fd, 0); 12160 12161 /* validate we don't have unexpected combinations of non-zero fields */ 12162 if (!ifindex) { 12163 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12164 prog->name); 12165 return libbpf_err_ptr(-EINVAL); 12166 } 12167 if (relative_fd && relative_id) { 12168 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12169 prog->name); 12170 return libbpf_err_ptr(-EINVAL); 12171 } 12172 12173 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12174 link_create_opts.netkit.relative_fd = relative_fd; 12175 link_create_opts.netkit.relative_id = relative_id; 12176 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12177 12178 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12179 } 12180 12181 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12182 int target_fd, 12183 const char *attach_func_name) 12184 { 12185 int btf_id; 12186 12187 if (!!target_fd != !!attach_func_name) { 12188 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12189 prog->name); 12190 return libbpf_err_ptr(-EINVAL); 12191 } 12192 12193 if (prog->type != BPF_PROG_TYPE_EXT) { 12194 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12195 prog->name); 12196 return libbpf_err_ptr(-EINVAL); 12197 } 12198 12199 if (target_fd) { 12200 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12201 12202 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12203 if (btf_id < 0) 12204 return libbpf_err_ptr(btf_id); 12205 12206 target_opts.target_btf_id = btf_id; 12207 12208 return bpf_program_attach_fd(prog, target_fd, "freplace", 12209 &target_opts); 12210 } else { 12211 /* no target, so use raw_tracepoint_open for compatibility 12212 * with old kernels 12213 */ 12214 return bpf_program__attach_trace(prog); 12215 } 12216 } 12217 12218 struct bpf_link * 12219 bpf_program__attach_iter(const struct bpf_program *prog, 12220 const struct bpf_iter_attach_opts *opts) 12221 { 12222 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12223 char errmsg[STRERR_BUFSIZE]; 12224 struct bpf_link *link; 12225 int prog_fd, link_fd; 12226 __u32 target_fd = 0; 12227 12228 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12229 return libbpf_err_ptr(-EINVAL); 12230 12231 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12232 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12233 12234 prog_fd = bpf_program__fd(prog); 12235 if (prog_fd < 0) { 12236 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12237 return libbpf_err_ptr(-EINVAL); 12238 } 12239 12240 link = calloc(1, sizeof(*link)); 12241 if (!link) 12242 return libbpf_err_ptr(-ENOMEM); 12243 link->detach = &bpf_link__detach_fd; 12244 12245 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12246 &link_create_opts); 12247 if (link_fd < 0) { 12248 link_fd = -errno; 12249 free(link); 12250 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12251 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12252 return libbpf_err_ptr(link_fd); 12253 } 12254 link->fd = link_fd; 12255 return link; 12256 } 12257 12258 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12259 { 12260 *link = bpf_program__attach_iter(prog, NULL); 12261 return libbpf_get_error(*link); 12262 } 12263 12264 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12265 const struct bpf_netfilter_opts *opts) 12266 { 12267 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12268 struct bpf_link *link; 12269 int prog_fd, link_fd; 12270 12271 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12272 return libbpf_err_ptr(-EINVAL); 12273 12274 prog_fd = bpf_program__fd(prog); 12275 if (prog_fd < 0) { 12276 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12277 return libbpf_err_ptr(-EINVAL); 12278 } 12279 12280 link = calloc(1, sizeof(*link)); 12281 if (!link) 12282 return libbpf_err_ptr(-ENOMEM); 12283 12284 link->detach = &bpf_link__detach_fd; 12285 12286 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12287 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12288 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12289 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12290 12291 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12292 if (link_fd < 0) { 12293 char errmsg[STRERR_BUFSIZE]; 12294 12295 link_fd = -errno; 12296 free(link); 12297 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12298 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12299 return libbpf_err_ptr(link_fd); 12300 } 12301 link->fd = link_fd; 12302 12303 return link; 12304 } 12305 12306 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12307 { 12308 struct bpf_link *link = NULL; 12309 int err; 12310 12311 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12312 return libbpf_err_ptr(-EOPNOTSUPP); 12313 12314 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12315 if (err) 12316 return libbpf_err_ptr(err); 12317 12318 /* When calling bpf_program__attach() explicitly, auto-attach support 12319 * is expected to work, so NULL returned link is considered an error. 