1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 }; 130 131 static const char * const link_type_name[] = { 132 [BPF_LINK_TYPE_UNSPEC] = "unspec", 133 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 134 [BPF_LINK_TYPE_TRACING] = "tracing", 135 [BPF_LINK_TYPE_CGROUP] = "cgroup", 136 [BPF_LINK_TYPE_ITER] = "iter", 137 [BPF_LINK_TYPE_NETNS] = "netns", 138 [BPF_LINK_TYPE_XDP] = "xdp", 139 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 140 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 141 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 142 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 143 [BPF_LINK_TYPE_TCX] = "tcx", 144 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 145 }; 146 147 static const char * const map_type_name[] = { 148 [BPF_MAP_TYPE_UNSPEC] = "unspec", 149 [BPF_MAP_TYPE_HASH] = "hash", 150 [BPF_MAP_TYPE_ARRAY] = "array", 151 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 152 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 153 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 154 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 155 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 156 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 157 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 158 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 159 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 160 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 161 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 162 [BPF_MAP_TYPE_DEVMAP] = "devmap", 163 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 164 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 165 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 166 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 167 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 168 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 169 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 170 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 171 [BPF_MAP_TYPE_QUEUE] = "queue", 172 [BPF_MAP_TYPE_STACK] = "stack", 173 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 174 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 175 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 176 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 177 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 178 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 179 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 180 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 181 }; 182 183 static const char * const prog_type_name[] = { 184 [BPF_PROG_TYPE_UNSPEC] = "unspec", 185 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 186 [BPF_PROG_TYPE_KPROBE] = "kprobe", 187 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 188 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 189 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 190 [BPF_PROG_TYPE_XDP] = "xdp", 191 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 192 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 193 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 194 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 195 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 196 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 197 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 198 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 199 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 200 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 201 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 202 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 203 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 204 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 205 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 206 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 207 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 208 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 209 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 210 [BPF_PROG_TYPE_TRACING] = "tracing", 211 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 212 [BPF_PROG_TYPE_EXT] = "ext", 213 [BPF_PROG_TYPE_LSM] = "lsm", 214 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 215 [BPF_PROG_TYPE_SYSCALL] = "syscall", 216 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 217 }; 218 219 static int __base_pr(enum libbpf_print_level level, const char *format, 220 va_list args) 221 { 222 if (level == LIBBPF_DEBUG) 223 return 0; 224 225 return vfprintf(stderr, format, args); 226 } 227 228 static libbpf_print_fn_t __libbpf_pr = __base_pr; 229 230 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 231 { 232 libbpf_print_fn_t old_print_fn; 233 234 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 235 236 return old_print_fn; 237 } 238 239 __printf(2, 3) 240 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 241 { 242 va_list args; 243 int old_errno; 244 libbpf_print_fn_t print_fn; 245 246 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 247 if (!print_fn) 248 return; 249 250 old_errno = errno; 251 252 va_start(args, format); 253 __libbpf_pr(level, format, args); 254 va_end(args); 255 256 errno = old_errno; 257 } 258 259 static void pr_perm_msg(int err) 260 { 261 struct rlimit limit; 262 char buf[100]; 263 264 if (err != -EPERM || geteuid() != 0) 265 return; 266 267 err = getrlimit(RLIMIT_MEMLOCK, &limit); 268 if (err) 269 return; 270 271 if (limit.rlim_cur == RLIM_INFINITY) 272 return; 273 274 if (limit.rlim_cur < 1024) 275 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 276 else if (limit.rlim_cur < 1024*1024) 277 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 278 else 279 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 280 281 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 282 buf); 283 } 284 285 #define STRERR_BUFSIZE 128 286 287 /* Copied from tools/perf/util/util.h */ 288 #ifndef zfree 289 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 290 #endif 291 292 #ifndef zclose 293 # define zclose(fd) ({ \ 294 int ___err = 0; \ 295 if ((fd) >= 0) \ 296 ___err = close((fd)); \ 297 fd = -1; \ 298 ___err; }) 299 #endif 300 301 static inline __u64 ptr_to_u64(const void *ptr) 302 { 303 return (__u64) (unsigned long) ptr; 304 } 305 306 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 307 { 308 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 309 return 0; 310 } 311 312 __u32 libbpf_major_version(void) 313 { 314 return LIBBPF_MAJOR_VERSION; 315 } 316 317 __u32 libbpf_minor_version(void) 318 { 319 return LIBBPF_MINOR_VERSION; 320 } 321 322 const char *libbpf_version_string(void) 323 { 324 #define __S(X) #X 325 #define _S(X) __S(X) 326 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 327 #undef _S 328 #undef __S 329 } 330 331 enum reloc_type { 332 RELO_LD64, 333 RELO_CALL, 334 RELO_DATA, 335 RELO_EXTERN_LD64, 336 RELO_EXTERN_CALL, 337 RELO_SUBPROG_ADDR, 338 RELO_CORE, 339 }; 340 341 struct reloc_desc { 342 enum reloc_type type; 343 int insn_idx; 344 union { 345 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 346 struct { 347 int map_idx; 348 int sym_off; 349 int ext_idx; 350 }; 351 }; 352 }; 353 354 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 355 enum sec_def_flags { 356 SEC_NONE = 0, 357 /* expected_attach_type is optional, if kernel doesn't support that */ 358 SEC_EXP_ATTACH_OPT = 1, 359 /* legacy, only used by libbpf_get_type_names() and 360 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 361 * This used to be associated with cgroup (and few other) BPF programs 362 * that were attachable through BPF_PROG_ATTACH command. Pretty 363 * meaningless nowadays, though. 364 */ 365 SEC_ATTACHABLE = 2, 366 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 367 /* attachment target is specified through BTF ID in either kernel or 368 * other BPF program's BTF object 369 */ 370 SEC_ATTACH_BTF = 4, 371 /* BPF program type allows sleeping/blocking in kernel */ 372 SEC_SLEEPABLE = 8, 373 /* BPF program support non-linear XDP buffer */ 374 SEC_XDP_FRAGS = 16, 375 /* Setup proper attach type for usdt probes. */ 376 SEC_USDT = 32, 377 }; 378 379 struct bpf_sec_def { 380 char *sec; 381 enum bpf_prog_type prog_type; 382 enum bpf_attach_type expected_attach_type; 383 long cookie; 384 int handler_id; 385 386 libbpf_prog_setup_fn_t prog_setup_fn; 387 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 388 libbpf_prog_attach_fn_t prog_attach_fn; 389 }; 390 391 /* 392 * bpf_prog should be a better name but it has been used in 393 * linux/filter.h. 394 */ 395 struct bpf_program { 396 char *name; 397 char *sec_name; 398 size_t sec_idx; 399 const struct bpf_sec_def *sec_def; 400 /* this program's instruction offset (in number of instructions) 401 * within its containing ELF section 402 */ 403 size_t sec_insn_off; 404 /* number of original instructions in ELF section belonging to this 405 * program, not taking into account subprogram instructions possible 406 * appended later during relocation 407 */ 408 size_t sec_insn_cnt; 409 /* Offset (in number of instructions) of the start of instruction 410 * belonging to this BPF program within its containing main BPF 411 * program. For the entry-point (main) BPF program, this is always 412 * zero. For a sub-program, this gets reset before each of main BPF 413 * programs are processed and relocated and is used to determined 414 * whether sub-program was already appended to the main program, and 415 * if yes, at which instruction offset. 416 */ 417 size_t sub_insn_off; 418 419 /* instructions that belong to BPF program; insns[0] is located at 420 * sec_insn_off instruction within its ELF section in ELF file, so 421 * when mapping ELF file instruction index to the local instruction, 422 * one needs to subtract sec_insn_off; and vice versa. 423 */ 424 struct bpf_insn *insns; 425 /* actual number of instruction in this BPF program's image; for 426 * entry-point BPF programs this includes the size of main program 427 * itself plus all the used sub-programs, appended at the end 428 */ 429 size_t insns_cnt; 430 431 struct reloc_desc *reloc_desc; 432 int nr_reloc; 433 434 /* BPF verifier log settings */ 435 char *log_buf; 436 size_t log_size; 437 __u32 log_level; 438 439 struct bpf_object *obj; 440 441 int fd; 442 bool autoload; 443 bool autoattach; 444 bool sym_global; 445 bool mark_btf_static; 446 enum bpf_prog_type type; 447 enum bpf_attach_type expected_attach_type; 448 int exception_cb_idx; 449 450 int prog_ifindex; 451 __u32 attach_btf_obj_fd; 452 __u32 attach_btf_id; 453 __u32 attach_prog_fd; 454 455 void *func_info; 456 __u32 func_info_rec_size; 457 __u32 func_info_cnt; 458 459 void *line_info; 460 __u32 line_info_rec_size; 461 __u32 line_info_cnt; 462 __u32 prog_flags; 463 }; 464 465 struct bpf_struct_ops { 466 const char *tname; 467 const struct btf_type *type; 468 struct bpf_program **progs; 469 __u32 *kern_func_off; 470 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 471 void *data; 472 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 473 * btf_vmlinux's format. 474 * struct bpf_struct_ops_tcp_congestion_ops { 475 * [... some other kernel fields ...] 476 * struct tcp_congestion_ops data; 477 * } 478 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 479 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 480 * from "data". 481 */ 482 void *kern_vdata; 483 __u32 type_id; 484 }; 485 486 #define DATA_SEC ".data" 487 #define BSS_SEC ".bss" 488 #define RODATA_SEC ".rodata" 489 #define KCONFIG_SEC ".kconfig" 490 #define KSYMS_SEC ".ksyms" 491 #define STRUCT_OPS_SEC ".struct_ops" 492 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 493 494 enum libbpf_map_type { 495 LIBBPF_MAP_UNSPEC, 496 LIBBPF_MAP_DATA, 497 LIBBPF_MAP_BSS, 498 LIBBPF_MAP_RODATA, 499 LIBBPF_MAP_KCONFIG, 500 }; 501 502 struct bpf_map_def { 503 unsigned int type; 504 unsigned int key_size; 505 unsigned int value_size; 506 unsigned int max_entries; 507 unsigned int map_flags; 508 }; 509 510 struct bpf_map { 511 struct bpf_object *obj; 512 char *name; 513 /* real_name is defined for special internal maps (.rodata*, 514 * .data*, .bss, .kconfig) and preserves their original ELF section 515 * name. This is important to be able to find corresponding BTF 516 * DATASEC information. 517 */ 518 char *real_name; 519 int fd; 520 int sec_idx; 521 size_t sec_offset; 522 int map_ifindex; 523 int inner_map_fd; 524 struct bpf_map_def def; 525 __u32 numa_node; 526 __u32 btf_var_idx; 527 __u32 btf_key_type_id; 528 __u32 btf_value_type_id; 529 __u32 btf_vmlinux_value_type_id; 530 enum libbpf_map_type libbpf_type; 531 void *mmaped; 532 struct bpf_struct_ops *st_ops; 533 struct bpf_map *inner_map; 534 void **init_slots; 535 int init_slots_sz; 536 char *pin_path; 537 bool pinned; 538 bool reused; 539 bool autocreate; 540 __u64 map_extra; 541 }; 542 543 enum extern_type { 544 EXT_UNKNOWN, 545 EXT_KCFG, 546 EXT_KSYM, 547 }; 548 549 enum kcfg_type { 550 KCFG_UNKNOWN, 551 KCFG_CHAR, 552 KCFG_BOOL, 553 KCFG_INT, 554 KCFG_TRISTATE, 555 KCFG_CHAR_ARR, 556 }; 557 558 struct extern_desc { 559 enum extern_type type; 560 int sym_idx; 561 int btf_id; 562 int sec_btf_id; 563 const char *name; 564 char *essent_name; 565 bool is_set; 566 bool is_weak; 567 union { 568 struct { 569 enum kcfg_type type; 570 int sz; 571 int align; 572 int data_off; 573 bool is_signed; 574 } kcfg; 575 struct { 576 unsigned long long addr; 577 578 /* target btf_id of the corresponding kernel var. */ 579 int kernel_btf_obj_fd; 580 int kernel_btf_id; 581 582 /* local btf_id of the ksym extern's type. */ 583 __u32 type_id; 584 /* BTF fd index to be patched in for insn->off, this is 585 * 0 for vmlinux BTF, index in obj->fd_array for module 586 * BTF 587 */ 588 __s16 btf_fd_idx; 589 } ksym; 590 }; 591 }; 592 593 struct module_btf { 594 struct btf *btf; 595 char *name; 596 __u32 id; 597 int fd; 598 int fd_array_idx; 599 }; 600 601 enum sec_type { 602 SEC_UNUSED = 0, 603 SEC_RELO, 604 SEC_BSS, 605 SEC_DATA, 606 SEC_RODATA, 607 }; 608 609 struct elf_sec_desc { 610 enum sec_type sec_type; 611 Elf64_Shdr *shdr; 612 Elf_Data *data; 613 }; 614 615 struct elf_state { 616 int fd; 617 const void *obj_buf; 618 size_t obj_buf_sz; 619 Elf *elf; 620 Elf64_Ehdr *ehdr; 621 Elf_Data *symbols; 622 Elf_Data *st_ops_data; 623 Elf_Data *st_ops_link_data; 624 size_t shstrndx; /* section index for section name strings */ 625 size_t strtabidx; 626 struct elf_sec_desc *secs; 627 size_t sec_cnt; 628 int btf_maps_shndx; 629 __u32 btf_maps_sec_btf_id; 630 int text_shndx; 631 int symbols_shndx; 632 int st_ops_shndx; 633 int st_ops_link_shndx; 634 }; 635 636 struct usdt_manager; 637 638 struct bpf_object { 639 char name[BPF_OBJ_NAME_LEN]; 640 char license[64]; 641 __u32 kern_version; 642 643 struct bpf_program *programs; 644 size_t nr_programs; 645 struct bpf_map *maps; 646 size_t nr_maps; 647 size_t maps_cap; 648 649 char *kconfig; 650 struct extern_desc *externs; 651 int nr_extern; 652 int kconfig_map_idx; 653 654 bool loaded; 655 bool has_subcalls; 656 bool has_rodata; 657 658 struct bpf_gen *gen_loader; 659 660 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 661 struct elf_state efile; 662 663 struct btf *btf; 664 struct btf_ext *btf_ext; 665 666 /* Parse and load BTF vmlinux if any of the programs in the object need 667 * it at load time. 668 */ 669 struct btf *btf_vmlinux; 670 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 671 * override for vmlinux BTF. 672 */ 673 char *btf_custom_path; 674 /* vmlinux BTF override for CO-RE relocations */ 675 struct btf *btf_vmlinux_override; 676 /* Lazily initialized kernel module BTFs */ 677 struct module_btf *btf_modules; 678 bool btf_modules_loaded; 679 size_t btf_module_cnt; 680 size_t btf_module_cap; 681 682 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 683 char *log_buf; 684 size_t log_size; 685 __u32 log_level; 686 687 int *fd_array; 688 size_t fd_array_cap; 689 size_t fd_array_cnt; 690 691 struct usdt_manager *usdt_man; 692 693 char path[]; 694 }; 695 696 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 697 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 698 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 699 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 700 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 701 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 702 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 703 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 704 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 705 706 void bpf_program__unload(struct bpf_program *prog) 707 { 708 if (!prog) 709 return; 710 711 zclose(prog->fd); 712 713 zfree(&prog->func_info); 714 zfree(&prog->line_info); 715 } 716 717 static void bpf_program__exit(struct bpf_program *prog) 718 { 719 if (!prog) 720 return; 721 722 bpf_program__unload(prog); 723 zfree(&prog->name); 724 zfree(&prog->sec_name); 725 zfree(&prog->insns); 726 zfree(&prog->reloc_desc); 727 728 prog->nr_reloc = 0; 729 prog->insns_cnt = 0; 730 prog->sec_idx = -1; 731 } 732 733 static bool insn_is_subprog_call(const struct bpf_insn *insn) 734 { 735 return BPF_CLASS(insn->code) == BPF_JMP && 736 BPF_OP(insn->code) == BPF_CALL && 737 BPF_SRC(insn->code) == BPF_K && 738 insn->src_reg == BPF_PSEUDO_CALL && 739 insn->dst_reg == 0 && 740 insn->off == 0; 741 } 742 743 static bool is_call_insn(const struct bpf_insn *insn) 744 { 745 return insn->code == (BPF_JMP | BPF_CALL); 746 } 747 748 static bool insn_is_pseudo_func(struct bpf_insn *insn) 749 { 750 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 751 } 752 753 static int 754 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 755 const char *name, size_t sec_idx, const char *sec_name, 756 size_t sec_off, void *insn_data, size_t insn_data_sz) 757 { 758 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 759 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 760 sec_name, name, sec_off, insn_data_sz); 761 return -EINVAL; 762 } 763 764 memset(prog, 0, sizeof(*prog)); 765 prog->obj = obj; 766 767 prog->sec_idx = sec_idx; 768 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 769 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 770 /* insns_cnt can later be increased by appending used subprograms */ 771 prog->insns_cnt = prog->sec_insn_cnt; 772 773 prog->type = BPF_PROG_TYPE_UNSPEC; 774 prog->fd = -1; 775 prog->exception_cb_idx = -1; 776 777 /* libbpf's convention for SEC("?abc...") is that it's just like 778 * SEC("abc...") but the corresponding bpf_program starts out with 779 * autoload set to false. 780 */ 781 if (sec_name[0] == '?') { 782 prog->autoload = false; 783 /* from now on forget there was ? in section name */ 784 sec_name++; 785 } else { 786 prog->autoload = true; 787 } 788 789 prog->autoattach = true; 790 791 /* inherit object's log_level */ 792 prog->log_level = obj->log_level; 793 794 prog->sec_name = strdup(sec_name); 795 if (!prog->sec_name) 796 goto errout; 797 798 prog->name = strdup(name); 799 if (!prog->name) 800 goto errout; 801 802 prog->insns = malloc(insn_data_sz); 803 if (!prog->insns) 804 goto errout; 805 memcpy(prog->insns, insn_data, insn_data_sz); 806 807 return 0; 808 errout: 809 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 810 bpf_program__exit(prog); 811 return -ENOMEM; 812 } 813 814 static int 815 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 816 const char *sec_name, int sec_idx) 817 { 818 Elf_Data *symbols = obj->efile.symbols; 819 struct bpf_program *prog, *progs; 820 void *data = sec_data->d_buf; 821 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 822 int nr_progs, err, i; 823 const char *name; 824 Elf64_Sym *sym; 825 826 progs = obj->programs; 827 nr_progs = obj->nr_programs; 828 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 829 830 for (i = 0; i < nr_syms; i++) { 831 sym = elf_sym_by_idx(obj, i); 832 833 if (sym->st_shndx != sec_idx) 834 continue; 835 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 836 continue; 837 838 prog_sz = sym->st_size; 839 sec_off = sym->st_value; 840 841 name = elf_sym_str(obj, sym->st_name); 842 if (!name) { 843 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 844 sec_name, sec_off); 845 return -LIBBPF_ERRNO__FORMAT; 846 } 847 848 if (sec_off + prog_sz > sec_sz) { 849 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 850 sec_name, sec_off); 851 return -LIBBPF_ERRNO__FORMAT; 852 } 853 854 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 855 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 856 return -ENOTSUP; 857 } 858 859 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 860 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 861 862 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 863 if (!progs) { 864 /* 865 * In this case the original obj->programs 866 * is still valid, so don't need special treat for 867 * bpf_close_object(). 868 */ 869 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 870 sec_name, name); 871 return -ENOMEM; 872 } 873 obj->programs = progs; 874 875 prog = &progs[nr_progs]; 876 877 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 878 sec_off, data + sec_off, prog_sz); 879 if (err) 880 return err; 881 882 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 883 prog->sym_global = true; 884 885 /* if function is a global/weak symbol, but has restricted 886 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 887 * as static to enable more permissive BPF verification mode 888 * with more outside context available to BPF verifier 889 */ 890 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 891 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 892 prog->mark_btf_static = true; 893 894 nr_progs++; 895 obj->nr_programs = nr_progs; 896 } 897 898 return 0; 899 } 900 901 static const struct btf_member * 902 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 903 { 904 struct btf_member *m; 905 int i; 906 907 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 908 if (btf_member_bit_offset(t, i) == bit_offset) 909 return m; 910 } 911 912 return NULL; 913 } 914 915 static const struct btf_member * 916 find_member_by_name(const struct btf *btf, const struct btf_type *t, 917 const char *name) 918 { 919 struct btf_member *m; 920 int i; 921 922 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 923 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 924 return m; 925 } 926 927 return NULL; 928 } 929 930 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 931 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 932 const char *name, __u32 kind); 933 934 static int 935 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 936 const struct btf_type **type, __u32 *type_id, 937 const struct btf_type **vtype, __u32 *vtype_id, 938 const struct btf_member **data_member) 939 { 940 const struct btf_type *kern_type, *kern_vtype; 941 const struct btf_member *kern_data_member; 942 __s32 kern_vtype_id, kern_type_id; 943 __u32 i; 944 945 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 946 if (kern_type_id < 0) { 947 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 948 tname); 949 return kern_type_id; 950 } 951 kern_type = btf__type_by_id(btf, kern_type_id); 952 953 /* Find the corresponding "map_value" type that will be used 954 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 955 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 956 * btf_vmlinux. 957 */ 958 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 959 tname, BTF_KIND_STRUCT); 960 if (kern_vtype_id < 0) { 961 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 962 STRUCT_OPS_VALUE_PREFIX, tname); 963 return kern_vtype_id; 964 } 965 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 966 967 /* Find "struct tcp_congestion_ops" from 968 * struct bpf_struct_ops_tcp_congestion_ops { 969 * [ ... ] 970 * struct tcp_congestion_ops data; 971 * } 972 */ 973 kern_data_member = btf_members(kern_vtype); 974 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 975 if (kern_data_member->type == kern_type_id) 976 break; 977 } 978 if (i == btf_vlen(kern_vtype)) { 979 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 980 tname, STRUCT_OPS_VALUE_PREFIX, tname); 981 return -EINVAL; 982 } 983 984 *type = kern_type; 985 *type_id = kern_type_id; 986 *vtype = kern_vtype; 987 *vtype_id = kern_vtype_id; 988 *data_member = kern_data_member; 989 990 return 0; 991 } 992 993 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 994 { 995 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 996 } 997 998 /* Init the map's fields that depend on kern_btf */ 999 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1000 const struct btf *btf, 1001 const struct btf *kern_btf) 1002 { 1003 const struct btf_member *member, *kern_member, *kern_data_member; 1004 const struct btf_type *type, *kern_type, *kern_vtype; 1005 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1006 struct bpf_struct_ops *st_ops; 1007 void *data, *kern_data; 1008 const char *tname; 1009 int err; 1010 1011 st_ops = map->st_ops; 1012 type = st_ops->type; 1013 tname = st_ops->tname; 1014 err = find_struct_ops_kern_types(kern_btf, tname, 1015 &kern_type, &kern_type_id, 1016 &kern_vtype, &kern_vtype_id, 1017 &kern_data_member); 1018 if (err) 1019 return err; 1020 1021 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1022 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1023 1024 map->def.value_size = kern_vtype->size; 1025 map->btf_vmlinux_value_type_id = kern_vtype_id; 1026 1027 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1028 if (!st_ops->kern_vdata) 1029 return -ENOMEM; 1030 1031 data = st_ops->data; 1032 kern_data_off = kern_data_member->offset / 8; 1033 kern_data = st_ops->kern_vdata + kern_data_off; 1034 1035 member = btf_members(type); 1036 for (i = 0; i < btf_vlen(type); i++, member++) { 1037 const struct btf_type *mtype, *kern_mtype; 1038 __u32 mtype_id, kern_mtype_id; 1039 void *mdata, *kern_mdata; 1040 __s64 msize, kern_msize; 1041 __u32 moff, kern_moff; 1042 __u32 kern_member_idx; 1043 const char *mname; 1044 1045 mname = btf__name_by_offset(btf, member->name_off); 1046 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1047 if (!kern_member) { 1048 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1049 map->name, mname); 1050 return -ENOTSUP; 1051 } 1052 1053 kern_member_idx = kern_member - btf_members(kern_type); 1054 if (btf_member_bitfield_size(type, i) || 1055 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1056 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1057 map->name, mname); 1058 return -ENOTSUP; 1059 } 1060 1061 moff = member->offset / 8; 1062 kern_moff = kern_member->offset / 8; 1063 1064 mdata = data + moff; 1065 kern_mdata = kern_data + kern_moff; 1066 1067 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1068 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1069 &kern_mtype_id); 1070 if (BTF_INFO_KIND(mtype->info) != 1071 BTF_INFO_KIND(kern_mtype->info)) { 1072 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1073 map->name, mname, BTF_INFO_KIND(mtype->info), 1074 BTF_INFO_KIND(kern_mtype->info)); 1075 return -ENOTSUP; 1076 } 1077 1078 if (btf_is_ptr(mtype)) { 1079 struct bpf_program *prog; 1080 1081 prog = st_ops->progs[i]; 1082 if (!prog) 1083 continue; 1084 1085 kern_mtype = skip_mods_and_typedefs(kern_btf, 1086 kern_mtype->type, 1087 &kern_mtype_id); 1088 1089 /* mtype->type must be a func_proto which was 1090 * guaranteed in bpf_object__collect_st_ops_relos(), 1091 * so only check kern_mtype for func_proto here. 1092 */ 1093 if (!btf_is_func_proto(kern_mtype)) { 1094 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1095 map->name, mname); 1096 return -ENOTSUP; 1097 } 1098 1099 prog->attach_btf_id = kern_type_id; 1100 prog->expected_attach_type = kern_member_idx; 1101 1102 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1103 1104 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1105 map->name, mname, prog->name, moff, 1106 kern_moff); 1107 1108 continue; 1109 } 1110 1111 msize = btf__resolve_size(btf, mtype_id); 1112 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1113 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1114 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1115 map->name, mname, (ssize_t)msize, 1116 (ssize_t)kern_msize); 1117 return -ENOTSUP; 1118 } 1119 1120 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1121 map->name, mname, (unsigned int)msize, 1122 moff, kern_moff); 1123 memcpy(kern_mdata, mdata, msize); 1124 } 1125 1126 return 0; 1127 } 1128 1129 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1130 { 1131 struct bpf_map *map; 1132 size_t i; 1133 int err; 1134 1135 for (i = 0; i < obj->nr_maps; i++) { 1136 map = &obj->maps[i]; 1137 1138 if (!bpf_map__is_struct_ops(map)) 1139 continue; 1140 1141 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1142 obj->btf_vmlinux); 1143 if (err) 1144 return err; 1145 } 1146 1147 return 0; 1148 } 1149 1150 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1151 int shndx, Elf_Data *data, __u32 map_flags) 1152 { 1153 const struct btf_type *type, *datasec; 1154 const struct btf_var_secinfo *vsi; 1155 struct bpf_struct_ops *st_ops; 1156 const char *tname, *var_name; 1157 __s32 type_id, datasec_id; 1158 const struct btf *btf; 1159 struct bpf_map *map; 1160 __u32 i; 1161 1162 if (shndx == -1) 1163 return 0; 1164 1165 btf = obj->btf; 1166 datasec_id = btf__find_by_name_kind(btf, sec_name, 1167 BTF_KIND_DATASEC); 1168 if (datasec_id < 0) { 1169 pr_warn("struct_ops init: DATASEC %s not found\n", 1170 sec_name); 1171 return -EINVAL; 1172 } 1173 1174 datasec = btf__type_by_id(btf, datasec_id); 1175 vsi = btf_var_secinfos(datasec); 1176 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1177 type = btf__type_by_id(obj->btf, vsi->type); 1178 var_name = btf__name_by_offset(obj->btf, type->name_off); 1179 1180 type_id = btf__resolve_type(obj->btf, vsi->type); 1181 if (type_id < 0) { 1182 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1183 vsi->type, sec_name); 1184 return -EINVAL; 1185 } 1186 1187 type = btf__type_by_id(obj->btf, type_id); 1188 tname = btf__name_by_offset(obj->btf, type->name_off); 1189 if (!tname[0]) { 1190 pr_warn("struct_ops init: anonymous type is not supported\n"); 1191 return -ENOTSUP; 1192 } 1193 if (!btf_is_struct(type)) { 1194 pr_warn("struct_ops init: %s is not a struct\n", tname); 1195 return -EINVAL; 1196 } 1197 1198 map = bpf_object__add_map(obj); 1199 if (IS_ERR(map)) 1200 return PTR_ERR(map); 1201 1202 map->sec_idx = shndx; 1203 map->sec_offset = vsi->offset; 1204 map->name = strdup(var_name); 1205 if (!map->name) 1206 return -ENOMEM; 1207 1208 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1209 map->def.key_size = sizeof(int); 1210 map->def.value_size = type->size; 1211 map->def.max_entries = 1; 1212 map->def.map_flags = map_flags; 1213 1214 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1215 if (!map->st_ops) 1216 return -ENOMEM; 1217 st_ops = map->st_ops; 1218 st_ops->data = malloc(type->size); 1219 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1220 st_ops->kern_func_off = malloc(btf_vlen(type) * 1221 sizeof(*st_ops->kern_func_off)); 1222 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1223 return -ENOMEM; 1224 1225 if (vsi->offset + type->size > data->d_size) { 1226 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1227 var_name, sec_name); 1228 return -EINVAL; 1229 } 1230 1231 memcpy(st_ops->data, 1232 data->d_buf + vsi->offset, 1233 type->size); 1234 st_ops->tname = tname; 1235 st_ops->type = type; 1236 st_ops->type_id = type_id; 1237 1238 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1239 tname, type_id, var_name, vsi->offset); 1240 } 1241 1242 return 0; 1243 } 1244 1245 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1246 { 1247 int err; 1248 1249 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1250 obj->efile.st_ops_data, 0); 1251 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1252 obj->efile.st_ops_link_shndx, 1253 obj->efile.st_ops_link_data, 1254 BPF_F_LINK); 1255 return err; 1256 } 1257 1258 static struct bpf_object *bpf_object__new(const char *path, 1259 const void *obj_buf, 1260 size_t obj_buf_sz, 1261 const char *obj_name) 1262 { 1263 struct bpf_object *obj; 1264 char *end; 1265 1266 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1267 if (!obj) { 1268 pr_warn("alloc memory failed for %s\n", path); 1269 return ERR_PTR(-ENOMEM); 1270 } 1271 1272 strcpy(obj->path, path); 1273 if (obj_name) { 1274 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1275 } else { 1276 /* Using basename() GNU version which doesn't modify arg. */ 1277 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1278 end = strchr(obj->name, '.'); 1279 if (end) 1280 *end = 0; 1281 } 1282 1283 obj->efile.fd = -1; 1284 /* 1285 * Caller of this function should also call 1286 * bpf_object__elf_finish() after data collection to return 1287 * obj_buf to user. If not, we should duplicate the buffer to 1288 * avoid user freeing them before elf finish. 1289 */ 1290 obj->efile.obj_buf = obj_buf; 1291 obj->efile.obj_buf_sz = obj_buf_sz; 1292 obj->efile.btf_maps_shndx = -1; 1293 obj->efile.st_ops_shndx = -1; 1294 obj->efile.st_ops_link_shndx = -1; 1295 obj->kconfig_map_idx = -1; 1296 1297 obj->kern_version = get_kernel_version(); 1298 obj->loaded = false; 1299 1300 return obj; 1301 } 1302 1303 static void bpf_object__elf_finish(struct bpf_object *obj) 1304 { 1305 if (!obj->efile.elf) 1306 return; 1307 1308 elf_end(obj->efile.elf); 1309 obj->efile.elf = NULL; 1310 obj->efile.symbols = NULL; 1311 obj->efile.st_ops_data = NULL; 1312 obj->efile.st_ops_link_data = NULL; 1313 1314 zfree(&obj->efile.secs); 1315 obj->efile.sec_cnt = 0; 1316 zclose(obj->efile.fd); 1317 obj->efile.obj_buf = NULL; 1318 obj->efile.obj_buf_sz = 0; 1319 } 1320 1321 static int bpf_object__elf_init(struct bpf_object *obj) 1322 { 1323 Elf64_Ehdr *ehdr; 1324 int err = 0; 1325 Elf *elf; 1326 1327 if (obj->efile.elf) { 1328 pr_warn("elf: init internal error\n"); 1329 return -LIBBPF_ERRNO__LIBELF; 1330 } 1331 1332 if (obj->efile.obj_buf_sz > 0) { 1333 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1334 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1335 } else { 1336 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1337 if (obj->efile.fd < 0) { 1338 char errmsg[STRERR_BUFSIZE], *cp; 1339 1340 err = -errno; 1341 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1342 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1343 return err; 1344 } 1345 1346 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1347 } 1348 1349 if (!elf) { 1350 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1351 err = -LIBBPF_ERRNO__LIBELF; 1352 goto errout; 1353 } 1354 1355 obj->efile.elf = elf; 1356 1357 if (elf_kind(elf) != ELF_K_ELF) { 1358 err = -LIBBPF_ERRNO__FORMAT; 1359 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1360 goto errout; 1361 } 1362 1363 if (gelf_getclass(elf) != ELFCLASS64) { 1364 err = -LIBBPF_ERRNO__FORMAT; 1365 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1366 goto errout; 1367 } 1368 1369 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1370 if (!obj->efile.ehdr) { 1371 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1372 err = -LIBBPF_ERRNO__FORMAT; 1373 goto errout; 1374 } 1375 1376 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1377 pr_warn("elf: failed to get section names section index for %s: %s\n", 1378 obj->path, elf_errmsg(-1)); 1379 err = -LIBBPF_ERRNO__FORMAT; 1380 goto errout; 1381 } 1382 1383 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1384 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1385 pr_warn("elf: failed to get section names strings from %s: %s\n", 1386 obj->path, elf_errmsg(-1)); 1387 err = -LIBBPF_ERRNO__FORMAT; 1388 goto errout; 1389 } 1390 1391 /* Old LLVM set e_machine to EM_NONE */ 1392 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1393 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1394 err = -LIBBPF_ERRNO__FORMAT; 1395 goto errout; 1396 } 1397 1398 return 0; 1399 errout: 1400 bpf_object__elf_finish(obj); 1401 return err; 1402 } 1403 1404 static int bpf_object__check_endianness(struct bpf_object *obj) 1405 { 1406 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1407 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1408 return 0; 1409 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1411 return 0; 1412 #else 1413 # error "Unrecognized __BYTE_ORDER__" 1414 #endif 1415 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1416 return -LIBBPF_ERRNO__ENDIAN; 1417 } 1418 1419 static int 1420 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1421 { 1422 if (!data) { 1423 pr_warn("invalid license section in %s\n", obj->path); 1424 return -LIBBPF_ERRNO__FORMAT; 1425 } 1426 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1427 * go over allowed ELF data section buffer 1428 */ 1429 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1430 pr_debug("license of %s is %s\n", obj->path, obj->license); 1431 return 0; 1432 } 1433 1434 static int 1435 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1436 { 1437 __u32 kver; 1438 1439 if (!data || size != sizeof(kver)) { 1440 pr_warn("invalid kver section in %s\n", obj->path); 1441 return -LIBBPF_ERRNO__FORMAT; 1442 } 1443 memcpy(&kver, data, sizeof(kver)); 1444 obj->kern_version = kver; 1445 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1446 return 0; 1447 } 1448 1449 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1450 { 1451 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1452 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1453 return true; 1454 return false; 1455 } 1456 1457 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1458 { 1459 Elf_Data *data; 1460 Elf_Scn *scn; 1461 1462 if (!name) 1463 return -EINVAL; 1464 1465 scn = elf_sec_by_name(obj, name); 1466 data = elf_sec_data(obj, scn); 1467 if (data) { 1468 *size = data->d_size; 1469 return 0; /* found it */ 1470 } 1471 1472 return -ENOENT; 1473 } 1474 1475 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1476 { 1477 Elf_Data *symbols = obj->efile.symbols; 1478 const char *sname; 1479 size_t si; 1480 1481 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1482 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1483 1484 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1485 continue; 1486 1487 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1488 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1489 continue; 1490 1491 sname = elf_sym_str(obj, sym->st_name); 1492 if (!sname) { 1493 pr_warn("failed to get sym name string for var %s\n", name); 1494 return ERR_PTR(-EIO); 1495 } 1496 if (strcmp(name, sname) == 0) 1497 return sym; 1498 } 1499 1500 return ERR_PTR(-ENOENT); 1501 } 1502 1503 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1504 { 1505 struct bpf_map *map; 1506 int err; 1507 1508 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1509 sizeof(*obj->maps), obj->nr_maps + 1); 1510 if (err) 1511 return ERR_PTR(err); 1512 1513 map = &obj->maps[obj->nr_maps++]; 1514 map->obj = obj; 1515 map->fd = -1; 1516 map->inner_map_fd = -1; 1517 map->autocreate = true; 1518 1519 return map; 1520 } 1521 1522 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1523 { 1524 const long page_sz = sysconf(_SC_PAGE_SIZE); 1525 size_t map_sz; 1526 1527 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1528 map_sz = roundup(map_sz, page_sz); 1529 return map_sz; 1530 } 1531 1532 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1533 { 1534 void *mmaped; 1535 1536 if (!map->mmaped) 1537 return -EINVAL; 1538 1539 if (old_sz == new_sz) 1540 return 0; 1541 1542 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1543 if (mmaped == MAP_FAILED) 1544 return -errno; 1545 1546 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1547 munmap(map->mmaped, old_sz); 1548 map->mmaped = mmaped; 1549 return 0; 1550 } 1551 1552 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1553 { 1554 char map_name[BPF_OBJ_NAME_LEN], *p; 1555 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1556 1557 /* This is one of the more confusing parts of libbpf for various 1558 * reasons, some of which are historical. The original idea for naming 1559 * internal names was to include as much of BPF object name prefix as 1560 * possible, so that it can be distinguished from similar internal 1561 * maps of a different BPF object. 1562 * As an example, let's say we have bpf_object named 'my_object_name' 1563 * and internal map corresponding to '.rodata' ELF section. The final 1564 * map name advertised to user and to the kernel will be 1565 * 'my_objec.rodata', taking first 8 characters of object name and 1566 * entire 7 characters of '.rodata'. 1567 * Somewhat confusingly, if internal map ELF section name is shorter 1568 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1569 * for the suffix, even though we only have 4 actual characters, and 1570 * resulting map will be called 'my_objec.bss', not even using all 15 1571 * characters allowed by the kernel. Oh well, at least the truncated 1572 * object name is somewhat consistent in this case. But if the map 1573 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1574 * (8 chars) and thus will be left with only first 7 characters of the 1575 * object name ('my_obje'). Happy guessing, user, that the final map 1576 * name will be "my_obje.kconfig". 1577 * Now, with libbpf starting to support arbitrarily named .rodata.* 1578 * and .data.* data sections, it's possible that ELF section name is 1579 * longer than allowed 15 chars, so we now need to be careful to take 1580 * only up to 15 first characters of ELF name, taking no BPF object 1581 * name characters at all. So '.rodata.abracadabra' will result in 1582 * '.rodata.abracad' kernel and user-visible name. 1583 * We need to keep this convoluted logic intact for .data, .bss and 1584 * .rodata maps, but for new custom .data.custom and .rodata.custom 1585 * maps we use their ELF names as is, not prepending bpf_object name 1586 * in front. We still need to truncate them to 15 characters for the 1587 * kernel. Full name can be recovered for such maps by using DATASEC 1588 * BTF type associated with such map's value type, though. 1589 */ 1590 if (sfx_len >= BPF_OBJ_NAME_LEN) 1591 sfx_len = BPF_OBJ_NAME_LEN - 1; 1592 1593 /* if there are two or more dots in map name, it's a custom dot map */ 1594 if (strchr(real_name + 1, '.') != NULL) 1595 pfx_len = 0; 1596 else 1597 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1598 1599 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1600 sfx_len, real_name); 1601 1602 /* sanitise map name to characters allowed by kernel */ 1603 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1604 if (!isalnum(*p) && *p != '_' && *p != '.') 1605 *p = '_'; 1606 1607 return strdup(map_name); 1608 } 1609 1610 static int 1611 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1612 1613 /* Internal BPF map is mmap()'able only if at least one of corresponding 1614 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1615 * variable and it's not marked as __hidden (which turns it into, effectively, 1616 * a STATIC variable). 