1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 [BPF_NETKIT_PRIMARY] = "netkit_primary", 130 [BPF_NETKIT_PEER] = "netkit_peer", 131 }; 132 133 static const char * const link_type_name[] = { 134 [BPF_LINK_TYPE_UNSPEC] = "unspec", 135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 136 [BPF_LINK_TYPE_TRACING] = "tracing", 137 [BPF_LINK_TYPE_CGROUP] = "cgroup", 138 [BPF_LINK_TYPE_ITER] = "iter", 139 [BPF_LINK_TYPE_NETNS] = "netns", 140 [BPF_LINK_TYPE_XDP] = "xdp", 141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 144 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 145 [BPF_LINK_TYPE_TCX] = "tcx", 146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 147 [BPF_LINK_TYPE_NETKIT] = "netkit", 148 }; 149 150 static const char * const map_type_name[] = { 151 [BPF_MAP_TYPE_UNSPEC] = "unspec", 152 [BPF_MAP_TYPE_HASH] = "hash", 153 [BPF_MAP_TYPE_ARRAY] = "array", 154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 165 [BPF_MAP_TYPE_DEVMAP] = "devmap", 166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 168 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 169 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 174 [BPF_MAP_TYPE_QUEUE] = "queue", 175 [BPF_MAP_TYPE_STACK] = "stack", 176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 184 }; 185 186 static const char * const prog_type_name[] = { 187 [BPF_PROG_TYPE_UNSPEC] = "unspec", 188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 189 [BPF_PROG_TYPE_KPROBE] = "kprobe", 190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 193 [BPF_PROG_TYPE_XDP] = "xdp", 194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 213 [BPF_PROG_TYPE_TRACING] = "tracing", 214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 215 [BPF_PROG_TYPE_EXT] = "ext", 216 [BPF_PROG_TYPE_LSM] = "lsm", 217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 218 [BPF_PROG_TYPE_SYSCALL] = "syscall", 219 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 220 }; 221 222 static int __base_pr(enum libbpf_print_level level, const char *format, 223 va_list args) 224 { 225 if (level == LIBBPF_DEBUG) 226 return 0; 227 228 return vfprintf(stderr, format, args); 229 } 230 231 static libbpf_print_fn_t __libbpf_pr = __base_pr; 232 233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 234 { 235 libbpf_print_fn_t old_print_fn; 236 237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 238 239 return old_print_fn; 240 } 241 242 __printf(2, 3) 243 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 244 { 245 va_list args; 246 int old_errno; 247 libbpf_print_fn_t print_fn; 248 249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 250 if (!print_fn) 251 return; 252 253 old_errno = errno; 254 255 va_start(args, format); 256 __libbpf_pr(level, format, args); 257 va_end(args); 258 259 errno = old_errno; 260 } 261 262 static void pr_perm_msg(int err) 263 { 264 struct rlimit limit; 265 char buf[100]; 266 267 if (err != -EPERM || geteuid() != 0) 268 return; 269 270 err = getrlimit(RLIMIT_MEMLOCK, &limit); 271 if (err) 272 return; 273 274 if (limit.rlim_cur == RLIM_INFINITY) 275 return; 276 277 if (limit.rlim_cur < 1024) 278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 279 else if (limit.rlim_cur < 1024*1024) 280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 281 else 282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 283 284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 285 buf); 286 } 287 288 #define STRERR_BUFSIZE 128 289 290 /* Copied from tools/perf/util/util.h */ 291 #ifndef zfree 292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 293 #endif 294 295 #ifndef zclose 296 # define zclose(fd) ({ \ 297 int ___err = 0; \ 298 if ((fd) >= 0) \ 299 ___err = close((fd)); \ 300 fd = -1; \ 301 ___err; }) 302 #endif 303 304 static inline __u64 ptr_to_u64(const void *ptr) 305 { 306 return (__u64) (unsigned long) ptr; 307 } 308 309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 310 { 311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 312 return 0; 313 } 314 315 __u32 libbpf_major_version(void) 316 { 317 return LIBBPF_MAJOR_VERSION; 318 } 319 320 __u32 libbpf_minor_version(void) 321 { 322 return LIBBPF_MINOR_VERSION; 323 } 324 325 const char *libbpf_version_string(void) 326 { 327 #define __S(X) #X 328 #define _S(X) __S(X) 329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 330 #undef _S 331 #undef __S 332 } 333 334 enum reloc_type { 335 RELO_LD64, 336 RELO_CALL, 337 RELO_DATA, 338 RELO_EXTERN_LD64, 339 RELO_EXTERN_CALL, 340 RELO_SUBPROG_ADDR, 341 RELO_CORE, 342 }; 343 344 struct reloc_desc { 345 enum reloc_type type; 346 int insn_idx; 347 union { 348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 349 struct { 350 int map_idx; 351 int sym_off; 352 int ext_idx; 353 }; 354 }; 355 }; 356 357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 358 enum sec_def_flags { 359 SEC_NONE = 0, 360 /* expected_attach_type is optional, if kernel doesn't support that */ 361 SEC_EXP_ATTACH_OPT = 1, 362 /* legacy, only used by libbpf_get_type_names() and 363 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 364 * This used to be associated with cgroup (and few other) BPF programs 365 * that were attachable through BPF_PROG_ATTACH command. Pretty 366 * meaningless nowadays, though. 367 */ 368 SEC_ATTACHABLE = 2, 369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 370 /* attachment target is specified through BTF ID in either kernel or 371 * other BPF program's BTF object 372 */ 373 SEC_ATTACH_BTF = 4, 374 /* BPF program type allows sleeping/blocking in kernel */ 375 SEC_SLEEPABLE = 8, 376 /* BPF program support non-linear XDP buffer */ 377 SEC_XDP_FRAGS = 16, 378 /* Setup proper attach type for usdt probes. */ 379 SEC_USDT = 32, 380 }; 381 382 struct bpf_sec_def { 383 char *sec; 384 enum bpf_prog_type prog_type; 385 enum bpf_attach_type expected_attach_type; 386 long cookie; 387 int handler_id; 388 389 libbpf_prog_setup_fn_t prog_setup_fn; 390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 391 libbpf_prog_attach_fn_t prog_attach_fn; 392 }; 393 394 /* 395 * bpf_prog should be a better name but it has been used in 396 * linux/filter.h. 397 */ 398 struct bpf_program { 399 char *name; 400 char *sec_name; 401 size_t sec_idx; 402 const struct bpf_sec_def *sec_def; 403 /* this program's instruction offset (in number of instructions) 404 * within its containing ELF section 405 */ 406 size_t sec_insn_off; 407 /* number of original instructions in ELF section belonging to this 408 * program, not taking into account subprogram instructions possible 409 * appended later during relocation 410 */ 411 size_t sec_insn_cnt; 412 /* Offset (in number of instructions) of the start of instruction 413 * belonging to this BPF program within its containing main BPF 414 * program. For the entry-point (main) BPF program, this is always 415 * zero. For a sub-program, this gets reset before each of main BPF 416 * programs are processed and relocated and is used to determined 417 * whether sub-program was already appended to the main program, and 418 * if yes, at which instruction offset. 419 */ 420 size_t sub_insn_off; 421 422 /* instructions that belong to BPF program; insns[0] is located at 423 * sec_insn_off instruction within its ELF section in ELF file, so 424 * when mapping ELF file instruction index to the local instruction, 425 * one needs to subtract sec_insn_off; and vice versa. 426 */ 427 struct bpf_insn *insns; 428 /* actual number of instruction in this BPF program's image; for 429 * entry-point BPF programs this includes the size of main program 430 * itself plus all the used sub-programs, appended at the end 431 */ 432 size_t insns_cnt; 433 434 struct reloc_desc *reloc_desc; 435 int nr_reloc; 436 437 /* BPF verifier log settings */ 438 char *log_buf; 439 size_t log_size; 440 __u32 log_level; 441 442 struct bpf_object *obj; 443 444 int fd; 445 bool autoload; 446 bool autoattach; 447 bool sym_global; 448 bool mark_btf_static; 449 enum bpf_prog_type type; 450 enum bpf_attach_type expected_attach_type; 451 int exception_cb_idx; 452 453 int prog_ifindex; 454 __u32 attach_btf_obj_fd; 455 __u32 attach_btf_id; 456 __u32 attach_prog_fd; 457 458 void *func_info; 459 __u32 func_info_rec_size; 460 __u32 func_info_cnt; 461 462 void *line_info; 463 __u32 line_info_rec_size; 464 __u32 line_info_cnt; 465 __u32 prog_flags; 466 }; 467 468 struct bpf_struct_ops { 469 const char *tname; 470 const struct btf_type *type; 471 struct bpf_program **progs; 472 __u32 *kern_func_off; 473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 474 void *data; 475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 476 * btf_vmlinux's format. 477 * struct bpf_struct_ops_tcp_congestion_ops { 478 * [... some other kernel fields ...] 479 * struct tcp_congestion_ops data; 480 * } 481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 483 * from "data". 484 */ 485 void *kern_vdata; 486 __u32 type_id; 487 }; 488 489 #define DATA_SEC ".data" 490 #define BSS_SEC ".bss" 491 #define RODATA_SEC ".rodata" 492 #define KCONFIG_SEC ".kconfig" 493 #define KSYMS_SEC ".ksyms" 494 #define STRUCT_OPS_SEC ".struct_ops" 495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 496 497 enum libbpf_map_type { 498 LIBBPF_MAP_UNSPEC, 499 LIBBPF_MAP_DATA, 500 LIBBPF_MAP_BSS, 501 LIBBPF_MAP_RODATA, 502 LIBBPF_MAP_KCONFIG, 503 }; 504 505 struct bpf_map_def { 506 unsigned int type; 507 unsigned int key_size; 508 unsigned int value_size; 509 unsigned int max_entries; 510 unsigned int map_flags; 511 }; 512 513 struct bpf_map { 514 struct bpf_object *obj; 515 char *name; 516 /* real_name is defined for special internal maps (.rodata*, 517 * .data*, .bss, .kconfig) and preserves their original ELF section 518 * name. This is important to be able to find corresponding BTF 519 * DATASEC information. 520 */ 521 char *real_name; 522 int fd; 523 int sec_idx; 524 size_t sec_offset; 525 int map_ifindex; 526 int inner_map_fd; 527 struct bpf_map_def def; 528 __u32 numa_node; 529 __u32 btf_var_idx; 530 __u32 btf_key_type_id; 531 __u32 btf_value_type_id; 532 __u32 btf_vmlinux_value_type_id; 533 enum libbpf_map_type libbpf_type; 534 void *mmaped; 535 struct bpf_struct_ops *st_ops; 536 struct bpf_map *inner_map; 537 void **init_slots; 538 int init_slots_sz; 539 char *pin_path; 540 bool pinned; 541 bool reused; 542 bool autocreate; 543 __u64 map_extra; 544 }; 545 546 enum extern_type { 547 EXT_UNKNOWN, 548 EXT_KCFG, 549 EXT_KSYM, 550 }; 551 552 enum kcfg_type { 553 KCFG_UNKNOWN, 554 KCFG_CHAR, 555 KCFG_BOOL, 556 KCFG_INT, 557 KCFG_TRISTATE, 558 KCFG_CHAR_ARR, 559 }; 560 561 struct extern_desc { 562 enum extern_type type; 563 int sym_idx; 564 int btf_id; 565 int sec_btf_id; 566 const char *name; 567 char *essent_name; 568 bool is_set; 569 bool is_weak; 570 union { 571 struct { 572 enum kcfg_type type; 573 int sz; 574 int align; 575 int data_off; 576 bool is_signed; 577 } kcfg; 578 struct { 579 unsigned long long addr; 580 581 /* target btf_id of the corresponding kernel var. */ 582 int kernel_btf_obj_fd; 583 int kernel_btf_id; 584 585 /* local btf_id of the ksym extern's type. */ 586 __u32 type_id; 587 /* BTF fd index to be patched in for insn->off, this is 588 * 0 for vmlinux BTF, index in obj->fd_array for module 589 * BTF 590 */ 591 __s16 btf_fd_idx; 592 } ksym; 593 }; 594 }; 595 596 struct module_btf { 597 struct btf *btf; 598 char *name; 599 __u32 id; 600 int fd; 601 int fd_array_idx; 602 }; 603 604 enum sec_type { 605 SEC_UNUSED = 0, 606 SEC_RELO, 607 SEC_BSS, 608 SEC_DATA, 609 SEC_RODATA, 610 }; 611 612 struct elf_sec_desc { 613 enum sec_type sec_type; 614 Elf64_Shdr *shdr; 615 Elf_Data *data; 616 }; 617 618 struct elf_state { 619 int fd; 620 const void *obj_buf; 621 size_t obj_buf_sz; 622 Elf *elf; 623 Elf64_Ehdr *ehdr; 624 Elf_Data *symbols; 625 Elf_Data *st_ops_data; 626 Elf_Data *st_ops_link_data; 627 size_t shstrndx; /* section index for section name strings */ 628 size_t strtabidx; 629 struct elf_sec_desc *secs; 630 size_t sec_cnt; 631 int btf_maps_shndx; 632 __u32 btf_maps_sec_btf_id; 633 int text_shndx; 634 int symbols_shndx; 635 int st_ops_shndx; 636 int st_ops_link_shndx; 637 }; 638 639 struct usdt_manager; 640 641 struct bpf_object { 642 char name[BPF_OBJ_NAME_LEN]; 643 char license[64]; 644 __u32 kern_version; 645 646 struct bpf_program *programs; 647 size_t nr_programs; 648 struct bpf_map *maps; 649 size_t nr_maps; 650 size_t maps_cap; 651 652 char *kconfig; 653 struct extern_desc *externs; 654 int nr_extern; 655 int kconfig_map_idx; 656 657 bool loaded; 658 bool has_subcalls; 659 bool has_rodata; 660 661 struct bpf_gen *gen_loader; 662 663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 664 struct elf_state efile; 665 666 struct btf *btf; 667 struct btf_ext *btf_ext; 668 669 /* Parse and load BTF vmlinux if any of the programs in the object need 670 * it at load time. 671 */ 672 struct btf *btf_vmlinux; 673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 674 * override for vmlinux BTF. 675 */ 676 char *btf_custom_path; 677 /* vmlinux BTF override for CO-RE relocations */ 678 struct btf *btf_vmlinux_override; 679 /* Lazily initialized kernel module BTFs */ 680 struct module_btf *btf_modules; 681 bool btf_modules_loaded; 682 size_t btf_module_cnt; 683 size_t btf_module_cap; 684 685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 686 char *log_buf; 687 size_t log_size; 688 __u32 log_level; 689 690 int *fd_array; 691 size_t fd_array_cap; 692 size_t fd_array_cnt; 693 694 struct usdt_manager *usdt_man; 695 696 char path[]; 697 }; 698 699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 708 709 void bpf_program__unload(struct bpf_program *prog) 710 { 711 if (!prog) 712 return; 713 714 zclose(prog->fd); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 bpf_program__unload(prog); 726 zfree(&prog->name); 727 zfree(&prog->sec_name); 728 zfree(&prog->insns); 729 zfree(&prog->reloc_desc); 730 731 prog->nr_reloc = 0; 732 prog->insns_cnt = 0; 733 prog->sec_idx = -1; 734 } 735 736 static bool insn_is_subprog_call(const struct bpf_insn *insn) 737 { 738 return BPF_CLASS(insn->code) == BPF_JMP && 739 BPF_OP(insn->code) == BPF_CALL && 740 BPF_SRC(insn->code) == BPF_K && 741 insn->src_reg == BPF_PSEUDO_CALL && 742 insn->dst_reg == 0 && 743 insn->off == 0; 744 } 745 746 static bool is_call_insn(const struct bpf_insn *insn) 747 { 748 return insn->code == (BPF_JMP | BPF_CALL); 749 } 750 751 static bool insn_is_pseudo_func(struct bpf_insn *insn) 752 { 753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 754 } 755 756 static int 757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 758 const char *name, size_t sec_idx, const char *sec_name, 759 size_t sec_off, void *insn_data, size_t insn_data_sz) 760 { 761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 763 sec_name, name, sec_off, insn_data_sz); 764 return -EINVAL; 765 } 766 767 memset(prog, 0, sizeof(*prog)); 768 prog->obj = obj; 769 770 prog->sec_idx = sec_idx; 771 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 773 /* insns_cnt can later be increased by appending used subprograms */ 774 prog->insns_cnt = prog->sec_insn_cnt; 775 776 prog->type = BPF_PROG_TYPE_UNSPEC; 777 prog->fd = -1; 778 prog->exception_cb_idx = -1; 779 780 /* libbpf's convention for SEC("?abc...") is that it's just like 781 * SEC("abc...") but the corresponding bpf_program starts out with 782 * autoload set to false. 783 */ 784 if (sec_name[0] == '?') { 785 prog->autoload = false; 786 /* from now on forget there was ? in section name */ 787 sec_name++; 788 } else { 789 prog->autoload = true; 790 } 791 792 prog->autoattach = true; 793 794 /* inherit object's log_level */ 795 prog->log_level = obj->log_level; 796 797 prog->sec_name = strdup(sec_name); 798 if (!prog->sec_name) 799 goto errout; 800 801 prog->name = strdup(name); 802 if (!prog->name) 803 goto errout; 804 805 prog->insns = malloc(insn_data_sz); 806 if (!prog->insns) 807 goto errout; 808 memcpy(prog->insns, insn_data, insn_data_sz); 809 810 return 0; 811 errout: 812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 813 bpf_program__exit(prog); 814 return -ENOMEM; 815 } 816 817 static int 818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 819 const char *sec_name, int sec_idx) 820 { 821 Elf_Data *symbols = obj->efile.symbols; 822 struct bpf_program *prog, *progs; 823 void *data = sec_data->d_buf; 824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 825 int nr_progs, err, i; 826 const char *name; 827 Elf64_Sym *sym; 828 829 progs = obj->programs; 830 nr_progs = obj->nr_programs; 831 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 832 833 for (i = 0; i < nr_syms; i++) { 834 sym = elf_sym_by_idx(obj, i); 835 836 if (sym->st_shndx != sec_idx) 837 continue; 838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 839 continue; 840 841 prog_sz = sym->st_size; 842 sec_off = sym->st_value; 843 844 name = elf_sym_str(obj, sym->st_name); 845 if (!name) { 846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 847 sec_name, sec_off); 848 return -LIBBPF_ERRNO__FORMAT; 849 } 850 851 if (sec_off + prog_sz > sec_sz) { 852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 853 sec_name, sec_off); 854 return -LIBBPF_ERRNO__FORMAT; 855 } 856 857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 859 return -ENOTSUP; 860 } 861 862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 864 865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 866 if (!progs) { 867 /* 868 * In this case the original obj->programs 869 * is still valid, so don't need special treat for 870 * bpf_close_object(). 871 */ 872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 873 sec_name, name); 874 return -ENOMEM; 875 } 876 obj->programs = progs; 877 878 prog = &progs[nr_progs]; 879 880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 881 sec_off, data + sec_off, prog_sz); 882 if (err) 883 return err; 884 885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 886 prog->sym_global = true; 887 888 /* if function is a global/weak symbol, but has restricted 889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 890 * as static to enable more permissive BPF verification mode 891 * with more outside context available to BPF verifier 892 */ 893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 895 prog->mark_btf_static = true; 896 897 nr_progs++; 898 obj->nr_programs = nr_progs; 899 } 900 901 return 0; 902 } 903 904 static const struct btf_member * 905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (btf_member_bit_offset(t, i) == bit_offset) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 static const struct btf_member * 919 find_member_by_name(const struct btf *btf, const struct btf_type *t, 920 const char *name) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 935 const char *name, __u32 kind); 936 937 static int 938 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 939 const struct btf_type **type, __u32 *type_id, 940 const struct btf_type **vtype, __u32 *vtype_id, 941 const struct btf_member **data_member) 942 { 943 const struct btf_type *kern_type, *kern_vtype; 944 const struct btf_member *kern_data_member; 945 __s32 kern_vtype_id, kern_type_id; 946 __u32 i; 947 948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 949 if (kern_type_id < 0) { 950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 951 tname); 952 return kern_type_id; 953 } 954 kern_type = btf__type_by_id(btf, kern_type_id); 955 956 /* Find the corresponding "map_value" type that will be used 957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 959 * btf_vmlinux. 960 */ 961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 962 tname, BTF_KIND_STRUCT); 963 if (kern_vtype_id < 0) { 964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 965 STRUCT_OPS_VALUE_PREFIX, tname); 966 return kern_vtype_id; 967 } 968 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 969 970 /* Find "struct tcp_congestion_ops" from 971 * struct bpf_struct_ops_tcp_congestion_ops { 972 * [ ... ] 973 * struct tcp_congestion_ops data; 974 * } 975 */ 976 kern_data_member = btf_members(kern_vtype); 977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 978 if (kern_data_member->type == kern_type_id) 979 break; 980 } 981 if (i == btf_vlen(kern_vtype)) { 982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 983 tname, STRUCT_OPS_VALUE_PREFIX, tname); 984 return -EINVAL; 985 } 986 987 *type = kern_type; 988 *type_id = kern_type_id; 989 *vtype = kern_vtype; 990 *vtype_id = kern_vtype_id; 991 *data_member = kern_data_member; 992 993 return 0; 994 } 995 996 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 997 { 998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 999 } 1000 1001 /* Init the map's fields that depend on kern_btf */ 1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1003 const struct btf *btf, 1004 const struct btf *kern_btf) 1005 { 1006 const struct btf_member *member, *kern_member, *kern_data_member; 1007 const struct btf_type *type, *kern_type, *kern_vtype; 1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1009 struct bpf_struct_ops *st_ops; 1010 void *data, *kern_data; 1011 const char *tname; 1012 int err; 1013 1014 st_ops = map->st_ops; 1015 type = st_ops->type; 1016 tname = st_ops->tname; 1017 err = find_struct_ops_kern_types(kern_btf, tname, 1018 &kern_type, &kern_type_id, 1019 &kern_vtype, &kern_vtype_id, 1020 &kern_data_member); 1021 if (err) 1022 return err; 1023 1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1026 1027 map->def.value_size = kern_vtype->size; 1028 map->btf_vmlinux_value_type_id = kern_vtype_id; 1029 1030 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1031 if (!st_ops->kern_vdata) 1032 return -ENOMEM; 1033 1034 data = st_ops->data; 1035 kern_data_off = kern_data_member->offset / 8; 1036 kern_data = st_ops->kern_vdata + kern_data_off; 1037 1038 member = btf_members(type); 1039 for (i = 0; i < btf_vlen(type); i++, member++) { 1040 const struct btf_type *mtype, *kern_mtype; 1041 __u32 mtype_id, kern_mtype_id; 1042 void *mdata, *kern_mdata; 1043 __s64 msize, kern_msize; 1044 __u32 moff, kern_moff; 1045 __u32 kern_member_idx; 1046 const char *mname; 1047 1048 mname = btf__name_by_offset(btf, member->name_off); 1049 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1050 if (!kern_member) { 1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 kern_member_idx = kern_member - btf_members(kern_type); 1057 if (btf_member_bitfield_size(type, i) || 1058 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1060 map->name, mname); 1061 return -ENOTSUP; 1062 } 1063 1064 moff = member->offset / 8; 1065 kern_moff = kern_member->offset / 8; 1066 1067 mdata = data + moff; 1068 kern_mdata = kern_data + kern_moff; 1069 1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1072 &kern_mtype_id); 1073 if (BTF_INFO_KIND(mtype->info) != 1074 BTF_INFO_KIND(kern_mtype->info)) { 1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1076 map->name, mname, BTF_INFO_KIND(mtype->info), 1077 BTF_INFO_KIND(kern_mtype->info)); 1078 return -ENOTSUP; 1079 } 1080 1081 if (btf_is_ptr(mtype)) { 1082 struct bpf_program *prog; 1083 1084 prog = st_ops->progs[i]; 1085 if (!prog) 1086 continue; 1087 1088 kern_mtype = skip_mods_and_typedefs(kern_btf, 1089 kern_mtype->type, 1090 &kern_mtype_id); 1091 1092 /* mtype->type must be a func_proto which was 1093 * guaranteed in bpf_object__collect_st_ops_relos(), 1094 * so only check kern_mtype for func_proto here. 1095 */ 1096 if (!btf_is_func_proto(kern_mtype)) { 1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1098 map->name, mname); 1099 return -ENOTSUP; 1100 } 1101 1102 prog->attach_btf_id = kern_type_id; 1103 prog->expected_attach_type = kern_member_idx; 1104 1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1106 1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1108 map->name, mname, prog->name, moff, 1109 kern_moff); 1110 1111 continue; 1112 } 1113 1114 msize = btf__resolve_size(btf, mtype_id); 1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1118 map->name, mname, (ssize_t)msize, 1119 (ssize_t)kern_msize); 1120 return -ENOTSUP; 1121 } 1122 1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1124 map->name, mname, (unsigned int)msize, 1125 moff, kern_moff); 1126 memcpy(kern_mdata, mdata, msize); 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1133 { 1134 struct bpf_map *map; 1135 size_t i; 1136 int err; 1137 1138 for (i = 0; i < obj->nr_maps; i++) { 1139 map = &obj->maps[i]; 1140 1141 if (!bpf_map__is_struct_ops(map)) 1142 continue; 1143 1144 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1145 obj->btf_vmlinux); 1146 if (err) 1147 return err; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1154 int shndx, Elf_Data *data, __u32 map_flags) 1155 { 1156 const struct btf_type *type, *datasec; 1157 const struct btf_var_secinfo *vsi; 1158 struct bpf_struct_ops *st_ops; 1159 const char *tname, *var_name; 1160 __s32 type_id, datasec_id; 1161 const struct btf *btf; 1162 struct bpf_map *map; 1163 __u32 i; 1164 1165 if (shndx == -1) 1166 return 0; 1167 1168 btf = obj->btf; 1169 datasec_id = btf__find_by_name_kind(btf, sec_name, 1170 BTF_KIND_DATASEC); 1171 if (datasec_id < 0) { 1172 pr_warn("struct_ops init: DATASEC %s not found\n", 1173 sec_name); 1174 return -EINVAL; 1175 } 1176 1177 datasec = btf__type_by_id(btf, datasec_id); 1178 vsi = btf_var_secinfos(datasec); 1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1180 type = btf__type_by_id(obj->btf, vsi->type); 1181 var_name = btf__name_by_offset(obj->btf, type->name_off); 1182 1183 type_id = btf__resolve_type(obj->btf, vsi->type); 1184 if (type_id < 0) { 1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1186 vsi->type, sec_name); 1187 return -EINVAL; 1188 } 1189 1190 type = btf__type_by_id(obj->btf, type_id); 1191 tname = btf__name_by_offset(obj->btf, type->name_off); 1192 if (!tname[0]) { 1193 pr_warn("struct_ops init: anonymous type is not supported\n"); 1194 return -ENOTSUP; 1195 } 1196 if (!btf_is_struct(type)) { 1197 pr_warn("struct_ops init: %s is not a struct\n", tname); 1198 return -EINVAL; 1199 } 1200 1201 map = bpf_object__add_map(obj); 1202 if (IS_ERR(map)) 1203 return PTR_ERR(map); 1204 1205 map->sec_idx = shndx; 1206 map->sec_offset = vsi->offset; 1207 map->name = strdup(var_name); 1208 if (!map->name) 1209 return -ENOMEM; 1210 1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1212 map->def.key_size = sizeof(int); 1213 map->def.value_size = type->size; 1214 map->def.max_entries = 1; 1215 map->def.map_flags = map_flags; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, sec_name); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1249 { 1250 int err; 1251 1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1253 obj->efile.st_ops_data, 0); 1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1255 obj->efile.st_ops_link_shndx, 1256 obj->efile.st_ops_link_data, 1257 BPF_F_LINK); 1258 return err; 1259 } 1260 1261 static struct bpf_object *bpf_object__new(const char *path, 1262 const void *obj_buf, 1263 size_t obj_buf_sz, 1264 const char *obj_name) 1265 { 1266 struct bpf_object *obj; 1267 char *end; 1268 1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1270 if (!obj) { 1271 pr_warn("alloc memory failed for %s\n", path); 1272 return ERR_PTR(-ENOMEM); 1273 } 1274 1275 strcpy(obj->path, path); 1276 if (obj_name) { 1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1278 } else { 1279 /* Using basename() GNU version which doesn't modify arg. */ 1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1281 end = strchr(obj->name, '.'); 1282 if (end) 1283 *end = 0; 1284 } 1285 1286 obj->efile.fd = -1; 1287 /* 1288 * Caller of this function should also call 1289 * bpf_object__elf_finish() after data collection to return 1290 * obj_buf to user. If not, we should duplicate the buffer to 1291 * avoid user freeing them before elf finish. 1292 */ 1293 obj->efile.obj_buf = obj_buf; 1294 obj->efile.obj_buf_sz = obj_buf_sz; 1295 obj->efile.btf_maps_shndx = -1; 1296 obj->efile.st_ops_shndx = -1; 1297 obj->efile.st_ops_link_shndx = -1; 1298 obj->kconfig_map_idx = -1; 1299 1300 obj->kern_version = get_kernel_version(); 1301 obj->loaded = false; 1302 1303 return obj; 1304 } 1305 1306 static void bpf_object__elf_finish(struct bpf_object *obj) 1307 { 1308 if (!obj->efile.elf) 1309 return; 1310 1311 elf_end(obj->efile.elf); 1312 obj->efile.elf = NULL; 1313 obj->efile.symbols = NULL; 1314 obj->efile.st_ops_data = NULL; 1315 obj->efile.st_ops_link_data = NULL; 1316 1317 zfree(&obj->efile.secs); 1318 obj->efile.sec_cnt = 0; 1319 zclose(obj->efile.fd); 1320 obj->efile.obj_buf = NULL; 1321 obj->efile.obj_buf_sz = 0; 1322 } 1323 1324 static int bpf_object__elf_init(struct bpf_object *obj) 1325 { 1326 Elf64_Ehdr *ehdr; 1327 int err = 0; 1328 Elf *elf; 1329 1330 if (obj->efile.elf) { 1331 pr_warn("elf: init internal error\n"); 1332 return -LIBBPF_ERRNO__LIBELF; 1333 } 1334 1335 if (obj->efile.obj_buf_sz > 0) { 1336 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1338 } else { 1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1340 if (obj->efile.fd < 0) { 1341 char errmsg[STRERR_BUFSIZE], *cp; 1342 1343 err = -errno; 1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1346 return err; 1347 } 1348 1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1350 } 1351 1352 if (!elf) { 1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__LIBELF; 1355 goto errout; 1356 } 1357 1358 obj->efile.elf = elf; 1359 1360 if (elf_kind(elf) != ELF_K_ELF) { 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1363 goto errout; 1364 } 1365 1366 if (gelf_getclass(elf) != ELFCLASS64) { 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1369 goto errout; 1370 } 1371 1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1373 if (!obj->efile.ehdr) { 1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1380 pr_warn("elf: failed to get section names section index for %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1388 pr_warn("elf: failed to get section names strings from %s: %s\n", 1389 obj->path, elf_errmsg(-1)); 1390 err = -LIBBPF_ERRNO__FORMAT; 1391 goto errout; 1392 } 1393 1394 /* Old LLVM set e_machine to EM_NONE */ 1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1397 err = -LIBBPF_ERRNO__FORMAT; 1398 goto errout; 1399 } 1400 1401 return 0; 1402 errout: 1403 bpf_object__elf_finish(obj); 1404 return err; 1405 } 1406 1407 static int bpf_object__check_endianness(struct bpf_object *obj) 1408 { 1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1411 return 0; 1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1414 return 0; 1415 #else 1416 # error "Unrecognized __BYTE_ORDER__" 1417 #endif 1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1419 return -LIBBPF_ERRNO__ENDIAN; 1420 } 1421 1422 static int 1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 if (!data) { 1426 pr_warn("invalid license section in %s\n", obj->path); 1427 return -LIBBPF_ERRNO__FORMAT; 1428 } 1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1430 * go over allowed ELF data section buffer 1431 */ 1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1433 pr_debug("license of %s is %s\n", obj->path, obj->license); 1434 return 0; 1435 } 1436 1437 static int 1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1439 { 1440 __u32 kver; 1441 1442 if (!data || size != sizeof(kver)) { 1443 pr_warn("invalid kver section in %s\n", obj->path); 1444 return -LIBBPF_ERRNO__FORMAT; 1445 } 1446 memcpy(&kver, data, sizeof(kver)); 1447 obj->kern_version = kver; 1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1449 return 0; 1450 } 1451 1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1453 { 1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1455 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1456 return true; 1457 return false; 1458 } 1459 1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1461 { 1462 Elf_Data *data; 1463 Elf_Scn *scn; 1464 1465 if (!name) 1466 return -EINVAL; 1467 1468 scn = elf_sec_by_name(obj, name); 1469 data = elf_sec_data(obj, scn); 1470 if (data) { 1471 *size = data->d_size; 1472 return 0; /* found it */ 1473 } 1474 1475 return -ENOENT; 1476 } 1477 1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1479 { 1480 Elf_Data *symbols = obj->efile.symbols; 1481 const char *sname; 1482 size_t si; 1483 1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1486 1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1488 continue; 1489 1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1492 continue; 1493 1494 sname = elf_sym_str(obj, sym->st_name); 1495 if (!sname) { 1496 pr_warn("failed to get sym name string for var %s\n", name); 1497 return ERR_PTR(-EIO); 1498 } 1499 if (strcmp(name, sname) == 0) 1500 return sym; 1501 } 1502 1503 return ERR_PTR(-ENOENT); 1504 } 1505 1506 static int create_placeholder_fd(void) 1507 { 1508 int fd; 1509 1510 fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1511 if (fd < 0) 1512 return -errno; 1513 return fd; 1514 } 1515 1516 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1517 { 1518 struct bpf_map *map; 1519 int err; 1520 1521 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1522 sizeof(*obj->maps), obj->nr_maps + 1); 1523 if (err) 1524 return ERR_PTR(err); 1525 1526 map = &obj->maps[obj->nr_maps++]; 1527 map->obj = obj; 1528 /* Preallocate map FD without actually creating BPF map just yet. 1529 * These map FD "placeholders" will be reused later without changing 1530 * FD value when map is actually created in the kernel. 1531 * 1532 * This is useful to be able to perform BPF program relocations 1533 * without having to create BPF maps before that step. This allows us 1534 * to finalize and load BTF very late in BPF object's loading phase, 1535 * right before BPF maps have to be created and BPF programs have to 1536 * be loaded. By having these map FD placeholders we can perform all 1537 * the sanitizations, relocations, and any other adjustments before we 1538 * start creating actual BPF kernel objects (BTF, maps, progs). 1539 */ 1540 map->fd = create_placeholder_fd(); 1541 if (map->fd < 0) 1542 return ERR_PTR(map->fd); 1543 map->inner_map_fd = -1; 1544 map->autocreate = true; 1545 1546 return map; 1547 } 1548 1549 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1550 { 1551 const long page_sz = sysconf(_SC_PAGE_SIZE); 1552 size_t map_sz; 1553 1554 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1555 map_sz = roundup(map_sz, page_sz); 1556 return map_sz; 1557 } 1558 1559 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1560 { 1561 void *mmaped; 1562 1563 if (!map->mmaped) 1564 return -EINVAL; 1565 1566 if (old_sz == new_sz) 1567 return 0; 1568 1569 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1570 if (mmaped == MAP_FAILED) 1571 return -errno; 1572 1573 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1574 munmap(map->mmaped, old_sz); 1575 map->mmaped = mmaped; 1576 return 0; 1577 } 1578 1579 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1580 { 1581 char map_name[BPF_OBJ_NAME_LEN], *p; 1582 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1583 1584 /* This is one of the more confusing parts of libbpf for various 1585 * reasons, some of which are historical. The original idea for naming 1586 * internal names was to include as much of BPF object name prefix as 1587 * possible, so that it can be distinguished from similar internal 1588 * maps of a different BPF object. 1589 * As an example, let's say we have bpf_object named 'my_object_name' 1590 * and internal map corresponding to '.rodata' ELF section. The final 1591 * map name advertised to user and to the kernel will be 1592 * 'my_objec.rodata', taking first 8 characters of object name and 1593 * entire 7 characters of '.rodata'. 1594 * Somewhat confusingly, if internal map ELF section name is shorter 1595 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1596 * for the suffix, even though we only have 4 actual characters, and 1597 * resulting map will be called 'my_objec.bss', not even using all 15 1598 * characters allowed by the kernel. Oh well, at least the truncated 1599 * object name is somewhat consistent in this case. But if the map 1600 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1601 * (8 chars) and thus will be left with only first 7 characters of the 1602 * object name ('my_obje'). Happy guessing, user, that the final map 1603 * name will be "my_obje.kconfig". 1604 * Now, with libbpf starting to support arbitrarily named .rodata.* 1605 * and .data.* data sections, it's possible that ELF section name is 1606 * longer than allowed 15 chars, so we now need to be careful to take 1607 * only up to 15 first characters of ELF name, taking no BPF object 1608 * name characters at all. So '.rodata.abracadabra' will result in 1609 * '.rodata.abracad' kernel and user-visible name. 1610 * We need to keep this convoluted logic intact for .data, .bss and 1611 * .rodata maps, but for new custom .data.custom and .rodata.custom 1612 * maps we use their ELF names as is, not prepending bpf_object name 1613 * in front. We still need to truncate them to 15 characters for the 1614 * kernel. Full name can be recovered for such maps by using DATASEC 1615 * BTF type associated with such map's value type, though. 1616 */ 1617 if (sfx_len >= BPF_OBJ_NAME_LEN) 1618 sfx_len = BPF_OBJ_NAME_LEN - 1; 1619 1620 /* if there are two or more dots in map name, it's a custom dot map */ 1621 if (strchr(real_name + 1, '.') != NULL) 1622 pfx_len = 0; 1623 else 1624 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1625 1626 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1627 sfx_len, real_name); 1628 1629 /* sanitise map name to characters allowed by kernel */ 1630 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1631 if (!isalnum(*p) && *p != '_' && *p != '.') 1632 *p = '_'; 1633 1634 return strdup(map_name); 1635 } 1636 1637 static int 1638 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1639 1640 /* Internal BPF map is mmap()'able only if at least one of corresponding 1641 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1642 * variable and it's not marked as __hidden (which turns it into, effectively, 1643 * a STATIC variable). 1644 */ 1645 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1646 { 1647 const struct btf_type *t, *vt; 1648 struct btf_var_secinfo *vsi; 1649 int i, n; 1650 1651 if (!map->btf_value_type_id) 1652 return false; 1653 1654 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1655 if (!btf_is_datasec(t)) 1656 return false; 1657 1658 vsi = btf_var_secinfos(t); 1659 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1660 vt = btf__type_by_id(obj->btf, vsi->type); 1661 if (!btf_is_var(vt)) 1662 continue; 1663 1664 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1665 return true; 1666 } 1667 1668 return false; 1669 } 1670 1671 static int 1672 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1673 const char *real_name, int sec_idx, void *data, size_t data_sz) 1674 { 1675 struct bpf_map_def *def; 1676 struct bpf_map *map; 1677 size_t mmap_sz; 1678 int err; 1679 1680 map = bpf_object__add_map(obj); 1681 if (IS_ERR(map)) 1682 return PTR_ERR(map); 1683 1684 map->libbpf_type = type; 1685 map->sec_idx = sec_idx; 1686 map->sec_offset = 0; 1687 map->real_name = strdup(real_name); 1688 map->name = internal_map_name(obj, real_name); 1689 if (!map->real_name || !map->name) { 1690 zfree(&map->real_name); 1691 zfree(&map->name); 1692 return -ENOMEM; 1693 } 1694 1695 def = &map->def; 1696 def->type = BPF_MAP_TYPE_ARRAY; 1697 def->key_size = sizeof(int); 1698 def->value_size = data_sz; 1699 def->max_entries = 1; 1700 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1701 ? BPF_F_RDONLY_PROG : 0; 1702 1703 /* failures are fine because of maps like .rodata.str1.1 */ 1704 (void) map_fill_btf_type_info(obj, map); 1705 1706 if (map_is_mmapable(obj, map)) 1707 def->map_flags |= BPF_F_MMAPABLE; 1708 1709 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1710 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1711 1712 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1713 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1714 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1715 if (map->mmaped == MAP_FAILED) { 1716 err = -errno; 1717 map->mmaped = NULL; 1718 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1719 map->name, err); 1720 zfree(&map->real_name); 1721 zfree(&map->name); 1722 return err; 1723 } 1724 1725 if (data) 1726 memcpy(map->mmaped, data, data_sz); 1727 1728 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1729 return 0; 1730 } 1731 1732 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1733 { 1734 struct elf_sec_desc *sec_desc; 1735 const char *sec_name; 1736 int err = 0, sec_idx; 1737 1738 /* 1739 * Populate obj->maps with libbpf internal maps. 1740 */ 1741 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1742 sec_desc = &obj->efile.secs[sec_idx]; 1743 1744 /* Skip recognized sections with size 0. */ 1745 if (!sec_desc->data || sec_desc->data->d_size == 0) 1746 continue; 1747 1748 switch (sec_desc->sec_type) { 1749 case SEC_DATA: 1750 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1751 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1752 sec_name, sec_idx, 1753 sec_desc->data->d_buf, 1754 sec_desc->data->d_size); 1755 break; 1756 case SEC_RODATA: 1757 obj->has_rodata = true; 1758 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1759 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1760 sec_name, sec_idx, 1761 sec_desc->data->d_buf, 1762 sec_desc->data->d_size); 1763 break; 1764 case SEC_BSS: 1765 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1766 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1767 sec_name, sec_idx, 1768 NULL, 1769 sec_desc->data->d_size); 1770 break; 1771 default: 1772 /* skip */ 1773 break; 1774 } 1775 if (err) 1776 return err; 1777 } 1778 return 0; 1779 } 1780 1781 1782 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1783 const void *name) 1784 { 1785 int i; 1786 1787 for (i = 0; i < obj->nr_extern; i++) { 1788 if (strcmp(obj->externs[i].name, name) == 0) 1789 return &obj->externs[i]; 1790 } 1791 return NULL; 1792 } 1793 1794 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1795 char value) 1796 { 1797 switch (ext->kcfg.type) { 1798 case KCFG_BOOL: 1799 if (value == 'm') { 1800 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1801 ext->name, value); 1802 return -EINVAL; 1803 } 1804 *(bool *)ext_val = value == 'y' ? true : false; 1805 break; 1806 case KCFG_TRISTATE: 1807 if (value == 'y') 1808 *(enum libbpf_tristate *)ext_val = TRI_YES; 1809 else if (value == 'm') 1810 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1811 else /* value == 'n' */ 1812 *(enum libbpf_tristate *)ext_val = TRI_NO; 1813 break; 1814 case KCFG_CHAR: 1815 *(char *)ext_val = value; 1816 break; 1817 case KCFG_UNKNOWN: 1818 case KCFG_INT: 1819 case KCFG_CHAR_ARR: 1820 default: 1821 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1822 ext->name, value); 1823 return -EINVAL; 1824 } 1825 ext->is_set = true; 1826 return 0; 1827 } 1828 1829 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1830 const char *value) 1831 { 1832 size_t len; 1833 1834 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1835 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1836 ext->name, value); 1837 return -EINVAL; 1838 } 1839 1840 len = strlen(value); 1841 if (value[len - 1] != '"') { 1842 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1843 ext->name, value); 1844 return -EINVAL; 1845 } 1846 1847 /* strip quotes */ 1848 len -= 2; 1849 if (len >= ext->kcfg.sz) { 1850 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1851 ext->name, value, len, ext->kcfg.sz - 1); 1852 len = ext->kcfg.sz - 1; 1853 } 1854 memcpy(ext_val, value + 1, len); 1855 ext_val[len] = '\0'; 1856 ext->is_set = true; 1857 return 0; 1858 } 1859 1860 static int parse_u64(const char *value, __u64 *res) 1861 { 1862 char *value_end; 1863 int err; 1864 1865 errno = 0; 1866 *res = strtoull(value, &value_end, 0); 1867 if (errno) { 1868 err = -errno; 1869 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1870 return err; 1871 } 1872 if (*value_end) { 1873 pr_warn("failed to parse '%s' as integer completely\n", value); 1874 return -EINVAL; 1875 } 1876 return 0; 1877 } 1878 1879 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1880 { 1881 int bit_sz = ext->kcfg.sz * 8; 1882 1883 if (ext->kcfg.sz == 8) 1884 return true; 1885 1886 /* Validate that value stored in u64 fits in integer of `ext->sz` 1887 * bytes size without any loss of information. If the target integer 1888 * is signed, we rely on the following limits of integer type of 1889 * Y bits and subsequent transformation: 1890 * 1891 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1892 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1893 * 0 <= X + 2^(Y-1) < 2^Y 1894 * 1895 * For unsigned target integer, check that all the (64 - Y) bits are 1896 * zero. 1897 */ 1898 if (ext->kcfg.is_signed) 1899 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1900 else 1901 return (v >> bit_sz) == 0; 1902 } 1903 1904 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1905 __u64 value) 1906 { 1907 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1908 ext->kcfg.type != KCFG_BOOL) { 1909 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1910 ext->name, (unsigned long long)value); 1911 return -EINVAL; 1912 } 1913 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1914 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1915 ext->name, (unsigned long long)value); 1916 return -EINVAL; 1917 1918 } 1919 if (!is_kcfg_value_in_range(ext, value)) { 1920 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1921 ext->name, (unsigned long long)value, ext->kcfg.sz); 1922 return -ERANGE; 1923 } 1924 switch (ext->kcfg.sz) { 1925 case 1: 1926 *(__u8 *)ext_val = value; 1927 break; 1928 case 2: 1929 *(__u16 *)ext_val = value; 1930 break; 1931 case 4: 1932 *(__u32 *)ext_val = value; 1933 break; 1934 case 8: 1935 *(__u64 *)ext_val = value; 1936 break; 1937 default: 1938 return -EINVAL; 1939 } 1940 ext->is_set = true; 1941 return 0; 1942 } 1943 1944 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1945 char *buf, void *data) 1946 { 1947 struct extern_desc *ext; 1948 char *sep, *value; 1949 int len, err = 0; 1950 void *ext_val; 1951 __u64 num; 1952 1953 if (!str_has_pfx(buf, "CONFIG_")) 1954 return 0; 1955 1956 sep = strchr(buf, '='); 1957 if (!sep) { 1958 pr_warn("failed to parse '%s': no separator\n", buf); 1959 return -EINVAL; 1960 } 1961 1962 /* Trim ending '\n' */ 1963 len = strlen(buf); 1964 if (buf[len - 1] == '\n') 1965 buf[len - 1] = '\0'; 1966 /* Split on '=' and ensure that a value is present. */ 1967 *sep = '\0'; 1968 if (!sep[1]) { 1969 *sep = '='; 1970 pr_warn("failed to parse '%s': no value\n", buf); 1971 return -EINVAL; 1972 } 1973 1974 ext = find_extern_by_name(obj, buf); 1975 if (!ext || ext->is_set) 1976 return 0; 1977 1978 ext_val = data + ext->kcfg.data_off; 1979 value = sep + 1; 1980 1981 switch (*value) { 1982 case 'y': case 'n': case 'm': 1983 err = set_kcfg_value_tri(ext, ext_val, *value); 1984 break; 1985 case '"': 1986 err = set_kcfg_value_str(ext, ext_val, value); 1987 break; 1988 default: 1989 /* assume integer */ 1990 err = parse_u64(value, &num); 1991 if (err) { 1992 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1993 return err; 1994 } 1995 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1996 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1997 return -EINVAL; 1998 } 1999 err = set_kcfg_value_num(ext, ext_val, num); 2000 break; 2001 } 2002 if (err) 2003 return err; 2004 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2005 return 0; 2006 } 2007 2008 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2009 { 2010 char buf[PATH_MAX]; 2011 struct utsname uts; 2012 int len, err = 0; 2013 gzFile file; 2014 2015 uname(&uts); 2016 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2017 if (len < 0) 2018 return -EINVAL; 2019 else if (len >= PATH_MAX) 2020 return -ENAMETOOLONG; 2021 2022 /* gzopen also accepts uncompressed files. */ 2023 file = gzopen(buf, "re"); 2024 if (!file) 2025 file = gzopen("/proc/config.gz", "re"); 2026 2027 if (!file) { 2028 pr_warn("failed to open system Kconfig\n"); 2029 return -ENOENT; 2030 } 2031 2032 while (gzgets(file, buf, sizeof(buf))) { 2033 err = bpf_object__process_kconfig_line(obj, buf, data); 2034 if (err) { 2035 pr_warn("error parsing system Kconfig line '%s': %d\n", 2036 buf, err); 2037 goto out; 2038 } 2039 } 2040 2041 out: 2042 gzclose(file); 2043 return err; 2044 } 2045 2046 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2047 const char *config, void *data) 2048 { 2049 char buf[PATH_MAX]; 2050 int err = 0; 2051 FILE *file; 2052 2053 file = fmemopen((void *)config, strlen(config), "r"); 2054 if (!file) { 2055 err = -errno; 2056 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2057 return err; 2058 } 2059 2060 while (fgets(buf, sizeof(buf), file)) { 2061 err = bpf_object__process_kconfig_line(obj, buf, data); 2062 if (err) { 2063 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2064 buf, err); 2065 break; 2066 } 2067 } 2068 2069 fclose(file); 2070 return err; 2071 } 2072 2073 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2074 { 2075 struct extern_desc *last_ext = NULL, *ext; 2076 size_t map_sz; 2077 int i, err; 2078 2079 for (i = 0; i < obj->nr_extern; i++) { 2080 ext = &obj->externs[i]; 2081 if (ext->type == EXT_KCFG) 2082 last_ext = ext; 2083 } 2084 2085 if (!last_ext) 2086 return 0; 2087 2088 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2089 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2090 ".kconfig", obj->efile.symbols_shndx, 2091 NULL, map_sz); 2092 if (err) 2093 return err; 2094 2095 obj->kconfig_map_idx = obj->nr_maps - 1; 2096 2097 return 0; 2098 } 2099 2100 const struct btf_type * 2101 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2102 { 2103 const struct btf_type *t = btf__type_by_id(btf, id); 2104 2105 if (res_id) 2106 *res_id = id; 2107 2108 while (btf_is_mod(t) || btf_is_typedef(t)) { 2109 if (res_id) 2110 *res_id = t->type; 2111 t = btf__type_by_id(btf, t->type); 2112 } 2113 2114 return t; 2115 } 2116 2117 static const struct btf_type * 2118 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2119 { 2120 const struct btf_type *t; 2121 2122 t = skip_mods_and_typedefs(btf, id, NULL); 2123 if (!btf_is_ptr(t)) 2124 return NULL; 2125 2126 t = skip_mods_and_typedefs(btf, t->type, res_id); 2127 2128 return btf_is_func_proto(t) ? t : NULL; 2129 } 2130 2131 static const char *__btf_kind_str(__u16 kind) 2132 { 2133 switch (kind) { 2134 case BTF_KIND_UNKN: return "void"; 2135 case BTF_KIND_INT: return "int"; 2136 case BTF_KIND_PTR: return "ptr"; 2137 case BTF_KIND_ARRAY: return "array"; 2138 case BTF_KIND_STRUCT: return "struct"; 2139 case BTF_KIND_UNION: return "union"; 2140 case BTF_KIND_ENUM: return "enum"; 2141 case BTF_KIND_FWD: return "fwd"; 2142 case BTF_KIND_TYPEDEF: return "typedef"; 2143 case BTF_KIND_VOLATILE: return "volatile"; 2144 case BTF_KIND_CONST: return "const"; 2145 case BTF_KIND_RESTRICT: return "restrict"; 2146 case BTF_KIND_FUNC: return "func"; 2147 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2148 case BTF_KIND_VAR: return "var"; 2149 case BTF_KIND_DATASEC: return "datasec"; 2150 case BTF_KIND_FLOAT: return "float"; 2151 case BTF_KIND_DECL_TAG: return "decl_tag"; 2152 case BTF_KIND_TYPE_TAG: return "type_tag"; 2153 case BTF_KIND_ENUM64: return "enum64"; 2154 default: return "unknown"; 2155 } 2156 } 2157 2158 const char *btf_kind_str(const struct btf_type *t) 2159 { 2160 return __btf_kind_str(btf_kind(t)); 2161 } 2162 2163 /* 2164 * Fetch integer attribute of BTF map definition. Such attributes are 2165 * represented using a pointer to an array, in which dimensionality of array 2166 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2167 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2168 * type definition, while using only sizeof(void *) space in ELF data section. 