xref: /linux/tools/lib/bpf/libbpf.c (revision 2672031b20f6681514bef14ddcfe8c62c2757d11)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
86 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
87 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
88 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
89 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
90 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
91 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
92 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
93 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
94 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
95 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
96 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
97 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
98 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
99 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
100 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
101 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
102 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
103 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
104 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
105 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
106 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
107 	[BPF_LIRC_MODE2]		= "lirc_mode2",
108 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
109 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
110 	[BPF_TRACE_FENTRY]		= "trace_fentry",
111 	[BPF_TRACE_FEXIT]		= "trace_fexit",
112 	[BPF_MODIFY_RETURN]		= "modify_return",
113 	[BPF_LSM_MAC]			= "lsm_mac",
114 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
115 	[BPF_SK_LOOKUP]			= "sk_lookup",
116 	[BPF_TRACE_ITER]		= "trace_iter",
117 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
118 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
119 	[BPF_XDP]			= "xdp",
120 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
121 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
122 	[BPF_PERF_EVENT]		= "perf_event",
123 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
124 	[BPF_STRUCT_OPS]		= "struct_ops",
125 	[BPF_NETFILTER]			= "netfilter",
126 	[BPF_TCX_INGRESS]		= "tcx_ingress",
127 	[BPF_TCX_EGRESS]		= "tcx_egress",
128 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
129 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
130 	[BPF_NETKIT_PEER]		= "netkit_peer",
131 };
132 
133 static const char * const link_type_name[] = {
134 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
135 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
136 	[BPF_LINK_TYPE_TRACING]			= "tracing",
137 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
138 	[BPF_LINK_TYPE_ITER]			= "iter",
139 	[BPF_LINK_TYPE_NETNS]			= "netns",
140 	[BPF_LINK_TYPE_XDP]			= "xdp",
141 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
142 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
143 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
144 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
145 	[BPF_LINK_TYPE_TCX]			= "tcx",
146 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
147 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
148 };
149 
150 static const char * const map_type_name[] = {
151 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
152 	[BPF_MAP_TYPE_HASH]			= "hash",
153 	[BPF_MAP_TYPE_ARRAY]			= "array",
154 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
155 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
156 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
157 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
158 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
159 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
160 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
161 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
162 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
163 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
164 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
165 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
166 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
167 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
168 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
169 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
170 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
171 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
172 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
173 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
174 	[BPF_MAP_TYPE_QUEUE]			= "queue",
175 	[BPF_MAP_TYPE_STACK]			= "stack",
176 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
177 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
178 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
179 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
180 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
181 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
182 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
183 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
184 };
185 
186 static const char * const prog_type_name[] = {
187 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
188 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
189 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
190 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
191 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
192 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
193 	[BPF_PROG_TYPE_XDP]			= "xdp",
194 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
195 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
196 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
197 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
198 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
199 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
200 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
201 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
202 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
203 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
204 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
205 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
206 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
207 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
208 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
209 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
210 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
211 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
212 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
213 	[BPF_PROG_TYPE_TRACING]			= "tracing",
214 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
215 	[BPF_PROG_TYPE_EXT]			= "ext",
216 	[BPF_PROG_TYPE_LSM]			= "lsm",
217 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
218 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
219 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
220 };
221 
222 static int __base_pr(enum libbpf_print_level level, const char *format,
223 		     va_list args)
224 {
225 	if (level == LIBBPF_DEBUG)
226 		return 0;
227 
228 	return vfprintf(stderr, format, args);
229 }
230 
231 static libbpf_print_fn_t __libbpf_pr = __base_pr;
232 
233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
234 {
235 	libbpf_print_fn_t old_print_fn;
236 
237 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
238 
239 	return old_print_fn;
240 }
241 
242 __printf(2, 3)
243 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
244 {
245 	va_list args;
246 	int old_errno;
247 	libbpf_print_fn_t print_fn;
248 
249 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
250 	if (!print_fn)
251 		return;
252 
253 	old_errno = errno;
254 
255 	va_start(args, format);
256 	__libbpf_pr(level, format, args);
257 	va_end(args);
258 
259 	errno = old_errno;
260 }
261 
262 static void pr_perm_msg(int err)
263 {
264 	struct rlimit limit;
265 	char buf[100];
266 
267 	if (err != -EPERM || geteuid() != 0)
268 		return;
269 
270 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
271 	if (err)
272 		return;
273 
274 	if (limit.rlim_cur == RLIM_INFINITY)
275 		return;
276 
277 	if (limit.rlim_cur < 1024)
278 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
279 	else if (limit.rlim_cur < 1024*1024)
280 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
281 	else
282 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
283 
284 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
285 		buf);
286 }
287 
288 #define STRERR_BUFSIZE  128
289 
290 /* Copied from tools/perf/util/util.h */
291 #ifndef zfree
292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
293 #endif
294 
295 #ifndef zclose
296 # define zclose(fd) ({			\
297 	int ___err = 0;			\
298 	if ((fd) >= 0)			\
299 		___err = close((fd));	\
300 	fd = -1;			\
301 	___err; })
302 #endif
303 
304 static inline __u64 ptr_to_u64(const void *ptr)
305 {
306 	return (__u64) (unsigned long) ptr;
307 }
308 
309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
310 {
311 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
312 	return 0;
313 }
314 
315 __u32 libbpf_major_version(void)
316 {
317 	return LIBBPF_MAJOR_VERSION;
318 }
319 
320 __u32 libbpf_minor_version(void)
321 {
322 	return LIBBPF_MINOR_VERSION;
323 }
324 
325 const char *libbpf_version_string(void)
326 {
327 #define __S(X) #X
328 #define _S(X) __S(X)
329 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
330 #undef _S
331 #undef __S
332 }
333 
334 enum reloc_type {
335 	RELO_LD64,
336 	RELO_CALL,
337 	RELO_DATA,
338 	RELO_EXTERN_LD64,
339 	RELO_EXTERN_CALL,
340 	RELO_SUBPROG_ADDR,
341 	RELO_CORE,
342 };
343 
344 struct reloc_desc {
345 	enum reloc_type type;
346 	int insn_idx;
347 	union {
348 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
349 		struct {
350 			int map_idx;
351 			int sym_off;
352 			int ext_idx;
353 		};
354 	};
355 };
356 
357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
358 enum sec_def_flags {
359 	SEC_NONE = 0,
360 	/* expected_attach_type is optional, if kernel doesn't support that */
361 	SEC_EXP_ATTACH_OPT = 1,
362 	/* legacy, only used by libbpf_get_type_names() and
363 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
364 	 * This used to be associated with cgroup (and few other) BPF programs
365 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
366 	 * meaningless nowadays, though.
367 	 */
368 	SEC_ATTACHABLE = 2,
369 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
370 	/* attachment target is specified through BTF ID in either kernel or
371 	 * other BPF program's BTF object
372 	 */
373 	SEC_ATTACH_BTF = 4,
374 	/* BPF program type allows sleeping/blocking in kernel */
375 	SEC_SLEEPABLE = 8,
376 	/* BPF program support non-linear XDP buffer */
377 	SEC_XDP_FRAGS = 16,
378 	/* Setup proper attach type for usdt probes. */
379 	SEC_USDT = 32,
380 };
381 
382 struct bpf_sec_def {
383 	char *sec;
384 	enum bpf_prog_type prog_type;
385 	enum bpf_attach_type expected_attach_type;
386 	long cookie;
387 	int handler_id;
388 
389 	libbpf_prog_setup_fn_t prog_setup_fn;
390 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
391 	libbpf_prog_attach_fn_t prog_attach_fn;
392 };
393 
394 /*
395  * bpf_prog should be a better name but it has been used in
396  * linux/filter.h.
397  */
398 struct bpf_program {
399 	char *name;
400 	char *sec_name;
401 	size_t sec_idx;
402 	const struct bpf_sec_def *sec_def;
403 	/* this program's instruction offset (in number of instructions)
404 	 * within its containing ELF section
405 	 */
406 	size_t sec_insn_off;
407 	/* number of original instructions in ELF section belonging to this
408 	 * program, not taking into account subprogram instructions possible
409 	 * appended later during relocation
410 	 */
411 	size_t sec_insn_cnt;
412 	/* Offset (in number of instructions) of the start of instruction
413 	 * belonging to this BPF program  within its containing main BPF
414 	 * program. For the entry-point (main) BPF program, this is always
415 	 * zero. For a sub-program, this gets reset before each of main BPF
416 	 * programs are processed and relocated and is used to determined
417 	 * whether sub-program was already appended to the main program, and
418 	 * if yes, at which instruction offset.
419 	 */
420 	size_t sub_insn_off;
421 
422 	/* instructions that belong to BPF program; insns[0] is located at
423 	 * sec_insn_off instruction within its ELF section in ELF file, so
424 	 * when mapping ELF file instruction index to the local instruction,
425 	 * one needs to subtract sec_insn_off; and vice versa.
426 	 */
427 	struct bpf_insn *insns;
428 	/* actual number of instruction in this BPF program's image; for
429 	 * entry-point BPF programs this includes the size of main program
430 	 * itself plus all the used sub-programs, appended at the end
431 	 */
432 	size_t insns_cnt;
433 
434 	struct reloc_desc *reloc_desc;
435 	int nr_reloc;
436 
437 	/* BPF verifier log settings */
438 	char *log_buf;
439 	size_t log_size;
440 	__u32 log_level;
441 
442 	struct bpf_object *obj;
443 
444 	int fd;
445 	bool autoload;
446 	bool autoattach;
447 	bool sym_global;
448 	bool mark_btf_static;
449 	enum bpf_prog_type type;
450 	enum bpf_attach_type expected_attach_type;
451 	int exception_cb_idx;
452 
453 	int prog_ifindex;
454 	__u32 attach_btf_obj_fd;
455 	__u32 attach_btf_id;
456 	__u32 attach_prog_fd;
457 
458 	void *func_info;
459 	__u32 func_info_rec_size;
460 	__u32 func_info_cnt;
461 
462 	void *line_info;
463 	__u32 line_info_rec_size;
464 	__u32 line_info_cnt;
465 	__u32 prog_flags;
466 };
467 
468 struct bpf_struct_ops {
469 	const char *tname;
470 	const struct btf_type *type;
471 	struct bpf_program **progs;
472 	__u32 *kern_func_off;
473 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
474 	void *data;
475 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
476 	 *      btf_vmlinux's format.
477 	 * struct bpf_struct_ops_tcp_congestion_ops {
478 	 *	[... some other kernel fields ...]
479 	 *	struct tcp_congestion_ops data;
480 	 * }
481 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
482 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
483 	 * from "data".
484 	 */
485 	void *kern_vdata;
486 	__u32 type_id;
487 };
488 
489 #define DATA_SEC ".data"
490 #define BSS_SEC ".bss"
491 #define RODATA_SEC ".rodata"
492 #define KCONFIG_SEC ".kconfig"
493 #define KSYMS_SEC ".ksyms"
494 #define STRUCT_OPS_SEC ".struct_ops"
495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
496 
497 enum libbpf_map_type {
498 	LIBBPF_MAP_UNSPEC,
499 	LIBBPF_MAP_DATA,
500 	LIBBPF_MAP_BSS,
501 	LIBBPF_MAP_RODATA,
502 	LIBBPF_MAP_KCONFIG,
503 };
504 
505 struct bpf_map_def {
506 	unsigned int type;
507 	unsigned int key_size;
508 	unsigned int value_size;
509 	unsigned int max_entries;
510 	unsigned int map_flags;
511 };
512 
513 struct bpf_map {
514 	struct bpf_object *obj;
515 	char *name;
516 	/* real_name is defined for special internal maps (.rodata*,
517 	 * .data*, .bss, .kconfig) and preserves their original ELF section
518 	 * name. This is important to be able to find corresponding BTF
519 	 * DATASEC information.
520 	 */
521 	char *real_name;
522 	int fd;
523 	int sec_idx;
524 	size_t sec_offset;
525 	int map_ifindex;
526 	int inner_map_fd;
527 	struct bpf_map_def def;
528 	__u32 numa_node;
529 	__u32 btf_var_idx;
530 	__u32 btf_key_type_id;
531 	__u32 btf_value_type_id;
532 	__u32 btf_vmlinux_value_type_id;
533 	enum libbpf_map_type libbpf_type;
534 	void *mmaped;
535 	struct bpf_struct_ops *st_ops;
536 	struct bpf_map *inner_map;
537 	void **init_slots;
538 	int init_slots_sz;
539 	char *pin_path;
540 	bool pinned;
541 	bool reused;
542 	bool autocreate;
543 	__u64 map_extra;
544 };
545 
546 enum extern_type {
547 	EXT_UNKNOWN,
548 	EXT_KCFG,
549 	EXT_KSYM,
550 };
551 
552 enum kcfg_type {
553 	KCFG_UNKNOWN,
554 	KCFG_CHAR,
555 	KCFG_BOOL,
556 	KCFG_INT,
557 	KCFG_TRISTATE,
558 	KCFG_CHAR_ARR,
559 };
560 
561 struct extern_desc {
562 	enum extern_type type;
563 	int sym_idx;
564 	int btf_id;
565 	int sec_btf_id;
566 	const char *name;
567 	char *essent_name;
568 	bool is_set;
569 	bool is_weak;
570 	union {
571 		struct {
572 			enum kcfg_type type;
573 			int sz;
574 			int align;
575 			int data_off;
576 			bool is_signed;
577 		} kcfg;
578 		struct {
579 			unsigned long long addr;
580 
581 			/* target btf_id of the corresponding kernel var. */
582 			int kernel_btf_obj_fd;
583 			int kernel_btf_id;
584 
585 			/* local btf_id of the ksym extern's type. */
586 			__u32 type_id;
587 			/* BTF fd index to be patched in for insn->off, this is
588 			 * 0 for vmlinux BTF, index in obj->fd_array for module
589 			 * BTF
590 			 */
591 			__s16 btf_fd_idx;
592 		} ksym;
593 	};
594 };
595 
596 struct module_btf {
597 	struct btf *btf;
598 	char *name;
599 	__u32 id;
600 	int fd;
601 	int fd_array_idx;
602 };
603 
604 enum sec_type {
605 	SEC_UNUSED = 0,
606 	SEC_RELO,
607 	SEC_BSS,
608 	SEC_DATA,
609 	SEC_RODATA,
610 };
611 
612 struct elf_sec_desc {
613 	enum sec_type sec_type;
614 	Elf64_Shdr *shdr;
615 	Elf_Data *data;
616 };
617 
618 struct elf_state {
619 	int fd;
620 	const void *obj_buf;
621 	size_t obj_buf_sz;
622 	Elf *elf;
623 	Elf64_Ehdr *ehdr;
624 	Elf_Data *symbols;
625 	Elf_Data *st_ops_data;
626 	Elf_Data *st_ops_link_data;
627 	size_t shstrndx; /* section index for section name strings */
628 	size_t strtabidx;
629 	struct elf_sec_desc *secs;
630 	size_t sec_cnt;
631 	int btf_maps_shndx;
632 	__u32 btf_maps_sec_btf_id;
633 	int text_shndx;
634 	int symbols_shndx;
635 	int st_ops_shndx;
636 	int st_ops_link_shndx;
637 };
638 
639 struct usdt_manager;
640 
641 struct bpf_object {
642 	char name[BPF_OBJ_NAME_LEN];
643 	char license[64];
644 	__u32 kern_version;
645 
646 	struct bpf_program *programs;
647 	size_t nr_programs;
648 	struct bpf_map *maps;
649 	size_t nr_maps;
650 	size_t maps_cap;
651 
652 	char *kconfig;
653 	struct extern_desc *externs;
654 	int nr_extern;
655 	int kconfig_map_idx;
656 
657 	bool loaded;
658 	bool has_subcalls;
659 	bool has_rodata;
660 
661 	struct bpf_gen *gen_loader;
662 
663 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
664 	struct elf_state efile;
665 
666 	struct btf *btf;
667 	struct btf_ext *btf_ext;
668 
669 	/* Parse and load BTF vmlinux if any of the programs in the object need
670 	 * it at load time.
671 	 */
672 	struct btf *btf_vmlinux;
673 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
674 	 * override for vmlinux BTF.
675 	 */
676 	char *btf_custom_path;
677 	/* vmlinux BTF override for CO-RE relocations */
678 	struct btf *btf_vmlinux_override;
679 	/* Lazily initialized kernel module BTFs */
680 	struct module_btf *btf_modules;
681 	bool btf_modules_loaded;
682 	size_t btf_module_cnt;
683 	size_t btf_module_cap;
684 
685 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
686 	char *log_buf;
687 	size_t log_size;
688 	__u32 log_level;
689 
690 	int *fd_array;
691 	size_t fd_array_cap;
692 	size_t fd_array_cnt;
693 
694 	struct usdt_manager *usdt_man;
695 
696 	char path[];
697 };
698 
699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
708 
709 void bpf_program__unload(struct bpf_program *prog)
710 {
711 	if (!prog)
712 		return;
713 
714 	zclose(prog->fd);
715 
716 	zfree(&prog->func_info);
717 	zfree(&prog->line_info);
718 }
719 
720 static void bpf_program__exit(struct bpf_program *prog)
721 {
722 	if (!prog)
723 		return;
724 
725 	bpf_program__unload(prog);
726 	zfree(&prog->name);
727 	zfree(&prog->sec_name);
728 	zfree(&prog->insns);
729 	zfree(&prog->reloc_desc);
730 
731 	prog->nr_reloc = 0;
732 	prog->insns_cnt = 0;
733 	prog->sec_idx = -1;
734 }
735 
736 static bool insn_is_subprog_call(const struct bpf_insn *insn)
737 {
738 	return BPF_CLASS(insn->code) == BPF_JMP &&
739 	       BPF_OP(insn->code) == BPF_CALL &&
740 	       BPF_SRC(insn->code) == BPF_K &&
741 	       insn->src_reg == BPF_PSEUDO_CALL &&
742 	       insn->dst_reg == 0 &&
743 	       insn->off == 0;
744 }
745 
746 static bool is_call_insn(const struct bpf_insn *insn)
747 {
748 	return insn->code == (BPF_JMP | BPF_CALL);
749 }
750 
751 static bool insn_is_pseudo_func(struct bpf_insn *insn)
752 {
753 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
754 }
755 
756 static int
757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
758 		      const char *name, size_t sec_idx, const char *sec_name,
759 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
760 {
761 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
762 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
763 			sec_name, name, sec_off, insn_data_sz);
764 		return -EINVAL;
765 	}
766 
767 	memset(prog, 0, sizeof(*prog));
768 	prog->obj = obj;
769 
770 	prog->sec_idx = sec_idx;
771 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
772 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
773 	/* insns_cnt can later be increased by appending used subprograms */
774 	prog->insns_cnt = prog->sec_insn_cnt;
775 
776 	prog->type = BPF_PROG_TYPE_UNSPEC;
777 	prog->fd = -1;
778 	prog->exception_cb_idx = -1;
779 
780 	/* libbpf's convention for SEC("?abc...") is that it's just like
781 	 * SEC("abc...") but the corresponding bpf_program starts out with
782 	 * autoload set to false.
783 	 */
784 	if (sec_name[0] == '?') {
785 		prog->autoload = false;
786 		/* from now on forget there was ? in section name */
787 		sec_name++;
788 	} else {
789 		prog->autoload = true;
790 	}
791 
792 	prog->autoattach = true;
793 
794 	/* inherit object's log_level */
795 	prog->log_level = obj->log_level;
796 
797 	prog->sec_name = strdup(sec_name);
798 	if (!prog->sec_name)
799 		goto errout;
800 
801 	prog->name = strdup(name);
802 	if (!prog->name)
803 		goto errout;
804 
805 	prog->insns = malloc(insn_data_sz);
806 	if (!prog->insns)
807 		goto errout;
808 	memcpy(prog->insns, insn_data, insn_data_sz);
809 
810 	return 0;
811 errout:
812 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
813 	bpf_program__exit(prog);
814 	return -ENOMEM;
815 }
816 
817 static int
818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
819 			 const char *sec_name, int sec_idx)
820 {
821 	Elf_Data *symbols = obj->efile.symbols;
822 	struct bpf_program *prog, *progs;
823 	void *data = sec_data->d_buf;
824 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
825 	int nr_progs, err, i;
826 	const char *name;
827 	Elf64_Sym *sym;
828 
829 	progs = obj->programs;
830 	nr_progs = obj->nr_programs;
831 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
832 
833 	for (i = 0; i < nr_syms; i++) {
834 		sym = elf_sym_by_idx(obj, i);
835 
836 		if (sym->st_shndx != sec_idx)
837 			continue;
838 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
839 			continue;
840 
841 		prog_sz = sym->st_size;
842 		sec_off = sym->st_value;
843 
844 		name = elf_sym_str(obj, sym->st_name);
845 		if (!name) {
846 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
847 				sec_name, sec_off);
848 			return -LIBBPF_ERRNO__FORMAT;
849 		}
850 
851 		if (sec_off + prog_sz > sec_sz) {
852 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
853 				sec_name, sec_off);
854 			return -LIBBPF_ERRNO__FORMAT;
855 		}
856 
857 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
858 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
859 			return -ENOTSUP;
860 		}
861 
862 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
863 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
864 
865 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
866 		if (!progs) {
867 			/*
868 			 * In this case the original obj->programs
869 			 * is still valid, so don't need special treat for
870 			 * bpf_close_object().
871 			 */
872 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
873 				sec_name, name);
874 			return -ENOMEM;
875 		}
876 		obj->programs = progs;
877 
878 		prog = &progs[nr_progs];
879 
880 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
881 					    sec_off, data + sec_off, prog_sz);
882 		if (err)
883 			return err;
884 
885 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
886 			prog->sym_global = true;
887 
888 		/* if function is a global/weak symbol, but has restricted
889 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
890 		 * as static to enable more permissive BPF verification mode
891 		 * with more outside context available to BPF verifier
892 		 */
893 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
894 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
895 			prog->mark_btf_static = true;
896 
897 		nr_progs++;
898 		obj->nr_programs = nr_progs;
899 	}
900 
901 	return 0;
902 }
903 
904 static const struct btf_member *
905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
906 {
907 	struct btf_member *m;
908 	int i;
909 
910 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
911 		if (btf_member_bit_offset(t, i) == bit_offset)
912 			return m;
913 	}
914 
915 	return NULL;
916 }
917 
918 static const struct btf_member *
919 find_member_by_name(const struct btf *btf, const struct btf_type *t,
920 		    const char *name)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
935 				   const char *name, __u32 kind);
936 
937 static int
938 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
939 			   const struct btf_type **type, __u32 *type_id,
940 			   const struct btf_type **vtype, __u32 *vtype_id,
941 			   const struct btf_member **data_member)
942 {
943 	const struct btf_type *kern_type, *kern_vtype;
944 	const struct btf_member *kern_data_member;
945 	__s32 kern_vtype_id, kern_type_id;
946 	__u32 i;
947 
948 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
949 	if (kern_type_id < 0) {
950 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
951 			tname);
952 		return kern_type_id;
953 	}
954 	kern_type = btf__type_by_id(btf, kern_type_id);
955 
956 	/* Find the corresponding "map_value" type that will be used
957 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
958 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
959 	 * btf_vmlinux.
960 	 */
961 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
962 						tname, BTF_KIND_STRUCT);
963 	if (kern_vtype_id < 0) {
964 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
965 			STRUCT_OPS_VALUE_PREFIX, tname);
966 		return kern_vtype_id;
967 	}
968 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
969 
970 	/* Find "struct tcp_congestion_ops" from
971 	 * struct bpf_struct_ops_tcp_congestion_ops {
972 	 *	[ ... ]
973 	 *	struct tcp_congestion_ops data;
974 	 * }
975 	 */
976 	kern_data_member = btf_members(kern_vtype);
977 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
978 		if (kern_data_member->type == kern_type_id)
979 			break;
980 	}
981 	if (i == btf_vlen(kern_vtype)) {
982 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
983 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
984 		return -EINVAL;
985 	}
986 
987 	*type = kern_type;
988 	*type_id = kern_type_id;
989 	*vtype = kern_vtype;
990 	*vtype_id = kern_vtype_id;
991 	*data_member = kern_data_member;
992 
993 	return 0;
994 }
995 
996 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
997 {
998 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
999 }
1000 
1001 /* Init the map's fields that depend on kern_btf */
1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1003 					 const struct btf *btf,
1004 					 const struct btf *kern_btf)
1005 {
1006 	const struct btf_member *member, *kern_member, *kern_data_member;
1007 	const struct btf_type *type, *kern_type, *kern_vtype;
1008 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1009 	struct bpf_struct_ops *st_ops;
1010 	void *data, *kern_data;
1011 	const char *tname;
1012 	int err;
1013 
1014 	st_ops = map->st_ops;
1015 	type = st_ops->type;
1016 	tname = st_ops->tname;
1017 	err = find_struct_ops_kern_types(kern_btf, tname,
1018 					 &kern_type, &kern_type_id,
1019 					 &kern_vtype, &kern_vtype_id,
1020 					 &kern_data_member);
1021 	if (err)
1022 		return err;
1023 
1024 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1025 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1026 
1027 	map->def.value_size = kern_vtype->size;
1028 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1029 
1030 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1031 	if (!st_ops->kern_vdata)
1032 		return -ENOMEM;
1033 
1034 	data = st_ops->data;
1035 	kern_data_off = kern_data_member->offset / 8;
1036 	kern_data = st_ops->kern_vdata + kern_data_off;
1037 
1038 	member = btf_members(type);
1039 	for (i = 0; i < btf_vlen(type); i++, member++) {
1040 		const struct btf_type *mtype, *kern_mtype;
1041 		__u32 mtype_id, kern_mtype_id;
1042 		void *mdata, *kern_mdata;
1043 		__s64 msize, kern_msize;
1044 		__u32 moff, kern_moff;
1045 		__u32 kern_member_idx;
1046 		const char *mname;
1047 
1048 		mname = btf__name_by_offset(btf, member->name_off);
1049 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1050 		if (!kern_member) {
1051 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1052 				map->name, mname);
1053 			return -ENOTSUP;
1054 		}
1055 
1056 		kern_member_idx = kern_member - btf_members(kern_type);
1057 		if (btf_member_bitfield_size(type, i) ||
1058 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1059 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1060 				map->name, mname);
1061 			return -ENOTSUP;
1062 		}
1063 
1064 		moff = member->offset / 8;
1065 		kern_moff = kern_member->offset / 8;
1066 
1067 		mdata = data + moff;
1068 		kern_mdata = kern_data + kern_moff;
1069 
1070 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1071 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1072 						    &kern_mtype_id);
1073 		if (BTF_INFO_KIND(mtype->info) !=
1074 		    BTF_INFO_KIND(kern_mtype->info)) {
1075 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1076 				map->name, mname, BTF_INFO_KIND(mtype->info),
1077 				BTF_INFO_KIND(kern_mtype->info));
1078 			return -ENOTSUP;
1079 		}
1080 
1081 		if (btf_is_ptr(mtype)) {
1082 			struct bpf_program *prog;
1083 
1084 			prog = st_ops->progs[i];
1085 			if (!prog)
1086 				continue;
1087 
1088 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1089 							    kern_mtype->type,
1090 							    &kern_mtype_id);
1091 
1092 			/* mtype->type must be a func_proto which was
1093 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1094 			 * so only check kern_mtype for func_proto here.
1095 			 */
1096 			if (!btf_is_func_proto(kern_mtype)) {
1097 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1098 					map->name, mname);
1099 				return -ENOTSUP;
1100 			}
1101 
1102 			prog->attach_btf_id = kern_type_id;
1103 			prog->expected_attach_type = kern_member_idx;
1104 
1105 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1106 
1107 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1108 				 map->name, mname, prog->name, moff,
1109 				 kern_moff);
1110 
1111 			continue;
1112 		}
1113 
1114 		msize = btf__resolve_size(btf, mtype_id);
1115 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1116 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1117 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1118 				map->name, mname, (ssize_t)msize,
1119 				(ssize_t)kern_msize);
1120 			return -ENOTSUP;
1121 		}
1122 
1123 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1124 			 map->name, mname, (unsigned int)msize,
1125 			 moff, kern_moff);
1126 		memcpy(kern_mdata, mdata, msize);
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1133 {
1134 	struct bpf_map *map;
1135 	size_t i;
1136 	int err;
1137 
1138 	for (i = 0; i < obj->nr_maps; i++) {
1139 		map = &obj->maps[i];
1140 
1141 		if (!bpf_map__is_struct_ops(map))
1142 			continue;
1143 
1144 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1145 						    obj->btf_vmlinux);
1146 		if (err)
1147 			return err;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1154 				int shndx, Elf_Data *data, __u32 map_flags)
1155 {
1156 	const struct btf_type *type, *datasec;
1157 	const struct btf_var_secinfo *vsi;
1158 	struct bpf_struct_ops *st_ops;
1159 	const char *tname, *var_name;
1160 	__s32 type_id, datasec_id;
1161 	const struct btf *btf;
1162 	struct bpf_map *map;
1163 	__u32 i;
1164 
1165 	if (shndx == -1)
1166 		return 0;
1167 
1168 	btf = obj->btf;
1169 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1170 					    BTF_KIND_DATASEC);
1171 	if (datasec_id < 0) {
1172 		pr_warn("struct_ops init: DATASEC %s not found\n",
1173 			sec_name);
1174 		return -EINVAL;
1175 	}
1176 
1177 	datasec = btf__type_by_id(btf, datasec_id);
1178 	vsi = btf_var_secinfos(datasec);
1179 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1180 		type = btf__type_by_id(obj->btf, vsi->type);
1181 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1182 
1183 		type_id = btf__resolve_type(obj->btf, vsi->type);
1184 		if (type_id < 0) {
1185 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1186 				vsi->type, sec_name);
1187 			return -EINVAL;
1188 		}
1189 
1190 		type = btf__type_by_id(obj->btf, type_id);
1191 		tname = btf__name_by_offset(obj->btf, type->name_off);
1192 		if (!tname[0]) {
1193 			pr_warn("struct_ops init: anonymous type is not supported\n");
1194 			return -ENOTSUP;
1195 		}
1196 		if (!btf_is_struct(type)) {
1197 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1198 			return -EINVAL;
1199 		}
1200 
1201 		map = bpf_object__add_map(obj);
1202 		if (IS_ERR(map))
1203 			return PTR_ERR(map);
1204 
1205 		map->sec_idx = shndx;
1206 		map->sec_offset = vsi->offset;
1207 		map->name = strdup(var_name);
1208 		if (!map->name)
1209 			return -ENOMEM;
1210 
1211 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1212 		map->def.key_size = sizeof(int);
1213 		map->def.value_size = type->size;
1214 		map->def.max_entries = 1;
1215 		map->def.map_flags = map_flags;
1216 
1217 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1218 		if (!map->st_ops)
1219 			return -ENOMEM;
1220 		st_ops = map->st_ops;
1221 		st_ops->data = malloc(type->size);
1222 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1223 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1224 					       sizeof(*st_ops->kern_func_off));
1225 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1226 			return -ENOMEM;
1227 
1228 		if (vsi->offset + type->size > data->d_size) {
1229 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1230 				var_name, sec_name);
1231 			return -EINVAL;
1232 		}
1233 
1234 		memcpy(st_ops->data,
1235 		       data->d_buf + vsi->offset,
1236 		       type->size);
1237 		st_ops->tname = tname;
1238 		st_ops->type = type;
1239 		st_ops->type_id = type_id;
1240 
1241 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1242 			 tname, type_id, var_name, vsi->offset);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1249 {
1250 	int err;
1251 
1252 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1253 				   obj->efile.st_ops_data, 0);
1254 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1255 					  obj->efile.st_ops_link_shndx,
1256 					  obj->efile.st_ops_link_data,
1257 					  BPF_F_LINK);
1258 	return err;
1259 }
1260 
1261 static struct bpf_object *bpf_object__new(const char *path,
1262 					  const void *obj_buf,
1263 					  size_t obj_buf_sz,
1264 					  const char *obj_name)
1265 {
1266 	struct bpf_object *obj;
1267 	char *end;
1268 
1269 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1270 	if (!obj) {
1271 		pr_warn("alloc memory failed for %s\n", path);
1272 		return ERR_PTR(-ENOMEM);
1273 	}
1274 
1275 	strcpy(obj->path, path);
1276 	if (obj_name) {
1277 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1278 	} else {
1279 		/* Using basename() GNU version which doesn't modify arg. */
1280 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1281 		end = strchr(obj->name, '.');
1282 		if (end)
1283 			*end = 0;
1284 	}
1285 
1286 	obj->efile.fd = -1;
1287 	/*
1288 	 * Caller of this function should also call
1289 	 * bpf_object__elf_finish() after data collection to return
1290 	 * obj_buf to user. If not, we should duplicate the buffer to
1291 	 * avoid user freeing them before elf finish.
