1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 [BPF_NETKIT_PRIMARY] = "netkit_primary", 130 [BPF_NETKIT_PEER] = "netkit_peer", 131 }; 132 133 static const char * const link_type_name[] = { 134 [BPF_LINK_TYPE_UNSPEC] = "unspec", 135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 136 [BPF_LINK_TYPE_TRACING] = "tracing", 137 [BPF_LINK_TYPE_CGROUP] = "cgroup", 138 [BPF_LINK_TYPE_ITER] = "iter", 139 [BPF_LINK_TYPE_NETNS] = "netns", 140 [BPF_LINK_TYPE_XDP] = "xdp", 141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 144 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 145 [BPF_LINK_TYPE_TCX] = "tcx", 146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 147 [BPF_LINK_TYPE_NETKIT] = "netkit", 148 }; 149 150 static const char * const map_type_name[] = { 151 [BPF_MAP_TYPE_UNSPEC] = "unspec", 152 [BPF_MAP_TYPE_HASH] = "hash", 153 [BPF_MAP_TYPE_ARRAY] = "array", 154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 165 [BPF_MAP_TYPE_DEVMAP] = "devmap", 166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 168 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 169 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 174 [BPF_MAP_TYPE_QUEUE] = "queue", 175 [BPF_MAP_TYPE_STACK] = "stack", 176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 184 }; 185 186 static const char * const prog_type_name[] = { 187 [BPF_PROG_TYPE_UNSPEC] = "unspec", 188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 189 [BPF_PROG_TYPE_KPROBE] = "kprobe", 190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 193 [BPF_PROG_TYPE_XDP] = "xdp", 194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 213 [BPF_PROG_TYPE_TRACING] = "tracing", 214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 215 [BPF_PROG_TYPE_EXT] = "ext", 216 [BPF_PROG_TYPE_LSM] = "lsm", 217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 218 [BPF_PROG_TYPE_SYSCALL] = "syscall", 219 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 220 }; 221 222 static int __base_pr(enum libbpf_print_level level, const char *format, 223 va_list args) 224 { 225 if (level == LIBBPF_DEBUG) 226 return 0; 227 228 return vfprintf(stderr, format, args); 229 } 230 231 static libbpf_print_fn_t __libbpf_pr = __base_pr; 232 233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 234 { 235 libbpf_print_fn_t old_print_fn; 236 237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 238 239 return old_print_fn; 240 } 241 242 __printf(2, 3) 243 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 244 { 245 va_list args; 246 int old_errno; 247 libbpf_print_fn_t print_fn; 248 249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 250 if (!print_fn) 251 return; 252 253 old_errno = errno; 254 255 va_start(args, format); 256 __libbpf_pr(level, format, args); 257 va_end(args); 258 259 errno = old_errno; 260 } 261 262 static void pr_perm_msg(int err) 263 { 264 struct rlimit limit; 265 char buf[100]; 266 267 if (err != -EPERM || geteuid() != 0) 268 return; 269 270 err = getrlimit(RLIMIT_MEMLOCK, &limit); 271 if (err) 272 return; 273 274 if (limit.rlim_cur == RLIM_INFINITY) 275 return; 276 277 if (limit.rlim_cur < 1024) 278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 279 else if (limit.rlim_cur < 1024*1024) 280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 281 else 282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 283 284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 285 buf); 286 } 287 288 #define STRERR_BUFSIZE 128 289 290 /* Copied from tools/perf/util/util.h */ 291 #ifndef zfree 292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 293 #endif 294 295 #ifndef zclose 296 # define zclose(fd) ({ \ 297 int ___err = 0; \ 298 if ((fd) >= 0) \ 299 ___err = close((fd)); \ 300 fd = -1; \ 301 ___err; }) 302 #endif 303 304 static inline __u64 ptr_to_u64(const void *ptr) 305 { 306 return (__u64) (unsigned long) ptr; 307 } 308 309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 310 { 311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 312 return 0; 313 } 314 315 __u32 libbpf_major_version(void) 316 { 317 return LIBBPF_MAJOR_VERSION; 318 } 319 320 __u32 libbpf_minor_version(void) 321 { 322 return LIBBPF_MINOR_VERSION; 323 } 324 325 const char *libbpf_version_string(void) 326 { 327 #define __S(X) #X 328 #define _S(X) __S(X) 329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 330 #undef _S 331 #undef __S 332 } 333 334 enum reloc_type { 335 RELO_LD64, 336 RELO_CALL, 337 RELO_DATA, 338 RELO_EXTERN_LD64, 339 RELO_EXTERN_CALL, 340 RELO_SUBPROG_ADDR, 341 RELO_CORE, 342 }; 343 344 struct reloc_desc { 345 enum reloc_type type; 346 int insn_idx; 347 union { 348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 349 struct { 350 int map_idx; 351 int sym_off; 352 int ext_idx; 353 }; 354 }; 355 }; 356 357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 358 enum sec_def_flags { 359 SEC_NONE = 0, 360 /* expected_attach_type is optional, if kernel doesn't support that */ 361 SEC_EXP_ATTACH_OPT = 1, 362 /* legacy, only used by libbpf_get_type_names() and 363 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 364 * This used to be associated with cgroup (and few other) BPF programs 365 * that were attachable through BPF_PROG_ATTACH command. Pretty 366 * meaningless nowadays, though. 367 */ 368 SEC_ATTACHABLE = 2, 369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 370 /* attachment target is specified through BTF ID in either kernel or 371 * other BPF program's BTF object 372 */ 373 SEC_ATTACH_BTF = 4, 374 /* BPF program type allows sleeping/blocking in kernel */ 375 SEC_SLEEPABLE = 8, 376 /* BPF program support non-linear XDP buffer */ 377 SEC_XDP_FRAGS = 16, 378 /* Setup proper attach type for usdt probes. */ 379 SEC_USDT = 32, 380 }; 381 382 struct bpf_sec_def { 383 char *sec; 384 enum bpf_prog_type prog_type; 385 enum bpf_attach_type expected_attach_type; 386 long cookie; 387 int handler_id; 388 389 libbpf_prog_setup_fn_t prog_setup_fn; 390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 391 libbpf_prog_attach_fn_t prog_attach_fn; 392 }; 393 394 /* 395 * bpf_prog should be a better name but it has been used in 396 * linux/filter.h. 397 */ 398 struct bpf_program { 399 char *name; 400 char *sec_name; 401 size_t sec_idx; 402 const struct bpf_sec_def *sec_def; 403 /* this program's instruction offset (in number of instructions) 404 * within its containing ELF section 405 */ 406 size_t sec_insn_off; 407 /* number of original instructions in ELF section belonging to this 408 * program, not taking into account subprogram instructions possible 409 * appended later during relocation 410 */ 411 size_t sec_insn_cnt; 412 /* Offset (in number of instructions) of the start of instruction 413 * belonging to this BPF program within its containing main BPF 414 * program. For the entry-point (main) BPF program, this is always 415 * zero. For a sub-program, this gets reset before each of main BPF 416 * programs are processed and relocated and is used to determined 417 * whether sub-program was already appended to the main program, and 418 * if yes, at which instruction offset. 419 */ 420 size_t sub_insn_off; 421 422 /* instructions that belong to BPF program; insns[0] is located at 423 * sec_insn_off instruction within its ELF section in ELF file, so 424 * when mapping ELF file instruction index to the local instruction, 425 * one needs to subtract sec_insn_off; and vice versa. 426 */ 427 struct bpf_insn *insns; 428 /* actual number of instruction in this BPF program's image; for 429 * entry-point BPF programs this includes the size of main program 430 * itself plus all the used sub-programs, appended at the end 431 */ 432 size_t insns_cnt; 433 434 struct reloc_desc *reloc_desc; 435 int nr_reloc; 436 437 /* BPF verifier log settings */ 438 char *log_buf; 439 size_t log_size; 440 __u32 log_level; 441 442 struct bpf_object *obj; 443 444 int fd; 445 bool autoload; 446 bool autoattach; 447 bool sym_global; 448 bool mark_btf_static; 449 enum bpf_prog_type type; 450 enum bpf_attach_type expected_attach_type; 451 int exception_cb_idx; 452 453 int prog_ifindex; 454 __u32 attach_btf_obj_fd; 455 __u32 attach_btf_id; 456 __u32 attach_prog_fd; 457 458 void *func_info; 459 __u32 func_info_rec_size; 460 __u32 func_info_cnt; 461 462 void *line_info; 463 __u32 line_info_rec_size; 464 __u32 line_info_cnt; 465 __u32 prog_flags; 466 }; 467 468 struct bpf_struct_ops { 469 const char *tname; 470 const struct btf_type *type; 471 struct bpf_program **progs; 472 __u32 *kern_func_off; 473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 474 void *data; 475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 476 * btf_vmlinux's format. 477 * struct bpf_struct_ops_tcp_congestion_ops { 478 * [... some other kernel fields ...] 479 * struct tcp_congestion_ops data; 480 * } 481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 483 * from "data". 484 */ 485 void *kern_vdata; 486 __u32 type_id; 487 }; 488 489 #define DATA_SEC ".data" 490 #define BSS_SEC ".bss" 491 #define RODATA_SEC ".rodata" 492 #define KCONFIG_SEC ".kconfig" 493 #define KSYMS_SEC ".ksyms" 494 #define STRUCT_OPS_SEC ".struct_ops" 495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 496 497 enum libbpf_map_type { 498 LIBBPF_MAP_UNSPEC, 499 LIBBPF_MAP_DATA, 500 LIBBPF_MAP_BSS, 501 LIBBPF_MAP_RODATA, 502 LIBBPF_MAP_KCONFIG, 503 }; 504 505 struct bpf_map_def { 506 unsigned int type; 507 unsigned int key_size; 508 unsigned int value_size; 509 unsigned int max_entries; 510 unsigned int map_flags; 511 }; 512 513 struct bpf_map { 514 struct bpf_object *obj; 515 char *name; 516 /* real_name is defined for special internal maps (.rodata*, 517 * .data*, .bss, .kconfig) and preserves their original ELF section 518 * name. This is important to be able to find corresponding BTF 519 * DATASEC information. 520 */ 521 char *real_name; 522 int fd; 523 int sec_idx; 524 size_t sec_offset; 525 int map_ifindex; 526 int inner_map_fd; 527 struct bpf_map_def def; 528 __u32 numa_node; 529 __u32 btf_var_idx; 530 __u32 btf_key_type_id; 531 __u32 btf_value_type_id; 532 __u32 btf_vmlinux_value_type_id; 533 enum libbpf_map_type libbpf_type; 534 void *mmaped; 535 struct bpf_struct_ops *st_ops; 536 struct bpf_map *inner_map; 537 void **init_slots; 538 int init_slots_sz; 539 char *pin_path; 540 bool pinned; 541 bool reused; 542 bool autocreate; 543 __u64 map_extra; 544 }; 545 546 enum extern_type { 547 EXT_UNKNOWN, 548 EXT_KCFG, 549 EXT_KSYM, 550 }; 551 552 enum kcfg_type { 553 KCFG_UNKNOWN, 554 KCFG_CHAR, 555 KCFG_BOOL, 556 KCFG_INT, 557 KCFG_TRISTATE, 558 KCFG_CHAR_ARR, 559 }; 560 561 struct extern_desc { 562 enum extern_type type; 563 int sym_idx; 564 int btf_id; 565 int sec_btf_id; 566 const char *name; 567 char *essent_name; 568 bool is_set; 569 bool is_weak; 570 union { 571 struct { 572 enum kcfg_type type; 573 int sz; 574 int align; 575 int data_off; 576 bool is_signed; 577 } kcfg; 578 struct { 579 unsigned long long addr; 580 581 /* target btf_id of the corresponding kernel var. */ 582 int kernel_btf_obj_fd; 583 int kernel_btf_id; 584 585 /* local btf_id of the ksym extern's type. */ 586 __u32 type_id; 587 /* BTF fd index to be patched in for insn->off, this is 588 * 0 for vmlinux BTF, index in obj->fd_array for module 589 * BTF 590 */ 591 __s16 btf_fd_idx; 592 } ksym; 593 }; 594 }; 595 596 struct module_btf { 597 struct btf *btf; 598 char *name; 599 __u32 id; 600 int fd; 601 int fd_array_idx; 602 }; 603 604 enum sec_type { 605 SEC_UNUSED = 0, 606 SEC_RELO, 607 SEC_BSS, 608 SEC_DATA, 609 SEC_RODATA, 610 }; 611 612 struct elf_sec_desc { 613 enum sec_type sec_type; 614 Elf64_Shdr *shdr; 615 Elf_Data *data; 616 }; 617 618 struct elf_state { 619 int fd; 620 const void *obj_buf; 621 size_t obj_buf_sz; 622 Elf *elf; 623 Elf64_Ehdr *ehdr; 624 Elf_Data *symbols; 625 Elf_Data *st_ops_data; 626 Elf_Data *st_ops_link_data; 627 size_t shstrndx; /* section index for section name strings */ 628 size_t strtabidx; 629 struct elf_sec_desc *secs; 630 size_t sec_cnt; 631 int btf_maps_shndx; 632 __u32 btf_maps_sec_btf_id; 633 int text_shndx; 634 int symbols_shndx; 635 int st_ops_shndx; 636 int st_ops_link_shndx; 637 }; 638 639 struct usdt_manager; 640 641 struct bpf_object { 642 char name[BPF_OBJ_NAME_LEN]; 643 char license[64]; 644 __u32 kern_version; 645 646 struct bpf_program *programs; 647 size_t nr_programs; 648 struct bpf_map *maps; 649 size_t nr_maps; 650 size_t maps_cap; 651 652 char *kconfig; 653 struct extern_desc *externs; 654 int nr_extern; 655 int kconfig_map_idx; 656 657 bool loaded; 658 bool has_subcalls; 659 bool has_rodata; 660 661 struct bpf_gen *gen_loader; 662 663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 664 struct elf_state efile; 665 666 struct btf *btf; 667 struct btf_ext *btf_ext; 668 669 /* Parse and load BTF vmlinux if any of the programs in the object need 670 * it at load time. 671 */ 672 struct btf *btf_vmlinux; 673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 674 * override for vmlinux BTF. 675 */ 676 char *btf_custom_path; 677 /* vmlinux BTF override for CO-RE relocations */ 678 struct btf *btf_vmlinux_override; 679 /* Lazily initialized kernel module BTFs */ 680 struct module_btf *btf_modules; 681 bool btf_modules_loaded; 682 size_t btf_module_cnt; 683 size_t btf_module_cap; 684 685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 686 char *log_buf; 687 size_t log_size; 688 __u32 log_level; 689 690 int *fd_array; 691 size_t fd_array_cap; 692 size_t fd_array_cnt; 693 694 struct usdt_manager *usdt_man; 695 696 char path[]; 697 }; 698 699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 708 709 void bpf_program__unload(struct bpf_program *prog) 710 { 711 if (!prog) 712 return; 713 714 zclose(prog->fd); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 bpf_program__unload(prog); 726 zfree(&prog->name); 727 zfree(&prog->sec_name); 728 zfree(&prog->insns); 729 zfree(&prog->reloc_desc); 730 731 prog->nr_reloc = 0; 732 prog->insns_cnt = 0; 733 prog->sec_idx = -1; 734 } 735 736 static bool insn_is_subprog_call(const struct bpf_insn *insn) 737 { 738 return BPF_CLASS(insn->code) == BPF_JMP && 739 BPF_OP(insn->code) == BPF_CALL && 740 BPF_SRC(insn->code) == BPF_K && 741 insn->src_reg == BPF_PSEUDO_CALL && 742 insn->dst_reg == 0 && 743 insn->off == 0; 744 } 745 746 static bool is_call_insn(const struct bpf_insn *insn) 747 { 748 return insn->code == (BPF_JMP | BPF_CALL); 749 } 750 751 static bool insn_is_pseudo_func(struct bpf_insn *insn) 752 { 753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 754 } 755 756 static int 757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 758 const char *name, size_t sec_idx, const char *sec_name, 759 size_t sec_off, void *insn_data, size_t insn_data_sz) 760 { 761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 763 sec_name, name, sec_off, insn_data_sz); 764 return -EINVAL; 765 } 766 767 memset(prog, 0, sizeof(*prog)); 768 prog->obj = obj; 769 770 prog->sec_idx = sec_idx; 771 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 773 /* insns_cnt can later be increased by appending used subprograms */ 774 prog->insns_cnt = prog->sec_insn_cnt; 775 776 prog->type = BPF_PROG_TYPE_UNSPEC; 777 prog->fd = -1; 778 prog->exception_cb_idx = -1; 779 780 /* libbpf's convention for SEC("?abc...") is that it's just like 781 * SEC("abc...") but the corresponding bpf_program starts out with 782 * autoload set to false. 783 */ 784 if (sec_name[0] == '?') { 785 prog->autoload = false; 786 /* from now on forget there was ? in section name */ 787 sec_name++; 788 } else { 789 prog->autoload = true; 790 } 791 792 prog->autoattach = true; 793 794 /* inherit object's log_level */ 795 prog->log_level = obj->log_level; 796 797 prog->sec_name = strdup(sec_name); 798 if (!prog->sec_name) 799 goto errout; 800 801 prog->name = strdup(name); 802 if (!prog->name) 803 goto errout; 804 805 prog->insns = malloc(insn_data_sz); 806 if (!prog->insns) 807 goto errout; 808 memcpy(prog->insns, insn_data, insn_data_sz); 809 810 return 0; 811 errout: 812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 813 bpf_program__exit(prog); 814 return -ENOMEM; 815 } 816 817 static int 818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 819 const char *sec_name, int sec_idx) 820 { 821 Elf_Data *symbols = obj->efile.symbols; 822 struct bpf_program *prog, *progs; 823 void *data = sec_data->d_buf; 824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 825 int nr_progs, err, i; 826 const char *name; 827 Elf64_Sym *sym; 828 829 progs = obj->programs; 830 nr_progs = obj->nr_programs; 831 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 832 833 for (i = 0; i < nr_syms; i++) { 834 sym = elf_sym_by_idx(obj, i); 835 836 if (sym->st_shndx != sec_idx) 837 continue; 838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 839 continue; 840 841 prog_sz = sym->st_size; 842 sec_off = sym->st_value; 843 844 name = elf_sym_str(obj, sym->st_name); 845 if (!name) { 846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 847 sec_name, sec_off); 848 return -LIBBPF_ERRNO__FORMAT; 849 } 850 851 if (sec_off + prog_sz > sec_sz) { 852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 853 sec_name, sec_off); 854 return -LIBBPF_ERRNO__FORMAT; 855 } 856 857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 859 return -ENOTSUP; 860 } 861 862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 864 865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 866 if (!progs) { 867 /* 868 * In this case the original obj->programs 869 * is still valid, so don't need special treat for 870 * bpf_close_object(). 871 */ 872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 873 sec_name, name); 874 return -ENOMEM; 875 } 876 obj->programs = progs; 877 878 prog = &progs[nr_progs]; 879 880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 881 sec_off, data + sec_off, prog_sz); 882 if (err) 883 return err; 884 885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 886 prog->sym_global = true; 887 888 /* if function is a global/weak symbol, but has restricted 889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 890 * as static to enable more permissive BPF verification mode 891 * with more outside context available to BPF verifier 892 */ 893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 895 prog->mark_btf_static = true; 896 897 nr_progs++; 898 obj->nr_programs = nr_progs; 899 } 900 901 return 0; 902 } 903 904 static const struct btf_member * 905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (btf_member_bit_offset(t, i) == bit_offset) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 static const struct btf_member * 919 find_member_by_name(const struct btf *btf, const struct btf_type *t, 920 const char *name) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 935 const char *name, __u32 kind); 936 937 static int 938 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 939 const struct btf_type **type, __u32 *type_id, 940 const struct btf_type **vtype, __u32 *vtype_id, 941 const struct btf_member **data_member) 942 { 943 const struct btf_type *kern_type, *kern_vtype; 944 const struct btf_member *kern_data_member; 945 __s32 kern_vtype_id, kern_type_id; 946 __u32 i; 947 948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 949 if (kern_type_id < 0) { 950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 951 tname); 952 return kern_type_id; 953 } 954 kern_type = btf__type_by_id(btf, kern_type_id); 955 956 /* Find the corresponding "map_value" type that will be used 957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 959 * btf_vmlinux. 960 */ 961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 962 tname, BTF_KIND_STRUCT); 963 if (kern_vtype_id < 0) { 964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 965 STRUCT_OPS_VALUE_PREFIX, tname); 966 return kern_vtype_id; 967 } 968 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 969 970 /* Find "struct tcp_congestion_ops" from 971 * struct bpf_struct_ops_tcp_congestion_ops { 972 * [ ... ] 973 * struct tcp_congestion_ops data; 974 * } 975 */ 976 kern_data_member = btf_members(kern_vtype); 977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 978 if (kern_data_member->type == kern_type_id) 979 break; 980 } 981 if (i == btf_vlen(kern_vtype)) { 982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 983 tname, STRUCT_OPS_VALUE_PREFIX, tname); 984 return -EINVAL; 985 } 986 987 *type = kern_type; 988 *type_id = kern_type_id; 989 *vtype = kern_vtype; 990 *vtype_id = kern_vtype_id; 991 *data_member = kern_data_member; 992 993 return 0; 994 } 995 996 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 997 { 998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 999 } 1000 1001 /* Init the map's fields that depend on kern_btf */ 1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1003 const struct btf *btf, 1004 const struct btf *kern_btf) 1005 { 1006 const struct btf_member *member, *kern_member, *kern_data_member; 1007 const struct btf_type *type, *kern_type, *kern_vtype; 1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1009 struct bpf_struct_ops *st_ops; 1010 void *data, *kern_data; 1011 const char *tname; 1012 int err; 1013 1014 st_ops = map->st_ops; 1015 type = st_ops->type; 1016 tname = st_ops->tname; 1017 err = find_struct_ops_kern_types(kern_btf, tname, 1018 &kern_type, &kern_type_id, 1019 &kern_vtype, &kern_vtype_id, 1020 &kern_data_member); 1021 if (err) 1022 return err; 1023 1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1026 1027 map->def.value_size = kern_vtype->size; 1028 map->btf_vmlinux_value_type_id = kern_vtype_id; 1029 1030 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1031 if (!st_ops->kern_vdata) 1032 return -ENOMEM; 1033 1034 data = st_ops->data; 1035 kern_data_off = kern_data_member->offset / 8; 1036 kern_data = st_ops->kern_vdata + kern_data_off; 1037 1038 member = btf_members(type); 1039 for (i = 0; i < btf_vlen(type); i++, member++) { 1040 const struct btf_type *mtype, *kern_mtype; 1041 __u32 mtype_id, kern_mtype_id; 1042 void *mdata, *kern_mdata; 1043 __s64 msize, kern_msize; 1044 __u32 moff, kern_moff; 1045 __u32 kern_member_idx; 1046 const char *mname; 1047 1048 mname = btf__name_by_offset(btf, member->name_off); 1049 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1050 if (!kern_member) { 1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 kern_member_idx = kern_member - btf_members(kern_type); 1057 if (btf_member_bitfield_size(type, i) || 1058 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1060 map->name, mname); 1061 return -ENOTSUP; 1062 } 1063 1064 moff = member->offset / 8; 1065 kern_moff = kern_member->offset / 8; 1066 1067 mdata = data + moff; 1068 kern_mdata = kern_data + kern_moff; 1069 1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1072 &kern_mtype_id); 1073 if (BTF_INFO_KIND(mtype->info) != 1074 BTF_INFO_KIND(kern_mtype->info)) { 1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1076 map->name, mname, BTF_INFO_KIND(mtype->info), 1077 BTF_INFO_KIND(kern_mtype->info)); 1078 return -ENOTSUP; 1079 } 1080 1081 if (btf_is_ptr(mtype)) { 1082 struct bpf_program *prog; 1083 1084 prog = st_ops->progs[i]; 1085 if (!prog) 1086 continue; 1087 1088 kern_mtype = skip_mods_and_typedefs(kern_btf, 1089 kern_mtype->type, 1090 &kern_mtype_id); 1091 1092 /* mtype->type must be a func_proto which was 1093 * guaranteed in bpf_object__collect_st_ops_relos(), 1094 * so only check kern_mtype for func_proto here. 1095 */ 1096 if (!btf_is_func_proto(kern_mtype)) { 1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1098 map->name, mname); 1099 return -ENOTSUP; 1100 } 1101 1102 prog->attach_btf_id = kern_type_id; 1103 prog->expected_attach_type = kern_member_idx; 1104 1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1106 1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1108 map->name, mname, prog->name, moff, 1109 kern_moff); 1110 1111 continue; 1112 } 1113 1114 msize = btf__resolve_size(btf, mtype_id); 1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1118 map->name, mname, (ssize_t)msize, 1119 (ssize_t)kern_msize); 1120 return -ENOTSUP; 1121 } 1122 1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1124 map->name, mname, (unsigned int)msize, 1125 moff, kern_moff); 1126 memcpy(kern_mdata, mdata, msize); 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1133 { 1134 struct bpf_map *map; 1135 size_t i; 1136 int err; 1137 1138 for (i = 0; i < obj->nr_maps; i++) { 1139 map = &obj->maps[i]; 1140 1141 if (!bpf_map__is_struct_ops(map)) 1142 continue; 1143 1144 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1145 obj->btf_vmlinux); 1146 if (err) 1147 return err; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1154 int shndx, Elf_Data *data, __u32 map_flags) 1155 { 1156 const struct btf_type *type, *datasec; 1157 const struct btf_var_secinfo *vsi; 1158 struct bpf_struct_ops *st_ops; 1159 const char *tname, *var_name; 1160 __s32 type_id, datasec_id; 1161 const struct btf *btf; 1162 struct bpf_map *map; 1163 __u32 i; 1164 1165 if (shndx == -1) 1166 return 0; 1167 1168 btf = obj->btf; 1169 datasec_id = btf__find_by_name_kind(btf, sec_name, 1170 BTF_KIND_DATASEC); 1171 if (datasec_id < 0) { 1172 pr_warn("struct_ops init: DATASEC %s not found\n", 1173 sec_name); 1174 return -EINVAL; 1175 } 1176 1177 datasec = btf__type_by_id(btf, datasec_id); 1178 vsi = btf_var_secinfos(datasec); 1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1180 type = btf__type_by_id(obj->btf, vsi->type); 1181 var_name = btf__name_by_offset(obj->btf, type->name_off); 1182 1183 type_id = btf__resolve_type(obj->btf, vsi->type); 1184 if (type_id < 0) { 1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1186 vsi->type, sec_name); 1187 return -EINVAL; 1188 } 1189 1190 type = btf__type_by_id(obj->btf, type_id); 1191 tname = btf__name_by_offset(obj->btf, type->name_off); 1192 if (!tname[0]) { 1193 pr_warn("struct_ops init: anonymous type is not supported\n"); 1194 return -ENOTSUP; 1195 } 1196 if (!btf_is_struct(type)) { 1197 pr_warn("struct_ops init: %s is not a struct\n", tname); 1198 return -EINVAL; 1199 } 1200 1201 map = bpf_object__add_map(obj); 1202 if (IS_ERR(map)) 1203 return PTR_ERR(map); 1204 1205 map->sec_idx = shndx; 1206 map->sec_offset = vsi->offset; 1207 map->name = strdup(var_name); 1208 if (!map->name) 1209 return -ENOMEM; 1210 1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1212 map->def.key_size = sizeof(int); 1213 map->def.value_size = type->size; 1214 map->def.max_entries = 1; 1215 map->def.map_flags = map_flags; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, sec_name); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1249 { 1250 int err; 1251 1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1253 obj->efile.st_ops_data, 0); 1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1255 obj->efile.st_ops_link_shndx, 1256 obj->efile.st_ops_link_data, 1257 BPF_F_LINK); 1258 return err; 1259 } 1260 1261 static struct bpf_object *bpf_object__new(const char *path, 1262 const void *obj_buf, 1263 size_t obj_buf_sz, 1264 const char *obj_name) 1265 { 1266 struct bpf_object *obj; 1267 char *end; 1268 1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1270 if (!obj) { 1271 pr_warn("alloc memory failed for %s\n", path); 1272 return ERR_PTR(-ENOMEM); 1273 } 1274 1275 strcpy(obj->path, path); 1276 if (obj_name) { 1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1278 } else { 1279 /* Using basename() GNU version which doesn't modify arg. */ 1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1281 end = strchr(obj->name, '.'); 1282 if (end) 1283 *end = 0; 1284 } 1285 1286 obj->efile.fd = -1; 1287 /* 1288 * Caller of this function should also call 1289 * bpf_object__elf_finish() after data collection to return 1290 * obj_buf to user. If not, we should duplicate the buffer to 1291 * avoid user freeing them before elf finish. 1292 */ 1293 obj->efile.obj_buf = obj_buf; 1294 obj->efile.obj_buf_sz = obj_buf_sz; 1295 obj->efile.btf_maps_shndx = -1; 1296 obj->efile.st_ops_shndx = -1; 1297 obj->efile.st_ops_link_shndx = -1; 1298 obj->kconfig_map_idx = -1; 1299 1300 obj->kern_version = get_kernel_version(); 1301 obj->loaded = false; 1302 1303 return obj; 1304 } 1305 1306 static void bpf_object__elf_finish(struct bpf_object *obj) 1307 { 1308 if (!obj->efile.elf) 1309 return; 1310 1311 elf_end(obj->efile.elf); 1312 obj->efile.elf = NULL; 1313 obj->efile.symbols = NULL; 1314 obj->efile.st_ops_data = NULL; 1315 obj->efile.st_ops_link_data = NULL; 1316 1317 zfree(&obj->efile.secs); 1318 obj->efile.sec_cnt = 0; 1319 zclose(obj->efile.fd); 1320 obj->efile.obj_buf = NULL; 1321 obj->efile.obj_buf_sz = 0; 1322 } 1323 1324 static int bpf_object__elf_init(struct bpf_object *obj) 1325 { 1326 Elf64_Ehdr *ehdr; 1327 int err = 0; 1328 Elf *elf; 1329 1330 if (obj->efile.elf) { 1331 pr_warn("elf: init internal error\n"); 1332 return -LIBBPF_ERRNO__LIBELF; 1333 } 1334 1335 if (obj->efile.obj_buf_sz > 0) { 1336 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1338 } else { 1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1340 if (obj->efile.fd < 0) { 1341 char errmsg[STRERR_BUFSIZE], *cp; 1342 1343 err = -errno; 1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1346 return err; 1347 } 1348 1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1350 } 1351 1352 if (!elf) { 1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__LIBELF; 1355 goto errout; 1356 } 1357 1358 obj->efile.elf = elf; 1359 1360 if (elf_kind(elf) != ELF_K_ELF) { 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1363 goto errout; 1364 } 1365 1366 if (gelf_getclass(elf) != ELFCLASS64) { 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1369 goto errout; 1370 } 1371 1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1373 if (!obj->efile.ehdr) { 1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1380 pr_warn("elf: failed to get section names section index for %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1388 pr_warn("elf: failed to get section names strings from %s: %s\n", 1389 obj->path, elf_errmsg(-1)); 1390 err = -LIBBPF_ERRNO__FORMAT; 1391 goto errout; 1392 } 1393 1394 /* Old LLVM set e_machine to EM_NONE */ 1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1397 err = -LIBBPF_ERRNO__FORMAT; 1398 goto errout; 1399 } 1400 1401 return 0; 1402 errout: 1403 bpf_object__elf_finish(obj); 1404 return err; 1405 } 1406 1407 static int bpf_object__check_endianness(struct bpf_object *obj) 1408 { 1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1411 return 0; 1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1414 return 0; 1415 #else 1416 # error "Unrecognized __BYTE_ORDER__" 1417 #endif 1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1419 return -LIBBPF_ERRNO__ENDIAN; 1420 } 1421 1422 static int 1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 if (!data) { 1426 pr_warn("invalid license section in %s\n", obj->path); 1427 return -LIBBPF_ERRNO__FORMAT; 1428 } 1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1430 * go over allowed ELF data section buffer 1431 */ 1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1433 pr_debug("license of %s is %s\n", obj->path, obj->license); 1434 return 0; 1435 } 1436 1437 static int 1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1439 { 1440 __u32 kver; 1441 1442 if (!data || size != sizeof(kver)) { 1443 pr_warn("invalid kver section in %s\n", obj->path); 1444 return -LIBBPF_ERRNO__FORMAT; 1445 } 1446 memcpy(&kver, data, sizeof(kver)); 1447 obj->kern_version = kver; 1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1449 return 0; 1450 } 1451 1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1453 { 1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1455 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1456 return true; 1457 return false; 1458 } 1459 1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1461 { 1462 Elf_Data *data; 1463 Elf_Scn *scn; 1464 1465 if (!name) 1466 return -EINVAL; 1467 1468 scn = elf_sec_by_name(obj, name); 1469 data = elf_sec_data(obj, scn); 1470 if (data) { 1471 *size = data->d_size; 1472 return 0; /* found it */ 1473 } 1474 1475 return -ENOENT; 1476 } 1477 1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1479 { 1480 Elf_Data *symbols = obj->efile.symbols; 1481 const char *sname; 1482 size_t si; 1483 1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1486 1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1488 continue; 1489 1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1492 continue; 1493 1494 sname = elf_sym_str(obj, sym->st_name); 1495 if (!sname) { 1496 pr_warn("failed to get sym name string for var %s\n", name); 1497 return ERR_PTR(-EIO); 1498 } 1499 if (strcmp(name, sname) == 0) 1500 return sym; 1501 } 1502 1503 return ERR_PTR(-ENOENT); 1504 } 1505 1506 static int create_placeholder_fd(void) 1507 { 1508 int fd; 1509 1510 fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1511 if (fd < 0) 1512 return -errno; 1513 return fd; 1514 } 1515 1516 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1517 { 1518 struct bpf_map *map; 1519 int err; 1520 1521 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1522 sizeof(*obj->maps), obj->nr_maps + 1); 1523 if (err) 1524 return ERR_PTR(err); 1525 1526 map = &obj->maps[obj->nr_maps++]; 1527 map->obj = obj; 1528 /* Preallocate map FD without actually creating BPF map just yet. 1529 * These map FD "placeholders" will be reused later without changing 1530 * FD value when map is actually created in the kernel. 1531 * 1532 * This is useful to be able to perform BPF program relocations 1533 * without having to create BPF maps before that step. This allows us 1534 * to finalize and load BTF very late in BPF object's loading phase, 1535 * right before BPF maps have to be created and BPF programs have to 1536 * be loaded. By having these map FD placeholders we can perform all 1537 * the sanitizations, relocations, and any other adjustments before we 1538 * start creating actual BPF kernel objects (BTF, maps, progs). 1539 */ 1540 map->fd = create_placeholder_fd(); 1541 if (map->fd < 0) 1542 return ERR_PTR(map->fd); 1543 map->inner_map_fd = -1; 1544 map->autocreate = true; 1545 1546 return map; 1547 } 1548 1549 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1550 { 1551 const long page_sz = sysconf(_SC_PAGE_SIZE); 1552 size_t map_sz; 1553 1554 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1555 map_sz = roundup(map_sz, page_sz); 1556 return map_sz; 1557 } 1558 1559 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1560 { 1561 void *mmaped; 1562 1563 if (!map->mmaped) 1564 return -EINVAL; 1565 1566 if (old_sz == new_sz) 1567 return 0; 1568 1569 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1570 if (mmaped == MAP_FAILED) 1571 return -errno; 1572 1573 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1574 munmap(map->mmaped, old_sz); 1575 map->mmaped = mmaped; 1576 return 0; 1577 } 1578 1579 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1580 { 1581 char map_name[BPF_OBJ_NAME_LEN], *p; 1582 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1583 1584 /* This is one of the more confusing parts of libbpf for various 1585 * reasons, some of which are historical. The original idea for naming 1586 * internal names was to include as much of BPF object name prefix as 1587 * possible, so that it can be distinguished from similar internal 1588 * maps of a different BPF object. 1589 * As an example, let's say we have bpf_object named 'my_object_name' 1590 * and internal map corresponding to '.rodata' ELF section. The final 1591 * map name advertised to user and to the kernel will be 1592 * 'my_objec.rodata', taking first 8 characters of object name and 1593 * entire 7 characters of '.rodata'. 1594 * Somewhat confusingly, if internal map ELF section name is shorter 1595 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1596 * for the suffix, even though we only have 4 actual characters, and 1597 * resulting map will be called 'my_objec.bss', not even using all 15 1598 * characters allowed by the kernel. Oh well, at least the truncated 1599 * object name is somewhat consistent in this case. But if the map 1600 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1601 * (8 chars) and thus will be left with only first 7 characters of the 1602 * object name ('my_obje'). Happy guessing, user, that the final map 1603 * name will be "my_obje.kconfig". 1604 * Now, with libbpf starting to support arbitrarily named .rodata.* 1605 * and .data.* data sections, it's possible that ELF section name is 1606 * longer than allowed 15 chars, so we now need to be careful to take 1607 * only up to 15 first characters of ELF name, taking no BPF object 1608 * name characters at all. So '.rodata.abracadabra' will result in 1609 * '.rodata.abracad' kernel and user-visible name. 1610 * We need to keep this convoluted logic intact for .data, .bss and 1611 * .rodata maps, but for new custom .data.custom and .rodata.custom 1612 * maps we use their ELF names as is, not prepending bpf_object name 1613 * in front. We still need to truncate them to 15 characters for the 1614 * kernel. Full name can be recovered for such maps by using DATASEC 1615 * BTF type associated with such map's value type, though. 1616 */ 1617 if (sfx_len >= BPF_OBJ_NAME_LEN) 1618 sfx_len = BPF_OBJ_NAME_LEN - 1; 1619 1620 /* if there are two or more dots in map name, it's a custom dot map */ 1621 if (strchr(real_name + 1, '.') != NULL) 1622 pfx_len = 0; 1623 else 1624 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1625 1626 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1627 sfx_len, real_name); 1628 1629 /* sanitise map name to characters allowed by kernel */ 1630 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1631 if (!isalnum(*p) && *p != '_' && *p != '.') 1632 *p = '_'; 1633 1634 return strdup(map_name); 1635 } 1636 1637 static int 1638 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1639 1640 /* Internal BPF map is mmap()'able only if at least one of corresponding 1641 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1642 * variable and it's not marked as __hidden (which turns it into, effectively, 1643 * a STATIC variable). 1644 */ 1645 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1646 { 1647 const struct btf_type *t, *vt; 1648 struct btf_var_secinfo *vsi; 1649 int i, n; 1650 1651 if (!map->btf_value_type_id) 1652 return false; 1653 1654 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1655 if (!btf_is_datasec(t)) 1656 return false; 1657 1658 vsi = btf_var_secinfos(t); 1659 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1660 vt = btf__type_by_id(obj->btf, vsi->type); 1661 if (!btf_is_var(vt)) 1662 continue; 1663 1664 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1665 return true; 1666 } 1667 1668 return false; 1669 } 1670 1671 static int 1672 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1673 const char *real_name, int sec_idx, void *data, size_t data_sz) 1674 { 1675 struct bpf_map_def *def; 1676 struct bpf_map *map; 1677 size_t mmap_sz; 1678 int err; 1679 1680 map = bpf_object__add_map(obj); 1681 if (IS_ERR(map)) 1682 return PTR_ERR(map); 1683 1684 map->libbpf_type = type; 1685 map->sec_idx = sec_idx; 1686 map->sec_offset = 0; 1687 map->real_name = strdup(real_name); 1688 map->name = internal_map_name(obj, real_name); 1689 if (!map->real_name || !map->name) { 1690 zfree(&map->real_name); 1691 zfree(&map->name); 1692 return -ENOMEM; 1693 } 1694 1695 def = &map->def; 1696 def->type = BPF_MAP_TYPE_ARRAY; 1697 def->key_size = sizeof(int); 1698 def->value_size = data_sz; 1699 def->max_entries = 1; 1700 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1701 ? BPF_F_RDONLY_PROG : 0; 1702 1703 /* failures are fine because of maps like .rodata.str1.1 */ 1704 (void) map_fill_btf_type_info(obj, map); 1705 1706 if (map_is_mmapable(obj, map)) 1707 def->map_flags |= BPF_F_MMAPABLE; 1708 1709 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1710 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1711 1712 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1713 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1714 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1715 if (map->mmaped == MAP_FAILED) { 1716 err = -errno; 1717 map->mmaped = NULL; 1718 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1719 map->name, err); 1720 zfree(&map->real_name); 1721 zfree(&map->name); 1722 return err; 1723 } 1724 1725 if (data) 1726 memcpy(map->mmaped, data, data_sz); 1727 1728 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1729 return 0; 1730 } 1731 1732 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1733 { 1734 struct elf_sec_desc *sec_desc; 1735 const char *sec_name; 1736 int err = 0, sec_idx; 1737 1738 /* 1739 * Populate obj->maps with libbpf internal maps. 1740 */ 1741 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1742 sec_desc = &obj->efile.secs[sec_idx]; 1743 1744 /* Skip recognized sections with size 0. */ 1745 if (!sec_desc->data || sec_desc->data->d_size == 0) 1746 continue; 1747 1748 switch (sec_desc->sec_type) { 1749 case SEC_DATA: 1750 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1751 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1752 sec_name, sec_idx, 1753 sec_desc->data->d_buf, 1754 sec_desc->data->d_size); 1755 break; 1756 case SEC_RODATA: 1757 obj->has_rodata = true; 1758 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1759 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1760 sec_name, sec_idx, 1761 sec_desc->data->d_buf, 1762 sec_desc->data->d_size); 1763 break; 1764 case SEC_BSS: 1765 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1766 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1767 sec_name, sec_idx, 1768 NULL, 1769 sec_desc->data->d_size); 1770 break; 1771 default: 1772 /* skip */ 1773 break; 1774 } 1775 if (err) 1776 return err; 1777 } 1778 return 0; 1779 } 1780 1781 1782 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1783 const void *name) 1784 { 1785 int i; 1786 1787 for (i = 0; i < obj->nr_extern; i++) { 1788 if (strcmp(obj->externs[i].name, name) == 0) 1789 return &obj->externs[i]; 1790 } 1791 return NULL; 1792 } 1793 1794 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1795 char value) 1796 { 1797 switch (ext->kcfg.type) { 1798 case KCFG_BOOL: 1799 if (value == 'm') { 1800 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1801 ext->name, value); 1802 return -EINVAL; 1803 } 1804 *(bool *)ext_val = value == 'y' ? true : false; 1805 break; 1806 case KCFG_TRISTATE: 1807 if (value == 'y') 1808 *(enum libbpf_tristate *)ext_val = TRI_YES; 1809 else if (value == 'm') 1810 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1811 else /* value == 'n' */ 1812 *(enum libbpf_tristate *)ext_val = TRI_NO; 1813 break; 1814 case KCFG_CHAR: 1815 *(char *)ext_val = value; 1816 break; 1817 case KCFG_UNKNOWN: 1818 case KCFG_INT: 1819 case KCFG_CHAR_ARR: 1820 default: 1821 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1822 ext->name, value); 1823 return -EINVAL; 1824 } 1825 ext->is_set = true; 1826 return 0; 1827 } 1828 1829 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1830 const char *value) 1831 { 1832 size_t len; 1833 1834 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1835 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1836 ext->name, value); 1837 return -EINVAL; 1838 } 1839 1840 len = strlen(value); 1841 if (value[len - 1] != '"') { 1842 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1843 ext->name, value); 1844 return -EINVAL; 1845 } 1846 1847 /* strip quotes */ 1848 len -= 2; 1849 if (len >= ext->kcfg.sz) { 1850 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1851 ext->name, value, len, ext->kcfg.sz - 1); 1852 len = ext->kcfg.sz - 1; 1853 } 1854 memcpy(ext_val, value + 1, len); 1855 ext_val[len] = '\0'; 1856 ext->is_set = true; 1857 return 0; 1858 } 1859 1860 static int parse_u64(const char *value, __u64 *res) 1861 { 1862 char *value_end; 1863 int err; 1864 1865 errno = 0; 1866 *res = strtoull(value, &value_end, 0); 1867 if (errno) { 1868 err = -errno; 1869 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1870 return err; 1871 } 1872 if (*value_end) { 1873 pr_warn("failed to parse '%s' as integer completely\n", value); 1874 return -EINVAL; 1875 } 1876 return 0; 1877 } 1878 1879 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1880 { 1881 int bit_sz = ext->kcfg.sz * 8; 1882 1883 if (ext->kcfg.sz == 8) 1884 return true; 1885 1886 /* Validate that value stored in u64 fits in integer of `ext->sz` 1887 * bytes size without any loss of information. If the target integer 1888 * is signed, we rely on the following limits of integer type of 1889 * Y bits and subsequent transformation: 1890 * 1891 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1892 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1893 * 0 <= X + 2^(Y-1) < 2^Y 1894 * 1895 * For unsigned target integer, check that all the (64 - Y) bits are 1896 * zero. 1897 */ 1898 if (ext->kcfg.is_signed) 1899 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1900 else 1901 return (v >> bit_sz) == 0; 1902 } 1903 1904 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1905 __u64 value) 1906 { 1907 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1908 ext->kcfg.type != KCFG_BOOL) { 1909 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1910 ext->name, (unsigned long long)value); 1911 return -EINVAL; 1912 } 1913 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1914 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1915 ext->name, (unsigned long long)value); 1916 return -EINVAL; 1917 1918 } 1919 if (!is_kcfg_value_in_range(ext, value)) { 1920 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1921 ext->name, (unsigned long long)value, ext->kcfg.sz); 1922 return -ERANGE; 1923 } 1924 switch (ext->kcfg.sz) { 1925 case 1: 1926 *(__u8 *)ext_val = value; 1927 break; 1928 case 2: 1929 *(__u16 *)ext_val = value; 1930 break; 1931 case 4: 1932 *(__u32 *)ext_val = value; 1933 break; 1934 case 8: 1935 *(__u64 *)ext_val = value; 1936 break; 1937 default: 1938 return -EINVAL; 1939 } 1940 ext->is_set = true; 1941 return 0; 1942 } 1943 1944 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1945 char *buf, void *data) 1946 { 1947 struct extern_desc *ext; 1948 char *sep, *value; 1949 int len, err = 0; 1950 void *ext_val; 1951 __u64 num; 1952 1953 if (!str_has_pfx(buf, "CONFIG_")) 1954 return 0; 1955 1956 sep = strchr(buf, '='); 1957 if (!sep) { 1958 pr_warn("failed to parse '%s': no separator\n", buf); 1959 return -EINVAL; 1960 } 1961 1962 /* Trim ending '\n' */ 1963 len = strlen(buf); 1964 if (buf[len - 1] == '\n') 1965 buf[len - 1] = '\0'; 1966 /* Split on '=' and ensure that a value is present. */ 1967 *sep = '\0'; 1968 if (!sep[1]) { 1969 *sep = '='; 1970 pr_warn("failed to parse '%s': no value\n", buf); 1971 return -EINVAL; 1972 } 1973 1974 ext = find_extern_by_name(obj, buf); 1975 if (!ext || ext->is_set) 1976 return 0; 1977 1978 ext_val = data + ext->kcfg.data_off; 1979 value = sep + 1; 1980 1981 switch (*value) { 1982 case 'y': case 'n': case 'm': 1983 err = set_kcfg_value_tri(ext, ext_val, *value); 1984 break; 1985 case '"': 1986 err = set_kcfg_value_str(ext, ext_val, value); 1987 break; 1988 default: 1989 /* assume integer */ 1990 err = parse_u64(value, &num); 1991 if (err) { 1992 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1993 return err; 1994 } 1995 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1996 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1997 return -EINVAL; 1998 } 1999 err = set_kcfg_value_num(ext, ext_val, num); 2000 break; 2001 } 2002 if (err) 2003 return err; 2004 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2005 return 0; 2006 } 2007 2008 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2009 { 2010 char buf[PATH_MAX]; 2011 struct utsname uts; 2012 int len, err = 0; 2013 gzFile file; 2014 2015 uname(&uts); 2016 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2017 if (len < 0) 2018 return -EINVAL; 2019 else if (len >= PATH_MAX) 2020 return -ENAMETOOLONG; 2021 2022 /* gzopen also accepts uncompressed files. */ 2023 file = gzopen(buf, "re"); 2024 if (!file) 2025 file = gzopen("/proc/config.gz", "re"); 2026 2027 if (!file) { 2028 pr_warn("failed to open system Kconfig\n"); 2029 return -ENOENT; 2030 } 2031 2032 while (gzgets(file, buf, sizeof(buf))) { 2033 err = bpf_object__process_kconfig_line(obj, buf, data); 2034 if (err) { 2035 pr_warn("error parsing system Kconfig line '%s': %d\n", 2036 buf, err); 2037 goto out; 2038 } 2039 } 2040 2041 out: 2042 gzclose(file); 2043 return err; 2044 } 2045 2046 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2047 const char *config, void *data) 2048 { 2049 char buf[PATH_MAX]; 2050 int err = 0; 2051 FILE *file; 2052 2053 file = fmemopen((void *)config, strlen(config), "r"); 2054 if (!file) { 2055 err = -errno; 2056 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2057 return err; 2058 } 2059 2060 while (fgets(buf, sizeof(buf), file)) { 2061 err = bpf_object__process_kconfig_line(obj, buf, data); 2062 if (err) { 2063 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2064 buf, err); 2065 break; 2066 } 2067 } 2068 2069 fclose(file); 2070 return err; 2071 } 2072 2073 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2074 { 2075 struct extern_desc *last_ext = NULL, *ext; 2076 size_t map_sz; 2077 int i, err; 2078 2079 for (i = 0; i < obj->nr_extern; i++) { 2080 ext = &obj->externs[i]; 2081 if (ext->type == EXT_KCFG) 2082 last_ext = ext; 2083 } 2084 2085 if (!last_ext) 2086 return 0; 2087 2088 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2089 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2090 ".kconfig", obj->efile.symbols_shndx, 2091 NULL, map_sz); 2092 if (err) 2093 return err; 2094 2095 obj->kconfig_map_idx = obj->nr_maps - 1; 2096 2097 return 0; 2098 } 2099 2100 const struct btf_type * 2101 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2102 { 2103 const struct btf_type *t = btf__type_by_id(btf, id); 2104 2105 if (res_id) 2106 *res_id = id; 2107 2108 while (btf_is_mod(t) || btf_is_typedef(t)) { 2109 if (res_id) 2110 *res_id = t->type; 2111 t = btf__type_by_id(btf, t->type); 2112 } 2113 2114 return t; 2115 } 2116 2117 static const struct btf_type * 2118 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2119 { 2120 const struct btf_type *t; 2121 2122 t = skip_mods_and_typedefs(btf, id, NULL); 2123 if (!btf_is_ptr(t)) 2124 return NULL; 2125 2126 t = skip_mods_and_typedefs(btf, t->type, res_id); 2127 2128 return btf_is_func_proto(t) ? t : NULL; 2129 } 2130 2131 static const char *__btf_kind_str(__u16 kind) 2132 { 2133 switch (kind) { 2134 case BTF_KIND_UNKN: return "void"; 2135 case BTF_KIND_INT: return "int"; 2136 case BTF_KIND_PTR: return "ptr"; 2137 case BTF_KIND_ARRAY: return "array"; 2138 case BTF_KIND_STRUCT: return "struct"; 2139 case BTF_KIND_UNION: return "union"; 2140 case BTF_KIND_ENUM: return "enum"; 2141 case BTF_KIND_FWD: return "fwd"; 2142 case BTF_KIND_TYPEDEF: return "typedef"; 2143 case BTF_KIND_VOLATILE: return "volatile"; 2144 case BTF_KIND_CONST: return "const"; 2145 case BTF_KIND_RESTRICT: return "restrict"; 2146 case BTF_KIND_FUNC: return "func"; 2147 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2148 case BTF_KIND_VAR: return "var"; 2149 case BTF_KIND_DATASEC: return "datasec"; 2150 case BTF_KIND_FLOAT: return "float"; 2151 case BTF_KIND_DECL_TAG: return "decl_tag"; 2152 case BTF_KIND_TYPE_TAG: return "type_tag"; 2153 case BTF_KIND_ENUM64: return "enum64"; 2154 default: return "unknown"; 2155 } 2156 } 2157 2158 const char *btf_kind_str(const struct btf_type *t) 2159 { 2160 return __btf_kind_str(btf_kind(t)); 2161 } 2162 2163 /* 2164 * Fetch integer attribute of BTF map definition. Such attributes are 2165 * represented using a pointer to an array, in which dimensionality of array 2166 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2167 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2168 * type definition, while using only sizeof(void *) space in ELF data section. 