2169 */ 2170 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2171 const struct btf_member *m, __u32 *res) 2172 { 2173 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2174 const char *name = btf__name_by_offset(btf, m->name_off); 2175 const struct btf_array *arr_info; 2176 const struct btf_type *arr_t; 2177 2178 if (!btf_is_ptr(t)) { 2179 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2180 map_name, name, btf_kind_str(t)); 2181 return false; 2182 } 2183 2184 arr_t = btf__type_by_id(btf, t->type); 2185 if (!arr_t) { 2186 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2187 map_name, name, t->type); 2188 return false; 2189 } 2190 if (!btf_is_array(arr_t)) { 2191 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2192 map_name, name, btf_kind_str(arr_t)); 2193 return false; 2194 } 2195 arr_info = btf_array(arr_t); 2196 *res = arr_info->nelems; 2197 return true; 2198 } 2199 2200 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2201 { 2202 int len; 2203 2204 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2205 if (len < 0) 2206 return -EINVAL; 2207 if (len >= buf_sz) 2208 return -ENAMETOOLONG; 2209 2210 return 0; 2211 } 2212 2213 static int build_map_pin_path(struct bpf_map *map, const char *path) 2214 { 2215 char buf[PATH_MAX]; 2216 int err; 2217 2218 if (!path) 2219 path = "/sys/fs/bpf"; 2220 2221 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2222 if (err) 2223 return err; 2224 2225 return bpf_map__set_pin_path(map, buf); 2226 } 2227 2228 /* should match definition in bpf_helpers.h */ 2229 enum libbpf_pin_type { 2230 LIBBPF_PIN_NONE, 2231 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2232 LIBBPF_PIN_BY_NAME, 2233 }; 2234 2235 int parse_btf_map_def(const char *map_name, struct btf *btf, 2236 const struct btf_type *def_t, bool strict, 2237 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2238 { 2239 const struct btf_type *t; 2240 const struct btf_member *m; 2241 bool is_inner = inner_def == NULL; 2242 int vlen, i; 2243 2244 vlen = btf_vlen(def_t); 2245 m = btf_members(def_t); 2246 for (i = 0; i < vlen; i++, m++) { 2247 const char *name = btf__name_by_offset(btf, m->name_off); 2248 2249 if (!name) { 2250 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2251 return -EINVAL; 2252 } 2253 if (strcmp(name, "type") == 0) { 2254 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2255 return -EINVAL; 2256 map_def->parts |= MAP_DEF_MAP_TYPE; 2257 } else if (strcmp(name, "max_entries") == 0) { 2258 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2259 return -EINVAL; 2260 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2261 } else if (strcmp(name, "map_flags") == 0) { 2262 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2263 return -EINVAL; 2264 map_def->parts |= MAP_DEF_MAP_FLAGS; 2265 } else if (strcmp(name, "numa_node") == 0) { 2266 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2267 return -EINVAL; 2268 map_def->parts |= MAP_DEF_NUMA_NODE; 2269 } else if (strcmp(name, "key_size") == 0) { 2270 __u32 sz; 2271 2272 if (!get_map_field_int(map_name, btf, m, &sz)) 2273 return -EINVAL; 2274 if (map_def->key_size && map_def->key_size != sz) { 2275 pr_warn("map '%s': conflicting key size %u != %u.\n", 2276 map_name, map_def->key_size, sz); 2277 return -EINVAL; 2278 } 2279 map_def->key_size = sz; 2280 map_def->parts |= MAP_DEF_KEY_SIZE; 2281 } else if (strcmp(name, "key") == 0) { 2282 __s64 sz; 2283 2284 t = btf__type_by_id(btf, m->type); 2285 if (!t) { 2286 pr_warn("map '%s': key type [%d] not found.\n", 2287 map_name, m->type); 2288 return -EINVAL; 2289 } 2290 if (!btf_is_ptr(t)) { 2291 pr_warn("map '%s': key spec is not PTR: %s.\n", 2292 map_name, btf_kind_str(t)); 2293 return -EINVAL; 2294 } 2295 sz = btf__resolve_size(btf, t->type); 2296 if (sz < 0) { 2297 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2298 map_name, t->type, (ssize_t)sz); 2299 return sz; 2300 } 2301 if (map_def->key_size && map_def->key_size != sz) { 2302 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2303 map_name, map_def->key_size, (ssize_t)sz); 2304 return -EINVAL; 2305 } 2306 map_def->key_size = sz; 2307 map_def->key_type_id = t->type; 2308 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2309 } else if (strcmp(name, "value_size") == 0) { 2310 __u32 sz; 2311 2312 if (!get_map_field_int(map_name, btf, m, &sz)) 2313 return -EINVAL; 2314 if (map_def->value_size && map_def->value_size != sz) { 2315 pr_warn("map '%s': conflicting value size %u != %u.\n", 2316 map_name, map_def->value_size, sz); 2317 return -EINVAL; 2318 } 2319 map_def->value_size = sz; 2320 map_def->parts |= MAP_DEF_VALUE_SIZE; 2321 } else if (strcmp(name, "value") == 0) { 2322 __s64 sz; 2323 2324 t = btf__type_by_id(btf, m->type); 2325 if (!t) { 2326 pr_warn("map '%s': value type [%d] not found.\n", 2327 map_name, m->type); 2328 return -EINVAL; 2329 } 2330 if (!btf_is_ptr(t)) { 2331 pr_warn("map '%s': value spec is not PTR: %s.\n", 2332 map_name, btf_kind_str(t)); 2333 return -EINVAL; 2334 } 2335 sz = btf__resolve_size(btf, t->type); 2336 if (sz < 0) { 2337 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2338 map_name, t->type, (ssize_t)sz); 2339 return sz; 2340 } 2341 if (map_def->value_size && map_def->value_size != sz) { 2342 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2343 map_name, map_def->value_size, (ssize_t)sz); 2344 return -EINVAL; 2345 } 2346 map_def->value_size = sz; 2347 map_def->value_type_id = t->type; 2348 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2349 } 2350 else if (strcmp(name, "values") == 0) { 2351 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2352 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2353 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2354 char inner_map_name[128]; 2355 int err; 2356 2357 if (is_inner) { 2358 pr_warn("map '%s': multi-level inner maps not supported.\n", 2359 map_name); 2360 return -ENOTSUP; 2361 } 2362 if (i != vlen - 1) { 2363 pr_warn("map '%s': '%s' member should be last.\n", 2364 map_name, name); 2365 return -EINVAL; 2366 } 2367 if (!is_map_in_map && !is_prog_array) { 2368 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2369 map_name); 2370 return -ENOTSUP; 2371 } 2372 if (map_def->value_size && map_def->value_size != 4) { 2373 pr_warn("map '%s': conflicting value size %u != 4.\n", 2374 map_name, map_def->value_size); 2375 return -EINVAL; 2376 } 2377 map_def->value_size = 4; 2378 t = btf__type_by_id(btf, m->type); 2379 if (!t) { 2380 pr_warn("map '%s': %s type [%d] not found.\n", 2381 map_name, desc, m->type); 2382 return -EINVAL; 2383 } 2384 if (!btf_is_array(t) || btf_array(t)->nelems) { 2385 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2386 map_name, desc); 2387 return -EINVAL; 2388 } 2389 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2390 if (!btf_is_ptr(t)) { 2391 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2392 map_name, desc, btf_kind_str(t)); 2393 return -EINVAL; 2394 } 2395 t = skip_mods_and_typedefs(btf, t->type, NULL); 2396 if (is_prog_array) { 2397 if (!btf_is_func_proto(t)) { 2398 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2399 map_name, btf_kind_str(t)); 2400 return -EINVAL; 2401 } 2402 continue; 2403 } 2404 if (!btf_is_struct(t)) { 2405 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2406 map_name, btf_kind_str(t)); 2407 return -EINVAL; 2408 } 2409 2410 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2411 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2412 if (err) 2413 return err; 2414 2415 map_def->parts |= MAP_DEF_INNER_MAP; 2416 } else if (strcmp(name, "pinning") == 0) { 2417 __u32 val; 2418 2419 if (is_inner) { 2420 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2421 return -EINVAL; 2422 } 2423 if (!get_map_field_int(map_name, btf, m, &val)) 2424 return -EINVAL; 2425 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2426 pr_warn("map '%s': invalid pinning value %u.\n", 2427 map_name, val); 2428 return -EINVAL; 2429 } 2430 map_def->pinning = val; 2431 map_def->parts |= MAP_DEF_PINNING; 2432 } else if (strcmp(name, "map_extra") == 0) { 2433 __u32 map_extra; 2434 2435 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2436 return -EINVAL; 2437 map_def->map_extra = map_extra; 2438 map_def->parts |= MAP_DEF_MAP_EXTRA; 2439 } else { 2440 if (strict) { 2441 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2442 return -ENOTSUP; 2443 } 2444 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2445 } 2446 } 2447 2448 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2449 pr_warn("map '%s': map type isn't specified.\n", map_name); 2450 return -EINVAL; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static size_t adjust_ringbuf_sz(size_t sz) 2457 { 2458 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2459 __u32 mul; 2460 2461 /* if user forgot to set any size, make sure they see error */ 2462 if (sz == 0) 2463 return 0; 2464 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2465 * a power-of-2 multiple of kernel's page size. If user diligently 2466 * satisified these conditions, pass the size through. 2467 */ 2468 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2469 return sz; 2470 2471 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2472 * user-set size to satisfy both user size request and kernel 2473 * requirements and substitute correct max_entries for map creation. 2474 */ 2475 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2476 if (mul * page_sz > sz) 2477 return mul * page_sz; 2478 } 2479 2480 /* if it's impossible to satisfy the conditions (i.e., user size is 2481 * very close to UINT_MAX but is not a power-of-2 multiple of 2482 * page_size) then just return original size and let kernel reject it 2483 */ 2484 return sz; 2485 } 2486 2487 static bool map_is_ringbuf(const struct bpf_map *map) 2488 { 2489 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2490 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2491 } 2492 2493 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2494 { 2495 map->def.type = def->map_type; 2496 map->def.key_size = def->key_size; 2497 map->def.value_size = def->value_size; 2498 map->def.max_entries = def->max_entries; 2499 map->def.map_flags = def->map_flags; 2500 map->map_extra = def->map_extra; 2501 2502 map->numa_node = def->numa_node; 2503 map->btf_key_type_id = def->key_type_id; 2504 map->btf_value_type_id = def->value_type_id; 2505 2506 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2507 if (map_is_ringbuf(map)) 2508 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2509 2510 if (def->parts & MAP_DEF_MAP_TYPE) 2511 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2512 2513 if (def->parts & MAP_DEF_KEY_TYPE) 2514 pr_debug("map '%s': found key [%u], sz = %u.\n", 2515 map->name, def->key_type_id, def->key_size); 2516 else if (def->parts & MAP_DEF_KEY_SIZE) 2517 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2518 2519 if (def->parts & MAP_DEF_VALUE_TYPE) 2520 pr_debug("map '%s': found value [%u], sz = %u.\n", 2521 map->name, def->value_type_id, def->value_size); 2522 else if (def->parts & MAP_DEF_VALUE_SIZE) 2523 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2524 2525 if (def->parts & MAP_DEF_MAX_ENTRIES) 2526 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2527 if (def->parts & MAP_DEF_MAP_FLAGS) 2528 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2529 if (def->parts & MAP_DEF_MAP_EXTRA) 2530 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2531 (unsigned long long)def->map_extra); 2532 if (def->parts & MAP_DEF_PINNING) 2533 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2534 if (def->parts & MAP_DEF_NUMA_NODE) 2535 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2536 2537 if (def->parts & MAP_DEF_INNER_MAP) 2538 pr_debug("map '%s': found inner map definition.\n", map->name); 2539 } 2540 2541 static const char *btf_var_linkage_str(__u32 linkage) 2542 { 2543 switch (linkage) { 2544 case BTF_VAR_STATIC: return "static"; 2545 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2546 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2547 default: return "unknown"; 2548 } 2549 } 2550 2551 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2552 const struct btf_type *sec, 2553 int var_idx, int sec_idx, 2554 const Elf_Data *data, bool strict, 2555 const char *pin_root_path) 2556 { 2557 struct btf_map_def map_def = {}, inner_def = {}; 2558 const struct btf_type *var, *def; 2559 const struct btf_var_secinfo *vi; 2560 const struct btf_var *var_extra; 2561 const char *map_name; 2562 struct bpf_map *map; 2563 int err; 2564 2565 vi = btf_var_secinfos(sec) + var_idx; 2566 var = btf__type_by_id(obj->btf, vi->type); 2567 var_extra = btf_var(var); 2568 map_name = btf__name_by_offset(obj->btf, var->name_off); 2569 2570 if (map_name == NULL || map_name[0] == '\0') { 2571 pr_warn("map #%d: empty name.\n", var_idx); 2572 return -EINVAL; 2573 } 2574 if ((__u64)vi->offset + vi->size > data->d_size) { 2575 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2576 return -EINVAL; 2577 } 2578 if (!btf_is_var(var)) { 2579 pr_warn("map '%s': unexpected var kind %s.\n", 2580 map_name, btf_kind_str(var)); 2581 return -EINVAL; 2582 } 2583 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2584 pr_warn("map '%s': unsupported map linkage %s.\n", 2585 map_name, btf_var_linkage_str(var_extra->linkage)); 2586 return -EOPNOTSUPP; 2587 } 2588 2589 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2590 if (!btf_is_struct(def)) { 2591 pr_warn("map '%s': unexpected def kind %s.\n", 2592 map_name, btf_kind_str(var)); 2593 return -EINVAL; 2594 } 2595 if (def->size > vi->size) { 2596 pr_warn("map '%s': invalid def size.\n", map_name); 2597 return -EINVAL; 2598 } 2599 2600 map = bpf_object__add_map(obj); 2601 if (IS_ERR(map)) 2602 return PTR_ERR(map); 2603 map->name = strdup(map_name); 2604 if (!map->name) { 2605 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2606 return -ENOMEM; 2607 } 2608 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2609 map->def.type = BPF_MAP_TYPE_UNSPEC; 2610 map->sec_idx = sec_idx; 2611 map->sec_offset = vi->offset; 2612 map->btf_var_idx = var_idx; 2613 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2614 map_name, map->sec_idx, map->sec_offset); 2615 2616 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2617 if (err) 2618 return err; 2619 2620 fill_map_from_def(map, &map_def); 2621 2622 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2623 err = build_map_pin_path(map, pin_root_path); 2624 if (err) { 2625 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2626 return err; 2627 } 2628 } 2629 2630 if (map_def.parts & MAP_DEF_INNER_MAP) { 2631 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2632 if (!map->inner_map) 2633 return -ENOMEM; 2634 map->inner_map->fd = create_placeholder_fd(); 2635 if (map->inner_map->fd < 0) 2636 return map->inner_map->fd; 2637 map->inner_map->sec_idx = sec_idx; 2638 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2639 if (!map->inner_map->name) 2640 return -ENOMEM; 2641 sprintf(map->inner_map->name, "%s.inner", map_name); 2642 2643 fill_map_from_def(map->inner_map, &inner_def); 2644 } 2645 2646 err = map_fill_btf_type_info(obj, map); 2647 if (err) 2648 return err; 2649 2650 return 0; 2651 } 2652 2653 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2654 const char *pin_root_path) 2655 { 2656 const struct btf_type *sec = NULL; 2657 int nr_types, i, vlen, err; 2658 const struct btf_type *t; 2659 const char *name; 2660 Elf_Data *data; 2661 Elf_Scn *scn; 2662 2663 if (obj->efile.btf_maps_shndx < 0) 2664 return 0; 2665 2666 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2667 data = elf_sec_data(obj, scn); 2668 if (!scn || !data) { 2669 pr_warn("elf: failed to get %s map definitions for %s\n", 2670 MAPS_ELF_SEC, obj->path); 2671 return -EINVAL; 2672 } 2673 2674 nr_types = btf__type_cnt(obj->btf); 2675 for (i = 1; i < nr_types; i++) { 2676 t = btf__type_by_id(obj->btf, i); 2677 if (!btf_is_datasec(t)) 2678 continue; 2679 name = btf__name_by_offset(obj->btf, t->name_off); 2680 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2681 sec = t; 2682 obj->efile.btf_maps_sec_btf_id = i; 2683 break; 2684 } 2685 } 2686 2687 if (!sec) { 2688 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2689 return -ENOENT; 2690 } 2691 2692 vlen = btf_vlen(sec); 2693 for (i = 0; i < vlen; i++) { 2694 err = bpf_object__init_user_btf_map(obj, sec, i, 2695 obj->efile.btf_maps_shndx, 2696 data, strict, 2697 pin_root_path); 2698 if (err) 2699 return err; 2700 } 2701 2702 return 0; 2703 } 2704 2705 static int bpf_object__init_maps(struct bpf_object *obj, 2706 const struct bpf_object_open_opts *opts) 2707 { 2708 const char *pin_root_path; 2709 bool strict; 2710 int err = 0; 2711 2712 strict = !OPTS_GET(opts, relaxed_maps, false); 2713 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2714 2715 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2716 err = err ?: bpf_object__init_global_data_maps(obj); 2717 err = err ?: bpf_object__init_kconfig_map(obj); 2718 err = err ?: bpf_object_init_struct_ops(obj); 2719 2720 return err; 2721 } 2722 2723 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2724 { 2725 Elf64_Shdr *sh; 2726 2727 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2728 if (!sh) 2729 return false; 2730 2731 return sh->sh_flags & SHF_EXECINSTR; 2732 } 2733 2734 static bool btf_needs_sanitization(struct bpf_object *obj) 2735 { 2736 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2737 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2738 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2739 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2740 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2741 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2742 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2743 2744 return !has_func || !has_datasec || !has_func_global || !has_float || 2745 !has_decl_tag || !has_type_tag || !has_enum64; 2746 } 2747 2748 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2749 { 2750 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2751 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2752 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2753 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2754 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2755 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2756 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2757 int enum64_placeholder_id = 0; 2758 struct btf_type *t; 2759 int i, j, vlen; 2760 2761 for (i = 1; i < btf__type_cnt(btf); i++) { 2762 t = (struct btf_type *)btf__type_by_id(btf, i); 2763 2764 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2765 /* replace VAR/DECL_TAG with INT */ 2766 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2767 /* 2768 * using size = 1 is the safest choice, 4 will be too 2769 * big and cause kernel BTF validation failure if 2770 * original variable took less than 4 bytes 2771 */ 2772 t->size = 1; 2773 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2774 } else if (!has_datasec && btf_is_datasec(t)) { 2775 /* replace DATASEC with STRUCT */ 2776 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2777 struct btf_member *m = btf_members(t); 2778 struct btf_type *vt; 2779 char *name; 2780 2781 name = (char *)btf__name_by_offset(btf, t->name_off); 2782 while (*name) { 2783 if (*name == '.') 2784 *name = '_'; 2785 name++; 2786 } 2787 2788 vlen = btf_vlen(t); 2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2790 for (j = 0; j < vlen; j++, v++, m++) { 2791 /* order of field assignments is important */ 2792 m->offset = v->offset * 8; 2793 m->type = v->type; 2794 /* preserve variable name as member name */ 2795 vt = (void *)btf__type_by_id(btf, v->type); 2796 m->name_off = vt->name_off; 2797 } 2798 } else if (!has_func && btf_is_func_proto(t)) { 2799 /* replace FUNC_PROTO with ENUM */ 2800 vlen = btf_vlen(t); 2801 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2802 t->size = sizeof(__u32); /* kernel enforced */ 2803 } else if (!has_func && btf_is_func(t)) { 2804 /* replace FUNC with TYPEDEF */ 2805 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2806 } else if (!has_func_global && btf_is_func(t)) { 2807 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2808 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2809 } else if (!has_float && btf_is_float(t)) { 2810 /* replace FLOAT with an equally-sized empty STRUCT; 2811 * since C compilers do not accept e.g. "float" as a 2812 * valid struct name, make it anonymous 2813 */ 2814 t->name_off = 0; 2815 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2816 } else if (!has_type_tag && btf_is_type_tag(t)) { 2817 /* replace TYPE_TAG with a CONST */ 2818 t->name_off = 0; 2819 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2820 } else if (!has_enum64 && btf_is_enum(t)) { 2821 /* clear the kflag */ 2822 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2823 } else if (!has_enum64 && btf_is_enum64(t)) { 2824 /* replace ENUM64 with a union */ 2825 struct btf_member *m; 2826 2827 if (enum64_placeholder_id == 0) { 2828 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2829 if (enum64_placeholder_id < 0) 2830 return enum64_placeholder_id; 2831 2832 t = (struct btf_type *)btf__type_by_id(btf, i); 2833 } 2834 2835 m = btf_members(t); 2836 vlen = btf_vlen(t); 2837 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2838 for (j = 0; j < vlen; j++, m++) { 2839 m->type = enum64_placeholder_id; 2840 m->offset = 0; 2841 } 2842 } 2843 } 2844 2845 return 0; 2846 } 2847 2848 static bool libbpf_needs_btf(const struct bpf_object *obj) 2849 { 2850 return obj->efile.btf_maps_shndx >= 0 || 2851 obj->efile.st_ops_shndx >= 0 || 2852 obj->efile.st_ops_link_shndx >= 0 || 2853 obj->nr_extern > 0; 2854 } 2855 2856 static bool kernel_needs_btf(const struct bpf_object *obj) 2857 { 2858 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2859 } 2860 2861 static int bpf_object__init_btf(struct bpf_object *obj, 2862 Elf_Data *btf_data, 2863 Elf_Data *btf_ext_data) 2864 { 2865 int err = -ENOENT; 2866 2867 if (btf_data) { 2868 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2869 err = libbpf_get_error(obj->btf); 2870 if (err) { 2871 obj->btf = NULL; 2872 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2873 goto out; 2874 } 2875 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2876 btf__set_pointer_size(obj->btf, 8); 2877 } 2878 if (btf_ext_data) { 2879 struct btf_ext_info *ext_segs[3]; 2880 int seg_num, sec_num; 2881 2882 if (!obj->btf) { 2883 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2884 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2885 goto out; 2886 } 2887 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2888 err = libbpf_get_error(obj->btf_ext); 2889 if (err) { 2890 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2891 BTF_EXT_ELF_SEC, err); 2892 obj->btf_ext = NULL; 2893 goto out; 2894 } 2895 2896 /* setup .BTF.ext to ELF section mapping */ 2897 ext_segs[0] = &obj->btf_ext->func_info; 2898 ext_segs[1] = &obj->btf_ext->line_info; 2899 ext_segs[2] = &obj->btf_ext->core_relo_info; 2900 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2901 struct btf_ext_info *seg = ext_segs[seg_num]; 2902 const struct btf_ext_info_sec *sec; 2903 const char *sec_name; 2904 Elf_Scn *scn; 2905 2906 if (seg->sec_cnt == 0) 2907 continue; 2908 2909 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2910 if (!seg->sec_idxs) { 2911 err = -ENOMEM; 2912 goto out; 2913 } 2914 2915 sec_num = 0; 2916 for_each_btf_ext_sec(seg, sec) { 2917 /* preventively increment index to avoid doing 2918 * this before every continue below 2919 */ 2920 sec_num++; 2921 2922 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2923 if (str_is_empty(sec_name)) 2924 continue; 2925 scn = elf_sec_by_name(obj, sec_name); 2926 if (!scn) 2927 continue; 2928 2929 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2930 } 2931 } 2932 } 2933 out: 2934 if (err && libbpf_needs_btf(obj)) { 2935 pr_warn("BTF is required, but is missing or corrupted.\n"); 2936 return err; 2937 } 2938 return 0; 2939 } 2940 2941 static int compare_vsi_off(const void *_a, const void *_b) 2942 { 2943 const struct btf_var_secinfo *a = _a; 2944 const struct btf_var_secinfo *b = _b; 2945 2946 return a->offset - b->offset; 2947 } 2948 2949 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2950 struct btf_type *t) 2951 { 2952 __u32 size = 0, i, vars = btf_vlen(t); 2953 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2954 struct btf_var_secinfo *vsi; 2955 bool fixup_offsets = false; 2956 int err; 2957 2958 if (!sec_name) { 2959 pr_debug("No name found in string section for DATASEC kind.\n"); 2960 return -ENOENT; 2961 } 2962 2963 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2964 * variable offsets set at the previous step. Further, not every 2965 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2966 * all fixups altogether for such sections and go straight to sorting 2967 * VARs within their DATASEC. 2968 */ 2969 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2970 goto sort_vars; 2971 2972 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2973 * fix this up. But BPF static linker already fixes this up and fills 2974 * all the sizes and offsets during static linking. So this step has 2975 * to be optional. But the STV_HIDDEN handling is non-optional for any 2976 * non-extern DATASEC, so the variable fixup loop below handles both 2977 * functions at the same time, paying the cost of BTF VAR <-> ELF 2978 * symbol matching just once. 2979 */ 2980 if (t->size == 0) { 2981 err = find_elf_sec_sz(obj, sec_name, &size); 2982 if (err || !size) { 2983 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2984 sec_name, size, err); 2985 return -ENOENT; 2986 } 2987 2988 t->size = size; 2989 fixup_offsets = true; 2990 } 2991 2992 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2993 const struct btf_type *t_var; 2994 struct btf_var *var; 2995 const char *var_name; 2996 Elf64_Sym *sym; 2997 2998 t_var = btf__type_by_id(btf, vsi->type); 2999 if (!t_var || !btf_is_var(t_var)) { 3000 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3001 return -EINVAL; 3002 } 3003 3004 var = btf_var(t_var); 3005 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3006 continue; 3007 3008 var_name = btf__name_by_offset(btf, t_var->name_off); 3009 if (!var_name) { 3010 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3011 sec_name, i); 3012 return -ENOENT; 3013 } 3014 3015 sym = find_elf_var_sym(obj, var_name); 3016 if (IS_ERR(sym)) { 3017 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3018 sec_name, var_name); 3019 return -ENOENT; 3020 } 3021 3022 if (fixup_offsets) 3023 vsi->offset = sym->st_value; 3024 3025 /* if variable is a global/weak symbol, but has restricted 3026 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3027 * as static. This follows similar logic for functions (BPF 3028 * subprogs) and influences libbpf's further decisions about 3029 * whether to make global data BPF array maps as 3030 * BPF_F_MMAPABLE. 3031 */ 3032 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3033 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3034 var->linkage = BTF_VAR_STATIC; 3035 } 3036 3037 sort_vars: 3038 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3039 return 0; 3040 } 3041 3042 static int bpf_object_fixup_btf(struct bpf_object *obj) 3043 { 3044 int i, n, err = 0; 3045 3046 if (!obj->btf) 3047 return 0; 3048 3049 n = btf__type_cnt(obj->btf); 3050 for (i = 1; i < n; i++) { 3051 struct btf_type *t = btf_type_by_id(obj->btf, i); 3052 3053 /* Loader needs to fix up some of the things compiler 3054 * couldn't get its hands on while emitting BTF. This 3055 * is section size and global variable offset. We use 3056 * the info from the ELF itself for this purpose. 3057 */ 3058 if (btf_is_datasec(t)) { 3059 err = btf_fixup_datasec(obj, obj->btf, t); 3060 if (err) 3061 return err; 3062 } 3063 } 3064 3065 return 0; 3066 } 3067 3068 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3069 { 3070 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3071 prog->type == BPF_PROG_TYPE_LSM) 3072 return true; 3073 3074 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3075 * also need vmlinux BTF 3076 */ 3077 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3078 return true; 3079 3080 return false; 3081 } 3082 3083 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3084 { 3085 return bpf_map__is_struct_ops(map); 3086 } 3087 3088 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3089 { 3090 struct bpf_program *prog; 3091 struct bpf_map *map; 3092 int i; 3093 3094 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3095 * is not specified 3096 */ 3097 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3098 return true; 3099 3100 /* Support for typed ksyms needs kernel BTF */ 3101 for (i = 0; i < obj->nr_extern; i++) { 3102 const struct extern_desc *ext; 3103 3104 ext = &obj->externs[i]; 3105 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3106 return true; 3107 } 3108 3109 bpf_object__for_each_program(prog, obj) { 3110 if (!prog->autoload) 3111 continue; 3112 if (prog_needs_vmlinux_btf(prog)) 3113 return true; 3114 } 3115 3116 bpf_object__for_each_map(map, obj) { 3117 if (map_needs_vmlinux_btf(map)) 3118 return true; 3119 } 3120 3121 return false; 3122 } 3123 3124 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3125 { 3126 int err; 3127 3128 /* btf_vmlinux could be loaded earlier */ 3129 if (obj->btf_vmlinux || obj->gen_loader) 3130 return 0; 3131 3132 if (!force && !obj_needs_vmlinux_btf(obj)) 3133 return 0; 3134 3135 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3136 err = libbpf_get_error(obj->btf_vmlinux); 3137 if (err) { 3138 pr_warn("Error loading vmlinux BTF: %d\n", err); 3139 obj->btf_vmlinux = NULL; 3140 return err; 3141 } 3142 return 0; 3143 } 3144 3145 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3146 { 3147 struct btf *kern_btf = obj->btf; 3148 bool btf_mandatory, sanitize; 3149 int i, err = 0; 3150 3151 if (!obj->btf) 3152 return 0; 3153 3154 if (!kernel_supports(obj, FEAT_BTF)) { 3155 if (kernel_needs_btf(obj)) { 3156 err = -EOPNOTSUPP; 3157 goto report; 3158 } 3159 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3160 return 0; 3161 } 3162 3163 /* Even though some subprogs are global/weak, user might prefer more 3164 * permissive BPF verification process that BPF verifier performs for 3165 * static functions, taking into account more context from the caller 3166 * functions. In such case, they need to mark such subprogs with 3167 * __attribute__((visibility("hidden"))) and libbpf will adjust 3168 * corresponding FUNC BTF type to be marked as static and trigger more 3169 * involved BPF verification process. 3170 */ 3171 for (i = 0; i < obj->nr_programs; i++) { 3172 struct bpf_program *prog = &obj->programs[i]; 3173 struct btf_type *t; 3174 const char *name; 3175 int j, n; 3176 3177 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3178 continue; 3179 3180 n = btf__type_cnt(obj->btf); 3181 for (j = 1; j < n; j++) { 3182 t = btf_type_by_id(obj->btf, j); 3183 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3184 continue; 3185 3186 name = btf__str_by_offset(obj->btf, t->name_off); 3187 if (strcmp(name, prog->name) != 0) 3188 continue; 3189 3190 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3191 break; 3192 } 3193 } 3194 3195 sanitize = btf_needs_sanitization(obj); 3196 if (sanitize) { 3197 const void *raw_data; 3198 __u32 sz; 3199 3200 /* clone BTF to sanitize a copy and leave the original intact */ 3201 raw_data = btf__raw_data(obj->btf, &sz); 3202 kern_btf = btf__new(raw_data, sz); 3203 err = libbpf_get_error(kern_btf); 3204 if (err) 3205 return err; 3206 3207 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3208 btf__set_pointer_size(obj->btf, 8); 3209 err = bpf_object__sanitize_btf(obj, kern_btf); 3210 if (err) 3211 return err; 3212 } 3213 3214 if (obj->gen_loader) { 3215 __u32 raw_size = 0; 3216 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3217 3218 if (!raw_data) 3219 return -ENOMEM; 3220 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3221 /* Pretend to have valid FD to pass various fd >= 0 checks. 3222 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3223 */ 3224 btf__set_fd(kern_btf, 0); 3225 } else { 3226 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3227 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3228 obj->log_level ? 1 : 0); 3229 } 3230 if (sanitize) { 3231 if (!err) { 3232 /* move fd to libbpf's BTF */ 3233 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3234 btf__set_fd(kern_btf, -1); 3235 } 3236 btf__free(kern_btf); 3237 } 3238 report: 3239 if (err) { 3240 btf_mandatory = kernel_needs_btf(obj); 3241 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3242 btf_mandatory ? "BTF is mandatory, can't proceed." 3243 : "BTF is optional, ignoring."); 3244 if (!btf_mandatory) 3245 err = 0; 3246 } 3247 return err; 3248 } 3249 3250 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3251 { 3252 const char *name; 3253 3254 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3255 if (!name) { 3256 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3257 off, obj->path, elf_errmsg(-1)); 3258 return NULL; 3259 } 3260 3261 return name; 3262 } 3263 3264 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3265 { 3266 const char *name; 3267 3268 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3269 if (!name) { 3270 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3271 off, obj->path, elf_errmsg(-1)); 3272 return NULL; 3273 } 3274 3275 return name; 3276 } 3277 3278 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3279 { 3280 Elf_Scn *scn; 3281 3282 scn = elf_getscn(obj->efile.elf, idx); 3283 if (!scn) { 3284 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3285 idx, obj->path, elf_errmsg(-1)); 3286 return NULL; 3287 } 3288 return scn; 3289 } 3290 3291 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3292 { 3293 Elf_Scn *scn = NULL; 3294 Elf *elf = obj->efile.elf; 3295 const char *sec_name; 3296 3297 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3298 sec_name = elf_sec_name(obj, scn); 3299 if (!sec_name) 3300 return NULL; 3301 3302 if (strcmp(sec_name, name) != 0) 3303 continue; 3304 3305 return scn; 3306 } 3307 return NULL; 3308 } 3309 3310 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3311 { 3312 Elf64_Shdr *shdr; 3313 3314 if (!scn) 3315 return NULL; 3316 3317 shdr = elf64_getshdr(scn); 3318 if (!shdr) { 3319 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3320 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3321 return NULL; 3322 } 3323 3324 return shdr; 3325 } 3326 3327 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3328 { 3329 const char *name; 3330 Elf64_Shdr *sh; 3331 3332 if (!scn) 3333 return NULL; 3334 3335 sh = elf_sec_hdr(obj, scn); 3336 if (!sh) 3337 return NULL; 3338 3339 name = elf_sec_str(obj, sh->sh_name); 3340 if (!name) { 3341 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3342 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3343 return NULL; 3344 } 3345 3346 return name; 3347 } 3348 3349 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3350 { 3351 Elf_Data *data; 3352 3353 if (!scn) 3354 return NULL; 3355 3356 data = elf_getdata(scn, 0); 3357 if (!data) { 3358 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3359 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3360 obj->path, elf_errmsg(-1)); 3361 return NULL; 3362 } 3363 3364 return data; 3365 } 3366 3367 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3368 { 3369 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3370 return NULL; 3371 3372 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3373 } 3374 3375 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3376 { 3377 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3378 return NULL; 3379 3380 return (Elf64_Rel *)data->d_buf + idx; 3381 } 3382 3383 static bool is_sec_name_dwarf(const char *name) 3384 { 3385 /* approximation, but the actual list is too long */ 3386 return str_has_pfx(name, ".debug_"); 3387 } 3388 3389 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3390 { 3391 /* no special handling of .strtab */ 3392 if (hdr->sh_type == SHT_STRTAB) 3393 return true; 3394 3395 /* ignore .llvm_addrsig section as well */ 3396 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3397 return true; 3398 3399 /* no subprograms will lead to an empty .text section, ignore it */ 3400 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3401 strcmp(name, ".text") == 0) 3402 return true; 3403 3404 /* DWARF sections */ 3405 if (is_sec_name_dwarf(name)) 3406 return true; 3407 3408 if (str_has_pfx(name, ".rel")) { 3409 name += sizeof(".rel") - 1; 3410 /* DWARF section relocations */ 3411 if (is_sec_name_dwarf(name)) 3412 return true; 3413 3414 /* .BTF and .BTF.ext don't need relocations */ 3415 if (strcmp(name, BTF_ELF_SEC) == 0 || 3416 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3417 return true; 3418 } 3419 3420 return false; 3421 } 3422 3423 static int cmp_progs(const void *_a, const void *_b) 3424 { 3425 const struct bpf_program *a = _a; 3426 const struct bpf_program *b = _b; 3427 3428 if (a->sec_idx != b->sec_idx) 3429 return a->sec_idx < b->sec_idx ? -1 : 1; 3430 3431 /* sec_insn_off can't be the same within the section */ 3432 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3433 } 3434 3435 static int bpf_object__elf_collect(struct bpf_object *obj) 3436 { 3437 struct elf_sec_desc *sec_desc; 3438 Elf *elf = obj->efile.elf; 3439 Elf_Data *btf_ext_data = NULL; 3440 Elf_Data *btf_data = NULL; 3441 int idx = 0, err = 0; 3442 const char *name; 3443 Elf_Data *data; 3444 Elf_Scn *scn; 3445 Elf64_Shdr *sh; 3446 3447 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3448 * section. Since section count retrieved by elf_getshdrnum() does 3449 * include sec #0, it is already the necessary size of an array to keep 3450 * all the sections. 3451 */ 3452 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3453 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3454 obj->path, elf_errmsg(-1)); 3455 return -LIBBPF_ERRNO__FORMAT; 3456 } 3457 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3458 if (!obj->efile.secs) 3459 return -ENOMEM; 3460 3461 /* a bunch of ELF parsing functionality depends on processing symbols, 3462 * so do the first pass and find the symbol table 3463 */ 3464 scn = NULL; 3465 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3466 sh = elf_sec_hdr(obj, scn); 3467 if (!sh) 3468 return -LIBBPF_ERRNO__FORMAT; 3469 3470 if (sh->sh_type == SHT_SYMTAB) { 3471 if (obj->efile.symbols) { 3472 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3473 return -LIBBPF_ERRNO__FORMAT; 3474 } 3475 3476 data = elf_sec_data(obj, scn); 3477 if (!data) 3478 return -LIBBPF_ERRNO__FORMAT; 3479 3480 idx = elf_ndxscn(scn); 3481 3482 obj->efile.symbols = data; 3483 obj->efile.symbols_shndx = idx; 3484 obj->efile.strtabidx = sh->sh_link; 3485 } 3486 } 3487 3488 if (!obj->efile.symbols) { 3489 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3490 obj->path); 3491 return -ENOENT; 3492 } 3493 3494 scn = NULL; 3495 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3496 idx = elf_ndxscn(scn); 3497 sec_desc = &obj->efile.secs[idx]; 3498 3499 sh = elf_sec_hdr(obj, scn); 3500 if (!sh) 3501 return -LIBBPF_ERRNO__FORMAT; 3502 3503 name = elf_sec_str(obj, sh->sh_name); 3504 if (!name) 3505 return -LIBBPF_ERRNO__FORMAT; 3506 3507 if (ignore_elf_section(sh, name)) 3508 continue; 3509 3510 data = elf_sec_data(obj, scn); 3511 if (!data) 3512 return -LIBBPF_ERRNO__FORMAT; 3513 3514 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3515 idx, name, (unsigned long)data->d_size, 3516 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3517 (int)sh->sh_type); 3518 3519 if (strcmp(name, "license") == 0) { 3520 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3521 if (err) 3522 return err; 3523 } else if (strcmp(name, "version") == 0) { 3524 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3525 if (err) 3526 return err; 3527 } else if (strcmp(name, "maps") == 0) { 3528 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3529 return -ENOTSUP; 3530 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3531 obj->efile.btf_maps_shndx = idx; 3532 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3533 if (sh->sh_type != SHT_PROGBITS) 3534 return -LIBBPF_ERRNO__FORMAT; 3535 btf_data = data; 3536 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3537 if (sh->sh_type != SHT_PROGBITS) 3538 return -LIBBPF_ERRNO__FORMAT; 3539 btf_ext_data = data; 3540 } else if (sh->sh_type == SHT_SYMTAB) { 3541 /* already processed during the first pass above */ 3542 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3543 if (sh->sh_flags & SHF_EXECINSTR) { 3544 if (strcmp(name, ".text") == 0) 3545 obj->efile.text_shndx = idx; 3546 err = bpf_object__add_programs(obj, data, name, idx); 3547 if (err) 3548 return err; 3549 } else if (strcmp(name, DATA_SEC) == 0 || 3550 str_has_pfx(name, DATA_SEC ".")) { 3551 sec_desc->sec_type = SEC_DATA; 3552 sec_desc->shdr = sh; 3553 sec_desc->data = data; 3554 } else if (strcmp(name, RODATA_SEC) == 0 || 3555 str_has_pfx(name, RODATA_SEC ".")) { 3556 sec_desc->sec_type = SEC_RODATA; 3557 sec_desc->shdr = sh; 3558 sec_desc->data = data; 3559 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3560 obj->efile.st_ops_data = data; 3561 obj->efile.st_ops_shndx = idx; 3562 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3563 obj->efile.st_ops_link_data = data; 3564 obj->efile.st_ops_link_shndx = idx; 3565 } else { 3566 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3567 idx, name); 3568 } 3569 } else if (sh->sh_type == SHT_REL) { 3570 int targ_sec_idx = sh->sh_info; /* points to other section */ 3571 3572 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3573 targ_sec_idx >= obj->efile.sec_cnt) 3574 return -LIBBPF_ERRNO__FORMAT; 3575 3576 /* Only do relo for section with exec instructions */ 3577 if (!section_have_execinstr(obj, targ_sec_idx) && 3578 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3579 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3580 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3581 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3582 idx, name, targ_sec_idx, 3583 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3584 continue; 3585 } 3586 3587 sec_desc->sec_type = SEC_RELO; 3588 sec_desc->shdr = sh; 3589 sec_desc->data = data; 3590 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3591 str_has_pfx(name, BSS_SEC "."))) { 3592 sec_desc->sec_type = SEC_BSS; 3593 sec_desc->shdr = sh; 3594 sec_desc->data = data; 3595 } else { 3596 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3597 (size_t)sh->sh_size); 3598 } 3599 } 3600 3601 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3602 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3603 return -LIBBPF_ERRNO__FORMAT; 3604 } 3605 3606 /* sort BPF programs by section name and in-section instruction offset 3607 * for faster search 3608 */ 3609 if (obj->nr_programs) 3610 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3611 3612 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3613 } 3614 3615 static bool sym_is_extern(const Elf64_Sym *sym) 3616 { 3617 int bind = ELF64_ST_BIND(sym->st_info); 3618 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3619 return sym->st_shndx == SHN_UNDEF && 3620 (bind == STB_GLOBAL || bind == STB_WEAK) && 3621 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3622 } 3623 3624 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3625 { 3626 int bind = ELF64_ST_BIND(sym->st_info); 3627 int type = ELF64_ST_TYPE(sym->st_info); 3628 3629 /* in .text section */ 3630 if (sym->st_shndx != text_shndx) 3631 return false; 3632 3633 /* local function */ 3634 if (bind == STB_LOCAL && type == STT_SECTION) 3635 return true; 3636 3637 /* global function */ 3638 return bind == STB_GLOBAL && type == STT_FUNC; 3639 } 3640 3641 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3642 { 3643 const struct btf_type *t; 3644 const char *tname; 3645 int i, n; 3646 3647 if (!btf) 3648 return -ESRCH; 3649 3650 n = btf__type_cnt(btf); 3651 for (i = 1; i < n; i++) { 3652 t = btf__type_by_id(btf, i); 3653 3654 if (!btf_is_var(t) && !btf_is_func(t)) 3655 continue; 3656 3657 tname = btf__name_by_offset(btf, t->name_off); 3658 if (strcmp(tname, ext_name)) 3659 continue; 3660 3661 if (btf_is_var(t) && 3662 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3663 return -EINVAL; 3664 3665 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3666 return -EINVAL; 3667 3668 return i; 3669 } 3670 3671 return -ENOENT; 3672 } 3673 3674 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3675 const struct btf_var_secinfo *vs; 3676 const struct btf_type *t; 3677 int i, j, n; 3678 3679 if (!btf) 3680 return -ESRCH; 3681 3682 n = btf__type_cnt(btf); 3683 for (i = 1; i < n; i++) { 3684 t = btf__type_by_id(btf, i); 3685 3686 if (!btf_is_datasec(t)) 3687 continue; 3688 3689 vs = btf_var_secinfos(t); 3690 for (j = 0; j < btf_vlen(t); j++, vs++) { 3691 if (vs->type == ext_btf_id) 3692 return i; 3693 } 3694 } 3695 3696 return -ENOENT; 3697 } 3698 3699 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3700 bool *is_signed) 3701 { 3702 const struct btf_type *t; 3703 const char *name; 3704 3705 t = skip_mods_and_typedefs(btf, id, NULL); 3706 name = btf__name_by_offset(btf, t->name_off); 3707 3708 if (is_signed) 3709 *is_signed = false; 3710 switch (btf_kind(t)) { 3711 case BTF_KIND_INT: { 3712 int enc = btf_int_encoding(t); 3713 3714 if (enc & BTF_INT_BOOL) 3715 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3716 if (is_signed) 3717 *is_signed = enc & BTF_INT_SIGNED; 3718 if (t->size == 1) 3719 return KCFG_CHAR; 3720 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3721 return KCFG_UNKNOWN; 3722 return KCFG_INT; 3723 } 3724 case BTF_KIND_ENUM: 3725 if (t->size != 4) 3726 return KCFG_UNKNOWN; 3727 if (strcmp(name, "libbpf_tristate")) 3728 return KCFG_UNKNOWN; 3729 return KCFG_TRISTATE; 3730 case BTF_KIND_ENUM64: 3731 if (strcmp(name, "libbpf_tristate")) 3732 return KCFG_UNKNOWN; 3733 return KCFG_TRISTATE; 3734 case BTF_KIND_ARRAY: 3735 if (btf_array(t)->nelems == 0) 3736 return KCFG_UNKNOWN; 3737 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3738 return KCFG_UNKNOWN; 3739 return KCFG_CHAR_ARR; 3740 default: 3741 return KCFG_UNKNOWN; 3742 } 3743 } 3744 3745 static int cmp_externs(const void *_a, const void *_b) 3746 { 3747 const struct extern_desc *a = _a; 3748 const struct extern_desc *b = _b; 3749 3750 if (a->type != b->type) 3751 return a->type < b->type ? -1 : 1; 3752 3753 if (a->type == EXT_KCFG) { 3754 /* descending order by alignment requirements */ 3755 if (a->kcfg.align != b->kcfg.align) 3756 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3757 /* ascending order by size, within same alignment class */ 3758 if (a->kcfg.sz != b->kcfg.sz) 3759 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3760 } 3761 3762 /* resolve ties by name */ 3763 return strcmp(a->name, b->name); 3764 } 3765 3766 static int find_int_btf_id(const struct btf *btf) 3767 { 3768 const struct btf_type *t; 3769 int i, n; 3770 3771 n = btf__type_cnt(btf); 3772 for (i = 1; i < n; i++) { 3773 t = btf__type_by_id(btf, i); 3774 3775 if (btf_is_int(t) && btf_int_bits(t) == 32) 3776 return i; 3777 } 3778 3779 return 0; 3780 } 3781 3782 static int add_dummy_ksym_var(struct btf *btf) 3783 { 3784 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3785 const struct btf_var_secinfo *vs; 3786 const struct btf_type *sec; 3787 3788 if (!btf) 3789 return 0; 3790 3791 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3792 BTF_KIND_DATASEC); 3793 if (sec_btf_id < 0) 3794 return 0; 3795 3796 sec = btf__type_by_id(btf, sec_btf_id); 3797 vs = btf_var_secinfos(sec); 3798 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3799 const struct btf_type *vt; 3800 3801 vt = btf__type_by_id(btf, vs->type); 3802 if (btf_is_func(vt)) 3803 break; 3804 } 3805 3806 /* No func in ksyms sec. No need to add dummy var. */ 3807 if (i == btf_vlen(sec)) 3808 return 0; 3809 3810 int_btf_id = find_int_btf_id(btf); 3811 dummy_var_btf_id = btf__add_var(btf, 3812 "dummy_ksym", 3813 BTF_VAR_GLOBAL_ALLOCATED, 3814 int_btf_id); 3815 if (dummy_var_btf_id < 0) 3816 pr_warn("cannot create a dummy_ksym var\n"); 3817 3818 return dummy_var_btf_id; 3819 } 3820 3821 static int bpf_object__collect_externs(struct bpf_object *obj) 3822 { 3823 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3824 const struct btf_type *t; 3825 struct extern_desc *ext; 3826 int i, n, off, dummy_var_btf_id; 3827 const char *ext_name, *sec_name; 3828 size_t ext_essent_len; 3829 Elf_Scn *scn; 3830 Elf64_Shdr *sh; 3831 3832 if (!obj->efile.symbols) 3833 return 0; 3834 3835 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3836 sh = elf_sec_hdr(obj, scn); 3837 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3838 return -LIBBPF_ERRNO__FORMAT; 3839 3840 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3841 if (dummy_var_btf_id < 0) 3842 return dummy_var_btf_id; 3843 3844 n = sh->sh_size / sh->sh_entsize; 3845 pr_debug("looking for externs among %d symbols...