1617 */ 1618 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1619 { 1620 const struct btf_type *t, *vt; 1621 struct btf_var_secinfo *vsi; 1622 int i, n; 1623 1624 if (!map->btf_value_type_id) 1625 return false; 1626 1627 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1628 if (!btf_is_datasec(t)) 1629 return false; 1630 1631 vsi = btf_var_secinfos(t); 1632 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1633 vt = btf__type_by_id(obj->btf, vsi->type); 1634 if (!btf_is_var(vt)) 1635 continue; 1636 1637 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1638 return true; 1639 } 1640 1641 return false; 1642 } 1643 1644 static int 1645 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1646 const char *real_name, int sec_idx, void *data, size_t data_sz) 1647 { 1648 struct bpf_map_def *def; 1649 struct bpf_map *map; 1650 size_t mmap_sz; 1651 int err; 1652 1653 map = bpf_object__add_map(obj); 1654 if (IS_ERR(map)) 1655 return PTR_ERR(map); 1656 1657 map->libbpf_type = type; 1658 map->sec_idx = sec_idx; 1659 map->sec_offset = 0; 1660 map->real_name = strdup(real_name); 1661 map->name = internal_map_name(obj, real_name); 1662 if (!map->real_name || !map->name) { 1663 zfree(&map->real_name); 1664 zfree(&map->name); 1665 return -ENOMEM; 1666 } 1667 1668 def = &map->def; 1669 def->type = BPF_MAP_TYPE_ARRAY; 1670 def->key_size = sizeof(int); 1671 def->value_size = data_sz; 1672 def->max_entries = 1; 1673 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1674 ? BPF_F_RDONLY_PROG : 0; 1675 1676 /* failures are fine because of maps like .rodata.str1.1 */ 1677 (void) map_fill_btf_type_info(obj, map); 1678 1679 if (map_is_mmapable(obj, map)) 1680 def->map_flags |= BPF_F_MMAPABLE; 1681 1682 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1683 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1684 1685 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1686 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1687 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1688 if (map->mmaped == MAP_FAILED) { 1689 err = -errno; 1690 map->mmaped = NULL; 1691 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1692 map->name, err); 1693 zfree(&map->real_name); 1694 zfree(&map->name); 1695 return err; 1696 } 1697 1698 if (data) 1699 memcpy(map->mmaped, data, data_sz); 1700 1701 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1702 return 0; 1703 } 1704 1705 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1706 { 1707 struct elf_sec_desc *sec_desc; 1708 const char *sec_name; 1709 int err = 0, sec_idx; 1710 1711 /* 1712 * Populate obj->maps with libbpf internal maps. 1713 */ 1714 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1715 sec_desc = &obj->efile.secs[sec_idx]; 1716 1717 /* Skip recognized sections with size 0. */ 1718 if (!sec_desc->data || sec_desc->data->d_size == 0) 1719 continue; 1720 1721 switch (sec_desc->sec_type) { 1722 case SEC_DATA: 1723 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1724 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1725 sec_name, sec_idx, 1726 sec_desc->data->d_buf, 1727 sec_desc->data->d_size); 1728 break; 1729 case SEC_RODATA: 1730 obj->has_rodata = true; 1731 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1732 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1733 sec_name, sec_idx, 1734 sec_desc->data->d_buf, 1735 sec_desc->data->d_size); 1736 break; 1737 case SEC_BSS: 1738 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1739 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1740 sec_name, sec_idx, 1741 NULL, 1742 sec_desc->data->d_size); 1743 break; 1744 default: 1745 /* skip */ 1746 break; 1747 } 1748 if (err) 1749 return err; 1750 } 1751 return 0; 1752 } 1753 1754 1755 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1756 const void *name) 1757 { 1758 int i; 1759 1760 for (i = 0; i < obj->nr_extern; i++) { 1761 if (strcmp(obj->externs[i].name, name) == 0) 1762 return &obj->externs[i]; 1763 } 1764 return NULL; 1765 } 1766 1767 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1768 char value) 1769 { 1770 switch (ext->kcfg.type) { 1771 case KCFG_BOOL: 1772 if (value == 'm') { 1773 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1774 ext->name, value); 1775 return -EINVAL; 1776 } 1777 *(bool *)ext_val = value == 'y' ? true : false; 1778 break; 1779 case KCFG_TRISTATE: 1780 if (value == 'y') 1781 *(enum libbpf_tristate *)ext_val = TRI_YES; 1782 else if (value == 'm') 1783 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1784 else /* value == 'n' */ 1785 *(enum libbpf_tristate *)ext_val = TRI_NO; 1786 break; 1787 case KCFG_CHAR: 1788 *(char *)ext_val = value; 1789 break; 1790 case KCFG_UNKNOWN: 1791 case KCFG_INT: 1792 case KCFG_CHAR_ARR: 1793 default: 1794 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1795 ext->name, value); 1796 return -EINVAL; 1797 } 1798 ext->is_set = true; 1799 return 0; 1800 } 1801 1802 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1803 const char *value) 1804 { 1805 size_t len; 1806 1807 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1808 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1809 ext->name, value); 1810 return -EINVAL; 1811 } 1812 1813 len = strlen(value); 1814 if (value[len - 1] != '"') { 1815 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1816 ext->name, value); 1817 return -EINVAL; 1818 } 1819 1820 /* strip quotes */ 1821 len -= 2; 1822 if (len >= ext->kcfg.sz) { 1823 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1824 ext->name, value, len, ext->kcfg.sz - 1); 1825 len = ext->kcfg.sz - 1; 1826 } 1827 memcpy(ext_val, value + 1, len); 1828 ext_val[len] = '\0'; 1829 ext->is_set = true; 1830 return 0; 1831 } 1832 1833 static int parse_u64(const char *value, __u64 *res) 1834 { 1835 char *value_end; 1836 int err; 1837 1838 errno = 0; 1839 *res = strtoull(value, &value_end, 0); 1840 if (errno) { 1841 err = -errno; 1842 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1843 return err; 1844 } 1845 if (*value_end) { 1846 pr_warn("failed to parse '%s' as integer completely\n", value); 1847 return -EINVAL; 1848 } 1849 return 0; 1850 } 1851 1852 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1853 { 1854 int bit_sz = ext->kcfg.sz * 8; 1855 1856 if (ext->kcfg.sz == 8) 1857 return true; 1858 1859 /* Validate that value stored in u64 fits in integer of `ext->sz` 1860 * bytes size without any loss of information. If the target integer 1861 * is signed, we rely on the following limits of integer type of 1862 * Y bits and subsequent transformation: 1863 * 1864 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1865 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1866 * 0 <= X + 2^(Y-1) < 2^Y 1867 * 1868 * For unsigned target integer, check that all the (64 - Y) bits are 1869 * zero. 1870 */ 1871 if (ext->kcfg.is_signed) 1872 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1873 else 1874 return (v >> bit_sz) == 0; 1875 } 1876 1877 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1878 __u64 value) 1879 { 1880 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1881 ext->kcfg.type != KCFG_BOOL) { 1882 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1883 ext->name, (unsigned long long)value); 1884 return -EINVAL; 1885 } 1886 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1887 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1888 ext->name, (unsigned long long)value); 1889 return -EINVAL; 1890 1891 } 1892 if (!is_kcfg_value_in_range(ext, value)) { 1893 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1894 ext->name, (unsigned long long)value, ext->kcfg.sz); 1895 return -ERANGE; 1896 } 1897 switch (ext->kcfg.sz) { 1898 case 1: 1899 *(__u8 *)ext_val = value; 1900 break; 1901 case 2: 1902 *(__u16 *)ext_val = value; 1903 break; 1904 case 4: 1905 *(__u32 *)ext_val = value; 1906 break; 1907 case 8: 1908 *(__u64 *)ext_val = value; 1909 break; 1910 default: 1911 return -EINVAL; 1912 } 1913 ext->is_set = true; 1914 return 0; 1915 } 1916 1917 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1918 char *buf, void *data) 1919 { 1920 struct extern_desc *ext; 1921 char *sep, *value; 1922 int len, err = 0; 1923 void *ext_val; 1924 __u64 num; 1925 1926 if (!str_has_pfx(buf, "CONFIG_")) 1927 return 0; 1928 1929 sep = strchr(buf, '='); 1930 if (!sep) { 1931 pr_warn("failed to parse '%s': no separator\n", buf); 1932 return -EINVAL; 1933 } 1934 1935 /* Trim ending '\n' */ 1936 len = strlen(buf); 1937 if (buf[len - 1] == '\n') 1938 buf[len - 1] = '\0'; 1939 /* Split on '=' and ensure that a value is present. */ 1940 *sep = '\0'; 1941 if (!sep[1]) { 1942 *sep = '='; 1943 pr_warn("failed to parse '%s': no value\n", buf); 1944 return -EINVAL; 1945 } 1946 1947 ext = find_extern_by_name(obj, buf); 1948 if (!ext || ext->is_set) 1949 return 0; 1950 1951 ext_val = data + ext->kcfg.data_off; 1952 value = sep + 1; 1953 1954 switch (*value) { 1955 case 'y': case 'n': case 'm': 1956 err = set_kcfg_value_tri(ext, ext_val, *value); 1957 break; 1958 case '"': 1959 err = set_kcfg_value_str(ext, ext_val, value); 1960 break; 1961 default: 1962 /* assume integer */ 1963 err = parse_u64(value, &num); 1964 if (err) { 1965 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1966 return err; 1967 } 1968 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1969 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1970 return -EINVAL; 1971 } 1972 err = set_kcfg_value_num(ext, ext_val, num); 1973 break; 1974 } 1975 if (err) 1976 return err; 1977 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1978 return 0; 1979 } 1980 1981 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1982 { 1983 char buf[PATH_MAX]; 1984 struct utsname uts; 1985 int len, err = 0; 1986 gzFile file; 1987 1988 uname(&uts); 1989 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1990 if (len < 0) 1991 return -EINVAL; 1992 else if (len >= PATH_MAX) 1993 return -ENAMETOOLONG; 1994 1995 /* gzopen also accepts uncompressed files. */ 1996 file = gzopen(buf, "re"); 1997 if (!file) 1998 file = gzopen("/proc/config.gz", "re"); 1999 2000 if (!file) { 2001 pr_warn("failed to open system Kconfig\n"); 2002 return -ENOENT; 2003 } 2004 2005 while (gzgets(file, buf, sizeof(buf))) { 2006 err = bpf_object__process_kconfig_line(obj, buf, data); 2007 if (err) { 2008 pr_warn("error parsing system Kconfig line '%s': %d\n", 2009 buf, err); 2010 goto out; 2011 } 2012 } 2013 2014 out: 2015 gzclose(file); 2016 return err; 2017 } 2018 2019 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2020 const char *config, void *data) 2021 { 2022 char buf[PATH_MAX]; 2023 int err = 0; 2024 FILE *file; 2025 2026 file = fmemopen((void *)config, strlen(config), "r"); 2027 if (!file) { 2028 err = -errno; 2029 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2030 return err; 2031 } 2032 2033 while (fgets(buf, sizeof(buf), file)) { 2034 err = bpf_object__process_kconfig_line(obj, buf, data); 2035 if (err) { 2036 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2037 buf, err); 2038 break; 2039 } 2040 } 2041 2042 fclose(file); 2043 return err; 2044 } 2045 2046 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2047 { 2048 struct extern_desc *last_ext = NULL, *ext; 2049 size_t map_sz; 2050 int i, err; 2051 2052 for (i = 0; i < obj->nr_extern; i++) { 2053 ext = &obj->externs[i]; 2054 if (ext->type == EXT_KCFG) 2055 last_ext = ext; 2056 } 2057 2058 if (!last_ext) 2059 return 0; 2060 2061 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2062 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2063 ".kconfig", obj->efile.symbols_shndx, 2064 NULL, map_sz); 2065 if (err) 2066 return err; 2067 2068 obj->kconfig_map_idx = obj->nr_maps - 1; 2069 2070 return 0; 2071 } 2072 2073 const struct btf_type * 2074 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2075 { 2076 const struct btf_type *t = btf__type_by_id(btf, id); 2077 2078 if (res_id) 2079 *res_id = id; 2080 2081 while (btf_is_mod(t) || btf_is_typedef(t)) { 2082 if (res_id) 2083 *res_id = t->type; 2084 t = btf__type_by_id(btf, t->type); 2085 } 2086 2087 return t; 2088 } 2089 2090 static const struct btf_type * 2091 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2092 { 2093 const struct btf_type *t; 2094 2095 t = skip_mods_and_typedefs(btf, id, NULL); 2096 if (!btf_is_ptr(t)) 2097 return NULL; 2098 2099 t = skip_mods_and_typedefs(btf, t->type, res_id); 2100 2101 return btf_is_func_proto(t) ? t : NULL; 2102 } 2103 2104 static const char *__btf_kind_str(__u16 kind) 2105 { 2106 switch (kind) { 2107 case BTF_KIND_UNKN: return "void"; 2108 case BTF_KIND_INT: return "int"; 2109 case BTF_KIND_PTR: return "ptr"; 2110 case BTF_KIND_ARRAY: return "array"; 2111 case BTF_KIND_STRUCT: return "struct"; 2112 case BTF_KIND_UNION: return "union"; 2113 case BTF_KIND_ENUM: return "enum"; 2114 case BTF_KIND_FWD: return "fwd"; 2115 case BTF_KIND_TYPEDEF: return "typedef"; 2116 case BTF_KIND_VOLATILE: return "volatile"; 2117 case BTF_KIND_CONST: return "const"; 2118 case BTF_KIND_RESTRICT: return "restrict"; 2119 case BTF_KIND_FUNC: return "func"; 2120 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2121 case BTF_KIND_VAR: return "var"; 2122 case BTF_KIND_DATASEC: return "datasec"; 2123 case BTF_KIND_FLOAT: return "float"; 2124 case BTF_KIND_DECL_TAG: return "decl_tag"; 2125 case BTF_KIND_TYPE_TAG: return "type_tag"; 2126 case BTF_KIND_ENUM64: return "enum64"; 2127 default: return "unknown"; 2128 } 2129 } 2130 2131 const char *btf_kind_str(const struct btf_type *t) 2132 { 2133 return __btf_kind_str(btf_kind(t)); 2134 } 2135 2136 /* 2137 * Fetch integer attribute of BTF map definition. Such attributes are 2138 * represented using a pointer to an array, in which dimensionality of array 2139 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2140 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2141 * type definition, while using only sizeof(void *) space in ELF data section. 2142 */ 2143 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2144 const struct btf_member *m, __u32 *res) 2145 { 2146 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2147 const char *name = btf__name_by_offset(btf, m->name_off); 2148 const struct btf_array *arr_info; 2149 const struct btf_type *arr_t; 2150 2151 if (!btf_is_ptr(t)) { 2152 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2153 map_name, name, btf_kind_str(t)); 2154 return false; 2155 } 2156 2157 arr_t = btf__type_by_id(btf, t->type); 2158 if (!arr_t) { 2159 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2160 map_name, name, t->type); 2161 return false; 2162 } 2163 if (!btf_is_array(arr_t)) { 2164 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2165 map_name, name, btf_kind_str(arr_t)); 2166 return false; 2167 } 2168 arr_info = btf_array(arr_t); 2169 *res = arr_info->nelems; 2170 return true; 2171 } 2172 2173 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2174 { 2175 int len; 2176 2177 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2178 if (len < 0) 2179 return -EINVAL; 2180 if (len >= buf_sz) 2181 return -ENAMETOOLONG; 2182 2183 return 0; 2184 } 2185 2186 static int build_map_pin_path(struct bpf_map *map, const char *path) 2187 { 2188 char buf[PATH_MAX]; 2189 int err; 2190 2191 if (!path) 2192 path = "/sys/fs/bpf"; 2193 2194 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2195 if (err) 2196 return err; 2197 2198 return bpf_map__set_pin_path(map, buf); 2199 } 2200 2201 /* should match definition in bpf_helpers.h */ 2202 enum libbpf_pin_type { 2203 LIBBPF_PIN_NONE, 2204 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2205 LIBBPF_PIN_BY_NAME, 2206 }; 2207 2208 int parse_btf_map_def(const char *map_name, struct btf *btf, 2209 const struct btf_type *def_t, bool strict, 2210 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2211 { 2212 const struct btf_type *t; 2213 const struct btf_member *m; 2214 bool is_inner = inner_def == NULL; 2215 int vlen, i; 2216 2217 vlen = btf_vlen(def_t); 2218 m = btf_members(def_t); 2219 for (i = 0; i < vlen; i++, m++) { 2220 const char *name = btf__name_by_offset(btf, m->name_off); 2221 2222 if (!name) { 2223 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2224 return -EINVAL; 2225 } 2226 if (strcmp(name, "type") == 0) { 2227 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2228 return -EINVAL; 2229 map_def->parts |= MAP_DEF_MAP_TYPE; 2230 } else if (strcmp(name, "max_entries") == 0) { 2231 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2232 return -EINVAL; 2233 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2234 } else if (strcmp(name, "map_flags") == 0) { 2235 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2236 return -EINVAL; 2237 map_def->parts |= MAP_DEF_MAP_FLAGS; 2238 } else if (strcmp(name, "numa_node") == 0) { 2239 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2240 return -EINVAL; 2241 map_def->parts |= MAP_DEF_NUMA_NODE; 2242 } else if (strcmp(name, "key_size") == 0) { 2243 __u32 sz; 2244 2245 if (!get_map_field_int(map_name, btf, m, &sz)) 2246 return -EINVAL; 2247 if (map_def->key_size && map_def->key_size != sz) { 2248 pr_warn("map '%s': conflicting key size %u != %u.\n", 2249 map_name, map_def->key_size, sz); 2250 return -EINVAL; 2251 } 2252 map_def->key_size = sz; 2253 map_def->parts |= MAP_DEF_KEY_SIZE; 2254 } else if (strcmp(name, "key") == 0) { 2255 __s64 sz; 2256 2257 t = btf__type_by_id(btf, m->type); 2258 if (!t) { 2259 pr_warn("map '%s': key type [%d] not found.\n", 2260 map_name, m->type); 2261 return -EINVAL; 2262 } 2263 if (!btf_is_ptr(t)) { 2264 pr_warn("map '%s': key spec is not PTR: %s.\n", 2265 map_name, btf_kind_str(t)); 2266 return -EINVAL; 2267 } 2268 sz = btf__resolve_size(btf, t->type); 2269 if (sz < 0) { 2270 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2271 map_name, t->type, (ssize_t)sz); 2272 return sz; 2273 } 2274 if (map_def->key_size && map_def->key_size != sz) { 2275 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2276 map_name, map_def->key_size, (ssize_t)sz); 2277 return -EINVAL; 2278 } 2279 map_def->key_size = sz; 2280 map_def->key_type_id = t->type; 2281 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2282 } else if (strcmp(name, "value_size") == 0) { 2283 __u32 sz; 2284 2285 if (!get_map_field_int(map_name, btf, m, &sz)) 2286 return -EINVAL; 2287 if (map_def->value_size && map_def->value_size != sz) { 2288 pr_warn("map '%s': conflicting value size %u != %u.\n", 2289 map_name, map_def->value_size, sz); 2290 return -EINVAL; 2291 } 2292 map_def->value_size = sz; 2293 map_def->parts |= MAP_DEF_VALUE_SIZE; 2294 } else if (strcmp(name, "value") == 0) { 2295 __s64 sz; 2296 2297 t = btf__type_by_id(btf, m->type); 2298 if (!t) { 2299 pr_warn("map '%s': value type [%d] not found.\n", 2300 map_name, m->type); 2301 return -EINVAL; 2302 } 2303 if (!btf_is_ptr(t)) { 2304 pr_warn("map '%s': value spec is not PTR: %s.\n", 2305 map_name, btf_kind_str(t)); 2306 return -EINVAL; 2307 } 2308 sz = btf__resolve_size(btf, t->type); 2309 if (sz < 0) { 2310 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2311 map_name, t->type, (ssize_t)sz); 2312 return sz; 2313 } 2314 if (map_def->value_size && map_def->value_size != sz) { 2315 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2316 map_name, map_def->value_size, (ssize_t)sz); 2317 return -EINVAL; 2318 } 2319 map_def->value_size = sz; 2320 map_def->value_type_id = t->type; 2321 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2322 } 2323 else if (strcmp(name, "values") == 0) { 2324 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2325 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2326 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2327 char inner_map_name[128]; 2328 int err; 2329 2330 if (is_inner) { 2331 pr_warn("map '%s': multi-level inner maps not supported.\n", 2332 map_name); 2333 return -ENOTSUP; 2334 } 2335 if (i != vlen - 1) { 2336 pr_warn("map '%s': '%s' member should be last.\n", 2337 map_name, name); 2338 return -EINVAL; 2339 } 2340 if (!is_map_in_map && !is_prog_array) { 2341 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2342 map_name); 2343 return -ENOTSUP; 2344 } 2345 if (map_def->value_size && map_def->value_size != 4) { 2346 pr_warn("map '%s': conflicting value size %u != 4.\n", 2347 map_name, map_def->value_size); 2348 return -EINVAL; 2349 } 2350 map_def->value_size = 4; 2351 t = btf__type_by_id(btf, m->type); 2352 if (!t) { 2353 pr_warn("map '%s': %s type [%d] not found.\n", 2354 map_name, desc, m->type); 2355 return -EINVAL; 2356 } 2357 if (!btf_is_array(t) || btf_array(t)->nelems) { 2358 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2359 map_name, desc); 2360 return -EINVAL; 2361 } 2362 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2363 if (!btf_is_ptr(t)) { 2364 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2365 map_name, desc, btf_kind_str(t)); 2366 return -EINVAL; 2367 } 2368 t = skip_mods_and_typedefs(btf, t->type, NULL); 2369 if (is_prog_array) { 2370 if (!btf_is_func_proto(t)) { 2371 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2372 map_name, btf_kind_str(t)); 2373 return -EINVAL; 2374 } 2375 continue; 2376 } 2377 if (!btf_is_struct(t)) { 2378 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2379 map_name, btf_kind_str(t)); 2380 return -EINVAL; 2381 } 2382 2383 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2384 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2385 if (err) 2386 return err; 2387 2388 map_def->parts |= MAP_DEF_INNER_MAP; 2389 } else if (strcmp(name, "pinning") == 0) { 2390 __u32 val; 2391 2392 if (is_inner) { 2393 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2394 return -EINVAL; 2395 } 2396 if (!get_map_field_int(map_name, btf, m, &val)) 2397 return -EINVAL; 2398 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2399 pr_warn("map '%s': invalid pinning value %u.\n", 2400 map_name, val); 2401 return -EINVAL; 2402 } 2403 map_def->pinning = val; 2404 map_def->parts |= MAP_DEF_PINNING; 2405 } else if (strcmp(name, "map_extra") == 0) { 2406 __u32 map_extra; 2407 2408 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2409 return -EINVAL; 2410 map_def->map_extra = map_extra; 2411 map_def->parts |= MAP_DEF_MAP_EXTRA; 2412 } else { 2413 if (strict) { 2414 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2415 return -ENOTSUP; 2416 } 2417 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2418 } 2419 } 2420 2421 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2422 pr_warn("map '%s': map type isn't specified.\n", map_name); 2423 return -EINVAL; 2424 } 2425 2426 return 0; 2427 } 2428 2429 static size_t adjust_ringbuf_sz(size_t sz) 2430 { 2431 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2432 __u32 mul; 2433 2434 /* if user forgot to set any size, make sure they see error */ 2435 if (sz == 0) 2436 return 0; 2437 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2438 * a power-of-2 multiple of kernel's page size. If user diligently 2439 * satisified these conditions, pass the size through. 2440 */ 2441 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2442 return sz; 2443 2444 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2445 * user-set size to satisfy both user size request and kernel 2446 * requirements and substitute correct max_entries for map creation. 2447 */ 2448 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2449 if (mul * page_sz > sz) 2450 return mul * page_sz; 2451 } 2452 2453 /* if it's impossible to satisfy the conditions (i.e., user size is 2454 * very close to UINT_MAX but is not a power-of-2 multiple of 2455 * page_size) then just return original size and let kernel reject it 2456 */ 2457 return sz; 2458 } 2459 2460 static bool map_is_ringbuf(const struct bpf_map *map) 2461 { 2462 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2463 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2464 } 2465 2466 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2467 { 2468 map->def.type = def->map_type; 2469 map->def.key_size = def->key_size; 2470 map->def.value_size = def->value_size; 2471 map->def.max_entries = def->max_entries; 2472 map->def.map_flags = def->map_flags; 2473 map->map_extra = def->map_extra; 2474 2475 map->numa_node = def->numa_node; 2476 map->btf_key_type_id = def->key_type_id; 2477 map->btf_value_type_id = def->value_type_id; 2478 2479 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2480 if (map_is_ringbuf(map)) 2481 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2482 2483 if (def->parts & MAP_DEF_MAP_TYPE) 2484 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2485 2486 if (def->parts & MAP_DEF_KEY_TYPE) 2487 pr_debug("map '%s': found key [%u], sz = %u.\n", 2488 map->name, def->key_type_id, def->key_size); 2489 else if (def->parts & MAP_DEF_KEY_SIZE) 2490 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2491 2492 if (def->parts & MAP_DEF_VALUE_TYPE) 2493 pr_debug("map '%s': found value [%u], sz = %u.\n", 2494 map->name, def->value_type_id, def->value_size); 2495 else if (def->parts & MAP_DEF_VALUE_SIZE) 2496 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2497 2498 if (def->parts & MAP_DEF_MAX_ENTRIES) 2499 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2500 if (def->parts & MAP_DEF_MAP_FLAGS) 2501 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2502 if (def->parts & MAP_DEF_MAP_EXTRA) 2503 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2504 (unsigned long long)def->map_extra); 2505 if (def->parts & MAP_DEF_PINNING) 2506 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2507 if (def->parts & MAP_DEF_NUMA_NODE) 2508 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2509 2510 if (def->parts & MAP_DEF_INNER_MAP) 2511 pr_debug("map '%s': found inner map definition.\n", map->name); 2512 } 2513 2514 static const char *btf_var_linkage_str(__u32 linkage) 2515 { 2516 switch (linkage) { 2517 case BTF_VAR_STATIC: return "static"; 2518 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2519 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2520 default: return "unknown"; 2521 } 2522 } 2523 2524 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2525 const struct btf_type *sec, 2526 int var_idx, int sec_idx, 2527 const Elf_Data *data, bool strict, 2528 const char *pin_root_path) 2529 { 2530 struct btf_map_def map_def = {}, inner_def = {}; 2531 const struct btf_type *var, *def; 2532 const struct btf_var_secinfo *vi; 2533 const struct btf_var *var_extra; 2534 const char *map_name; 2535 struct bpf_map *map; 2536 int err; 2537 2538 vi = btf_var_secinfos(sec) + var_idx; 2539 var = btf__type_by_id(obj->btf, vi->type); 2540 var_extra = btf_var(var); 2541 map_name = btf__name_by_offset(obj->btf, var->name_off); 2542 2543 if (map_name == NULL || map_name[0] == '\0') { 2544 pr_warn("map #%d: empty name.\n", var_idx); 2545 return -EINVAL; 2546 } 2547 if ((__u64)vi->offset + vi->size > data->d_size) { 2548 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2549 return -EINVAL; 2550 } 2551 if (!btf_is_var(var)) { 2552 pr_warn("map '%s': unexpected var kind %s.\n", 2553 map_name, btf_kind_str(var)); 2554 return -EINVAL; 2555 } 2556 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2557 pr_warn("map '%s': unsupported map linkage %s.\n", 2558 map_name, btf_var_linkage_str(var_extra->linkage)); 2559 return -EOPNOTSUPP; 2560 } 2561 2562 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2563 if (!btf_is_struct(def)) { 2564 pr_warn("map '%s': unexpected def kind %s.\n", 2565 map_name, btf_kind_str(var)); 2566 return -EINVAL; 2567 } 2568 if (def->size > vi->size) { 2569 pr_warn("map '%s': invalid def size.\n", map_name); 2570 return -EINVAL; 2571 } 2572 2573 map = bpf_object__add_map(obj); 2574 if (IS_ERR(map)) 2575 return PTR_ERR(map); 2576 map->name = strdup(map_name); 2577 if (!map->name) { 2578 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2579 return -ENOMEM; 2580 } 2581 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2582 map->def.type = BPF_MAP_TYPE_UNSPEC; 2583 map->sec_idx = sec_idx; 2584 map->sec_offset = vi->offset; 2585 map->btf_var_idx = var_idx; 2586 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2587 map_name, map->sec_idx, map->sec_offset); 2588 2589 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2590 if (err) 2591 return err; 2592 2593 fill_map_from_def(map, &map_def); 2594 2595 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2596 err = build_map_pin_path(map, pin_root_path); 2597 if (err) { 2598 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2599 return err; 2600 } 2601 } 2602 2603 if (map_def.parts & MAP_DEF_INNER_MAP) { 2604 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2605 if (!map->inner_map) 2606 return -ENOMEM; 2607 map->inner_map->fd = -1; 2608 map->inner_map->sec_idx = sec_idx; 2609 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2610 if (!map->inner_map->name) 2611 return -ENOMEM; 2612 sprintf(map->inner_map->name, "%s.inner", map_name); 2613 2614 fill_map_from_def(map->inner_map, &inner_def); 2615 } 2616 2617 err = map_fill_btf_type_info(obj, map); 2618 if (err) 2619 return err; 2620 2621 return 0; 2622 } 2623 2624 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2625 const char *pin_root_path) 2626 { 2627 const struct btf_type *sec = NULL; 2628 int nr_types, i, vlen, err; 2629 const struct btf_type *t; 2630 const char *name; 2631 Elf_Data *data; 2632 Elf_Scn *scn; 2633 2634 if (obj->efile.btf_maps_shndx < 0) 2635 return 0; 2636 2637 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2638 data = elf_sec_data(obj, scn); 2639 if (!scn || !data) { 2640 pr_warn("elf: failed to get %s map definitions for %s\n", 2641 MAPS_ELF_SEC, obj->path); 2642 return -EINVAL; 2643 } 2644 2645 nr_types = btf__type_cnt(obj->btf); 2646 for (i = 1; i < nr_types; i++) { 2647 t = btf__type_by_id(obj->btf, i); 2648 if (!btf_is_datasec(t)) 2649 continue; 2650 name = btf__name_by_offset(obj->btf, t->name_off); 2651 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2652 sec = t; 2653 obj->efile.btf_maps_sec_btf_id = i; 2654 break; 2655 } 2656 } 2657 2658 if (!sec) { 2659 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2660 return -ENOENT; 2661 } 2662 2663 vlen = btf_vlen(sec); 2664 for (i = 0; i < vlen; i++) { 2665 err = bpf_object__init_user_btf_map(obj, sec, i, 2666 obj->efile.btf_maps_shndx, 2667 data, strict, 2668 pin_root_path); 2669 if (err) 2670 return err; 2671 } 2672 2673 return 0; 2674 } 2675 2676 static int bpf_object__init_maps(struct bpf_object *obj, 2677 const struct bpf_object_open_opts *opts) 2678 { 2679 const char *pin_root_path; 2680 bool strict; 2681 int err = 0; 2682 2683 strict = !OPTS_GET(opts, relaxed_maps, false); 2684 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2685 2686 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2687 err = err ?: bpf_object__init_global_data_maps(obj); 2688 err = err ?: bpf_object__init_kconfig_map(obj); 2689 err = err ?: bpf_object_init_struct_ops(obj); 2690 2691 return err; 2692 } 2693 2694 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2695 { 2696 Elf64_Shdr *sh; 2697 2698 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2699 if (!sh) 2700 return false; 2701 2702 return sh->sh_flags & SHF_EXECINSTR; 2703 } 2704 2705 static bool btf_needs_sanitization(struct bpf_object *obj) 2706 { 2707 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2708 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2709 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2710 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2711 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2712 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2713 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2714 2715 return !has_func || !has_datasec || !has_func_global || !has_float || 2716 !has_decl_tag || !has_type_tag || !has_enum64; 2717 } 2718 2719 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2720 { 2721 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2722 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2723 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2724 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2725 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2726 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2727 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2728 int enum64_placeholder_id = 0; 2729 struct btf_type *t; 2730 int i, j, vlen; 2731 2732 for (i = 1; i < btf__type_cnt(btf); i++) { 2733 t = (struct btf_type *)btf__type_by_id(btf, i); 2734 2735 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2736 /* replace VAR/DECL_TAG with INT */ 2737 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2738 /* 2739 * using size = 1 is the safest choice, 4 will be too 2740 * big and cause kernel BTF validation failure if 2741 * original variable took less than 4 bytes 2742 */ 2743 t->size = 1; 2744 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2745 } else if (!has_datasec && btf_is_datasec(t)) { 2746 /* replace DATASEC with STRUCT */ 2747 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2748 struct btf_member *m = btf_members(t); 2749 struct btf_type *vt; 2750 char *name; 2751 2752 name = (char *)btf__name_by_offset(btf, t->name_off); 2753 while (*name) { 2754 if (*name == '.') 2755 *name = '_'; 2756 name++; 2757 } 2758 2759 vlen = btf_vlen(t); 2760 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2761 for (j = 0; j < vlen; j++, v++, m++) { 2762 /* order of field assignments is important */ 2763 m->offset = v->offset * 8; 2764 m->type = v->type; 2765 /* preserve variable name as member name */ 2766 vt = (void *)btf__type_by_id(btf, v->type); 2767 m->name_off = vt->name_off; 2768 } 2769 } else if (!has_func && btf_is_func_proto(t)) { 2770 /* replace FUNC_PROTO with ENUM */ 2771 vlen = btf_vlen(t); 2772 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2773 t->size = sizeof(__u32); /* kernel enforced */ 2774 } else if (!has_func && btf_is_func(t)) { 2775 /* replace FUNC with TYPEDEF */ 2776 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2777 } else if (!has_func_global && btf_is_func(t)) { 2778 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2779 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2780 } else if (!has_float && btf_is_float(t)) { 2781 /* replace FLOAT with an equally-sized empty STRUCT; 2782 * since C compilers do not accept e.g. "float" as a 2783 * valid struct name, make it anonymous 2784 */ 2785 t->name_off = 0; 2786 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2787 } else if (!has_type_tag && btf_is_type_tag(t)) { 2788 /* replace TYPE_TAG with a CONST */ 2789 t->name_off = 0; 2790 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2791 } else if (!has_enum64 && btf_is_enum(t)) { 2792 /* clear the kflag */ 2793 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2794 } else if (!has_enum64 && btf_is_enum64(t)) { 2795 /* replace ENUM64 with a union */ 2796 struct btf_member *m; 2797 2798 if (enum64_placeholder_id == 0) { 2799 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2800 if (enum64_placeholder_id < 0) 2801 return enum64_placeholder_id; 2802 2803 t = (struct btf_type *)btf__type_by_id(btf, i); 2804 } 2805 2806 m = btf_members(t); 2807 vlen = btf_vlen(t); 2808 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2809 for (j = 0; j < vlen; j++, m++) { 2810 m->type = enum64_placeholder_id; 2811 m->offset = 0; 2812 } 2813 } 2814 } 2815 2816 return 0; 2817 } 2818 2819 static bool libbpf_needs_btf(const struct bpf_object *obj) 2820 { 2821 return obj->efile.btf_maps_shndx >= 0 || 2822 obj->efile.st_ops_shndx >= 0 || 2823 obj->efile.st_ops_link_shndx >= 0 || 2824 obj->nr_extern > 0; 2825 } 2826 2827 static bool kernel_needs_btf(const struct bpf_object *obj) 2828 { 2829 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2830 } 2831 2832 static int bpf_object__init_btf(struct bpf_object *obj, 2833 Elf_Data *btf_data, 2834 Elf_Data *btf_ext_data) 2835 { 2836 int err = -ENOENT; 2837 2838 if (btf_data) { 2839 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2840 err = libbpf_get_error(obj->btf); 2841 if (err) { 2842 obj->btf = NULL; 2843 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2844 goto out; 2845 } 2846 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2847 btf__set_pointer_size(obj->btf, 8); 2848 } 2849 if (btf_ext_data) { 2850 struct btf_ext_info *ext_segs[3]; 2851 int seg_num, sec_num; 2852 2853 if (!obj->btf) { 2854 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2855 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2856 goto out; 2857 } 2858 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2859 err = libbpf_get_error(obj->btf_ext); 2860 if (err) { 2861 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2862 BTF_EXT_ELF_SEC, err); 2863 obj->btf_ext = NULL; 2864 goto out; 2865 } 2866 2867 /* setup .BTF.ext to ELF section mapping */ 2868 ext_segs[0] = &obj->btf_ext->func_info; 2869 ext_segs[1] = &obj->btf_ext->line_info; 2870 ext_segs[2] = &obj->btf_ext->core_relo_info; 2871 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2872 struct btf_ext_info *seg = ext_segs[seg_num]; 2873 const struct btf_ext_info_sec *sec; 2874 const char *sec_name; 2875 Elf_Scn *scn; 2876 2877 if (seg->sec_cnt == 0) 2878 continue; 2879 2880 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2881 if (!seg->sec_idxs) { 2882 err = -ENOMEM; 2883 goto out; 2884 } 2885 2886 sec_num = 0; 2887 for_each_btf_ext_sec(seg, sec) { 2888 /* preventively increment index to avoid doing 2889 * this before every continue below 2890 */ 2891 sec_num++; 2892 2893 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2894 if (str_is_empty(sec_name)) 2895 continue; 2896 scn = elf_sec_by_name(obj, sec_name); 2897 if (!scn) 2898 continue; 2899 2900 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2901 } 2902 } 2903 } 2904 out: 2905 if (err && libbpf_needs_btf(obj)) { 2906 pr_warn("BTF is required, but is missing or corrupted.\n"); 2907 return err; 2908 } 2909 return 0; 2910 } 2911 2912 static int compare_vsi_off(const void *_a, const void *_b) 2913 { 2914 const struct btf_var_secinfo *a = _a; 2915 const struct btf_var_secinfo *b = _b; 2916 2917 return a->offset - b->offset; 2918 } 2919 2920 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2921 struct btf_type *t) 2922 { 2923 __u32 size = 0, i, vars = btf_vlen(t); 2924 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2925 struct btf_var_secinfo *vsi; 2926 bool fixup_offsets = false; 2927 int err; 2928 2929 if (!sec_name) { 2930 pr_debug("No name found in string section for DATASEC kind.\n"); 2931 return -ENOENT; 2932 } 2933 2934 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2935 * variable offsets set at the previous step. Further, not every 2936 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2937 * all fixups altogether for such sections and go straight to sorting 2938 * VARs within their DATASEC. 2939 */ 2940 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2941 goto sort_vars; 2942 2943 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2944 * fix this up. But BPF static linker already fixes this up and fills 2945 * all the sizes and offsets during static linking. So this step has 2946 * to be optional. But the STV_HIDDEN handling is non-optional for any 2947 * non-extern DATASEC, so the variable fixup loop below handles both 2948 * functions at the same time, paying the cost of BTF VAR <-> ELF 2949 * symbol matching just once. 2950 */ 2951 if (t->size == 0) { 2952 err = find_elf_sec_sz(obj, sec_name, &size); 2953 if (err || !size) { 2954 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2955 sec_name, size, err); 2956 return -ENOENT; 2957 } 2958 2959 t->size = size; 2960 fixup_offsets = true; 2961 } 2962 2963 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2964 const struct btf_type *t_var; 2965 struct btf_var *var; 2966 const char *var_name; 2967 Elf64_Sym *sym; 2968 2969 t_var = btf__type_by_id(btf, vsi->type); 2970 if (!t_var || !btf_is_var(t_var)) { 2971 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2972 return -EINVAL; 2973 } 2974 2975 var = btf_var(t_var); 2976 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2977 continue; 2978 2979 var_name = btf__name_by_offset(btf, t_var->name_off); 2980 if (!var_name) { 2981 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2982 sec_name, i); 2983 return -ENOENT; 2984 } 2985 2986 sym = find_elf_var_sym(obj, var_name); 2987 if (IS_ERR(sym)) { 2988 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2989 sec_name, var_name); 2990 return -ENOENT; 2991 } 2992 2993 if (fixup_offsets) 2994 vsi->offset = sym->st_value; 2995 2996 /* if variable is a global/weak symbol, but has restricted 2997 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2998 * as static. This follows similar logic for functions (BPF 2999 * subprogs) and influences libbpf's further decisions about 3000 * whether to make global data BPF array maps as 3001 * BPF_F_MMAPABLE. 3002 */ 3003 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3004 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3005 var->linkage = BTF_VAR_STATIC; 3006 } 3007 3008 sort_vars: 3009 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3010 return 0; 3011 } 3012 3013 static int bpf_object_fixup_btf(struct bpf_object *obj) 3014 { 3015 int i, n, err = 0; 3016 3017 if (!obj->btf) 3018 return 0; 3019 3020 n = btf__type_cnt(obj->btf); 3021 for (i = 1; i < n; i++) { 3022 struct btf_type *t = btf_type_by_id(obj->btf, i); 3023 3024 /* Loader needs to fix up some of the things compiler 3025 * couldn't get its hands on while emitting BTF. This 3026 * is section size and global variable offset. We use 3027 * the info from the ELF itself for this purpose. 3028 */ 3029 if (btf_is_datasec(t)) { 3030 err = btf_fixup_datasec(obj, obj->btf, t); 3031 if (err) 3032 return err; 3033 } 3034 } 3035 3036 return 0; 3037 } 3038 3039 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3040 { 3041 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3042 prog->type == BPF_PROG_TYPE_LSM) 3043 return true; 3044 3045 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3046 * also need vmlinux BTF 3047 */ 3048 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3049 return true; 3050 3051 return false; 3052 } 3053 3054 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3055 { 3056 struct bpf_program *prog; 3057 int i; 3058 3059 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3060 * is not specified 3061 */ 3062 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3063 return true; 3064 3065 /* Support for typed ksyms needs kernel BTF */ 3066 for (i = 0; i < obj->nr_extern; i++) { 3067 const struct extern_desc *ext; 3068 3069 ext = &obj->externs[i]; 3070 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3071 return true; 3072 } 3073 3074 bpf_object__for_each_program(prog, obj) { 3075 if (!prog->autoload) 3076 continue; 3077 if (prog_needs_vmlinux_btf(prog)) 3078 return true; 3079 } 3080 3081 return false; 3082 } 3083 3084 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3085 { 3086 int err; 3087 3088 /* btf_vmlinux could be loaded earlier */ 3089 if (obj->btf_vmlinux || obj->gen_loader) 3090 return 0; 3091 3092 if (!force && !obj_needs_vmlinux_btf(obj)) 3093 return 0; 3094 3095 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3096 err = libbpf_get_error(obj->btf_vmlinux); 3097 if (err) { 3098 pr_warn("Error loading vmlinux BTF: %d\n", err); 3099 obj->btf_vmlinux = NULL; 3100 return err; 3101 } 3102 return 0; 3103 } 3104 3105 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3106 { 3107 struct btf *kern_btf = obj->btf; 3108 bool btf_mandatory, sanitize; 3109 int i, err = 0; 3110 3111 if (!obj->btf) 3112 return 0; 3113 3114 if (!kernel_supports(obj, FEAT_BTF)) { 3115 if (kernel_needs_btf(obj)) { 3116 err = -EOPNOTSUPP; 3117 goto report; 3118 } 3119 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3120 return 0; 3121 } 3122 3123 /* Even though some subprogs are global/weak, user might prefer more 3124 * permissive BPF verification process that BPF verifier performs for 3125 * static functions, taking into account more context from the caller 3126 * functions. In such case, they need to mark such subprogs with 3127 * __attribute__((visibility("hidden"))) and libbpf will adjust 3128 * corresponding FUNC BTF type to be marked as static and trigger more 3129 * involved BPF verification process. 3130 */ 3131 for (i = 0; i < obj->nr_programs; i++) { 3132 struct bpf_program *prog = &obj->programs[i]; 3133 struct btf_type *t; 3134 const char *name; 3135 int j, n; 3136 3137 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3138 continue; 3139 3140 n = btf__type_cnt(obj->btf); 3141 for (j = 1; j < n; j++) { 3142 t = btf_type_by_id(obj->btf, j); 3143 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3144 continue; 3145 3146 name = btf__str_by_offset(obj->btf, t->name_off); 3147 if (strcmp(name, prog->name) != 0) 3148 continue; 3149 3150 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3151 break; 3152 } 3153 } 3154 3155 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG)) 3156 goto skip_exception_cb; 3157 for (i = 0; i < obj->nr_programs; i++) { 3158 struct bpf_program *prog = &obj->programs[i]; 3159 int j, k, n; 3160 3161 if (prog_is_subprog(obj, prog)) 3162 continue; 3163 n = btf__type_cnt(obj->btf); 3164 for (j = 1; j < n; j++) { 3165 const char *str = "exception_callback:", *name; 3166 size_t len = strlen(str); 3167 struct btf_type *t; 3168 3169 t = btf_type_by_id(obj->btf, j); 3170 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 3171 continue; 3172 3173 name = btf__str_by_offset(obj->btf, t->name_off); 3174 if (strncmp(name, str, len)) 3175 continue; 3176 3177 t = btf_type_by_id(obj->btf, t->type); 3178 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3179 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 3180 prog->name); 3181 return -EINVAL; 3182 } 3183 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off))) 3184 continue; 3185 /* Multiple callbacks are specified for the same prog, 3186 * the verifier will eventually return an error for this 3187 * case, hence simply skip appending a subprog. 3188 */ 3189 if (prog->exception_cb_idx >= 0) { 3190 prog->exception_cb_idx = -1; 3191 break; 3192 } 3193 3194 name += len; 3195 if (str_is_empty(name)) { 3196 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 3197 prog->name); 3198 return -EINVAL; 3199 } 3200 3201 for (k = 0; k < obj->nr_programs; k++) { 3202 struct bpf_program *subprog = &obj->programs[k]; 3203 3204 if (!prog_is_subprog(obj, subprog)) 3205 continue; 3206 if (strcmp(name, subprog->name)) 3207 continue; 3208 /* Enforce non-hidden, as from verifier point of 3209 * view it expects global functions, whereas the 3210 * mark_btf_static fixes up linkage as static. 3211 */ 3212 if (!subprog->sym_global || subprog->mark_btf_static) { 3213 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 3214 prog->name, subprog->name); 3215 return -EINVAL; 3216 } 3217 /* Let's see if we already saw a static exception callback with the same name */ 3218 if (prog->exception_cb_idx >= 0) { 3219 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 3220 prog->name, subprog->name); 3221 return -EINVAL; 3222 } 3223 prog->exception_cb_idx = k; 3224 break; 3225 } 3226 3227 if (prog->exception_cb_idx >= 0) 3228 continue; 3229 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 3230 return -ENOENT; 3231 } 3232 } 3233 skip_exception_cb: 3234 3235 sanitize = btf_needs_sanitization(obj); 3236 if (sanitize) { 3237 const void *raw_data; 3238 __u32 sz; 3239 3240 /* clone BTF to sanitize a copy and leave the original intact */ 3241 raw_data = btf__raw_data(obj->btf, &sz); 3242 kern_btf = btf__new(raw_data, sz); 3243 err = libbpf_get_error(kern_btf); 3244 if (err) 3245 return err; 3246 3247 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3248 btf__set_pointer_size(obj->btf, 8); 3249 err = bpf_object__sanitize_btf(obj, kern_btf); 3250 if (err) 3251 return err; 3252 } 3253 3254 if (obj->gen_loader) { 3255 __u32 raw_size = 0; 3256 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3257 3258 if (!raw_data) 3259 return -ENOMEM; 3260 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3261 /* Pretend to have valid FD to pass various fd >= 0 checks. 3262 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3263 */ 3264 btf__set_fd(kern_btf, 0); 3265 } else { 3266 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3267 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3268 obj->log_level ? 1 : 0); 3269 } 3270 if (sanitize) { 3271 if (!err) { 3272 /* move fd to libbpf's BTF */ 3273 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3274 btf__set_fd(kern_btf, -1); 3275 } 3276 btf__free(kern_btf); 3277 } 3278 report: 3279 if (err) { 3280 btf_mandatory = kernel_needs_btf(obj); 3281 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3282 btf_mandatory ? "BTF is mandatory, can't proceed." 3283 : "BTF is optional, ignoring."); 3284 if (!btf_mandatory) 3285 err = 0; 3286 } 3287 return err; 3288 } 3289 3290 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3291 { 3292 const char *name; 3293 3294 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3295 if (!name) { 3296 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3297 off, obj->path, elf_errmsg(-1)); 3298 return NULL; 3299 } 3300 3301 return name; 3302 } 3303 3304 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3305 { 3306 const char *name; 3307 3308 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3309 if (!name) { 3310 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3311 off, obj->path, elf_errmsg(-1)); 3312 return NULL; 3313 } 3314 3315 return name; 3316 } 3317 3318 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3319 { 3320 Elf_Scn *scn; 3321 3322 scn = elf_getscn(obj->efile.elf, idx); 3323 if (!scn) { 3324 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3325 idx, obj->path, elf_errmsg(-1)); 3326 return NULL; 3327 } 3328 return scn; 3329 } 3330 3331 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3332 { 3333 Elf_Scn *scn = NULL; 3334 Elf *elf = obj->efile.elf; 3335 const char *sec_name; 3336 3337 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3338 sec_name = elf_sec_name(obj, scn); 3339 if (!sec_name) 3340 return NULL; 3341 3342 if (strcmp(sec_name, name) != 0) 3343 continue; 3344 3345 return scn; 3346 } 3347 return NULL; 3348 } 3349 3350 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3351 { 3352 Elf64_Shdr *shdr; 3353 3354 if (!scn) 3355 return NULL; 3356 3357 shdr = elf64_getshdr(scn); 3358 if (!shdr) { 3359 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3360 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3361 return NULL; 3362 } 3363 3364 return shdr; 3365 } 3366 3367 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3368 { 3369 const char *name; 3370 Elf64_Shdr *sh; 3371 3372 if (!scn) 3373 return NULL; 3374 3375 sh = elf_sec_hdr(obj, scn); 3376 if (!sh) 3377 return NULL; 3378 3379 name = elf_sec_str(obj, sh->sh_name); 3380 if (!name) { 3381 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3382 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3383 return NULL; 3384 } 3385 3386 return name; 3387 } 3388 3389 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3390 { 3391 Elf_Data *data; 3392 3393 if (!scn) 3394 return NULL; 3395 3396 data = elf_getdata(scn, 0); 3397 if (!data) { 3398 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3399 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3400 obj->path, elf_errmsg(-1)); 3401 return NULL; 3402 } 3403 3404 return data; 3405 } 3406 3407 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3408 { 3409 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3410 return NULL; 3411 3412 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3413 } 3414 3415 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3416 { 3417 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3418 return NULL; 3419 3420 return (Elf64_Rel *)data->d_buf + idx; 3421 } 3422 3423 static bool is_sec_name_dwarf(const char *name) 3424 { 3425 /* approximation, but the actual list is too long */ 3426 return str_has_pfx(name, ".debug_"); 3427 } 3428 3429 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3430 { 3431 /* no special handling of .strtab */ 3432 if (hdr->sh_type == SHT_STRTAB) 3433 return true; 3434 3435 /* ignore .llvm_addrsig section as well */ 3436 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3437 return true; 3438 3439 /* no subprograms will lead to an empty .text section, ignore it */ 3440 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3441 strcmp(name, ".text") == 0) 3442 return true; 3443 3444 /* DWARF sections */ 3445 if (is_sec_name_dwarf(name)) 3446 return true; 3447 3448 if (str_has_pfx(name, ".rel")) { 3449 name += sizeof(".rel") - 1; 3450 /* DWARF section relocations */ 3451 if (is_sec_name_dwarf(name)) 3452 return true; 3453 3454 /* .BTF and .BTF.ext don't need relocations */ 3455 if (strcmp(name, BTF_ELF_SEC) == 0 || 3456 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3457 return true; 3458 } 3459 3460 return false; 3461 } 3462 3463 static int cmp_progs(const void *_a, const void *_b) 3464 { 3465 const struct bpf_program *a = _a; 3466 const struct bpf_program *b = _b; 3467 3468 if (a->sec_idx != b->sec_idx) 3469 return a->sec_idx < b->sec_idx ? -1 : 1; 3470 3471 /* sec_insn_off can't be the same within the section */ 3472 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3473 } 3474 3475 static int bpf_object__elf_collect(struct bpf_object *obj) 3476 { 3477 struct elf_sec_desc *sec_desc; 3478 Elf *elf = obj->efile.elf; 3479 Elf_Data *btf_ext_data = NULL; 3480 Elf_Data *btf_data = NULL; 3481 int idx = 0, err = 0; 3482 const char *name; 3483 Elf_Data *data; 3484 Elf_Scn *scn; 3485 Elf64_Shdr *sh; 3486 3487 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3488 * section. Since section count retrieved by elf_getshdrnum() does 3489 * include sec #0, it is already the necessary size of an array to keep 3490 * all the sections. 