12320 * This is different for skeleton's attach, see comment in 12321 * bpf_object__attach_skeleton(). 12322 */ 12323 if (!link) 12324 return libbpf_err_ptr(-EOPNOTSUPP); 12325 12326 return link; 12327 } 12328 12329 struct bpf_link_struct_ops { 12330 struct bpf_link link; 12331 int map_fd; 12332 }; 12333 12334 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12335 { 12336 struct bpf_link_struct_ops *st_link; 12337 __u32 zero = 0; 12338 12339 st_link = container_of(link, struct bpf_link_struct_ops, link); 12340 12341 if (st_link->map_fd < 0) 12342 /* w/o a real link */ 12343 return bpf_map_delete_elem(link->fd, &zero); 12344 12345 return close(link->fd); 12346 } 12347 12348 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12349 { 12350 struct bpf_link_struct_ops *link; 12351 __u32 zero = 0; 12352 int err, fd; 12353 12354 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12355 return libbpf_err_ptr(-EINVAL); 12356 12357 link = calloc(1, sizeof(*link)); 12358 if (!link) 12359 return libbpf_err_ptr(-EINVAL); 12360 12361 /* kern_vdata should be prepared during the loading phase. */ 12362 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12363 /* It can be EBUSY if the map has been used to create or 12364 * update a link before. We don't allow updating the value of 12365 * a struct_ops once it is set. That ensures that the value 12366 * never changed. So, it is safe to skip EBUSY. 12367 */ 12368 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12369 free(link); 12370 return libbpf_err_ptr(err); 12371 } 12372 12373 link->link.detach = bpf_link__detach_struct_ops; 12374 12375 if (!(map->def.map_flags & BPF_F_LINK)) { 12376 /* w/o a real link */ 12377 link->link.fd = map->fd; 12378 link->map_fd = -1; 12379 return &link->link; 12380 } 12381 12382 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12383 if (fd < 0) { 12384 free(link); 12385 return libbpf_err_ptr(fd); 12386 } 12387 12388 link->link.fd = fd; 12389 link->map_fd = map->fd; 12390 12391 return &link->link; 12392 } 12393 12394 /* 12395 * Swap the back struct_ops of a link with a new struct_ops map. 12396 */ 12397 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12398 { 12399 struct bpf_link_struct_ops *st_ops_link; 12400 __u32 zero = 0; 12401 int err; 12402 12403 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12404 return -EINVAL; 12405 12406 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12407 /* Ensure the type of a link is correct */ 12408 if (st_ops_link->map_fd < 0) 12409 return -EINVAL; 12410 12411 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12412 /* It can be EBUSY if the map has been used to create or 12413 * update a link before. We don't allow updating the value of 12414 * a struct_ops once it is set. That ensures that the value 12415 * never changed. So, it is safe to skip EBUSY. 12416 */ 12417 if (err && err != -EBUSY) 12418 return err; 12419 12420 err = bpf_link_update(link->fd, map->fd, NULL); 12421 if (err < 0) 12422 return err; 12423 12424 st_ops_link->map_fd = map->fd; 12425 12426 return 0; 12427 } 12428 12429 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12430 void *private_data); 12431 12432 static enum bpf_perf_event_ret 12433 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12434 void **copy_mem, size_t *copy_size, 12435 bpf_perf_event_print_t fn, void *private_data) 12436 { 12437 struct perf_event_mmap_page *header = mmap_mem; 12438 __u64 data_head = ring_buffer_read_head(header); 12439 __u64 data_tail = header->data_tail; 12440 void *base = ((__u8 *)header) + page_size; 12441 int ret = LIBBPF_PERF_EVENT_CONT; 12442 struct perf_event_header *ehdr; 12443 size_t ehdr_size; 12444 12445 while (data_head != data_tail) { 12446 ehdr = base + (data_tail & (mmap_size - 1)); 12447 ehdr_size = ehdr->size; 12448 12449 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12450 void *copy_start = ehdr; 12451 size_t len_first = base + mmap_size - copy_start; 12452 size_t len_secnd = ehdr_size - len_first; 12453 12454 if (*copy_size < ehdr_size) { 12455 free(*copy_mem); 12456 *copy_mem = malloc(ehdr_size); 12457 if (!