\n", n); 3846 3847 for (i = 0; i < n; i++) { 3848 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3849 3850 if (!sym) 3851 return -LIBBPF_ERRNO__FORMAT; 3852 if (!sym_is_extern(sym)) 3853 continue; 3854 ext_name = elf_sym_str(obj, sym->st_name); 3855 if (!ext_name || !ext_name[0]) 3856 continue; 3857 3858 ext = obj->externs; 3859 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3860 if (!ext) 3861 return -ENOMEM; 3862 obj->externs = ext; 3863 ext = &ext[obj->nr_extern]; 3864 memset(ext, 0, sizeof(*ext)); 3865 obj->nr_extern++; 3866 3867 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3868 if (ext->btf_id <= 0) { 3869 pr_warn("failed to find BTF for extern '%s': %d\n", 3870 ext_name, ext->btf_id); 3871 return ext->btf_id; 3872 } 3873 t = btf__type_by_id(obj->btf, ext->btf_id); 3874 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3875 ext->sym_idx = i; 3876 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3877 3878 ext_essent_len = bpf_core_essential_name_len(ext->name); 3879 ext->essent_name = NULL; 3880 if (ext_essent_len != strlen(ext->name)) { 3881 ext->essent_name = strndup(ext->name, ext_essent_len); 3882 if (!ext->essent_name) 3883 return -ENOMEM; 3884 } 3885 3886 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3887 if (ext->sec_btf_id <= 0) { 3888 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3889 ext_name, ext->btf_id, ext->sec_btf_id); 3890 return ext->sec_btf_id; 3891 } 3892 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3893 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3894 3895 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3896 if (btf_is_func(t)) { 3897 pr_warn("extern function %s is unsupported under %s section\n", 3898 ext->name, KCONFIG_SEC); 3899 return -ENOTSUP; 3900 } 3901 kcfg_sec = sec; 3902 ext->type = EXT_KCFG; 3903 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3904 if (ext->kcfg.sz <= 0) { 3905 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3906 ext_name, ext->kcfg.sz); 3907 return ext->kcfg.sz; 3908 } 3909 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3910 if (ext->kcfg.align <= 0) { 3911 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3912 ext_name, ext->kcfg.align); 3913 return -EINVAL; 3914 } 3915 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3916 &ext->kcfg.is_signed); 3917 if (ext->kcfg.type == KCFG_UNKNOWN) { 3918 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3919 return -ENOTSUP; 3920 } 3921 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3922 ksym_sec = sec; 3923 ext->type = EXT_KSYM; 3924 skip_mods_and_typedefs(obj->btf, t->type, 3925 &ext->ksym.type_id); 3926 } else { 3927 pr_warn("unrecognized extern section '%s'\n", sec_name); 3928 return -ENOTSUP; 3929 } 3930 } 3931 pr_debug("collected %d externs total\n", obj->nr_extern); 3932 3933 if (!obj->nr_extern) 3934 return 0; 3935 3936 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3937 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3938 3939 /* for .ksyms section, we need to turn all externs into allocated 3940 * variables in BTF to pass kernel verification; we do this by 3941 * pretending that each extern is a 8-byte variable 3942 */ 3943 if (ksym_sec) { 3944 /* find existing 4-byte integer type in BTF to use for fake 3945 * extern variables in DATASEC 3946 */ 3947 int int_btf_id = find_int_btf_id(obj->btf); 3948 /* For extern function, a dummy_var added earlier 3949 * will be used to replace the vs->type and 3950 * its name string will be used to refill 3951 * the missing param's name. 3952 */ 3953 const struct btf_type *dummy_var; 3954 3955 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3956 for (i = 0; i < obj->nr_extern; i++) { 3957 ext = &obj->externs[i]; 3958 if (ext->type != EXT_KSYM) 3959 continue; 3960 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3961 i, ext->sym_idx, ext->name); 3962 } 3963 3964 sec = ksym_sec; 3965 n = btf_vlen(sec); 3966 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3967 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3968 struct btf_type *vt; 3969 3970 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3971 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3972 ext = find_extern_by_name(obj, ext_name); 3973 if (!ext) { 3974 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3975 btf_kind_str(vt), ext_name); 3976 return -ESRCH; 3977 } 3978 if (btf_is_func(vt)) { 3979 const struct btf_type *func_proto; 3980 struct btf_param *param; 3981 int j; 3982 3983 func_proto = btf__type_by_id(obj->btf, 3984 vt->type); 3985 param = btf_params(func_proto); 3986 /* Reuse the dummy_var string if the 3987 * func proto does not have param name. 3988 */ 3989 for (j = 0; j < btf_vlen(func_proto); j++) 3990 if (param[j].type && !param[j].name_off) 3991 param[j].name_off = 3992 dummy_var->name_off; 3993 vs->type = dummy_var_btf_id; 3994 vt->info &= ~0xffff; 3995 vt->info |= BTF_FUNC_GLOBAL; 3996 } else { 3997 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3998 vt->type = int_btf_id; 3999 } 4000 vs->offset = off; 4001 vs->size = sizeof(int); 4002 } 4003 sec->size = off; 4004 } 4005 4006 if (kcfg_sec) { 4007 sec = kcfg_sec; 4008 /* for kcfg externs calculate their offsets within a .kconfig map */ 4009 off = 0; 4010 for (i = 0; i < obj->nr_extern; i++) { 4011 ext = &obj->externs[i]; 4012 if (ext->type != EXT_KCFG) 4013 continue; 4014 4015 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4016 off = ext->kcfg.data_off + ext->kcfg.sz; 4017 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4018 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4019 } 4020 sec->size = off; 4021 n = btf_vlen(sec); 4022 for (i = 0; i < n; i++) { 4023 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4024 4025 t = btf__type_by_id(obj->btf, vs->type); 4026 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4027 ext = find_extern_by_name(obj, ext_name); 4028 if (!ext) { 4029 pr_warn("failed to find extern definition for BTF var '%s'\n", 4030 ext_name); 4031 return -ESRCH; 4032 } 4033 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4034 vs->offset = ext->kcfg.data_off; 4035 } 4036 } 4037 return 0; 4038 } 4039 4040 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4041 { 4042 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4043 } 4044 4045 struct bpf_program * 4046 bpf_object__find_program_by_name(const struct bpf_object *obj, 4047 const char *name) 4048 { 4049 struct bpf_program *prog; 4050 4051 bpf_object__for_each_program(prog, obj) { 4052 if (prog_is_subprog(obj, prog)) 4053 continue; 4054 if (!strcmp(prog->name, name)) 4055 return prog; 4056 } 4057 return errno = ENOENT, NULL; 4058 } 4059 4060 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4061 int shndx) 4062 { 4063 switch (obj->efile.secs[shndx].sec_type) { 4064 case SEC_BSS: 4065 case SEC_DATA: 4066 case SEC_RODATA: 4067 return true; 4068 default: 4069 return false; 4070 } 4071 } 4072 4073 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4074 int shndx) 4075 { 4076 return shndx == obj->efile.btf_maps_shndx; 4077 } 4078 4079 static enum libbpf_map_type 4080 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4081 { 4082 if (shndx == obj->efile.symbols_shndx) 4083 return LIBBPF_MAP_KCONFIG; 4084 4085 switch (obj->efile.secs[shndx].sec_type) { 4086 case SEC_BSS: 4087 return LIBBPF_MAP_BSS; 4088 case SEC_DATA: 4089 return LIBBPF_MAP_DATA; 4090 case SEC_RODATA: 4091 return LIBBPF_MAP_RODATA; 4092 default: 4093 return LIBBPF_MAP_UNSPEC; 4094 } 4095 } 4096 4097 static int bpf_program__record_reloc(struct bpf_program *prog, 4098 struct reloc_desc *reloc_desc, 4099 __u32 insn_idx, const char *sym_name, 4100 const Elf64_Sym *sym, const Elf64_Rel *rel) 4101 { 4102 struct bpf_insn *insn = &prog->insns[insn_idx]; 4103 size_t map_idx, nr_maps = prog->obj->nr_maps; 4104 struct bpf_object *obj = prog->obj; 4105 __u32 shdr_idx = sym->st_shndx; 4106 enum libbpf_map_type type; 4107 const char *sym_sec_name; 4108 struct bpf_map *map; 4109 4110 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4111 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4112 prog->name, sym_name, insn_idx, insn->code); 4113 return -LIBBPF_ERRNO__RELOC; 4114 } 4115 4116 if (sym_is_extern(sym)) { 4117 int sym_idx = ELF64_R_SYM(rel->r_info); 4118 int i, n = obj->nr_extern; 4119 struct extern_desc *ext; 4120 4121 for (i = 0; i < n; i++) { 4122 ext = &obj->externs[i]; 4123 if (ext->sym_idx == sym_idx) 4124 break; 4125 } 4126 if (i >= n) { 4127 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4128 prog->name, sym_name, sym_idx); 4129 return -LIBBPF_ERRNO__RELOC; 4130 } 4131 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4132 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4133 if (insn->code == (BPF_JMP | BPF_CALL)) 4134 reloc_desc->type = RELO_EXTERN_CALL; 4135 else 4136 reloc_desc->type = RELO_EXTERN_LD64; 4137 reloc_desc->insn_idx = insn_idx; 4138 reloc_desc->ext_idx = i; 4139 return 0; 4140 } 4141 4142 /* sub-program call relocation */ 4143 if (is_call_insn(insn)) { 4144 if (insn->src_reg != BPF_PSEUDO_CALL) { 4145 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4146 return -LIBBPF_ERRNO__RELOC; 4147 } 4148 /* text_shndx can be 0, if no default "main" program exists */ 4149 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4150 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4151 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4152 prog->name, sym_name, sym_sec_name); 4153 return -LIBBPF_ERRNO__RELOC; 4154 } 4155 if (sym->st_value % BPF_INSN_SZ) { 4156 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4157 prog->name, sym_name, (size_t)sym->st_value); 4158 return -LIBBPF_ERRNO__RELOC; 4159 } 4160 reloc_desc->type = RELO_CALL; 4161 reloc_desc->insn_idx = insn_idx; 4162 reloc_desc->sym_off = sym->st_value; 4163 return 0; 4164 } 4165 4166 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4167 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4168 prog->name, sym_name, shdr_idx); 4169 return -LIBBPF_ERRNO__RELOC; 4170 } 4171 4172 /* loading subprog addresses */ 4173 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4174 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4175 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4176 */ 4177 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4178 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4179 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4180 return -LIBBPF_ERRNO__RELOC; 4181 } 4182 4183 reloc_desc->type = RELO_SUBPROG_ADDR; 4184 reloc_desc->insn_idx = insn_idx; 4185 reloc_desc->sym_off = sym->st_value; 4186 return 0; 4187 } 4188 4189 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4190 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4191 4192 /* generic map reference relocation */ 4193 if (type == LIBBPF_MAP_UNSPEC) { 4194 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4195 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4196 prog->name, sym_name, sym_sec_name); 4197 return -LIBBPF_ERRNO__RELOC; 4198 } 4199 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4200 map = &obj->maps[map_idx]; 4201 if (map->libbpf_type != type || 4202 map->sec_idx != sym->st_shndx || 4203 map->sec_offset != sym->st_value) 4204 continue; 4205 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4206 prog->name, map_idx, map->name, map->sec_idx, 4207 map->sec_offset, insn_idx); 4208 break; 4209 } 4210 if (map_idx >= nr_maps) { 4211 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4212 prog->name, sym_sec_name, (size_t)sym->st_value); 4213 return -LIBBPF_ERRNO__RELOC; 4214 } 4215 reloc_desc->type = RELO_LD64; 4216 reloc_desc->insn_idx = insn_idx; 4217 reloc_desc->map_idx = map_idx; 4218 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4219 return 0; 4220 } 4221 4222 /* global data map relocation */ 4223 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4224 pr_warn("prog '%s': bad data relo against section '%s'\n", 4225 prog->name, sym_sec_name); 4226 return -LIBBPF_ERRNO__RELOC; 4227 } 4228 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4229 map = &obj->maps[map_idx]; 4230 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4231 continue; 4232 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4233 prog->name, map_idx, map->name, map->sec_idx, 4234 map->sec_offset, insn_idx); 4235 break; 4236 } 4237 if (map_idx >= nr_maps) { 4238 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4239 prog->name, sym_sec_name); 4240 return -LIBBPF_ERRNO__RELOC; 4241 } 4242 4243 reloc_desc->type = RELO_DATA; 4244 reloc_desc->insn_idx = insn_idx; 4245 reloc_desc->map_idx = map_idx; 4246 reloc_desc->sym_off = sym->st_value; 4247 return 0; 4248 } 4249 4250 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4251 { 4252 return insn_idx >= prog->sec_insn_off && 4253 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4254 } 4255 4256 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4257 size_t sec_idx, size_t insn_idx) 4258 { 4259 int l = 0, r = obj->nr_programs - 1, m; 4260 struct bpf_program *prog; 4261 4262 if (!obj->nr_programs) 4263 return NULL; 4264 4265 while (l < r) { 4266 m = l + (r - l + 1) / 2; 4267 prog = &obj->programs[m]; 4268 4269 if (prog->sec_idx < sec_idx || 4270 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4271 l = m; 4272 else 4273 r = m - 1; 4274 } 4275 /* matching program could be at index l, but it still might be the 4276 * wrong one, so we need to double check conditions for the last time 4277 */ 4278 prog = &obj->programs[l]; 4279 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4280 return prog; 4281 return NULL; 4282 } 4283 4284 static int 4285 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4286 { 4287 const char *relo_sec_name, *sec_name; 4288 size_t sec_idx = shdr->sh_info, sym_idx; 4289 struct bpf_program *prog; 4290 struct reloc_desc *relos; 4291 int err, i, nrels; 4292 const char *sym_name; 4293 __u32 insn_idx; 4294 Elf_Scn *scn; 4295 Elf_Data *scn_data; 4296 Elf64_Sym *sym; 4297 Elf64_Rel *rel; 4298 4299 if (sec_idx >= obj->efile.sec_cnt) 4300 return -EINVAL; 4301 4302 scn = elf_sec_by_idx(obj, sec_idx); 4303 scn_data = elf_sec_data(obj, scn); 4304 if (!scn_data) 4305 return -LIBBPF_ERRNO__FORMAT; 4306 4307 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4308 sec_name = elf_sec_name(obj, scn); 4309 if (!relo_sec_name || !sec_name) 4310 return -EINVAL; 4311 4312 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4313 relo_sec_name, sec_idx, sec_name); 4314 nrels = shdr->sh_size / shdr->sh_entsize; 4315 4316 for (i = 0; i < nrels; i++) { 4317 rel = elf_rel_by_idx(data, i); 4318 if (!rel) { 4319 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4320 return -LIBBPF_ERRNO__FORMAT; 4321 } 4322 4323 sym_idx = ELF64_R_SYM(rel->r_info); 4324 sym = elf_sym_by_idx(obj, sym_idx); 4325 if (!sym) { 4326 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4327 relo_sec_name, sym_idx, i); 4328 return -LIBBPF_ERRNO__FORMAT; 4329 } 4330 4331 if (sym->st_shndx >= obj->efile.sec_cnt) { 4332 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4333 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4334 return -LIBBPF_ERRNO__FORMAT; 4335 } 4336 4337 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4338 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4339 relo_sec_name, (size_t)rel->r_offset, i); 4340 return -LIBBPF_ERRNO__FORMAT; 4341 } 4342 4343 insn_idx = rel->r_offset / BPF_INSN_SZ; 4344 /* relocations against static functions are recorded as 4345 * relocations against the section that contains a function; 4346 * in such case, symbol will be STT_SECTION and sym.st_name 4347 * will point to empty string (0), so fetch section name 4348 * instead 4349 */ 4350 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4351 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4352 else 4353 sym_name = elf_sym_str(obj, sym->st_name); 4354 sym_name = sym_name ?: "<?"; 4355 4356 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4357 relo_sec_name, i, insn_idx, sym_name); 4358 4359 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4360 if (!prog) { 4361 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4362 relo_sec_name, i, sec_name, insn_idx); 4363 continue; 4364 } 4365 4366 relos = libbpf_reallocarray(prog->reloc_desc, 4367 prog->nr_reloc + 1, sizeof(*relos)); 4368 if (!relos) 4369 return -ENOMEM; 4370 prog->reloc_desc = relos; 4371 4372 /* adjust insn_idx to local BPF program frame of reference */ 4373 insn_idx -= prog->sec_insn_off; 4374 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4375 insn_idx, sym_name, sym, rel); 4376 if (err) 4377 return err; 4378 4379 prog->nr_reloc++; 4380 } 4381 return 0; 4382 } 4383 4384 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4385 { 4386 int id; 4387 4388 if (!obj->btf) 4389 return -ENOENT; 4390 4391 /* if it's BTF-defined map, we don't need to search for type IDs. 4392 * For struct_ops map, it does not need btf_key_type_id and 4393 * btf_value_type_id. 4394 */ 4395 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4396 return 0; 4397 4398 /* 4399 * LLVM annotates global data differently in BTF, that is, 4400 * only as '.data', '.bss' or '.rodata'. 4401 */ 4402 if (!bpf_map__is_internal(map)) 4403 return -ENOENT; 4404 4405 id = btf__find_by_name(obj->btf, map->real_name); 4406 if (id < 0) 4407 return id; 4408 4409 map->btf_key_type_id = 0; 4410 map->btf_value_type_id = id; 4411 return 0; 4412 } 4413 4414 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4415 { 4416 char file[PATH_MAX], buff[4096]; 4417 FILE *fp; 4418 __u32 val; 4419 int err; 4420 4421 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4422 memset(info, 0, sizeof(*info)); 4423 4424 fp = fopen(file, "re"); 4425 if (!fp) { 4426 err = -errno; 4427 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4428 err); 4429 return err; 4430 } 4431 4432 while (fgets(buff, sizeof(buff), fp)) { 4433 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4434 info->type = val; 4435 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4436 info->key_size = val; 4437 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4438 info->value_size = val; 4439 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4440 info->max_entries = val; 4441 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4442 info->map_flags = val; 4443 } 4444 4445 fclose(fp); 4446 4447 return 0; 4448 } 4449 4450 bool bpf_map__autocreate(const struct bpf_map *map) 4451 { 4452 return map->autocreate; 4453 } 4454 4455 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4456 { 4457 if (map->obj->loaded) 4458 return libbpf_err(-EBUSY); 4459 4460 map->autocreate = autocreate; 4461 return 0; 4462 } 4463 4464 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4465 { 4466 struct bpf_map_info info; 4467 __u32 len = sizeof(info), name_len; 4468 int new_fd, err; 4469 char *new_name; 4470 4471 memset(&info, 0, len); 4472 err = bpf_map_get_info_by_fd(fd, &info, &len); 4473 if (err && errno == EINVAL) 4474 err = bpf_get_map_info_from_fdinfo(fd, &info); 4475 if (err) 4476 return libbpf_err(err); 4477 4478 name_len = strlen(info.name); 4479 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4480 new_name = strdup(map->name); 4481 else 4482 new_name = strdup(info.name); 4483 4484 if (!new_name) 4485 return libbpf_err(-errno); 4486 4487 /* 4488 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4489 * This is similar to what we do in ensure_good_fd(), but without 4490 * closing original FD. 4491 */ 4492 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4493 if (new_fd < 0) { 4494 err = -errno; 4495 goto err_free_new_name; 4496 } 4497 4498 err = reuse_fd(map->fd, new_fd); 4499 if (err) 4500 goto err_free_new_name; 4501 4502 free(map->name); 4503 4504 map->name = new_name; 4505 map->def.type = info.type; 4506 map->def.key_size = info.key_size; 4507 map->def.value_size = info.value_size; 4508 map->def.max_entries = info.max_entries; 4509 map->def.map_flags = info.map_flags; 4510 map->btf_key_type_id = info.btf_key_type_id; 4511 map->btf_value_type_id = info.btf_value_type_id; 4512 map->reused = true; 4513 map->map_extra = info.map_extra; 4514 4515 return 0; 4516 4517 err_free_new_name: 4518 free(new_name); 4519 return libbpf_err(err); 4520 } 4521 4522 __u32 bpf_map__max_entries(const struct bpf_map *map) 4523 { 4524 return map->def.max_entries; 4525 } 4526 4527 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4528 { 4529 if (!bpf_map_type__is_map_in_map(map->def.type)) 4530 return errno = EINVAL, NULL; 4531 4532 return map->inner_map; 4533 } 4534 4535 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4536 { 4537 if (map->obj->loaded) 4538 return libbpf_err(-EBUSY); 4539 4540 map->def.max_entries = max_entries; 4541 4542 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4543 if (map_is_ringbuf(map)) 4544 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4545 4546 return 0; 4547 } 4548 4549 static int 4550 bpf_object__probe_loading(struct bpf_object *obj) 4551 { 4552 char *cp, errmsg[STRERR_BUFSIZE]; 4553 struct bpf_insn insns[] = { 4554 BPF_MOV64_IMM(BPF_REG_0, 0), 4555 BPF_EXIT_INSN(), 4556 }; 4557 int ret, insn_cnt = ARRAY_SIZE(insns); 4558 4559 if (obj->gen_loader) 4560 return 0; 4561 4562 ret = bump_rlimit_memlock(); 4563 if (ret) 4564 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4565 4566 /* make sure basic loading works */ 4567 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4568 if (ret < 0) 4569 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4570 if (ret < 0) { 4571 ret = errno; 4572 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4573 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4574 "program. Make sure your kernel supports BPF " 4575 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4576 "set to big enough value.\n", __func__, cp, ret); 4577 return -ret; 4578 } 4579 close(ret); 4580 4581 return 0; 4582 } 4583 4584 static int probe_fd(int fd) 4585 { 4586 if (fd >= 0) 4587 close(fd); 4588 return fd >= 0; 4589 } 4590 4591 static int probe_kern_prog_name(void) 4592 { 4593 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4594 struct bpf_insn insns[] = { 4595 BPF_MOV64_IMM(BPF_REG_0, 0), 4596 BPF_EXIT_INSN(), 4597 }; 4598 union bpf_attr attr; 4599 int ret; 4600 4601 memset(&attr, 0, attr_sz); 4602 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4603 attr.license = ptr_to_u64("GPL"); 4604 attr.insns = ptr_to_u64(insns); 4605 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4606 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4607 4608 /* make sure loading with name works */ 4609 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4610 return probe_fd(ret); 4611 } 4612 4613 static int probe_kern_global_data(void) 4614 { 4615 char *cp, errmsg[STRERR_BUFSIZE]; 4616 struct bpf_insn insns[] = { 4617 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4618 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4619 BPF_MOV64_IMM(BPF_REG_0, 0), 4620 BPF_EXIT_INSN(), 4621 }; 4622 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4623 4624 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4625 if (map < 0) { 4626 ret = -errno; 4627 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4628 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4629 __func__, cp, -ret); 4630 return ret; 4631 } 4632 4633 insns[0].imm = map; 4634 4635 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4636 close(map); 4637 return probe_fd(ret); 4638 } 4639 4640 static int probe_kern_btf(void) 4641 { 4642 static const char strs[] = "\0int"; 4643 __u32 types[] = { 4644 /* int */ 4645 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4646 }; 4647 4648 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4649 strs, sizeof(strs))); 4650 } 4651 4652 static int probe_kern_btf_func(void) 4653 { 4654 static const char strs[] = "\0int\0x\0a"; 4655 /* void x(int a) {} */ 4656 __u32 types[] = { 4657 /* int */ 4658 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4659 /* FUNC_PROTO */ /* [2] */ 4660 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4661 BTF_PARAM_ENC(7, 1), 4662 /* FUNC x */ /* [3] */ 4663 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4664 }; 4665 4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4667 strs, sizeof(strs))); 4668 } 4669 4670 static int probe_kern_btf_func_global(void) 4671 { 4672 static const char strs[] = "\0int\0x\0a"; 4673 /* static void x(int a) {} */ 4674 __u32 types[] = { 4675 /* int */ 4676 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4677 /* FUNC_PROTO */ /* [2] */ 4678 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4679 BTF_PARAM_ENC(7, 1), 4680 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4681 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4682 }; 4683 4684 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4685 strs, sizeof(strs))); 4686 } 4687 4688 static int probe_kern_btf_datasec(void) 4689 { 4690 static const char strs[] = "\0x\0.data"; 4691 /* static int a; */ 4692 __u32 types[] = { 4693 /* int */ 4694 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4695 /* VAR x */ /* [2] */ 4696 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4697 BTF_VAR_STATIC, 4698 /* DATASEC val */ /* [3] */ 4699 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4700 BTF_VAR_SECINFO_ENC(2, 0, 4), 4701 }; 4702 4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4704 strs, sizeof(strs))); 4705 } 4706 4707 static int probe_kern_btf_float(void) 4708 { 4709 static const char strs[] = "\0float"; 4710 __u32 types[] = { 4711 /* float */ 4712 BTF_TYPE_FLOAT_ENC(1, 4), 4713 }; 4714 4715 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4716 strs, sizeof(strs))); 4717 } 4718 4719 static int probe_kern_btf_decl_tag(void) 4720 { 4721 static const char strs[] = "\0tag"; 4722 __u32 types[] = { 4723 /* int */ 4724 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4725 /* VAR x */ /* [2] */ 4726 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4727 BTF_VAR_STATIC, 4728 /* attr */ 4729 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4730 }; 4731 4732 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4733 strs, sizeof(strs))); 4734 } 4735 4736 static int probe_kern_btf_type_tag(void) 4737 { 4738 static const char strs[] = "\0tag"; 4739 __u32 types[] = { 4740 /* int */ 4741 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4742 /* attr */ 4743 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4744 /* ptr */ 4745 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4746 }; 4747 4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4749 strs, sizeof(strs))); 4750 } 4751 4752 static int probe_kern_array_mmap(void) 4753 { 4754 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4755 int fd; 4756 4757 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4758 return probe_fd(fd); 4759 } 4760 4761 static int probe_kern_exp_attach_type(void) 4762 { 4763 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4764 struct bpf_insn insns[] = { 4765 BPF_MOV64_IMM(BPF_REG_0, 0), 4766 BPF_EXIT_INSN(), 4767 }; 4768 int fd, insn_cnt = ARRAY_SIZE(insns); 4769 4770 /* use any valid combination of program type and (optional) 4771 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4772 * to see if kernel supports expected_attach_type field for 4773 * BPF_PROG_LOAD command 4774 */ 4775 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4776 return probe_fd(fd); 4777 } 4778 4779 static int probe_kern_probe_read_kernel(void) 4780 { 4781 struct bpf_insn insns[] = { 4782 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4783 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4784 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4785 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4786 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4787 BPF_EXIT_INSN(), 4788 }; 4789 int fd, insn_cnt = ARRAY_SIZE(insns); 4790 4791 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4792 return probe_fd(fd); 4793 } 4794 4795 static int probe_prog_bind_map(void) 4796 { 4797 char *cp, errmsg[STRERR_BUFSIZE]; 4798 struct bpf_insn insns[] = { 4799 BPF_MOV64_IMM(BPF_REG_0, 0), 4800 BPF_EXIT_INSN(), 4801 }; 4802 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4803 4804 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4805 if (map < 0) { 4806 ret = -errno; 4807 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4808 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4809 __func__, cp, -ret); 4810 return ret; 4811 } 4812 4813 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4814 if (prog < 0) { 4815 close(map); 4816 return 0; 4817 } 4818 4819 ret = bpf_prog_bind_map(prog, map, NULL); 4820 4821 close(map); 4822 close(prog); 4823 4824 return ret >= 0; 4825 } 4826 4827 static int probe_module_btf(void) 4828 { 4829 static const char strs[] = "\0int"; 4830 __u32 types[] = { 4831 /* int */ 4832 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4833 }; 4834 struct bpf_btf_info info; 4835 __u32 len = sizeof(info); 4836 char name[16]; 4837 int fd, err; 4838 4839 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4840 if (fd < 0) 4841 return 0; /* BTF not supported at all */ 4842 4843 memset(&info, 0, sizeof(info)); 4844 info.name = ptr_to_u64(name); 4845 info.name_len = sizeof(name); 4846 4847 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4848 * kernel's module BTF support coincides with support for 4849 * name/name_len fields in struct bpf_btf_info. 4850 */ 4851 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4852 close(fd); 4853 return !err; 4854 } 4855 4856 static int probe_perf_link(void) 4857 { 4858 struct bpf_insn insns[] = { 4859 BPF_MOV64_IMM(BPF_REG_0, 0), 4860 BPF_EXIT_INSN(), 4861 }; 4862 int prog_fd, link_fd, err; 4863 4864 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4865 insns, ARRAY_SIZE(insns), NULL); 4866 if (prog_fd < 0) 4867 return -errno; 4868 4869 /* use invalid perf_event FD to get EBADF, if link is supported; 4870 * otherwise EINVAL should be returned 4871 */ 4872 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4873 err = -errno; /* close() can clobber errno */ 4874 4875 if (link_fd >= 0) 4876 close(link_fd); 4877 close(prog_fd); 4878 4879 return link_fd < 0 && err == -EBADF; 4880 } 4881 4882 static int probe_uprobe_multi_link(void) 4883 { 4884 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4885 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4886 ); 4887 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4888 struct bpf_insn insns[] = { 4889 BPF_MOV64_IMM(BPF_REG_0, 0), 4890 BPF_EXIT_INSN(), 4891 }; 4892 int prog_fd, link_fd, err; 4893 unsigned long offset = 0; 4894 4895 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4896 insns, ARRAY_SIZE(insns), &load_opts); 4897 if (prog_fd < 0) 4898 return -errno; 4899 4900 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4901 link_opts.uprobe_multi.path = "/"; 4902 link_opts.uprobe_multi.offsets = &offset; 4903 link_opts.uprobe_multi.cnt = 1; 4904 4905 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4906 err = -errno; /* close() can clobber errno */ 4907 4908 if (link_fd >= 0) 4909 close(link_fd); 4910 close(prog_fd); 4911 4912 return link_fd < 0 && err == -EBADF; 4913 } 4914 4915 static int probe_kern_bpf_cookie(void) 4916 { 4917 struct bpf_insn insns[] = { 4918 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4919 BPF_EXIT_INSN(), 4920 }; 4921 int ret, insn_cnt = ARRAY_SIZE(insns); 4922 4923 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4924 return probe_fd(ret); 4925 } 4926 4927 static int probe_kern_btf_enum64(void) 4928 { 4929 static const char strs[] = "\0enum64"; 4930 __u32 types[] = { 4931 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4932 }; 4933 4934 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4935 strs, sizeof(strs))); 4936 } 4937 4938 static int probe_kern_syscall_wrapper(void); 4939 4940 enum kern_feature_result { 4941 FEAT_UNKNOWN = 0, 4942 FEAT_SUPPORTED = 1, 4943 FEAT_MISSING = 2, 4944 }; 4945 4946 typedef int (*feature_probe_fn)(void); 4947 4948 static struct kern_feature_desc { 4949 const char *desc; 4950 feature_probe_fn probe; 4951 enum kern_feature_result res; 4952 } feature_probes[__FEAT_CNT] = { 4953 [FEAT_PROG_NAME] = { 4954 "BPF program name", probe_kern_prog_name, 4955 }, 4956 [FEAT_GLOBAL_DATA] = { 4957 "global variables", probe_kern_global_data, 4958 }, 4959 [FEAT_BTF] = { 4960 "minimal BTF", probe_kern_btf, 4961 }, 4962 [FEAT_BTF_FUNC] = { 4963 "BTF functions", probe_kern_btf_func, 4964 }, 4965 [FEAT_BTF_GLOBAL_FUNC] = { 4966 "BTF global function", probe_kern_btf_func_global, 4967 }, 4968 [FEAT_BTF_DATASEC] = { 4969 "BTF data section and variable", probe_kern_btf_datasec, 4970 }, 4971 [FEAT_ARRAY_MMAP] = { 4972 "ARRAY map mmap()", probe_kern_array_mmap, 4973 }, 4974 [FEAT_EXP_ATTACH_TYPE] = { 4975 "BPF_PROG_LOAD expected_attach_type attribute", 4976 probe_kern_exp_attach_type, 4977 }, 4978 [FEAT_PROBE_READ_KERN] = { 4979 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4980 }, 4981 [FEAT_PROG_BIND_MAP] = { 4982 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4983 }, 4984 [FEAT_MODULE_BTF] = { 4985 "module BTF support", probe_module_btf, 4986 }, 4987 [FEAT_BTF_FLOAT] = { 4988 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4989 }, 4990 [FEAT_PERF_LINK] = { 4991 "BPF perf link support", probe_perf_link, 4992 }, 4993 [FEAT_BTF_DECL_TAG] = { 4994 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4995 }, 4996 [FEAT_BTF_TYPE_TAG] = { 4997 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4998 }, 4999 [FEAT_MEMCG_ACCOUNT] = { 5000 "memcg-based memory accounting", probe_memcg_account, 5001 }, 5002 [FEAT_BPF_COOKIE] = { 5003 "BPF cookie support", probe_kern_bpf_cookie, 5004 }, 5005 [FEAT_BTF_ENUM64] = { 5006 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5007 }, 5008 [FEAT_SYSCALL_WRAPPER] = { 5009 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5010 }, 5011 [FEAT_UPROBE_MULTI_LINK] = { 5012 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5013 }, 5014 }; 5015 5016 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5017 { 5018 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5019 int ret; 5020 5021 if (obj && obj->gen_loader) 5022 /* To generate loader program assume the latest kernel 5023 * to avoid doing extra prog_load, map_create syscalls. 5024 */ 5025 return true; 5026 5027 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5028 ret = feat->probe(); 5029 if (ret > 0) { 5030 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5031 } else if (ret == 0) { 5032 WRITE_ONCE(feat->res, FEAT_MISSING); 5033 } else { 5034 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5035 WRITE_ONCE(feat->res, FEAT_MISSING); 5036 } 5037 } 5038 5039 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5040 } 5041 5042 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5043 { 5044 struct bpf_map_info map_info; 5045 char msg[STRERR_BUFSIZE]; 5046 __u32 map_info_len = sizeof(map_info); 5047 int err; 5048 5049 memset(&map_info, 0, map_info_len); 5050 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5051 if (err && errno == EINVAL) 5052 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5053 if (err) { 5054 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5055 libbpf_strerror_r(errno, msg, sizeof(msg))); 5056 return false; 5057 } 5058 5059 return (map_info.type == map->def.type && 5060 map_info.key_size == map->def.key_size && 5061 map_info.value_size == map->def.value_size && 5062 map_info.max_entries == map->def.max_entries && 5063 map_info.map_flags == map->def.map_flags && 5064 map_info.map_extra == map->map_extra); 5065 } 5066 5067 static int 5068 bpf_object__reuse_map(struct bpf_map *map) 5069 { 5070 char *cp, errmsg[STRERR_BUFSIZE]; 5071 int err, pin_fd; 5072 5073 pin_fd = bpf_obj_get(map->pin_path); 5074 if (pin_fd < 0) { 5075 err = -errno; 5076 if (err == -ENOENT) { 5077 pr_debug("found no pinned map to reuse at '%s'\n", 5078 map->pin_path); 5079 return 0; 5080 } 5081 5082 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5083 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5084 map->pin_path, cp); 5085 return err; 5086 } 5087 5088 if (!map_is_reuse_compat(map, pin_fd)) { 5089 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5090 map->pin_path); 5091 close(pin_fd); 5092 return -EINVAL; 5093 } 5094 5095 err = bpf_map__reuse_fd(map, pin_fd); 5096 close(pin_fd); 5097 if (err) 5098 return err; 5099 5100 map->pinned = true; 5101 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5102 5103 return 0; 5104 } 5105 5106 static int 5107 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5108 { 5109 enum libbpf_map_type map_type = map->libbpf_type; 5110 char *cp, errmsg[STRERR_BUFSIZE]; 5111 int err, zero = 0; 5112 5113 if (obj->gen_loader) { 5114 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5115 map->mmaped, map->def.value_size); 5116 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5117 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5118 return 0; 5119 } 5120 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5121 if (err) { 5122 err = -errno; 5123 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5124 pr_warn("Error setting initial map(%s) contents: %s\n", 5125 map->name, cp); 5126 return err; 5127 } 5128 5129 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5130 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5131 err = bpf_map_freeze(map->fd); 5132 if (err) { 5133 err = -errno; 5134 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5135 pr_warn("Error freezing map(%s) as read-only: %s\n", 5136 map->name, cp); 5137 return err; 5138 } 5139 } 5140 return 0; 5141 } 5142 5143 static void bpf_map__destroy(struct bpf_map *map); 5144 5145 static bool map_is_created(const struct bpf_map *map) 5146 { 5147 return map->obj->loaded || map->reused; 5148 } 5149 5150 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5151 { 5152 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5153 struct bpf_map_def *def = &map->def; 5154 const char *map_name = NULL; 5155 int err = 0, map_fd; 5156 5157 if (kernel_supports(obj, FEAT_PROG_NAME)) 5158 map_name = map->name; 5159 create_attr.map_ifindex = map->map_ifindex; 5160 create_attr.map_flags = def->map_flags; 5161 create_attr.numa_node = map->numa_node; 5162 create_attr.map_extra = map->map_extra; 5163 5164 if (bpf_map__is_struct_ops(map)) 5165 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5166 5167 if (obj->btf && btf__fd(obj->btf) >= 0) { 5168 create_attr.btf_fd = btf__fd(obj->btf); 5169 create_attr.btf_key_type_id = map->btf_key_type_id; 5170 create_attr.btf_value_type_id = map->btf_value_type_id; 5171 } 5172 5173 if (bpf_map_type__is_map_in_map(def->type)) { 5174 if (map->inner_map) { 5175 err = bpf_object__create_map(obj, map->inner_map, true); 5176 if (err) { 5177 pr_warn("map '%s': failed to create inner map: %d\n", 5178 map->name, err); 5179 return err; 5180 } 5181 map->inner_map_fd = map->inner_map->fd; 5182 } 5183 if (map->inner_map_fd >= 0) 5184 create_attr.inner_map_fd = map->inner_map_fd; 5185 } 5186 5187 switch (def->type) { 5188 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5189 case BPF_MAP_TYPE_CGROUP_ARRAY: 5190 case BPF_MAP_TYPE_STACK_TRACE: 5191 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5192 case BPF_MAP_TYPE_HASH_OF_MAPS: 5193 case BPF_MAP_TYPE_DEVMAP: 5194 case BPF_MAP_TYPE_DEVMAP_HASH: 5195 case BPF_MAP_TYPE_CPUMAP: 5196 case BPF_MAP_TYPE_XSKMAP: 5197 case BPF_MAP_TYPE_SOCKMAP: 5198 case BPF_MAP_TYPE_SOCKHASH: 5199 case BPF_MAP_TYPE_QUEUE: 5200 case BPF_MAP_TYPE_STACK: 5201 create_attr.btf_fd = 0; 5202 create_attr.btf_key_type_id = 0; 5203 create_attr.btf_value_type_id = 0; 5204 map->btf_key_type_id = 0; 5205 map->btf_value_type_id = 0; 5206 default: 5207 break; 5208 } 5209 5210 if (obj->gen_loader) { 5211 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5212 def->key_size, def->value_size, def->max_entries, 5213 &create_attr, is_inner ? -1 : map - obj->maps); 5214 /* We keep pretenting we have valid FD to pass various fd >= 0 5215 * checks by just keeping original placeholder FDs in place. 5216 * See bpf_object__add_map() comment. 5217 * This placeholder fd will not be used with any syscall and 5218 * will be reset to -1 eventually. 5219 */ 5220 map_fd = map->fd; 5221 } else { 5222 map_fd = bpf_map_create(def->type, map_name, 5223 def->key_size, def->value_size, 5224 def->max_entries, &create_attr); 5225 } 5226 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5227 char *cp, errmsg[STRERR_BUFSIZE]; 5228 5229 err = -errno; 5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5231 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5232 map->name, cp, err); 5233 create_attr.btf_fd = 0; 5234 create_attr.btf_key_type_id = 0; 5235 create_attr.btf_value_type_id = 0; 5236 map->btf_key_type_id = 0; 5237 map->btf_value_type_id = 0; 5238 map_fd = bpf_map_create(def->type, map_name, 5239 def->key_size, def->value_size, 5240 def->max_entries, &create_attr); 5241 } 5242 5243 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5244 if (obj->gen_loader) 5245 map->inner_map->fd = -1; 5246 bpf_map__destroy(map->inner_map); 5247 zfree(&map->inner_map); 5248 } 5249 5250 if (map_fd < 0) 5251 return map_fd; 5252 5253 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5254 if (map->fd == map_fd) 5255 return 0; 5256 5257 /* Keep placeholder FD value but now point it to the BPF map object. 5258 * This way everything that relied on this map's FD (e.g., relocated 5259 * ldimm64 instructions) will stay valid and won't need adjustments. 5260 * map->fd stays valid but now point to what map_fd points to. 5261 */ 5262 return reuse_fd(map->fd, map_fd); 5263 } 5264 5265 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5266 { 5267 const struct bpf_map *targ_map; 5268 unsigned int i; 5269 int fd, err = 0; 5270 5271 for (i = 0; i < map->init_slots_sz; i++) { 5272 if (!map->init_slots[i]) 5273 continue; 5274 5275 targ_map = map->init_slots[i]; 5276 fd = targ_map->fd; 5277 5278 if (obj->gen_loader) { 5279 bpf_gen__populate_outer_map(obj->gen_loader, 5280 map - obj->maps, i, 5281 targ_map - obj->maps); 5282 } else { 5283 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5284 } 5285 if (err) { 5286 err = -errno; 5287 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5288 map->name, i, targ_map->name, fd, err); 5289 return err; 5290 } 5291 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5292 map->name, i, targ_map->name, fd); 5293 } 5294 5295 zfree(&map->init_slots); 5296 map->init_slots_sz = 0; 5297 5298 return 0; 5299 } 5300 5301 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5302 { 5303 const struct bpf_program *targ_prog; 5304 unsigned int i; 5305 int fd, err; 5306 5307 if (obj->gen_loader) 5308 return -ENOTSUP; 5309 5310 for (i = 0; i < map->init_slots_sz; i++) { 5311 if (!map->init_slots[i]) 5312 continue; 5313 5314 targ_prog = map->init_slots[i]; 5315 fd = bpf_program__fd(targ_prog); 5316 5317 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5318 if (err) { 5319 err = -errno; 5320 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5321 map->name, i, targ_prog->name, fd, err); 5322 return err; 5323 } 5324 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5325 map->name, i, targ_prog->name, fd); 5326 } 5327 5328 zfree(&map->init_slots); 5329 map->init_slots_sz = 0; 5330 5331 return 0; 5332 } 5333 5334 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5335 { 5336 struct bpf_map *map; 5337 int i, err; 5338 5339 for (i = 0; i < obj->nr_maps; i++) { 5340 map = &obj->maps[i]; 5341 5342 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5343 continue; 5344 5345 err = init_prog_array_slots(obj, map); 5346 if (err < 0) 5347 return err; 5348 } 5349 return 0; 5350 } 5351 5352 static int map_set_def_max_entries(struct bpf_map *map) 5353 { 5354 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5355 int nr_cpus; 5356 5357 nr_cpus = libbpf_num_possible_cpus(); 5358 if (nr_cpus < 0) { 5359 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5360 map->name, nr_cpus); 5361 return nr_cpus; 5362 } 5363 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5364 map->def.max_entries = nr_cpus; 5365 } 5366 5367 return 0; 5368 } 5369 5370 static int 5371 bpf_object__create_maps(struct bpf_object *obj) 5372 { 5373 struct bpf_map *map; 5374 char *cp, errmsg[STRERR_BUFSIZE]; 5375 unsigned int i, j; 5376 int err; 5377 bool retried; 5378 5379 for (i = 0; i < obj->nr_maps; i++) { 5380 map = &obj->maps[i]; 5381 5382 /* To support old kernels, we skip creating global data maps 5383 * (.rodata, .data, .kconfig, etc); later on, during program 5384 * loading, if we detect that at least one of the to-be-loaded 5385 * programs is referencing any global data map, we'll error 5386 * out with program name and relocation index logged. 