3491 */ 3492 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3493 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3494 obj->path, elf_errmsg(-1)); 3495 return -LIBBPF_ERRNO__FORMAT; 3496 } 3497 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3498 if (!obj->efile.secs) 3499 return -ENOMEM; 3500 3501 /* a bunch of ELF parsing functionality depends on processing symbols, 3502 * so do the first pass and find the symbol table 3503 */ 3504 scn = NULL; 3505 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3506 sh = elf_sec_hdr(obj, scn); 3507 if (!sh) 3508 return -LIBBPF_ERRNO__FORMAT; 3509 3510 if (sh->sh_type == SHT_SYMTAB) { 3511 if (obj->efile.symbols) { 3512 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3513 return -LIBBPF_ERRNO__FORMAT; 3514 } 3515 3516 data = elf_sec_data(obj, scn); 3517 if (!data) 3518 return -LIBBPF_ERRNO__FORMAT; 3519 3520 idx = elf_ndxscn(scn); 3521 3522 obj->efile.symbols = data; 3523 obj->efile.symbols_shndx = idx; 3524 obj->efile.strtabidx = sh->sh_link; 3525 } 3526 } 3527 3528 if (!obj->efile.symbols) { 3529 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3530 obj->path); 3531 return -ENOENT; 3532 } 3533 3534 scn = NULL; 3535 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3536 idx = elf_ndxscn(scn); 3537 sec_desc = &obj->efile.secs[idx]; 3538 3539 sh = elf_sec_hdr(obj, scn); 3540 if (!sh) 3541 return -LIBBPF_ERRNO__FORMAT; 3542 3543 name = elf_sec_str(obj, sh->sh_name); 3544 if (!name) 3545 return -LIBBPF_ERRNO__FORMAT; 3546 3547 if (ignore_elf_section(sh, name)) 3548 continue; 3549 3550 data = elf_sec_data(obj, scn); 3551 if (!data) 3552 return -LIBBPF_ERRNO__FORMAT; 3553 3554 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3555 idx, name, (unsigned long)data->d_size, 3556 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3557 (int)sh->sh_type); 3558 3559 if (strcmp(name, "license") == 0) { 3560 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3561 if (err) 3562 return err; 3563 } else if (strcmp(name, "version") == 0) { 3564 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3565 if (err) 3566 return err; 3567 } else if (strcmp(name, "maps") == 0) { 3568 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3569 return -ENOTSUP; 3570 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3571 obj->efile.btf_maps_shndx = idx; 3572 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3573 if (sh->sh_type != SHT_PROGBITS) 3574 return -LIBBPF_ERRNO__FORMAT; 3575 btf_data = data; 3576 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3577 if (sh->sh_type != SHT_PROGBITS) 3578 return -LIBBPF_ERRNO__FORMAT; 3579 btf_ext_data = data; 3580 } else if (sh->sh_type == SHT_SYMTAB) { 3581 /* already processed during the first pass above */ 3582 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3583 if (sh->sh_flags & SHF_EXECINSTR) { 3584 if (strcmp(name, ".text") == 0) 3585 obj->efile.text_shndx = idx; 3586 err = bpf_object__add_programs(obj, data, name, idx); 3587 if (err) 3588 return err; 3589 } else if (strcmp(name, DATA_SEC) == 0 || 3590 str_has_pfx(name, DATA_SEC ".")) { 3591 sec_desc->sec_type = SEC_DATA; 3592 sec_desc->shdr = sh; 3593 sec_desc->data = data; 3594 } else if (strcmp(name, RODATA_SEC) == 0 || 3595 str_has_pfx(name, RODATA_SEC ".")) { 3596 sec_desc->sec_type = SEC_RODATA; 3597 sec_desc->shdr = sh; 3598 sec_desc->data = data; 3599 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3600 obj->efile.st_ops_data = data; 3601 obj->efile.st_ops_shndx = idx; 3602 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3603 obj->efile.st_ops_link_data = data; 3604 obj->efile.st_ops_link_shndx = idx; 3605 } else { 3606 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3607 idx, name); 3608 } 3609 } else if (sh->sh_type == SHT_REL) { 3610 int targ_sec_idx = sh->sh_info; /* points to other section */ 3611 3612 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3613 targ_sec_idx >= obj->efile.sec_cnt) 3614 return -LIBBPF_ERRNO__FORMAT; 3615 3616 /* Only do relo for section with exec instructions */ 3617 if (!section_have_execinstr(obj, targ_sec_idx) && 3618 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3619 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3620 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3621 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3622 idx, name, targ_sec_idx, 3623 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3624 continue; 3625 } 3626 3627 sec_desc->sec_type = SEC_RELO; 3628 sec_desc->shdr = sh; 3629 sec_desc->data = data; 3630 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3631 str_has_pfx(name, BSS_SEC "."))) { 3632 sec_desc->sec_type = SEC_BSS; 3633 sec_desc->shdr = sh; 3634 sec_desc->data = data; 3635 } else { 3636 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3637 (size_t)sh->sh_size); 3638 } 3639 } 3640 3641 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3642 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3643 return -LIBBPF_ERRNO__FORMAT; 3644 } 3645 3646 /* sort BPF programs by section name and in-section instruction offset 3647 * for faster search 3648 */ 3649 if (obj->nr_programs) 3650 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3651 3652 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3653 } 3654 3655 static bool sym_is_extern(const Elf64_Sym *sym) 3656 { 3657 int bind = ELF64_ST_BIND(sym->st_info); 3658 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3659 return sym->st_shndx == SHN_UNDEF && 3660 (bind == STB_GLOBAL || bind == STB_WEAK) && 3661 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3662 } 3663 3664 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3665 { 3666 int bind = ELF64_ST_BIND(sym->st_info); 3667 int type = ELF64_ST_TYPE(sym->st_info); 3668 3669 /* in .text section */ 3670 if (sym->st_shndx != text_shndx) 3671 return false; 3672 3673 /* local function */ 3674 if (bind == STB_LOCAL && type == STT_SECTION) 3675 return true; 3676 3677 /* global function */ 3678 return bind == STB_GLOBAL && type == STT_FUNC; 3679 } 3680 3681 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3682 { 3683 const struct btf_type *t; 3684 const char *tname; 3685 int i, n; 3686 3687 if (!btf) 3688 return -ESRCH; 3689 3690 n = btf__type_cnt(btf); 3691 for (i = 1; i < n; i++) { 3692 t = btf__type_by_id(btf, i); 3693 3694 if (!btf_is_var(t) && !btf_is_func(t)) 3695 continue; 3696 3697 tname = btf__name_by_offset(btf, t->name_off); 3698 if (strcmp(tname, ext_name)) 3699 continue; 3700 3701 if (btf_is_var(t) && 3702 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3703 return -EINVAL; 3704 3705 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3706 return -EINVAL; 3707 3708 return i; 3709 } 3710 3711 return -ENOENT; 3712 } 3713 3714 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3715 const struct btf_var_secinfo *vs; 3716 const struct btf_type *t; 3717 int i, j, n; 3718 3719 if (!btf) 3720 return -ESRCH; 3721 3722 n = btf__type_cnt(btf); 3723 for (i = 1; i < n; i++) { 3724 t = btf__type_by_id(btf, i); 3725 3726 if (!btf_is_datasec(t)) 3727 continue; 3728 3729 vs = btf_var_secinfos(t); 3730 for (j = 0; j < btf_vlen(t); j++, vs++) { 3731 if (vs->type == ext_btf_id) 3732 return i; 3733 } 3734 } 3735 3736 return -ENOENT; 3737 } 3738 3739 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3740 bool *is_signed) 3741 { 3742 const struct btf_type *t; 3743 const char *name; 3744 3745 t = skip_mods_and_typedefs(btf, id, NULL); 3746 name = btf__name_by_offset(btf, t->name_off); 3747 3748 if (is_signed) 3749 *is_signed = false; 3750 switch (btf_kind(t)) { 3751 case BTF_KIND_INT: { 3752 int enc = btf_int_encoding(t); 3753 3754 if (enc & BTF_INT_BOOL) 3755 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3756 if (is_signed) 3757 *is_signed = enc & BTF_INT_SIGNED; 3758 if (t->size == 1) 3759 return KCFG_CHAR; 3760 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3761 return KCFG_UNKNOWN; 3762 return KCFG_INT; 3763 } 3764 case BTF_KIND_ENUM: 3765 if (t->size != 4) 3766 return KCFG_UNKNOWN; 3767 if (strcmp(name, "libbpf_tristate")) 3768 return KCFG_UNKNOWN; 3769 return KCFG_TRISTATE; 3770 case BTF_KIND_ENUM64: 3771 if (strcmp(name, "libbpf_tristate")) 3772 return KCFG_UNKNOWN; 3773 return KCFG_TRISTATE; 3774 case BTF_KIND_ARRAY: 3775 if (btf_array(t)->nelems == 0) 3776 return KCFG_UNKNOWN; 3777 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3778 return KCFG_UNKNOWN; 3779 return KCFG_CHAR_ARR; 3780 default: 3781 return KCFG_UNKNOWN; 3782 } 3783 } 3784 3785 static int cmp_externs(const void *_a, const void *_b) 3786 { 3787 const struct extern_desc *a = _a; 3788 const struct extern_desc *b = _b; 3789 3790 if (a->type != b->type) 3791 return a->type < b->type ? -1 : 1; 3792 3793 if (a->type == EXT_KCFG) { 3794 /* descending order by alignment requirements */ 3795 if (a->kcfg.align != b->kcfg.align) 3796 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3797 /* ascending order by size, within same alignment class */ 3798 if (a->kcfg.sz != b->kcfg.sz) 3799 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3800 } 3801 3802 /* resolve ties by name */ 3803 return strcmp(a->name, b->name); 3804 } 3805 3806 static int find_int_btf_id(const struct btf *btf) 3807 { 3808 const struct btf_type *t; 3809 int i, n; 3810 3811 n = btf__type_cnt(btf); 3812 for (i = 1; i < n; i++) { 3813 t = btf__type_by_id(btf, i); 3814 3815 if (btf_is_int(t) && btf_int_bits(t) == 32) 3816 return i; 3817 } 3818 3819 return 0; 3820 } 3821 3822 static int add_dummy_ksym_var(struct btf *btf) 3823 { 3824 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3825 const struct btf_var_secinfo *vs; 3826 const struct btf_type *sec; 3827 3828 if (!btf) 3829 return 0; 3830 3831 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3832 BTF_KIND_DATASEC); 3833 if (sec_btf_id < 0) 3834 return 0; 3835 3836 sec = btf__type_by_id(btf, sec_btf_id); 3837 vs = btf_var_secinfos(sec); 3838 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3839 const struct btf_type *vt; 3840 3841 vt = btf__type_by_id(btf, vs->type); 3842 if (btf_is_func(vt)) 3843 break; 3844 } 3845 3846 /* No func in ksyms sec. No need to add dummy var. */ 3847 if (i == btf_vlen(sec)) 3848 return 0; 3849 3850 int_btf_id = find_int_btf_id(btf); 3851 dummy_var_btf_id = btf__add_var(btf, 3852 "dummy_ksym", 3853 BTF_VAR_GLOBAL_ALLOCATED, 3854 int_btf_id); 3855 if (dummy_var_btf_id < 0) 3856 pr_warn("cannot create a dummy_ksym var\n"); 3857 3858 return dummy_var_btf_id; 3859 } 3860 3861 static int bpf_object__collect_externs(struct bpf_object *obj) 3862 { 3863 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3864 const struct btf_type *t; 3865 struct extern_desc *ext; 3866 int i, n, off, dummy_var_btf_id; 3867 const char *ext_name, *sec_name; 3868 size_t ext_essent_len; 3869 Elf_Scn *scn; 3870 Elf64_Shdr *sh; 3871 3872 if (!obj->efile.symbols) 3873 return 0; 3874 3875 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3876 sh = elf_sec_hdr(obj, scn); 3877 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3878 return -LIBBPF_ERRNO__FORMAT; 3879 3880 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3881 if (dummy_var_btf_id < 0) 3882 return dummy_var_btf_id; 3883 3884 n = sh->sh_size / sh->sh_entsize; 3885 pr_debug("looking for externs among %d symbols...\n", n); 3886 3887 for (i = 0; i < n; i++) { 3888 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3889 3890 if (!sym) 3891 return -LIBBPF_ERRNO__FORMAT; 3892 if (!sym_is_extern(sym)) 3893 continue; 3894 ext_name = elf_sym_str(obj, sym->st_name); 3895 if (!ext_name || !ext_name[0]) 3896 continue; 3897 3898 ext = obj->externs; 3899 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3900 if (!ext) 3901 return -ENOMEM; 3902 obj->externs = ext; 3903 ext = &ext[obj->nr_extern]; 3904 memset(ext, 0, sizeof(*ext)); 3905 obj->nr_extern++; 3906 3907 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3908 if (ext->btf_id <= 0) { 3909 pr_warn("failed to find BTF for extern '%s': %d\n", 3910 ext_name, ext->btf_id); 3911 return ext->btf_id; 3912 } 3913 t = btf__type_by_id(obj->btf, ext->btf_id); 3914 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3915 ext->sym_idx = i; 3916 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3917 3918 ext_essent_len = bpf_core_essential_name_len(ext->name); 3919 ext->essent_name = NULL; 3920 if (ext_essent_len != strlen(ext->name)) { 3921 ext->essent_name = strndup(ext->name, ext_essent_len); 3922 if (!ext->essent_name) 3923 return -ENOMEM; 3924 } 3925 3926 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3927 if (ext->sec_btf_id <= 0) { 3928 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3929 ext_name, ext->btf_id, ext->sec_btf_id); 3930 return ext->sec_btf_id; 3931 } 3932 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3933 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3934 3935 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3936 if (btf_is_func(t)) { 3937 pr_warn("extern function %s is unsupported under %s section\n", 3938 ext->name, KCONFIG_SEC); 3939 return -ENOTSUP; 3940 } 3941 kcfg_sec = sec; 3942 ext->type = EXT_KCFG; 3943 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3944 if (ext->kcfg.sz <= 0) { 3945 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3946 ext_name, ext->kcfg.sz); 3947 return ext->kcfg.sz; 3948 } 3949 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3950 if (ext->kcfg.align <= 0) { 3951 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3952 ext_name, ext->kcfg.align); 3953 return -EINVAL; 3954 } 3955 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3956 &ext->kcfg.is_signed); 3957 if (ext->kcfg.type == KCFG_UNKNOWN) { 3958 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3959 return -ENOTSUP; 3960 } 3961 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3962 ksym_sec = sec; 3963 ext->type = EXT_KSYM; 3964 skip_mods_and_typedefs(obj->btf, t->type, 3965 &ext->ksym.type_id); 3966 } else { 3967 pr_warn("unrecognized extern section '%s'\n", sec_name); 3968 return -ENOTSUP; 3969 } 3970 } 3971 pr_debug("collected %d externs total\n", obj->nr_extern); 3972 3973 if (!obj->nr_extern) 3974 return 0; 3975 3976 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3977 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3978 3979 /* for .ksyms section, we need to turn all externs into allocated 3980 * variables in BTF to pass kernel verification; we do this by 3981 * pretending that each extern is a 8-byte variable 3982 */ 3983 if (ksym_sec) { 3984 /* find existing 4-byte integer type in BTF to use for fake 3985 * extern variables in DATASEC 3986 */ 3987 int int_btf_id = find_int_btf_id(obj->btf); 3988 /* For extern function, a dummy_var added earlier 3989 * will be used to replace the vs->type and 3990 * its name string will be used to refill 3991 * the missing param's name. 3992 */ 3993 const struct btf_type *dummy_var; 3994 3995 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3996 for (i = 0; i < obj->nr_extern; i++) { 3997 ext = &obj->externs[i]; 3998 if (ext->type != EXT_KSYM) 3999 continue; 4000 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4001 i, ext->sym_idx, ext->name); 4002 } 4003 4004 sec = ksym_sec; 4005 n = btf_vlen(sec); 4006 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4007 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4008 struct btf_type *vt; 4009 4010 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4011 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4012 ext = find_extern_by_name(obj, ext_name); 4013 if (!ext) { 4014 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4015 btf_kind_str(vt), ext_name); 4016 return -ESRCH; 4017 } 4018 if (btf_is_func(vt)) { 4019 const struct btf_type *func_proto; 4020 struct btf_param *param; 4021 int j; 4022 4023 func_proto = btf__type_by_id(obj->btf, 4024 vt->type); 4025 param = btf_params(func_proto); 4026 /* Reuse the dummy_var string if the 4027 * func proto does not have param name. 4028 */ 4029 for (j = 0; j < btf_vlen(func_proto); j++) 4030 if (param[j].type && !param[j].name_off) 4031 param[j].name_off = 4032 dummy_var->name_off; 4033 vs->type = dummy_var_btf_id; 4034 vt->info &= ~0xffff; 4035 vt->info |= BTF_FUNC_GLOBAL; 4036 } else { 4037 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4038 vt->type = int_btf_id; 4039 } 4040 vs->offset = off; 4041 vs->size = sizeof(int); 4042 } 4043 sec->size = off; 4044 } 4045 4046 if (kcfg_sec) { 4047 sec = kcfg_sec; 4048 /* for kcfg externs calculate their offsets within a .kconfig map */ 4049 off = 0; 4050 for (i = 0; i < obj->nr_extern; i++) { 4051 ext = &obj->externs[i]; 4052 if (ext->type != EXT_KCFG) 4053 continue; 4054 4055 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4056 off = ext->kcfg.data_off + ext->kcfg.sz; 4057 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4058 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4059 } 4060 sec->size = off; 4061 n = btf_vlen(sec); 4062 for (i = 0; i < n; i++) { 4063 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4064 4065 t = btf__type_by_id(obj->btf, vs->type); 4066 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4067 ext = find_extern_by_name(obj, ext_name); 4068 if (!ext) { 4069 pr_warn("failed to find extern definition for BTF var '%s'\n", 4070 ext_name); 4071 return -ESRCH; 4072 } 4073 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4074 vs->offset = ext->kcfg.data_off; 4075 } 4076 } 4077 return 0; 4078 } 4079 4080 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4081 { 4082 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4083 } 4084 4085 struct bpf_program * 4086 bpf_object__find_program_by_name(const struct bpf_object *obj, 4087 const char *name) 4088 { 4089 struct bpf_program *prog; 4090 4091 bpf_object__for_each_program(prog, obj) { 4092 if (prog_is_subprog(obj, prog)) 4093 continue; 4094 if (!strcmp(prog->name, name)) 4095 return prog; 4096 } 4097 return errno = ENOENT, NULL; 4098 } 4099 4100 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4101 int shndx) 4102 { 4103 switch (obj->efile.secs[shndx].sec_type) { 4104 case SEC_BSS: 4105 case SEC_DATA: 4106 case SEC_RODATA: 4107 return true; 4108 default: 4109 return false; 4110 } 4111 } 4112 4113 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4114 int shndx) 4115 { 4116 return shndx == obj->efile.btf_maps_shndx; 4117 } 4118 4119 static enum libbpf_map_type 4120 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4121 { 4122 if (shndx == obj->efile.symbols_shndx) 4123 return LIBBPF_MAP_KCONFIG; 4124 4125 switch (obj->efile.secs[shndx].sec_type) { 4126 case SEC_BSS: 4127 return LIBBPF_MAP_BSS; 4128 case SEC_DATA: 4129 return LIBBPF_MAP_DATA; 4130 case SEC_RODATA: 4131 return LIBBPF_MAP_RODATA; 4132 default: 4133 return LIBBPF_MAP_UNSPEC; 4134 } 4135 } 4136 4137 static int bpf_program__record_reloc(struct bpf_program *prog, 4138 struct reloc_desc *reloc_desc, 4139 __u32 insn_idx, const char *sym_name, 4140 const Elf64_Sym *sym, const Elf64_Rel *rel) 4141 { 4142 struct bpf_insn *insn = &prog->insns[insn_idx]; 4143 size_t map_idx, nr_maps = prog->obj->nr_maps; 4144 struct bpf_object *obj = prog->obj; 4145 __u32 shdr_idx = sym->st_shndx; 4146 enum libbpf_map_type type; 4147 const char *sym_sec_name; 4148 struct bpf_map *map; 4149 4150 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4151 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4152 prog->name, sym_name, insn_idx, insn->code); 4153 return -LIBBPF_ERRNO__RELOC; 4154 } 4155 4156 if (sym_is_extern(sym)) { 4157 int sym_idx = ELF64_R_SYM(rel->r_info); 4158 int i, n = obj->nr_extern; 4159 struct extern_desc *ext; 4160 4161 for (i = 0; i < n; i++) { 4162 ext = &obj->externs[i]; 4163 if (ext->sym_idx == sym_idx) 4164 break; 4165 } 4166 if (i >= n) { 4167 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4168 prog->name, sym_name, sym_idx); 4169 return -LIBBPF_ERRNO__RELOC; 4170 } 4171 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4172 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4173 if (insn->code == (BPF_JMP | BPF_CALL)) 4174 reloc_desc->type = RELO_EXTERN_CALL; 4175 else 4176 reloc_desc->type = RELO_EXTERN_LD64; 4177 reloc_desc->insn_idx = insn_idx; 4178 reloc_desc->ext_idx = i; 4179 return 0; 4180 } 4181 4182 /* sub-program call relocation */ 4183 if (is_call_insn(insn)) { 4184 if (insn->src_reg != BPF_PSEUDO_CALL) { 4185 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4186 return -LIBBPF_ERRNO__RELOC; 4187 } 4188 /* text_shndx can be 0, if no default "main" program exists */ 4189 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4190 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4191 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4192 prog->name, sym_name, sym_sec_name); 4193 return -LIBBPF_ERRNO__RELOC; 4194 } 4195 if (sym->st_value % BPF_INSN_SZ) { 4196 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4197 prog->name, sym_name, (size_t)sym->st_value); 4198 return -LIBBPF_ERRNO__RELOC; 4199 } 4200 reloc_desc->type = RELO_CALL; 4201 reloc_desc->insn_idx = insn_idx; 4202 reloc_desc->sym_off = sym->st_value; 4203 return 0; 4204 } 4205 4206 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4207 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4208 prog->name, sym_name, shdr_idx); 4209 return -LIBBPF_ERRNO__RELOC; 4210 } 4211 4212 /* loading subprog addresses */ 4213 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4214 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4215 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4216 */ 4217 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4218 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4219 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4220 return -LIBBPF_ERRNO__RELOC; 4221 } 4222 4223 reloc_desc->type = RELO_SUBPROG_ADDR; 4224 reloc_desc->insn_idx = insn_idx; 4225 reloc_desc->sym_off = sym->st_value; 4226 return 0; 4227 } 4228 4229 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4230 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4231 4232 /* generic map reference relocation */ 4233 if (type == LIBBPF_MAP_UNSPEC) { 4234 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4235 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4236 prog->name, sym_name, sym_sec_name); 4237 return -LIBBPF_ERRNO__RELOC; 4238 } 4239 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4240 map = &obj->maps[map_idx]; 4241 if (map->libbpf_type != type || 4242 map->sec_idx != sym->st_shndx || 4243 map->sec_offset != sym->st_value) 4244 continue; 4245 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4246 prog->name, map_idx, map->name, map->sec_idx, 4247 map->sec_offset, insn_idx); 4248 break; 4249 } 4250 if (map_idx >= nr_maps) { 4251 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4252 prog->name, sym_sec_name, (size_t)sym->st_value); 4253 return -LIBBPF_ERRNO__RELOC; 4254 } 4255 reloc_desc->type = RELO_LD64; 4256 reloc_desc->insn_idx = insn_idx; 4257 reloc_desc->map_idx = map_idx; 4258 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4259 return 0; 4260 } 4261 4262 /* global data map relocation */ 4263 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4264 pr_warn("prog '%s': bad data relo against section '%s'\n", 4265 prog->name, sym_sec_name); 4266 return -LIBBPF_ERRNO__RELOC; 4267 } 4268 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4269 map = &obj->maps[map_idx]; 4270 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4271 continue; 4272 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4273 prog->name, map_idx, map->name, map->sec_idx, 4274 map->sec_offset, insn_idx); 4275 break; 4276 } 4277 if (map_idx >= nr_maps) { 4278 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4279 prog->name, sym_sec_name); 4280 return -LIBBPF_ERRNO__RELOC; 4281 } 4282 4283 reloc_desc->type = RELO_DATA; 4284 reloc_desc->insn_idx = insn_idx; 4285 reloc_desc->map_idx = map_idx; 4286 reloc_desc->sym_off = sym->st_value; 4287 return 0; 4288 } 4289 4290 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4291 { 4292 return insn_idx >= prog->sec_insn_off && 4293 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4294 } 4295 4296 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4297 size_t sec_idx, size_t insn_idx) 4298 { 4299 int l = 0, r = obj->nr_programs - 1, m; 4300 struct bpf_program *prog; 4301 4302 if (!obj->nr_programs) 4303 return NULL; 4304 4305 while (l < r) { 4306 m = l + (r - l + 1) / 2; 4307 prog = &obj->programs[m]; 4308 4309 if (prog->sec_idx < sec_idx || 4310 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4311 l = m; 4312 else 4313 r = m - 1; 4314 } 4315 /* matching program could be at index l, but it still might be the 4316 * wrong one, so we need to double check conditions for the last time 4317 */ 4318 prog = &obj->programs[l]; 4319 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4320 return prog; 4321 return NULL; 4322 } 4323 4324 static int 4325 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4326 { 4327 const char *relo_sec_name, *sec_name; 4328 size_t sec_idx = shdr->sh_info, sym_idx; 4329 struct bpf_program *prog; 4330 struct reloc_desc *relos; 4331 int err, i, nrels; 4332 const char *sym_name; 4333 __u32 insn_idx; 4334 Elf_Scn *scn; 4335 Elf_Data *scn_data; 4336 Elf64_Sym *sym; 4337 Elf64_Rel *rel; 4338 4339 if (sec_idx >= obj->efile.sec_cnt) 4340 return -EINVAL; 4341 4342 scn = elf_sec_by_idx(obj, sec_idx); 4343 scn_data = elf_sec_data(obj, scn); 4344 4345 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4346 sec_name = elf_sec_name(obj, scn); 4347 if (!relo_sec_name || !sec_name) 4348 return -EINVAL; 4349 4350 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4351 relo_sec_name, sec_idx, sec_name); 4352 nrels = shdr->sh_size / shdr->sh_entsize; 4353 4354 for (i = 0; i < nrels; i++) { 4355 rel = elf_rel_by_idx(data, i); 4356 if (!rel) { 4357 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4358 return -LIBBPF_ERRNO__FORMAT; 4359 } 4360 4361 sym_idx = ELF64_R_SYM(rel->r_info); 4362 sym = elf_sym_by_idx(obj, sym_idx); 4363 if (!sym) { 4364 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4365 relo_sec_name, sym_idx, i); 4366 return -LIBBPF_ERRNO__FORMAT; 4367 } 4368 4369 if (sym->st_shndx >= obj->efile.sec_cnt) { 4370 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4371 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4372 return -LIBBPF_ERRNO__FORMAT; 4373 } 4374 4375 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4376 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4377 relo_sec_name, (size_t)rel->r_offset, i); 4378 return -LIBBPF_ERRNO__FORMAT; 4379 } 4380 4381 insn_idx = rel->r_offset / BPF_INSN_SZ; 4382 /* relocations against static functions are recorded as 4383 * relocations against the section that contains a function; 4384 * in such case, symbol will be STT_SECTION and sym.st_name 4385 * will point to empty string (0), so fetch section name 4386 * instead 4387 */ 4388 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4389 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4390 else 4391 sym_name = elf_sym_str(obj, sym->st_name); 4392 sym_name = sym_name ?: "<?"; 4393 4394 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4395 relo_sec_name, i, insn_idx, sym_name); 4396 4397 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4398 if (!prog) { 4399 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4400 relo_sec_name, i, sec_name, insn_idx); 4401 continue; 4402 } 4403 4404 relos = libbpf_reallocarray(prog->reloc_desc, 4405 prog->nr_reloc + 1, sizeof(*relos)); 4406 if (!relos) 4407 return -ENOMEM; 4408 prog->reloc_desc = relos; 4409 4410 /* adjust insn_idx to local BPF program frame of reference */ 4411 insn_idx -= prog->sec_insn_off; 4412 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4413 insn_idx, sym_name, sym, rel); 4414 if (err) 4415 return err; 4416 4417 prog->nr_reloc++; 4418 } 4419 return 0; 4420 } 4421 4422 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4423 { 4424 int id; 4425 4426 if (!obj->btf) 4427 return -ENOENT; 4428 4429 /* if it's BTF-defined map, we don't need to search for type IDs. 4430 * For struct_ops map, it does not need btf_key_type_id and 4431 * btf_value_type_id. 4432 */ 4433 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4434 return 0; 4435 4436 /* 4437 * LLVM annotates global data differently in BTF, that is, 4438 * only as '.data', '.bss' or '.rodata'. 4439 */ 4440 if (!bpf_map__is_internal(map)) 4441 return -ENOENT; 4442 4443 id = btf__find_by_name(obj->btf, map->real_name); 4444 if (id < 0) 4445 return id; 4446 4447 map->btf_key_type_id = 0; 4448 map->btf_value_type_id = id; 4449 return 0; 4450 } 4451 4452 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4453 { 4454 char file[PATH_MAX], buff[4096]; 4455 FILE *fp; 4456 __u32 val; 4457 int err; 4458 4459 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4460 memset(info, 0, sizeof(*info)); 4461 4462 fp = fopen(file, "re"); 4463 if (!fp) { 4464 err = -errno; 4465 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4466 err); 4467 return err; 4468 } 4469 4470 while (fgets(buff, sizeof(buff), fp)) { 4471 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4472 info->type = val; 4473 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4474 info->key_size = val; 4475 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4476 info->value_size = val; 4477 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4478 info->max_entries = val; 4479 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4480 info->map_flags = val; 4481 } 4482 4483 fclose(fp); 4484 4485 return 0; 4486 } 4487 4488 bool bpf_map__autocreate(const struct bpf_map *map) 4489 { 4490 return map->autocreate; 4491 } 4492 4493 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4494 { 4495 if (map->obj->loaded) 4496 return libbpf_err(-EBUSY); 4497 4498 map->autocreate = autocreate; 4499 return 0; 4500 } 4501 4502 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4503 { 4504 struct bpf_map_info info; 4505 __u32 len = sizeof(info), name_len; 4506 int new_fd, err; 4507 char *new_name; 4508 4509 memset(&info, 0, len); 4510 err = bpf_map_get_info_by_fd(fd, &info, &len); 4511 if (err && errno == EINVAL) 4512 err = bpf_get_map_info_from_fdinfo(fd, &info); 4513 if (err) 4514 return libbpf_err(err); 4515 4516 name_len = strlen(info.name); 4517 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4518 new_name = strdup(map->name); 4519 else 4520 new_name = strdup(info.name); 4521 4522 if (!new_name) 4523 return libbpf_err(-errno); 4524 4525 /* 4526 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4527 * This is similar to what we do in ensure_good_fd(), but without 4528 * closing original FD. 4529 */ 4530 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4531 if (new_fd < 0) { 4532 err = -errno; 4533 goto err_free_new_name; 4534 } 4535 4536 err = zclose(map->fd); 4537 if (err) { 4538 err = -errno; 4539 goto err_close_new_fd; 4540 } 4541 free(map->name); 4542 4543 map->fd = new_fd; 4544 map->name = new_name; 4545 map->def.type = info.type; 4546 map->def.key_size = info.key_size; 4547 map->def.value_size = info.value_size; 4548 map->def.max_entries = info.max_entries; 4549 map->def.map_flags = info.map_flags; 4550 map->btf_key_type_id = info.btf_key_type_id; 4551 map->btf_value_type_id = info.btf_value_type_id; 4552 map->reused = true; 4553 map->map_extra = info.map_extra; 4554 4555 return 0; 4556 4557 err_close_new_fd: 4558 close(new_fd); 4559 err_free_new_name: 4560 free(new_name); 4561 return libbpf_err(err); 4562 } 4563 4564 __u32 bpf_map__max_entries(const struct bpf_map *map) 4565 { 4566 return map->def.max_entries; 4567 } 4568 4569 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4570 { 4571 if (!bpf_map_type__is_map_in_map(map->def.type)) 4572 return errno = EINVAL, NULL; 4573 4574 return map->inner_map; 4575 } 4576 4577 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4578 { 4579 if (map->obj->loaded) 4580 return libbpf_err(-EBUSY); 4581 4582 map->def.max_entries = max_entries; 4583 4584 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4585 if (map_is_ringbuf(map)) 4586 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4587 4588 return 0; 4589 } 4590 4591 static int 4592 bpf_object__probe_loading(struct bpf_object *obj) 4593 { 4594 char *cp, errmsg[STRERR_BUFSIZE]; 4595 struct bpf_insn insns[] = { 4596 BPF_MOV64_IMM(BPF_REG_0, 0), 4597 BPF_EXIT_INSN(), 4598 }; 4599 int ret, insn_cnt = ARRAY_SIZE(insns); 4600 4601 if (obj->gen_loader) 4602 return 0; 4603 4604 ret = bump_rlimit_memlock(); 4605 if (ret) 4606 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4607 4608 /* make sure basic loading works */ 4609 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4610 if (ret < 0) 4611 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4612 if (ret < 0) { 4613 ret = errno; 4614 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4615 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4616 "program. Make sure your kernel supports BPF " 4617 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4618 "set to big enough value.\n", __func__, cp, ret); 4619 return -ret; 4620 } 4621 close(ret); 4622 4623 return 0; 4624 } 4625 4626 static int probe_fd(int fd) 4627 { 4628 if (fd >= 0) 4629 close(fd); 4630 return fd >= 0; 4631 } 4632 4633 static int probe_kern_prog_name(void) 4634 { 4635 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4636 struct bpf_insn insns[] = { 4637 BPF_MOV64_IMM(BPF_REG_0, 0), 4638 BPF_EXIT_INSN(), 4639 }; 4640 union bpf_attr attr; 4641 int ret; 4642 4643 memset(&attr, 0, attr_sz); 4644 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4645 attr.license = ptr_to_u64("GPL"); 4646 attr.insns = ptr_to_u64(insns); 4647 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4648 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4649 4650 /* make sure loading with name works */ 4651 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4652 return probe_fd(ret); 4653 } 4654 4655 static int probe_kern_global_data(void) 4656 { 4657 char *cp, errmsg[STRERR_BUFSIZE]; 4658 struct bpf_insn insns[] = { 4659 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4660 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4661 BPF_MOV64_IMM(BPF_REG_0, 0), 4662 BPF_EXIT_INSN(), 4663 }; 4664 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4665 4666 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4667 if (map < 0) { 4668 ret = -errno; 4669 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4670 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4671 __func__, cp, -ret); 4672 return ret; 4673 } 4674 4675 insns[0].imm = map; 4676 4677 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4678 close(map); 4679 return probe_fd(ret); 4680 } 4681 4682 static int probe_kern_btf(void) 4683 { 4684 static const char strs[] = "\0int"; 4685 __u32 types[] = { 4686 /* int */ 4687 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4688 }; 4689 4690 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4691 strs, sizeof(strs))); 4692 } 4693 4694 static int probe_kern_btf_func(void) 4695 { 4696 static const char strs[] = "\0int\0x\0a"; 4697 /* void x(int a) {} */ 4698 __u32 types[] = { 4699 /* int */ 4700 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4701 /* FUNC_PROTO */ /* [2] */ 4702 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4703 BTF_PARAM_ENC(7, 1), 4704 /* FUNC x */ /* [3] */ 4705 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4706 }; 4707 4708 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4709 strs, sizeof(strs))); 4710 } 4711 4712 static int probe_kern_btf_func_global(void) 4713 { 4714 static const char strs[] = "\0int\0x\0a"; 4715 /* static void x(int a) {} */ 4716 __u32 types[] = { 4717 /* int */ 4718 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4719 /* FUNC_PROTO */ /* [2] */ 4720 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4721 BTF_PARAM_ENC(7, 1), 4722 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4723 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4724 }; 4725 4726 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4727 strs, sizeof(strs))); 4728 } 4729 4730 static int probe_kern_btf_datasec(void) 4731 { 4732 static const char strs[] = "\0x\0.data"; 4733 /* static int a; */ 4734 __u32 types[] = { 4735 /* int */ 4736 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4737 /* VAR x */ /* [2] */ 4738 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4739 BTF_VAR_STATIC, 4740 /* DATASEC val */ /* [3] */ 4741 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4742 BTF_VAR_SECINFO_ENC(2, 0, 4), 4743 }; 4744 4745 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4746 strs, sizeof(strs))); 4747 } 4748 4749 static int probe_kern_btf_float(void) 4750 { 4751 static const char strs[] = "\0float"; 4752 __u32 types[] = { 4753 /* float */ 4754 BTF_TYPE_FLOAT_ENC(1, 4), 4755 }; 4756 4757 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4758 strs, sizeof(strs))); 4759 } 4760 4761 static int probe_kern_btf_decl_tag(void) 4762 { 4763 static const char strs[] = "\0tag"; 4764 __u32 types[] = { 4765 /* int */ 4766 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4767 /* VAR x */ /* [2] */ 4768 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4769 BTF_VAR_STATIC, 4770 /* attr */ 4771 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4772 }; 4773 4774 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4775 strs, sizeof(strs))); 4776 } 4777 4778 static int probe_kern_btf_type_tag(void) 4779 { 4780 static const char strs[] = "\0tag"; 4781 __u32 types[] = { 4782 /* int */ 4783 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4784 /* attr */ 4785 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4786 /* ptr */ 4787 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4788 }; 4789 4790 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4791 strs, sizeof(strs))); 4792 } 4793 4794 static int probe_kern_array_mmap(void) 4795 { 4796 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4797 int fd; 4798 4799 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4800 return probe_fd(fd); 4801 } 4802 4803 static int probe_kern_exp_attach_type(void) 4804 { 4805 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4806 struct bpf_insn insns[] = { 4807 BPF_MOV64_IMM(BPF_REG_0, 0), 4808 BPF_EXIT_INSN(), 4809 }; 4810 int fd, insn_cnt = ARRAY_SIZE(insns); 4811 4812 /* use any valid combination of program type and (optional) 4813 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4814 * to see if kernel supports expected_attach_type field for 4815 * BPF_PROG_LOAD command 4816 */ 4817 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4818 return probe_fd(fd); 4819 } 4820 4821 static int probe_kern_probe_read_kernel(void) 4822 { 4823 struct bpf_insn insns[] = { 4824 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4825 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4826 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4827 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4828 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4829 BPF_EXIT_INSN(), 4830 }; 4831 int fd, insn_cnt = ARRAY_SIZE(insns); 4832 4833 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4834 return probe_fd(fd); 4835 } 4836 4837 static int probe_prog_bind_map(void) 4838 { 4839 char *cp, errmsg[STRERR_BUFSIZE]; 4840 struct bpf_insn insns[] = { 4841 BPF_MOV64_IMM(BPF_REG_0, 0), 4842 BPF_EXIT_INSN(), 4843 }; 4844 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4845 4846 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4847 if (map < 0) { 4848 ret = -errno; 4849 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4850 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4851 __func__, cp, -ret); 4852 return ret; 4853 } 4854 4855 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4856 if (prog < 0) { 4857 close(map); 4858 return 0; 4859 } 4860 4861 ret = bpf_prog_bind_map(prog, map, NULL); 4862 4863 close(map); 4864 close(prog); 4865 4866 return ret >= 0; 4867 } 4868 4869 static int probe_module_btf(void) 4870 { 4871 static const char strs[] = "\0int"; 4872 __u32 types[] = { 4873 /* int */ 4874 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4875 }; 4876 struct bpf_btf_info info; 4877 __u32 len = sizeof(info); 4878 char name[16]; 4879 int fd, err; 4880 4881 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4882 if (fd < 0) 4883 return 0; /* BTF not supported at all */ 4884 4885 memset(&info, 0, sizeof(info)); 4886 info.name = ptr_to_u64(name); 4887 info.name_len = sizeof(name); 4888 4889 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4890 * kernel's module BTF support coincides with support for 4891 * name/name_len fields in struct bpf_btf_info. 4892 */ 4893 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4894 close(fd); 4895 return !err; 4896 } 4897 4898 static int probe_perf_link(void) 4899 { 4900 struct bpf_insn insns[] = { 4901 BPF_MOV64_IMM(BPF_REG_0, 0), 4902 BPF_EXIT_INSN(), 4903 }; 4904 int prog_fd, link_fd, err; 4905 4906 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4907 insns, ARRAY_SIZE(insns), NULL); 4908 if (prog_fd < 0) 4909 return -errno; 4910 4911 /* use invalid perf_event FD to get EBADF, if link is supported; 4912 * otherwise EINVAL should be returned 4913 */ 4914 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4915 err = -errno; /* close() can clobber errno */ 4916 4917 if (link_fd >= 0) 4918 close(link_fd); 4919 close(prog_fd); 4920 4921 return link_fd < 0 && err == -EBADF; 4922 } 4923 4924 static int probe_uprobe_multi_link(void) 4925 { 4926 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4927 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4928 ); 4929 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4930 struct bpf_insn insns[] = { 4931 BPF_MOV64_IMM(BPF_REG_0, 0), 4932 BPF_EXIT_INSN(), 4933 }; 4934 int prog_fd, link_fd, err; 4935 unsigned long offset = 0; 4936 4937 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4938 insns, ARRAY_SIZE(insns), &load_opts); 4939 if (prog_fd < 0) 4940 return -errno; 4941 4942 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4943 link_opts.uprobe_multi.path = "/"; 4944 link_opts.uprobe_multi.offsets = &offset; 4945 link_opts.uprobe_multi.cnt = 1; 4946 4947 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4948 err = -errno; /* close() can clobber errno */ 4949 4950 if (link_fd >= 0) 4951 close(link_fd); 4952 close(prog_fd); 4953 4954 return link_fd < 0 && err == -EBADF; 4955 } 4956 4957 static int probe_kern_bpf_cookie(void) 4958 { 4959 struct bpf_insn insns[] = { 4960 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4961 BPF_EXIT_INSN(), 4962 }; 4963 int ret, insn_cnt = ARRAY_SIZE(insns); 4964 4965 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4966 return probe_fd(ret); 4967 } 4968 4969 static int probe_kern_btf_enum64(void) 4970 { 4971 static const char strs[] = "\0enum64"; 4972 __u32 types[] = { 4973 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4974 }; 4975 4976 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4977 strs, sizeof(strs))); 4978 } 4979 4980 static int probe_kern_syscall_wrapper(void); 4981 4982 enum kern_feature_result { 4983 FEAT_UNKNOWN = 0, 4984 FEAT_SUPPORTED = 1, 4985 FEAT_MISSING = 2, 4986 }; 4987 4988 typedef int (*feature_probe_fn)(void); 4989 4990 static struct kern_feature_desc { 4991 const char *desc; 4992 feature_probe_fn probe; 4993 enum kern_feature_result res; 4994 } feature_probes[__FEAT_CNT] = { 4995 [FEAT_PROG_NAME] = { 4996 "BPF program name", probe_kern_prog_name, 4997 }, 4998 [FEAT_GLOBAL_DATA] = { 4999 "global variables", probe_kern_global_data, 5000 }, 5001 [FEAT_BTF] = { 5002 "minimal BTF", probe_kern_btf, 5003 }, 5004 [FEAT_BTF_FUNC] = { 5005 "BTF functions", probe_kern_btf_func, 5006 }, 5007 [FEAT_BTF_GLOBAL_FUNC] = { 5008 "BTF global function", probe_kern_btf_func_global, 5009 }, 5010 [FEAT_BTF_DATASEC] = { 5011 "BTF data section and variable", probe_kern_btf_datasec, 5012 }, 5013 [FEAT_ARRAY_MMAP] = { 5014 "ARRAY map mmap()", probe_kern_array_mmap, 5015 }, 5016 [FEAT_EXP_ATTACH_TYPE] = { 5017 "BPF_PROG_LOAD expected_attach_type attribute", 5018 probe_kern_exp_attach_type, 5019 }, 5020 [FEAT_PROBE_READ_KERN] = { 5021 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 5022 }, 5023 [FEAT_PROG_BIND_MAP] = { 5024 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 5025 }, 5026 [FEAT_MODULE_BTF] = { 5027 "module BTF support", probe_module_btf, 5028 }, 5029 [FEAT_BTF_FLOAT] = { 5030 "BTF_KIND_FLOAT support", probe_kern_btf_float, 5031 }, 5032 [FEAT_PERF_LINK] = { 5033 "BPF perf link support", probe_perf_link, 5034 }, 5035 [FEAT_BTF_DECL_TAG] = { 5036 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 5037 }, 5038 [FEAT_BTF_TYPE_TAG] = { 5039 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 5040 }, 5041 [FEAT_MEMCG_ACCOUNT] = { 5042 "memcg-based memory accounting", probe_memcg_account, 5043 }, 5044 [FEAT_BPF_COOKIE] = { 5045 "BPF cookie support", probe_kern_bpf_cookie, 5046 }, 5047 [FEAT_BTF_ENUM64] = { 5048 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5049 }, 5050 [FEAT_SYSCALL_WRAPPER] = { 5051 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5052 }, 5053 [FEAT_UPROBE_MULTI_LINK] = { 5054 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5055 }, 5056 }; 5057 5058 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5059 { 5060 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5061 int ret; 5062 5063 if (obj && obj->gen_loader) 5064 /* To generate loader program assume the latest kernel 5065 * to avoid doing extra prog_load, map_create syscalls. 