*copy_mem) { 12458 *copy_size = 0; 12459 ret = LIBBPF_PERF_EVENT_ERROR; 12460 break; 12461 } 12462 *copy_size = ehdr_size; 12463 } 12464 12465 memcpy(*copy_mem, copy_start, len_first); 12466 memcpy(*copy_mem + len_first, base, len_secnd); 12467 ehdr = *copy_mem; 12468 } 12469 12470 ret = fn(ehdr, private_data); 12471 data_tail += ehdr_size; 12472 if (ret != LIBBPF_PERF_EVENT_CONT) 12473 break; 12474 } 12475 12476 ring_buffer_write_tail(header, data_tail); 12477 return libbpf_err(ret); 12478 } 12479 12480 struct perf_buffer; 12481 12482 struct perf_buffer_params { 12483 struct perf_event_attr *attr; 12484 /* if event_cb is specified, it takes precendence */ 12485 perf_buffer_event_fn event_cb; 12486 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12487 perf_buffer_sample_fn sample_cb; 12488 perf_buffer_lost_fn lost_cb; 12489 void *ctx; 12490 int cpu_cnt; 12491 int *cpus; 12492 int *map_keys; 12493 }; 12494 12495 struct perf_cpu_buf { 12496 struct perf_buffer *pb; 12497 void *base; /* mmap()'ed memory */ 12498 void *buf; /* for reconstructing segmented data */ 12499 size_t buf_size; 12500 int fd; 12501 int cpu; 12502 int map_key; 12503 }; 12504 12505 struct perf_buffer { 12506 perf_buffer_event_fn event_cb; 12507 perf_buffer_sample_fn sample_cb; 12508 perf_buffer_lost_fn lost_cb; 12509 void *ctx; /* passed into callbacks */ 12510 12511 size_t page_size; 12512 size_t mmap_size; 12513 struct perf_cpu_buf **cpu_bufs; 12514 struct epoll_event *events; 12515 int cpu_cnt; /* number of allocated CPU buffers */ 12516 int epoll_fd; /* perf event FD */ 12517 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12518 }; 12519 12520 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12521 struct perf_cpu_buf *cpu_buf) 12522 { 12523 if (!cpu_buf) 12524 return; 12525 if (cpu_buf->base && 12526 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12527 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12528 if (cpu_buf->fd >= 0) { 12529 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12530 close(cpu_buf->fd); 12531 } 12532 free(cpu_buf->buf); 12533 free(cpu_buf); 12534 } 12535 12536 void perf_buffer__free(struct perf_buffer *pb) 12537 { 12538 int i; 12539 12540 if (IS_ERR_OR_NULL(pb)) 12541 return; 12542 if (pb->cpu_bufs) { 12543 for (i = 0; i < pb->cpu_cnt; i++) { 12544 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12545 12546 if (!cpu_buf) 12547 continue; 12548 12549 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12550 perf_buffer__free_cpu_buf(pb, cpu_buf); 12551 } 12552 free(pb->cpu_bufs); 12553 } 12554 if (pb->epoll_fd >= 0) 12555 close(pb->epoll_fd); 12556 free(pb->events); 12557 free(pb); 12558 } 12559 12560 static struct perf_cpu_buf * 12561 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12562 int cpu, int map_key) 12563 { 12564 struct perf_cpu_buf *cpu_buf; 12565 char msg[STRERR_BUFSIZE]; 12566 int err; 12567 12568 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12569 if (!cpu_buf) 12570 return ERR_PTR(-ENOMEM); 12571 12572 cpu_buf->pb = pb; 12573 cpu_buf->cpu = cpu; 12574 cpu_buf->map_key = map_key; 12575 12576 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12577 -1, PERF_FLAG_FD_CLOEXEC); 12578 if (cpu_buf->fd < 0) { 12579 err = -errno; 12580 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12581 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12582 goto error; 12583 } 12584 12585 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12586 PROT_READ | PROT_WRITE, MAP_SHARED, 12587 cpu_buf->fd, 0); 12588 if (cpu_buf->base == MAP_FAILED) { 12589 cpu_buf->base = NULL; 12590 err = -errno; 12591 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12592 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12593 goto error; 12594 } 12595 12596 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12597 err = -errno; 12598 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12599 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12600 goto error; 12601 } 12602 12603 return cpu_buf; 12604 12605 error: 12606 perf_buffer__free_cpu_buf(pb, cpu_buf); 12607 return (struct perf_cpu_buf *)ERR_PTR(err); 12608 } 12609 12610 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12611 struct perf_buffer_params *p); 12612 12613 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12614 