5387 * This approach allows to accommodate Clang emitting 5388 * unnecessary .rodata.str1.1 sections for string literals, 5389 * but also it allows to have CO-RE applications that use 5390 * global variables in some of BPF programs, but not others. 5391 * If those global variable-using programs are not loaded at 5392 * runtime due to bpf_program__set_autoload(prog, false), 5393 * bpf_object loading will succeed just fine even on old 5394 * kernels. 5395 */ 5396 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5397 map->autocreate = false; 5398 5399 if (!map->autocreate) { 5400 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5401 continue; 5402 } 5403 5404 err = map_set_def_max_entries(map); 5405 if (err) 5406 goto err_out; 5407 5408 retried = false; 5409 retry: 5410 if (map->pin_path) { 5411 err = bpf_object__reuse_map(map); 5412 if (err) { 5413 pr_warn("map '%s': error reusing pinned map\n", 5414 map->name); 5415 goto err_out; 5416 } 5417 if (retried && map->fd < 0) { 5418 pr_warn("map '%s': cannot find pinned map\n", 5419 map->name); 5420 err = -ENOENT; 5421 goto err_out; 5422 } 5423 } 5424 5425 if (map->reused) { 5426 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5427 map->name, map->fd); 5428 } else { 5429 err = bpf_object__create_map(obj, map, false); 5430 if (err) 5431 goto err_out; 5432 5433 pr_debug("map '%s': created successfully, fd=%d\n", 5434 map->name, map->fd); 5435 5436 if (bpf_map__is_internal(map)) { 5437 err = bpf_object__populate_internal_map(obj, map); 5438 if (err < 0) 5439 goto err_out; 5440 } 5441 5442 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5443 err = init_map_in_map_slots(obj, map); 5444 if (err < 0) 5445 goto err_out; 5446 } 5447 } 5448 5449 if (map->pin_path && !map->pinned) { 5450 err = bpf_map__pin(map, NULL); 5451 if (err) { 5452 if (!retried && err == -EEXIST) { 5453 retried = true; 5454 goto retry; 5455 } 5456 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5457 map->name, map->pin_path, err); 5458 goto err_out; 5459 } 5460 } 5461 } 5462 5463 return 0; 5464 5465 err_out: 5466 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5467 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5468 pr_perm_msg(err); 5469 for (j = 0; j < i; j++) 5470 zclose(obj->maps[j].fd); 5471 return err; 5472 } 5473 5474 static bool bpf_core_is_flavor_sep(const char *s) 5475 { 5476 /* check X___Y name pattern, where X and Y are not underscores */ 5477 return s[0] != '_' && /* X */ 5478 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5479 s[4] != '_'; /* Y */ 5480 } 5481 5482 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5483 * before last triple underscore. Struct name part after last triple 5484 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5485 */ 5486 size_t bpf_core_essential_name_len(const char *name) 5487 { 5488 size_t n = strlen(name); 5489 int i; 5490 5491 for (i = n - 5; i >= 0; i--) { 5492 if (bpf_core_is_flavor_sep(name + i)) 5493 return i + 1; 5494 } 5495 return n; 5496 } 5497 5498 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5499 { 5500 if (!cands) 5501 return; 5502 5503 free(cands->cands); 5504 free(cands); 5505 } 5506 5507 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5508 size_t local_essent_len, 5509 const struct btf *targ_btf, 5510 const char *targ_btf_name, 5511 int targ_start_id, 5512 struct bpf_core_cand_list *cands) 5513 { 5514 struct bpf_core_cand *new_cands, *cand; 5515 const struct btf_type *t, *local_t; 5516 const char *targ_name, *local_name; 5517 size_t targ_essent_len; 5518 int n, i; 5519 5520 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5521 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5522 5523 n = btf__type_cnt(targ_btf); 5524 for (i = targ_start_id; i < n; i++) { 5525 t = btf__type_by_id(targ_btf, i); 5526 if (!btf_kind_core_compat(t, local_t)) 5527 continue; 5528 5529 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5530 if (str_is_empty(targ_name)) 5531 continue; 5532 5533 targ_essent_len = bpf_core_essential_name_len(targ_name); 5534 if (targ_essent_len != local_essent_len) 5535 continue; 5536 5537 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5538 continue; 5539 5540 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5541 local_cand->id, btf_kind_str(local_t), 5542 local_name, i, btf_kind_str(t), targ_name, 5543 targ_btf_name); 5544 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5545 sizeof(*cands->cands)); 5546 if (!new_cands) 5547 return -ENOMEM; 5548 5549 cand = &new_cands[cands->len]; 5550 cand->btf = targ_btf; 5551 cand->id = i; 5552 5553 cands->cands = new_cands; 5554 cands->len++; 5555 } 5556 return 0; 5557 } 5558 5559 static int load_module_btfs(struct bpf_object *obj) 5560 { 5561 struct bpf_btf_info info; 5562 struct module_btf *mod_btf; 5563 struct btf *btf; 5564 char name[64]; 5565 __u32 id = 0, len; 5566 int err, fd; 5567 5568 if (obj->btf_modules_loaded) 5569 return 0; 5570 5571 if (obj->gen_loader) 5572 return 0; 5573 5574 /* don't do this again, even if we find no module BTFs */ 5575 obj->btf_modules_loaded = true; 5576 5577 /* kernel too old to support module BTFs */ 5578 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5579 return 0; 5580 5581 while (true) { 5582 err = bpf_btf_get_next_id(id, &id); 5583 if (err && errno == ENOENT) 5584 return 0; 5585 if (err && errno == EPERM) { 5586 pr_debug("skipping module BTFs loading, missing privileges\n"); 5587 return 0; 5588 } 5589 if (err) { 5590 err = -errno; 5591 pr_warn("failed to iterate BTF objects: %d\n", err); 5592 return err; 5593 } 5594 5595 fd = bpf_btf_get_fd_by_id(id); 5596 if (fd < 0) { 5597 if (errno == ENOENT) 5598 continue; /* expected race: BTF was unloaded */ 5599 err = -errno; 5600 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5601 return err; 5602 } 5603 5604 len = sizeof(info); 5605 memset(&info, 0, sizeof(info)); 5606 info.name = ptr_to_u64(name); 5607 info.name_len = sizeof(name); 5608 5609 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5610 if (err) { 5611 err = -errno; 5612 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5613 goto err_out; 5614 } 5615 5616 /* ignore non-module BTFs */ 5617 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5618 close(fd); 5619 continue; 5620 } 5621 5622 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5623 err = libbpf_get_error(btf); 5624 if (err) { 5625 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5626 name, id, err); 5627 goto err_out; 5628 } 5629 5630 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5631 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5632 if (err) 5633 goto err_out; 5634 5635 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5636 5637 mod_btf->btf = btf; 5638 mod_btf->id = id; 5639 mod_btf->fd = fd; 5640 mod_btf->name = strdup(name); 5641 if (!mod_btf->name) { 5642 err = -ENOMEM; 5643 goto err_out; 5644 } 5645 continue; 5646 5647 err_out: 5648 close(fd); 5649 return err; 5650 } 5651 5652 return 0; 5653 } 5654 5655 static struct bpf_core_cand_list * 5656 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5657 { 5658 struct bpf_core_cand local_cand = {}; 5659 struct bpf_core_cand_list *cands; 5660 const struct btf *main_btf; 5661 const struct btf_type *local_t; 5662 const char *local_name; 5663 size_t local_essent_len; 5664 int err, i; 5665 5666 local_cand.btf = local_btf; 5667 local_cand.id = local_type_id; 5668 local_t = btf__type_by_id(local_btf, local_type_id); 5669 if (!local_t) 5670 return ERR_PTR(-EINVAL); 5671 5672 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5673 if (str_is_empty(local_name)) 5674 return ERR_PTR(-EINVAL); 5675 local_essent_len = bpf_core_essential_name_len(local_name); 5676 5677 cands = calloc(1, sizeof(*cands)); 5678 if (!cands) 5679 return ERR_PTR(-ENOMEM); 5680 5681 /* Attempt to find target candidates in vmlinux BTF first */ 5682 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5683 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5684 if (err) 5685 goto err_out; 5686 5687 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5688 if (cands->len) 5689 return cands; 5690 5691 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5692 if (obj->btf_vmlinux_override) 5693 return cands; 5694 5695 /* now look through module BTFs, trying to still find candidates */ 5696 err = load_module_btfs(obj); 5697 if (err) 5698 goto err_out; 5699 5700 for (i = 0; i < obj->btf_module_cnt; i++) { 5701 err = bpf_core_add_cands(&local_cand, local_essent_len, 5702 obj->btf_modules[i].btf, 5703 obj->btf_modules[i].name, 5704 btf__type_cnt(obj->btf_vmlinux), 5705 cands); 5706 if (err) 5707 goto err_out; 5708 } 5709 5710 return cands; 5711 err_out: 5712 bpf_core_free_cands(cands); 5713 return ERR_PTR(err); 5714 } 5715 5716 /* Check local and target types for compatibility. This check is used for 5717 * type-based CO-RE relocations and follow slightly different rules than 5718 * field-based relocations. This function assumes that root types were already 5719 * checked for name match. Beyond that initial root-level name check, names 5720 * are completely ignored. Compatibility rules are as follows: 5721 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5722 * kind should match for local and target types (i.e., STRUCT is not 5723 * compatible with UNION); 5724 * - for ENUMs, the size is ignored; 5725 * - for INT, size and signedness are ignored; 5726 * - for ARRAY, dimensionality is ignored, element types are checked for 5727 * compatibility recursively; 5728 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5729 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5730 * - FUNC_PROTOs are compatible if they have compatible signature: same 5731 * number of input args and compatible return and argument types. 5732 * These rules are not set in stone and probably will be adjusted as we get 5733 * more experience with using BPF CO-RE relocations. 5734 */ 5735 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5736 const struct btf *targ_btf, __u32 targ_id) 5737 { 5738 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5739 } 5740 5741 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5742 const struct btf *targ_btf, __u32 targ_id) 5743 { 5744 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5745 } 5746 5747 static size_t bpf_core_hash_fn(const long key, void *ctx) 5748 { 5749 return key; 5750 } 5751 5752 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5753 { 5754 return k1 == k2; 5755 } 5756 5757 static int record_relo_core(struct bpf_program *prog, 5758 const struct bpf_core_relo *core_relo, int insn_idx) 5759 { 5760 struct reloc_desc *relos, *relo; 5761 5762 relos = libbpf_reallocarray(prog->reloc_desc, 5763 prog->nr_reloc + 1, sizeof(*relos)); 5764 if (!relos) 5765 return -ENOMEM; 5766 relo = &relos[prog->nr_reloc]; 5767 relo->type = RELO_CORE; 5768 relo->insn_idx = insn_idx; 5769 relo->core_relo = core_relo; 5770 prog->reloc_desc = relos; 5771 prog->nr_reloc++; 5772 return 0; 5773 } 5774 5775 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5776 { 5777 struct reloc_desc *relo; 5778 int i; 5779 5780 for (i = 0; i < prog->nr_reloc; i++) { 5781 relo = &prog->reloc_desc[i]; 5782 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5783 continue; 5784 5785 return relo->core_relo; 5786 } 5787 5788 return NULL; 5789 } 5790 5791 static int bpf_core_resolve_relo(struct bpf_program *prog, 5792 const struct bpf_core_relo *relo, 5793 int relo_idx, 5794 const struct btf *local_btf, 5795 struct hashmap *cand_cache, 5796 struct bpf_core_relo_res *targ_res) 5797 { 5798 struct bpf_core_spec specs_scratch[3] = {}; 5799 struct bpf_core_cand_list *cands = NULL; 5800 const char *prog_name = prog->name; 5801 const struct btf_type *local_type; 5802 const char *local_name; 5803 __u32 local_id = relo->type_id; 5804 int err; 5805 5806 local_type = btf__type_by_id(local_btf, local_id); 5807 if (!local_type) 5808 return -EINVAL; 5809 5810 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5811 if (!local_name) 5812 return -EINVAL; 5813 5814 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5815 !hashmap__find(cand_cache, local_id, &cands)) { 5816 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5817 if (IS_ERR(cands)) { 5818 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5819 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5820 local_name, PTR_ERR(cands)); 5821 return PTR_ERR(cands); 5822 } 5823 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5824 if (err) { 5825 bpf_core_free_cands(cands); 5826 return err; 5827 } 5828 } 5829 5830 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5831 targ_res); 5832 } 5833 5834 static int 5835 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5836 { 5837 const struct btf_ext_info_sec *sec; 5838 struct bpf_core_relo_res targ_res; 5839 const struct bpf_core_relo *rec; 5840 const struct btf_ext_info *seg; 5841 struct hashmap_entry *entry; 5842 struct hashmap *cand_cache = NULL; 5843 struct bpf_program *prog; 5844 struct bpf_insn *insn; 5845 const char *sec_name; 5846 int i, err = 0, insn_idx, sec_idx, sec_num; 5847 5848 if (obj->btf_ext->core_relo_info.len == 0) 5849 return 0; 5850 5851 if (targ_btf_path) { 5852 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5853 err = libbpf_get_error(obj->btf_vmlinux_override); 5854 if (err) { 5855 pr_warn("failed to parse target BTF: %d\n", err); 5856 return err; 5857 } 5858 } 5859 5860 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5861 if (IS_ERR(cand_cache)) { 5862 err = PTR_ERR(cand_cache); 5863 goto out; 5864 } 5865 5866 seg = &obj->btf_ext->core_relo_info; 5867 sec_num = 0; 5868 for_each_btf_ext_sec(seg, sec) { 5869 sec_idx = seg->sec_idxs[sec_num]; 5870 sec_num++; 5871 5872 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5873 if (str_is_empty(sec_name)) { 5874 err = -EINVAL; 5875 goto out; 5876 } 5877 5878 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5879 5880 for_each_btf_ext_rec(seg, sec, i, rec) { 5881 if (rec->insn_off % BPF_INSN_SZ) 5882 return -EINVAL; 5883 insn_idx = rec->insn_off / BPF_INSN_SZ; 5884 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5885 if (!prog) { 5886 /* When __weak subprog is "overridden" by another instance 5887 * of the subprog from a different object file, linker still 5888 * appends all the .BTF.ext info that used to belong to that 5889 * eliminated subprogram. 5890 * This is similar to what x86-64 linker does for relocations. 5891 * So just ignore such relocations just like we ignore 5892 * subprog instructions when discovering subprograms. 5893 */ 5894 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5895 sec_name, i, insn_idx); 5896 continue; 5897 } 5898 /* no need to apply CO-RE relocation if the program is 5899 * not going to be loaded 5900 */ 5901 if (!prog->autoload) 5902 continue; 5903 5904 /* adjust insn_idx from section frame of reference to the local 5905 * program's frame of reference; (sub-)program code is not yet 5906 * relocated, so it's enough to just subtract in-section offset 5907 */ 5908 insn_idx = insn_idx - prog->sec_insn_off; 5909 if (insn_idx >= prog->insns_cnt) 5910 return -EINVAL; 5911 insn = &prog->insns[insn_idx]; 5912 5913 err = record_relo_core(prog, rec, insn_idx); 5914 if (err) { 5915 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5916 prog->name, i, err); 5917 goto out; 5918 } 5919 5920 if (prog->obj->gen_loader) 5921 continue; 5922 5923 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5924 if (err) { 5925 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5926 prog->name, i, err); 5927 goto out; 5928 } 5929 5930 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5931 if (err) { 5932 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5933 prog->name, i, insn_idx, err); 5934 goto out; 5935 } 5936 } 5937 } 5938 5939 out: 5940 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5941 btf__free(obj->btf_vmlinux_override); 5942 obj->btf_vmlinux_override = NULL; 5943 5944 if (!IS_ERR_OR_NULL(cand_cache)) { 5945 hashmap__for_each_entry(cand_cache, entry, i) { 5946 bpf_core_free_cands(entry->pvalue); 5947 } 5948 hashmap__free(cand_cache); 5949 } 5950 return err; 5951 } 5952 5953 /* base map load ldimm64 special constant, used also for log fixup logic */ 5954 #define POISON_LDIMM64_MAP_BASE 2001000000 5955 #define POISON_LDIMM64_MAP_PFX "200100" 5956 5957 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5958 int insn_idx, struct bpf_insn *insn, 5959 int map_idx, const struct bpf_map *map) 5960 { 5961 int i; 5962 5963 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5964 prog->name, relo_idx, insn_idx, map_idx, map->name); 5965 5966 /* we turn single ldimm64 into two identical invalid calls */ 5967 for (i = 0; i < 2; i++) { 5968 insn->code = BPF_JMP | BPF_CALL; 5969 insn->dst_reg = 0; 5970 insn->src_reg = 0; 5971 insn->off = 0; 5972 /* if this instruction is reachable (not a dead code), 5973 * verifier will complain with something like: 5974 * invalid func unknown#2001000123 5975 * where lower 123 is map index into obj->maps[] array 5976 */ 5977 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5978 5979 insn++; 5980 } 5981 } 5982 5983 /* unresolved kfunc call special constant, used also for log fixup logic */ 5984 #define POISON_CALL_KFUNC_BASE 2002000000 5985 #define POISON_CALL_KFUNC_PFX "2002" 5986 5987 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5988 int insn_idx, struct bpf_insn *insn, 5989 int ext_idx, const struct extern_desc *ext) 5990 { 5991 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5992 prog->name, relo_idx, insn_idx, ext->name); 5993 5994 /* we turn kfunc call into invalid helper call with identifiable constant */ 5995 insn->code = BPF_JMP | BPF_CALL; 5996 insn->dst_reg = 0; 5997 insn->src_reg = 0; 5998 insn->off = 0; 5999 /* if this instruction is reachable (not a dead code), 6000 * verifier will complain with something like: 6001 * invalid func unknown#2001000123 6002 * where lower 123 is extern index into obj->externs[] array 6003 */ 6004 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6005 } 6006 6007 /* Relocate data references within program code: 6008 * - map references; 6009 * - global variable references; 6010 * - extern references. 6011 */ 6012 static int 6013 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6014 { 6015 int i; 6016 6017 for (i = 0; i < prog->nr_reloc; i++) { 6018 struct reloc_desc *relo = &prog->reloc_desc[i]; 6019 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6020 const struct bpf_map *map; 6021 struct extern_desc *ext; 6022 6023 switch (relo->type) { 6024 case RELO_LD64: 6025 map = &obj->maps[relo->map_idx]; 6026 if (obj->gen_loader) { 6027 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6028 insn[0].imm = relo->map_idx; 6029 } else if (map->autocreate) { 6030 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6031 insn[0].imm = map->fd; 6032 } else { 6033 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6034 relo->map_idx, map); 6035 } 6036 break; 6037 case RELO_DATA: 6038 map = &obj->maps[relo->map_idx]; 6039 insn[1].imm = insn[0].imm + relo->sym_off; 6040 if (obj->gen_loader) { 6041 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6042 insn[0].imm = relo->map_idx; 6043 } else if (map->autocreate) { 6044 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6045 insn[0].imm = map->fd; 6046 } else { 6047 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6048 relo->map_idx, map); 6049 } 6050 break; 6051 case RELO_EXTERN_LD64: 6052 ext = &obj->externs[relo->ext_idx]; 6053 if (ext->type == EXT_KCFG) { 6054 if (obj->gen_loader) { 6055 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6056 insn[0].imm = obj->kconfig_map_idx; 6057 } else { 6058 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6059 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6060 } 6061 insn[1].imm = ext->kcfg.data_off; 6062 } else /* EXT_KSYM */ { 6063 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6064 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6065 insn[0].imm = ext->ksym.kernel_btf_id; 6066 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6067 } else { /* typeless ksyms or unresolved typed ksyms */ 6068 insn[0].imm = (__u32)ext->ksym.addr; 6069 insn[1].imm = ext->ksym.addr >> 32; 6070 } 6071 } 6072 break; 6073 case RELO_EXTERN_CALL: 6074 ext = &obj->externs[relo->ext_idx]; 6075 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6076 if (ext->is_set) { 6077 insn[0].imm = ext->ksym.kernel_btf_id; 6078 insn[0].off = ext->ksym.btf_fd_idx; 6079 } else { /* unresolved weak kfunc call */ 6080 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6081 relo->ext_idx, ext); 6082 } 6083 break; 6084 case RELO_SUBPROG_ADDR: 6085 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6086 pr_warn("prog '%s': relo #%d: bad insn\n", 6087 prog->name, i); 6088 return -EINVAL; 6089 } 6090 /* handled already */ 6091 break; 6092 case RELO_CALL: 6093 /* handled already */ 6094 break; 6095 case RELO_CORE: 6096 /* will be handled by bpf_program_record_relos() */ 6097 break; 6098 default: 6099 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6100 prog->name, i, relo->type); 6101 return -EINVAL; 6102 } 6103 } 6104 6105 return 0; 6106 } 6107 6108 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6109 const struct bpf_program *prog, 6110 const struct btf_ext_info *ext_info, 6111 void **prog_info, __u32 *prog_rec_cnt, 6112 __u32 *prog_rec_sz) 6113 { 6114 void *copy_start = NULL, *copy_end = NULL; 6115 void *rec, *rec_end, *new_prog_info; 6116 const struct btf_ext_info_sec *sec; 6117 size_t old_sz, new_sz; 6118 int i, sec_num, sec_idx, off_adj; 6119 6120 sec_num = 0; 6121 for_each_btf_ext_sec(ext_info, sec) { 6122 sec_idx = ext_info->sec_idxs[sec_num]; 6123 sec_num++; 6124 if (prog->sec_idx != sec_idx) 6125 continue; 6126 6127 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6128 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6129 6130 if (insn_off < prog->sec_insn_off) 6131 continue; 6132 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6133 break; 6134 6135 if (!copy_start) 6136 copy_start = rec; 6137 copy_end = rec + ext_info->rec_size; 6138 } 6139 6140 if (!copy_start) 6141 return -ENOENT; 6142 6143 /* append func/line info of a given (sub-)program to the main 6144 * program func/line info 6145 */ 6146 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6147 new_sz = old_sz + (copy_end - copy_start); 6148 new_prog_info = realloc(*prog_info, new_sz); 6149 if (!new_prog_info) 6150 return -ENOMEM; 6151 *prog_info = new_prog_info; 6152 *prog_rec_cnt = new_sz / ext_info->rec_size; 6153 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6154 6155 /* Kernel instruction offsets are in units of 8-byte 6156 * instructions, while .BTF.ext instruction offsets generated 6157 * by Clang are in units of bytes. So convert Clang offsets 6158 * into kernel offsets and adjust offset according to program 6159 * relocated position. 6160 */ 6161 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6162 rec = new_prog_info + old_sz; 6163 rec_end = new_prog_info + new_sz; 6164 for (; rec < rec_end; rec += ext_info->rec_size) { 6165 __u32 *insn_off = rec; 6166 6167 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6168 } 6169 *prog_rec_sz = ext_info->rec_size; 6170 return 0; 6171 } 6172 6173 return -ENOENT; 6174 } 6175 6176 static int 6177 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6178 struct bpf_program *main_prog, 6179 const struct bpf_program *prog) 6180 { 6181 int err; 6182 6183 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6184 * support func/line info 6185 */ 6186 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6187 return 0; 6188 6189 /* only attempt func info relocation if main program's func_info 6190 * relocation was successful 6191 */ 6192 if (main_prog != prog && !main_prog->func_info) 6193 goto line_info; 6194 6195 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6196 &main_prog->func_info, 6197 &main_prog->func_info_cnt, 6198 &main_prog->func_info_rec_size); 6199 if (err) { 6200 if (err != -ENOENT) { 6201 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6202 prog->name, err); 6203 return err; 6204 } 6205 if (main_prog->func_info) { 6206 /* 6207 * Some info has already been found but has problem 6208 * in the last btf_ext reloc. Must have to error out. 6209 */ 6210 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6211 return err; 6212 } 6213 /* Have problem loading the very first info. Ignore the rest. */ 6214 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6215 prog->name); 6216 } 6217 6218 line_info: 6219 /* don't relocate line info if main program's relocation failed */ 6220 if (main_prog != prog && !main_prog->line_info) 6221 return 0; 6222 6223 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6224 &main_prog->line_info, 6225 &main_prog->line_info_cnt, 6226 &main_prog->line_info_rec_size); 6227 if (err) { 6228 if (err != -ENOENT) { 6229 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6230 prog->name, err); 6231 return err; 6232 } 6233 if (main_prog->line_info) { 6234 /* 6235 * Some info has already been found but has problem 6236 * in the last btf_ext reloc. Must have to error out. 6237 */ 6238 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6239 return err; 6240 } 6241 /* Have problem loading the very first info. Ignore the rest. */ 6242 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6243 prog->name); 6244 } 6245 return 0; 6246 } 6247 6248 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6249 { 6250 size_t insn_idx = *(const size_t *)key; 6251 const struct reloc_desc *relo = elem; 6252 6253 if (insn_idx == relo->insn_idx) 6254 return 0; 6255 return insn_idx < relo->insn_idx ? -1 : 1; 6256 } 6257 6258 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6259 { 6260 if (!prog->nr_reloc) 6261 return NULL; 6262 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6263 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6264 } 6265 6266 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6267 { 6268 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6269 struct reloc_desc *relos; 6270 int i; 6271 6272 if (main_prog == subprog) 6273 return 0; 6274 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6275 /* if new count is zero, reallocarray can return a valid NULL result; 6276 * in this case the previous pointer will be freed, so we *have to* 6277 * reassign old pointer to the new value (even if it's NULL) 6278 */ 6279 if (!relos && new_cnt) 6280 return -ENOMEM; 6281 if (subprog->nr_reloc) 6282 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6283 sizeof(*relos) * subprog->nr_reloc); 6284 6285 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6286 relos[i].insn_idx += subprog->sub_insn_off; 6287 /* After insn_idx adjustment the 'relos' array is still sorted 6288 * by insn_idx and doesn't break bsearch. 6289 */ 6290 main_prog->reloc_desc = relos; 6291 main_prog->nr_reloc = new_cnt; 6292 return 0; 6293 } 6294 6295 static int 6296 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6297 struct bpf_program *subprog) 6298 { 6299 struct bpf_insn *insns; 6300 size_t new_cnt; 6301 int err; 6302 6303 subprog->sub_insn_off = main_prog->insns_cnt; 6304 6305 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6306 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6307 if (!insns) { 6308 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6309 return -ENOMEM; 6310 } 6311 main_prog->insns = insns; 6312 main_prog->insns_cnt = new_cnt; 6313 6314 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6315 subprog->insns_cnt * sizeof(*insns)); 6316 6317 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6318 main_prog->name, subprog->insns_cnt, subprog->name); 6319 6320 /* The subprog insns are now appended. Append its relos too. */ 6321 err = append_subprog_relos(main_prog, subprog); 6322 if (err) 6323 return err; 6324 return 0; 6325 } 6326 6327 static int 6328 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6329 struct bpf_program *prog) 6330 { 6331 size_t sub_insn_idx, insn_idx; 6332 struct bpf_program *subprog; 6333 struct reloc_desc *relo; 6334 struct bpf_insn *insn; 6335 int err; 6336 6337 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6338 if (err) 6339 return err; 6340 6341 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6342 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6343 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6344 continue; 6345 6346 relo = find_prog_insn_relo(prog, insn_idx); 6347 if (relo && relo->type == RELO_EXTERN_CALL) 6348 /* kfunc relocations will be handled later 6349 * in bpf_object__relocate_data() 6350 */ 6351 continue; 6352 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6353 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6354 prog->name, insn_idx, relo->type); 6355 return -LIBBPF_ERRNO__RELOC; 6356 } 6357 if (relo) { 6358 /* sub-program instruction index is a combination of 6359 * an offset of a symbol pointed to by relocation and 6360 * call instruction's imm field; for global functions, 6361 * call always has imm = -1, but for static functions 6362 * relocation is against STT_SECTION and insn->imm 6363 * points to a start of a static function 6364 * 6365 * for subprog addr relocation, the relo->sym_off + insn->imm is 6366 * the byte offset in the corresponding section. 6367 */ 6368 if (relo->type == RELO_CALL) 6369 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6370 else 6371 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6372 } else if (insn_is_pseudo_func(insn)) { 6373 /* 6374 * RELO_SUBPROG_ADDR relo is always emitted even if both 6375 * functions are in the same section, so it shouldn't reach here. 6376 */ 6377 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6378 prog->name, insn_idx); 6379 return -LIBBPF_ERRNO__RELOC; 6380 } else { 6381 /* if subprogram call is to a static function within 6382 * the same ELF section, there won't be any relocation 6383 * emitted, but it also means there is no additional 6384 * offset necessary, insns->imm is relative to 6385 * instruction's original position within the section 6386 */ 6387 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6388 } 6389 6390 /* we enforce that sub-programs should be in .text section */ 6391 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6392 if (!subprog) { 6393 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6394 prog->name); 6395 return -LIBBPF_ERRNO__RELOC; 6396 } 6397 6398 /* if it's the first call instruction calling into this 6399 * subprogram (meaning this subprog hasn't been processed 6400 * yet) within the context of current main program: 6401 * - append it at the end of main program's instructions blog; 6402 * - process is recursively, while current program is put on hold; 6403 * - if that subprogram calls some other not yet processes 6404 * subprogram, same thing will happen recursively until 6405 * there are no more unprocesses subprograms left to append 6406 * and relocate. 6407 */ 6408 if (subprog->sub_insn_off == 0) { 6409 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6410 if (err) 6411 return err; 6412 err = bpf_object__reloc_code(obj, main_prog, subprog); 6413 if (err) 6414 return err; 6415 } 6416 6417 /* main_prog->insns memory could have been re-allocated, so 6418 * calculate pointer again 6419 */ 6420 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6421 /* calculate correct instruction position within current main 6422 * prog; each main prog can have a different set of 6423 * subprograms appended (potentially in different order as 6424 * well), so position of any subprog can be different for 6425 * different main programs 6426 */ 6427 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6428 6429 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6430 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6431 } 6432 6433 return 0; 6434 } 6435 6436 /* 6437 * Relocate sub-program calls. 6438 * 6439 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6440 * main prog) is processed separately. For each subprog (non-entry functions, 6441 * that can be called from either entry progs or other subprogs) gets their 6442 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6443 * hasn't been yet appended and relocated within current main prog. Once its 6444 * relocated, sub_insn_off will point at the position within current main prog 6445 * where given subprog was appended. This will further be used to relocate all 6446 * the call instructions jumping into this subprog. 6447 * 6448 * We start with main program and process all call instructions. If the call 6449 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6450 * is zero), subprog instructions are appended at the end of main program's 6451 * instruction array. Then main program is "put on hold" while we recursively 6452 * process newly appended subprogram. If that subprogram calls into another 6453 * subprogram that hasn't been appended, new subprogram is appended again to 6454 * the *main* prog's instructions (subprog's instructions are always left 6455 * untouched, as they need to be in unmodified state for subsequent main progs 6456 * and subprog instructions are always sent only as part of a main prog) and 6457 * the process continues recursively. Once all the subprogs called from a main 6458 * prog or any of its subprogs are appended (and relocated), all their 6459 * positions within finalized instructions array are known, so it's easy to 6460 * rewrite call instructions with correct relative offsets, corresponding to 6461 * desired target subprog. 6462 * 6463 * Its important to realize that some subprogs might not be called from some 6464 * main prog and any of its called/used subprogs. Those will keep their 6465 * subprog->sub_insn_off as zero at all times and won't be appended to current 6466 * main prog and won't be relocated within the context of current main prog. 6467 * They might still be used from other main progs later. 6468 * 6469 * Visually this process can be shown as below. Suppose we have two main 6470 * programs mainA and mainB and BPF object contains three subprogs: subA, 6471 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6472 * subC both call subB: 6473 * 6474 * +--------+ +-------+ 6475 * | v v | 6476 * +--+---+ +--+-+-+ +---+--+ 6477 * | subA | | subB | | subC | 6478 * +--+---+ +------+ +---+--+ 6479 * ^ ^ 6480 * | | 6481 * +---+-------+ +------+----+ 6482 * | mainA | | mainB | 6483 * +-----------+ +-----------+ 6484 * 6485 * We'll start relocating mainA, will find subA, append it and start 6486 * processing sub A recursively: 6487 * 6488 * +-----------+------+ 6489 * | mainA | subA | 6490 * +-----------+------+ 6491 * 6492 * At this point we notice that subB is used from subA, so we append it and 6493 * relocate (there are no further subcalls from subB): 6494 * 6495 * +-----------+------+------+ 6496 * | mainA | subA | subB | 6497 * +-----------+------+------+ 6498 * 6499 * At this point, we relocate subA calls, then go one level up and finish with 6500 * relocatin mainA calls. mainA is done. 6501 * 6502 * For mainB process is similar but results in different order. We start with 6503 * mainB and skip subA and subB, as mainB never calls them (at least 6504 * directly), but we see subC is needed, so we append and start processing it: 6505 * 6506 * +-----------+------+ 6507 * | mainB | subC | 6508 * +-----------+------+ 6509 * Now we see subC needs subB, so we go back to it, append and relocate it: 6510 * 6511 * +-----------+------+------+ 6512 * | mainB | subC | subB | 6513 * +-----------+------+------+ 6514 * 6515 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6516 */ 6517 static int 6518 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6519 { 6520 struct bpf_program *subprog; 6521 int i, err; 6522 6523 /* mark all subprogs as not relocated (yet) within the context of 6524 * current main program 6525 */ 6526 for (i = 0; i < obj->nr_programs; i++) { 6527 subprog = &obj->programs[i]; 6528 if (!prog_is_subprog(obj, subprog)) 6529 continue; 6530 6531 subprog->sub_insn_off = 0; 6532 } 6533 6534 err = bpf_object__reloc_code(obj, prog, prog); 6535 if (err) 6536 return err; 6537 6538 return 0; 6539 } 6540 6541 static void 6542 bpf_object__free_relocs(struct bpf_object *obj) 6543 { 6544 struct bpf_program *prog; 6545 int i; 6546 6547 /* free up relocation descriptors */ 6548 for (i = 0; i < obj->nr_programs; i++) { 6549 prog = &obj->programs[i]; 6550 zfree(&prog->reloc_desc); 6551 prog->nr_reloc = 0; 6552 } 6553 } 6554 6555 static int cmp_relocs(const void *_a, const void *_b) 6556 { 6557 const struct reloc_desc *a = _a; 6558 const struct reloc_desc *b = _b; 6559 6560 if (a->insn_idx != b->insn_idx) 6561 return a->insn_idx < b->insn_idx ? -1 : 1; 6562 6563 /* no two relocations should have the same insn_idx, but ... */ 6564 if (a->type != b->type) 6565 return a->type < b->type ? -1 : 1; 6566 6567 return 0; 6568 } 6569 6570 static void bpf_object__sort_relos(struct bpf_object *obj) 6571 { 6572 int i; 6573 6574 for (i = 0; i < obj->nr_programs; i++) { 6575 struct bpf_program *p = &obj->programs[i]; 6576 6577 if (!p->nr_reloc) 6578 continue; 6579 6580 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6581 } 6582 } 6583 6584 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6585 { 6586 const char *str = "exception_callback:"; 6587 size_t pfx_len = strlen(str); 6588 int i, j, n; 6589 6590 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6591 return 0; 6592 6593 n = btf__type_cnt(obj->btf); 6594 for (i = 1; i < n; i++) { 6595 const char *name; 6596 struct btf_type *t; 6597 6598 t = btf_type_by_id(obj->btf, i); 6599 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6600 continue; 6601 6602 name = btf__str_by_offset(obj->btf, t->name_off); 6603 if (strncmp(name, str, pfx_len) != 0) 6604 continue; 6605 6606 t = btf_type_by_id(obj->btf, t->type); 6607 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6608 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6609 prog->name); 6610 return -EINVAL; 6611 } 6612 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6613 continue; 6614 /* Multiple callbacks are specified for the same prog, 6615 * the verifier will eventually return an error for this 6616 * case, hence simply skip appending a subprog. 6617 */ 6618 if (prog->exception_cb_idx >= 0) { 6619 prog->exception_cb_idx = -1; 6620 break; 6621 } 6622 6623 name += pfx_len; 6624 if (str_is_empty(name)) { 6625 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6626 prog->name); 6627 return -EINVAL; 6628 } 6629 6630 for (j = 0; j < obj->nr_programs; j++) { 6631 struct bpf_program *subprog = &obj->programs[j]; 6632 6633 if (!prog_is_subprog(obj, subprog)) 6634 continue; 6635 if (strcmp(name, subprog->name) != 0) 6636 continue; 6637 /* Enforce non-hidden, as from verifier point of 6638 * view it expects global functions, whereas the 6639 * mark_btf_static fixes up linkage as static. 6640 */ 6641 if (!subprog->sym_global || subprog->mark_btf_static) { 6642 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6643 prog->name, subprog->name); 6644 return -EINVAL; 6645 } 6646 /* Let's see if we already saw a static exception callback with the same name */ 6647 if (prog->exception_cb_idx >= 0) { 6648 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6649 prog->name, subprog->name); 6650 return -EINVAL; 6651 } 6652 prog->exception_cb_idx = j; 6653 break; 6654 } 6655 6656 if (prog->exception_cb_idx >= 0) 6657 continue; 6658 6659 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6660 return -ENOENT; 6661 } 6662 6663 return 0; 6664 } 6665 6666 static struct { 6667 enum bpf_prog_type prog_type; 6668 const char *ctx_name; 6669 } global_ctx_map[] = { 6670 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6671 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6672 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6673 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6674 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6675 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6676 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6677 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6678 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6679 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6680 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6681 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6682 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6683 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6684 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6685 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6686 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6687 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6688 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6689 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6690 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6691 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6692 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6693 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6694 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6695 /* all other program types don't have "named" context structs */ 6696 }; 6697 6698 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6699 { 6700 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6701 int i, err, arg_cnt, fn_name_off, linkage; 6702 struct btf_type *fn_t, *fn_proto_t, *t; 6703 struct btf_param *p; 6704 6705 /* caller already validated FUNC -> FUNC_PROTO validity */ 6706 fn_t = btf_type_by_id(btf, orig_fn_id); 6707 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6708 6709 /* Note that each btf__add_xxx() operation invalidates 6710 * all btf_type and string pointers, so we need to be 6711 * very careful when cloning BTF types. BTF type 6712 * pointers have to be always refetched. And to avoid 6713 * problems with invalidated string pointers, we 6714 * add empty strings initially, then just fix up 6715 * name_off offsets in place. Offsets are stable for 6716 * existing strings, so that works out. 6717 */ 6718 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6719 linkage = btf_func_linkage(fn_t); 6720 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6721 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6722 arg_cnt = btf_vlen(fn_proto_t); 6723 6724 /* clone FUNC_PROTO and its params */ 6725 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6726 if (fn_proto_id < 0) 6727 return -EINVAL; 6728 6729 for (i = 0; i < arg_cnt; i++) { 6730 int name_off; 6731 6732 /* copy original parameter data */ 6733 t = btf_type_by_id(btf, orig_proto_id); 6734 p = &btf_params(t)[i]; 6735 name_off = p->name_off; 6736 6737 err = btf__add_func_param(btf, "", p->type); 6738 if (err) 6739 return err; 6740 6741 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6742 p = &btf_params(fn_proto_t)[i]; 6743 p->name_off = name_off; /* use remembered str offset */ 6744 } 6745 6746 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6747 * entry program's name as a placeholder, which we replace immediately 6748 * with original name_off 6749 */ 6750 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6751 if (fn_id < 0) 6752 return -EINVAL; 6753 6754 fn_t = btf_type_by_id(btf, fn_id); 6755 fn_t->name_off = fn_name_off; /* reuse original string */ 6756 6757 return fn_id; 6758 } 6759 6760 /* Check if main program or global subprog's function prototype has `arg:ctx` 6761 * argument tags, and, if necessary, substitute correct type to match what BPF 6762 * verifier would expect, taking into account specific program type. This 6763 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6764 * have a native support for it in the verifier, making user's life much 6765 * easier. 6766 */ 6767 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6768 { 6769 const char *ctx_name = NULL, *ctx_tag = "arg:ctx"; 6770 struct bpf_func_info_min *func_rec; 6771 struct btf_type *fn_t, *fn_proto_t; 6772 struct btf *btf = obj->btf; 6773 const struct btf_type *t; 6774 struct btf_param *p; 6775 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6776 int i, n, arg_idx, arg_cnt, err, rec_idx; 6777 int *orig_ids; 6778 6779 /* no .BTF.ext, no problem */ 6780 if (!obj->btf_ext || !prog->func_info) 6781 return 0; 6782 6783 /* some BPF program types just don't have named context structs, so 6784 * this fallback mechanism doesn't work for them 6785 */ 6786 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6787 if (global_ctx_map[i].prog_type != prog->type) 6788 continue; 6789 ctx_name = global_ctx_map[i].ctx_name; 6790 break; 6791 } 6792 if (!ctx_name) 6793 return 0; 6794 6795 /* remember original func BTF IDs to detect if we already cloned them */ 6796 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6797 if (!orig_ids) 6798 return -ENOMEM; 6799 for (i = 0; i < prog->func_info_cnt; i++) { 6800 func_rec = prog->func_info + prog->func_info_rec_size * i; 6801 orig_ids[i] = func_rec->type_id; 6802 } 6803 6804 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6805 * of our subprogs; if yes and subprog is global and needs adjustment, 6806 * clone and adjust FUNC -> FUNC_PROTO combo 6807 */ 6808 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6809 /* only DECL_TAG with "arg:ctx" value are interesting */ 6810 t = btf__type_by_id(btf, i); 6811 if (!btf_is_decl_tag(t)) 6812 continue; 6813 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6814 continue; 6815 6816 /* only global funcs need adjustment, if at all */ 6817 orig_fn_id = t->type; 6818 fn_t = btf_type_by_id(btf, orig_fn_id); 6819 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6820 continue; 6821 6822 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6823 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6824 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6825 continue; 6826 6827 /* find corresponding func_info record */ 6828 func_rec = NULL; 6829 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6830 if (orig_ids[rec_idx] == t->type) { 6831 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6832 break; 6833 } 6834 } 6835 /* current main program doesn't call into this subprog */ 6836 if (!func_rec) 6837 continue; 6838 6839 /* some more sanity checking of DECL_TAG */ 6840 arg_cnt = btf_vlen(fn_proto_t); 6841 arg_idx = btf_decl_tag(t)->component_idx; 6842 if (arg_idx < 0 || arg_idx >= arg_cnt) 6843 continue; 6844 6845 /* check if existing parameter already matches verifier expectations */ 6846 p = &btf_params(fn_proto_t)[arg_idx]; 6847 t = skip_mods_and_typedefs(btf, p->type, NULL); 6848 if (btf_is_ptr(t) && 6849 (t = skip_mods_and_typedefs(btf, t->type, NULL)) && 6850 btf_is_struct(t) && 6851 strcmp(btf__str_by_offset(btf, t->name_off), ctx_name) == 0) { 6852 continue; /* no need for fix up */ 6853 } 6854 6855 /* clone fn/fn_proto, unless we already did it for another arg */ 6856 if (func_rec->type_id == orig_fn_id) { 6857 int fn_id; 6858 6859 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6860 if (fn_id < 0) { 6861 err = fn_id; 6862 goto err_out; 6863 } 6864 6865 /* point func_info record to a cloned FUNC type */ 6866 func_rec->type_id = fn_id; 6867 } 6868 6869 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6870 * we do it just once per main BPF program, as all global 6871 * funcs share the same program type, so need only PTR -> 6872 * STRUCT type chain 6873 */ 6874 if (ptr_id == 0) { 6875 struct_id = btf__add_struct(btf, ctx_name, 0); 6876 ptr_id = btf__add_ptr(btf, struct_id); 6877 if (ptr_id < 0 || struct_id < 0) { 6878 err = -EINVAL; 6879 goto err_out; 6880 } 6881 } 6882 6883 /* for completeness, clone DECL_TAG and point it to cloned param */ 6884 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6885 if (tag_id < 0) { 6886 err = -EINVAL; 6887 goto err_out; 6888 } 6889 6890 /* all the BTF manipulations invalidated pointers, refetch them */ 6891 fn_t = btf_type_by_id(btf, func_rec->type_id); 6892 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6893 6894 /* fix up type ID pointed to by param */ 6895 p = &btf_params(fn_proto_t)[arg_idx]; 6896 p->type = ptr_id; 6897 } 6898 6899 free(orig_ids); 6900 return 0; 6901 err_out: 6902 free(orig_ids); 6903 return err; 6904 } 6905 6906 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6907 { 6908 struct bpf_program *prog; 6909 size_t i, j; 6910 int err; 6911 6912 if (obj->btf_ext) { 6913 err = bpf_object__relocate_core(obj, targ_btf_path); 6914 if (err) { 6915 pr_warn("failed to perform CO-RE relocations: %d\n", 6916 err); 6917 return err; 6918 } 6919 bpf_object__sort_relos(obj); 6920 } 6921 6922 /* Before relocating calls pre-process relocations and mark 6923 * few ld_imm64 instructions that points to subprogs. 