5066 */ 5067 return true; 5068 5069 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5070 ret = feat->probe(); 5071 if (ret > 0) { 5072 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5073 } else if (ret == 0) { 5074 WRITE_ONCE(feat->res, FEAT_MISSING); 5075 } else { 5076 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5077 WRITE_ONCE(feat->res, FEAT_MISSING); 5078 } 5079 } 5080 5081 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5082 } 5083 5084 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5085 { 5086 struct bpf_map_info map_info; 5087 char msg[STRERR_BUFSIZE]; 5088 __u32 map_info_len = sizeof(map_info); 5089 int err; 5090 5091 memset(&map_info, 0, map_info_len); 5092 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5093 if (err && errno == EINVAL) 5094 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5095 if (err) { 5096 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5097 libbpf_strerror_r(errno, msg, sizeof(msg))); 5098 return false; 5099 } 5100 5101 return (map_info.type == map->def.type && 5102 map_info.key_size == map->def.key_size && 5103 map_info.value_size == map->def.value_size && 5104 map_info.max_entries == map->def.max_entries && 5105 map_info.map_flags == map->def.map_flags && 5106 map_info.map_extra == map->map_extra); 5107 } 5108 5109 static int 5110 bpf_object__reuse_map(struct bpf_map *map) 5111 { 5112 char *cp, errmsg[STRERR_BUFSIZE]; 5113 int err, pin_fd; 5114 5115 pin_fd = bpf_obj_get(map->pin_path); 5116 if (pin_fd < 0) { 5117 err = -errno; 5118 if (err == -ENOENT) { 5119 pr_debug("found no pinned map to reuse at '%s'\n", 5120 map->pin_path); 5121 return 0; 5122 } 5123 5124 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5125 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5126 map->pin_path, cp); 5127 return err; 5128 } 5129 5130 if (!map_is_reuse_compat(map, pin_fd)) { 5131 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5132 map->pin_path); 5133 close(pin_fd); 5134 return -EINVAL; 5135 } 5136 5137 err = bpf_map__reuse_fd(map, pin_fd); 5138 close(pin_fd); 5139 if (err) 5140 return err; 5141 5142 map->pinned = true; 5143 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5144 5145 return 0; 5146 } 5147 5148 static int 5149 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5150 { 5151 enum libbpf_map_type map_type = map->libbpf_type; 5152 char *cp, errmsg[STRERR_BUFSIZE]; 5153 int err, zero = 0; 5154 5155 if (obj->gen_loader) { 5156 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5157 map->mmaped, map->def.value_size); 5158 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5159 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5160 return 0; 5161 } 5162 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5163 if (err) { 5164 err = -errno; 5165 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5166 pr_warn("Error setting initial map(%s) contents: %s\n", 5167 map->name, cp); 5168 return err; 5169 } 5170 5171 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5172 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5173 err = bpf_map_freeze(map->fd); 5174 if (err) { 5175 err = -errno; 5176 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5177 pr_warn("Error freezing map(%s) as read-only: %s\n", 5178 map->name, cp); 5179 return err; 5180 } 5181 } 5182 return 0; 5183 } 5184 5185 static void bpf_map__destroy(struct bpf_map *map); 5186 5187 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5188 { 5189 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5190 struct bpf_map_def *def = &map->def; 5191 const char *map_name = NULL; 5192 int err = 0; 5193 5194 if (kernel_supports(obj, FEAT_PROG_NAME)) 5195 map_name = map->name; 5196 create_attr.map_ifindex = map->map_ifindex; 5197 create_attr.map_flags = def->map_flags; 5198 create_attr.numa_node = map->numa_node; 5199 create_attr.map_extra = map->map_extra; 5200 5201 if (bpf_map__is_struct_ops(map)) 5202 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5203 5204 if (obj->btf && btf__fd(obj->btf) >= 0) { 5205 create_attr.btf_fd = btf__fd(obj->btf); 5206 create_attr.btf_key_type_id = map->btf_key_type_id; 5207 create_attr.btf_value_type_id = map->btf_value_type_id; 5208 } 5209 5210 if (bpf_map_type__is_map_in_map(def->type)) { 5211 if (map->inner_map) { 5212 err = bpf_object__create_map(obj, map->inner_map, true); 5213 if (err) { 5214 pr_warn("map '%s': failed to create inner map: %d\n", 5215 map->name, err); 5216 return err; 5217 } 5218 map->inner_map_fd = bpf_map__fd(map->inner_map); 5219 } 5220 if (map->inner_map_fd >= 0) 5221 create_attr.inner_map_fd = map->inner_map_fd; 5222 } 5223 5224 switch (def->type) { 5225 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5226 case BPF_MAP_TYPE_CGROUP_ARRAY: 5227 case BPF_MAP_TYPE_STACK_TRACE: 5228 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5229 case BPF_MAP_TYPE_HASH_OF_MAPS: 5230 case BPF_MAP_TYPE_DEVMAP: 5231 case BPF_MAP_TYPE_DEVMAP_HASH: 5232 case BPF_MAP_TYPE_CPUMAP: 5233 case BPF_MAP_TYPE_XSKMAP: 5234 case BPF_MAP_TYPE_SOCKMAP: 5235 case BPF_MAP_TYPE_SOCKHASH: 5236 case BPF_MAP_TYPE_QUEUE: 5237 case BPF_MAP_TYPE_STACK: 5238 create_attr.btf_fd = 0; 5239 create_attr.btf_key_type_id = 0; 5240 create_attr.btf_value_type_id = 0; 5241 map->btf_key_type_id = 0; 5242 map->btf_value_type_id = 0; 5243 default: 5244 break; 5245 } 5246 5247 if (obj->gen_loader) { 5248 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5249 def->key_size, def->value_size, def->max_entries, 5250 &create_attr, is_inner ? -1 : map - obj->maps); 5251 /* Pretend to have valid FD to pass various fd >= 0 checks. 5252 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5253 */ 5254 map->fd = 0; 5255 } else { 5256 map->fd = bpf_map_create(def->type, map_name, 5257 def->key_size, def->value_size, 5258 def->max_entries, &create_attr); 5259 } 5260 if (map->fd < 0 && (create_attr.btf_key_type_id || 5261 create_attr.btf_value_type_id)) { 5262 char *cp, errmsg[STRERR_BUFSIZE]; 5263 5264 err = -errno; 5265 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5266 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5267 map->name, cp, err); 5268 create_attr.btf_fd = 0; 5269 create_attr.btf_key_type_id = 0; 5270 create_attr.btf_value_type_id = 0; 5271 map->btf_key_type_id = 0; 5272 map->btf_value_type_id = 0; 5273 map->fd = bpf_map_create(def->type, map_name, 5274 def->key_size, def->value_size, 5275 def->max_entries, &create_attr); 5276 } 5277 5278 err = map->fd < 0 ? -errno : 0; 5279 5280 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5281 if (obj->gen_loader) 5282 map->inner_map->fd = -1; 5283 bpf_map__destroy(map->inner_map); 5284 zfree(&map->inner_map); 5285 } 5286 5287 return err; 5288 } 5289 5290 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5291 { 5292 const struct bpf_map *targ_map; 5293 unsigned int i; 5294 int fd, err = 0; 5295 5296 for (i = 0; i < map->init_slots_sz; i++) { 5297 if (!map->init_slots[i]) 5298 continue; 5299 5300 targ_map = map->init_slots[i]; 5301 fd = bpf_map__fd(targ_map); 5302 5303 if (obj->gen_loader) { 5304 bpf_gen__populate_outer_map(obj->gen_loader, 5305 map - obj->maps, i, 5306 targ_map - obj->maps); 5307 } else { 5308 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5309 } 5310 if (err) { 5311 err = -errno; 5312 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5313 map->name, i, targ_map->name, fd, err); 5314 return err; 5315 } 5316 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5317 map->name, i, targ_map->name, fd); 5318 } 5319 5320 zfree(&map->init_slots); 5321 map->init_slots_sz = 0; 5322 5323 return 0; 5324 } 5325 5326 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5327 { 5328 const struct bpf_program *targ_prog; 5329 unsigned int i; 5330 int fd, err; 5331 5332 if (obj->gen_loader) 5333 return -ENOTSUP; 5334 5335 for (i = 0; i < map->init_slots_sz; i++) { 5336 if (!map->init_slots[i]) 5337 continue; 5338 5339 targ_prog = map->init_slots[i]; 5340 fd = bpf_program__fd(targ_prog); 5341 5342 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5343 if (err) { 5344 err = -errno; 5345 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5346 map->name, i, targ_prog->name, fd, err); 5347 return err; 5348 } 5349 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5350 map->name, i, targ_prog->name, fd); 5351 } 5352 5353 zfree(&map->init_slots); 5354 map->init_slots_sz = 0; 5355 5356 return 0; 5357 } 5358 5359 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5360 { 5361 struct bpf_map *map; 5362 int i, err; 5363 5364 for (i = 0; i < obj->nr_maps; i++) { 5365 map = &obj->maps[i]; 5366 5367 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5368 continue; 5369 5370 err = init_prog_array_slots(obj, map); 5371 if (err < 0) { 5372 zclose(map->fd); 5373 return err; 5374 } 5375 } 5376 return 0; 5377 } 5378 5379 static int map_set_def_max_entries(struct bpf_map *map) 5380 { 5381 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5382 int nr_cpus; 5383 5384 nr_cpus = libbpf_num_possible_cpus(); 5385 if (nr_cpus < 0) { 5386 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5387 map->name, nr_cpus); 5388 return nr_cpus; 5389 } 5390 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5391 map->def.max_entries = nr_cpus; 5392 } 5393 5394 return 0; 5395 } 5396 5397 static int 5398 bpf_object__create_maps(struct bpf_object *obj) 5399 { 5400 struct bpf_map *map; 5401 char *cp, errmsg[STRERR_BUFSIZE]; 5402 unsigned int i, j; 5403 int err; 5404 bool retried; 5405 5406 for (i = 0; i < obj->nr_maps; i++) { 5407 map = &obj->maps[i]; 5408 5409 /* To support old kernels, we skip creating global data maps 5410 * (.rodata, .data, .kconfig, etc); later on, during program 5411 * loading, if we detect that at least one of the to-be-loaded 5412 * programs is referencing any global data map, we'll error 5413 * out with program name and relocation index logged. 5414 * This approach allows to accommodate Clang emitting 5415 * unnecessary .rodata.str1.1 sections for string literals, 5416 * but also it allows to have CO-RE applications that use 5417 * global variables in some of BPF programs, but not others. 5418 * If those global variable-using programs are not loaded at 5419 * runtime due to bpf_program__set_autoload(prog, false), 5420 * bpf_object loading will succeed just fine even on old 5421 * kernels. 5422 */ 5423 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5424 map->autocreate = false; 5425 5426 if (!map->autocreate) { 5427 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5428 continue; 5429 } 5430 5431 err = map_set_def_max_entries(map); 5432 if (err) 5433 goto err_out; 5434 5435 retried = false; 5436 retry: 5437 if (map->pin_path) { 5438 err = bpf_object__reuse_map(map); 5439 if (err) { 5440 pr_warn("map '%s': error reusing pinned map\n", 5441 map->name); 5442 goto err_out; 5443 } 5444 if (retried && map->fd < 0) { 5445 pr_warn("map '%s': cannot find pinned map\n", 5446 map->name); 5447 err = -ENOENT; 5448 goto err_out; 5449 } 5450 } 5451 5452 if (map->fd >= 0) { 5453 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5454 map->name, map->fd); 5455 } else { 5456 err = bpf_object__create_map(obj, map, false); 5457 if (err) 5458 goto err_out; 5459 5460 pr_debug("map '%s': created successfully, fd=%d\n", 5461 map->name, map->fd); 5462 5463 if (bpf_map__is_internal(map)) { 5464 err = bpf_object__populate_internal_map(obj, map); 5465 if (err < 0) { 5466 zclose(map->fd); 5467 goto err_out; 5468 } 5469 } 5470 5471 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5472 err = init_map_in_map_slots(obj, map); 5473 if (err < 0) { 5474 zclose(map->fd); 5475 goto err_out; 5476 } 5477 } 5478 } 5479 5480 if (map->pin_path && !map->pinned) { 5481 err = bpf_map__pin(map, NULL); 5482 if (err) { 5483 zclose(map->fd); 5484 if (!retried && err == -EEXIST) { 5485 retried = true; 5486 goto retry; 5487 } 5488 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5489 map->name, map->pin_path, err); 5490 goto err_out; 5491 } 5492 } 5493 } 5494 5495 return 0; 5496 5497 err_out: 5498 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5499 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5500 pr_perm_msg(err); 5501 for (j = 0; j < i; j++) 5502 zclose(obj->maps[j].fd); 5503 return err; 5504 } 5505 5506 static bool bpf_core_is_flavor_sep(const char *s) 5507 { 5508 /* check X___Y name pattern, where X and Y are not underscores */ 5509 return s[0] != '_' && /* X */ 5510 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5511 s[4] != '_'; /* Y */ 5512 } 5513 5514 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5515 * before last triple underscore. Struct name part after last triple 5516 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5517 */ 5518 size_t bpf_core_essential_name_len(const char *name) 5519 { 5520 size_t n = strlen(name); 5521 int i; 5522 5523 for (i = n - 5; i >= 0; i--) { 5524 if (bpf_core_is_flavor_sep(name + i)) 5525 return i + 1; 5526 } 5527 return n; 5528 } 5529 5530 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5531 { 5532 if (!cands) 5533 return; 5534 5535 free(cands->cands); 5536 free(cands); 5537 } 5538 5539 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5540 size_t local_essent_len, 5541 const struct btf *targ_btf, 5542 const char *targ_btf_name, 5543 int targ_start_id, 5544 struct bpf_core_cand_list *cands) 5545 { 5546 struct bpf_core_cand *new_cands, *cand; 5547 const struct btf_type *t, *local_t; 5548 const char *targ_name, *local_name; 5549 size_t targ_essent_len; 5550 int n, i; 5551 5552 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5553 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5554 5555 n = btf__type_cnt(targ_btf); 5556 for (i = targ_start_id; i < n; i++) { 5557 t = btf__type_by_id(targ_btf, i); 5558 if (!btf_kind_core_compat(t, local_t)) 5559 continue; 5560 5561 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5562 if (str_is_empty(targ_name)) 5563 continue; 5564 5565 targ_essent_len = bpf_core_essential_name_len(targ_name); 5566 if (targ_essent_len != local_essent_len) 5567 continue; 5568 5569 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5570 continue; 5571 5572 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5573 local_cand->id, btf_kind_str(local_t), 5574 local_name, i, btf_kind_str(t), targ_name, 5575 targ_btf_name); 5576 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5577 sizeof(*cands->cands)); 5578 if (!new_cands) 5579 return -ENOMEM; 5580 5581 cand = &new_cands[cands->len]; 5582 cand->btf = targ_btf; 5583 cand->id = i; 5584 5585 cands->cands = new_cands; 5586 cands->len++; 5587 } 5588 return 0; 5589 } 5590 5591 static int load_module_btfs(struct bpf_object *obj) 5592 { 5593 struct bpf_btf_info info; 5594 struct module_btf *mod_btf; 5595 struct btf *btf; 5596 char name[64]; 5597 __u32 id = 0, len; 5598 int err, fd; 5599 5600 if (obj->btf_modules_loaded) 5601 return 0; 5602 5603 if (obj->gen_loader) 5604 return 0; 5605 5606 /* don't do this again, even if we find no module BTFs */ 5607 obj->btf_modules_loaded = true; 5608 5609 /* kernel too old to support module BTFs */ 5610 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5611 return 0; 5612 5613 while (true) { 5614 err = bpf_btf_get_next_id(id, &id); 5615 if (err && errno == ENOENT) 5616 return 0; 5617 if (err && errno == EPERM) { 5618 pr_debug("skipping module BTFs loading, missing privileges\n"); 5619 return 0; 5620 } 5621 if (err) { 5622 err = -errno; 5623 pr_warn("failed to iterate BTF objects: %d\n", err); 5624 return err; 5625 } 5626 5627 fd = bpf_btf_get_fd_by_id(id); 5628 if (fd < 0) { 5629 if (errno == ENOENT) 5630 continue; /* expected race: BTF was unloaded */ 5631 err = -errno; 5632 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5633 return err; 5634 } 5635 5636 len = sizeof(info); 5637 memset(&info, 0, sizeof(info)); 5638 info.name = ptr_to_u64(name); 5639 info.name_len = sizeof(name); 5640 5641 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5642 if (err) { 5643 err = -errno; 5644 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5645 goto err_out; 5646 } 5647 5648 /* ignore non-module BTFs */ 5649 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5650 close(fd); 5651 continue; 5652 } 5653 5654 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5655 err = libbpf_get_error(btf); 5656 if (err) { 5657 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5658 name, id, err); 5659 goto err_out; 5660 } 5661 5662 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5663 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5664 if (err) 5665 goto err_out; 5666 5667 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5668 5669 mod_btf->btf = btf; 5670 mod_btf->id = id; 5671 mod_btf->fd = fd; 5672 mod_btf->name = strdup(name); 5673 if (!mod_btf->name) { 5674 err = -ENOMEM; 5675 goto err_out; 5676 } 5677 continue; 5678 5679 err_out: 5680 close(fd); 5681 return err; 5682 } 5683 5684 return 0; 5685 } 5686 5687 static struct bpf_core_cand_list * 5688 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5689 { 5690 struct bpf_core_cand local_cand = {}; 5691 struct bpf_core_cand_list *cands; 5692 const struct btf *main_btf; 5693 const struct btf_type *local_t; 5694 const char *local_name; 5695 size_t local_essent_len; 5696 int err, i; 5697 5698 local_cand.btf = local_btf; 5699 local_cand.id = local_type_id; 5700 local_t = btf__type_by_id(local_btf, local_type_id); 5701 if (!local_t) 5702 return ERR_PTR(-EINVAL); 5703 5704 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5705 if (str_is_empty(local_name)) 5706 return ERR_PTR(-EINVAL); 5707 local_essent_len = bpf_core_essential_name_len(local_name); 5708 5709 cands = calloc(1, sizeof(*cands)); 5710 if (!cands) 5711 return ERR_PTR(-ENOMEM); 5712 5713 /* Attempt to find target candidates in vmlinux BTF first */ 5714 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5715 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5716 if (err) 5717 goto err_out; 5718 5719 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5720 if (cands->len) 5721 return cands; 5722 5723 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5724 if (obj->btf_vmlinux_override) 5725 return cands; 5726 5727 /* now look through module BTFs, trying to still find candidates */ 5728 err = load_module_btfs(obj); 5729 if (err) 5730 goto err_out; 5731 5732 for (i = 0; i < obj->btf_module_cnt; i++) { 5733 err = bpf_core_add_cands(&local_cand, local_essent_len, 5734 obj->btf_modules[i].btf, 5735 obj->btf_modules[i].name, 5736 btf__type_cnt(obj->btf_vmlinux), 5737 cands); 5738 if (err) 5739 goto err_out; 5740 } 5741 5742 return cands; 5743 err_out: 5744 bpf_core_free_cands(cands); 5745 return ERR_PTR(err); 5746 } 5747 5748 /* Check local and target types for compatibility. This check is used for 5749 * type-based CO-RE relocations and follow slightly different rules than 5750 * field-based relocations. This function assumes that root types were already 5751 * checked for name match. Beyond that initial root-level name check, names 5752 * are completely ignored. Compatibility rules are as follows: 5753 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5754 * kind should match for local and target types (i.e., STRUCT is not 5755 * compatible with UNION); 5756 * - for ENUMs, the size is ignored; 5757 * - for INT, size and signedness are ignored; 5758 * - for ARRAY, dimensionality is ignored, element types are checked for 5759 * compatibility recursively; 5760 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5761 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5762 * - FUNC_PROTOs are compatible if they have compatible signature: same 5763 * number of input args and compatible return and argument types. 5764 * These rules are not set in stone and probably will be adjusted as we get 5765 * more experience with using BPF CO-RE relocations. 5766 */ 5767 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5768 const struct btf *targ_btf, __u32 targ_id) 5769 { 5770 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5771 } 5772 5773 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5774 const struct btf *targ_btf, __u32 targ_id) 5775 { 5776 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5777 } 5778 5779 static size_t bpf_core_hash_fn(const long key, void *ctx) 5780 { 5781 return key; 5782 } 5783 5784 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5785 { 5786 return k1 == k2; 5787 } 5788 5789 static int record_relo_core(struct bpf_program *prog, 5790 const struct bpf_core_relo *core_relo, int insn_idx) 5791 { 5792 struct reloc_desc *relos, *relo; 5793 5794 relos = libbpf_reallocarray(prog->reloc_desc, 5795 prog->nr_reloc + 1, sizeof(*relos)); 5796 if (!relos) 5797 return -ENOMEM; 5798 relo = &relos[prog->nr_reloc]; 5799 relo->type = RELO_CORE; 5800 relo->insn_idx = insn_idx; 5801 relo->core_relo = core_relo; 5802 prog->reloc_desc = relos; 5803 prog->nr_reloc++; 5804 return 0; 5805 } 5806 5807 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5808 { 5809 struct reloc_desc *relo; 5810 int i; 5811 5812 for (i = 0; i < prog->nr_reloc; i++) { 5813 relo = &prog->reloc_desc[i]; 5814 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5815 continue; 5816 5817 return relo->core_relo; 5818 } 5819 5820 return NULL; 5821 } 5822 5823 static int bpf_core_resolve_relo(struct bpf_program *prog, 5824 const struct bpf_core_relo *relo, 5825 int relo_idx, 5826 const struct btf *local_btf, 5827 struct hashmap *cand_cache, 5828 struct bpf_core_relo_res *targ_res) 5829 { 5830 struct bpf_core_spec specs_scratch[3] = {}; 5831 struct bpf_core_cand_list *cands = NULL; 5832 const char *prog_name = prog->name; 5833 const struct btf_type *local_type; 5834 const char *local_name; 5835 __u32 local_id = relo->type_id; 5836 int err; 5837 5838 local_type = btf__type_by_id(local_btf, local_id); 5839 if (!local_type) 5840 return -EINVAL; 5841 5842 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5843 if (!local_name) 5844 return -EINVAL; 5845 5846 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5847 !hashmap__find(cand_cache, local_id, &cands)) { 5848 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5849 if (IS_ERR(cands)) { 5850 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5851 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5852 local_name, PTR_ERR(cands)); 5853 return PTR_ERR(cands); 5854 } 5855 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5856 if (err) { 5857 bpf_core_free_cands(cands); 5858 return err; 5859 } 5860 } 5861 5862 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5863 targ_res); 5864 } 5865 5866 static int 5867 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5868 { 5869 const struct btf_ext_info_sec *sec; 5870 struct bpf_core_relo_res targ_res; 5871 const struct bpf_core_relo *rec; 5872 const struct btf_ext_info *seg; 5873 struct hashmap_entry *entry; 5874 struct hashmap *cand_cache = NULL; 5875 struct bpf_program *prog; 5876 struct bpf_insn *insn; 5877 const char *sec_name; 5878 int i, err = 0, insn_idx, sec_idx, sec_num; 5879 5880 if (obj->btf_ext->core_relo_info.len == 0) 5881 return 0; 5882 5883 if (targ_btf_path) { 5884 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5885 err = libbpf_get_error(obj->btf_vmlinux_override); 5886 if (err) { 5887 pr_warn("failed to parse target BTF: %d\n", err); 5888 return err; 5889 } 5890 } 5891 5892 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5893 if (IS_ERR(cand_cache)) { 5894 err = PTR_ERR(cand_cache); 5895 goto out; 5896 } 5897 5898 seg = &obj->btf_ext->core_relo_info; 5899 sec_num = 0; 5900 for_each_btf_ext_sec(seg, sec) { 5901 sec_idx = seg->sec_idxs[sec_num]; 5902 sec_num++; 5903 5904 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5905 if (str_is_empty(sec_name)) { 5906 err = -EINVAL; 5907 goto out; 5908 } 5909 5910 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5911 5912 for_each_btf_ext_rec(seg, sec, i, rec) { 5913 if (rec->insn_off % BPF_INSN_SZ) 5914 return -EINVAL; 5915 insn_idx = rec->insn_off / BPF_INSN_SZ; 5916 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5917 if (!prog) { 5918 /* When __weak subprog is "overridden" by another instance 5919 * of the subprog from a different object file, linker still 5920 * appends all the .BTF.ext info that used to belong to that 5921 * eliminated subprogram. 5922 * This is similar to what x86-64 linker does for relocations. 5923 * So just ignore such relocations just like we ignore 5924 * subprog instructions when discovering subprograms. 5925 */ 5926 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5927 sec_name, i, insn_idx); 5928 continue; 5929 } 5930 /* no need to apply CO-RE relocation if the program is 5931 * not going to be loaded 5932 */ 5933 if (!prog->autoload) 5934 continue; 5935 5936 /* adjust insn_idx from section frame of reference to the local 5937 * program's frame of reference; (sub-)program code is not yet 5938 * relocated, so it's enough to just subtract in-section offset 5939 */ 5940 insn_idx = insn_idx - prog->sec_insn_off; 5941 if (insn_idx >= prog->insns_cnt) 5942 return -EINVAL; 5943 insn = &prog->insns[insn_idx]; 5944 5945 err = record_relo_core(prog, rec, insn_idx); 5946 if (err) { 5947 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5948 prog->name, i, err); 5949 goto out; 5950 } 5951 5952 if (prog->obj->gen_loader) 5953 continue; 5954 5955 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5956 if (err) { 5957 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5958 prog->name, i, err); 5959 goto out; 5960 } 5961 5962 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5963 if (err) { 5964 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5965 prog->name, i, insn_idx, err); 5966 goto out; 5967 } 5968 } 5969 } 5970 5971 out: 5972 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5973 btf__free(obj->btf_vmlinux_override); 5974 obj->btf_vmlinux_override = NULL; 5975 5976 if (!IS_ERR_OR_NULL(cand_cache)) { 5977 hashmap__for_each_entry(cand_cache, entry, i) { 5978 bpf_core_free_cands(entry->pvalue); 5979 } 5980 hashmap__free(cand_cache); 5981 } 5982 return err; 5983 } 5984 5985 /* base map load ldimm64 special constant, used also for log fixup logic */ 5986 #define POISON_LDIMM64_MAP_BASE 2001000000 5987 #define POISON_LDIMM64_MAP_PFX "200100" 5988 5989 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5990 int insn_idx, struct bpf_insn *insn, 5991 int map_idx, const struct bpf_map *map) 5992 { 5993 int i; 5994 5995 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5996 prog->name, relo_idx, insn_idx, map_idx, map->name); 5997 5998 /* we turn single ldimm64 into two identical invalid calls */ 5999 for (i = 0; i < 2; i++) { 6000 insn->code = BPF_JMP | BPF_CALL; 6001 insn->dst_reg = 0; 6002 insn->src_reg = 0; 6003 insn->off = 0; 6004 /* if this instruction is reachable (not a dead code), 6005 * verifier will complain with something like: 6006 * invalid func unknown#2001000123 6007 * where lower 123 is map index into obj->maps[] array 6008 */ 6009 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6010 6011 insn++; 6012 } 6013 } 6014 6015 /* unresolved kfunc call special constant, used also for log fixup logic */ 6016 #define POISON_CALL_KFUNC_BASE 2002000000 6017 #define POISON_CALL_KFUNC_PFX "2002" 6018 6019 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6020 int insn_idx, struct bpf_insn *insn, 6021 int ext_idx, const struct extern_desc *ext) 6022 { 6023 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6024 prog->name, relo_idx, insn_idx, ext->name); 6025 6026 /* we turn kfunc call into invalid helper call with identifiable constant */ 6027 insn->code = BPF_JMP | BPF_CALL; 6028 insn->dst_reg = 0; 6029 insn->src_reg = 0; 6030 insn->off = 0; 6031 /* if this instruction is reachable (not a dead code), 6032 * verifier will complain with something like: 6033 * invalid func unknown#2001000123 6034 * where lower 123 is extern index into obj->externs[] array 6035 */ 6036 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6037 } 6038 6039 /* Relocate data references within program code: 6040 * - map references; 6041 * - global variable references; 6042 * - extern references. 6043 */ 6044 static int 6045 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6046 { 6047 int i; 6048 6049 for (i = 0; i < prog->nr_reloc; i++) { 6050 struct reloc_desc *relo = &prog->reloc_desc[i]; 6051 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6052 const struct bpf_map *map; 6053 struct extern_desc *ext; 6054 6055 switch (relo->type) { 6056 case RELO_LD64: 6057 map = &obj->maps[relo->map_idx]; 6058 if (obj->gen_loader) { 6059 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6060 insn[0].imm = relo->map_idx; 6061 } else if (map->autocreate) { 6062 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6063 insn[0].imm = map->fd; 6064 } else { 6065 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6066 relo->map_idx, map); 6067 } 6068 break; 6069 case RELO_DATA: 6070 map = &obj->maps[relo->map_idx]; 6071 insn[1].imm = insn[0].imm + relo->sym_off; 6072 if (obj->gen_loader) { 6073 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6074 insn[0].imm = relo->map_idx; 6075 } else if (map->autocreate) { 6076 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6077 insn[0].imm = map->fd; 6078 } else { 6079 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6080 relo->map_idx, map); 6081 } 6082 break; 6083 case RELO_EXTERN_LD64: 6084 ext = &obj->externs[relo->ext_idx]; 6085 if (ext->type == EXT_KCFG) { 6086 if (obj->gen_loader) { 6087 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6088 insn[0].imm = obj->kconfig_map_idx; 6089 } else { 6090 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6091 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6092 } 6093 insn[1].imm = ext->kcfg.data_off; 6094 } else /* EXT_KSYM */ { 6095 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6096 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6097 insn[0].imm = ext->ksym.kernel_btf_id; 6098 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6099 } else { /* typeless ksyms or unresolved typed ksyms */ 6100 insn[0].imm = (__u32)ext->ksym.addr; 6101 insn[1].imm = ext->ksym.addr >> 32; 6102 } 6103 } 6104 break; 6105 case RELO_EXTERN_CALL: 6106 ext = &obj->externs[relo->ext_idx]; 6107 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6108 if (ext->is_set) { 6109 insn[0].imm = ext->ksym.kernel_btf_id; 6110 insn[0].off = ext->ksym.btf_fd_idx; 6111 } else { /* unresolved weak kfunc call */ 6112 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6113 relo->ext_idx, ext); 6114 } 6115 break; 6116 case RELO_SUBPROG_ADDR: 6117 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6118 pr_warn("prog '%s': relo #%d: bad insn\n", 6119 prog->name, i); 6120 return -EINVAL; 6121 } 6122 /* handled already */ 6123 break; 6124 case RELO_CALL: 6125 /* handled already */ 6126 break; 6127 case RELO_CORE: 6128 /* will be handled by bpf_program_record_relos() */ 6129 break; 6130 default: 6131 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6132 prog->name, i, relo->type); 6133 return -EINVAL; 6134 } 6135 } 6136 6137 return 0; 6138 } 6139 6140 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6141 const struct bpf_program *prog, 6142 const struct btf_ext_info *ext_info, 6143 void **prog_info, __u32 *prog_rec_cnt, 6144 __u32 *prog_rec_sz) 6145 { 6146 void *copy_start = NULL, *copy_end = NULL; 6147 void *rec, *rec_end, *new_prog_info; 6148 const struct btf_ext_info_sec *sec; 6149 size_t old_sz, new_sz; 6150 int i, sec_num, sec_idx, off_adj; 6151 6152 sec_num = 0; 6153 for_each_btf_ext_sec(ext_info, sec) { 6154 sec_idx = ext_info->sec_idxs[sec_num]; 6155 sec_num++; 6156 if (prog->sec_idx != sec_idx) 6157 continue; 6158 6159 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6160 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6161 6162 if (insn_off < prog->sec_insn_off) 6163 continue; 6164 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6165 break; 6166 6167 if (!copy_start) 6168 copy_start = rec; 6169 copy_end = rec + ext_info->rec_size; 6170 } 6171 6172 if (!copy_start) 6173 return -ENOENT; 6174 6175 /* append func/line info of a given (sub-)program to the main 6176 * program func/line info 6177 */ 6178 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6179 new_sz = old_sz + (copy_end - copy_start); 6180 new_prog_info = realloc(*prog_info, new_sz); 6181 if (!new_prog_info) 6182 return -ENOMEM; 6183 *prog_info = new_prog_info; 6184 *prog_rec_cnt = new_sz / ext_info->rec_size; 6185 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6186 6187 /* Kernel instruction offsets are in units of 8-byte 6188 * instructions, while .BTF.ext instruction offsets generated 6189 * by Clang are in units of bytes. So convert Clang offsets 6190 * into kernel offsets and adjust offset according to program 6191 * relocated position. 6192 */ 6193 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6194 rec = new_prog_info + old_sz; 6195 rec_end = new_prog_info + new_sz; 6196 for (; rec < rec_end; rec += ext_info->rec_size) { 6197 __u32 *insn_off = rec; 6198 6199 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6200 } 6201 *prog_rec_sz = ext_info->rec_size; 6202 return 0; 6203 } 6204 6205 return -ENOENT; 6206 } 6207 6208 static int 6209 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6210 struct bpf_program *main_prog, 6211 const struct bpf_program *prog) 6212 { 6213 int err; 6214 6215 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6216 * supprot func/line info 6217 */ 6218 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6219 return 0; 6220 6221 /* only attempt func info relocation if main program's func_info 6222 * relocation was successful 6223 */ 6224 if (main_prog != prog && !main_prog->func_info) 6225 goto line_info; 6226 6227 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6228 &main_prog->func_info, 6229 &main_prog->func_info_cnt, 6230 &main_prog->func_info_rec_size); 6231 if (err) { 6232 if (err != -ENOENT) { 6233 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6234 prog->name, err); 6235 return err; 6236 } 6237 if (main_prog->func_info) { 6238 /* 6239 * Some info has already been found but has problem 6240 * in the last btf_ext reloc. Must have to error out. 6241 */ 6242 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6243 return err; 6244 } 6245 /* Have problem loading the very first info. Ignore the rest. */ 6246 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6247 prog->name); 6248 } 6249 6250 line_info: 6251 /* don't relocate line info if main program's relocation failed */ 6252 if (main_prog != prog && !main_prog->line_info) 6253 return 0; 6254 6255 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6256 &main_prog->line_info, 6257 &main_prog->line_info_cnt, 6258 &main_prog->line_info_rec_size); 6259 if (err) { 6260 if (err != -ENOENT) { 6261 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6262 prog->name, err); 6263 return err; 6264 } 6265 if (main_prog->line_info) { 6266 /* 6267 * Some info has already been found but has problem 6268 * in the last btf_ext reloc. Must have to error out. 6269 */ 6270 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6271 return err; 6272 } 6273 /* Have problem loading the very first info. Ignore the rest. */ 6274 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6275 prog->name); 6276 } 6277 return 0; 6278 } 6279 6280 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6281 { 6282 size_t insn_idx = *(const size_t *)key; 6283 const struct reloc_desc *relo = elem; 6284 6285 if (insn_idx == relo->insn_idx) 6286 return 0; 6287 return insn_idx < relo->insn_idx ? -1 : 1; 6288 } 6289 6290 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6291 { 6292 if (!prog->nr_reloc) 6293 return NULL; 6294 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6295 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6296 } 6297 6298 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6299 { 6300 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6301 struct reloc_desc *relos; 6302 int i; 6303 6304 if (main_prog == subprog) 6305 return 0; 6306 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6307 /* if new count is zero, reallocarray can return a valid NULL result; 6308 * in this case the previous pointer will be freed, so we *have to* 6309 * reassign old pointer to the new value (even if it's NULL) 6310 */ 6311 if (!relos && new_cnt) 6312 return -ENOMEM; 6313 if (subprog->nr_reloc) 6314 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6315 sizeof(*relos) * subprog->nr_reloc); 6316 6317 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6318 relos[i].insn_idx += subprog->sub_insn_off; 6319 /* After insn_idx adjustment the 'relos' array is still sorted 6320 * by insn_idx and doesn't break bsearch. 6321 */ 6322 main_prog->reloc_desc = relos; 6323 main_prog->nr_reloc = new_cnt; 6324 return 0; 6325 } 6326 6327 static int 6328 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6329 struct bpf_program *subprog) 6330 { 6331 struct bpf_insn *insns; 6332 size_t new_cnt; 6333 int err; 6334 6335 subprog->sub_insn_off = main_prog->insns_cnt; 6336 6337 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6338 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6339 if (!insns) { 6340 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6341 return -ENOMEM; 6342 } 6343 main_prog->insns = insns; 6344 main_prog->insns_cnt = new_cnt; 6345 6346 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6347 subprog->insns_cnt * sizeof(*insns)); 6348 6349 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6350 main_prog->name, subprog->insns_cnt, subprog->name); 6351 6352 /* The subprog insns are now appended. Append its relos too. */ 6353 err = append_subprog_relos(main_prog, subprog); 6354 if (err) 6355 return err; 6356 return 0; 6357 } 6358 6359 static int 6360 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6361 struct bpf_program *prog) 6362 { 6363 size_t sub_insn_idx, insn_idx; 6364 struct bpf_program *subprog; 6365 struct reloc_desc *relo; 6366 struct bpf_insn *insn; 6367 int err; 6368 6369 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6370 if (err) 6371 return err; 6372 6373 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6374 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6375 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6376 continue; 6377 6378 relo = find_prog_insn_relo(prog, insn_idx); 6379 if (relo && relo->type == RELO_EXTERN_CALL) 6380 /* kfunc relocations will be handled later 6381 * in bpf_object__relocate_data() 6382 */ 6383 continue; 6384 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6385 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6386 prog->name, insn_idx, relo->type); 6387 return -LIBBPF_ERRNO__RELOC; 6388 } 6389 if (relo) { 6390 /* sub-program instruction index is a combination of 6391 * an offset of a symbol pointed to by relocation and 6392 * call instruction's imm field; for global functions, 6393 * call always has imm = -1, but for static functions 6394 * relocation is against STT_SECTION and insn->imm 6395 * points to a start of a static function 6396 * 6397 * for subprog addr relocation, the relo->sym_off + insn->imm is 6398 * the byte offset in the corresponding section. 6399 */ 6400 if (relo->type == RELO_CALL) 6401 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6402 else 6403 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6404 } else if (insn_is_pseudo_func(insn)) { 6405 /* 6406 * RELO_SUBPROG_ADDR relo is always emitted even if both 6407 * functions are in the same section, so it shouldn't reach here. 6408 */ 6409 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6410 prog->name, insn_idx); 6411 return -LIBBPF_ERRNO__RELOC; 6412 } else { 6413 /* if subprogram call is to a static function within 6414 * the same ELF section, there won't be any relocation 6415 * emitted, but it also means there is no additional 6416 * offset necessary, insns->imm is relative to 6417 * instruction's original position within the section 6418 */ 6419 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6420 } 6421 6422 /* we enforce that sub-programs should be in .text section */ 6423 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6424 if (!subprog) { 6425 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6426 prog->name); 6427 return -LIBBPF_ERRNO__RELOC; 6428 } 6429 6430 /* if it's the first call instruction calling into this 6431 * subprogram (meaning this subprog hasn't been processed 6432 * yet) within the context of current main program: 6433 * - append it at the end of main program's instructions blog; 6434 * - process is recursively, while current program is put on hold; 6435 * - if that subprogram calls some other not yet processes 6436 * subprogram, same thing will happen recursively until 6437 * there are no more unprocesses subprograms left to append 6438 * and relocate. 6439 */ 6440 if (subprog->sub_insn_off == 0) { 6441 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6442 if (err) 6443 return err; 6444 err = bpf_object__reloc_code(obj, main_prog, subprog); 6445 if (err) 6446 return err; 6447 } 6448 6449 /* main_prog->insns memory could have been re-allocated, so 6450 * calculate pointer again 6451 */ 6452 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6453 /* calculate correct instruction position within current main 6454 * prog; each main prog can have a different set of 6455 * subprograms appended (potentially in different order as 6456 * well), so position of any subprog can be different for 6457 * different main programs 6458 */ 6459 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6460 6461 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6462 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6463 } 6464 6465 return 0; 6466 } 6467 6468 /* 6469 * Relocate sub-program calls. 6470 * 6471 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6472 * main prog) is processed separately. For each subprog (non-entry functions, 6473 * that can be called from either entry progs or other subprogs) gets their 6474 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6475 * hasn't been yet appended and relocated within current main prog. Once its 6476 * relocated, sub_insn_off will point at the position within current main prog 6477 * where given subprog was appended. This will further be used to relocate all 6478 * the call instructions jumping into this subprog. 6479 * 6480 * We start with main program and process all call instructions. If the call 6481 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6482 * is zero), subprog instructions are appended at the end of main program's 6483 * instruction array. Then main program is "put on hold" while we recursively 6484 * process newly appended subprogram. If that subprogram calls into another 6485 * subprogram that hasn't been appended, new subprogram is appended again to 6486 * the *main* prog's instructions (subprog's instructions are always left 6487 * untouched, as they need to be in unmodified state for subsequent main progs 6488 * and subprog instructions are always sent only as part of a main prog) and 6489 * the process continues recursively. Once all the subprogs called from a main 6490 * prog or any of its subprogs are appended (and relocated), all their 6491 * positions within finalized instructions array are known, so it's easy to 6492 * rewrite call instructions with correct relative offsets, corresponding to 6493 * desired target subprog. 6494 * 6495 * Its important to realize that some subprogs might not be called from some 6496 * main prog and any of its called/used subprogs. Those will keep their 6497 * subprog->sub_insn_off as zero at all times and won't be appended to current 6498 * main prog and won't be relocated within the context of current main prog. 6499 * They might still be used from other main progs later. 6500 * 6501 * Visually this process can be shown as below. Suppose we have two main 6502 * programs mainA and mainB and BPF object contains three subprogs: subA, 6503 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6504 * subC both call subB: 6505 * 6506 * +--------+ +-------+ 6507 * | v v | 6508 * +--+---+ +--+-+-+ +---+--+ 6509 * | subA | | subB | | subC | 6510 * +--+---+ +------+ +---+--+ 6511 * ^ ^ 6512 * | | 6513 * +---+-------+ +------+----+ 6514 * | mainA | | mainB | 6515 * +-----------+ +-----------+ 6516 * 6517 * We'll start relocating mainA, will find subA, append it and start 6518 * processing sub A recursively: 6519 * 6520 * +-----------+------+ 6521 * | mainA | subA | 6522 * +-----------+------+ 6523 * 6524 * At this point we notice that subB is used from subA, so we append it and 6525 * relocate (there are no further subcalls from subB): 6526 * 6527 * +-----------+------+------+ 6528 * | mainA | subA | subB | 6529 * +-----------+------+------+ 6530 * 6531 * At this point, we relocate subA calls, then go one level up and finish with 6532 * relocatin mainA calls. mainA is done. 6533 * 6534 * For mainB process is similar but results in different order. We start with 6535 * mainB and skip subA and subB, as mainB never calls them (at least 6536 * directly), but we see subC is needed, so we append and start processing it: 6537 * 6538 * +-----------+------+ 6539 * | mainB | subC | 6540 * +-----------+------+ 6541 * Now we see subC needs subB, so we go back to it, append and relocate it: 6542 * 6543 * +-----------+------+------+ 6544 * | mainB | subC | subB | 6545 * +-----------+------+------+ 6546 * 6547 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6548 */ 6549 static int 6550 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6551 { 6552 struct bpf_program *subprog; 6553 int i, err; 6554 6555 /* mark all subprogs as not relocated (yet) within the context of 6556 * current main program 6557 */ 6558 for (i = 0; i < obj->nr_programs; i++) { 6559 subprog = &obj->programs[i]; 6560 if (!prog_is_subprog(obj, subprog)) 6561 continue; 6562 6563 subprog->sub_insn_off = 0; 6564 } 6565 6566 err = bpf_object__reloc_code(obj, prog, prog); 6567 if (err) 6568 return err; 6569 6570 return 0; 6571 } 6572 6573 static void 6574 bpf_object__free_relocs(struct bpf_object *obj) 6575 { 6576 struct bpf_program *prog; 6577 int i; 6578 6579 /* free up relocation descriptors */ 6580 for (i = 0; i < obj->nr_programs; i++) { 6581 prog = &obj->programs[i]; 6582 zfree(&prog->reloc_desc); 6583 prog->nr_reloc = 0; 6584 } 6585 } 6586 6587 static int cmp_relocs(const void *_a, const void *_b) 6588 { 6589 const struct reloc_desc *a = _a; 6590 const struct reloc_desc *b = _b; 6591 6592 if (a->insn_idx != b->insn_idx) 6593 return a->insn_idx < b->insn_idx ? -1 : 1; 6594 6595 /* no two relocations should have the same insn_idx, but ... */ 6596 if (a->type != b->type) 6597 return a->type < b->type ? -1 : 1; 6598 6599 return 0; 6600 } 6601 6602 static void bpf_object__sort_relos(struct bpf_object *obj) 6603 { 6604 int i; 6605 6606 for (i = 0; i < obj->nr_programs; i++) { 6607 struct bpf_program *p = &obj->programs[i]; 6608 6609 if (!p->nr_reloc) 6610 continue; 6611 6612 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6613 } 6614 } 6615 6616 static int 6617 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6618 { 6619 struct bpf_program *prog; 6620 size_t i, j; 6621 int err; 6622 6623 if (obj->btf_ext) { 6624 err = bpf_object__relocate_core(obj, targ_btf_path); 6625 if (err) { 6626 pr_warn("failed to perform CO-RE relocations: %d\n", 6627 err); 6628 return err; 6629 } 6630 bpf_object__sort_relos(obj); 6631 } 6632 6633 /* Before relocating calls pre-process relocations and mark 6634 * few ld_imm64 instructions that points to subprogs. 6635 * Otherwise bpf_object__reloc_code() later would have to consider 6636 * all ld_imm64 insns as relocation candidates. That would 6637 * reduce relocation speed, since amount of find_prog_insn_relo() 6638 * would increase and most of them will fail to find a relo. 6639 */ 6640 for (i = 0; i < obj->nr_programs; i++) { 6641 prog = &obj->programs[i]; 6642 for (j = 0; j < prog->nr_reloc; j++) { 6643 struct reloc_desc *relo = &prog->reloc_desc[j]; 6644 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6645 6646 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6647 if (relo->type == RELO_SUBPROG_ADDR) 6648 insn[0].src_reg = BPF_PSEUDO_FUNC; 6649 } 6650 } 6651 6652 /* relocate subprogram calls and append used subprograms to main 6653 * programs; each copy of subprogram code needs to be relocated 6654 * differently for each main program, because its code location might 6655 * have changed. 6656 * Append subprog relos to main programs to allow data relos to be 6657 * processed after text is completely relocated. 