2169 */ 2170 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2171 const struct btf_member *m, __u32 *res) 2172 { 2173 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2174 const char *name = btf__name_by_offset(btf, m->name_off); 2175 const struct btf_array *arr_info; 2176 const struct btf_type *arr_t; 2177 2178 if (!btf_is_ptr(t)) { 2179 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2180 map_name, name, btf_kind_str(t)); 2181 return false; 2182 } 2183 2184 arr_t = btf__type_by_id(btf, t->type); 2185 if (!arr_t) { 2186 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2187 map_name, name, t->type); 2188 return false; 2189 } 2190 if (!btf_is_array(arr_t)) { 2191 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2192 map_name, name, btf_kind_str(arr_t)); 2193 return false; 2194 } 2195 arr_info = btf_array(arr_t); 2196 *res = arr_info->nelems; 2197 return true; 2198 } 2199 2200 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2201 { 2202 int len; 2203 2204 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2205 if (len < 0) 2206 return -EINVAL; 2207 if (len >= buf_sz) 2208 return -ENAMETOOLONG; 2209 2210 return 0; 2211 } 2212 2213 static int build_map_pin_path(struct bpf_map *map, const char *path) 2214 { 2215 char buf[PATH_MAX]; 2216 int err; 2217 2218 if (!path) 2219 path = "/sys/fs/bpf"; 2220 2221 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2222 if (err) 2223 return err; 2224 2225 return bpf_map__set_pin_path(map, buf); 2226 } 2227 2228 /* should match definition in bpf_helpers.h */ 2229 enum libbpf_pin_type { 2230 LIBBPF_PIN_NONE, 2231 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2232 LIBBPF_PIN_BY_NAME, 2233 }; 2234 2235 int parse_btf_map_def(const char *map_name, struct btf *btf, 2236 const struct btf_type *def_t, bool strict, 2237 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2238 { 2239 const struct btf_type *t; 2240 const struct btf_member *m; 2241 bool is_inner = inner_def == NULL; 2242 int vlen, i; 2243 2244 vlen = btf_vlen(def_t); 2245 m = btf_members(def_t); 2246 for (i = 0; i < vlen; i++, m++) { 2247 const char *name = btf__name_by_offset(btf, m->name_off); 2248 2249 if (!name) { 2250 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2251 return -EINVAL; 2252 } 2253 if (strcmp(name, "type") == 0) { 2254 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2255 return -EINVAL; 2256 map_def->parts |= MAP_DEF_MAP_TYPE; 2257 } else if (strcmp(name, "max_entries") == 0) { 2258 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2259 return -EINVAL; 2260 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2261 } else if (strcmp(name, "map_flags") == 0) { 2262 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2263 return -EINVAL; 2264 map_def->parts |= MAP_DEF_MAP_FLAGS; 2265 } else if (strcmp(name, "numa_node") == 0) { 2266 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2267 return -EINVAL; 2268 map_def->parts |= MAP_DEF_NUMA_NODE; 2269 } else if (strcmp(name, "key_size") == 0) { 2270 __u32 sz; 2271 2272 if (!get_map_field_int(map_name, btf, m, &sz)) 2273 return -EINVAL; 2274 if (map_def->key_size && map_def->key_size != sz) { 2275 pr_warn("map '%s': conflicting key size %u != %u.\n", 2276 map_name, map_def->key_size, sz); 2277 return -EINVAL; 2278 } 2279 map_def->key_size = sz; 2280 map_def->parts |= MAP_DEF_KEY_SIZE; 2281 } else if (strcmp(name, "key") == 0) { 2282 __s64 sz; 2283 2284 t = btf__type_by_id(btf, m->type); 2285 if (!t) { 2286 pr_warn("map '%s': key type [%d] not found.\n", 2287 map_name, m->type); 2288 return -EINVAL; 2289 } 2290 if (!btf_is_ptr(t)) { 2291 pr_warn("map '%s': key spec is not PTR: %s.\n", 2292 map_name, btf_kind_str(t)); 2293 return -EINVAL; 2294 } 2295 sz = btf__resolve_size(btf, t->type); 2296 if (sz < 0) { 2297 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2298 map_name, t->type, (ssize_t)sz); 2299 return sz; 2300 } 2301 if (map_def->key_size && map_def->key_size != sz) { 2302 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2303 map_name, map_def->key_size, (ssize_t)sz); 2304 return -EINVAL; 2305 } 2306 map_def->key_size = sz; 2307 map_def->key_type_id = t->type; 2308 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2309 } else if (strcmp(name, "value_size") == 0) { 2310 __u32 sz; 2311 2312 if (!get_map_field_int(map_name, btf, m, &sz)) 2313 return -EINVAL; 2314 if (map_def->value_size && map_def->value_size != sz) { 2315 pr_warn("map '%s': conflicting value size %u != %u.\n", 2316 map_name, map_def->value_size, sz); 2317 return -EINVAL; 2318 } 2319 map_def->value_size = sz; 2320 map_def->parts |= MAP_DEF_VALUE_SIZE; 2321 } else if (strcmp(name, "value") == 0) { 2322 __s64 sz; 2323 2324 t = btf__type_by_id(btf, m->type); 2325 if (!t) { 2326 pr_warn("map '%s': value type [%d] not found.\n", 2327 map_name, m->type); 2328 return -EINVAL; 2329 } 2330 if (!btf_is_ptr(t)) { 2331 pr_warn("map '%s': value spec is not PTR: %s.\n", 2332 map_name, btf_kind_str(t)); 2333 return -EINVAL; 2334 } 2335 sz = btf__resolve_size(btf, t->type); 2336 if (sz < 0) { 2337 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2338 map_name, t->type, (ssize_t)sz); 2339 return sz; 2340 } 2341 if (map_def->value_size && map_def->value_size != sz) { 2342 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2343 map_name, map_def->value_size, (ssize_t)sz); 2344 return -EINVAL; 2345 } 2346 map_def->value_size = sz; 2347 map_def->value_type_id = t->type; 2348 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2349 } 2350 else if (strcmp(name, "values") == 0) { 2351 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2352 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2353 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2354 char inner_map_name[128]; 2355 int err; 2356 2357 if (is_inner) { 2358 pr_warn("map '%s': multi-level inner maps not supported.\n", 2359 map_name); 2360 return -ENOTSUP; 2361 } 2362 if (i != vlen - 1) { 2363 pr_warn("map '%s': '%s' member should be last.\n", 2364 map_name, name); 2365 return -EINVAL; 2366 } 2367 if (!is_map_in_map && !is_prog_array) { 2368 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2369 map_name); 2370 return -ENOTSUP; 2371 } 2372 if (map_def->value_size && map_def->value_size != 4) { 2373 pr_warn("map '%s': conflicting value size %u != 4.\n", 2374 map_name, map_def->value_size); 2375 return -EINVAL; 2376 } 2377 map_def->value_size = 4; 2378 t = btf__type_by_id(btf, m->type); 2379 if (!t) { 2380 pr_warn("map '%s': %s type [%d] not found.\n", 2381 map_name, desc, m->type); 2382 return -EINVAL; 2383 } 2384 if (!btf_is_array(t) || btf_array(t)->nelems) { 2385 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2386 map_name, desc); 2387 return -EINVAL; 2388 } 2389 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2390 if (!btf_is_ptr(t)) { 2391 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2392 map_name, desc, btf_kind_str(t)); 2393 return -EINVAL; 2394 } 2395 t = skip_mods_and_typedefs(btf, t->type, NULL); 2396 if (is_prog_array) { 2397 if (!btf_is_func_proto(t)) { 2398 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2399 map_name, btf_kind_str(t)); 2400 return -EINVAL; 2401 } 2402 continue; 2403 } 2404 if (!btf_is_struct(t)) { 2405 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2406 map_name, btf_kind_str(t)); 2407 return -EINVAL; 2408 } 2409 2410 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2411 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2412 if (err) 2413 return err; 2414 2415 map_def->parts |= MAP_DEF_INNER_MAP; 2416 } else if (strcmp(name, "pinning") == 0) { 2417 __u32 val; 2418 2419 if (is_inner) { 2420 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2421 return -EINVAL; 2422 } 2423 if (!get_map_field_int(map_name, btf, m, &val)) 2424 return -EINVAL; 2425 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2426 pr_warn("map '%s': invalid pinning value %u.\n", 2427 map_name, val); 2428 return -EINVAL; 2429 } 2430 map_def->pinning = val; 2431 map_def->parts |= MAP_DEF_PINNING; 2432 } else if (strcmp(name, "map_extra") == 0) { 2433 __u32 map_extra; 2434 2435 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2436 return -EINVAL; 2437 map_def->map_extra = map_extra; 2438 map_def->parts |= MAP_DEF_MAP_EXTRA; 2439 } else { 2440 if (strict) { 2441 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2442 return -ENOTSUP; 2443 } 2444 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2445 } 2446 } 2447 2448 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2449 pr_warn("map '%s': map type isn't specified.\n", map_name); 2450 return -EINVAL; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static size_t adjust_ringbuf_sz(size_t sz) 2457 { 2458 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2459 __u32 mul; 2460 2461 /* if user forgot to set any size, make sure they see error */ 2462 if (sz == 0) 2463 return 0; 2464 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2465 * a power-of-2 multiple of kernel's page size. If user diligently 2466 * satisified these conditions, pass the size through. 2467 */ 2468 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2469 return sz; 2470 2471 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2472 * user-set size to satisfy both user size request and kernel 2473 * requirements and substitute correct max_entries for map creation. 2474 */ 2475 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2476 if (mul * page_sz > sz) 2477 return mul * page_sz; 2478 } 2479 2480 /* if it's impossible to satisfy the conditions (i.e., user size is 2481 * very close to UINT_MAX but is not a power-of-2 multiple of 2482 * page_size) then just return original size and let kernel reject it 2483 */ 2484 return sz; 2485 } 2486 2487 static bool map_is_ringbuf(const struct bpf_map *map) 2488 { 2489 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2490 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2491 } 2492 2493 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2494 { 2495 map->def.type = def->map_type; 2496 map->def.key_size = def->key_size; 2497 map->def.value_size = def->value_size; 2498 map->def.max_entries = def->max_entries; 2499 map->def.map_flags = def->map_flags; 2500 map->map_extra = def->map_extra; 2501 2502 map->numa_node = def->numa_node; 2503 map->btf_key_type_id = def->key_type_id; 2504 map->btf_value_type_id = def->value_type_id; 2505 2506 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2507 if (map_is_ringbuf(map)) 2508 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2509 2510 if (def->parts & MAP_DEF_MAP_TYPE) 2511 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2512 2513 if (def->parts & MAP_DEF_KEY_TYPE) 2514 pr_debug("map '%s': found key [%u], sz = %u.\n", 2515 map->name, def->key_type_id, def->key_size); 2516 else if (def->parts & MAP_DEF_KEY_SIZE) 2517 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2518 2519 if (def->parts & MAP_DEF_VALUE_TYPE) 2520 pr_debug("map '%s': found value [%u], sz = %u.\n", 2521 map->name, def->value_type_id, def->value_size); 2522 else if (def->parts & MAP_DEF_VALUE_SIZE) 2523 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2524 2525 if (def->parts & MAP_DEF_MAX_ENTRIES) 2526 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2527 if (def->parts & MAP_DEF_MAP_FLAGS) 2528 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2529 if (def->parts & MAP_DEF_MAP_EXTRA) 2530 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2531 (unsigned long long)def->map_extra); 2532 if (def->parts & MAP_DEF_PINNING) 2533 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2534 if (def->parts & MAP_DEF_NUMA_NODE) 2535 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2536 2537 if (def->parts & MAP_DEF_INNER_MAP) 2538 pr_debug("map '%s': found inner map definition.\n", map->name); 2539 } 2540 2541 static const char *btf_var_linkage_str(__u32 linkage) 2542 { 2543 switch (linkage) { 2544 case BTF_VAR_STATIC: return "static"; 2545 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2546 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2547 default: return "unknown"; 2548 } 2549 } 2550 2551 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2552 const struct btf_type *sec, 2553 int var_idx, int sec_idx, 2554 const Elf_Data *data, bool strict, 2555 const char *pin_root_path) 2556 { 2557 struct btf_map_def map_def = {}, inner_def = {}; 2558 const struct btf_type *var, *def; 2559 const struct btf_var_secinfo *vi; 2560 const struct btf_var *var_extra; 2561 const char *map_name; 2562 struct bpf_map *map; 2563 int err; 2564 2565 vi = btf_var_secinfos(sec) + var_idx; 2566 var = btf__type_by_id(obj->btf, vi->type); 2567 var_extra = btf_var(var); 2568 map_name = btf__name_by_offset(obj->btf, var->name_off); 2569 2570 if (map_name == NULL || map_name[0] == '\0') { 2571 pr_warn("map #%d: empty name.\n", var_idx); 2572 return -EINVAL; 2573 } 2574 if ((__u64)vi->offset + vi->size > data->d_size) { 2575 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2576 return -EINVAL; 2577 } 2578 if (!btf_is_var(var)) { 2579 pr_warn("map '%s': unexpected var kind %s.\n", 2580 map_name, btf_kind_str(var)); 2581 return -EINVAL; 2582 } 2583 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2584 pr_warn("map '%s': unsupported map linkage %s.\n", 2585 map_name, btf_var_linkage_str(var_extra->linkage)); 2586 return -EOPNOTSUPP; 2587 } 2588 2589 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2590 if (!btf_is_struct(def)) { 2591 pr_warn("map '%s': unexpected def kind %s.\n", 2592 map_name, btf_kind_str(var)); 2593 return -EINVAL; 2594 } 2595 if (def->size > vi->size) { 2596 pr_warn("map '%s': invalid def size.\n", map_name); 2597 return -EINVAL; 2598 } 2599 2600 map = bpf_object__add_map(obj); 2601 if (IS_ERR(map)) 2602 return PTR_ERR(map); 2603 map->name = strdup(map_name); 2604 if (!map->name) { 2605 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2606 return -ENOMEM; 2607 } 2608 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2609 map->def.type = BPF_MAP_TYPE_UNSPEC; 2610 map->sec_idx = sec_idx; 2611 map->sec_offset = vi->offset; 2612 map->btf_var_idx = var_idx; 2613 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2614 map_name, map->sec_idx, map->sec_offset); 2615 2616 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2617 if (err) 2618 return err; 2619 2620 fill_map_from_def(map, &map_def); 2621 2622 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2623 err = build_map_pin_path(map, pin_root_path); 2624 if (err) { 2625 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2626 return err; 2627 } 2628 } 2629 2630 if (map_def.parts & MAP_DEF_INNER_MAP) { 2631 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2632 if (!map->inner_map) 2633 return -ENOMEM; 2634 map->inner_map->fd = create_placeholder_fd(); 2635 if (map->inner_map->fd < 0) 2636 return map->inner_map->fd; 2637 map->inner_map->sec_idx = sec_idx; 2638 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2639 if (!map->inner_map->name) 2640 return -ENOMEM; 2641 sprintf(map->inner_map->name, "%s.inner", map_name); 2642 2643 fill_map_from_def(map->inner_map, &inner_def); 2644 } 2645 2646 err = map_fill_btf_type_info(obj, map); 2647 if (err) 2648 return err; 2649 2650 return 0; 2651 } 2652 2653 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2654 const char *pin_root_path) 2655 { 2656 const struct btf_type *sec = NULL; 2657 int nr_types, i, vlen, err; 2658 const struct btf_type *t; 2659 const char *name; 2660 Elf_Data *data; 2661 Elf_Scn *scn; 2662 2663 if (obj->efile.btf_maps_shndx < 0) 2664 return 0; 2665 2666 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2667 data = elf_sec_data(obj, scn); 2668 if (!scn || !data) { 2669 pr_warn("elf: failed to get %s map definitions for %s\n", 2670 MAPS_ELF_SEC, obj->path); 2671 return -EINVAL; 2672 } 2673 2674 nr_types = btf__type_cnt(obj->btf); 2675 for (i = 1; i < nr_types; i++) { 2676 t = btf__type_by_id(obj->btf, i); 2677 if (!btf_is_datasec(t)) 2678 continue; 2679 name = btf__name_by_offset(obj->btf, t->name_off); 2680 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2681 sec = t; 2682 obj->efile.btf_maps_sec_btf_id = i; 2683 break; 2684 } 2685 } 2686 2687 if (!sec) { 2688 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2689 return -ENOENT; 2690 } 2691 2692 vlen = btf_vlen(sec); 2693 for (i = 0; i < vlen; i++) { 2694 err = bpf_object__init_user_btf_map(obj, sec, i, 2695 obj->efile.btf_maps_shndx, 2696 data, strict, 2697 pin_root_path); 2698 if (err) 2699 return err; 2700 } 2701 2702 return 0; 2703 } 2704 2705 static int bpf_object__init_maps(struct bpf_object *obj, 2706 const struct bpf_object_open_opts *opts) 2707 { 2708 const char *pin_root_path; 2709 bool strict; 2710 int err = 0; 2711 2712 strict = !OPTS_GET(opts, relaxed_maps, false); 2713 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2714 2715 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2716 err = err ?: bpf_object__init_global_data_maps(obj); 2717 err = err ?: bpf_object__init_kconfig_map(obj); 2718 err = err ?: bpf_object_init_struct_ops(obj); 2719 2720 return err; 2721 } 2722 2723 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2724 { 2725 Elf64_Shdr *sh; 2726 2727 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2728 if (!sh) 2729 return false; 2730 2731 return sh->sh_flags & SHF_EXECINSTR; 2732 } 2733 2734 static bool btf_needs_sanitization(struct bpf_object *obj) 2735 { 2736 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2737 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2738 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2739 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2740 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2741 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2742 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2743 2744 return !has_func || !has_datasec || !has_func_global || !has_float || 2745 !has_decl_tag || !has_type_tag || !has_enum64; 2746 } 2747 2748 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2749 { 2750 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2751 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2752 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2753 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2754 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2755 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2756 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2757 int enum64_placeholder_id = 0; 2758 struct btf_type *t; 2759 int i, j, vlen; 2760 2761 for (i = 1; i < btf__type_cnt(btf); i++) { 2762 t = (struct btf_type *)btf__type_by_id(btf, i); 2763 2764 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2765 /* replace VAR/DECL_TAG with INT */ 2766 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2767 /* 2768 * using size = 1 is the safest choice, 4 will be too 2769 * big and cause kernel BTF validation failure if 2770 * original variable took less than 4 bytes 2771 */ 2772 t->size = 1; 2773 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2774 } else if (!has_datasec && btf_is_datasec(t)) { 2775 /* replace DATASEC with STRUCT */ 2776 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2777 struct btf_member *m = btf_members(t); 2778 struct btf_type *vt; 2779 char *name; 2780 2781 name = (char *)btf__name_by_offset(btf, t->name_off); 2782 while (*name) { 2783 if (*name == '.') 2784 *name = '_'; 2785 name++; 2786 } 2787 2788 vlen = btf_vlen(t); 2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2790 for (j = 0; j < vlen; j++, v++, m++) { 2791 /* order of field assignments is important */ 2792 m->offset = v->offset * 8; 2793 m->type = v->type; 2794 /* preserve variable name as member name */ 2795 vt = (void *)btf__type_by_id(btf, v->type); 2796 m->name_off = vt->name_off; 2797 } 2798 } else if (!has_func && btf_is_func_proto(t)) { 2799 /* replace FUNC_PROTO with ENUM */ 2800 vlen = btf_vlen(t); 2801 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2802 t->size = sizeof(__u32); /* kernel enforced */ 2803 } else if (!has_func && btf_is_func(t)) { 2804 /* replace FUNC with TYPEDEF */ 2805 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2806 } else if (!has_func_global && btf_is_func(t)) { 2807 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2808 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2809 } else if (!has_float && btf_is_float(t)) { 2810 /* replace FLOAT with an equally-sized empty STRUCT; 2811 * since C compilers do not accept e.g. "float" as a 2812 * valid struct name, make it anonymous 2813 */ 2814 t->name_off = 0; 2815 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2816 } else if (!has_type_tag && btf_is_type_tag(t)) { 2817 /* replace TYPE_TAG with a CONST */ 2818 t->name_off = 0; 2819 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2820 } else if (!has_enum64 && btf_is_enum(t)) { 2821 /* clear the kflag */ 2822 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2823 } else if (!has_enum64 && btf_is_enum64(t)) { 2824 /* replace ENUM64 with a union */ 2825 struct btf_member *m; 2826 2827 if (enum64_placeholder_id == 0) { 2828 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2829 if (enum64_placeholder_id < 0) 2830 return enum64_placeholder_id; 2831 2832 t = (struct btf_type *)btf__type_by_id(btf, i); 2833 } 2834 2835 m = btf_members(t); 2836 vlen = btf_vlen(t); 2837 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2838 for (j = 0; j < vlen; j++, m++) { 2839 m->type = enum64_placeholder_id; 2840 m->offset = 0; 2841 } 2842 } 2843 } 2844 2845 return 0; 2846 } 2847 2848 static bool libbpf_needs_btf(const struct bpf_object *obj) 2849 { 2850 return obj->efile.btf_maps_shndx >= 0 || 2851 obj->efile.st_ops_shndx >= 0 || 2852 obj->efile.st_ops_link_shndx >= 0 || 2853 obj->nr_extern > 0; 2854 } 2855 2856 static bool kernel_needs_btf(const struct bpf_object *obj) 2857 { 2858 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2859 } 2860 2861 static int bpf_object__init_btf(struct bpf_object *obj, 2862 Elf_Data *btf_data, 2863 Elf_Data *btf_ext_data) 2864 { 2865 int err = -ENOENT; 2866 2867 if (btf_data) { 2868 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2869 err = libbpf_get_error(obj->btf); 2870 if (err) { 2871 obj->btf = NULL; 2872 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2873 goto out; 2874 } 2875 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2876 btf__set_pointer_size(obj->btf, 8); 2877 } 2878 if (btf_ext_data) { 2879 struct btf_ext_info *ext_segs[3]; 2880 int seg_num, sec_num; 2881 2882 if (!obj->btf) { 2883 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2884 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2885 goto out; 2886 } 2887 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2888 err = libbpf_get_error(obj->btf_ext); 2889 if (err) { 2890 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2891 BTF_EXT_ELF_SEC, err); 2892 obj->btf_ext = NULL; 2893 goto out; 2894 } 2895 2896 /* setup .BTF.ext to ELF section mapping */ 2897 ext_segs[0] = &obj->btf_ext->func_info; 2898 ext_segs[1] = &obj->btf_ext->line_info; 2899 ext_segs[2] = &obj->btf_ext->core_relo_info; 2900 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2901 struct btf_ext_info *seg = ext_segs[seg_num]; 2902 const struct btf_ext_info_sec *sec; 2903 const char *sec_name; 2904 Elf_Scn *scn; 2905 2906 if (seg->sec_cnt == 0) 2907 continue; 2908 2909 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2910 if (!seg->sec_idxs) { 2911 err = -ENOMEM; 2912 goto out; 2913 } 2914 2915 sec_num = 0; 2916 for_each_btf_ext_sec(seg, sec) { 2917 /* preventively increment index to avoid doing 2918 * this before every continue below 2919 */ 2920 sec_num++; 2921 2922 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2923 if (str_is_empty(sec_name)) 2924 continue; 2925 scn = elf_sec_by_name(obj, sec_name); 2926 if (!scn) 2927 continue; 2928 2929 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2930 } 2931 } 2932 } 2933 out: 2934 if (err && libbpf_needs_btf(obj)) { 2935 pr_warn("BTF is required, but is missing or corrupted.\n"); 2936 return err; 2937 } 2938 return 0; 2939 } 2940 2941 static int compare_vsi_off(const void *_a, const void *_b) 2942 { 2943 const struct btf_var_secinfo *a = _a; 2944 const struct btf_var_secinfo *b = _b; 2945 2946 return a->offset - b->offset; 2947 } 2948 2949 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2950 struct btf_type *t) 2951 { 2952 __u32 size = 0, i, vars = btf_vlen(t); 2953 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2954 struct btf_var_secinfo *vsi; 2955 bool fixup_offsets = false; 2956 int err; 2957 2958 if (!sec_name) { 2959 pr_debug("No name found in string section for DATASEC kind.\n"); 2960 return -ENOENT; 2961 } 2962 2963 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2964 * variable offsets set at the previous step. Further, not every 2965 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2966 * all fixups altogether for such sections and go straight to sorting 2967 * VARs within their DATASEC. 2968 */ 2969 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2970 goto sort_vars; 2971 2972 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2973 * fix this up. But BPF static linker already fixes this up and fills 2974 * all the sizes and offsets during static linking. So this step has 2975 * to be optional. But the STV_HIDDEN handling is non-optional for any 2976 * non-extern DATASEC, so the variable fixup loop below handles both 2977 * functions at the same time, paying the cost of BTF VAR <-> ELF 2978 * symbol matching just once. 2979 */ 2980 if (t->size == 0) { 2981 err = find_elf_sec_sz(obj, sec_name, &size); 2982 if (err || !size) { 2983 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2984 sec_name, size, err); 2985 return -ENOENT; 2986 } 2987 2988 t->size = size; 2989 fixup_offsets = true; 2990 } 2991 2992 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2993 const struct btf_type *t_var; 2994 struct btf_var *var; 2995 const char *var_name; 2996 Elf64_Sym *sym; 2997 2998 t_var = btf__type_by_id(btf, vsi->type); 2999 if (!t_var || !btf_is_var(t_var)) { 3000 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3001 return -EINVAL; 3002 } 3003 3004 var = btf_var(t_var); 3005 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3006 continue; 3007 3008 var_name = btf__name_by_offset(btf, t_var->name_off); 3009 if (!var_name) { 3010 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3011 sec_name, i); 3012 return -ENOENT; 3013 } 3014 3015 sym = find_elf_var_sym(obj, var_name); 3016 if (IS_ERR(sym)) { 3017 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3018 sec_name, var_name); 3019 return -ENOENT; 3020 } 3021 3022 if (fixup_offsets) 3023 vsi->offset = sym->st_value; 3024 3025 /* if variable is a global/weak symbol, but has restricted 3026 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3027 * as static. This follows similar logic for functions (BPF 3028 * subprogs) and influences libbpf's further decisions about 3029 * whether to make global data BPF array maps as 3030 * BPF_F_MMAPABLE. 3031 */ 3032 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3033 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3034 var->linkage = BTF_VAR_STATIC; 3035 } 3036 3037 sort_vars: 3038 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3039 return 0; 3040 } 3041 3042 static int bpf_object_fixup_btf(struct bpf_object *obj) 3043 { 3044 int i, n, err = 0; 3045 3046 if (!obj->btf) 3047 return 0; 3048 3049 n = btf__type_cnt(obj->btf); 3050 for (i = 1; i < n; i++) { 3051 struct btf_type *t = btf_type_by_id(obj->btf, i); 3052 3053 /* Loader needs to fix up some of the things compiler 3054 * couldn't get its hands on while emitting BTF. This 3055 * is section size and global variable offset. We use 3056 * the info from the ELF itself for this purpose. 3057 */ 3058 if (btf_is_datasec(t)) { 3059 err = btf_fixup_datasec(obj, obj->btf, t); 3060 if (err) 3061 return err; 3062 } 3063 } 3064 3065 return 0; 3066 } 3067 3068 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3069 { 3070 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3071 prog->type == BPF_PROG_TYPE_LSM) 3072 return true; 3073 3074 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3075 * also need vmlinux BTF 3076 */ 3077 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3078 return true; 3079 3080 return false; 3081 } 3082 3083 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3084 { 3085 return bpf_map__is_struct_ops(map); 3086 } 3087 3088 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3089 { 3090 struct bpf_program *prog; 3091 struct bpf_map *map; 3092 int i; 3093 3094 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3095 * is not specified 3096 */ 3097 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3098 return true; 3099 3100 /* Support for typed ksyms needs kernel BTF */ 3101 for (i = 0; i < obj->nr_extern; i++) { 3102 const struct extern_desc *ext; 3103 3104 ext = &obj->externs[i]; 3105 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3106 return true; 3107 } 3108 3109 bpf_object__for_each_program(prog, obj) { 3110 if (!prog->autoload) 3111 continue; 3112 if (prog_needs_vmlinux_btf(prog)) 3113 return true; 3114 } 3115 3116 bpf_object__for_each_map(map, obj) { 3117 if (map_needs_vmlinux_btf(map)) 3118 return true; 3119 } 3120 3121 return false; 3122 } 3123 3124 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3125 { 3126 int err; 3127 3128 /* btf_vmlinux could be loaded earlier */ 3129 if (obj->btf_vmlinux || obj->gen_loader) 3130 return 0; 3131 3132 if (!force && !obj_needs_vmlinux_btf(obj)) 3133 return 0; 3134 3135 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3136 err = libbpf_get_error(obj->btf_vmlinux); 3137 if (err) { 3138 pr_warn("Error loading vmlinux BTF: %d\n", err); 3139 obj->btf_vmlinux = NULL; 3140 return err; 3141 } 3142 return 0; 3143 } 3144 3145 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3146 { 3147 struct btf *kern_btf = obj->btf; 3148 bool btf_mandatory, sanitize; 3149 int i, err = 0; 3150 3151 if (!obj->btf) 3152 return 0; 3153 3154 if (!kernel_supports(obj, FEAT_BTF)) { 3155 if (kernel_needs_btf(obj)) { 3156 err = -EOPNOTSUPP; 3157 goto report; 3158 } 3159 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3160 return 0; 3161 } 3162 3163 /* Even though some subprogs are global/weak, user might prefer more 3164 * permissive BPF verification process that BPF verifier performs for 3165 * static functions, taking into account more context from the caller 3166 * functions. In such case, they need to mark such subprogs with 3167 * __attribute__((visibility("hidden"))) and libbpf will adjust 3168 * corresponding FUNC BTF type to be marked as static and trigger more 3169 * involved BPF verification process. 3170 */ 3171 for (i = 0; i < obj->nr_programs; i++) { 3172 struct bpf_program *prog = &obj->programs[i]; 3173 struct btf_type *t; 3174 const char *name; 3175 int j, n; 3176 3177 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3178 continue; 3179 3180 n = btf__type_cnt(obj->btf); 3181 for (j = 1; j < n; j++) { 3182 t = btf_type_by_id(obj->btf, j); 3183 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3184 continue; 3185 3186 name = btf__str_by_offset(obj->btf, t->name_off); 3187 if (strcmp(name, prog->name) != 0) 3188 continue; 3189 3190 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3191 break; 3192 } 3193 } 3194 3195 sanitize = btf_needs_sanitization(obj); 3196 if (sanitize) { 3197 const void *raw_data; 3198 __u32 sz; 3199 3200 /* clone BTF to sanitize a copy and leave the original intact */ 3201 raw_data = btf__raw_data(obj->btf, &sz); 3202 kern_btf = btf__new(raw_data, sz); 3203 err = libbpf_get_error(kern_btf); 3204 if (err) 3205 return err; 3206 3207 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3208 btf__set_pointer_size(obj->btf, 8); 3209 err = bpf_object__sanitize_btf(obj, kern_btf); 3210 if (err) 3211 return err; 3212 } 3213 3214 if (obj->gen_loader) { 3215 __u32 raw_size = 0; 3216 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3217 3218 if (!raw_data) 3219 return -ENOMEM; 3220 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3221 /* Pretend to have valid FD to pass various fd >= 0 checks. 3222 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3223 */ 3224 btf__set_fd(kern_btf, 0); 3225 } else { 3226 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3227 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3228 obj->log_level ? 1 : 0); 3229 } 3230 if (sanitize) { 3231 if (!err) { 3232 /* move fd to libbpf's BTF */ 3233 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3234 btf__set_fd(kern_btf, -1); 3235 } 3236 btf__free(kern_btf); 3237 } 3238 report: 3239 if (err) { 3240 btf_mandatory = kernel_needs_btf(obj); 3241 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3242 btf_mandatory ? "BTF is mandatory, can't proceed." 3243 : "BTF is optional, ignoring."); 3244 if (!btf_mandatory) 3245 err = 0; 3246 } 3247 return err; 3248 } 3249 3250 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3251 { 3252 const char *name; 3253 3254 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3255 if (!name) { 3256 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3257 off, obj->path, elf_errmsg(-1)); 3258 return NULL; 3259 } 3260 3261 return name; 3262 } 3263 3264 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3265 { 3266 const char *name; 3267 3268 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3269 if (!name) { 3270 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3271 off, obj->path, elf_errmsg(-1)); 3272 return NULL; 3273 } 3274 3275 return name; 3276 } 3277 3278 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3279 { 3280 Elf_Scn *scn; 3281 3282 scn = elf_getscn(obj->efile.elf, idx); 3283 if (!scn) { 3284 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3285 idx, obj->path, elf_errmsg(-1)); 3286 return NULL; 3287 } 3288 return scn; 3289 } 3290 3291 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3292 { 3293 Elf_Scn *scn = NULL; 3294 Elf *elf = obj->efile.elf; 3295 const char *sec_name; 3296 3297 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3298 sec_name = elf_sec_name(obj, scn); 3299 if (!sec_name) 3300 return NULL; 3301 3302 if (strcmp(sec_name, name) != 0) 3303 continue; 3304 3305 return scn; 3306 } 3307 return NULL; 3308 } 3309 3310 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3311 { 3312 Elf64_Shdr *shdr; 3313 3314 if (!scn) 3315 return NULL; 3316 3317 shdr = elf64_getshdr(scn); 3318 if (!shdr) { 3319 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3320 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3321 return NULL; 3322 } 3323 3324 return shdr; 3325 } 3326 3327 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3328 { 3329 const char *name; 3330 Elf64_Shdr *sh; 3331 3332 if (!scn) 3333 return NULL; 3334 3335 sh = elf_sec_hdr(obj, scn); 3336 if (!sh) 3337 return NULL; 3338 3339 name = elf_sec_str(obj, sh->sh_name); 3340 if (!name) { 3341 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3342 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3343 return NULL; 3344 } 3345 3346 return name; 3347 } 3348 3349 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3350 { 3351 Elf_Data *data; 3352 3353 if (!scn) 3354 return NULL; 3355 3356 data = elf_getdata(scn, 0); 3357 if (!data) { 3358 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3359 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3360 obj->path, elf_errmsg(-1)); 3361 return NULL; 3362 } 3363 3364 return data; 3365 } 3366 3367 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3368 { 3369 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3370 return NULL; 3371 3372 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3373 } 3374 3375 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3376 { 3377 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3378 return NULL; 3379 3380 return (Elf64_Rel *)data->d_buf + idx; 3381 } 3382 3383 static bool is_sec_name_dwarf(const char *name) 3384 { 3385 /* approximation, but the actual list is too long */ 3386 return str_has_pfx(name, ".debug_"); 3387 } 3388 3389 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3390 { 3391 /* no special handling of .strtab */ 3392 if (hdr->sh_type == SHT_STRTAB) 3393 return true; 3394 3395 /* ignore .llvm_addrsig section as well */ 3396 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3397 return true; 3398 3399 /* no subprograms will lead to an empty .text section, ignore it */ 3400 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3401 strcmp(name, ".text") == 0) 3402 return true; 3403 3404 /* DWARF sections */ 3405 if (is_sec_name_dwarf(name)) 3406 return true; 3407 3408 if (str_has_pfx(name, ".rel")) { 3409 name += sizeof(".rel") - 1; 3410 /* DWARF section relocations */ 3411 if (is_sec_name_dwarf(name)) 3412 return true; 3413 3414 /* .BTF and .BTF.ext don't need relocations */ 3415 if (strcmp(name, BTF_ELF_SEC) == 0 || 3416 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3417 return true; 3418 } 3419 3420 return false; 3421 } 3422 3423 static int cmp_progs(const void *_a, const void *_b) 3424 { 3425 const struct bpf_program *a = _a; 3426 const struct bpf_program *b = _b; 3427 3428 if (a->sec_idx != b->sec_idx) 3429 return a->sec_idx < b->sec_idx ? -1 : 1; 3430 3431 /* sec_insn_off can't be the same within the section */ 3432 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3433 } 3434 3435 static int bpf_object__elf_collect(struct bpf_object *obj) 3436 { 3437 struct elf_sec_desc *sec_desc; 3438 Elf *elf = obj->efile.elf; 3439 Elf_Data *btf_ext_data = NULL; 3440 Elf_Data *btf_data = NULL; 3441 int idx = 0, err = 0; 3442 const char *name; 3443 Elf_Data *data; 3444 Elf_Scn *scn; 3445 Elf64_Shdr *sh; 3446 3447 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3448 * section. Since section count retrieved by elf_getshdrnum() does 3449 * include sec #0, it is already the necessary size of an array to keep 3450 * all the sections. 3451 */ 3452 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3453 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3454 obj->path, elf_errmsg(-1)); 3455 return -LIBBPF_ERRNO__FORMAT; 3456 } 3457 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3458 if (!obj->efile.secs) 3459 return -ENOMEM; 3460 3461 /* a bunch of ELF parsing functionality depends on processing symbols, 3462 * so do the first pass and find the symbol table 3463 */ 3464 scn = NULL; 3465 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3466 sh = elf_sec_hdr(obj, scn); 3467 if (!sh) 3468 return -LIBBPF_ERRNO__FORMAT; 3469 3470 if (sh->sh_type == SHT_SYMTAB) { 3471 if (obj->efile.symbols) { 3472 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3473 return -LIBBPF_ERRNO__FORMAT; 3474 } 3475 3476 data = elf_sec_data(obj, scn); 3477 if (!data) 3478 return -LIBBPF_ERRNO__FORMAT; 3479 3480 idx = elf_ndxscn(scn); 3481 3482 obj->efile.symbols = data; 3483 obj->efile.symbols_shndx = idx; 3484 obj->efile.strtabidx = sh->sh_link; 3485 } 3486 } 3487 3488 if (!obj->efile.symbols) { 3489 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3490 obj->path); 3491 return -ENOENT; 3492 } 3493 3494 scn = NULL; 3495 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3496 idx = elf_ndxscn(scn); 3497 sec_desc = &obj->efile.secs[idx]; 3498 3499 sh = elf_sec_hdr(obj, scn); 3500 if (!sh) 3501 return -LIBBPF_ERRNO__FORMAT; 3502 3503 name = elf_sec_str(obj, sh->sh_name); 3504 if (!name) 3505 return -LIBBPF_ERRNO__FORMAT; 3506 3507 if (ignore_elf_section(sh, name)) 3508 continue; 3509 3510 data = elf_sec_data(obj, scn); 3511 if (!data) 3512 return -LIBBPF_ERRNO__FORMAT; 3513 3514 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3515 idx, name, (unsigned long)data->d_size, 3516 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3517 (int)sh->sh_type); 3518 3519 if (strcmp(name, "license") == 0) { 3520 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3521 if (err) 3522 return err; 3523 } else if (strcmp(name, "version") == 0) { 3524 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3525 if (err) 3526 return err; 3527 } else if (strcmp(name, "maps") == 0) { 3528 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3529 return -ENOTSUP; 3530 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3531 obj->efile.btf_maps_shndx = idx; 3532 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3533 if (sh->sh_type != SHT_PROGBITS) 3534 return -LIBBPF_ERRNO__FORMAT; 3535 btf_data = data; 3536 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3537 if (sh->sh_type != SHT_PROGBITS) 3538 return -LIBBPF_ERRNO__FORMAT; 3539 btf_ext_data = data; 3540 } else if (sh->sh_type == SHT_SYMTAB) { 3541 /* already processed during the first pass above */ 3542 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3543 if (sh->sh_flags & SHF_EXECINSTR) { 3544 if (strcmp(name, ".text") == 0) 3545 obj->efile.text_shndx = idx; 3546 err = bpf_object__add_programs(obj, data, name, idx); 3547 if (err) 3548 return err; 3549 } else if (strcmp(name, DATA_SEC) == 0 || 3550 str_has_pfx(name, DATA_SEC ".")) { 3551 sec_desc->sec_type = SEC_DATA; 3552 sec_desc->shdr = sh; 3553 sec_desc->data = data; 3554 } else if (strcmp(name, RODATA_SEC) == 0 || 3555 str_has_pfx(name, RODATA_SEC ".")) { 3556 sec_desc->sec_type = SEC_RODATA; 3557 sec_desc->shdr = sh; 3558 sec_desc->data = data; 3559 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3560 obj->efile.st_ops_data = data; 3561 obj->efile.st_ops_shndx = idx; 3562 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3563 obj->efile.st_ops_link_data = data; 3564 obj->efile.st_ops_link_shndx = idx; 3565 } else { 3566 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3567 idx, name); 3568 } 3569 } else if (sh->sh_type == SHT_REL) { 3570 int targ_sec_idx = sh->sh_info; /* points to other section */ 3571 3572 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3573 targ_sec_idx >= obj->efile.sec_cnt) 3574 return -LIBBPF_ERRNO__FORMAT; 3575 3576 /* Only do relo for section with exec instructions */ 3577 if (!section_have_execinstr(obj, targ_sec_idx) && 3578 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3579 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3580 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3581 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3582 idx, name, targ_sec_idx, 3583 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3584 continue; 3585 } 3586 3587 sec_desc->sec_type = SEC_RELO; 3588 sec_desc->shdr = sh; 3589 sec_desc->data = data; 3590 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3591 str_has_pfx(name, BSS_SEC "."))) { 3592 sec_desc->sec_type = SEC_BSS; 3593 sec_desc->shdr = sh; 3594 sec_desc->data = data; 3595 } else { 3596 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3597 (size_t)sh->sh_size); 3598 } 3599 } 3600 3601 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3602 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3603 return -LIBBPF_ERRNO__FORMAT; 3604 } 3605 3606 /* sort BPF programs by section name and in-section instruction offset 3607 * for faster search 3608 */ 3609 if (obj->nr_programs) 3610 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3611 3612 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3613 } 3614 3615 static bool sym_is_extern(const Elf64_Sym *sym) 3616 { 3617 int bind = ELF64_ST_BIND(sym->st_info); 3618 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3619 return sym->st_shndx == SHN_UNDEF && 3620 (bind == STB_GLOBAL || bind == STB_WEAK) && 3621 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3622 } 3623 3624 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3625 { 3626 int bind = ELF64_ST_BIND(sym->st_info); 3627 int type = ELF64_ST_TYPE(sym->st_info); 3628 3629 /* in .text section */ 3630 if (sym->st_shndx != text_shndx) 3631 return false; 3632 3633 /* local function */ 3634 if (bind == STB_LOCAL && type == STT_SECTION) 3635 return true; 3636 3637 /* global function */ 3638 return bind == STB_GLOBAL && type == STT_FUNC; 3639 } 3640 3641 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3642 { 3643 const struct btf_type *t; 3644 const char *tname; 3645 int i, n; 3646 3647 if (!btf) 3648 return -ESRCH; 3649 3650 n = btf__type_cnt(btf); 3651 for (i = 1; i < n; i++) { 3652 t = btf__type_by_id(btf, i); 3653 3654 if (!btf_is_var(t) && !btf_is_func(t)) 3655 continue; 3656 3657 tname = btf__name_by_offset(btf, t->name_off); 3658 if (strcmp(tname, ext_name)) 3659 continue; 3660 3661 if (btf_is_var(t) && 3662 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3663 return -EINVAL; 3664 3665 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3666 return -EINVAL; 3667 3668 return i; 3669 } 3670 3671 return -ENOENT; 3672 } 3673 3674 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3675 const struct btf_var_secinfo *vs; 3676 const struct btf_type *t; 3677 int i, j, n; 3678 3679 if (!btf) 3680 return -ESRCH; 3681 3682 n = btf__type_cnt(btf); 3683 for (i = 1; i < n; i++) { 3684 t = btf__type_by_id(btf, i); 3685 3686 if (!btf_is_datasec(t)) 3687 continue; 3688 3689 vs = btf_var_secinfos(t); 3690 for (j = 0; j < btf_vlen(t); j++, vs++) { 3691 if (vs->type == ext_btf_id) 3692 return i; 3693 } 3694 } 3695 3696 return -ENOENT; 3697 } 3698 3699 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3700 bool *is_signed) 3701 { 3702 const struct btf_type *t; 3703 const char *name; 3704 3705 t = skip_mods_and_typedefs(btf, id, NULL); 3706 name = btf__name_by_offset(btf, t->name_off); 3707 3708 if (is_signed) 3709 *is_signed = false; 3710 switch (btf_kind(t)) { 3711 case BTF_KIND_INT: { 3712 int enc = btf_int_encoding(t); 3713 3714 if (enc & BTF_INT_BOOL) 3715 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3716 if (is_signed) 3717 *is_signed = enc & BTF_INT_SIGNED; 3718 if (t->size == 1) 3719 return KCFG_CHAR; 3720 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3721 return KCFG_UNKNOWN; 3722 return KCFG_INT; 3723 } 3724 case BTF_KIND_ENUM: 3725 if (t->size != 4) 3726 return KCFG_UNKNOWN; 3727 if (strcmp(name, "libbpf_tristate")) 3728 return KCFG_UNKNOWN; 3729 return KCFG_TRISTATE; 3730 case BTF_KIND_ENUM64: 3731 if (strcmp(name, "libbpf_tristate")) 3732 return KCFG_UNKNOWN; 3733 return KCFG_TRISTATE; 3734 case BTF_KIND_ARRAY: 3735 if (btf_array(t)->nelems == 0) 3736 return KCFG_UNKNOWN; 3737 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3738 return KCFG_UNKNOWN; 3739 return KCFG_CHAR_ARR; 3740 default: 3741 return KCFG_UNKNOWN; 3742 } 3743 } 3744 3745 static int cmp_externs(const void *_a, const void *_b) 3746 { 3747 const struct extern_desc *a = _a; 3748 const struct extern_desc *b = _b; 3749 3750 if (a->type != b->type) 3751 return a->type < b->type ? -1 : 1; 3752 3753 if (a->type == EXT_KCFG) { 3754 /* descending order by alignment requirements */ 3755 if (a->kcfg.align != b->kcfg.align) 3756 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3757 /* ascending order by size, within same alignment class */ 3758 if (a->kcfg.sz != b->kcfg.sz) 3759 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3760 } 3761 3762 /* resolve ties by name */ 3763 return strcmp(a->name, b->name); 3764 } 3765 3766 static int find_int_btf_id(const struct btf *btf) 3767 { 3768 const struct btf_type *t; 3769 int i, n; 3770 3771 n = btf__type_cnt(btf); 3772 for (i = 1; i < n; i++) { 3773 t = btf__type_by_id(btf, i); 3774 3775 if (btf_is_int(t) && btf_int_bits(t) == 32) 3776 return i; 3777 } 3778 3779 return 0; 3780 } 3781 3782 static int add_dummy_ksym_var(struct btf *btf) 3783 { 3784 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3785 const struct btf_var_secinfo *vs; 3786 const struct btf_type *sec; 3787 3788 if (!btf) 3789 return 0; 3790 3791 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3792 BTF_KIND_DATASEC); 3793 if (sec_btf_id < 0) 3794 return 0; 3795 3796 sec = btf__type_by_id(btf, sec_btf_id); 3797 vs = btf_var_secinfos(sec); 3798 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3799 const struct btf_type *vt; 3800 3801 vt = btf__type_by_id(btf, vs->type); 3802 if (btf_is_func(vt)) 3803 break; 3804 } 3805 3806 /* No func in ksyms sec. No need to add dummy var. */ 3807 if (i == btf_vlen(sec)) 3808 return 0; 3809 3810 int_btf_id = find_int_btf_id(btf); 3811 dummy_var_btf_id = btf__add_var(btf, 3812 "dummy_ksym", 3813 BTF_VAR_GLOBAL_ALLOCATED, 3814 int_btf_id); 3815 if (dummy_var_btf_id < 0) 3816 pr_warn("cannot create a dummy_ksym var\n"); 3817 3818 return dummy_var_btf_id; 3819 } 3820 3821 static int bpf_object__collect_externs(struct bpf_object *obj) 3822 { 3823 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3824 const struct btf_type *t; 3825 struct extern_desc *ext; 3826 int i, n, off, dummy_var_btf_id; 3827 const char *ext_name, *sec_name; 3828 size_t ext_essent_len; 3829 Elf_Scn *scn; 3830 Elf64_Shdr *sh; 3831 3832 if (!obj->efile.symbols) 3833 return 0; 3834 3835 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3836 sh = elf_sec_hdr(obj, scn); 3837 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3838 return -LIBBPF_ERRNO__FORMAT; 3839 3840 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3841 if (dummy_var_btf_id < 0) 3842 return dummy_var_btf_id; 3843 3844 n = sh->sh_size / sh->sh_entsize; 3845 pr_debug("looking for externs among %d symbols...