1292 	 */
1293 	obj->efile.obj_buf = obj_buf;
1294 	obj->efile.obj_buf_sz = obj_buf_sz;
1295 	obj->efile.btf_maps_shndx = -1;
1296 	obj->efile.st_ops_shndx = -1;
1297 	obj->efile.st_ops_link_shndx = -1;
1298 	obj->kconfig_map_idx = -1;
1299 
1300 	obj->kern_version = get_kernel_version();
1301 	obj->loaded = false;
1302 
1303 	return obj;
1304 }
1305 
1306 static void bpf_object__elf_finish(struct bpf_object *obj)
1307 {
1308 	if (!obj->efile.elf)
1309 		return;
1310 
1311 	elf_end(obj->efile.elf);
1312 	obj->efile.elf = NULL;
1313 	obj->efile.symbols = NULL;
1314 	obj->efile.st_ops_data = NULL;
1315 	obj->efile.st_ops_link_data = NULL;
1316 
1317 	zfree(&obj->efile.secs);
1318 	obj->efile.sec_cnt = 0;
1319 	zclose(obj->efile.fd);
1320 	obj->efile.obj_buf = NULL;
1321 	obj->efile.obj_buf_sz = 0;
1322 }
1323 
1324 static int bpf_object__elf_init(struct bpf_object *obj)
1325 {
1326 	Elf64_Ehdr *ehdr;
1327 	int err = 0;
1328 	Elf *elf;
1329 
1330 	if (obj->efile.elf) {
1331 		pr_warn("elf: init internal error\n");
1332 		return -LIBBPF_ERRNO__LIBELF;
1333 	}
1334 
1335 	if (obj->efile.obj_buf_sz > 0) {
1336 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1337 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1338 	} else {
1339 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1340 		if (obj->efile.fd < 0) {
1341 			char errmsg[STRERR_BUFSIZE], *cp;
1342 
1343 			err = -errno;
1344 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1345 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1346 			return err;
1347 		}
1348 
1349 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1350 	}
1351 
1352 	if (!elf) {
1353 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__LIBELF;
1355 		goto errout;
1356 	}
1357 
1358 	obj->efile.elf = elf;
1359 
1360 	if (elf_kind(elf) != ELF_K_ELF) {
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1363 		goto errout;
1364 	}
1365 
1366 	if (gelf_getclass(elf) != ELFCLASS64) {
1367 		err = -LIBBPF_ERRNO__FORMAT;
1368 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1369 		goto errout;
1370 	}
1371 
1372 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1373 	if (!obj->efile.ehdr) {
1374 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1375 		err = -LIBBPF_ERRNO__FORMAT;
1376 		goto errout;
1377 	}
1378 
1379 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1380 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1381 			obj->path, elf_errmsg(-1));
1382 		err = -LIBBPF_ERRNO__FORMAT;
1383 		goto errout;
1384 	}
1385 
1386 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1387 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1388 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1389 			obj->path, elf_errmsg(-1));
1390 		err = -LIBBPF_ERRNO__FORMAT;
1391 		goto errout;
1392 	}
1393 
1394 	/* Old LLVM set e_machine to EM_NONE */
1395 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1396 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1397 		err = -LIBBPF_ERRNO__FORMAT;
1398 		goto errout;
1399 	}
1400 
1401 	return 0;
1402 errout:
1403 	bpf_object__elf_finish(obj);
1404 	return err;
1405 }
1406 
1407 static int bpf_object__check_endianness(struct bpf_object *obj)
1408 {
1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1410 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1411 		return 0;
1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1413 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1414 		return 0;
1415 #else
1416 # error "Unrecognized __BYTE_ORDER__"
1417 #endif
1418 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1419 	return -LIBBPF_ERRNO__ENDIAN;
1420 }
1421 
1422 static int
1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1424 {
1425 	if (!data) {
1426 		pr_warn("invalid license section in %s\n", obj->path);
1427 		return -LIBBPF_ERRNO__FORMAT;
1428 	}
1429 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1430 	 * go over allowed ELF data section buffer
1431 	 */
1432 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1433 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1434 	return 0;
1435 }
1436 
1437 static int
1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1439 {
1440 	__u32 kver;
1441 
1442 	if (!data || size != sizeof(kver)) {
1443 		pr_warn("invalid kver section in %s\n", obj->path);
1444 		return -LIBBPF_ERRNO__FORMAT;
1445 	}
1446 	memcpy(&kver, data, sizeof(kver));
1447 	obj->kern_version = kver;
1448 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1449 	return 0;
1450 }
1451 
1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1453 {
1454 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1455 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1456 		return true;
1457 	return false;
1458 }
1459 
1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1461 {
1462 	Elf_Data *data;
1463 	Elf_Scn *scn;
1464 
1465 	if (!name)
1466 		return -EINVAL;
1467 
1468 	scn = elf_sec_by_name(obj, name);
1469 	data = elf_sec_data(obj, scn);
1470 	if (data) {
1471 		*size = data->d_size;
1472 		return 0; /* found it */
1473 	}
1474 
1475 	return -ENOENT;
1476 }
1477 
1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1479 {
1480 	Elf_Data *symbols = obj->efile.symbols;
1481 	const char *sname;
1482 	size_t si;
1483 
1484 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1485 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1486 
1487 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1488 			continue;
1489 
1490 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1491 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1492 			continue;
1493 
1494 		sname = elf_sym_str(obj, sym->st_name);
1495 		if (!sname) {
1496 			pr_warn("failed to get sym name string for var %s\n", name);
1497 			return ERR_PTR(-EIO);
1498 		}
1499 		if (strcmp(name, sname) == 0)
1500 			return sym;
1501 	}
1502 
1503 	return ERR_PTR(-ENOENT);
1504 }
1505 
1506 static int create_placeholder_fd(void)
1507 {
1508 	int fd;
1509 
1510 	fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1511 	if (fd < 0)
1512 		return -errno;
1513 	return fd;
1514 }
1515 
1516 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1517 {
1518 	struct bpf_map *map;
1519 	int err;
1520 
1521 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1522 				sizeof(*obj->maps), obj->nr_maps + 1);
1523 	if (err)
1524 		return ERR_PTR(err);
1525 
1526 	map = &obj->maps[obj->nr_maps++];
1527 	map->obj = obj;
1528 	/* Preallocate map FD without actually creating BPF map just yet.
1529 	 * These map FD "placeholders" will be reused later without changing
1530 	 * FD value when map is actually created in the kernel.
1531 	 *
1532 	 * This is useful to be able to perform BPF program relocations
1533 	 * without having to create BPF maps before that step. This allows us
1534 	 * to finalize and load BTF very late in BPF object's loading phase,
1535 	 * right before BPF maps have to be created and BPF programs have to
1536 	 * be loaded. By having these map FD placeholders we can perform all
1537 	 * the sanitizations, relocations, and any other adjustments before we
1538 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1539 	 */
1540 	map->fd = create_placeholder_fd();
1541 	if (map->fd < 0)
1542 		return ERR_PTR(map->fd);
1543 	map->inner_map_fd = -1;
1544 	map->autocreate = true;
1545 
1546 	return map;
1547 }
1548 
1549 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1550 {
1551 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1552 	size_t map_sz;
1553 
1554 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1555 	map_sz = roundup(map_sz, page_sz);
1556 	return map_sz;
1557 }
1558 
1559 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1560 {
1561 	void *mmaped;
1562 
1563 	if (!map->mmaped)
1564 		return -EINVAL;
1565 
1566 	if (old_sz == new_sz)
1567 		return 0;
1568 
1569 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1570 	if (mmaped == MAP_FAILED)
1571 		return -errno;
1572 
1573 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1574 	munmap(map->mmaped, old_sz);
1575 	map->mmaped = mmaped;
1576 	return 0;
1577 }
1578 
1579 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1580 {
1581 	char map_name[BPF_OBJ_NAME_LEN], *p;
1582 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1583 
1584 	/* This is one of the more confusing parts of libbpf for various
1585 	 * reasons, some of which are historical. The original idea for naming
1586 	 * internal names was to include as much of BPF object name prefix as
1587 	 * possible, so that it can be distinguished from similar internal
1588 	 * maps of a different BPF object.
1589 	 * As an example, let's say we have bpf_object named 'my_object_name'
1590 	 * and internal map corresponding to '.rodata' ELF section. The final
1591 	 * map name advertised to user and to the kernel will be
1592 	 * 'my_objec.rodata', taking first 8 characters of object name and
1593 	 * entire 7 characters of '.rodata'.
1594 	 * Somewhat confusingly, if internal map ELF section name is shorter
1595 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1596 	 * for the suffix, even though we only have 4 actual characters, and
1597 	 * resulting map will be called 'my_objec.bss', not even using all 15
1598 	 * characters allowed by the kernel. Oh well, at least the truncated
1599 	 * object name is somewhat consistent in this case. But if the map
1600 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1601 	 * (8 chars) and thus will be left with only first 7 characters of the
1602 	 * object name ('my_obje'). Happy guessing, user, that the final map
1603 	 * name will be "my_obje.kconfig".
1604 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1605 	 * and .data.* data sections, it's possible that ELF section name is
1606 	 * longer than allowed 15 chars, so we now need to be careful to take
1607 	 * only up to 15 first characters of ELF name, taking no BPF object
1608 	 * name characters at all. So '.rodata.abracadabra' will result in
1609 	 * '.rodata.abracad' kernel and user-visible name.
1610 	 * We need to keep this convoluted logic intact for .data, .bss and
1611 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1612 	 * maps we use their ELF names as is, not prepending bpf_object name
1613 	 * in front. We still need to truncate them to 15 characters for the
1614 	 * kernel. Full name can be recovered for such maps by using DATASEC
1615 	 * BTF type associated with such map's value type, though.
1616 	 */
1617 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1618 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1619 
1620 	/* if there are two or more dots in map name, it's a custom dot map */
1621 	if (strchr(real_name + 1, '.') != NULL)
1622 		pfx_len = 0;
1623 	else
1624 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1625 
1626 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1627 		 sfx_len, real_name);
1628 
1629 	/* sanitise map name to characters allowed by kernel */
1630 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1631 		if (!isalnum(*p) && *p != '_' && *p != '.')
1632 			*p = '_';
1633 
1634 	return strdup(map_name);
1635 }
1636 
1637 static int
1638 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1639 
1640 /* Internal BPF map is mmap()'able only if at least one of corresponding
1641  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1642  * variable and it's not marked as __hidden (which turns it into, effectively,
1643  * a STATIC variable).
1644  */
1645 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1646 {
1647 	const struct btf_type *t, *vt;
1648 	struct btf_var_secinfo *vsi;
1649 	int i, n;
1650 
1651 	if (!map->btf_value_type_id)
1652 		return false;
1653 
1654 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1655 	if (!btf_is_datasec(t))
1656 		return false;
1657 
1658 	vsi = btf_var_secinfos(t);
1659 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1660 		vt = btf__type_by_id(obj->btf, vsi->type);
1661 		if (!btf_is_var(vt))
1662 			continue;
1663 
1664 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1665 			return true;
1666 	}
1667 
1668 	return false;
1669 }
1670 
1671 static int
1672 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1673 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1674 {
1675 	struct bpf_map_def *def;
1676 	struct bpf_map *map;
1677 	size_t mmap_sz;
1678 	int err;
1679 
1680 	map = bpf_object__add_map(obj);
1681 	if (IS_ERR(map))
1682 		return PTR_ERR(map);
1683 
1684 	map->libbpf_type = type;
1685 	map->sec_idx = sec_idx;
1686 	map->sec_offset = 0;
1687 	map->real_name = strdup(real_name);
1688 	map->name = internal_map_name(obj, real_name);
1689 	if (!map->real_name || !map->name) {
1690 		zfree(&map->real_name);
1691 		zfree(&map->name);
1692 		return -ENOMEM;
1693 	}
1694 
1695 	def = &map->def;
1696 	def->type = BPF_MAP_TYPE_ARRAY;
1697 	def->key_size = sizeof(int);
1698 	def->value_size = data_sz;
1699 	def->max_entries = 1;
1700 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1701 			 ? BPF_F_RDONLY_PROG : 0;
1702 
1703 	/* failures are fine because of maps like .rodata.str1.1 */
1704 	(void) map_fill_btf_type_info(obj, map);
1705 
1706 	if (map_is_mmapable(obj, map))
1707 		def->map_flags |= BPF_F_MMAPABLE;
1708 
1709 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1710 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1711 
1712 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1713 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1714 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1715 	if (map->mmaped == MAP_FAILED) {
1716 		err = -errno;
1717 		map->mmaped = NULL;
1718 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1719 			map->name, err);
1720 		zfree(&map->real_name);
1721 		zfree(&map->name);
1722 		return err;
1723 	}
1724 
1725 	if (data)
1726 		memcpy(map->mmaped, data, data_sz);
1727 
1728 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1729 	return 0;
1730 }
1731 
1732 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1733 {
1734 	struct elf_sec_desc *sec_desc;
1735 	const char *sec_name;
1736 	int err = 0, sec_idx;
1737 
1738 	/*
1739 	 * Populate obj->maps with libbpf internal maps.
1740 	 */
1741 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1742 		sec_desc = &obj->efile.secs[sec_idx];
1743 
1744 		/* Skip recognized sections with size 0. */
1745 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1746 			continue;
1747 
1748 		switch (sec_desc->sec_type) {
1749 		case SEC_DATA:
1750 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1751 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1752 							    sec_name, sec_idx,
1753 							    sec_desc->data->d_buf,
1754 							    sec_desc->data->d_size);
1755 			break;
1756 		case SEC_RODATA:
1757 			obj->has_rodata = true;
1758 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1759 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1760 							    sec_name, sec_idx,
1761 							    sec_desc->data->d_buf,
1762 							    sec_desc->data->d_size);
1763 			break;
1764 		case SEC_BSS:
1765 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1766 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1767 							    sec_name, sec_idx,
1768 							    NULL,
1769 							    sec_desc->data->d_size);
1770 			break;
1771 		default:
1772 			/* skip */
1773 			break;
1774 		}
1775 		if (err)
1776 			return err;
1777 	}
1778 	return 0;
1779 }
1780 
1781 
1782 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1783 					       const void *name)
1784 {
1785 	int i;
1786 
1787 	for (i = 0; i < obj->nr_extern; i++) {
1788 		if (strcmp(obj->externs[i].name, name) == 0)
1789 			return &obj->externs[i];
1790 	}
1791 	return NULL;
1792 }
1793 
1794 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1795 			      char value)
1796 {
1797 	switch (ext->kcfg.type) {
1798 	case KCFG_BOOL:
1799 		if (value == 'm') {
1800 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1801 				ext->name, value);
1802 			return -EINVAL;
1803 		}
1804 		*(bool *)ext_val = value == 'y' ? true : false;
1805 		break;
1806 	case KCFG_TRISTATE:
1807 		if (value == 'y')
1808 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1809 		else if (value == 'm')
1810 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1811 		else /* value == 'n' */
1812 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1813 		break;
1814 	case KCFG_CHAR:
1815 		*(char *)ext_val = value;
1816 		break;
1817 	case KCFG_UNKNOWN:
1818 	case KCFG_INT:
1819 	case KCFG_CHAR_ARR:
1820 	default:
1821 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1822 			ext->name, value);
1823 		return -EINVAL;
1824 	}
1825 	ext->is_set = true;
1826 	return 0;
1827 }
1828 
1829 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1830 			      const char *value)
1831 {
1832 	size_t len;
1833 
1834 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1835 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1836 			ext->name, value);
1837 		return -EINVAL;
1838 	}
1839 
1840 	len = strlen(value);
1841 	if (value[len - 1] != '"') {
1842 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1843 			ext->name, value);
1844 		return -EINVAL;
1845 	}
1846 
1847 	/* strip quotes */
1848 	len -= 2;
1849 	if (len >= ext->kcfg.sz) {
1850 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1851 			ext->name, value, len, ext->kcfg.sz - 1);
1852 		len = ext->kcfg.sz - 1;
1853 	}
1854 	memcpy(ext_val, value + 1, len);
1855 	ext_val[len] = '\0';
1856 	ext->is_set = true;
1857 	return 0;
1858 }
1859 
1860 static int parse_u64(const char *value, __u64 *res)
1861 {
1862 	char *value_end;
1863 	int err;
1864 
1865 	errno = 0;
1866 	*res = strtoull(value, &value_end, 0);
1867 	if (errno) {
1868 		err = -errno;
1869 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1870 		return err;
1871 	}
1872 	if (*value_end) {
1873 		pr_warn("failed to parse '%s' as integer completely\n", value);
1874 		return -EINVAL;
1875 	}
1876 	return 0;
1877 }
1878 
1879 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1880 {
1881 	int bit_sz = ext->kcfg.sz * 8;
1882 
1883 	if (ext->kcfg.sz == 8)
1884 		return true;
1885 
1886 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1887 	 * bytes size without any loss of information. If the target integer
1888 	 * is signed, we rely on the following limits of integer type of
1889 	 * Y bits and subsequent transformation:
1890 	 *
1891 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1892 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1893 	 *            0 <= X + 2^(Y-1) <  2^Y
1894 	 *
1895 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1896 	 *  zero.
1897 	 */
1898 	if (ext->kcfg.is_signed)
1899 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1900 	else
1901 		return (v >> bit_sz) == 0;
1902 }
1903 
1904 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1905 			      __u64 value)
1906 {
1907 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1908 	    ext->kcfg.type != KCFG_BOOL) {
1909 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1910 			ext->name, (unsigned long long)value);
1911 		return -EINVAL;
1912 	}
1913 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1914 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1915 			ext->name, (unsigned long long)value);
1916 		return -EINVAL;
1917 
1918 	}
1919 	if (!is_kcfg_value_in_range(ext, value)) {
1920 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1921 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1922 		return -ERANGE;
1923 	}
1924 	switch (ext->kcfg.sz) {
1925 	case 1:
1926 		*(__u8 *)ext_val = value;
1927 		break;
1928 	case 2:
1929 		*(__u16 *)ext_val = value;
1930 		break;
1931 	case 4:
1932 		*(__u32 *)ext_val = value;
1933 		break;
1934 	case 8:
1935 		*(__u64 *)ext_val = value;
1936 		break;
1937 	default:
1938 		return -EINVAL;
1939 	}
1940 	ext->is_set = true;
1941 	return 0;
1942 }
1943 
1944 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1945 					    char *buf, void *data)
1946 {
1947 	struct extern_desc *ext;
1948 	char *sep, *value;
1949 	int len, err = 0;
1950 	void *ext_val;
1951 	__u64 num;
1952 
1953 	if (!str_has_pfx(buf, "CONFIG_"))
1954 		return 0;
1955 
1956 	sep = strchr(buf, '=');
1957 	if (!sep) {
1958 		pr_warn("failed to parse '%s': no separator\n", buf);
1959 		return -EINVAL;
1960 	}
1961 
1962 	/* Trim ending '\n' */
1963 	len = strlen(buf);
1964 	if (buf[len - 1] == '\n')
1965 		buf[len - 1] = '\0';
1966 	/* Split on '=' and ensure that a value is present. */
1967 	*sep = '\0';
1968 	if (!sep[1]) {
1969 		*sep = '=';
1970 		pr_warn("failed to parse '%s': no value\n", buf);
1971 		return -EINVAL;
1972 	}
1973 
1974 	ext = find_extern_by_name(obj, buf);
1975 	if (!ext || ext->is_set)
1976 		return 0;
1977 
1978 	ext_val = data + ext->kcfg.data_off;
1979 	value = sep + 1;
1980 
1981 	switch (*value) {
1982 	case 'y': case 'n': case 'm':
1983 		err = set_kcfg_value_tri(ext, ext_val, *value);
1984 		break;
1985 	case '"':
1986 		err = set_kcfg_value_str(ext, ext_val, value);
1987 		break;
1988 	default:
1989 		/* assume integer */
1990 		err = parse_u64(value, &num);
1991 		if (err) {
1992 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1993 			return err;
1994 		}
1995 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1996 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1997 			return -EINVAL;
1998 		}
1999 		err = set_kcfg_value_num(ext, ext_val, num);
2000 		break;
2001 	}
2002 	if (err)
2003 		return err;
2004 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2005 	return 0;
2006 }
2007 
2008 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2009 {
2010 	char buf[PATH_MAX];
2011 	struct utsname uts;
2012 	int len, err = 0;
2013 	gzFile file;
2014 
2015 	uname(&uts);
2016 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2017 	if (len < 0)
2018 		return -EINVAL;
2019 	else if (len >= PATH_MAX)
2020 		return -ENAMETOOLONG;
2021 
2022 	/* gzopen also accepts uncompressed files. */
2023 	file = gzopen(buf, "re");
2024 	if (!file)
2025 		file = gzopen("/proc/config.gz", "re");
2026 
2027 	if (!file) {
2028 		pr_warn("failed to open system Kconfig\n");
2029 		return -ENOENT;
2030 	}
2031 
2032 	while (gzgets(file, buf, sizeof(buf))) {
2033 		err = bpf_object__process_kconfig_line(obj, buf, data);
2034 		if (err) {
2035 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2036 				buf, err);
2037 			goto out;
2038 		}
2039 	}
2040 
2041 out:
2042 	gzclose(file);
2043 	return err;
2044 }
2045 
2046 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2047 					const char *config, void *data)
2048 {
2049 	char buf[PATH_MAX];
2050 	int err = 0;
2051 	FILE *file;
2052 
2053 	file = fmemopen((void *)config, strlen(config), "r");
2054 	if (!file) {
2055 		err = -errno;
2056 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2057 		return err;
2058 	}
2059 
2060 	while (fgets(buf, sizeof(buf), file)) {
2061 		err = bpf_object__process_kconfig_line(obj, buf, data);
2062 		if (err) {
2063 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2064 				buf, err);
2065 			break;
2066 		}
2067 	}
2068 
2069 	fclose(file);
2070 	return err;
2071 }
2072 
2073 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2074 {
2075 	struct extern_desc *last_ext = NULL, *ext;
2076 	size_t map_sz;
2077 	int i, err;
2078 
2079 	for (i = 0; i < obj->nr_extern; i++) {
2080 		ext = &obj->externs[i];
2081 		if (ext->type == EXT_KCFG)
2082 			last_ext = ext;
2083 	}
2084 
2085 	if (!last_ext)
2086 		return 0;
2087 
2088 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2089 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2090 					    ".kconfig", obj->efile.symbols_shndx,
2091 					    NULL, map_sz);
2092 	if (err)
2093 		return err;
2094 
2095 	obj->kconfig_map_idx = obj->nr_maps - 1;
2096 
2097 	return 0;
2098 }
2099 
2100 const struct btf_type *
2101 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2102 {
2103 	const struct btf_type *t = btf__type_by_id(btf, id);
2104 
2105 	if (res_id)
2106 		*res_id = id;
2107 
2108 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2109 		if (res_id)
2110 			*res_id = t->type;
2111 		t = btf__type_by_id(btf, t->type);
2112 	}
2113 
2114 	return t;
2115 }
2116 
2117 static const struct btf_type *
2118 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2119 {
2120 	const struct btf_type *t;
2121 
2122 	t = skip_mods_and_typedefs(btf, id, NULL);
2123 	if (!btf_is_ptr(t))
2124 		return NULL;
2125 
2126 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2127 
2128 	return btf_is_func_proto(t) ? t : NULL;
2129 }
2130 
2131 static const char *__btf_kind_str(__u16 kind)
2132 {
2133 	switch (kind) {
2134 	case BTF_KIND_UNKN: return "void";
2135 	case BTF_KIND_INT: return "int";
2136 	case BTF_KIND_PTR: return "ptr";
2137 	case BTF_KIND_ARRAY: return "array";
2138 	case BTF_KIND_STRUCT: return "struct";
2139 	case BTF_KIND_UNION: return "union";
2140 	case BTF_KIND_ENUM: return "enum";
2141 	case BTF_KIND_FWD: return "fwd";
2142 	case BTF_KIND_TYPEDEF: return "typedef";
2143 	case BTF_KIND_VOLATILE: return "volatile";
2144 	case BTF_KIND_CONST: return "const";
2145 	case BTF_KIND_RESTRICT: return "restrict";
2146 	case BTF_KIND_FUNC: return "func";
2147 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2148 	case BTF_KIND_VAR: return "var";
2149 	case BTF_KIND_DATASEC: return "datasec";
2150 	case BTF_KIND_FLOAT: return "float";
2151 	case BTF_KIND_DECL_TAG: return "decl_tag";
2152 	case BTF_KIND_TYPE_TAG: return "type_tag";
2153 	case BTF_KIND_ENUM64: return "enum64";
2154 	default: return "unknown";
2155 	}
2156 }
2157 
2158 const char *btf_kind_str(const struct btf_type *t)
2159 {
2160 	return __btf_kind_str(btf_kind(t));
2161 }
2162 
2163 /*
2164  * Fetch integer attribute of BTF map definition. Such attributes are
2165  * represented using a pointer to an array, in which dimensionality of array
2166  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2167  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2168  * type definition, while using only sizeof(void *) space in ELF data section.