6658 */ 6659 for (i = 0; i < obj->nr_programs; i++) { 6660 prog = &obj->programs[i]; 6661 /* sub-program's sub-calls are relocated within the context of 6662 * its main program only 6663 */ 6664 if (prog_is_subprog(obj, prog)) 6665 continue; 6666 if (!prog->autoload) 6667 continue; 6668 6669 err = bpf_object__relocate_calls(obj, prog); 6670 if (err) { 6671 pr_warn("prog '%s': failed to relocate calls: %d\n", 6672 prog->name, err); 6673 return err; 6674 } 6675 6676 /* Now, also append exception callback if it has not been done already. */ 6677 if (prog->exception_cb_idx >= 0) { 6678 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6679 6680 /* Calling exception callback directly is disallowed, which the 6681 * verifier will reject later. In case it was processed already, 6682 * we can skip this step, otherwise for all other valid cases we 6683 * have to append exception callback now. 6684 */ 6685 if (subprog->sub_insn_off == 0) { 6686 err = bpf_object__append_subprog_code(obj, prog, subprog); 6687 if (err) 6688 return err; 6689 err = bpf_object__reloc_code(obj, prog, subprog); 6690 if (err) 6691 return err; 6692 } 6693 } 6694 } 6695 /* Process data relos for main programs */ 6696 for (i = 0; i < obj->nr_programs; i++) { 6697 prog = &obj->programs[i]; 6698 if (prog_is_subprog(obj, prog)) 6699 continue; 6700 if (!prog->autoload) 6701 continue; 6702 err = bpf_object__relocate_data(obj, prog); 6703 if (err) { 6704 pr_warn("prog '%s': failed to relocate data references: %d\n", 6705 prog->name, err); 6706 return err; 6707 } 6708 } 6709 6710 return 0; 6711 } 6712 6713 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6714 Elf64_Shdr *shdr, Elf_Data *data); 6715 6716 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6717 Elf64_Shdr *shdr, Elf_Data *data) 6718 { 6719 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6720 int i, j, nrels, new_sz; 6721 const struct btf_var_secinfo *vi = NULL; 6722 const struct btf_type *sec, *var, *def; 6723 struct bpf_map *map = NULL, *targ_map = NULL; 6724 struct bpf_program *targ_prog = NULL; 6725 bool is_prog_array, is_map_in_map; 6726 const struct btf_member *member; 6727 const char *name, *mname, *type; 6728 unsigned int moff; 6729 Elf64_Sym *sym; 6730 Elf64_Rel *rel; 6731 void *tmp; 6732 6733 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6734 return -EINVAL; 6735 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6736 if (!sec) 6737 return -EINVAL; 6738 6739 nrels = shdr->sh_size / shdr->sh_entsize; 6740 for (i = 0; i < nrels; i++) { 6741 rel = elf_rel_by_idx(data, i); 6742 if (!rel) { 6743 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6744 return -LIBBPF_ERRNO__FORMAT; 6745 } 6746 6747 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6748 if (!sym) { 6749 pr_warn(".maps relo #%d: symbol %zx not found\n", 6750 i, (size_t)ELF64_R_SYM(rel->r_info)); 6751 return -LIBBPF_ERRNO__FORMAT; 6752 } 6753 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6754 6755 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6756 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6757 (size_t)rel->r_offset, sym->st_name, name); 6758 6759 for (j = 0; j < obj->nr_maps; j++) { 6760 map = &obj->maps[j]; 6761 if (map->sec_idx != obj->efile.btf_maps_shndx) 6762 continue; 6763 6764 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6765 if (vi->offset <= rel->r_offset && 6766 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6767 break; 6768 } 6769 if (j == obj->nr_maps) { 6770 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6771 i, name, (size_t)rel->r_offset); 6772 return -EINVAL; 6773 } 6774 6775 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6776 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6777 type = is_map_in_map ? "map" : "prog"; 6778 if (is_map_in_map) { 6779 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6780 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6781 i, name); 6782 return -LIBBPF_ERRNO__RELOC; 6783 } 6784 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6785 map->def.key_size != sizeof(int)) { 6786 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6787 i, map->name, sizeof(int)); 6788 return -EINVAL; 6789 } 6790 targ_map = bpf_object__find_map_by_name(obj, name); 6791 if (!targ_map) { 6792 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6793 i, name); 6794 return -ESRCH; 6795 } 6796 } else if (is_prog_array) { 6797 targ_prog = bpf_object__find_program_by_name(obj, name); 6798 if (!targ_prog) { 6799 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6800 i, name); 6801 return -ESRCH; 6802 } 6803 if (targ_prog->sec_idx != sym->st_shndx || 6804 targ_prog->sec_insn_off * 8 != sym->st_value || 6805 prog_is_subprog(obj, targ_prog)) { 6806 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6807 i, name); 6808 return -LIBBPF_ERRNO__RELOC; 6809 } 6810 } else { 6811 return -EINVAL; 6812 } 6813 6814 var = btf__type_by_id(obj->btf, vi->type); 6815 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6816 if (btf_vlen(def) == 0) 6817 return -EINVAL; 6818 member = btf_members(def) + btf_vlen(def) - 1; 6819 mname = btf__name_by_offset(obj->btf, member->name_off); 6820 if (strcmp(mname, "values")) 6821 return -EINVAL; 6822 6823 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6824 if (rel->r_offset - vi->offset < moff) 6825 return -EINVAL; 6826 6827 moff = rel->r_offset - vi->offset - moff; 6828 /* here we use BPF pointer size, which is always 64 bit, as we 6829 * are parsing ELF that was built for BPF target 6830 */ 6831 if (moff % bpf_ptr_sz) 6832 return -EINVAL; 6833 moff /= bpf_ptr_sz; 6834 if (moff >= map->init_slots_sz) { 6835 new_sz = moff + 1; 6836 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6837 if (!tmp) 6838 return -ENOMEM; 6839 map->init_slots = tmp; 6840 memset(map->init_slots + map->init_slots_sz, 0, 6841 (new_sz - map->init_slots_sz) * host_ptr_sz); 6842 map->init_slots_sz = new_sz; 6843 } 6844 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6845 6846 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6847 i, map->name, moff, type, name); 6848 } 6849 6850 return 0; 6851 } 6852 6853 static int bpf_object__collect_relos(struct bpf_object *obj) 6854 { 6855 int i, err; 6856 6857 for (i = 0; i < obj->efile.sec_cnt; i++) { 6858 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6859 Elf64_Shdr *shdr; 6860 Elf_Data *data; 6861 int idx; 6862 6863 if (sec_desc->sec_type != SEC_RELO) 6864 continue; 6865 6866 shdr = sec_desc->shdr; 6867 data = sec_desc->data; 6868 idx = shdr->sh_info; 6869 6870 if (shdr->sh_type != SHT_REL) { 6871 pr_warn("internal error at %d\n", __LINE__); 6872 return -LIBBPF_ERRNO__INTERNAL; 6873 } 6874 6875 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6876 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6877 else if (idx == obj->efile.btf_maps_shndx) 6878 err = bpf_object__collect_map_relos(obj, shdr, data); 6879 else 6880 err = bpf_object__collect_prog_relos(obj, shdr, data); 6881 if (err) 6882 return err; 6883 } 6884 6885 bpf_object__sort_relos(obj); 6886 return 0; 6887 } 6888 6889 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6890 { 6891 if (BPF_CLASS(insn->code) == BPF_JMP && 6892 BPF_OP(insn->code) == BPF_CALL && 6893 BPF_SRC(insn->code) == BPF_K && 6894 insn->src_reg == 0 && 6895 insn->dst_reg == 0) { 6896 *func_id = insn->imm; 6897 return true; 6898 } 6899 return false; 6900 } 6901 6902 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6903 { 6904 struct bpf_insn *insn = prog->insns; 6905 enum bpf_func_id func_id; 6906 int i; 6907 6908 if (obj->gen_loader) 6909 return 0; 6910 6911 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6912 if (!insn_is_helper_call(insn, &func_id)) 6913 continue; 6914 6915 /* on kernels that don't yet support 6916 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6917 * to bpf_probe_read() which works well for old kernels 6918 */ 6919 switch (func_id) { 6920 case BPF_FUNC_probe_read_kernel: 6921 case BPF_FUNC_probe_read_user: 6922 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6923 insn->imm = BPF_FUNC_probe_read; 6924 break; 6925 case BPF_FUNC_probe_read_kernel_str: 6926 case BPF_FUNC_probe_read_user_str: 6927 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6928 insn->imm = BPF_FUNC_probe_read_str; 6929 break; 6930 default: 6931 break; 6932 } 6933 } 6934 return 0; 6935 } 6936 6937 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6938 int *btf_obj_fd, int *btf_type_id); 6939 6940 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6941 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6942 struct bpf_prog_load_opts *opts, long cookie) 6943 { 6944 enum sec_def_flags def = cookie; 6945 6946 /* old kernels might not support specifying expected_attach_type */ 6947 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6948 opts->expected_attach_type = 0; 6949 6950 if (def & SEC_SLEEPABLE) 6951 opts->prog_flags |= BPF_F_SLEEPABLE; 6952 6953 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6954 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6955 6956 /* special check for usdt to use uprobe_multi link */ 6957 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6958 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6959 6960 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6961 int btf_obj_fd = 0, btf_type_id = 0, err; 6962 const char *attach_name; 6963 6964 attach_name = strchr(prog->sec_name, '/'); 6965 if (!attach_name) { 6966 /* if BPF program is annotated with just SEC("fentry") 6967 * (or similar) without declaratively specifying 6968 * target, then it is expected that target will be 6969 * specified with bpf_program__set_attach_target() at 6970 * runtime before BPF object load step. If not, then 6971 * there is nothing to load into the kernel as BPF 6972 * verifier won't be able to validate BPF program 6973 * correctness anyways. 6974 */ 6975 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6976 prog->name); 6977 return -EINVAL; 6978 } 6979 attach_name++; /* skip over / */ 6980 6981 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6982 if (err) 6983 return err; 6984 6985 /* cache resolved BTF FD and BTF type ID in the prog */ 6986 prog->attach_btf_obj_fd = btf_obj_fd; 6987 prog->attach_btf_id = btf_type_id; 6988 6989 /* but by now libbpf common logic is not utilizing 6990 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6991 * this callback is called after opts were populated by 6992 * libbpf, so this callback has to update opts explicitly here 6993 */ 6994 opts->attach_btf_obj_fd = btf_obj_fd; 6995 opts->attach_btf_id = btf_type_id; 6996 } 6997 return 0; 6998 } 6999 7000 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7001 7002 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7003 struct bpf_insn *insns, int insns_cnt, 7004 const char *license, __u32 kern_version, int *prog_fd) 7005 { 7006 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7007 const char *prog_name = NULL; 7008 char *cp, errmsg[STRERR_BUFSIZE]; 7009 size_t log_buf_size = 0; 7010 char *log_buf = NULL, *tmp; 7011 int btf_fd, ret, err; 7012 bool own_log_buf = true; 7013 __u32 log_level = prog->log_level; 7014 7015 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7016 /* 7017 * The program type must be set. Most likely we couldn't find a proper 7018 * section definition at load time, and thus we didn't infer the type. 7019 */ 7020 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7021 prog->name, prog->sec_name); 7022 return -EINVAL; 7023 } 7024 7025 if (!insns || !insns_cnt) 7026 return -EINVAL; 7027 7028 if (kernel_supports(obj, FEAT_PROG_NAME)) 7029 prog_name = prog->name; 7030 load_attr.attach_prog_fd = prog->attach_prog_fd; 7031 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7032 load_attr.attach_btf_id = prog->attach_btf_id; 7033 load_attr.kern_version = kern_version; 7034 load_attr.prog_ifindex = prog->prog_ifindex; 7035 7036 /* specify func_info/line_info only if kernel supports them */ 7037 btf_fd = bpf_object__btf_fd(obj); 7038 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7039 load_attr.prog_btf_fd = btf_fd; 7040 load_attr.func_info = prog->func_info; 7041 load_attr.func_info_rec_size = prog->func_info_rec_size; 7042 load_attr.func_info_cnt = prog->func_info_cnt; 7043 load_attr.line_info = prog->line_info; 7044 load_attr.line_info_rec_size = prog->line_info_rec_size; 7045 load_attr.line_info_cnt = prog->line_info_cnt; 7046 } 7047 load_attr.log_level = log_level; 7048 load_attr.prog_flags = prog->prog_flags; 7049 load_attr.fd_array = obj->fd_array; 7050 7051 /* adjust load_attr if sec_def provides custom preload callback */ 7052 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7053 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7054 if (err < 0) { 7055 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7056 prog->name, err); 7057 return err; 7058 } 7059 insns = prog->insns; 7060 insns_cnt = prog->insns_cnt; 7061 } 7062 7063 /* allow prog_prepare_load_fn to change expected_attach_type */ 7064 load_attr.expected_attach_type = prog->expected_attach_type; 7065 7066 if (obj->gen_loader) { 7067 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7068 license, insns, insns_cnt, &load_attr, 7069 prog - obj->programs); 7070 *prog_fd = -1; 7071 return 0; 7072 } 7073 7074 retry_load: 7075 /* if log_level is zero, we don't request logs initially even if 7076 * custom log_buf is specified; if the program load fails, then we'll 7077 * bump log_level to 1 and use either custom log_buf or we'll allocate 7078 * our own and retry the load to get details on what failed 7079 */ 7080 if (log_level) { 7081 if (prog->log_buf) { 7082 log_buf = prog->log_buf; 7083 log_buf_size = prog->log_size; 7084 own_log_buf = false; 7085 } else if (obj->log_buf) { 7086 log_buf = obj->log_buf; 7087 log_buf_size = obj->log_size; 7088 own_log_buf = false; 7089 } else { 7090 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7091 tmp = realloc(log_buf, log_buf_size); 7092 if (!tmp) { 7093 ret = -ENOMEM; 7094 goto out; 7095 } 7096 log_buf = tmp; 7097 log_buf[0] = '\0'; 7098 own_log_buf = true; 7099 } 7100 } 7101 7102 load_attr.log_buf = log_buf; 7103 load_attr.log_size = log_buf_size; 7104 load_attr.log_level = log_level; 7105 7106 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7107 if (ret >= 0) { 7108 if (log_level && own_log_buf) { 7109 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7110 prog->name, log_buf); 7111 } 7112 7113 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7114 struct bpf_map *map; 7115 int i; 7116 7117 for (i = 0; i < obj->nr_maps; i++) { 7118 map = &prog->obj->maps[i]; 7119 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7120 continue; 7121 7122 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7123 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7124 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7125 prog->name, map->real_name, cp); 7126 /* Don't fail hard if can't bind rodata. */ 7127 } 7128 } 7129 } 7130 7131 *prog_fd = ret; 7132 ret = 0; 7133 goto out; 7134 } 7135 7136 if (log_level == 0) { 7137 log_level = 1; 7138 goto retry_load; 7139 } 7140 /* On ENOSPC, increase log buffer size and retry, unless custom 7141 * log_buf is specified. 7142 * Be careful to not overflow u32, though. Kernel's log buf size limit 7143 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7144 * multiply by 2 unless we are sure we'll fit within 32 bits. 7145 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7146 */ 7147 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7148 goto retry_load; 7149 7150 ret = -errno; 7151 7152 /* post-process verifier log to improve error descriptions */ 7153 fixup_verifier_log(prog, log_buf, log_buf_size); 7154 7155 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7156 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7157 pr_perm_msg(ret); 7158 7159 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7160 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7161 prog->name, log_buf); 7162 } 7163 7164 out: 7165 if (own_log_buf) 7166 free(log_buf); 7167 return ret; 7168 } 7169 7170 static char *find_prev_line(char *buf, char *cur) 7171 { 7172 char *p; 7173 7174 if (cur == buf) /* end of a log buf */ 7175 return NULL; 7176 7177 p = cur - 1; 7178 while (p - 1 >= buf && *(p - 1) != '\n') 7179 p--; 7180 7181 return p; 7182 } 7183 7184 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7185 char *orig, size_t orig_sz, const char *patch) 7186 { 7187 /* size of the remaining log content to the right from the to-be-replaced part */ 7188 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7189 size_t patch_sz = strlen(patch); 7190 7191 if (patch_sz != orig_sz) { 7192 /* If patch line(s) are longer than original piece of verifier log, 7193 * shift log contents by (patch_sz - orig_sz) bytes to the right 7194 * starting from after to-be-replaced part of the log. 7195 * 7196 * If patch line(s) are shorter than original piece of verifier log, 7197 * shift log contents by (orig_sz - patch_sz) bytes to the left 7198 * starting from after to-be-replaced part of the log 7199 * 7200 * We need to be careful about not overflowing available 7201 * buf_sz capacity. If that's the case, we'll truncate the end 7202 * of the original log, as necessary. 7203 */ 7204 if (patch_sz > orig_sz) { 7205 if (orig + patch_sz >= buf + buf_sz) { 7206 /* patch is big enough to cover remaining space completely */ 7207 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7208 rem_sz = 0; 7209 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7210 /* patch causes part of remaining log to be truncated */ 7211 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7212 } 7213 } 7214 /* shift remaining log to the right by calculated amount */ 7215 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7216 } 7217 7218 memcpy(orig, patch, patch_sz); 7219 } 7220 7221 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7222 char *buf, size_t buf_sz, size_t log_sz, 7223 char *line1, char *line2, char *line3) 7224 { 7225 /* Expected log for failed and not properly guarded CO-RE relocation: 7226 * line1 -> 123: (85) call unknown#195896080 7227 * line2 -> invalid func unknown#195896080 7228 * line3 -> <anything else or end of buffer> 7229 * 7230 * "123" is the index of the instruction that was poisoned. We extract 7231 * instruction index to find corresponding CO-RE relocation and 7232 * replace this part of the log with more relevant information about 7233 * failed CO-RE relocation. 7234 */ 7235 const struct bpf_core_relo *relo; 7236 struct bpf_core_spec spec; 7237 char patch[512], spec_buf[256]; 7238 int insn_idx, err, spec_len; 7239 7240 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7241 return; 7242 7243 relo = find_relo_core(prog, insn_idx); 7244 if (!relo) 7245 return; 7246 7247 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7248 if (err) 7249 return; 7250 7251 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7252 snprintf(patch, sizeof(patch), 7253 "%d: <invalid CO-RE relocation>\n" 7254 "failed to resolve CO-RE relocation %s%s\n", 7255 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7256 7257 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7258 } 7259 7260 static void fixup_log_missing_map_load(struct bpf_program *prog, 7261 char *buf, size_t buf_sz, size_t log_sz, 7262 char *line1, char *line2, char *line3) 7263 { 7264 /* Expected log for failed and not properly guarded map reference: 7265 * line1 -> 123: (85) call unknown#2001000345 7266 * line2 -> invalid func unknown#2001000345 7267 * line3 -> <anything else or end of buffer> 7268 * 7269 * "123" is the index of the instruction that was poisoned. 7270 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7271 */ 7272 struct bpf_object *obj = prog->obj; 7273 const struct bpf_map *map; 7274 int insn_idx, map_idx; 7275 char patch[128]; 7276 7277 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7278 return; 7279 7280 map_idx -= POISON_LDIMM64_MAP_BASE; 7281 if (map_idx < 0 || map_idx >= obj->nr_maps) 7282 return; 7283 map = &obj->maps[map_idx]; 7284 7285 snprintf(patch, sizeof(patch), 7286 "%d: <invalid BPF map reference>\n" 7287 "BPF map '%s' is referenced but wasn't created\n", 7288 insn_idx, map->name); 7289 7290 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7291 } 7292 7293 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7294 char *buf, size_t buf_sz, size_t log_sz, 7295 char *line1, char *line2, char *line3) 7296 { 7297 /* Expected log for failed and not properly guarded kfunc call: 7298 * line1 -> 123: (85) call unknown#2002000345 7299 * line2 -> invalid func unknown#2002000345 7300 * line3 -> <anything else or end of buffer> 7301 * 7302 * "123" is the index of the instruction that was poisoned. 7303 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7304 */ 7305 struct bpf_object *obj = prog->obj; 7306 const struct extern_desc *ext; 7307 int insn_idx, ext_idx; 7308 char patch[128]; 7309 7310 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7311 return; 7312 7313 ext_idx -= POISON_CALL_KFUNC_BASE; 7314 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7315 return; 7316 ext = &obj->externs[ext_idx]; 7317 7318 snprintf(patch, sizeof(patch), 7319 "%d: <invalid kfunc call>\n" 7320 "kfunc '%s' is referenced but wasn't resolved\n", 7321 insn_idx, ext->name); 7322 7323 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7324 } 7325 7326 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7327 { 7328 /* look for familiar error patterns in last N lines of the log */ 7329 const size_t max_last_line_cnt = 10; 7330 char *prev_line, *cur_line, *next_line; 7331 size_t log_sz; 7332 int i; 7333 7334 if (!buf) 7335 return; 7336 7337 log_sz = strlen(buf) + 1; 7338 next_line = buf + log_sz - 1; 7339 7340 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7341 cur_line = find_prev_line(buf, next_line); 7342 if (!cur_line) 7343 return; 7344 7345 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7346 prev_line = find_prev_line(buf, cur_line); 7347 if (!prev_line) 7348 continue; 7349 7350 /* failed CO-RE relocation case */ 7351 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7352 prev_line, cur_line, next_line); 7353 return; 7354 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7355 prev_line = find_prev_line(buf, cur_line); 7356 if (!prev_line) 7357 continue; 7358 7359 /* reference to uncreated BPF map */ 7360 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7361 prev_line, cur_line, next_line); 7362 return; 7363 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7364 prev_line = find_prev_line(buf, cur_line); 7365 if (!prev_line) 7366 continue; 7367 7368 /* reference to unresolved kfunc */ 7369 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7370 prev_line, cur_line, next_line); 7371 return; 7372 } 7373 } 7374 } 7375 7376 static int bpf_program_record_relos(struct bpf_program *prog) 7377 { 7378 struct bpf_object *obj = prog->obj; 7379 int i; 7380 7381 for (i = 0; i < prog->nr_reloc; i++) { 7382 struct reloc_desc *relo = &prog->reloc_desc[i]; 7383 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7384 int kind; 7385 7386 switch (relo->type) { 7387 case RELO_EXTERN_LD64: 7388 if (ext->type != EXT_KSYM) 7389 continue; 7390 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7391 BTF_KIND_VAR : BTF_KIND_FUNC; 7392 bpf_gen__record_extern(obj->gen_loader, ext->name, 7393 ext->is_weak, !ext->ksym.type_id, 7394 true, kind, relo->insn_idx); 7395 break; 7396 case RELO_EXTERN_CALL: 7397 bpf_gen__record_extern(obj->gen_loader, ext->name, 7398 ext->is_weak, false, false, BTF_KIND_FUNC, 7399 relo->insn_idx); 7400 break; 7401 case RELO_CORE: { 7402 struct bpf_core_relo cr = { 7403 .insn_off = relo->insn_idx * 8, 7404 .type_id = relo->core_relo->type_id, 7405 .access_str_off = relo->core_relo->access_str_off, 7406 .kind = relo->core_relo->kind, 7407 }; 7408 7409 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7410 break; 7411 } 7412 default: 7413 continue; 7414 } 7415 } 7416 return 0; 7417 } 7418 7419 static int 7420 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7421 { 7422 struct bpf_program *prog; 7423 size_t i; 7424 int err; 7425 7426 for (i = 0; i < obj->nr_programs; i++) { 7427 prog = &obj->programs[i]; 7428 err = bpf_object__sanitize_prog(obj, prog); 7429 if (err) 7430 return err; 7431 } 7432 7433 for (i = 0; i < obj->nr_programs; i++) { 7434 prog = &obj->programs[i]; 7435 if (prog_is_subprog(obj, prog)) 7436 continue; 7437 if (!prog->autoload) { 7438 pr_debug("prog '%s': skipped loading\n", prog->name); 7439 continue; 7440 } 7441 prog->log_level |= log_level; 7442 7443 if (obj->gen_loader) 7444 bpf_program_record_relos(prog); 7445 7446 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7447 obj->license, obj->kern_version, &prog->fd); 7448 if (err) { 7449 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7450 return err; 7451 } 7452 } 7453 7454 bpf_object__free_relocs(obj); 7455 return 0; 7456 } 7457 7458 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7459 7460 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7461 { 7462 struct bpf_program *prog; 7463 int err; 7464 7465 bpf_object__for_each_program(prog, obj) { 7466 prog->sec_def = find_sec_def(prog->sec_name); 7467 if (!prog->sec_def) { 7468 /* couldn't guess, but user might manually specify */ 7469 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7470 prog->name, prog->sec_name); 7471 continue; 7472 } 7473 7474 prog->type = prog->sec_def->prog_type; 7475 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7476 7477 /* sec_def can have custom callback which should be called 7478 * after bpf_program is initialized to adjust its properties 7479 */ 7480 if (prog->sec_def->prog_setup_fn) { 7481 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7482 if (err < 0) { 7483 pr_warn("prog '%s': failed to initialize: %d\n", 7484 prog->name, err); 7485 return err; 7486 } 7487 } 7488 } 7489 7490 return 0; 7491 } 7492 7493 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7494 const struct bpf_object_open_opts *opts) 7495 { 7496 const char *obj_name, *kconfig, *btf_tmp_path; 7497 struct bpf_object *obj; 7498 char tmp_name[64]; 7499 int err; 7500 char *log_buf; 7501 size_t log_size; 7502 __u32 log_level; 7503 7504 if (elf_version(EV_CURRENT) == EV_NONE) { 7505 pr_warn("failed to init libelf for %s\n", 7506 path ? : "(mem buf)"); 7507 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7508 } 7509 7510 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7511 return ERR_PTR(-EINVAL); 7512 7513 obj_name = OPTS_GET(opts, object_name, NULL); 7514 if (obj_buf) { 7515 if (!obj_name) { 7516 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7517 (unsigned long)obj_buf, 7518 (unsigned long)obj_buf_sz); 7519 obj_name = tmp_name; 7520 } 7521 path = obj_name; 7522 pr_debug("loading object '%s' from buffer\n", obj_name); 7523 } 7524 7525 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7526 log_size = OPTS_GET(opts, kernel_log_size, 0); 7527 log_level = OPTS_GET(opts, kernel_log_level, 0); 7528 if (log_size > UINT_MAX) 7529 return ERR_PTR(-EINVAL); 7530 if (log_size && !log_buf) 7531 return ERR_PTR(-EINVAL); 7532 7533 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7534 if (IS_ERR(obj)) 7535 return obj; 7536 7537 obj->log_buf = log_buf; 7538 obj->log_size = log_size; 7539 obj->log_level = log_level; 7540 7541 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7542 if (btf_tmp_path) { 7543 if (strlen(btf_tmp_path) >= PATH_MAX) { 7544 err = -ENAMETOOLONG; 7545 goto out; 7546 } 7547 obj->btf_custom_path = strdup(btf_tmp_path); 7548 if (!obj->btf_custom_path) { 7549 err = -ENOMEM; 7550 goto out; 7551 } 7552 } 7553 7554 kconfig = OPTS_GET(opts, kconfig, NULL); 7555 if (kconfig) { 7556 obj->kconfig = strdup(kconfig); 7557 if (!obj->kconfig) { 7558 err = -ENOMEM; 7559 goto out; 7560 } 7561 } 7562 7563 err = bpf_object__elf_init(obj); 7564 err = err ? : bpf_object__check_endianness(obj); 7565 err = err ? : bpf_object__elf_collect(obj); 7566 err = err ? : bpf_object__collect_externs(obj); 7567 err = err ? : bpf_object_fixup_btf(obj); 7568 err = err ? : bpf_object__init_maps(obj, opts); 7569 err = err ? : bpf_object_init_progs(obj, opts); 7570 err = err ? : bpf_object__collect_relos(obj); 7571 if (err) 7572 goto out; 7573 7574 bpf_object__elf_finish(obj); 7575 7576 return obj; 7577 out: 7578 bpf_object__close(obj); 7579 return ERR_PTR(err); 7580 } 7581 7582 struct bpf_object * 7583 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7584 { 7585 if (!path) 7586 return libbpf_err_ptr(-EINVAL); 7587 7588 pr_debug("loading %s\n", path); 7589 7590 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7591 } 7592 7593 struct bpf_object *bpf_object__open(const char *path) 7594 { 7595 return bpf_object__open_file(path, NULL); 7596 } 7597 7598 struct bpf_object * 7599 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7600 const struct bpf_object_open_opts *opts) 7601 { 7602 if (!obj_buf || obj_buf_sz == 0) 7603 return libbpf_err_ptr(-EINVAL); 7604 7605 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7606 } 7607 7608 static int bpf_object_unload(struct bpf_object *obj) 7609 { 7610 size_t i; 7611 7612 if (!obj) 7613 return libbpf_err(-EINVAL); 7614 7615 for (i = 0; i < obj->nr_maps; i++) { 7616 zclose(obj->maps[i].fd); 7617 if (obj->maps[i].st_ops) 7618 zfree(&obj->maps[i].st_ops->kern_vdata); 7619 } 7620 7621 for (i = 0; i < obj->nr_programs; i++) 7622 bpf_program__unload(&obj->programs[i]); 7623 7624 return 0; 7625 } 7626 7627 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7628 { 7629 struct bpf_map *m; 7630 7631 bpf_object__for_each_map(m, obj) { 7632 if (!bpf_map__is_internal(m)) 7633 continue; 7634 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7635 m->def.map_flags &= ~BPF_F_MMAPABLE; 7636 } 7637 7638 return 0; 7639 } 7640 7641 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7642 { 7643 char sym_type, sym_name[500]; 7644 unsigned long long sym_addr; 7645 int ret, err = 0; 7646 FILE *f; 7647 7648 f = fopen("/proc/kallsyms", "re"); 7649 if (!f) { 7650 err = -errno; 7651 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7652 return err; 7653 } 7654 7655 while (true) { 7656 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7657 &sym_addr, &sym_type, sym_name); 7658 if (ret == EOF && feof(f)) 7659 break; 7660 if (ret != 3) { 7661 pr_warn("failed to read kallsyms entry: %d\n", ret); 7662 err = -EINVAL; 7663 break; 7664 } 7665 7666 err = cb(sym_addr, sym_type, sym_name, ctx); 7667 if (err) 7668 break; 7669 } 7670 7671 fclose(f); 7672 return err; 7673 } 7674 7675 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7676 const char *sym_name, void *ctx) 7677 { 7678 struct bpf_object *obj = ctx; 7679 const struct btf_type *t; 7680 struct extern_desc *ext; 7681 7682 ext = find_extern_by_name(obj, sym_name); 7683 if (!ext || ext->type != EXT_KSYM) 7684 return 0; 7685 7686 t = btf__type_by_id(obj->btf, ext->btf_id); 7687 if (!btf_is_var(t)) 7688 return 0; 7689 7690 if (ext->is_set && ext->ksym.addr != sym_addr) { 7691 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7692 sym_name, ext->ksym.addr, sym_addr); 7693 return -EINVAL; 7694 } 7695 if (!ext->is_set) { 7696 ext->is_set = true; 7697 ext->ksym.addr = sym_addr; 7698 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7699 } 7700 return 0; 7701 } 7702 7703 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7704 { 7705 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7706 } 7707 7708 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7709 __u16 kind, struct btf **res_btf, 7710 struct module_btf **res_mod_btf) 7711 { 7712 struct module_btf *mod_btf; 7713 struct btf *btf; 7714 int i, id, err; 7715 7716 btf = obj->btf_vmlinux; 7717 mod_btf = NULL; 7718 id = btf__find_by_name_kind(btf, ksym_name, kind); 7719 7720 if (id == -ENOENT) { 7721 err = load_module_btfs(obj); 7722 if (err) 7723 return err; 7724 7725 for (i = 0; i < obj->btf_module_cnt; i++) { 7726 /* we assume module_btf's BTF FD is always >0 */ 7727 mod_btf = &obj->btf_modules[i]; 7728 btf = mod_btf->btf; 7729 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7730 if (id != -ENOENT) 7731 break; 7732 } 7733 } 7734 if (id <= 0) 7735 return -ESRCH; 7736 7737 *res_btf = btf; 7738 *res_mod_btf = mod_btf; 7739 return id; 7740 } 7741 7742 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7743 struct extern_desc *ext) 7744 { 7745 const struct btf_type *targ_var, *targ_type; 7746 __u32 targ_type_id, local_type_id; 7747 struct module_btf *mod_btf = NULL; 7748 const char *targ_var_name; 7749 struct btf *btf = NULL; 7750 int id, err; 7751 7752 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7753 if (id < 0) { 7754 if (id == -ESRCH && ext->is_weak) 7755 return 0; 7756 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7757 ext->name); 7758 return id; 7759 } 7760 7761 /* find local type_id */ 7762 local_type_id = ext->ksym.type_id; 7763 7764 /* find target type_id */ 7765 targ_var = btf__type_by_id(btf, id); 7766 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7767 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7768 7769 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7770 btf, targ_type_id); 7771 if (err <= 0) { 7772 const struct btf_type *local_type; 7773 const char *targ_name, *local_name; 7774 7775 local_type = btf__type_by_id(obj->btf, local_type_id); 7776 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7777 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7778 7779 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7780 ext->name, local_type_id, 7781 btf_kind_str(local_type), local_name, targ_type_id, 7782 btf_kind_str(targ_type), targ_name); 7783 return -EINVAL; 7784 } 7785 7786 ext->is_set = true; 7787 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7788 ext->ksym.kernel_btf_id = id; 7789 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7790 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7791 7792 return 0; 7793 } 7794 7795 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7796 struct extern_desc *ext) 7797 { 7798 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7799 struct module_btf *mod_btf = NULL; 7800 const struct btf_type *kern_func; 7801 struct btf *kern_btf = NULL; 7802 int ret; 7803 7804 local_func_proto_id = ext->ksym.type_id; 7805 7806 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7807 &mod_btf); 7808 if (kfunc_id < 0) { 7809 if (kfunc_id == -ESRCH && ext->is_weak) 7810 return 0; 7811 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7812 ext->name); 7813 return kfunc_id; 7814 } 7815 7816 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7817 kfunc_proto_id = kern_func->type; 7818 7819 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7820 kern_btf, kfunc_proto_id); 7821 if (ret <= 0) { 7822 if (ext->is_weak) 7823 return 0; 7824 7825 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7826 ext->name, local_func_proto_id, 7827 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7828 return -EINVAL; 7829 } 7830 7831 /* set index for module BTF fd in fd_array, if unset */ 7832 if (mod_btf && !mod_btf->fd_array_idx) { 7833 /* insn->off is s16 */ 7834 if (obj->fd_array_cnt == INT16_MAX) { 7835 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7836 ext->name, mod_btf->fd_array_idx); 7837 return -E2BIG; 7838 } 7839 /* Cannot use index 0 for module BTF fd */ 7840 if (!obj->fd_array_cnt) 7841 obj->fd_array_cnt = 1; 7842 7843 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7844 obj->fd_array_cnt + 1); 7845 if (ret) 7846 return ret; 7847 mod_btf->fd_array_idx = obj->fd_array_cnt; 7848 /* we assume module BTF FD is always >0 */ 7849 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7850 } 7851 7852 ext->is_set = true; 7853 ext->ksym.kernel_btf_id = kfunc_id; 7854 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7855 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7856 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7857 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7858 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7859 */ 7860 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7861 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7862 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7863 7864 return 0; 7865 } 7866 7867 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7868 { 7869 const struct btf_type *t; 7870 struct extern_desc *ext; 7871 int i, err; 7872 7873 for (i = 0; i < obj->nr_extern; i++) { 7874 ext = &obj->externs[i]; 7875 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7876 continue; 7877 7878 if (obj->gen_loader) { 7879 ext->is_set = true; 7880 ext->ksym.kernel_btf_obj_fd = 0; 7881 ext->ksym.kernel_btf_id = 0; 7882 continue; 7883 } 7884 t = btf__type_by_id(obj->btf, ext->btf_id); 7885 if (btf_is_var(t)) 7886 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7887 else 7888 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7889 if (err) 7890 return err; 7891 } 7892 return 0; 7893 } 7894 7895 static int bpf_object__resolve_externs(struct bpf_object *obj, 7896 const char *extra_kconfig) 7897 { 7898 bool need_config = false, need_kallsyms = false; 7899 bool need_vmlinux_btf = false; 7900 struct extern_desc *ext; 7901 void *kcfg_data = NULL; 7902 int err, i; 7903 7904 if (obj->nr_extern == 0) 7905 return 0; 7906 7907 if (obj->kconfig_map_idx >= 0) 7908 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7909 7910 for (i = 0; i < obj->nr_extern; i++) { 7911 ext = &obj->externs[i]; 7912 7913 if (ext->type == EXT_KSYM) { 7914 if (ext->ksym.type_id) 7915 need_vmlinux_btf = true; 7916 else 7917 need_kallsyms = true; 7918 continue; 7919 } else if (ext->type == EXT_KCFG) { 7920 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7921 __u64 value = 0; 7922 7923 /* Kconfig externs need actual /proc/config.gz */ 7924 if (str_has_pfx(ext->name, "CONFIG_")) { 7925 need_config = true; 7926 continue; 7927 } 7928 7929 /* Virtual kcfg externs are customly handled by libbpf */ 7930 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7931 value = get_kernel_version(); 7932 if (!value) { 7933 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7934 return -EINVAL; 7935 } 7936 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7937 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7938 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7939 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7940 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7941 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7942 * __kconfig externs, where LINUX_ ones are virtual and filled out 7943 * customly by libbpf (their values don't come from Kconfig). 7944 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7945 * __weak, it defaults to zero value, just like for CONFIG_xxx 7946 * externs. 7947 */ 7948 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7949 return -EINVAL; 7950 } 7951 7952 err = set_kcfg_value_num(ext, ext_ptr, value); 7953 if (err) 7954 return err; 7955 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7956 ext->name, (long long)value); 7957 } else { 7958 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7959 return -EINVAL; 7960 } 7961 } 7962 if (need_config && extra_kconfig) { 7963 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7964 if (err) 7965 return -EINVAL; 7966 need_config = false; 7967 for (i = 0; i < obj->nr_extern; i++) { 7968 ext = &obj->externs[i]; 7969 if (ext->type == EXT_KCFG && !ext->is_set) { 7970 need_config = true; 7971 break; 7972 } 7973 } 7974 } 7975 if (need_config) { 7976 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7977 if (err) 7978 return -EINVAL; 7979 } 7980 if (need_kallsyms) { 7981 err = bpf_object__read_kallsyms_file(obj); 7982 if (err) 7983 return -EINVAL; 7984 } 7985 if (need_vmlinux_btf) { 7986 err = bpf_object__resolve_ksyms_btf_id(obj); 7987 if (err) 7988 return -EINVAL; 7989 } 7990 for (i = 0; i < obj->nr_extern; i++) { 7991 ext = &obj->externs[i]; 7992 7993 if (!ext->is_set && !ext->is_weak) { 7994 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7995 return -ESRCH; 7996 } else if (!ext->is_set) { 7997 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7998 ext->name); 7999 } 8000 } 8001 8002 return 0; 8003 } 8004 8005 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8006 { 8007 struct bpf_struct_ops *st_ops; 8008 __u32 i; 8009 8010 st_ops = map->st_ops; 8011 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8012 struct bpf_program *prog = st_ops->progs[i]; 8013 void *kern_data; 8014 int prog_fd; 8015 8016 if (!prog) 8017 continue; 8018 8019 prog_fd = bpf_program__fd(prog); 8020 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8021 *(unsigned long *)kern_data = prog_fd; 8022 } 8023 } 8024 8025 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8026 { 8027 int i; 8028 8029 for (i = 0; i < obj->nr_maps; i++) 8030 if (bpf_map__is_struct_ops(&obj->maps[i])) 8031 bpf_map_prepare_vdata(&obj->maps[i]); 8032 8033 return 0; 8034 } 8035 8036 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8037 { 8038 int err, i; 8039 8040 if (!obj) 8041 return libbpf_err(-EINVAL); 8042 8043 if (obj->loaded) { 8044 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8045 return libbpf_err(-EINVAL); 8046 } 8047 8048 if (obj->gen_loader) 8049 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8050 8051 err = bpf_object__probe_loading(obj); 8052 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8053 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8054 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8055 err = err ? : bpf_object__sanitize_maps(obj); 8056 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8057 err = err ? : bpf_object__create_maps(obj); 8058 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8059 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8060 err = err ? : bpf_object_init_prog_arrays(obj); 8061 err = err ? : bpf_object_prepare_struct_ops(obj); 8062 8063 if (obj->gen_loader) { 8064 /* reset FDs */ 8065 if (obj->btf) 8066 btf__set_fd(obj->btf, -1); 8067 for (i = 0; i < obj->nr_maps; i++) 8068 obj->maps[i].fd = -1; 8069 if (!err) 8070 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8071 } 8072 8073 /* clean up fd_array */ 8074 zfree(&obj->fd_array); 8075 8076 /* clean up module BTFs */ 8077 for (i = 0; i < obj->btf_module_cnt; i++) { 8078 close(obj->btf_modules[i].fd); 8079 btf__free(obj->btf_modules[i].btf); 8080 free(obj->btf_modules[i].name); 8081 } 8082 free(obj->btf_modules); 8083 8084 /* clean up vmlinux BTF */ 8085 btf__free(obj->btf_vmlinux); 8086 obj->btf_vmlinux = NULL; 8087 8088 obj->loaded = true; /* doesn't matter if successfully or not */ 8089 8090 if (err) 8091 goto out; 8092 8093 return 0; 8094 out: 8095 /* unpin any maps that were auto-pinned during load */ 8096 for (i = 0; i < obj->nr_maps; i++) 8097 if (obj->maps[i].pinned && !obj->maps[i].reused) 8098 bpf_map__unpin(&obj->maps[i], NULL); 8099 8100 bpf_object_unload(obj); 8101 pr_warn("failed to load object '%s'\n", obj->path); 8102 return libbpf_err(err); 8103 } 8104 8105 int bpf_object__load(struct bpf_object *obj) 8106 { 8107 return bpf_object_load(obj, 0, NULL); 8108 } 8109 8110 static int make_parent_dir(const char *path) 8111 { 8112 char *cp, errmsg[STRERR_BUFSIZE]; 8113 char *dname, *dir; 8114 int err = 0; 8115 8116 dname = strdup(path); 8117 if (dname == NULL) 8118 return -ENOMEM; 8119 8120 dir = dirname(dname); 8121 if (mkdir(dir, 0700) && errno != EEXIST) 8122 err = -errno; 8123 8124 free(dname); 8125 if (err) { 8126 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8127 pr_warn("failed to mkdir %s: %s\n", path, cp); 8128 } 8129 return err; 8130 } 8131 8132 static int check_path(const char *path) 8133 { 8134 char *cp, errmsg[STRERR_BUFSIZE]; 8135 struct statfs st_fs; 8136 char *dname, *dir; 8137 int err = 0; 8138 8139 if (path == NULL) 8140 return -EINVAL; 8141 8142 dname = strdup(path); 8143 if (dname == NULL) 8144 return -ENOMEM; 8145 8146 dir = dirname(dname); 8147 if (statfs(dir, &st_fs)) { 8148 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8149 pr_warn("failed to statfs %s: %s\n", dir, cp); 8150 err = -errno; 8151 } 8152 free(dname); 8153 8154 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8155 pr_warn("specified path %s is not on BPF FS\n", path); 8156 err = -EINVAL; 8157 } 8158 8159 return err; 8160 } 8161 8162 int bpf_program__pin(struct bpf_program *prog, const char *path) 8163 { 8164 char *cp, errmsg[STRERR_BUFSIZE]; 8165 int err; 8166 8167 if (prog->fd < 0) { 8168 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8169 return libbpf_err(-EINVAL); 8170 } 8171 8172 err = make_parent_dir(path); 8173 if (err) 8174 return libbpf_err(err); 8175 8176 err = check_path(path); 8177 if (err) 8178 return libbpf_err(err); 8179 8180 if (bpf_obj_pin(prog->fd, path)) { 8181 err = -errno; 8182 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8183 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8184 return libbpf_err(err); 8185 } 8186 8187 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8188 return 0; 8189 } 8190 8191 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8192 { 8193 int err; 8194 8195 if (prog->fd < 0) { 8196 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8197 return libbpf_err(-EINVAL); 8198 } 8199 8200 err = check_path(path); 8201 if (err) 8202 return libbpf_err(err); 8203 8204 err = unlink(path); 8205 if (err) 8206 return libbpf_err(-errno); 8207 8208 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8209 return 0; 8210 } 8211 8212 int bpf_map__pin(struct bpf_map *map, const char *path) 8213 { 8214 char *cp, errmsg[STRERR_BUFSIZE]; 8215 int err; 8216 8217 if (map == NULL) { 8218 pr_warn("invalid map pointer\n"); 8219 return libbpf_err(-EINVAL); 8220 } 8221 8222 if (map->pin_path) { 8223 if (path && strcmp(path, map->pin_path)) { 8224 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8225 bpf_map__name(map), map->pin_path, path); 8226 return libbpf_err(-EINVAL); 8227 } else if (map->pinned) { 8228 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8229 bpf_map__name(map), map->pin_path); 8230 return 0; 8231 } 8232 } else { 8233 if (!path) { 8234 pr_warn("missing a path to pin map '%s' at\n", 8235 bpf_map__name(map)); 8236 return libbpf_err(-EINVAL); 8237 } else if (map->pinned) { 8238 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8239 return libbpf_err(-EEXIST); 8240 } 8241 8242 map->pin_path = strdup(path); 8243 if (!map->pin_path) { 8244 err = -errno; 8245 goto out_err; 8246 } 8247 } 8248 8249 err = make_parent_dir(map->pin_path); 8250 if (err) 8251 return libbpf_err(err); 8252 8253 err = check_path(map->pin_path); 8254 if (err) 8255 return libbpf_err(err); 8256 8257 if (bpf_obj_pin(map->fd, map->pin_path)) { 8258 err = -errno; 8259 goto out_err; 8260 } 8261 8262 map->pinned = true; 8263 pr_debug("pinned map '%s'\n", map->pin_path); 8264 8265 return 0; 8266 8267 out_err: 8268 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8269 pr_warn("failed to pin map: %s\n", cp); 8270 return libbpf_err(err); 8271 } 8272 8273 int bpf_map__unpin(struct bpf_map *map, const char *path) 8274 { 8275 int err; 8276 8277 if (map == NULL) { 8278 pr_warn("invalid map pointer\n"); 8279 return libbpf_err(-EINVAL); 8280 } 8281 8282 if (map->pin_path) { 8283 if (path && strcmp(path, map->pin_path)) { 8284 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8285 bpf_map__name(map), map->pin_path, path); 8286 return libbpf_err(-EINVAL); 8287 } 8288 path = map->pin_path; 8289 } else if (!path) { 8290 pr_warn("no path to unpin map '%s' from\n", 8291 bpf_map__name(map)); 8292 return libbpf_err(-EINVAL); 8293 } 8294 8295 err = check_path(path); 8296 if (err) 8297 return libbpf_err(err); 8298 8299 err = unlink(path); 8300 if (err != 0) 8301 return libbpf_err(-errno); 8302 8303 map->pinned = false; 8304 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8305 8306 return 0; 8307 } 8308 8309 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8310 { 8311 char *new = NULL; 8312 8313 if (path) { 8314 new = strdup(path); 8315 if (!new) 8316 return libbpf_err(-errno); 8317 } 8318 8319 free(map->pin_path); 8320 map->pin_path = new; 8321 return 0; 8322 } 8323 8324 __alias(bpf_map__pin_path) 8325 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8326 8327 const char *bpf_map__pin_path(const struct bpf_map *map) 8328 { 8329 return map->pin_path; 8330 } 8331 8332 bool bpf_map__is_pinned(const struct bpf_map *map) 8333 { 8334 return map->pinned; 8335 } 8336 8337 static void sanitize_pin_path(char *s) 8338 { 8339 /* bpffs disallows periods in path names */ 8340 while (*s) { 8341 if (*s == '.') 