\n", n); 3846 3847 for (i = 0; i < n; i++) { 3848 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3849 3850 if (!sym) 3851 return -LIBBPF_ERRNO__FORMAT; 3852 if (!sym_is_extern(sym)) 3853 continue; 3854 ext_name = elf_sym_str(obj, sym->st_name); 3855 if (!ext_name || !ext_name[0]) 3856 continue; 3857 3858 ext = obj->externs; 3859 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3860 if (!ext) 3861 return -ENOMEM; 3862 obj->externs = ext; 3863 ext = &ext[obj->nr_extern]; 3864 memset(ext, 0, sizeof(*ext)); 3865 obj->nr_extern++; 3866 3867 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3868 if (ext->btf_id <= 0) { 3869 pr_warn("failed to find BTF for extern '%s': %d\n", 3870 ext_name, ext->btf_id); 3871 return ext->btf_id; 3872 } 3873 t = btf__type_by_id(obj->btf, ext->btf_id); 3874 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3875 ext->sym_idx = i; 3876 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3877 3878 ext_essent_len = bpf_core_essential_name_len(ext->name); 3879 ext->essent_name = NULL; 3880 if (ext_essent_len != strlen(ext->name)) { 3881 ext->essent_name = strndup(ext->name, ext_essent_len); 3882 if (!ext->essent_name) 3883 return -ENOMEM; 3884 } 3885 3886 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3887 if (ext->sec_btf_id <= 0) { 3888 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3889 ext_name, ext->btf_id, ext->sec_btf_id); 3890 return ext->sec_btf_id; 3891 } 3892 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3893 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3894 3895 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3896 if (btf_is_func(t)) { 3897 pr_warn("extern function %s is unsupported under %s section\n", 3898 ext->name, KCONFIG_SEC); 3899 return -ENOTSUP; 3900 } 3901 kcfg_sec = sec; 3902 ext->type = EXT_KCFG; 3903 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3904 if (ext->kcfg.sz <= 0) { 3905 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3906 ext_name, ext->kcfg.sz); 3907 return ext->kcfg.sz; 3908 } 3909 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3910 if (ext->kcfg.align <= 0) { 3911 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3912 ext_name, ext->kcfg.align); 3913 return -EINVAL; 3914 } 3915 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3916 &ext->kcfg.is_signed); 3917 if (ext->kcfg.type == KCFG_UNKNOWN) { 3918 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3919 return -ENOTSUP; 3920 } 3921 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3922 ksym_sec = sec; 3923 ext->type = EXT_KSYM; 3924 skip_mods_and_typedefs(obj->btf, t->type, 3925 &ext->ksym.type_id); 3926 } else { 3927 pr_warn("unrecognized extern section '%s'\n", sec_name); 3928 return -ENOTSUP; 3929 } 3930 } 3931 pr_debug("collected %d externs total\n", obj->nr_extern); 3932 3933 if (!obj->nr_extern) 3934 return 0; 3935 3936 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3937 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3938 3939 /* for .ksyms section, we need to turn all externs into allocated 3940 * variables in BTF to pass kernel verification; we do this by 3941 * pretending that each extern is a 8-byte variable 3942 */ 3943 if (ksym_sec) { 3944 /* find existing 4-byte integer type in BTF to use for fake 3945 * extern variables in DATASEC 3946 */ 3947 int int_btf_id = find_int_btf_id(obj->btf); 3948 /* For extern function, a dummy_var added earlier 3949 * will be used to replace the vs->type and 3950 * its name string will be used to refill 3951 * the missing param's name. 3952 */ 3953 const struct btf_type *dummy_var; 3954 3955 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3956 for (i = 0; i < obj->nr_extern; i++) { 3957 ext = &obj->externs[i]; 3958 if (ext->type != EXT_KSYM) 3959 continue; 3960 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3961 i, ext->sym_idx, ext->name); 3962 } 3963 3964 sec = ksym_sec; 3965 n = btf_vlen(sec); 3966 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3967 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3968 struct btf_type *vt; 3969 3970 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3971 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3972 ext = find_extern_by_name(obj, ext_name); 3973 if (!ext) { 3974 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3975 btf_kind_str(vt), ext_name); 3976 return -ESRCH; 3977 } 3978 if (btf_is_func(vt)) { 3979 const struct btf_type *func_proto; 3980 struct btf_param *param; 3981 int j; 3982 3983 func_proto = btf__type_by_id(obj->btf, 3984 vt->type); 3985 param = btf_params(func_proto); 3986 /* Reuse the dummy_var string if the 3987 * func proto does not have param name. 3988 */ 3989 for (j = 0; j < btf_vlen(func_proto); j++) 3990 if (param[j].type && !param[j].name_off) 3991 param[j].name_off = 3992 dummy_var->name_off; 3993 vs->type = dummy_var_btf_id; 3994 vt->info &= ~0xffff; 3995 vt->info |= BTF_FUNC_GLOBAL; 3996 } else { 3997 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3998 vt->type = int_btf_id; 3999 } 4000 vs->offset = off; 4001 vs->size = sizeof(int); 4002 } 4003 sec->size = off; 4004 } 4005 4006 if (kcfg_sec) { 4007 sec = kcfg_sec; 4008 /* for kcfg externs calculate their offsets within a .kconfig map */ 4009 off = 0; 4010 for (i = 0; i < obj->nr_extern; i++) { 4011 ext = &obj->externs[i]; 4012 if (ext->type != EXT_KCFG) 4013 continue; 4014 4015 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4016 off = ext->kcfg.data_off + ext->kcfg.sz; 4017 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4018 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4019 } 4020 sec->size = off; 4021 n = btf_vlen(sec); 4022 for (i = 0; i < n; i++) { 4023 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4024 4025 t = btf__type_by_id(obj->btf, vs->type); 4026 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4027 ext = find_extern_by_name(obj, ext_name); 4028 if (!ext) { 4029 pr_warn("failed to find extern definition for BTF var '%s'\n", 4030 ext_name); 4031 return -ESRCH; 4032 } 4033 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4034 vs->offset = ext->kcfg.data_off; 4035 } 4036 } 4037 return 0; 4038 } 4039 4040 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4041 { 4042 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4043 } 4044 4045 struct bpf_program * 4046 bpf_object__find_program_by_name(const struct bpf_object *obj, 4047 const char *name) 4048 { 4049 struct bpf_program *prog; 4050 4051 bpf_object__for_each_program(prog, obj) { 4052 if (prog_is_subprog(obj, prog)) 4053 continue; 4054 if (!strcmp(prog->name, name)) 4055 return prog; 4056 } 4057 return errno = ENOENT, NULL; 4058 } 4059 4060 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4061 int shndx) 4062 { 4063 switch (obj->efile.secs[shndx].sec_type) { 4064 case SEC_BSS: 4065 case SEC_DATA: 4066 case SEC_RODATA: 4067 return true; 4068 default: 4069 return false; 4070 } 4071 } 4072 4073 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4074 int shndx) 4075 { 4076 return shndx == obj->efile.btf_maps_shndx; 4077 } 4078 4079 static enum libbpf_map_type 4080 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4081 { 4082 if (shndx == obj->efile.symbols_shndx) 4083 return LIBBPF_MAP_KCONFIG; 4084 4085 switch (obj->efile.secs[shndx].sec_type) { 4086 case SEC_BSS: 4087 return LIBBPF_MAP_BSS; 4088 case SEC_DATA: 4089 return LIBBPF_MAP_DATA; 4090 case SEC_RODATA: 4091 return LIBBPF_MAP_RODATA; 4092 default: 4093 return LIBBPF_MAP_UNSPEC; 4094 } 4095 } 4096 4097 static int bpf_program__record_reloc(struct bpf_program *prog, 4098 struct reloc_desc *reloc_desc, 4099 __u32 insn_idx, const char *sym_name, 4100 const Elf64_Sym *sym, const Elf64_Rel *rel) 4101 { 4102 struct bpf_insn *insn = &prog->insns[insn_idx]; 4103 size_t map_idx, nr_maps = prog->obj->nr_maps; 4104 struct bpf_object *obj = prog->obj; 4105 __u32 shdr_idx = sym->st_shndx; 4106 enum libbpf_map_type type; 4107 const char *sym_sec_name; 4108 struct bpf_map *map; 4109 4110 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4111 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4112 prog->name, sym_name, insn_idx, insn->code); 4113 return -LIBBPF_ERRNO__RELOC; 4114 } 4115 4116 if (sym_is_extern(sym)) { 4117 int sym_idx = ELF64_R_SYM(rel->r_info); 4118 int i, n = obj->nr_extern; 4119 struct extern_desc *ext; 4120 4121 for (i = 0; i < n; i++) { 4122 ext = &obj->externs[i]; 4123 if (ext->sym_idx == sym_idx) 4124 break; 4125 } 4126 if (i >= n) { 4127 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4128 prog->name, sym_name, sym_idx); 4129 return -LIBBPF_ERRNO__RELOC; 4130 } 4131 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4132 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4133 if (insn->code == (BPF_JMP | BPF_CALL)) 4134 reloc_desc->type = RELO_EXTERN_CALL; 4135 else 4136 reloc_desc->type = RELO_EXTERN_LD64; 4137 reloc_desc->insn_idx = insn_idx; 4138 reloc_desc->ext_idx = i; 4139 return 0; 4140 } 4141 4142 /* sub-program call relocation */ 4143 if (is_call_insn(insn)) { 4144 if (insn->src_reg != BPF_PSEUDO_CALL) { 4145 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4146 return -LIBBPF_ERRNO__RELOC; 4147 } 4148 /* text_shndx can be 0, if no default "main" program exists */ 4149 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4150 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4151 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4152 prog->name, sym_name, sym_sec_name); 4153 return -LIBBPF_ERRNO__RELOC; 4154 } 4155 if (sym->st_value % BPF_INSN_SZ) { 4156 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4157 prog->name, sym_name, (size_t)sym->st_value); 4158 return -LIBBPF_ERRNO__RELOC; 4159 } 4160 reloc_desc->type = RELO_CALL; 4161 reloc_desc->insn_idx = insn_idx; 4162 reloc_desc->sym_off = sym->st_value; 4163 return 0; 4164 } 4165 4166 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4167 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4168 prog->name, sym_name, shdr_idx); 4169 return -LIBBPF_ERRNO__RELOC; 4170 } 4171 4172 /* loading subprog addresses */ 4173 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4174 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4175 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4176 */ 4177 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4178 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4179 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4180 return -LIBBPF_ERRNO__RELOC; 4181 } 4182 4183 reloc_desc->type = RELO_SUBPROG_ADDR; 4184 reloc_desc->insn_idx = insn_idx; 4185 reloc_desc->sym_off = sym->st_value; 4186 return 0; 4187 } 4188 4189 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4190 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4191 4192 /* generic map reference relocation */ 4193 if (type == LIBBPF_MAP_UNSPEC) { 4194 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4195 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4196 prog->name, sym_name, sym_sec_name); 4197 return -LIBBPF_ERRNO__RELOC; 4198 } 4199 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4200 map = &obj->maps[map_idx]; 4201 if (map->libbpf_type != type || 4202 map->sec_idx != sym->st_shndx || 4203 map->sec_offset != sym->st_value) 4204 continue; 4205 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4206 prog->name, map_idx, map->name, map->sec_idx, 4207 map->sec_offset, insn_idx); 4208 break; 4209 } 4210 if (map_idx >= nr_maps) { 4211 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4212 prog->name, sym_sec_name, (size_t)sym->st_value); 4213 return -LIBBPF_ERRNO__RELOC; 4214 } 4215 reloc_desc->type = RELO_LD64; 4216 reloc_desc->insn_idx = insn_idx; 4217 reloc_desc->map_idx = map_idx; 4218 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4219 return 0; 4220 } 4221 4222 /* global data map relocation */ 4223 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4224 pr_warn("prog '%s': bad data relo against section '%s'\n", 4225 prog->name, sym_sec_name); 4226 return -LIBBPF_ERRNO__RELOC; 4227 } 4228 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4229 map = &obj->maps[map_idx]; 4230 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4231 continue; 4232 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4233 prog->name, map_idx, map->name, map->sec_idx, 4234 map->sec_offset, insn_idx); 4235 break; 4236 } 4237 if (map_idx >= nr_maps) { 4238 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4239 prog->name, sym_sec_name); 4240 return -LIBBPF_ERRNO__RELOC; 4241 } 4242 4243 reloc_desc->type = RELO_DATA; 4244 reloc_desc->insn_idx = insn_idx; 4245 reloc_desc->map_idx = map_idx; 4246 reloc_desc->sym_off = sym->st_value; 4247 return 0; 4248 } 4249 4250 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4251 { 4252 return insn_idx >= prog->sec_insn_off && 4253 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4254 } 4255 4256 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4257 size_t sec_idx, size_t insn_idx) 4258 { 4259 int l = 0, r = obj->nr_programs - 1, m; 4260 struct bpf_program *prog; 4261 4262 if (!obj->nr_programs) 4263 return NULL; 4264 4265 while (l < r) { 4266 m = l + (r - l + 1) / 2; 4267 prog = &obj->programs[m]; 4268 4269 if (prog->sec_idx < sec_idx || 4270 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4271 l = m; 4272 else 4273 r = m - 1; 4274 } 4275 /* matching program could be at index l, but it still might be the 4276 * wrong one, so we need to double check conditions for the last time 4277 */ 4278 prog = &obj->programs[l]; 4279 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4280 return prog; 4281 return NULL; 4282 } 4283 4284 static int 4285 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4286 { 4287 const char *relo_sec_name, *sec_name; 4288 size_t sec_idx = shdr->sh_info, sym_idx; 4289 struct bpf_program *prog; 4290 struct reloc_desc *relos; 4291 int err, i, nrels; 4292 const char *sym_name; 4293 __u32 insn_idx; 4294 Elf_Scn *scn; 4295 Elf_Data *scn_data; 4296 Elf64_Sym *sym; 4297 Elf64_Rel *rel; 4298 4299 if (sec_idx >= obj->efile.sec_cnt) 4300 return -EINVAL; 4301 4302 scn = elf_sec_by_idx(obj, sec_idx); 4303 scn_data = elf_sec_data(obj, scn); 4304 if (!scn_data) 4305 return -LIBBPF_ERRNO__FORMAT; 4306 4307 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4308 sec_name = elf_sec_name(obj, scn); 4309 if (!relo_sec_name || !sec_name) 4310 return -EINVAL; 4311 4312 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4313 relo_sec_name, sec_idx, sec_name); 4314 nrels = shdr->sh_size / shdr->sh_entsize; 4315 4316 for (i = 0; i < nrels; i++) { 4317 rel = elf_rel_by_idx(data, i); 4318 if (!rel) { 4319 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4320 return -LIBBPF_ERRNO__FORMAT; 4321 } 4322 4323 sym_idx = ELF64_R_SYM(rel->r_info); 4324 sym = elf_sym_by_idx(obj, sym_idx); 4325 if (!sym) { 4326 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4327 relo_sec_name, sym_idx, i); 4328 return -LIBBPF_ERRNO__FORMAT; 4329 } 4330 4331 if (sym->st_shndx >= obj->efile.sec_cnt) { 4332 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4333 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4334 return -LIBBPF_ERRNO__FORMAT; 4335 } 4336 4337 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4338 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4339 relo_sec_name, (size_t)rel->r_offset, i); 4340 return -LIBBPF_ERRNO__FORMAT; 4341 } 4342 4343 insn_idx = rel->r_offset / BPF_INSN_SZ; 4344 /* relocations against static functions are recorded as 4345 * relocations against the section that contains a function; 4346 * in such case, symbol will be STT_SECTION and sym.st_name 4347 * will point to empty string (0), so fetch section name 4348 * instead 4349 */ 4350 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4351 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4352 else 4353 sym_name = elf_sym_str(obj, sym->st_name); 4354 sym_name = sym_name ?: "<?"; 4355 4356 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4357 relo_sec_name, i, insn_idx, sym_name); 4358 4359 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4360 if (!prog) { 4361 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4362 relo_sec_name, i, sec_name, insn_idx); 4363 continue; 4364 } 4365 4366 relos = libbpf_reallocarray(prog->reloc_desc, 4367 prog->nr_reloc + 1, sizeof(*relos)); 4368 if (!relos) 4369 return -ENOMEM; 4370 prog->reloc_desc = relos; 4371 4372 /* adjust insn_idx to local BPF program frame of reference */ 4373 insn_idx -= prog->sec_insn_off; 4374 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4375 insn_idx, sym_name, sym, rel); 4376 if (err) 4377 return err; 4378 4379 prog->nr_reloc++; 4380 } 4381 return 0; 4382 } 4383 4384 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4385 { 4386 int id; 4387 4388 if (!obj->btf) 4389 return -ENOENT; 4390 4391 /* if it's BTF-defined map, we don't need to search for type IDs. 4392 * For struct_ops map, it does not need btf_key_type_id and 4393 * btf_value_type_id. 4394 */ 4395 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4396 return 0; 4397 4398 /* 4399 * LLVM annotates global data differently in BTF, that is, 4400 * only as '.data', '.bss' or '.rodata'. 4401 */ 4402 if (!bpf_map__is_internal(map)) 4403 return -ENOENT; 4404 4405 id = btf__find_by_name(obj->btf, map->real_name); 4406 if (id < 0) 4407 return id; 4408 4409 map->btf_key_type_id = 0; 4410 map->btf_value_type_id = id; 4411 return 0; 4412 } 4413 4414 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4415 { 4416 char file[PATH_MAX], buff[4096]; 4417 FILE *fp; 4418 __u32 val; 4419 int err; 4420 4421 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4422 memset(info, 0, sizeof(*info)); 4423 4424 fp = fopen(file, "re"); 4425 if (!fp) { 4426 err = -errno; 4427 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4428 err); 4429 return err; 4430 } 4431 4432 while (fgets(buff, sizeof(buff), fp)) { 4433 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4434 info->type = val; 4435 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4436 info->key_size = val; 4437 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4438 info->value_size = val; 4439 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4440 info->max_entries = val; 4441 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4442 info->map_flags = val; 4443 } 4444 4445 fclose(fp); 4446 4447 return 0; 4448 } 4449 4450 bool bpf_map__autocreate(const struct bpf_map *map) 4451 { 4452 return map->autocreate; 4453 } 4454 4455 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4456 { 4457 if (map->obj->loaded) 4458 return libbpf_err(-EBUSY); 4459 4460 map->autocreate = autocreate; 4461 return 0; 4462 } 4463 4464 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4465 { 4466 struct bpf_map_info info; 4467 __u32 len = sizeof(info), name_len; 4468 int new_fd, err; 4469 char *new_name; 4470 4471 memset(&info, 0, len); 4472 err = bpf_map_get_info_by_fd(fd, &info, &len); 4473 if (err && errno == EINVAL) 4474 err = bpf_get_map_info_from_fdinfo(fd, &info); 4475 if (err) 4476 return libbpf_err(err); 4477 4478 name_len = strlen(info.name); 4479 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4480 new_name = strdup(map->name); 4481 else 4482 new_name = strdup(info.name); 4483 4484 if (!new_name) 4485 return libbpf_err(-errno); 4486 4487 /* 4488 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4489 * This is similar to what we do in ensure_good_fd(), but without 4490 * closing original FD. 4491 */ 4492 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4493 if (new_fd < 0) { 4494 err = -errno; 4495 goto err_free_new_name; 4496 } 4497 4498 err = reuse_fd(map->fd, new_fd); 4499 if (err) 4500 goto err_free_new_name; 4501 4502 free(map->name); 4503 4504 map->name = new_name; 4505 map->def.type = info.type; 4506 map->def.key_size = info.key_size; 4507 map->def.value_size = info.value_size; 4508 map->def.max_entries = info.max_entries; 4509 map->def.map_flags = info.map_flags; 4510 map->btf_key_type_id = info.btf_key_type_id; 4511 map->btf_value_type_id = info.btf_value_type_id; 4512 map->reused = true; 4513 map->map_extra = info.map_extra; 4514 4515 return 0; 4516 4517 err_free_new_name: 4518 free(new_name); 4519 return libbpf_err(err); 4520 } 4521 4522 __u32 bpf_map__max_entries(const struct bpf_map *map) 4523 { 4524 return map->def.max_entries; 4525 } 4526 4527 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4528 { 4529 if (!bpf_map_type__is_map_in_map(map->def.type)) 4530 return errno = EINVAL, NULL; 4531 4532 return map->inner_map; 4533 } 4534 4535 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4536 { 4537 if (map->obj->loaded) 4538 return libbpf_err(-EBUSY); 4539 4540 map->def.max_entries = max_entries; 4541 4542 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4543 if (map_is_ringbuf(map)) 4544 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4545 4546 return 0; 4547 } 4548 4549 static int 4550 bpf_object__probe_loading(struct bpf_object *obj) 4551 { 4552 char *cp, errmsg[STRERR_BUFSIZE]; 4553 struct bpf_insn insns[] = { 4554 BPF_MOV64_IMM(BPF_REG_0, 0), 4555 BPF_EXIT_INSN(), 4556 }; 4557 int ret, insn_cnt = ARRAY_SIZE(insns); 4558 4559 if (obj->gen_loader) 4560 return 0; 4561 4562 ret = bump_rlimit_memlock(); 4563 if (ret) 4564 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4565 4566 /* make sure basic loading works */ 4567 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4568 if (ret < 0) 4569 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4570 if (ret < 0) { 4571 ret = errno; 4572 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4573 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4574 "program. Make sure your kernel supports BPF " 4575 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4576 "set to big enough value.\n", __func__, cp, ret); 4577 return -ret; 4578 } 4579 close(ret); 4580 4581 return 0; 4582 } 4583 4584 static int probe_fd(int fd) 4585 { 4586 if (fd >= 0) 4587 close(fd); 4588 return fd >= 0; 4589 } 4590 4591 static int probe_kern_prog_name(void) 4592 { 4593 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4594 struct bpf_insn insns[] = { 4595 BPF_MOV64_IMM(BPF_REG_0, 0), 4596 BPF_EXIT_INSN(), 4597 }; 4598 union bpf_attr attr; 4599 int ret; 4600 4601 memset(&attr, 0, attr_sz); 4602 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4603 attr.license = ptr_to_u64("GPL"); 4604 attr.insns = ptr_to_u64(insns); 4605 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4606 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4607 4608 /* make sure loading with name works */ 4609 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4610 return probe_fd(ret); 4611 } 4612 4613 static int probe_kern_global_data(void) 4614 { 4615 char *cp, errmsg[STRERR_BUFSIZE]; 4616 struct bpf_insn insns[] = { 4617 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4618 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4619 BPF_MOV64_IMM(BPF_REG_0, 0), 4620 BPF_EXIT_INSN(), 4621 }; 4622 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4623 4624 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4625 if (map < 0) { 4626 ret = -errno; 4627 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4628 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4629 __func__, cp, -ret); 4630 return ret; 4631 } 4632 4633 insns[0].imm = map; 4634 4635 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4636 close(map); 4637 return probe_fd(ret); 4638 } 4639 4640 static int probe_kern_btf(void) 4641 { 4642 static const char strs[] = "\0int"; 4643 __u32 types[] = { 4644 /* int */ 4645 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4646 }; 4647 4648 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4649 strs, sizeof(strs))); 4650 } 4651 4652 static int probe_kern_btf_func(void) 4653 { 4654 static const char strs[] = "\0int\0x\0a"; 4655 /* void x(int a) {} */ 4656 __u32 types[] = { 4657 /* int */ 4658 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4659 /* FUNC_PROTO */ /* [2] */ 4660 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4661 BTF_PARAM_ENC(7, 1), 4662 /* FUNC x */ /* [3] */ 4663 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4664 }; 4665 4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4667 strs, sizeof(strs))); 4668 } 4669 4670 static int probe_kern_btf_func_global(void) 4671 { 4672 static const char strs[] = "\0int\0x\0a"; 4673 /* static void x(int a) {} */ 4674 __u32 types[] = { 4675 /* int */ 4676 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4677 /* FUNC_PROTO */ /* [2] */ 4678 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4679 BTF_PARAM_ENC(7, 1), 4680 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4681 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4682 }; 4683 4684 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4685 strs, sizeof(strs))); 4686 } 4687 4688 static int probe_kern_btf_datasec(void) 4689 { 4690 static const char strs[] = "\0x\0.data"; 4691 /* static int a; */ 4692 __u32 types[] = { 4693 /* int */ 4694 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4695 /* VAR x */ /* [2] */ 4696 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4697 BTF_VAR_STATIC, 4698 /* DATASEC val */ /* [3] */ 4699 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4700 BTF_VAR_SECINFO_ENC(2, 0, 4), 4701 }; 4702 4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4704 strs, sizeof(strs))); 4705 } 4706 4707 static int probe_kern_btf_float(void) 4708 { 4709 static const char strs[] = "\0float"; 4710 __u32 types[] = { 4711 /* float */ 4712 BTF_TYPE_FLOAT_ENC(1, 4), 4713 }; 4714 4715 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4716 strs, sizeof(strs))); 4717 } 4718 4719 static int probe_kern_btf_decl_tag(void) 4720 { 4721 static const char strs[] = "\0tag"; 4722 __u32 types[] = { 4723 /* int */ 4724 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4725 /* VAR x */ /* [2] */ 4726 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4727 BTF_VAR_STATIC, 4728 /* attr */ 4729 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4730 }; 4731 4732 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4733 strs, sizeof(strs))); 4734 } 4735 4736 static int probe_kern_btf_type_tag(void) 4737 { 4738 static const char strs[] = "\0tag"; 4739 __u32 types[] = { 4740 /* int */ 4741 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4742 /* attr */ 4743 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4744 /* ptr */ 4745 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4746 }; 4747 4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4749 strs, sizeof(strs))); 4750 } 4751 4752 static int probe_kern_array_mmap(void) 4753 { 4754 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4755 int fd; 4756 4757 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4758 return probe_fd(fd); 4759 } 4760 4761 static int probe_kern_exp_attach_type(void) 4762 { 4763 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4764 struct bpf_insn insns[] = { 4765 BPF_MOV64_IMM(BPF_REG_0, 0), 4766 BPF_EXIT_INSN(), 4767 }; 4768 int fd, insn_cnt = ARRAY_SIZE(insns); 4769 4770 /* use any valid combination of program type and (optional) 4771 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4772 * to see if kernel supports expected_attach_type field for 4773 * BPF_PROG_LOAD command 4774 */ 4775 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4776 return probe_fd(fd); 4777 } 4778 4779 static int probe_kern_probe_read_kernel(void) 4780 { 4781 struct bpf_insn insns[] = { 4782 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4783 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4784 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4785 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4786 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4787 BPF_EXIT_INSN(), 4788 }; 4789 int fd, insn_cnt = ARRAY_SIZE(insns); 4790 4791 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4792 return probe_fd(fd); 4793 } 4794 4795 static int probe_prog_bind_map(void) 4796 { 4797 char *cp, errmsg[STRERR_BUFSIZE]; 4798 struct bpf_insn insns[] = { 4799 BPF_MOV64_IMM(BPF_REG_0, 0), 4800 BPF_EXIT_INSN(), 4801 }; 4802 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4803 4804 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4805 if (map < 0) { 4806 ret = -errno; 4807 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4808 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4809 __func__, cp, -ret); 4810 return ret; 4811 } 4812 4813 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4814 if (prog < 0) { 4815 close(map); 4816 return 0; 4817 } 4818 4819 ret = bpf_prog_bind_map(prog, map, NULL); 4820 4821 close(map); 4822 close(prog); 4823 4824 return ret >= 0; 4825 } 4826 4827 static int probe_module_btf(void) 4828 { 4829 static const char strs[] = "\0int"; 4830 __u32 types[] = { 4831 /* int */ 4832 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4833 }; 4834 struct bpf_btf_info info; 4835 __u32 len = sizeof(info); 4836 char name[16]; 4837 int fd, err; 4838 4839 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4840 if (fd < 0) 4841 return 0; /* BTF not supported at all */ 4842 4843 memset(&info, 0, sizeof(info)); 4844 info.name = ptr_to_u64(name); 4845 info.name_len = sizeof(name); 4846 4847 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4848 * kernel's module BTF support coincides with support for 4849 * name/name_len fields in struct bpf_btf_info. 4850 */ 4851 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4852 close(fd); 4853 return !err; 4854 } 4855 4856 static int probe_perf_link(void) 4857 { 4858 struct bpf_insn insns[] = { 4859 BPF_MOV64_IMM(BPF_REG_0, 0), 4860 BPF_EXIT_INSN(), 4861 }; 4862 int prog_fd, link_fd, err; 4863 4864 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4865 insns, ARRAY_SIZE(insns), NULL); 4866 if (prog_fd < 0) 4867 return -errno; 4868 4869 /* use invalid perf_event FD to get EBADF, if link is supported; 4870 * otherwise EINVAL should be returned 4871 */ 4872 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4873 err = -errno; /* close() can clobber errno */ 4874 4875 if (link_fd >= 0) 4876 close(link_fd); 4877 close(prog_fd); 4878 4879 return link_fd < 0 && err == -EBADF; 4880 } 4881 4882 static int probe_uprobe_multi_link(void) 4883 { 4884 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4885 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4886 ); 4887 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4888 struct bpf_insn insns[] = { 4889 BPF_MOV64_IMM(BPF_REG_0, 0), 4890 BPF_EXIT_INSN(), 4891 }; 4892 int prog_fd, link_fd, err; 4893 unsigned long offset = 0; 4894 4895 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4896 insns, ARRAY_SIZE(insns), &load_opts); 4897 if (prog_fd < 0) 4898 return -errno; 4899 4900 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4901 link_opts.uprobe_multi.path = "/"; 4902 link_opts.uprobe_multi.offsets = &offset; 4903 link_opts.uprobe_multi.cnt = 1; 4904 4905 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4906 err = -errno; /* close() can clobber errno */ 4907 4908 if (link_fd >= 0) 4909 close(link_fd); 4910 close(prog_fd); 4911 4912 return link_fd < 0 && err == -EBADF; 4913 } 4914 4915 static int probe_kern_bpf_cookie(void) 4916 { 4917 struct bpf_insn insns[] = { 4918 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4919 BPF_EXIT_INSN(), 4920 }; 4921 int ret, insn_cnt = ARRAY_SIZE(insns); 4922 4923 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4924 return probe_fd(ret); 4925 } 4926 4927 static int probe_kern_btf_enum64(void) 4928 { 4929 static const char strs[] = "\0enum64"; 4930 __u32 types[] = { 4931 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4932 }; 4933 4934 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4935 strs, sizeof(strs))); 4936 } 4937 4938 static int probe_kern_syscall_wrapper(void); 4939 4940 enum kern_feature_result { 4941 FEAT_UNKNOWN = 0, 4942 FEAT_SUPPORTED = 1, 4943 FEAT_MISSING = 2, 4944 }; 4945 4946 typedef int (*feature_probe_fn)(void); 4947 4948 static struct kern_feature_desc { 4949 const char *desc; 4950 feature_probe_fn probe; 4951 enum kern_feature_result res; 4952 } feature_probes[__FEAT_CNT] = { 4953 [FEAT_PROG_NAME] = { 4954 "BPF program name", probe_kern_prog_name, 4955 }, 4956 [FEAT_GLOBAL_DATA] = { 4957 "global variables", probe_kern_global_data, 4958 }, 4959 [FEAT_BTF] = { 4960 "minimal BTF", probe_kern_btf, 4961 }, 4962 [FEAT_BTF_FUNC] = { 4963 "BTF functions", probe_kern_btf_func, 4964 }, 4965 [FEAT_BTF_GLOBAL_FUNC] = { 4966 "BTF global function", probe_kern_btf_func_global, 4967 }, 4968 [FEAT_BTF_DATASEC] = { 4969 "BTF data section and variable", probe_kern_btf_datasec, 4970 }, 4971 [FEAT_ARRAY_MMAP] = { 4972 "ARRAY map mmap()", probe_kern_array_mmap, 4973 }, 4974 [FEAT_EXP_ATTACH_TYPE] = { 4975 "BPF_PROG_LOAD expected_attach_type attribute", 4976 probe_kern_exp_attach_type, 4977 }, 4978 [FEAT_PROBE_READ_KERN] = { 4979 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4980 }, 4981 [FEAT_PROG_BIND_MAP] = { 4982 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4983 }, 4984 [FEAT_MODULE_BTF] = { 4985 "module BTF support", probe_module_btf, 4986 }, 4987 [FEAT_BTF_FLOAT] = { 4988 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4989 }, 4990 [FEAT_PERF_LINK] = { 4991 "BPF perf link support", probe_perf_link, 4992 }, 4993 [FEAT_BTF_DECL_TAG] = { 4994 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4995 }, 4996 [FEAT_BTF_TYPE_TAG] = { 4997 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4998 }, 4999 [FEAT_MEMCG_ACCOUNT] = { 5000 "memcg-based memory accounting", probe_memcg_account, 5001 }, 5002 [FEAT_BPF_COOKIE] = { 5003 "BPF cookie support", probe_kern_bpf_cookie, 5004 }, 5005 [FEAT_BTF_ENUM64] = { 5006 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5007 }, 5008 [FEAT_SYSCALL_WRAPPER] = { 5009 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5010 }, 5011 [FEAT_UPROBE_MULTI_LINK] = { 5012 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5013 }, 5014 }; 5015 5016 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5017 { 5018 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5019 int ret; 5020 5021 if (obj && obj->gen_loader) 5022 /* To generate loader program assume the latest kernel 5023 * to avoid doing extra prog_load, map_create syscalls. 5024 */ 5025 return true; 5026 5027 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5028 ret = feat->probe(); 5029 if (ret > 0) { 5030 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5031 } else if (ret == 0) { 5032 WRITE_ONCE(feat->res, FEAT_MISSING); 5033 } else { 5034 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5035 WRITE_ONCE(feat->res, FEAT_MISSING); 5036 } 5037 } 5038 5039 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5040 } 5041 5042 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5043 { 5044 struct bpf_map_info map_info; 5045 char msg[STRERR_BUFSIZE]; 5046 __u32 map_info_len = sizeof(map_info); 5047 int err; 5048 5049 memset(&map_info, 0, map_info_len); 5050 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5051 if (err && errno == EINVAL) 5052 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5053 if (err) { 5054 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5055 libbpf_strerror_r(errno, msg, sizeof(msg))); 5056 return false; 5057 } 5058 5059 return (map_info.type == map->def.type && 5060 map_info.key_size == map->def.key_size && 5061 map_info.value_size == map->def.value_size && 5062 map_info.max_entries == map->def.max_entries && 5063 map_info.map_flags == map->def.map_flags && 5064 map_info.map_extra == map->map_extra); 5065 } 5066 5067 static int 5068 bpf_object__reuse_map(struct bpf_map *map) 5069 { 5070 char *cp, errmsg[STRERR_BUFSIZE]; 5071 int err, pin_fd; 5072 5073 pin_fd = bpf_obj_get(map->pin_path); 5074 if (pin_fd < 0) { 5075 err = -errno; 5076 if (err == -ENOENT) { 5077 pr_debug("found no pinned map to reuse at '%s'\n", 5078 map->pin_path); 5079 return 0; 5080 } 5081 5082 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5083 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5084 map->pin_path, cp); 5085 return err; 5086 } 5087 5088 if (!map_is_reuse_compat(map, pin_fd)) { 5089 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5090 map->pin_path); 5091 close(pin_fd); 5092 return -EINVAL; 5093 } 5094 5095 err = bpf_map__reuse_fd(map, pin_fd); 5096 close(pin_fd); 5097 if (err) 5098 return err; 5099 5100 map->pinned = true; 5101 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5102 5103 return 0; 5104 } 5105 5106 static int 5107 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5108 { 5109 enum libbpf_map_type map_type = map->libbpf_type; 5110 char *cp, errmsg[STRERR_BUFSIZE]; 5111 int err, zero = 0; 5112 5113 if (obj->gen_loader) { 5114 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5115 map->mmaped, map->def.value_size); 5116 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5117 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5118 return 0; 5119 } 5120 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5121 if (err) { 5122 err = -errno; 5123 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5124 pr_warn("Error setting initial map(%s) contents: %s\n", 5125 map->name, cp); 5126 return err; 5127 } 5128 5129 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5130 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5131 err = bpf_map_freeze(map->fd); 5132 if (err) { 5133 err = -errno; 5134 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5135 pr_warn("Error freezing map(%s) as read-only: %s\n", 5136 map->name, cp); 5137 return err; 5138 } 5139 } 5140 return 0; 5141 } 5142 5143 static void bpf_map__destroy(struct bpf_map *map); 5144 5145 static bool map_is_created(const struct bpf_map *map) 5146 { 5147 return map->obj->loaded || map->reused; 5148 } 5149 5150 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5151 { 5152 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5153 struct bpf_map_def *def = &map->def; 5154 const char *map_name = NULL; 5155 int err = 0, map_fd; 5156 5157 if (kernel_supports(obj, FEAT_PROG_NAME)) 5158 map_name = map->name; 5159 create_attr.map_ifindex = map->map_ifindex; 5160 create_attr.map_flags = def->map_flags; 5161 create_attr.numa_node = map->numa_node; 5162 create_attr.map_extra = map->map_extra; 5163 5164 if (bpf_map__is_struct_ops(map)) 5165 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5166 5167 if (obj->btf && btf__fd(obj->btf) >= 0) { 5168 create_attr.btf_fd = btf__fd(obj->btf); 5169 create_attr.btf_key_type_id = map->btf_key_type_id; 5170 create_attr.btf_value_type_id = map->btf_value_type_id; 5171 } 5172 5173 if (bpf_map_type__is_map_in_map(def->type)) { 5174 if (map->inner_map) { 5175 err = bpf_object__create_map(obj, map->inner_map, true); 5176 if (err) { 5177 pr_warn("map '%s': failed to create inner map: %d\n", 5178 map->name, err); 5179 return err; 5180 } 5181 map->inner_map_fd = map->inner_map->fd; 5182 } 5183 if (map->inner_map_fd >= 0) 5184 create_attr.inner_map_fd = map->inner_map_fd; 5185 } 5186 5187 switch (def->type) { 5188 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5189 case BPF_MAP_TYPE_CGROUP_ARRAY: 5190 case BPF_MAP_TYPE_STACK_TRACE: 5191 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5192 case BPF_MAP_TYPE_HASH_OF_MAPS: 5193 case BPF_MAP_TYPE_DEVMAP: 5194 case BPF_MAP_TYPE_DEVMAP_HASH: 5195 case BPF_MAP_TYPE_CPUMAP: 5196 case BPF_MAP_TYPE_XSKMAP: 5197 case BPF_MAP_TYPE_SOCKMAP: 5198 case BPF_MAP_TYPE_SOCKHASH: 5199 case BPF_MAP_TYPE_QUEUE: 5200 case BPF_MAP_TYPE_STACK: 5201 create_attr.btf_fd = 0; 5202 create_attr.btf_key_type_id = 0; 5203 create_attr.btf_value_type_id = 0; 5204 map->btf_key_type_id = 0; 5205 map->btf_value_type_id = 0; 5206 default: 5207 break; 5208 } 5209 5210 if (obj->gen_loader) { 5211 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5212 def->key_size, def->value_size, def->max_entries, 5213 &create_attr, is_inner ? -1 : map - obj->maps); 5214 /* We keep pretenting we have valid FD to pass various fd >= 0 5215 * checks by just keeping original placeholder FDs in place. 5216 * See bpf_object__add_map() comment. 5217 * This placeholder fd will not be used with any syscall and 5218 * will be reset to -1 eventually. 5219 */ 5220 map_fd = map->fd; 5221 } else { 5222 map_fd = bpf_map_create(def->type, map_name, 5223 def->key_size, def->value_size, 5224 def->max_entries, &create_attr); 5225 } 5226 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5227 char *cp, errmsg[STRERR_BUFSIZE]; 5228 5229 err = -errno; 5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5231 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5232 map->name, cp, err); 5233 create_attr.btf_fd = 0; 5234 create_attr.btf_key_type_id = 0; 5235 create_attr.btf_value_type_id = 0; 5236 map->btf_key_type_id = 0; 5237 map->btf_value_type_id = 0; 5238 map_fd = bpf_map_create(def->type, map_name, 5239 def->key_size, def->value_size, 5240 def->max_entries, &create_attr); 5241 } 5242 5243 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5244 if (obj->gen_loader) 5245 map->inner_map->fd = -1; 5246 bpf_map__destroy(map->inner_map); 5247 zfree(&map->inner_map); 5248 } 5249 5250 if (map_fd < 0) 5251 return map_fd; 5252 5253 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5254 if (map->fd == map_fd) 5255 return 0; 5256 5257 /* Keep placeholder FD value but now point it to the BPF map object. 5258 * This way everything that relied on this map's FD (e.g., relocated 5259 * ldimm64 instructions) will stay valid and won't need adjustments. 5260 * map->fd stays valid but now point to what map_fd points to. 5261 */ 5262 return reuse_fd(map->fd, map_fd); 5263 } 5264 5265 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5266 { 5267 const struct bpf_map *targ_map; 5268 unsigned int i; 5269 int fd, err = 0; 5270 5271 for (i = 0; i < map->init_slots_sz; i++) { 5272 if (!map->init_slots[i]) 5273 continue; 5274 5275 targ_map = map->init_slots[i]; 5276 fd = targ_map->fd; 5277 5278 if (obj->gen_loader) { 5279 bpf_gen__populate_outer_map(obj->gen_loader, 5280 map - obj->maps, i, 5281 targ_map - obj->maps); 5282 } else { 5283 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5284 } 5285 if (err) { 5286 err = -errno; 5287 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5288 map->name, i, targ_map->name, fd, err); 5289 return err; 5290 } 5291 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5292 map->name, i, targ_map->name, fd); 5293 } 5294 5295 zfree(&map->init_slots); 5296 map->init_slots_sz = 0; 5297 5298 return 0; 5299 } 5300 5301 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5302 { 5303 const struct bpf_program *targ_prog; 5304 unsigned int i; 5305 int fd, err; 5306 5307 if (obj->gen_loader) 5308 return -ENOTSUP; 5309 5310 for (i = 0; i < map->init_slots_sz; i++) { 5311 if (!map->init_slots[i]) 5312 continue; 5313 5314 targ_prog = map->init_slots[i]; 5315 fd = bpf_program__fd(targ_prog); 5316 5317 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5318 if (err) { 5319 err = -errno; 5320 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5321 map->name, i, targ_prog->name, fd, err); 5322 return err; 5323 } 5324 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5325 map->name, i, targ_prog->name, fd); 5326 } 5327 5328 zfree(&map->init_slots); 5329 map->init_slots_sz = 0; 5330 5331 return 0; 5332 } 5333 5334 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5335 { 5336 struct bpf_map *map; 5337 int i, err; 5338 5339 for (i = 0; i < obj->nr_maps; i++) { 5340 map = &obj->maps[i]; 5341 5342 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5343 continue; 5344 5345 err = init_prog_array_slots(obj, map); 5346 if (err < 0) 5347 return err; 5348 } 5349 return 0; 5350 } 5351 5352 static int map_set_def_max_entries(struct bpf_map *map) 5353 { 5354 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5355 int nr_cpus; 5356 5357 nr_cpus = libbpf_num_possible_cpus(); 5358 if (nr_cpus < 0) { 5359 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5360 map->name, nr_cpus); 5361 return nr_cpus; 5362 } 5363 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5364 map->def.max_entries = nr_cpus; 5365 } 5366 5367 return 0; 5368 } 5369 5370 static int 5371 bpf_object__create_maps(struct bpf_object *obj) 5372 { 5373 struct bpf_map *map; 5374 char *cp, errmsg[STRERR_BUFSIZE]; 5375 unsigned int i, j; 5376 int err; 5377 bool retried; 5378 5379 for (i = 0; i < obj->nr_maps; i++) { 5380 map = &obj->maps[i]; 5381 5382 /* To support old kernels, we skip creating global data maps 5383 * (.rodata, .data, .kconfig, etc); later on, during program 5384 * loading, if we detect that at least one of the to-be-loaded 5385 * programs is referencing any global data map, we'll error 5386 * out with program name and relocation index logged. 5387 * This approach allows to accommodate Clang emitting 5388 * unnecessary .rodata.str1.1 sections for string literals, 5389 * but also it allows to have CO-RE applications that use 5390 * global variables in some of BPF programs, but not others. 5391 * If those global variable-using programs are not loaded at 5392 * runtime due to bpf_program__set_autoload(prog, false), 5393 * bpf_object loading will succeed just fine even on old 5394 * kernels. 