2169  */
2170 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2171 			      const struct btf_member *m, __u32 *res)
2172 {
2173 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2174 	const char *name = btf__name_by_offset(btf, m->name_off);
2175 	const struct btf_array *arr_info;
2176 	const struct btf_type *arr_t;
2177 
2178 	if (!btf_is_ptr(t)) {
2179 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2180 			map_name, name, btf_kind_str(t));
2181 		return false;
2182 	}
2183 
2184 	arr_t = btf__type_by_id(btf, t->type);
2185 	if (!arr_t) {
2186 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2187 			map_name, name, t->type);
2188 		return false;
2189 	}
2190 	if (!btf_is_array(arr_t)) {
2191 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2192 			map_name, name, btf_kind_str(arr_t));
2193 		return false;
2194 	}
2195 	arr_info = btf_array(arr_t);
2196 	*res = arr_info->nelems;
2197 	return true;
2198 }
2199 
2200 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2201 {
2202 	int len;
2203 
2204 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2205 	if (len < 0)
2206 		return -EINVAL;
2207 	if (len >= buf_sz)
2208 		return -ENAMETOOLONG;
2209 
2210 	return 0;
2211 }
2212 
2213 static int build_map_pin_path(struct bpf_map *map, const char *path)
2214 {
2215 	char buf[PATH_MAX];
2216 	int err;
2217 
2218 	if (!path)
2219 		path = "/sys/fs/bpf";
2220 
2221 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2222 	if (err)
2223 		return err;
2224 
2225 	return bpf_map__set_pin_path(map, buf);
2226 }
2227 
2228 /* should match definition in bpf_helpers.h */
2229 enum libbpf_pin_type {
2230 	LIBBPF_PIN_NONE,
2231 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2232 	LIBBPF_PIN_BY_NAME,
2233 };
2234 
2235 int parse_btf_map_def(const char *map_name, struct btf *btf,
2236 		      const struct btf_type *def_t, bool strict,
2237 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2238 {
2239 	const struct btf_type *t;
2240 	const struct btf_member *m;
2241 	bool is_inner = inner_def == NULL;
2242 	int vlen, i;
2243 
2244 	vlen = btf_vlen(def_t);
2245 	m = btf_members(def_t);
2246 	for (i = 0; i < vlen; i++, m++) {
2247 		const char *name = btf__name_by_offset(btf, m->name_off);
2248 
2249 		if (!name) {
2250 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2251 			return -EINVAL;
2252 		}
2253 		if (strcmp(name, "type") == 0) {
2254 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2255 				return -EINVAL;
2256 			map_def->parts |= MAP_DEF_MAP_TYPE;
2257 		} else if (strcmp(name, "max_entries") == 0) {
2258 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2259 				return -EINVAL;
2260 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2261 		} else if (strcmp(name, "map_flags") == 0) {
2262 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2263 				return -EINVAL;
2264 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2265 		} else if (strcmp(name, "numa_node") == 0) {
2266 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2267 				return -EINVAL;
2268 			map_def->parts |= MAP_DEF_NUMA_NODE;
2269 		} else if (strcmp(name, "key_size") == 0) {
2270 			__u32 sz;
2271 
2272 			if (!get_map_field_int(map_name, btf, m, &sz))
2273 				return -EINVAL;
2274 			if (map_def->key_size && map_def->key_size != sz) {
2275 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2276 					map_name, map_def->key_size, sz);
2277 				return -EINVAL;
2278 			}
2279 			map_def->key_size = sz;
2280 			map_def->parts |= MAP_DEF_KEY_SIZE;
2281 		} else if (strcmp(name, "key") == 0) {
2282 			__s64 sz;
2283 
2284 			t = btf__type_by_id(btf, m->type);
2285 			if (!t) {
2286 				pr_warn("map '%s': key type [%d] not found.\n",
2287 					map_name, m->type);
2288 				return -EINVAL;
2289 			}
2290 			if (!btf_is_ptr(t)) {
2291 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2292 					map_name, btf_kind_str(t));
2293 				return -EINVAL;
2294 			}
2295 			sz = btf__resolve_size(btf, t->type);
2296 			if (sz < 0) {
2297 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2298 					map_name, t->type, (ssize_t)sz);
2299 				return sz;
2300 			}
2301 			if (map_def->key_size && map_def->key_size != sz) {
2302 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2303 					map_name, map_def->key_size, (ssize_t)sz);
2304 				return -EINVAL;
2305 			}
2306 			map_def->key_size = sz;
2307 			map_def->key_type_id = t->type;
2308 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2309 		} else if (strcmp(name, "value_size") == 0) {
2310 			__u32 sz;
2311 
2312 			if (!get_map_field_int(map_name, btf, m, &sz))
2313 				return -EINVAL;
2314 			if (map_def->value_size && map_def->value_size != sz) {
2315 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2316 					map_name, map_def->value_size, sz);
2317 				return -EINVAL;
2318 			}
2319 			map_def->value_size = sz;
2320 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2321 		} else if (strcmp(name, "value") == 0) {
2322 			__s64 sz;
2323 
2324 			t = btf__type_by_id(btf, m->type);
2325 			if (!t) {
2326 				pr_warn("map '%s': value type [%d] not found.\n",
2327 					map_name, m->type);
2328 				return -EINVAL;
2329 			}
2330 			if (!btf_is_ptr(t)) {
2331 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2332 					map_name, btf_kind_str(t));
2333 				return -EINVAL;
2334 			}
2335 			sz = btf__resolve_size(btf, t->type);
2336 			if (sz < 0) {
2337 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2338 					map_name, t->type, (ssize_t)sz);
2339 				return sz;
2340 			}
2341 			if (map_def->value_size && map_def->value_size != sz) {
2342 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2343 					map_name, map_def->value_size, (ssize_t)sz);
2344 				return -EINVAL;
2345 			}
2346 			map_def->value_size = sz;
2347 			map_def->value_type_id = t->type;
2348 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2349 		}
2350 		else if (strcmp(name, "values") == 0) {
2351 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2352 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2353 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2354 			char inner_map_name[128];
2355 			int err;
2356 
2357 			if (is_inner) {
2358 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2359 					map_name);
2360 				return -ENOTSUP;
2361 			}
2362 			if (i != vlen - 1) {
2363 				pr_warn("map '%s': '%s' member should be last.\n",
2364 					map_name, name);
2365 				return -EINVAL;
2366 			}
2367 			if (!is_map_in_map && !is_prog_array) {
2368 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2369 					map_name);
2370 				return -ENOTSUP;
2371 			}
2372 			if (map_def->value_size && map_def->value_size != 4) {
2373 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2374 					map_name, map_def->value_size);
2375 				return -EINVAL;
2376 			}
2377 			map_def->value_size = 4;
2378 			t = btf__type_by_id(btf, m->type);
2379 			if (!t) {
2380 				pr_warn("map '%s': %s type [%d] not found.\n",
2381 					map_name, desc, m->type);
2382 				return -EINVAL;
2383 			}
2384 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2385 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2386 					map_name, desc);
2387 				return -EINVAL;
2388 			}
2389 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2390 			if (!btf_is_ptr(t)) {
2391 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2392 					map_name, desc, btf_kind_str(t));
2393 				return -EINVAL;
2394 			}
2395 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2396 			if (is_prog_array) {
2397 				if (!btf_is_func_proto(t)) {
2398 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2399 						map_name, btf_kind_str(t));
2400 					return -EINVAL;
2401 				}
2402 				continue;
2403 			}
2404 			if (!btf_is_struct(t)) {
2405 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2406 					map_name, btf_kind_str(t));
2407 				return -EINVAL;
2408 			}
2409 
2410 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2411 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2412 			if (err)
2413 				return err;
2414 
2415 			map_def->parts |= MAP_DEF_INNER_MAP;
2416 		} else if (strcmp(name, "pinning") == 0) {
2417 			__u32 val;
2418 
2419 			if (is_inner) {
2420 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2421 				return -EINVAL;
2422 			}
2423 			if (!get_map_field_int(map_name, btf, m, &val))
2424 				return -EINVAL;
2425 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2426 				pr_warn("map '%s': invalid pinning value %u.\n",
2427 					map_name, val);
2428 				return -EINVAL;
2429 			}
2430 			map_def->pinning = val;
2431 			map_def->parts |= MAP_DEF_PINNING;
2432 		} else if (strcmp(name, "map_extra") == 0) {
2433 			__u32 map_extra;
2434 
2435 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2436 				return -EINVAL;
2437 			map_def->map_extra = map_extra;
2438 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2439 		} else {
2440 			if (strict) {
2441 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2442 				return -ENOTSUP;
2443 			}
2444 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2445 		}
2446 	}
2447 
2448 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2449 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2450 		return -EINVAL;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 static size_t adjust_ringbuf_sz(size_t sz)
2457 {
2458 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2459 	__u32 mul;
2460 
2461 	/* if user forgot to set any size, make sure they see error */
2462 	if (sz == 0)
2463 		return 0;
2464 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2465 	 * a power-of-2 multiple of kernel's page size. If user diligently
2466 	 * satisified these conditions, pass the size through.
2467 	 */
2468 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2469 		return sz;
2470 
2471 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2472 	 * user-set size to satisfy both user size request and kernel
2473 	 * requirements and substitute correct max_entries for map creation.
2474 	 */
2475 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2476 		if (mul * page_sz > sz)
2477 			return mul * page_sz;
2478 	}
2479 
2480 	/* if it's impossible to satisfy the conditions (i.e., user size is
2481 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2482 	 * page_size) then just return original size and let kernel reject it
2483 	 */
2484 	return sz;
2485 }
2486 
2487 static bool map_is_ringbuf(const struct bpf_map *map)
2488 {
2489 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2490 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2491 }
2492 
2493 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2494 {
2495 	map->def.type = def->map_type;
2496 	map->def.key_size = def->key_size;
2497 	map->def.value_size = def->value_size;
2498 	map->def.max_entries = def->max_entries;
2499 	map->def.map_flags = def->map_flags;
2500 	map->map_extra = def->map_extra;
2501 
2502 	map->numa_node = def->numa_node;
2503 	map->btf_key_type_id = def->key_type_id;
2504 	map->btf_value_type_id = def->value_type_id;
2505 
2506 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2507 	if (map_is_ringbuf(map))
2508 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2509 
2510 	if (def->parts & MAP_DEF_MAP_TYPE)
2511 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2512 
2513 	if (def->parts & MAP_DEF_KEY_TYPE)
2514 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2515 			 map->name, def->key_type_id, def->key_size);
2516 	else if (def->parts & MAP_DEF_KEY_SIZE)
2517 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2518 
2519 	if (def->parts & MAP_DEF_VALUE_TYPE)
2520 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2521 			 map->name, def->value_type_id, def->value_size);
2522 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2523 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2524 
2525 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2526 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2527 	if (def->parts & MAP_DEF_MAP_FLAGS)
2528 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2529 	if (def->parts & MAP_DEF_MAP_EXTRA)
2530 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2531 			 (unsigned long long)def->map_extra);
2532 	if (def->parts & MAP_DEF_PINNING)
2533 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2534 	if (def->parts & MAP_DEF_NUMA_NODE)
2535 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2536 
2537 	if (def->parts & MAP_DEF_INNER_MAP)
2538 		pr_debug("map '%s': found inner map definition.\n", map->name);
2539 }
2540 
2541 static const char *btf_var_linkage_str(__u32 linkage)
2542 {
2543 	switch (linkage) {
2544 	case BTF_VAR_STATIC: return "static";
2545 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2546 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2547 	default: return "unknown";
2548 	}
2549 }
2550 
2551 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2552 					 const struct btf_type *sec,
2553 					 int var_idx, int sec_idx,
2554 					 const Elf_Data *data, bool strict,
2555 					 const char *pin_root_path)
2556 {
2557 	struct btf_map_def map_def = {}, inner_def = {};
2558 	const struct btf_type *var, *def;
2559 	const struct btf_var_secinfo *vi;
2560 	const struct btf_var *var_extra;
2561 	const char *map_name;
2562 	struct bpf_map *map;
2563 	int err;
2564 
2565 	vi = btf_var_secinfos(sec) + var_idx;
2566 	var = btf__type_by_id(obj->btf, vi->type);
2567 	var_extra = btf_var(var);
2568 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2569 
2570 	if (map_name == NULL || map_name[0] == '\0') {
2571 		pr_warn("map #%d: empty name.\n", var_idx);
2572 		return -EINVAL;
2573 	}
2574 	if ((__u64)vi->offset + vi->size > data->d_size) {
2575 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2576 		return -EINVAL;
2577 	}
2578 	if (!btf_is_var(var)) {
2579 		pr_warn("map '%s': unexpected var kind %s.\n",
2580 			map_name, btf_kind_str(var));
2581 		return -EINVAL;
2582 	}
2583 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2584 		pr_warn("map '%s': unsupported map linkage %s.\n",
2585 			map_name, btf_var_linkage_str(var_extra->linkage));
2586 		return -EOPNOTSUPP;
2587 	}
2588 
2589 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2590 	if (!btf_is_struct(def)) {
2591 		pr_warn("map '%s': unexpected def kind %s.\n",
2592 			map_name, btf_kind_str(var));
2593 		return -EINVAL;
2594 	}
2595 	if (def->size > vi->size) {
2596 		pr_warn("map '%s': invalid def size.\n", map_name);
2597 		return -EINVAL;
2598 	}
2599 
2600 	map = bpf_object__add_map(obj);
2601 	if (IS_ERR(map))
2602 		return PTR_ERR(map);
2603 	map->name = strdup(map_name);
2604 	if (!map->name) {
2605 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2606 		return -ENOMEM;
2607 	}
2608 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2609 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2610 	map->sec_idx = sec_idx;
2611 	map->sec_offset = vi->offset;
2612 	map->btf_var_idx = var_idx;
2613 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2614 		 map_name, map->sec_idx, map->sec_offset);
2615 
2616 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2617 	if (err)
2618 		return err;
2619 
2620 	fill_map_from_def(map, &map_def);
2621 
2622 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2623 		err = build_map_pin_path(map, pin_root_path);
2624 		if (err) {
2625 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2626 			return err;
2627 		}
2628 	}
2629 
2630 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2631 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2632 		if (!map->inner_map)
2633 			return -ENOMEM;
2634 		map->inner_map->fd = create_placeholder_fd();
2635 		if (map->inner_map->fd < 0)
2636 			return map->inner_map->fd;
2637 		map->inner_map->sec_idx = sec_idx;
2638 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2639 		if (!map->inner_map->name)
2640 			return -ENOMEM;
2641 		sprintf(map->inner_map->name, "%s.inner", map_name);
2642 
2643 		fill_map_from_def(map->inner_map, &inner_def);
2644 	}
2645 
2646 	err = map_fill_btf_type_info(obj, map);
2647 	if (err)
2648 		return err;
2649 
2650 	return 0;
2651 }
2652 
2653 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2654 					  const char *pin_root_path)
2655 {
2656 	const struct btf_type *sec = NULL;
2657 	int nr_types, i, vlen, err;
2658 	const struct btf_type *t;
2659 	const char *name;
2660 	Elf_Data *data;
2661 	Elf_Scn *scn;
2662 
2663 	if (obj->efile.btf_maps_shndx < 0)
2664 		return 0;
2665 
2666 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2667 	data = elf_sec_data(obj, scn);
2668 	if (!scn || !data) {
2669 		pr_warn("elf: failed to get %s map definitions for %s\n",
2670 			MAPS_ELF_SEC, obj->path);
2671 		return -EINVAL;
2672 	}
2673 
2674 	nr_types = btf__type_cnt(obj->btf);
2675 	for (i = 1; i < nr_types; i++) {
2676 		t = btf__type_by_id(obj->btf, i);
2677 		if (!btf_is_datasec(t))
2678 			continue;
2679 		name = btf__name_by_offset(obj->btf, t->name_off);
2680 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2681 			sec = t;
2682 			obj->efile.btf_maps_sec_btf_id = i;
2683 			break;
2684 		}
2685 	}
2686 
2687 	if (!sec) {
2688 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2689 		return -ENOENT;
2690 	}
2691 
2692 	vlen = btf_vlen(sec);
2693 	for (i = 0; i < vlen; i++) {
2694 		err = bpf_object__init_user_btf_map(obj, sec, i,
2695 						    obj->efile.btf_maps_shndx,
2696 						    data, strict,
2697 						    pin_root_path);
2698 		if (err)
2699 			return err;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static int bpf_object__init_maps(struct bpf_object *obj,
2706 				 const struct bpf_object_open_opts *opts)
2707 {
2708 	const char *pin_root_path;
2709 	bool strict;
2710 	int err = 0;
2711 
2712 	strict = !OPTS_GET(opts, relaxed_maps, false);
2713 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2714 
2715 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2716 	err = err ?: bpf_object__init_global_data_maps(obj);
2717 	err = err ?: bpf_object__init_kconfig_map(obj);
2718 	err = err ?: bpf_object_init_struct_ops(obj);
2719 
2720 	return err;
2721 }
2722 
2723 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2724 {
2725 	Elf64_Shdr *sh;
2726 
2727 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2728 	if (!sh)
2729 		return false;
2730 
2731 	return sh->sh_flags & SHF_EXECINSTR;
2732 }
2733 
2734 static bool btf_needs_sanitization(struct bpf_object *obj)
2735 {
2736 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2737 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2738 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2739 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2740 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2741 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2742 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2743 
2744 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2745 	       !has_decl_tag || !has_type_tag || !has_enum64;
2746 }
2747 
2748 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2749 {
2750 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2751 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2752 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2753 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2754 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2755 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2756 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2757 	int enum64_placeholder_id = 0;
2758 	struct btf_type *t;
2759 	int i, j, vlen;
2760 
2761 	for (i = 1; i < btf__type_cnt(btf); i++) {
2762 		t = (struct btf_type *)btf__type_by_id(btf, i);
2763 
2764 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2765 			/* replace VAR/DECL_TAG with INT */
2766 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2767 			/*
2768 			 * using size = 1 is the safest choice, 4 will be too
2769 			 * big and cause kernel BTF validation failure if
2770 			 * original variable took less than 4 bytes
2771 			 */
2772 			t->size = 1;
2773 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2774 		} else if (!has_datasec && btf_is_datasec(t)) {
2775 			/* replace DATASEC with STRUCT */
2776 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2777 			struct btf_member *m = btf_members(t);
2778 			struct btf_type *vt;
2779 			char *name;
2780 
2781 			name = (char *)btf__name_by_offset(btf, t->name_off);
2782 			while (*name) {
2783 				if (*name == '.')
2784 					*name = '_';
2785 				name++;
2786 			}
2787 
2788 			vlen = btf_vlen(t);
2789 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2790 			for (j = 0; j < vlen; j++, v++, m++) {
2791 				/* order of field assignments is important */
2792 				m->offset = v->offset * 8;
2793 				m->type = v->type;
2794 				/* preserve variable name as member name */
2795 				vt = (void *)btf__type_by_id(btf, v->type);
2796 				m->name_off = vt->name_off;
2797 			}
2798 		} else if (!has_func && btf_is_func_proto(t)) {
2799 			/* replace FUNC_PROTO with ENUM */
2800 			vlen = btf_vlen(t);
2801 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2802 			t->size = sizeof(__u32); /* kernel enforced */
2803 		} else if (!has_func && btf_is_func(t)) {
2804 			/* replace FUNC with TYPEDEF */
2805 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2806 		} else if (!has_func_global && btf_is_func(t)) {
2807 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2808 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2809 		} else if (!has_float && btf_is_float(t)) {
2810 			/* replace FLOAT with an equally-sized empty STRUCT;
2811 			 * since C compilers do not accept e.g. "float" as a
2812 			 * valid struct name, make it anonymous
2813 			 */
2814 			t->name_off = 0;
2815 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2816 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2817 			/* replace TYPE_TAG with a CONST */
2818 			t->name_off = 0;
2819 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2820 		} else if (!has_enum64 && btf_is_enum(t)) {
2821 			/* clear the kflag */
2822 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2823 		} else if (!has_enum64 && btf_is_enum64(t)) {
2824 			/* replace ENUM64 with a union */
2825 			struct btf_member *m;
2826 
2827 			if (enum64_placeholder_id == 0) {
2828 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2829 				if (enum64_placeholder_id < 0)
2830 					return enum64_placeholder_id;
2831 
2832 				t = (struct btf_type *)btf__type_by_id(btf, i);
2833 			}
2834 
2835 			m = btf_members(t);
2836 			vlen = btf_vlen(t);
2837 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2838 			for (j = 0; j < vlen; j++, m++) {
2839 				m->type = enum64_placeholder_id;
2840 				m->offset = 0;
2841 			}
2842 		}
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 static bool libbpf_needs_btf(const struct bpf_object *obj)
2849 {
2850 	return obj->efile.btf_maps_shndx >= 0 ||
2851 	       obj->efile.st_ops_shndx >= 0 ||
2852 	       obj->efile.st_ops_link_shndx >= 0 ||
2853 	       obj->nr_extern > 0;
2854 }
2855 
2856 static bool kernel_needs_btf(const struct bpf_object *obj)
2857 {
2858 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2859 }
2860 
2861 static int bpf_object__init_btf(struct bpf_object *obj,
2862 				Elf_Data *btf_data,
2863 				Elf_Data *btf_ext_data)
2864 {
2865 	int err = -ENOENT;
2866 
2867 	if (btf_data) {
2868 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2869 		err = libbpf_get_error(obj->btf);
2870 		if (err) {
2871 			obj->btf = NULL;
2872 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2873 			goto out;
2874 		}
2875 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2876 		btf__set_pointer_size(obj->btf, 8);
2877 	}
2878 	if (btf_ext_data) {
2879 		struct btf_ext_info *ext_segs[3];
2880 		int seg_num, sec_num;
2881 
2882 		if (!obj->btf) {
2883 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2884 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2885 			goto out;
2886 		}
2887 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2888 		err = libbpf_get_error(obj->btf_ext);
2889 		if (err) {
2890 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2891 				BTF_EXT_ELF_SEC, err);
2892 			obj->btf_ext = NULL;
2893 			goto out;
2894 		}
2895 
2896 		/* setup .BTF.ext to ELF section mapping */
2897 		ext_segs[0] = &obj->btf_ext->func_info;
2898 		ext_segs[1] = &obj->btf_ext->line_info;
2899 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2900 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2901 			struct btf_ext_info *seg = ext_segs[seg_num];
2902 			const struct btf_ext_info_sec *sec;
2903 			const char *sec_name;
2904 			Elf_Scn *scn;
2905 
2906 			if (seg->sec_cnt == 0)
2907 				continue;
2908 
2909 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2910 			if (!seg->sec_idxs) {
2911 				err = -ENOMEM;
2912 				goto out;
2913 			}
2914 
2915 			sec_num = 0;
2916 			for_each_btf_ext_sec(seg, sec) {
2917 				/* preventively increment index to avoid doing
2918 				 * this before every continue below
2919 				 */
2920 				sec_num++;
2921 
2922 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2923 				if (str_is_empty(sec_name))
2924 					continue;
2925 				scn = elf_sec_by_name(obj, sec_name);
2926 				if (!scn)
2927 					continue;
2928 
2929 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2930 			}
2931 		}
2932 	}
2933 out:
2934 	if (err && libbpf_needs_btf(obj)) {
2935 		pr_warn("BTF is required, but is missing or corrupted.\n");
2936 		return err;
2937 	}
2938 	return 0;
2939 }
2940 
2941 static int compare_vsi_off(const void *_a, const void *_b)
2942 {
2943 	const struct btf_var_secinfo *a = _a;
2944 	const struct btf_var_secinfo *b = _b;
2945 
2946 	return a->offset - b->offset;
2947 }
2948 
2949 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2950 			     struct btf_type *t)
2951 {
2952 	__u32 size = 0, i, vars = btf_vlen(t);
2953 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2954 	struct btf_var_secinfo *vsi;
2955 	bool fixup_offsets = false;
2956 	int err;
2957 
2958 	if (!sec_name) {
2959 		pr_debug("No name found in string section for DATASEC kind.\n");
2960 		return -ENOENT;
2961 	}
2962 
2963 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2964 	 * variable offsets set at the previous step. Further, not every
2965 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2966 	 * all fixups altogether for such sections and go straight to sorting
2967 	 * VARs within their DATASEC.
2968 	 */
2969 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2970 		goto sort_vars;
2971 
2972 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2973 	 * fix this up. But BPF static linker already fixes this up and fills
2974 	 * all the sizes and offsets during static linking. So this step has
2975 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2976 	 * non-extern DATASEC, so the variable fixup loop below handles both
2977 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2978 	 * symbol matching just once.
2979 	 */
2980 	if (t->size == 0) {
2981 		err = find_elf_sec_sz(obj, sec_name, &size);
2982 		if (err || !size) {
2983 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2984 				 sec_name, size, err);
2985 			return -ENOENT;
2986 		}
2987 
2988 		t->size = size;
2989 		fixup_offsets = true;
2990 	}
2991 
2992 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2993 		const struct btf_type *t_var;
2994 		struct btf_var *var;
2995 		const char *var_name;
2996 		Elf64_Sym *sym;
2997 
2998 		t_var = btf__type_by_id(btf, vsi->type);
2999 		if (!t_var || !btf_is_var(t_var)) {
3000 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3001 			return -EINVAL;
3002 		}
3003 
3004 		var = btf_var(t_var);
3005 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3006 			continue;
3007 
3008 		var_name = btf__name_by_offset(btf, t_var->name_off);
3009 		if (!var_name) {
3010 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3011 				 sec_name, i);
3012 			return -ENOENT;
3013 		}
3014 
3015 		sym = find_elf_var_sym(obj, var_name);
3016 		if (IS_ERR(sym)) {
3017 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3018 				 sec_name, var_name);
3019 			return -ENOENT;
3020 		}
3021 
3022 		if (fixup_offsets)
3023 			vsi->offset = sym->st_value;
3024 
3025 		/* if variable is a global/weak symbol, but has restricted
3026 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3027 		 * as static. This follows similar logic for functions (BPF
3028 		 * subprogs) and influences libbpf's further decisions about
3029 		 * whether to make global data BPF array maps as
3030 		 * BPF_F_MMAPABLE.
3031 		 */
3032 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3033 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3034 			var->linkage = BTF_VAR_STATIC;
3035 	}
3036 
3037 sort_vars:
3038 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3039 	return 0;
3040 }
3041 
3042 static int bpf_object_fixup_btf(struct bpf_object *obj)
3043 {
3044 	int i, n, err = 0;
3045 
3046 	if (!obj->btf)
3047 		return 0;
3048 
3049 	n = btf__type_cnt(obj->btf);
3050 	for (i = 1; i < n; i++) {
3051 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3052 
3053 		/* Loader needs to fix up some of the things compiler
3054 		 * couldn't get its hands on while emitting BTF. This
3055 		 * is section size and global variable offset. We use
3056 		 * the info from the ELF itself for this purpose.
3057 		 */
3058 		if (btf_is_datasec(t)) {
3059 			err = btf_fixup_datasec(obj, obj->btf, t);
3060 			if (err)
3061 				return err;
3062 		}
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3069 {
3070 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3071 	    prog->type == BPF_PROG_TYPE_LSM)
3072 		return true;
3073 
3074 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3075 	 * also need vmlinux BTF
3076 	 */
3077 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3078 		return true;
3079 
3080 	return false;
3081 }
3082 
3083 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3084 {
3085 	return bpf_map__is_struct_ops(map);
3086 }
3087 
3088 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3089 {
3090 	struct bpf_program *prog;
3091 	struct bpf_map *map;
3092 	int i;
3093 
3094 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3095 	 * is not specified
3096 	 */
3097 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3098 		return true;
3099 
3100 	/* Support for typed ksyms needs kernel BTF */
3101 	for (i = 0; i < obj->nr_extern; i++) {
3102 		const struct extern_desc *ext;
3103 
3104 		ext = &obj->externs[i];
3105 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3106 			return true;
3107 	}
3108 
3109 	bpf_object__for_each_program(prog, obj) {
3110 		if (!prog->autoload)
3111 			continue;
3112 		if (prog_needs_vmlinux_btf(prog))
3113 			return true;
3114 	}
3115 
3116 	bpf_object__for_each_map(map, obj) {
3117 		if (map_needs_vmlinux_btf(map))
3118 			return true;
3119 	}
3120 
3121 	return false;
3122 }
3123 
3124 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3125 {
3126 	int err;
3127 
3128 	/* btf_vmlinux could be loaded earlier */
3129 	if (obj->btf_vmlinux || obj->gen_loader)
3130 		return 0;
3131 
3132 	if (!force && !obj_needs_vmlinux_btf(obj))
3133 		return 0;
3134 
3135 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3136 	err = libbpf_get_error(obj->btf_vmlinux);
3137 	if (err) {
3138 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3139 		obj->btf_vmlinux = NULL;
3140 		return err;
3141 	}
3142 	return 0;
3143 }
3144 
3145 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3146 {
3147 	struct btf *kern_btf = obj->btf;
3148 	bool btf_mandatory, sanitize;
3149 	int i, err = 0;
3150 
3151 	if (!obj->btf)
3152 		return 0;
3153 
3154 	if (!kernel_supports(obj, FEAT_BTF)) {
3155 		if (kernel_needs_btf(obj)) {
3156 			err = -EOPNOTSUPP;
3157 			goto report;
3158 		}
3159 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3160 		return 0;
3161 	}
3162 
3163 	/* Even though some subprogs are global/weak, user might prefer more
3164 	 * permissive BPF verification process that BPF verifier performs for
3165 	 * static functions, taking into account more context from the caller
3166 	 * functions. In such case, they need to mark such subprogs with
3167 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3168 	 * corresponding FUNC BTF type to be marked as static and trigger more
3169 	 * involved BPF verification process.
3170 	 */
3171 	for (i = 0; i < obj->nr_programs; i++) {
3172 		struct bpf_program *prog = &obj->programs[i];
3173 		struct btf_type *t;
3174 		const char *name;
3175 		int j, n;
3176 
3177 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3178 			continue;
3179 
3180 		n = btf__type_cnt(obj->btf);
3181 		for (j = 1; j < n; j++) {
3182 			t = btf_type_by_id(obj->btf, j);
3183 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3184 				continue;
3185 
3186 			name = btf__str_by_offset(obj->btf, t->name_off);
3187 			if (strcmp(name, prog->name) != 0)
3188 				continue;
3189 
3190 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3191 			break;
3192 		}
3193 	}
3194 
3195 	sanitize = btf_needs_sanitization(obj);
3196 	if (sanitize) {
3197 		const void *raw_data;
3198 		__u32 sz;
3199 
3200 		/* clone BTF to sanitize a copy and leave the original intact */
3201 		raw_data = btf__raw_data(obj->btf, &sz);
3202 		kern_btf = btf__new(raw_data, sz);
3203 		err = libbpf_get_error(kern_btf);
3204 		if (err)
3205 			return err;
3206 
3207 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3208 		btf__set_pointer_size(obj->btf, 8);
3209 		err = bpf_object__sanitize_btf(obj, kern_btf);
3210 		if (err)
3211 			return err;
3212 	}
3213 
3214 	if (obj->gen_loader) {
3215 		__u32 raw_size = 0;
3216 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3217 
3218 		if (!raw_data)
3219 			return -ENOMEM;
3220 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3221 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3222 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3223 		 */
3224 		btf__set_fd(kern_btf, 0);
3225 	} else {
3226 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3227 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3228 					   obj->log_level ? 1 : 0);
3229 	}
3230 	if (sanitize) {
3231 		if (!err) {
3232 			/* move fd to libbpf's BTF */
3233 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3234 			btf__set_fd(kern_btf, -1);
3235 		}
3236 		btf__free(kern_btf);
3237 	}
3238 report:
3239 	if (err) {
3240 		btf_mandatory = kernel_needs_btf(obj);
3241 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3242 			btf_mandatory ? "BTF is mandatory, can't proceed."