perf_buffer_sample_fn sample_cb, 12615 perf_buffer_lost_fn lost_cb, 12616 void *ctx, 12617 const struct perf_buffer_opts *opts) 12618 { 12619 const size_t attr_sz = sizeof(struct perf_event_attr); 12620 struct perf_buffer_params p = {}; 12621 struct perf_event_attr attr; 12622 __u32 sample_period; 12623 12624 if (!OPTS_VALID(opts, perf_buffer_opts)) 12625 return libbpf_err_ptr(-EINVAL); 12626 12627 sample_period = OPTS_GET(opts, sample_period, 1); 12628 if (!sample_period) 12629 sample_period = 1; 12630 12631 memset(&attr, 0, attr_sz); 12632 attr.size = attr_sz; 12633 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12634 attr.type = PERF_TYPE_SOFTWARE; 12635 attr.sample_type = PERF_SAMPLE_RAW; 12636 attr.sample_period = sample_period; 12637 attr.wakeup_events = sample_period; 12638 12639 p.attr = &attr; 12640 p.sample_cb = sample_cb; 12641 p.lost_cb = lost_cb; 12642 p.ctx = ctx; 12643 12644 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12645 } 12646 12647 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12648 struct perf_event_attr *attr, 12649 perf_buffer_event_fn event_cb, void *ctx, 12650 const struct perf_buffer_raw_opts *opts) 12651 { 12652 struct perf_buffer_params p = {}; 12653 12654 if (!attr) 12655 return libbpf_err_ptr(-EINVAL); 12656 12657 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12658 return libbpf_err_ptr(-EINVAL); 12659 12660 p.attr = attr; 12661 p.event_cb = event_cb; 12662 p.ctx = ctx; 12663 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12664 p.cpus = OPTS_GET(opts, cpus, NULL); 12665 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12666 12667 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12668 } 12669 12670 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12671 struct perf_buffer_params *p) 12672 { 12673 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12674 struct bpf_map_info map; 12675 char msg[STRERR_BUFSIZE]; 12676 struct perf_buffer *pb; 12677 bool *online = NULL; 12678 __u32 map_info_len; 12679 int err, i, j, n; 12680 12681 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12682 pr_warn("page count should be power of two, but is %zu\n", 12683 page_cnt); 12684 return ERR_PTR(-EINVAL); 12685 } 12686 12687 /* best-effort sanity checks */ 12688 memset(&map, 0, sizeof(map)); 12689 map_info_len = sizeof(map); 12690 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12691 if (err) { 12692 err = -errno; 12693 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12694 * -EBADFD, -EFAULT, or -E2BIG on real error 12695 */ 12696 if (err != -EINVAL) { 12697 pr_warn("failed to get map info for map FD %d: %s\n", 12698 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12699 return ERR_PTR(err); 12700 } 12701 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12702 map_fd); 12703 } else { 12704 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12705 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12706 map.name); 12707 return ERR_PTR(-EINVAL); 12708 } 12709 } 12710 12711 pb = calloc(1, sizeof(*pb)); 12712 if (!pb) 12713 return ERR_PTR(-ENOMEM); 12714 12715 pb->event_cb = p->event_cb; 12716 pb->sample_cb = p->sample_cb; 12717 pb->lost_cb = p->lost_cb; 12718 pb->ctx = p->ctx; 12719 12720 pb->page_size = getpagesize(); 12721 pb->mmap_size = pb->page_size * page_cnt; 12722 pb->map_fd = map_fd; 12723 12724 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12725 if (pb->epoll_fd < 0) { 12726 err = -errno; 12727 pr_warn("failed to create epoll instance: %s\n", 12728 libbpf_strerror_r(err, msg, sizeof(msg))); 12729 goto error; 12730 } 12731 12732 if (p->cpu_cnt > 0) { 12733 pb->cpu_cnt = p->cpu_cnt; 12734 } else { 12735 pb->cpu_cnt = libbpf_num_possible_cpus(); 12736 if (pb->cpu_cnt < 0) { 12737 err = pb->cpu_cnt; 12738 goto error; 12739 } 12740 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12741 pb->cpu_cnt = map.max_entries; 12742 } 12743 12744 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12745 if (!pb->events) { 12746 err = -ENOMEM; 12747 pr_warn("failed to allocate events: out of memory\n"); 12748 goto error; 12749 } 12750 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12751 if (!pb->cpu_bufs) { 12752 err = -ENOMEM; 12753 pr_warn("failed to allocate buffers: out of memory\n"); 12754 goto error; 12755 } 12756 12757 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12758 if (err) { 12759 pr_warn("failed to get online CPU mask: %d\n", err); 12760 goto error; 12761 } 12762 