5395 */ 5396 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5397 map->autocreate = false; 5398 5399 if (!map->autocreate) { 5400 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5401 continue; 5402 } 5403 5404 err = map_set_def_max_entries(map); 5405 if (err) 5406 goto err_out; 5407 5408 retried = false; 5409 retry: 5410 if (map->pin_path) { 5411 err = bpf_object__reuse_map(map); 5412 if (err) { 5413 pr_warn("map '%s': error reusing pinned map\n", 5414 map->name); 5415 goto err_out; 5416 } 5417 if (retried && map->fd < 0) { 5418 pr_warn("map '%s': cannot find pinned map\n", 5419 map->name); 5420 err = -ENOENT; 5421 goto err_out; 5422 } 5423 } 5424 5425 if (map->reused) { 5426 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5427 map->name, map->fd); 5428 } else { 5429 err = bpf_object__create_map(obj, map, false); 5430 if (err) 5431 goto err_out; 5432 5433 pr_debug("map '%s': created successfully, fd=%d\n", 5434 map->name, map->fd); 5435 5436 if (bpf_map__is_internal(map)) { 5437 err = bpf_object__populate_internal_map(obj, map); 5438 if (err < 0) 5439 goto err_out; 5440 } 5441 5442 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5443 err = init_map_in_map_slots(obj, map); 5444 if (err < 0) 5445 goto err_out; 5446 } 5447 } 5448 5449 if (map->pin_path && !map->pinned) { 5450 err = bpf_map__pin(map, NULL); 5451 if (err) { 5452 if (!retried && err == -EEXIST) { 5453 retried = true; 5454 goto retry; 5455 } 5456 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5457 map->name, map->pin_path, err); 5458 goto err_out; 5459 } 5460 } 5461 } 5462 5463 return 0; 5464 5465 err_out: 5466 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5467 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5468 pr_perm_msg(err); 5469 for (j = 0; j < i; j++) 5470 zclose(obj->maps[j].fd); 5471 return err; 5472 } 5473 5474 static bool bpf_core_is_flavor_sep(const char *s) 5475 { 5476 /* check X___Y name pattern, where X and Y are not underscores */ 5477 return s[0] != '_' && /* X */ 5478 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5479 s[4] != '_'; /* Y */ 5480 } 5481 5482 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5483 * before last triple underscore. Struct name part after last triple 5484 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5485 */ 5486 size_t bpf_core_essential_name_len(const char *name) 5487 { 5488 size_t n = strlen(name); 5489 int i; 5490 5491 for (i = n - 5; i >= 0; i--) { 5492 if (bpf_core_is_flavor_sep(name + i)) 5493 return i + 1; 5494 } 5495 return n; 5496 } 5497 5498 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5499 { 5500 if (!cands) 5501 return; 5502 5503 free(cands->cands); 5504 free(cands); 5505 } 5506 5507 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5508 size_t local_essent_len, 5509 const struct btf *targ_btf, 5510 const char *targ_btf_name, 5511 int targ_start_id, 5512 struct bpf_core_cand_list *cands) 5513 { 5514 struct bpf_core_cand *new_cands, *cand; 5515 const struct btf_type *t, *local_t; 5516 const char *targ_name, *local_name; 5517 size_t targ_essent_len; 5518 int n, i; 5519 5520 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5521 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5522 5523 n = btf__type_cnt(targ_btf); 5524 for (i = targ_start_id; i < n; i++) { 5525 t = btf__type_by_id(targ_btf, i); 5526 if (!btf_kind_core_compat(t, local_t)) 5527 continue; 5528 5529 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5530 if (str_is_empty(targ_name)) 5531 continue; 5532 5533 targ_essent_len = bpf_core_essential_name_len(targ_name); 5534 if (targ_essent_len != local_essent_len) 5535 continue; 5536 5537 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5538 continue; 5539 5540 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5541 local_cand->id, btf_kind_str(local_t), 5542 local_name, i, btf_kind_str(t), targ_name, 5543 targ_btf_name); 5544 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5545 sizeof(*cands->cands)); 5546 if (!new_cands) 5547 return -ENOMEM; 5548 5549 cand = &new_cands[cands->len]; 5550 cand->btf = targ_btf; 5551 cand->id = i; 5552 5553 cands->cands = new_cands; 5554 cands->len++; 5555 } 5556 return 0; 5557 } 5558 5559 static int load_module_btfs(struct bpf_object *obj) 5560 { 5561 struct bpf_btf_info info; 5562 struct module_btf *mod_btf; 5563 struct btf *btf; 5564 char name[64]; 5565 __u32 id = 0, len; 5566 int err, fd; 5567 5568 if (obj->btf_modules_loaded) 5569 return 0; 5570 5571 if (obj->gen_loader) 5572 return 0; 5573 5574 /* don't do this again, even if we find no module BTFs */ 5575 obj->btf_modules_loaded = true; 5576 5577 /* kernel too old to support module BTFs */ 5578 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5579 return 0; 5580 5581 while (true) { 5582 err = bpf_btf_get_next_id(id, &id); 5583 if (err && errno == ENOENT) 5584 return 0; 5585 if (err && errno == EPERM) { 5586 pr_debug("skipping module BTFs loading, missing privileges\n"); 5587 return 0; 5588 } 5589 if (err) { 5590 err = -errno; 5591 pr_warn("failed to iterate BTF objects: %d\n", err); 5592 return err; 5593 } 5594 5595 fd = bpf_btf_get_fd_by_id(id); 5596 if (fd < 0) { 5597 if (errno == ENOENT) 5598 continue; /* expected race: BTF was unloaded */ 5599 err = -errno; 5600 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5601 return err; 5602 } 5603 5604 len = sizeof(info); 5605 memset(&info, 0, sizeof(info)); 5606 info.name = ptr_to_u64(name); 5607 info.name_len = sizeof(name); 5608 5609 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5610 if (err) { 5611 err = -errno; 5612 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5613 goto err_out; 5614 } 5615 5616 /* ignore non-module BTFs */ 5617 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5618 close(fd); 5619 continue; 5620 } 5621 5622 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5623 err = libbpf_get_error(btf); 5624 if (err) { 5625 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5626 name, id, err); 5627 goto err_out; 5628 } 5629 5630 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5631 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5632 if (err) 5633 goto err_out; 5634 5635 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5636 5637 mod_btf->btf = btf; 5638 mod_btf->id = id; 5639 mod_btf->fd = fd; 5640 mod_btf->name = strdup(name); 5641 if (!mod_btf->name) { 5642 err = -ENOMEM; 5643 goto err_out; 5644 } 5645 continue; 5646 5647 err_out: 5648 close(fd); 5649 return err; 5650 } 5651 5652 return 0; 5653 } 5654 5655 static struct bpf_core_cand_list * 5656 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5657 { 5658 struct bpf_core_cand local_cand = {}; 5659 struct bpf_core_cand_list *cands; 5660 const struct btf *main_btf; 5661 const struct btf_type *local_t; 5662 const char *local_name; 5663 size_t local_essent_len; 5664 int err, i; 5665 5666 local_cand.btf = local_btf; 5667 local_cand.id = local_type_id; 5668 local_t = btf__type_by_id(local_btf, local_type_id); 5669 if (!local_t) 5670 return ERR_PTR(-EINVAL); 5671 5672 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5673 if (str_is_empty(local_name)) 5674 return ERR_PTR(-EINVAL); 5675 local_essent_len = bpf_core_essential_name_len(local_name); 5676 5677 cands = calloc(1, sizeof(*cands)); 5678 if (!cands) 5679 return ERR_PTR(-ENOMEM); 5680 5681 /* Attempt to find target candidates in vmlinux BTF first */ 5682 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5683 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5684 if (err) 5685 goto err_out; 5686 5687 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5688 if (cands->len) 5689 return cands; 5690 5691 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5692 if (obj->btf_vmlinux_override) 5693 return cands; 5694 5695 /* now look through module BTFs, trying to still find candidates */ 5696 err = load_module_btfs(obj); 5697 if (err) 5698 goto err_out; 5699 5700 for (i = 0; i < obj->btf_module_cnt; i++) { 5701 err = bpf_core_add_cands(&local_cand, local_essent_len, 5702 obj->btf_modules[i].btf, 5703 obj->btf_modules[i].name, 5704 btf__type_cnt(obj->btf_vmlinux), 5705 cands); 5706 if (err) 5707 goto err_out; 5708 } 5709 5710 return cands; 5711 err_out: 5712 bpf_core_free_cands(cands); 5713 return ERR_PTR(err); 5714 } 5715 5716 /* Check local and target types for compatibility. This check is used for 5717 * type-based CO-RE relocations and follow slightly different rules than 5718 * field-based relocations. This function assumes that root types were already 5719 * checked for name match. Beyond that initial root-level name check, names 5720 * are completely ignored. Compatibility rules are as follows: 5721 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5722 * kind should match for local and target types (i.e., STRUCT is not 5723 * compatible with UNION); 5724 * - for ENUMs, the size is ignored; 5725 * - for INT, size and signedness are ignored; 5726 * - for ARRAY, dimensionality is ignored, element types are checked for 5727 * compatibility recursively; 5728 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5729 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5730 * - FUNC_PROTOs are compatible if they have compatible signature: same 5731 * number of input args and compatible return and argument types. 5732 * These rules are not set in stone and probably will be adjusted as we get 5733 * more experience with using BPF CO-RE relocations. 5734 */ 5735 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5736 const struct btf *targ_btf, __u32 targ_id) 5737 { 5738 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5739 } 5740 5741 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5742 const struct btf *targ_btf, __u32 targ_id) 5743 { 5744 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5745 } 5746 5747 static size_t bpf_core_hash_fn(const long key, void *ctx) 5748 { 5749 return key; 5750 } 5751 5752 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5753 { 5754 return k1 == k2; 5755 } 5756 5757 static int record_relo_core(struct bpf_program *prog, 5758 const struct bpf_core_relo *core_relo, int insn_idx) 5759 { 5760 struct reloc_desc *relos, *relo; 5761 5762 relos = libbpf_reallocarray(prog->reloc_desc, 5763 prog->nr_reloc + 1, sizeof(*relos)); 5764 if (!relos) 5765 return -ENOMEM; 5766 relo = &relos[prog->nr_reloc]; 5767 relo->type = RELO_CORE; 5768 relo->insn_idx = insn_idx; 5769 relo->core_relo = core_relo; 5770 prog->reloc_desc = relos; 5771 prog->nr_reloc++; 5772 return 0; 5773 } 5774 5775 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5776 { 5777 struct reloc_desc *relo; 5778 int i; 5779 5780 for (i = 0; i < prog->nr_reloc; i++) { 5781 relo = &prog->reloc_desc[i]; 5782 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5783 continue; 5784 5785 return relo->core_relo; 5786 } 5787 5788 return NULL; 5789 } 5790 5791 static int bpf_core_resolve_relo(struct bpf_program *prog, 5792 const struct bpf_core_relo *relo, 5793 int relo_idx, 5794 const struct btf *local_btf, 5795 struct hashmap *cand_cache, 5796 struct bpf_core_relo_res *targ_res) 5797 { 5798 struct bpf_core_spec specs_scratch[3] = {}; 5799 struct bpf_core_cand_list *cands = NULL; 5800 const char *prog_name = prog->name; 5801 const struct btf_type *local_type; 5802 const char *local_name; 5803 __u32 local_id = relo->type_id; 5804 int err; 5805 5806 local_type = btf__type_by_id(local_btf, local_id); 5807 if (!local_type) 5808 return -EINVAL; 5809 5810 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5811 if (!local_name) 5812 return -EINVAL; 5813 5814 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5815 !hashmap__find(cand_cache, local_id, &cands)) { 5816 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5817 if (IS_ERR(cands)) { 5818 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5819 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5820 local_name, PTR_ERR(cands)); 5821 return PTR_ERR(cands); 5822 } 5823 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5824 if (err) { 5825 bpf_core_free_cands(cands); 5826 return err; 5827 } 5828 } 5829 5830 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5831 targ_res); 5832 } 5833 5834 static int 5835 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5836 { 5837 const struct btf_ext_info_sec *sec; 5838 struct bpf_core_relo_res targ_res; 5839 const struct bpf_core_relo *rec; 5840 const struct btf_ext_info *seg; 5841 struct hashmap_entry *entry; 5842 struct hashmap *cand_cache = NULL; 5843 struct bpf_program *prog; 5844 struct bpf_insn *insn; 5845 const char *sec_name; 5846 int i, err = 0, insn_idx, sec_idx, sec_num; 5847 5848 if (obj->btf_ext->core_relo_info.len == 0) 5849 return 0; 5850 5851 if (targ_btf_path) { 5852 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5853 err = libbpf_get_error(obj->btf_vmlinux_override); 5854 if (err) { 5855 pr_warn("failed to parse target BTF: %d\n", err); 5856 return err; 5857 } 5858 } 5859 5860 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5861 if (IS_ERR(cand_cache)) { 5862 err = PTR_ERR(cand_cache); 5863 goto out; 5864 } 5865 5866 seg = &obj->btf_ext->core_relo_info; 5867 sec_num = 0; 5868 for_each_btf_ext_sec(seg, sec) { 5869 sec_idx = seg->sec_idxs[sec_num]; 5870 sec_num++; 5871 5872 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5873 if (str_is_empty(sec_name)) { 5874 err = -EINVAL; 5875 goto out; 5876 } 5877 5878 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5879 5880 for_each_btf_ext_rec(seg, sec, i, rec) { 5881 if (rec->insn_off % BPF_INSN_SZ) 5882 return -EINVAL; 5883 insn_idx = rec->insn_off / BPF_INSN_SZ; 5884 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5885 if (!prog) { 5886 /* When __weak subprog is "overridden" by another instance 5887 * of the subprog from a different object file, linker still 5888 * appends all the .BTF.ext info that used to belong to that 5889 * eliminated subprogram. 5890 * This is similar to what x86-64 linker does for relocations. 5891 * So just ignore such relocations just like we ignore 5892 * subprog instructions when discovering subprograms. 5893 */ 5894 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5895 sec_name, i, insn_idx); 5896 continue; 5897 } 5898 /* no need to apply CO-RE relocation if the program is 5899 * not going to be loaded 5900 */ 5901 if (!prog->autoload) 5902 continue; 5903 5904 /* adjust insn_idx from section frame of reference to the local 5905 * program's frame of reference; (sub-)program code is not yet 5906 * relocated, so it's enough to just subtract in-section offset 5907 */ 5908 insn_idx = insn_idx - prog->sec_insn_off; 5909 if (insn_idx >= prog->insns_cnt) 5910 return -EINVAL; 5911 insn = &prog->insns[insn_idx]; 5912 5913 err = record_relo_core(prog, rec, insn_idx); 5914 if (err) { 5915 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5916 prog->name, i, err); 5917 goto out; 5918 } 5919 5920 if (prog->obj->gen_loader) 5921 continue; 5922 5923 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5924 if (err) { 5925 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5926 prog->name, i, err); 5927 goto out; 5928 } 5929 5930 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5931 if (err) { 5932 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5933 prog->name, i, insn_idx, err); 5934 goto out; 5935 } 5936 } 5937 } 5938 5939 out: 5940 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5941 btf__free(obj->btf_vmlinux_override); 5942 obj->btf_vmlinux_override = NULL; 5943 5944 if (!IS_ERR_OR_NULL(cand_cache)) { 5945 hashmap__for_each_entry(cand_cache, entry, i) { 5946 bpf_core_free_cands(entry->pvalue); 5947 } 5948 hashmap__free(cand_cache); 5949 } 5950 return err; 5951 } 5952 5953 /* base map load ldimm64 special constant, used also for log fixup logic */ 5954 #define POISON_LDIMM64_MAP_BASE 2001000000 5955 #define POISON_LDIMM64_MAP_PFX "200100" 5956 5957 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5958 int insn_idx, struct bpf_insn *insn, 5959 int map_idx, const struct bpf_map *map) 5960 { 5961 int i; 5962 5963 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5964 prog->name, relo_idx, insn_idx, map_idx, map->name); 5965 5966 /* we turn single ldimm64 into two identical invalid calls */ 5967 for (i = 0; i < 2; i++) { 5968 insn->code = BPF_JMP | BPF_CALL; 5969 insn->dst_reg = 0; 5970 insn->src_reg = 0; 5971 insn->off = 0; 5972 /* if this instruction is reachable (not a dead code), 5973 * verifier will complain with something like: 5974 * invalid func unknown#2001000123 5975 * where lower 123 is map index into obj->maps[] array 5976 */ 5977 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5978 5979 insn++; 5980 } 5981 } 5982 5983 /* unresolved kfunc call special constant, used also for log fixup logic */ 5984 #define POISON_CALL_KFUNC_BASE 2002000000 5985 #define POISON_CALL_KFUNC_PFX "2002" 5986 5987 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5988 int insn_idx, struct bpf_insn *insn, 5989 int ext_idx, const struct extern_desc *ext) 5990 { 5991 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5992 prog->name, relo_idx, insn_idx, ext->name); 5993 5994 /* we turn kfunc call into invalid helper call with identifiable constant */ 5995 insn->code = BPF_JMP | BPF_CALL; 5996 insn->dst_reg = 0; 5997 insn->src_reg = 0; 5998 insn->off = 0; 5999 /* if this instruction is reachable (not a dead code), 6000 * verifier will complain with something like: 6001 * invalid func unknown#2001000123 6002 * where lower 123 is extern index into obj->externs[] array 6003 */ 6004 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6005 } 6006 6007 /* Relocate data references within program code: 6008 * - map references; 6009 * - global variable references; 6010 * - extern references. 6011 */ 6012 static int 6013 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6014 { 6015 int i; 6016 6017 for (i = 0; i < prog->nr_reloc; i++) { 6018 struct reloc_desc *relo = &prog->reloc_desc[i]; 6019 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6020 const struct bpf_map *map; 6021 struct extern_desc *ext; 6022 6023 switch (relo->type) { 6024 case RELO_LD64: 6025 map = &obj->maps[relo->map_idx]; 6026 if (obj->gen_loader) { 6027 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6028 insn[0].imm = relo->map_idx; 6029 } else if (map->autocreate) { 6030 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6031 insn[0].imm = map->fd; 6032 } else { 6033 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6034 relo->map_idx, map); 6035 } 6036 break; 6037 case RELO_DATA: 6038 map = &obj->maps[relo->map_idx]; 6039 insn[1].imm = insn[0].imm + relo->sym_off; 6040 if (obj->gen_loader) { 6041 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6042 insn[0].imm = relo->map_idx; 6043 } else if (map->autocreate) { 6044 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6045 insn[0].imm = map->fd; 6046 } else { 6047 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6048 relo->map_idx, map); 6049 } 6050 break; 6051 case RELO_EXTERN_LD64: 6052 ext = &obj->externs[relo->ext_idx]; 6053 if (ext->type == EXT_KCFG) { 6054 if (obj->gen_loader) { 6055 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6056 insn[0].imm = obj->kconfig_map_idx; 6057 } else { 6058 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6059 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6060 } 6061 insn[1].imm = ext->kcfg.data_off; 6062 } else /* EXT_KSYM */ { 6063 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6064 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6065 insn[0].imm = ext->ksym.kernel_btf_id; 6066 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6067 } else { /* typeless ksyms or unresolved typed ksyms */ 6068 insn[0].imm = (__u32)ext->ksym.addr; 6069 insn[1].imm = ext->ksym.addr >> 32; 6070 } 6071 } 6072 break; 6073 case RELO_EXTERN_CALL: 6074 ext = &obj->externs[relo->ext_idx]; 6075 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6076 if (ext->is_set) { 6077 insn[0].imm = ext->ksym.kernel_btf_id; 6078 insn[0].off = ext->ksym.btf_fd_idx; 6079 } else { /* unresolved weak kfunc call */ 6080 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6081 relo->ext_idx, ext); 6082 } 6083 break; 6084 case RELO_SUBPROG_ADDR: 6085 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6086 pr_warn("prog '%s': relo #%d: bad insn\n", 6087 prog->name, i); 6088 return -EINVAL; 6089 } 6090 /* handled already */ 6091 break; 6092 case RELO_CALL: 6093 /* handled already */ 6094 break; 6095 case RELO_CORE: 6096 /* will be handled by bpf_program_record_relos() */ 6097 break; 6098 default: 6099 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6100 prog->name, i, relo->type); 6101 return -EINVAL; 6102 } 6103 } 6104 6105 return 0; 6106 } 6107 6108 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6109 const struct bpf_program *prog, 6110 const struct btf_ext_info *ext_info, 6111 void **prog_info, __u32 *prog_rec_cnt, 6112 __u32 *prog_rec_sz) 6113 { 6114 void *copy_start = NULL, *copy_end = NULL; 6115 void *rec, *rec_end, *new_prog_info; 6116 const struct btf_ext_info_sec *sec; 6117 size_t old_sz, new_sz; 6118 int i, sec_num, sec_idx, off_adj; 6119 6120 sec_num = 0; 6121 for_each_btf_ext_sec(ext_info, sec) { 6122 sec_idx = ext_info->sec_idxs[sec_num]; 6123 sec_num++; 6124 if (prog->sec_idx != sec_idx) 6125 continue; 6126 6127 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6128 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6129 6130 if (insn_off < prog->sec_insn_off) 6131 continue; 6132 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6133 break; 6134 6135 if (!copy_start) 6136 copy_start = rec; 6137 copy_end = rec + ext_info->rec_size; 6138 } 6139 6140 if (!copy_start) 6141 return -ENOENT; 6142 6143 /* append func/line info of a given (sub-)program to the main 6144 * program func/line info 6145 */ 6146 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6147 new_sz = old_sz + (copy_end - copy_start); 6148 new_prog_info = realloc(*prog_info, new_sz); 6149 if (!new_prog_info) 6150 return -ENOMEM; 6151 *prog_info = new_prog_info; 6152 *prog_rec_cnt = new_sz / ext_info->rec_size; 6153 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6154 6155 /* Kernel instruction offsets are in units of 8-byte 6156 * instructions, while .BTF.ext instruction offsets generated 6157 * by Clang are in units of bytes. So convert Clang offsets 6158 * into kernel offsets and adjust offset according to program 6159 * relocated position. 6160 */ 6161 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6162 rec = new_prog_info + old_sz; 6163 rec_end = new_prog_info + new_sz; 6164 for (; rec < rec_end; rec += ext_info->rec_size) { 6165 __u32 *insn_off = rec; 6166 6167 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6168 } 6169 *prog_rec_sz = ext_info->rec_size; 6170 return 0; 6171 } 6172 6173 return -ENOENT; 6174 } 6175 6176 static int 6177 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6178 struct bpf_program *main_prog, 6179 const struct bpf_program *prog) 6180 { 6181 int err; 6182 6183 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6184 * support func/line info 6185 */ 6186 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6187 return 0; 6188 6189 /* only attempt func info relocation if main program's func_info 6190 * relocation was successful 6191 */ 6192 if (main_prog != prog && !main_prog->func_info) 6193 goto line_info; 6194 6195 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6196 &main_prog->func_info, 6197 &main_prog->func_info_cnt, 6198 &main_prog->func_info_rec_size); 6199 if (err) { 6200 if (err != -ENOENT) { 6201 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6202 prog->name, err); 6203 return err; 6204 } 6205 if (main_prog->func_info) { 6206 /* 6207 * Some info has already been found but has problem 6208 * in the last btf_ext reloc. Must have to error out. 6209 */ 6210 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6211 return err; 6212 } 6213 /* Have problem loading the very first info. Ignore the rest. */ 6214 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6215 prog->name); 6216 } 6217 6218 line_info: 6219 /* don't relocate line info if main program's relocation failed */ 6220 if (main_prog != prog && !main_prog->line_info) 6221 return 0; 6222 6223 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6224 &main_prog->line_info, 6225 &main_prog->line_info_cnt, 6226 &main_prog->line_info_rec_size); 6227 if (err) { 6228 if (err != -ENOENT) { 6229 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6230 prog->name, err); 6231 return err; 6232 } 6233 if (main_prog->line_info) { 6234 /* 6235 * Some info has already been found but has problem 6236 * in the last btf_ext reloc. Must have to error out. 6237 */ 6238 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6239 return err; 6240 } 6241 /* Have problem loading the very first info. Ignore the rest. */ 6242 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6243 prog->name); 6244 } 6245 return 0; 6246 } 6247 6248 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6249 { 6250 size_t insn_idx = *(const size_t *)key; 6251 const struct reloc_desc *relo = elem; 6252 6253 if (insn_idx == relo->insn_idx) 6254 return 0; 6255 return insn_idx < relo->insn_idx ? -1 : 1; 6256 } 6257 6258 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6259 { 6260 if (!prog->nr_reloc) 6261 return NULL; 6262 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6263 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6264 } 6265 6266 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6267 { 6268 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6269 struct reloc_desc *relos; 6270 int i; 6271 6272 if (main_prog == subprog) 6273 return 0; 6274 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6275 /* if new count is zero, reallocarray can return a valid NULL result; 6276 * in this case the previous pointer will be freed, so we *have to* 6277 * reassign old pointer to the new value (even if it's NULL) 6278 */ 6279 if (!relos && new_cnt) 6280 return -ENOMEM; 6281 if (subprog->nr_reloc) 6282 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6283 sizeof(*relos) * subprog->nr_reloc); 6284 6285 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6286 relos[i].insn_idx += subprog->sub_insn_off; 6287 /* After insn_idx adjustment the 'relos' array is still sorted 6288 * by insn_idx and doesn't break bsearch. 6289 */ 6290 main_prog->reloc_desc = relos; 6291 main_prog->nr_reloc = new_cnt; 6292 return 0; 6293 } 6294 6295 static int 6296 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6297 struct bpf_program *subprog) 6298 { 6299 struct bpf_insn *insns; 6300 size_t new_cnt; 6301 int err; 6302 6303 subprog->sub_insn_off = main_prog->insns_cnt; 6304 6305 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6306 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6307 if (!insns) { 6308 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6309 return -ENOMEM; 6310 } 6311 main_prog->insns = insns; 6312 main_prog->insns_cnt = new_cnt; 6313 6314 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6315 subprog->insns_cnt * sizeof(*insns)); 6316 6317 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6318 main_prog->name, subprog->insns_cnt, subprog->name); 6319 6320 /* The subprog insns are now appended. Append its relos too. */ 6321 err = append_subprog_relos(main_prog, subprog); 6322 if (err) 6323 return err; 6324 return 0; 6325 } 6326 6327 static int 6328 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6329 struct bpf_program *prog) 6330 { 6331 size_t sub_insn_idx, insn_idx; 6332 struct bpf_program *subprog; 6333 struct reloc_desc *relo; 6334 struct bpf_insn *insn; 6335 int err; 6336 6337 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6338 if (err) 6339 return err; 6340 6341 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6342 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6343 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6344 continue; 6345 6346 relo = find_prog_insn_relo(prog, insn_idx); 6347 if (relo && relo->type == RELO_EXTERN_CALL) 6348 /* kfunc relocations will be handled later 6349 * in bpf_object__relocate_data() 6350 */ 6351 continue; 6352 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6353 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6354 prog->name, insn_idx, relo->type); 6355 return -LIBBPF_ERRNO__RELOC; 6356 } 6357 if (relo) { 6358 /* sub-program instruction index is a combination of 6359 * an offset of a symbol pointed to by relocation and 6360 * call instruction's imm field; for global functions, 6361 * call always has imm = -1, but for static functions 6362 * relocation is against STT_SECTION and insn->imm 6363 * points to a start of a static function 6364 * 6365 * for subprog addr relocation, the relo->sym_off + insn->imm is 6366 * the byte offset in the corresponding section. 6367 */ 6368 if (relo->type == RELO_CALL) 6369 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6370 else 6371 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6372 } else if (insn_is_pseudo_func(insn)) { 6373 /* 6374 * RELO_SUBPROG_ADDR relo is always emitted even if both 6375 * functions are in the same section, so it shouldn't reach here. 6376 */ 6377 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6378 prog->name, insn_idx); 6379 return -LIBBPF_ERRNO__RELOC; 6380 } else { 6381 /* if subprogram call is to a static function within 6382 * the same ELF section, there won't be any relocation 6383 * emitted, but it also means there is no additional 6384 * offset necessary, insns->imm is relative to 6385 * instruction's original position within the section 6386 */ 6387 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6388 } 6389 6390 /* we enforce that sub-programs should be in .text section */ 6391 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6392 if (!subprog) { 6393 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6394 prog->name); 6395 return -LIBBPF_ERRNO__RELOC; 6396 } 6397 6398 /* if it's the first call instruction calling into this 6399 * subprogram (meaning this subprog hasn't been processed 6400 * yet) within the context of current main program: 6401 * - append it at the end of main program's instructions blog; 6402 * - process is recursively, while current program is put on hold; 6403 * - if that subprogram calls some other not yet processes 6404 * subprogram, same thing will happen recursively until 6405 * there are no more unprocesses subprograms left to append 6406 * and relocate. 6407 */ 6408 if (subprog->sub_insn_off == 0) { 6409 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6410 if (err) 6411 return err; 6412 err = bpf_object__reloc_code(obj, main_prog, subprog); 6413 if (err) 6414 return err; 6415 } 6416 6417 /* main_prog->insns memory could have been re-allocated, so 6418 * calculate pointer again 6419 */ 6420 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6421 /* calculate correct instruction position within current main 6422 * prog; each main prog can have a different set of 6423 * subprograms appended (potentially in different order as 6424 * well), so position of any subprog can be different for 6425 * different main programs 6426 */ 6427 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6428 6429 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6430 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6431 } 6432 6433 return 0; 6434 } 6435 6436 /* 6437 * Relocate sub-program calls. 6438 * 6439 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6440 * main prog) is processed separately. For each subprog (non-entry functions, 6441 * that can be called from either entry progs or other subprogs) gets their 6442 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6443 * hasn't been yet appended and relocated within current main prog. Once its 6444 * relocated, sub_insn_off will point at the position within current main prog 6445 * where given subprog was appended. This will further be used to relocate all 6446 * the call instructions jumping into this subprog. 6447 * 6448 * We start with main program and process all call instructions. If the call 6449 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6450 * is zero), subprog instructions are appended at the end of main program's 6451 * instruction array. Then main program is "put on hold" while we recursively 6452 * process newly appended subprogram. If that subprogram calls into another 6453 * subprogram that hasn't been appended, new subprogram is appended again to 6454 * the *main* prog's instructions (subprog's instructions are always left 6455 * untouched, as they need to be in unmodified state for subsequent main progs 6456 * and subprog instructions are always sent only as part of a main prog) and 6457 * the process continues recursively. Once all the subprogs called from a main 6458 * prog or any of its subprogs are appended (and relocated), all their 6459 * positions within finalized instructions array are known, so it's easy to 6460 * rewrite call instructions with correct relative offsets, corresponding to 6461 * desired target subprog. 6462 * 6463 * Its important to realize that some subprogs might not be called from some 6464 * main prog and any of its called/used subprogs. Those will keep their 6465 * subprog->sub_insn_off as zero at all times and won't be appended to current 6466 * main prog and won't be relocated within the context of current main prog. 6467 * They might still be used from other main progs later. 6468 * 6469 * Visually this process can be shown as below. Suppose we have two main 6470 * programs mainA and mainB and BPF object contains three subprogs: subA, 6471 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6472 * subC both call subB: 6473 * 6474 * +--------+ +-------+ 6475 * | v v | 6476 * +--+---+ +--+-+-+ +---+--+ 6477 * | subA | | subB | | subC | 6478 * +--+---+ +------+ +---+--+ 6479 * ^ ^ 6480 * | | 6481 * +---+-------+ +------+----+ 6482 * | mainA | | mainB | 6483 * +-----------+ +-----------+ 6484 * 6485 * We'll start relocating mainA, will find subA, append it and start 6486 * processing sub A recursively: 6487 * 6488 * +-----------+------+ 6489 * | mainA | subA | 6490 * +-----------+------+ 6491 * 6492 * At this point we notice that subB is used from subA, so we append it and 6493 * relocate (there are no further subcalls from subB): 6494 * 6495 * +-----------+------+------+ 6496 * | mainA | subA | subB | 6497 * +-----------+------+------+ 6498 * 6499 * At this point, we relocate subA calls, then go one level up and finish with 6500 * relocatin mainA calls. mainA is done. 6501 * 6502 * For mainB process is similar but results in different order. We start with 6503 * mainB and skip subA and subB, as mainB never calls them (at least 6504 * directly), but we see subC is needed, so we append and start processing it: 6505 * 6506 * +-----------+------+ 6507 * | mainB | subC | 6508 * +-----------+------+ 6509 * Now we see subC needs subB, so we go back to it, append and relocate it: 6510 * 6511 * +-----------+------+------+ 6512 * | mainB | subC | subB | 6513 * +-----------+------+------+ 6514 * 6515 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6516 */ 6517 static int 6518 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6519 { 6520 struct bpf_program *subprog; 6521 int i, err; 6522 6523 /* mark all subprogs as not relocated (yet) within the context of 6524 * current main program 6525 */ 6526 for (i = 0; i < obj->nr_programs; i++) { 6527 subprog = &obj->programs[i]; 6528 if (!prog_is_subprog(obj, subprog)) 6529 continue; 6530 6531 subprog->sub_insn_off = 0; 6532 } 6533 6534 err = bpf_object__reloc_code(obj, prog, prog); 6535 if (err) 6536 return err; 6537 6538 return 0; 6539 } 6540 6541 static void 6542 bpf_object__free_relocs(struct bpf_object *obj) 6543 { 6544 struct bpf_program *prog; 6545 int i; 6546 6547 /* free up relocation descriptors */ 6548 for (i = 0; i < obj->nr_programs; i++) { 6549 prog = &obj->programs[i]; 6550 zfree(&prog->reloc_desc); 6551 prog->nr_reloc = 0; 6552 } 6553 } 6554 6555 static int cmp_relocs(const void *_a, const void *_b) 6556 { 6557 const struct reloc_desc *a = _a; 6558 const struct reloc_desc *b = _b; 6559 6560 if (a->insn_idx != b->insn_idx) 6561 return a->insn_idx < b->insn_idx ? -1 : 1; 6562 6563 /* no two relocations should have the same insn_idx, but ... */ 6564 if (a->type != b->type) 6565 return a->type < b->type ? -1 : 1; 6566 6567 return 0; 6568 } 6569 6570 static void bpf_object__sort_relos(struct bpf_object *obj) 6571 { 6572 int i; 6573 6574 for (i = 0; i < obj->nr_programs; i++) { 6575 struct bpf_program *p = &obj->programs[i]; 6576 6577 if (!p->nr_reloc) 6578 continue; 6579 6580 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6581 } 6582 } 6583 6584 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6585 { 6586 const char *str = "exception_callback:"; 6587 size_t pfx_len = strlen(str); 6588 int i, j, n; 6589 6590 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6591 return 0; 6592 6593 n = btf__type_cnt(obj->btf); 6594 for (i = 1; i < n; i++) { 6595 const char *name; 6596 struct btf_type *t; 6597 6598 t = btf_type_by_id(obj->btf, i); 6599 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6600 continue; 6601 6602 name = btf__str_by_offset(obj->btf, t->name_off); 6603 if (strncmp(name, str, pfx_len) != 0) 6604 continue; 6605 6606 t = btf_type_by_id(obj->btf, t->type); 6607 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6608 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6609 prog->name); 6610 return -EINVAL; 6611 } 6612 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6613 continue; 6614 /* Multiple callbacks are specified for the same prog, 6615 * the verifier will eventually return an error for this 6616 * case, hence simply skip appending a subprog. 6617 */ 6618 if (prog->exception_cb_idx >= 0) { 6619 prog->exception_cb_idx = -1; 6620 break; 6621 } 6622 6623 name += pfx_len; 6624 if (str_is_empty(name)) { 6625 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6626 prog->name); 6627 return -EINVAL; 6628 } 6629 6630 for (j = 0; j < obj->nr_programs; j++) { 6631 struct bpf_program *subprog = &obj->programs[j]; 6632 6633 if (!prog_is_subprog(obj, subprog)) 6634 continue; 6635 if (strcmp(name, subprog->name) != 0) 6636 continue; 6637 /* Enforce non-hidden, as from verifier point of 6638 * view it expects global functions, whereas the 6639 * mark_btf_static fixes up linkage as static. 6640 */ 6641 if (!subprog->sym_global || subprog->mark_btf_static) { 6642 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6643 prog->name, subprog->name); 6644 return -EINVAL; 6645 } 6646 /* Let's see if we already saw a static exception callback with the same name */ 6647 if (prog->exception_cb_idx >= 0) { 6648 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6649 prog->name, subprog->name); 6650 return -EINVAL; 6651 } 6652 prog->exception_cb_idx = j; 6653 break; 6654 } 6655 6656 if (prog->exception_cb_idx >= 0) 6657 continue; 6658 6659 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6660 return -ENOENT; 6661 } 6662 6663 return 0; 6664 } 6665 6666 static struct { 6667 enum bpf_prog_type prog_type; 6668 const char *ctx_name; 6669 } global_ctx_map[] = { 6670 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6671 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6672 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6673 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6674 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6675 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6676 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6677 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6678 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6679 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6680 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6681 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6682 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6683 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6684 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6685 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6686 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6687 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6688 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6689 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6690 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6691 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6692 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6693 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6694 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6695 /* all other program types don't have "named" context structs */ 6696 }; 6697 6698 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6699 const char *subprog_name, int arg_idx, 6700 int arg_type_id, const char *ctx_name) 6701 { 6702 const struct btf_type *t; 6703 const char *tname; 6704 6705 /* check if existing parameter already matches verifier expectations */ 6706 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6707 if (!btf_is_ptr(t)) 6708 goto out_warn; 6709 6710 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6711 * and perf_event programs, so check this case early on and forget 6712 * about it for subsequent checks 6713 */ 6714 while (btf_is_mod(t)) 6715 t = btf__type_by_id(btf, t->type); 6716 if (btf_is_typedef(t) && 6717 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6718 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6719 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6720 return false; /* canonical type for kprobe/perf_event */ 6721 } 6722 6723 /* now we can ignore typedefs moving forward */ 6724 t = skip_mods_and_typedefs(btf, t->type, NULL); 6725 6726 /* if it's `void *`, definitely fix up BTF info */ 6727 if (btf_is_void(t)) 6728 return true; 6729 6730 /* if it's already proper canonical type, no need to fix up */ 6731 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6732 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6733 return false; 6734 6735 /* special cases */ 6736 switch (prog->type) { 6737 case BPF_PROG_TYPE_KPROBE: 6738 case BPF_PROG_TYPE_PERF_EVENT: 6739 /* `struct pt_regs *` is expected, but we need to fix up */ 6740 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6741 return true; 6742 break; 6743 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6744 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6745 /* allow u64* as ctx */ 6746 if (btf_is_int(t) && t->size == 8) 6747 return true; 6748 break; 6749 default: 6750 break; 6751 } 6752 6753 out_warn: 6754 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6755 prog->name, subprog_name, arg_idx, ctx_name); 6756 return false; 6757 } 6758 6759 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6760 { 6761 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6762 int i, err, arg_cnt, fn_name_off, linkage; 6763 struct btf_type *fn_t, *fn_proto_t, *t; 6764 struct btf_param *p; 6765 6766 /* caller already validated FUNC -> FUNC_PROTO validity */ 6767 fn_t = btf_type_by_id(btf, orig_fn_id); 6768 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6769 6770 /* Note that each btf__add_xxx() operation invalidates 6771 * all btf_type and string pointers, so we need to be 6772 * very careful when cloning BTF types. BTF type 6773 * pointers have to be always refetched. And to avoid 6774 * problems with invalidated string pointers, we 6775 * add empty strings initially, then just fix up 6776 * name_off offsets in place. Offsets are stable for 6777 * existing strings, so that works out. 6778 */ 6779 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6780 linkage = btf_func_linkage(fn_t); 6781 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6782 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6783 arg_cnt = btf_vlen(fn_proto_t); 6784 6785 /* clone FUNC_PROTO and its params */ 6786 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6787 if (fn_proto_id < 0) 6788 return -EINVAL; 6789 6790 for (i = 0; i < arg_cnt; i++) { 6791 int name_off; 6792 6793 /* copy original parameter data */ 6794 t = btf_type_by_id(btf, orig_proto_id); 6795 p = &btf_params(t)[i]; 6796 name_off = p->name_off; 6797 6798 err = btf__add_func_param(btf, "", p->type); 6799 if (err) 6800 return err; 6801 6802 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6803 p = &btf_params(fn_proto_t)[i]; 6804 p->name_off = name_off; /* use remembered str offset */ 6805 } 6806 6807 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6808 * entry program's name as a placeholder, which we replace immediately 6809 * with original name_off 6810 */ 6811 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6812 if (fn_id < 0) 6813 return -EINVAL; 6814 6815 fn_t = btf_type_by_id(btf, fn_id); 6816 fn_t->name_off = fn_name_off; /* reuse original string */ 6817 6818 return fn_id; 6819 } 6820 6821 static int probe_kern_arg_ctx_tag(void) 6822 { 6823 /* To minimize merge conflicts with BPF token series that refactors 6824 * feature detection code a lot, we don't integrate 6825 * probe_kern_arg_ctx_tag() into kernel_supports() feature-detection 6826 * framework yet, doing our own caching internally. 6827 * This will be cleaned up a bit later when bpf/bpf-next trees settle. 6828 */ 6829 static int cached_result = -1; 6830 static const char strs[] = "\0a\0b\0arg:ctx\0"; 6831 const __u32 types[] = { 6832 /* [1] INT */ 6833 BTF_TYPE_INT_ENC(1 /* "a" */, BTF_INT_SIGNED, 0, 32, 4), 6834 /* [2] PTR -> VOID */ 6835 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 0), 6836 /* [3] FUNC_PROTO `int(void *a)` */ 6837 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1), 6838 BTF_PARAM_ENC(1 /* "a" */, 2), 6839 /* [4] FUNC 'a' -> FUNC_PROTO (main prog) */ 6840 BTF_TYPE_ENC(1 /* "a" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 3), 6841 /* [5] FUNC_PROTO `int(void *b __arg_ctx)` */ 6842 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1), 6843 BTF_PARAM_ENC(3 /* "b" */, 2), 6844 /* [6] FUNC 'b' -> FUNC_PROTO (subprog) */ 6845 BTF_TYPE_ENC(3 /* "b" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 5), 6846 /* [7] DECL_TAG 'arg:ctx' -> func 'b' arg 'b' */ 6847 BTF_TYPE_DECL_TAG_ENC(5 /* "arg:ctx" */, 6, 0), 6848 }; 6849 const struct bpf_insn insns[] = { 6850 /* main prog */ 6851 BPF_CALL_REL(+1), 6852 BPF_EXIT_INSN(), 6853 /* global subprog */ 6854 BPF_EMIT_CALL(BPF_FUNC_get_func_ip), /* needs PTR_TO_CTX */ 6855 BPF_EXIT_INSN(), 6856 }; 6857 const struct bpf_func_info_min func_infos[] = { 6858 { 0, 4 }, /* main prog -> FUNC 'a' */ 6859 { 2, 6 }, /* subprog -> FUNC 'b' */ 6860 }; 6861 LIBBPF_OPTS(bpf_prog_load_opts, opts); 6862 int prog_fd, btf_fd, insn_cnt = ARRAY_SIZE(insns); 6863 6864 if (cached_result >= 0) 6865 return cached_result; 6866 6867 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 6868 if (btf_fd < 0) 6869 return 0; 6870 6871 opts.prog_btf_fd = btf_fd; 6872 opts.func_info = &func_infos; 6873 opts.func_info_cnt = ARRAY_SIZE(func_infos); 6874 opts.func_info_rec_size = sizeof(func_infos[0]); 6875 6876 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, "det_arg_ctx", 6877 "GPL", insns, insn_cnt, &opts); 6878 close(btf_fd); 6879 6880 cached_result = probe_fd(prog_fd); 6881 return cached_result; 6882 } 6883 6884 /* Check if main program or global subprog's function prototype has `arg:ctx` 6885 * argument tags, and, if necessary, substitute correct type to match what BPF 6886 * verifier would expect, taking into account specific program type. This 6887 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6888 * have a native support for it in the verifier, making user's life much 6889 * easier. 6890 */ 6891 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6892 { 6893 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6894 struct bpf_func_info_min *func_rec; 6895 struct btf_type *fn_t, *fn_proto_t; 6896 struct btf *btf = obj->btf; 6897 const struct btf_type *t; 6898 struct btf_param *p; 6899 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6900 int i, n, arg_idx, arg_cnt, err, rec_idx; 6901 int *orig_ids; 6902 6903 /* no .BTF.ext, no problem */ 6904 if (!obj->btf_ext || !prog->func_info) 6905 return 0; 6906 6907 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6908 if (probe_kern_arg_ctx_tag() > 0) 6909 return 0; 6910 6911 /* some BPF program types just don't have named context structs, so 6912 * this fallback mechanism doesn't work for them 6913 */ 6914 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6915 if (global_ctx_map[i].prog_type != prog->type) 6916 continue; 6917 ctx_name = global_ctx_map[i].ctx_name; 6918 break; 6919 } 6920 if (!ctx_name) 6921 return 0; 6922 6923 /* remember original func BTF IDs to detect if we already cloned them */ 6924 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6925 if (!orig_ids) 6926 return -ENOMEM; 6927 for (i = 0; i < prog->func_info_cnt; i++) { 6928 func_rec = prog->func_info + prog->func_info_rec_size * i; 6929 orig_ids[i] = func_rec->type_id; 6930 } 6931 6932 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6933 * of our subprogs; if yes and subprog is global and needs adjustment, 6934 * clone and adjust FUNC -> FUNC_PROTO combo 6935 */ 6936 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6937 /* only DECL_TAG with "arg:ctx" value are interesting */ 6938 t = btf__type_by_id(btf, i); 6939 if (!btf_is_decl_tag(t)) 6940 continue; 6941 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6942 continue; 6943 6944 /* only global funcs need adjustment, if at all */ 6945 orig_fn_id = t->type; 6946 fn_t = btf_type_by_id(btf, orig_fn_id); 6947 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6948 continue; 6949 6950 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6951 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6952 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6953 continue; 6954 6955 /* find corresponding func_info record */ 6956 func_rec = NULL; 6957 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6958 if (orig_ids[rec_idx] == t->type) { 6959 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6960 break; 6961 } 6962 } 6963 /* current main program doesn't call into this subprog */ 6964 if (!func_rec) 6965 continue; 6966 6967 /* some more sanity checking of DECL_TAG */ 6968 arg_cnt = btf_vlen(fn_proto_t); 6969 arg_idx = btf_decl_tag(t)->component_idx; 6970 if (arg_idx < 0 || arg_idx >= arg_cnt) 6971 continue; 6972 6973 /* check if we should fix up argument type */ 6974 p = &btf_params(fn_proto_t)[arg_idx]; 6975 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6976 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6977 continue; 6978 6979 /* clone fn/fn_proto, unless we already did it for another arg */ 6980 if (func_rec->type_id == orig_fn_id) { 6981 int fn_id; 6982 6983 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6984 if (fn_id < 0) { 6985 err = fn_id; 6986 goto err_out; 6987 } 6988 6989 /* point func_info record to a cloned FUNC type */ 6990 func_rec->type_id = fn_id; 6991 } 6992 6993 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6994 * we do it just once per main BPF program, as all global 6995 * funcs share the same program type, so need only PTR -> 6996 * STRUCT type chain 6997 */ 6998 if (ptr_id == 0) { 6999 struct_id = btf__add_struct(btf, ctx_name, 0); 7000 ptr_id = btf__add_ptr(btf, struct_id); 7001 if (ptr_id < 0 || struct_id < 0) { 7002 err = -EINVAL; 7003 goto err_out; 7004 } 7005 } 7006 7007 /* for completeness, clone DECL_TAG and point it to cloned param */ 7008 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7009 if (tag_id < 0) { 7010 err = -EINVAL; 7011 goto err_out; 7012 } 7013 7014 /* all the BTF manipulations invalidated pointers, refetch them */ 7015 fn_t = btf_type_by_id(btf, func_rec->type_id); 7016 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7017 7018 /* fix up type ID pointed to by param */ 7019 p = &btf_params(fn_proto_t)[arg_idx]; 7020 p->type = ptr_id; 7021 } 7022 7023 free(orig_ids); 7024 return 0; 7025 err_out: 7026 free(orig_ids); 7027 return err; 7028 } 7029 7030 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7031 { 7032 struct bpf_program *prog; 7033 size_t i, j; 7034 int err; 7035 7036 if (obj->btf_ext) { 7037 err = bpf_object__relocate_core(obj, targ_btf_path); 7038 if (err) { 7039 pr_warn("failed to perform CO-RE relocations: %d\n", 7040 err); 7041 return err; 7042 } 7043 bpf_object__sort_relos(obj); 7044 } 7045 7046 /* Before relocating calls pre-process relocations and mark 7047 * few ld_imm64 instructions that points to subprogs. 