6924 * Otherwise bpf_object__reloc_code() later would have to consider 6925 * all ld_imm64 insns as relocation candidates. That would 6926 * reduce relocation speed, since amount of find_prog_insn_relo() 6927 * would increase and most of them will fail to find a relo. 6928 */ 6929 for (i = 0; i < obj->nr_programs; i++) { 6930 prog = &obj->programs[i]; 6931 for (j = 0; j < prog->nr_reloc; j++) { 6932 struct reloc_desc *relo = &prog->reloc_desc[j]; 6933 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6934 6935 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6936 if (relo->type == RELO_SUBPROG_ADDR) 6937 insn[0].src_reg = BPF_PSEUDO_FUNC; 6938 } 6939 } 6940 6941 /* relocate subprogram calls and append used subprograms to main 6942 * programs; each copy of subprogram code needs to be relocated 6943 * differently for each main program, because its code location might 6944 * have changed. 6945 * Append subprog relos to main programs to allow data relos to be 6946 * processed after text is completely relocated. 6947 */ 6948 for (i = 0; i < obj->nr_programs; i++) { 6949 prog = &obj->programs[i]; 6950 /* sub-program's sub-calls are relocated within the context of 6951 * its main program only 6952 */ 6953 if (prog_is_subprog(obj, prog)) 6954 continue; 6955 if (!prog->autoload) 6956 continue; 6957 6958 err = bpf_object__relocate_calls(obj, prog); 6959 if (err) { 6960 pr_warn("prog '%s': failed to relocate calls: %d\n", 6961 prog->name, err); 6962 return err; 6963 } 6964 6965 err = bpf_prog_assign_exc_cb(obj, prog); 6966 if (err) 6967 return err; 6968 /* Now, also append exception callback if it has not been done already. */ 6969 if (prog->exception_cb_idx >= 0) { 6970 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6971 6972 /* Calling exception callback directly is disallowed, which the 6973 * verifier will reject later. In case it was processed already, 6974 * we can skip this step, otherwise for all other valid cases we 6975 * have to append exception callback now. 6976 */ 6977 if (subprog->sub_insn_off == 0) { 6978 err = bpf_object__append_subprog_code(obj, prog, subprog); 6979 if (err) 6980 return err; 6981 err = bpf_object__reloc_code(obj, prog, subprog); 6982 if (err) 6983 return err; 6984 } 6985 } 6986 } 6987 for (i = 0; i < obj->nr_programs; i++) { 6988 prog = &obj->programs[i]; 6989 if (prog_is_subprog(obj, prog)) 6990 continue; 6991 if (!prog->autoload) 6992 continue; 6993 6994 /* Process data relos for main programs */ 6995 err = bpf_object__relocate_data(obj, prog); 6996 if (err) { 6997 pr_warn("prog '%s': failed to relocate data references: %d\n", 6998 prog->name, err); 6999 return err; 7000 } 7001 7002 /* Fix up .BTF.ext information, if necessary */ 7003 err = bpf_program_fixup_func_info(obj, prog); 7004 if (err) { 7005 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7006 prog->name, err); 7007 return err; 7008 } 7009 } 7010 7011 return 0; 7012 } 7013 7014 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7015 Elf64_Shdr *shdr, Elf_Data *data); 7016 7017 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7018 Elf64_Shdr *shdr, Elf_Data *data) 7019 { 7020 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7021 int i, j, nrels, new_sz; 7022 const struct btf_var_secinfo *vi = NULL; 7023 const struct btf_type *sec, *var, *def; 7024 struct bpf_map *map = NULL, *targ_map = NULL; 7025 struct bpf_program *targ_prog = NULL; 7026 bool is_prog_array, is_map_in_map; 7027 const struct btf_member *member; 7028 const char *name, *mname, *type; 7029 unsigned int moff; 7030 Elf64_Sym *sym; 7031 Elf64_Rel *rel; 7032 void *tmp; 7033 7034 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7035 return -EINVAL; 7036 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7037 if (!sec) 7038 return -EINVAL; 7039 7040 nrels = shdr->sh_size / shdr->sh_entsize; 7041 for (i = 0; i < nrels; i++) { 7042 rel = elf_rel_by_idx(data, i); 7043 if (!rel) { 7044 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7045 return -LIBBPF_ERRNO__FORMAT; 7046 } 7047 7048 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7049 if (!sym) { 7050 pr_warn(".maps relo #%d: symbol %zx not found\n", 7051 i, (size_t)ELF64_R_SYM(rel->r_info)); 7052 return -LIBBPF_ERRNO__FORMAT; 7053 } 7054 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7055 7056 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7057 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7058 (size_t)rel->r_offset, sym->st_name, name); 7059 7060 for (j = 0; j < obj->nr_maps; j++) { 7061 map = &obj->maps[j]; 7062 if (map->sec_idx != obj->efile.btf_maps_shndx) 7063 continue; 7064 7065 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7066 if (vi->offset <= rel->r_offset && 7067 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7068 break; 7069 } 7070 if (j == obj->nr_maps) { 7071 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7072 i, name, (size_t)rel->r_offset); 7073 return -EINVAL; 7074 } 7075 7076 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7077 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7078 type = is_map_in_map ? "map" : "prog"; 7079 if (is_map_in_map) { 7080 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7081 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7082 i, name); 7083 return -LIBBPF_ERRNO__RELOC; 7084 } 7085 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7086 map->def.key_size != sizeof(int)) { 7087 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7088 i, map->name, sizeof(int)); 7089 return -EINVAL; 7090 } 7091 targ_map = bpf_object__find_map_by_name(obj, name); 7092 if (!targ_map) { 7093 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7094 i, name); 7095 return -ESRCH; 7096 } 7097 } else if (is_prog_array) { 7098 targ_prog = bpf_object__find_program_by_name(obj, name); 7099 if (!targ_prog) { 7100 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7101 i, name); 7102 return -ESRCH; 7103 } 7104 if (targ_prog->sec_idx != sym->st_shndx || 7105 targ_prog->sec_insn_off * 8 != sym->st_value || 7106 prog_is_subprog(obj, targ_prog)) { 7107 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7108 i, name); 7109 return -LIBBPF_ERRNO__RELOC; 7110 } 7111 } else { 7112 return -EINVAL; 7113 } 7114 7115 var = btf__type_by_id(obj->btf, vi->type); 7116 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7117 if (btf_vlen(def) == 0) 7118 return -EINVAL; 7119 member = btf_members(def) + btf_vlen(def) - 1; 7120 mname = btf__name_by_offset(obj->btf, member->name_off); 7121 if (strcmp(mname, "values")) 7122 return -EINVAL; 7123 7124 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7125 if (rel->r_offset - vi->offset < moff) 7126 return -EINVAL; 7127 7128 moff = rel->r_offset - vi->offset - moff; 7129 /* here we use BPF pointer size, which is always 64 bit, as we 7130 * are parsing ELF that was built for BPF target 7131 */ 7132 if (moff % bpf_ptr_sz) 7133 return -EINVAL; 7134 moff /= bpf_ptr_sz; 7135 if (moff >= map->init_slots_sz) { 7136 new_sz = moff + 1; 7137 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7138 if (!tmp) 7139 return -ENOMEM; 7140 map->init_slots = tmp; 7141 memset(map->init_slots + map->init_slots_sz, 0, 7142 (new_sz - map->init_slots_sz) * host_ptr_sz); 7143 map->init_slots_sz = new_sz; 7144 } 7145 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7146 7147 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7148 i, map->name, moff, type, name); 7149 } 7150 7151 return 0; 7152 } 7153 7154 static int bpf_object__collect_relos(struct bpf_object *obj) 7155 { 7156 int i, err; 7157 7158 for (i = 0; i < obj->efile.sec_cnt; i++) { 7159 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7160 Elf64_Shdr *shdr; 7161 Elf_Data *data; 7162 int idx; 7163 7164 if (sec_desc->sec_type != SEC_RELO) 7165 continue; 7166 7167 shdr = sec_desc->shdr; 7168 data = sec_desc->data; 7169 idx = shdr->sh_info; 7170 7171 if (shdr->sh_type != SHT_REL) { 7172 pr_warn("internal error at %d\n", __LINE__); 7173 return -LIBBPF_ERRNO__INTERNAL; 7174 } 7175 7176 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 7177 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7178 else if (idx == obj->efile.btf_maps_shndx) 7179 err = bpf_object__collect_map_relos(obj, shdr, data); 7180 else 7181 err = bpf_object__collect_prog_relos(obj, shdr, data); 7182 if (err) 7183 return err; 7184 } 7185 7186 bpf_object__sort_relos(obj); 7187 return 0; 7188 } 7189 7190 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7191 { 7192 if (BPF_CLASS(insn->code) == BPF_JMP && 7193 BPF_OP(insn->code) == BPF_CALL && 7194 BPF_SRC(insn->code) == BPF_K && 7195 insn->src_reg == 0 && 7196 insn->dst_reg == 0) { 7197 *func_id = insn->imm; 7198 return true; 7199 } 7200 return false; 7201 } 7202 7203 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7204 { 7205 struct bpf_insn *insn = prog->insns; 7206 enum bpf_func_id func_id; 7207 int i; 7208 7209 if (obj->gen_loader) 7210 return 0; 7211 7212 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7213 if (!insn_is_helper_call(insn, &func_id)) 7214 continue; 7215 7216 /* on kernels that don't yet support 7217 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7218 * to bpf_probe_read() which works well for old kernels 7219 */ 7220 switch (func_id) { 7221 case BPF_FUNC_probe_read_kernel: 7222 case BPF_FUNC_probe_read_user: 7223 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7224 insn->imm = BPF_FUNC_probe_read; 7225 break; 7226 case BPF_FUNC_probe_read_kernel_str: 7227 case BPF_FUNC_probe_read_user_str: 7228 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7229 insn->imm = BPF_FUNC_probe_read_str; 7230 break; 7231 default: 7232 break; 7233 } 7234 } 7235 return 0; 7236 } 7237 7238 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7239 int *btf_obj_fd, int *btf_type_id); 7240 7241 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7242 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7243 struct bpf_prog_load_opts *opts, long cookie) 7244 { 7245 enum sec_def_flags def = cookie; 7246 7247 /* old kernels might not support specifying expected_attach_type */ 7248 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7249 opts->expected_attach_type = 0; 7250 7251 if (def & SEC_SLEEPABLE) 7252 opts->prog_flags |= BPF_F_SLEEPABLE; 7253 7254 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7255 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7256 7257 /* special check for usdt to use uprobe_multi link */ 7258 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7259 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7260 7261 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7262 int btf_obj_fd = 0, btf_type_id = 0, err; 7263 const char *attach_name; 7264 7265 attach_name = strchr(prog->sec_name, '/'); 7266 if (!attach_name) { 7267 /* if BPF program is annotated with just SEC("fentry") 7268 * (or similar) without declaratively specifying 7269 * target, then it is expected that target will be 7270 * specified with bpf_program__set_attach_target() at 7271 * runtime before BPF object load step. If not, then 7272 * there is nothing to load into the kernel as BPF 7273 * verifier won't be able to validate BPF program 7274 * correctness anyways. 7275 */ 7276 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7277 prog->name); 7278 return -EINVAL; 7279 } 7280 attach_name++; /* skip over / */ 7281 7282 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7283 if (err) 7284 return err; 7285 7286 /* cache resolved BTF FD and BTF type ID in the prog */ 7287 prog->attach_btf_obj_fd = btf_obj_fd; 7288 prog->attach_btf_id = btf_type_id; 7289 7290 /* but by now libbpf common logic is not utilizing 7291 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7292 * this callback is called after opts were populated by 7293 * libbpf, so this callback has to update opts explicitly here 7294 */ 7295 opts->attach_btf_obj_fd = btf_obj_fd; 7296 opts->attach_btf_id = btf_type_id; 7297 } 7298 return 0; 7299 } 7300 7301 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7302 7303 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7304 struct bpf_insn *insns, int insns_cnt, 7305 const char *license, __u32 kern_version, int *prog_fd) 7306 { 7307 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7308 const char *prog_name = NULL; 7309 char *cp, errmsg[STRERR_BUFSIZE]; 7310 size_t log_buf_size = 0; 7311 char *log_buf = NULL, *tmp; 7312 int btf_fd, ret, err; 7313 bool own_log_buf = true; 7314 __u32 log_level = prog->log_level; 7315 7316 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7317 /* 7318 * The program type must be set. Most likely we couldn't find a proper 7319 * section definition at load time, and thus we didn't infer the type. 7320 */ 7321 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7322 prog->name, prog->sec_name); 7323 return -EINVAL; 7324 } 7325 7326 if (!insns || !insns_cnt) 7327 return -EINVAL; 7328 7329 if (kernel_supports(obj, FEAT_PROG_NAME)) 7330 prog_name = prog->name; 7331 load_attr.attach_prog_fd = prog->attach_prog_fd; 7332 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7333 load_attr.attach_btf_id = prog->attach_btf_id; 7334 load_attr.kern_version = kern_version; 7335 load_attr.prog_ifindex = prog->prog_ifindex; 7336 7337 /* specify func_info/line_info only if kernel supports them */ 7338 btf_fd = btf__fd(obj->btf); 7339 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7340 load_attr.prog_btf_fd = btf_fd; 7341 load_attr.func_info = prog->func_info; 7342 load_attr.func_info_rec_size = prog->func_info_rec_size; 7343 load_attr.func_info_cnt = prog->func_info_cnt; 7344 load_attr.line_info = prog->line_info; 7345 load_attr.line_info_rec_size = prog->line_info_rec_size; 7346 load_attr.line_info_cnt = prog->line_info_cnt; 7347 } 7348 load_attr.log_level = log_level; 7349 load_attr.prog_flags = prog->prog_flags; 7350 load_attr.fd_array = obj->fd_array; 7351 7352 /* adjust load_attr if sec_def provides custom preload callback */ 7353 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7354 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7355 if (err < 0) { 7356 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7357 prog->name, err); 7358 return err; 7359 } 7360 insns = prog->insns; 7361 insns_cnt = prog->insns_cnt; 7362 } 7363 7364 /* allow prog_prepare_load_fn to change expected_attach_type */ 7365 load_attr.expected_attach_type = prog->expected_attach_type; 7366 7367 if (obj->gen_loader) { 7368 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7369 license, insns, insns_cnt, &load_attr, 7370 prog - obj->programs); 7371 *prog_fd = -1; 7372 return 0; 7373 } 7374 7375 retry_load: 7376 /* if log_level is zero, we don't request logs initially even if 7377 * custom log_buf is specified; if the program load fails, then we'll 7378 * bump log_level to 1 and use either custom log_buf or we'll allocate 7379 * our own and retry the load to get details on what failed 7380 */ 7381 if (log_level) { 7382 if (prog->log_buf) { 7383 log_buf = prog->log_buf; 7384 log_buf_size = prog->log_size; 7385 own_log_buf = false; 7386 } else if (obj->log_buf) { 7387 log_buf = obj->log_buf; 7388 log_buf_size = obj->log_size; 7389 own_log_buf = false; 7390 } else { 7391 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7392 tmp = realloc(log_buf, log_buf_size); 7393 if (!tmp) { 7394 ret = -ENOMEM; 7395 goto out; 7396 } 7397 log_buf = tmp; 7398 log_buf[0] = '\0'; 7399 own_log_buf = true; 7400 } 7401 } 7402 7403 load_attr.log_buf = log_buf; 7404 load_attr.log_size = log_buf_size; 7405 load_attr.log_level = log_level; 7406 7407 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7408 if (ret >= 0) { 7409 if (log_level && own_log_buf) { 7410 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7411 prog->name, log_buf); 7412 } 7413 7414 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7415 struct bpf_map *map; 7416 int i; 7417 7418 for (i = 0; i < obj->nr_maps; i++) { 7419 map = &prog->obj->maps[i]; 7420 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7421 continue; 7422 7423 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7424 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7425 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7426 prog->name, map->real_name, cp); 7427 /* Don't fail hard if can't bind rodata. */ 7428 } 7429 } 7430 } 7431 7432 *prog_fd = ret; 7433 ret = 0; 7434 goto out; 7435 } 7436 7437 if (log_level == 0) { 7438 log_level = 1; 7439 goto retry_load; 7440 } 7441 /* On ENOSPC, increase log buffer size and retry, unless custom 7442 * log_buf is specified. 7443 * Be careful to not overflow u32, though. Kernel's log buf size limit 7444 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7445 * multiply by 2 unless we are sure we'll fit within 32 bits. 7446 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7447 */ 7448 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7449 goto retry_load; 7450 7451 ret = -errno; 7452 7453 /* post-process verifier log to improve error descriptions */ 7454 fixup_verifier_log(prog, log_buf, log_buf_size); 7455 7456 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7457 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7458 pr_perm_msg(ret); 7459 7460 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7461 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7462 prog->name, log_buf); 7463 } 7464 7465 out: 7466 if (own_log_buf) 7467 free(log_buf); 7468 return ret; 7469 } 7470 7471 static char *find_prev_line(char *buf, char *cur) 7472 { 7473 char *p; 7474 7475 if (cur == buf) /* end of a log buf */ 7476 return NULL; 7477 7478 p = cur - 1; 7479 while (p - 1 >= buf && *(p - 1) != '\n') 7480 p--; 7481 7482 return p; 7483 } 7484 7485 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7486 char *orig, size_t orig_sz, const char *patch) 7487 { 7488 /* size of the remaining log content to the right from the to-be-replaced part */ 7489 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7490 size_t patch_sz = strlen(patch); 7491 7492 if (patch_sz != orig_sz) { 7493 /* If patch line(s) are longer than original piece of verifier log, 7494 * shift log contents by (patch_sz - orig_sz) bytes to the right 7495 * starting from after to-be-replaced part of the log. 7496 * 7497 * If patch line(s) are shorter than original piece of verifier log, 7498 * shift log contents by (orig_sz - patch_sz) bytes to the left 7499 * starting from after to-be-replaced part of the log 7500 * 7501 * We need to be careful about not overflowing available 7502 * buf_sz capacity. If that's the case, we'll truncate the end 7503 * of the original log, as necessary. 7504 */ 7505 if (patch_sz > orig_sz) { 7506 if (orig + patch_sz >= buf + buf_sz) { 7507 /* patch is big enough to cover remaining space completely */ 7508 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7509 rem_sz = 0; 7510 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7511 /* patch causes part of remaining log to be truncated */ 7512 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7513 } 7514 } 7515 /* shift remaining log to the right by calculated amount */ 7516 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7517 } 7518 7519 memcpy(orig, patch, patch_sz); 7520 } 7521 7522 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7523 char *buf, size_t buf_sz, size_t log_sz, 7524 char *line1, char *line2, char *line3) 7525 { 7526 /* Expected log for failed and not properly guarded CO-RE relocation: 7527 * line1 -> 123: (85) call unknown#195896080 7528 * line2 -> invalid func unknown#195896080 7529 * line3 -> <anything else or end of buffer> 7530 * 7531 * "123" is the index of the instruction that was poisoned. We extract 7532 * instruction index to find corresponding CO-RE relocation and 7533 * replace this part of the log with more relevant information about 7534 * failed CO-RE relocation. 7535 */ 7536 const struct bpf_core_relo *relo; 7537 struct bpf_core_spec spec; 7538 char patch[512], spec_buf[256]; 7539 int insn_idx, err, spec_len; 7540 7541 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7542 return; 7543 7544 relo = find_relo_core(prog, insn_idx); 7545 if (!relo) 7546 return; 7547 7548 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7549 if (err) 7550 return; 7551 7552 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7553 snprintf(patch, sizeof(patch), 7554 "%d: <invalid CO-RE relocation>\n" 7555 "failed to resolve CO-RE relocation %s%s\n", 7556 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7557 7558 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7559 } 7560 7561 static void fixup_log_missing_map_load(struct bpf_program *prog, 7562 char *buf, size_t buf_sz, size_t log_sz, 7563 char *line1, char *line2, char *line3) 7564 { 7565 /* Expected log for failed and not properly guarded map reference: 7566 * line1 -> 123: (85) call unknown#2001000345 7567 * line2 -> invalid func unknown#2001000345 7568 * line3 -> <anything else or end of buffer> 7569 * 7570 * "123" is the index of the instruction that was poisoned. 7571 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7572 */ 7573 struct bpf_object *obj = prog->obj; 7574 const struct bpf_map *map; 7575 int insn_idx, map_idx; 7576 char patch[128]; 7577 7578 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7579 return; 7580 7581 map_idx -= POISON_LDIMM64_MAP_BASE; 7582 if (map_idx < 0 || map_idx >= obj->nr_maps) 7583 return; 7584 map = &obj->maps[map_idx]; 7585 7586 snprintf(patch, sizeof(patch), 7587 "%d: <invalid BPF map reference>\n" 7588 "BPF map '%s' is referenced but wasn't created\n", 7589 insn_idx, map->name); 7590 7591 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7592 } 7593 7594 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7595 char *buf, size_t buf_sz, size_t log_sz, 7596 char *line1, char *line2, char *line3) 7597 { 7598 /* Expected log for failed and not properly guarded kfunc call: 7599 * line1 -> 123: (85) call unknown#2002000345 7600 * line2 -> invalid func unknown#2002000345 7601 * line3 -> <anything else or end of buffer> 7602 * 7603 * "123" is the index of the instruction that was poisoned. 7604 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7605 */ 7606 struct bpf_object *obj = prog->obj; 7607 const struct extern_desc *ext; 7608 int insn_idx, ext_idx; 7609 char patch[128]; 7610 7611 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7612 return; 7613 7614 ext_idx -= POISON_CALL_KFUNC_BASE; 7615 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7616 return; 7617 ext = &obj->externs[ext_idx]; 7618 7619 snprintf(patch, sizeof(patch), 7620 "%d: <invalid kfunc call>\n" 7621 "kfunc '%s' is referenced but wasn't resolved\n", 7622 insn_idx, ext->name); 7623 7624 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7625 } 7626 7627 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7628 { 7629 /* look for familiar error patterns in last N lines of the log */ 7630 const size_t max_last_line_cnt = 10; 7631 char *prev_line, *cur_line, *next_line; 7632 size_t log_sz; 7633 int i; 7634 7635 if (!buf) 7636 return; 7637 7638 log_sz = strlen(buf) + 1; 7639 next_line = buf + log_sz - 1; 7640 7641 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7642 cur_line = find_prev_line(buf, next_line); 7643 if (!cur_line) 7644 return; 7645 7646 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7647 prev_line = find_prev_line(buf, cur_line); 7648 if (!prev_line) 7649 continue; 7650 7651 /* failed CO-RE relocation case */ 7652 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7653 prev_line, cur_line, next_line); 7654 return; 7655 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7656 prev_line = find_prev_line(buf, cur_line); 7657 if (!prev_line) 7658 continue; 7659 7660 /* reference to uncreated BPF map */ 7661 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7662 prev_line, cur_line, next_line); 7663 return; 7664 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7665 prev_line = find_prev_line(buf, cur_line); 7666 if (!prev_line) 7667 continue; 7668 7669 /* reference to unresolved kfunc */ 7670 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7671 prev_line, cur_line, next_line); 7672 return; 7673 } 7674 } 7675 } 7676 7677 static int bpf_program_record_relos(struct bpf_program *prog) 7678 { 7679 struct bpf_object *obj = prog->obj; 7680 int i; 7681 7682 for (i = 0; i < prog->nr_reloc; i++) { 7683 struct reloc_desc *relo = &prog->reloc_desc[i]; 7684 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7685 int kind; 7686 7687 switch (relo->type) { 7688 case RELO_EXTERN_LD64: 7689 if (ext->type != EXT_KSYM) 7690 continue; 7691 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7692 BTF_KIND_VAR : BTF_KIND_FUNC; 7693 bpf_gen__record_extern(obj->gen_loader, ext->name, 7694 ext->is_weak, !ext->ksym.type_id, 7695 true, kind, relo->insn_idx); 7696 break; 7697 case RELO_EXTERN_CALL: 7698 bpf_gen__record_extern(obj->gen_loader, ext->name, 7699 ext->is_weak, false, false, BTF_KIND_FUNC, 7700 relo->insn_idx); 7701 break; 7702 case RELO_CORE: { 7703 struct bpf_core_relo cr = { 7704 .insn_off = relo->insn_idx * 8, 7705 .type_id = relo->core_relo->type_id, 7706 .access_str_off = relo->core_relo->access_str_off, 7707 .kind = relo->core_relo->kind, 7708 }; 7709 7710 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7711 break; 7712 } 7713 default: 7714 continue; 7715 } 7716 } 7717 return 0; 7718 } 7719 7720 static int 7721 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7722 { 7723 struct bpf_program *prog; 7724 size_t i; 7725 int err; 7726 7727 for (i = 0; i < obj->nr_programs; i++) { 7728 prog = &obj->programs[i]; 7729 err = bpf_object__sanitize_prog(obj, prog); 7730 if (err) 7731 return err; 7732 } 7733 7734 for (i = 0; i < obj->nr_programs; i++) { 7735 prog = &obj->programs[i]; 7736 if (prog_is_subprog(obj, prog)) 7737 continue; 7738 if (!prog->autoload) { 7739 pr_debug("prog '%s': skipped loading\n", prog->name); 7740 continue; 7741 } 7742 prog->log_level |= log_level; 7743 7744 if (obj->gen_loader) 7745 bpf_program_record_relos(prog); 7746 7747 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7748 obj->license, obj->kern_version, &prog->fd); 7749 if (err) { 7750 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7751 return err; 7752 } 7753 } 7754 7755 bpf_object__free_relocs(obj); 7756 return 0; 7757 } 7758 7759 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7760 7761 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7762 { 7763 struct bpf_program *prog; 7764 int err; 7765 7766 bpf_object__for_each_program(prog, obj) { 7767 prog->sec_def = find_sec_def(prog->sec_name); 7768 if (!prog->sec_def) { 7769 /* couldn't guess, but user might manually specify */ 7770 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7771 prog->name, prog->sec_name); 7772 continue; 7773 } 7774 7775 prog->type = prog->sec_def->prog_type; 7776 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7777 7778 /* sec_def can have custom callback which should be called 7779 * after bpf_program is initialized to adjust its properties 7780 */ 7781 if (prog->sec_def->prog_setup_fn) { 7782 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7783 if (err < 0) { 7784 pr_warn("prog '%s': failed to initialize: %d\n", 7785 prog->name, err); 7786 return err; 7787 } 7788 } 7789 } 7790 7791 return 0; 7792 } 7793 7794 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7795 const struct bpf_object_open_opts *opts) 7796 { 7797 const char *obj_name, *kconfig, *btf_tmp_path; 7798 struct bpf_object *obj; 7799 char tmp_name[64]; 7800 int err; 7801 char *log_buf; 7802 size_t log_size; 7803 __u32 log_level; 7804 7805 if (elf_version(EV_CURRENT) == EV_NONE) { 7806 pr_warn("failed to init libelf for %s\n", 7807 path ? : "(mem buf)"); 7808 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7809 } 7810 7811 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7812 return ERR_PTR(-EINVAL); 7813 7814 obj_name = OPTS_GET(opts, object_name, NULL); 7815 if (obj_buf) { 7816 if (!obj_name) { 7817 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7818 (unsigned long)obj_buf, 7819 (unsigned long)obj_buf_sz); 7820 obj_name = tmp_name; 7821 } 7822 path = obj_name; 7823 pr_debug("loading object '%s' from buffer\n", obj_name); 7824 } 7825 7826 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7827 log_size = OPTS_GET(opts, kernel_log_size, 0); 7828 log_level = OPTS_GET(opts, kernel_log_level, 0); 7829 if (log_size > UINT_MAX) 7830 return ERR_PTR(-EINVAL); 7831 if (log_size && !log_buf) 7832 return ERR_PTR(-EINVAL); 7833 7834 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7835 if (IS_ERR(obj)) 7836 return obj; 7837 7838 obj->log_buf = log_buf; 7839 obj->log_size = log_size; 7840 obj->log_level = log_level; 7841 7842 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7843 if (btf_tmp_path) { 7844 if (strlen(btf_tmp_path) >= PATH_MAX) { 7845 err = -ENAMETOOLONG; 7846 goto out; 7847 } 7848 obj->btf_custom_path = strdup(btf_tmp_path); 7849 if (!obj->btf_custom_path) { 7850 err = -ENOMEM; 7851 goto out; 7852 } 7853 } 7854 7855 kconfig = OPTS_GET(opts, kconfig, NULL); 7856 if (kconfig) { 7857 obj->kconfig = strdup(kconfig); 7858 if (!obj->kconfig) { 7859 err = -ENOMEM; 7860 goto out; 7861 } 7862 } 7863 7864 err = bpf_object__elf_init(obj); 7865 err = err ? : bpf_object__check_endianness(obj); 7866 err = err ? : bpf_object__elf_collect(obj); 7867 err = err ? : bpf_object__collect_externs(obj); 7868 err = err ? : bpf_object_fixup_btf(obj); 7869 err = err ? : bpf_object__init_maps(obj, opts); 7870 err = err ? : bpf_object_init_progs(obj, opts); 7871 err = err ? : bpf_object__collect_relos(obj); 7872 if (err) 7873 goto out; 7874 7875 bpf_object__elf_finish(obj); 7876 7877 return obj; 7878 out: 7879 bpf_object__close(obj); 7880 return ERR_PTR(err); 7881 } 7882 7883 struct bpf_object * 7884 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7885 { 7886 if (!path) 7887 return libbpf_err_ptr(-EINVAL); 7888 7889 pr_debug("loading %s\n", path); 7890 7891 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7892 } 7893 7894 struct bpf_object *bpf_object__open(const char *path) 7895 { 7896 return bpf_object__open_file(path, NULL); 7897 } 7898 7899 struct bpf_object * 7900 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7901 const struct bpf_object_open_opts *opts) 7902 { 7903 if (!obj_buf || obj_buf_sz == 0) 7904 return libbpf_err_ptr(-EINVAL); 7905 7906 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7907 } 7908 7909 static int bpf_object_unload(struct bpf_object *obj) 7910 { 7911 size_t i; 7912 7913 if (!obj) 7914 return libbpf_err(-EINVAL); 7915 7916 for (i = 0; i < obj->nr_maps; i++) { 7917 zclose(obj->maps[i].fd); 7918 if (obj->maps[i].st_ops) 7919 zfree(&obj->maps[i].st_ops->kern_vdata); 7920 } 7921 7922 for (i = 0; i < obj->nr_programs; i++) 7923 bpf_program__unload(&obj->programs[i]); 7924 7925 return 0; 7926 } 7927 7928 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7929 { 7930 struct bpf_map *m; 7931 7932 bpf_object__for_each_map(m, obj) { 7933 if (!bpf_map__is_internal(m)) 7934 continue; 7935 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7936 m->def.map_flags &= ~BPF_F_MMAPABLE; 7937 } 7938 7939 return 0; 7940 } 7941 7942 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7943 { 7944 char sym_type, sym_name[500]; 7945 unsigned long long sym_addr; 7946 int ret, err = 0; 7947 FILE *f; 7948 7949 f = fopen("/proc/kallsyms", "re"); 7950 if (!f) { 7951 err = -errno; 7952 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7953 return err; 7954 } 7955 7956 while (true) { 7957 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7958 &sym_addr, &sym_type, sym_name); 7959 if (ret == EOF && feof(f)) 7960 break; 7961 if (ret != 3) { 7962 pr_warn("failed to read kallsyms entry: %d\n", ret); 7963 err = -EINVAL; 7964 break; 7965 } 7966 7967 err = cb(sym_addr, sym_type, sym_name, ctx); 7968 if (err) 7969 break; 7970 } 7971 7972 fclose(f); 7973 return err; 7974 } 7975 7976 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7977 const char *sym_name, void *ctx) 7978 { 7979 struct bpf_object *obj = ctx; 7980 const struct btf_type *t; 7981 struct extern_desc *ext; 7982 7983 ext = find_extern_by_name(obj, sym_name); 7984 if (!ext || ext->type != EXT_KSYM) 7985 return 0; 7986 7987 t = btf__type_by_id(obj->btf, ext->btf_id); 7988 if (!btf_is_var(t)) 7989 return 0; 7990 7991 if (ext->is_set && ext->ksym.addr != sym_addr) { 7992 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7993 sym_name, ext->ksym.addr, sym_addr); 7994 return -EINVAL; 7995 } 7996 if (!ext->is_set) { 7997 ext->is_set = true; 7998 ext->ksym.addr = sym_addr; 7999 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8000 } 8001 return 0; 8002 } 8003 8004 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8005 { 8006 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8007 } 8008 8009 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8010 __u16 kind, struct btf **res_btf, 8011 struct module_btf **res_mod_btf) 8012 { 8013 struct module_btf *mod_btf; 8014 struct btf *btf; 8015 int i, id, err; 8016 8017 btf = obj->btf_vmlinux; 8018 mod_btf = NULL; 8019 id = btf__find_by_name_kind(btf, ksym_name, kind); 8020 8021 if (id == -ENOENT) { 8022 err = load_module_btfs(obj); 8023 if (err) 8024 return err; 8025 8026 for (i = 0; i < obj->btf_module_cnt; i++) { 8027 /* we assume module_btf's BTF FD is always >0 */ 8028 mod_btf = &obj->btf_modules[i]; 8029 btf = mod_btf->btf; 8030 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8031 if (id != -ENOENT) 8032 break; 8033 } 8034 } 8035 if (id <= 0) 8036 return -ESRCH; 8037 8038 *res_btf = btf; 8039 *res_mod_btf = mod_btf; 8040 return id; 8041 } 8042 8043 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8044 struct extern_desc *ext) 8045 { 8046 const struct btf_type *targ_var, *targ_type; 8047 __u32 targ_type_id, local_type_id; 8048 struct module_btf *mod_btf = NULL; 8049 const char *targ_var_name; 8050 struct btf *btf = NULL; 8051 int id, err; 8052 8053 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8054 if (id < 0) { 8055 if (id == -ESRCH && ext->is_weak) 8056 return 0; 8057 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8058 ext->name); 8059 return id; 8060 } 8061 8062 /* find local type_id */ 8063 local_type_id = ext->ksym.type_id; 8064 8065 /* find target type_id */ 8066 targ_var = btf__type_by_id(btf, id); 8067 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8068 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8069 8070 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8071 btf, targ_type_id); 8072 if (err <= 0) { 8073 const struct btf_type *local_type; 8074 const char *targ_name, *local_name; 8075 8076 local_type = btf__type_by_id(obj->btf, local_type_id); 8077 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8078 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8079 8080 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8081 ext->name, local_type_id, 8082 btf_kind_str(local_type), local_name, targ_type_id, 8083 btf_kind_str(targ_type), targ_name); 8084 return -EINVAL; 8085 } 8086 8087 ext->is_set = true; 8088 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8089 ext->ksym.kernel_btf_id = id; 8090 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8091 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8092 8093 return 0; 8094 } 8095 8096 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8097 struct extern_desc *ext) 8098 { 8099 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8100 struct module_btf *mod_btf = NULL; 8101 const struct btf_type *kern_func; 8102 struct btf *kern_btf = NULL; 8103 int ret; 8104 8105 local_func_proto_id = ext->ksym.type_id; 8106 8107 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8108 &mod_btf); 8109 if (kfunc_id < 0) { 8110 if (kfunc_id == -ESRCH && ext->is_weak) 8111 return 0; 8112 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8113 ext->name); 8114 return kfunc_id; 8115 } 8116 8117 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8118 kfunc_proto_id = kern_func->type; 8119 8120 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8121 kern_btf, kfunc_proto_id); 8122 if (ret <= 0) { 8123 if (ext->is_weak) 8124 return 0; 8125 8126 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8127 ext->name, local_func_proto_id, 8128 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8129 return -EINVAL; 8130 } 8131 8132 /* set index for module BTF fd in fd_array, if unset */ 8133 if (mod_btf && !mod_btf->fd_array_idx) { 8134 /* insn->off is s16 */ 8135 if (obj->fd_array_cnt == INT16_MAX) { 8136 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8137 ext->name, mod_btf->fd_array_idx); 8138 return -E2BIG; 8139 } 8140 /* Cannot use index 0 for module BTF fd */ 8141 if (!obj->fd_array_cnt) 8142 obj->fd_array_cnt = 1; 8143 8144 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8145 obj->fd_array_cnt + 1); 8146 if (ret) 8147 return ret; 8148 mod_btf->fd_array_idx = obj->fd_array_cnt; 8149 /* we assume module BTF FD is always >0 */ 8150 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8151 } 8152 8153 ext->is_set = true; 8154 ext->ksym.kernel_btf_id = kfunc_id; 8155 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8156 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8157 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8158 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8159 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8160 */ 8161 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8162 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8163 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8164 8165 return 0; 8166 } 8167 8168 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8169 { 8170 const struct btf_type *t; 8171 struct extern_desc *ext; 8172 int i, err; 8173 8174 for (i = 0; i < obj->nr_extern; i++) { 8175 ext = &obj->externs[i]; 8176 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8177 continue; 8178 8179 if (obj->gen_loader) { 8180 ext->is_set = true; 8181 ext->ksym.kernel_btf_obj_fd = 0; 8182 ext->ksym.kernel_btf_id = 0; 8183 continue; 8184 } 8185 t = btf__type_by_id(obj->btf, ext->btf_id); 8186 if (btf_is_var(t)) 8187 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8188 else 8189 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8190 if (err) 8191 return err; 8192 } 8193 return 0; 8194 } 8195 8196 static int bpf_object__resolve_externs(struct bpf_object *obj, 8197 const char *extra_kconfig) 8198 { 8199 bool need_config = false, need_kallsyms = false; 8200 bool need_vmlinux_btf = false; 8201 struct extern_desc *ext; 8202 void *kcfg_data = NULL; 8203 int err, i; 8204 8205 if (obj->nr_extern == 0) 8206 return 0; 8207 8208 if (obj->kconfig_map_idx >= 0) 8209 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8210 8211 for (i = 0; i < obj->nr_extern; i++) { 8212 ext = &obj->externs[i]; 8213 8214 if (ext->type == EXT_KSYM) { 8215 if (ext->ksym.type_id) 8216 need_vmlinux_btf = true; 8217 else 8218 need_kallsyms = true; 8219 continue; 8220 } else if (ext->type == EXT_KCFG) { 8221 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8222 __u64 value = 0; 8223 8224 /* Kconfig externs need actual /proc/config.gz */ 8225 if (str_has_pfx(ext->name, "CONFIG_")) { 8226 need_config = true; 8227 continue; 8228 } 8229 8230 /* Virtual kcfg externs are customly handled by libbpf */ 8231 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8232 value = get_kernel_version(); 8233 if (!value) { 8234 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8235 return -EINVAL; 8236 } 8237 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8238 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8239 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8240 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8241 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8242 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8243 * __kconfig externs, where LINUX_ ones are virtual and filled out 8244 * customly by libbpf (their values don't come from Kconfig). 8245 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8246 * __weak, it defaults to zero value, just like for CONFIG_xxx 8247 * externs. 8248 */ 8249 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8250 return -EINVAL; 8251 } 8252 8253 err = set_kcfg_value_num(ext, ext_ptr, value); 8254 if (err) 8255 return err; 8256 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8257 ext->name, (long long)value); 8258 } else { 8259 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8260 return -EINVAL; 8261 } 8262 } 8263 if (need_config && extra_kconfig) { 8264 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8265 if (err) 8266 return -EINVAL; 8267 need_config = false; 8268 for (i = 0; i < obj->nr_extern; i++) { 8269 ext = &obj->externs[i]; 8270 if (ext->type == EXT_KCFG && !ext->is_set) { 8271 need_config = true; 8272 break; 8273 } 8274 } 8275 } 8276 if (need_config) { 8277 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8278 if (err) 8279 return -EINVAL; 8280 } 8281 if (need_kallsyms) { 8282 err = bpf_object__read_kallsyms_file(obj); 8283 if (err) 8284 return -EINVAL; 8285 } 8286 if (need_vmlinux_btf) { 8287 err = bpf_object__resolve_ksyms_btf_id(obj); 8288 if (err) 8289 return -EINVAL; 8290 } 8291 for (i = 0; i < obj->nr_extern; i++) { 8292 ext = &obj->externs[i]; 8293 8294 if (!ext->is_set && !ext->is_weak) { 8295 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8296 return -ESRCH; 8297 } else if (!ext->is_set) { 8298 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8299 ext->name); 8300 } 8301 } 8302 8303 return 0; 8304 } 8305 8306 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8307 { 8308 struct bpf_struct_ops *st_ops; 8309 __u32 i; 8310 8311 st_ops = map->st_ops; 8312 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8313 struct bpf_program *prog = st_ops->progs[i]; 8314 void *kern_data; 8315 int prog_fd; 8316 8317 if (!prog) 8318 continue; 8319 8320 prog_fd = bpf_program__fd(prog); 8321 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8322 *(unsigned long *)kern_data = prog_fd; 8323 } 8324 } 8325 8326 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8327 { 8328 int i; 8329 8330 for (i = 0; i < obj->nr_maps; i++) 8331 if (bpf_map__is_struct_ops(&obj->maps[i])) 8332 bpf_map_prepare_vdata(&obj->maps[i]); 8333 8334 return 0; 8335 } 8336 8337 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8338 { 8339 int err, i; 8340 8341 if (!obj) 8342 return libbpf_err(-EINVAL); 8343 8344 if (obj->loaded) { 8345 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8346 return libbpf_err(-EINVAL); 8347 } 8348 8349 if (obj->gen_loader) 8350 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8351 8352 err = bpf_object__probe_loading(obj); 8353 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8354 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8355 err = err ? : bpf_object__sanitize_maps(obj); 8356 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8357 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8358 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8359 err = err ? : bpf_object__create_maps(obj); 8360 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8361 err = err ? : bpf_object_init_prog_arrays(obj); 8362 err = err ? : bpf_object_prepare_struct_ops(obj); 8363 8364 if (obj->gen_loader) { 8365 /* reset FDs */ 8366 if (obj->btf) 8367 btf__set_fd(obj->btf, -1); 8368 if (!err) 8369 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8370 } 8371 8372 /* clean up fd_array */ 8373 zfree(&obj->fd_array); 8374 8375 /* clean up module BTFs */ 8376 for (i = 0; i < obj->btf_module_cnt; i++) { 8377 close(obj->btf_modules[i].fd); 8378 btf__free(obj->btf_modules[i].btf); 8379 free(obj->btf_modules[i].name); 8380 } 8381 free(obj->btf_modules); 8382 8383 /* clean up vmlinux BTF */ 8384 btf__free(obj->btf_vmlinux); 8385 obj->btf_vmlinux = NULL; 8386 8387 obj->loaded = true; /* doesn't matter if successfully or not */ 8388 8389 if (err) 8390 goto out; 8391 8392 return 0; 8393 out: 8394 /* unpin any maps that were auto-pinned during load */ 8395 for (i = 0; i < obj->nr_maps; i++) 8396 if (obj->maps[i].pinned && !obj->maps[i].reused) 8397 bpf_map__unpin(&obj->maps[i], NULL); 8398 8399 bpf_object_unload(obj); 8400 pr_warn("failed to load object '%s'\n", obj->path); 8401 return libbpf_err(err); 8402 } 8403 8404 int bpf_object__load(struct bpf_object *obj) 8405 { 8406 return bpf_object_load(obj, 0, NULL); 8407 } 8408 8409 static int make_parent_dir(const char *path) 8410 { 8411 char *cp, errmsg[STRERR_BUFSIZE]; 8412 char *dname, *dir; 8413 int err = 0; 8414 8415 dname = strdup(path); 8416 if (dname == NULL) 8417 return -ENOMEM; 8418 8419 dir = dirname(dname); 8420 if (mkdir(dir, 0700) && errno != EEXIST) 8421 err = -errno; 8422 8423 free(dname); 8424 if (err) { 8425 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8426 pr_warn("failed to mkdir %s: %s\n", path, cp); 8427 } 8428 return err; 8429 } 8430 8431 static int check_path(const char *path) 8432 { 8433 char *cp, errmsg[STRERR_BUFSIZE]; 8434 struct statfs st_fs; 8435 char *dname, *dir; 8436 int err = 0; 8437 8438 if (path == NULL) 8439 return -EINVAL; 8440 8441 dname = strdup(path); 8442 if (dname == NULL) 8443 return -ENOMEM; 8444 8445 dir = dirname(dname); 8446 if (statfs(dir, &st_fs)) { 8447 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8448 pr_warn("failed to statfs %s: %s\n", dir, cp); 8449 err = -errno; 8450 } 8451 free(dname); 8452 8453 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8454 pr_warn("specified path %s is not on BPF FS\n", path); 8455 err = -EINVAL; 8456 } 8457 8458 return err; 8459 } 8460 8461 int bpf_program__pin(struct bpf_program *prog, const char *path) 8462 { 8463 char *cp, errmsg[STRERR_BUFSIZE]; 8464 int err; 8465 8466 if (prog->fd < 0) { 8467 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8468 return libbpf_err(-EINVAL); 8469 } 8470 8471 err = make_parent_dir(path); 8472 if (err) 8473 return libbpf_err(err); 8474 8475 err = check_path(path); 8476 if (err) 8477 return libbpf_err(err); 8478 8479 if (bpf_obj_pin(prog->fd, path)) { 8480 err = -errno; 8481 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8482 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8483 return libbpf_err(err); 8484 } 8485 8486 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8487 return 0; 8488 } 8489 8490 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8491 { 8492 int err; 8493 8494 if (prog->fd < 0) { 8495 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8496 return libbpf_err(-EINVAL); 8497 } 8498 8499 err = check_path(path); 8500 if (err) 8501 return libbpf_err(err); 8502 8503 err = unlink(path); 8504 if (err) 8505 return libbpf_err(-errno); 8506 8507 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8508 return 0; 8509 } 8510 8511 int bpf_map__pin(struct bpf_map *map, const char *path) 8512 { 8513 char *cp, errmsg[STRERR_BUFSIZE]; 8514 int err; 8515 8516 if (map == NULL) { 8517 pr_warn("invalid map pointer\n"); 8518 return libbpf_err(-EINVAL); 8519 } 8520 8521 if (map->pin_path) { 8522 if (path && strcmp(path, map->pin_path)) { 8523 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8524 bpf_map__name(map), map->pin_path, path); 8525 return libbpf_err(-EINVAL); 8526 } else if (map->pinned) { 8527 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8528 bpf_map__name(map), map->pin_path); 8529 return 0; 8530 } 8531 } else { 8532 if (!path) { 8533 pr_warn("missing a path to pin map '%s' at\n", 8534 bpf_map__name(map)); 8535 return libbpf_err(-EINVAL); 8536 } else if (map->pinned) { 8537 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8538 return libbpf_err(-EEXIST); 8539 } 8540 8541 map->pin_path = strdup(path); 8542 if (!map->pin_path) { 8543 err = -errno; 8544 goto out_err; 8545 } 8546 } 8547 8548 err = make_parent_dir(map->pin_path); 8549 if (err) 8550 return libbpf_err(err); 8551 8552 err = check_path(map->pin_path); 8553 if (err) 8554 return libbpf_err(err); 8555 8556 if (bpf_obj_pin(map->fd, map->pin_path)) { 8557 err = -errno; 8558 goto out_err; 8559 } 8560 8561 map->pinned = true; 8562 pr_debug("pinned map '%s'\n", map->pin_path); 8563 8564 return 0; 8565 8566 out_err: 8567 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8568 pr_warn("failed to pin map: %s\n", cp); 8569 return libbpf_err(err); 8570 } 8571 8572 int bpf_map__unpin(struct bpf_map *map, const char *path) 8573 { 8574 int err; 8575 8576 if (map == NULL) { 8577 pr_warn("invalid map pointer\n"); 8578 return libbpf_err(-EINVAL); 8579 } 8580 8581 if (map->pin_path) { 8582 if (path && strcmp(path, map->pin_path)) { 8583 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8584 bpf_map__name(map), map->pin_path, path); 8585 return libbpf_err(-EINVAL); 8586 } 8587 path = map->pin_path; 8588 } else if (!path) { 8589 pr_warn("no path to unpin map '%s' from\n", 8590 bpf_map__name(map)); 8591 return libbpf_err(-EINVAL); 8592 } 8593 8594 err = check_path(path); 8595 if (err) 8596 return libbpf_err(err); 8597 8598 err = unlink(path); 8599 if (err != 0) 8600 return libbpf_err(-errno); 8601 8602 map->pinned = false; 8603 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8604 8605 return 0; 8606 } 8607 8608 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8609 { 8610 char *new = NULL; 8611 8612 if (path) { 8613 new = strdup(path); 8614 if (!new) 8615 return libbpf_err(-errno); 8616 } 8617 8618 free(map->pin_path); 8619 map->pin_path = new; 8620 return 0; 8621 } 8622 8623 __alias(bpf_map__pin_path) 8624 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8625 8626 const char *bpf_map__pin_path(const struct bpf_map *map) 8627 { 8628 return map->pin_path; 8629 } 8630 8631 bool bpf_map__is_pinned(const struct bpf_map *map) 8632 { 8633 return map->pinned; 8634 } 8635 8636 static void sanitize_pin_path(char *s) 8637 { 8638 /* bpffs disallows periods in path names */ 8639 while (*s) { 8640 if (*s == '.') 