3243 				      : "BTF is optional, ignoring.");
3244 		if (!btf_mandatory)
3245 			err = 0;
3246 	}
3247 	return err;
3248 }
3249 
3250 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3251 {
3252 	const char *name;
3253 
3254 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3255 	if (!name) {
3256 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3257 			off, obj->path, elf_errmsg(-1));
3258 		return NULL;
3259 	}
3260 
3261 	return name;
3262 }
3263 
3264 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3265 {
3266 	const char *name;
3267 
3268 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3269 	if (!name) {
3270 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3271 			off, obj->path, elf_errmsg(-1));
3272 		return NULL;
3273 	}
3274 
3275 	return name;
3276 }
3277 
3278 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3279 {
3280 	Elf_Scn *scn;
3281 
3282 	scn = elf_getscn(obj->efile.elf, idx);
3283 	if (!scn) {
3284 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3285 			idx, obj->path, elf_errmsg(-1));
3286 		return NULL;
3287 	}
3288 	return scn;
3289 }
3290 
3291 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3292 {
3293 	Elf_Scn *scn = NULL;
3294 	Elf *elf = obj->efile.elf;
3295 	const char *sec_name;
3296 
3297 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3298 		sec_name = elf_sec_name(obj, scn);
3299 		if (!sec_name)
3300 			return NULL;
3301 
3302 		if (strcmp(sec_name, name) != 0)
3303 			continue;
3304 
3305 		return scn;
3306 	}
3307 	return NULL;
3308 }
3309 
3310 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3311 {
3312 	Elf64_Shdr *shdr;
3313 
3314 	if (!scn)
3315 		return NULL;
3316 
3317 	shdr = elf64_getshdr(scn);
3318 	if (!shdr) {
3319 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3320 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3321 		return NULL;
3322 	}
3323 
3324 	return shdr;
3325 }
3326 
3327 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3328 {
3329 	const char *name;
3330 	Elf64_Shdr *sh;
3331 
3332 	if (!scn)
3333 		return NULL;
3334 
3335 	sh = elf_sec_hdr(obj, scn);
3336 	if (!sh)
3337 		return NULL;
3338 
3339 	name = elf_sec_str(obj, sh->sh_name);
3340 	if (!name) {
3341 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3342 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3343 		return NULL;
3344 	}
3345 
3346 	return name;
3347 }
3348 
3349 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3350 {
3351 	Elf_Data *data;
3352 
3353 	if (!scn)
3354 		return NULL;
3355 
3356 	data = elf_getdata(scn, 0);
3357 	if (!data) {
3358 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3359 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3360 			obj->path, elf_errmsg(-1));
3361 		return NULL;
3362 	}
3363 
3364 	return data;
3365 }
3366 
3367 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3368 {
3369 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3370 		return NULL;
3371 
3372 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3373 }
3374 
3375 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3376 {
3377 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3378 		return NULL;
3379 
3380 	return (Elf64_Rel *)data->d_buf + idx;
3381 }
3382 
3383 static bool is_sec_name_dwarf(const char *name)
3384 {
3385 	/* approximation, but the actual list is too long */
3386 	return str_has_pfx(name, ".debug_");
3387 }
3388 
3389 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3390 {
3391 	/* no special handling of .strtab */
3392 	if (hdr->sh_type == SHT_STRTAB)
3393 		return true;
3394 
3395 	/* ignore .llvm_addrsig section as well */
3396 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3397 		return true;
3398 
3399 	/* no subprograms will lead to an empty .text section, ignore it */
3400 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3401 	    strcmp(name, ".text") == 0)
3402 		return true;
3403 
3404 	/* DWARF sections */
3405 	if (is_sec_name_dwarf(name))
3406 		return true;
3407 
3408 	if (str_has_pfx(name, ".rel")) {
3409 		name += sizeof(".rel") - 1;
3410 		/* DWARF section relocations */
3411 		if (is_sec_name_dwarf(name))
3412 			return true;
3413 
3414 		/* .BTF and .BTF.ext don't need relocations */
3415 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3416 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3417 			return true;
3418 	}
3419 
3420 	return false;
3421 }
3422 
3423 static int cmp_progs(const void *_a, const void *_b)
3424 {
3425 	const struct bpf_program *a = _a;
3426 	const struct bpf_program *b = _b;
3427 
3428 	if (a->sec_idx != b->sec_idx)
3429 		return a->sec_idx < b->sec_idx ? -1 : 1;
3430 
3431 	/* sec_insn_off can't be the same within the section */
3432 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3433 }
3434 
3435 static int bpf_object__elf_collect(struct bpf_object *obj)
3436 {
3437 	struct elf_sec_desc *sec_desc;
3438 	Elf *elf = obj->efile.elf;
3439 	Elf_Data *btf_ext_data = NULL;
3440 	Elf_Data *btf_data = NULL;
3441 	int idx = 0, err = 0;
3442 	const char *name;
3443 	Elf_Data *data;
3444 	Elf_Scn *scn;
3445 	Elf64_Shdr *sh;
3446 
3447 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3448 	 * section. Since section count retrieved by elf_getshdrnum() does
3449 	 * include sec #0, it is already the necessary size of an array to keep
3450 	 * all the sections.
3451 	 */
3452 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3453 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3454 			obj->path, elf_errmsg(-1));
3455 		return -LIBBPF_ERRNO__FORMAT;
3456 	}
3457 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3458 	if (!obj->efile.secs)
3459 		return -ENOMEM;
3460 
3461 	/* a bunch of ELF parsing functionality depends on processing symbols,
3462 	 * so do the first pass and find the symbol table
3463 	 */
3464 	scn = NULL;
3465 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3466 		sh = elf_sec_hdr(obj, scn);
3467 		if (!sh)
3468 			return -LIBBPF_ERRNO__FORMAT;
3469 
3470 		if (sh->sh_type == SHT_SYMTAB) {
3471 			if (obj->efile.symbols) {
3472 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3473 				return -LIBBPF_ERRNO__FORMAT;
3474 			}
3475 
3476 			data = elf_sec_data(obj, scn);
3477 			if (!data)
3478 				return -LIBBPF_ERRNO__FORMAT;
3479 
3480 			idx = elf_ndxscn(scn);
3481 
3482 			obj->efile.symbols = data;
3483 			obj->efile.symbols_shndx = idx;
3484 			obj->efile.strtabidx = sh->sh_link;
3485 		}
3486 	}
3487 
3488 	if (!obj->efile.symbols) {
3489 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3490 			obj->path);
3491 		return -ENOENT;
3492 	}
3493 
3494 	scn = NULL;
3495 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3496 		idx = elf_ndxscn(scn);
3497 		sec_desc = &obj->efile.secs[idx];
3498 
3499 		sh = elf_sec_hdr(obj, scn);
3500 		if (!sh)
3501 			return -LIBBPF_ERRNO__FORMAT;
3502 
3503 		name = elf_sec_str(obj, sh->sh_name);
3504 		if (!name)
3505 			return -LIBBPF_ERRNO__FORMAT;
3506 
3507 		if (ignore_elf_section(sh, name))
3508 			continue;
3509 
3510 		data = elf_sec_data(obj, scn);
3511 		if (!data)
3512 			return -LIBBPF_ERRNO__FORMAT;
3513 
3514 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3515 			 idx, name, (unsigned long)data->d_size,
3516 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3517 			 (int)sh->sh_type);
3518 
3519 		if (strcmp(name, "license") == 0) {
3520 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3521 			if (err)
3522 				return err;
3523 		} else if (strcmp(name, "version") == 0) {
3524 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3525 			if (err)
3526 				return err;
3527 		} else if (strcmp(name, "maps") == 0) {
3528 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3529 			return -ENOTSUP;
3530 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3531 			obj->efile.btf_maps_shndx = idx;
3532 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3533 			if (sh->sh_type != SHT_PROGBITS)
3534 				return -LIBBPF_ERRNO__FORMAT;
3535 			btf_data = data;
3536 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3537 			if (sh->sh_type != SHT_PROGBITS)
3538 				return -LIBBPF_ERRNO__FORMAT;
3539 			btf_ext_data = data;
3540 		} else if (sh->sh_type == SHT_SYMTAB) {
3541 			/* already processed during the first pass above */
3542 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3543 			if (sh->sh_flags & SHF_EXECINSTR) {
3544 				if (strcmp(name, ".text") == 0)
3545 					obj->efile.text_shndx = idx;
3546 				err = bpf_object__add_programs(obj, data, name, idx);
3547 				if (err)
3548 					return err;
3549 			} else if (strcmp(name, DATA_SEC) == 0 ||
3550 				   str_has_pfx(name, DATA_SEC ".")) {
3551 				sec_desc->sec_type = SEC_DATA;
3552 				sec_desc->shdr = sh;
3553 				sec_desc->data = data;
3554 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3555 				   str_has_pfx(name, RODATA_SEC ".")) {
3556 				sec_desc->sec_type = SEC_RODATA;
3557 				sec_desc->shdr = sh;
3558 				sec_desc->data = data;
3559 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3560 				obj->efile.st_ops_data = data;
3561 				obj->efile.st_ops_shndx = idx;
3562 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3563 				obj->efile.st_ops_link_data = data;
3564 				obj->efile.st_ops_link_shndx = idx;
3565 			} else {
3566 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3567 					idx, name);
3568 			}
3569 		} else if (sh->sh_type == SHT_REL) {
3570 			int targ_sec_idx = sh->sh_info; /* points to other section */
3571 
3572 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3573 			    targ_sec_idx >= obj->efile.sec_cnt)
3574 				return -LIBBPF_ERRNO__FORMAT;
3575 
3576 			/* Only do relo for section with exec instructions */
3577 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3578 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3579 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3580 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3581 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3582 					idx, name, targ_sec_idx,
3583 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3584 				continue;
3585 			}
3586 
3587 			sec_desc->sec_type = SEC_RELO;
3588 			sec_desc->shdr = sh;
3589 			sec_desc->data = data;
3590 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3591 							 str_has_pfx(name, BSS_SEC "."))) {
3592 			sec_desc->sec_type = SEC_BSS;
3593 			sec_desc->shdr = sh;
3594 			sec_desc->data = data;
3595 		} else {
3596 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3597 				(size_t)sh->sh_size);
3598 		}
3599 	}
3600 
3601 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3602 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3603 		return -LIBBPF_ERRNO__FORMAT;
3604 	}
3605 
3606 	/* sort BPF programs by section name and in-section instruction offset
3607 	 * for faster search
3608 	 */
3609 	if (obj->nr_programs)
3610 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3611 
3612 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3613 }
3614 
3615 static bool sym_is_extern(const Elf64_Sym *sym)
3616 {
3617 	int bind = ELF64_ST_BIND(sym->st_info);
3618 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3619 	return sym->st_shndx == SHN_UNDEF &&
3620 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3621 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3622 }
3623 
3624 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3625 {
3626 	int bind = ELF64_ST_BIND(sym->st_info);
3627 	int type = ELF64_ST_TYPE(sym->st_info);
3628 
3629 	/* in .text section */
3630 	if (sym->st_shndx != text_shndx)
3631 		return false;
3632 
3633 	/* local function */
3634 	if (bind == STB_LOCAL && type == STT_SECTION)
3635 		return true;
3636 
3637 	/* global function */
3638 	return bind == STB_GLOBAL && type == STT_FUNC;
3639 }
3640 
3641 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3642 {
3643 	const struct btf_type *t;
3644 	const char *tname;
3645 	int i, n;
3646 
3647 	if (!btf)
3648 		return -ESRCH;
3649 
3650 	n = btf__type_cnt(btf);
3651 	for (i = 1; i < n; i++) {
3652 		t = btf__type_by_id(btf, i);
3653 
3654 		if (!btf_is_var(t) && !btf_is_func(t))
3655 			continue;
3656 
3657 		tname = btf__name_by_offset(btf, t->name_off);
3658 		if (strcmp(tname, ext_name))
3659 			continue;
3660 
3661 		if (btf_is_var(t) &&
3662 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3663 			return -EINVAL;
3664 
3665 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3666 			return -EINVAL;
3667 
3668 		return i;
3669 	}
3670 
3671 	return -ENOENT;
3672 }
3673 
3674 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3675 	const struct btf_var_secinfo *vs;
3676 	const struct btf_type *t;
3677 	int i, j, n;
3678 
3679 	if (!btf)
3680 		return -ESRCH;
3681 
3682 	n = btf__type_cnt(btf);
3683 	for (i = 1; i < n; i++) {
3684 		t = btf__type_by_id(btf, i);
3685 
3686 		if (!btf_is_datasec(t))
3687 			continue;
3688 
3689 		vs = btf_var_secinfos(t);
3690 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3691 			if (vs->type == ext_btf_id)
3692 				return i;
3693 		}
3694 	}
3695 
3696 	return -ENOENT;
3697 }
3698 
3699 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3700 				     bool *is_signed)
3701 {
3702 	const struct btf_type *t;
3703 	const char *name;
3704 
3705 	t = skip_mods_and_typedefs(btf, id, NULL);
3706 	name = btf__name_by_offset(btf, t->name_off);
3707 
3708 	if (is_signed)
3709 		*is_signed = false;
3710 	switch (btf_kind(t)) {
3711 	case BTF_KIND_INT: {
3712 		int enc = btf_int_encoding(t);
3713 
3714 		if (enc & BTF_INT_BOOL)
3715 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3716 		if (is_signed)
3717 			*is_signed = enc & BTF_INT_SIGNED;
3718 		if (t->size == 1)
3719 			return KCFG_CHAR;
3720 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3721 			return KCFG_UNKNOWN;
3722 		return KCFG_INT;
3723 	}
3724 	case BTF_KIND_ENUM:
3725 		if (t->size != 4)
3726 			return KCFG_UNKNOWN;
3727 		if (strcmp(name, "libbpf_tristate"))
3728 			return KCFG_UNKNOWN;
3729 		return KCFG_TRISTATE;
3730 	case BTF_KIND_ENUM64:
3731 		if (strcmp(name, "libbpf_tristate"))
3732 			return KCFG_UNKNOWN;
3733 		return KCFG_TRISTATE;
3734 	case BTF_KIND_ARRAY:
3735 		if (btf_array(t)->nelems == 0)
3736 			return KCFG_UNKNOWN;
3737 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3738 			return KCFG_UNKNOWN;
3739 		return KCFG_CHAR_ARR;
3740 	default:
3741 		return KCFG_UNKNOWN;
3742 	}
3743 }
3744 
3745 static int cmp_externs(const void *_a, const void *_b)
3746 {
3747 	const struct extern_desc *a = _a;
3748 	const struct extern_desc *b = _b;
3749 
3750 	if (a->type != b->type)
3751 		return a->type < b->type ? -1 : 1;
3752 
3753 	if (a->type == EXT_KCFG) {
3754 		/* descending order by alignment requirements */
3755 		if (a->kcfg.align != b->kcfg.align)
3756 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3757 		/* ascending order by size, within same alignment class */
3758 		if (a->kcfg.sz != b->kcfg.sz)
3759 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3760 	}
3761 
3762 	/* resolve ties by name */
3763 	return strcmp(a->name, b->name);
3764 }
3765 
3766 static int find_int_btf_id(const struct btf *btf)
3767 {
3768 	const struct btf_type *t;
3769 	int i, n;
3770 
3771 	n = btf__type_cnt(btf);
3772 	for (i = 1; i < n; i++) {
3773 		t = btf__type_by_id(btf, i);
3774 
3775 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3776 			return i;
3777 	}
3778 
3779 	return 0;
3780 }
3781 
3782 static int add_dummy_ksym_var(struct btf *btf)
3783 {
3784 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3785 	const struct btf_var_secinfo *vs;
3786 	const struct btf_type *sec;
3787 
3788 	if (!btf)
3789 		return 0;
3790 
3791 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3792 					    BTF_KIND_DATASEC);
3793 	if (sec_btf_id < 0)
3794 		return 0;
3795 
3796 	sec = btf__type_by_id(btf, sec_btf_id);
3797 	vs = btf_var_secinfos(sec);
3798 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3799 		const struct btf_type *vt;
3800 
3801 		vt = btf__type_by_id(btf, vs->type);
3802 		if (btf_is_func(vt))
3803 			break;
3804 	}
3805 
3806 	/* No func in ksyms sec.  No need to add dummy var. */
3807 	if (i == btf_vlen(sec))
3808 		return 0;
3809 
3810 	int_btf_id = find_int_btf_id(btf);
3811 	dummy_var_btf_id = btf__add_var(btf,
3812 					"dummy_ksym",
3813 					BTF_VAR_GLOBAL_ALLOCATED,
3814 					int_btf_id);
3815 	if (dummy_var_btf_id < 0)
3816 		pr_warn("cannot create a dummy_ksym var\n");
3817 
3818 	return dummy_var_btf_id;
3819 }
3820 
3821 static int bpf_object__collect_externs(struct bpf_object *obj)
3822 {
3823 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3824 	const struct btf_type *t;
3825 	struct extern_desc *ext;
3826 	int i, n, off, dummy_var_btf_id;
3827 	const char *ext_name, *sec_name;
3828 	size_t ext_essent_len;
3829 	Elf_Scn *scn;
3830 	Elf64_Shdr *sh;
3831 
3832 	if (!obj->efile.symbols)
3833 		return 0;
3834 
3835 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3836 	sh = elf_sec_hdr(obj, scn);
3837 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3838 		return -LIBBPF_ERRNO__FORMAT;
3839 
3840 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3841 	if (dummy_var_btf_id < 0)
3842 		return dummy_var_btf_id;
3843 
3844 	n = sh->sh_size / sh->sh_entsize;
3845 	pr_debug("looking for externs among %d symbols...\n", n);
3846 
3847 	for (i = 0; i < n; i++) {
3848 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3849 
3850 		if (!sym)
3851 			return -LIBBPF_ERRNO__FORMAT;
3852 		if (!sym_is_extern(sym))
3853 			continue;
3854 		ext_name = elf_sym_str(obj, sym->st_name);
3855 		if (!ext_name || !ext_name[0])
3856 			continue;
3857 
3858 		ext = obj->externs;
3859 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3860 		if (!ext)
3861 			return -ENOMEM;
3862 		obj->externs = ext;
3863 		ext = &ext[obj->nr_extern];
3864 		memset(ext, 0, sizeof(*ext));
3865 		obj->nr_extern++;
3866 
3867 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3868 		if (ext->btf_id <= 0) {
3869 			pr_warn("failed to find BTF for extern '%s': %d\n",
3870 				ext_name, ext->btf_id);
3871 			return ext->btf_id;
3872 		}
3873 		t = btf__type_by_id(obj->btf, ext->btf_id);
3874 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3875 		ext->sym_idx = i;
3876 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3877 
3878 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3879 		ext->essent_name = NULL;
3880 		if (ext_essent_len != strlen(ext->name)) {
3881 			ext->essent_name = strndup(ext->name, ext_essent_len);
3882 			if (!ext->essent_name)
3883 				return -ENOMEM;
3884 		}
3885 
3886 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3887 		if (ext->sec_btf_id <= 0) {
3888 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3889 				ext_name, ext->btf_id, ext->sec_btf_id);
3890 			return ext->sec_btf_id;
3891 		}
3892 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3893 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3894 
3895 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3896 			if (btf_is_func(t)) {
3897 				pr_warn("extern function %s is unsupported under %s section\n",
3898 					ext->name, KCONFIG_SEC);
3899 				return -ENOTSUP;
3900 			}
3901 			kcfg_sec = sec;
3902 			ext->type = EXT_KCFG;
3903 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3904 			if (ext->kcfg.sz <= 0) {
3905 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3906 					ext_name, ext->kcfg.sz);
3907 				return ext->kcfg.sz;
3908 			}
3909 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3910 			if (ext->kcfg.align <= 0) {
3911 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3912 					ext_name, ext->kcfg.align);
3913 				return -EINVAL;
3914 			}
3915 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3916 							&ext->kcfg.is_signed);
3917 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3918 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3919 				return -ENOTSUP;
3920 			}
3921 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3922 			ksym_sec = sec;
3923 			ext->type = EXT_KSYM;
3924 			skip_mods_and_typedefs(obj->btf, t->type,
3925 					       &ext->ksym.type_id);
3926 		} else {
3927 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3928 			return -ENOTSUP;
3929 		}
3930 	}
3931 	pr_debug("collected %d externs total\n", obj->nr_extern);
3932 
3933 	if (!obj->nr_extern)
3934 		return 0;
3935 
3936 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3937 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3938 
3939 	/* for .ksyms section, we need to turn all externs into allocated
3940 	 * variables in BTF to pass kernel verification; we do this by
3941 	 * pretending that each extern is a 8-byte variable
3942 	 */
3943 	if (ksym_sec) {
3944 		/* find existing 4-byte integer type in BTF to use for fake
3945 		 * extern variables in DATASEC
3946 		 */
3947 		int int_btf_id = find_int_btf_id(obj->btf);
3948 		/* For extern function, a dummy_var added earlier
3949 		 * will be used to replace the vs->type and
3950 		 * its name string will be used to refill
3951 		 * the missing param's name.
3952 		 */
3953 		const struct btf_type *dummy_var;
3954 
3955 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3956 		for (i = 0; i < obj->nr_extern; i++) {
3957 			ext = &obj->externs[i];
3958 			if (ext->type != EXT_KSYM)
3959 				continue;
3960 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3961 				 i, ext->sym_idx, ext->name);
3962 		}
3963 
3964 		sec = ksym_sec;
3965 		n = btf_vlen(sec);
3966 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3967 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3968 			struct btf_type *vt;
3969 
3970 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3971 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3972 			ext = find_extern_by_name(obj, ext_name);
3973 			if (!ext) {
3974 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3975 					btf_kind_str(vt), ext_name);
3976 				return -ESRCH;
3977 			}
3978 			if (btf_is_func(vt)) {
3979 				const struct btf_type *func_proto;
3980 				struct btf_param *param;
3981 				int j;
3982 
3983 				func_proto = btf__type_by_id(obj->btf,
3984 							     vt->type);
3985 				param = btf_params(func_proto);
3986 				/* Reuse the dummy_var string if the
3987 				 * func proto does not have param name.
3988 				 */
3989 				for (j = 0; j < btf_vlen(func_proto); j++)
3990 					if (param[j].type && !param[j].name_off)
3991 						param[j].name_off =
3992 							dummy_var->name_off;
3993 				vs->type = dummy_var_btf_id;
3994 				vt->info &= ~0xffff;
3995 				vt->info |= BTF_FUNC_GLOBAL;
3996 			} else {
3997 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3998 				vt->type = int_btf_id;
3999 			}
4000 			vs->offset = off;
4001 			vs->size = sizeof(int);
4002 		}
4003 		sec->size = off;
4004 	}
4005 
4006 	if (kcfg_sec) {
4007 		sec = kcfg_sec;
4008 		/* for kcfg externs calculate their offsets within a .kconfig map */
4009 		off = 0;
4010 		for (i = 0; i < obj->nr_extern; i++) {
4011 			ext = &obj->externs[i];
4012 			if (ext->type != EXT_KCFG)
4013 				continue;
4014 
4015 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4016 			off = ext->kcfg.data_off + ext->kcfg.sz;
4017 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4018 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4019 		}
4020 		sec->size = off;
4021 		n = btf_vlen(sec);
4022 		for (i = 0; i < n; i++) {
4023 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4024 
4025 			t = btf__type_by_id(obj->btf, vs->type);
4026 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4027 			ext = find_extern_by_name(obj, ext_name);
4028 			if (!ext) {
4029 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4030 					ext_name);
4031 				return -ESRCH;
4032 			}
4033 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4034 			vs->offset = ext->kcfg.data_off;
4035 		}
4036 	}
4037 	return 0;
4038 }
4039 
4040 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4041 {
4042 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4043 }
4044 
4045 struct bpf_program *
4046 bpf_object__find_program_by_name(const struct bpf_object *obj,
4047 				 const char *name)
4048 {
4049 	struct bpf_program *prog;
4050 
4051 	bpf_object__for_each_program(prog, obj) {
4052 		if (prog_is_subprog(obj, prog))
4053 			continue;
4054 		if (!strcmp(prog->name, name))
4055 			return prog;
4056 	}
4057 	return errno = ENOENT, NULL;
4058 }
4059 
4060 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4061 				      int shndx)
4062 {
4063 	switch (obj->efile.secs[shndx].sec_type) {
4064 	case SEC_BSS:
4065 	case SEC_DATA:
4066 	case SEC_RODATA:
4067 		return true;
4068 	default:
4069 		return false;
4070 	}
4071 }
4072 
4073 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4074 				      int shndx)
4075 {
4076 	return shndx == obj->efile.btf_maps_shndx;
4077 }
4078 
4079 static enum libbpf_map_type
4080 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4081 {
4082 	if (shndx == obj->efile.symbols_shndx)
4083 		return LIBBPF_MAP_KCONFIG;
4084 
4085 	switch (obj->efile.secs[shndx].sec_type) {
4086 	case SEC_BSS:
4087 		return LIBBPF_MAP_BSS;
4088 	case SEC_DATA:
4089 		return LIBBPF_MAP_DATA;
4090 	case SEC_RODATA:
4091 		return LIBBPF_MAP_RODATA;
4092 	default:
4093 		return LIBBPF_MAP_UNSPEC;
4094 	}
4095 }
4096 
4097 static int bpf_program__record_reloc(struct bpf_program *prog,
4098 				     struct reloc_desc *reloc_desc,
4099 				     __u32 insn_idx, const char *sym_name,
4100 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4101 {
4102 	struct bpf_insn *insn = &prog->insns[insn_idx];
4103 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4104 	struct bpf_object *obj = prog->obj;
4105 	__u32 shdr_idx = sym->st_shndx;
4106 	enum libbpf_map_type type;
4107 	const char *sym_sec_name;
4108 	struct bpf_map *map;
4109 
4110 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4111 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4112 			prog->name, sym_name, insn_idx, insn->code);
4113 		return -LIBBPF_ERRNO__RELOC;
4114 	}
4115 
4116 	if (sym_is_extern(sym)) {
4117 		int sym_idx = ELF64_R_SYM(rel->r_info);
4118 		int i, n = obj->nr_extern;
4119 		struct extern_desc *ext;
4120 
4121 		for (i = 0; i < n; i++) {
4122 			ext = &obj->externs[i];
4123 			if (ext->sym_idx == sym_idx)
4124 				break;
4125 		}
4126 		if (i >= n) {
4127 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4128 				prog->name, sym_name, sym_idx);
4129 			return -LIBBPF_ERRNO__RELOC;
4130 		}
4131 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4132 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4133 		if (insn->code == (BPF_JMP | BPF_CALL))
4134 			reloc_desc->type = RELO_EXTERN_CALL;
4135 		else
4136 			reloc_desc->type = RELO_EXTERN_LD64;
4137 		reloc_desc->insn_idx = insn_idx;
4138 		reloc_desc->ext_idx = i;
4139 		return 0;
4140 	}
4141 
4142 	/* sub-program call relocation */
4143 	if (is_call_insn(insn)) {
4144 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4145 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4146 			return -LIBBPF_ERRNO__RELOC;
4147 		}
4148 		/* text_shndx can be 0, if no default "main" program exists */
4149 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4150 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4151 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4152 				prog->name, sym_name, sym_sec_name);
4153 			return -LIBBPF_ERRNO__RELOC;
4154 		}
4155 		if (sym->st_value % BPF_INSN_SZ) {
4156 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4157 				prog->name, sym_name, (size_t)sym->st_value);
4158 			return -LIBBPF_ERRNO__RELOC;
4159 		}
4160 		reloc_desc->type = RELO_CALL;
4161 		reloc_desc->insn_idx = insn_idx;
4162 		reloc_desc->sym_off = sym->st_value;
4163 		return 0;
4164 	}
4165 
4166 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4167 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4168 			prog->name, sym_name, shdr_idx);
4169 		return -LIBBPF_ERRNO__RELOC;
4170 	}
4171 
4172 	/* loading subprog addresses */
4173 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4174 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4175 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4176 		 */
4177 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4178 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4179 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4180 			return -LIBBPF_ERRNO__RELOC;
4181 		}
4182 
4183 		reloc_desc->type = RELO_SUBPROG_ADDR;
4184 		reloc_desc->insn_idx = insn_idx;
4185 		reloc_desc->sym_off = sym->st_value;
4186 		return 0;
4187 	}
4188 
4189 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4190 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4191 
4192 	/* generic map reference relocation */
4193 	if (type == LIBBPF_MAP_UNSPEC) {
4194 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4195 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4196 				prog->name, sym_name, sym_sec_name);
4197 			return -LIBBPF_ERRNO__RELOC;
4198 		}
4199 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4200 			map = &obj->maps[map_idx];
4201 			if (map->libbpf_type != type ||
4202 			    map->sec_idx != sym->st_shndx ||
4203 			    map->sec_offset != sym->st_value)
4204 				continue;
4205 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4206 				 prog->name, map_idx, map->name, map->sec_idx,
4207 				 map->sec_offset, insn_idx);
4208 			break;
4209 		}
4210 		if (map_idx >= nr_maps) {
4211 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4212 				prog->name, sym_sec_name, (size_t)sym->st_value);
4213 			return -LIBBPF_ERRNO__RELOC;
4214 		}
4215 		reloc_desc->type = RELO_LD64;
4216 		reloc_desc->insn_idx = insn_idx;
4217 		reloc_desc->map_idx = map_idx;
4218 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4219 		return 0;
4220 	}
4221 
4222 	/* global data map relocation */
4223 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4224 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4225 			prog->name, sym_sec_name);
4226 		return -LIBBPF_ERRNO__RELOC;
4227 	}
4228 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4229 		map = &obj->maps[map_idx];
4230 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4231 			continue;
4232 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4233 			 prog->name, map_idx, map->name, map->sec_idx,
4234 			 map->sec_offset, insn_idx);
4235 		break;
4236 	}
4237 	if (map_idx >= nr_maps) {
4238 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4239 			prog->name, sym_sec_name);
4240 		return -LIBBPF_ERRNO__RELOC;
4241 	}
4242 
4243 	reloc_desc->type = RELO_DATA;
4244 	reloc_desc->insn_idx = insn_idx;
4245 	reloc_desc->map_idx = map_idx;
4246 	reloc_desc->sym_off = sym->st_value;
4247 	return 0;
4248 }
4249 
4250 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4251 {
4252 	return insn_idx >= prog->sec_insn_off &&
4253 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4254 }
4255 
4256 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4257 						 size_t sec_idx, size_t insn_idx)
4258 {
4259 	int l = 0, r = obj->nr_programs - 1, m;
4260 	struct bpf_program *prog;
4261 
4262 	if (!obj->nr_programs)
4263 		return NULL;
4264 
4265 	while (l < r) {
4266 		m = l + (r - l + 1) / 2;
4267 		prog = &obj->programs[m];
4268 
4269 		if (prog->sec_idx < sec_idx ||
4270 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4271 			l = m;
4272 		else
4273 			r = m - 1;
4274 	}
4275 	/* matching program could be at index l, but it still might be the
4276 	 * wrong one, so we need to double check conditions for the last time
4277 	 */
4278 	prog = &obj->programs[l];
4279 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4280 		return prog;
4281 	return NULL;
4282 }
4283 
4284 static int
4285 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4286 {
4287 	const char *relo_sec_name, *sec_name;
4288 	size_t sec_idx = shdr->sh_info, sym_idx;
4289 	struct bpf_program *prog;
4290 	struct reloc_desc *relos;
4291 	int err, i, nrels;
4292 	const char *sym_name;
4293 	__u32 insn_idx;
4294 	Elf_Scn *scn;
4295 	Elf_Data *scn_data;
4296 	Elf64_Sym *sym;
4297 	Elf64_Rel *rel;
4298 
4299 	if (sec_idx >= obj->efile.sec_cnt)
4300 		return -EINVAL;
4301 
4302 	scn = elf_sec_by_idx(obj, sec_idx);
4303 	scn_data = elf_sec_data(obj, scn);
4304 	if (!scn_data)
4305 		return -LIBBPF_ERRNO__FORMAT;
4306 
4307 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4308 	sec_name = elf_sec_name(obj, scn);
4309 	if (!relo_sec_name || !sec_name)
4310 		return -EINVAL;
4311 
4312 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4313 		 relo_sec_name, sec_idx, sec_name);
4314 	nrels = shdr->sh_size / shdr->sh_entsize;
4315 
4316 	for (i = 0; i < nrels; i++) {
4317 		rel = elf_rel_by_idx(data, i);
4318 		if (!rel) {
4319 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4320 			return -LIBBPF_ERRNO__FORMAT;
4321 		}
4322 
4323 		sym_idx = ELF64_R_SYM(rel->r_info);
4324 		sym = elf_sym_by_idx(obj, sym_idx);
4325 		if (!sym) {
4326 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4327 				relo_sec_name, sym_idx, i);
4328 			return -LIBBPF_ERRNO__FORMAT;
4329 		}
4330 
4331 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4332 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4333 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4334 			return -LIBBPF_ERRNO__FORMAT;
4335 		}
4336 
4337 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4338 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4339 				relo_sec_name, (size_t)rel->r_offset, i);
4340 			return -LIBBPF_ERRNO__FORMAT;
4341 		}
4342 
4343 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4344 		/* relocations against static functions are recorded as
4345 		 * relocations against the section that contains a function;
4346 		 * in such case, symbol will be STT_SECTION and sym.st_name
4347 		 * will point to empty string (0), so fetch section name
4348 		 * instead
4349 		 */
4350 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4351 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4352 		else
4353 			sym_name = elf_sym_str(obj, sym->st_name);
4354 		sym_name = sym_name ?: "<?";
4355 
4356 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4357 			 relo_sec_name, i, insn_idx, sym_name);
4358 
4359 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4360 		if (!prog) {
4361 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4362 				relo_sec_name, i, sec_name, insn_idx);
4363 			continue;
4364 		}
4365 
4366 		relos = libbpf_reallocarray(prog->reloc_desc,
4367 					    prog->nr_reloc + 1, sizeof(*relos));
4368 		if (!relos)
4369 			return -ENOMEM;
4370 		prog->reloc_desc = relos;
4371 
4372 		/* adjust insn_idx to local BPF program frame of reference */
4373 		insn_idx -= prog->sec_insn_off;
4374 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4375 						insn_idx, sym_name, sym, rel);
4376 		if (err)
4377 			return err;
4378 
4379 		prog->nr_reloc++;
4380 	}
4381 	return 0;
4382 }
4383 
4384 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4385 {
4386 	int id;
4387 
4388 	if (!obj->btf)
4389 		return -ENOENT;
4390 
4391 	/* if it's BTF-defined map, we don't need to search for type IDs.