8342 *s = '_'; 8343 s++; 8344 } 8345 } 8346 8347 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8348 { 8349 struct bpf_map *map; 8350 int err; 8351 8352 if (!obj) 8353 return libbpf_err(-ENOENT); 8354 8355 if (!obj->loaded) { 8356 pr_warn("object not yet loaded; load it first\n"); 8357 return libbpf_err(-ENOENT); 8358 } 8359 8360 bpf_object__for_each_map(map, obj) { 8361 char *pin_path = NULL; 8362 char buf[PATH_MAX]; 8363 8364 if (!map->autocreate) 8365 continue; 8366 8367 if (path) { 8368 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8369 if (err) 8370 goto err_unpin_maps; 8371 sanitize_pin_path(buf); 8372 pin_path = buf; 8373 } else if (!map->pin_path) { 8374 continue; 8375 } 8376 8377 err = bpf_map__pin(map, pin_path); 8378 if (err) 8379 goto err_unpin_maps; 8380 } 8381 8382 return 0; 8383 8384 err_unpin_maps: 8385 while ((map = bpf_object__prev_map(obj, map))) { 8386 if (!map->pin_path) 8387 continue; 8388 8389 bpf_map__unpin(map, NULL); 8390 } 8391 8392 return libbpf_err(err); 8393 } 8394 8395 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8396 { 8397 struct bpf_map *map; 8398 int err; 8399 8400 if (!obj) 8401 return libbpf_err(-ENOENT); 8402 8403 bpf_object__for_each_map(map, obj) { 8404 char *pin_path = NULL; 8405 char buf[PATH_MAX]; 8406 8407 if (path) { 8408 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8409 if (err) 8410 return libbpf_err(err); 8411 sanitize_pin_path(buf); 8412 pin_path = buf; 8413 } else if (!map->pin_path) { 8414 continue; 8415 } 8416 8417 err = bpf_map__unpin(map, pin_path); 8418 if (err) 8419 return libbpf_err(err); 8420 } 8421 8422 return 0; 8423 } 8424 8425 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8426 { 8427 struct bpf_program *prog; 8428 char buf[PATH_MAX]; 8429 int err; 8430 8431 if (!obj) 8432 return libbpf_err(-ENOENT); 8433 8434 if (!obj->loaded) { 8435 pr_warn("object not yet loaded; load it first\n"); 8436 return libbpf_err(-ENOENT); 8437 } 8438 8439 bpf_object__for_each_program(prog, obj) { 8440 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8441 if (err) 8442 goto err_unpin_programs; 8443 8444 err = bpf_program__pin(prog, buf); 8445 if (err) 8446 goto err_unpin_programs; 8447 } 8448 8449 return 0; 8450 8451 err_unpin_programs: 8452 while ((prog = bpf_object__prev_program(obj, prog))) { 8453 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8454 continue; 8455 8456 bpf_program__unpin(prog, buf); 8457 } 8458 8459 return libbpf_err(err); 8460 } 8461 8462 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8463 { 8464 struct bpf_program *prog; 8465 int err; 8466 8467 if (!obj) 8468 return libbpf_err(-ENOENT); 8469 8470 bpf_object__for_each_program(prog, obj) { 8471 char buf[PATH_MAX]; 8472 8473 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8474 if (err) 8475 return libbpf_err(err); 8476 8477 err = bpf_program__unpin(prog, buf); 8478 if (err) 8479 return libbpf_err(err); 8480 } 8481 8482 return 0; 8483 } 8484 8485 int bpf_object__pin(struct bpf_object *obj, const char *path) 8486 { 8487 int err; 8488 8489 err = bpf_object__pin_maps(obj, path); 8490 if (err) 8491 return libbpf_err(err); 8492 8493 err = bpf_object__pin_programs(obj, path); 8494 if (err) { 8495 bpf_object__unpin_maps(obj, path); 8496 return libbpf_err(err); 8497 } 8498 8499 return 0; 8500 } 8501 8502 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8503 { 8504 int err; 8505 8506 err = bpf_object__unpin_programs(obj, path); 8507 if (err) 8508 return libbpf_err(err); 8509 8510 err = bpf_object__unpin_maps(obj, path); 8511 if (err) 8512 return libbpf_err(err); 8513 8514 return 0; 8515 } 8516 8517 static void bpf_map__destroy(struct bpf_map *map) 8518 { 8519 if (map->inner_map) { 8520 bpf_map__destroy(map->inner_map); 8521 zfree(&map->inner_map); 8522 } 8523 8524 zfree(&map->init_slots); 8525 map->init_slots_sz = 0; 8526 8527 if (map->mmaped) { 8528 size_t mmap_sz; 8529 8530 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8531 munmap(map->mmaped, mmap_sz); 8532 map->mmaped = NULL; 8533 } 8534 8535 if (map->st_ops) { 8536 zfree(&map->st_ops->data); 8537 zfree(&map->st_ops->progs); 8538 zfree(&map->st_ops->kern_func_off); 8539 zfree(&map->st_ops); 8540 } 8541 8542 zfree(&map->name); 8543 zfree(&map->real_name); 8544 zfree(&map->pin_path); 8545 8546 if (map->fd >= 0) 8547 zclose(map->fd); 8548 } 8549 8550 void bpf_object__close(struct bpf_object *obj) 8551 { 8552 size_t i; 8553 8554 if (IS_ERR_OR_NULL(obj)) 8555 return; 8556 8557 usdt_manager_free(obj->usdt_man); 8558 obj->usdt_man = NULL; 8559 8560 bpf_gen__free(obj->gen_loader); 8561 bpf_object__elf_finish(obj); 8562 bpf_object_unload(obj); 8563 btf__free(obj->btf); 8564 btf__free(obj->btf_vmlinux); 8565 btf_ext__free(obj->btf_ext); 8566 8567 for (i = 0; i < obj->nr_maps; i++) 8568 bpf_map__destroy(&obj->maps[i]); 8569 8570 zfree(&obj->btf_custom_path); 8571 zfree(&obj->kconfig); 8572 8573 for (i = 0; i < obj->nr_extern; i++) 8574 zfree(&obj->externs[i].essent_name); 8575 8576 zfree(&obj->externs); 8577 obj->nr_extern = 0; 8578 8579 zfree(&obj->maps); 8580 obj->nr_maps = 0; 8581 8582 if (obj->programs && obj->nr_programs) { 8583 for (i = 0; i < obj->nr_programs; i++) 8584 bpf_program__exit(&obj->programs[i]); 8585 } 8586 zfree(&obj->programs); 8587 8588 free(obj); 8589 } 8590 8591 const char *bpf_object__name(const struct bpf_object *obj) 8592 { 8593 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8594 } 8595 8596 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8597 { 8598 return obj ? obj->kern_version : 0; 8599 } 8600 8601 struct btf *bpf_object__btf(const struct bpf_object *obj) 8602 { 8603 return obj ? obj->btf : NULL; 8604 } 8605 8606 int bpf_object__btf_fd(const struct bpf_object *obj) 8607 { 8608 return obj->btf ? btf__fd(obj->btf) : -1; 8609 } 8610 8611 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8612 { 8613 if (obj->loaded) 8614 return libbpf_err(-EINVAL); 8615 8616 obj->kern_version = kern_version; 8617 8618 return 0; 8619 } 8620 8621 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8622 { 8623 struct bpf_gen *gen; 8624 8625 if (!opts) 8626 return -EFAULT; 8627 if (!OPTS_VALID(opts, gen_loader_opts)) 8628 return -EINVAL; 8629 gen = calloc(sizeof(*gen), 1); 8630 if (!gen) 8631 return -ENOMEM; 8632 gen->opts = opts; 8633 obj->gen_loader = gen; 8634 return 0; 8635 } 8636 8637 static struct bpf_program * 8638 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8639 bool forward) 8640 { 8641 size_t nr_programs = obj->nr_programs; 8642 ssize_t idx; 8643 8644 if (!nr_programs) 8645 return NULL; 8646 8647 if (!p) 8648 /* Iter from the beginning */ 8649 return forward ? &obj->programs[0] : 8650 &obj->programs[nr_programs - 1]; 8651 8652 if (p->obj != obj) { 8653 pr_warn("error: program handler doesn't match object\n"); 8654 return errno = EINVAL, NULL; 8655 } 8656 8657 idx = (p - obj->programs) + (forward ? 1 : -1); 8658 if (idx >= obj->nr_programs || idx < 0) 8659 return NULL; 8660 return &obj->programs[idx]; 8661 } 8662 8663 struct bpf_program * 8664 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8665 { 8666 struct bpf_program *prog = prev; 8667 8668 do { 8669 prog = __bpf_program__iter(prog, obj, true); 8670 } while (prog && prog_is_subprog(obj, prog)); 8671 8672 return prog; 8673 } 8674 8675 struct bpf_program * 8676 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8677 { 8678 struct bpf_program *prog = next; 8679 8680 do { 8681 prog = __bpf_program__iter(prog, obj, false); 8682 } while (prog && prog_is_subprog(obj, prog)); 8683 8684 return prog; 8685 } 8686 8687 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8688 { 8689 prog->prog_ifindex = ifindex; 8690 } 8691 8692 const char *bpf_program__name(const struct bpf_program *prog) 8693 { 8694 return prog->name; 8695 } 8696 8697 const char *bpf_program__section_name(const struct bpf_program *prog) 8698 { 8699 return prog->sec_name; 8700 } 8701 8702 bool bpf_program__autoload(const struct bpf_program *prog) 8703 { 8704 return prog->autoload; 8705 } 8706 8707 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8708 { 8709 if (prog->obj->loaded) 8710 return libbpf_err(-EINVAL); 8711 8712 prog->autoload = autoload; 8713 return 0; 8714 } 8715 8716 bool bpf_program__autoattach(const struct bpf_program *prog) 8717 { 8718 return prog->autoattach; 8719 } 8720 8721 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8722 { 8723 prog->autoattach = autoattach; 8724 } 8725 8726 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8727 { 8728 return prog->insns; 8729 } 8730 8731 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8732 { 8733 return prog->insns_cnt; 8734 } 8735 8736 int bpf_program__set_insns(struct bpf_program *prog, 8737 struct bpf_insn *new_insns, size_t new_insn_cnt) 8738 { 8739 struct bpf_insn *insns; 8740 8741 if (prog->obj->loaded) 8742 return -EBUSY; 8743 8744 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8745 /* NULL is a valid return from reallocarray if the new count is zero */ 8746 if (!insns && new_insn_cnt) { 8747 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8748 return -ENOMEM; 8749 } 8750 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8751 8752 prog->insns = insns; 8753 prog->insns_cnt = new_insn_cnt; 8754 return 0; 8755 } 8756 8757 int bpf_program__fd(const struct bpf_program *prog) 8758 { 8759 if (!prog) 8760 return libbpf_err(-EINVAL); 8761 8762 if (prog->fd < 0) 8763 return libbpf_err(-ENOENT); 8764 8765 return prog->fd; 8766 } 8767 8768 __alias(bpf_program__type) 8769 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8770 8771 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8772 { 8773 return prog->type; 8774 } 8775 8776 static size_t custom_sec_def_cnt; 8777 static struct bpf_sec_def *custom_sec_defs; 8778 static struct bpf_sec_def custom_fallback_def; 8779 static bool has_custom_fallback_def; 8780 static int last_custom_sec_def_handler_id; 8781 8782 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8783 { 8784 if (prog->obj->loaded) 8785 return libbpf_err(-EBUSY); 8786 8787 /* if type is not changed, do nothing */ 8788 if (prog->type == type) 8789 return 0; 8790 8791 prog->type = type; 8792 8793 /* If a program type was changed, we need to reset associated SEC() 8794 * handler, as it will be invalid now. The only exception is a generic 8795 * fallback handler, which by definition is program type-agnostic and 8796 * is a catch-all custom handler, optionally set by the application, 8797 * so should be able to handle any type of BPF program. 8798 */ 8799 if (prog->sec_def != &custom_fallback_def) 8800 prog->sec_def = NULL; 8801 return 0; 8802 } 8803 8804 __alias(bpf_program__expected_attach_type) 8805 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8806 8807 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8808 { 8809 return prog->expected_attach_type; 8810 } 8811 8812 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8813 enum bpf_attach_type type) 8814 { 8815 if (prog->obj->loaded) 8816 return libbpf_err(-EBUSY); 8817 8818 prog->expected_attach_type = type; 8819 return 0; 8820 } 8821 8822 __u32 bpf_program__flags(const struct bpf_program *prog) 8823 { 8824 return prog->prog_flags; 8825 } 8826 8827 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8828 { 8829 if (prog->obj->loaded) 8830 return libbpf_err(-EBUSY); 8831 8832 prog->prog_flags = flags; 8833 return 0; 8834 } 8835 8836 __u32 bpf_program__log_level(const struct bpf_program *prog) 8837 { 8838 return prog->log_level; 8839 } 8840 8841 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8842 { 8843 if (prog->obj->loaded) 8844 return libbpf_err(-EBUSY); 8845 8846 prog->log_level = log_level; 8847 return 0; 8848 } 8849 8850 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8851 { 8852 *log_size = prog->log_size; 8853 return prog->log_buf; 8854 } 8855 8856 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8857 { 8858 if (log_size && !log_buf) 8859 return -EINVAL; 8860 if (prog->log_size > UINT_MAX) 8861 return -EINVAL; 8862 if (prog->obj->loaded) 8863 return -EBUSY; 8864 8865 prog->log_buf = log_buf; 8866 prog->log_size = log_size; 8867 return 0; 8868 } 8869 8870 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8871 .sec = (char *)sec_pfx, \ 8872 .prog_type = BPF_PROG_TYPE_##ptype, \ 8873 .expected_attach_type = atype, \ 8874 .cookie = (long)(flags), \ 8875 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8876 __VA_ARGS__ \ 8877 } 8878 8879 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8880 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8881 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8882 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8883 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8884 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8885 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8886 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8887 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8888 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8889 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8890 8891 static const struct bpf_sec_def section_defs[] = { 8892 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8893 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8894 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8895 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8896 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8897 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8898 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8899 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8900 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8901 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8902 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8903 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8904 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8905 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8906 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8907 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8908 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8909 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8910 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8911 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8912 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8913 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8914 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8915 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8916 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8917 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8918 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8919 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8920 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8921 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8922 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8923 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8924 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8925 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8926 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8927 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8928 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8929 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8930 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8931 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8932 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8933 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8934 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8935 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8936 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8937 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8938 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8939 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8940 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8941 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8942 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8943 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8944 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8945 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8946 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8947 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8948 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8949 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8950 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8951 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8952 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8953 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8954 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8955 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8956 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8957 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8958 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8959 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8960 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8961 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8962 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8963 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8964 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8965 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8966 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8967 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8968 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 8969 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8970 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8971 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 8972 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8973 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8974 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 8975 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8976 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8977 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 8978 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8979 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8980 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 8981 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8982 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8983 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8984 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8985 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8986 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8987 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8988 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8989 }; 8990 8991 int libbpf_register_prog_handler(const char *sec, 8992 enum bpf_prog_type prog_type, 8993 enum bpf_attach_type exp_attach_type, 8994 const struct libbpf_prog_handler_opts *opts) 8995 { 8996 struct bpf_sec_def *sec_def; 8997 8998 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8999 return libbpf_err(-EINVAL); 9000 9001 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9002 return libbpf_err(-E2BIG); 9003 9004 if (sec) { 9005 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9006 sizeof(*sec_def)); 9007 if (!sec_def) 9008 return libbpf_err(-ENOMEM); 9009 9010 custom_sec_defs = sec_def; 9011 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9012 } else { 9013 if (has_custom_fallback_def) 9014 return libbpf_err(-EBUSY); 9015 9016 sec_def = &custom_fallback_def; 9017 } 9018 9019 sec_def->sec = sec ? strdup(sec) : NULL; 9020 if (sec && !sec_def->sec) 9021 return libbpf_err(-ENOMEM); 9022 9023 sec_def->prog_type = prog_type; 9024 sec_def->expected_attach_type = exp_attach_type; 9025 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9026 9027 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9028 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9029 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9030 9031 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9032 9033 if (sec) 9034 custom_sec_def_cnt++; 9035 else 9036 has_custom_fallback_def = true; 9037 9038 return sec_def->handler_id; 9039 } 9040 9041 int libbpf_unregister_prog_handler(int handler_id) 9042 { 9043 struct bpf_sec_def *sec_defs; 9044 int i; 9045 9046 if (handler_id <= 0) 9047 return libbpf_err(-EINVAL); 9048 9049 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9050 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9051 has_custom_fallback_def = false; 9052 return 0; 9053 } 9054 9055 for (i = 0; i < custom_sec_def_cnt; i++) { 9056 if (custom_sec_defs[i].handler_id == handler_id) 9057 break; 9058 } 9059 9060 if (i == custom_sec_def_cnt) 9061 return libbpf_err(-ENOENT); 9062 9063 free(custom_sec_defs[i].sec); 9064 for (i = i + 1; i < custom_sec_def_cnt; i++) 9065 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9066 custom_sec_def_cnt--; 9067 9068 /* try to shrink the array, but it's ok if we couldn't */ 9069 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9070 /* if new count is zero, reallocarray can return a valid NULL result; 9071 * in this case the previous pointer will be freed, so we *have to* 9072 * reassign old pointer to the new value (even if it's NULL) 9073 */ 9074 if (sec_defs || custom_sec_def_cnt == 0) 9075 custom_sec_defs = sec_defs; 9076 9077 return 0; 9078 } 9079 9080 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9081 { 9082 size_t len = strlen(sec_def->sec); 9083 9084 /* "type/" always has to have proper SEC("type/extras") form */ 9085 if (sec_def->sec[len - 1] == '/') { 9086 if (str_has_pfx(sec_name, sec_def->sec)) 9087 return true; 9088 return false; 9089 } 9090 9091 /* "type+" means it can be either exact SEC("type") or 9092 * well-formed SEC("type/extras") with proper '/' separator 9093 */ 9094 if (sec_def->sec[len - 1] == '+') { 9095 len--; 9096 /* not even a prefix */ 9097 if (strncmp(sec_name, sec_def->sec, len) != 0) 9098 return false; 9099 /* exact match or has '/' separator */ 9100 if (sec_name[len] == '\0' || sec_name[len] == '/') 9101 return true; 9102 return false; 9103 } 9104 9105 return strcmp(sec_name, sec_def->sec) == 0; 9106 } 9107 9108 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9109 { 9110 const struct bpf_sec_def *sec_def; 9111 int i, n; 9112 9113 n = custom_sec_def_cnt; 9114 for (i = 0; i < n; i++) { 9115 sec_def = &custom_sec_defs[i]; 9116 if (sec_def_matches(sec_def, sec_name)) 9117 return sec_def; 9118 } 9119 9120 n = ARRAY_SIZE(section_defs); 9121 for (i = 0; i < n; i++) { 9122 sec_def = §ion_defs[i]; 9123 if (sec_def_matches(sec_def, sec_name)) 9124 return sec_def; 9125 } 9126 9127 if (has_custom_fallback_def) 9128 return &custom_fallback_def; 9129 9130 return NULL; 9131 } 9132 9133 #define MAX_TYPE_NAME_SIZE 32 9134 9135 static char *libbpf_get_type_names(bool attach_type) 9136 { 9137 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9138 char *buf; 9139 9140 buf = malloc(len); 9141 if (!buf) 9142 return NULL; 9143 9144 buf[0] = '\0'; 9145 /* Forge string buf with all available names */ 9146 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9147 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9148 9149 if (attach_type) { 9150 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9151 continue; 9152 9153 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9154 continue; 9155 } 9156 9157 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9158 free(buf); 9159 return NULL; 9160 } 9161 strcat(buf, " "); 9162 strcat(buf, section_defs[i].sec); 9163 } 9164 9165 return buf; 9166 } 9167 9168 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9169 enum bpf_attach_type *expected_attach_type) 9170 { 9171 const struct bpf_sec_def *sec_def; 9172 char *type_names; 9173 9174 if (!name) 9175 return libbpf_err(-EINVAL); 9176 9177 sec_def = find_sec_def(name); 9178 if (sec_def) { 9179 *prog_type = sec_def->prog_type; 9180 *expected_attach_type = sec_def->expected_attach_type; 9181 return 0; 9182 } 9183 9184 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9185 type_names = libbpf_get_type_names(false); 9186 if (type_names != NULL) { 9187 pr_debug("supported section(type) names are:%s\n", type_names); 9188 free(type_names); 9189 } 9190 9191 return libbpf_err(-ESRCH); 9192 } 9193 9194 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9195 { 9196 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9197 return NULL; 9198 9199 return attach_type_name[t]; 9200 } 9201 9202 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9203 { 9204 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9205 return NULL; 9206 9207 return link_type_name[t]; 9208 } 9209 9210 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9211 { 9212 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9213 return NULL; 9214 9215 return map_type_name[t]; 9216 } 9217 9218 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9219 { 9220 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9221 return NULL; 9222 9223 return prog_type_name[t]; 9224 } 9225 9226 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9227 int sec_idx, 9228 size_t offset) 9229 { 9230 struct bpf_map *map; 9231 size_t i; 9232 9233 for (i = 0; i < obj->nr_maps; i++) { 9234 map = &obj->maps[i]; 9235 if (!bpf_map__is_struct_ops(map)) 9236 continue; 9237 if (map->sec_idx == sec_idx && 9238 map->sec_offset <= offset && 9239 offset - map->sec_offset < map->def.value_size) 9240 return map; 9241 } 9242 9243 return NULL; 9244 } 9245 9246 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9247 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9248 Elf64_Shdr *shdr, Elf_Data *data) 9249 { 9250 const struct btf_member *member; 9251 struct bpf_struct_ops *st_ops; 9252 struct bpf_program *prog; 9253 unsigned int shdr_idx; 9254 const struct btf *btf; 9255 struct bpf_map *map; 9256 unsigned int moff, insn_idx; 9257 const char *name; 9258 __u32 member_idx; 9259 Elf64_Sym *sym; 9260 Elf64_Rel *rel; 9261 int i, nrels; 9262 9263 btf = obj->btf; 9264 nrels = shdr->sh_size / shdr->sh_entsize; 9265 for (i = 0; i < nrels; i++) { 9266 rel = elf_rel_by_idx(data, i); 9267 if (!rel) { 9268 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9269 return -LIBBPF_ERRNO__FORMAT; 9270 } 9271 9272 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9273 if (!sym) { 9274 pr_warn("struct_ops reloc: symbol %zx not found\n", 9275 (size_t)ELF64_R_SYM(rel->r_info)); 9276 return -LIBBPF_ERRNO__FORMAT; 9277 } 9278 9279 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9280 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9281 if (!map) { 9282 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9283 (size_t)rel->r_offset); 9284 return -EINVAL; 9285 } 9286 9287 moff = rel->r_offset - map->sec_offset; 9288 shdr_idx = sym->st_shndx; 9289 st_ops = map->st_ops; 9290 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9291 map->name, 9292 (long long)(rel->r_info >> 32), 9293 (long long)sym->st_value, 9294 shdr_idx, (size_t)rel->r_offset, 9295 map->sec_offset, sym->st_name, name); 9296 9297 if (shdr_idx >= SHN_LORESERVE) { 9298 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9299 map->name, (size_t)rel->r_offset, shdr_idx); 9300 return -LIBBPF_ERRNO__RELOC; 9301 } 9302 if (sym->st_value % BPF_INSN_SZ) { 9303 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9304 map->name, (unsigned long long)sym->st_value); 9305 return -LIBBPF_ERRNO__FORMAT; 9306 } 9307 insn_idx = sym->st_value / BPF_INSN_SZ; 9308 9309 member = find_member_by_offset(st_ops->type, moff * 8); 9310 if (!member) { 9311 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9312 map->name, moff); 9313 return -EINVAL; 9314 } 9315 member_idx = member - btf_members(st_ops->type); 9316 name = btf__name_by_offset(btf, member->name_off); 9317 9318 if (!resolve_func_ptr(btf, member->type, NULL)) { 9319 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9320 map->name, name); 9321 return -EINVAL; 9322 } 9323 9324 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9325 if (!prog) { 9326 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9327 map->name, shdr_idx, name); 9328 return -EINVAL; 9329 } 9330 9331 /* prevent the use of BPF prog with invalid type */ 9332 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9333 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9334 map->name, prog->name); 9335 return -EINVAL; 9336 } 9337 9338 /* if we haven't yet processed this BPF program, record proper 9339 * attach_btf_id and member_idx 9340 */ 9341 if (!prog->attach_btf_id) { 9342 prog->attach_btf_id = st_ops->type_id; 9343 prog->expected_attach_type = member_idx; 9344 } 9345 9346 /* struct_ops BPF prog can be re-used between multiple 9347 * .struct_ops & .struct_ops.link as long as it's the 9348 * same struct_ops struct definition and the same 9349 * function pointer field 9350 */ 9351 if (prog->attach_btf_id != st_ops->type_id || 9352 prog->expected_attach_type != member_idx) { 9353 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9354 map->name, prog->name, prog->sec_name, prog->type, 9355 prog->attach_btf_id, prog->expected_attach_type, name); 9356 return -EINVAL; 9357 } 9358 9359 st_ops->progs[member_idx] = prog; 9360 } 9361 9362 return 0; 9363 } 9364 9365 #define BTF_TRACE_PREFIX "btf_trace_" 9366 #define BTF_LSM_PREFIX "bpf_lsm_" 9367 #define BTF_ITER_PREFIX "bpf_iter_" 9368 #define BTF_MAX_NAME_SIZE 128 9369 9370 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9371 const char **prefix, int *kind) 9372 { 9373 switch (attach_type) { 9374 case BPF_TRACE_RAW_TP: 9375 *prefix = BTF_TRACE_PREFIX; 9376 *kind = BTF_KIND_TYPEDEF; 9377 break; 9378 case BPF_LSM_MAC: 9379 case BPF_LSM_CGROUP: 9380 *prefix = BTF_LSM_PREFIX; 9381 *kind = BTF_KIND_FUNC; 9382 break; 9383 case BPF_TRACE_ITER: 9384 *prefix = BTF_ITER_PREFIX; 9385 *kind = BTF_KIND_FUNC; 9386 break; 9387 default: 9388 *prefix = ""; 9389 *kind = BTF_KIND_FUNC; 9390 } 9391 } 9392 9393 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9394 const char *name, __u32 kind) 9395 { 9396 char btf_type_name[BTF_MAX_NAME_SIZE]; 9397 int ret; 9398 9399 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9400 "%s%s", prefix, name); 9401 /* snprintf returns the number of characters written excluding the 9402 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9403 * indicates truncation. 9404 */ 9405 if (ret < 0 || ret >= sizeof(btf_type_name)) 9406 return -ENAMETOOLONG; 9407 return btf__find_by_name_kind(btf, btf_type_name, kind); 9408 } 9409 9410 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9411 enum bpf_attach_type attach_type) 9412 { 9413 const char *prefix; 9414 int kind; 9415 9416 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9417 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9418 } 9419 9420 int libbpf_find_vmlinux_btf_id(const char *name, 9421 enum bpf_attach_type attach_type) 9422 { 9423 struct btf *btf; 9424 int err; 9425 9426 btf = btf__load_vmlinux_btf(); 9427 err = libbpf_get_error(btf); 9428 if (err) { 9429 pr_warn("vmlinux BTF is not found\n"); 9430 return libbpf_err(err); 9431 } 9432 9433 err = find_attach_btf_id(btf, name, attach_type); 9434 if (err <= 0) 9435 pr_warn("%s is not found in vmlinux BTF\n", name); 9436 9437 btf__free(btf); 9438 return libbpf_err(err); 9439 } 9440 9441 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9442 { 9443 struct bpf_prog_info info; 9444 __u32 info_len = sizeof(info); 9445 struct btf *btf; 9446 int err; 9447 9448 memset(&info, 0, info_len); 9449 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9450 if (err) { 9451 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9452 attach_prog_fd, err); 9453 return err; 9454 } 9455 9456 err = -EINVAL; 9457 if (!info.btf_id) { 9458 pr_warn("The target program doesn't have BTF\n"); 9459 goto out; 9460 } 9461 btf = btf__load_from_kernel_by_id(info.btf_id); 9462 err = libbpf_get_error(btf); 9463 if (err) { 9464 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9465 goto out; 9466 } 9467 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9468 btf__free(btf); 9469 if (err <= 0) { 9470 pr_warn("%s is not found in prog's BTF\n", name); 9471 goto out; 9472 } 9473 out: 9474 return err; 9475 } 9476 9477 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9478 enum bpf_attach_type attach_type, 9479 int *btf_obj_fd, int *btf_type_id) 9480 { 9481 int ret, i; 9482 9483 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9484 if (ret > 0) { 9485 *btf_obj_fd = 0; /* vmlinux BTF */ 9486 *btf_type_id = ret; 9487 return 0; 9488 } 9489 if (ret != -ENOENT) 9490 return ret; 9491 9492 ret = load_module_btfs(obj); 9493 if (ret) 9494 return ret; 9495 9496 for (i = 0; i < obj->btf_module_cnt; i++) { 9497 const struct module_btf *mod = &obj->btf_modules[i]; 9498 9499 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9500 if (ret > 0) { 9501 *btf_obj_fd = mod->fd; 9502 *btf_type_id = ret; 9503 return 0; 9504 } 9505 if (ret == -ENOENT) 9506 continue; 9507 9508 return ret; 9509 } 9510 9511 return -ESRCH; 9512 } 9513 9514 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9515 int *btf_obj_fd, int *btf_type_id) 9516 { 9517 enum bpf_attach_type attach_type = prog->expected_attach_type; 9518 __u32 attach_prog_fd = prog->attach_prog_fd; 9519 int err = 0; 9520 9521 /* BPF program's BTF ID */ 9522 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9523 if (!attach_prog_fd) { 9524 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9525 return -EINVAL; 9526 } 9527 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9528 if (err < 0) { 9529 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9530 prog->name, attach_prog_fd, attach_name, err); 9531 return err; 9532 } 9533 *btf_obj_fd = 0; 9534 *btf_type_id = err; 9535 return 0; 9536 } 9537 9538 /* kernel/module BTF ID */ 9539 if (prog->obj->gen_loader) { 9540 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9541 *btf_obj_fd = 0; 9542 *btf_type_id = 1; 9543 } else { 9544 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9545 } 9546 if (err) { 9547 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9548 prog->name, attach_name, err); 9549 return err; 9550 } 9551 return 0; 9552 } 9553 9554 int libbpf_attach_type_by_name(const char *name, 9555 enum bpf_attach_type *attach_type) 9556 { 9557 char *type_names; 9558 const struct bpf_sec_def *sec_def; 9559 9560 if (!name) 9561 return libbpf_err(-EINVAL); 9562 9563 sec_def = find_sec_def(name); 9564 if (!sec_def) { 9565 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9566 type_names = libbpf_get_type_names(true); 9567 if (type_names != NULL) { 9568 pr_debug("attachable section(type) names are:%s\n", type_names); 9569 free(type_names); 9570 } 9571 9572 return libbpf_err(-EINVAL); 9573 } 9574 9575 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9576 return libbpf_err(-EINVAL); 9577 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9578 return libbpf_err(-EINVAL); 9579 9580 *attach_type = sec_def->expected_attach_type; 9581 return 0; 9582 } 9583 9584 int bpf_map__fd(const struct bpf_map *map) 9585 { 9586 return map ? map->fd : libbpf_err(-EINVAL); 9587 } 9588 9589 static bool map_uses_real_name(const struct bpf_map *map) 9590 { 9591 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9592 * their user-visible name differs from kernel-visible name. Users see 9593 * such map's corresponding ELF section name as a map name. 9594 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9595 * maps to know which name has to be returned to the user. 9596 */ 9597 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9598 return true; 9599 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9600 return true; 9601 return false; 9602 } 9603 9604 const char *bpf_map__name(const struct bpf_map *map) 9605 { 9606 if (!map) 9607 return NULL; 9608 9609 if (map_uses_real_name(map)) 9610 return map->real_name; 9611 9612 return map->name; 9613 } 9614 9615 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9616 { 9617 return map->def.type; 9618 } 9619 9620 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9621 { 9622 if (map->fd >= 0) 9623 return libbpf_err(-EBUSY); 9624 map->def.type = type; 9625 return 0; 9626 } 9627 9628 __u32 bpf_map__map_flags(const struct bpf_map *map) 9629 { 9630 return map->def.map_flags; 9631 } 9632 9633 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9634 { 9635 if (map->fd >= 0) 9636 return libbpf_err(-EBUSY); 9637 map->def.map_flags = flags; 9638 return 0; 9639 } 9640 9641 __u64 bpf_map__map_extra(const struct bpf_map *map) 9642 { 9643 return map->map_extra; 9644 } 9645 9646 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9647 { 9648 if (map->fd >= 0) 9649 return libbpf_err(-EBUSY); 9650 map->map_extra = map_extra; 9651 return 0; 9652 } 9653 9654 __u32 bpf_map__numa_node(const struct bpf_map *map) 9655 { 9656 return map->numa_node; 9657 } 9658 9659 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9660 { 9661 if (map->fd >= 0) 9662 return libbpf_err(-EBUSY); 9663 map->numa_node = numa_node; 9664 return 0; 9665 } 9666 9667 __u32 bpf_map__key_size(const struct bpf_map *map) 9668 { 9669 return map->def.key_size; 9670 } 9671 9672 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9673 { 9674 if (map->fd >= 0) 9675 return libbpf_err(-EBUSY); 9676 map->def.key_size = size; 9677 return 0; 9678 } 9679 9680 __u32 bpf_map__value_size(const struct bpf_map *map) 9681 { 9682 return map->def.value_size; 9683 } 9684 9685 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9686 { 9687 struct btf *btf; 9688 struct btf_type *datasec_type, *var_type; 9689 struct btf_var_secinfo *var; 9690 const struct btf_type *array_type; 9691 const struct btf_array *array; 9692 int vlen, element_sz, new_array_id; 9693 __u32 nr_elements; 9694 9695 /* check btf existence */ 9696 btf = bpf_object__btf(map->obj); 9697 if (!btf) 9698 return -ENOENT; 9699 9700 /* verify map is datasec */ 9701 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9702 if (!btf_is_datasec(datasec_type)) { 9703 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9704 bpf_map__name(map)); 9705 return -EINVAL; 9706 } 9707 9708 /* verify datasec has at least one var */ 9709 vlen = btf_vlen(datasec_type); 9710 if (vlen == 0) { 9711 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9712 bpf_map__name(map)); 9713 return -EINVAL; 9714 } 9715 9716 /* verify last var in the datasec is an array */ 9717 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9718 var_type = btf_type_by_id(btf, var->type); 9719 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9720 if (!btf_is_array(array_type)) { 9721 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9722 bpf_map__name(map)); 9723 return -EINVAL; 9724 } 9725 9726 /* verify request size aligns with array */ 9727 array = btf_array(array_type); 9728 element_sz = btf__resolve_size(btf, array->type); 9729 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9730 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9731 bpf_map__name(map), element_sz, size); 9732 return -EINVAL; 9733 } 9734 9735 /* create a new array based on the existing array, but with new length */ 9736 nr_elements = (size - var->offset) / element_sz; 9737 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9738 if (new_array_id < 0) 9739 return new_array_id; 9740 9741 /* adding a new btf type invalidates existing pointers to btf objects, 9742 * so refresh pointers before proceeding 9743 */ 9744 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9745 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9746 var_type = btf_type_by_id(btf, var->type); 9747 9748 /* finally update btf info */ 9749 datasec_type->size = size; 9750 var->size = size - var->offset; 9751 var_type->type = new_array_id; 9752 9753 return 0; 9754 } 9755 9756 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9757 { 9758 if (map->fd >= 0) 9759 return libbpf_err(-EBUSY); 9760 9761 if (map->mmaped) { 9762 int err; 9763 size_t mmap_old_sz, mmap_new_sz; 9764 9765 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9766 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9767 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9768 if (err) { 9769 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9770 bpf_map__name(map), err); 9771 return err; 9772 } 9773 err = map_btf_datasec_resize(map, size); 9774 if (err && err != -ENOENT) { 9775 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9776 bpf_map__name(map), err); 9777 map->btf_value_type_id = 0; 9778 map->btf_key_type_id = 0; 9779 } 9780 } 9781 9782 map->def.value_size = size; 9783 return 0; 9784 } 9785 9786 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9787 { 9788 return map ? map->btf_key_type_id : 0; 9789 } 9790 9791 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9792 { 9793 return map ? map->btf_value_type_id : 0; 9794 } 9795 9796 int bpf_map__set_initial_value(struct bpf_map *map, 9797 const void *data, size_t size) 9798 { 9799 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9800 size != map->def.value_size || map->fd >= 0) 9801 return libbpf_err(-EINVAL); 9802 9803 memcpy(map->mmaped, data, size); 9804 return 0; 9805 } 9806 9807 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9808 { 9809 if (!map->mmaped) 9810 return NULL; 9811 *psize = map->def.value_size; 9812 return map->mmaped; 9813 } 9814 9815 bool bpf_map__is_internal(const struct bpf_map *map) 9816 { 9817 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9818 } 9819 9820 __u32 bpf_map__ifindex(const struct bpf_map *map) 9821 { 9822 return map->map_ifindex; 9823 } 9824 9825 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9826 { 9827 if (map->fd >= 0) 9828 return libbpf_err(-EBUSY); 9829 map->map_ifindex = ifindex; 9830 return 0; 9831 } 9832 9833 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9834 { 9835 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9836 pr_warn("error: unsupported map type\n"); 9837 return libbpf_err(-EINVAL); 9838 } 9839 if (map->inner_map_fd != -1) { 9840 pr_warn("error: inner_map_fd already specified\n"); 9841 return libbpf_err(-EINVAL); 9842 } 9843 if (map->inner_map) { 9844 bpf_map__destroy(map->inner_map); 9845 zfree(&map->inner_map); 9846 } 9847 map->inner_map_fd = fd; 9848 return 0; 9849 } 9850 9851 static struct bpf_map * 9852 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9853 { 9854 ssize_t idx; 9855 struct bpf_map *s, *e; 9856 9857 if (!obj || !obj->maps) 9858 return errno = EINVAL, NULL; 9859 9860 s = obj->maps; 9861 e = obj->maps + obj->nr_maps; 9862 9863 if ((m < s) || (m >= e)) { 9864 pr_warn("error in %s: map handler doesn't belong to object\n", 9865 __func__); 9866 return errno = EINVAL, NULL; 9867 } 9868 9869 idx = (m - obj->maps) + i; 9870 if (idx >= obj->nr_maps || idx < 0) 9871 return NULL; 9872 return &obj->maps[idx]; 9873 } 9874 9875 struct bpf_map * 9876 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9877 { 9878 if (prev == NULL) 9879 return obj->maps; 9880 9881 return __bpf_map__iter(prev, obj, 1); 9882 } 9883 9884 struct bpf_map * 9885 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9886 { 9887 if (next == NULL) { 9888 if (!obj->nr_maps) 9889 return NULL; 9890 return obj->maps + obj->nr_maps - 1; 9891 } 9892 9893 return __bpf_map__iter(next, obj, -1); 9894 } 9895 9896 struct bpf_map * 9897 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9898 { 9899 struct bpf_map *pos; 9900 9901 bpf_object__for_each_map(pos, obj) { 9902 /* if it's a special internal map name (which always starts 9903 * with dot) then check if that special name matches the 9904 * real map name (ELF section name) 9905 */ 9906 if (name[0] == '.') { 9907 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9908 return pos; 9909 continue; 9910 } 9911 /* otherwise map name has to be an exact match */ 9912 if (map_uses_real_name(pos)) { 9913 if (strcmp(pos->real_name, name) == 0) 9914 return pos; 9915 continue; 9916 } 9917 if (strcmp(pos->name, name) == 0) 9918 return pos; 9919 } 9920 return errno = ENOENT, NULL; 9921 } 9922 9923 int 9924 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9925 { 9926 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9927 } 9928 9929 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9930 size_t value_sz, bool check_value_sz) 9931 { 9932 if (map->fd <= 0) 9933 return -ENOENT; 9934 9935 if (map->def.key_size != key_sz) { 9936 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9937 map->name, key_sz, map->def.key_size); 9938 return -EINVAL; 9939 } 9940 9941 if (!check_value_sz) 9942 return 0; 9943 9944 switch (map->def.type) { 9945 case BPF_MAP_TYPE_PERCPU_ARRAY: 9946 case BPF_MAP_TYPE_PERCPU_HASH: 9947 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9948 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9949 int num_cpu = libbpf_num_possible_cpus(); 9950 size_t elem_sz = roundup(map->def.value_size, 8); 9951 9952 if (value_sz != num_cpu * elem_sz) { 9953 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9954 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9955 return -EINVAL; 9956 } 9957 break; 9958 } 9959 default: 9960 if (map->def.value_size != value_sz) { 9961 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9962 map->name, value_sz, map->def.value_size); 9963 return -EINVAL; 9964 } 9965 break; 9966 } 9967 return 0; 9968 } 9969 9970 int bpf_map__lookup_elem(const struct bpf_map *map, 9971 const void *key, size_t key_sz, 9972 void *value, size_t value_sz, __u64 flags) 9973 { 9974 int err; 9975 9976 err = validate_map_op(map, key_sz, value_sz, true); 9977 if (err) 9978 return libbpf_err(err); 9979 9980 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9981 } 9982 9983 int bpf_map__update_elem(const struct bpf_map *map, 9984 const void *key, size_t key_sz, 9985 const void *value, size_t value_sz, __u64 flags) 9986 { 9987 int err; 9988 9989 err = validate_map_op(map, key_sz, value_sz, true); 9990 if (err) 9991 return libbpf_err(err); 9992 9993 return bpf_map_update_elem(map->fd, key, value, flags); 9994 } 9995 9996 int bpf_map__delete_elem(const struct bpf_map *map, 9997 const void *key, size_t key_sz, __u64 flags) 9998 { 9999 int err; 10000 10001 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10002 if (err) 10003 return libbpf_err(err); 10004 10005 return bpf_map_delete_elem_flags(map->fd, key, flags); 10006 } 10007 10008 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10009 const void *key, size_t key_sz, 10010 void *value, size_t value_sz, __u64 flags) 10011 { 10012 int err; 10013 10014 err = validate_map_op(map, key_sz, value_sz, true); 10015 if (err) 10016 return libbpf_err(err); 10017 10018 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10019 } 10020 10021 int bpf_map__get_next_key(const struct bpf_map *map, 10022 const void *cur_key, void *next_key, size_t key_sz) 10023 { 10024 int err; 10025 10026 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10027 if (err) 10028 return libbpf_err(err); 10029 10030 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10031 } 10032 10033 long libbpf_get_error(const void *ptr) 10034 { 10035 if (!IS_ERR_OR_NULL(ptr)) 10036 return 0; 10037 10038 if (IS_ERR(ptr)) 10039 errno = -PTR_ERR(ptr); 10040 10041 /* If ptr == NULL, then errno should be already set by the failing 10042 * API, because libbpf never returns NULL on success and it now always 10043 * sets errno on error. So no extra errno handling for ptr == NULL 10044 * case. 10045 */ 10046 return -errno; 10047 } 10048 10049 /* Replace link's underlying BPF program with the new one */ 10050 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10051 { 10052 int ret; 10053 10054 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10055 return libbpf_err_errno(ret); 10056 } 10057 10058 /* Release "ownership" of underlying BPF resource (typically, BPF program 10059 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10060 * link, when destructed through bpf_link__destroy() call won't attempt to 10061 * detach/unregisted that BPF resource. This is useful in situations where, 10062 * say, attached BPF program has to outlive userspace program that attached it 10063 * in the system. Depending on type of BPF program, though, there might be 10064 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10065 * exit of userspace program doesn't trigger automatic detachment and clean up 10066 * inside the kernel. 