8641 *s = '_'; 8642 s++; 8643 } 8644 } 8645 8646 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8647 { 8648 struct bpf_map *map; 8649 int err; 8650 8651 if (!obj) 8652 return libbpf_err(-ENOENT); 8653 8654 if (!obj->loaded) { 8655 pr_warn("object not yet loaded; load it first\n"); 8656 return libbpf_err(-ENOENT); 8657 } 8658 8659 bpf_object__for_each_map(map, obj) { 8660 char *pin_path = NULL; 8661 char buf[PATH_MAX]; 8662 8663 if (!map->autocreate) 8664 continue; 8665 8666 if (path) { 8667 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8668 if (err) 8669 goto err_unpin_maps; 8670 sanitize_pin_path(buf); 8671 pin_path = buf; 8672 } else if (!map->pin_path) { 8673 continue; 8674 } 8675 8676 err = bpf_map__pin(map, pin_path); 8677 if (err) 8678 goto err_unpin_maps; 8679 } 8680 8681 return 0; 8682 8683 err_unpin_maps: 8684 while ((map = bpf_object__prev_map(obj, map))) { 8685 if (!map->pin_path) 8686 continue; 8687 8688 bpf_map__unpin(map, NULL); 8689 } 8690 8691 return libbpf_err(err); 8692 } 8693 8694 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8695 { 8696 struct bpf_map *map; 8697 int err; 8698 8699 if (!obj) 8700 return libbpf_err(-ENOENT); 8701 8702 bpf_object__for_each_map(map, obj) { 8703 char *pin_path = NULL; 8704 char buf[PATH_MAX]; 8705 8706 if (path) { 8707 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8708 if (err) 8709 return libbpf_err(err); 8710 sanitize_pin_path(buf); 8711 pin_path = buf; 8712 } else if (!map->pin_path) { 8713 continue; 8714 } 8715 8716 err = bpf_map__unpin(map, pin_path); 8717 if (err) 8718 return libbpf_err(err); 8719 } 8720 8721 return 0; 8722 } 8723 8724 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8725 { 8726 struct bpf_program *prog; 8727 char buf[PATH_MAX]; 8728 int err; 8729 8730 if (!obj) 8731 return libbpf_err(-ENOENT); 8732 8733 if (!obj->loaded) { 8734 pr_warn("object not yet loaded; load it first\n"); 8735 return libbpf_err(-ENOENT); 8736 } 8737 8738 bpf_object__for_each_program(prog, obj) { 8739 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8740 if (err) 8741 goto err_unpin_programs; 8742 8743 err = bpf_program__pin(prog, buf); 8744 if (err) 8745 goto err_unpin_programs; 8746 } 8747 8748 return 0; 8749 8750 err_unpin_programs: 8751 while ((prog = bpf_object__prev_program(obj, prog))) { 8752 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8753 continue; 8754 8755 bpf_program__unpin(prog, buf); 8756 } 8757 8758 return libbpf_err(err); 8759 } 8760 8761 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8762 { 8763 struct bpf_program *prog; 8764 int err; 8765 8766 if (!obj) 8767 return libbpf_err(-ENOENT); 8768 8769 bpf_object__for_each_program(prog, obj) { 8770 char buf[PATH_MAX]; 8771 8772 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8773 if (err) 8774 return libbpf_err(err); 8775 8776 err = bpf_program__unpin(prog, buf); 8777 if (err) 8778 return libbpf_err(err); 8779 } 8780 8781 return 0; 8782 } 8783 8784 int bpf_object__pin(struct bpf_object *obj, const char *path) 8785 { 8786 int err; 8787 8788 err = bpf_object__pin_maps(obj, path); 8789 if (err) 8790 return libbpf_err(err); 8791 8792 err = bpf_object__pin_programs(obj, path); 8793 if (err) { 8794 bpf_object__unpin_maps(obj, path); 8795 return libbpf_err(err); 8796 } 8797 8798 return 0; 8799 } 8800 8801 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8802 { 8803 int err; 8804 8805 err = bpf_object__unpin_programs(obj, path); 8806 if (err) 8807 return libbpf_err(err); 8808 8809 err = bpf_object__unpin_maps(obj, path); 8810 if (err) 8811 return libbpf_err(err); 8812 8813 return 0; 8814 } 8815 8816 static void bpf_map__destroy(struct bpf_map *map) 8817 { 8818 if (map->inner_map) { 8819 bpf_map__destroy(map->inner_map); 8820 zfree(&map->inner_map); 8821 } 8822 8823 zfree(&map->init_slots); 8824 map->init_slots_sz = 0; 8825 8826 if (map->mmaped) { 8827 size_t mmap_sz; 8828 8829 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8830 munmap(map->mmaped, mmap_sz); 8831 map->mmaped = NULL; 8832 } 8833 8834 if (map->st_ops) { 8835 zfree(&map->st_ops->data); 8836 zfree(&map->st_ops->progs); 8837 zfree(&map->st_ops->kern_func_off); 8838 zfree(&map->st_ops); 8839 } 8840 8841 zfree(&map->name); 8842 zfree(&map->real_name); 8843 zfree(&map->pin_path); 8844 8845 if (map->fd >= 0) 8846 zclose(map->fd); 8847 } 8848 8849 void bpf_object__close(struct bpf_object *obj) 8850 { 8851 size_t i; 8852 8853 if (IS_ERR_OR_NULL(obj)) 8854 return; 8855 8856 usdt_manager_free(obj->usdt_man); 8857 obj->usdt_man = NULL; 8858 8859 bpf_gen__free(obj->gen_loader); 8860 bpf_object__elf_finish(obj); 8861 bpf_object_unload(obj); 8862 btf__free(obj->btf); 8863 btf__free(obj->btf_vmlinux); 8864 btf_ext__free(obj->btf_ext); 8865 8866 for (i = 0; i < obj->nr_maps; i++) 8867 bpf_map__destroy(&obj->maps[i]); 8868 8869 zfree(&obj->btf_custom_path); 8870 zfree(&obj->kconfig); 8871 8872 for (i = 0; i < obj->nr_extern; i++) 8873 zfree(&obj->externs[i].essent_name); 8874 8875 zfree(&obj->externs); 8876 obj->nr_extern = 0; 8877 8878 zfree(&obj->maps); 8879 obj->nr_maps = 0; 8880 8881 if (obj->programs && obj->nr_programs) { 8882 for (i = 0; i < obj->nr_programs; i++) 8883 bpf_program__exit(&obj->programs[i]); 8884 } 8885 zfree(&obj->programs); 8886 8887 free(obj); 8888 } 8889 8890 const char *bpf_object__name(const struct bpf_object *obj) 8891 { 8892 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8893 } 8894 8895 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8896 { 8897 return obj ? obj->kern_version : 0; 8898 } 8899 8900 struct btf *bpf_object__btf(const struct bpf_object *obj) 8901 { 8902 return obj ? obj->btf : NULL; 8903 } 8904 8905 int bpf_object__btf_fd(const struct bpf_object *obj) 8906 { 8907 return obj->btf ? btf__fd(obj->btf) : -1; 8908 } 8909 8910 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8911 { 8912 if (obj->loaded) 8913 return libbpf_err(-EINVAL); 8914 8915 obj->kern_version = kern_version; 8916 8917 return 0; 8918 } 8919 8920 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8921 { 8922 struct bpf_gen *gen; 8923 8924 if (!opts) 8925 return -EFAULT; 8926 if (!OPTS_VALID(opts, gen_loader_opts)) 8927 return -EINVAL; 8928 gen = calloc(sizeof(*gen), 1); 8929 if (!gen) 8930 return -ENOMEM; 8931 gen->opts = opts; 8932 obj->gen_loader = gen; 8933 return 0; 8934 } 8935 8936 static struct bpf_program * 8937 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8938 bool forward) 8939 { 8940 size_t nr_programs = obj->nr_programs; 8941 ssize_t idx; 8942 8943 if (!nr_programs) 8944 return NULL; 8945 8946 if (!p) 8947 /* Iter from the beginning */ 8948 return forward ? &obj->programs[0] : 8949 &obj->programs[nr_programs - 1]; 8950 8951 if (p->obj != obj) { 8952 pr_warn("error: program handler doesn't match object\n"); 8953 return errno = EINVAL, NULL; 8954 } 8955 8956 idx = (p - obj->programs) + (forward ? 1 : -1); 8957 if (idx >= obj->nr_programs || idx < 0) 8958 return NULL; 8959 return &obj->programs[idx]; 8960 } 8961 8962 struct bpf_program * 8963 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8964 { 8965 struct bpf_program *prog = prev; 8966 8967 do { 8968 prog = __bpf_program__iter(prog, obj, true); 8969 } while (prog && prog_is_subprog(obj, prog)); 8970 8971 return prog; 8972 } 8973 8974 struct bpf_program * 8975 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8976 { 8977 struct bpf_program *prog = next; 8978 8979 do { 8980 prog = __bpf_program__iter(prog, obj, false); 8981 } while (prog && prog_is_subprog(obj, prog)); 8982 8983 return prog; 8984 } 8985 8986 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8987 { 8988 prog->prog_ifindex = ifindex; 8989 } 8990 8991 const char *bpf_program__name(const struct bpf_program *prog) 8992 { 8993 return prog->name; 8994 } 8995 8996 const char *bpf_program__section_name(const struct bpf_program *prog) 8997 { 8998 return prog->sec_name; 8999 } 9000 9001 bool bpf_program__autoload(const struct bpf_program *prog) 9002 { 9003 return prog->autoload; 9004 } 9005 9006 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9007 { 9008 if (prog->obj->loaded) 9009 return libbpf_err(-EINVAL); 9010 9011 prog->autoload = autoload; 9012 return 0; 9013 } 9014 9015 bool bpf_program__autoattach(const struct bpf_program *prog) 9016 { 9017 return prog->autoattach; 9018 } 9019 9020 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9021 { 9022 prog->autoattach = autoattach; 9023 } 9024 9025 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9026 { 9027 return prog->insns; 9028 } 9029 9030 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9031 { 9032 return prog->insns_cnt; 9033 } 9034 9035 int bpf_program__set_insns(struct bpf_program *prog, 9036 struct bpf_insn *new_insns, size_t new_insn_cnt) 9037 { 9038 struct bpf_insn *insns; 9039 9040 if (prog->obj->loaded) 9041 return -EBUSY; 9042 9043 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9044 /* NULL is a valid return from reallocarray if the new count is zero */ 9045 if (!insns && new_insn_cnt) { 9046 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9047 return -ENOMEM; 9048 } 9049 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9050 9051 prog->insns = insns; 9052 prog->insns_cnt = new_insn_cnt; 9053 return 0; 9054 } 9055 9056 int bpf_program__fd(const struct bpf_program *prog) 9057 { 9058 if (!prog) 9059 return libbpf_err(-EINVAL); 9060 9061 if (prog->fd < 0) 9062 return libbpf_err(-ENOENT); 9063 9064 return prog->fd; 9065 } 9066 9067 __alias(bpf_program__type) 9068 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9069 9070 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9071 { 9072 return prog->type; 9073 } 9074 9075 static size_t custom_sec_def_cnt; 9076 static struct bpf_sec_def *custom_sec_defs; 9077 static struct bpf_sec_def custom_fallback_def; 9078 static bool has_custom_fallback_def; 9079 static int last_custom_sec_def_handler_id; 9080 9081 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9082 { 9083 if (prog->obj->loaded) 9084 return libbpf_err(-EBUSY); 9085 9086 /* if type is not changed, do nothing */ 9087 if (prog->type == type) 9088 return 0; 9089 9090 prog->type = type; 9091 9092 /* If a program type was changed, we need to reset associated SEC() 9093 * handler, as it will be invalid now. The only exception is a generic 9094 * fallback handler, which by definition is program type-agnostic and 9095 * is a catch-all custom handler, optionally set by the application, 9096 * so should be able to handle any type of BPF program. 9097 */ 9098 if (prog->sec_def != &custom_fallback_def) 9099 prog->sec_def = NULL; 9100 return 0; 9101 } 9102 9103 __alias(bpf_program__expected_attach_type) 9104 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9105 9106 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9107 { 9108 return prog->expected_attach_type; 9109 } 9110 9111 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9112 enum bpf_attach_type type) 9113 { 9114 if (prog->obj->loaded) 9115 return libbpf_err(-EBUSY); 9116 9117 prog->expected_attach_type = type; 9118 return 0; 9119 } 9120 9121 __u32 bpf_program__flags(const struct bpf_program *prog) 9122 { 9123 return prog->prog_flags; 9124 } 9125 9126 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9127 { 9128 if (prog->obj->loaded) 9129 return libbpf_err(-EBUSY); 9130 9131 prog->prog_flags = flags; 9132 return 0; 9133 } 9134 9135 __u32 bpf_program__log_level(const struct bpf_program *prog) 9136 { 9137 return prog->log_level; 9138 } 9139 9140 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9141 { 9142 if (prog->obj->loaded) 9143 return libbpf_err(-EBUSY); 9144 9145 prog->log_level = log_level; 9146 return 0; 9147 } 9148 9149 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9150 { 9151 *log_size = prog->log_size; 9152 return prog->log_buf; 9153 } 9154 9155 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9156 { 9157 if (log_size && !log_buf) 9158 return -EINVAL; 9159 if (prog->log_size > UINT_MAX) 9160 return -EINVAL; 9161 if (prog->obj->loaded) 9162 return -EBUSY; 9163 9164 prog->log_buf = log_buf; 9165 prog->log_size = log_size; 9166 return 0; 9167 } 9168 9169 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9170 .sec = (char *)sec_pfx, \ 9171 .prog_type = BPF_PROG_TYPE_##ptype, \ 9172 .expected_attach_type = atype, \ 9173 .cookie = (long)(flags), \ 9174 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9175 __VA_ARGS__ \ 9176 } 9177 9178 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9179 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9180 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9181 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9182 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9183 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9184 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9185 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9186 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9187 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9188 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9189 9190 static const struct bpf_sec_def section_defs[] = { 9191 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9192 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9193 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9194 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9195 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9196 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9197 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9198 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9199 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9200 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9201 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9202 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9203 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9204 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9205 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9206 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9207 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9208 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9209 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9210 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9211 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9212 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9213 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9214 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9215 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9216 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9217 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9218 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9219 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9220 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9221 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9222 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9223 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9224 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9225 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9226 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9227 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9228 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9229 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9230 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9231 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9232 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9233 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9234 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9235 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9236 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9237 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9238 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9239 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9240 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9241 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9242 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9243 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9244 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9245 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9246 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9247 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9248 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9249 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9250 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9251 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9252 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9253 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9254 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9255 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9256 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9257 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9258 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9259 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9260 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9261 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9262 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9263 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9264 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9265 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9266 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9267 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9268 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9269 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9270 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9271 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9272 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9273 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9274 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9275 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9276 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9277 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9278 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9279 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9280 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9281 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9282 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9283 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9284 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9285 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9286 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9287 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9288 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9289 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9290 }; 9291 9292 int libbpf_register_prog_handler(const char *sec, 9293 enum bpf_prog_type prog_type, 9294 enum bpf_attach_type exp_attach_type, 9295 const struct libbpf_prog_handler_opts *opts) 9296 { 9297 struct bpf_sec_def *sec_def; 9298 9299 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9300 return libbpf_err(-EINVAL); 9301 9302 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9303 return libbpf_err(-E2BIG); 9304 9305 if (sec) { 9306 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9307 sizeof(*sec_def)); 9308 if (!sec_def) 9309 return libbpf_err(-ENOMEM); 9310 9311 custom_sec_defs = sec_def; 9312 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9313 } else { 9314 if (has_custom_fallback_def) 9315 return libbpf_err(-EBUSY); 9316 9317 sec_def = &custom_fallback_def; 9318 } 9319 9320 sec_def->sec = sec ? strdup(sec) : NULL; 9321 if (sec && !sec_def->sec) 9322 return libbpf_err(-ENOMEM); 9323 9324 sec_def->prog_type = prog_type; 9325 sec_def->expected_attach_type = exp_attach_type; 9326 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9327 9328 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9329 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9330 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9331 9332 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9333 9334 if (sec) 9335 custom_sec_def_cnt++; 9336 else 9337 has_custom_fallback_def = true; 9338 9339 return sec_def->handler_id; 9340 } 9341 9342 int libbpf_unregister_prog_handler(int handler_id) 9343 { 9344 struct bpf_sec_def *sec_defs; 9345 int i; 9346 9347 if (handler_id <= 0) 9348 return libbpf_err(-EINVAL); 9349 9350 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9351 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9352 has_custom_fallback_def = false; 9353 return 0; 9354 } 9355 9356 for (i = 0; i < custom_sec_def_cnt; i++) { 9357 if (custom_sec_defs[i].handler_id == handler_id) 9358 break; 9359 } 9360 9361 if (i == custom_sec_def_cnt) 9362 return libbpf_err(-ENOENT); 9363 9364 free(custom_sec_defs[i].sec); 9365 for (i = i + 1; i < custom_sec_def_cnt; i++) 9366 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9367 custom_sec_def_cnt--; 9368 9369 /* try to shrink the array, but it's ok if we couldn't */ 9370 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9371 /* if new count is zero, reallocarray can return a valid NULL result; 9372 * in this case the previous pointer will be freed, so we *have to* 9373 * reassign old pointer to the new value (even if it's NULL) 9374 */ 9375 if (sec_defs || custom_sec_def_cnt == 0) 9376 custom_sec_defs = sec_defs; 9377 9378 return 0; 9379 } 9380 9381 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9382 { 9383 size_t len = strlen(sec_def->sec); 9384 9385 /* "type/" always has to have proper SEC("type/extras") form */ 9386 if (sec_def->sec[len - 1] == '/') { 9387 if (str_has_pfx(sec_name, sec_def->sec)) 9388 return true; 9389 return false; 9390 } 9391 9392 /* "type+" means it can be either exact SEC("type") or 9393 * well-formed SEC("type/extras") with proper '/' separator 9394 */ 9395 if (sec_def->sec[len - 1] == '+') { 9396 len--; 9397 /* not even a prefix */ 9398 if (strncmp(sec_name, sec_def->sec, len) != 0) 9399 return false; 9400 /* exact match or has '/' separator */ 9401 if (sec_name[len] == '\0' || sec_name[len] == '/') 9402 return true; 9403 return false; 9404 } 9405 9406 return strcmp(sec_name, sec_def->sec) == 0; 9407 } 9408 9409 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9410 { 9411 const struct bpf_sec_def *sec_def; 9412 int i, n; 9413 9414 n = custom_sec_def_cnt; 9415 for (i = 0; i < n; i++) { 9416 sec_def = &custom_sec_defs[i]; 9417 if (sec_def_matches(sec_def, sec_name)) 9418 return sec_def; 9419 } 9420 9421 n = ARRAY_SIZE(section_defs); 9422 for (i = 0; i < n; i++) { 9423 sec_def = §ion_defs[i]; 9424 if (sec_def_matches(sec_def, sec_name)) 9425 return sec_def; 9426 } 9427 9428 if (has_custom_fallback_def) 9429 return &custom_fallback_def; 9430 9431 return NULL; 9432 } 9433 9434 #define MAX_TYPE_NAME_SIZE 32 9435 9436 static char *libbpf_get_type_names(bool attach_type) 9437 { 9438 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9439 char *buf; 9440 9441 buf = malloc(len); 9442 if (!buf) 9443 return NULL; 9444 9445 buf[0] = '\0'; 9446 /* Forge string buf with all available names */ 9447 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9448 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9449 9450 if (attach_type) { 9451 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9452 continue; 9453 9454 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9455 continue; 9456 } 9457 9458 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9459 free(buf); 9460 return NULL; 9461 } 9462 strcat(buf, " "); 9463 strcat(buf, section_defs[i].sec); 9464 } 9465 9466 return buf; 9467 } 9468 9469 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9470 enum bpf_attach_type *expected_attach_type) 9471 { 9472 const struct bpf_sec_def *sec_def; 9473 char *type_names; 9474 9475 if (!name) 9476 return libbpf_err(-EINVAL); 9477 9478 sec_def = find_sec_def(name); 9479 if (sec_def) { 9480 *prog_type = sec_def->prog_type; 9481 *expected_attach_type = sec_def->expected_attach_type; 9482 return 0; 9483 } 9484 9485 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9486 type_names = libbpf_get_type_names(false); 9487 if (type_names != NULL) { 9488 pr_debug("supported section(type) names are:%s\n", type_names); 9489 free(type_names); 9490 } 9491 9492 return libbpf_err(-ESRCH); 9493 } 9494 9495 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9496 { 9497 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9498 return NULL; 9499 9500 return attach_type_name[t]; 9501 } 9502 9503 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9504 { 9505 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9506 return NULL; 9507 9508 return link_type_name[t]; 9509 } 9510 9511 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9512 { 9513 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9514 return NULL; 9515 9516 return map_type_name[t]; 9517 } 9518 9519 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9520 { 9521 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9522 return NULL; 9523 9524 return prog_type_name[t]; 9525 } 9526 9527 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9528 int sec_idx, 9529 size_t offset) 9530 { 9531 struct bpf_map *map; 9532 size_t i; 9533 9534 for (i = 0; i < obj->nr_maps; i++) { 9535 map = &obj->maps[i]; 9536 if (!bpf_map__is_struct_ops(map)) 9537 continue; 9538 if (map->sec_idx == sec_idx && 9539 map->sec_offset <= offset && 9540 offset - map->sec_offset < map->def.value_size) 9541 return map; 9542 } 9543 9544 return NULL; 9545 } 9546 9547 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9548 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9549 Elf64_Shdr *shdr, Elf_Data *data) 9550 { 9551 const struct btf_member *member; 9552 struct bpf_struct_ops *st_ops; 9553 struct bpf_program *prog; 9554 unsigned int shdr_idx; 9555 const struct btf *btf; 9556 struct bpf_map *map; 9557 unsigned int moff, insn_idx; 9558 const char *name; 9559 __u32 member_idx; 9560 Elf64_Sym *sym; 9561 Elf64_Rel *rel; 9562 int i, nrels; 9563 9564 btf = obj->btf; 9565 nrels = shdr->sh_size / shdr->sh_entsize; 9566 for (i = 0; i < nrels; i++) { 9567 rel = elf_rel_by_idx(data, i); 9568 if (!rel) { 9569 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9570 return -LIBBPF_ERRNO__FORMAT; 9571 } 9572 9573 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9574 if (!sym) { 9575 pr_warn("struct_ops reloc: symbol %zx not found\n", 9576 (size_t)ELF64_R_SYM(rel->r_info)); 9577 return -LIBBPF_ERRNO__FORMAT; 9578 } 9579 9580 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9581 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9582 if (!map) { 9583 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9584 (size_t)rel->r_offset); 9585 return -EINVAL; 9586 } 9587 9588 moff = rel->r_offset - map->sec_offset; 9589 shdr_idx = sym->st_shndx; 9590 st_ops = map->st_ops; 9591 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9592 map->name, 9593 (long long)(rel->r_info >> 32), 9594 (long long)sym->st_value, 9595 shdr_idx, (size_t)rel->r_offset, 9596 map->sec_offset, sym->st_name, name); 9597 9598 if (shdr_idx >= SHN_LORESERVE) { 9599 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9600 map->name, (size_t)rel->r_offset, shdr_idx); 9601 return -LIBBPF_ERRNO__RELOC; 9602 } 9603 if (sym->st_value % BPF_INSN_SZ) { 9604 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9605 map->name, (unsigned long long)sym->st_value); 9606 return -LIBBPF_ERRNO__FORMAT; 9607 } 9608 insn_idx = sym->st_value / BPF_INSN_SZ; 9609 9610 member = find_member_by_offset(st_ops->type, moff * 8); 9611 if (!member) { 9612 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9613 map->name, moff); 9614 return -EINVAL; 9615 } 9616 member_idx = member - btf_members(st_ops->type); 9617 name = btf__name_by_offset(btf, member->name_off); 9618 9619 if (!resolve_func_ptr(btf, member->type, NULL)) { 9620 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9621 map->name, name); 9622 return -EINVAL; 9623 } 9624 9625 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9626 if (!prog) { 9627 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9628 map->name, shdr_idx, name); 9629 return -EINVAL; 9630 } 9631 9632 /* prevent the use of BPF prog with invalid type */ 9633 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9634 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9635 map->name, prog->name); 9636 return -EINVAL; 9637 } 9638 9639 /* if we haven't yet processed this BPF program, record proper 9640 * attach_btf_id and member_idx 9641 */ 9642 if (!prog->attach_btf_id) { 9643 prog->attach_btf_id = st_ops->type_id; 9644 prog->expected_attach_type = member_idx; 9645 } 9646 9647 /* struct_ops BPF prog can be re-used between multiple 9648 * .struct_ops & .struct_ops.link as long as it's the 9649 * same struct_ops struct definition and the same 9650 * function pointer field 9651 */ 9652 if (prog->attach_btf_id != st_ops->type_id || 9653 prog->expected_attach_type != member_idx) { 9654 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9655 map->name, prog->name, prog->sec_name, prog->type, 9656 prog->attach_btf_id, prog->expected_attach_type, name); 9657 return -EINVAL; 9658 } 9659 9660 st_ops->progs[member_idx] = prog; 9661 } 9662 9663 return 0; 9664 } 9665 9666 #define BTF_TRACE_PREFIX "btf_trace_" 9667 #define BTF_LSM_PREFIX "bpf_lsm_" 9668 #define BTF_ITER_PREFIX "bpf_iter_" 9669 #define BTF_MAX_NAME_SIZE 128 9670 9671 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9672 const char **prefix, int *kind) 9673 { 9674 switch (attach_type) { 9675 case BPF_TRACE_RAW_TP: 9676 *prefix = BTF_TRACE_PREFIX; 9677 *kind = BTF_KIND_TYPEDEF; 9678 break; 9679 case BPF_LSM_MAC: 9680 case BPF_LSM_CGROUP: 9681 *prefix = BTF_LSM_PREFIX; 9682 *kind = BTF_KIND_FUNC; 9683 break; 9684 case BPF_TRACE_ITER: 9685 *prefix = BTF_ITER_PREFIX; 9686 *kind = BTF_KIND_FUNC; 9687 break; 9688 default: 9689 *prefix = ""; 9690 *kind = BTF_KIND_FUNC; 9691 } 9692 } 9693 9694 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9695 const char *name, __u32 kind) 9696 { 9697 char btf_type_name[BTF_MAX_NAME_SIZE]; 9698 int ret; 9699 9700 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9701 "%s%s", prefix, name); 9702 /* snprintf returns the number of characters written excluding the 9703 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9704 * indicates truncation. 9705 */ 9706 if (ret < 0 || ret >= sizeof(btf_type_name)) 9707 return -ENAMETOOLONG; 9708 return btf__find_by_name_kind(btf, btf_type_name, kind); 9709 } 9710 9711 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9712 enum bpf_attach_type attach_type) 9713 { 9714 const char *prefix; 9715 int kind; 9716 9717 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9718 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9719 } 9720 9721 int libbpf_find_vmlinux_btf_id(const char *name, 9722 enum bpf_attach_type attach_type) 9723 { 9724 struct btf *btf; 9725 int err; 9726 9727 btf = btf__load_vmlinux_btf(); 9728 err = libbpf_get_error(btf); 9729 if (err) { 9730 pr_warn("vmlinux BTF is not found\n"); 9731 return libbpf_err(err); 9732 } 9733 9734 err = find_attach_btf_id(btf, name, attach_type); 9735 if (err <= 0) 9736 pr_warn("%s is not found in vmlinux BTF\n", name); 9737 9738 btf__free(btf); 9739 return libbpf_err(err); 9740 } 9741 9742 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9743 { 9744 struct bpf_prog_info info; 9745 __u32 info_len = sizeof(info); 9746 struct btf *btf; 9747 int err; 9748 9749 memset(&info, 0, info_len); 9750 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9751 if (err) { 9752 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9753 attach_prog_fd, err); 9754 return err; 9755 } 9756 9757 err = -EINVAL; 9758 if (!info.btf_id) { 9759 pr_warn("The target program doesn't have BTF\n"); 9760 goto out; 9761 } 9762 btf = btf__load_from_kernel_by_id(info.btf_id); 9763 err = libbpf_get_error(btf); 9764 if (err) { 9765 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9766 goto out; 9767 } 9768 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9769 btf__free(btf); 9770 if (err <= 0) { 9771 pr_warn("%s is not found in prog's BTF\n", name); 9772 goto out; 9773 } 9774 out: 9775 return err; 9776 } 9777 9778 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9779 enum bpf_attach_type attach_type, 9780 int *btf_obj_fd, int *btf_type_id) 9781 { 9782 int ret, i; 9783 9784 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9785 if (ret > 0) { 9786 *btf_obj_fd = 0; /* vmlinux BTF */ 9787 *btf_type_id = ret; 9788 return 0; 9789 } 9790 if (ret != -ENOENT) 9791 return ret; 9792 9793 ret = load_module_btfs(obj); 9794 if (ret) 9795 return ret; 9796 9797 for (i = 0; i < obj->btf_module_cnt; i++) { 9798 const struct module_btf *mod = &obj->btf_modules[i]; 9799 9800 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9801 if (ret > 0) { 9802 *btf_obj_fd = mod->fd; 9803 *btf_type_id = ret; 9804 return 0; 9805 } 9806 if (ret == -ENOENT) 9807 continue; 9808 9809 return ret; 9810 } 9811 9812 return -ESRCH; 9813 } 9814 9815 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9816 int *btf_obj_fd, int *btf_type_id) 9817 { 9818 enum bpf_attach_type attach_type = prog->expected_attach_type; 9819 __u32 attach_prog_fd = prog->attach_prog_fd; 9820 int err = 0; 9821 9822 /* BPF program's BTF ID */ 9823 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9824 if (!attach_prog_fd) { 9825 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9826 return -EINVAL; 9827 } 9828 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9829 if (err < 0) { 9830 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9831 prog->name, attach_prog_fd, attach_name, err); 9832 return err; 9833 } 9834 *btf_obj_fd = 0; 9835 *btf_type_id = err; 9836 return 0; 9837 } 9838 9839 /* kernel/module BTF ID */ 9840 if (prog->obj->gen_loader) { 9841 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9842 *btf_obj_fd = 0; 9843 *btf_type_id = 1; 9844 } else { 9845 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9846 } 9847 if (err) { 9848 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9849 prog->name, attach_name, err); 9850 return err; 9851 } 9852 return 0; 9853 } 9854 9855 int libbpf_attach_type_by_name(const char *name, 9856 enum bpf_attach_type *attach_type) 9857 { 9858 char *type_names; 9859 const struct bpf_sec_def *sec_def; 9860 9861 if (!name) 9862 return libbpf_err(-EINVAL); 9863 9864 sec_def = find_sec_def(name); 9865 if (!sec_def) { 9866 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9867 type_names = libbpf_get_type_names(true); 9868 if (type_names != NULL) { 9869 pr_debug("attachable section(type) names are:%s\n", type_names); 9870 free(type_names); 9871 } 9872 9873 return libbpf_err(-EINVAL); 9874 } 9875 9876 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9877 return libbpf_err(-EINVAL); 9878 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9879 return libbpf_err(-EINVAL); 9880 9881 *attach_type = sec_def->expected_attach_type; 9882 return 0; 9883 } 9884 9885 int bpf_map__fd(const struct bpf_map *map) 9886 { 9887 if (!map) 9888 return libbpf_err(-EINVAL); 9889 if (!map_is_created(map)) 9890 return -1; 9891 return map->fd; 9892 } 9893 9894 static bool map_uses_real_name(const struct bpf_map *map) 9895 { 9896 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9897 * their user-visible name differs from kernel-visible name. Users see 9898 * such map's corresponding ELF section name as a map name. 9899 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9900 * maps to know which name has to be returned to the user. 9901 */ 9902 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9903 return true; 9904 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9905 return true; 9906 return false; 9907 } 9908 9909 const char *bpf_map__name(const struct bpf_map *map) 9910 { 9911 if (!map) 9912 return NULL; 9913 9914 if (map_uses_real_name(map)) 9915 return map->real_name; 9916 9917 return map->name; 9918 } 9919 9920 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9921 { 9922 return map->def.type; 9923 } 9924 9925 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9926 { 9927 if (map_is_created(map)) 9928 return libbpf_err(-EBUSY); 9929 map->def.type = type; 9930 return 0; 9931 } 9932 9933 __u32 bpf_map__map_flags(const struct bpf_map *map) 9934 { 9935 return map->def.map_flags; 9936 } 9937 9938 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9939 { 9940 if (map_is_created(map)) 9941 return libbpf_err(-EBUSY); 9942 map->def.map_flags = flags; 9943 return 0; 9944 } 9945 9946 __u64 bpf_map__map_extra(const struct bpf_map *map) 9947 { 9948 return map->map_extra; 9949 } 9950 9951 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9952 { 9953 if (map_is_created(map)) 9954 return libbpf_err(-EBUSY); 9955 map->map_extra = map_extra; 9956 return 0; 9957 } 9958 9959 __u32 bpf_map__numa_node(const struct bpf_map *map) 9960 { 9961 return map->numa_node; 9962 } 9963 9964 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9965 { 9966 if (map_is_created(map)) 9967 return libbpf_err(-EBUSY); 9968 map->numa_node = numa_node; 9969 return 0; 9970 } 9971 9972 __u32 bpf_map__key_size(const struct bpf_map *map) 9973 { 9974 return map->def.key_size; 9975 } 9976 9977 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9978 { 9979 if (map_is_created(map)) 9980 return libbpf_err(-EBUSY); 9981 map->def.key_size = size; 9982 return 0; 9983 } 9984 9985 __u32 bpf_map__value_size(const struct bpf_map *map) 9986 { 9987 return map->def.value_size; 9988 } 9989 9990 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9991 { 9992 struct btf *btf; 9993 struct btf_type *datasec_type, *var_type; 9994 struct btf_var_secinfo *var; 9995 const struct btf_type *array_type; 9996 const struct btf_array *array; 9997 int vlen, element_sz, new_array_id; 9998 __u32 nr_elements; 9999 10000 /* check btf existence */ 10001 btf = bpf_object__btf(map->obj); 10002 if (!btf) 10003 return -ENOENT; 10004 10005 /* verify map is datasec */ 10006 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10007 if (!btf_is_datasec(datasec_type)) { 10008 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10009 bpf_map__name(map)); 10010 return -EINVAL; 10011 } 10012 10013 /* verify datasec has at least one var */ 10014 vlen = btf_vlen(datasec_type); 10015 if (vlen == 0) { 10016 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10017 bpf_map__name(map)); 10018 return -EINVAL; 10019 } 10020 10021 /* verify last var in the datasec is an array */ 10022 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10023 var_type = btf_type_by_id(btf, var->type); 10024 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10025 if (!btf_is_array(array_type)) { 10026 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10027 bpf_map__name(map)); 10028 return -EINVAL; 10029 } 10030 10031 /* verify request size aligns with array */ 10032 array = btf_array(array_type); 10033 element_sz = btf__resolve_size(btf, array->type); 10034 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10035 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10036 bpf_map__name(map), element_sz, size); 10037 return -EINVAL; 10038 } 10039 10040 /* create a new array based on the existing array, but with new length */ 10041 nr_elements = (size - var->offset) / element_sz; 10042 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10043 if (new_array_id < 0) 10044 return new_array_id; 10045 10046 /* adding a new btf type invalidates existing pointers to btf objects, 10047 * so refresh pointers before proceeding 10048 */ 10049 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10050 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10051 var_type = btf_type_by_id(btf, var->type); 10052 10053 /* finally update btf info */ 10054 datasec_type->size = size; 10055 var->size = size - var->offset; 10056 var_type->type = new_array_id; 10057 10058 return 0; 10059 } 10060 10061 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10062 { 10063 if (map->obj->loaded || map->reused) 10064 return libbpf_err(-EBUSY); 10065 10066 if (map->mmaped) { 10067 int err; 10068 size_t mmap_old_sz, mmap_new_sz; 10069 10070 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 10071 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 10072 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10073 if (err) { 10074 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10075 bpf_map__name(map), err); 10076 return err; 10077 } 10078 err = map_btf_datasec_resize(map, size); 10079 if (err && err != -ENOENT) { 10080 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10081 bpf_map__name(map), err); 10082 map->btf_value_type_id = 0; 10083 map->btf_key_type_id = 0; 10084 } 10085 } 10086 10087 map->def.value_size = size; 10088 return 0; 10089 } 10090 10091 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10092 { 10093 return map ? map->btf_key_type_id : 0; 10094 } 10095 10096 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10097 { 10098 return map ? map->btf_value_type_id : 0; 10099 } 10100 10101 int bpf_map__set_initial_value(struct bpf_map *map, 10102 const void *data, size_t size) 10103 { 10104 if (map->obj->loaded || map->reused) 10105 return libbpf_err(-EBUSY); 10106 10107 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 10108 size != map->def.value_size) 10109 return libbpf_err(-EINVAL); 10110 10111 memcpy(map->mmaped, data, size); 10112 return 0; 10113 } 10114 10115 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 10116 { 10117 if (!map->mmaped) 10118 return NULL; 10119 *psize = map->def.value_size; 10120 return map->mmaped; 10121 } 10122 10123 bool bpf_map__is_internal(const struct bpf_map *map) 10124 { 10125 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10126 } 10127 10128 __u32 bpf_map__ifindex(const struct bpf_map *map) 10129 { 10130 return map->map_ifindex; 10131 } 10132 10133 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10134 { 10135 if (map_is_created(map)) 10136 return libbpf_err(-EBUSY); 10137 map->map_ifindex = ifindex; 10138 return 0; 10139 } 10140 10141 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10142 { 10143 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10144 pr_warn("error: unsupported map type\n"); 10145 return libbpf_err(-EINVAL); 10146 } 10147 if (map->inner_map_fd != -1) { 10148 pr_warn("error: inner_map_fd already specified\n"); 10149 return libbpf_err(-EINVAL); 10150 } 10151 if (map->inner_map) { 10152 bpf_map__destroy(map->inner_map); 10153 zfree(&map->inner_map); 10154 } 10155 map->inner_map_fd = fd; 10156 return 0; 10157 } 10158 10159 static struct bpf_map * 10160 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10161 { 10162 ssize_t idx; 10163 struct bpf_map *s, *e; 10164 10165 if (!obj || !obj->maps) 10166 return errno = EINVAL, NULL; 10167 10168 s = obj->maps; 10169 e = obj->maps + obj->nr_maps; 10170 10171 if ((m < s) || (m >= e)) { 10172 pr_warn("error in %s: map handler doesn't belong to object\n", 10173 __func__); 10174 return errno = EINVAL, NULL; 10175 } 10176 10177 idx = (m - obj->maps) + i; 10178 if (idx >= obj->nr_maps || idx < 0) 10179 return NULL; 10180 return &obj->maps[idx]; 10181 } 10182 10183 struct bpf_map * 10184 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10185 { 10186 if (prev == NULL) 10187 return obj->maps; 10188 10189 return __bpf_map__iter(prev, obj, 1); 10190 } 10191 10192 struct bpf_map * 10193 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10194 { 10195 if (next == NULL) { 10196 if (!obj->nr_maps) 10197 return NULL; 10198 return obj->maps + obj->nr_maps - 1; 10199 } 10200 10201 return __bpf_map__iter(next, obj, -1); 10202 } 10203 10204 struct bpf_map * 10205 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10206 { 10207 struct bpf_map *pos; 10208 10209 bpf_object__for_each_map(pos, obj) { 10210 /* if it's a special internal map name (which always starts 10211 * with dot) then check if that special name matches the 10212 * real map name (ELF section name) 10213 */ 10214 if (name[0] == '.') { 10215 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10216 return pos; 10217 continue; 10218 } 10219 /* otherwise map name has to be an exact match */ 10220 if (map_uses_real_name(pos)) { 10221 if (strcmp(pos->real_name, name) == 0) 10222 return pos; 10223 continue; 10224 } 10225 if (strcmp(pos->name, name) == 0) 10226 return pos; 10227 } 10228 return errno = ENOENT, NULL; 10229 } 10230 10231 int 10232 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10233 { 10234 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10235 } 10236 10237 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10238 size_t value_sz, bool check_value_sz) 10239 { 10240 if (!map_is_created(map)) /* map is not yet created */ 10241 return -ENOENT; 10242 10243 if (map->def.key_size != key_sz) { 10244 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10245 map->name, key_sz, map->def.key_size); 10246 return -EINVAL; 10247 } 10248 10249 if (!check_value_sz) 10250 return 0; 10251 10252 switch (map->def.type) { 10253 case BPF_MAP_TYPE_PERCPU_ARRAY: 10254 case BPF_MAP_TYPE_PERCPU_HASH: 10255 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10256 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10257 int num_cpu = libbpf_num_possible_cpus(); 10258 size_t elem_sz = roundup(map->def.value_size, 8); 10259 10260 if (value_sz != num_cpu * elem_sz) { 10261 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10262 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10263 return -EINVAL; 10264 } 10265 break; 10266 } 10267 default: 10268 if (map->def.value_size != value_sz) { 10269 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10270 map->name, value_sz, map->def.value_size); 10271 return -EINVAL; 10272 } 10273 break; 10274 } 10275 return 0; 10276 } 10277 10278 int bpf_map__lookup_elem(const struct bpf_map *map, 10279 const void *key, size_t key_sz, 10280 void *value, size_t value_sz, __u64 flags) 10281 { 10282 int err; 10283 10284 err = validate_map_op(map, key_sz, value_sz, true); 10285 if (err) 10286 return libbpf_err(err); 10287 10288 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10289 } 10290 10291 int bpf_map__update_elem(const struct bpf_map *map, 10292 const void *key, size_t key_sz, 10293 const void *value, size_t value_sz, __u64 flags) 10294 { 10295 int err; 10296 10297 err = validate_map_op(map, key_sz, value_sz, true); 10298 if (err) 10299 return libbpf_err(err); 10300 10301 return bpf_map_update_elem(map->fd, key, value, flags); 10302 } 10303 10304 int bpf_map__delete_elem(const struct bpf_map *map, 10305 const void *key, size_t key_sz, __u64 flags) 10306 { 10307 int err; 10308 10309 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10310 if (err) 10311 return libbpf_err(err); 10312 10313 return bpf_map_delete_elem_flags(map->fd, key, flags); 10314 } 10315 10316 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10317 const void *key, size_t key_sz, 10318 void *value, size_t value_sz, __u64 flags) 10319 { 10320 int err; 10321 10322 err = validate_map_op(map, key_sz, value_sz, true); 10323 if (err) 10324 return libbpf_err(err); 10325 10326 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10327 } 10328 10329 int bpf_map__get_next_key(const struct bpf_map *map, 10330 const void *cur_key, void *next_key, size_t key_sz) 10331 { 10332 int err; 10333 10334 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10335 if (err) 10336 return libbpf_err(err); 10337 10338 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10339 } 10340 10341 long libbpf_get_error(const void *ptr) 10342 { 10343 if (!IS_ERR_OR_NULL(ptr)) 10344 return 0; 10345 10346 if (IS_ERR(ptr)) 10347 errno = -PTR_ERR(ptr); 10348 10349 /* If ptr == NULL, then errno should be already set by the failing 10350 * API, because libbpf never returns NULL on success and it now always 10351 * sets errno on error. So no extra errno handling for ptr == NULL 10352 * case. 10353 */ 10354 return -errno; 10355 } 10356 10357 /* Replace link's underlying BPF program with the new one */ 10358 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10359 { 10360 int ret; 10361 10362 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10363 return libbpf_err_errno(ret); 10364 } 10365 10366 /* Release "ownership" of underlying BPF resource (typically, BPF program 10367 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10368 * link, when destructed through bpf_link__destroy() call won't attempt to 10369 * detach/unregisted that BPF resource. This is useful in situations where, 10370 * say, attached BPF program has to outlive userspace program that attached it 10371 * in the system. Depending on type of BPF program, though, there might be 10372 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10373 * exit of userspace program doesn't trigger automatic detachment and clean up 10374 * inside the kernel. 