4392 	 * For struct_ops map, it does not need btf_key_type_id and
4393 	 * btf_value_type_id.
4394 	 */
4395 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4396 		return 0;
4397 
4398 	/*
4399 	 * LLVM annotates global data differently in BTF, that is,
4400 	 * only as '.data', '.bss' or '.rodata'.
4401 	 */
4402 	if (!bpf_map__is_internal(map))
4403 		return -ENOENT;
4404 
4405 	id = btf__find_by_name(obj->btf, map->real_name);
4406 	if (id < 0)
4407 		return id;
4408 
4409 	map->btf_key_type_id = 0;
4410 	map->btf_value_type_id = id;
4411 	return 0;
4412 }
4413 
4414 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4415 {
4416 	char file[PATH_MAX], buff[4096];
4417 	FILE *fp;
4418 	__u32 val;
4419 	int err;
4420 
4421 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4422 	memset(info, 0, sizeof(*info));
4423 
4424 	fp = fopen(file, "re");
4425 	if (!fp) {
4426 		err = -errno;
4427 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4428 			err);
4429 		return err;
4430 	}
4431 
4432 	while (fgets(buff, sizeof(buff), fp)) {
4433 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4434 			info->type = val;
4435 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4436 			info->key_size = val;
4437 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4438 			info->value_size = val;
4439 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4440 			info->max_entries = val;
4441 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4442 			info->map_flags = val;
4443 	}
4444 
4445 	fclose(fp);
4446 
4447 	return 0;
4448 }
4449 
4450 bool bpf_map__autocreate(const struct bpf_map *map)
4451 {
4452 	return map->autocreate;
4453 }
4454 
4455 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4456 {
4457 	if (map->obj->loaded)
4458 		return libbpf_err(-EBUSY);
4459 
4460 	map->autocreate = autocreate;
4461 	return 0;
4462 }
4463 
4464 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4465 {
4466 	struct bpf_map_info info;
4467 	__u32 len = sizeof(info), name_len;
4468 	int new_fd, err;
4469 	char *new_name;
4470 
4471 	memset(&info, 0, len);
4472 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4473 	if (err && errno == EINVAL)
4474 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4475 	if (err)
4476 		return libbpf_err(err);
4477 
4478 	name_len = strlen(info.name);
4479 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4480 		new_name = strdup(map->name);
4481 	else
4482 		new_name = strdup(info.name);
4483 
4484 	if (!new_name)
4485 		return libbpf_err(-errno);
4486 
4487 	/*
4488 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4489 	 * This is similar to what we do in ensure_good_fd(), but without
4490 	 * closing original FD.
4491 	 */
4492 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4493 	if (new_fd < 0) {
4494 		err = -errno;
4495 		goto err_free_new_name;
4496 	}
4497 
4498 	err = reuse_fd(map->fd, new_fd);
4499 	if (err)
4500 		goto err_free_new_name;
4501 
4502 	free(map->name);
4503 
4504 	map->name = new_name;
4505 	map->def.type = info.type;
4506 	map->def.key_size = info.key_size;
4507 	map->def.value_size = info.value_size;
4508 	map->def.max_entries = info.max_entries;
4509 	map->def.map_flags = info.map_flags;
4510 	map->btf_key_type_id = info.btf_key_type_id;
4511 	map->btf_value_type_id = info.btf_value_type_id;
4512 	map->reused = true;
4513 	map->map_extra = info.map_extra;
4514 
4515 	return 0;
4516 
4517 err_free_new_name:
4518 	free(new_name);
4519 	return libbpf_err(err);
4520 }
4521 
4522 __u32 bpf_map__max_entries(const struct bpf_map *map)
4523 {
4524 	return map->def.max_entries;
4525 }
4526 
4527 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4528 {
4529 	if (!bpf_map_type__is_map_in_map(map->def.type))
4530 		return errno = EINVAL, NULL;
4531 
4532 	return map->inner_map;
4533 }
4534 
4535 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4536 {
4537 	if (map->obj->loaded)
4538 		return libbpf_err(-EBUSY);
4539 
4540 	map->def.max_entries = max_entries;
4541 
4542 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4543 	if (map_is_ringbuf(map))
4544 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4545 
4546 	return 0;
4547 }
4548 
4549 static int
4550 bpf_object__probe_loading(struct bpf_object *obj)
4551 {
4552 	char *cp, errmsg[STRERR_BUFSIZE];
4553 	struct bpf_insn insns[] = {
4554 		BPF_MOV64_IMM(BPF_REG_0, 0),
4555 		BPF_EXIT_INSN(),
4556 	};
4557 	int ret, insn_cnt = ARRAY_SIZE(insns);
4558 
4559 	if (obj->gen_loader)
4560 		return 0;
4561 
4562 	ret = bump_rlimit_memlock();
4563 	if (ret)
4564 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4565 
4566 	/* make sure basic loading works */
4567 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4568 	if (ret < 0)
4569 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4570 	if (ret < 0) {
4571 		ret = errno;
4572 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4573 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4574 			"program. Make sure your kernel supports BPF "
4575 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4576 			"set to big enough value.\n", __func__, cp, ret);
4577 		return -ret;
4578 	}
4579 	close(ret);
4580 
4581 	return 0;
4582 }
4583 
4584 static int probe_fd(int fd)
4585 {
4586 	if (fd >= 0)
4587 		close(fd);
4588 	return fd >= 0;
4589 }
4590 
4591 static int probe_kern_prog_name(void)
4592 {
4593 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4594 	struct bpf_insn insns[] = {
4595 		BPF_MOV64_IMM(BPF_REG_0, 0),
4596 		BPF_EXIT_INSN(),
4597 	};
4598 	union bpf_attr attr;
4599 	int ret;
4600 
4601 	memset(&attr, 0, attr_sz);
4602 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4603 	attr.license = ptr_to_u64("GPL");
4604 	attr.insns = ptr_to_u64(insns);
4605 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4606 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4607 
4608 	/* make sure loading with name works */
4609 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4610 	return probe_fd(ret);
4611 }
4612 
4613 static int probe_kern_global_data(void)
4614 {
4615 	char *cp, errmsg[STRERR_BUFSIZE];
4616 	struct bpf_insn insns[] = {
4617 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4618 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4619 		BPF_MOV64_IMM(BPF_REG_0, 0),
4620 		BPF_EXIT_INSN(),
4621 	};
4622 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4623 
4624 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4625 	if (map < 0) {
4626 		ret = -errno;
4627 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4628 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4629 			__func__, cp, -ret);
4630 		return ret;
4631 	}
4632 
4633 	insns[0].imm = map;
4634 
4635 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4636 	close(map);
4637 	return probe_fd(ret);
4638 }
4639 
4640 static int probe_kern_btf(void)
4641 {
4642 	static const char strs[] = "\0int";
4643 	__u32 types[] = {
4644 		/* int */
4645 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4646 	};
4647 
4648 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4649 					     strs, sizeof(strs)));
4650 }
4651 
4652 static int probe_kern_btf_func(void)
4653 {
4654 	static const char strs[] = "\0int\0x\0a";
4655 	/* void x(int a) {} */
4656 	__u32 types[] = {
4657 		/* int */
4658 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4659 		/* FUNC_PROTO */                                /* [2] */
4660 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4661 		BTF_PARAM_ENC(7, 1),
4662 		/* FUNC x */                                    /* [3] */
4663 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4664 	};
4665 
4666 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4667 					     strs, sizeof(strs)));
4668 }
4669 
4670 static int probe_kern_btf_func_global(void)
4671 {
4672 	static const char strs[] = "\0int\0x\0a";
4673 	/* static void x(int a) {} */
4674 	__u32 types[] = {
4675 		/* int */
4676 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4677 		/* FUNC_PROTO */                                /* [2] */
4678 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4679 		BTF_PARAM_ENC(7, 1),
4680 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4681 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4682 	};
4683 
4684 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4685 					     strs, sizeof(strs)));
4686 }
4687 
4688 static int probe_kern_btf_datasec(void)
4689 {
4690 	static const char strs[] = "\0x\0.data";
4691 	/* static int a; */
4692 	__u32 types[] = {
4693 		/* int */
4694 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4695 		/* VAR x */                                     /* [2] */
4696 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4697 		BTF_VAR_STATIC,
4698 		/* DATASEC val */                               /* [3] */
4699 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4700 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4701 	};
4702 
4703 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4704 					     strs, sizeof(strs)));
4705 }
4706 
4707 static int probe_kern_btf_float(void)
4708 {
4709 	static const char strs[] = "\0float";
4710 	__u32 types[] = {
4711 		/* float */
4712 		BTF_TYPE_FLOAT_ENC(1, 4),
4713 	};
4714 
4715 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4716 					     strs, sizeof(strs)));
4717 }
4718 
4719 static int probe_kern_btf_decl_tag(void)
4720 {
4721 	static const char strs[] = "\0tag";
4722 	__u32 types[] = {
4723 		/* int */
4724 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4725 		/* VAR x */                                     /* [2] */
4726 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4727 		BTF_VAR_STATIC,
4728 		/* attr */
4729 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4730 	};
4731 
4732 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4733 					     strs, sizeof(strs)));
4734 }
4735 
4736 static int probe_kern_btf_type_tag(void)
4737 {
4738 	static const char strs[] = "\0tag";
4739 	__u32 types[] = {
4740 		/* int */
4741 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4742 		/* attr */
4743 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4744 		/* ptr */
4745 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4746 	};
4747 
4748 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 					     strs, sizeof(strs)));
4750 }
4751 
4752 static int probe_kern_array_mmap(void)
4753 {
4754 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4755 	int fd;
4756 
4757 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4758 	return probe_fd(fd);
4759 }
4760 
4761 static int probe_kern_exp_attach_type(void)
4762 {
4763 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4764 	struct bpf_insn insns[] = {
4765 		BPF_MOV64_IMM(BPF_REG_0, 0),
4766 		BPF_EXIT_INSN(),
4767 	};
4768 	int fd, insn_cnt = ARRAY_SIZE(insns);
4769 
4770 	/* use any valid combination of program type and (optional)
4771 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4772 	 * to see if kernel supports expected_attach_type field for
4773 	 * BPF_PROG_LOAD command
4774 	 */
4775 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4776 	return probe_fd(fd);
4777 }
4778 
4779 static int probe_kern_probe_read_kernel(void)
4780 {
4781 	struct bpf_insn insns[] = {
4782 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4783 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4784 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4785 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4786 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4787 		BPF_EXIT_INSN(),
4788 	};
4789 	int fd, insn_cnt = ARRAY_SIZE(insns);
4790 
4791 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4792 	return probe_fd(fd);
4793 }
4794 
4795 static int probe_prog_bind_map(void)
4796 {
4797 	char *cp, errmsg[STRERR_BUFSIZE];
4798 	struct bpf_insn insns[] = {
4799 		BPF_MOV64_IMM(BPF_REG_0, 0),
4800 		BPF_EXIT_INSN(),
4801 	};
4802 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4803 
4804 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4805 	if (map < 0) {
4806 		ret = -errno;
4807 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4808 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4809 			__func__, cp, -ret);
4810 		return ret;
4811 	}
4812 
4813 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4814 	if (prog < 0) {
4815 		close(map);
4816 		return 0;
4817 	}
4818 
4819 	ret = bpf_prog_bind_map(prog, map, NULL);
4820 
4821 	close(map);
4822 	close(prog);
4823 
4824 	return ret >= 0;
4825 }
4826 
4827 static int probe_module_btf(void)
4828 {
4829 	static const char strs[] = "\0int";
4830 	__u32 types[] = {
4831 		/* int */
4832 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4833 	};
4834 	struct bpf_btf_info info;
4835 	__u32 len = sizeof(info);
4836 	char name[16];
4837 	int fd, err;
4838 
4839 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4840 	if (fd < 0)
4841 		return 0; /* BTF not supported at all */
4842 
4843 	memset(&info, 0, sizeof(info));
4844 	info.name = ptr_to_u64(name);
4845 	info.name_len = sizeof(name);
4846 
4847 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4848 	 * kernel's module BTF support coincides with support for
4849 	 * name/name_len fields in struct bpf_btf_info.
4850 	 */
4851 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4852 	close(fd);
4853 	return !err;
4854 }
4855 
4856 static int probe_perf_link(void)
4857 {
4858 	struct bpf_insn insns[] = {
4859 		BPF_MOV64_IMM(BPF_REG_0, 0),
4860 		BPF_EXIT_INSN(),
4861 	};
4862 	int prog_fd, link_fd, err;
4863 
4864 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4865 				insns, ARRAY_SIZE(insns), NULL);
4866 	if (prog_fd < 0)
4867 		return -errno;
4868 
4869 	/* use invalid perf_event FD to get EBADF, if link is supported;
4870 	 * otherwise EINVAL should be returned
4871 	 */
4872 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4873 	err = -errno; /* close() can clobber errno */
4874 
4875 	if (link_fd >= 0)
4876 		close(link_fd);
4877 	close(prog_fd);
4878 
4879 	return link_fd < 0 && err == -EBADF;
4880 }
4881 
4882 static int probe_uprobe_multi_link(void)
4883 {
4884 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4885 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4886 	);
4887 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4888 	struct bpf_insn insns[] = {
4889 		BPF_MOV64_IMM(BPF_REG_0, 0),
4890 		BPF_EXIT_INSN(),
4891 	};
4892 	int prog_fd, link_fd, err;
4893 	unsigned long offset = 0;
4894 
4895 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4896 				insns, ARRAY_SIZE(insns), &load_opts);
4897 	if (prog_fd < 0)
4898 		return -errno;
4899 
4900 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4901 	link_opts.uprobe_multi.path = "/";
4902 	link_opts.uprobe_multi.offsets = &offset;
4903 	link_opts.uprobe_multi.cnt = 1;
4904 
4905 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4906 	err = -errno; /* close() can clobber errno */
4907 
4908 	if (link_fd >= 0)
4909 		close(link_fd);
4910 	close(prog_fd);
4911 
4912 	return link_fd < 0 && err == -EBADF;
4913 }
4914 
4915 static int probe_kern_bpf_cookie(void)
4916 {
4917 	struct bpf_insn insns[] = {
4918 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4919 		BPF_EXIT_INSN(),
4920 	};
4921 	int ret, insn_cnt = ARRAY_SIZE(insns);
4922 
4923 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4924 	return probe_fd(ret);
4925 }
4926 
4927 static int probe_kern_btf_enum64(void)
4928 {
4929 	static const char strs[] = "\0enum64";
4930 	__u32 types[] = {
4931 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4932 	};
4933 
4934 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4935 					     strs, sizeof(strs)));
4936 }
4937 
4938 static int probe_kern_syscall_wrapper(void);
4939 
4940 enum kern_feature_result {
4941 	FEAT_UNKNOWN = 0,
4942 	FEAT_SUPPORTED = 1,
4943 	FEAT_MISSING = 2,
4944 };
4945 
4946 typedef int (*feature_probe_fn)(void);
4947 
4948 static struct kern_feature_desc {
4949 	const char *desc;
4950 	feature_probe_fn probe;
4951 	enum kern_feature_result res;
4952 } feature_probes[__FEAT_CNT] = {
4953 	[FEAT_PROG_NAME] = {
4954 		"BPF program name", probe_kern_prog_name,
4955 	},
4956 	[FEAT_GLOBAL_DATA] = {
4957 		"global variables", probe_kern_global_data,
4958 	},
4959 	[FEAT_BTF] = {
4960 		"minimal BTF", probe_kern_btf,
4961 	},
4962 	[FEAT_BTF_FUNC] = {
4963 		"BTF functions", probe_kern_btf_func,
4964 	},
4965 	[FEAT_BTF_GLOBAL_FUNC] = {
4966 		"BTF global function", probe_kern_btf_func_global,
4967 	},
4968 	[FEAT_BTF_DATASEC] = {
4969 		"BTF data section and variable", probe_kern_btf_datasec,
4970 	},
4971 	[FEAT_ARRAY_MMAP] = {
4972 		"ARRAY map mmap()", probe_kern_array_mmap,
4973 	},
4974 	[FEAT_EXP_ATTACH_TYPE] = {
4975 		"BPF_PROG_LOAD expected_attach_type attribute",
4976 		probe_kern_exp_attach_type,
4977 	},
4978 	[FEAT_PROBE_READ_KERN] = {
4979 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4980 	},
4981 	[FEAT_PROG_BIND_MAP] = {
4982 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4983 	},
4984 	[FEAT_MODULE_BTF] = {
4985 		"module BTF support", probe_module_btf,
4986 	},
4987 	[FEAT_BTF_FLOAT] = {
4988 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4989 	},
4990 	[FEAT_PERF_LINK] = {
4991 		"BPF perf link support", probe_perf_link,
4992 	},
4993 	[FEAT_BTF_DECL_TAG] = {
4994 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4995 	},
4996 	[FEAT_BTF_TYPE_TAG] = {
4997 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4998 	},
4999 	[FEAT_MEMCG_ACCOUNT] = {
5000 		"memcg-based memory accounting", probe_memcg_account,
5001 	},
5002 	[FEAT_BPF_COOKIE] = {
5003 		"BPF cookie support", probe_kern_bpf_cookie,
5004 	},
5005 	[FEAT_BTF_ENUM64] = {
5006 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5007 	},
5008 	[FEAT_SYSCALL_WRAPPER] = {
5009 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5010 	},
5011 	[FEAT_UPROBE_MULTI_LINK] = {
5012 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
5013 	},
5014 };
5015 
5016 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5017 {
5018 	struct kern_feature_desc *feat = &feature_probes[feat_id];
5019 	int ret;
5020 
5021 	if (obj && obj->gen_loader)
5022 		/* To generate loader program assume the latest kernel
5023 		 * to avoid doing extra prog_load, map_create syscalls.
5024 		 */
5025 		return true;
5026 
5027 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5028 		ret = feat->probe();
5029 		if (ret > 0) {
5030 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5031 		} else if (ret == 0) {
5032 			WRITE_ONCE(feat->res, FEAT_MISSING);
5033 		} else {
5034 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5035 			WRITE_ONCE(feat->res, FEAT_MISSING);
5036 		}
5037 	}
5038 
5039 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5040 }
5041 
5042 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5043 {
5044 	struct bpf_map_info map_info;
5045 	char msg[STRERR_BUFSIZE];
5046 	__u32 map_info_len = sizeof(map_info);
5047 	int err;
5048 
5049 	memset(&map_info, 0, map_info_len);
5050 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5051 	if (err && errno == EINVAL)
5052 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5053 	if (err) {
5054 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5055 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5056 		return false;
5057 	}
5058 
5059 	return (map_info.type == map->def.type &&
5060 		map_info.key_size == map->def.key_size &&
5061 		map_info.value_size == map->def.value_size &&
5062 		map_info.max_entries == map->def.max_entries &&
5063 		map_info.map_flags == map->def.map_flags &&
5064 		map_info.map_extra == map->map_extra);
5065 }
5066 
5067 static int
5068 bpf_object__reuse_map(struct bpf_map *map)
5069 {
5070 	char *cp, errmsg[STRERR_BUFSIZE];
5071 	int err, pin_fd;
5072 
5073 	pin_fd = bpf_obj_get(map->pin_path);
5074 	if (pin_fd < 0) {
5075 		err = -errno;
5076 		if (err == -ENOENT) {
5077 			pr_debug("found no pinned map to reuse at '%s'\n",
5078 				 map->pin_path);
5079 			return 0;
5080 		}
5081 
5082 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5083 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5084 			map->pin_path, cp);
5085 		return err;
5086 	}
5087 
5088 	if (!map_is_reuse_compat(map, pin_fd)) {
5089 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5090 			map->pin_path);
5091 		close(pin_fd);
5092 		return -EINVAL;
5093 	}
5094 
5095 	err = bpf_map__reuse_fd(map, pin_fd);
5096 	close(pin_fd);
5097 	if (err)
5098 		return err;
5099 
5100 	map->pinned = true;
5101 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5102 
5103 	return 0;
5104 }
5105 
5106 static int
5107 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5108 {
5109 	enum libbpf_map_type map_type = map->libbpf_type;
5110 	char *cp, errmsg[STRERR_BUFSIZE];
5111 	int err, zero = 0;
5112 
5113 	if (obj->gen_loader) {
5114 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5115 					 map->mmaped, map->def.value_size);
5116 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5117 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5118 		return 0;
5119 	}
5120 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5121 	if (err) {
5122 		err = -errno;
5123 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5124 		pr_warn("Error setting initial map(%s) contents: %s\n",
5125 			map->name, cp);
5126 		return err;
5127 	}
5128 
5129 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5130 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5131 		err = bpf_map_freeze(map->fd);
5132 		if (err) {
5133 			err = -errno;
5134 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5135 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5136 				map->name, cp);
5137 			return err;
5138 		}
5139 	}
5140 	return 0;
5141 }
5142 
5143 static void bpf_map__destroy(struct bpf_map *map);
5144 
5145 static bool map_is_created(const struct bpf_map *map)
5146 {
5147 	return map->obj->loaded || map->reused;
5148 }
5149 
5150 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5151 {
5152 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5153 	struct bpf_map_def *def = &map->def;
5154 	const char *map_name = NULL;
5155 	int err = 0, map_fd;
5156 
5157 	if (kernel_supports(obj, FEAT_PROG_NAME))
5158 		map_name = map->name;
5159 	create_attr.map_ifindex = map->map_ifindex;
5160 	create_attr.map_flags = def->map_flags;
5161 	create_attr.numa_node = map->numa_node;
5162 	create_attr.map_extra = map->map_extra;
5163 
5164 	if (bpf_map__is_struct_ops(map))
5165 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5166 
5167 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5168 		create_attr.btf_fd = btf__fd(obj->btf);
5169 		create_attr.btf_key_type_id = map->btf_key_type_id;
5170 		create_attr.btf_value_type_id = map->btf_value_type_id;
5171 	}
5172 
5173 	if (bpf_map_type__is_map_in_map(def->type)) {
5174 		if (map->inner_map) {
5175 			err = bpf_object__create_map(obj, map->inner_map, true);
5176 			if (err) {
5177 				pr_warn("map '%s': failed to create inner map: %d\n",
5178 					map->name, err);
5179 				return err;
5180 			}
5181 			map->inner_map_fd = map->inner_map->fd;
5182 		}
5183 		if (map->inner_map_fd >= 0)
5184 			create_attr.inner_map_fd = map->inner_map_fd;
5185 	}
5186 
5187 	switch (def->type) {
5188 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5189 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5190 	case BPF_MAP_TYPE_STACK_TRACE:
5191 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5192 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5193 	case BPF_MAP_TYPE_DEVMAP:
5194 	case BPF_MAP_TYPE_DEVMAP_HASH:
5195 	case BPF_MAP_TYPE_CPUMAP:
5196 	case BPF_MAP_TYPE_XSKMAP:
5197 	case BPF_MAP_TYPE_SOCKMAP:
5198 	case BPF_MAP_TYPE_SOCKHASH:
5199 	case BPF_MAP_TYPE_QUEUE:
5200 	case BPF_MAP_TYPE_STACK:
5201 		create_attr.btf_fd = 0;
5202 		create_attr.btf_key_type_id = 0;
5203 		create_attr.btf_value_type_id = 0;
5204 		map->btf_key_type_id = 0;
5205 		map->btf_value_type_id = 0;
5206 	default:
5207 		break;
5208 	}
5209 
5210 	if (obj->gen_loader) {
5211 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5212 				    def->key_size, def->value_size, def->max_entries,
5213 				    &create_attr, is_inner ? -1 : map - obj->maps);
5214 		/* We keep pretenting we have valid FD to pass various fd >= 0
5215 		 * checks by just keeping original placeholder FDs in place.
5216 		 * See bpf_object__add_map() comment.
5217 		 * This placeholder fd will not be used with any syscall and
5218 		 * will be reset to -1 eventually.
5219 		 */
5220 		map_fd = map->fd;
5221 	} else {
5222 		map_fd = bpf_map_create(def->type, map_name,
5223 					def->key_size, def->value_size,
5224 					def->max_entries, &create_attr);
5225 	}
5226 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5227 		char *cp, errmsg[STRERR_BUFSIZE];
5228 
5229 		err = -errno;
5230 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5231 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5232 			map->name, cp, err);
5233 		create_attr.btf_fd = 0;
5234 		create_attr.btf_key_type_id = 0;
5235 		create_attr.btf_value_type_id = 0;
5236 		map->btf_key_type_id = 0;
5237 		map->btf_value_type_id = 0;
5238 		map_fd = bpf_map_create(def->type, map_name,
5239 					def->key_size, def->value_size,
5240 					def->max_entries, &create_attr);
5241 	}
5242 
5243 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5244 		if (obj->gen_loader)
5245 			map->inner_map->fd = -1;
5246 		bpf_map__destroy(map->inner_map);
5247 		zfree(&map->inner_map);
5248 	}
5249 
5250 	if (map_fd < 0)
5251 		return map_fd;
5252 
5253 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5254 	if (map->fd == map_fd)
5255 		return 0;
5256 
5257 	/* Keep placeholder FD value but now point it to the BPF map object.
5258 	 * This way everything that relied on this map's FD (e.g., relocated
5259 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5260 	 * map->fd stays valid but now point to what map_fd points to.
5261 	 */
5262 	return reuse_fd(map->fd, map_fd);
5263 }
5264 
5265 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5266 {
5267 	const struct bpf_map *targ_map;
5268 	unsigned int i;
5269 	int fd, err = 0;
5270 
5271 	for (i = 0; i < map->init_slots_sz; i++) {
5272 		if (!map->init_slots[i])
5273 			continue;
5274 
5275 		targ_map = map->init_slots[i];
5276 		fd = targ_map->fd;
5277 
5278 		if (obj->gen_loader) {
5279 			bpf_gen__populate_outer_map(obj->gen_loader,
5280 						    map - obj->maps, i,
5281 						    targ_map - obj->maps);
5282 		} else {
5283 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5284 		}
5285 		if (err) {
5286 			err = -errno;
5287 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5288 				map->name, i, targ_map->name, fd, err);
5289 			return err;
5290 		}
5291 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5292 			 map->name, i, targ_map->name, fd);
5293 	}
5294 
5295 	zfree(&map->init_slots);
5296 	map->init_slots_sz = 0;
5297 
5298 	return 0;
5299 }
5300 
5301 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5302 {
5303 	const struct bpf_program *targ_prog;
5304 	unsigned int i;
5305 	int fd, err;
5306 
5307 	if (obj->gen_loader)
5308 		return -ENOTSUP;
5309 
5310 	for (i = 0; i < map->init_slots_sz; i++) {
5311 		if (!map->init_slots[i])
5312 			continue;
5313 
5314 		targ_prog = map->init_slots[i];
5315 		fd = bpf_program__fd(targ_prog);
5316 
5317 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5318 		if (err) {
5319 			err = -errno;
5320 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5321 				map->name, i, targ_prog->name, fd, err);
5322 			return err;
5323 		}
5324 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5325 			 map->name, i, targ_prog->name, fd);
5326 	}
5327 
5328 	zfree(&map->init_slots);
5329 	map->init_slots_sz = 0;
5330 
5331 	return 0;
5332 }
5333 
5334 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5335 {
5336 	struct bpf_map *map;
5337 	int i, err;
5338 
5339 	for (i = 0; i < obj->nr_maps; i++) {
5340 		map = &obj->maps[i];
5341 
5342 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5343 			continue;
5344 
5345 		err = init_prog_array_slots(obj, map);
5346 		if (err < 0)
5347 			return err;
5348 	}
5349 	return 0;
5350 }
5351 
5352 static int map_set_def_max_entries(struct bpf_map *map)
5353 {
5354 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5355 		int nr_cpus;
5356 
5357 		nr_cpus = libbpf_num_possible_cpus();
5358 		if (nr_cpus < 0) {
5359 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5360 				map->name, nr_cpus);
5361 			return nr_cpus;
5362 		}
5363 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5364 		map->def.max_entries = nr_cpus;
5365 	}
5366 
5367 	return 0;
5368 }
5369 
5370 static int
5371 bpf_object__create_maps(struct bpf_object *obj)
5372 {
5373 	struct bpf_map *map;
5374 	char *cp, errmsg[STRERR_BUFSIZE];
5375 	unsigned int i, j;
5376 	int err;
5377 	bool retried;
5378 
5379 	for (i = 0; i < obj->nr_maps; i++) {
5380 		map = &obj->maps[i];
5381 
5382 		/* To support old kernels, we skip creating global data maps
5383 		 * (.rodata, .data, .kconfig, etc); later on, during program
5384 		 * loading, if we detect that at least one of the to-be-loaded
5385 		 * programs is referencing any global data map, we'll error
5386 		 * out with program name and relocation index logged.
5387 		 * This approach allows to accommodate Clang emitting
5388 		 * unnecessary .rodata.str1.1 sections for string literals,
5389 		 * but also it allows to have CO-RE applications that use
5390 		 * global variables in some of BPF programs, but not others.
5391 		 * If those global variable-using programs are not loaded at
5392 		 * runtime due to bpf_program__set_autoload(prog, false),
5393 		 * bpf_object loading will succeed just fine even on old
5394 		 * kernels.