10067 */ 10068 void bpf_link__disconnect(struct bpf_link *link) 10069 { 10070 link->disconnected = true; 10071 } 10072 10073 int bpf_link__destroy(struct bpf_link *link) 10074 { 10075 int err = 0; 10076 10077 if (IS_ERR_OR_NULL(link)) 10078 return 0; 10079 10080 if (!link->disconnected && link->detach) 10081 err = link->detach(link); 10082 if (link->pin_path) 10083 free(link->pin_path); 10084 if (link->dealloc) 10085 link->dealloc(link); 10086 else 10087 free(link); 10088 10089 return libbpf_err(err); 10090 } 10091 10092 int bpf_link__fd(const struct bpf_link *link) 10093 { 10094 return link->fd; 10095 } 10096 10097 const char *bpf_link__pin_path(const struct bpf_link *link) 10098 { 10099 return link->pin_path; 10100 } 10101 10102 static int bpf_link__detach_fd(struct bpf_link *link) 10103 { 10104 return libbpf_err_errno(close(link->fd)); 10105 } 10106 10107 struct bpf_link *bpf_link__open(const char *path) 10108 { 10109 struct bpf_link *link; 10110 int fd; 10111 10112 fd = bpf_obj_get(path); 10113 if (fd < 0) { 10114 fd = -errno; 10115 pr_warn("failed to open link at %s: %d\n", path, fd); 10116 return libbpf_err_ptr(fd); 10117 } 10118 10119 link = calloc(1, sizeof(*link)); 10120 if (!link) { 10121 close(fd); 10122 return libbpf_err_ptr(-ENOMEM); 10123 } 10124 link->detach = &bpf_link__detach_fd; 10125 link->fd = fd; 10126 10127 link->pin_path = strdup(path); 10128 if (!link->pin_path) { 10129 bpf_link__destroy(link); 10130 return libbpf_err_ptr(-ENOMEM); 10131 } 10132 10133 return link; 10134 } 10135 10136 int bpf_link__detach(struct bpf_link *link) 10137 { 10138 return bpf_link_detach(link->fd) ? -errno : 0; 10139 } 10140 10141 int bpf_link__pin(struct bpf_link *link, const char *path) 10142 { 10143 int err; 10144 10145 if (link->pin_path) 10146 return libbpf_err(-EBUSY); 10147 err = make_parent_dir(path); 10148 if (err) 10149 return libbpf_err(err); 10150 err = check_path(path); 10151 if (err) 10152 return libbpf_err(err); 10153 10154 link->pin_path = strdup(path); 10155 if (!link->pin_path) 10156 return libbpf_err(-ENOMEM); 10157 10158 if (bpf_obj_pin(link->fd, link->pin_path)) { 10159 err = -errno; 10160 zfree(&link->pin_path); 10161 return libbpf_err(err); 10162 } 10163 10164 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10165 return 0; 10166 } 10167 10168 int bpf_link__unpin(struct bpf_link *link) 10169 { 10170 int err; 10171 10172 if (!link->pin_path) 10173 return libbpf_err(-EINVAL); 10174 10175 err = unlink(link->pin_path); 10176 if (err != 0) 10177 return -errno; 10178 10179 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10180 zfree(&link->pin_path); 10181 return 0; 10182 } 10183 10184 struct bpf_link_perf { 10185 struct bpf_link link; 10186 int perf_event_fd; 10187 /* legacy kprobe support: keep track of probe identifier and type */ 10188 char *legacy_probe_name; 10189 bool legacy_is_kprobe; 10190 bool legacy_is_retprobe; 10191 }; 10192 10193 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10194 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10195 10196 static int bpf_link_perf_detach(struct bpf_link *link) 10197 { 10198 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10199 int err = 0; 10200 10201 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10202 err = -errno; 10203 10204 if (perf_link->perf_event_fd != link->fd) 10205 close(perf_link->perf_event_fd); 10206 close(link->fd); 10207 10208 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10209 if (perf_link->legacy_probe_name) { 10210 if (perf_link->legacy_is_kprobe) { 10211 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10212 perf_link->legacy_is_retprobe); 10213 } else { 10214 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10215 perf_link->legacy_is_retprobe); 10216 } 10217 } 10218 10219 return err; 10220 } 10221 10222 static void bpf_link_perf_dealloc(struct bpf_link *link) 10223 { 10224 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10225 10226 free(perf_link->legacy_probe_name); 10227 free(perf_link); 10228 } 10229 10230 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10231 const struct bpf_perf_event_opts *opts) 10232 { 10233 char errmsg[STRERR_BUFSIZE]; 10234 struct bpf_link_perf *link; 10235 int prog_fd, link_fd = -1, err; 10236 bool force_ioctl_attach; 10237 10238 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10239 return libbpf_err_ptr(-EINVAL); 10240 10241 if (pfd < 0) { 10242 pr_warn("prog '%s': invalid perf event FD %d\n", 10243 prog->name, pfd); 10244 return libbpf_err_ptr(-EINVAL); 10245 } 10246 prog_fd = bpf_program__fd(prog); 10247 if (prog_fd < 0) { 10248 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10249 prog->name); 10250 return libbpf_err_ptr(-EINVAL); 10251 } 10252 10253 link = calloc(1, sizeof(*link)); 10254 if (!link) 10255 return libbpf_err_ptr(-ENOMEM); 10256 link->link.detach = &bpf_link_perf_detach; 10257 link->link.dealloc = &bpf_link_perf_dealloc; 10258 link->perf_event_fd = pfd; 10259 10260 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10261 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10262 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10263 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10264 10265 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10266 if (link_fd < 0) { 10267 err = -errno; 10268 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10269 prog->name, pfd, 10270 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10271 goto err_out; 10272 } 10273 link->link.fd = link_fd; 10274 } else { 10275 if (OPTS_GET(opts, bpf_cookie, 0)) { 10276 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10277 err = -EOPNOTSUPP; 10278 goto err_out; 10279 } 10280 10281 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10282 err = -errno; 10283 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10284 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10285 if (err == -EPROTO) 10286 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10287 prog->name, pfd); 10288 goto err_out; 10289 } 10290 link->link.fd = pfd; 10291 } 10292 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10293 err = -errno; 10294 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10295 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10296 goto err_out; 10297 } 10298 10299 return &link->link; 10300 err_out: 10301 if (link_fd >= 0) 10302 close(link_fd); 10303 free(link); 10304 return libbpf_err_ptr(err); 10305 } 10306 10307 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10308 { 10309 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10310 } 10311 10312 /* 10313 * this function is expected to parse integer in the range of [0, 2^31-1] from 10314 * given file using scanf format string fmt. If actual parsed value is 10315 * negative, the result might be indistinguishable from error 10316 */ 10317 static int parse_uint_from_file(const char *file, const char *fmt) 10318 { 10319 char buf[STRERR_BUFSIZE]; 10320 int err, ret; 10321 FILE *f; 10322 10323 f = fopen(file, "re"); 10324 if (!f) { 10325 err = -errno; 10326 pr_debug("failed to open '%s': %s\n", file, 10327 libbpf_strerror_r(err, buf, sizeof(buf))); 10328 return err; 10329 } 10330 err = fscanf(f, fmt, &ret); 10331 if (err != 1) { 10332 err = err == EOF ? -EIO : -errno; 10333 pr_debug("failed to parse '%s': %s\n", file, 10334 libbpf_strerror_r(err, buf, sizeof(buf))); 10335 fclose(f); 10336 return err; 10337 } 10338 fclose(f); 10339 return ret; 10340 } 10341 10342 static int determine_kprobe_perf_type(void) 10343 { 10344 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10345 10346 return parse_uint_from_file(file, "%d\n"); 10347 } 10348 10349 static int determine_uprobe_perf_type(void) 10350 { 10351 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10352 10353 return parse_uint_from_file(file, "%d\n"); 10354 } 10355 10356 static int determine_kprobe_retprobe_bit(void) 10357 { 10358 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10359 10360 return parse_uint_from_file(file, "config:%d\n"); 10361 } 10362 10363 static int determine_uprobe_retprobe_bit(void) 10364 { 10365 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10366 10367 return parse_uint_from_file(file, "config:%d\n"); 10368 } 10369 10370 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10371 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10372 10373 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10374 uint64_t offset, int pid, size_t ref_ctr_off) 10375 { 10376 const size_t attr_sz = sizeof(struct perf_event_attr); 10377 struct perf_event_attr attr; 10378 char errmsg[STRERR_BUFSIZE]; 10379 int type, pfd; 10380 10381 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10382 return -EINVAL; 10383 10384 memset(&attr, 0, attr_sz); 10385 10386 type = uprobe ? determine_uprobe_perf_type() 10387 : determine_kprobe_perf_type(); 10388 if (type < 0) { 10389 pr_warn("failed to determine %s perf type: %s\n", 10390 uprobe ? "uprobe" : "kprobe", 10391 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10392 return type; 10393 } 10394 if (retprobe) { 10395 int bit = uprobe ? determine_uprobe_retprobe_bit() 10396 : determine_kprobe_retprobe_bit(); 10397 10398 if (bit < 0) { 10399 pr_warn("failed to determine %s retprobe bit: %s\n", 10400 uprobe ? "uprobe" : "kprobe", 10401 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10402 return bit; 10403 } 10404 attr.config |= 1 << bit; 10405 } 10406 attr.size = attr_sz; 10407 attr.type = type; 10408 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10409 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10410 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10411 10412 /* pid filter is meaningful only for uprobes */ 10413 pfd = syscall(__NR_perf_event_open, &attr, 10414 pid < 0 ? -1 : pid /* pid */, 10415 pid == -1 ? 0 : -1 /* cpu */, 10416 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10417 return pfd >= 0 ? pfd : -errno; 10418 } 10419 10420 static int append_to_file(const char *file, const char *fmt, ...) 10421 { 10422 int fd, n, err = 0; 10423 va_list ap; 10424 char buf[1024]; 10425 10426 va_start(ap, fmt); 10427 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10428 va_end(ap); 10429 10430 if (n < 0 || n >= sizeof(buf)) 10431 return -EINVAL; 10432 10433 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10434 if (fd < 0) 10435 return -errno; 10436 10437 if (write(fd, buf, n) < 0) 10438 err = -errno; 10439 10440 close(fd); 10441 return err; 10442 } 10443 10444 #define DEBUGFS "/sys/kernel/debug/tracing" 10445 #define TRACEFS "/sys/kernel/tracing" 10446 10447 static bool use_debugfs(void) 10448 { 10449 static int has_debugfs = -1; 10450 10451 if (has_debugfs < 0) 10452 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10453 10454 return has_debugfs == 1; 10455 } 10456 10457 static const char *tracefs_path(void) 10458 { 10459 return use_debugfs() ? DEBUGFS : TRACEFS; 10460 } 10461 10462 static const char *tracefs_kprobe_events(void) 10463 { 10464 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10465 } 10466 10467 static const char *tracefs_uprobe_events(void) 10468 { 10469 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10470 } 10471 10472 static const char *tracefs_available_filter_functions(void) 10473 { 10474 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10475 : TRACEFS"/available_filter_functions"; 10476 } 10477 10478 static const char *tracefs_available_filter_functions_addrs(void) 10479 { 10480 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10481 : TRACEFS"/available_filter_functions_addrs"; 10482 } 10483 10484 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10485 const char *kfunc_name, size_t offset) 10486 { 10487 static int index = 0; 10488 int i; 10489 10490 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10491 __sync_fetch_and_add(&index, 1)); 10492 10493 /* sanitize binary_path in the probe name */ 10494 for (i = 0; buf[i]; i++) { 10495 if (!isalnum(buf[i])) 10496 buf[i] = '_'; 10497 } 10498 } 10499 10500 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10501 const char *kfunc_name, size_t offset) 10502 { 10503 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10504 retprobe ? 'r' : 'p', 10505 retprobe ? "kretprobes" : "kprobes", 10506 probe_name, kfunc_name, offset); 10507 } 10508 10509 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10510 { 10511 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10512 retprobe ? "kretprobes" : "kprobes", probe_name); 10513 } 10514 10515 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10516 { 10517 char file[256]; 10518 10519 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10520 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10521 10522 return parse_uint_from_file(file, "%d\n"); 10523 } 10524 10525 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10526 const char *kfunc_name, size_t offset, int pid) 10527 { 10528 const size_t attr_sz = sizeof(struct perf_event_attr); 10529 struct perf_event_attr attr; 10530 char errmsg[STRERR_BUFSIZE]; 10531 int type, pfd, err; 10532 10533 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10534 if (err < 0) { 10535 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10536 kfunc_name, offset, 10537 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10538 return err; 10539 } 10540 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10541 if (type < 0) { 10542 err = type; 10543 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10544 kfunc_name, offset, 10545 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10546 goto err_clean_legacy; 10547 } 10548 10549 memset(&attr, 0, attr_sz); 10550 attr.size = attr_sz; 10551 attr.config = type; 10552 attr.type = PERF_TYPE_TRACEPOINT; 10553 10554 pfd = syscall(__NR_perf_event_open, &attr, 10555 pid < 0 ? -1 : pid, /* pid */ 10556 pid == -1 ? 0 : -1, /* cpu */ 10557 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10558 if (pfd < 0) { 10559 err = -errno; 10560 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10561 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10562 goto err_clean_legacy; 10563 } 10564 return pfd; 10565 10566 err_clean_legacy: 10567 /* Clear the newly added legacy kprobe_event */ 10568 remove_kprobe_event_legacy(probe_name, retprobe); 10569 return err; 10570 } 10571 10572 static const char *arch_specific_syscall_pfx(void) 10573 { 10574 #if defined(__x86_64__) 10575 return "x64"; 10576 #elif defined(__i386__) 10577 return "ia32"; 10578 #elif defined(__s390x__) 10579 return "s390x"; 10580 #elif defined(__s390__) 10581 return "s390"; 10582 #elif defined(__arm__) 10583 return "arm"; 10584 #elif defined(__aarch64__) 10585 return "arm64"; 10586 #elif defined(__mips__) 10587 return "mips"; 10588 #elif defined(__riscv) 10589 return "riscv"; 10590 #elif defined(__powerpc__) 10591 return "powerpc"; 10592 #elif defined(__powerpc64__) 10593 return "powerpc64"; 10594 #else 10595 return NULL; 10596 #endif 10597 } 10598 10599 static int probe_kern_syscall_wrapper(void) 10600 { 10601 char syscall_name[64]; 10602 const char *ksys_pfx; 10603 10604 ksys_pfx = arch_specific_syscall_pfx(); 10605 if (!ksys_pfx) 10606 return 0; 10607 10608 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10609 10610 if (determine_kprobe_perf_type() >= 0) { 10611 int pfd; 10612 10613 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10614 if (pfd >= 0) 10615 close(pfd); 10616 10617 return pfd >= 0 ? 1 : 0; 10618 } else { /* legacy mode */ 10619 char probe_name[128]; 10620 10621 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10622 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10623 return 0; 10624 10625 (void)remove_kprobe_event_legacy(probe_name, false); 10626 return 1; 10627 } 10628 } 10629 10630 struct bpf_link * 10631 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10632 const char *func_name, 10633 const struct bpf_kprobe_opts *opts) 10634 { 10635 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10636 enum probe_attach_mode attach_mode; 10637 char errmsg[STRERR_BUFSIZE]; 10638 char *legacy_probe = NULL; 10639 struct bpf_link *link; 10640 size_t offset; 10641 bool retprobe, legacy; 10642 int pfd, err; 10643 10644 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10645 return libbpf_err_ptr(-EINVAL); 10646 10647 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10648 retprobe = OPTS_GET(opts, retprobe, false); 10649 offset = OPTS_GET(opts, offset, 0); 10650 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10651 10652 legacy = determine_kprobe_perf_type() < 0; 10653 switch (attach_mode) { 10654 case PROBE_ATTACH_MODE_LEGACY: 10655 legacy = true; 10656 pe_opts.force_ioctl_attach = true; 10657 break; 10658 case PROBE_ATTACH_MODE_PERF: 10659 if (legacy) 10660 return libbpf_err_ptr(-ENOTSUP); 10661 pe_opts.force_ioctl_attach = true; 10662 break; 10663 case PROBE_ATTACH_MODE_LINK: 10664 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10665 return libbpf_err_ptr(-ENOTSUP); 10666 break; 10667 case PROBE_ATTACH_MODE_DEFAULT: 10668 break; 10669 default: 10670 return libbpf_err_ptr(-EINVAL); 10671 } 10672 10673 if (!legacy) { 10674 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10675 func_name, offset, 10676 -1 /* pid */, 0 /* ref_ctr_off */); 10677 } else { 10678 char probe_name[256]; 10679 10680 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10681 func_name, offset); 10682 10683 legacy_probe = strdup(probe_name); 10684 if (!legacy_probe) 10685 return libbpf_err_ptr(-ENOMEM); 10686 10687 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10688 offset, -1 /* pid */); 10689 } 10690 if (pfd < 0) { 10691 err = -errno; 10692 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10693 prog->name, retprobe ? "kretprobe" : "kprobe", 10694 func_name, offset, 10695 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10696 goto err_out; 10697 } 10698 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10699 err = libbpf_get_error(link); 10700 if (err) { 10701 close(pfd); 10702 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10703 prog->name, retprobe ? "kretprobe" : "kprobe", 10704 func_name, offset, 10705 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10706 goto err_clean_legacy; 10707 } 10708 if (legacy) { 10709 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10710 10711 perf_link->legacy_probe_name = legacy_probe; 10712 perf_link->legacy_is_kprobe = true; 10713 perf_link->legacy_is_retprobe = retprobe; 10714 } 10715 10716 return link; 10717 10718 err_clean_legacy: 10719 if (legacy) 10720 remove_kprobe_event_legacy(legacy_probe, retprobe); 10721 err_out: 10722 free(legacy_probe); 10723 return libbpf_err_ptr(err); 10724 } 10725 10726 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10727 bool retprobe, 10728 const char *func_name) 10729 { 10730 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10731 .retprobe = retprobe, 10732 ); 10733 10734 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10735 } 10736 10737 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10738 const char *syscall_name, 10739 const struct bpf_ksyscall_opts *opts) 10740 { 10741 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10742 char func_name[128]; 10743 10744 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10745 return libbpf_err_ptr(-EINVAL); 10746 10747 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10748 /* arch_specific_syscall_pfx() should never return NULL here 10749 * because it is guarded by kernel_supports(). However, since 10750 * compiler does not know that we have an explicit conditional 10751 * as well. 10752 */ 10753 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10754 arch_specific_syscall_pfx() ? : "", syscall_name); 10755 } else { 10756 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10757 } 10758 10759 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10760 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10761 10762 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10763 } 10764 10765 /* Adapted from perf/util/string.c */ 10766 bool glob_match(const char *str, const char *pat) 10767 { 10768 while (*str && *pat && *pat != '*') { 10769 if (*pat == '?') { /* Matches any single character */ 10770 str++; 10771 pat++; 10772 continue; 10773 } 10774 if (*str != *pat) 10775 return false; 10776 str++; 10777 pat++; 10778 } 10779 /* Check wild card */ 10780 if (*pat == '*') { 10781 while (*pat == '*') 10782 pat++; 10783 if (!*pat) /* Tail wild card matches all */ 10784 return true; 10785 while (*str) 10786 if (glob_match(str++, pat)) 10787 return true; 10788 } 10789 return !*str && !*pat; 10790 } 10791 10792 struct kprobe_multi_resolve { 10793 const char *pattern; 10794 unsigned long *addrs; 10795 size_t cap; 10796 size_t cnt; 10797 }; 10798 10799 struct avail_kallsyms_data { 10800 char **syms; 10801 size_t cnt; 10802 struct kprobe_multi_resolve *res; 10803 }; 10804 10805 static int avail_func_cmp(const void *a, const void *b) 10806 { 10807 return strcmp(*(const char **)a, *(const char **)b); 10808 } 10809 10810 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10811 const char *sym_name, void *ctx) 10812 { 10813 struct avail_kallsyms_data *data = ctx; 10814 struct kprobe_multi_resolve *res = data->res; 10815 int err; 10816 10817 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10818 return 0; 10819 10820 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10821 if (err) 10822 return err; 10823 10824 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10825 return 0; 10826 } 10827 10828 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10829 { 10830 const char *available_functions_file = tracefs_available_filter_functions(); 10831 struct avail_kallsyms_data data; 10832 char sym_name[500]; 10833 FILE *f; 10834 int err = 0, ret, i; 10835 char **syms = NULL; 10836 size_t cap = 0, cnt = 0; 10837 10838 f = fopen(available_functions_file, "re"); 10839 if (!f) { 10840 err = -errno; 10841 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10842 return err; 10843 } 10844 10845 while (true) { 10846 char *name; 10847 10848 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10849 if (ret == EOF && feof(f)) 10850 break; 10851 10852 if (ret != 1) { 10853 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10854 err = -EINVAL; 10855 goto cleanup; 10856 } 10857 10858 if (!glob_match(sym_name, res->pattern)) 10859 continue; 10860 10861 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10862 if (err) 10863 goto cleanup; 10864 10865 name = strdup(sym_name); 10866 if (!name) { 10867 err = -errno; 10868 goto cleanup; 10869 } 10870 10871 syms[cnt++] = name; 10872 } 10873 10874 /* no entries found, bail out */ 10875 if (cnt == 0) { 10876 err = -ENOENT; 10877 goto cleanup; 10878 } 10879 10880 /* sort available functions */ 10881 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10882 10883 data.syms = syms; 10884 data.res = res; 10885 data.cnt = cnt; 10886 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10887 10888 if (res->cnt == 0) 10889 err = -ENOENT; 10890 10891 cleanup: 10892 for (i = 0; i < cnt; i++) 10893 free((char *)syms[i]); 10894 free(syms); 10895 10896 fclose(f); 10897 return err; 10898 } 10899 10900 static bool has_available_filter_functions_addrs(void) 10901 { 10902 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10903 } 10904 10905 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10906 { 10907 const char *available_path = tracefs_available_filter_functions_addrs(); 10908 char sym_name[500]; 10909 FILE *f; 10910 int ret, err = 0; 10911 unsigned long long sym_addr; 10912 10913 f = fopen(available_path, "re"); 10914 if (!f) { 10915 err = -errno; 10916 pr_warn("failed to open %s: %d\n", available_path, err); 10917 return err; 10918 } 10919 10920 while (true) { 10921 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10922 if (ret == EOF && feof(f)) 10923 break; 10924 10925 if (ret != 2) { 10926 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10927 ret); 10928 err = -EINVAL; 10929 goto cleanup; 10930 } 10931 10932 if (!glob_match(sym_name, res->pattern)) 10933 continue; 10934 10935 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10936 sizeof(*res->addrs), res->cnt + 1); 10937 if (err) 10938 goto cleanup; 10939 10940 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10941 } 10942 10943 if (res->cnt == 0) 10944 err = -ENOENT; 10945 10946 cleanup: 10947 fclose(f); 10948 return err; 10949 } 10950 10951 struct bpf_link * 10952 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10953 const char *pattern, 10954 const struct bpf_kprobe_multi_opts *opts) 10955 { 10956 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10957 struct kprobe_multi_resolve res = { 10958 .pattern = pattern, 10959 }; 10960 struct bpf_link *link = NULL; 10961 char errmsg[STRERR_BUFSIZE]; 10962 const unsigned long *addrs; 10963 int err, link_fd, prog_fd; 10964 const __u64 *cookies; 10965 const char **syms; 10966 bool retprobe; 10967 size_t cnt; 10968 10969 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10970 return libbpf_err_ptr(-EINVAL); 10971 10972 syms = OPTS_GET(opts, syms, false); 10973 addrs = OPTS_GET(opts, addrs, false); 10974 cnt = OPTS_GET(opts, cnt, false); 10975 cookies = OPTS_GET(opts, cookies, false); 10976 10977 if (!pattern && !addrs && !syms) 10978 return libbpf_err_ptr(-EINVAL); 10979 if (pattern && (addrs || syms || cookies || cnt)) 10980 return libbpf_err_ptr(-EINVAL); 10981 if (!pattern && !cnt) 10982 return libbpf_err_ptr(-EINVAL); 10983 if (addrs && syms) 10984 return libbpf_err_ptr(-EINVAL); 10985 10986 if (pattern) { 10987 if (has_available_filter_functions_addrs()) 10988 err = libbpf_available_kprobes_parse(&res); 10989 else 10990 err = libbpf_available_kallsyms_parse(&res); 10991 if (err) 10992 goto error; 10993 addrs = res.addrs; 10994 cnt = res.cnt; 10995 } 10996 10997 retprobe = OPTS_GET(opts, retprobe, false); 10998 10999 lopts.kprobe_multi.syms = syms; 11000 lopts.kprobe_multi.addrs = addrs; 11001 lopts.kprobe_multi.cookies = cookies; 11002 lopts.kprobe_multi.cnt = cnt; 11003 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11004 11005 link = calloc(1, sizeof(*link)); 11006 if (!link) { 11007 err = -ENOMEM; 11008 goto error; 11009 } 11010 link->detach = &bpf_link__detach_fd; 11011 11012 prog_fd = bpf_program__fd(prog); 11013 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11014 if (link_fd < 0) { 11015 err = -errno; 11016 pr_warn("prog '%s': failed to attach: %s\n", 11017 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11018 goto error; 11019 } 11020 link->fd = link_fd; 11021 free(res.addrs); 11022 return link; 11023 11024 error: 11025 free(link); 11026 free(res.addrs); 11027 return libbpf_err_ptr(err); 11028 } 11029 11030 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11031 { 11032 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11033 unsigned long offset = 0; 11034 const char *func_name; 11035 char *func; 11036 int n; 11037 11038 *link = NULL; 11039 11040 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11041 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11042 return 0; 11043 11044 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11045 if (opts.retprobe) 11046 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11047 else 11048 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11049 11050 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11051 if (n < 1) { 11052 pr_warn("kprobe name is invalid: %s\n", func_name); 11053 return -EINVAL; 11054 } 11055 if (opts.retprobe && offset != 0) { 11056 free(func); 11057 pr_warn("kretprobes do not support offset specification\n"); 11058 return -EINVAL; 11059 } 11060 11061 opts.offset = offset; 11062 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11063 free(func); 11064 return libbpf_get_error(*link); 11065 } 11066 11067 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11068 { 11069 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11070 const char *syscall_name; 11071 11072 *link = NULL; 11073 11074 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11075 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11076 return 0; 11077 11078 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11079 if (opts.retprobe) 11080 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11081 else 11082 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11083 11084 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11085 return *link ? 0 : -errno; 11086 } 11087 11088 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11089 { 11090 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11091 const char *spec; 11092 char *pattern; 11093 int n; 11094 11095 *link = NULL; 11096 11097 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11098 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11099 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11100 return 0; 11101 11102 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11103 if (opts.retprobe) 11104 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11105 else 11106 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11107 11108 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11109 if (n < 1) { 11110 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11111 return -EINVAL; 11112 } 11113 11114 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11115 free(pattern); 11116 return libbpf_get_error(*link); 11117 } 11118 11119 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11120 { 11121 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11122 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11123 int n, ret = -EINVAL; 11124 11125 *link = NULL; 11126 11127 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11128 &probe_type, &binary_path, &func_name); 11129 switch (n) { 11130 case 1: 11131 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11132 ret = 0; 11133 break; 11134 case 3: 11135 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11136 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11137 ret = libbpf_get_error(*link); 11138 break; 11139 default: 11140 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11141 prog->sec_name); 11142 break; 11143 } 11144 free(probe_type); 11145 free(binary_path); 11146 free(func_name); 11147 return ret; 11148 } 11149 11150 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11151 const char *binary_path, uint64_t offset) 11152 { 11153 int i; 11154 11155 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11156 11157 /* sanitize binary_path in the probe name */ 11158 for (i = 0; buf[i]; i++) { 11159 if (!isalnum(buf[i])) 11160 buf[i] = '_'; 11161 } 11162 } 11163 11164 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11165 const char *binary_path, size_t offset) 11166 { 11167 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11168 retprobe ? 'r' : 'p', 11169 retprobe ? "uretprobes" : "uprobes", 11170 probe_name, binary_path, offset); 11171 } 11172 11173 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11174 { 11175 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11176 retprobe ? "uretprobes" : "uprobes", probe_name); 11177 } 11178 11179 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11180 { 11181 char file[512]; 11182 11183 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11184 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11185 11186 return parse_uint_from_file(file, "%d\n"); 11187 } 11188 11189 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11190 const char *binary_path, size_t offset, int pid) 11191 { 11192 const size_t attr_sz = sizeof(struct perf_event_attr); 11193 struct perf_event_attr attr; 11194 int type, pfd, err; 11195 11196 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11197 if (err < 0) { 11198 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11199 binary_path, (size_t)offset, err); 11200 return err; 11201 } 11202 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11203 if (type < 0) { 11204 err = type; 11205 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11206 binary_path, offset, err); 11207 goto err_clean_legacy; 11208 } 11209 11210 memset(&attr, 0, attr_sz); 11211 attr.size = attr_sz; 11212 attr.config = type; 11213 attr.type = PERF_TYPE_TRACEPOINT; 11214 11215 pfd = syscall(__NR_perf_event_open, &attr, 11216 pid < 0 ? -1 : pid, /* pid */ 11217 pid == -1 ? 0 : -1, /* cpu */ 11218 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11219 if (pfd < 0) { 11220 err = -errno; 11221 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11222 goto err_clean_legacy; 11223 } 11224 return pfd; 11225 11226 err_clean_legacy: 11227 /* Clear the newly added legacy uprobe_event */ 11228 remove_uprobe_event_legacy(probe_name, retprobe); 11229 return err; 11230 } 11231 11232 /* Find offset of function name in archive specified by path. Currently 11233 * supported are .zip files that do not compress their contents, as used on 11234 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11235 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11236 * library functions. 11237 * 11238 * An overview of the APK format specifically provided here: 11239 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11240 */ 11241 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11242 const char *func_name) 11243 { 11244 struct zip_archive *archive; 11245 struct zip_entry entry; 11246 long ret; 11247 Elf *elf; 11248 11249 archive = zip_archive_open(archive_path); 11250 if (IS_ERR(archive)) { 11251 ret = PTR_ERR(archive); 11252 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11253 return ret; 11254 } 11255 11256 ret = zip_archive_find_entry(archive, file_name, &entry); 11257 if (ret) { 11258 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11259 archive_path, ret); 11260 goto out; 11261 } 11262 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11263 (unsigned long)entry.data_offset); 11264 11265 if (entry.compression) { 11266 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11267 archive_path); 11268 ret = -LIBBPF_ERRNO__FORMAT; 11269 goto out; 11270 } 11271 11272 elf = elf_memory((void *)entry.data, entry.data_length); 11273 if (!elf) { 11274 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11275 elf_errmsg(-1)); 11276 ret = -LIBBPF_ERRNO__LIBELF; 11277 goto out; 11278 } 11279 11280 ret = elf_find_func_offset(elf, file_name, func_name); 11281 if (ret > 0) { 11282 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11283 func_name, file_name, archive_path, entry.data_offset, ret, 11284 ret + entry.data_offset); 11285 ret += entry.data_offset; 11286 } 11287 elf_end(elf); 11288 11289 out: 11290 zip_archive_close(archive); 11291 return ret; 11292 } 11293 11294 static const char *arch_specific_lib_paths(void) 11295 { 11296 /* 11297 * Based on https://packages.debian.org/sid/libc6. 11298 * 11299 * Assume that the traced program is built for the same architecture 11300 * as libbpf, which should cover the vast majority of cases. 11301 */ 11302 #if defined(__x86_64__) 11303 return "/lib/x86_64-linux-gnu"; 11304 #elif defined(__i386__) 11305 return "/lib/i386-linux-gnu"; 11306 #elif defined(__s390x__) 11307 return "/lib/s390x-linux-gnu"; 11308 #elif defined(__s390__) 11309 return "/lib/s390-linux-gnu"; 11310 #elif defined(__arm__) && defined(__SOFTFP__) 11311 return "/lib/arm-linux-gnueabi"; 11312 #elif defined(__arm__) && !defined(__SOFTFP__) 11313 return "/lib/arm-linux-gnueabihf"; 11314 #elif defined(__aarch64__) 11315 return "/lib/aarch64-linux-gnu"; 11316 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11317 return "/lib/mips64el-linux-gnuabi64"; 11318 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11319 return "/lib/mipsel-linux-gnu"; 11320 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11321 return "/lib/powerpc64le-linux-gnu"; 11322 #elif defined(__sparc__) && defined(__arch64__) 11323 return "/lib/sparc64-linux-gnu"; 11324 #elif defined(__riscv) && __riscv_xlen == 64 11325 return "/lib/riscv64-linux-gnu"; 11326 #else 11327 return NULL; 11328 #endif 11329 } 11330 11331 /* Get full path to program/shared library. */ 11332 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11333 { 11334 const char *search_paths[3] = {}; 11335 int i, perm; 11336 11337 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11338 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11339 search_paths[1] = "/usr/lib64:/usr/lib"; 11340 search_paths[2] = arch_specific_lib_paths(); 11341 perm = R_OK; 11342 } else { 11343 search_paths[0] = getenv("PATH"); 11344 search_paths[1] = "/usr/bin:/usr/sbin"; 11345 perm = R_OK | X_OK; 11346 } 11347 11348 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11349 const char *s; 11350 11351 if (!search_paths[i]) 11352 continue; 11353 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11354 char *next_path; 11355 int seg_len; 11356 11357 if (s[0] == ':') 11358 s++; 11359 next_path = strchr(s, ':'); 11360 seg_len = next_path ? next_path - s : strlen(s); 11361 if (!seg_len) 11362 continue; 11363 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11364 /* ensure it has required permissions */ 11365 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11366 continue; 11367 pr_debug("resolved '%s' to '%s'\n", file, result); 11368 return 0; 11369 } 11370 } 11371 return -ENOENT; 11372 } 11373 11374 struct bpf_link * 11375 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11376 pid_t pid, 11377 const char *path, 11378 const char *func_pattern, 11379 const struct bpf_uprobe_multi_opts *opts) 11380 { 11381 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11382 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11383 unsigned long *resolved_offsets = NULL; 11384 int err = 0, link_fd, prog_fd; 11385 struct bpf_link *link = NULL; 11386 char errmsg[STRERR_BUFSIZE]; 11387 char full_path[PATH_MAX]; 11388 const __u64 *cookies; 11389 const char **syms; 11390 size_t cnt; 11391 11392 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11393 return libbpf_err_ptr(-EINVAL); 11394 11395 syms = OPTS_GET(opts, syms, NULL); 11396 offsets = OPTS_GET(opts, offsets, NULL); 11397 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11398 cookies = OPTS_GET(opts, cookies, NULL); 11399 cnt = OPTS_GET(opts, cnt, 0); 11400 11401 /* 11402 * User can specify 2 mutually exclusive set of inputs: 11403 * 11404 * 1) use only path/func_pattern/pid arguments 11405 * 11406 * 2) use path/pid with allowed combinations of: 11407 * syms/offsets/ref_ctr_offsets/cookies/cnt 11408 * 11409 * - syms and offsets are mutually exclusive 11410 * - ref_ctr_offsets and cookies are optional 11411 * 11412 * Any other usage results in error. 11413 */ 11414 11415 if (!path) 11416 return libbpf_err_ptr(-EINVAL); 11417 if (!func_pattern && cnt == 0) 11418 return libbpf_err_ptr(-EINVAL); 11419 11420 if (func_pattern) { 11421 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11422 return libbpf_err_ptr(-EINVAL); 11423 } else { 11424 if (!!syms == !!offsets) 11425 return libbpf_err_ptr(-EINVAL); 11426 } 11427 11428 if (func_pattern) { 11429 if (!strchr(path, '/')) { 11430 err = resolve_full_path(path, full_path, sizeof(full_path)); 11431 if (err) { 11432 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11433 prog->name, path, err); 11434 return libbpf_err_ptr(err); 11435 } 11436 path = full_path; 11437 } 11438 11439 err = elf_resolve_pattern_offsets(path, func_pattern, 11440 &resolved_offsets, &cnt); 11441 if (err < 0) 11442 return libbpf_err_ptr(err); 11443 offsets = resolved_offsets; 11444 } else if (syms) { 11445 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets); 11446 if (err < 0) 11447 return libbpf_err_ptr(err); 11448 offsets = resolved_offsets; 11449 } 11450 11451 lopts.uprobe_multi.path = path; 11452 lopts.uprobe_multi.offsets = offsets; 11453 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11454 lopts.uprobe_multi.cookies = cookies; 11455 lopts.uprobe_multi.cnt = cnt; 11456 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11457 11458 if (pid == 0) 11459 pid = getpid(); 11460 if (pid > 0) 11461 lopts.uprobe_multi.pid = pid; 11462 11463 link = calloc(1, sizeof(*link)); 11464 if (!link) { 11465 err = -ENOMEM; 11466 goto error; 11467 } 11468 link->detach = &bpf_link__detach_fd; 11469 11470 prog_fd = bpf_program__fd(prog); 11471 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11472 if (link_fd < 0) { 11473 err = -errno; 11474 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11475 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11476 goto error; 11477 } 11478 link->fd = link_fd; 11479 free(resolved_offsets); 11480 return link; 11481 11482 error: 11483 free(resolved_offsets); 11484 free(link); 11485 return libbpf_err_ptr(err); 11486 } 11487 11488 LIBBPF_API struct bpf_link * 11489 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11490 const char *binary_path, size_t func_offset, 11491 const struct bpf_uprobe_opts *opts) 11492 { 11493 const char *archive_path = NULL, *archive_sep = NULL; 11494 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11495 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11496 enum probe_attach_mode attach_mode; 11497 char full_path[PATH_MAX]; 11498 struct bpf_link *link; 11499 size_t ref_ctr_off; 11500 int pfd, err; 11501 bool retprobe, legacy; 11502 const char *func_name; 11503 11504 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11505 return libbpf_err_ptr(-EINVAL); 11506 11507 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11508 retprobe = OPTS_GET(opts, retprobe, false); 11509 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11510 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11511 11512 if (!binary_path) 11513 return libbpf_err_ptr(-EINVAL); 11514 11515 /* Check if "binary_path" refers to an archive. */ 11516 archive_sep = strstr(binary_path, "!/"); 11517 if (archive_sep) { 11518 full_path[0] = '\0'; 11519 libbpf_strlcpy(full_path, binary_path, 11520 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11521 archive_path = full_path; 11522 binary_path = archive_sep + 2; 11523 } else if (!strchr(binary_path, '/')) { 11524 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11525 if (err) { 11526 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11527 prog->name, binary_path, err); 11528 return libbpf_err_ptr(err); 11529 } 11530 binary_path = full_path; 11531 } 11532 func_name = OPTS_GET(opts, func_name, NULL); 11533 if (func_name) { 11534 long sym_off; 11535 11536 if (archive_path) { 11537 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11538 func_name); 11539 binary_path = archive_path; 11540 } else { 11541 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11542 } 11543 if (sym_off < 0) 11544 return libbpf_err_ptr(sym_off); 11545 func_offset += sym_off; 11546 } 11547 11548 legacy = determine_uprobe_perf_type() < 0; 11549 switch (attach_mode) { 11550 case PROBE_ATTACH_MODE_LEGACY: 11551 legacy = true; 11552 pe_opts.force_ioctl_attach = true; 11553 break; 11554 case PROBE_ATTACH_MODE_PERF: 11555 if (legacy) 11556 return libbpf_err_ptr(-ENOTSUP); 11557 pe_opts.force_ioctl_attach = true; 11558 break; 11559 case PROBE_ATTACH_MODE_LINK: 11560 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11561 return libbpf_err_ptr(-ENOTSUP); 11562 break; 11563 case PROBE_ATTACH_MODE_DEFAULT: 11564 break; 11565 default: 11566 return libbpf_err_ptr(-EINVAL); 11567 } 11568 11569 if (!legacy) { 11570 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11571 func_offset, pid, ref_ctr_off); 11572 } else { 11573 char probe_name[PATH_MAX + 64]; 11574 11575 if (ref_ctr_off) 11576 return libbpf_err_ptr(-EINVAL); 11577 11578 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11579 binary_path, func_offset); 11580 11581 legacy_probe = strdup(probe_name); 11582 if (!legacy_probe) 11583 return libbpf_err_ptr(-ENOMEM); 11584 11585 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11586 binary_path, func_offset, pid); 11587 } 11588 if (pfd < 0) { 11589 err = -errno; 11590 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11591 prog->name, retprobe ? "uretprobe" : "uprobe", 11592 binary_path, func_offset, 11593 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11594 goto err_out; 11595 } 11596 11597 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11598 err = libbpf_get_error(link); 11599 if (err) { 11600 close(pfd); 11601 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11602 prog->name, retprobe ? "uretprobe" : "uprobe", 11603 binary_path, func_offset, 11604 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11605 goto err_clean_legacy; 11606 } 11607 if (legacy) { 11608 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11609 11610 perf_link->legacy_probe_name = legacy_probe; 11611 perf_link->legacy_is_kprobe = false; 11612 perf_link->legacy_is_retprobe = retprobe; 11613 } 11614 return link; 11615 11616 err_clean_legacy: 11617 if (legacy) 11618 remove_uprobe_event_legacy(legacy_probe, retprobe); 11619 err_out: 11620 free(legacy_probe); 11621 return libbpf_err_ptr(err); 11622 } 11623 11624 /* Format of u[ret]probe section definition supporting auto-attach: 11625 * u[ret]probe/binary:function[+offset] 11626 * 11627 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11628 * full binary path via bpf_program__attach_uprobe_opts. 11629 * 11630 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11631 * specified (and auto-attach is not possible) or the above format is specified for 11632 * auto-attach. 11633 */ 11634 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11635 { 11636 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11637 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 11638 int n, c, ret = -EINVAL; 11639 long offset = 0; 11640 11641 *link = NULL; 11642 11643 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11644 &probe_type, &binary_path, &func_name); 11645 switch (n) { 11646 case 1: 11647 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11648 ret = 0; 11649 break; 11650 case 2: 11651 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11652 prog->name, prog->sec_name); 11653 break; 11654 case 3: 11655 /* check if user specifies `+offset`, if yes, this should be 11656 * the last part of the string, make sure sscanf read to EOL 11657 */ 11658 func_off = strrchr(func_name, '+'); 11659 if (func_off) { 11660 n = sscanf(func_off, "+%li%n", &offset, &c); 11661 if (n == 1 && *(func_off + c) == '\0') 11662 func_off[0] = '\0'; 11663 else 11664 offset = 0; 11665 } 11666 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11667 strcmp(probe_type, "uretprobe.s") == 0; 11668 if (opts.retprobe && offset != 0) { 11669 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11670 prog->name); 11671 break; 11672 } 11673 opts.func_name = func_name; 11674 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11675 ret = libbpf_get_error(*link); 11676 break; 11677 default: 11678 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11679 prog->sec_name); 11680 break; 11681 } 11682 free(probe_type); 11683 free(binary_path); 11684 free(func_name); 11685 11686 return ret; 11687 } 11688 11689 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11690 bool retprobe, pid_t pid, 11691 const char *binary_path, 11692 size_t func_offset) 11693 { 11694 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11695 11696 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11697 } 11698 11699 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11700 pid_t pid, const char *binary_path, 11701 const char *usdt_provider, const char *usdt_name, 11702 const struct bpf_usdt_opts *opts) 11703 { 11704 char resolved_path[512]; 11705 struct bpf_object *obj = prog->obj; 11706 struct bpf_link *link; 11707 __u64 usdt_cookie; 11708 int err; 11709 11710 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11711 return libbpf_err_ptr(-EINVAL); 11712 11713 if (bpf_program__fd(prog) < 0) { 11714 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11715 prog->name); 11716 return libbpf_err_ptr(-EINVAL); 11717 } 11718 11719 if (!binary_path) 11720 return libbpf_err_ptr(-EINVAL); 11721 11722 if (!strchr(binary_path, '/')) { 11723 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11724 if (err) { 11725 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11726 prog->name, binary_path, err); 11727 return libbpf_err_ptr(err); 11728 } 11729 binary_path = resolved_path; 11730 } 11731 11732 /* USDT manager is instantiated lazily on first USDT attach. It will 11733 * be destroyed together with BPF object in bpf_object__close(). 