10375 */ 10376 void bpf_link__disconnect(struct bpf_link *link) 10377 { 10378 link->disconnected = true; 10379 } 10380 10381 int bpf_link__destroy(struct bpf_link *link) 10382 { 10383 int err = 0; 10384 10385 if (IS_ERR_OR_NULL(link)) 10386 return 0; 10387 10388 if (!link->disconnected && link->detach) 10389 err = link->detach(link); 10390 if (link->pin_path) 10391 free(link->pin_path); 10392 if (link->dealloc) 10393 link->dealloc(link); 10394 else 10395 free(link); 10396 10397 return libbpf_err(err); 10398 } 10399 10400 int bpf_link__fd(const struct bpf_link *link) 10401 { 10402 return link->fd; 10403 } 10404 10405 const char *bpf_link__pin_path(const struct bpf_link *link) 10406 { 10407 return link->pin_path; 10408 } 10409 10410 static int bpf_link__detach_fd(struct bpf_link *link) 10411 { 10412 return libbpf_err_errno(close(link->fd)); 10413 } 10414 10415 struct bpf_link *bpf_link__open(const char *path) 10416 { 10417 struct bpf_link *link; 10418 int fd; 10419 10420 fd = bpf_obj_get(path); 10421 if (fd < 0) { 10422 fd = -errno; 10423 pr_warn("failed to open link at %s: %d\n", path, fd); 10424 return libbpf_err_ptr(fd); 10425 } 10426 10427 link = calloc(1, sizeof(*link)); 10428 if (!link) { 10429 close(fd); 10430 return libbpf_err_ptr(-ENOMEM); 10431 } 10432 link->detach = &bpf_link__detach_fd; 10433 link->fd = fd; 10434 10435 link->pin_path = strdup(path); 10436 if (!link->pin_path) { 10437 bpf_link__destroy(link); 10438 return libbpf_err_ptr(-ENOMEM); 10439 } 10440 10441 return link; 10442 } 10443 10444 int bpf_link__detach(struct bpf_link *link) 10445 { 10446 return bpf_link_detach(link->fd) ? -errno : 0; 10447 } 10448 10449 int bpf_link__pin(struct bpf_link *link, const char *path) 10450 { 10451 int err; 10452 10453 if (link->pin_path) 10454 return libbpf_err(-EBUSY); 10455 err = make_parent_dir(path); 10456 if (err) 10457 return libbpf_err(err); 10458 err = check_path(path); 10459 if (err) 10460 return libbpf_err(err); 10461 10462 link->pin_path = strdup(path); 10463 if (!link->pin_path) 10464 return libbpf_err(-ENOMEM); 10465 10466 if (bpf_obj_pin(link->fd, link->pin_path)) { 10467 err = -errno; 10468 zfree(&link->pin_path); 10469 return libbpf_err(err); 10470 } 10471 10472 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10473 return 0; 10474 } 10475 10476 int bpf_link__unpin(struct bpf_link *link) 10477 { 10478 int err; 10479 10480 if (!link->pin_path) 10481 return libbpf_err(-EINVAL); 10482 10483 err = unlink(link->pin_path); 10484 if (err != 0) 10485 return -errno; 10486 10487 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10488 zfree(&link->pin_path); 10489 return 0; 10490 } 10491 10492 struct bpf_link_perf { 10493 struct bpf_link link; 10494 int perf_event_fd; 10495 /* legacy kprobe support: keep track of probe identifier and type */ 10496 char *legacy_probe_name; 10497 bool legacy_is_kprobe; 10498 bool legacy_is_retprobe; 10499 }; 10500 10501 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10502 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10503 10504 static int bpf_link_perf_detach(struct bpf_link *link) 10505 { 10506 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10507 int err = 0; 10508 10509 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10510 err = -errno; 10511 10512 if (perf_link->perf_event_fd != link->fd) 10513 close(perf_link->perf_event_fd); 10514 close(link->fd); 10515 10516 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10517 if (perf_link->legacy_probe_name) { 10518 if (perf_link->legacy_is_kprobe) { 10519 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10520 perf_link->legacy_is_retprobe); 10521 } else { 10522 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10523 perf_link->legacy_is_retprobe); 10524 } 10525 } 10526 10527 return err; 10528 } 10529 10530 static void bpf_link_perf_dealloc(struct bpf_link *link) 10531 { 10532 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10533 10534 free(perf_link->legacy_probe_name); 10535 free(perf_link); 10536 } 10537 10538 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10539 const struct bpf_perf_event_opts *opts) 10540 { 10541 char errmsg[STRERR_BUFSIZE]; 10542 struct bpf_link_perf *link; 10543 int prog_fd, link_fd = -1, err; 10544 bool force_ioctl_attach; 10545 10546 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10547 return libbpf_err_ptr(-EINVAL); 10548 10549 if (pfd < 0) { 10550 pr_warn("prog '%s': invalid perf event FD %d\n", 10551 prog->name, pfd); 10552 return libbpf_err_ptr(-EINVAL); 10553 } 10554 prog_fd = bpf_program__fd(prog); 10555 if (prog_fd < 0) { 10556 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10557 prog->name); 10558 return libbpf_err_ptr(-EINVAL); 10559 } 10560 10561 link = calloc(1, sizeof(*link)); 10562 if (!link) 10563 return libbpf_err_ptr(-ENOMEM); 10564 link->link.detach = &bpf_link_perf_detach; 10565 link->link.dealloc = &bpf_link_perf_dealloc; 10566 link->perf_event_fd = pfd; 10567 10568 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10569 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10570 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10571 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10572 10573 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10574 if (link_fd < 0) { 10575 err = -errno; 10576 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10577 prog->name, pfd, 10578 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10579 goto err_out; 10580 } 10581 link->link.fd = link_fd; 10582 } else { 10583 if (OPTS_GET(opts, bpf_cookie, 0)) { 10584 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10585 err = -EOPNOTSUPP; 10586 goto err_out; 10587 } 10588 10589 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10590 err = -errno; 10591 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10592 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10593 if (err == -EPROTO) 10594 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10595 prog->name, pfd); 10596 goto err_out; 10597 } 10598 link->link.fd = pfd; 10599 } 10600 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10601 err = -errno; 10602 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10603 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10604 goto err_out; 10605 } 10606 10607 return &link->link; 10608 err_out: 10609 if (link_fd >= 0) 10610 close(link_fd); 10611 free(link); 10612 return libbpf_err_ptr(err); 10613 } 10614 10615 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10616 { 10617 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10618 } 10619 10620 /* 10621 * this function is expected to parse integer in the range of [0, 2^31-1] from 10622 * given file using scanf format string fmt. If actual parsed value is 10623 * negative, the result might be indistinguishable from error 10624 */ 10625 static int parse_uint_from_file(const char *file, const char *fmt) 10626 { 10627 char buf[STRERR_BUFSIZE]; 10628 int err, ret; 10629 FILE *f; 10630 10631 f = fopen(file, "re"); 10632 if (!f) { 10633 err = -errno; 10634 pr_debug("failed to open '%s': %s\n", file, 10635 libbpf_strerror_r(err, buf, sizeof(buf))); 10636 return err; 10637 } 10638 err = fscanf(f, fmt, &ret); 10639 if (err != 1) { 10640 err = err == EOF ? -EIO : -errno; 10641 pr_debug("failed to parse '%s': %s\n", file, 10642 libbpf_strerror_r(err, buf, sizeof(buf))); 10643 fclose(f); 10644 return err; 10645 } 10646 fclose(f); 10647 return ret; 10648 } 10649 10650 static int determine_kprobe_perf_type(void) 10651 { 10652 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10653 10654 return parse_uint_from_file(file, "%d\n"); 10655 } 10656 10657 static int determine_uprobe_perf_type(void) 10658 { 10659 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10660 10661 return parse_uint_from_file(file, "%d\n"); 10662 } 10663 10664 static int determine_kprobe_retprobe_bit(void) 10665 { 10666 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10667 10668 return parse_uint_from_file(file, "config:%d\n"); 10669 } 10670 10671 static int determine_uprobe_retprobe_bit(void) 10672 { 10673 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10674 10675 return parse_uint_from_file(file, "config:%d\n"); 10676 } 10677 10678 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10679 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10680 10681 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10682 uint64_t offset, int pid, size_t ref_ctr_off) 10683 { 10684 const size_t attr_sz = sizeof(struct perf_event_attr); 10685 struct perf_event_attr attr; 10686 char errmsg[STRERR_BUFSIZE]; 10687 int type, pfd; 10688 10689 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10690 return -EINVAL; 10691 10692 memset(&attr, 0, attr_sz); 10693 10694 type = uprobe ? determine_uprobe_perf_type() 10695 : determine_kprobe_perf_type(); 10696 if (type < 0) { 10697 pr_warn("failed to determine %s perf type: %s\n", 10698 uprobe ? "uprobe" : "kprobe", 10699 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10700 return type; 10701 } 10702 if (retprobe) { 10703 int bit = uprobe ? determine_uprobe_retprobe_bit() 10704 : determine_kprobe_retprobe_bit(); 10705 10706 if (bit < 0) { 10707 pr_warn("failed to determine %s retprobe bit: %s\n", 10708 uprobe ? "uprobe" : "kprobe", 10709 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10710 return bit; 10711 } 10712 attr.config |= 1 << bit; 10713 } 10714 attr.size = attr_sz; 10715 attr.type = type; 10716 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10717 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10718 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10719 10720 /* pid filter is meaningful only for uprobes */ 10721 pfd = syscall(__NR_perf_event_open, &attr, 10722 pid < 0 ? -1 : pid /* pid */, 10723 pid == -1 ? 0 : -1 /* cpu */, 10724 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10725 return pfd >= 0 ? pfd : -errno; 10726 } 10727 10728 static int append_to_file(const char *file, const char *fmt, ...) 10729 { 10730 int fd, n, err = 0; 10731 va_list ap; 10732 char buf[1024]; 10733 10734 va_start(ap, fmt); 10735 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10736 va_end(ap); 10737 10738 if (n < 0 || n >= sizeof(buf)) 10739 return -EINVAL; 10740 10741 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10742 if (fd < 0) 10743 return -errno; 10744 10745 if (write(fd, buf, n) < 0) 10746 err = -errno; 10747 10748 close(fd); 10749 return err; 10750 } 10751 10752 #define DEBUGFS "/sys/kernel/debug/tracing" 10753 #define TRACEFS "/sys/kernel/tracing" 10754 10755 static bool use_debugfs(void) 10756 { 10757 static int has_debugfs = -1; 10758 10759 if (has_debugfs < 0) 10760 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10761 10762 return has_debugfs == 1; 10763 } 10764 10765 static const char *tracefs_path(void) 10766 { 10767 return use_debugfs() ? DEBUGFS : TRACEFS; 10768 } 10769 10770 static const char *tracefs_kprobe_events(void) 10771 { 10772 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10773 } 10774 10775 static const char *tracefs_uprobe_events(void) 10776 { 10777 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10778 } 10779 10780 static const char *tracefs_available_filter_functions(void) 10781 { 10782 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10783 : TRACEFS"/available_filter_functions"; 10784 } 10785 10786 static const char *tracefs_available_filter_functions_addrs(void) 10787 { 10788 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10789 : TRACEFS"/available_filter_functions_addrs"; 10790 } 10791 10792 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10793 const char *kfunc_name, size_t offset) 10794 { 10795 static int index = 0; 10796 int i; 10797 10798 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10799 __sync_fetch_and_add(&index, 1)); 10800 10801 /* sanitize binary_path in the probe name */ 10802 for (i = 0; buf[i]; i++) { 10803 if (!isalnum(buf[i])) 10804 buf[i] = '_'; 10805 } 10806 } 10807 10808 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10809 const char *kfunc_name, size_t offset) 10810 { 10811 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10812 retprobe ? 'r' : 'p', 10813 retprobe ? "kretprobes" : "kprobes", 10814 probe_name, kfunc_name, offset); 10815 } 10816 10817 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10818 { 10819 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10820 retprobe ? "kretprobes" : "kprobes", probe_name); 10821 } 10822 10823 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10824 { 10825 char file[256]; 10826 10827 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10828 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10829 10830 return parse_uint_from_file(file, "%d\n"); 10831 } 10832 10833 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10834 const char *kfunc_name, size_t offset, int pid) 10835 { 10836 const size_t attr_sz = sizeof(struct perf_event_attr); 10837 struct perf_event_attr attr; 10838 char errmsg[STRERR_BUFSIZE]; 10839 int type, pfd, err; 10840 10841 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10842 if (err < 0) { 10843 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10844 kfunc_name, offset, 10845 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10846 return err; 10847 } 10848 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10849 if (type < 0) { 10850 err = type; 10851 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10852 kfunc_name, offset, 10853 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10854 goto err_clean_legacy; 10855 } 10856 10857 memset(&attr, 0, attr_sz); 10858 attr.size = attr_sz; 10859 attr.config = type; 10860 attr.type = PERF_TYPE_TRACEPOINT; 10861 10862 pfd = syscall(__NR_perf_event_open, &attr, 10863 pid < 0 ? -1 : pid, /* pid */ 10864 pid == -1 ? 0 : -1, /* cpu */ 10865 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10866 if (pfd < 0) { 10867 err = -errno; 10868 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10869 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10870 goto err_clean_legacy; 10871 } 10872 return pfd; 10873 10874 err_clean_legacy: 10875 /* Clear the newly added legacy kprobe_event */ 10876 remove_kprobe_event_legacy(probe_name, retprobe); 10877 return err; 10878 } 10879 10880 static const char *arch_specific_syscall_pfx(void) 10881 { 10882 #if defined(__x86_64__) 10883 return "x64"; 10884 #elif defined(__i386__) 10885 return "ia32"; 10886 #elif defined(__s390x__) 10887 return "s390x"; 10888 #elif defined(__s390__) 10889 return "s390"; 10890 #elif defined(__arm__) 10891 return "arm"; 10892 #elif defined(__aarch64__) 10893 return "arm64"; 10894 #elif defined(__mips__) 10895 return "mips"; 10896 #elif defined(__riscv) 10897 return "riscv"; 10898 #elif defined(__powerpc__) 10899 return "powerpc"; 10900 #elif defined(__powerpc64__) 10901 return "powerpc64"; 10902 #else 10903 return NULL; 10904 #endif 10905 } 10906 10907 static int probe_kern_syscall_wrapper(void) 10908 { 10909 char syscall_name[64]; 10910 const char *ksys_pfx; 10911 10912 ksys_pfx = arch_specific_syscall_pfx(); 10913 if (!ksys_pfx) 10914 return 0; 10915 10916 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10917 10918 if (determine_kprobe_perf_type() >= 0) { 10919 int pfd; 10920 10921 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10922 if (pfd >= 0) 10923 close(pfd); 10924 10925 return pfd >= 0 ? 1 : 0; 10926 } else { /* legacy mode */ 10927 char probe_name[128]; 10928 10929 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10930 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10931 return 0; 10932 10933 (void)remove_kprobe_event_legacy(probe_name, false); 10934 return 1; 10935 } 10936 } 10937 10938 struct bpf_link * 10939 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10940 const char *func_name, 10941 const struct bpf_kprobe_opts *opts) 10942 { 10943 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10944 enum probe_attach_mode attach_mode; 10945 char errmsg[STRERR_BUFSIZE]; 10946 char *legacy_probe = NULL; 10947 struct bpf_link *link; 10948 size_t offset; 10949 bool retprobe, legacy; 10950 int pfd, err; 10951 10952 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10953 return libbpf_err_ptr(-EINVAL); 10954 10955 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10956 retprobe = OPTS_GET(opts, retprobe, false); 10957 offset = OPTS_GET(opts, offset, 0); 10958 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10959 10960 legacy = determine_kprobe_perf_type() < 0; 10961 switch (attach_mode) { 10962 case PROBE_ATTACH_MODE_LEGACY: 10963 legacy = true; 10964 pe_opts.force_ioctl_attach = true; 10965 break; 10966 case PROBE_ATTACH_MODE_PERF: 10967 if (legacy) 10968 return libbpf_err_ptr(-ENOTSUP); 10969 pe_opts.force_ioctl_attach = true; 10970 break; 10971 case PROBE_ATTACH_MODE_LINK: 10972 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10973 return libbpf_err_ptr(-ENOTSUP); 10974 break; 10975 case PROBE_ATTACH_MODE_DEFAULT: 10976 break; 10977 default: 10978 return libbpf_err_ptr(-EINVAL); 10979 } 10980 10981 if (!legacy) { 10982 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10983 func_name, offset, 10984 -1 /* pid */, 0 /* ref_ctr_off */); 10985 } else { 10986 char probe_name[256]; 10987 10988 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10989 func_name, offset); 10990 10991 legacy_probe = strdup(probe_name); 10992 if (!legacy_probe) 10993 return libbpf_err_ptr(-ENOMEM); 10994 10995 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10996 offset, -1 /* pid */); 10997 } 10998 if (pfd < 0) { 10999 err = -errno; 11000 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11001 prog->name, retprobe ? "kretprobe" : "kprobe", 11002 func_name, offset, 11003 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11004 goto err_out; 11005 } 11006 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11007 err = libbpf_get_error(link); 11008 if (err) { 11009 close(pfd); 11010 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11011 prog->name, retprobe ? "kretprobe" : "kprobe", 11012 func_name, offset, 11013 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11014 goto err_clean_legacy; 11015 } 11016 if (legacy) { 11017 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11018 11019 perf_link->legacy_probe_name = legacy_probe; 11020 perf_link->legacy_is_kprobe = true; 11021 perf_link->legacy_is_retprobe = retprobe; 11022 } 11023 11024 return link; 11025 11026 err_clean_legacy: 11027 if (legacy) 11028 remove_kprobe_event_legacy(legacy_probe, retprobe); 11029 err_out: 11030 free(legacy_probe); 11031 return libbpf_err_ptr(err); 11032 } 11033 11034 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11035 bool retprobe, 11036 const char *func_name) 11037 { 11038 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11039 .retprobe = retprobe, 11040 ); 11041 11042 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11043 } 11044 11045 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11046 const char *syscall_name, 11047 const struct bpf_ksyscall_opts *opts) 11048 { 11049 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11050 char func_name[128]; 11051 11052 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11053 return libbpf_err_ptr(-EINVAL); 11054 11055 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11056 /* arch_specific_syscall_pfx() should never return NULL here 11057 * because it is guarded by kernel_supports(). However, since 11058 * compiler does not know that we have an explicit conditional 11059 * as well. 11060 */ 11061 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11062 arch_specific_syscall_pfx() ? : "", syscall_name); 11063 } else { 11064 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11065 } 11066 11067 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11068 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11069 11070 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11071 } 11072 11073 /* Adapted from perf/util/string.c */ 11074 bool glob_match(const char *str, const char *pat) 11075 { 11076 while (*str && *pat && *pat != '*') { 11077 if (*pat == '?') { /* Matches any single character */ 11078 str++; 11079 pat++; 11080 continue; 11081 } 11082 if (*str != *pat) 11083 return false; 11084 str++; 11085 pat++; 11086 } 11087 /* Check wild card */ 11088 if (*pat == '*') { 11089 while (*pat == '*') 11090 pat++; 11091 if (!*pat) /* Tail wild card matches all */ 11092 return true; 11093 while (*str) 11094 if (glob_match(str++, pat)) 11095 return true; 11096 } 11097 return !*str && !*pat; 11098 } 11099 11100 struct kprobe_multi_resolve { 11101 const char *pattern; 11102 unsigned long *addrs; 11103 size_t cap; 11104 size_t cnt; 11105 }; 11106 11107 struct avail_kallsyms_data { 11108 char **syms; 11109 size_t cnt; 11110 struct kprobe_multi_resolve *res; 11111 }; 11112 11113 static int avail_func_cmp(const void *a, const void *b) 11114 { 11115 return strcmp(*(const char **)a, *(const char **)b); 11116 } 11117 11118 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11119 const char *sym_name, void *ctx) 11120 { 11121 struct avail_kallsyms_data *data = ctx; 11122 struct kprobe_multi_resolve *res = data->res; 11123 int err; 11124 11125 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11126 return 0; 11127 11128 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11129 if (err) 11130 return err; 11131 11132 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11133 return 0; 11134 } 11135 11136 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11137 { 11138 const char *available_functions_file = tracefs_available_filter_functions(); 11139 struct avail_kallsyms_data data; 11140 char sym_name[500]; 11141 FILE *f; 11142 int err = 0, ret, i; 11143 char **syms = NULL; 11144 size_t cap = 0, cnt = 0; 11145 11146 f = fopen(available_functions_file, "re"); 11147 if (!f) { 11148 err = -errno; 11149 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11150 return err; 11151 } 11152 11153 while (true) { 11154 char *name; 11155 11156 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11157 if (ret == EOF && feof(f)) 11158 break; 11159 11160 if (ret != 1) { 11161 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11162 err = -EINVAL; 11163 goto cleanup; 11164 } 11165 11166 if (!glob_match(sym_name, res->pattern)) 11167 continue; 11168 11169 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11170 if (err) 11171 goto cleanup; 11172 11173 name = strdup(sym_name); 11174 if (!name) { 11175 err = -errno; 11176 goto cleanup; 11177 } 11178 11179 syms[cnt++] = name; 11180 } 11181 11182 /* no entries found, bail out */ 11183 if (cnt == 0) { 11184 err = -ENOENT; 11185 goto cleanup; 11186 } 11187 11188 /* sort available functions */ 11189 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11190 11191 data.syms = syms; 11192 data.res = res; 11193 data.cnt = cnt; 11194 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11195 11196 if (res->cnt == 0) 11197 err = -ENOENT; 11198 11199 cleanup: 11200 for (i = 0; i < cnt; i++) 11201 free((char *)syms[i]); 11202 free(syms); 11203 11204 fclose(f); 11205 return err; 11206 } 11207 11208 static bool has_available_filter_functions_addrs(void) 11209 { 11210 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11211 } 11212 11213 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11214 { 11215 const char *available_path = tracefs_available_filter_functions_addrs(); 11216 char sym_name[500]; 11217 FILE *f; 11218 int ret, err = 0; 11219 unsigned long long sym_addr; 11220 11221 f = fopen(available_path, "re"); 11222 if (!f) { 11223 err = -errno; 11224 pr_warn("failed to open %s: %d\n", available_path, err); 11225 return err; 11226 } 11227 11228 while (true) { 11229 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11230 if (ret == EOF && feof(f)) 11231 break; 11232 11233 if (ret != 2) { 11234 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11235 ret); 11236 err = -EINVAL; 11237 goto cleanup; 11238 } 11239 11240 if (!glob_match(sym_name, res->pattern)) 11241 continue; 11242 11243 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11244 sizeof(*res->addrs), res->cnt + 1); 11245 if (err) 11246 goto cleanup; 11247 11248 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11249 } 11250 11251 if (res->cnt == 0) 11252 err = -ENOENT; 11253 11254 cleanup: 11255 fclose(f); 11256 return err; 11257 } 11258 11259 struct bpf_link * 11260 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11261 const char *pattern, 11262 const struct bpf_kprobe_multi_opts *opts) 11263 { 11264 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11265 struct kprobe_multi_resolve res = { 11266 .pattern = pattern, 11267 }; 11268 struct bpf_link *link = NULL; 11269 char errmsg[STRERR_BUFSIZE]; 11270 const unsigned long *addrs; 11271 int err, link_fd, prog_fd; 11272 const __u64 *cookies; 11273 const char **syms; 11274 bool retprobe; 11275 size_t cnt; 11276 11277 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11278 return libbpf_err_ptr(-EINVAL); 11279 11280 syms = OPTS_GET(opts, syms, false); 11281 addrs = OPTS_GET(opts, addrs, false); 11282 cnt = OPTS_GET(opts, cnt, false); 11283 cookies = OPTS_GET(opts, cookies, false); 11284 11285 if (!pattern && !addrs && !syms) 11286 return libbpf_err_ptr(-EINVAL); 11287 if (pattern && (addrs || syms || cookies || cnt)) 11288 return libbpf_err_ptr(-EINVAL); 11289 if (!pattern && !cnt) 11290 return libbpf_err_ptr(-EINVAL); 11291 if (addrs && syms) 11292 return libbpf_err_ptr(-EINVAL); 11293 11294 if (pattern) { 11295 if (has_available_filter_functions_addrs()) 11296 err = libbpf_available_kprobes_parse(&res); 11297 else 11298 err = libbpf_available_kallsyms_parse(&res); 11299 if (err) 11300 goto error; 11301 addrs = res.addrs; 11302 cnt = res.cnt; 11303 } 11304 11305 retprobe = OPTS_GET(opts, retprobe, false); 11306 11307 lopts.kprobe_multi.syms = syms; 11308 lopts.kprobe_multi.addrs = addrs; 11309 lopts.kprobe_multi.cookies = cookies; 11310 lopts.kprobe_multi.cnt = cnt; 11311 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11312 11313 link = calloc(1, sizeof(*link)); 11314 if (!link) { 11315 err = -ENOMEM; 11316 goto error; 11317 } 11318 link->detach = &bpf_link__detach_fd; 11319 11320 prog_fd = bpf_program__fd(prog); 11321 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11322 if (link_fd < 0) { 11323 err = -errno; 11324 pr_warn("prog '%s': failed to attach: %s\n", 11325 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11326 goto error; 11327 } 11328 link->fd = link_fd; 11329 free(res.addrs); 11330 return link; 11331 11332 error: 11333 free(link); 11334 free(res.addrs); 11335 return libbpf_err_ptr(err); 11336 } 11337 11338 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11339 { 11340 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11341 unsigned long offset = 0; 11342 const char *func_name; 11343 char *func; 11344 int n; 11345 11346 *link = NULL; 11347 11348 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11349 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11350 return 0; 11351 11352 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11353 if (opts.retprobe) 11354 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11355 else 11356 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11357 11358 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11359 if (n < 1) { 11360 pr_warn("kprobe name is invalid: %s\n", func_name); 11361 return -EINVAL; 11362 } 11363 if (opts.retprobe && offset != 0) { 11364 free(func); 11365 pr_warn("kretprobes do not support offset specification\n"); 11366 return -EINVAL; 11367 } 11368 11369 opts.offset = offset; 11370 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11371 free(func); 11372 return libbpf_get_error(*link); 11373 } 11374 11375 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11376 { 11377 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11378 const char *syscall_name; 11379 11380 *link = NULL; 11381 11382 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11383 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11384 return 0; 11385 11386 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11387 if (opts.retprobe) 11388 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11389 else 11390 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11391 11392 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11393 return *link ? 0 : -errno; 11394 } 11395 11396 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11397 { 11398 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11399 const char *spec; 11400 char *pattern; 11401 int n; 11402 11403 *link = NULL; 11404 11405 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11406 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11407 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11408 return 0; 11409 11410 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11411 if (opts.retprobe) 11412 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11413 else 11414 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11415 11416 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11417 if (n < 1) { 11418 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11419 return -EINVAL; 11420 } 11421 11422 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11423 free(pattern); 11424 return libbpf_get_error(*link); 11425 } 11426 11427 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11428 { 11429 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11430 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11431 int n, ret = -EINVAL; 11432 11433 *link = NULL; 11434 11435 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11436 &probe_type, &binary_path, &func_name); 11437 switch (n) { 11438 case 1: 11439 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11440 ret = 0; 11441 break; 11442 case 3: 11443 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11444 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11445 ret = libbpf_get_error(*link); 11446 break; 11447 default: 11448 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11449 prog->sec_name); 11450 break; 11451 } 11452 free(probe_type); 11453 free(binary_path); 11454 free(func_name); 11455 return ret; 11456 } 11457 11458 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11459 const char *binary_path, uint64_t offset) 11460 { 11461 int i; 11462 11463 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11464 11465 /* sanitize binary_path in the probe name */ 11466 for (i = 0; buf[i]; i++) { 11467 if (!isalnum(buf[i])) 11468 buf[i] = '_'; 11469 } 11470 } 11471 11472 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11473 const char *binary_path, size_t offset) 11474 { 11475 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11476 retprobe ? 'r' : 'p', 11477 retprobe ? "uretprobes" : "uprobes", 11478 probe_name, binary_path, offset); 11479 } 11480 11481 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11482 { 11483 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11484 retprobe ? "uretprobes" : "uprobes", probe_name); 11485 } 11486 11487 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11488 { 11489 char file[512]; 11490 11491 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11492 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11493 11494 return parse_uint_from_file(file, "%d\n"); 11495 } 11496 11497 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11498 const char *binary_path, size_t offset, int pid) 11499 { 11500 const size_t attr_sz = sizeof(struct perf_event_attr); 11501 struct perf_event_attr attr; 11502 int type, pfd, err; 11503 11504 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11505 if (err < 0) { 11506 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11507 binary_path, (size_t)offset, err); 11508 return err; 11509 } 11510 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11511 if (type < 0) { 11512 err = type; 11513 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11514 binary_path, offset, err); 11515 goto err_clean_legacy; 11516 } 11517 11518 memset(&attr, 0, attr_sz); 11519 attr.size = attr_sz; 11520 attr.config = type; 11521 attr.type = PERF_TYPE_TRACEPOINT; 11522 11523 pfd = syscall(__NR_perf_event_open, &attr, 11524 pid < 0 ? -1 : pid, /* pid */ 11525 pid == -1 ? 0 : -1, /* cpu */ 11526 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11527 if (pfd < 0) { 11528 err = -errno; 11529 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11530 goto err_clean_legacy; 11531 } 11532 return pfd; 11533 11534 err_clean_legacy: 11535 /* Clear the newly added legacy uprobe_event */ 11536 remove_uprobe_event_legacy(probe_name, retprobe); 11537 return err; 11538 } 11539 11540 /* Find offset of function name in archive specified by path. Currently 11541 * supported are .zip files that do not compress their contents, as used on 11542 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11543 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11544 * library functions. 11545 * 11546 * An overview of the APK format specifically provided here: 11547 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11548 */ 11549 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11550 const char *func_name) 11551 { 11552 struct zip_archive *archive; 11553 struct zip_entry entry; 11554 long ret; 11555 Elf *elf; 11556 11557 archive = zip_archive_open(archive_path); 11558 if (IS_ERR(archive)) { 11559 ret = PTR_ERR(archive); 11560 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11561 return ret; 11562 } 11563 11564 ret = zip_archive_find_entry(archive, file_name, &entry); 11565 if (ret) { 11566 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11567 archive_path, ret); 11568 goto out; 11569 } 11570 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11571 (unsigned long)entry.data_offset); 11572 11573 if (entry.compression) { 11574 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11575 archive_path); 11576 ret = -LIBBPF_ERRNO__FORMAT; 11577 goto out; 11578 } 11579 11580 elf = elf_memory((void *)entry.data, entry.data_length); 11581 if (!elf) { 11582 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11583 elf_errmsg(-1)); 11584 ret = -LIBBPF_ERRNO__LIBELF; 11585 goto out; 11586 } 11587 11588 ret = elf_find_func_offset(elf, file_name, func_name); 11589 if (ret > 0) { 11590 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11591 func_name, file_name, archive_path, entry.data_offset, ret, 11592 ret + entry.data_offset); 11593 ret += entry.data_offset; 11594 } 11595 elf_end(elf); 11596 11597 out: 11598 zip_archive_close(archive); 11599 return ret; 11600 } 11601 11602 static const char *arch_specific_lib_paths(void) 11603 { 11604 /* 11605 * Based on https://packages.debian.org/sid/libc6. 11606 * 11607 * Assume that the traced program is built for the same architecture 11608 * as libbpf, which should cover the vast majority of cases. 11609 */ 11610 #if defined(__x86_64__) 11611 return "/lib/x86_64-linux-gnu"; 11612 #elif defined(__i386__) 11613 return "/lib/i386-linux-gnu"; 11614 #elif defined(__s390x__) 11615 return "/lib/s390x-linux-gnu"; 11616 #elif defined(__s390__) 11617 return "/lib/s390-linux-gnu"; 11618 #elif defined(__arm__) && defined(__SOFTFP__) 11619 return "/lib/arm-linux-gnueabi"; 11620 #elif defined(__arm__) && !defined(__SOFTFP__) 11621 return "/lib/arm-linux-gnueabihf"; 11622 #elif defined(__aarch64__) 11623 return "/lib/aarch64-linux-gnu"; 11624 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11625 return "/lib/mips64el-linux-gnuabi64"; 11626 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11627 return "/lib/mipsel-linux-gnu"; 11628 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11629 return "/lib/powerpc64le-linux-gnu"; 11630 #elif defined(__sparc__) && defined(__arch64__) 11631 return "/lib/sparc64-linux-gnu"; 11632 #elif defined(__riscv) && __riscv_xlen == 64 11633 return "/lib/riscv64-linux-gnu"; 11634 #else 11635 return NULL; 11636 #endif 11637 } 11638 11639 /* Get full path to program/shared library. */ 11640 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11641 { 11642 const char *search_paths[3] = {}; 11643 int i, perm; 11644 11645 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11646 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11647 search_paths[1] = "/usr/lib64:/usr/lib"; 11648 search_paths[2] = arch_specific_lib_paths(); 11649 perm = R_OK; 11650 } else { 11651 search_paths[0] = getenv("PATH"); 11652 search_paths[1] = "/usr/bin:/usr/sbin"; 11653 perm = R_OK | X_OK; 11654 } 11655 11656 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11657 const char *s; 11658 11659 if (!search_paths[i]) 11660 continue; 11661 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11662 char *next_path; 11663 int seg_len; 11664 11665 if (s[0] == ':') 11666 s++; 11667 next_path = strchr(s, ':'); 11668 seg_len = next_path ? next_path - s : strlen(s); 11669 if (!seg_len) 11670 continue; 11671 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11672 /* ensure it has required permissions */ 11673 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11674 continue; 11675 pr_debug("resolved '%s' to '%s'\n", file, result); 11676 return 0; 11677 } 11678 } 11679 return -ENOENT; 11680 } 11681 11682 struct bpf_link * 11683 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11684 pid_t pid, 11685 const char *path, 11686 const char *func_pattern, 11687 const struct bpf_uprobe_multi_opts *opts) 11688 { 11689 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11690 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11691 unsigned long *resolved_offsets = NULL; 11692 int err = 0, link_fd, prog_fd; 11693 struct bpf_link *link = NULL; 11694 char errmsg[STRERR_BUFSIZE]; 11695 char full_path[PATH_MAX]; 11696 const __u64 *cookies; 11697 const char **syms; 11698 size_t cnt; 11699 11700 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11701 return libbpf_err_ptr(-EINVAL); 11702 11703 syms = OPTS_GET(opts, syms, NULL); 11704 offsets = OPTS_GET(opts, offsets, NULL); 11705 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11706 cookies = OPTS_GET(opts, cookies, NULL); 11707 cnt = OPTS_GET(opts, cnt, 0); 11708 11709 /* 11710 * User can specify 2 mutually exclusive set of inputs: 11711 * 11712 * 1) use only path/func_pattern/pid arguments 11713 * 11714 * 2) use path/pid with allowed combinations of: 11715 * syms/offsets/ref_ctr_offsets/cookies/cnt 11716 * 11717 * - syms and offsets are mutually exclusive 11718 * - ref_ctr_offsets and cookies are optional 11719 * 11720 * Any other usage results in error. 11721 */ 11722 11723 if (!path) 11724 return libbpf_err_ptr(-EINVAL); 11725 if (!func_pattern && cnt == 0) 11726 return libbpf_err_ptr(-EINVAL); 11727 11728 if (func_pattern) { 11729 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11730 return libbpf_err_ptr(-EINVAL); 11731 } else { 11732 if (!!syms == !!offsets) 11733 return libbpf_err_ptr(-EINVAL); 11734 } 11735 11736 if (func_pattern) { 11737 if (!strchr(path, '/')) { 11738 err = resolve_full_path(path, full_path, sizeof(full_path)); 11739 if (err) { 11740 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11741 prog->name, path, err); 11742 return libbpf_err_ptr(err); 11743 } 11744 path = full_path; 11745 } 11746 11747 err = elf_resolve_pattern_offsets(path, func_pattern, 11748 &resolved_offsets, &cnt); 11749 if (err < 0) 11750 return libbpf_err_ptr(err); 11751 offsets = resolved_offsets; 11752 } else if (syms) { 11753 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11754 if (err < 0) 11755 return libbpf_err_ptr(err); 11756 offsets = resolved_offsets; 11757 } 11758 11759 lopts.uprobe_multi.path = path; 11760 lopts.uprobe_multi.offsets = offsets; 11761 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11762 lopts.uprobe_multi.cookies = cookies; 11763 lopts.uprobe_multi.cnt = cnt; 11764 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11765 11766 if (pid == 0) 11767 pid = getpid(); 11768 if (pid > 0) 11769 lopts.uprobe_multi.pid = pid; 11770 11771 link = calloc(1, sizeof(*link)); 11772 if (!link) { 11773 err = -ENOMEM; 11774 goto error; 11775 } 11776 link->detach = &bpf_link__detach_fd; 11777 11778 prog_fd = bpf_program__fd(prog); 11779 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11780 if (link_fd < 0) { 11781 err = -errno; 11782 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11783 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11784 goto error; 11785 } 11786 link->fd = link_fd; 11787 free(resolved_offsets); 11788 return link; 11789 11790 error: 11791 free(resolved_offsets); 11792 free(link); 11793 return libbpf_err_ptr(err); 11794 } 11795 11796 LIBBPF_API struct bpf_link * 11797 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11798 const char *binary_path, size_t func_offset, 11799 const struct bpf_uprobe_opts *opts) 11800 { 11801 const char *archive_path = NULL, *archive_sep = NULL; 11802 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11803 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11804 enum probe_attach_mode attach_mode; 11805 char full_path[PATH_MAX]; 11806 struct bpf_link *link; 11807 size_t ref_ctr_off; 11808 int pfd, err; 11809 bool retprobe, legacy; 11810 const char *func_name; 11811 11812 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11813 return libbpf_err_ptr(-EINVAL); 11814 11815 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11816 retprobe = OPTS_GET(opts, retprobe, false); 11817 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11818 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11819 11820 if (!binary_path) 11821 return libbpf_err_ptr(-EINVAL); 11822 11823 /* Check if "binary_path" refers to an archive. */ 11824 archive_sep = strstr(binary_path, "!/"); 11825 if (archive_sep) { 11826 full_path[0] = '\0'; 11827 libbpf_strlcpy(full_path, binary_path, 11828 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11829 archive_path = full_path; 11830 binary_path = archive_sep + 2; 11831 } else if (!strchr(binary_path, '/')) { 11832 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11833 if (err) { 11834 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11835 prog->name, binary_path, err); 11836 return libbpf_err_ptr(err); 11837 } 11838 binary_path = full_path; 11839 } 11840 func_name = OPTS_GET(opts, func_name, NULL); 11841 if (func_name) { 11842 long sym_off; 11843 11844 if (archive_path) { 11845 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11846 func_name); 11847 binary_path = archive_path; 11848 } else { 11849 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11850 } 11851 if (sym_off < 0) 11852 return libbpf_err_ptr(sym_off); 11853 func_offset += sym_off; 11854 } 11855 11856 legacy = determine_uprobe_perf_type() < 0; 11857 switch (attach_mode) { 11858 case PROBE_ATTACH_MODE_LEGACY: 11859 legacy = true; 11860 pe_opts.force_ioctl_attach = true; 11861 break; 11862 case PROBE_ATTACH_MODE_PERF: 11863 if (legacy) 11864 return libbpf_err_ptr(-ENOTSUP); 11865 pe_opts.force_ioctl_attach = true; 11866 break; 11867 case PROBE_ATTACH_MODE_LINK: 11868 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11869 return libbpf_err_ptr(-ENOTSUP); 11870 break; 11871 case PROBE_ATTACH_MODE_DEFAULT: 11872 break; 11873 default: 11874 return libbpf_err_ptr(-EINVAL); 11875 } 11876 11877 if (!legacy) { 11878 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11879 func_offset, pid, ref_ctr_off); 11880 } else { 11881 char probe_name[PATH_MAX + 64]; 11882 11883 if (ref_ctr_off) 11884 return libbpf_err_ptr(-EINVAL); 11885 11886 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11887 binary_path, func_offset); 11888 11889 legacy_probe = strdup(probe_name); 11890 if (!legacy_probe) 11891 return libbpf_err_ptr(-ENOMEM); 11892 11893 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11894 binary_path, func_offset, pid); 11895 } 11896 if (pfd < 0) { 11897 err = -errno; 11898 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11899 prog->name, retprobe ? "uretprobe" : "uprobe", 11900 binary_path, func_offset, 11901 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11902 goto err_out; 11903 } 11904 11905 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11906 err = libbpf_get_error(link); 11907 if (err) { 11908 close(pfd); 11909 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11910 prog->name, retprobe ? "uretprobe" : "uprobe", 11911 binary_path, func_offset, 11912 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11913 goto err_clean_legacy; 11914 } 11915 if (legacy) { 11916 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11917 11918 perf_link->legacy_probe_name = legacy_probe; 11919 perf_link->legacy_is_kprobe = false; 11920 perf_link->legacy_is_retprobe = retprobe; 11921 } 11922 return link; 11923 11924 err_clean_legacy: 11925 if (legacy) 11926 remove_uprobe_event_legacy(legacy_probe, retprobe); 11927 err_out: 11928 free(legacy_probe); 11929 return libbpf_err_ptr(err); 11930 } 11931 11932 /* Format of u[ret]probe section definition supporting auto-attach: 11933 * u[ret]probe/binary:function[+offset] 11934 * 11935 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11936 * full binary path via bpf_program__attach_uprobe_opts. 11937 * 11938 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11939 * specified (and auto-attach is not possible) or the above format is specified for 11940 * auto-attach. 11941 */ 11942 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11943 { 11944 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11945 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 11946 int n, c, ret = -EINVAL; 11947 long offset = 0; 11948 11949 *link = NULL; 11950 11951 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11952 &probe_type, &binary_path, &func_name); 11953 switch (n) { 11954 case 1: 11955 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11956 ret = 0; 11957 break; 11958 case 2: 11959 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11960 prog->name, prog->sec_name); 11961 break; 11962 case 3: 11963 /* check if user specifies `+offset`, if yes, this should be 11964 * the last part of the string, make sure sscanf read to EOL 11965 */ 11966 func_off = strrchr(func_name, '+'); 11967 if (func_off) { 11968 n = sscanf(func_off, "+%li%n", &offset, &c); 11969 if (n == 1 && *(func_off + c) == '\0') 11970 func_off[0] = '\0'; 11971 else 11972 offset = 0; 11973 } 11974 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11975 strcmp(probe_type, "uretprobe.s") == 0; 11976 if (opts.retprobe && offset != 0) { 11977 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11978 prog->name); 11979 break; 11980 } 11981 opts.func_name = func_name; 11982 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11983 ret = libbpf_get_error(*link); 11984 break; 11985 default: 11986 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11987 prog->sec_name); 11988 break; 11989 } 11990 free(probe_type); 11991 free(binary_path); 11992 free(func_name); 11993 11994 return ret; 11995 } 11996 11997 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11998 bool retprobe, pid_t pid, 11999 const char *binary_path, 12000 size_t func_offset) 12001 { 12002 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12003 12004 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12005 } 12006 12007 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12008 pid_t pid, const char *binary_path, 12009 const char *usdt_provider, const char *usdt_name, 12010 const struct bpf_usdt_opts *opts) 12011 { 12012 char resolved_path[512]; 12013 struct bpf_object *obj = prog->obj; 12014 struct bpf_link *link; 12015 __u64 usdt_cookie; 12016 int err; 12017 12018 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12019 return libbpf_err_ptr(-EINVAL); 12020 12021 if (bpf_program__fd(prog) < 0) { 12022 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 12023 prog->name); 12024 return libbpf_err_ptr(-EINVAL); 12025 } 12026 12027 if (!binary_path) 12028 return libbpf_err_ptr(-EINVAL); 12029 12030 if (!strchr(binary_path, '/')) { 12031 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12032 if (err) { 12033 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12034 prog->name, binary_path, err); 12035 return libbpf_err_ptr(err); 12036 } 12037 binary_path = resolved_path; 12038 } 12039 12040 /* USDT manager is instantiated lazily on first USDT attach. It will 12041 * be destroyed together with BPF object in bpf_object__close(). 