5395 		 */
5396 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5397 			map->autocreate = false;
5398 
5399 		if (!map->autocreate) {
5400 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5401 			continue;
5402 		}
5403 
5404 		err = map_set_def_max_entries(map);
5405 		if (err)
5406 			goto err_out;
5407 
5408 		retried = false;
5409 retry:
5410 		if (map->pin_path) {
5411 			err = bpf_object__reuse_map(map);
5412 			if (err) {
5413 				pr_warn("map '%s': error reusing pinned map\n",
5414 					map->name);
5415 				goto err_out;
5416 			}
5417 			if (retried && map->fd < 0) {
5418 				pr_warn("map '%s': cannot find pinned map\n",
5419 					map->name);
5420 				err = -ENOENT;
5421 				goto err_out;
5422 			}
5423 		}
5424 
5425 		if (map->reused) {
5426 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5427 				 map->name, map->fd);
5428 		} else {
5429 			err = bpf_object__create_map(obj, map, false);
5430 			if (err)
5431 				goto err_out;
5432 
5433 			pr_debug("map '%s': created successfully, fd=%d\n",
5434 				 map->name, map->fd);
5435 
5436 			if (bpf_map__is_internal(map)) {
5437 				err = bpf_object__populate_internal_map(obj, map);
5438 				if (err < 0)
5439 					goto err_out;
5440 			}
5441 
5442 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5443 				err = init_map_in_map_slots(obj, map);
5444 				if (err < 0)
5445 					goto err_out;
5446 			}
5447 		}
5448 
5449 		if (map->pin_path && !map->pinned) {
5450 			err = bpf_map__pin(map, NULL);
5451 			if (err) {
5452 				if (!retried && err == -EEXIST) {
5453 					retried = true;
5454 					goto retry;
5455 				}
5456 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5457 					map->name, map->pin_path, err);
5458 				goto err_out;
5459 			}
5460 		}
5461 	}
5462 
5463 	return 0;
5464 
5465 err_out:
5466 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5467 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5468 	pr_perm_msg(err);
5469 	for (j = 0; j < i; j++)
5470 		zclose(obj->maps[j].fd);
5471 	return err;
5472 }
5473 
5474 static bool bpf_core_is_flavor_sep(const char *s)
5475 {
5476 	/* check X___Y name pattern, where X and Y are not underscores */
5477 	return s[0] != '_' &&				      /* X */
5478 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5479 	       s[4] != '_';				      /* Y */
5480 }
5481 
5482 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5483  * before last triple underscore. Struct name part after last triple
5484  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5485  */
5486 size_t bpf_core_essential_name_len(const char *name)
5487 {
5488 	size_t n = strlen(name);
5489 	int i;
5490 
5491 	for (i = n - 5; i >= 0; i--) {
5492 		if (bpf_core_is_flavor_sep(name + i))
5493 			return i + 1;
5494 	}
5495 	return n;
5496 }
5497 
5498 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5499 {
5500 	if (!cands)
5501 		return;
5502 
5503 	free(cands->cands);
5504 	free(cands);
5505 }
5506 
5507 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5508 		       size_t local_essent_len,
5509 		       const struct btf *targ_btf,
5510 		       const char *targ_btf_name,
5511 		       int targ_start_id,
5512 		       struct bpf_core_cand_list *cands)
5513 {
5514 	struct bpf_core_cand *new_cands, *cand;
5515 	const struct btf_type *t, *local_t;
5516 	const char *targ_name, *local_name;
5517 	size_t targ_essent_len;
5518 	int n, i;
5519 
5520 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5521 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5522 
5523 	n = btf__type_cnt(targ_btf);
5524 	for (i = targ_start_id; i < n; i++) {
5525 		t = btf__type_by_id(targ_btf, i);
5526 		if (!btf_kind_core_compat(t, local_t))
5527 			continue;
5528 
5529 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5530 		if (str_is_empty(targ_name))
5531 			continue;
5532 
5533 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5534 		if (targ_essent_len != local_essent_len)
5535 			continue;
5536 
5537 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5538 			continue;
5539 
5540 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5541 			 local_cand->id, btf_kind_str(local_t),
5542 			 local_name, i, btf_kind_str(t), targ_name,
5543 			 targ_btf_name);
5544 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5545 					      sizeof(*cands->cands));
5546 		if (!new_cands)
5547 			return -ENOMEM;
5548 
5549 		cand = &new_cands[cands->len];
5550 		cand->btf = targ_btf;
5551 		cand->id = i;
5552 
5553 		cands->cands = new_cands;
5554 		cands->len++;
5555 	}
5556 	return 0;
5557 }
5558 
5559 static int load_module_btfs(struct bpf_object *obj)
5560 {
5561 	struct bpf_btf_info info;
5562 	struct module_btf *mod_btf;
5563 	struct btf *btf;
5564 	char name[64];
5565 	__u32 id = 0, len;
5566 	int err, fd;
5567 
5568 	if (obj->btf_modules_loaded)
5569 		return 0;
5570 
5571 	if (obj->gen_loader)
5572 		return 0;
5573 
5574 	/* don't do this again, even if we find no module BTFs */
5575 	obj->btf_modules_loaded = true;
5576 
5577 	/* kernel too old to support module BTFs */
5578 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5579 		return 0;
5580 
5581 	while (true) {
5582 		err = bpf_btf_get_next_id(id, &id);
5583 		if (err && errno == ENOENT)
5584 			return 0;
5585 		if (err && errno == EPERM) {
5586 			pr_debug("skipping module BTFs loading, missing privileges\n");
5587 			return 0;
5588 		}
5589 		if (err) {
5590 			err = -errno;
5591 			pr_warn("failed to iterate BTF objects: %d\n", err);
5592 			return err;
5593 		}
5594 
5595 		fd = bpf_btf_get_fd_by_id(id);
5596 		if (fd < 0) {
5597 			if (errno == ENOENT)
5598 				continue; /* expected race: BTF was unloaded */
5599 			err = -errno;
5600 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5601 			return err;
5602 		}
5603 
5604 		len = sizeof(info);
5605 		memset(&info, 0, sizeof(info));
5606 		info.name = ptr_to_u64(name);
5607 		info.name_len = sizeof(name);
5608 
5609 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5610 		if (err) {
5611 			err = -errno;
5612 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5613 			goto err_out;
5614 		}
5615 
5616 		/* ignore non-module BTFs */
5617 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5618 			close(fd);
5619 			continue;
5620 		}
5621 
5622 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5623 		err = libbpf_get_error(btf);
5624 		if (err) {
5625 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5626 				name, id, err);
5627 			goto err_out;
5628 		}
5629 
5630 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5631 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5632 		if (err)
5633 			goto err_out;
5634 
5635 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5636 
5637 		mod_btf->btf = btf;
5638 		mod_btf->id = id;
5639 		mod_btf->fd = fd;
5640 		mod_btf->name = strdup(name);
5641 		if (!mod_btf->name) {
5642 			err = -ENOMEM;
5643 			goto err_out;
5644 		}
5645 		continue;
5646 
5647 err_out:
5648 		close(fd);
5649 		return err;
5650 	}
5651 
5652 	return 0;
5653 }
5654 
5655 static struct bpf_core_cand_list *
5656 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5657 {
5658 	struct bpf_core_cand local_cand = {};
5659 	struct bpf_core_cand_list *cands;
5660 	const struct btf *main_btf;
5661 	const struct btf_type *local_t;
5662 	const char *local_name;
5663 	size_t local_essent_len;
5664 	int err, i;
5665 
5666 	local_cand.btf = local_btf;
5667 	local_cand.id = local_type_id;
5668 	local_t = btf__type_by_id(local_btf, local_type_id);
5669 	if (!local_t)
5670 		return ERR_PTR(-EINVAL);
5671 
5672 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5673 	if (str_is_empty(local_name))
5674 		return ERR_PTR(-EINVAL);
5675 	local_essent_len = bpf_core_essential_name_len(local_name);
5676 
5677 	cands = calloc(1, sizeof(*cands));
5678 	if (!cands)
5679 		return ERR_PTR(-ENOMEM);
5680 
5681 	/* Attempt to find target candidates in vmlinux BTF first */
5682 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5683 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5684 	if (err)
5685 		goto err_out;
5686 
5687 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5688 	if (cands->len)
5689 		return cands;
5690 
5691 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5692 	if (obj->btf_vmlinux_override)
5693 		return cands;
5694 
5695 	/* now look through module BTFs, trying to still find candidates */
5696 	err = load_module_btfs(obj);
5697 	if (err)
5698 		goto err_out;
5699 
5700 	for (i = 0; i < obj->btf_module_cnt; i++) {
5701 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5702 					 obj->btf_modules[i].btf,
5703 					 obj->btf_modules[i].name,
5704 					 btf__type_cnt(obj->btf_vmlinux),
5705 					 cands);
5706 		if (err)
5707 			goto err_out;
5708 	}
5709 
5710 	return cands;
5711 err_out:
5712 	bpf_core_free_cands(cands);
5713 	return ERR_PTR(err);
5714 }
5715 
5716 /* Check local and target types for compatibility. This check is used for
5717  * type-based CO-RE relocations and follow slightly different rules than
5718  * field-based relocations. This function assumes that root types were already
5719  * checked for name match. Beyond that initial root-level name check, names
5720  * are completely ignored. Compatibility rules are as follows:
5721  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5722  *     kind should match for local and target types (i.e., STRUCT is not
5723  *     compatible with UNION);
5724  *   - for ENUMs, the size is ignored;
5725  *   - for INT, size and signedness are ignored;
5726  *   - for ARRAY, dimensionality is ignored, element types are checked for
5727  *     compatibility recursively;
5728  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5729  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5730  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5731  *     number of input args and compatible return and argument types.
5732  * These rules are not set in stone and probably will be adjusted as we get
5733  * more experience with using BPF CO-RE relocations.
5734  */
5735 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5736 			      const struct btf *targ_btf, __u32 targ_id)
5737 {
5738 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5739 }
5740 
5741 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5742 			 const struct btf *targ_btf, __u32 targ_id)
5743 {
5744 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5745 }
5746 
5747 static size_t bpf_core_hash_fn(const long key, void *ctx)
5748 {
5749 	return key;
5750 }
5751 
5752 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5753 {
5754 	return k1 == k2;
5755 }
5756 
5757 static int record_relo_core(struct bpf_program *prog,
5758 			    const struct bpf_core_relo *core_relo, int insn_idx)
5759 {
5760 	struct reloc_desc *relos, *relo;
5761 
5762 	relos = libbpf_reallocarray(prog->reloc_desc,
5763 				    prog->nr_reloc + 1, sizeof(*relos));
5764 	if (!relos)
5765 		return -ENOMEM;
5766 	relo = &relos[prog->nr_reloc];
5767 	relo->type = RELO_CORE;
5768 	relo->insn_idx = insn_idx;
5769 	relo->core_relo = core_relo;
5770 	prog->reloc_desc = relos;
5771 	prog->nr_reloc++;
5772 	return 0;
5773 }
5774 
5775 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5776 {
5777 	struct reloc_desc *relo;
5778 	int i;
5779 
5780 	for (i = 0; i < prog->nr_reloc; i++) {
5781 		relo = &prog->reloc_desc[i];
5782 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5783 			continue;
5784 
5785 		return relo->core_relo;
5786 	}
5787 
5788 	return NULL;
5789 }
5790 
5791 static int bpf_core_resolve_relo(struct bpf_program *prog,
5792 				 const struct bpf_core_relo *relo,
5793 				 int relo_idx,
5794 				 const struct btf *local_btf,
5795 				 struct hashmap *cand_cache,
5796 				 struct bpf_core_relo_res *targ_res)
5797 {
5798 	struct bpf_core_spec specs_scratch[3] = {};
5799 	struct bpf_core_cand_list *cands = NULL;
5800 	const char *prog_name = prog->name;
5801 	const struct btf_type *local_type;
5802 	const char *local_name;
5803 	__u32 local_id = relo->type_id;
5804 	int err;
5805 
5806 	local_type = btf__type_by_id(local_btf, local_id);
5807 	if (!local_type)
5808 		return -EINVAL;
5809 
5810 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5811 	if (!local_name)
5812 		return -EINVAL;
5813 
5814 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5815 	    !hashmap__find(cand_cache, local_id, &cands)) {
5816 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5817 		if (IS_ERR(cands)) {
5818 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5819 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5820 				local_name, PTR_ERR(cands));
5821 			return PTR_ERR(cands);
5822 		}
5823 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5824 		if (err) {
5825 			bpf_core_free_cands(cands);
5826 			return err;
5827 		}
5828 	}
5829 
5830 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5831 				       targ_res);
5832 }
5833 
5834 static int
5835 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5836 {
5837 	const struct btf_ext_info_sec *sec;
5838 	struct bpf_core_relo_res targ_res;
5839 	const struct bpf_core_relo *rec;
5840 	const struct btf_ext_info *seg;
5841 	struct hashmap_entry *entry;
5842 	struct hashmap *cand_cache = NULL;
5843 	struct bpf_program *prog;
5844 	struct bpf_insn *insn;
5845 	const char *sec_name;
5846 	int i, err = 0, insn_idx, sec_idx, sec_num;
5847 
5848 	if (obj->btf_ext->core_relo_info.len == 0)
5849 		return 0;
5850 
5851 	if (targ_btf_path) {
5852 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5853 		err = libbpf_get_error(obj->btf_vmlinux_override);
5854 		if (err) {
5855 			pr_warn("failed to parse target BTF: %d\n", err);
5856 			return err;
5857 		}
5858 	}
5859 
5860 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5861 	if (IS_ERR(cand_cache)) {
5862 		err = PTR_ERR(cand_cache);
5863 		goto out;
5864 	}
5865 
5866 	seg = &obj->btf_ext->core_relo_info;
5867 	sec_num = 0;
5868 	for_each_btf_ext_sec(seg, sec) {
5869 		sec_idx = seg->sec_idxs[sec_num];
5870 		sec_num++;
5871 
5872 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5873 		if (str_is_empty(sec_name)) {
5874 			err = -EINVAL;
5875 			goto out;
5876 		}
5877 
5878 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5879 
5880 		for_each_btf_ext_rec(seg, sec, i, rec) {
5881 			if (rec->insn_off % BPF_INSN_SZ)
5882 				return -EINVAL;
5883 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5884 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5885 			if (!prog) {
5886 				/* When __weak subprog is "overridden" by another instance
5887 				 * of the subprog from a different object file, linker still
5888 				 * appends all the .BTF.ext info that used to belong to that
5889 				 * eliminated subprogram.
5890 				 * This is similar to what x86-64 linker does for relocations.
5891 				 * So just ignore such relocations just like we ignore
5892 				 * subprog instructions when discovering subprograms.
5893 				 */
5894 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5895 					 sec_name, i, insn_idx);
5896 				continue;
5897 			}
5898 			/* no need to apply CO-RE relocation if the program is
5899 			 * not going to be loaded
5900 			 */
5901 			if (!prog->autoload)
5902 				continue;
5903 
5904 			/* adjust insn_idx from section frame of reference to the local
5905 			 * program's frame of reference; (sub-)program code is not yet
5906 			 * relocated, so it's enough to just subtract in-section offset
5907 			 */
5908 			insn_idx = insn_idx - prog->sec_insn_off;
5909 			if (insn_idx >= prog->insns_cnt)
5910 				return -EINVAL;
5911 			insn = &prog->insns[insn_idx];
5912 
5913 			err = record_relo_core(prog, rec, insn_idx);
5914 			if (err) {
5915 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5916 					prog->name, i, err);
5917 				goto out;
5918 			}
5919 
5920 			if (prog->obj->gen_loader)
5921 				continue;
5922 
5923 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5924 			if (err) {
5925 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5926 					prog->name, i, err);
5927 				goto out;
5928 			}
5929 
5930 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5931 			if (err) {
5932 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5933 					prog->name, i, insn_idx, err);
5934 				goto out;
5935 			}
5936 		}
5937 	}
5938 
5939 out:
5940 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5941 	btf__free(obj->btf_vmlinux_override);
5942 	obj->btf_vmlinux_override = NULL;
5943 
5944 	if (!IS_ERR_OR_NULL(cand_cache)) {
5945 		hashmap__for_each_entry(cand_cache, entry, i) {
5946 			bpf_core_free_cands(entry->pvalue);
5947 		}
5948 		hashmap__free(cand_cache);
5949 	}
5950 	return err;
5951 }
5952 
5953 /* base map load ldimm64 special constant, used also for log fixup logic */
5954 #define POISON_LDIMM64_MAP_BASE 2001000000
5955 #define POISON_LDIMM64_MAP_PFX "200100"
5956 
5957 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5958 			       int insn_idx, struct bpf_insn *insn,
5959 			       int map_idx, const struct bpf_map *map)
5960 {
5961 	int i;
5962 
5963 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5964 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5965 
5966 	/* we turn single ldimm64 into two identical invalid calls */
5967 	for (i = 0; i < 2; i++) {
5968 		insn->code = BPF_JMP | BPF_CALL;
5969 		insn->dst_reg = 0;
5970 		insn->src_reg = 0;
5971 		insn->off = 0;
5972 		/* if this instruction is reachable (not a dead code),
5973 		 * verifier will complain with something like:
5974 		 * invalid func unknown#2001000123
5975 		 * where lower 123 is map index into obj->maps[] array
5976 		 */
5977 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5978 
5979 		insn++;
5980 	}
5981 }
5982 
5983 /* unresolved kfunc call special constant, used also for log fixup logic */
5984 #define POISON_CALL_KFUNC_BASE 2002000000
5985 #define POISON_CALL_KFUNC_PFX "2002"
5986 
5987 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5988 			      int insn_idx, struct bpf_insn *insn,
5989 			      int ext_idx, const struct extern_desc *ext)
5990 {
5991 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5992 		 prog->name, relo_idx, insn_idx, ext->name);
5993 
5994 	/* we turn kfunc call into invalid helper call with identifiable constant */
5995 	insn->code = BPF_JMP | BPF_CALL;
5996 	insn->dst_reg = 0;
5997 	insn->src_reg = 0;
5998 	insn->off = 0;
5999 	/* if this instruction is reachable (not a dead code),
6000 	 * verifier will complain with something like:
6001 	 * invalid func unknown#2001000123
6002 	 * where lower 123 is extern index into obj->externs[] array
6003 	 */
6004 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6005 }
6006 
6007 /* Relocate data references within program code:
6008  *  - map references;
6009  *  - global variable references;
6010  *  - extern references.
6011  */
6012 static int
6013 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6014 {
6015 	int i;
6016 
6017 	for (i = 0; i < prog->nr_reloc; i++) {
6018 		struct reloc_desc *relo = &prog->reloc_desc[i];
6019 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6020 		const struct bpf_map *map;
6021 		struct extern_desc *ext;
6022 
6023 		switch (relo->type) {
6024 		case RELO_LD64:
6025 			map = &obj->maps[relo->map_idx];
6026 			if (obj->gen_loader) {
6027 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6028 				insn[0].imm = relo->map_idx;
6029 			} else if (map->autocreate) {
6030 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6031 				insn[0].imm = map->fd;
6032 			} else {
6033 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6034 						   relo->map_idx, map);
6035 			}
6036 			break;
6037 		case RELO_DATA:
6038 			map = &obj->maps[relo->map_idx];
6039 			insn[1].imm = insn[0].imm + relo->sym_off;
6040 			if (obj->gen_loader) {
6041 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6042 				insn[0].imm = relo->map_idx;
6043 			} else if (map->autocreate) {
6044 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6045 				insn[0].imm = map->fd;
6046 			} else {
6047 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6048 						   relo->map_idx, map);
6049 			}
6050 			break;
6051 		case RELO_EXTERN_LD64:
6052 			ext = &obj->externs[relo->ext_idx];
6053 			if (ext->type == EXT_KCFG) {
6054 				if (obj->gen_loader) {
6055 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6056 					insn[0].imm = obj->kconfig_map_idx;
6057 				} else {
6058 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6059 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6060 				}
6061 				insn[1].imm = ext->kcfg.data_off;
6062 			} else /* EXT_KSYM */ {
6063 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6064 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6065 					insn[0].imm = ext->ksym.kernel_btf_id;
6066 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6067 				} else { /* typeless ksyms or unresolved typed ksyms */
6068 					insn[0].imm = (__u32)ext->ksym.addr;
6069 					insn[1].imm = ext->ksym.addr >> 32;
6070 				}
6071 			}
6072 			break;
6073 		case RELO_EXTERN_CALL:
6074 			ext = &obj->externs[relo->ext_idx];
6075 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6076 			if (ext->is_set) {
6077 				insn[0].imm = ext->ksym.kernel_btf_id;
6078 				insn[0].off = ext->ksym.btf_fd_idx;
6079 			} else { /* unresolved weak kfunc call */
6080 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6081 						  relo->ext_idx, ext);
6082 			}
6083 			break;
6084 		case RELO_SUBPROG_ADDR:
6085 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6086 				pr_warn("prog '%s': relo #%d: bad insn\n",
6087 					prog->name, i);
6088 				return -EINVAL;
6089 			}
6090 			/* handled already */
6091 			break;
6092 		case RELO_CALL:
6093 			/* handled already */
6094 			break;
6095 		case RELO_CORE:
6096 			/* will be handled by bpf_program_record_relos() */
6097 			break;
6098 		default:
6099 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6100 				prog->name, i, relo->type);
6101 			return -EINVAL;
6102 		}
6103 	}
6104 
6105 	return 0;
6106 }
6107 
6108 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6109 				    const struct bpf_program *prog,
6110 				    const struct btf_ext_info *ext_info,
6111 				    void **prog_info, __u32 *prog_rec_cnt,
6112 				    __u32 *prog_rec_sz)
6113 {
6114 	void *copy_start = NULL, *copy_end = NULL;
6115 	void *rec, *rec_end, *new_prog_info;
6116 	const struct btf_ext_info_sec *sec;
6117 	size_t old_sz, new_sz;
6118 	int i, sec_num, sec_idx, off_adj;
6119 
6120 	sec_num = 0;
6121 	for_each_btf_ext_sec(ext_info, sec) {
6122 		sec_idx = ext_info->sec_idxs[sec_num];
6123 		sec_num++;
6124 		if (prog->sec_idx != sec_idx)
6125 			continue;
6126 
6127 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6128 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6129 
6130 			if (insn_off < prog->sec_insn_off)
6131 				continue;
6132 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6133 				break;
6134 
6135 			if (!copy_start)
6136 				copy_start = rec;
6137 			copy_end = rec + ext_info->rec_size;
6138 		}
6139 
6140 		if (!copy_start)
6141 			return -ENOENT;
6142 
6143 		/* append func/line info of a given (sub-)program to the main
6144 		 * program func/line info
6145 		 */
6146 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6147 		new_sz = old_sz + (copy_end - copy_start);
6148 		new_prog_info = realloc(*prog_info, new_sz);
6149 		if (!new_prog_info)
6150 			return -ENOMEM;
6151 		*prog_info = new_prog_info;
6152 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6153 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6154 
6155 		/* Kernel instruction offsets are in units of 8-byte
6156 		 * instructions, while .BTF.ext instruction offsets generated
6157 		 * by Clang are in units of bytes. So convert Clang offsets
6158 		 * into kernel offsets and adjust offset according to program
6159 		 * relocated position.
6160 		 */
6161 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6162 		rec = new_prog_info + old_sz;
6163 		rec_end = new_prog_info + new_sz;
6164 		for (; rec < rec_end; rec += ext_info->rec_size) {
6165 			__u32 *insn_off = rec;
6166 
6167 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6168 		}
6169 		*prog_rec_sz = ext_info->rec_size;
6170 		return 0;
6171 	}
6172 
6173 	return -ENOENT;
6174 }
6175 
6176 static int
6177 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6178 			      struct bpf_program *main_prog,
6179 			      const struct bpf_program *prog)
6180 {
6181 	int err;
6182 
6183 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6184 	 * support func/line info
6185 	 */
6186 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6187 		return 0;
6188 
6189 	/* only attempt func info relocation if main program's func_info
6190 	 * relocation was successful
6191 	 */
6192 	if (main_prog != prog && !main_prog->func_info)
6193 		goto line_info;
6194 
6195 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6196 				       &main_prog->func_info,
6197 				       &main_prog->func_info_cnt,
6198 				       &main_prog->func_info_rec_size);
6199 	if (err) {
6200 		if (err != -ENOENT) {
6201 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6202 				prog->name, err);
6203 			return err;
6204 		}
6205 		if (main_prog->func_info) {
6206 			/*
6207 			 * Some info has already been found but has problem
6208 			 * in the last btf_ext reloc. Must have to error out.
6209 			 */
6210 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6211 			return err;
6212 		}
6213 		/* Have problem loading the very first info. Ignore the rest. */
6214 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6215 			prog->name);
6216 	}
6217 
6218 line_info:
6219 	/* don't relocate line info if main program's relocation failed */
6220 	if (main_prog != prog && !main_prog->line_info)
6221 		return 0;
6222 
6223 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6224 				       &main_prog->line_info,
6225 				       &main_prog->line_info_cnt,
6226 				       &main_prog->line_info_rec_size);
6227 	if (err) {
6228 		if (err != -ENOENT) {
6229 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6230 				prog->name, err);
6231 			return err;
6232 		}
6233 		if (main_prog->line_info) {
6234 			/*
6235 			 * Some info has already been found but has problem
6236 			 * in the last btf_ext reloc. Must have to error out.
6237 			 */
6238 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6239 			return err;
6240 		}
6241 		/* Have problem loading the very first info. Ignore the rest. */
6242 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6243 			prog->name);
6244 	}
6245 	return 0;
6246 }
6247 
6248 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6249 {
6250 	size_t insn_idx = *(const size_t *)key;
6251 	const struct reloc_desc *relo = elem;
6252 
6253 	if (insn_idx == relo->insn_idx)
6254 		return 0;
6255 	return insn_idx < relo->insn_idx ? -1 : 1;
6256 }
6257 
6258 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6259 {
6260 	if (!prog->nr_reloc)
6261 		return NULL;
6262 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6263 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6264 }
6265 
6266 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6267 {
6268 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6269 	struct reloc_desc *relos;
6270 	int i;
6271 
6272 	if (main_prog == subprog)
6273 		return 0;
6274 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6275 	/* if new count is zero, reallocarray can return a valid NULL result;
6276 	 * in this case the previous pointer will be freed, so we *have to*
6277 	 * reassign old pointer to the new value (even if it's NULL)
6278 	 */
6279 	if (!relos && new_cnt)
6280 		return -ENOMEM;
6281 	if (subprog->nr_reloc)
6282 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6283 		       sizeof(*relos) * subprog->nr_reloc);
6284 
6285 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6286 		relos[i].insn_idx += subprog->sub_insn_off;
6287 	/* After insn_idx adjustment the 'relos' array is still sorted
6288 	 * by insn_idx and doesn't break bsearch.
6289 	 */
6290 	main_prog->reloc_desc = relos;
6291 	main_prog->nr_reloc = new_cnt;
6292 	return 0;
6293 }
6294 
6295 static int
6296 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6297 				struct bpf_program *subprog)
6298 {
6299        struct bpf_insn *insns;
6300        size_t new_cnt;
6301        int err;
6302 
6303        subprog->sub_insn_off = main_prog->insns_cnt;
6304 
6305        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6306        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6307        if (!insns) {
6308                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6309                return -ENOMEM;
6310        }
6311        main_prog->insns = insns;
6312        main_prog->insns_cnt = new_cnt;
6313 
6314        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6315               subprog->insns_cnt * sizeof(*insns));
6316 
6317        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6318                 main_prog->name, subprog->insns_cnt, subprog->name);
6319 
6320        /* The subprog insns are now appended. Append its relos too. */
6321        err = append_subprog_relos(main_prog, subprog);
6322        if (err)
6323                return err;
6324        return 0;
6325 }
6326 
6327 static int
6328 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6329 		       struct bpf_program *prog)
6330 {
6331 	size_t sub_insn_idx, insn_idx;
6332 	struct bpf_program *subprog;
6333 	struct reloc_desc *relo;
6334 	struct bpf_insn *insn;
6335 	int err;
6336 
6337 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6338 	if (err)
6339 		return err;
6340 
6341 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6342 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6343 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6344 			continue;
6345 
6346 		relo = find_prog_insn_relo(prog, insn_idx);
6347 		if (relo && relo->type == RELO_EXTERN_CALL)
6348 			/* kfunc relocations will be handled later
6349 			 * in bpf_object__relocate_data()
6350 			 */
6351 			continue;
6352 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6353 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6354 				prog->name, insn_idx, relo->type);
6355 			return -LIBBPF_ERRNO__RELOC;
6356 		}
6357 		if (relo) {
6358 			/* sub-program instruction index is a combination of
6359 			 * an offset of a symbol pointed to by relocation and
6360 			 * call instruction's imm field; for global functions,
6361 			 * call always has imm = -1, but for static functions
6362 			 * relocation is against STT_SECTION and insn->imm
6363 			 * points to a start of a static function
6364 			 *
6365 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6366 			 * the byte offset in the corresponding section.
6367 			 */
6368 			if (relo->type == RELO_CALL)
6369 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6370 			else
6371 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6372 		} else if (insn_is_pseudo_func(insn)) {
6373 			/*
6374 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6375 			 * functions are in the same section, so it shouldn't reach here.
6376 			 */
6377 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6378 				prog->name, insn_idx);
6379 			return -LIBBPF_ERRNO__RELOC;
6380 		} else {
6381 			/* if subprogram call is to a static function within
6382 			 * the same ELF section, there won't be any relocation
6383 			 * emitted, but it also means there is no additional
6384 			 * offset necessary, insns->imm is relative to
6385 			 * instruction's original position within the section
6386 			 */
6387 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6388 		}
6389 
6390 		/* we enforce that sub-programs should be in .text section */
6391 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6392 		if (!subprog) {
6393 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6394 				prog->name);
6395 			return -LIBBPF_ERRNO__RELOC;
6396 		}
6397 
6398 		/* if it's the first call instruction calling into this
6399 		 * subprogram (meaning this subprog hasn't been processed
6400 		 * yet) within the context of current main program:
6401 		 *   - append it at the end of main program's instructions blog;
6402 		 *   - process is recursively, while current program is put on hold;
6403 		 *   - if that subprogram calls some other not yet processes
6404 		 *   subprogram, same thing will happen recursively until
6405 		 *   there are no more unprocesses subprograms left to append
6406 		 *   and relocate.
6407 		 */
6408 		if (subprog->sub_insn_off == 0) {
6409 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6410 			if (err)
6411 				return err;
6412 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6413 			if (err)
6414 				return err;
6415 		}
6416 
6417 		/* main_prog->insns memory could have been re-allocated, so
6418 		 * calculate pointer again
6419 		 */
6420 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6421 		/* calculate correct instruction position within current main
6422 		 * prog; each main prog can have a different set of
6423 		 * subprograms appended (potentially in different order as
6424 		 * well), so position of any subprog can be different for
6425 		 * different main programs
6426 		 */
6427 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6428 
6429 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6430 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6431 	}
6432 
6433 	return 0;
6434 }
6435 
6436 /*
6437  * Relocate sub-program calls.