11734 */ 11735 if (IS_ERR(obj->usdt_man)) 11736 return libbpf_ptr(obj->usdt_man); 11737 if (!obj->usdt_man) { 11738 obj->usdt_man = usdt_manager_new(obj); 11739 if (IS_ERR(obj->usdt_man)) 11740 return libbpf_ptr(obj->usdt_man); 11741 } 11742 11743 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11744 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11745 usdt_provider, usdt_name, usdt_cookie); 11746 err = libbpf_get_error(link); 11747 if (err) 11748 return libbpf_err_ptr(err); 11749 return link; 11750 } 11751 11752 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11753 { 11754 char *path = NULL, *provider = NULL, *name = NULL; 11755 const char *sec_name; 11756 int n, err; 11757 11758 sec_name = bpf_program__section_name(prog); 11759 if (strcmp(sec_name, "usdt") == 0) { 11760 /* no auto-attach for just SEC("usdt") */ 11761 *link = NULL; 11762 return 0; 11763 } 11764 11765 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11766 if (n != 3) { 11767 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11768 sec_name); 11769 err = -EINVAL; 11770 } else { 11771 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11772 provider, name, NULL); 11773 err = libbpf_get_error(*link); 11774 } 11775 free(path); 11776 free(provider); 11777 free(name); 11778 return err; 11779 } 11780 11781 static int determine_tracepoint_id(const char *tp_category, 11782 const char *tp_name) 11783 { 11784 char file[PATH_MAX]; 11785 int ret; 11786 11787 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11788 tracefs_path(), tp_category, tp_name); 11789 if (ret < 0) 11790 return -errno; 11791 if (ret >= sizeof(file)) { 11792 pr_debug("tracepoint %s/%s path is too long\n", 11793 tp_category, tp_name); 11794 return -E2BIG; 11795 } 11796 return parse_uint_from_file(file, "%d\n"); 11797 } 11798 11799 static int perf_event_open_tracepoint(const char *tp_category, 11800 const char *tp_name) 11801 { 11802 const size_t attr_sz = sizeof(struct perf_event_attr); 11803 struct perf_event_attr attr; 11804 char errmsg[STRERR_BUFSIZE]; 11805 int tp_id, pfd, err; 11806 11807 tp_id = determine_tracepoint_id(tp_category, tp_name); 11808 if (tp_id < 0) { 11809 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11810 tp_category, tp_name, 11811 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11812 return tp_id; 11813 } 11814 11815 memset(&attr, 0, attr_sz); 11816 attr.type = PERF_TYPE_TRACEPOINT; 11817 attr.size = attr_sz; 11818 attr.config = tp_id; 11819 11820 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11821 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11822 if (pfd < 0) { 11823 err = -errno; 11824 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11825 tp_category, tp_name, 11826 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11827 return err; 11828 } 11829 return pfd; 11830 } 11831 11832 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11833 const char *tp_category, 11834 const char *tp_name, 11835 const struct bpf_tracepoint_opts *opts) 11836 { 11837 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11838 char errmsg[STRERR_BUFSIZE]; 11839 struct bpf_link *link; 11840 int pfd, err; 11841 11842 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11843 return libbpf_err_ptr(-EINVAL); 11844 11845 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11846 11847 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11848 if (pfd < 0) { 11849 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11850 prog->name, tp_category, tp_name, 11851 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11852 return libbpf_err_ptr(pfd); 11853 } 11854 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11855 err = libbpf_get_error(link); 11856 if (err) { 11857 close(pfd); 11858 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11859 prog->name, tp_category, tp_name, 11860 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11861 return libbpf_err_ptr(err); 11862 } 11863 return link; 11864 } 11865 11866 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11867 const char *tp_category, 11868 const char *tp_name) 11869 { 11870 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11871 } 11872 11873 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11874 { 11875 char *sec_name, *tp_cat, *tp_name; 11876 11877 *link = NULL; 11878 11879 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11880 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11881 return 0; 11882 11883 sec_name = strdup(prog->sec_name); 11884 if (!sec_name) 11885 return -ENOMEM; 11886 11887 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11888 if (str_has_pfx(prog->sec_name, "tp/")) 11889 tp_cat = sec_name + sizeof("tp/") - 1; 11890 else 11891 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11892 tp_name = strchr(tp_cat, '/'); 11893 if (!tp_name) { 11894 free(sec_name); 11895 return -EINVAL; 11896 } 11897 *tp_name = '\0'; 11898 tp_name++; 11899 11900 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11901 free(sec_name); 11902 return libbpf_get_error(*link); 11903 } 11904 11905 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11906 const char *tp_name) 11907 { 11908 char errmsg[STRERR_BUFSIZE]; 11909 struct bpf_link *link; 11910 int prog_fd, pfd; 11911 11912 prog_fd = bpf_program__fd(prog); 11913 if (prog_fd < 0) { 11914 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11915 return libbpf_err_ptr(-EINVAL); 11916 } 11917 11918 link = calloc(1, sizeof(*link)); 11919 if (!link) 11920 return libbpf_err_ptr(-ENOMEM); 11921 link->detach = &bpf_link__detach_fd; 11922 11923 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11924 if (pfd < 0) { 11925 pfd = -errno; 11926 free(link); 11927 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11928 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11929 return libbpf_err_ptr(pfd); 11930 } 11931 link->fd = pfd; 11932 return link; 11933 } 11934 11935 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11936 { 11937 static const char *const prefixes[] = { 11938 "raw_tp", 11939 "raw_tracepoint", 11940 "raw_tp.w", 11941 "raw_tracepoint.w", 11942 }; 11943 size_t i; 11944 const char *tp_name = NULL; 11945 11946 *link = NULL; 11947 11948 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11949 size_t pfx_len; 11950 11951 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11952 continue; 11953 11954 pfx_len = strlen(prefixes[i]); 11955 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11956 if (prog->sec_name[pfx_len] == '\0') 11957 return 0; 11958 11959 if (prog->sec_name[pfx_len] != '/') 11960 continue; 11961 11962 tp_name = prog->sec_name + pfx_len + 1; 11963 break; 11964 } 11965 11966 if (!tp_name) { 11967 pr_warn("prog '%s': invalid section name '%s'\n", 11968 prog->name, prog->sec_name); 11969 return -EINVAL; 11970 } 11971 11972 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11973 return libbpf_get_error(*link); 11974 } 11975 11976 /* Common logic for all BPF program types that attach to a btf_id */ 11977 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11978 const struct bpf_trace_opts *opts) 11979 { 11980 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11981 char errmsg[STRERR_BUFSIZE]; 11982 struct bpf_link *link; 11983 int prog_fd, pfd; 11984 11985 if (!OPTS_VALID(opts, bpf_trace_opts)) 11986 return libbpf_err_ptr(-EINVAL); 11987 11988 prog_fd = bpf_program__fd(prog); 11989 if (prog_fd < 0) { 11990 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11991 return libbpf_err_ptr(-EINVAL); 11992 } 11993 11994 link = calloc(1, sizeof(*link)); 11995 if (!link) 11996 return libbpf_err_ptr(-ENOMEM); 11997 link->detach = &bpf_link__detach_fd; 11998 11999 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12000 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12001 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12002 if (pfd < 0) { 12003 pfd = -errno; 12004 free(link); 12005 pr_warn("prog '%s': failed to attach: %s\n", 12006 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12007 return libbpf_err_ptr(pfd); 12008 } 12009 link->fd = pfd; 12010 return link; 12011 } 12012 12013 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12014 { 12015 return bpf_program__attach_btf_id(prog, NULL); 12016 } 12017 12018 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12019 const struct bpf_trace_opts *opts) 12020 { 12021 return bpf_program__attach_btf_id(prog, opts); 12022 } 12023 12024 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12025 { 12026 return bpf_program__attach_btf_id(prog, NULL); 12027 } 12028 12029 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12030 { 12031 *link = bpf_program__attach_trace(prog); 12032 return libbpf_get_error(*link); 12033 } 12034 12035 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12036 { 12037 *link = bpf_program__attach_lsm(prog); 12038 return libbpf_get_error(*link); 12039 } 12040 12041 static struct bpf_link * 12042 bpf_program_attach_fd(const struct bpf_program *prog, 12043 int target_fd, const char *target_name, 12044 const struct bpf_link_create_opts *opts) 12045 { 12046 enum bpf_attach_type attach_type; 12047 char errmsg[STRERR_BUFSIZE]; 12048 struct bpf_link *link; 12049 int prog_fd, link_fd; 12050 12051 prog_fd = bpf_program__fd(prog); 12052 if (prog_fd < 0) { 12053 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12054 return libbpf_err_ptr(-EINVAL); 12055 } 12056 12057 link = calloc(1, sizeof(*link)); 12058 if (!link) 12059 return libbpf_err_ptr(-ENOMEM); 12060 link->detach = &bpf_link__detach_fd; 12061 12062 attach_type = bpf_program__expected_attach_type(prog); 12063 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12064 if (link_fd < 0) { 12065 link_fd = -errno; 12066 free(link); 12067 pr_warn("prog '%s': failed to attach to %s: %s\n", 12068 prog->name, target_name, 12069 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12070 return libbpf_err_ptr(link_fd); 12071 } 12072 link->fd = link_fd; 12073 return link; 12074 } 12075 12076 struct bpf_link * 12077 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12078 { 12079 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12080 } 12081 12082 struct bpf_link * 12083 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12084 { 12085 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12086 } 12087 12088 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12089 { 12090 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12091 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12092 } 12093 12094 struct bpf_link * 12095 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12096 const struct bpf_tcx_opts *opts) 12097 { 12098 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12099 __u32 relative_id; 12100 int relative_fd; 12101 12102 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12103 return libbpf_err_ptr(-EINVAL); 12104 12105 relative_id = OPTS_GET(opts, relative_id, 0); 12106 relative_fd = OPTS_GET(opts, relative_fd, 0); 12107 12108 /* validate we don't have unexpected combinations of non-zero fields */ 12109 if (!ifindex) { 12110 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12111 prog->name); 12112 return libbpf_err_ptr(-EINVAL); 12113 } 12114 if (relative_fd && relative_id) { 12115 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12116 prog->name); 12117 return libbpf_err_ptr(-EINVAL); 12118 } 12119 12120 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12121 link_create_opts.tcx.relative_fd = relative_fd; 12122 link_create_opts.tcx.relative_id = relative_id; 12123 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12124 12125 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12126 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12127 } 12128 12129 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12130 int target_fd, 12131 const char *attach_func_name) 12132 { 12133 int btf_id; 12134 12135 if (!!target_fd != !!attach_func_name) { 12136 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12137 prog->name); 12138 return libbpf_err_ptr(-EINVAL); 12139 } 12140 12141 if (prog->type != BPF_PROG_TYPE_EXT) { 12142 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12143 prog->name); 12144 return libbpf_err_ptr(-EINVAL); 12145 } 12146 12147 if (target_fd) { 12148 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12149 12150 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12151 if (btf_id < 0) 12152 return libbpf_err_ptr(btf_id); 12153 12154 target_opts.target_btf_id = btf_id; 12155 12156 return bpf_program_attach_fd(prog, target_fd, "freplace", 12157 &target_opts); 12158 } else { 12159 /* no target, so use raw_tracepoint_open for compatibility 12160 * with old kernels 12161 */ 12162 return bpf_program__attach_trace(prog); 12163 } 12164 } 12165 12166 struct bpf_link * 12167 bpf_program__attach_iter(const struct bpf_program *prog, 12168 const struct bpf_iter_attach_opts *opts) 12169 { 12170 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12171 char errmsg[STRERR_BUFSIZE]; 12172 struct bpf_link *link; 12173 int prog_fd, link_fd; 12174 __u32 target_fd = 0; 12175 12176 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12177 return libbpf_err_ptr(-EINVAL); 12178 12179 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12180 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12181 12182 prog_fd = bpf_program__fd(prog); 12183 if (prog_fd < 0) { 12184 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12185 return libbpf_err_ptr(-EINVAL); 12186 } 12187 12188 link = calloc(1, sizeof(*link)); 12189 if (!link) 12190 return libbpf_err_ptr(-ENOMEM); 12191 link->detach = &bpf_link__detach_fd; 12192 12193 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12194 &link_create_opts); 12195 if (link_fd < 0) { 12196 link_fd = -errno; 12197 free(link); 12198 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12199 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12200 return libbpf_err_ptr(link_fd); 12201 } 12202 link->fd = link_fd; 12203 return link; 12204 } 12205 12206 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12207 { 12208 *link = bpf_program__attach_iter(prog, NULL); 12209 return libbpf_get_error(*link); 12210 } 12211 12212 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12213 const struct bpf_netfilter_opts *opts) 12214 { 12215 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12216 struct bpf_link *link; 12217 int prog_fd, link_fd; 12218 12219 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12220 return libbpf_err_ptr(-EINVAL); 12221 12222 prog_fd = bpf_program__fd(prog); 12223 if (prog_fd < 0) { 12224 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12225 return libbpf_err_ptr(-EINVAL); 12226 } 12227 12228 link = calloc(1, sizeof(*link)); 12229 if (!link) 12230 return libbpf_err_ptr(-ENOMEM); 12231 12232 link->detach = &bpf_link__detach_fd; 12233 12234 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12235 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12236 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12237 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12238 12239 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12240 if (link_fd < 0) { 12241 char errmsg[STRERR_BUFSIZE]; 12242 12243 link_fd = -errno; 12244 free(link); 12245 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12246 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12247 return libbpf_err_ptr(link_fd); 12248 } 12249 link->fd = link_fd; 12250 12251 return link; 12252 } 12253 12254 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12255 { 12256 struct bpf_link *link = NULL; 12257 int err; 12258 12259 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12260 return libbpf_err_ptr(-EOPNOTSUPP); 12261 12262 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12263 if (err) 12264 return libbpf_err_ptr(err); 12265 12266 /* When calling bpf_program__attach() explicitly, auto-attach support 12267 * is expected to work, so NULL returned link is considered an error. 12268 * This is different for skeleton's attach, see comment in 12269 * bpf_object__attach_skeleton(). 12270 */ 12271 if (!link) 12272 return libbpf_err_ptr(-EOPNOTSUPP); 12273 12274 return link; 12275 } 12276 12277 struct bpf_link_struct_ops { 12278 struct bpf_link link; 12279 int map_fd; 12280 }; 12281 12282 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12283 { 12284 struct bpf_link_struct_ops *st_link; 12285 __u32 zero = 0; 12286 12287 st_link = container_of(link, struct bpf_link_struct_ops, link); 12288 12289 if (st_link->map_fd < 0) 12290 /* w/o a real link */ 12291 return bpf_map_delete_elem(link->fd, &zero); 12292 12293 return close(link->fd); 12294 } 12295 12296 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12297 { 12298 struct bpf_link_struct_ops *link; 12299 __u32 zero = 0; 12300 int err, fd; 12301 12302 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12303 return libbpf_err_ptr(-EINVAL); 12304 12305 link = calloc(1, sizeof(*link)); 12306 if (!link) 12307 return libbpf_err_ptr(-EINVAL); 12308 12309 /* kern_vdata should be prepared during the loading phase. */ 12310 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12311 /* It can be EBUSY if the map has been used to create or 12312 * update a link before. We don't allow updating the value of 12313 * a struct_ops once it is set. That ensures that the value 12314 * never changed. So, it is safe to skip EBUSY. 12315 */ 12316 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12317 free(link); 12318 return libbpf_err_ptr(err); 12319 } 12320 12321 link->link.detach = bpf_link__detach_struct_ops; 12322 12323 if (!(map->def.map_flags & BPF_F_LINK)) { 12324 /* w/o a real link */ 12325 link->link.fd = map->fd; 12326 link->map_fd = -1; 12327 return &link->link; 12328 } 12329 12330 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12331 if (fd < 0) { 12332 free(link); 12333 return libbpf_err_ptr(fd); 12334 } 12335 12336 link->link.fd = fd; 12337 link->map_fd = map->fd; 12338 12339 return &link->link; 12340 } 12341 12342 /* 12343 * Swap the back struct_ops of a link with a new struct_ops map. 12344 */ 12345 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12346 { 12347 struct bpf_link_struct_ops *st_ops_link; 12348 __u32 zero = 0; 12349 int err; 12350 12351 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12352 return -EINVAL; 12353 12354 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12355 /* Ensure the type of a link is correct */ 12356 if (st_ops_link->map_fd < 0) 12357 return -EINVAL; 12358 12359 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12360 /* It can be EBUSY if the map has been used to create or 12361 * update a link before. We don't allow updating the value of 12362 * a struct_ops once it is set. That ensures that the value 12363 * never changed. So, it is safe to skip EBUSY. 12364 */ 12365 if (err && err != -EBUSY) 12366 return err; 12367 12368 err = bpf_link_update(link->fd, map->fd, NULL); 12369 if (err < 0) 12370 return err; 12371 12372 st_ops_link->map_fd = map->fd; 12373 12374 return 0; 12375 } 12376 12377 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12378 void *private_data); 12379 12380 static enum bpf_perf_event_ret 12381 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12382 void **copy_mem, size_t *copy_size, 12383 bpf_perf_event_print_t fn, void *private_data) 12384 { 12385 struct perf_event_mmap_page *header = mmap_mem; 12386 __u64 data_head = ring_buffer_read_head(header); 12387 __u64 data_tail = header->data_tail; 12388 void *base = ((__u8 *)header) + page_size; 12389 int ret = LIBBPF_PERF_EVENT_CONT; 12390 struct perf_event_header *ehdr; 12391 size_t ehdr_size; 12392 12393 while (data_head != data_tail) { 12394 ehdr = base + (data_tail & (mmap_size - 1)); 12395 ehdr_size = ehdr->size; 12396 12397 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12398 void *copy_start = ehdr; 12399 size_t len_first = base + mmap_size - copy_start; 12400 size_t len_secnd = ehdr_size - len_first; 12401 12402 if (*copy_size < ehdr_size) { 12403 free(*copy_mem); 12404 *copy_mem = malloc(ehdr_size); 12405 if (!*copy_mem) { 12406 *copy_size = 0; 12407 ret = LIBBPF_PERF_EVENT_ERROR; 12408 break; 12409 } 12410 *copy_size = ehdr_size; 12411 } 12412 12413 memcpy(*copy_mem, copy_start, len_first); 12414 memcpy(*copy_mem + len_first, base, len_secnd); 12415 ehdr = *copy_mem; 12416 } 12417 12418 ret = fn(ehdr, private_data); 12419 data_tail += ehdr_size; 12420 if (ret != LIBBPF_PERF_EVENT_CONT) 12421 break; 12422 } 12423 12424 ring_buffer_write_tail(header, data_tail); 12425 return libbpf_err(ret); 12426 } 12427 12428 struct perf_buffer; 12429 12430 struct perf_buffer_params { 12431 struct perf_event_attr *attr; 12432 /* if event_cb is specified, it takes precendence */ 12433 perf_buffer_event_fn event_cb; 12434 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12435 perf_buffer_sample_fn sample_cb; 12436 perf_buffer_lost_fn lost_cb; 12437 void *ctx; 12438 int cpu_cnt; 12439 int *cpus; 12440 int *map_keys; 12441 }; 12442 12443 struct perf_cpu_buf { 12444 struct perf_buffer *pb; 12445 void *base; /* mmap()'ed memory */ 12446 void *buf; /* for reconstructing segmented data */ 12447 size_t buf_size; 12448 int fd; 12449 int cpu; 12450 int map_key; 12451 }; 12452 12453 struct perf_buffer { 12454 perf_buffer_event_fn event_cb; 12455 perf_buffer_sample_fn sample_cb; 12456 perf_buffer_lost_fn lost_cb; 12457 void *ctx; /* passed into callbacks */ 12458 12459 size_t page_size; 12460 size_t mmap_size; 12461 struct perf_cpu_buf **cpu_bufs; 12462 struct epoll_event *events; 12463 int cpu_cnt; /* number of allocated CPU buffers */ 12464 int epoll_fd; /* perf event FD */ 12465 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12466 }; 12467 12468 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12469 struct perf_cpu_buf *cpu_buf) 12470 { 12471 if (!cpu_buf) 12472 return; 12473 if (cpu_buf->base && 12474 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12475 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12476 if (cpu_buf->fd >= 0) { 12477 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12478 close(cpu_buf->fd); 12479 } 12480 free(cpu_buf->buf); 12481 free(cpu_buf); 12482 } 12483 12484 void perf_buffer__free(struct perf_buffer *pb) 12485 { 12486 int i; 12487 12488 if (IS_ERR_OR_NULL(pb)) 12489 return; 12490 if (pb->cpu_bufs) { 12491 for (i = 0; i < pb->cpu_cnt; i++) { 12492 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12493 12494 if (!cpu_buf) 12495 continue; 12496 12497 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12498 perf_buffer__free_cpu_buf(pb, cpu_buf); 12499 } 12500 free(pb->cpu_bufs); 12501 } 12502 if (pb->epoll_fd >= 0) 12503 close(pb->epoll_fd); 12504 free(pb->events); 12505 free(pb); 12506 } 12507 12508 static struct perf_cpu_buf * 12509 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12510 int cpu, int map_key) 12511 { 12512 struct perf_cpu_buf *cpu_buf; 12513 char msg[STRERR_BUFSIZE]; 12514 int err; 12515 12516 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12517 if (!cpu_buf) 12518 return ERR_PTR(-ENOMEM); 12519 12520 cpu_buf->pb = pb; 12521 cpu_buf->cpu = cpu; 12522 cpu_buf->map_key = map_key; 12523 12524 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12525 -1, PERF_FLAG_FD_CLOEXEC); 12526 if (cpu_buf->fd < 0) { 12527 err = -errno; 12528 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12529 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12530 goto error; 12531 } 12532 12533 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12534 PROT_READ | PROT_WRITE, MAP_SHARED, 12535 cpu_buf->fd, 0); 12536 if (cpu_buf->base == MAP_FAILED) { 12537 cpu_buf->base = NULL; 12538 err = -errno; 12539 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12540 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12541 goto error; 12542 } 12543 12544 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12545 err = -errno; 12546 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12547 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12548 goto error; 12549 } 12550 12551 return cpu_buf; 12552 12553 error: 12554 perf_buffer__free_cpu_buf(pb, cpu_buf); 12555 return (struct perf_cpu_buf *)ERR_PTR(err); 12556 } 12557 12558 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12559 struct perf_buffer_params *p); 12560 12561 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12562 perf_buffer_sample_fn sample_cb, 12563 perf_buffer_lost_fn lost_cb, 12564 void *ctx, 12565 const struct perf_buffer_opts *opts) 12566 { 12567 const size_t attr_sz = sizeof(struct perf_event_attr); 12568 struct perf_buffer_params p = {}; 12569 struct perf_event_attr attr; 12570 __u32 sample_period; 12571 12572 if (!OPTS_VALID(opts, perf_buffer_opts)) 12573 return libbpf_err_ptr(-EINVAL); 12574 12575 sample_period = OPTS_GET(opts, sample_period, 1); 12576 if (!sample_period) 12577 sample_period = 1; 12578 12579 memset(&attr, 0, attr_sz); 12580 attr.size = attr_sz; 12581 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12582 attr.type = PERF_TYPE_SOFTWARE; 12583 attr.sample_type = PERF_SAMPLE_RAW; 12584 attr.sample_period = sample_period; 12585 attr.wakeup_events = sample_period; 12586 12587 p.attr = &attr; 12588 p.sample_cb = sample_cb; 12589 p.lost_cb = lost_cb; 12590 p.ctx = ctx; 12591 12592 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12593 } 12594 12595 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12596 struct perf_event_attr *attr, 12597 perf_buffer_event_fn event_cb, void *ctx, 12598 const struct perf_buffer_raw_opts *opts) 12599 { 12600 struct perf_buffer_params p = {}; 12601 12602 if (!attr) 12603 return libbpf_err_ptr(-EINVAL); 12604 12605 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12606 return libbpf_err_ptr(-EINVAL); 12607 12608 p.attr = attr; 12609 p.event_cb = event_cb; 12610 p.ctx = ctx; 12611 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12612 p.cpus = OPTS_GET(opts, cpus, NULL); 12613 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12614 12615 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12616 } 12617 12618 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12619 struct perf_buffer_params *p) 12620 { 12621 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12622 struct bpf_map_info map; 12623 char msg[STRERR_BUFSIZE]; 12624 struct perf_buffer *pb; 12625 bool *online = NULL; 12626 __u32 map_info_len; 12627 int err, i, j, n; 12628 12629 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12630 pr_warn("page count should be power of two, but is %zu\n", 12631 page_cnt); 12632 return ERR_PTR(-EINVAL); 12633 } 12634 12635 /* best-effort sanity checks */ 12636 memset(&map, 0, sizeof(map)); 12637 map_info_len = sizeof(map); 12638 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12639 if (err) { 12640 err = -errno; 12641 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12642 * -EBADFD, -EFAULT, or -E2BIG on real error 12643 */ 12644 if (err != -EINVAL) { 12645 pr_warn("failed to get map info for map FD %d: %s\n", 12646 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12647 return ERR_PTR(err); 12648 } 12649 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12650 map_fd); 12651 } else { 12652 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12653 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12654 map.name); 12655 return ERR_PTR(-EINVAL); 12656 } 12657 } 12658 12659 pb = calloc(1, sizeof(*pb)); 12660 if (!pb) 12661 return ERR_PTR(-ENOMEM); 12662 12663 pb->event_cb = p->event_cb; 12664 pb->sample_cb = p->sample_cb; 12665 pb->lost_cb = p->lost_cb; 12666 pb->ctx = p->ctx; 12667 12668 pb->page_size = getpagesize(); 12669 pb->mmap_size = pb->page_size * page_cnt; 12670 pb->map_fd = map_fd; 12671 12672 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12673 if (pb->epoll_fd < 0) { 12674 err = -errno; 12675 pr_warn("failed to create epoll instance: %s\n", 12676 libbpf_strerror_r(err, msg, sizeof(msg))); 12677 goto error; 12678 } 12679 12680 if (p->cpu_cnt > 0) { 12681 pb->cpu_cnt = p->cpu_cnt; 12682 } else { 12683 pb->cpu_cnt = libbpf_num_possible_cpus(); 12684 if (pb->cpu_cnt < 0) { 12685 err = pb->cpu_cnt; 12686 goto error; 12687 } 12688 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12689 pb->cpu_cnt = map.max_entries; 12690 } 12691 12692 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12693 if (!pb->events) { 12694 err = -ENOMEM; 12695 pr_warn("failed to allocate events: out of memory\n"); 12696 goto error; 12697 } 12698 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12699 if (!pb->cpu_bufs) { 12700 err = -ENOMEM; 12701 pr_warn("failed to allocate buffers: out of memory\n"); 12702 goto error; 12703 } 12704 12705 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12706 if (err) { 12707 pr_warn("failed to get online CPU mask: %d\n", err); 12708 goto error; 12709 } 12710 12711 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12712 struct perf_cpu_buf *cpu_buf; 12713 int cpu, map_key; 12714 12715 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12716 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12717 12718 /* in case user didn't explicitly requested particular CPUs to 12719 * be attached to, skip offline/not present CPUs 12720 */ 12721 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12722 continue; 12723 12724 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12725 if (IS_ERR(cpu_buf)) { 12726 err = PTR_ERR(cpu_buf); 12727 goto error; 12728 } 12729 12730 pb->cpu_bufs[j] = cpu_buf; 12731 12732 err = bpf_map_update_elem(pb->map_fd, &map_key, 12733 &cpu_buf->fd, 0); 12734 if (err) { 12735 err = -errno; 12736 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12737 cpu, map_key, cpu_buf->fd, 12738 libbpf_strerror_r(err, msg, sizeof(msg))); 12739 goto error; 12740 } 12741 12742 pb->events[j].events = EPOLLIN; 12743 pb->events[j].data.ptr = cpu_buf; 12744 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12745 &pb->events[j]) < 0) { 12746 err = -errno; 12747 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12748 cpu, cpu_buf->fd, 12749 libbpf_strerror_r(err, msg, sizeof(msg))); 12750 goto error; 12751 } 12752 j++; 12753 } 12754 pb->cpu_cnt = j; 12755 free(online); 12756 12757 return pb; 12758 12759 error: 12760 free(online); 12761 if (pb) 12762 perf_buffer__free(pb); 12763 return ERR_PTR(err); 12764 } 12765 12766 struct perf_sample_raw { 12767 struct perf_event_header header; 12768 uint32_t size; 12769 char data[]; 12770 }; 12771 12772 struct perf_sample_lost { 12773 struct perf_event_header header; 12774 uint64_t id; 12775 uint64_t lost; 12776 uint64_t sample_id; 12777 }; 12778 12779 static enum bpf_perf_event_ret 12780 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12781 { 12782 struct perf_cpu_buf *cpu_buf = ctx; 12783 struct perf_buffer *pb = cpu_buf->pb; 12784 void *data = e; 12785 12786 /* user wants full control over parsing perf event */ 12787 if (pb->event_cb) 12788 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12789 12790 switch (e->type) { 12791 case PERF_RECORD_SAMPLE: { 12792 struct perf_sample_raw *s = data; 12793 12794 if (pb->sample_cb) 12795 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12796 break; 12797 } 12798 case PERF_RECORD_LOST: { 12799 struct perf_sample_lost *s = data; 12800 12801 if (pb->lost_cb) 12802 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12803 break; 12804 } 12805 default: 12806 pr_warn("unknown perf sample type %d\n", e->type); 12807 return LIBBPF_PERF_EVENT_ERROR; 12808 } 12809 return LIBBPF_PERF_EVENT_CONT; 12810 } 12811 12812 static int perf_buffer__process_records(struct perf_buffer *pb, 12813 struct perf_cpu_buf *cpu_buf) 12814 { 12815 enum bpf_perf_event_ret ret; 12816 12817 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12818 pb->page_size, &cpu_buf->buf, 12819 &cpu_buf->buf_size, 12820 perf_buffer__process_record, cpu_buf); 12821 if (ret != LIBBPF_PERF_EVENT_CONT) 12822 return ret; 12823 return 0; 12824 } 12825 12826 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12827 { 12828 return pb->epoll_fd; 12829 } 12830 12831 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12832 { 12833 int i, cnt, err; 12834 12835 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12836 if (cnt < 0) 12837 return -errno; 12838 12839 for (i = 0; i < cnt; i++) { 12840 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12841 12842 err = perf_buffer__process_records(pb, cpu_buf); 12843 if (err) { 12844 pr_warn("error while processing records: %d\n", err); 12845 return libbpf_err(err); 12846 } 12847 } 12848 return cnt; 12849 } 12850 12851 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12852 * manager. 12853 */ 12854 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12855 { 12856 return pb->cpu_cnt; 12857 } 12858 12859 /* 12860 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12861 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12862 * select()/poll()/epoll() Linux syscalls. 12863 */ 12864 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12865 { 12866 struct perf_cpu_buf *cpu_buf; 12867 12868 if (buf_idx >= pb->cpu_cnt) 12869 return libbpf_err(-EINVAL); 12870 12871 cpu_buf = pb->cpu_bufs[buf_idx]; 12872 if (!cpu_buf) 12873 return libbpf_err(-ENOENT); 12874 12875 return cpu_buf->fd; 12876 } 12877 12878 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12879 { 12880 struct perf_cpu_buf *cpu_buf; 12881 12882 if (buf_idx >= pb->cpu_cnt) 12883 return libbpf_err(-EINVAL); 12884 12885 cpu_buf = pb->cpu_bufs[buf_idx]; 12886 if (!cpu_buf) 12887 return libbpf_err(-ENOENT); 12888 12889 *buf = cpu_buf->base; 12890 *buf_size = pb->mmap_size; 12891 return 0; 12892 } 12893 12894 /* 12895 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12896 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12897 * consume, do nothing and return success. 12898 * Returns: 12899 * - 0 on success; 12900 * - <0 on failure. 12901 */ 12902 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12903 { 12904 struct perf_cpu_buf *cpu_buf; 12905 12906 if (buf_idx >= pb->cpu_cnt) 12907 return libbpf_err(-EINVAL); 12908 12909 cpu_buf = pb->cpu_bufs[buf_idx]; 12910 if (!cpu_buf) 12911 return libbpf_err(-ENOENT); 12912 12913 return perf_buffer__process_records(pb, cpu_buf); 12914 } 12915 12916 int perf_buffer__consume(struct perf_buffer *pb) 12917 { 12918 int i, err; 12919 12920 for (i = 0; i < pb->cpu_cnt; i++) { 12921 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12922 12923 if (!cpu_buf) 12924 continue; 12925 12926 err = perf_buffer__process_records(pb, cpu_buf); 12927 if (err) { 12928 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12929 return libbpf_err(err); 12930 } 12931 } 12932 return 0; 12933 } 12934 12935 int bpf_program__set_attach_target(struct bpf_program *prog, 12936 int attach_prog_fd, 12937 const char *attach_func_name) 12938 { 12939 int btf_obj_fd = 0, btf_id = 0, err; 12940 12941 if (!prog || attach_prog_fd < 0) 12942 return libbpf_err(-EINVAL); 12943 12944 if (prog->obj->loaded) 12945 return libbpf_err(-EINVAL); 12946 12947 if (attach_prog_fd && !attach_func_name) { 12948 /* remember attach_prog_fd and let bpf_program__load() find 12949 * BTF ID during the program load 12950 */ 12951 prog->attach_prog_fd = attach_prog_fd; 12952 return 0; 12953 } 12954 12955 if (attach_prog_fd) { 12956 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12957 attach_prog_fd); 12958 if (btf_id < 0) 12959 return libbpf_err(btf_id); 12960 } else { 12961 if (!attach_func_name) 12962 return libbpf_err(-EINVAL); 12963 12964 /* load btf_vmlinux, if not yet */ 12965 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12966 if (err) 12967 return libbpf_err(err); 12968 err = find_kernel_btf_id(prog->obj, attach_func_name, 12969 prog->expected_attach_type, 12970 &btf_obj_fd, &btf_id); 12971 if (err) 12972 return libbpf_err(err); 12973 } 12974 12975 prog->attach_btf_id = btf_id; 12976 prog->attach_btf_obj_fd = btf_obj_fd; 12977 prog->attach_prog_fd = attach_prog_fd; 12978 return 0; 12979 } 12980 12981 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12982 { 12983 int err = 0, n, len, start, end = -1; 12984 bool *tmp; 12985 12986 *mask = NULL; 12987 *mask_sz = 0; 12988 12989 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12990 while (*s) { 12991 if (*s == ',' || *s == '\n') { 12992 s++; 12993 continue; 12994 } 12995 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12996 if (n <= 0 || n > 2) { 12997 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12998 err = -EINVAL; 12999 goto cleanup; 13000 } else if (n == 1) { 13001 end = start; 13002 } 13003 if (start < 0 || start > end) { 13004 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13005 start, end, s); 13006 err = -EINVAL; 13007 goto cleanup; 13008 } 13009 tmp = realloc(*mask, end + 1); 13010 if (!tmp) { 13011 err = -ENOMEM; 13012 goto cleanup; 13013 } 13014 *mask = tmp; 13015 memset(tmp + *mask_sz, 0, start - *mask_sz); 13016 memset(tmp + start, 1, end - start + 1); 13017 *mask_sz = end + 1; 13018 s += len; 13019 } 13020 if (!*mask_sz) { 13021 pr_warn("Empty CPU range\n"); 13022 return -EINVAL; 13023 } 13024 return 0; 13025 cleanup: 13026 free(*mask); 13027 *mask = NULL; 13028 return err; 13029 } 13030 13031 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13032 { 13033 int fd, err = 0, len; 13034 char buf[128]; 13035 13036 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13037 if (fd < 0) { 13038 err = -errno; 13039 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13040 return err; 13041 } 13042 len = read(fd, buf, sizeof(buf)); 13043 close(fd); 13044 if (len <= 0) { 13045 err = len ? -errno : -EINVAL; 13046 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13047 return err; 13048 } 13049 if (len >= sizeof(buf)) { 13050 pr_warn("CPU mask is too big in file %s\n", fcpu); 13051 return -E2BIG; 13052 } 13053 buf[len] = '\0'; 13054 13055 return parse_cpu_mask_str(buf, mask, mask_sz); 13056 } 13057 13058 int libbpf_num_possible_cpus(void) 13059 { 13060 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13061 static int cpus; 13062 int err, n, i, tmp_cpus; 13063 bool *mask; 13064 13065 tmp_cpus = READ_ONCE(cpus); 13066 if (tmp_cpus > 0) 13067 return tmp_cpus; 13068 13069 err = parse_cpu_mask_file(fcpu, &mask, &n); 13070 if (err) 13071 return libbpf_err(err); 13072 13073 tmp_cpus = 0; 13074 for (i = 0; i < n; i++) { 13075 if (mask[i]) 13076 tmp_cpus++; 13077 } 13078 free(mask); 13079 13080 WRITE_ONCE(cpus, tmp_cpus); 13081 return tmp_cpus; 13082 } 13083 13084 static int populate_skeleton_maps(const struct bpf_object *obj, 13085 struct bpf_map_skeleton *maps, 13086 size_t map_cnt) 13087 { 13088 int i; 13089 13090 for (i = 0; i < map_cnt; i++) { 13091 struct bpf_map **map = maps[i].map; 13092 const char *name = maps[i].name; 13093 void **mmaped = maps[i].mmaped; 13094 13095 *map = bpf_object__find_map_by_name(obj, name); 13096 if (!*map) { 13097 pr_warn("failed to find skeleton map '%s'\n", name); 13098 return -ESRCH; 13099 } 13100 13101 /* externs shouldn't be pre-setup from user code */ 13102 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13103 *mmaped = (*map)->mmaped; 13104 } 13105 return 0; 13106 } 13107 13108 static int populate_skeleton_progs(const struct bpf_object *obj, 13109 struct bpf_prog_skeleton *progs, 13110 size_t prog_cnt) 13111 { 13112 int i; 13113 13114 for (i = 0; i < prog_cnt; i++) { 13115 struct bpf_program **prog = progs[i].prog; 13116 const char *name = progs[i].name; 13117 13118 *prog = bpf_object__find_program_by_name(obj, name); 13119 if (!*prog) { 13120 pr_warn("failed to find skeleton program '%s'\n", name); 13121 return -ESRCH; 13122 } 13123 } 13124 return 0; 13125 } 13126 13127 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13128 const struct bpf_object_open_opts *opts) 13129 { 13130 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13131 .object_name = s->name, 13132 ); 13133 struct bpf_object *obj; 13134 int err; 13135 13136 /* Attempt to preserve opts->object_name, unless overriden by user 13137 * explicitly. Overwriting object name for skeletons is discouraged, 13138 * as it breaks global data maps, because they contain object name 13139 * prefix as their own map name prefix. When skeleton is generated, 13140 * bpftool is making an assumption that this name will stay the same. 13141 */ 13142 if (opts) { 13143 memcpy(&skel_opts, opts, sizeof(*opts)); 13144 if (!opts->object_name) 13145 skel_opts.object_name = s->name; 13146 } 13147 13148 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13149 err = libbpf_get_error(obj); 13150 if (err) { 13151 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13152 s->name, err); 13153 return libbpf_err(err); 13154 } 13155 13156 *s->obj = obj; 13157 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13158 if (err) { 13159 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13160 return libbpf_err(err); 13161 } 13162 13163 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13164 if (err) { 13165 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13166 return libbpf_err(err); 13167 } 13168 13169 return 0; 13170 } 13171 13172 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13173 { 13174 int err, len, var_idx, i; 13175 const char *var_name; 13176 const struct bpf_map *map; 13177 struct btf *btf; 13178 __u32 map_type_id; 13179 const struct btf_type *map_type, *var_type; 13180 const struct bpf_var_skeleton *var_skel; 13181 struct btf_var_secinfo *var; 13182 13183 if (!s->obj) 13184 return libbpf_err(-EINVAL); 13185 13186 btf = bpf_object__btf(s->obj); 13187 if (!btf) { 13188 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13189 bpf_object__name(s->obj)); 13190 return libbpf_err(-errno); 13191 } 13192 13193 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13194 if (err) { 13195 pr_warn("failed to populate subskeleton maps: %d\n", err); 13196 return libbpf_err(err); 13197 } 13198 13199 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13200 if (err) { 13201 pr_warn("failed to populate subskeleton maps: %d\n", err); 13202 return libbpf_err(err); 13203 } 13204 13205 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13206 var_skel = &s->vars[var_idx]; 13207 map = *var_skel->map; 13208 map_type_id = bpf_map__btf_value_type_id(map); 13209 map_type = btf__type_by_id(btf, map_type_id); 13210 13211 if (!btf_is_datasec(map_type)) { 13212 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13213 bpf_map__name(map), 13214 __btf_kind_str(btf_kind(map_type))); 13215 return libbpf_err(-EINVAL); 13216 } 13217 13218 len = btf_vlen(map_type); 13219 var = btf_var_secinfos(map_type); 13220 for (i = 0; i < len; i++, var++) { 13221 var_type = btf__type_by_id(btf, var->type); 13222 var_name = btf__name_by_offset(btf, var_type->name_off); 13223 if (strcmp(var_name, var_skel->name) == 0) { 13224 *var_skel->addr = map->mmaped + var->offset; 13225 break; 13226 } 13227 } 13228 } 13229 return 0; 13230 } 13231 13232 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13233 { 13234 if (!s) 13235 return; 13236 free(s->maps); 13237 free(s->progs); 13238 free(s->vars); 13239 free(s); 13240 } 13241 13242 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13243 { 13244 int i, err; 13245 13246 err = bpf_object__load(*s->obj); 13247 if (err) { 13248 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13249 return libbpf_err(err); 13250 } 13251 13252 for (i = 0; i < s->map_cnt; i++) { 13253 struct bpf_map *map = *s->maps[i].map; 13254 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13255 int prot, map_fd = bpf_map__fd(map); 13256 void **mmaped = s->maps[i].mmaped; 13257 13258 if (!mmaped) 13259 continue; 13260 13261 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13262 *mmaped = NULL; 13263 continue; 13264 } 13265 13266 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13267 prot = PROT_READ; 13268 else 13269 prot = PROT_READ | PROT_WRITE; 13270 13271 /* Remap anonymous mmap()-ed "map initialization image" as 13272 * a BPF map-backed mmap()-ed memory, but preserving the same 13273 * memory address. This will cause kernel to change process' 13274 * page table to point to a different piece of kernel memory, 13275 * but from userspace point of view memory address (and its 13276 * contents, being identical at this point) will stay the 13277 * same. This mapping will be released by bpf_object__close() 13278 * as per normal clean up procedure, so we don't need to worry 13279 * about it from skeleton's clean up perspective. 13280 */ 13281 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13282 if (*mmaped == MAP_FAILED) { 13283 err = -errno; 13284 *mmaped = NULL; 13285 pr_warn("failed to re-mmap() map '%s': %d\n", 13286 bpf_map__name(map), err); 13287 return libbpf_err(err); 13288 } 13289 } 13290 13291 return 0; 13292 } 13293 13294 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13295 { 13296 int i, err; 13297 13298 for (i = 0; i < s->prog_cnt; i++) { 13299 struct bpf_program *prog = *s->progs[i].prog; 13300 struct bpf_link **link = s->progs[i].link; 13301 13302 if (!prog->autoload || !prog->autoattach) 13303 continue; 13304 13305 /* auto-attaching not supported for this program */ 13306 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13307 continue; 13308 13309 /* if user already set the link manually, don't attempt auto-attach */ 13310 if (*link) 13311 continue; 13312 13313 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13314 if (err) { 13315 pr_warn("prog '%s': failed to auto-attach: %d\n", 13316 bpf_program__name(prog), err); 13317 return libbpf_err(err); 13318 } 13319 13320 /* It's possible that for some SEC() definitions auto-attach 13321 * is supported in some cases (e.g., if definition completely 13322 * specifies target information), but is not in other cases. 13323 * SEC("uprobe") is one such case. If user specified target 13324 * binary and function name, such BPF program can be 13325 * auto-attached. But if not, it shouldn't trigger skeleton's 13326 * attach to fail. It should just be skipped. 13327 * attach_fn signals such case with returning 0 (no error) and 13328 * setting link to NULL. 13329 */ 13330 } 13331 13332 return 0; 13333 } 13334 13335 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13336 { 13337 int i; 13338 13339 for (i = 0; i < s->prog_cnt; i++) { 13340 struct bpf_link **link = s->progs[i].link; 13341 13342 bpf_link__destroy(*link); 13343 *link = NULL; 13344 } 13345 } 13346 13347 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13348 { 13349 if (!s) 13350 return; 13351 13352 if (s->progs) 13353 bpf_object__detach_skeleton(s); 13354 if (s->obj) 13355 bpf_object__close(*s->obj); 13356 free(s->maps); 13357 free(s->progs); 13358 free(s); 13359 } 13360