7048 * Otherwise bpf_object__reloc_code() later would have to consider 7049 * all ld_imm64 insns as relocation candidates. That would 7050 * reduce relocation speed, since amount of find_prog_insn_relo() 7051 * would increase and most of them will fail to find a relo. 7052 */ 7053 for (i = 0; i < obj->nr_programs; i++) { 7054 prog = &obj->programs[i]; 7055 for (j = 0; j < prog->nr_reloc; j++) { 7056 struct reloc_desc *relo = &prog->reloc_desc[j]; 7057 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7058 7059 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7060 if (relo->type == RELO_SUBPROG_ADDR) 7061 insn[0].src_reg = BPF_PSEUDO_FUNC; 7062 } 7063 } 7064 7065 /* relocate subprogram calls and append used subprograms to main 7066 * programs; each copy of subprogram code needs to be relocated 7067 * differently for each main program, because its code location might 7068 * have changed. 7069 * Append subprog relos to main programs to allow data relos to be 7070 * processed after text is completely relocated. 7071 */ 7072 for (i = 0; i < obj->nr_programs; i++) { 7073 prog = &obj->programs[i]; 7074 /* sub-program's sub-calls are relocated within the context of 7075 * its main program only 7076 */ 7077 if (prog_is_subprog(obj, prog)) 7078 continue; 7079 if (!prog->autoload) 7080 continue; 7081 7082 err = bpf_object__relocate_calls(obj, prog); 7083 if (err) { 7084 pr_warn("prog '%s': failed to relocate calls: %d\n", 7085 prog->name, err); 7086 return err; 7087 } 7088 7089 err = bpf_prog_assign_exc_cb(obj, prog); 7090 if (err) 7091 return err; 7092 /* Now, also append exception callback if it has not been done already. */ 7093 if (prog->exception_cb_idx >= 0) { 7094 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7095 7096 /* Calling exception callback directly is disallowed, which the 7097 * verifier will reject later. In case it was processed already, 7098 * we can skip this step, otherwise for all other valid cases we 7099 * have to append exception callback now. 7100 */ 7101 if (subprog->sub_insn_off == 0) { 7102 err = bpf_object__append_subprog_code(obj, prog, subprog); 7103 if (err) 7104 return err; 7105 err = bpf_object__reloc_code(obj, prog, subprog); 7106 if (err) 7107 return err; 7108 } 7109 } 7110 } 7111 for (i = 0; i < obj->nr_programs; i++) { 7112 prog = &obj->programs[i]; 7113 if (prog_is_subprog(obj, prog)) 7114 continue; 7115 if (!prog->autoload) 7116 continue; 7117 7118 /* Process data relos for main programs */ 7119 err = bpf_object__relocate_data(obj, prog); 7120 if (err) { 7121 pr_warn("prog '%s': failed to relocate data references: %d\n", 7122 prog->name, err); 7123 return err; 7124 } 7125 7126 /* Fix up .BTF.ext information, if necessary */ 7127 err = bpf_program_fixup_func_info(obj, prog); 7128 if (err) { 7129 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7130 prog->name, err); 7131 return err; 7132 } 7133 } 7134 7135 return 0; 7136 } 7137 7138 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7139 Elf64_Shdr *shdr, Elf_Data *data); 7140 7141 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7142 Elf64_Shdr *shdr, Elf_Data *data) 7143 { 7144 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7145 int i, j, nrels, new_sz; 7146 const struct btf_var_secinfo *vi = NULL; 7147 const struct btf_type *sec, *var, *def; 7148 struct bpf_map *map = NULL, *targ_map = NULL; 7149 struct bpf_program *targ_prog = NULL; 7150 bool is_prog_array, is_map_in_map; 7151 const struct btf_member *member; 7152 const char *name, *mname, *type; 7153 unsigned int moff; 7154 Elf64_Sym *sym; 7155 Elf64_Rel *rel; 7156 void *tmp; 7157 7158 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7159 return -EINVAL; 7160 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7161 if (!sec) 7162 return -EINVAL; 7163 7164 nrels = shdr->sh_size / shdr->sh_entsize; 7165 for (i = 0; i < nrels; i++) { 7166 rel = elf_rel_by_idx(data, i); 7167 if (!rel) { 7168 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7169 return -LIBBPF_ERRNO__FORMAT; 7170 } 7171 7172 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7173 if (!sym) { 7174 pr_warn(".maps relo #%d: symbol %zx not found\n", 7175 i, (size_t)ELF64_R_SYM(rel->r_info)); 7176 return -LIBBPF_ERRNO__FORMAT; 7177 } 7178 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7179 7180 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7181 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7182 (size_t)rel->r_offset, sym->st_name, name); 7183 7184 for (j = 0; j < obj->nr_maps; j++) { 7185 map = &obj->maps[j]; 7186 if (map->sec_idx != obj->efile.btf_maps_shndx) 7187 continue; 7188 7189 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7190 if (vi->offset <= rel->r_offset && 7191 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7192 break; 7193 } 7194 if (j == obj->nr_maps) { 7195 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7196 i, name, (size_t)rel->r_offset); 7197 return -EINVAL; 7198 } 7199 7200 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7201 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7202 type = is_map_in_map ? "map" : "prog"; 7203 if (is_map_in_map) { 7204 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7205 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7206 i, name); 7207 return -LIBBPF_ERRNO__RELOC; 7208 } 7209 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7210 map->def.key_size != sizeof(int)) { 7211 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7212 i, map->name, sizeof(int)); 7213 return -EINVAL; 7214 } 7215 targ_map = bpf_object__find_map_by_name(obj, name); 7216 if (!targ_map) { 7217 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7218 i, name); 7219 return -ESRCH; 7220 } 7221 } else if (is_prog_array) { 7222 targ_prog = bpf_object__find_program_by_name(obj, name); 7223 if (!targ_prog) { 7224 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7225 i, name); 7226 return -ESRCH; 7227 } 7228 if (targ_prog->sec_idx != sym->st_shndx || 7229 targ_prog->sec_insn_off * 8 != sym->st_value || 7230 prog_is_subprog(obj, targ_prog)) { 7231 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7232 i, name); 7233 return -LIBBPF_ERRNO__RELOC; 7234 } 7235 } else { 7236 return -EINVAL; 7237 } 7238 7239 var = btf__type_by_id(obj->btf, vi->type); 7240 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7241 if (btf_vlen(def) == 0) 7242 return -EINVAL; 7243 member = btf_members(def) + btf_vlen(def) - 1; 7244 mname = btf__name_by_offset(obj->btf, member->name_off); 7245 if (strcmp(mname, "values")) 7246 return -EINVAL; 7247 7248 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7249 if (rel->r_offset - vi->offset < moff) 7250 return -EINVAL; 7251 7252 moff = rel->r_offset - vi->offset - moff; 7253 /* here we use BPF pointer size, which is always 64 bit, as we 7254 * are parsing ELF that was built for BPF target 7255 */ 7256 if (moff % bpf_ptr_sz) 7257 return -EINVAL; 7258 moff /= bpf_ptr_sz; 7259 if (moff >= map->init_slots_sz) { 7260 new_sz = moff + 1; 7261 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7262 if (!tmp) 7263 return -ENOMEM; 7264 map->init_slots = tmp; 7265 memset(map->init_slots + map->init_slots_sz, 0, 7266 (new_sz - map->init_slots_sz) * host_ptr_sz); 7267 map->init_slots_sz = new_sz; 7268 } 7269 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7270 7271 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7272 i, map->name, moff, type, name); 7273 } 7274 7275 return 0; 7276 } 7277 7278 static int bpf_object__collect_relos(struct bpf_object *obj) 7279 { 7280 int i, err; 7281 7282 for (i = 0; i < obj->efile.sec_cnt; i++) { 7283 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7284 Elf64_Shdr *shdr; 7285 Elf_Data *data; 7286 int idx; 7287 7288 if (sec_desc->sec_type != SEC_RELO) 7289 continue; 7290 7291 shdr = sec_desc->shdr; 7292 data = sec_desc->data; 7293 idx = shdr->sh_info; 7294 7295 if (shdr->sh_type != SHT_REL) { 7296 pr_warn("internal error at %d\n", __LINE__); 7297 return -LIBBPF_ERRNO__INTERNAL; 7298 } 7299 7300 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 7301 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7302 else if (idx == obj->efile.btf_maps_shndx) 7303 err = bpf_object__collect_map_relos(obj, shdr, data); 7304 else 7305 err = bpf_object__collect_prog_relos(obj, shdr, data); 7306 if (err) 7307 return err; 7308 } 7309 7310 bpf_object__sort_relos(obj); 7311 return 0; 7312 } 7313 7314 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7315 { 7316 if (BPF_CLASS(insn->code) == BPF_JMP && 7317 BPF_OP(insn->code) == BPF_CALL && 7318 BPF_SRC(insn->code) == BPF_K && 7319 insn->src_reg == 0 && 7320 insn->dst_reg == 0) { 7321 *func_id = insn->imm; 7322 return true; 7323 } 7324 return false; 7325 } 7326 7327 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7328 { 7329 struct bpf_insn *insn = prog->insns; 7330 enum bpf_func_id func_id; 7331 int i; 7332 7333 if (obj->gen_loader) 7334 return 0; 7335 7336 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7337 if (!insn_is_helper_call(insn, &func_id)) 7338 continue; 7339 7340 /* on kernels that don't yet support 7341 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7342 * to bpf_probe_read() which works well for old kernels 7343 */ 7344 switch (func_id) { 7345 case BPF_FUNC_probe_read_kernel: 7346 case BPF_FUNC_probe_read_user: 7347 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7348 insn->imm = BPF_FUNC_probe_read; 7349 break; 7350 case BPF_FUNC_probe_read_kernel_str: 7351 case BPF_FUNC_probe_read_user_str: 7352 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7353 insn->imm = BPF_FUNC_probe_read_str; 7354 break; 7355 default: 7356 break; 7357 } 7358 } 7359 return 0; 7360 } 7361 7362 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7363 int *btf_obj_fd, int *btf_type_id); 7364 7365 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7366 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7367 struct bpf_prog_load_opts *opts, long cookie) 7368 { 7369 enum sec_def_flags def = cookie; 7370 7371 /* old kernels might not support specifying expected_attach_type */ 7372 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7373 opts->expected_attach_type = 0; 7374 7375 if (def & SEC_SLEEPABLE) 7376 opts->prog_flags |= BPF_F_SLEEPABLE; 7377 7378 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7379 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7380 7381 /* special check for usdt to use uprobe_multi link */ 7382 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7383 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7384 7385 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7386 int btf_obj_fd = 0, btf_type_id = 0, err; 7387 const char *attach_name; 7388 7389 attach_name = strchr(prog->sec_name, '/'); 7390 if (!attach_name) { 7391 /* if BPF program is annotated with just SEC("fentry") 7392 * (or similar) without declaratively specifying 7393 * target, then it is expected that target will be 7394 * specified with bpf_program__set_attach_target() at 7395 * runtime before BPF object load step. If not, then 7396 * there is nothing to load into the kernel as BPF 7397 * verifier won't be able to validate BPF program 7398 * correctness anyways. 7399 */ 7400 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7401 prog->name); 7402 return -EINVAL; 7403 } 7404 attach_name++; /* skip over / */ 7405 7406 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7407 if (err) 7408 return err; 7409 7410 /* cache resolved BTF FD and BTF type ID in the prog */ 7411 prog->attach_btf_obj_fd = btf_obj_fd; 7412 prog->attach_btf_id = btf_type_id; 7413 7414 /* but by now libbpf common logic is not utilizing 7415 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7416 * this callback is called after opts were populated by 7417 * libbpf, so this callback has to update opts explicitly here 7418 */ 7419 opts->attach_btf_obj_fd = btf_obj_fd; 7420 opts->attach_btf_id = btf_type_id; 7421 } 7422 return 0; 7423 } 7424 7425 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7426 7427 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7428 struct bpf_insn *insns, int insns_cnt, 7429 const char *license, __u32 kern_version, int *prog_fd) 7430 { 7431 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7432 const char *prog_name = NULL; 7433 char *cp, errmsg[STRERR_BUFSIZE]; 7434 size_t log_buf_size = 0; 7435 char *log_buf = NULL, *tmp; 7436 int btf_fd, ret, err; 7437 bool own_log_buf = true; 7438 __u32 log_level = prog->log_level; 7439 7440 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7441 /* 7442 * The program type must be set. Most likely we couldn't find a proper 7443 * section definition at load time, and thus we didn't infer the type. 7444 */ 7445 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7446 prog->name, prog->sec_name); 7447 return -EINVAL; 7448 } 7449 7450 if (!insns || !insns_cnt) 7451 return -EINVAL; 7452 7453 if (kernel_supports(obj, FEAT_PROG_NAME)) 7454 prog_name = prog->name; 7455 load_attr.attach_prog_fd = prog->attach_prog_fd; 7456 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7457 load_attr.attach_btf_id = prog->attach_btf_id; 7458 load_attr.kern_version = kern_version; 7459 load_attr.prog_ifindex = prog->prog_ifindex; 7460 7461 /* specify func_info/line_info only if kernel supports them */ 7462 btf_fd = btf__fd(obj->btf); 7463 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7464 load_attr.prog_btf_fd = btf_fd; 7465 load_attr.func_info = prog->func_info; 7466 load_attr.func_info_rec_size = prog->func_info_rec_size; 7467 load_attr.func_info_cnt = prog->func_info_cnt; 7468 load_attr.line_info = prog->line_info; 7469 load_attr.line_info_rec_size = prog->line_info_rec_size; 7470 load_attr.line_info_cnt = prog->line_info_cnt; 7471 } 7472 load_attr.log_level = log_level; 7473 load_attr.prog_flags = prog->prog_flags; 7474 load_attr.fd_array = obj->fd_array; 7475 7476 /* adjust load_attr if sec_def provides custom preload callback */ 7477 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7478 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7479 if (err < 0) { 7480 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7481 prog->name, err); 7482 return err; 7483 } 7484 insns = prog->insns; 7485 insns_cnt = prog->insns_cnt; 7486 } 7487 7488 /* allow prog_prepare_load_fn to change expected_attach_type */ 7489 load_attr.expected_attach_type = prog->expected_attach_type; 7490 7491 if (obj->gen_loader) { 7492 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7493 license, insns, insns_cnt, &load_attr, 7494 prog - obj->programs); 7495 *prog_fd = -1; 7496 return 0; 7497 } 7498 7499 retry_load: 7500 /* if log_level is zero, we don't request logs initially even if 7501 * custom log_buf is specified; if the program load fails, then we'll 7502 * bump log_level to 1 and use either custom log_buf or we'll allocate 7503 * our own and retry the load to get details on what failed 7504 */ 7505 if (log_level) { 7506 if (prog->log_buf) { 7507 log_buf = prog->log_buf; 7508 log_buf_size = prog->log_size; 7509 own_log_buf = false; 7510 } else if (obj->log_buf) { 7511 log_buf = obj->log_buf; 7512 log_buf_size = obj->log_size; 7513 own_log_buf = false; 7514 } else { 7515 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7516 tmp = realloc(log_buf, log_buf_size); 7517 if (!tmp) { 7518 ret = -ENOMEM; 7519 goto out; 7520 } 7521 log_buf = tmp; 7522 log_buf[0] = '\0'; 7523 own_log_buf = true; 7524 } 7525 } 7526 7527 load_attr.log_buf = log_buf; 7528 load_attr.log_size = log_buf_size; 7529 load_attr.log_level = log_level; 7530 7531 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7532 if (ret >= 0) { 7533 if (log_level && own_log_buf) { 7534 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7535 prog->name, log_buf); 7536 } 7537 7538 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7539 struct bpf_map *map; 7540 int i; 7541 7542 for (i = 0; i < obj->nr_maps; i++) { 7543 map = &prog->obj->maps[i]; 7544 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7545 continue; 7546 7547 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7548 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7549 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7550 prog->name, map->real_name, cp); 7551 /* Don't fail hard if can't bind rodata. */ 7552 } 7553 } 7554 } 7555 7556 *prog_fd = ret; 7557 ret = 0; 7558 goto out; 7559 } 7560 7561 if (log_level == 0) { 7562 log_level = 1; 7563 goto retry_load; 7564 } 7565 /* On ENOSPC, increase log buffer size and retry, unless custom 7566 * log_buf is specified. 7567 * Be careful to not overflow u32, though. Kernel's log buf size limit 7568 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7569 * multiply by 2 unless we are sure we'll fit within 32 bits. 7570 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7571 */ 7572 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7573 goto retry_load; 7574 7575 ret = -errno; 7576 7577 /* post-process verifier log to improve error descriptions */ 7578 fixup_verifier_log(prog, log_buf, log_buf_size); 7579 7580 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7581 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7582 pr_perm_msg(ret); 7583 7584 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7585 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7586 prog->name, log_buf); 7587 } 7588 7589 out: 7590 if (own_log_buf) 7591 free(log_buf); 7592 return ret; 7593 } 7594 7595 static char *find_prev_line(char *buf, char *cur) 7596 { 7597 char *p; 7598 7599 if (cur == buf) /* end of a log buf */ 7600 return NULL; 7601 7602 p = cur - 1; 7603 while (p - 1 >= buf && *(p - 1) != '\n') 7604 p--; 7605 7606 return p; 7607 } 7608 7609 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7610 char *orig, size_t orig_sz, const char *patch) 7611 { 7612 /* size of the remaining log content to the right from the to-be-replaced part */ 7613 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7614 size_t patch_sz = strlen(patch); 7615 7616 if (patch_sz != orig_sz) { 7617 /* If patch line(s) are longer than original piece of verifier log, 7618 * shift log contents by (patch_sz - orig_sz) bytes to the right 7619 * starting from after to-be-replaced part of the log. 7620 * 7621 * If patch line(s) are shorter than original piece of verifier log, 7622 * shift log contents by (orig_sz - patch_sz) bytes to the left 7623 * starting from after to-be-replaced part of the log 7624 * 7625 * We need to be careful about not overflowing available 7626 * buf_sz capacity. If that's the case, we'll truncate the end 7627 * of the original log, as necessary. 7628 */ 7629 if (patch_sz > orig_sz) { 7630 if (orig + patch_sz >= buf + buf_sz) { 7631 /* patch is big enough to cover remaining space completely */ 7632 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7633 rem_sz = 0; 7634 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7635 /* patch causes part of remaining log to be truncated */ 7636 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7637 } 7638 } 7639 /* shift remaining log to the right by calculated amount */ 7640 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7641 } 7642 7643 memcpy(orig, patch, patch_sz); 7644 } 7645 7646 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7647 char *buf, size_t buf_sz, size_t log_sz, 7648 char *line1, char *line2, char *line3) 7649 { 7650 /* Expected log for failed and not properly guarded CO-RE relocation: 7651 * line1 -> 123: (85) call unknown#195896080 7652 * line2 -> invalid func unknown#195896080 7653 * line3 -> <anything else or end of buffer> 7654 * 7655 * "123" is the index of the instruction that was poisoned. We extract 7656 * instruction index to find corresponding CO-RE relocation and 7657 * replace this part of the log with more relevant information about 7658 * failed CO-RE relocation. 7659 */ 7660 const struct bpf_core_relo *relo; 7661 struct bpf_core_spec spec; 7662 char patch[512], spec_buf[256]; 7663 int insn_idx, err, spec_len; 7664 7665 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7666 return; 7667 7668 relo = find_relo_core(prog, insn_idx); 7669 if (!relo) 7670 return; 7671 7672 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7673 if (err) 7674 return; 7675 7676 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7677 snprintf(patch, sizeof(patch), 7678 "%d: <invalid CO-RE relocation>\n" 7679 "failed to resolve CO-RE relocation %s%s\n", 7680 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7681 7682 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7683 } 7684 7685 static void fixup_log_missing_map_load(struct bpf_program *prog, 7686 char *buf, size_t buf_sz, size_t log_sz, 7687 char *line1, char *line2, char *line3) 7688 { 7689 /* Expected log for failed and not properly guarded map reference: 7690 * line1 -> 123: (85) call unknown#2001000345 7691 * line2 -> invalid func unknown#2001000345 7692 * line3 -> <anything else or end of buffer> 7693 * 7694 * "123" is the index of the instruction that was poisoned. 7695 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7696 */ 7697 struct bpf_object *obj = prog->obj; 7698 const struct bpf_map *map; 7699 int insn_idx, map_idx; 7700 char patch[128]; 7701 7702 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7703 return; 7704 7705 map_idx -= POISON_LDIMM64_MAP_BASE; 7706 if (map_idx < 0 || map_idx >= obj->nr_maps) 7707 return; 7708 map = &obj->maps[map_idx]; 7709 7710 snprintf(patch, sizeof(patch), 7711 "%d: <invalid BPF map reference>\n" 7712 "BPF map '%s' is referenced but wasn't created\n", 7713 insn_idx, map->name); 7714 7715 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7716 } 7717 7718 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7719 char *buf, size_t buf_sz, size_t log_sz, 7720 char *line1, char *line2, char *line3) 7721 { 7722 /* Expected log for failed and not properly guarded kfunc call: 7723 * line1 -> 123: (85) call unknown#2002000345 7724 * line2 -> invalid func unknown#2002000345 7725 * line3 -> <anything else or end of buffer> 7726 * 7727 * "123" is the index of the instruction that was poisoned. 7728 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7729 */ 7730 struct bpf_object *obj = prog->obj; 7731 const struct extern_desc *ext; 7732 int insn_idx, ext_idx; 7733 char patch[128]; 7734 7735 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7736 return; 7737 7738 ext_idx -= POISON_CALL_KFUNC_BASE; 7739 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7740 return; 7741 ext = &obj->externs[ext_idx]; 7742 7743 snprintf(patch, sizeof(patch), 7744 "%d: <invalid kfunc call>\n" 7745 "kfunc '%s' is referenced but wasn't resolved\n", 7746 insn_idx, ext->name); 7747 7748 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7749 } 7750 7751 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7752 { 7753 /* look for familiar error patterns in last N lines of the log */ 7754 const size_t max_last_line_cnt = 10; 7755 char *prev_line, *cur_line, *next_line; 7756 size_t log_sz; 7757 int i; 7758 7759 if (!buf) 7760 return; 7761 7762 log_sz = strlen(buf) + 1; 7763 next_line = buf + log_sz - 1; 7764 7765 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7766 cur_line = find_prev_line(buf, next_line); 7767 if (!cur_line) 7768 return; 7769 7770 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7771 prev_line = find_prev_line(buf, cur_line); 7772 if (!prev_line) 7773 continue; 7774 7775 /* failed CO-RE relocation case */ 7776 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7777 prev_line, cur_line, next_line); 7778 return; 7779 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7780 prev_line = find_prev_line(buf, cur_line); 7781 if (!prev_line) 7782 continue; 7783 7784 /* reference to uncreated BPF map */ 7785 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7786 prev_line, cur_line, next_line); 7787 return; 7788 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7789 prev_line = find_prev_line(buf, cur_line); 7790 if (!prev_line) 7791 continue; 7792 7793 /* reference to unresolved kfunc */ 7794 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7795 prev_line, cur_line, next_line); 7796 return; 7797 } 7798 } 7799 } 7800 7801 static int bpf_program_record_relos(struct bpf_program *prog) 7802 { 7803 struct bpf_object *obj = prog->obj; 7804 int i; 7805 7806 for (i = 0; i < prog->nr_reloc; i++) { 7807 struct reloc_desc *relo = &prog->reloc_desc[i]; 7808 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7809 int kind; 7810 7811 switch (relo->type) { 7812 case RELO_EXTERN_LD64: 7813 if (ext->type != EXT_KSYM) 7814 continue; 7815 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7816 BTF_KIND_VAR : BTF_KIND_FUNC; 7817 bpf_gen__record_extern(obj->gen_loader, ext->name, 7818 ext->is_weak, !ext->ksym.type_id, 7819 true, kind, relo->insn_idx); 7820 break; 7821 case RELO_EXTERN_CALL: 7822 bpf_gen__record_extern(obj->gen_loader, ext->name, 7823 ext->is_weak, false, false, BTF_KIND_FUNC, 7824 relo->insn_idx); 7825 break; 7826 case RELO_CORE: { 7827 struct bpf_core_relo cr = { 7828 .insn_off = relo->insn_idx * 8, 7829 .type_id = relo->core_relo->type_id, 7830 .access_str_off = relo->core_relo->access_str_off, 7831 .kind = relo->core_relo->kind, 7832 }; 7833 7834 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7835 break; 7836 } 7837 default: 7838 continue; 7839 } 7840 } 7841 return 0; 7842 } 7843 7844 static int 7845 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7846 { 7847 struct bpf_program *prog; 7848 size_t i; 7849 int err; 7850 7851 for (i = 0; i < obj->nr_programs; i++) { 7852 prog = &obj->programs[i]; 7853 err = bpf_object__sanitize_prog(obj, prog); 7854 if (err) 7855 return err; 7856 } 7857 7858 for (i = 0; i < obj->nr_programs; i++) { 7859 prog = &obj->programs[i]; 7860 if (prog_is_subprog(obj, prog)) 7861 continue; 7862 if (!prog->autoload) { 7863 pr_debug("prog '%s': skipped loading\n", prog->name); 7864 continue; 7865 } 7866 prog->log_level |= log_level; 7867 7868 if (obj->gen_loader) 7869 bpf_program_record_relos(prog); 7870 7871 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7872 obj->license, obj->kern_version, &prog->fd); 7873 if (err) { 7874 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7875 return err; 7876 } 7877 } 7878 7879 bpf_object__free_relocs(obj); 7880 return 0; 7881 } 7882 7883 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7884 7885 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7886 { 7887 struct bpf_program *prog; 7888 int err; 7889 7890 bpf_object__for_each_program(prog, obj) { 7891 prog->sec_def = find_sec_def(prog->sec_name); 7892 if (!prog->sec_def) { 7893 /* couldn't guess, but user might manually specify */ 7894 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7895 prog->name, prog->sec_name); 7896 continue; 7897 } 7898 7899 prog->type = prog->sec_def->prog_type; 7900 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7901 7902 /* sec_def can have custom callback which should be called 7903 * after bpf_program is initialized to adjust its properties 7904 */ 7905 if (prog->sec_def->prog_setup_fn) { 7906 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7907 if (err < 0) { 7908 pr_warn("prog '%s': failed to initialize: %d\n", 7909 prog->name, err); 7910 return err; 7911 } 7912 } 7913 } 7914 7915 return 0; 7916 } 7917 7918 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7919 const struct bpf_object_open_opts *opts) 7920 { 7921 const char *obj_name, *kconfig, *btf_tmp_path; 7922 struct bpf_object *obj; 7923 char tmp_name[64]; 7924 int err; 7925 char *log_buf; 7926 size_t log_size; 7927 __u32 log_level; 7928 7929 if (elf_version(EV_CURRENT) == EV_NONE) { 7930 pr_warn("failed to init libelf for %s\n", 7931 path ? : "(mem buf)"); 7932 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7933 } 7934 7935 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7936 return ERR_PTR(-EINVAL); 7937 7938 obj_name = OPTS_GET(opts, object_name, NULL); 7939 if (obj_buf) { 7940 if (!obj_name) { 7941 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7942 (unsigned long)obj_buf, 7943 (unsigned long)obj_buf_sz); 7944 obj_name = tmp_name; 7945 } 7946 path = obj_name; 7947 pr_debug("loading object '%s' from buffer\n", obj_name); 7948 } 7949 7950 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7951 log_size = OPTS_GET(opts, kernel_log_size, 0); 7952 log_level = OPTS_GET(opts, kernel_log_level, 0); 7953 if (log_size > UINT_MAX) 7954 return ERR_PTR(-EINVAL); 7955 if (log_size && !log_buf) 7956 return ERR_PTR(-EINVAL); 7957 7958 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7959 if (IS_ERR(obj)) 7960 return obj; 7961 7962 obj->log_buf = log_buf; 7963 obj->log_size = log_size; 7964 obj->log_level = log_level; 7965 7966 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7967 if (btf_tmp_path) { 7968 if (strlen(btf_tmp_path) >= PATH_MAX) { 7969 err = -ENAMETOOLONG; 7970 goto out; 7971 } 7972 obj->btf_custom_path = strdup(btf_tmp_path); 7973 if (!obj->btf_custom_path) { 7974 err = -ENOMEM; 7975 goto out; 7976 } 7977 } 7978 7979 kconfig = OPTS_GET(opts, kconfig, NULL); 7980 if (kconfig) { 7981 obj->kconfig = strdup(kconfig); 7982 if (!obj->kconfig) { 7983 err = -ENOMEM; 7984 goto out; 7985 } 7986 } 7987 7988 err = bpf_object__elf_init(obj); 7989 err = err ? : bpf_object__check_endianness(obj); 7990 err = err ? : bpf_object__elf_collect(obj); 7991 err = err ? : bpf_object__collect_externs(obj); 7992 err = err ? : bpf_object_fixup_btf(obj); 7993 err = err ? : bpf_object__init_maps(obj, opts); 7994 err = err ? : bpf_object_init_progs(obj, opts); 7995 err = err ? : bpf_object__collect_relos(obj); 7996 if (err) 7997 goto out; 7998 7999 bpf_object__elf_finish(obj); 8000 8001 return obj; 8002 out: 8003 bpf_object__close(obj); 8004 return ERR_PTR(err); 8005 } 8006 8007 struct bpf_object * 8008 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8009 { 8010 if (!path) 8011 return libbpf_err_ptr(-EINVAL); 8012 8013 pr_debug("loading %s\n", path); 8014 8015 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 8016 } 8017 8018 struct bpf_object *bpf_object__open(const char *path) 8019 { 8020 return bpf_object__open_file(path, NULL); 8021 } 8022 8023 struct bpf_object * 8024 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8025 const struct bpf_object_open_opts *opts) 8026 { 8027 if (!obj_buf || obj_buf_sz == 0) 8028 return libbpf_err_ptr(-EINVAL); 8029 8030 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 8031 } 8032 8033 static int bpf_object_unload(struct bpf_object *obj) 8034 { 8035 size_t i; 8036 8037 if (!obj) 8038 return libbpf_err(-EINVAL); 8039 8040 for (i = 0; i < obj->nr_maps; i++) { 8041 zclose(obj->maps[i].fd); 8042 if (obj->maps[i].st_ops) 8043 zfree(&obj->maps[i].st_ops->kern_vdata); 8044 } 8045 8046 for (i = 0; i < obj->nr_programs; i++) 8047 bpf_program__unload(&obj->programs[i]); 8048 8049 return 0; 8050 } 8051 8052 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8053 { 8054 struct bpf_map *m; 8055 8056 bpf_object__for_each_map(m, obj) { 8057 if (!bpf_map__is_internal(m)) 8058 continue; 8059 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8060 m->def.map_flags &= ~BPF_F_MMAPABLE; 8061 } 8062 8063 return 0; 8064 } 8065 8066 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8067 { 8068 char sym_type, sym_name[500]; 8069 unsigned long long sym_addr; 8070 int ret, err = 0; 8071 FILE *f; 8072 8073 f = fopen("/proc/kallsyms", "re"); 8074 if (!f) { 8075 err = -errno; 8076 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8077 return err; 8078 } 8079 8080 while (true) { 8081 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8082 &sym_addr, &sym_type, sym_name); 8083 if (ret == EOF && feof(f)) 8084 break; 8085 if (ret != 3) { 8086 pr_warn("failed to read kallsyms entry: %d\n", ret); 8087 err = -EINVAL; 8088 break; 8089 } 8090 8091 err = cb(sym_addr, sym_type, sym_name, ctx); 8092 if (err) 8093 break; 8094 } 8095 8096 fclose(f); 8097 return err; 8098 } 8099 8100 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8101 const char *sym_name, void *ctx) 8102 { 8103 struct bpf_object *obj = ctx; 8104 const struct btf_type *t; 8105 struct extern_desc *ext; 8106 8107 ext = find_extern_by_name(obj, sym_name); 8108 if (!ext || ext->type != EXT_KSYM) 8109 return 0; 8110 8111 t = btf__type_by_id(obj->btf, ext->btf_id); 8112 if (!btf_is_var(t)) 8113 return 0; 8114 8115 if (ext->is_set && ext->ksym.addr != sym_addr) { 8116 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8117 sym_name, ext->ksym.addr, sym_addr); 8118 return -EINVAL; 8119 } 8120 if (!ext->is_set) { 8121 ext->is_set = true; 8122 ext->ksym.addr = sym_addr; 8123 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8124 } 8125 return 0; 8126 } 8127 8128 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8129 { 8130 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8131 } 8132 8133 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8134 __u16 kind, struct btf **res_btf, 8135 struct module_btf **res_mod_btf) 8136 { 8137 struct module_btf *mod_btf; 8138 struct btf *btf; 8139 int i, id, err; 8140 8141 btf = obj->btf_vmlinux; 8142 mod_btf = NULL; 8143 id = btf__find_by_name_kind(btf, ksym_name, kind); 8144 8145 if (id == -ENOENT) { 8146 err = load_module_btfs(obj); 8147 if (err) 8148 return err; 8149 8150 for (i = 0; i < obj->btf_module_cnt; i++) { 8151 /* we assume module_btf's BTF FD is always >0 */ 8152 mod_btf = &obj->btf_modules[i]; 8153 btf = mod_btf->btf; 8154 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8155 if (id != -ENOENT) 8156 break; 8157 } 8158 } 8159 if (id <= 0) 8160 return -ESRCH; 8161 8162 *res_btf = btf; 8163 *res_mod_btf = mod_btf; 8164 return id; 8165 } 8166 8167 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8168 struct extern_desc *ext) 8169 { 8170 const struct btf_type *targ_var, *targ_type; 8171 __u32 targ_type_id, local_type_id; 8172 struct module_btf *mod_btf = NULL; 8173 const char *targ_var_name; 8174 struct btf *btf = NULL; 8175 int id, err; 8176 8177 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8178 if (id < 0) { 8179 if (id == -ESRCH && ext->is_weak) 8180 return 0; 8181 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8182 ext->name); 8183 return id; 8184 } 8185 8186 /* find local type_id */ 8187 local_type_id = ext->ksym.type_id; 8188 8189 /* find target type_id */ 8190 targ_var = btf__type_by_id(btf, id); 8191 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8192 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8193 8194 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8195 btf, targ_type_id); 8196 if (err <= 0) { 8197 const struct btf_type *local_type; 8198 const char *targ_name, *local_name; 8199 8200 local_type = btf__type_by_id(obj->btf, local_type_id); 8201 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8202 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8203 8204 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8205 ext->name, local_type_id, 8206 btf_kind_str(local_type), local_name, targ_type_id, 8207 btf_kind_str(targ_type), targ_name); 8208 return -EINVAL; 8209 } 8210 8211 ext->is_set = true; 8212 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8213 ext->ksym.kernel_btf_id = id; 8214 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8215 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8216 8217 return 0; 8218 } 8219 8220 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8221 struct extern_desc *ext) 8222 { 8223 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8224 struct module_btf *mod_btf = NULL; 8225 const struct btf_type *kern_func; 8226 struct btf *kern_btf = NULL; 8227 int ret; 8228 8229 local_func_proto_id = ext->ksym.type_id; 8230 8231 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8232 &mod_btf); 8233 if (kfunc_id < 0) { 8234 if (kfunc_id == -ESRCH && ext->is_weak) 8235 return 0; 8236 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8237 ext->name); 8238 return kfunc_id; 8239 } 8240 8241 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8242 kfunc_proto_id = kern_func->type; 8243 8244 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8245 kern_btf, kfunc_proto_id); 8246 if (ret <= 0) { 8247 if (ext->is_weak) 8248 return 0; 8249 8250 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8251 ext->name, local_func_proto_id, 8252 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8253 return -EINVAL; 8254 } 8255 8256 /* set index for module BTF fd in fd_array, if unset */ 8257 if (mod_btf && !mod_btf->fd_array_idx) { 8258 /* insn->off is s16 */ 8259 if (obj->fd_array_cnt == INT16_MAX) { 8260 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8261 ext->name, mod_btf->fd_array_idx); 8262 return -E2BIG; 8263 } 8264 /* Cannot use index 0 for module BTF fd */ 8265 if (!obj->fd_array_cnt) 8266 obj->fd_array_cnt = 1; 8267 8268 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8269 obj->fd_array_cnt + 1); 8270 if (ret) 8271 return ret; 8272 mod_btf->fd_array_idx = obj->fd_array_cnt; 8273 /* we assume module BTF FD is always >0 */ 8274 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8275 } 8276 8277 ext->is_set = true; 8278 ext->ksym.kernel_btf_id = kfunc_id; 8279 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8280 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8281 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8282 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8283 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8284 */ 8285 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8286 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8287 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8288 8289 return 0; 8290 } 8291 8292 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8293 { 8294 const struct btf_type *t; 8295 struct extern_desc *ext; 8296 int i, err; 8297 8298 for (i = 0; i < obj->nr_extern; i++) { 8299 ext = &obj->externs[i]; 8300 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8301 continue; 8302 8303 if (obj->gen_loader) { 8304 ext->is_set = true; 8305 ext->ksym.kernel_btf_obj_fd = 0; 8306 ext->ksym.kernel_btf_id = 0; 8307 continue; 8308 } 8309 t = btf__type_by_id(obj->btf, ext->btf_id); 8310 if (btf_is_var(t)) 8311 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8312 else 8313 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8314 if (err) 8315 return err; 8316 } 8317 return 0; 8318 } 8319 8320 static int bpf_object__resolve_externs(struct bpf_object *obj, 8321 const char *extra_kconfig) 8322 { 8323 bool need_config = false, need_kallsyms = false; 8324 bool need_vmlinux_btf = false; 8325 struct extern_desc *ext; 8326 void *kcfg_data = NULL; 8327 int err, i; 8328 8329 if (obj->nr_extern == 0) 8330 return 0; 8331 8332 if (obj->kconfig_map_idx >= 0) 8333 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8334 8335 for (i = 0; i < obj->nr_extern; i++) { 8336 ext = &obj->externs[i]; 8337 8338 if (ext->type == EXT_KSYM) { 8339 if (ext->ksym.type_id) 8340 need_vmlinux_btf = true; 8341 else 8342 need_kallsyms = true; 8343 continue; 8344 } else if (ext->type == EXT_KCFG) { 8345 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8346 __u64 value = 0; 8347 8348 /* Kconfig externs need actual /proc/config.gz */ 8349 if (str_has_pfx(ext->name, "CONFIG_")) { 8350 need_config = true; 8351 continue; 8352 } 8353 8354 /* Virtual kcfg externs are customly handled by libbpf */ 8355 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8356 value = get_kernel_version(); 8357 if (!value) { 8358 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8359 return -EINVAL; 8360 } 8361 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8362 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8363 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8364 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8365 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8366 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8367 * __kconfig externs, where LINUX_ ones are virtual and filled out 8368 * customly by libbpf (their values don't come from Kconfig). 8369 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8370 * __weak, it defaults to zero value, just like for CONFIG_xxx 8371 * externs. 8372 */ 8373 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8374 return -EINVAL; 8375 } 8376 8377 err = set_kcfg_value_num(ext, ext_ptr, value); 8378 if (err) 8379 return err; 8380 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8381 ext->name, (long long)value); 8382 } else { 8383 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8384 return -EINVAL; 8385 } 8386 } 8387 if (need_config && extra_kconfig) { 8388 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8389 if (err) 8390 return -EINVAL; 8391 need_config = false; 8392 for (i = 0; i < obj->nr_extern; i++) { 8393 ext = &obj->externs[i]; 8394 if (ext->type == EXT_KCFG && !ext->is_set) { 8395 need_config = true; 8396 break; 8397 } 8398 } 8399 } 8400 if (need_config) { 8401 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8402 if (err) 8403 return -EINVAL; 8404 } 8405 if (need_kallsyms) { 8406 err = bpf_object__read_kallsyms_file(obj); 8407 if (err) 8408 return -EINVAL; 8409 } 8410 if (need_vmlinux_btf) { 8411 err = bpf_object__resolve_ksyms_btf_id(obj); 8412 if (err) 8413 return -EINVAL; 8414 } 8415 for (i = 0; i < obj->nr_extern; i++) { 8416 ext = &obj->externs[i]; 8417 8418 if (!ext->is_set && !ext->is_weak) { 8419 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8420 return -ESRCH; 8421 } else if (!ext->is_set) { 8422 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8423 ext->name); 8424 } 8425 } 8426 8427 return 0; 8428 } 8429 8430 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8431 { 8432 struct bpf_struct_ops *st_ops; 8433 __u32 i; 8434 8435 st_ops = map->st_ops; 8436 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8437 struct bpf_program *prog = st_ops->progs[i]; 8438 void *kern_data; 8439 int prog_fd; 8440 8441 if (!prog) 8442 continue; 8443 8444 prog_fd = bpf_program__fd(prog); 8445 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8446 *(unsigned long *)kern_data = prog_fd; 8447 } 8448 } 8449 8450 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8451 { 8452 int i; 8453 8454 for (i = 0; i < obj->nr_maps; i++) 8455 if (bpf_map__is_struct_ops(&obj->maps[i])) 8456 bpf_map_prepare_vdata(&obj->maps[i]); 8457 8458 return 0; 8459 } 8460 8461 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8462 { 8463 int err, i; 8464 8465 if (!obj) 8466 return libbpf_err(-EINVAL); 8467 8468 if (obj->loaded) { 8469 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8470 return libbpf_err(-EINVAL); 8471 } 8472 8473 if (obj->gen_loader) 8474 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8475 8476 err = bpf_object__probe_loading(obj); 8477 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8478 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8479 err = err ? : bpf_object__sanitize_maps(obj); 8480 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8481 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8482 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8483 err = err ? : bpf_object__create_maps(obj); 8484 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8485 err = err ? : bpf_object_init_prog_arrays(obj); 8486 err = err ? : bpf_object_prepare_struct_ops(obj); 8487 8488 if (obj->gen_loader) { 8489 /* reset FDs */ 8490 if (obj->btf) 8491 btf__set_fd(obj->btf, -1); 8492 if (!err) 8493 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8494 } 8495 8496 /* clean up fd_array */ 8497 zfree(&obj->fd_array); 8498 8499 /* clean up module BTFs */ 8500 for (i = 0; i < obj->btf_module_cnt; i++) { 8501 close(obj->btf_modules[i].fd); 8502 btf__free(obj->btf_modules[i].btf); 8503 free(obj->btf_modules[i].name); 8504 } 8505 free(obj->btf_modules); 8506 8507 /* clean up vmlinux BTF */ 8508 btf__free(obj->btf_vmlinux); 8509 obj->btf_vmlinux = NULL; 8510 8511 obj->loaded = true; /* doesn't matter if successfully or not */ 8512 8513 if (err) 8514 goto out; 8515 8516 return 0; 8517 out: 8518 /* unpin any maps that were auto-pinned during load */ 8519 for (i = 0; i < obj->nr_maps; i++) 8520 if (obj->maps[i].pinned && !obj->maps[i].reused) 8521 bpf_map__unpin(&obj->maps[i], NULL); 8522 8523 bpf_object_unload(obj); 8524 pr_warn("failed to load object '%s'\n", obj->path); 8525 return libbpf_err(err); 8526 } 8527 8528 int bpf_object__load(struct bpf_object *obj) 8529 { 8530 return bpf_object_load(obj, 0, NULL); 8531 } 8532 8533 static int make_parent_dir(const char *path) 8534 { 8535 char *cp, errmsg[STRERR_BUFSIZE]; 8536 char *dname, *dir; 8537 int err = 0; 8538 8539 dname = strdup(path); 8540 if (dname == NULL) 8541 return -ENOMEM; 8542 8543 dir = dirname(dname); 8544 if (mkdir(dir, 0700) && errno != EEXIST) 8545 err = -errno; 8546 8547 free(dname); 8548 if (err) { 8549 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8550 pr_warn("failed to mkdir %s: %s\n", path, cp); 8551 } 8552 return err; 8553 } 8554 8555 static int check_path(const char *path) 8556 { 8557 char *cp, errmsg[STRERR_BUFSIZE]; 8558 struct statfs st_fs; 8559 char *dname, *dir; 8560 int err = 0; 8561 8562 if (path == NULL) 8563 return -EINVAL; 8564 8565 dname = strdup(path); 8566 if (dname == NULL) 8567 return -ENOMEM; 8568 8569 dir = dirname(dname); 8570 if (statfs(dir, &st_fs)) { 8571 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8572 pr_warn("failed to statfs %s: %s\n", dir, cp); 8573 err = -errno; 8574 } 8575 free(dname); 8576 8577 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8578 pr_warn("specified path %s is not on BPF FS\n", path); 8579 err = -EINVAL; 8580 } 8581 8582 return err; 8583 } 8584 8585 int bpf_program__pin(struct bpf_program *prog, const char *path) 8586 { 8587 char *cp, errmsg[STRERR_BUFSIZE]; 8588 int err; 8589 8590 if (prog->fd < 0) { 8591 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8592 return libbpf_err(-EINVAL); 8593 } 8594 8595 err = make_parent_dir(path); 8596 if (err) 8597 return libbpf_err(err); 8598 8599 err = check_path(path); 8600 if (err) 8601 return libbpf_err(err); 8602 8603 if (bpf_obj_pin(prog->fd, path)) { 8604 err = -errno; 8605 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8606 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8607 return libbpf_err(err); 8608 } 8609 8610 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8611 return 0; 8612 } 8613 8614 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8615 { 8616 int err; 8617 8618 if (prog->fd < 0) { 8619 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8620 return libbpf_err(-EINVAL); 8621 } 8622 8623 err = check_path(path); 8624 if (err) 8625 return libbpf_err(err); 8626 8627 err = unlink(path); 8628 if (err) 8629 return libbpf_err(-errno); 8630 8631 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8632 return 0; 8633 } 8634 8635 int bpf_map__pin(struct bpf_map *map, const char *path) 8636 { 8637 char *cp, errmsg[STRERR_BUFSIZE]; 8638 int err; 8639 8640 if (map == NULL) { 8641 pr_warn("invalid map pointer\n"); 8642 return libbpf_err(-EINVAL); 8643 } 8644 8645 if (map->pin_path) { 8646 if (path && strcmp(path, map->pin_path)) { 8647 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8648 bpf_map__name(map), map->pin_path, path); 8649 return libbpf_err(-EINVAL); 8650 } else if (map->pinned) { 8651 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8652 bpf_map__name(map), map->pin_path); 8653 return 0; 8654 } 8655 } else { 8656 if (!path) { 8657 pr_warn("missing a path to pin map '%s' at\n", 8658 bpf_map__name(map)); 8659 return libbpf_err(-EINVAL); 8660 } else if (map->pinned) { 8661 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8662 return libbpf_err(-EEXIST); 8663 } 8664 8665 map->pin_path = strdup(path); 8666 if (!map->pin_path) { 8667 err = -errno; 8668 goto out_err; 8669 } 8670 } 8671 8672 err = make_parent_dir(map->pin_path); 8673 if (err) 8674 return libbpf_err(err); 8675 8676 err = check_path(map->pin_path); 8677 if (err) 8678 return libbpf_err(err); 8679 8680 if (bpf_obj_pin(map->fd, map->pin_path)) { 8681 err = -errno; 8682 goto out_err; 8683 } 8684 8685 map->pinned = true; 8686 pr_debug("pinned map '%s'\n", map->pin_path); 8687 8688 return 0; 8689 8690 out_err: 8691 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8692 pr_warn("failed to pin map: %s\n", cp); 8693 return libbpf_err(err); 8694 } 8695 8696 int bpf_map__unpin(struct bpf_map *map, const char *path) 8697 { 8698 int err; 8699 8700 if (map == NULL) { 8701 pr_warn("invalid map pointer\n"); 8702 return libbpf_err(-EINVAL); 8703 } 8704 8705 if (map->pin_path) { 8706 if (path && strcmp(path, map->pin_path)) { 8707 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8708 bpf_map__name(map), map->pin_path, path); 8709 return libbpf_err(-EINVAL); 8710 } 8711 path = map->pin_path; 8712 } else if (!path) { 8713 pr_warn("no path to unpin map '%s' from\n", 8714 bpf_map__name(map)); 8715 return libbpf_err(-EINVAL); 8716 } 8717 8718 err = check_path(path); 8719 if (err) 8720 return libbpf_err(err); 8721 8722 err = unlink(path); 8723 if (err != 0) 8724 return libbpf_err(-errno); 8725 8726 map->pinned = false; 8727 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8728 8729 return 0; 8730 } 8731 8732 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8733 { 8734 char *new = NULL; 8735 8736 if (path) { 8737 new = strdup(path); 8738 if (!new) 8739 return libbpf_err(-errno); 8740 } 8741 8742 free(map->pin_path); 8743 map->pin_path = new; 8744 return 0; 8745 } 8746 8747 __alias(bpf_map__pin_path) 8748 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8749 8750 const char *bpf_map__pin_path(const struct bpf_map *map) 8751 { 8752 return map->pin_path; 8753 } 8754 8755 bool bpf_map__is_pinned(const struct bpf_map *map) 8756 { 8757 return map->pinned; 8758 } 8759 8760 static void sanitize_pin_path(char *s) 8761 { 8762 /* bpffs disallows periods in path names */ 8763 while (*s) { 8764 if (*s == '.') 