12763 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12764 struct perf_cpu_buf *cpu_buf; 12765 int cpu, map_key; 12766 12767 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12768 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12769 12770 /* in case user didn't explicitly requested particular CPUs to 12771 * be attached to, skip offline/not present CPUs 12772 */ 12773 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12774 continue; 12775 12776 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12777 if (IS_ERR(cpu_buf)) { 12778 err = PTR_ERR(cpu_buf); 12779 goto error; 12780 } 12781 12782 pb->cpu_bufs[j] = cpu_buf; 12783 12784 err = bpf_map_update_elem(pb->map_fd, &map_key, 12785 &cpu_buf->fd, 0); 12786 if (err) { 12787 err = -errno; 12788 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12789 cpu, map_key, cpu_buf->fd, 12790 libbpf_strerror_r(err, msg, sizeof(msg))); 12791 goto error; 12792 } 12793 12794 pb->events[j].events = EPOLLIN; 12795 pb->events[j].data.ptr = cpu_buf; 12796 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12797 &pb->events[j]) < 0) { 12798 err = -errno; 12799 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12800 cpu, cpu_buf->fd, 12801 libbpf_strerror_r(err, msg, sizeof(msg))); 12802 goto error; 12803 } 12804 j++; 12805 } 12806 pb->cpu_cnt = j; 12807 free(online); 12808 12809 return pb; 12810 12811 error: 12812 free(online); 12813 if (pb) 12814 perf_buffer__free(pb); 12815 return ERR_PTR(err); 12816 } 12817 12818 struct perf_sample_raw { 12819 struct perf_event_header header; 12820 uint32_t size; 12821 char data[]; 12822 }; 12823 12824 struct perf_sample_lost { 12825 struct perf_event_header header; 12826 uint64_t id; 12827 uint64_t lost; 12828 uint64_t sample_id; 12829 }; 12830 12831 static enum bpf_perf_event_ret 12832 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12833 { 12834 struct perf_cpu_buf *cpu_buf = ctx; 12835 struct perf_buffer *pb = cpu_buf->pb; 12836 void *data = e; 12837 12838 /* user wants full control over parsing perf event */ 12839 if (pb->event_cb) 12840 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12841 12842 switch (e->type) { 12843 case PERF_RECORD_SAMPLE: { 12844 struct perf_sample_raw *s = data; 12845 12846 if (pb->sample_cb) 12847 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12848 break; 12849 } 12850 case PERF_RECORD_LOST: { 12851 struct perf_sample_lost *s = data; 12852 12853 if (pb->lost_cb) 12854 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12855 break; 12856 } 12857 default: 12858 pr_warn("unknown perf sample type %d\n", e->type); 12859 return LIBBPF_PERF_EVENT_ERROR; 12860 } 12861 return LIBBPF_PERF_EVENT_CONT; 12862 } 12863 12864 static int perf_buffer__process_records(struct perf_buffer *pb, 12865 struct perf_cpu_buf *cpu_buf) 12866 { 12867 enum bpf_perf_event_ret ret; 12868 12869 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12870 pb->page_size, &cpu_buf->buf, 12871 &cpu_buf->buf_size, 12872 perf_buffer__process_record, cpu_buf); 12873 if (ret != LIBBPF_PERF_EVENT_CONT) 12874 return ret; 12875 return 0; 12876 } 12877 12878 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12879 { 12880 return pb->epoll_fd; 12881 } 12882 12883 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12884 { 12885 int i, cnt, err; 12886 12887 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12888 if (cnt < 0) 12889 return -errno; 12890 12891 for (i = 0; i < cnt; i++) { 12892 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12893 12894 err = perf_buffer__process_records(pb, cpu_buf); 12895 if (err) { 12896 pr_warn("error while processing records: %d\n", err); 12897 return libbpf_err(err); 12898 } 12899 } 12900 return cnt; 12901 } 12902 12903 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12904 * manager. 12905 */ 12906 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12907 { 12908 return pb->cpu_cnt; 12909 } 12910 12911 /* 12912 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12913 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12914 * select()/poll()/epoll() Linux syscalls. 