6438  *
6439  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6440  * main prog) is processed separately. For each subprog (non-entry functions,
6441  * that can be called from either entry progs or other subprogs) gets their
6442  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6443  * hasn't been yet appended and relocated within current main prog. Once its
6444  * relocated, sub_insn_off will point at the position within current main prog
6445  * where given subprog was appended. This will further be used to relocate all
6446  * the call instructions jumping into this subprog.
6447  *
6448  * We start with main program and process all call instructions. If the call
6449  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6450  * is zero), subprog instructions are appended at the end of main program's
6451  * instruction array. Then main program is "put on hold" while we recursively
6452  * process newly appended subprogram. If that subprogram calls into another
6453  * subprogram that hasn't been appended, new subprogram is appended again to
6454  * the *main* prog's instructions (subprog's instructions are always left
6455  * untouched, as they need to be in unmodified state for subsequent main progs
6456  * and subprog instructions are always sent only as part of a main prog) and
6457  * the process continues recursively. Once all the subprogs called from a main
6458  * prog or any of its subprogs are appended (and relocated), all their
6459  * positions within finalized instructions array are known, so it's easy to
6460  * rewrite call instructions with correct relative offsets, corresponding to
6461  * desired target subprog.
6462  *
6463  * Its important to realize that some subprogs might not be called from some
6464  * main prog and any of its called/used subprogs. Those will keep their
6465  * subprog->sub_insn_off as zero at all times and won't be appended to current
6466  * main prog and won't be relocated within the context of current main prog.
6467  * They might still be used from other main progs later.
6468  *
6469  * Visually this process can be shown as below. Suppose we have two main
6470  * programs mainA and mainB and BPF object contains three subprogs: subA,
6471  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6472  * subC both call subB:
6473  *
6474  *        +--------+ +-------+
6475  *        |        v v       |
6476  *     +--+---+ +--+-+-+ +---+--+
6477  *     | subA | | subB | | subC |
6478  *     +--+---+ +------+ +---+--+
6479  *        ^                  ^
6480  *        |                  |
6481  *    +---+-------+   +------+----+
6482  *    |   mainA   |   |   mainB   |
6483  *    +-----------+   +-----------+
6484  *
6485  * We'll start relocating mainA, will find subA, append it and start
6486  * processing sub A recursively:
6487  *
6488  *    +-----------+------+
6489  *    |   mainA   | subA |
6490  *    +-----------+------+
6491  *
6492  * At this point we notice that subB is used from subA, so we append it and
6493  * relocate (there are no further subcalls from subB):
6494  *
6495  *    +-----------+------+------+
6496  *    |   mainA   | subA | subB |
6497  *    +-----------+------+------+
6498  *
6499  * At this point, we relocate subA calls, then go one level up and finish with
6500  * relocatin mainA calls. mainA is done.
6501  *
6502  * For mainB process is similar but results in different order. We start with
6503  * mainB and skip subA and subB, as mainB never calls them (at least
6504  * directly), but we see subC is needed, so we append and start processing it:
6505  *
6506  *    +-----------+------+
6507  *    |   mainB   | subC |
6508  *    +-----------+------+
6509  * Now we see subC needs subB, so we go back to it, append and relocate it:
6510  *
6511  *    +-----------+------+------+
6512  *    |   mainB   | subC | subB |
6513  *    +-----------+------+------+
6514  *
6515  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6516  */
6517 static int
6518 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6519 {
6520 	struct bpf_program *subprog;
6521 	int i, err;
6522 
6523 	/* mark all subprogs as not relocated (yet) within the context of
6524 	 * current main program
6525 	 */
6526 	for (i = 0; i < obj->nr_programs; i++) {
6527 		subprog = &obj->programs[i];
6528 		if (!prog_is_subprog(obj, subprog))
6529 			continue;
6530 
6531 		subprog->sub_insn_off = 0;
6532 	}
6533 
6534 	err = bpf_object__reloc_code(obj, prog, prog);
6535 	if (err)
6536 		return err;
6537 
6538 	return 0;
6539 }
6540 
6541 static void
6542 bpf_object__free_relocs(struct bpf_object *obj)
6543 {
6544 	struct bpf_program *prog;
6545 	int i;
6546 
6547 	/* free up relocation descriptors */
6548 	for (i = 0; i < obj->nr_programs; i++) {
6549 		prog = &obj->programs[i];
6550 		zfree(&prog->reloc_desc);
6551 		prog->nr_reloc = 0;
6552 	}
6553 }
6554 
6555 static int cmp_relocs(const void *_a, const void *_b)
6556 {
6557 	const struct reloc_desc *a = _a;
6558 	const struct reloc_desc *b = _b;
6559 
6560 	if (a->insn_idx != b->insn_idx)
6561 		return a->insn_idx < b->insn_idx ? -1 : 1;
6562 
6563 	/* no two relocations should have the same insn_idx, but ... */
6564 	if (a->type != b->type)
6565 		return a->type < b->type ? -1 : 1;
6566 
6567 	return 0;
6568 }
6569 
6570 static void bpf_object__sort_relos(struct bpf_object *obj)
6571 {
6572 	int i;
6573 
6574 	for (i = 0; i < obj->nr_programs; i++) {
6575 		struct bpf_program *p = &obj->programs[i];
6576 
6577 		if (!p->nr_reloc)
6578 			continue;
6579 
6580 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6581 	}
6582 }
6583 
6584 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6585 {
6586 	const char *str = "exception_callback:";
6587 	size_t pfx_len = strlen(str);
6588 	int i, j, n;
6589 
6590 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6591 		return 0;
6592 
6593 	n = btf__type_cnt(obj->btf);
6594 	for (i = 1; i < n; i++) {
6595 		const char *name;
6596 		struct btf_type *t;
6597 
6598 		t = btf_type_by_id(obj->btf, i);
6599 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6600 			continue;
6601 
6602 		name = btf__str_by_offset(obj->btf, t->name_off);
6603 		if (strncmp(name, str, pfx_len) != 0)
6604 			continue;
6605 
6606 		t = btf_type_by_id(obj->btf, t->type);
6607 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6608 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6609 				prog->name);
6610 			return -EINVAL;
6611 		}
6612 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6613 			continue;
6614 		/* Multiple callbacks are specified for the same prog,
6615 		 * the verifier will eventually return an error for this
6616 		 * case, hence simply skip appending a subprog.
6617 		 */
6618 		if (prog->exception_cb_idx >= 0) {
6619 			prog->exception_cb_idx = -1;
6620 			break;
6621 		}
6622 
6623 		name += pfx_len;
6624 		if (str_is_empty(name)) {
6625 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6626 				prog->name);
6627 			return -EINVAL;
6628 		}
6629 
6630 		for (j = 0; j < obj->nr_programs; j++) {
6631 			struct bpf_program *subprog = &obj->programs[j];
6632 
6633 			if (!prog_is_subprog(obj, subprog))
6634 				continue;
6635 			if (strcmp(name, subprog->name) != 0)
6636 				continue;
6637 			/* Enforce non-hidden, as from verifier point of
6638 			 * view it expects global functions, whereas the
6639 			 * mark_btf_static fixes up linkage as static.
6640 			 */
6641 			if (!subprog->sym_global || subprog->mark_btf_static) {
6642 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6643 					prog->name, subprog->name);
6644 				return -EINVAL;
6645 			}
6646 			/* Let's see if we already saw a static exception callback with the same name */
6647 			if (prog->exception_cb_idx >= 0) {
6648 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6649 					prog->name, subprog->name);
6650 				return -EINVAL;
6651 			}
6652 			prog->exception_cb_idx = j;
6653 			break;
6654 		}
6655 
6656 		if (prog->exception_cb_idx >= 0)
6657 			continue;
6658 
6659 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6660 		return -ENOENT;
6661 	}
6662 
6663 	return 0;
6664 }
6665 
6666 static struct {
6667 	enum bpf_prog_type prog_type;
6668 	const char *ctx_name;
6669 } global_ctx_map[] = {
6670 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6671 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6672 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6673 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6674 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6675 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6676 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6677 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6678 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6679 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6680 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6681 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6682 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6683 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6684 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6685 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6686 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6687 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6688 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6689 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6690 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6691 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6692 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6693 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6694 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6695 	/* all other program types don't have "named" context structs */
6696 };
6697 
6698 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6699 				     const char *subprog_name, int arg_idx,
6700 				     int arg_type_id, const char *ctx_name)
6701 {
6702 	const struct btf_type *t;
6703 	const char *tname;
6704 
6705 	/* check if existing parameter already matches verifier expectations */
6706 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6707 	if (!btf_is_ptr(t))
6708 		goto out_warn;
6709 
6710 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6711 	 * and perf_event programs, so check this case early on and forget
6712 	 * about it for subsequent checks
6713 	 */
6714 	while (btf_is_mod(t))
6715 		t = btf__type_by_id(btf, t->type);
6716 	if (btf_is_typedef(t) &&
6717 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6718 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6719 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6720 			return false; /* canonical type for kprobe/perf_event */
6721 	}
6722 
6723 	/* now we can ignore typedefs moving forward */
6724 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6725 
6726 	/* if it's `void *`, definitely fix up BTF info */
6727 	if (btf_is_void(t))
6728 		return true;
6729 
6730 	/* if it's already proper canonical type, no need to fix up */
6731 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6732 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6733 		return false;
6734 
6735 	/* special cases */
6736 	switch (prog->type) {
6737 	case BPF_PROG_TYPE_KPROBE:
6738 	case BPF_PROG_TYPE_PERF_EVENT:
6739 		/* `struct pt_regs *` is expected, but we need to fix up */
6740 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6741 			return true;
6742 		break;
6743 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6744 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6745 		/* allow u64* as ctx */
6746 		if (btf_is_int(t) && t->size == 8)
6747 			return true;
6748 		break;
6749 	default:
6750 		break;
6751 	}
6752 
6753 out_warn:
6754 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6755 		prog->name, subprog_name, arg_idx, ctx_name);
6756 	return false;
6757 }
6758 
6759 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6760 {
6761 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6762 	int i, err, arg_cnt, fn_name_off, linkage;
6763 	struct btf_type *fn_t, *fn_proto_t, *t;
6764 	struct btf_param *p;
6765 
6766 	/* caller already validated FUNC -> FUNC_PROTO validity */
6767 	fn_t = btf_type_by_id(btf, orig_fn_id);
6768 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6769 
6770 	/* Note that each btf__add_xxx() operation invalidates
6771 	 * all btf_type and string pointers, so we need to be
6772 	 * very careful when cloning BTF types. BTF type
6773 	 * pointers have to be always refetched. And to avoid
6774 	 * problems with invalidated string pointers, we
6775 	 * add empty strings initially, then just fix up
6776 	 * name_off offsets in place. Offsets are stable for
6777 	 * existing strings, so that works out.
6778 	 */
6779 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6780 	linkage = btf_func_linkage(fn_t);
6781 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6782 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6783 	arg_cnt = btf_vlen(fn_proto_t);
6784 
6785 	/* clone FUNC_PROTO and its params */
6786 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6787 	if (fn_proto_id < 0)
6788 		return -EINVAL;
6789 
6790 	for (i = 0; i < arg_cnt; i++) {
6791 		int name_off;
6792 
6793 		/* copy original parameter data */
6794 		t = btf_type_by_id(btf, orig_proto_id);
6795 		p = &btf_params(t)[i];
6796 		name_off = p->name_off;
6797 
6798 		err = btf__add_func_param(btf, "", p->type);
6799 		if (err)
6800 			return err;
6801 
6802 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6803 		p = &btf_params(fn_proto_t)[i];
6804 		p->name_off = name_off; /* use remembered str offset */
6805 	}
6806 
6807 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6808 	 * entry program's name as a placeholder, which we replace immediately
6809 	 * with original name_off
6810 	 */
6811 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6812 	if (fn_id < 0)
6813 		return -EINVAL;
6814 
6815 	fn_t = btf_type_by_id(btf, fn_id);
6816 	fn_t->name_off = fn_name_off; /* reuse original string */
6817 
6818 	return fn_id;
6819 }
6820 
6821 static int probe_kern_arg_ctx_tag(void)
6822 {
6823 	/* To minimize merge conflicts with BPF token series that refactors
6824 	 * feature detection code a lot, we don't integrate
6825 	 * probe_kern_arg_ctx_tag() into kernel_supports() feature-detection
6826 	 * framework yet, doing our own caching internally.
6827 	 * This will be cleaned up a bit later when bpf/bpf-next trees settle.
6828 	 */
6829 	static int cached_result = -1;
6830 	static const char strs[] = "\0a\0b\0arg:ctx\0";
6831 	const __u32 types[] = {
6832 		/* [1] INT */
6833 		BTF_TYPE_INT_ENC(1 /* "a" */, BTF_INT_SIGNED, 0, 32, 4),
6834 		/* [2] PTR -> VOID */
6835 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 0),
6836 		/* [3] FUNC_PROTO `int(void *a)` */
6837 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6838 		BTF_PARAM_ENC(1 /* "a" */, 2),
6839 		/* [4] FUNC 'a' -> FUNC_PROTO (main prog) */
6840 		BTF_TYPE_ENC(1 /* "a" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 3),
6841 		/* [5] FUNC_PROTO `int(void *b __arg_ctx)` */
6842 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6843 		BTF_PARAM_ENC(3 /* "b" */, 2),
6844 		/* [6] FUNC 'b' -> FUNC_PROTO (subprog) */
6845 		BTF_TYPE_ENC(3 /* "b" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 5),
6846 		/* [7] DECL_TAG 'arg:ctx' -> func 'b' arg 'b' */
6847 		BTF_TYPE_DECL_TAG_ENC(5 /* "arg:ctx" */, 6, 0),
6848 	};
6849 	const struct bpf_insn insns[] = {
6850 		/* main prog */
6851 		BPF_CALL_REL(+1),
6852 		BPF_EXIT_INSN(),
6853 		/* global subprog */
6854 		BPF_EMIT_CALL(BPF_FUNC_get_func_ip), /* needs PTR_TO_CTX */
6855 		BPF_EXIT_INSN(),
6856 	};
6857 	const struct bpf_func_info_min func_infos[] = {
6858 		{ 0, 4 }, /* main prog -> FUNC 'a' */
6859 		{ 2, 6 }, /* subprog -> FUNC 'b' */
6860 	};
6861 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
6862 	int prog_fd, btf_fd, insn_cnt = ARRAY_SIZE(insns);
6863 
6864 	if (cached_result >= 0)
6865 		return cached_result;
6866 
6867 	btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
6868 	if (btf_fd < 0)
6869 		return 0;
6870 
6871 	opts.prog_btf_fd = btf_fd;
6872 	opts.func_info = &func_infos;
6873 	opts.func_info_cnt = ARRAY_SIZE(func_infos);
6874 	opts.func_info_rec_size = sizeof(func_infos[0]);
6875 
6876 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, "det_arg_ctx",
6877 				"GPL", insns, insn_cnt, &opts);
6878 	close(btf_fd);
6879 
6880 	cached_result = probe_fd(prog_fd);
6881 	return cached_result;
6882 }
6883 
6884 /* Check if main program or global subprog's function prototype has `arg:ctx`
6885  * argument tags, and, if necessary, substitute correct type to match what BPF
6886  * verifier would expect, taking into account specific program type. This
6887  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6888  * have a native support for it in the verifier, making user's life much
6889  * easier.
6890  */
6891 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6892 {
6893 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6894 	struct bpf_func_info_min *func_rec;
6895 	struct btf_type *fn_t, *fn_proto_t;
6896 	struct btf *btf = obj->btf;
6897 	const struct btf_type *t;
6898 	struct btf_param *p;
6899 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6900 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6901 	int *orig_ids;
6902 
6903 	/* no .BTF.ext, no problem */
6904 	if (!obj->btf_ext || !prog->func_info)
6905 		return 0;
6906 
6907 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6908 	if (probe_kern_arg_ctx_tag() > 0)
6909 		return 0;
6910 
6911 	/* some BPF program types just don't have named context structs, so
6912 	 * this fallback mechanism doesn't work for them
6913 	 */
6914 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6915 		if (global_ctx_map[i].prog_type != prog->type)
6916 			continue;
6917 		ctx_name = global_ctx_map[i].ctx_name;
6918 		break;
6919 	}
6920 	if (!ctx_name)
6921 		return 0;
6922 
6923 	/* remember original func BTF IDs to detect if we already cloned them */
6924 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6925 	if (!orig_ids)
6926 		return -ENOMEM;
6927 	for (i = 0; i < prog->func_info_cnt; i++) {
6928 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6929 		orig_ids[i] = func_rec->type_id;
6930 	}
6931 
6932 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6933 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6934 	 * clone and adjust FUNC -> FUNC_PROTO combo
6935 	 */
6936 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6937 		/* only DECL_TAG with "arg:ctx" value are interesting */
6938 		t = btf__type_by_id(btf, i);
6939 		if (!btf_is_decl_tag(t))
6940 			continue;
6941 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6942 			continue;
6943 
6944 		/* only global funcs need adjustment, if at all */
6945 		orig_fn_id = t->type;
6946 		fn_t = btf_type_by_id(btf, orig_fn_id);
6947 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6948 			continue;
6949 
6950 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6951 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6952 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6953 			continue;
6954 
6955 		/* find corresponding func_info record */
6956 		func_rec = NULL;
6957 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6958 			if (orig_ids[rec_idx] == t->type) {
6959 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6960 				break;
6961 			}
6962 		}
6963 		/* current main program doesn't call into this subprog */
6964 		if (!func_rec)
6965 			continue;
6966 
6967 		/* some more sanity checking of DECL_TAG */
6968 		arg_cnt = btf_vlen(fn_proto_t);
6969 		arg_idx = btf_decl_tag(t)->component_idx;
6970 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6971 			continue;
6972 
6973 		/* check if we should fix up argument type */
6974 		p = &btf_params(fn_proto_t)[arg_idx];
6975 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6976 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6977 			continue;
6978 
6979 		/* clone fn/fn_proto, unless we already did it for another arg */
6980 		if (func_rec->type_id == orig_fn_id) {
6981 			int fn_id;
6982 
6983 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6984 			if (fn_id < 0) {
6985 				err = fn_id;
6986 				goto err_out;
6987 			}
6988 
6989 			/* point func_info record to a cloned FUNC type */
6990 			func_rec->type_id = fn_id;
6991 		}
6992 
6993 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6994 		 * we do it just once per main BPF program, as all global
6995 		 * funcs share the same program type, so need only PTR ->
6996 		 * STRUCT type chain
6997 		 */
6998 		if (ptr_id == 0) {
6999 			struct_id = btf__add_struct(btf, ctx_name, 0);
7000 			ptr_id = btf__add_ptr(btf, struct_id);
7001 			if (ptr_id < 0 || struct_id < 0) {
7002 				err = -EINVAL;
7003 				goto err_out;
7004 			}
7005 		}
7006 
7007 		/* for completeness, clone DECL_TAG and point it to cloned param */
7008 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7009 		if (tag_id < 0) {
7010 			err = -EINVAL;
7011 			goto err_out;
7012 		}
7013 
7014 		/* all the BTF manipulations invalidated pointers, refetch them */
7015 		fn_t = btf_type_by_id(btf, func_rec->type_id);
7016 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
7017 
7018 		/* fix up type ID pointed to by param */
7019 		p = &btf_params(fn_proto_t)[arg_idx];
7020 		p->type = ptr_id;
7021 	}
7022 
7023 	free(orig_ids);
7024 	return 0;
7025 err_out:
7026 	free(orig_ids);
7027 	return err;
7028 }
7029 
7030 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7031 {
7032 	struct bpf_program *prog;
7033 	size_t i, j;
7034 	int err;
7035 
7036 	if (obj->btf_ext) {
7037 		err = bpf_object__relocate_core(obj, targ_btf_path);
7038 		if (err) {
7039 			pr_warn("failed to perform CO-RE relocations: %d\n",
7040 				err);
7041 			return err;
7042 		}
7043 		bpf_object__sort_relos(obj);
7044 	}
7045 
7046 	/* Before relocating calls pre-process relocations and mark
7047 	 * few ld_imm64 instructions that points to subprogs.
7048 	 * Otherwise bpf_object__reloc_code() later would have to consider
7049 	 * all ld_imm64 insns as relocation candidates. That would
7050 	 * reduce relocation speed, since amount of find_prog_insn_relo()
7051 	 * would increase and most of them will fail to find a relo.
7052 	 */
7053 	for (i = 0; i < obj->nr_programs; i++) {
7054 		prog = &obj->programs[i];
7055 		for (j = 0; j < prog->nr_reloc; j++) {
7056 			struct reloc_desc *relo = &prog->reloc_desc[j];
7057 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7058 
7059 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7060 			if (relo->type == RELO_SUBPROG_ADDR)
7061 				insn[0].src_reg = BPF_PSEUDO_FUNC;
7062 		}
7063 	}
7064 
7065 	/* relocate subprogram calls and append used subprograms to main
7066 	 * programs; each copy of subprogram code needs to be relocated
7067 	 * differently for each main program, because its code location might
7068 	 * have changed.
7069 	 * Append subprog relos to main programs to allow data relos to be
7070 	 * processed after text is completely relocated.
7071 	 */
7072 	for (i = 0; i < obj->nr_programs; i++) {
7073 		prog = &obj->programs[i];
7074 		/* sub-program's sub-calls are relocated within the context of
7075 		 * its main program only
7076 		 */
7077 		if (prog_is_subprog(obj, prog))
7078 			continue;
7079 		if (!prog->autoload)
7080 			continue;
7081 
7082 		err = bpf_object__relocate_calls(obj, prog);
7083 		if (err) {
7084 			pr_warn("prog '%s': failed to relocate calls: %d\n",
7085 				prog->name, err);
7086 			return err;
7087 		}
7088 
7089 		err = bpf_prog_assign_exc_cb(obj, prog);
7090 		if (err)
7091 			return err;
7092 		/* Now, also append exception callback if it has not been done already. */
7093 		if (prog->exception_cb_idx >= 0) {
7094 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7095 
7096 			/* Calling exception callback directly is disallowed, which the
7097 			 * verifier will reject later. In case it was processed already,
7098 			 * we can skip this step, otherwise for all other valid cases we
7099 			 * have to append exception callback now.
7100 			 */
7101 			if (subprog->sub_insn_off == 0) {
7102 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7103 				if (err)
7104 					return err;
7105 				err = bpf_object__reloc_code(obj, prog, subprog);
7106 				if (err)
7107 					return err;
7108 			}
7109 		}
7110 	}
7111 	for (i = 0; i < obj->nr_programs; i++) {
7112 		prog = &obj->programs[i];
7113 		if (prog_is_subprog(obj, prog))
7114 			continue;
7115 		if (!prog->autoload)
7116 			continue;
7117 
7118 		/* Process data relos for main programs */
7119 		err = bpf_object__relocate_data(obj, prog);
7120 		if (err) {
7121 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7122 				prog->name, err);
7123 			return err;
7124 		}
7125 
7126 		/* Fix up .BTF.ext information, if necessary */
7127 		err = bpf_program_fixup_func_info(obj, prog);
7128 		if (err) {
7129 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7130 				prog->name, err);
7131 			return err;
7132 		}
7133 	}
7134 
7135 	return 0;
7136 }
7137 
7138 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7139 					    Elf64_Shdr *shdr, Elf_Data *data);
7140 
7141 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7142 					 Elf64_Shdr *shdr, Elf_Data *data)
7143 {
7144 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7145 	int i, j, nrels, new_sz;
7146 	const struct btf_var_secinfo *vi = NULL;
7147 	const struct btf_type *sec, *var, *def;
7148 	struct bpf_map *map = NULL, *targ_map = NULL;
7149 	struct bpf_program *targ_prog = NULL;
7150 	bool is_prog_array, is_map_in_map;
7151 	const struct btf_member *member;
7152 	const char *name, *mname, *type;
7153 	unsigned int moff;
7154 	Elf64_Sym *sym;
7155 	Elf64_Rel *rel;
7156 	void *tmp;
7157 
7158 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7159 		return -EINVAL;
7160 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7161 	if (!sec)
7162 		return -EINVAL;
7163 
7164 	nrels = shdr->sh_size / shdr->sh_entsize;
7165 	for (i = 0; i < nrels; i++) {
7166 		rel = elf_rel_by_idx(data, i);
7167 		if (!rel) {
7168 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7169 			return -LIBBPF_ERRNO__FORMAT;
7170 		}
7171 
7172 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7173 		if (!sym) {
7174 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7175 				i, (size_t)ELF64_R_SYM(rel->r_info));
7176 			return -LIBBPF_ERRNO__FORMAT;
7177 		}
7178 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7179 
7180 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7181 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7182 			 (size_t)rel->r_offset, sym->st_name, name);
7183 
7184 		for (j = 0; j < obj->nr_maps; j++) {
7185 			map = &obj->maps[j];
7186 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7187 				continue;
7188 
7189 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7190 			if (vi->offset <= rel->r_offset &&
7191 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7192 				break;
7193 		}
7194 		if (j == obj->nr_maps) {
7195 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7196 				i, name, (size_t)rel->r_offset);
7197 			return -EINVAL;
7198 		}
7199 
7200 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7201 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7202 		type = is_map_in_map ? "map" : "prog";
7203 		if (is_map_in_map) {
7204 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7205 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7206 					i, name);
7207 				return -LIBBPF_ERRNO__RELOC;
7208 			}
7209 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7210 			    map->def.key_size != sizeof(int)) {
7211 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7212 					i, map->name, sizeof(int));
7213 				return -EINVAL;
7214 			}
7215 			targ_map = bpf_object__find_map_by_name(obj, name);
7216 			if (!targ_map) {
7217 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7218 					i, name);
7219 				return -ESRCH;
7220 			}
7221 		} else if (is_prog_array) {
7222 			targ_prog = bpf_object__find_program_by_name(obj, name);
7223 			if (!targ_prog) {
7224 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7225 					i, name);
7226 				return -ESRCH;
7227 			}
7228 			if (targ_prog->sec_idx != sym->st_shndx ||
7229 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7230 			    prog_is_subprog(obj, targ_prog)) {
7231 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7232 					i, name);
7233 				return -LIBBPF_ERRNO__RELOC;
7234 			}
7235 		} else {
7236 			return -EINVAL;
7237 		}
7238 
7239 		var = btf__type_by_id(obj->btf, vi->type);
7240 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7241 		if (btf_vlen(def) == 0)
7242 			return -EINVAL;
7243 		member = btf_members(def) + btf_vlen(def) - 1;
7244 		mname = btf__name_by_offset(obj->btf, member->name_off);
7245 		if (strcmp(mname, "values"))
7246 			return -EINVAL;
7247 
7248 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7249 		if (rel->r_offset - vi->offset < moff)
7250 			return -EINVAL;
7251 
7252 		moff = rel->r_offset - vi->offset - moff;
7253 		/* here we use BPF pointer size, which is always 64 bit, as we
7254 		 * are parsing ELF that was built for BPF target
7255 		 */
7256 		if (moff % bpf_ptr_sz)
7257 			return -EINVAL;
7258 		moff /= bpf_ptr_sz;
7259 		if (moff >= map->init_slots_sz) {
7260 			new_sz = moff + 1;
7261 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7262 			if (!tmp)
7263 				return -ENOMEM;
7264 			map->init_slots = tmp;
7265 			memset(map->init_slots + map->init_slots_sz, 0,
7266 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7267 			map->init_slots_sz = new_sz;
7268 		}
7269 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7270 
7271 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7272 			 i, map->name, moff, type, name);
7273 	}
7274 
7275 	return 0;
7276 }
7277 
7278 static int bpf_object__collect_relos(struct bpf_object *obj)
7279 {
7280 	int i, err;
7281 
7282 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7283 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7284 		Elf64_Shdr *shdr;
7285 		Elf_Data *data;
7286 		int idx;
7287 
7288 		if (sec_desc->sec_type != SEC_RELO)
7289 			continue;
7290 
7291 		shdr = sec_desc->shdr;
7292 		data = sec_desc->data;
7293 		idx = shdr->sh_info;
7294 
7295 		if (shdr->sh_type != SHT_REL) {
7296 			pr_warn("internal error at %d\n", __LINE__);
7297 			return -LIBBPF_ERRNO__INTERNAL;
7298 		}
7299 
7300 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
7301 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7302 		else if (idx == obj->efile.btf_maps_shndx)
7303 			err = bpf_object__collect_map_relos(obj, shdr, data);
7304 		else
7305 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7306 		if (err)
7307 			return err;
7308 	}
7309 
7310 	bpf_object__sort_relos(obj);
7311 	return 0;
7312 }
7313 
7314 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7315 {
7316 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7317 	    BPF_OP(insn->code) == BPF_CALL &&
7318 	    BPF_SRC(insn->code) == BPF_K &&
7319 	    insn->src_reg == 0 &&
7320 	    insn->dst_reg == 0) {
7321 		    *func_id = insn->imm;
7322 		    return true;
7323 	}
7324 	return false;
7325 }
7326 
7327 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7328 {
7329 	struct bpf_insn *insn = prog->insns;
7330 	enum bpf_func_id func_id;
7331 	int i;
7332 
7333 	if (obj->gen_loader)
7334 		return 0;
7335 
7336 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7337 		if (!insn_is_helper_call(insn, &func_id))
7338 			continue;
7339 
7340 		/* on kernels that don't yet support
7341 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7342 		 * to bpf_probe_read() which works well for old kernels
7343 		 */
7344 		switch (func_id) {
7345 		case BPF_FUNC_probe_read_kernel:
7346 		case BPF_FUNC_probe_read_user:
7347 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7348 				insn->imm = BPF_FUNC_probe_read;
7349 			break;
7350 		case BPF_FUNC_probe_read_kernel_str:
7351 		case BPF_FUNC_probe_read_user_str:
7352 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7353 				insn->imm = BPF_FUNC_probe_read_str;
7354 			break;
7355 		default:
7356 			break;
7357 		}
7358 	}
7359 	return 0;
7360 }
7361 
7362 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7363 				     int *btf_obj_fd, int *btf_type_id);
7364 
7365 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7366 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7367 				    struct bpf_prog_load_opts *opts, long cookie)
7368 {
7369 	enum sec_def_flags def = cookie;
7370 
7371 	/* old kernels might not support specifying expected_attach_type */
7372 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7373 		opts->expected_attach_type = 0;
7374 
7375 	if (def & SEC_SLEEPABLE)
7376 		opts->prog_flags |= BPF_F_SLEEPABLE;
7377 
7378 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7379 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7380 
7381 	/* special check for usdt to use uprobe_multi link */
7382 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7383 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7384 
7385 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7386 		int btf_obj_fd = 0, btf_type_id = 0, err;
7387 		const char *attach_name;
7388 
7389 		attach_name = strchr(prog->sec_name, '/');
7390 		if (!attach_name) {
7391 			/* if BPF program is annotated with just SEC("fentry")
7392 			 * (or similar) without declaratively specifying
7393 			 * target, then it is expected that target will be
7394 			 * specified with bpf_program__set_attach_target() at
7395 			 * runtime before BPF object load step. If not, then
7396 			 * there is nothing to load into the kernel as BPF
7397 			 * verifier won't be able to validate BPF program
7398 			 * correctness anyways.