8765 *s = '_'; 8766 s++; 8767 } 8768 } 8769 8770 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8771 { 8772 struct bpf_map *map; 8773 int err; 8774 8775 if (!obj) 8776 return libbpf_err(-ENOENT); 8777 8778 if (!obj->loaded) { 8779 pr_warn("object not yet loaded; load it first\n"); 8780 return libbpf_err(-ENOENT); 8781 } 8782 8783 bpf_object__for_each_map(map, obj) { 8784 char *pin_path = NULL; 8785 char buf[PATH_MAX]; 8786 8787 if (!map->autocreate) 8788 continue; 8789 8790 if (path) { 8791 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8792 if (err) 8793 goto err_unpin_maps; 8794 sanitize_pin_path(buf); 8795 pin_path = buf; 8796 } else if (!map->pin_path) { 8797 continue; 8798 } 8799 8800 err = bpf_map__pin(map, pin_path); 8801 if (err) 8802 goto err_unpin_maps; 8803 } 8804 8805 return 0; 8806 8807 err_unpin_maps: 8808 while ((map = bpf_object__prev_map(obj, map))) { 8809 if (!map->pin_path) 8810 continue; 8811 8812 bpf_map__unpin(map, NULL); 8813 } 8814 8815 return libbpf_err(err); 8816 } 8817 8818 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8819 { 8820 struct bpf_map *map; 8821 int err; 8822 8823 if (!obj) 8824 return libbpf_err(-ENOENT); 8825 8826 bpf_object__for_each_map(map, obj) { 8827 char *pin_path = NULL; 8828 char buf[PATH_MAX]; 8829 8830 if (path) { 8831 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8832 if (err) 8833 return libbpf_err(err); 8834 sanitize_pin_path(buf); 8835 pin_path = buf; 8836 } else if (!map->pin_path) { 8837 continue; 8838 } 8839 8840 err = bpf_map__unpin(map, pin_path); 8841 if (err) 8842 return libbpf_err(err); 8843 } 8844 8845 return 0; 8846 } 8847 8848 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8849 { 8850 struct bpf_program *prog; 8851 char buf[PATH_MAX]; 8852 int err; 8853 8854 if (!obj) 8855 return libbpf_err(-ENOENT); 8856 8857 if (!obj->loaded) { 8858 pr_warn("object not yet loaded; load it first\n"); 8859 return libbpf_err(-ENOENT); 8860 } 8861 8862 bpf_object__for_each_program(prog, obj) { 8863 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8864 if (err) 8865 goto err_unpin_programs; 8866 8867 err = bpf_program__pin(prog, buf); 8868 if (err) 8869 goto err_unpin_programs; 8870 } 8871 8872 return 0; 8873 8874 err_unpin_programs: 8875 while ((prog = bpf_object__prev_program(obj, prog))) { 8876 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8877 continue; 8878 8879 bpf_program__unpin(prog, buf); 8880 } 8881 8882 return libbpf_err(err); 8883 } 8884 8885 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8886 { 8887 struct bpf_program *prog; 8888 int err; 8889 8890 if (!obj) 8891 return libbpf_err(-ENOENT); 8892 8893 bpf_object__for_each_program(prog, obj) { 8894 char buf[PATH_MAX]; 8895 8896 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8897 if (err) 8898 return libbpf_err(err); 8899 8900 err = bpf_program__unpin(prog, buf); 8901 if (err) 8902 return libbpf_err(err); 8903 } 8904 8905 return 0; 8906 } 8907 8908 int bpf_object__pin(struct bpf_object *obj, const char *path) 8909 { 8910 int err; 8911 8912 err = bpf_object__pin_maps(obj, path); 8913 if (err) 8914 return libbpf_err(err); 8915 8916 err = bpf_object__pin_programs(obj, path); 8917 if (err) { 8918 bpf_object__unpin_maps(obj, path); 8919 return libbpf_err(err); 8920 } 8921 8922 return 0; 8923 } 8924 8925 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8926 { 8927 int err; 8928 8929 err = bpf_object__unpin_programs(obj, path); 8930 if (err) 8931 return libbpf_err(err); 8932 8933 err = bpf_object__unpin_maps(obj, path); 8934 if (err) 8935 return libbpf_err(err); 8936 8937 return 0; 8938 } 8939 8940 static void bpf_map__destroy(struct bpf_map *map) 8941 { 8942 if (map->inner_map) { 8943 bpf_map__destroy(map->inner_map); 8944 zfree(&map->inner_map); 8945 } 8946 8947 zfree(&map->init_slots); 8948 map->init_slots_sz = 0; 8949 8950 if (map->mmaped) { 8951 size_t mmap_sz; 8952 8953 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8954 munmap(map->mmaped, mmap_sz); 8955 map->mmaped = NULL; 8956 } 8957 8958 if (map->st_ops) { 8959 zfree(&map->st_ops->data); 8960 zfree(&map->st_ops->progs); 8961 zfree(&map->st_ops->kern_func_off); 8962 zfree(&map->st_ops); 8963 } 8964 8965 zfree(&map->name); 8966 zfree(&map->real_name); 8967 zfree(&map->pin_path); 8968 8969 if (map->fd >= 0) 8970 zclose(map->fd); 8971 } 8972 8973 void bpf_object__close(struct bpf_object *obj) 8974 { 8975 size_t i; 8976 8977 if (IS_ERR_OR_NULL(obj)) 8978 return; 8979 8980 usdt_manager_free(obj->usdt_man); 8981 obj->usdt_man = NULL; 8982 8983 bpf_gen__free(obj->gen_loader); 8984 bpf_object__elf_finish(obj); 8985 bpf_object_unload(obj); 8986 btf__free(obj->btf); 8987 btf__free(obj->btf_vmlinux); 8988 btf_ext__free(obj->btf_ext); 8989 8990 for (i = 0; i < obj->nr_maps; i++) 8991 bpf_map__destroy(&obj->maps[i]); 8992 8993 zfree(&obj->btf_custom_path); 8994 zfree(&obj->kconfig); 8995 8996 for (i = 0; i < obj->nr_extern; i++) 8997 zfree(&obj->externs[i].essent_name); 8998 8999 zfree(&obj->externs); 9000 obj->nr_extern = 0; 9001 9002 zfree(&obj->maps); 9003 obj->nr_maps = 0; 9004 9005 if (obj->programs && obj->nr_programs) { 9006 for (i = 0; i < obj->nr_programs; i++) 9007 bpf_program__exit(&obj->programs[i]); 9008 } 9009 zfree(&obj->programs); 9010 9011 free(obj); 9012 } 9013 9014 const char *bpf_object__name(const struct bpf_object *obj) 9015 { 9016 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9017 } 9018 9019 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9020 { 9021 return obj ? obj->kern_version : 0; 9022 } 9023 9024 struct btf *bpf_object__btf(const struct bpf_object *obj) 9025 { 9026 return obj ? obj->btf : NULL; 9027 } 9028 9029 int bpf_object__btf_fd(const struct bpf_object *obj) 9030 { 9031 return obj->btf ? btf__fd(obj->btf) : -1; 9032 } 9033 9034 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9035 { 9036 if (obj->loaded) 9037 return libbpf_err(-EINVAL); 9038 9039 obj->kern_version = kern_version; 9040 9041 return 0; 9042 } 9043 9044 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9045 { 9046 struct bpf_gen *gen; 9047 9048 if (!opts) 9049 return -EFAULT; 9050 if (!OPTS_VALID(opts, gen_loader_opts)) 9051 return -EINVAL; 9052 gen = calloc(sizeof(*gen), 1); 9053 if (!gen) 9054 return -ENOMEM; 9055 gen->opts = opts; 9056 obj->gen_loader = gen; 9057 return 0; 9058 } 9059 9060 static struct bpf_program * 9061 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9062 bool forward) 9063 { 9064 size_t nr_programs = obj->nr_programs; 9065 ssize_t idx; 9066 9067 if (!nr_programs) 9068 return NULL; 9069 9070 if (!p) 9071 /* Iter from the beginning */ 9072 return forward ? &obj->programs[0] : 9073 &obj->programs[nr_programs - 1]; 9074 9075 if (p->obj != obj) { 9076 pr_warn("error: program handler doesn't match object\n"); 9077 return errno = EINVAL, NULL; 9078 } 9079 9080 idx = (p - obj->programs) + (forward ? 1 : -1); 9081 if (idx >= obj->nr_programs || idx < 0) 9082 return NULL; 9083 return &obj->programs[idx]; 9084 } 9085 9086 struct bpf_program * 9087 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9088 { 9089 struct bpf_program *prog = prev; 9090 9091 do { 9092 prog = __bpf_program__iter(prog, obj, true); 9093 } while (prog && prog_is_subprog(obj, prog)); 9094 9095 return prog; 9096 } 9097 9098 struct bpf_program * 9099 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9100 { 9101 struct bpf_program *prog = next; 9102 9103 do { 9104 prog = __bpf_program__iter(prog, obj, false); 9105 } while (prog && prog_is_subprog(obj, prog)); 9106 9107 return prog; 9108 } 9109 9110 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9111 { 9112 prog->prog_ifindex = ifindex; 9113 } 9114 9115 const char *bpf_program__name(const struct bpf_program *prog) 9116 { 9117 return prog->name; 9118 } 9119 9120 const char *bpf_program__section_name(const struct bpf_program *prog) 9121 { 9122 return prog->sec_name; 9123 } 9124 9125 bool bpf_program__autoload(const struct bpf_program *prog) 9126 { 9127 return prog->autoload; 9128 } 9129 9130 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9131 { 9132 if (prog->obj->loaded) 9133 return libbpf_err(-EINVAL); 9134 9135 prog->autoload = autoload; 9136 return 0; 9137 } 9138 9139 bool bpf_program__autoattach(const struct bpf_program *prog) 9140 { 9141 return prog->autoattach; 9142 } 9143 9144 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9145 { 9146 prog->autoattach = autoattach; 9147 } 9148 9149 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9150 { 9151 return prog->insns; 9152 } 9153 9154 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9155 { 9156 return prog->insns_cnt; 9157 } 9158 9159 int bpf_program__set_insns(struct bpf_program *prog, 9160 struct bpf_insn *new_insns, size_t new_insn_cnt) 9161 { 9162 struct bpf_insn *insns; 9163 9164 if (prog->obj->loaded) 9165 return -EBUSY; 9166 9167 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9168 /* NULL is a valid return from reallocarray if the new count is zero */ 9169 if (!insns && new_insn_cnt) { 9170 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9171 return -ENOMEM; 9172 } 9173 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9174 9175 prog->insns = insns; 9176 prog->insns_cnt = new_insn_cnt; 9177 return 0; 9178 } 9179 9180 int bpf_program__fd(const struct bpf_program *prog) 9181 { 9182 if (!prog) 9183 return libbpf_err(-EINVAL); 9184 9185 if (prog->fd < 0) 9186 return libbpf_err(-ENOENT); 9187 9188 return prog->fd; 9189 } 9190 9191 __alias(bpf_program__type) 9192 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9193 9194 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9195 { 9196 return prog->type; 9197 } 9198 9199 static size_t custom_sec_def_cnt; 9200 static struct bpf_sec_def *custom_sec_defs; 9201 static struct bpf_sec_def custom_fallback_def; 9202 static bool has_custom_fallback_def; 9203 static int last_custom_sec_def_handler_id; 9204 9205 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9206 { 9207 if (prog->obj->loaded) 9208 return libbpf_err(-EBUSY); 9209 9210 /* if type is not changed, do nothing */ 9211 if (prog->type == type) 9212 return 0; 9213 9214 prog->type = type; 9215 9216 /* If a program type was changed, we need to reset associated SEC() 9217 * handler, as it will be invalid now. The only exception is a generic 9218 * fallback handler, which by definition is program type-agnostic and 9219 * is a catch-all custom handler, optionally set by the application, 9220 * so should be able to handle any type of BPF program. 9221 */ 9222 if (prog->sec_def != &custom_fallback_def) 9223 prog->sec_def = NULL; 9224 return 0; 9225 } 9226 9227 __alias(bpf_program__expected_attach_type) 9228 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9229 9230 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9231 { 9232 return prog->expected_attach_type; 9233 } 9234 9235 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9236 enum bpf_attach_type type) 9237 { 9238 if (prog->obj->loaded) 9239 return libbpf_err(-EBUSY); 9240 9241 prog->expected_attach_type = type; 9242 return 0; 9243 } 9244 9245 __u32 bpf_program__flags(const struct bpf_program *prog) 9246 { 9247 return prog->prog_flags; 9248 } 9249 9250 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9251 { 9252 if (prog->obj->loaded) 9253 return libbpf_err(-EBUSY); 9254 9255 prog->prog_flags = flags; 9256 return 0; 9257 } 9258 9259 __u32 bpf_program__log_level(const struct bpf_program *prog) 9260 { 9261 return prog->log_level; 9262 } 9263 9264 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9265 { 9266 if (prog->obj->loaded) 9267 return libbpf_err(-EBUSY); 9268 9269 prog->log_level = log_level; 9270 return 0; 9271 } 9272 9273 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9274 { 9275 *log_size = prog->log_size; 9276 return prog->log_buf; 9277 } 9278 9279 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9280 { 9281 if (log_size && !log_buf) 9282 return -EINVAL; 9283 if (prog->log_size > UINT_MAX) 9284 return -EINVAL; 9285 if (prog->obj->loaded) 9286 return -EBUSY; 9287 9288 prog->log_buf = log_buf; 9289 prog->log_size = log_size; 9290 return 0; 9291 } 9292 9293 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9294 .sec = (char *)sec_pfx, \ 9295 .prog_type = BPF_PROG_TYPE_##ptype, \ 9296 .expected_attach_type = atype, \ 9297 .cookie = (long)(flags), \ 9298 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9299 __VA_ARGS__ \ 9300 } 9301 9302 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9303 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9304 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9305 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9306 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9307 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9308 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9309 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9310 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9311 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9312 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9313 9314 static const struct bpf_sec_def section_defs[] = { 9315 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9316 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9317 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9318 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9319 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9320 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9321 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9322 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9323 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9324 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9325 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9326 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9327 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9328 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9329 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9330 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9331 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9332 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9333 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9334 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9335 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9336 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9337 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9338 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9339 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9340 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9341 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9342 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9343 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9344 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9345 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9346 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9347 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9348 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9349 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9350 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9351 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9352 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9353 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9354 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9355 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9356 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9357 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9358 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9359 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9360 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9361 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9362 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9363 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9364 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9365 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9366 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9367 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9368 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9369 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9370 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9371 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9372 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9373 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9374 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9375 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9376 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9377 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9378 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9379 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9380 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9381 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9382 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9383 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9384 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9385 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9386 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9387 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9388 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9389 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9390 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9391 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9392 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9393 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9394 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9395 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9396 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9397 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9398 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9399 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9400 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9401 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9402 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9403 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9404 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9405 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9406 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9407 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9408 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9409 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9410 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9411 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9412 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9413 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9414 }; 9415 9416 int libbpf_register_prog_handler(const char *sec, 9417 enum bpf_prog_type prog_type, 9418 enum bpf_attach_type exp_attach_type, 9419 const struct libbpf_prog_handler_opts *opts) 9420 { 9421 struct bpf_sec_def *sec_def; 9422 9423 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9424 return libbpf_err(-EINVAL); 9425 9426 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9427 return libbpf_err(-E2BIG); 9428 9429 if (sec) { 9430 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9431 sizeof(*sec_def)); 9432 if (!sec_def) 9433 return libbpf_err(-ENOMEM); 9434 9435 custom_sec_defs = sec_def; 9436 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9437 } else { 9438 if (has_custom_fallback_def) 9439 return libbpf_err(-EBUSY); 9440 9441 sec_def = &custom_fallback_def; 9442 } 9443 9444 sec_def->sec = sec ? strdup(sec) : NULL; 9445 if (sec && !sec_def->sec) 9446 return libbpf_err(-ENOMEM); 9447 9448 sec_def->prog_type = prog_type; 9449 sec_def->expected_attach_type = exp_attach_type; 9450 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9451 9452 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9453 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9454 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9455 9456 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9457 9458 if (sec) 9459 custom_sec_def_cnt++; 9460 else 9461 has_custom_fallback_def = true; 9462 9463 return sec_def->handler_id; 9464 } 9465 9466 int libbpf_unregister_prog_handler(int handler_id) 9467 { 9468 struct bpf_sec_def *sec_defs; 9469 int i; 9470 9471 if (handler_id <= 0) 9472 return libbpf_err(-EINVAL); 9473 9474 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9475 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9476 has_custom_fallback_def = false; 9477 return 0; 9478 } 9479 9480 for (i = 0; i < custom_sec_def_cnt; i++) { 9481 if (custom_sec_defs[i].handler_id == handler_id) 9482 break; 9483 } 9484 9485 if (i == custom_sec_def_cnt) 9486 return libbpf_err(-ENOENT); 9487 9488 free(custom_sec_defs[i].sec); 9489 for (i = i + 1; i < custom_sec_def_cnt; i++) 9490 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9491 custom_sec_def_cnt--; 9492 9493 /* try to shrink the array, but it's ok if we couldn't */ 9494 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9495 /* if new count is zero, reallocarray can return a valid NULL result; 9496 * in this case the previous pointer will be freed, so we *have to* 9497 * reassign old pointer to the new value (even if it's NULL) 9498 */ 9499 if (sec_defs || custom_sec_def_cnt == 0) 9500 custom_sec_defs = sec_defs; 9501 9502 return 0; 9503 } 9504 9505 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9506 { 9507 size_t len = strlen(sec_def->sec); 9508 9509 /* "type/" always has to have proper SEC("type/extras") form */ 9510 if (sec_def->sec[len - 1] == '/') { 9511 if (str_has_pfx(sec_name, sec_def->sec)) 9512 return true; 9513 return false; 9514 } 9515 9516 /* "type+" means it can be either exact SEC("type") or 9517 * well-formed SEC("type/extras") with proper '/' separator 9518 */ 9519 if (sec_def->sec[len - 1] == '+') { 9520 len--; 9521 /* not even a prefix */ 9522 if (strncmp(sec_name, sec_def->sec, len) != 0) 9523 return false; 9524 /* exact match or has '/' separator */ 9525 if (sec_name[len] == '\0' || sec_name[len] == '/') 9526 return true; 9527 return false; 9528 } 9529 9530 return strcmp(sec_name, sec_def->sec) == 0; 9531 } 9532 9533 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9534 { 9535 const struct bpf_sec_def *sec_def; 9536 int i, n; 9537 9538 n = custom_sec_def_cnt; 9539 for (i = 0; i < n; i++) { 9540 sec_def = &custom_sec_defs[i]; 9541 if (sec_def_matches(sec_def, sec_name)) 9542 return sec_def; 9543 } 9544 9545 n = ARRAY_SIZE(section_defs); 9546 for (i = 0; i < n; i++) { 9547 sec_def = §ion_defs[i]; 9548 if (sec_def_matches(sec_def, sec_name)) 9549 return sec_def; 9550 } 9551 9552 if (has_custom_fallback_def) 9553 return &custom_fallback_def; 9554 9555 return NULL; 9556 } 9557 9558 #define MAX_TYPE_NAME_SIZE 32 9559 9560 static char *libbpf_get_type_names(bool attach_type) 9561 { 9562 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9563 char *buf; 9564 9565 buf = malloc(len); 9566 if (!buf) 9567 return NULL; 9568 9569 buf[0] = '\0'; 9570 /* Forge string buf with all available names */ 9571 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9572 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9573 9574 if (attach_type) { 9575 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9576 continue; 9577 9578 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9579 continue; 9580 } 9581 9582 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9583 free(buf); 9584 return NULL; 9585 } 9586 strcat(buf, " "); 9587 strcat(buf, section_defs[i].sec); 9588 } 9589 9590 return buf; 9591 } 9592 9593 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9594 enum bpf_attach_type *expected_attach_type) 9595 { 9596 const struct bpf_sec_def *sec_def; 9597 char *type_names; 9598 9599 if (!name) 9600 return libbpf_err(-EINVAL); 9601 9602 sec_def = find_sec_def(name); 9603 if (sec_def) { 9604 *prog_type = sec_def->prog_type; 9605 *expected_attach_type = sec_def->expected_attach_type; 9606 return 0; 9607 } 9608 9609 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9610 type_names = libbpf_get_type_names(false); 9611 if (type_names != NULL) { 9612 pr_debug("supported section(type) names are:%s\n", type_names); 9613 free(type_names); 9614 } 9615 9616 return libbpf_err(-ESRCH); 9617 } 9618 9619 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9620 { 9621 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9622 return NULL; 9623 9624 return attach_type_name[t]; 9625 } 9626 9627 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9628 { 9629 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9630 return NULL; 9631 9632 return link_type_name[t]; 9633 } 9634 9635 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9636 { 9637 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9638 return NULL; 9639 9640 return map_type_name[t]; 9641 } 9642 9643 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9644 { 9645 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9646 return NULL; 9647 9648 return prog_type_name[t]; 9649 } 9650 9651 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9652 int sec_idx, 9653 size_t offset) 9654 { 9655 struct bpf_map *map; 9656 size_t i; 9657 9658 for (i = 0; i < obj->nr_maps; i++) { 9659 map = &obj->maps[i]; 9660 if (!bpf_map__is_struct_ops(map)) 9661 continue; 9662 if (map->sec_idx == sec_idx && 9663 map->sec_offset <= offset && 9664 offset - map->sec_offset < map->def.value_size) 9665 return map; 9666 } 9667 9668 return NULL; 9669 } 9670 9671 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9672 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9673 Elf64_Shdr *shdr, Elf_Data *data) 9674 { 9675 const struct btf_member *member; 9676 struct bpf_struct_ops *st_ops; 9677 struct bpf_program *prog; 9678 unsigned int shdr_idx; 9679 const struct btf *btf; 9680 struct bpf_map *map; 9681 unsigned int moff, insn_idx; 9682 const char *name; 9683 __u32 member_idx; 9684 Elf64_Sym *sym; 9685 Elf64_Rel *rel; 9686 int i, nrels; 9687 9688 btf = obj->btf; 9689 nrels = shdr->sh_size / shdr->sh_entsize; 9690 for (i = 0; i < nrels; i++) { 9691 rel = elf_rel_by_idx(data, i); 9692 if (!rel) { 9693 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9694 return -LIBBPF_ERRNO__FORMAT; 9695 } 9696 9697 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9698 if (!sym) { 9699 pr_warn("struct_ops reloc: symbol %zx not found\n", 9700 (size_t)ELF64_R_SYM(rel->r_info)); 9701 return -LIBBPF_ERRNO__FORMAT; 9702 } 9703 9704 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9705 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9706 if (!map) { 9707 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9708 (size_t)rel->r_offset); 9709 return -EINVAL; 9710 } 9711 9712 moff = rel->r_offset - map->sec_offset; 9713 shdr_idx = sym->st_shndx; 9714 st_ops = map->st_ops; 9715 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9716 map->name, 9717 (long long)(rel->r_info >> 32), 9718 (long long)sym->st_value, 9719 shdr_idx, (size_t)rel->r_offset, 9720 map->sec_offset, sym->st_name, name); 9721 9722 if (shdr_idx >= SHN_LORESERVE) { 9723 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9724 map->name, (size_t)rel->r_offset, shdr_idx); 9725 return -LIBBPF_ERRNO__RELOC; 9726 } 9727 if (sym->st_value % BPF_INSN_SZ) { 9728 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9729 map->name, (unsigned long long)sym->st_value); 9730 return -LIBBPF_ERRNO__FORMAT; 9731 } 9732 insn_idx = sym->st_value / BPF_INSN_SZ; 9733 9734 member = find_member_by_offset(st_ops->type, moff * 8); 9735 if (!member) { 9736 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9737 map->name, moff); 9738 return -EINVAL; 9739 } 9740 member_idx = member - btf_members(st_ops->type); 9741 name = btf__name_by_offset(btf, member->name_off); 9742 9743 if (!resolve_func_ptr(btf, member->type, NULL)) { 9744 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9745 map->name, name); 9746 return -EINVAL; 9747 } 9748 9749 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9750 if (!prog) { 9751 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9752 map->name, shdr_idx, name); 9753 return -EINVAL; 9754 } 9755 9756 /* prevent the use of BPF prog with invalid type */ 9757 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9758 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9759 map->name, prog->name); 9760 return -EINVAL; 9761 } 9762 9763 /* if we haven't yet processed this BPF program, record proper 9764 * attach_btf_id and member_idx 9765 */ 9766 if (!prog->attach_btf_id) { 9767 prog->attach_btf_id = st_ops->type_id; 9768 prog->expected_attach_type = member_idx; 9769 } 9770 9771 /* struct_ops BPF prog can be re-used between multiple 9772 * .struct_ops & .struct_ops.link as long as it's the 9773 * same struct_ops struct definition and the same 9774 * function pointer field 9775 */ 9776 if (prog->attach_btf_id != st_ops->type_id || 9777 prog->expected_attach_type != member_idx) { 9778 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9779 map->name, prog->name, prog->sec_name, prog->type, 9780 prog->attach_btf_id, prog->expected_attach_type, name); 9781 return -EINVAL; 9782 } 9783 9784 st_ops->progs[member_idx] = prog; 9785 } 9786 9787 return 0; 9788 } 9789 9790 #define BTF_TRACE_PREFIX "btf_trace_" 9791 #define BTF_LSM_PREFIX "bpf_lsm_" 9792 #define BTF_ITER_PREFIX "bpf_iter_" 9793 #define BTF_MAX_NAME_SIZE 128 9794 9795 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9796 const char **prefix, int *kind) 9797 { 9798 switch (attach_type) { 9799 case BPF_TRACE_RAW_TP: 9800 *prefix = BTF_TRACE_PREFIX; 9801 *kind = BTF_KIND_TYPEDEF; 9802 break; 9803 case BPF_LSM_MAC: 9804 case BPF_LSM_CGROUP: 9805 *prefix = BTF_LSM_PREFIX; 9806 *kind = BTF_KIND_FUNC; 9807 break; 9808 case BPF_TRACE_ITER: 9809 *prefix = BTF_ITER_PREFIX; 9810 *kind = BTF_KIND_FUNC; 9811 break; 9812 default: 9813 *prefix = ""; 9814 *kind = BTF_KIND_FUNC; 9815 } 9816 } 9817 9818 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9819 const char *name, __u32 kind) 9820 { 9821 char btf_type_name[BTF_MAX_NAME_SIZE]; 9822 int ret; 9823 9824 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9825 "%s%s", prefix, name); 9826 /* snprintf returns the number of characters written excluding the 9827 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9828 * indicates truncation. 9829 */ 9830 if (ret < 0 || ret >= sizeof(btf_type_name)) 9831 return -ENAMETOOLONG; 9832 return btf__find_by_name_kind(btf, btf_type_name, kind); 9833 } 9834 9835 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9836 enum bpf_attach_type attach_type) 9837 { 9838 const char *prefix; 9839 int kind; 9840 9841 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9842 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9843 } 9844 9845 int libbpf_find_vmlinux_btf_id(const char *name, 9846 enum bpf_attach_type attach_type) 9847 { 9848 struct btf *btf; 9849 int err; 9850 9851 btf = btf__load_vmlinux_btf(); 9852 err = libbpf_get_error(btf); 9853 if (err) { 9854 pr_warn("vmlinux BTF is not found\n"); 9855 return libbpf_err(err); 9856 } 9857 9858 err = find_attach_btf_id(btf, name, attach_type); 9859 if (err <= 0) 9860 pr_warn("%s is not found in vmlinux BTF\n", name); 9861 9862 btf__free(btf); 9863 return libbpf_err(err); 9864 } 9865 9866 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9867 { 9868 struct bpf_prog_info info; 9869 __u32 info_len = sizeof(info); 9870 struct btf *btf; 9871 int err; 9872 9873 memset(&info, 0, info_len); 9874 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9875 if (err) { 9876 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9877 attach_prog_fd, err); 9878 return err; 9879 } 9880 9881 err = -EINVAL; 9882 if (!info.btf_id) { 9883 pr_warn("The target program doesn't have BTF\n"); 9884 goto out; 9885 } 9886 btf = btf__load_from_kernel_by_id(info.btf_id); 9887 err = libbpf_get_error(btf); 9888 if (err) { 9889 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9890 goto out; 9891 } 9892 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9893 btf__free(btf); 9894 if (err <= 0) { 9895 pr_warn("%s is not found in prog's BTF\n", name); 9896 goto out; 9897 } 9898 out: 9899 return err; 9900 } 9901 9902 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9903 enum bpf_attach_type attach_type, 9904 int *btf_obj_fd, int *btf_type_id) 9905 { 9906 int ret, i; 9907 9908 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9909 if (ret > 0) { 9910 *btf_obj_fd = 0; /* vmlinux BTF */ 9911 *btf_type_id = ret; 9912 return 0; 9913 } 9914 if (ret != -ENOENT) 9915 return ret; 9916 9917 ret = load_module_btfs(obj); 9918 if (ret) 9919 return ret; 9920 9921 for (i = 0; i < obj->btf_module_cnt; i++) { 9922 const struct module_btf *mod = &obj->btf_modules[i]; 9923 9924 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9925 if (ret > 0) { 9926 *btf_obj_fd = mod->fd; 9927 *btf_type_id = ret; 9928 return 0; 9929 } 9930 if (ret == -ENOENT) 9931 continue; 9932 9933 return ret; 9934 } 9935 9936 return -ESRCH; 9937 } 9938 9939 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9940 int *btf_obj_fd, int *btf_type_id) 9941 { 9942 enum bpf_attach_type attach_type = prog->expected_attach_type; 9943 __u32 attach_prog_fd = prog->attach_prog_fd; 9944 int err = 0; 9945 9946 /* BPF program's BTF ID */ 9947 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9948 if (!attach_prog_fd) { 9949 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9950 return -EINVAL; 9951 } 9952 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9953 if (err < 0) { 9954 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9955 prog->name, attach_prog_fd, attach_name, err); 9956 return err; 9957 } 9958 *btf_obj_fd = 0; 9959 *btf_type_id = err; 9960 return 0; 9961 } 9962 9963 /* kernel/module BTF ID */ 9964 if (prog->obj->gen_loader) { 9965 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9966 *btf_obj_fd = 0; 9967 *btf_type_id = 1; 9968 } else { 9969 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9970 } 9971 if (err) { 9972 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9973 prog->name, attach_name, err); 9974 return err; 9975 } 9976 return 0; 9977 } 9978 9979 int libbpf_attach_type_by_name(const char *name, 9980 enum bpf_attach_type *attach_type) 9981 { 9982 char *type_names; 9983 const struct bpf_sec_def *sec_def; 9984 9985 if (!name) 9986 return libbpf_err(-EINVAL); 9987 9988 sec_def = find_sec_def(name); 9989 if (!sec_def) { 9990 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9991 type_names = libbpf_get_type_names(true); 9992 if (type_names != NULL) { 9993 pr_debug("attachable section(type) names are:%s\n", type_names); 9994 free(type_names); 9995 } 9996 9997 return libbpf_err(-EINVAL); 9998 } 9999 10000 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10001 return libbpf_err(-EINVAL); 10002 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10003 return libbpf_err(-EINVAL); 10004 10005 *attach_type = sec_def->expected_attach_type; 10006 return 0; 10007 } 10008 10009 int bpf_map__fd(const struct bpf_map *map) 10010 { 10011 if (!map) 10012 return libbpf_err(-EINVAL); 10013 if (!map_is_created(map)) 10014 return -1; 10015 return map->fd; 10016 } 10017 10018 static bool map_uses_real_name(const struct bpf_map *map) 10019 { 10020 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10021 * their user-visible name differs from kernel-visible name. Users see 10022 * such map's corresponding ELF section name as a map name. 10023 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10024 * maps to know which name has to be returned to the user. 10025 */ 10026 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10027 return true; 10028 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10029 return true; 10030 return false; 10031 } 10032 10033 const char *bpf_map__name(const struct bpf_map *map) 10034 { 10035 if (!map) 10036 return NULL; 10037 10038 if (map_uses_real_name(map)) 10039 return map->real_name; 10040 10041 return map->name; 10042 } 10043 10044 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10045 { 10046 return map->def.type; 10047 } 10048 10049 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10050 { 10051 if (map_is_created(map)) 10052 return libbpf_err(-EBUSY); 10053 map->def.type = type; 10054 return 0; 10055 } 10056 10057 __u32 bpf_map__map_flags(const struct bpf_map *map) 10058 { 10059 return map->def.map_flags; 10060 } 10061 10062 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10063 { 10064 if (map_is_created(map)) 10065 return libbpf_err(-EBUSY); 10066 map->def.map_flags = flags; 10067 return 0; 10068 } 10069 10070 __u64 bpf_map__map_extra(const struct bpf_map *map) 10071 { 10072 return map->map_extra; 10073 } 10074 10075 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10076 { 10077 if (map_is_created(map)) 10078 return libbpf_err(-EBUSY); 10079 map->map_extra = map_extra; 10080 return 0; 10081 } 10082 10083 __u32 bpf_map__numa_node(const struct bpf_map *map) 10084 { 10085 return map->numa_node; 10086 } 10087 10088 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10089 { 10090 if (map_is_created(map)) 10091 return libbpf_err(-EBUSY); 10092 map->numa_node = numa_node; 10093 return 0; 10094 } 10095 10096 __u32 bpf_map__key_size(const struct bpf_map *map) 10097 { 10098 return map->def.key_size; 10099 } 10100 10101 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10102 { 10103 if (map_is_created(map)) 10104 return libbpf_err(-EBUSY); 10105 map->def.key_size = size; 10106 return 0; 10107 } 10108 10109 __u32 bpf_map__value_size(const struct bpf_map *map) 10110 { 10111 return map->def.value_size; 10112 } 10113 10114 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10115 { 10116 struct btf *btf; 10117 struct btf_type *datasec_type, *var_type; 10118 struct btf_var_secinfo *var; 10119 const struct btf_type *array_type; 10120 const struct btf_array *array; 10121 int vlen, element_sz, new_array_id; 10122 __u32 nr_elements; 10123 10124 /* check btf existence */ 10125 btf = bpf_object__btf(map->obj); 10126 if (!btf) 10127 return -ENOENT; 10128 10129 /* verify map is datasec */ 10130 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10131 if (!btf_is_datasec(datasec_type)) { 10132 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10133 bpf_map__name(map)); 10134 return -EINVAL; 10135 } 10136 10137 /* verify datasec has at least one var */ 10138 vlen = btf_vlen(datasec_type); 10139 if (vlen == 0) { 10140 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10141 bpf_map__name(map)); 10142 return -EINVAL; 10143 } 10144 10145 /* verify last var in the datasec is an array */ 10146 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10147 var_type = btf_type_by_id(btf, var->type); 10148 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10149 if (!btf_is_array(array_type)) { 10150 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10151 bpf_map__name(map)); 10152 return -EINVAL; 10153 } 10154 10155 /* verify request size aligns with array */ 10156 array = btf_array(array_type); 10157 element_sz = btf__resolve_size(btf, array->type); 10158 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10159 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10160 bpf_map__name(map), element_sz, size); 10161 return -EINVAL; 10162 } 10163 10164 /* create a new array based on the existing array, but with new length */ 10165 nr_elements = (size - var->offset) / element_sz; 10166 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10167 if (new_array_id < 0) 10168 return new_array_id; 10169 10170 /* adding a new btf type invalidates existing pointers to btf objects, 10171 * so refresh pointers before proceeding 10172 */ 10173 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10174 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10175 var_type = btf_type_by_id(btf, var->type); 10176 10177 /* finally update btf info */ 10178 datasec_type->size = size; 10179 var->size = size - var->offset; 10180 var_type->type = new_array_id; 10181 10182 return 0; 10183 } 10184 10185 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10186 { 10187 if (map->obj->loaded || map->reused) 10188 return libbpf_err(-EBUSY); 10189 10190 if (map->mmaped) { 10191 int err; 10192 size_t mmap_old_sz, mmap_new_sz; 10193 10194 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 10195 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 10196 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10197 if (err) { 10198 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10199 bpf_map__name(map), err); 10200 return err; 10201 } 10202 err = map_btf_datasec_resize(map, size); 10203 if (err && err != -ENOENT) { 10204 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10205 bpf_map__name(map), err); 10206 map->btf_value_type_id = 0; 10207 map->btf_key_type_id = 0; 10208 } 10209 } 10210 10211 map->def.value_size = size; 10212 return 0; 10213 } 10214 10215 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10216 { 10217 return map ? map->btf_key_type_id : 0; 10218 } 10219 10220 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10221 { 10222 return map ? map->btf_value_type_id : 0; 10223 } 10224 10225 int bpf_map__set_initial_value(struct bpf_map *map, 10226 const void *data, size_t size) 10227 { 10228 if (map->obj->loaded || map->reused) 10229 return libbpf_err(-EBUSY); 10230 10231 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 10232 size != map->def.value_size) 10233 return libbpf_err(-EINVAL); 10234 10235 memcpy(map->mmaped, data, size); 10236 return 0; 10237 } 10238 10239 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 10240 { 10241 if (!map->mmaped) 10242 return NULL; 10243 *psize = map->def.value_size; 10244 return map->mmaped; 10245 } 10246 10247 bool bpf_map__is_internal(const struct bpf_map *map) 10248 { 10249 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10250 } 10251 10252 __u32 bpf_map__ifindex(const struct bpf_map *map) 10253 { 10254 return map->map_ifindex; 10255 } 10256 10257 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10258 { 10259 if (map_is_created(map)) 10260 return libbpf_err(-EBUSY); 10261 map->map_ifindex = ifindex; 10262 return 0; 10263 } 10264 10265 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10266 { 10267 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10268 pr_warn("error: unsupported map type\n"); 10269 return libbpf_err(-EINVAL); 10270 } 10271 if (map->inner_map_fd != -1) { 10272 pr_warn("error: inner_map_fd already specified\n"); 10273 return libbpf_err(-EINVAL); 10274 } 10275 if (map->inner_map) { 10276 bpf_map__destroy(map->inner_map); 10277 zfree(&map->inner_map); 10278 } 10279 map->inner_map_fd = fd; 10280 return 0; 10281 } 10282 10283 static struct bpf_map * 10284 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10285 { 10286 ssize_t idx; 10287 struct bpf_map *s, *e; 10288 10289 if (!obj || !obj->maps) 10290 return errno = EINVAL, NULL; 10291 10292 s = obj->maps; 10293 e = obj->maps + obj->nr_maps; 10294 10295 if ((m < s) || (m >= e)) { 10296 pr_warn("error in %s: map handler doesn't belong to object\n", 10297 __func__); 10298 return errno = EINVAL, NULL; 10299 } 10300 10301 idx = (m - obj->maps) + i; 10302 if (idx >= obj->nr_maps || idx < 0) 10303 return NULL; 10304 return &obj->maps[idx]; 10305 } 10306 10307 struct bpf_map * 10308 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10309 { 10310 if (prev == NULL) 10311 return obj->maps; 10312 10313 return __bpf_map__iter(prev, obj, 1); 10314 } 10315 10316 struct bpf_map * 10317 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10318 { 10319 if (next == NULL) { 10320 if (!obj->nr_maps) 10321 return NULL; 10322 return obj->maps + obj->nr_maps - 1; 10323 } 10324 10325 return __bpf_map__iter(next, obj, -1); 10326 } 10327 10328 struct bpf_map * 10329 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10330 { 10331 struct bpf_map *pos; 10332 10333 bpf_object__for_each_map(pos, obj) { 10334 /* if it's a special internal map name (which always starts 10335 * with dot) then check if that special name matches the 10336 * real map name (ELF section name) 10337 */ 10338 if (name[0] == '.') { 10339 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10340 return pos; 10341 continue; 10342 } 10343 /* otherwise map name has to be an exact match */ 10344 if (map_uses_real_name(pos)) { 10345 if (strcmp(pos->real_name, name) == 0) 10346 return pos; 10347 continue; 10348 } 10349 if (strcmp(pos->name, name) == 0) 10350 return pos; 10351 } 10352 return errno = ENOENT, NULL; 10353 } 10354 10355 int 10356 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10357 { 10358 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10359 } 10360 10361 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10362 size_t value_sz, bool check_value_sz) 10363 { 10364 if (!map_is_created(map)) /* map is not yet created */ 10365 return -ENOENT; 10366 10367 if (map->def.key_size != key_sz) { 10368 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10369 map->name, key_sz, map->def.key_size); 10370 return -EINVAL; 10371 } 10372 10373 if (!check_value_sz) 10374 return 0; 10375 10376 switch (map->def.type) { 10377 case BPF_MAP_TYPE_PERCPU_ARRAY: 10378 case BPF_MAP_TYPE_PERCPU_HASH: 10379 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10380 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10381 int num_cpu = libbpf_num_possible_cpus(); 10382 size_t elem_sz = roundup(map->def.value_size, 8); 10383 10384 if (value_sz != num_cpu * elem_sz) { 10385 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10386 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10387 return -EINVAL; 10388 } 10389 break; 10390 } 10391 default: 10392 if (map->def.value_size != value_sz) { 10393 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10394 map->name, value_sz, map->def.value_size); 10395 return -EINVAL; 10396 } 10397 break; 10398 } 10399 return 0; 10400 } 10401 10402 int bpf_map__lookup_elem(const struct bpf_map *map, 10403 const void *key, size_t key_sz, 10404 void *value, size_t value_sz, __u64 flags) 10405 { 10406 int err; 10407 10408 err = validate_map_op(map, key_sz, value_sz, true); 10409 if (err) 10410 return libbpf_err(err); 10411 10412 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10413 } 10414 10415 int bpf_map__update_elem(const struct bpf_map *map, 10416 const void *key, size_t key_sz, 10417 const void *value, size_t value_sz, __u64 flags) 10418 { 10419 int err; 10420 10421 err = validate_map_op(map, key_sz, value_sz, true); 10422 if (err) 10423 return libbpf_err(err); 10424 10425 return bpf_map_update_elem(map->fd, key, value, flags); 10426 } 10427 10428 int bpf_map__delete_elem(const struct bpf_map *map, 10429 const void *key, size_t key_sz, __u64 flags) 10430 { 10431 int err; 10432 10433 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10434 if (err) 10435 return libbpf_err(err); 10436 10437 return bpf_map_delete_elem_flags(map->fd, key, flags); 10438 } 10439 10440 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10441 const void *key, size_t key_sz, 10442 void *value, size_t value_sz, __u64 flags) 10443 { 10444 int err; 10445 10446 err = validate_map_op(map, key_sz, value_sz, true); 10447 if (err) 10448 return libbpf_err(err); 10449 10450 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10451 } 10452 10453 int bpf_map__get_next_key(const struct bpf_map *map, 10454 const void *cur_key, void *next_key, size_t key_sz) 10455 { 10456 int err; 10457 10458 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10459 if (err) 10460 return libbpf_err(err); 10461 10462 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10463 } 10464 10465 long libbpf_get_error(const void *ptr) 10466 { 10467 if (!IS_ERR_OR_NULL(ptr)) 10468 return 0; 10469 10470 if (IS_ERR(ptr)) 10471 errno = -PTR_ERR(ptr); 10472 10473 /* If ptr == NULL, then errno should be already set by the failing 10474 * API, because libbpf never returns NULL on success and it now always 10475 * sets errno on error. So no extra errno handling for ptr == NULL 10476 * case. 10477 */ 10478 return -errno; 10479 } 10480 10481 /* Replace link's underlying BPF program with the new one */ 10482 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10483 { 10484 int ret; 10485 10486 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10487 return libbpf_err_errno(ret); 10488 } 10489 10490 /* Release "ownership" of underlying BPF resource (typically, BPF program 10491 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10492 * link, when destructed through bpf_link__destroy() call won't attempt to 10493 * detach/unregisted that BPF resource. This is useful in situations where, 10494 * say, attached BPF program has to outlive userspace program that attached it 10495 * in the system. Depending on type of BPF program, though, there might be 10496 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10497 * exit of userspace program doesn't trigger automatic detachment and clean up 10498 * inside the kernel. 