12915 */ 12916 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12917 { 12918 struct perf_cpu_buf *cpu_buf; 12919 12920 if (buf_idx >= pb->cpu_cnt) 12921 return libbpf_err(-EINVAL); 12922 12923 cpu_buf = pb->cpu_bufs[buf_idx]; 12924 if (!cpu_buf) 12925 return libbpf_err(-ENOENT); 12926 12927 return cpu_buf->fd; 12928 } 12929 12930 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12931 { 12932 struct perf_cpu_buf *cpu_buf; 12933 12934 if (buf_idx >= pb->cpu_cnt) 12935 return libbpf_err(-EINVAL); 12936 12937 cpu_buf = pb->cpu_bufs[buf_idx]; 12938 if (!cpu_buf) 12939 return libbpf_err(-ENOENT); 12940 12941 *buf = cpu_buf->base; 12942 *buf_size = pb->mmap_size; 12943 return 0; 12944 } 12945 12946 /* 12947 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12948 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12949 * consume, do nothing and return success. 12950 * Returns: 12951 * - 0 on success; 12952 * - <0 on failure. 12953 */ 12954 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12955 { 12956 struct perf_cpu_buf *cpu_buf; 12957 12958 if (buf_idx >= pb->cpu_cnt) 12959 return libbpf_err(-EINVAL); 12960 12961 cpu_buf = pb->cpu_bufs[buf_idx]; 12962 if (!cpu_buf) 12963 return libbpf_err(-ENOENT); 12964 12965 return perf_buffer__process_records(pb, cpu_buf); 12966 } 12967 12968 int perf_buffer__consume(struct perf_buffer *pb) 12969 { 12970 int i, err; 12971 12972 for (i = 0; i < pb->cpu_cnt; i++) { 12973 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12974 12975 if (!cpu_buf) 12976 continue; 12977 12978 err = perf_buffer__process_records(pb, cpu_buf); 12979 if (err) { 12980 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12981 return libbpf_err(err); 12982 } 12983 } 12984 return 0; 12985 } 12986 12987 int bpf_program__set_attach_target(struct bpf_program *prog, 12988 int attach_prog_fd, 12989 const char *attach_func_name) 12990 { 12991 int btf_obj_fd = 0, btf_id = 0, err; 12992 12993 if (!prog || attach_prog_fd < 0) 12994 return libbpf_err(-EINVAL); 12995 12996 if (prog->obj->loaded) 12997 return libbpf_err(-EINVAL); 12998 12999 if (attach_prog_fd && !attach_func_name) { 13000 /* remember attach_prog_fd and let bpf_program__load() find 13001 * BTF ID during the program load 13002 */ 13003 prog->attach_prog_fd = attach_prog_fd; 13004 return 0; 13005 } 13006 13007 if (attach_prog_fd) { 13008 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13009 attach_prog_fd); 13010 if (btf_id < 0) 13011 return libbpf_err(btf_id); 13012 } else { 13013 if (!attach_func_name) 13014 return libbpf_err(-EINVAL); 13015 13016 /* load btf_vmlinux, if not yet */ 13017 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13018 if (err) 13019 return libbpf_err(err); 13020 err = find_kernel_btf_id(prog->obj, attach_func_name, 13021 prog->expected_attach_type, 13022 &btf_obj_fd, &btf_id); 13023 if (err) 13024 return libbpf_err(err); 13025 } 13026 13027 prog->attach_btf_id = btf_id; 13028 prog->attach_btf_obj_fd = btf_obj_fd; 13029 prog->attach_prog_fd = attach_prog_fd; 13030 return 0; 13031 } 13032 13033 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13034 { 13035 int err = 0, n, len, start, end = -1; 13036 bool *tmp; 13037 13038 *mask = NULL; 13039 *mask_sz = 0; 13040 13041 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13042 while (*s) { 13043 if (*s == ',' || *s == '\n') { 13044 s++; 13045 continue; 13046 } 13047 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13048 if (n <= 0 || n > 2) { 13049 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13050 err = -EINVAL; 13051 goto cleanup; 13052 } else if (n == 1) { 13053 end = start; 13054 } 13055 if (start < 0 || start > end) { 13056 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13057 start, end, s); 13058 err = -EINVAL; 13059 goto cleanup; 13060 } 13061 tmp = realloc(*mask, end + 1); 13062 if (!tmp) { 13063 err = -ENOMEM; 13064 goto cleanup; 13065 } 13066 *mask = tmp; 13067 memset(tmp + *mask_sz, 0, start - *mask_sz); 13068 memset(tmp + start, 1, end - start + 1); 13069 *mask_sz = end + 1; 13070 s += len; 13071 } 13072 if (!*mask_sz) { 13073 pr_warn("Empty CPU range\n"); 13074 return -EINVAL; 13075 } 13076 return 0; 13077 cleanup: 13078 free(*mask); 13079 *mask = NULL; 13080 return err; 13081 } 13082 13083 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13084 { 13085 int fd, err = 0, len; 13086 char buf[128]; 13087 13088 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13089 if (fd < 0) { 13090 err = -errno; 13091 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13092 return err; 13093 } 13094 len = read(fd, buf, sizeof(buf)); 13095 close(fd); 13096 if (len <= 0) { 13097 err = len ? -errno : -EINVAL; 13098 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13099 return err; 13100 } 13101 if (len >= sizeof(buf)) { 13102 pr_warn("CPU mask is