12042 */ 12043 if (IS_ERR(obj->usdt_man)) 12044 return libbpf_ptr(obj->usdt_man); 12045 if (!obj->usdt_man) { 12046 obj->usdt_man = usdt_manager_new(obj); 12047 if (IS_ERR(obj->usdt_man)) 12048 return libbpf_ptr(obj->usdt_man); 12049 } 12050 12051 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12052 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12053 usdt_provider, usdt_name, usdt_cookie); 12054 err = libbpf_get_error(link); 12055 if (err) 12056 return libbpf_err_ptr(err); 12057 return link; 12058 } 12059 12060 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12061 { 12062 char *path = NULL, *provider = NULL, *name = NULL; 12063 const char *sec_name; 12064 int n, err; 12065 12066 sec_name = bpf_program__section_name(prog); 12067 if (strcmp(sec_name, "usdt") == 0) { 12068 /* no auto-attach for just SEC("usdt") */ 12069 *link = NULL; 12070 return 0; 12071 } 12072 12073 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12074 if (n != 3) { 12075 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12076 sec_name); 12077 err = -EINVAL; 12078 } else { 12079 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12080 provider, name, NULL); 12081 err = libbpf_get_error(*link); 12082 } 12083 free(path); 12084 free(provider); 12085 free(name); 12086 return err; 12087 } 12088 12089 static int determine_tracepoint_id(const char *tp_category, 12090 const char *tp_name) 12091 { 12092 char file[PATH_MAX]; 12093 int ret; 12094 12095 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12096 tracefs_path(), tp_category, tp_name); 12097 if (ret < 0) 12098 return -errno; 12099 if (ret >= sizeof(file)) { 12100 pr_debug("tracepoint %s/%s path is too long\n", 12101 tp_category, tp_name); 12102 return -E2BIG; 12103 } 12104 return parse_uint_from_file(file, "%d\n"); 12105 } 12106 12107 static int perf_event_open_tracepoint(const char *tp_category, 12108 const char *tp_name) 12109 { 12110 const size_t attr_sz = sizeof(struct perf_event_attr); 12111 struct perf_event_attr attr; 12112 char errmsg[STRERR_BUFSIZE]; 12113 int tp_id, pfd, err; 12114 12115 tp_id = determine_tracepoint_id(tp_category, tp_name); 12116 if (tp_id < 0) { 12117 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12118 tp_category, tp_name, 12119 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12120 return tp_id; 12121 } 12122 12123 memset(&attr, 0, attr_sz); 12124 attr.type = PERF_TYPE_TRACEPOINT; 12125 attr.size = attr_sz; 12126 attr.config = tp_id; 12127 12128 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12129 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12130 if (pfd < 0) { 12131 err = -errno; 12132 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12133 tp_category, tp_name, 12134 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12135 return err; 12136 } 12137 return pfd; 12138 } 12139 12140 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12141 const char *tp_category, 12142 const char *tp_name, 12143 const struct bpf_tracepoint_opts *opts) 12144 { 12145 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12146 char errmsg[STRERR_BUFSIZE]; 12147 struct bpf_link *link; 12148 int pfd, err; 12149 12150 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12151 return libbpf_err_ptr(-EINVAL); 12152 12153 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12154 12155 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12156 if (pfd < 0) { 12157 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12158 prog->name, tp_category, tp_name, 12159 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12160 return libbpf_err_ptr(pfd); 12161 } 12162 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12163 err = libbpf_get_error(link); 12164 if (err) { 12165 close(pfd); 12166 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12167 prog->name, tp_category, tp_name, 12168 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12169 return libbpf_err_ptr(err); 12170 } 12171 return link; 12172 } 12173 12174 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12175 const char *tp_category, 12176 const char *tp_name) 12177 { 12178 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12179 } 12180 12181 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12182 { 12183 char *sec_name, *tp_cat, *tp_name; 12184 12185 *link = NULL; 12186 12187 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12188 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12189 return 0; 12190 12191 sec_name = strdup(prog->sec_name); 12192 if (!sec_name) 12193 return -ENOMEM; 12194 12195 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12196 if (str_has_pfx(prog->sec_name, "tp/")) 12197 tp_cat = sec_name + sizeof("tp/") - 1; 12198 else 12199 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12200 tp_name = strchr(tp_cat, '/'); 12201 if (!tp_name) { 12202 free(sec_name); 12203 return -EINVAL; 12204 } 12205 *tp_name = '\0'; 12206 tp_name++; 12207 12208 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12209 free(sec_name); 12210 return libbpf_get_error(*link); 12211 } 12212 12213 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12214 const char *tp_name) 12215 { 12216 char errmsg[STRERR_BUFSIZE]; 12217 struct bpf_link *link; 12218 int prog_fd, pfd; 12219 12220 prog_fd = bpf_program__fd(prog); 12221 if (prog_fd < 0) { 12222 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12223 return libbpf_err_ptr(-EINVAL); 12224 } 12225 12226 link = calloc(1, sizeof(*link)); 12227 if (!link) 12228 return libbpf_err_ptr(-ENOMEM); 12229 link->detach = &bpf_link__detach_fd; 12230 12231 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 12232 if (pfd < 0) { 12233 pfd = -errno; 12234 free(link); 12235 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12236 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12237 return libbpf_err_ptr(pfd); 12238 } 12239 link->fd = pfd; 12240 return link; 12241 } 12242 12243 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12244 { 12245 static const char *const prefixes[] = { 12246 "raw_tp", 12247 "raw_tracepoint", 12248 "raw_tp.w", 12249 "raw_tracepoint.w", 12250 }; 12251 size_t i; 12252 const char *tp_name = NULL; 12253 12254 *link = NULL; 12255 12256 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12257 size_t pfx_len; 12258 12259 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12260 continue; 12261 12262 pfx_len = strlen(prefixes[i]); 12263 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12264 if (prog->sec_name[pfx_len] == '\0') 12265 return 0; 12266 12267 if (prog->sec_name[pfx_len] != '/') 12268 continue; 12269 12270 tp_name = prog->sec_name + pfx_len + 1; 12271 break; 12272 } 12273 12274 if (!tp_name) { 12275 pr_warn("prog '%s': invalid section name '%s'\n", 12276 prog->name, prog->sec_name); 12277 return -EINVAL; 12278 } 12279 12280 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12281 return libbpf_get_error(*link); 12282 } 12283 12284 /* Common logic for all BPF program types that attach to a btf_id */ 12285 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12286 const struct bpf_trace_opts *opts) 12287 { 12288 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12289 char errmsg[STRERR_BUFSIZE]; 12290 struct bpf_link *link; 12291 int prog_fd, pfd; 12292 12293 if (!OPTS_VALID(opts, bpf_trace_opts)) 12294 return libbpf_err_ptr(-EINVAL); 12295 12296 prog_fd = bpf_program__fd(prog); 12297 if (prog_fd < 0) { 12298 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12299 return libbpf_err_ptr(-EINVAL); 12300 } 12301 12302 link = calloc(1, sizeof(*link)); 12303 if (!link) 12304 return libbpf_err_ptr(-ENOMEM); 12305 link->detach = &bpf_link__detach_fd; 12306 12307 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12308 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12309 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12310 if (pfd < 0) { 12311 pfd = -errno; 12312 free(link); 12313 pr_warn("prog '%s': failed to attach: %s\n", 12314 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12315 return libbpf_err_ptr(pfd); 12316 } 12317 link->fd = pfd; 12318 return link; 12319 } 12320 12321 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12322 { 12323 return bpf_program__attach_btf_id(prog, NULL); 12324 } 12325 12326 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12327 const struct bpf_trace_opts *opts) 12328 { 12329 return bpf_program__attach_btf_id(prog, opts); 12330 } 12331 12332 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12333 { 12334 return bpf_program__attach_btf_id(prog, NULL); 12335 } 12336 12337 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12338 { 12339 *link = bpf_program__attach_trace(prog); 12340 return libbpf_get_error(*link); 12341 } 12342 12343 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12344 { 12345 *link = bpf_program__attach_lsm(prog); 12346 return libbpf_get_error(*link); 12347 } 12348 12349 static struct bpf_link * 12350 bpf_program_attach_fd(const struct bpf_program *prog, 12351 int target_fd, const char *target_name, 12352 const struct bpf_link_create_opts *opts) 12353 { 12354 enum bpf_attach_type attach_type; 12355 char errmsg[STRERR_BUFSIZE]; 12356 struct bpf_link *link; 12357 int prog_fd, link_fd; 12358 12359 prog_fd = bpf_program__fd(prog); 12360 if (prog_fd < 0) { 12361 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12362 return libbpf_err_ptr(-EINVAL); 12363 } 12364 12365 link = calloc(1, sizeof(*link)); 12366 if (!link) 12367 return libbpf_err_ptr(-ENOMEM); 12368 link->detach = &bpf_link__detach_fd; 12369 12370 attach_type = bpf_program__expected_attach_type(prog); 12371 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12372 if (link_fd < 0) { 12373 link_fd = -errno; 12374 free(link); 12375 pr_warn("prog '%s': failed to attach to %s: %s\n", 12376 prog->name, target_name, 12377 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12378 return libbpf_err_ptr(link_fd); 12379 } 12380 link->fd = link_fd; 12381 return link; 12382 } 12383 12384 struct bpf_link * 12385 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12386 { 12387 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12388 } 12389 12390 struct bpf_link * 12391 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12392 { 12393 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12394 } 12395 12396 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12397 { 12398 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12399 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12400 } 12401 12402 struct bpf_link * 12403 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12404 const struct bpf_tcx_opts *opts) 12405 { 12406 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12407 __u32 relative_id; 12408 int relative_fd; 12409 12410 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12411 return libbpf_err_ptr(-EINVAL); 12412 12413 relative_id = OPTS_GET(opts, relative_id, 0); 12414 relative_fd = OPTS_GET(opts, relative_fd, 0); 12415 12416 /* validate we don't have unexpected combinations of non-zero fields */ 12417 if (!ifindex) { 12418 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12419 prog->name); 12420 return libbpf_err_ptr(-EINVAL); 12421 } 12422 if (relative_fd && relative_id) { 12423 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12424 prog->name); 12425 return libbpf_err_ptr(-EINVAL); 12426 } 12427 12428 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12429 link_create_opts.tcx.relative_fd = relative_fd; 12430 link_create_opts.tcx.relative_id = relative_id; 12431 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12432 12433 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12434 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12435 } 12436 12437 struct bpf_link * 12438 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12439 const struct bpf_netkit_opts *opts) 12440 { 12441 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12442 __u32 relative_id; 12443 int relative_fd; 12444 12445 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12446 return libbpf_err_ptr(-EINVAL); 12447 12448 relative_id = OPTS_GET(opts, relative_id, 0); 12449 relative_fd = OPTS_GET(opts, relative_fd, 0); 12450 12451 /* validate we don't have unexpected combinations of non-zero fields */ 12452 if (!ifindex) { 12453 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12454 prog->name); 12455 return libbpf_err_ptr(-EINVAL); 12456 } 12457 if (relative_fd && relative_id) { 12458 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12459 prog->name); 12460 return libbpf_err_ptr(-EINVAL); 12461 } 12462 12463 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12464 link_create_opts.netkit.relative_fd = relative_fd; 12465 link_create_opts.netkit.relative_id = relative_id; 12466 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12467 12468 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12469 } 12470 12471 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12472 int target_fd, 12473 const char *attach_func_name) 12474 { 12475 int btf_id; 12476 12477 if (!!target_fd != !!attach_func_name) { 12478 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12479 prog->name); 12480 return libbpf_err_ptr(-EINVAL); 12481 } 12482 12483 if (prog->type != BPF_PROG_TYPE_EXT) { 12484 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12485 prog->name); 12486 return libbpf_err_ptr(-EINVAL); 12487 } 12488 12489 if (target_fd) { 12490 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12491 12492 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12493 if (btf_id < 0) 12494 return libbpf_err_ptr(btf_id); 12495 12496 target_opts.target_btf_id = btf_id; 12497 12498 return bpf_program_attach_fd(prog, target_fd, "freplace", 12499 &target_opts); 12500 } else { 12501 /* no target, so use raw_tracepoint_open for compatibility 12502 * with old kernels 12503 */ 12504 return bpf_program__attach_trace(prog); 12505 } 12506 } 12507 12508 struct bpf_link * 12509 bpf_program__attach_iter(const struct bpf_program *prog, 12510 const struct bpf_iter_attach_opts *opts) 12511 { 12512 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12513 char errmsg[STRERR_BUFSIZE]; 12514 struct bpf_link *link; 12515 int prog_fd, link_fd; 12516 __u32 target_fd = 0; 12517 12518 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12519 return libbpf_err_ptr(-EINVAL); 12520 12521 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12522 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12523 12524 prog_fd = bpf_program__fd(prog); 12525 if (prog_fd < 0) { 12526 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12527 return libbpf_err_ptr(-EINVAL); 12528 } 12529 12530 link = calloc(1, sizeof(*link)); 12531 if (!link) 12532 return libbpf_err_ptr(-ENOMEM); 12533 link->detach = &bpf_link__detach_fd; 12534 12535 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12536 &link_create_opts); 12537 if (link_fd < 0) { 12538 link_fd = -errno; 12539 free(link); 12540 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12541 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12542 return libbpf_err_ptr(link_fd); 12543 } 12544 link->fd = link_fd; 12545 return link; 12546 } 12547 12548 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12549 { 12550 *link = bpf_program__attach_iter(prog, NULL); 12551 return libbpf_get_error(*link); 12552 } 12553 12554 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12555 const struct bpf_netfilter_opts *opts) 12556 { 12557 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12558 struct bpf_link *link; 12559 int prog_fd, link_fd; 12560 12561 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12562 return libbpf_err_ptr(-EINVAL); 12563 12564 prog_fd = bpf_program__fd(prog); 12565 if (prog_fd < 0) { 12566 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12567 return libbpf_err_ptr(-EINVAL); 12568 } 12569 12570 link = calloc(1, sizeof(*link)); 12571 if (!link) 12572 return libbpf_err_ptr(-ENOMEM); 12573 12574 link->detach = &bpf_link__detach_fd; 12575 12576 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12577 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12578 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12579 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12580 12581 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12582 if (link_fd < 0) { 12583 char errmsg[STRERR_BUFSIZE]; 12584 12585 link_fd = -errno; 12586 free(link); 12587 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12588 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12589 return libbpf_err_ptr(link_fd); 12590 } 12591 link->fd = link_fd; 12592 12593 return link; 12594 } 12595 12596 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12597 { 12598 struct bpf_link *link = NULL; 12599 int err; 12600 12601 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12602 return libbpf_err_ptr(-EOPNOTSUPP); 12603 12604 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12605 if (err) 12606 return libbpf_err_ptr(err); 12607 12608 /* When calling bpf_program__attach() explicitly, auto-attach support 12609 * is expected to work, so NULL returned link is considered an error. 12610 * This is different for skeleton's attach, see comment in 12611 * bpf_object__attach_skeleton(). 12612 */ 12613 if (!link) 12614 return libbpf_err_ptr(-EOPNOTSUPP); 12615 12616 return link; 12617 } 12618 12619 struct bpf_link_struct_ops { 12620 struct bpf_link link; 12621 int map_fd; 12622 }; 12623 12624 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12625 { 12626 struct bpf_link_struct_ops *st_link; 12627 __u32 zero = 0; 12628 12629 st_link = container_of(link, struct bpf_link_struct_ops, link); 12630 12631 if (st_link->map_fd < 0) 12632 /* w/o a real link */ 12633 return bpf_map_delete_elem(link->fd, &zero); 12634 12635 return close(link->fd); 12636 } 12637 12638 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12639 { 12640 struct bpf_link_struct_ops *link; 12641 __u32 zero = 0; 12642 int err, fd; 12643 12644 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12645 return libbpf_err_ptr(-EINVAL); 12646 12647 link = calloc(1, sizeof(*link)); 12648 if (!link) 12649 return libbpf_err_ptr(-EINVAL); 12650 12651 /* kern_vdata should be prepared during the loading phase. */ 12652 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12653 /* It can be EBUSY if the map has been used to create or 12654 * update a link before. We don't allow updating the value of 12655 * a struct_ops once it is set. That ensures that the value 12656 * never changed. So, it is safe to skip EBUSY. 12657 */ 12658 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12659 free(link); 12660 return libbpf_err_ptr(err); 12661 } 12662 12663 link->link.detach = bpf_link__detach_struct_ops; 12664 12665 if (!(map->def.map_flags & BPF_F_LINK)) { 12666 /* w/o a real link */ 12667 link->link.fd = map->fd; 12668 link->map_fd = -1; 12669 return &link->link; 12670 } 12671 12672 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12673 if (fd < 0) { 12674 free(link); 12675 return libbpf_err_ptr(fd); 12676 } 12677 12678 link->link.fd = fd; 12679 link->map_fd = map->fd; 12680 12681 return &link->link; 12682 } 12683 12684 /* 12685 * Swap the back struct_ops of a link with a new struct_ops map. 12686 */ 12687 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12688 { 12689 struct bpf_link_struct_ops *st_ops_link; 12690 __u32 zero = 0; 12691 int err; 12692 12693 if (!bpf_map__is_struct_ops(map) || !map_is_created(map)) 12694 return -EINVAL; 12695 12696 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12697 /* Ensure the type of a link is correct */ 12698 if (st_ops_link->map_fd < 0) 12699 return -EINVAL; 12700 12701 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12702 /* It can be EBUSY if the map has been used to create or 12703 * update a link before. We don't allow updating the value of 12704 * a struct_ops once it is set. That ensures that the value 12705 * never changed. So, it is safe to skip EBUSY. 12706 */ 12707 if (err && err != -EBUSY) 12708 return err; 12709 12710 err = bpf_link_update(link->fd, map->fd, NULL); 12711 if (err < 0) 12712 return err; 12713 12714 st_ops_link->map_fd = map->fd; 12715 12716 return 0; 12717 } 12718 12719 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12720 void *private_data); 12721 12722 static enum bpf_perf_event_ret 12723 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12724 void **copy_mem, size_t *copy_size, 12725 bpf_perf_event_print_t fn, void *private_data) 12726 { 12727 struct perf_event_mmap_page *header = mmap_mem; 12728 __u64 data_head = ring_buffer_read_head(header); 12729 __u64 data_tail = header->data_tail; 12730 void *base = ((__u8 *)header) + page_size; 12731 int ret = LIBBPF_PERF_EVENT_CONT; 12732 struct perf_event_header *ehdr; 12733 size_t ehdr_size; 12734 12735 while (data_head != data_tail) { 12736 ehdr = base + (data_tail & (mmap_size - 1)); 12737 ehdr_size = ehdr->size; 12738 12739 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12740 void *copy_start = ehdr; 12741 size_t len_first = base + mmap_size - copy_start; 12742 size_t len_secnd = ehdr_size - len_first; 12743 12744 if (*copy_size < ehdr_size) { 12745 free(*copy_mem); 12746 *copy_mem = malloc(ehdr_size); 12747 if (!*copy_mem) { 12748 *copy_size = 0; 12749 ret = LIBBPF_PERF_EVENT_ERROR; 12750 break; 12751 } 12752 *copy_size = ehdr_size; 12753 } 12754 12755 memcpy(*copy_mem, copy_start, len_first); 12756 memcpy(*copy_mem + len_first, base, len_secnd); 12757 ehdr = *copy_mem; 12758 } 12759 12760 ret = fn(ehdr, private_data); 12761 data_tail += ehdr_size; 12762 if (ret != LIBBPF_PERF_EVENT_CONT) 12763 break; 12764 } 12765 12766 ring_buffer_write_tail(header, data_tail); 12767 return libbpf_err(ret); 12768 } 12769 12770 struct perf_buffer; 12771 12772 struct perf_buffer_params { 12773 struct perf_event_attr *attr; 12774 /* if event_cb is specified, it takes precendence */ 12775 perf_buffer_event_fn event_cb; 12776 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12777 perf_buffer_sample_fn sample_cb; 12778 perf_buffer_lost_fn lost_cb; 12779 void *ctx; 12780 int cpu_cnt; 12781 int *cpus; 12782 int *map_keys; 12783 }; 12784 12785 struct perf_cpu_buf { 12786 struct perf_buffer *pb; 12787 void *base; /* mmap()'ed memory */ 12788 void *buf; /* for reconstructing segmented data */ 12789 size_t buf_size; 12790 int fd; 12791 int cpu; 12792 int map_key; 12793 }; 12794 12795 struct perf_buffer { 12796 perf_buffer_event_fn event_cb; 12797 perf_buffer_sample_fn sample_cb; 12798 perf_buffer_lost_fn lost_cb; 12799 void *ctx; /* passed into callbacks */ 12800 12801 size_t page_size; 12802 size_t mmap_size; 12803 struct perf_cpu_buf **cpu_bufs; 12804 struct epoll_event *events; 12805 int cpu_cnt; /* number of allocated CPU buffers */ 12806 int epoll_fd; /* perf event FD */ 12807 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12808 }; 12809 12810 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12811 struct perf_cpu_buf *cpu_buf) 12812 { 12813 if (!cpu_buf) 12814 return; 12815 if (cpu_buf->base && 12816 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12817 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12818 if (cpu_buf->fd >= 0) { 12819 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12820 close(cpu_buf->fd); 12821 } 12822 free(cpu_buf->buf); 12823 free(cpu_buf); 12824 } 12825 12826 void perf_buffer__free(struct perf_buffer *pb) 12827 { 12828 int i; 12829 12830 if (IS_ERR_OR_NULL(pb)) 12831 return; 12832 if (pb->cpu_bufs) { 12833 for (i = 0; i < pb->cpu_cnt; i++) { 12834 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12835 12836 if (!cpu_buf) 12837 continue; 12838 12839 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12840 perf_buffer__free_cpu_buf(pb, cpu_buf); 12841 } 12842 free(pb->cpu_bufs); 12843 } 12844 if (pb->epoll_fd >= 0) 12845 close(pb->epoll_fd); 12846 free(pb->events); 12847 free(pb); 12848 } 12849 12850 static struct perf_cpu_buf * 12851 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12852 int cpu, int map_key) 12853 { 12854 struct perf_cpu_buf *cpu_buf; 12855 char msg[STRERR_BUFSIZE]; 12856 int err; 12857 12858 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12859 if (!cpu_buf) 12860 return ERR_PTR(-ENOMEM); 12861 12862 cpu_buf->pb = pb; 12863 cpu_buf->cpu = cpu; 12864 cpu_buf->map_key = map_key; 12865 12866 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12867 -1, PERF_FLAG_FD_CLOEXEC); 12868 if (cpu_buf->fd < 0) { 12869 err = -errno; 12870 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12871 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12872 goto error; 12873 } 12874 12875 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12876 PROT_READ | PROT_WRITE, MAP_SHARED, 12877 cpu_buf->fd, 0); 12878 if (cpu_buf->base == MAP_FAILED) { 12879 cpu_buf->base = NULL; 12880 err = -errno; 12881 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12882 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12883 goto error; 12884 } 12885 12886 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12887 err = -errno; 12888 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12889 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12890 goto error; 12891 } 12892 12893 return cpu_buf; 12894 12895 error: 12896 perf_buffer__free_cpu_buf(pb, cpu_buf); 12897 return (struct perf_cpu_buf *)ERR_PTR(err); 12898 } 12899 12900 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12901 struct perf_buffer_params *p); 12902 12903 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12904 perf_buffer_sample_fn sample_cb, 12905 perf_buffer_lost_fn lost_cb, 12906 void *ctx, 12907 const struct perf_buffer_opts *opts) 12908 { 12909 const size_t attr_sz = sizeof(struct perf_event_attr); 12910 struct perf_buffer_params p = {}; 12911 struct perf_event_attr attr; 12912 __u32 sample_period; 12913 12914 if (!OPTS_VALID(opts, perf_buffer_opts)) 12915 return libbpf_err_ptr(-EINVAL); 12916 12917 sample_period = OPTS_GET(opts, sample_period, 1); 12918 if (!sample_period) 12919 sample_period = 1; 12920 12921 memset(&attr, 0, attr_sz); 12922 attr.size = attr_sz; 12923 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12924 attr.type = PERF_TYPE_SOFTWARE; 12925 attr.sample_type = PERF_SAMPLE_RAW; 12926 attr.sample_period = sample_period; 12927 attr.wakeup_events = sample_period; 12928 12929 p.attr = &attr; 12930 p.sample_cb = sample_cb; 12931 p.lost_cb = lost_cb; 12932 p.ctx = ctx; 12933 12934 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12935 } 12936 12937 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12938 struct perf_event_attr *attr, 12939 perf_buffer_event_fn event_cb, void *ctx, 12940 const struct perf_buffer_raw_opts *opts) 12941 { 12942 struct perf_buffer_params p = {}; 12943 12944 if (!attr) 12945 return libbpf_err_ptr(-EINVAL); 12946 12947 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12948 return libbpf_err_ptr(-EINVAL); 12949 12950 p.attr = attr; 12951 p.event_cb = event_cb; 12952 p.ctx = ctx; 12953 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12954 p.cpus = OPTS_GET(opts, cpus, NULL); 12955 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12956 12957 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12958 } 12959 12960 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12961 struct perf_buffer_params *p) 12962 { 12963 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12964 struct bpf_map_info map; 12965 char msg[STRERR_BUFSIZE]; 12966 struct perf_buffer *pb; 12967 bool *online = NULL; 12968 __u32 map_info_len; 12969 int err, i, j, n; 12970 12971 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12972 pr_warn("page count should be power of two, but is %zu\n", 12973 page_cnt); 12974 return ERR_PTR(-EINVAL); 12975 } 12976 12977 /* best-effort sanity checks */ 12978 memset(&map, 0, sizeof(map)); 12979 map_info_len = sizeof(map); 12980 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12981 if (err) { 12982 err = -errno; 12983 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12984 * -EBADFD, -EFAULT, or -E2BIG on real error 12985 */ 12986 if (err != -EINVAL) { 12987 pr_warn("failed to get map info for map FD %d: %s\n", 12988 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12989 return ERR_PTR(err); 12990 } 12991 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12992 map_fd); 12993 } else { 12994 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12995 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12996 map.name); 12997 return ERR_PTR(-EINVAL); 12998 } 12999 } 13000 13001 pb = calloc(1, sizeof(*pb)); 13002 if (!pb) 13003 return ERR_PTR(-ENOMEM); 13004 13005 pb->event_cb = p->event_cb; 13006 pb->sample_cb = p->sample_cb; 13007 pb->lost_cb = p->lost_cb; 13008 pb->ctx = p->ctx; 13009 13010 pb->page_size = getpagesize(); 13011 pb->mmap_size = pb->page_size * page_cnt; 13012 pb->map_fd = map_fd; 13013 13014 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13015 if (pb->epoll_fd < 0) { 13016 err = -errno; 13017 pr_warn("failed to create epoll instance: %s\n", 13018 libbpf_strerror_r(err, msg, sizeof(msg))); 13019 goto error; 13020 } 13021 13022 if (p->cpu_cnt > 0) { 13023 pb->cpu_cnt = p->cpu_cnt; 13024 } else { 13025 pb->cpu_cnt = libbpf_num_possible_cpus(); 13026 if (pb->cpu_cnt < 0) { 13027 err = pb->cpu_cnt; 13028 goto error; 13029 } 13030 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13031 pb->cpu_cnt = map.max_entries; 13032 } 13033 13034 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13035 if (!pb->events) { 13036 err = -ENOMEM; 13037 pr_warn("failed to allocate events: out of memory\n"); 13038 goto error; 13039 } 13040 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13041 if (!pb->cpu_bufs) { 13042 err = -ENOMEM; 13043 pr_warn("failed to allocate buffers: out of memory\n"); 13044 goto error; 13045 } 13046 13047 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13048 if (err) { 13049 pr_warn("failed to get online CPU mask: %d\n", err); 13050 goto error; 13051 } 13052 13053 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13054 struct perf_cpu_buf *cpu_buf; 13055 int cpu, map_key; 13056 13057 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13058 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13059 13060 /* in case user didn't explicitly requested particular CPUs to 13061 * be attached to, skip offline/not present CPUs 13062 */ 13063 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13064 continue; 13065 13066 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13067 if (IS_ERR(cpu_buf)) { 13068 err = PTR_ERR(cpu_buf); 13069 goto error; 13070 } 13071 13072 pb->cpu_bufs[j] = cpu_buf; 13073 13074 err = bpf_map_update_elem(pb->map_fd, &map_key, 13075 &cpu_buf->fd, 0); 13076 if (err) { 13077 err = -errno; 13078 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13079 cpu, map_key, cpu_buf->fd, 13080 libbpf_strerror_r(err, msg, sizeof(msg))); 13081 goto error; 13082 } 13083 13084 pb->events[j].events = EPOLLIN; 13085 pb->events[j].data.ptr = cpu_buf; 13086 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13087 &pb->events[j]) < 0) { 13088 err = -errno; 13089 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13090 cpu, cpu_buf->fd, 13091 libbpf_strerror_r(err, msg, sizeof(msg))); 13092 goto error; 13093 } 13094 j++; 13095 } 13096 pb->cpu_cnt = j; 13097 free(online); 13098 13099 return pb; 13100 13101 error: 13102 free(online); 13103 if (pb) 13104 perf_buffer__free(pb); 13105 return ERR_PTR(err); 13106 } 13107 13108 struct perf_sample_raw { 13109 struct perf_event_header header; 13110 uint32_t size; 13111 char data[]; 13112 }; 13113 13114 struct perf_sample_lost { 13115 struct perf_event_header header; 13116 uint64_t id; 13117 uint64_t lost; 13118 uint64_t sample_id; 13119 }; 13120 13121 static enum bpf_perf_event_ret 13122 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13123 { 13124 struct perf_cpu_buf *cpu_buf = ctx; 13125 struct perf_buffer *pb = cpu_buf->pb; 13126 void *data = e; 13127 13128 /* user wants full control over parsing perf event */ 13129 if (pb->event_cb) 13130 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13131 13132 switch (e->type) { 13133 case PERF_RECORD_SAMPLE: { 13134 struct perf_sample_raw *s = data; 13135 13136 if (pb->sample_cb) 13137 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13138 break; 13139 } 13140 case PERF_RECORD_LOST: { 13141 struct perf_sample_lost *s = data; 13142 13143 if (pb->lost_cb) 13144 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13145 break; 13146 } 13147 default: 13148 pr_warn("unknown perf sample type %d\n", e->type); 13149 return LIBBPF_PERF_EVENT_ERROR; 13150 } 13151 return LIBBPF_PERF_EVENT_CONT; 13152 } 13153 13154 static int perf_buffer__process_records(struct perf_buffer *pb, 13155 struct perf_cpu_buf *cpu_buf) 13156 { 13157 enum bpf_perf_event_ret ret; 13158 13159 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13160 pb->page_size, &cpu_buf->buf, 13161 &cpu_buf->buf_size, 13162 perf_buffer__process_record, cpu_buf); 13163 if (ret != LIBBPF_PERF_EVENT_CONT) 13164 return ret; 13165 return 0; 13166 } 13167 13168 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13169 { 13170 return pb->epoll_fd; 13171 } 13172 13173 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13174 { 13175 int i, cnt, err; 13176 13177 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13178 if (cnt < 0) 13179 return -errno; 13180 13181 for (i = 0; i < cnt; i++) { 13182 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13183 13184 err = perf_buffer__process_records(pb, cpu_buf); 13185 if (err) { 13186 pr_warn("error while processing records: %d\n", err); 13187 return libbpf_err(err); 13188 } 13189 } 13190 return cnt; 13191 } 13192 13193 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13194 * manager. 13195 */ 13196 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13197 { 13198 return pb->cpu_cnt; 13199 } 13200 13201 /* 13202 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13203 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13204 * select()/poll()/epoll() Linux syscalls. 13205 */ 13206 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13207 { 13208 struct perf_cpu_buf *cpu_buf; 13209 13210 if (buf_idx >= pb->cpu_cnt) 13211 return libbpf_err(-EINVAL); 13212 13213 cpu_buf = pb->cpu_bufs[buf_idx]; 13214 if (!cpu_buf) 13215 return libbpf_err(-ENOENT); 13216 13217 return cpu_buf->fd; 13218 } 13219 13220 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13221 { 13222 struct perf_cpu_buf *cpu_buf; 13223 13224 if (buf_idx >= pb->cpu_cnt) 13225 return libbpf_err(-EINVAL); 13226 13227 cpu_buf = pb->cpu_bufs[buf_idx]; 13228 if (!cpu_buf) 13229 return libbpf_err(-ENOENT); 13230 13231 *buf = cpu_buf->base; 13232 *buf_size = pb->mmap_size; 13233 return 0; 13234 } 13235 13236 /* 13237 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13238 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13239 * consume, do nothing and return success. 13240 * Returns: 13241 * - 0 on success; 13242 * - <0 on failure. 13243 */ 13244 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13245 { 13246 struct perf_cpu_buf *cpu_buf; 13247 13248 if (buf_idx >= pb->cpu_cnt) 13249 return libbpf_err(-EINVAL); 13250 13251 cpu_buf = pb->cpu_bufs[buf_idx]; 13252 if (!cpu_buf) 13253 return libbpf_err(-ENOENT); 13254 13255 return perf_buffer__process_records(pb, cpu_buf); 13256 } 13257 13258 int perf_buffer__consume(struct perf_buffer *pb) 13259 { 13260 int i, err; 13261 13262 for (i = 0; i < pb->cpu_cnt; i++) { 13263 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13264 13265 if (!cpu_buf) 13266 continue; 13267 13268 err = perf_buffer__process_records(pb, cpu_buf); 13269 if (err) { 13270 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13271 return libbpf_err(err); 13272 } 13273 } 13274 return 0; 13275 } 13276 13277 int bpf_program__set_attach_target(struct bpf_program *prog, 13278 int attach_prog_fd, 13279 const char *attach_func_name) 13280 { 13281 int btf_obj_fd = 0, btf_id = 0, err; 13282 13283 if (!prog || attach_prog_fd < 0) 13284 return libbpf_err(-EINVAL); 13285 13286 if (prog->obj->loaded) 13287 return libbpf_err(-EINVAL); 13288 13289 if (attach_prog_fd && !attach_func_name) { 13290 /* remember attach_prog_fd and let bpf_program__load() find 13291 * BTF ID during the program load 13292 */ 13293 prog->attach_prog_fd = attach_prog_fd; 13294 return 0; 13295 } 13296 13297 if (attach_prog_fd) { 13298 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13299 attach_prog_fd); 13300 if (btf_id < 0) 13301 return libbpf_err(btf_id); 13302 } else { 13303 if (!attach_func_name) 13304 return libbpf_err(-EINVAL); 13305 13306 /* load btf_vmlinux, if not yet */ 13307 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13308 if (err) 13309 return libbpf_err(err); 13310 err = find_kernel_btf_id(prog->obj, attach_func_name, 13311 prog->expected_attach_type, 13312 &btf_obj_fd, &btf_id); 13313 if (err) 13314 return libbpf_err(err); 13315 } 13316 13317 prog->attach_btf_id = btf_id; 13318 prog->attach_btf_obj_fd = btf_obj_fd; 13319 prog->attach_prog_fd = attach_prog_fd; 13320 return 0; 13321 } 13322 13323 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13324 { 13325 int err = 0, n, len, start, end = -1; 13326 bool *tmp; 13327 13328 *mask = NULL; 13329 *mask_sz = 0; 13330 13331 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13332 while (*s) { 13333 if (*s == ',' || *s == '\n') { 13334 s++; 13335 continue; 13336 } 13337 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13338 if (n <= 0 || n > 2) { 13339 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13340 err = -EINVAL; 13341 goto cleanup; 13342 } else if (n == 1) { 13343 end = start; 13344 } 13345 if (start < 0 || start > end) { 13346 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13347 start, end, s); 13348 err = -EINVAL; 13349 goto cleanup; 13350 } 13351 tmp = realloc(*mask, end + 1); 13352 if (!tmp) { 13353 err = -ENOMEM; 13354 goto cleanup; 13355 } 13356 *mask = tmp; 13357 memset(tmp + *mask_sz, 0, start - *mask_sz); 13358 memset(tmp + start, 1, end - start + 1); 13359 *mask_sz = end + 1; 13360 s += len; 13361 } 13362 if (!*mask_sz) { 13363 pr_warn("Empty CPU range\n"); 13364 return -EINVAL; 13365 } 13366 return 0; 13367 cleanup: 13368 free(*mask); 13369 *mask = NULL; 13370 return err; 13371 } 13372 13373 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13374 { 13375 int fd, err = 0, len; 13376 char buf[128]; 13377 13378 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13379 if (fd < 0) { 13380 err = -errno; 13381 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13382 return err; 13383 } 13384 len = read(fd, buf, sizeof(buf)); 13385 close(fd); 13386 if (len <= 0) { 13387 err = len ? -errno : -EINVAL; 13388 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13389 return err; 13390 } 13391 if (len >= sizeof(buf)) { 13392 pr_warn("CPU mask is too big in file %s\n", fcpu); 13393 return -E2BIG; 13394 } 13395 buf[len] = '\0'; 13396 13397 return parse_cpu_mask_str(buf, mask, mask_sz); 13398 } 13399 13400 int libbpf_num_possible_cpus(void) 13401 { 13402 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13403 static int cpus; 13404 int err, n, i, tmp_cpus; 13405 bool *mask; 13406 13407 tmp_cpus = READ_ONCE(cpus); 13408 if (tmp_cpus > 0) 13409 return tmp_cpus; 13410 13411 err = parse_cpu_mask_file(fcpu, &mask, &n); 13412 if (err) 13413 return libbpf_err(err); 13414 13415 tmp_cpus = 0; 13416 for (i = 0; i < n; i++) { 13417 if (mask[i]) 13418 tmp_cpus++; 13419 } 13420 free(mask); 13421 13422 WRITE_ONCE(cpus, tmp_cpus); 13423 return tmp_cpus; 13424 } 13425 13426 static int populate_skeleton_maps(const struct bpf_object *obj, 13427 struct bpf_map_skeleton *maps, 13428 size_t map_cnt) 13429 { 13430 int i; 13431 13432 for (i = 0; i < map_cnt; i++) { 13433 struct bpf_map **map = maps[i].map; 13434 const char *name = maps[i].name; 13435 void **mmaped = maps[i].mmaped; 13436 13437 *map = bpf_object__find_map_by_name(obj, name); 13438 if (!*map) { 13439 pr_warn("failed to find skeleton map '%s'\n", name); 13440 return -ESRCH; 13441 } 13442 13443 /* externs shouldn't be pre-setup from user code */ 13444 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13445 *mmaped = (*map)->mmaped; 13446 } 13447 return 0; 13448 } 13449 13450 static int populate_skeleton_progs(const struct bpf_object *obj, 13451 struct bpf_prog_skeleton *progs, 13452 size_t prog_cnt) 13453 { 13454 int i; 13455 13456 for (i = 0; i < prog_cnt; i++) { 13457 struct bpf_program **prog = progs[i].prog; 13458 const char *name = progs[i].name; 13459 13460 *prog = bpf_object__find_program_by_name(obj, name); 13461 if (!*prog) { 13462 pr_warn("failed to find skeleton program '%s'\n", name); 13463 return -ESRCH; 13464 } 13465 } 13466 return 0; 13467 } 13468 13469 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13470 const struct bpf_object_open_opts *opts) 13471 { 13472 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13473 .object_name = s->name, 13474 ); 13475 struct bpf_object *obj; 13476 int err; 13477 13478 /* Attempt to preserve opts->object_name, unless overriden by user 13479 * explicitly. Overwriting object name for skeletons is discouraged, 13480 * as it breaks global data maps, because they contain object name 13481 * prefix as their own map name prefix. When skeleton is generated, 13482 * bpftool is making an assumption that this name will stay the same. 13483 */ 13484 if (opts) { 13485 memcpy(&skel_opts, opts, sizeof(*opts)); 13486 if (!opts->object_name) 13487 skel_opts.object_name = s->name; 13488 } 13489 13490 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13491 err = libbpf_get_error(obj); 13492 if (err) { 13493 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13494 s->name, err); 13495 return libbpf_err(err); 13496 } 13497 13498 *s->obj = obj; 13499 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13500 if (err) { 13501 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13502 return libbpf_err(err); 13503 } 13504 13505 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13506 if (err) { 13507 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13508 return libbpf_err(err); 13509 } 13510 13511 return 0; 13512 } 13513 13514 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13515 { 13516 int err, len, var_idx, i; 13517 const char *var_name; 13518 const struct bpf_map *map; 13519 struct btf *btf; 13520 __u32 map_type_id; 13521 const struct btf_type *map_type, *var_type; 13522 const struct bpf_var_skeleton *var_skel; 13523 struct btf_var_secinfo *var; 13524 13525 if (!s->obj) 13526 return libbpf_err(-EINVAL); 13527 13528 btf = bpf_object__btf(s->obj); 13529 if (!btf) { 13530 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13531 bpf_object__name(s->obj)); 13532 return libbpf_err(-errno); 13533 } 13534 13535 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13536 if (err) { 13537 pr_warn("failed to populate subskeleton maps: %d\n", err); 13538 return libbpf_err(err); 13539 } 13540 13541 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13542 if (err) { 13543 pr_warn("failed to populate subskeleton maps: %d\n", err); 13544 return libbpf_err(err); 13545 } 13546 13547 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13548 var_skel = &s->vars[var_idx]; 13549 map = *var_skel->map; 13550 map_type_id = bpf_map__btf_value_type_id(map); 13551 map_type = btf__type_by_id(btf, map_type_id); 13552 13553 if (!btf_is_datasec(map_type)) { 13554 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13555 bpf_map__name(map), 13556 __btf_kind_str(btf_kind(map_type))); 13557 return libbpf_err(-EINVAL); 13558 } 13559 13560 len = btf_vlen(map_type); 13561 var = btf_var_secinfos(map_type); 13562 for (i = 0; i < len; i++, var++) { 13563 var_type = btf__type_by_id(btf, var->type); 13564 var_name = btf__name_by_offset(btf, var_type->name_off); 13565 if (strcmp(var_name, var_skel->name) == 0) { 13566 *var_skel->addr = map->mmaped + var->offset; 13567 break; 13568 } 13569 } 13570 } 13571 return 0; 13572 } 13573 13574 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13575 { 13576 if (!s) 13577 return; 13578 free(s->maps); 13579 free(s->progs); 13580 free(s->vars); 13581 free(s); 13582 } 13583 13584 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13585 { 13586 int i, err; 13587 13588 err = bpf_object__load(*s->obj); 13589 if (err) { 13590 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13591 return libbpf_err(err); 13592 } 13593 13594 for (i = 0; i < s->map_cnt; i++) { 13595 struct bpf_map *map = *s->maps[i].map; 13596 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13597 int prot, map_fd = map->fd; 13598 void **mmaped = s->maps[i].mmaped; 13599 13600 if (!mmaped) 13601 continue; 13602 13603 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13604 *mmaped = NULL; 13605 continue; 13606 } 13607 13608 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13609 prot = PROT_READ; 13610 else 13611 prot = PROT_READ | PROT_WRITE; 13612 13613 /* Remap anonymous mmap()-ed "map initialization image" as 13614 * a BPF map-backed mmap()-ed memory, but preserving the same 13615 * memory address. This will cause kernel to change process' 13616 * page table to point to a different piece of kernel memory, 13617 * but from userspace point of view memory address (and its 13618 * contents, being identical at this point) will stay the 13619 * same. This mapping will be released by bpf_object__close() 13620 * as per normal clean up procedure, so we don't need to worry 13621 * about it from skeleton's clean up perspective. 13622 */ 13623 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13624 if (*mmaped == MAP_FAILED) { 13625 err = -errno; 13626 *mmaped = NULL; 13627 pr_warn("failed to re-mmap() map '%s': %d\n", 13628 bpf_map__name(map), err); 13629 return libbpf_err(err); 13630 } 13631 } 13632 13633 return 0; 13634 } 13635 13636 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13637 { 13638 int i, err; 13639 13640 for (i = 0; i < s->prog_cnt; i++) { 13641 struct bpf_program *prog = *s->progs[i].prog; 13642 struct bpf_link **link = s->progs[i].link; 13643 13644 if (!prog->autoload || !prog->autoattach) 13645 continue; 13646 13647 /* auto-attaching not supported for this program */ 13648 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13649 continue; 13650 13651 /* if user already set the link manually, don't attempt auto-attach */ 13652 if (*link) 13653 continue; 13654 13655 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13656 if (err) { 13657 pr_warn("prog '%s': failed to auto-attach: %d\n", 13658 bpf_program__name(prog), err); 13659 return libbpf_err(err); 13660 } 13661 13662 /* It's possible that for some SEC() definitions auto-attach 13663 * is supported in some cases (e.g., if definition completely 13664 * specifies target information), but is not in other cases. 13665 * SEC("uprobe") is one such case. If user specified target 13666 * binary and function name, such BPF program can be 13667 * auto-attached. But if not, it shouldn't trigger skeleton's 13668 * attach to fail. It should just be skipped. 13669 * attach_fn signals such case with returning 0 (no error) and 13670 * setting link to NULL. 13671 */ 13672 } 13673 13674 return 0; 13675 } 13676 13677 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13678 { 13679 int i; 13680 13681 for (i = 0; i < s->prog_cnt; i++) { 13682 struct bpf_link **link = s->progs[i].link; 13683 13684 bpf_link__destroy(*link); 13685 *link = NULL; 13686 } 13687 } 13688 13689 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13690 { 13691 if (!s) 13692 return; 13693 13694 if (s->progs) 13695 bpf_object__detach_skeleton(s); 13696 if (s->obj) 13697 bpf_object__close(*s->obj); 13698 free(s->maps); 13699 free(s->progs); 13700 free(s); 13701 } 13702