10499 */ 10500 void bpf_link__disconnect(struct bpf_link *link) 10501 { 10502 link->disconnected = true; 10503 } 10504 10505 int bpf_link__destroy(struct bpf_link *link) 10506 { 10507 int err = 0; 10508 10509 if (IS_ERR_OR_NULL(link)) 10510 return 0; 10511 10512 if (!link->disconnected && link->detach) 10513 err = link->detach(link); 10514 if (link->pin_path) 10515 free(link->pin_path); 10516 if (link->dealloc) 10517 link->dealloc(link); 10518 else 10519 free(link); 10520 10521 return libbpf_err(err); 10522 } 10523 10524 int bpf_link__fd(const struct bpf_link *link) 10525 { 10526 return link->fd; 10527 } 10528 10529 const char *bpf_link__pin_path(const struct bpf_link *link) 10530 { 10531 return link->pin_path; 10532 } 10533 10534 static int bpf_link__detach_fd(struct bpf_link *link) 10535 { 10536 return libbpf_err_errno(close(link->fd)); 10537 } 10538 10539 struct bpf_link *bpf_link__open(const char *path) 10540 { 10541 struct bpf_link *link; 10542 int fd; 10543 10544 fd = bpf_obj_get(path); 10545 if (fd < 0) { 10546 fd = -errno; 10547 pr_warn("failed to open link at %s: %d\n", path, fd); 10548 return libbpf_err_ptr(fd); 10549 } 10550 10551 link = calloc(1, sizeof(*link)); 10552 if (!link) { 10553 close(fd); 10554 return libbpf_err_ptr(-ENOMEM); 10555 } 10556 link->detach = &bpf_link__detach_fd; 10557 link->fd = fd; 10558 10559 link->pin_path = strdup(path); 10560 if (!link->pin_path) { 10561 bpf_link__destroy(link); 10562 return libbpf_err_ptr(-ENOMEM); 10563 } 10564 10565 return link; 10566 } 10567 10568 int bpf_link__detach(struct bpf_link *link) 10569 { 10570 return bpf_link_detach(link->fd) ? -errno : 0; 10571 } 10572 10573 int bpf_link__pin(struct bpf_link *link, const char *path) 10574 { 10575 int err; 10576 10577 if (link->pin_path) 10578 return libbpf_err(-EBUSY); 10579 err = make_parent_dir(path); 10580 if (err) 10581 return libbpf_err(err); 10582 err = check_path(path); 10583 if (err) 10584 return libbpf_err(err); 10585 10586 link->pin_path = strdup(path); 10587 if (!link->pin_path) 10588 return libbpf_err(-ENOMEM); 10589 10590 if (bpf_obj_pin(link->fd, link->pin_path)) { 10591 err = -errno; 10592 zfree(&link->pin_path); 10593 return libbpf_err(err); 10594 } 10595 10596 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10597 return 0; 10598 } 10599 10600 int bpf_link__unpin(struct bpf_link *link) 10601 { 10602 int err; 10603 10604 if (!link->pin_path) 10605 return libbpf_err(-EINVAL); 10606 10607 err = unlink(link->pin_path); 10608 if (err != 0) 10609 return -errno; 10610 10611 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10612 zfree(&link->pin_path); 10613 return 0; 10614 } 10615 10616 struct bpf_link_perf { 10617 struct bpf_link link; 10618 int perf_event_fd; 10619 /* legacy kprobe support: keep track of probe identifier and type */ 10620 char *legacy_probe_name; 10621 bool legacy_is_kprobe; 10622 bool legacy_is_retprobe; 10623 }; 10624 10625 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10626 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10627 10628 static int bpf_link_perf_detach(struct bpf_link *link) 10629 { 10630 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10631 int err = 0; 10632 10633 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10634 err = -errno; 10635 10636 if (perf_link->perf_event_fd != link->fd) 10637 close(perf_link->perf_event_fd); 10638 close(link->fd); 10639 10640 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10641 if (perf_link->legacy_probe_name) { 10642 if (perf_link->legacy_is_kprobe) { 10643 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10644 perf_link->legacy_is_retprobe); 10645 } else { 10646 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10647 perf_link->legacy_is_retprobe); 10648 } 10649 } 10650 10651 return err; 10652 } 10653 10654 static void bpf_link_perf_dealloc(struct bpf_link *link) 10655 { 10656 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10657 10658 free(perf_link->legacy_probe_name); 10659 free(perf_link); 10660 } 10661 10662 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10663 const struct bpf_perf_event_opts *opts) 10664 { 10665 char errmsg[STRERR_BUFSIZE]; 10666 struct bpf_link_perf *link; 10667 int prog_fd, link_fd = -1, err; 10668 bool force_ioctl_attach; 10669 10670 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10671 return libbpf_err_ptr(-EINVAL); 10672 10673 if (pfd < 0) { 10674 pr_warn("prog '%s': invalid perf event FD %d\n", 10675 prog->name, pfd); 10676 return libbpf_err_ptr(-EINVAL); 10677 } 10678 prog_fd = bpf_program__fd(prog); 10679 if (prog_fd < 0) { 10680 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10681 prog->name); 10682 return libbpf_err_ptr(-EINVAL); 10683 } 10684 10685 link = calloc(1, sizeof(*link)); 10686 if (!link) 10687 return libbpf_err_ptr(-ENOMEM); 10688 link->link.detach = &bpf_link_perf_detach; 10689 link->link.dealloc = &bpf_link_perf_dealloc; 10690 link->perf_event_fd = pfd; 10691 10692 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10693 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10694 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10695 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10696 10697 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10698 if (link_fd < 0) { 10699 err = -errno; 10700 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10701 prog->name, pfd, 10702 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10703 goto err_out; 10704 } 10705 link->link.fd = link_fd; 10706 } else { 10707 if (OPTS_GET(opts, bpf_cookie, 0)) { 10708 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10709 err = -EOPNOTSUPP; 10710 goto err_out; 10711 } 10712 10713 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10714 err = -errno; 10715 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10716 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10717 if (err == -EPROTO) 10718 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10719 prog->name, pfd); 10720 goto err_out; 10721 } 10722 link->link.fd = pfd; 10723 } 10724 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10725 err = -errno; 10726 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10727 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10728 goto err_out; 10729 } 10730 10731 return &link->link; 10732 err_out: 10733 if (link_fd >= 0) 10734 close(link_fd); 10735 free(link); 10736 return libbpf_err_ptr(err); 10737 } 10738 10739 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10740 { 10741 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10742 } 10743 10744 /* 10745 * this function is expected to parse integer in the range of [0, 2^31-1] from 10746 * given file using scanf format string fmt. If actual parsed value is 10747 * negative, the result might be indistinguishable from error 10748 */ 10749 static int parse_uint_from_file(const char *file, const char *fmt) 10750 { 10751 char buf[STRERR_BUFSIZE]; 10752 int err, ret; 10753 FILE *f; 10754 10755 f = fopen(file, "re"); 10756 if (!f) { 10757 err = -errno; 10758 pr_debug("failed to open '%s': %s\n", file, 10759 libbpf_strerror_r(err, buf, sizeof(buf))); 10760 return err; 10761 } 10762 err = fscanf(f, fmt, &ret); 10763 if (err != 1) { 10764 err = err == EOF ? -EIO : -errno; 10765 pr_debug("failed to parse '%s': %s\n", file, 10766 libbpf_strerror_r(err, buf, sizeof(buf))); 10767 fclose(f); 10768 return err; 10769 } 10770 fclose(f); 10771 return ret; 10772 } 10773 10774 static int determine_kprobe_perf_type(void) 10775 { 10776 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10777 10778 return parse_uint_from_file(file, "%d\n"); 10779 } 10780 10781 static int determine_uprobe_perf_type(void) 10782 { 10783 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10784 10785 return parse_uint_from_file(file, "%d\n"); 10786 } 10787 10788 static int determine_kprobe_retprobe_bit(void) 10789 { 10790 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10791 10792 return parse_uint_from_file(file, "config:%d\n"); 10793 } 10794 10795 static int determine_uprobe_retprobe_bit(void) 10796 { 10797 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10798 10799 return parse_uint_from_file(file, "config:%d\n"); 10800 } 10801 10802 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10803 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10804 10805 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10806 uint64_t offset, int pid, size_t ref_ctr_off) 10807 { 10808 const size_t attr_sz = sizeof(struct perf_event_attr); 10809 struct perf_event_attr attr; 10810 char errmsg[STRERR_BUFSIZE]; 10811 int type, pfd; 10812 10813 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10814 return -EINVAL; 10815 10816 memset(&attr, 0, attr_sz); 10817 10818 type = uprobe ? determine_uprobe_perf_type() 10819 : determine_kprobe_perf_type(); 10820 if (type < 0) { 10821 pr_warn("failed to determine %s perf type: %s\n", 10822 uprobe ? "uprobe" : "kprobe", 10823 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10824 return type; 10825 } 10826 if (retprobe) { 10827 int bit = uprobe ? determine_uprobe_retprobe_bit() 10828 : determine_kprobe_retprobe_bit(); 10829 10830 if (bit < 0) { 10831 pr_warn("failed to determine %s retprobe bit: %s\n", 10832 uprobe ? "uprobe" : "kprobe", 10833 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10834 return bit; 10835 } 10836 attr.config |= 1 << bit; 10837 } 10838 attr.size = attr_sz; 10839 attr.type = type; 10840 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10841 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10842 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10843 10844 /* pid filter is meaningful only for uprobes */ 10845 pfd = syscall(__NR_perf_event_open, &attr, 10846 pid < 0 ? -1 : pid /* pid */, 10847 pid == -1 ? 0 : -1 /* cpu */, 10848 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10849 return pfd >= 0 ? pfd : -errno; 10850 } 10851 10852 static int append_to_file(const char *file, const char *fmt, ...) 10853 { 10854 int fd, n, err = 0; 10855 va_list ap; 10856 char buf[1024]; 10857 10858 va_start(ap, fmt); 10859 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10860 va_end(ap); 10861 10862 if (n < 0 || n >= sizeof(buf)) 10863 return -EINVAL; 10864 10865 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10866 if (fd < 0) 10867 return -errno; 10868 10869 if (write(fd, buf, n) < 0) 10870 err = -errno; 10871 10872 close(fd); 10873 return err; 10874 } 10875 10876 #define DEBUGFS "/sys/kernel/debug/tracing" 10877 #define TRACEFS "/sys/kernel/tracing" 10878 10879 static bool use_debugfs(void) 10880 { 10881 static int has_debugfs = -1; 10882 10883 if (has_debugfs < 0) 10884 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10885 10886 return has_debugfs == 1; 10887 } 10888 10889 static const char *tracefs_path(void) 10890 { 10891 return use_debugfs() ? DEBUGFS : TRACEFS; 10892 } 10893 10894 static const char *tracefs_kprobe_events(void) 10895 { 10896 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10897 } 10898 10899 static const char *tracefs_uprobe_events(void) 10900 { 10901 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10902 } 10903 10904 static const char *tracefs_available_filter_functions(void) 10905 { 10906 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10907 : TRACEFS"/available_filter_functions"; 10908 } 10909 10910 static const char *tracefs_available_filter_functions_addrs(void) 10911 { 10912 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10913 : TRACEFS"/available_filter_functions_addrs"; 10914 } 10915 10916 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10917 const char *kfunc_name, size_t offset) 10918 { 10919 static int index = 0; 10920 int i; 10921 10922 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10923 __sync_fetch_and_add(&index, 1)); 10924 10925 /* sanitize binary_path in the probe name */ 10926 for (i = 0; buf[i]; i++) { 10927 if (!isalnum(buf[i])) 10928 buf[i] = '_'; 10929 } 10930 } 10931 10932 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10933 const char *kfunc_name, size_t offset) 10934 { 10935 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10936 retprobe ? 'r' : 'p', 10937 retprobe ? "kretprobes" : "kprobes", 10938 probe_name, kfunc_name, offset); 10939 } 10940 10941 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10942 { 10943 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10944 retprobe ? "kretprobes" : "kprobes", probe_name); 10945 } 10946 10947 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10948 { 10949 char file[256]; 10950 10951 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10952 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10953 10954 return parse_uint_from_file(file, "%d\n"); 10955 } 10956 10957 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10958 const char *kfunc_name, size_t offset, int pid) 10959 { 10960 const size_t attr_sz = sizeof(struct perf_event_attr); 10961 struct perf_event_attr attr; 10962 char errmsg[STRERR_BUFSIZE]; 10963 int type, pfd, err; 10964 10965 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10966 if (err < 0) { 10967 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10968 kfunc_name, offset, 10969 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10970 return err; 10971 } 10972 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10973 if (type < 0) { 10974 err = type; 10975 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10976 kfunc_name, offset, 10977 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10978 goto err_clean_legacy; 10979 } 10980 10981 memset(&attr, 0, attr_sz); 10982 attr.size = attr_sz; 10983 attr.config = type; 10984 attr.type = PERF_TYPE_TRACEPOINT; 10985 10986 pfd = syscall(__NR_perf_event_open, &attr, 10987 pid < 0 ? -1 : pid, /* pid */ 10988 pid == -1 ? 0 : -1, /* cpu */ 10989 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10990 if (pfd < 0) { 10991 err = -errno; 10992 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10993 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10994 goto err_clean_legacy; 10995 } 10996 return pfd; 10997 10998 err_clean_legacy: 10999 /* Clear the newly added legacy kprobe_event */ 11000 remove_kprobe_event_legacy(probe_name, retprobe); 11001 return err; 11002 } 11003 11004 static const char *arch_specific_syscall_pfx(void) 11005 { 11006 #if defined(__x86_64__) 11007 return "x64"; 11008 #elif defined(__i386__) 11009 return "ia32"; 11010 #elif defined(__s390x__) 11011 return "s390x"; 11012 #elif defined(__s390__) 11013 return "s390"; 11014 #elif defined(__arm__) 11015 return "arm"; 11016 #elif defined(__aarch64__) 11017 return "arm64"; 11018 #elif defined(__mips__) 11019 return "mips"; 11020 #elif defined(__riscv) 11021 return "riscv"; 11022 #elif defined(__powerpc__) 11023 return "powerpc"; 11024 #elif defined(__powerpc64__) 11025 return "powerpc64"; 11026 #else 11027 return NULL; 11028 #endif 11029 } 11030 11031 static int probe_kern_syscall_wrapper(void) 11032 { 11033 char syscall_name[64]; 11034 const char *ksys_pfx; 11035 11036 ksys_pfx = arch_specific_syscall_pfx(); 11037 if (!ksys_pfx) 11038 return 0; 11039 11040 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11041 11042 if (determine_kprobe_perf_type() >= 0) { 11043 int pfd; 11044 11045 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11046 if (pfd >= 0) 11047 close(pfd); 11048 11049 return pfd >= 0 ? 1 : 0; 11050 } else { /* legacy mode */ 11051 char probe_name[128]; 11052 11053 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11054 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11055 return 0; 11056 11057 (void)remove_kprobe_event_legacy(probe_name, false); 11058 return 1; 11059 } 11060 } 11061 11062 struct bpf_link * 11063 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11064 const char *func_name, 11065 const struct bpf_kprobe_opts *opts) 11066 { 11067 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11068 enum probe_attach_mode attach_mode; 11069 char errmsg[STRERR_BUFSIZE]; 11070 char *legacy_probe = NULL; 11071 struct bpf_link *link; 11072 size_t offset; 11073 bool retprobe, legacy; 11074 int pfd, err; 11075 11076 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11077 return libbpf_err_ptr(-EINVAL); 11078 11079 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11080 retprobe = OPTS_GET(opts, retprobe, false); 11081 offset = OPTS_GET(opts, offset, 0); 11082 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11083 11084 legacy = determine_kprobe_perf_type() < 0; 11085 switch (attach_mode) { 11086 case PROBE_ATTACH_MODE_LEGACY: 11087 legacy = true; 11088 pe_opts.force_ioctl_attach = true; 11089 break; 11090 case PROBE_ATTACH_MODE_PERF: 11091 if (legacy) 11092 return libbpf_err_ptr(-ENOTSUP); 11093 pe_opts.force_ioctl_attach = true; 11094 break; 11095 case PROBE_ATTACH_MODE_LINK: 11096 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11097 return libbpf_err_ptr(-ENOTSUP); 11098 break; 11099 case PROBE_ATTACH_MODE_DEFAULT: 11100 break; 11101 default: 11102 return libbpf_err_ptr(-EINVAL); 11103 } 11104 11105 if (!legacy) { 11106 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11107 func_name, offset, 11108 -1 /* pid */, 0 /* ref_ctr_off */); 11109 } else { 11110 char probe_name[256]; 11111 11112 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11113 func_name, offset); 11114 11115 legacy_probe = strdup(probe_name); 11116 if (!legacy_probe) 11117 return libbpf_err_ptr(-ENOMEM); 11118 11119 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11120 offset, -1 /* pid */); 11121 } 11122 if (pfd < 0) { 11123 err = -errno; 11124 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11125 prog->name, retprobe ? "kretprobe" : "kprobe", 11126 func_name, offset, 11127 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11128 goto err_out; 11129 } 11130 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11131 err = libbpf_get_error(link); 11132 if (err) { 11133 close(pfd); 11134 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11135 prog->name, retprobe ? "kretprobe" : "kprobe", 11136 func_name, offset, 11137 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11138 goto err_clean_legacy; 11139 } 11140 if (legacy) { 11141 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11142 11143 perf_link->legacy_probe_name = legacy_probe; 11144 perf_link->legacy_is_kprobe = true; 11145 perf_link->legacy_is_retprobe = retprobe; 11146 } 11147 11148 return link; 11149 11150 err_clean_legacy: 11151 if (legacy) 11152 remove_kprobe_event_legacy(legacy_probe, retprobe); 11153 err_out: 11154 free(legacy_probe); 11155 return libbpf_err_ptr(err); 11156 } 11157 11158 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11159 bool retprobe, 11160 const char *func_name) 11161 { 11162 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11163 .retprobe = retprobe, 11164 ); 11165 11166 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11167 } 11168 11169 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11170 const char *syscall_name, 11171 const struct bpf_ksyscall_opts *opts) 11172 { 11173 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11174 char func_name[128]; 11175 11176 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11177 return libbpf_err_ptr(-EINVAL); 11178 11179 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11180 /* arch_specific_syscall_pfx() should never return NULL here 11181 * because it is guarded by kernel_supports(). However, since 11182 * compiler does not know that we have an explicit conditional 11183 * as well. 11184 */ 11185 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11186 arch_specific_syscall_pfx() ? : "", syscall_name); 11187 } else { 11188 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11189 } 11190 11191 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11192 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11193 11194 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11195 } 11196 11197 /* Adapted from perf/util/string.c */ 11198 bool glob_match(const char *str, const char *pat) 11199 { 11200 while (*str && *pat && *pat != '*') { 11201 if (*pat == '?') { /* Matches any single character */ 11202 str++; 11203 pat++; 11204 continue; 11205 } 11206 if (*str != *pat) 11207 return false; 11208 str++; 11209 pat++; 11210 } 11211 /* Check wild card */ 11212 if (*pat == '*') { 11213 while (*pat == '*') 11214 pat++; 11215 if (!*pat) /* Tail wild card matches all */ 11216 return true; 11217 while (*str) 11218 if (glob_match(str++, pat)) 11219 return true; 11220 } 11221 return !*str && !*pat; 11222 } 11223 11224 struct kprobe_multi_resolve { 11225 const char *pattern; 11226 unsigned long *addrs; 11227 size_t cap; 11228 size_t cnt; 11229 }; 11230 11231 struct avail_kallsyms_data { 11232 char **syms; 11233 size_t cnt; 11234 struct kprobe_multi_resolve *res; 11235 }; 11236 11237 static int avail_func_cmp(const void *a, const void *b) 11238 { 11239 return strcmp(*(const char **)a, *(const char **)b); 11240 } 11241 11242 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11243 const char *sym_name, void *ctx) 11244 { 11245 struct avail_kallsyms_data *data = ctx; 11246 struct kprobe_multi_resolve *res = data->res; 11247 int err; 11248 11249 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11250 return 0; 11251 11252 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11253 if (err) 11254 return err; 11255 11256 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11257 return 0; 11258 } 11259 11260 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11261 { 11262 const char *available_functions_file = tracefs_available_filter_functions(); 11263 struct avail_kallsyms_data data; 11264 char sym_name[500]; 11265 FILE *f; 11266 int err = 0, ret, i; 11267 char **syms = NULL; 11268 size_t cap = 0, cnt = 0; 11269 11270 f = fopen(available_functions_file, "re"); 11271 if (!f) { 11272 err = -errno; 11273 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11274 return err; 11275 } 11276 11277 while (true) { 11278 char *name; 11279 11280 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11281 if (ret == EOF && feof(f)) 11282 break; 11283 11284 if (ret != 1) { 11285 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11286 err = -EINVAL; 11287 goto cleanup; 11288 } 11289 11290 if (!glob_match(sym_name, res->pattern)) 11291 continue; 11292 11293 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11294 if (err) 11295 goto cleanup; 11296 11297 name = strdup(sym_name); 11298 if (!name) { 11299 err = -errno; 11300 goto cleanup; 11301 } 11302 11303 syms[cnt++] = name; 11304 } 11305 11306 /* no entries found, bail out */ 11307 if (cnt == 0) { 11308 err = -ENOENT; 11309 goto cleanup; 11310 } 11311 11312 /* sort available functions */ 11313 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11314 11315 data.syms = syms; 11316 data.res = res; 11317 data.cnt = cnt; 11318 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11319 11320 if (res->cnt == 0) 11321 err = -ENOENT; 11322 11323 cleanup: 11324 for (i = 0; i < cnt; i++) 11325 free((char *)syms[i]); 11326 free(syms); 11327 11328 fclose(f); 11329 return err; 11330 } 11331 11332 static bool has_available_filter_functions_addrs(void) 11333 { 11334 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11335 } 11336 11337 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11338 { 11339 const char *available_path = tracefs_available_filter_functions_addrs(); 11340 char sym_name[500]; 11341 FILE *f; 11342 int ret, err = 0; 11343 unsigned long long sym_addr; 11344 11345 f = fopen(available_path, "re"); 11346 if (!f) { 11347 err = -errno; 11348 pr_warn("failed to open %s: %d\n", available_path, err); 11349 return err; 11350 } 11351 11352 while (true) { 11353 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11354 if (ret == EOF && feof(f)) 11355 break; 11356 11357 if (ret != 2) { 11358 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11359 ret); 11360 err = -EINVAL; 11361 goto cleanup; 11362 } 11363 11364 if (!glob_match(sym_name, res->pattern)) 11365 continue; 11366 11367 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11368 sizeof(*res->addrs), res->cnt + 1); 11369 if (err) 11370 goto cleanup; 11371 11372 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11373 } 11374 11375 if (res->cnt == 0) 11376 err = -ENOENT; 11377 11378 cleanup: 11379 fclose(f); 11380 return err; 11381 } 11382 11383 struct bpf_link * 11384 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11385 const char *pattern, 11386 const struct bpf_kprobe_multi_opts *opts) 11387 { 11388 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11389 struct kprobe_multi_resolve res = { 11390 .pattern = pattern, 11391 }; 11392 struct bpf_link *link = NULL; 11393 char errmsg[STRERR_BUFSIZE]; 11394 const unsigned long *addrs; 11395 int err, link_fd, prog_fd; 11396 const __u64 *cookies; 11397 const char **syms; 11398 bool retprobe; 11399 size_t cnt; 11400 11401 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11402 return libbpf_err_ptr(-EINVAL); 11403 11404 syms = OPTS_GET(opts, syms, false); 11405 addrs = OPTS_GET(opts, addrs, false); 11406 cnt = OPTS_GET(opts, cnt, false); 11407 cookies = OPTS_GET(opts, cookies, false); 11408 11409 if (!pattern && !addrs && !syms) 11410 return libbpf_err_ptr(-EINVAL); 11411 if (pattern && (addrs || syms || cookies || cnt)) 11412 return libbpf_err_ptr(-EINVAL); 11413 if (!pattern && !cnt) 11414 return libbpf_err_ptr(-EINVAL); 11415 if (addrs && syms) 11416 return libbpf_err_ptr(-EINVAL); 11417 11418 if (pattern) { 11419 if (has_available_filter_functions_addrs()) 11420 err = libbpf_available_kprobes_parse(&res); 11421 else 11422 err = libbpf_available_kallsyms_parse(&res); 11423 if (err) 11424 goto error; 11425 addrs = res.addrs; 11426 cnt = res.cnt; 11427 } 11428 11429 retprobe = OPTS_GET(opts, retprobe, false); 11430 11431 lopts.kprobe_multi.syms = syms; 11432 lopts.kprobe_multi.addrs = addrs; 11433 lopts.kprobe_multi.cookies = cookies; 11434 lopts.kprobe_multi.cnt = cnt; 11435 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11436 11437 link = calloc(1, sizeof(*link)); 11438 if (!link) { 11439 err = -ENOMEM; 11440 goto error; 11441 } 11442 link->detach = &bpf_link__detach_fd; 11443 11444 prog_fd = bpf_program__fd(prog); 11445 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11446 if (link_fd < 0) { 11447 err = -errno; 11448 pr_warn("prog '%s': failed to attach: %s\n", 11449 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11450 goto error; 11451 } 11452 link->fd = link_fd; 11453 free(res.addrs); 11454 return link; 11455 11456 error: 11457 free(link); 11458 free(res.addrs); 11459 return libbpf_err_ptr(err); 11460 } 11461 11462 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11463 { 11464 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11465 unsigned long offset = 0; 11466 const char *func_name; 11467 char *func; 11468 int n; 11469 11470 *link = NULL; 11471 11472 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11473 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11474 return 0; 11475 11476 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11477 if (opts.retprobe) 11478 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11479 else 11480 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11481 11482 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11483 if (n < 1) { 11484 pr_warn("kprobe name is invalid: %s\n", func_name); 11485 return -EINVAL; 11486 } 11487 if (opts.retprobe && offset != 0) { 11488 free(func); 11489 pr_warn("kretprobes do not support offset specification\n"); 11490 return -EINVAL; 11491 } 11492 11493 opts.offset = offset; 11494 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11495 free(func); 11496 return libbpf_get_error(*link); 11497 } 11498 11499 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11500 { 11501 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11502 const char *syscall_name; 11503 11504 *link = NULL; 11505 11506 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11507 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11508 return 0; 11509 11510 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11511 if (opts.retprobe) 11512 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11513 else 11514 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11515 11516 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11517 return *link ? 0 : -errno; 11518 } 11519 11520 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11521 { 11522 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11523 const char *spec; 11524 char *pattern; 11525 int n; 11526 11527 *link = NULL; 11528 11529 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11530 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11531 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11532 return 0; 11533 11534 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11535 if (opts.retprobe) 11536 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11537 else 11538 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11539 11540 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11541 if (n < 1) { 11542 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11543 return -EINVAL; 11544 } 11545 11546 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11547 free(pattern); 11548 return libbpf_get_error(*link); 11549 } 11550 11551 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11552 { 11553 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11554 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11555 int n, ret = -EINVAL; 11556 11557 *link = NULL; 11558 11559 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11560 &probe_type, &binary_path, &func_name); 11561 switch (n) { 11562 case 1: 11563 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11564 ret = 0; 11565 break; 11566 case 3: 11567 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11568 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11569 ret = libbpf_get_error(*link); 11570 break; 11571 default: 11572 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11573 prog->sec_name); 11574 break; 11575 } 11576 free(probe_type); 11577 free(binary_path); 11578 free(func_name); 11579 return ret; 11580 } 11581 11582 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11583 const char *binary_path, uint64_t offset) 11584 { 11585 int i; 11586 11587 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11588 11589 /* sanitize binary_path in the probe name */ 11590 for (i = 0; buf[i]; i++) { 11591 if (!isalnum(buf[i])) 11592 buf[i] = '_'; 11593 } 11594 } 11595 11596 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11597 const char *binary_path, size_t offset) 11598 { 11599 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11600 retprobe ? 'r' : 'p', 11601 retprobe ? "uretprobes" : "uprobes", 11602 probe_name, binary_path, offset); 11603 } 11604 11605 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11606 { 11607 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11608 retprobe ? "uretprobes" : "uprobes", probe_name); 11609 } 11610 11611 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11612 { 11613 char file[512]; 11614 11615 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11616 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11617 11618 return parse_uint_from_file(file, "%d\n"); 11619 } 11620 11621 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11622 const char *binary_path, size_t offset, int pid) 11623 { 11624 const size_t attr_sz = sizeof(struct perf_event_attr); 11625 struct perf_event_attr attr; 11626 int type, pfd, err; 11627 11628 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11629 if (err < 0) { 11630 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11631 binary_path, (size_t)offset, err); 11632 return err; 11633 } 11634 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11635 if (type < 0) { 11636 err = type; 11637 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11638 binary_path, offset, err); 11639 goto err_clean_legacy; 11640 } 11641 11642 memset(&attr, 0, attr_sz); 11643 attr.size = attr_sz; 11644 attr.config = type; 11645 attr.type = PERF_TYPE_TRACEPOINT; 11646 11647 pfd = syscall(__NR_perf_event_open, &attr, 11648 pid < 0 ? -1 : pid, /* pid */ 11649 pid == -1 ? 0 : -1, /* cpu */ 11650 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11651 if (pfd < 0) { 11652 err = -errno; 11653 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11654 goto err_clean_legacy; 11655 } 11656 return pfd; 11657 11658 err_clean_legacy: 11659 /* Clear the newly added legacy uprobe_event */ 11660 remove_uprobe_event_legacy(probe_name, retprobe); 11661 return err; 11662 } 11663 11664 /* Find offset of function name in archive specified by path. Currently 11665 * supported are .zip files that do not compress their contents, as used on 11666 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11667 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11668 * library functions. 11669 * 11670 * An overview of the APK format specifically provided here: 11671 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11672 */ 11673 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11674 const char *func_name) 11675 { 11676 struct zip_archive *archive; 11677 struct zip_entry entry; 11678 long ret; 11679 Elf *elf; 11680 11681 archive = zip_archive_open(archive_path); 11682 if (IS_ERR(archive)) { 11683 ret = PTR_ERR(archive); 11684 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11685 return ret; 11686 } 11687 11688 ret = zip_archive_find_entry(archive, file_name, &entry); 11689 if (ret) { 11690 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11691 archive_path, ret); 11692 goto out; 11693 } 11694 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11695 (unsigned long)entry.data_offset); 11696 11697 if (entry.compression) { 11698 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11699 archive_path); 11700 ret = -LIBBPF_ERRNO__FORMAT; 11701 goto out; 11702 } 11703 11704 elf = elf_memory((void *)entry.data, entry.data_length); 11705 if (!elf) { 11706 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11707 elf_errmsg(-1)); 11708 ret = -LIBBPF_ERRNO__LIBELF; 11709 goto out; 11710 } 11711 11712 ret = elf_find_func_offset(elf, file_name, func_name); 11713 if (ret > 0) { 11714 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11715 func_name, file_name, archive_path, entry.data_offset, ret, 11716 ret + entry.data_offset); 11717 ret += entry.data_offset; 11718 } 11719 elf_end(elf); 11720 11721 out: 11722 zip_archive_close(archive); 11723 return ret; 11724 } 11725 11726 static const char *arch_specific_lib_paths(void) 11727 { 11728 /* 11729 * Based on https://packages.debian.org/sid/libc6. 11730 * 11731 * Assume that the traced program is built for the same architecture 11732 * as libbpf, which should cover the vast majority of cases. 11733 */ 11734 #if defined(__x86_64__) 11735 return "/lib/x86_64-linux-gnu"; 11736 #elif defined(__i386__) 11737 return "/lib/i386-linux-gnu"; 11738 #elif defined(__s390x__) 11739 return "/lib/s390x-linux-gnu"; 11740 #elif defined(__s390__) 11741 return "/lib/s390-linux-gnu"; 11742 #elif defined(__arm__) && defined(__SOFTFP__) 11743 return "/lib/arm-linux-gnueabi"; 11744 #elif defined(__arm__) && !defined(__SOFTFP__) 11745 return "/lib/arm-linux-gnueabihf"; 11746 #elif defined(__aarch64__) 11747 return "/lib/aarch64-linux-gnu"; 11748 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11749 return "/lib/mips64el-linux-gnuabi64"; 11750 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11751 return "/lib/mipsel-linux-gnu"; 11752 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11753 return "/lib/powerpc64le-linux-gnu"; 11754 #elif defined(__sparc__) && defined(__arch64__) 11755 return "/lib/sparc64-linux-gnu"; 11756 #elif defined(__riscv) && __riscv_xlen == 64 11757 return "/lib/riscv64-linux-gnu"; 11758 #else 11759 return NULL; 11760 #endif 11761 } 11762 11763 /* Get full path to program/shared library. */ 11764 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11765 { 11766 const char *search_paths[3] = {}; 11767 int i, perm; 11768 11769 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11770 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11771 search_paths[1] = "/usr/lib64:/usr/lib"; 11772 search_paths[2] = arch_specific_lib_paths(); 11773 perm = R_OK; 11774 } else { 11775 search_paths[0] = getenv("PATH"); 11776 search_paths[1] = "/usr/bin:/usr/sbin"; 11777 perm = R_OK | X_OK; 11778 } 11779 11780 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11781 const char *s; 11782 11783 if (!search_paths[i]) 11784 continue; 11785 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11786 char *next_path; 11787 int seg_len; 11788 11789 if (s[0] == ':') 11790 s++; 11791 next_path = strchr(s, ':'); 11792 seg_len = next_path ? next_path - s : strlen(s); 11793 if (!seg_len) 11794 continue; 11795 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11796 /* ensure it has required permissions */ 11797 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11798 continue; 11799 pr_debug("resolved '%s' to '%s'\n", file, result); 11800 return 0; 11801 } 11802 } 11803 return -ENOENT; 11804 } 11805 11806 struct bpf_link * 11807 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11808 pid_t pid, 11809 const char *path, 11810 const char *func_pattern, 11811 const struct bpf_uprobe_multi_opts *opts) 11812 { 11813 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11814 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11815 unsigned long *resolved_offsets = NULL; 11816 int err = 0, link_fd, prog_fd; 11817 struct bpf_link *link = NULL; 11818 char errmsg[STRERR_BUFSIZE]; 11819 char full_path[PATH_MAX]; 11820 const __u64 *cookies; 11821 const char **syms; 11822 size_t cnt; 11823 11824 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11825 return libbpf_err_ptr(-EINVAL); 11826 11827 syms = OPTS_GET(opts, syms, NULL); 11828 offsets = OPTS_GET(opts, offsets, NULL); 11829 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11830 cookies = OPTS_GET(opts, cookies, NULL); 11831 cnt = OPTS_GET(opts, cnt, 0); 11832 11833 /* 11834 * User can specify 2 mutually exclusive set of inputs: 11835 * 11836 * 1) use only path/func_pattern/pid arguments 11837 * 11838 * 2) use path/pid with allowed combinations of: 11839 * syms/offsets/ref_ctr_offsets/cookies/cnt 11840 * 11841 * - syms and offsets are mutually exclusive 11842 * - ref_ctr_offsets and cookies are optional 11843 * 11844 * Any other usage results in error. 11845 */ 11846 11847 if (!path) 11848 return libbpf_err_ptr(-EINVAL); 11849 if (!func_pattern && cnt == 0) 11850 return libbpf_err_ptr(-EINVAL); 11851 11852 if (func_pattern) { 11853 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11854 return libbpf_err_ptr(-EINVAL); 11855 } else { 11856 if (!!syms == !!offsets) 11857 return libbpf_err_ptr(-EINVAL); 11858 } 11859 11860 if (func_pattern) { 11861 if (!strchr(path, '/')) { 11862 err = resolve_full_path(path, full_path, sizeof(full_path)); 11863 if (err) { 11864 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11865 prog->name, path, err); 11866 return libbpf_err_ptr(err); 11867 } 11868 path = full_path; 11869 } 11870 11871 err = elf_resolve_pattern_offsets(path, func_pattern, 11872 &resolved_offsets, &cnt); 11873 if (err < 0) 11874 return libbpf_err_ptr(err); 11875 offsets = resolved_offsets; 11876 } else if (syms) { 11877 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11878 if (err < 0) 11879 return libbpf_err_ptr(err); 11880 offsets = resolved_offsets; 11881 } 11882 11883 lopts.uprobe_multi.path = path; 11884 lopts.uprobe_multi.offsets = offsets; 11885 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11886 lopts.uprobe_multi.cookies = cookies; 11887 lopts.uprobe_multi.cnt = cnt; 11888 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11889 11890 if (pid == 0) 11891 pid = getpid(); 11892 if (pid > 0) 11893 lopts.uprobe_multi.pid = pid; 11894 11895 link = calloc(1, sizeof(*link)); 11896 if (!link) { 11897 err = -ENOMEM; 11898 goto error; 11899 } 11900 link->detach = &bpf_link__detach_fd; 11901 11902 prog_fd = bpf_program__fd(prog); 11903 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11904 if (link_fd < 0) { 11905 err = -errno; 11906 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11907 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11908 goto error; 11909 } 11910 link->fd = link_fd; 11911 free(resolved_offsets); 11912 return link; 11913 11914 error: 11915 free(resolved_offsets); 11916 free(link); 11917 return libbpf_err_ptr(err); 11918 } 11919 11920 LIBBPF_API struct bpf_link * 11921 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11922 const char *binary_path, size_t func_offset, 11923 const struct bpf_uprobe_opts *opts) 11924 { 11925 const char *archive_path = NULL, *archive_sep = NULL; 11926 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11927 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11928 enum probe_attach_mode attach_mode; 11929 char full_path[PATH_MAX]; 11930 struct bpf_link *link; 11931 size_t ref_ctr_off; 11932 int pfd, err; 11933 bool retprobe, legacy; 11934 const char *func_name; 11935 11936 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11937 return libbpf_err_ptr(-EINVAL); 11938 11939 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11940 retprobe = OPTS_GET(opts, retprobe, false); 11941 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11942 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11943 11944 if (!binary_path) 11945 return libbpf_err_ptr(-EINVAL); 11946 11947 /* Check if "binary_path" refers to an archive. */ 11948 archive_sep = strstr(binary_path, "!/"); 11949 if (archive_sep) { 11950 full_path[0] = '\0'; 11951 libbpf_strlcpy(full_path, binary_path, 11952 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11953 archive_path = full_path; 11954 binary_path = archive_sep + 2; 11955 } else if (!strchr(binary_path, '/')) { 11956 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11957 if (err) { 11958 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11959 prog->name, binary_path, err); 11960 return libbpf_err_ptr(err); 11961 } 11962 binary_path = full_path; 11963 } 11964 func_name = OPTS_GET(opts, func_name, NULL); 11965 if (func_name) { 11966 long sym_off; 11967 11968 if (archive_path) { 11969 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11970 func_name); 11971 binary_path = archive_path; 11972 } else { 11973 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11974 } 11975 if (sym_off < 0) 11976 return libbpf_err_ptr(sym_off); 11977 func_offset += sym_off; 11978 } 11979 11980 legacy = determine_uprobe_perf_type() < 0; 11981 switch (attach_mode) { 11982 case PROBE_ATTACH_MODE_LEGACY: 11983 legacy = true; 11984 pe_opts.force_ioctl_attach = true; 11985 break; 11986 case PROBE_ATTACH_MODE_PERF: 11987 if (legacy) 11988 return libbpf_err_ptr(-ENOTSUP); 11989 pe_opts.force_ioctl_attach = true; 11990 break; 11991 case PROBE_ATTACH_MODE_LINK: 11992 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11993 return libbpf_err_ptr(-ENOTSUP); 11994 break; 11995 case PROBE_ATTACH_MODE_DEFAULT: 11996 break; 11997 default: 11998 return libbpf_err_ptr(-EINVAL); 11999 } 12000 12001 if (!legacy) { 12002 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12003 func_offset, pid, ref_ctr_off); 12004 } else { 12005 char probe_name[PATH_MAX + 64]; 12006 12007 if (ref_ctr_off) 12008 return libbpf_err_ptr(-EINVAL); 12009 12010 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12011 binary_path, func_offset); 12012 12013 legacy_probe = strdup(probe_name); 12014 if (!legacy_probe) 12015 return libbpf_err_ptr(-ENOMEM); 12016 12017 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12018 binary_path, func_offset, pid); 12019 } 12020 if (pfd < 0) { 12021 err = -errno; 12022 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12023 prog->name, retprobe ? "uretprobe" : "uprobe", 12024 binary_path, func_offset, 12025 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12026 goto err_out; 12027 } 12028 12029 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12030 err = libbpf_get_error(link); 12031 if (err) { 12032 close(pfd); 12033 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12034 prog->name, retprobe ? "uretprobe" : "uprobe", 12035 binary_path, func_offset, 12036 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12037 goto err_clean_legacy; 12038 } 12039 if (legacy) { 12040 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12041 12042 perf_link->legacy_probe_name = legacy_probe; 12043 perf_link->legacy_is_kprobe = false; 12044 perf_link->legacy_is_retprobe = retprobe; 12045 } 12046 return link; 12047 12048 err_clean_legacy: 12049 if (legacy) 12050 remove_uprobe_event_legacy(legacy_probe, retprobe); 12051 err_out: 12052 free(legacy_probe); 12053 return libbpf_err_ptr(err); 12054 } 12055 12056 /* Format of u[ret]probe section definition supporting auto-attach: 12057 * u[ret]probe/binary:function[+offset] 12058 * 12059 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12060 * full binary path via bpf_program__attach_uprobe_opts. 12061 * 12062 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12063 * specified (and auto-attach is not possible) or the above format is specified for 12064 * auto-attach. 