too big in file %s\n", fcpu); 13103 return -E2BIG; 13104 } 13105 buf[len] = '\0'; 13106 13107 return parse_cpu_mask_str(buf, mask, mask_sz); 13108 } 13109 13110 int libbpf_num_possible_cpus(void) 13111 { 13112 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13113 static int cpus; 13114 int err, n, i, tmp_cpus; 13115 bool *mask; 13116 13117 tmp_cpus = READ_ONCE(cpus); 13118 if (tmp_cpus > 0) 13119 return tmp_cpus; 13120 13121 err = parse_cpu_mask_file(fcpu, &mask, &n); 13122 if (err) 13123 return libbpf_err(err); 13124 13125 tmp_cpus = 0; 13126 for (i = 0; i < n; i++) { 13127 if (mask[i]) 13128 tmp_cpus++; 13129 } 13130 free(mask); 13131 13132 WRITE_ONCE(cpus, tmp_cpus); 13133 return tmp_cpus; 13134 } 13135 13136 static int populate_skeleton_maps(const struct bpf_object *obj, 13137 struct bpf_map_skeleton *maps, 13138 size_t map_cnt) 13139 { 13140 int i; 13141 13142 for (i = 0; i < map_cnt; i++) { 13143 struct bpf_map **map = maps[i].map; 13144 const char *name = maps[i].name; 13145 void **mmaped = maps[i].mmaped; 13146 13147 *map = bpf_object__find_map_by_name(obj, name); 13148 if (!*map) { 13149 pr_warn("failed to find skeleton map '%s'\n", name); 13150 return -ESRCH; 13151 } 13152 13153 /* externs shouldn't be pre-setup from user code */ 13154 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13155 *mmaped = (*map)->mmaped; 13156 } 13157 return 0; 13158 } 13159 13160 static int populate_skeleton_progs(const struct bpf_object *obj, 13161 struct bpf_prog_skeleton *progs, 13162 size_t prog_cnt) 13163 { 13164 int i; 13165 13166 for (i = 0; i < prog_cnt; i++) { 13167 struct bpf_program **prog = progs[i].prog; 13168 const char *name = progs[i].name; 13169 13170 *prog = bpf_object__find_program_by_name(obj, name); 13171 if (!*prog) { 13172 pr_warn("failed to find skeleton program '%s'\n", name); 13173 return -ESRCH; 13174 } 13175 } 13176 return 0; 13177 } 13178 13179 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13180 const struct bpf_object_open_opts *opts) 13181 { 13182 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13183 .object_name = s->name, 13184 ); 13185 struct bpf_object *obj; 13186 int err; 13187 13188 /* Attempt to preserve opts->object_name, unless overriden by user 13189 * explicitly. Overwriting object name for skeletons is discouraged, 13190 * as it breaks global data maps, because they contain object name 13191 * prefix as their own map name prefix. When skeleton is generated, 13192 * bpftool is making an assumption that this name will stay the same. 13193 */ 13194 if (opts) { 13195 memcpy(&skel_opts, opts, sizeof(*opts)); 13196 if (!opts->object_name) 13197 skel_opts.object_name = s->name; 13198 } 13199 13200 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13201 err = libbpf_get_error(obj); 13202 if (err) { 13203 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13204 s->name, err); 13205 return libbpf_err(err); 13206 } 13207 13208 *s->obj = obj; 13209 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13210 if (err) { 13211 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13212 return libbpf_err(err); 13213 } 13214 13215 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13216 if (err) { 13217 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13218 return libbpf_err(err); 13219 } 13220 13221 return 0; 13222 } 13223 13224 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13225 { 13226 int err, len, var_idx, i; 13227 const char *var_name; 13228 const struct bpf_map *map; 13229 struct btf *btf; 13230 __u32 map_type_id; 13231 const struct btf_type *map_type, *var_type; 13232 const struct bpf_var_skeleton *var_skel; 13233 struct btf_var_secinfo *var; 13234 13235 if (!s->obj) 13236 return libbpf_err(-EINVAL); 13237 13238 btf = bpf_object__btf(s->obj); 13239 if (!btf) { 13240 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13241 bpf_object__name(s->obj)); 13242 return libbpf_err(-errno); 13243 } 13244 13245 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13246 if (err) { 13247 pr_warn("failed to populate subskeleton maps: %d\n", err); 13248 return libbpf_err(err); 13249 } 13250 13251 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13252 if (err) { 13253 pr_warn("failed to populate subskeleton maps: %d\n", err); 13254 return libbpf_err(err); 13255 } 13256 13257 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13258 var_skel = &s->vars[var_idx]; 13259 map = *var_skel->map; 13260 map_type_id = bpf_map__btf_value_type_id(map); 13261 map_type = btf__type_by_id(btf, map_type_id); 13262 13263 if (!btf_is_datasec(map_type)) { 13264 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13265 bpf_map__name(map), 13266 __btf_kind_str(btf_kind(map_type))); 13267 return libbpf_err(-EINVAL); 13268 } 13269 13270 len = btf_vlen(map_type); 13271 var = btf_var_secinfos(map_type); 13272 for (i = 0; i < len; i++, var++) { 13273 var_type = btf__type_by_id(btf, var->type); 13274 var_name = btf__name_by_offset(btf, var_type->name_off); 13275 if (strcmp(var_name, var_skel->name) == 0) { 13276 *var_skel->addr = map->mmaped + var->offset; 13277 break; 13278 } 13279 } 13280 } 13281 return 0; 13282 } 13283 13284 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13285 { 13286 if (!s) 13287 return; 13288 free(s->maps); 13289 free(s->progs); 13290 free(s->vars); 13291 free(s); 13292 } 13293 13294 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13295 { 13296 int i, err; 13297 13298 err = bpf_object__load(*s->obj); 13299 if (err) { 13300 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13301 return libbpf_err(err); 13302 } 13303 13304 for (i = 0; i < s->map_cnt; i++) { 13305 struct bpf_map *map = *s->maps[i].map; 13306 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13307 int prot, map_fd = bpf_map__fd(map); 13308 void **mmaped = s->maps[i].mmaped; 13309 13310 if (!mmaped) 13311 continue; 13312 13313 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13314 *mmaped = NULL; 13315 continue; 13316 } 13317 13318 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13319 prot = PROT_READ; 13320 else 13321 prot = PROT_READ | PROT_WRITE; 13322 13323 /* Remap anonymous mmap()-ed "map initialization image" as 13324 * a BPF map-backed mmap()-ed memory, but preserving the same 13325 * memory address. This will cause kernel to change process' 13326 * page table to point to a different piece of kernel memory, 13327 * but from userspace point of view memory address (and its 13328 * contents, being identical at this point) will stay the 13329 * same. This mapping will be released by bpf_object__close() 13330 * as per normal clean up procedure, so we don't need to worry 13331 * about it from skeleton's clean up perspective. 13332 */ 13333 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13334 if (*mmaped == MAP_FAILED) { 13335 err = -errno; 13336 *mmaped = NULL; 13337 pr_warn("failed to re-mmap() map '%s': %d\n", 13338 bpf_map__name(map), err); 13339 return libbpf_err(err); 13340 } 13341 } 13342 13343 return 0; 13344 } 13345 13346 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13347 { 13348 int i, err; 13349 13350 for (i = 0; i < s->prog_cnt; i++) { 13351 struct bpf_program *prog = *s->progs[i].prog; 13352 struct bpf_link **link = s->progs[i].link; 13353 13354 if (!prog->autoload || !prog->autoattach) 13355 continue; 13356 13357 /* auto-attaching not supported for this program */ 13358 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13359 continue; 13360 13361 /* if user already set the link manually, don't attempt auto-attach */ 13362 if (*link) 13363 continue; 13364 13365 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13366 if (err) { 13367 pr_warn("prog '%s': failed to auto-attach: %d\n", 13368 bpf_program__name(prog), err); 13369 return libbpf_err(err); 13370 } 13371 13372 /* It's possible that for some SEC() definitions auto-attach 13373 * is supported in some cases (e.g., if definition completely 13374 * specifies target information), but is not in other cases. 13375 * SEC("uprobe") is one such case. If user specified target 13376 * binary and function name, such BPF program can be 13377 * auto-attached. But if not, it shouldn't trigger skeleton's 13378 * attach to fail. It should just be skipped. 13379 * attach_fn signals such case with returning 0 (no error) and 13380 * setting link to NULL. 13381 */ 13382 } 13383 13384 return 0; 13385 } 13386 13387 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13388 { 13389 int i; 13390 13391 for (i = 0; i < s->prog_cnt; i++) { 13392 struct bpf_link **link = s->progs[i].link; 13393 13394 bpf_link__destroy(*link); 13395 *link = NULL; 13396 } 13397 } 13398 13399 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13400 { 13401 if (!s) 13402 return; 13403 13404 if (s->progs) 13405 bpf_object__detach_skeleton(s); 13406 if (s->obj) 13407 bpf_object__close(*s->obj); 13408 free(s->maps); 13409 free(s->progs); 13410 free(s); 13411 } 13412