12065 */ 12066 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12067 { 12068 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12069 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12070 int n, c, ret = -EINVAL; 12071 long offset = 0; 12072 12073 *link = NULL; 12074 12075 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12076 &probe_type, &binary_path, &func_name); 12077 switch (n) { 12078 case 1: 12079 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12080 ret = 0; 12081 break; 12082 case 2: 12083 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12084 prog->name, prog->sec_name); 12085 break; 12086 case 3: 12087 /* check if user specifies `+offset`, if yes, this should be 12088 * the last part of the string, make sure sscanf read to EOL 12089 */ 12090 func_off = strrchr(func_name, '+'); 12091 if (func_off) { 12092 n = sscanf(func_off, "+%li%n", &offset, &c); 12093 if (n == 1 && *(func_off + c) == '\0') 12094 func_off[0] = '\0'; 12095 else 12096 offset = 0; 12097 } 12098 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12099 strcmp(probe_type, "uretprobe.s") == 0; 12100 if (opts.retprobe && offset != 0) { 12101 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12102 prog->name); 12103 break; 12104 } 12105 opts.func_name = func_name; 12106 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12107 ret = libbpf_get_error(*link); 12108 break; 12109 default: 12110 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12111 prog->sec_name); 12112 break; 12113 } 12114 free(probe_type); 12115 free(binary_path); 12116 free(func_name); 12117 12118 return ret; 12119 } 12120 12121 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12122 bool retprobe, pid_t pid, 12123 const char *binary_path, 12124 size_t func_offset) 12125 { 12126 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12127 12128 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12129 } 12130 12131 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12132 pid_t pid, const char *binary_path, 12133 const char *usdt_provider, const char *usdt_name, 12134 const struct bpf_usdt_opts *opts) 12135 { 12136 char resolved_path[512]; 12137 struct bpf_object *obj = prog->obj; 12138 struct bpf_link *link; 12139 __u64 usdt_cookie; 12140 int err; 12141 12142 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12143 return libbpf_err_ptr(-EINVAL); 12144 12145 if (bpf_program__fd(prog) < 0) { 12146 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 12147 prog->name); 12148 return libbpf_err_ptr(-EINVAL); 12149 } 12150 12151 if (!binary_path) 12152 return libbpf_err_ptr(-EINVAL); 12153 12154 if (!strchr(binary_path, '/')) { 12155 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12156 if (err) { 12157 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12158 prog->name, binary_path, err); 12159 return libbpf_err_ptr(err); 12160 } 12161 binary_path = resolved_path; 12162 } 12163 12164 /* USDT manager is instantiated lazily on first USDT attach. It will 12165 * be destroyed together with BPF object in bpf_object__close(). 12166 */ 12167 if (IS_ERR(obj->usdt_man)) 12168 return libbpf_ptr(obj->usdt_man); 12169 if (!obj->usdt_man) { 12170 obj->usdt_man = usdt_manager_new(obj); 12171 if (IS_ERR(obj->usdt_man)) 12172 return libbpf_ptr(obj->usdt_man); 12173 } 12174 12175 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12176 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12177 usdt_provider, usdt_name, usdt_cookie); 12178 err = libbpf_get_error(link); 12179 if (err) 12180 return libbpf_err_ptr(err); 12181 return link; 12182 } 12183 12184 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12185 { 12186 char *path = NULL, *provider = NULL, *name = NULL; 12187 const char *sec_name; 12188 int n, err; 12189 12190 sec_name = bpf_program__section_name(prog); 12191 if (strcmp(sec_name, "usdt") == 0) { 12192 /* no auto-attach for just SEC("usdt") */ 12193 *link = NULL; 12194 return 0; 12195 } 12196 12197 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12198 if (n != 3) { 12199 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12200 sec_name); 12201 err = -EINVAL; 12202 } else { 12203 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12204 provider, name, NULL); 12205 err = libbpf_get_error(*link); 12206 } 12207 free(path); 12208 free(provider); 12209 free(name); 12210 return err; 12211 } 12212 12213 static int determine_tracepoint_id(const char *tp_category, 12214 const char *tp_name) 12215 { 12216 char file[PATH_MAX]; 12217 int ret; 12218 12219 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12220 tracefs_path(), tp_category, tp_name); 12221 if (ret < 0) 12222 return -errno; 12223 if (ret >= sizeof(file)) { 12224 pr_debug("tracepoint %s/%s path is too long\n", 12225 tp_category, tp_name); 12226 return -E2BIG; 12227 } 12228 return parse_uint_from_file(file, "%d\n"); 12229 } 12230 12231 static int perf_event_open_tracepoint(const char *tp_category, 12232 const char *tp_name) 12233 { 12234 const size_t attr_sz = sizeof(struct perf_event_attr); 12235 struct perf_event_attr attr; 12236 char errmsg[STRERR_BUFSIZE]; 12237 int tp_id, pfd, err; 12238 12239 tp_id = determine_tracepoint_id(tp_category, tp_name); 12240 if (tp_id < 0) { 12241 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12242 tp_category, tp_name, 12243 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12244 return tp_id; 12245 } 12246 12247 memset(&attr, 0, attr_sz); 12248 attr.type = PERF_TYPE_TRACEPOINT; 12249 attr.size = attr_sz; 12250 attr.config = tp_id; 12251 12252 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12253 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12254 if (pfd < 0) { 12255 err = -errno; 12256 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12257 tp_category, tp_name, 12258 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12259 return err; 12260 } 12261 return pfd; 12262 } 12263 12264 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12265 const char *tp_category, 12266 const char *tp_name, 12267 const struct bpf_tracepoint_opts *opts) 12268 { 12269 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12270 char errmsg[STRERR_BUFSIZE]; 12271 struct bpf_link *link; 12272 int pfd, err; 12273 12274 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12275 return libbpf_err_ptr(-EINVAL); 12276 12277 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12278 12279 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12280 if (pfd < 0) { 12281 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12282 prog->name, tp_category, tp_name, 12283 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12284 return libbpf_err_ptr(pfd); 12285 } 12286 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12287 err = libbpf_get_error(link); 12288 if (err) { 12289 close(pfd); 12290 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12291 prog->name, tp_category, tp_name, 12292 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12293 return libbpf_err_ptr(err); 12294 } 12295 return link; 12296 } 12297 12298 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12299 const char *tp_category, 12300 const char *tp_name) 12301 { 12302 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12303 } 12304 12305 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12306 { 12307 char *sec_name, *tp_cat, *tp_name; 12308 12309 *link = NULL; 12310 12311 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12312 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12313 return 0; 12314 12315 sec_name = strdup(prog->sec_name); 12316 if (!sec_name) 12317 return -ENOMEM; 12318 12319 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12320 if (str_has_pfx(prog->sec_name, "tp/")) 12321 tp_cat = sec_name + sizeof("tp/") - 1; 12322 else 12323 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12324 tp_name = strchr(tp_cat, '/'); 12325 if (!tp_name) { 12326 free(sec_name); 12327 return -EINVAL; 12328 } 12329 *tp_name = '\0'; 12330 tp_name++; 12331 12332 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12333 free(sec_name); 12334 return libbpf_get_error(*link); 12335 } 12336 12337 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12338 const char *tp_name) 12339 { 12340 char errmsg[STRERR_BUFSIZE]; 12341 struct bpf_link *link; 12342 int prog_fd, pfd; 12343 12344 prog_fd = bpf_program__fd(prog); 12345 if (prog_fd < 0) { 12346 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12347 return libbpf_err_ptr(-EINVAL); 12348 } 12349 12350 link = calloc(1, sizeof(*link)); 12351 if (!link) 12352 return libbpf_err_ptr(-ENOMEM); 12353 link->detach = &bpf_link__detach_fd; 12354 12355 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 12356 if (pfd < 0) { 12357 pfd = -errno; 12358 free(link); 12359 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12360 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12361 return libbpf_err_ptr(pfd); 12362 } 12363 link->fd = pfd; 12364 return link; 12365 } 12366 12367 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12368 { 12369 static const char *const prefixes[] = { 12370 "raw_tp", 12371 "raw_tracepoint", 12372 "raw_tp.w", 12373 "raw_tracepoint.w", 12374 }; 12375 size_t i; 12376 const char *tp_name = NULL; 12377 12378 *link = NULL; 12379 12380 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12381 size_t pfx_len; 12382 12383 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12384 continue; 12385 12386 pfx_len = strlen(prefixes[i]); 12387 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12388 if (prog->sec_name[pfx_len] == '\0') 12389 return 0; 12390 12391 if (prog->sec_name[pfx_len] != '/') 12392 continue; 12393 12394 tp_name = prog->sec_name + pfx_len + 1; 12395 break; 12396 } 12397 12398 if (!tp_name) { 12399 pr_warn("prog '%s': invalid section name '%s'\n", 12400 prog->name, prog->sec_name); 12401 return -EINVAL; 12402 } 12403 12404 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12405 return libbpf_get_error(*link); 12406 } 12407 12408 /* Common logic for all BPF program types that attach to a btf_id */ 12409 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12410 const struct bpf_trace_opts *opts) 12411 { 12412 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12413 char errmsg[STRERR_BUFSIZE]; 12414 struct bpf_link *link; 12415 int prog_fd, pfd; 12416 12417 if (!OPTS_VALID(opts, bpf_trace_opts)) 12418 return libbpf_err_ptr(-EINVAL); 12419 12420 prog_fd = bpf_program__fd(prog); 12421 if (prog_fd < 0) { 12422 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12423 return libbpf_err_ptr(-EINVAL); 12424 } 12425 12426 link = calloc(1, sizeof(*link)); 12427 if (!link) 12428 return libbpf_err_ptr(-ENOMEM); 12429 link->detach = &bpf_link__detach_fd; 12430 12431 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12432 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12433 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12434 if (pfd < 0) { 12435 pfd = -errno; 12436 free(link); 12437 pr_warn("prog '%s': failed to attach: %s\n", 12438 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12439 return libbpf_err_ptr(pfd); 12440 } 12441 link->fd = pfd; 12442 return link; 12443 } 12444 12445 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12446 { 12447 return bpf_program__attach_btf_id(prog, NULL); 12448 } 12449 12450 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12451 const struct bpf_trace_opts *opts) 12452 { 12453 return bpf_program__attach_btf_id(prog, opts); 12454 } 12455 12456 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12457 { 12458 return bpf_program__attach_btf_id(prog, NULL); 12459 } 12460 12461 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12462 { 12463 *link = bpf_program__attach_trace(prog); 12464 return libbpf_get_error(*link); 12465 } 12466 12467 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12468 { 12469 *link = bpf_program__attach_lsm(prog); 12470 return libbpf_get_error(*link); 12471 } 12472 12473 static struct bpf_link * 12474 bpf_program_attach_fd(const struct bpf_program *prog, 12475 int target_fd, const char *target_name, 12476 const struct bpf_link_create_opts *opts) 12477 { 12478 enum bpf_attach_type attach_type; 12479 char errmsg[STRERR_BUFSIZE]; 12480 struct bpf_link *link; 12481 int prog_fd, link_fd; 12482 12483 prog_fd = bpf_program__fd(prog); 12484 if (prog_fd < 0) { 12485 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12486 return libbpf_err_ptr(-EINVAL); 12487 } 12488 12489 link = calloc(1, sizeof(*link)); 12490 if (!link) 12491 return libbpf_err_ptr(-ENOMEM); 12492 link->detach = &bpf_link__detach_fd; 12493 12494 attach_type = bpf_program__expected_attach_type(prog); 12495 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12496 if (link_fd < 0) { 12497 link_fd = -errno; 12498 free(link); 12499 pr_warn("prog '%s': failed to attach to %s: %s\n", 12500 prog->name, target_name, 12501 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12502 return libbpf_err_ptr(link_fd); 12503 } 12504 link->fd = link_fd; 12505 return link; 12506 } 12507 12508 struct bpf_link * 12509 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12510 { 12511 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12512 } 12513 12514 struct bpf_link * 12515 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12516 { 12517 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12518 } 12519 12520 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12521 { 12522 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12523 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12524 } 12525 12526 struct bpf_link * 12527 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12528 const struct bpf_tcx_opts *opts) 12529 { 12530 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12531 __u32 relative_id; 12532 int relative_fd; 12533 12534 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12535 return libbpf_err_ptr(-EINVAL); 12536 12537 relative_id = OPTS_GET(opts, relative_id, 0); 12538 relative_fd = OPTS_GET(opts, relative_fd, 0); 12539 12540 /* validate we don't have unexpected combinations of non-zero fields */ 12541 if (!ifindex) { 12542 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12543 prog->name); 12544 return libbpf_err_ptr(-EINVAL); 12545 } 12546 if (relative_fd && relative_id) { 12547 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12548 prog->name); 12549 return libbpf_err_ptr(-EINVAL); 12550 } 12551 12552 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12553 link_create_opts.tcx.relative_fd = relative_fd; 12554 link_create_opts.tcx.relative_id = relative_id; 12555 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12556 12557 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12558 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12559 } 12560 12561 struct bpf_link * 12562 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12563 const struct bpf_netkit_opts *opts) 12564 { 12565 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12566 __u32 relative_id; 12567 int relative_fd; 12568 12569 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12570 return libbpf_err_ptr(-EINVAL); 12571 12572 relative_id = OPTS_GET(opts, relative_id, 0); 12573 relative_fd = OPTS_GET(opts, relative_fd, 0); 12574 12575 /* validate we don't have unexpected combinations of non-zero fields */ 12576 if (!ifindex) { 12577 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12578 prog->name); 12579 return libbpf_err_ptr(-EINVAL); 12580 } 12581 if (relative_fd && relative_id) { 12582 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12583 prog->name); 12584 return libbpf_err_ptr(-EINVAL); 12585 } 12586 12587 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12588 link_create_opts.netkit.relative_fd = relative_fd; 12589 link_create_opts.netkit.relative_id = relative_id; 12590 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12591 12592 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12593 } 12594 12595 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12596 int target_fd, 12597 const char *attach_func_name) 12598 { 12599 int btf_id; 12600 12601 if (!!target_fd != !!attach_func_name) { 12602 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12603 prog->name); 12604 return libbpf_err_ptr(-EINVAL); 12605 } 12606 12607 if (prog->type != BPF_PROG_TYPE_EXT) { 12608 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12609 prog->name); 12610 return libbpf_err_ptr(-EINVAL); 12611 } 12612 12613 if (target_fd) { 12614 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12615 12616 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12617 if (btf_id < 0) 12618 return libbpf_err_ptr(btf_id); 12619 12620 target_opts.target_btf_id = btf_id; 12621 12622 return bpf_program_attach_fd(prog, target_fd, "freplace", 12623 &target_opts); 12624 } else { 12625 /* no target, so use raw_tracepoint_open for compatibility 12626 * with old kernels 12627 */ 12628 return bpf_program__attach_trace(prog); 12629 } 12630 } 12631 12632 struct bpf_link * 12633 bpf_program__attach_iter(const struct bpf_program *prog, 12634 const struct bpf_iter_attach_opts *opts) 12635 { 12636 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12637 char errmsg[STRERR_BUFSIZE]; 12638 struct bpf_link *link; 12639 int prog_fd, link_fd; 12640 __u32 target_fd = 0; 12641 12642 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12643 return libbpf_err_ptr(-EINVAL); 12644 12645 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12646 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12647 12648 prog_fd = bpf_program__fd(prog); 12649 if (prog_fd < 0) { 12650 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12651 return libbpf_err_ptr(-EINVAL); 12652 } 12653 12654 link = calloc(1, sizeof(*link)); 12655 if (!link) 12656 return libbpf_err_ptr(-ENOMEM); 12657 link->detach = &bpf_link__detach_fd; 12658 12659 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12660 &link_create_opts); 12661 if (link_fd < 0) { 12662 link_fd = -errno; 12663 free(link); 12664 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12665 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12666 return libbpf_err_ptr(link_fd); 12667 } 12668 link->fd = link_fd; 12669 return link; 12670 } 12671 12672 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12673 { 12674 *link = bpf_program__attach_iter(prog, NULL); 12675 return libbpf_get_error(*link); 12676 } 12677 12678 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12679 const struct bpf_netfilter_opts *opts) 12680 { 12681 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12682 struct bpf_link *link; 12683 int prog_fd, link_fd; 12684 12685 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12686 return libbpf_err_ptr(-EINVAL); 12687 12688 prog_fd = bpf_program__fd(prog); 12689 if (prog_fd < 0) { 12690 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12691 return libbpf_err_ptr(-EINVAL); 12692 } 12693 12694 link = calloc(1, sizeof(*link)); 12695 if (!link) 12696 return libbpf_err_ptr(-ENOMEM); 12697 12698 link->detach = &bpf_link__detach_fd; 12699 12700 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12701 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12702 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12703 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12704 12705 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12706 if (link_fd < 0) { 12707 char errmsg[STRERR_BUFSIZE]; 12708 12709 link_fd = -errno; 12710 free(link); 12711 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12712 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12713 return libbpf_err_ptr(link_fd); 12714 } 12715 link->fd = link_fd; 12716 12717 return link; 12718 } 12719 12720 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12721 { 12722 struct bpf_link *link = NULL; 12723 int err; 12724 12725 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12726 return libbpf_err_ptr(-EOPNOTSUPP); 12727 12728 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12729 if (err) 12730 return libbpf_err_ptr(err); 12731 12732 /* When calling bpf_program__attach() explicitly, auto-attach support 12733 * is expected to work, so NULL returned link is considered an error. 12734 * This is different for skeleton's attach, see comment in 12735 * bpf_object__attach_skeleton(). 12736 */ 12737 if (!link) 12738 return libbpf_err_ptr(-EOPNOTSUPP); 12739 12740 return link; 12741 } 12742 12743 struct bpf_link_struct_ops { 12744 struct bpf_link link; 12745 int map_fd; 12746 }; 12747 12748 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12749 { 12750 struct bpf_link_struct_ops *st_link; 12751 __u32 zero = 0; 12752 12753 st_link = container_of(link, struct bpf_link_struct_ops, link); 12754 12755 if (st_link->map_fd < 0) 12756 /* w/o a real link */ 12757 return bpf_map_delete_elem(link->fd, &zero); 12758 12759 return close(link->fd); 12760 } 12761 12762 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12763 { 12764 struct bpf_link_struct_ops *link; 12765 __u32 zero = 0; 12766 int err, fd; 12767 12768 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12769 return libbpf_err_ptr(-EINVAL); 12770 12771 link = calloc(1, sizeof(*link)); 12772 if (!link) 12773 return libbpf_err_ptr(-EINVAL); 12774 12775 /* kern_vdata should be prepared during the loading phase. */ 12776 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12777 /* It can be EBUSY if the map has been used to create or 12778 * update a link before. We don't allow updating the value of 12779 * a struct_ops once it is set. That ensures that the value 12780 * never changed. So, it is safe to skip EBUSY. 12781 */ 12782 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12783 free(link); 12784 return libbpf_err_ptr(err); 12785 } 12786 12787 link->link.detach = bpf_link__detach_struct_ops; 12788 12789 if (!(map->def.map_flags & BPF_F_LINK)) { 12790 /* w/o a real link */ 12791 link->link.fd = map->fd; 12792 link->map_fd = -1; 12793 return &link->link; 12794 } 12795 12796 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12797 if (fd < 0) { 12798 free(link); 12799 return libbpf_err_ptr(fd); 12800 } 12801 12802 link->link.fd = fd; 12803 link->map_fd = map->fd; 12804 12805 return &link->link; 12806 } 12807 12808 /* 12809 * Swap the back struct_ops of a link with a new struct_ops map. 12810 */ 12811 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12812 { 12813 struct bpf_link_struct_ops *st_ops_link; 12814 __u32 zero = 0; 12815 int err; 12816 12817 if (!bpf_map__is_struct_ops(map) || !map_is_created(map)) 12818 return -EINVAL; 12819 12820 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12821 /* Ensure the type of a link is correct */ 12822 if (st_ops_link->map_fd < 0) 12823 return -EINVAL; 12824 12825 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12826 /* It can be EBUSY if the map has been used to create or 12827 * update a link before. We don't allow updating the value of 12828 * a struct_ops once it is set. That ensures that the value 12829 * never changed. So, it is safe to skip EBUSY. 12830 */ 12831 if (err && err != -EBUSY) 12832 return err; 12833 12834 err = bpf_link_update(link->fd, map->fd, NULL); 12835 if (err < 0) 12836 return err; 12837 12838 st_ops_link->map_fd = map->fd; 12839 12840 return 0; 12841 } 12842 12843 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12844 void *private_data); 12845 12846 static enum bpf_perf_event_ret 12847 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12848 void **copy_mem, size_t *copy_size, 12849 bpf_perf_event_print_t fn, void *private_data) 12850 { 12851 struct perf_event_mmap_page *header = mmap_mem; 12852 __u64 data_head = ring_buffer_read_head(header); 12853 __u64 data_tail = header->data_tail; 12854 void *base = ((__u8 *)header) + page_size; 12855 int ret = LIBBPF_PERF_EVENT_CONT; 12856 struct perf_event_header *ehdr; 12857 size_t ehdr_size; 12858 12859 while (data_head != data_tail) { 12860 ehdr = base + (data_tail & (mmap_size - 1)); 12861 ehdr_size = ehdr->size; 12862 12863 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12864 void *copy_start = ehdr; 12865 size_t len_first = base + mmap_size - copy_start; 12866 size_t len_secnd = ehdr_size - len_first; 12867 12868 if (*copy_size < ehdr_size) { 12869 free(*copy_mem); 12870 *copy_mem = malloc(ehdr_size); 12871 if (!*copy_mem) { 12872 *copy_size = 0; 12873 ret = LIBBPF_PERF_EVENT_ERROR; 12874 break; 12875 } 12876 *copy_size = ehdr_size; 12877 } 12878 12879 memcpy(*copy_mem, copy_start, len_first); 12880 memcpy(*copy_mem + len_first, base, len_secnd); 12881 ehdr = *copy_mem; 12882 } 12883 12884 ret = fn(ehdr, private_data); 12885 data_tail += ehdr_size; 12886 if (ret != LIBBPF_PERF_EVENT_CONT) 12887 break; 12888 } 12889 12890 ring_buffer_write_tail(header, data_tail); 12891 return libbpf_err(ret); 12892 } 12893 12894 struct perf_buffer; 12895 12896 struct perf_buffer_params { 12897 struct perf_event_attr *attr; 12898 /* if event_cb is specified, it takes precendence */ 12899 perf_buffer_event_fn event_cb; 12900 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12901 perf_buffer_sample_fn sample_cb; 12902 perf_buffer_lost_fn lost_cb; 12903 void *ctx; 12904 int cpu_cnt; 12905 int *cpus; 12906 int *map_keys; 12907 }; 12908 12909 struct perf_cpu_buf { 12910 struct perf_buffer *pb; 12911 void *base; /* mmap()'ed memory */ 12912 void *buf; /* for reconstructing segmented data */ 12913 size_t buf_size; 12914 int fd; 12915 int cpu; 12916 int map_key; 12917 }; 12918 12919 struct perf_buffer { 12920 perf_buffer_event_fn event_cb; 12921 perf_buffer_sample_fn sample_cb; 12922 perf_buffer_lost_fn lost_cb; 12923 void *ctx; /* passed into callbacks */ 12924 12925 size_t page_size; 12926 size_t mmap_size; 12927 struct perf_cpu_buf **cpu_bufs; 12928 struct epoll_event *events; 12929 int cpu_cnt; /* number of allocated CPU buffers */ 12930 int epoll_fd; /* perf event FD */ 12931 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12932 }; 12933 12934 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12935 struct perf_cpu_buf *cpu_buf) 12936 { 12937 if (!cpu_buf) 12938 return; 12939 if (cpu_buf->base && 12940 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12941 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12942 if (cpu_buf->fd >= 0) { 12943 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12944 close(cpu_buf->fd); 12945 } 12946 free(cpu_buf->buf); 12947 free(cpu_buf); 12948 } 12949 12950 void perf_buffer__free(struct perf_buffer *pb) 12951 { 12952 int i; 12953 12954 if (IS_ERR_OR_NULL(pb)) 12955 return; 12956 if (pb->cpu_bufs) { 12957 for (i = 0; i < pb->cpu_cnt; i++) { 12958 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12959 12960 if (!cpu_buf) 12961 continue; 12962 12963 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12964 perf_buffer__free_cpu_buf(pb, cpu_buf); 12965 } 12966 free(pb->cpu_bufs); 12967 } 12968 if (pb->epoll_fd >= 0) 12969 close(pb->epoll_fd); 12970 free(pb->events); 12971 free(pb); 12972 } 12973 12974 static struct perf_cpu_buf * 12975 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12976 int cpu, int map_key) 12977 { 12978 struct perf_cpu_buf *cpu_buf; 12979 char msg[STRERR_BUFSIZE]; 12980 int err; 12981 12982 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12983 if (!cpu_buf) 12984 return ERR_PTR(-ENOMEM); 12985 12986 cpu_buf->pb = pb; 12987 cpu_buf->cpu = cpu; 12988 cpu_buf->map_key = map_key; 12989 12990 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12991 -1, PERF_FLAG_FD_CLOEXEC); 12992 if (cpu_buf->fd < 0) { 12993 err = -errno; 12994 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12995 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12996 goto error; 12997 } 12998 12999 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13000 PROT_READ | PROT_WRITE, MAP_SHARED, 13001 cpu_buf->fd, 0); 13002 if (cpu_buf->base == MAP_FAILED) { 13003 cpu_buf->base = NULL; 13004 err = -errno; 13005 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13006 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13007 goto error; 13008 } 13009 13010 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13011 err = -errno; 13012 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13013 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13014 goto error; 13015 } 13016 13017 return cpu_buf; 13018 13019 error: 13020 perf_buffer__free_cpu_buf(pb, cpu_buf); 13021 return (struct perf_cpu_buf *)ERR_PTR(err); 13022 } 13023 13024 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13025 struct perf_buffer_params *p); 13026 13027 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13028 perf_buffer_sample_fn sample_cb, 13029 perf_buffer_lost_fn lost_cb, 13030 void *ctx, 13031 const struct perf_buffer_opts *opts) 13032 { 13033 const size_t attr_sz = sizeof(struct perf_event_attr); 13034 struct perf_buffer_params p = {}; 13035 struct perf_event_attr attr; 13036 __u32 sample_period; 13037 13038 if (!OPTS_VALID(opts, perf_buffer_opts)) 13039 return libbpf_err_ptr(-EINVAL); 13040 13041 sample_period = OPTS_GET(opts, sample_period, 1); 13042 if (!sample_period) 13043 sample_period = 1; 13044 13045 memset(&attr, 0, attr_sz); 13046 attr.size = attr_sz; 13047 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13048 attr.type = PERF_TYPE_SOFTWARE; 13049 attr.sample_type = PERF_SAMPLE_RAW; 13050 attr.sample_period = sample_period; 13051 attr.wakeup_events = sample_period; 13052 13053 p.attr = &attr; 13054 p.sample_cb = sample_cb; 13055 p.lost_cb = lost_cb; 13056 p.ctx = ctx; 13057 13058 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13059 } 13060 13061 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13062 struct perf_event_attr *attr, 13063 perf_buffer_event_fn event_cb, void *ctx, 13064 const struct perf_buffer_raw_opts *opts) 13065 { 13066 struct perf_buffer_params p = {}; 13067 13068 if (!attr) 13069 return libbpf_err_ptr(-EINVAL); 13070 13071 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13072 return libbpf_err_ptr(-EINVAL); 13073 13074 p.attr = attr; 13075 p.event_cb = event_cb; 13076 p.ctx = ctx; 13077 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13078 p.cpus = OPTS_GET(opts, cpus, NULL); 13079 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13080 13081 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13082 } 13083 13084 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13085 struct perf_buffer_params *p) 13086 { 13087 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13088 struct bpf_map_info map; 13089 char msg[STRERR_BUFSIZE]; 13090 struct perf_buffer *pb; 13091 bool *online = NULL; 13092 __u32 map_info_len; 13093 int err, i, j, n; 13094 13095 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13096 pr_warn("page count should be power of two, but is %zu\n", 13097 page_cnt); 13098 return ERR_PTR(-EINVAL); 13099 } 13100 13101 /* best-effort sanity checks */ 13102 memset(&map, 0, sizeof(map)); 13103 map_info_len = sizeof(map); 13104 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13105 if (err) { 13106 err = -errno; 13107 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13108 * -EBADFD, -EFAULT, or -E2BIG on real error 13109 */ 13110 if (err != -EINVAL) { 13111 pr_warn("failed to get map info for map FD %d: %s\n", 13112 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13113 return ERR_PTR(err); 13114 } 13115 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13116 map_fd); 13117 } else { 13118 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13119 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13120 map.name); 13121 return ERR_PTR(-EINVAL); 13122 } 13123 } 13124 13125 pb = calloc(1, sizeof(*pb)); 13126 if (!pb) 13127 return ERR_PTR(-ENOMEM); 13128 13129 pb->event_cb = p->event_cb; 13130 pb->sample_cb = p->sample_cb; 13131 pb->lost_cb = p->lost_cb; 13132 pb->ctx = p->ctx; 13133 13134 pb->page_size = getpagesize(); 13135 pb->mmap_size = pb->page_size * page_cnt; 13136 pb->map_fd = map_fd; 13137 13138 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13139 if (pb->epoll_fd < 0) { 13140 err = -errno; 13141 pr_warn("failed to create epoll instance: %s\n", 13142 libbpf_strerror_r(err, msg, sizeof(msg))); 13143 goto error; 13144 } 13145 13146 if (p->cpu_cnt > 0) { 13147 pb->cpu_cnt = p->cpu_cnt; 13148 } else { 13149 pb->cpu_cnt = libbpf_num_possible_cpus(); 13150 if (pb->cpu_cnt < 0) { 13151 err = pb->cpu_cnt; 13152 goto error; 13153 } 13154 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13155 pb->cpu_cnt = map.max_entries; 13156 } 13157 13158 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13159 if (!pb->events) { 13160 err = -ENOMEM; 13161 pr_warn("failed to allocate events: out of memory\n"); 13162 goto error; 13163 } 13164 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13165 if (!pb->cpu_bufs) { 13166 err = -ENOMEM; 13167 pr_warn("failed to allocate buffers: out of memory\n"); 13168 goto error; 13169 } 13170 13171 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13172 if (err) { 13173 pr_warn("failed to get online CPU mask: %d\n", err); 13174 goto error; 13175 } 13176 13177 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13178 struct perf_cpu_buf *cpu_buf; 13179 int cpu, map_key; 13180 13181 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13182 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13183 13184 /* in case user didn't explicitly requested particular CPUs to 13185 * be attached to, skip offline/not present CPUs 13186 */ 13187 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13188 continue; 13189 13190 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13191 if (IS_ERR(cpu_buf)) { 13192 err = PTR_ERR(cpu_buf); 13193 goto error; 13194 } 13195 13196 pb->cpu_bufs[j] = cpu_buf; 13197 13198 err = bpf_map_update_elem(pb->map_fd, &map_key, 13199 &cpu_buf->fd, 0); 13200 if (err) { 13201 err = -errno; 13202 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13203 cpu, map_key, cpu_buf->fd, 13204 libbpf_strerror_r(err, msg, sizeof(msg))); 13205 goto error; 13206 } 13207 13208 pb->events[j].events = EPOLLIN; 13209 pb->events[j].data.ptr = cpu_buf; 13210 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13211 &pb->events[j]) < 0) { 13212 err = -errno; 13213 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13214 cpu, cpu_buf->fd, 13215 libbpf_strerror_r(err, msg, sizeof(msg))); 13216 goto error; 13217 } 13218 j++; 13219 } 13220 pb->cpu_cnt = j; 13221 free(online); 13222 13223 return pb; 13224 13225 error: 13226 free(online); 13227 if (pb) 13228 perf_buffer__free(pb); 13229 return ERR_PTR(err); 13230 } 13231 13232 struct perf_sample_raw { 13233 struct perf_event_header header; 13234 uint32_t size; 13235 char data[]; 13236 }; 13237 13238 struct perf_sample_lost { 13239 struct perf_event_header header; 13240 uint64_t id; 13241 uint64_t lost; 13242 uint64_t sample_id; 13243 }; 13244 13245 static enum bpf_perf_event_ret 13246 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13247 { 13248 struct perf_cpu_buf *cpu_buf = ctx; 13249 struct perf_buffer *pb = cpu_buf->pb; 13250 void *data = e; 13251 13252 /* user wants full control over parsing perf event */ 13253 if (pb->event_cb) 13254 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13255 13256 switch (e->type) { 13257 case PERF_RECORD_SAMPLE: { 13258 struct perf_sample_raw *s = data; 13259 13260 if (pb->sample_cb) 13261 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13262 break; 13263 } 13264 case PERF_RECORD_LOST: { 13265 struct perf_sample_lost *s = data; 13266 13267 if (pb->lost_cb) 13268 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13269 break; 13270 } 13271 default: 13272 pr_warn("unknown perf sample type %d\n", e->type); 13273 return LIBBPF_PERF_EVENT_ERROR; 13274 } 13275 return LIBBPF_PERF_EVENT_CONT; 13276 } 13277 13278 static int perf_buffer__process_records(struct perf_buffer *pb, 13279 struct perf_cpu_buf *cpu_buf) 13280 { 13281 enum bpf_perf_event_ret ret; 13282 13283 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13284 pb->page_size, &cpu_buf->buf, 13285 &cpu_buf->buf_size, 13286 perf_buffer__process_record, cpu_buf); 13287 if (ret != LIBBPF_PERF_EVENT_CONT) 13288 return ret; 13289 return 0; 13290 } 13291 13292 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13293 { 13294 return pb->epoll_fd; 13295 } 13296 13297 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13298 { 13299 int i, cnt, err; 13300 13301 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13302 if (cnt < 0) 13303 return -errno; 13304 13305 for (i = 0; i < cnt; i++) { 13306 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13307 13308 err = perf_buffer__process_records(pb, cpu_buf); 13309 if (err) { 13310 pr_warn("error while processing records: %d\n", err); 13311 return libbpf_err(err); 13312 } 13313 } 13314 return cnt; 13315 } 13316 13317 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13318 * manager. 13319 */ 13320 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13321 { 13322 return pb->cpu_cnt; 13323 } 13324 13325 /* 13326 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13327 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13328 * select()/poll()/epoll() Linux syscalls. 13329 */ 13330 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13331 { 13332 struct perf_cpu_buf *cpu_buf; 13333 13334 if (buf_idx >= pb->cpu_cnt) 13335 return libbpf_err(-EINVAL); 13336 13337 cpu_buf = pb->cpu_bufs[buf_idx]; 13338 if (!cpu_buf) 13339 return libbpf_err(-ENOENT); 13340 13341 return cpu_buf->fd; 13342 } 13343 13344 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13345 { 13346 struct perf_cpu_buf *cpu_buf; 13347 13348 if (buf_idx >= pb->cpu_cnt) 13349 return libbpf_err(-EINVAL); 13350 13351 cpu_buf = pb->cpu_bufs[buf_idx]; 13352 if (!cpu_buf) 13353 return libbpf_err(-ENOENT); 13354 13355 *buf = cpu_buf->base; 13356 *buf_size = pb->mmap_size; 13357 return 0; 13358 } 13359 13360 /* 13361 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13362 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13363 * consume, do nothing and return success. 13364 * Returns: 13365 * - 0 on success; 13366 * - <0 on failure. 13367 */ 13368 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13369 { 13370 struct perf_cpu_buf *cpu_buf; 13371 13372 if (buf_idx >= pb->cpu_cnt) 13373 return libbpf_err(-EINVAL); 13374 13375 cpu_buf = pb->cpu_bufs[buf_idx]; 13376 if (!cpu_buf) 13377 return libbpf_err(-ENOENT); 13378 13379 return perf_buffer__process_records(pb, cpu_buf); 13380 } 13381 13382 int perf_buffer__consume(struct perf_buffer *pb) 13383 { 13384 int i, err; 13385 13386 for (i = 0; i < pb->cpu_cnt; i++) { 13387 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13388 13389 if (!cpu_buf) 13390 continue; 13391 13392 err = perf_buffer__process_records(pb, cpu_buf); 13393 if (err) { 13394 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13395 return libbpf_err(err); 13396 } 13397 } 13398 return 0; 13399 } 13400 13401 int bpf_program__set_attach_target(struct bpf_program *prog, 13402 int attach_prog_fd, 13403 const char *attach_func_name) 13404 { 13405 int btf_obj_fd = 0, btf_id = 0, err; 13406 13407 if (!prog || attach_prog_fd < 0) 13408 return libbpf_err(-EINVAL); 13409 13410 if (prog->obj->loaded) 13411 return libbpf_err(-EINVAL); 13412 13413 if (attach_prog_fd && !attach_func_name) { 13414 /* remember attach_prog_fd and let bpf_program__load() find 13415 * BTF ID during the program load 13416 */ 13417 prog->attach_prog_fd = attach_prog_fd; 13418 return 0; 13419 } 13420 13421 if (attach_prog_fd) { 13422 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13423 attach_prog_fd); 13424 if (btf_id < 0) 13425 return libbpf_err(btf_id); 13426 } else { 13427 if (!attach_func_name) 13428 return libbpf_err(-EINVAL); 13429 13430 /* load btf_vmlinux, if not yet */ 13431 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13432 if (err) 13433 return libbpf_err(err); 13434 err = find_kernel_btf_id(prog->obj, attach_func_name, 13435 prog->expected_attach_type, 13436 &btf_obj_fd, &btf_id); 13437 if (err) 13438 return libbpf_err(err); 13439 } 13440 13441 prog->attach_btf_id = btf_id; 13442 prog->attach_btf_obj_fd = btf_obj_fd; 13443 prog->attach_prog_fd = attach_prog_fd; 13444 return 0; 13445 } 13446 13447 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13448 { 13449 int err = 0, n, len, start, end = -1; 13450 bool *tmp; 13451 13452 *mask = NULL; 13453 *mask_sz = 0; 13454 13455 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13456 while (*s) { 13457 if (*s == ',' || *s == '\n') { 13458 s++; 13459 continue; 13460 } 13461 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13462 if (n <= 0 || n > 2) { 13463 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13464 err = -EINVAL; 13465 goto cleanup; 13466 } else if (n == 1) { 13467 end = start; 13468 } 13469 if (start < 0 || start > end) { 13470 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13471 start, end, s); 13472 err = -EINVAL; 13473 goto cleanup; 13474 } 13475 tmp = realloc(*mask, end + 1); 13476 if (!tmp) { 13477 err = -ENOMEM; 13478 goto cleanup; 13479 } 13480 *mask = tmp; 13481 memset(tmp + *mask_sz, 0, start - *mask_sz); 13482 memset(tmp + start, 1, end - start + 1); 13483 *mask_sz = end + 1; 13484 s += len; 13485 } 13486 if (!*mask_sz) { 13487 pr_warn("Empty CPU range\n"); 13488 return -EINVAL; 13489 } 13490 return 0; 13491 cleanup: 13492 free(*mask); 13493 *mask = NULL; 13494 return err; 13495 } 13496 13497 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13498 { 13499 int fd, err = 0, len; 13500 char buf[128]; 13501 13502 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13503 if (fd < 0) { 13504 err = -errno; 13505 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13506 return err; 13507 } 13508 len = read(fd, buf, sizeof(buf)); 13509 close(fd); 13510 if (len <= 0) { 13511 err = len ? -errno : -EINVAL; 13512 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13513 return err; 13514 } 13515 if (len >= sizeof(buf)) { 13516 pr_warn("CPU mask is too big in file %s\n", fcpu); 13517 return -E2BIG; 13518 } 13519 buf[len] = '\0'; 13520 13521 return parse_cpu_mask_str(buf, mask, mask_sz); 13522 } 13523 13524 int libbpf_num_possible_cpus(void) 13525 { 13526 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13527 static int cpus; 13528 int err, n, i, tmp_cpus; 13529 bool *mask; 13530 13531 tmp_cpus = READ_ONCE(cpus); 13532 if (tmp_cpus > 0) 13533 return tmp_cpus; 13534 13535 err = parse_cpu_mask_file(fcpu, &mask, &n); 13536 if (err) 13537 return libbpf_err(err); 13538 13539 tmp_cpus = 0; 13540 for (i = 0; i < n; i++) { 13541 if (mask[i]) 13542 tmp_cpus++; 13543 } 13544 free(mask); 13545 13546 WRITE_ONCE(cpus, tmp_cpus); 13547 return tmp_cpus; 13548 } 13549 13550 static int populate_skeleton_maps(const struct bpf_object *obj, 13551 struct bpf_map_skeleton *maps, 13552 size_t map_cnt) 13553 { 13554 int i; 13555 13556 for (i = 0; i < map_cnt; i++) { 13557 struct bpf_map **map = maps[i].map; 13558 const char *name = maps[i].name; 13559 void **mmaped = maps[i].mmaped; 13560 13561 *map = bpf_object__find_map_by_name(obj, name); 13562 if (!*map) { 13563 pr_warn("failed to find skeleton map '%s'\n", name); 13564 return -ESRCH; 13565 } 13566 13567 /* externs shouldn't be pre-setup from user code */ 13568 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13569 *mmaped = (*map)->mmaped; 13570 } 13571 return 0; 13572 } 13573 13574 static int populate_skeleton_progs(const struct bpf_object *obj, 13575 struct bpf_prog_skeleton *progs, 13576 size_t prog_cnt) 13577 { 13578 int i; 13579 13580 for (i = 0; i < prog_cnt; i++) { 13581 struct bpf_program **prog = progs[i].prog; 13582 const char *name = progs[i].name; 13583 13584 *prog = bpf_object__find_program_by_name(obj, name); 13585 if (!*prog) { 13586 pr_warn("failed to find skeleton program '%s'\n", name); 13587 return -ESRCH; 13588 } 13589 } 13590 return 0; 13591 } 13592 13593 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13594 const struct bpf_object_open_opts *opts) 13595 { 13596 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13597 .object_name = s->name, 13598 ); 13599 struct bpf_object *obj; 13600 int err; 13601 13602 /* Attempt to preserve opts->object_name, unless overriden by user 13603 * explicitly. Overwriting object name for skeletons is discouraged, 13604 * as it breaks global data maps, because they contain object name 13605 * prefix as their own map name prefix. When skeleton is generated, 13606 * bpftool is making an assumption that this name will stay the same. 13607 */ 13608 if (opts) { 13609 memcpy(&skel_opts, opts, sizeof(*opts)); 13610 if (!opts->object_name) 13611 skel_opts.object_name = s->name; 13612 } 13613 13614 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13615 err = libbpf_get_error(obj); 13616 if (err) { 13617 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13618 s->name, err); 13619 return libbpf_err(err); 13620 } 13621 13622 *s->obj = obj; 13623 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13624 if (err) { 13625 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13626 return libbpf_err(err); 13627 } 13628 13629 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13630 if (err) { 13631 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13632 return libbpf_err(err); 13633 } 13634 13635 return 0; 13636 } 13637 13638 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13639 { 13640 int err, len, var_idx, i; 13641 const char *var_name; 13642 const struct bpf_map *map; 13643 struct btf *btf; 13644 __u32 map_type_id; 13645 const struct btf_type *map_type, *var_type; 13646 const struct bpf_var_skeleton *var_skel; 13647 struct btf_var_secinfo *var; 13648 13649 if (!s->obj) 13650 return libbpf_err(-EINVAL); 13651 13652 btf = bpf_object__btf(s->obj); 13653 if (!btf) { 13654 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13655 bpf_object__name(s->obj)); 13656 return libbpf_err(-errno); 13657 } 13658 13659 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13660 if (err) { 13661 pr_warn("failed to populate subskeleton maps: %d\n", err); 13662 return libbpf_err(err); 13663 } 13664 13665 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13666 if (err) { 13667 pr_warn("failed to populate subskeleton maps: %d\n", err); 13668 return libbpf_err(err); 13669 } 13670 13671 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13672 var_skel = &s->vars[var_idx]; 13673 map = *var_skel->map; 13674 map_type_id = bpf_map__btf_value_type_id(map); 13675 map_type = btf__type_by_id(btf, map_type_id); 13676 13677 if (!btf_is_datasec(map_type)) { 13678 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13679 bpf_map__name(map), 13680 __btf_kind_str(btf_kind(map_type))); 13681 return libbpf_err(-EINVAL); 13682 } 13683 13684 len = btf_vlen(map_type); 13685 var = btf_var_secinfos(map_type); 13686 for (i = 0; i < len; i++, var++) { 13687 var_type = btf__type_by_id(btf, var->type); 13688 var_name = btf__name_by_offset(btf, var_type->name_off); 13689 if (strcmp(var_name, var_skel->name) == 0) { 13690 *var_skel->addr = map->mmaped + var->offset; 13691 break; 13692 } 13693 } 13694 } 13695 return 0; 13696 } 13697 13698 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13699 { 13700 if (!s) 13701 return; 13702 free(s->maps); 13703 free(s->progs); 13704 free(s->vars); 13705 free(s); 13706 } 13707 13708 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13709 { 13710 int i, err; 13711 13712 err = bpf_object__load(*s->obj); 13713 if (err) { 13714 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13715 return libbpf_err(err); 13716 } 13717 13718 for (i = 0; i < s->map_cnt; i++) { 13719 struct bpf_map *map = *s->maps[i].map; 13720 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13721 int prot, map_fd = map->fd; 13722 void **mmaped = s->maps[i].mmaped; 13723 13724 if (!mmaped) 13725 continue; 13726 13727 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13728 *mmaped = NULL; 13729 continue; 13730 } 13731 13732 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13733 prot = PROT_READ; 13734 else 13735 prot = PROT_READ | PROT_WRITE; 13736 13737 /* Remap anonymous mmap()-ed "map initialization image" as 13738 * a BPF map-backed mmap()-ed memory, but preserving the same 13739 * memory address. This will cause kernel to change process' 13740 * page table to point to a different piece of kernel memory, 13741 * but from userspace point of view memory address (and its 13742 * contents, being identical at this point) will stay the 13743 * same. This mapping will be released by bpf_object__close() 13744 * as per normal clean up procedure, so we don't need to worry 13745 * about it from skeleton's clean up perspective. 13746 */ 13747 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13748 if (*mmaped == MAP_FAILED) { 13749 err = -errno; 13750 *mmaped = NULL; 13751 pr_warn("failed to re-mmap() map '%s': %d\n", 13752 bpf_map__name(map), err); 13753 return libbpf_err(err); 13754 } 13755 } 13756 13757 return 0; 13758 } 13759 13760 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13761 { 13762 int i, err; 13763 13764 for (i = 0; i < s->prog_cnt; i++) { 13765 struct bpf_program *prog = *s->progs[i].prog; 13766 struct bpf_link **link = s->progs[i].link; 13767 13768 if (!prog->autoload || !prog->autoattach) 13769 continue; 13770 13771 /* auto-attaching not supported for this program */ 13772 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13773 continue; 13774 13775 /* if user already set the link manually, don't attempt auto-attach */ 13776 if (*link) 13777 continue; 13778 13779 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13780 if (err) { 13781 pr_warn("prog '%s': failed to auto-attach: %d\n", 13782 bpf_program__name(prog), err); 13783 return libbpf_err(err); 13784 } 13785 13786 /* It's possible that for some SEC() definitions auto-attach 13787 * is supported in some cases (e.g., if definition completely 13788 * specifies target information), but is not in other cases. 13789 * SEC("uprobe") is one such case. If user specified target 13790 * binary and function name, such BPF program can be 13791 * auto-attached. But if not, it shouldn't trigger skeleton's 13792 * attach to fail. It should just be skipped. 13793 * attach_fn signals such case with returning 0 (no error) and 13794 * setting link to NULL. 13795 */ 13796 } 13797 13798 return 0; 13799 } 13800 13801 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13802 { 13803 int i; 13804 13805 for (i = 0; i < s->prog_cnt; i++) { 13806 struct bpf_link **link = s->progs[i].link; 13807 13808 bpf_link__destroy(*link); 13809 *link = NULL; 13810 } 13811 } 13812 13813 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13814 { 13815 if (!s) 13816 return; 13817 13818 if (s->progs) 13819 bpf_object__detach_skeleton(s); 13820 if (s->obj) 13821 bpf_object__close(*s->obj); 13822 free(s->maps); 13823 free(s->progs); 13824 free(s); 13825 } 13826