7399 			 */
7400 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7401 				prog->name);
7402 			return -EINVAL;
7403 		}
7404 		attach_name++; /* skip over / */
7405 
7406 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7407 		if (err)
7408 			return err;
7409 
7410 		/* cache resolved BTF FD and BTF type ID in the prog */
7411 		prog->attach_btf_obj_fd = btf_obj_fd;
7412 		prog->attach_btf_id = btf_type_id;
7413 
7414 		/* but by now libbpf common logic is not utilizing
7415 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7416 		 * this callback is called after opts were populated by
7417 		 * libbpf, so this callback has to update opts explicitly here
7418 		 */
7419 		opts->attach_btf_obj_fd = btf_obj_fd;
7420 		opts->attach_btf_id = btf_type_id;
7421 	}
7422 	return 0;
7423 }
7424 
7425 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7426 
7427 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7428 				struct bpf_insn *insns, int insns_cnt,
7429 				const char *license, __u32 kern_version, int *prog_fd)
7430 {
7431 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7432 	const char *prog_name = NULL;
7433 	char *cp, errmsg[STRERR_BUFSIZE];
7434 	size_t log_buf_size = 0;
7435 	char *log_buf = NULL, *tmp;
7436 	int btf_fd, ret, err;
7437 	bool own_log_buf = true;
7438 	__u32 log_level = prog->log_level;
7439 
7440 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7441 		/*
7442 		 * The program type must be set.  Most likely we couldn't find a proper
7443 		 * section definition at load time, and thus we didn't infer the type.
7444 		 */
7445 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7446 			prog->name, prog->sec_name);
7447 		return -EINVAL;
7448 	}
7449 
7450 	if (!insns || !insns_cnt)
7451 		return -EINVAL;
7452 
7453 	if (kernel_supports(obj, FEAT_PROG_NAME))
7454 		prog_name = prog->name;
7455 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7456 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7457 	load_attr.attach_btf_id = prog->attach_btf_id;
7458 	load_attr.kern_version = kern_version;
7459 	load_attr.prog_ifindex = prog->prog_ifindex;
7460 
7461 	/* specify func_info/line_info only if kernel supports them */
7462 	btf_fd = btf__fd(obj->btf);
7463 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7464 		load_attr.prog_btf_fd = btf_fd;
7465 		load_attr.func_info = prog->func_info;
7466 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7467 		load_attr.func_info_cnt = prog->func_info_cnt;
7468 		load_attr.line_info = prog->line_info;
7469 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7470 		load_attr.line_info_cnt = prog->line_info_cnt;
7471 	}
7472 	load_attr.log_level = log_level;
7473 	load_attr.prog_flags = prog->prog_flags;
7474 	load_attr.fd_array = obj->fd_array;
7475 
7476 	/* adjust load_attr if sec_def provides custom preload callback */
7477 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7478 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7479 		if (err < 0) {
7480 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7481 				prog->name, err);
7482 			return err;
7483 		}
7484 		insns = prog->insns;
7485 		insns_cnt = prog->insns_cnt;
7486 	}
7487 
7488 	/* allow prog_prepare_load_fn to change expected_attach_type */
7489 	load_attr.expected_attach_type = prog->expected_attach_type;
7490 
7491 	if (obj->gen_loader) {
7492 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7493 				   license, insns, insns_cnt, &load_attr,
7494 				   prog - obj->programs);
7495 		*prog_fd = -1;
7496 		return 0;
7497 	}
7498 
7499 retry_load:
7500 	/* if log_level is zero, we don't request logs initially even if
7501 	 * custom log_buf is specified; if the program load fails, then we'll
7502 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7503 	 * our own and retry the load to get details on what failed
7504 	 */
7505 	if (log_level) {
7506 		if (prog->log_buf) {
7507 			log_buf = prog->log_buf;
7508 			log_buf_size = prog->log_size;
7509 			own_log_buf = false;
7510 		} else if (obj->log_buf) {
7511 			log_buf = obj->log_buf;
7512 			log_buf_size = obj->log_size;
7513 			own_log_buf = false;
7514 		} else {
7515 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7516 			tmp = realloc(log_buf, log_buf_size);
7517 			if (!tmp) {
7518 				ret = -ENOMEM;
7519 				goto out;
7520 			}
7521 			log_buf = tmp;
7522 			log_buf[0] = '\0';
7523 			own_log_buf = true;
7524 		}
7525 	}
7526 
7527 	load_attr.log_buf = log_buf;
7528 	load_attr.log_size = log_buf_size;
7529 	load_attr.log_level = log_level;
7530 
7531 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7532 	if (ret >= 0) {
7533 		if (log_level && own_log_buf) {
7534 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7535 				 prog->name, log_buf);
7536 		}
7537 
7538 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7539 			struct bpf_map *map;
7540 			int i;
7541 
7542 			for (i = 0; i < obj->nr_maps; i++) {
7543 				map = &prog->obj->maps[i];
7544 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7545 					continue;
7546 
7547 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7548 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7549 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7550 						prog->name, map->real_name, cp);
7551 					/* Don't fail hard if can't bind rodata. */
7552 				}
7553 			}
7554 		}
7555 
7556 		*prog_fd = ret;
7557 		ret = 0;
7558 		goto out;
7559 	}
7560 
7561 	if (log_level == 0) {
7562 		log_level = 1;
7563 		goto retry_load;
7564 	}
7565 	/* On ENOSPC, increase log buffer size and retry, unless custom
7566 	 * log_buf is specified.
7567 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7568 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7569 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7570 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7571 	 */
7572 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7573 		goto retry_load;
7574 
7575 	ret = -errno;
7576 
7577 	/* post-process verifier log to improve error descriptions */
7578 	fixup_verifier_log(prog, log_buf, log_buf_size);
7579 
7580 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7581 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7582 	pr_perm_msg(ret);
7583 
7584 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7585 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7586 			prog->name, log_buf);
7587 	}
7588 
7589 out:
7590 	if (own_log_buf)
7591 		free(log_buf);
7592 	return ret;
7593 }
7594 
7595 static char *find_prev_line(char *buf, char *cur)
7596 {
7597 	char *p;
7598 
7599 	if (cur == buf) /* end of a log buf */
7600 		return NULL;
7601 
7602 	p = cur - 1;
7603 	while (p - 1 >= buf && *(p - 1) != '\n')
7604 		p--;
7605 
7606 	return p;
7607 }
7608 
7609 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7610 		      char *orig, size_t orig_sz, const char *patch)
7611 {
7612 	/* size of the remaining log content to the right from the to-be-replaced part */
7613 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7614 	size_t patch_sz = strlen(patch);
7615 
7616 	if (patch_sz != orig_sz) {
7617 		/* If patch line(s) are longer than original piece of verifier log,
7618 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7619 		 * starting from after to-be-replaced part of the log.
7620 		 *
7621 		 * If patch line(s) are shorter than original piece of verifier log,
7622 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7623 		 * starting from after to-be-replaced part of the log
7624 		 *
7625 		 * We need to be careful about not overflowing available
7626 		 * buf_sz capacity. If that's the case, we'll truncate the end
7627 		 * of the original log, as necessary.
7628 		 */
7629 		if (patch_sz > orig_sz) {
7630 			if (orig + patch_sz >= buf + buf_sz) {
7631 				/* patch is big enough to cover remaining space completely */
7632 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7633 				rem_sz = 0;
7634 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7635 				/* patch causes part of remaining log to be truncated */
7636 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7637 			}
7638 		}
7639 		/* shift remaining log to the right by calculated amount */
7640 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7641 	}
7642 
7643 	memcpy(orig, patch, patch_sz);
7644 }
7645 
7646 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7647 				       char *buf, size_t buf_sz, size_t log_sz,
7648 				       char *line1, char *line2, char *line3)
7649 {
7650 	/* Expected log for failed and not properly guarded CO-RE relocation:
7651 	 * line1 -> 123: (85) call unknown#195896080
7652 	 * line2 -> invalid func unknown#195896080
7653 	 * line3 -> <anything else or end of buffer>
7654 	 *
7655 	 * "123" is the index of the instruction that was poisoned. We extract
7656 	 * instruction index to find corresponding CO-RE relocation and
7657 	 * replace this part of the log with more relevant information about
7658 	 * failed CO-RE relocation.
7659 	 */
7660 	const struct bpf_core_relo *relo;
7661 	struct bpf_core_spec spec;
7662 	char patch[512], spec_buf[256];
7663 	int insn_idx, err, spec_len;
7664 
7665 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7666 		return;
7667 
7668 	relo = find_relo_core(prog, insn_idx);
7669 	if (!relo)
7670 		return;
7671 
7672 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7673 	if (err)
7674 		return;
7675 
7676 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7677 	snprintf(patch, sizeof(patch),
7678 		 "%d: <invalid CO-RE relocation>\n"
7679 		 "failed to resolve CO-RE relocation %s%s\n",
7680 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7681 
7682 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7683 }
7684 
7685 static void fixup_log_missing_map_load(struct bpf_program *prog,
7686 				       char *buf, size_t buf_sz, size_t log_sz,
7687 				       char *line1, char *line2, char *line3)
7688 {
7689 	/* Expected log for failed and not properly guarded map reference:
7690 	 * line1 -> 123: (85) call unknown#2001000345
7691 	 * line2 -> invalid func unknown#2001000345
7692 	 * line3 -> <anything else or end of buffer>
7693 	 *
7694 	 * "123" is the index of the instruction that was poisoned.
7695 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7696 	 */
7697 	struct bpf_object *obj = prog->obj;
7698 	const struct bpf_map *map;
7699 	int insn_idx, map_idx;
7700 	char patch[128];
7701 
7702 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7703 		return;
7704 
7705 	map_idx -= POISON_LDIMM64_MAP_BASE;
7706 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7707 		return;
7708 	map = &obj->maps[map_idx];
7709 
7710 	snprintf(patch, sizeof(patch),
7711 		 "%d: <invalid BPF map reference>\n"
7712 		 "BPF map '%s' is referenced but wasn't created\n",
7713 		 insn_idx, map->name);
7714 
7715 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7716 }
7717 
7718 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7719 					 char *buf, size_t buf_sz, size_t log_sz,
7720 					 char *line1, char *line2, char *line3)
7721 {
7722 	/* Expected log for failed and not properly guarded kfunc call:
7723 	 * line1 -> 123: (85) call unknown#2002000345
7724 	 * line2 -> invalid func unknown#2002000345
7725 	 * line3 -> <anything else or end of buffer>
7726 	 *
7727 	 * "123" is the index of the instruction that was poisoned.
7728 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7729 	 */
7730 	struct bpf_object *obj = prog->obj;
7731 	const struct extern_desc *ext;
7732 	int insn_idx, ext_idx;
7733 	char patch[128];
7734 
7735 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7736 		return;
7737 
7738 	ext_idx -= POISON_CALL_KFUNC_BASE;
7739 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7740 		return;
7741 	ext = &obj->externs[ext_idx];
7742 
7743 	snprintf(patch, sizeof(patch),
7744 		 "%d: <invalid kfunc call>\n"
7745 		 "kfunc '%s' is referenced but wasn't resolved\n",
7746 		 insn_idx, ext->name);
7747 
7748 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7749 }
7750 
7751 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7752 {
7753 	/* look for familiar error patterns in last N lines of the log */
7754 	const size_t max_last_line_cnt = 10;
7755 	char *prev_line, *cur_line, *next_line;
7756 	size_t log_sz;
7757 	int i;
7758 
7759 	if (!buf)
7760 		return;
7761 
7762 	log_sz = strlen(buf) + 1;
7763 	next_line = buf + log_sz - 1;
7764 
7765 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7766 		cur_line = find_prev_line(buf, next_line);
7767 		if (!cur_line)
7768 			return;
7769 
7770 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7771 			prev_line = find_prev_line(buf, cur_line);
7772 			if (!prev_line)
7773 				continue;
7774 
7775 			/* failed CO-RE relocation case */
7776 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7777 						   prev_line, cur_line, next_line);
7778 			return;
7779 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7780 			prev_line = find_prev_line(buf, cur_line);
7781 			if (!prev_line)
7782 				continue;
7783 
7784 			/* reference to uncreated BPF map */
7785 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7786 						   prev_line, cur_line, next_line);
7787 			return;
7788 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7789 			prev_line = find_prev_line(buf, cur_line);
7790 			if (!prev_line)
7791 				continue;
7792 
7793 			/* reference to unresolved kfunc */
7794 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7795 						     prev_line, cur_line, next_line);
7796 			return;
7797 		}
7798 	}
7799 }
7800 
7801 static int bpf_program_record_relos(struct bpf_program *prog)
7802 {
7803 	struct bpf_object *obj = prog->obj;
7804 	int i;
7805 
7806 	for (i = 0; i < prog->nr_reloc; i++) {
7807 		struct reloc_desc *relo = &prog->reloc_desc[i];
7808 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7809 		int kind;
7810 
7811 		switch (relo->type) {
7812 		case RELO_EXTERN_LD64:
7813 			if (ext->type != EXT_KSYM)
7814 				continue;
7815 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7816 				BTF_KIND_VAR : BTF_KIND_FUNC;
7817 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7818 					       ext->is_weak, !ext->ksym.type_id,
7819 					       true, kind, relo->insn_idx);
7820 			break;
7821 		case RELO_EXTERN_CALL:
7822 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7823 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7824 					       relo->insn_idx);
7825 			break;
7826 		case RELO_CORE: {
7827 			struct bpf_core_relo cr = {
7828 				.insn_off = relo->insn_idx * 8,
7829 				.type_id = relo->core_relo->type_id,
7830 				.access_str_off = relo->core_relo->access_str_off,
7831 				.kind = relo->core_relo->kind,
7832 			};
7833 
7834 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7835 			break;
7836 		}
7837 		default:
7838 			continue;
7839 		}
7840 	}
7841 	return 0;
7842 }
7843 
7844 static int
7845 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7846 {
7847 	struct bpf_program *prog;
7848 	size_t i;
7849 	int err;
7850 
7851 	for (i = 0; i < obj->nr_programs; i++) {
7852 		prog = &obj->programs[i];
7853 		err = bpf_object__sanitize_prog(obj, prog);
7854 		if (err)
7855 			return err;
7856 	}
7857 
7858 	for (i = 0; i < obj->nr_programs; i++) {
7859 		prog = &obj->programs[i];
7860 		if (prog_is_subprog(obj, prog))
7861 			continue;
7862 		if (!prog->autoload) {
7863 			pr_debug("prog '%s': skipped loading\n", prog->name);
7864 			continue;
7865 		}
7866 		prog->log_level |= log_level;
7867 
7868 		if (obj->gen_loader)
7869 			bpf_program_record_relos(prog);
7870 
7871 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7872 					   obj->license, obj->kern_version, &prog->fd);
7873 		if (err) {
7874 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7875 			return err;
7876 		}
7877 	}
7878 
7879 	bpf_object__free_relocs(obj);
7880 	return 0;
7881 }
7882 
7883 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7884 
7885 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7886 {
7887 	struct bpf_program *prog;
7888 	int err;
7889 
7890 	bpf_object__for_each_program(prog, obj) {
7891 		prog->sec_def = find_sec_def(prog->sec_name);
7892 		if (!prog->sec_def) {
7893 			/* couldn't guess, but user might manually specify */
7894 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7895 				prog->name, prog->sec_name);
7896 			continue;
7897 		}
7898 
7899 		prog->type = prog->sec_def->prog_type;
7900 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7901 
7902 		/* sec_def can have custom callback which should be called
7903 		 * after bpf_program is initialized to adjust its properties
7904 		 */
7905 		if (prog->sec_def->prog_setup_fn) {
7906 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7907 			if (err < 0) {
7908 				pr_warn("prog '%s': failed to initialize: %d\n",
7909 					prog->name, err);
7910 				return err;
7911 			}
7912 		}
7913 	}
7914 
7915 	return 0;
7916 }
7917 
7918 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7919 					  const struct bpf_object_open_opts *opts)
7920 {
7921 	const char *obj_name, *kconfig, *btf_tmp_path;
7922 	struct bpf_object *obj;
7923 	char tmp_name[64];
7924 	int err;
7925 	char *log_buf;
7926 	size_t log_size;
7927 	__u32 log_level;
7928 
7929 	if (elf_version(EV_CURRENT) == EV_NONE) {
7930 		pr_warn("failed to init libelf for %s\n",
7931 			path ? : "(mem buf)");
7932 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7933 	}
7934 
7935 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7936 		return ERR_PTR(-EINVAL);
7937 
7938 	obj_name = OPTS_GET(opts, object_name, NULL);
7939 	if (obj_buf) {
7940 		if (!obj_name) {
7941 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7942 				 (unsigned long)obj_buf,
7943 				 (unsigned long)obj_buf_sz);
7944 			obj_name = tmp_name;
7945 		}
7946 		path = obj_name;
7947 		pr_debug("loading object '%s' from buffer\n", obj_name);
7948 	}
7949 
7950 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7951 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7952 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7953 	if (log_size > UINT_MAX)
7954 		return ERR_PTR(-EINVAL);
7955 	if (log_size && !log_buf)
7956 		return ERR_PTR(-EINVAL);
7957 
7958 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7959 	if (IS_ERR(obj))
7960 		return obj;
7961 
7962 	obj->log_buf = log_buf;
7963 	obj->log_size = log_size;
7964 	obj->log_level = log_level;
7965 
7966 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7967 	if (btf_tmp_path) {
7968 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7969 			err = -ENAMETOOLONG;
7970 			goto out;
7971 		}
7972 		obj->btf_custom_path = strdup(btf_tmp_path);
7973 		if (!obj->btf_custom_path) {
7974 			err = -ENOMEM;
7975 			goto out;
7976 		}
7977 	}
7978 
7979 	kconfig = OPTS_GET(opts, kconfig, NULL);
7980 	if (kconfig) {
7981 		obj->kconfig = strdup(kconfig);
7982 		if (!obj->kconfig) {
7983 			err = -ENOMEM;
7984 			goto out;
7985 		}
7986 	}
7987 
7988 	err = bpf_object__elf_init(obj);
7989 	err = err ? : bpf_object__check_endianness(obj);
7990 	err = err ? : bpf_object__elf_collect(obj);
7991 	err = err ? : bpf_object__collect_externs(obj);
7992 	err = err ? : bpf_object_fixup_btf(obj);
7993 	err = err ? : bpf_object__init_maps(obj, opts);
7994 	err = err ? : bpf_object_init_progs(obj, opts);
7995 	err = err ? : bpf_object__collect_relos(obj);
7996 	if (err)
7997 		goto out;
7998 
7999 	bpf_object__elf_finish(obj);
8000 
8001 	return obj;
8002 out:
8003 	bpf_object__close(obj);
8004 	return ERR_PTR(err);
8005 }
8006 
8007 struct bpf_object *
8008 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8009 {
8010 	if (!path)
8011 		return libbpf_err_ptr(-EINVAL);
8012 
8013 	pr_debug("loading %s\n", path);
8014 
8015 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
8016 }
8017 
8018 struct bpf_object *bpf_object__open(const char *path)
8019 {
8020 	return bpf_object__open_file(path, NULL);
8021 }
8022 
8023 struct bpf_object *
8024 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8025 		     const struct bpf_object_open_opts *opts)
8026 {
8027 	if (!obj_buf || obj_buf_sz == 0)
8028 		return libbpf_err_ptr(-EINVAL);
8029 
8030 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
8031 }
8032 
8033 static int bpf_object_unload(struct bpf_object *obj)
8034 {
8035 	size_t i;
8036 
8037 	if (!obj)
8038 		return libbpf_err(-EINVAL);
8039 
8040 	for (i = 0; i < obj->nr_maps; i++) {
8041 		zclose(obj->maps[i].fd);
8042 		if (obj->maps[i].st_ops)
8043 			zfree(&obj->maps[i].st_ops->kern_vdata);
8044 	}
8045 
8046 	for (i = 0; i < obj->nr_programs; i++)
8047 		bpf_program__unload(&obj->programs[i]);
8048 
8049 	return 0;
8050 }
8051 
8052 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8053 {
8054 	struct bpf_map *m;
8055 
8056 	bpf_object__for_each_map(m, obj) {
8057 		if (!bpf_map__is_internal(m))
8058 			continue;
8059 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8060 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8061 	}
8062 
8063 	return 0;
8064 }
8065 
8066 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8067 {
8068 	char sym_type, sym_name[500];
8069 	unsigned long long sym_addr;
8070 	int ret, err = 0;
8071 	FILE *f;
8072 
8073 	f = fopen("/proc/kallsyms", "re");
8074 	if (!f) {
8075 		err = -errno;
8076 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
8077 		return err;
8078 	}
8079 
8080 	while (true) {
8081 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8082 			     &sym_addr, &sym_type, sym_name);
8083 		if (ret == EOF && feof(f))
8084 			break;
8085 		if (ret != 3) {
8086 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8087 			err = -EINVAL;
8088 			break;
8089 		}
8090 
8091 		err = cb(sym_addr, sym_type, sym_name, ctx);
8092 		if (err)
8093 			break;
8094 	}
8095 
8096 	fclose(f);
8097 	return err;
8098 }
8099 
8100 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8101 		       const char *sym_name, void *ctx)
8102 {
8103 	struct bpf_object *obj = ctx;
8104 	const struct btf_type *t;
8105 	struct extern_desc *ext;
8106 
8107 	ext = find_extern_by_name(obj, sym_name);
8108 	if (!ext || ext->type != EXT_KSYM)
8109 		return 0;
8110 
8111 	t = btf__type_by_id(obj->btf, ext->btf_id);
8112 	if (!btf_is_var(t))
8113 		return 0;
8114 
8115 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8116 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8117 			sym_name, ext->ksym.addr, sym_addr);
8118 		return -EINVAL;
8119 	}
8120 	if (!ext->is_set) {
8121 		ext->is_set = true;
8122 		ext->ksym.addr = sym_addr;
8123 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8124 	}
8125 	return 0;
8126 }
8127 
8128 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8129 {
8130 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8131 }
8132 
8133 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8134 			    __u16 kind, struct btf **res_btf,
8135 			    struct module_btf **res_mod_btf)
8136 {
8137 	struct module_btf *mod_btf;
8138 	struct btf *btf;
8139 	int i, id, err;
8140 
8141 	btf = obj->btf_vmlinux;
8142 	mod_btf = NULL;
8143 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8144 
8145 	if (id == -ENOENT) {
8146 		err = load_module_btfs(obj);
8147 		if (err)
8148 			return err;
8149 
8150 		for (i = 0; i < obj->btf_module_cnt; i++) {
8151 			/* we assume module_btf's BTF FD is always >0 */
8152 			mod_btf = &obj->btf_modules[i];
8153 			btf = mod_btf->btf;
8154 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8155 			if (id != -ENOENT)
8156 				break;
8157 		}
8158 	}
8159 	if (id <= 0)
8160 		return -ESRCH;
8161 
8162 	*res_btf = btf;
8163 	*res_mod_btf = mod_btf;
8164 	return id;
8165 }
8166 
8167 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8168 					       struct extern_desc *ext)
8169 {
8170 	const struct btf_type *targ_var, *targ_type;
8171 	__u32 targ_type_id, local_type_id;
8172 	struct module_btf *mod_btf = NULL;
8173 	const char *targ_var_name;
8174 	struct btf *btf = NULL;
8175 	int id, err;
8176 
8177 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8178 	if (id < 0) {
8179 		if (id == -ESRCH && ext->is_weak)
8180 			return 0;
8181 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8182 			ext->name);
8183 		return id;
8184 	}
8185 
8186 	/* find local type_id */
8187 	local_type_id = ext->ksym.type_id;
8188 
8189 	/* find target type_id */
8190 	targ_var = btf__type_by_id(btf, id);
8191 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8192 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8193 
8194 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8195 					btf, targ_type_id);
8196 	if (err <= 0) {
8197 		const struct btf_type *local_type;
8198 		const char *targ_name, *local_name;
8199 
8200 		local_type = btf__type_by_id(obj->btf, local_type_id);
8201 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8202 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8203 
8204 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8205 			ext->name, local_type_id,
8206 			btf_kind_str(local_type), local_name, targ_type_id,
8207 			btf_kind_str(targ_type), targ_name);
8208 		return -EINVAL;
8209 	}
8210 
8211 	ext->is_set = true;
8212 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8213 	ext->ksym.kernel_btf_id = id;
8214 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8215 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8216 
8217 	return 0;
8218 }
8219 
8220 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8221 						struct extern_desc *ext)
8222 {
8223 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8224 	struct module_btf *mod_btf = NULL;
8225 	const struct btf_type *kern_func;
8226 	struct btf *kern_btf = NULL;
8227 	int ret;
8228 
8229 	local_func_proto_id = ext->ksym.type_id;
8230 
8231 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8232 				    &mod_btf);
8233 	if (kfunc_id < 0) {
8234 		if (kfunc_id == -ESRCH && ext->is_weak)
8235 			return 0;
8236 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8237 			ext->name);
8238 		return kfunc_id;
8239 	}
8240 
8241 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8242 	kfunc_proto_id = kern_func->type;
8243 
8244 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8245 					kern_btf, kfunc_proto_id);
8246 	if (ret <= 0) {
8247 		if (ext->is_weak)
8248 			return 0;
8249 
8250 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8251 			ext->name, local_func_proto_id,
8252 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8253 		return -EINVAL;
8254 	}
8255 
8256 	/* set index for module BTF fd in fd_array, if unset */
8257 	if (mod_btf && !mod_btf->fd_array_idx) {
8258 		/* insn->off is s16 */
8259 		if (obj->fd_array_cnt == INT16_MAX) {
8260 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8261 				ext->name, mod_btf->fd_array_idx);
8262 			return -E2BIG;
8263 		}
8264 		/* Cannot use index 0 for module BTF fd */
8265 		if (!obj->fd_array_cnt)
8266 			obj->fd_array_cnt = 1;
8267 
8268 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8269 					obj->fd_array_cnt + 1);
8270 		if (ret)
8271 			return ret;
8272 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8273 		/* we assume module BTF FD is always >0 */
8274 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8275 	}
8276 
8277 	ext->is_set = true;
8278 	ext->ksym.kernel_btf_id = kfunc_id;
8279 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8280 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8281 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8282 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8283 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8284 	 */
8285 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8286 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8287 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8288 
8289 	return 0;
8290 }
8291 
8292 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8293 {
8294 	const struct btf_type *t;
8295 	struct extern_desc *ext;
8296 	int i, err;
8297 
8298 	for (i = 0; i < obj->nr_extern; i++) {
8299 		ext = &obj->externs[i];
8300 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8301 			continue;
8302 
8303 		if (obj->gen_loader) {
8304 			ext->is_set = true;
8305 			ext->ksym.kernel_btf_obj_fd = 0;
8306 			ext->ksym.kernel_btf_id = 0;
8307 			continue;
8308 		}
8309 		t = btf__type_by_id(obj->btf, ext->btf_id);
8310 		if (btf_is_var(t))
8311 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8312 		else
8313 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8314 		if (err)
8315 			return err;
8316 	}
8317 	return 0;
8318 }
8319 
8320 static int bpf_object__resolve_externs(struct bpf_object *obj,
8321 				       const char *extra_kconfig)
8322 {
8323 	bool need_config = false, need_kallsyms = false;
8324 	bool need_vmlinux_btf = false;
8325 	struct extern_desc *ext;
8326 	void *kcfg_data = NULL;
8327 	int err, i;
8328 
8329 	if (obj->nr_extern == 0)
8330 		return 0;
8331 
8332 	if (obj->kconfig_map_idx >= 0)
8333 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8334 
8335 	for (i = 0; i < obj->nr_extern; i++) {
8336 		ext = &obj->externs[i];
8337 
8338 		if (ext->type == EXT_KSYM) {
8339 			if (ext->ksym.type_id)
8340 				need_vmlinux_btf = true;
8341 			else
8342 				need_kallsyms = true;
8343 			continue;
8344 		} else if (ext->type == EXT_KCFG) {
8345 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8346 			__u64 value = 0;
8347 
8348 			/* Kconfig externs need actual /proc/config.gz */
8349 			if (str_has_pfx(ext->name, "CONFIG_")) {
8350 				need_config = true;
8351 				continue;
8352 			}
8353 
8354 			/* Virtual kcfg externs are customly handled by libbpf */
8355 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8356 				value = get_kernel_version();
8357 				if (!value) {
8358 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8359 					return -EINVAL;
8360 				}
8361 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8362 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8363 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8364 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8365 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8366 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8367 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8368 				 * customly by libbpf (their values don't come from Kconfig).
8369 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8370 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8371 				 * externs.
8372 				 */
8373 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8374 				return -EINVAL;
8375 			}
8376 
8377 			err = set_kcfg_value_num(ext, ext_ptr, value);
8378 			if (err)
8379 				return err;
8380 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8381 				 ext->name, (long long)value);
8382 		} else {
8383 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8384 			return -EINVAL;
8385 		}
8386 	}
8387 	if (need_config && extra_kconfig) {
8388 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8389 		if (err)
8390 			return -EINVAL;
8391 		need_config = false;
8392 		for (i = 0; i < obj->nr_extern; i++) {
8393 			ext = &obj->externs[i];
8394 			if (ext->type == EXT_KCFG && !ext->is_set) {
8395 				need_config = true;
8396 				break;
8397 			}
8398 		}
8399 	}
8400 	if (need_config) {
8401 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8402 		if (err)
8403 			return -EINVAL;
8404 	}
8405 	if (need_kallsyms) {
8406 		err = bpf_object__read_kallsyms_file(obj);
8407 		if (err)
8408 			return -EINVAL;
8409 	}
8410 	if (need_vmlinux_btf) {
8411 		err = bpf_object__resolve_ksyms_btf_id(obj);
8412 		if (err)
8413 			return -EINVAL;
8414 	}
8415 	for (i = 0; i < obj->nr_extern; i++) {
8416 		ext = &obj->externs[i];
8417 
8418 		if (!ext->is_set && !ext->is_weak) {
8419 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8420 			return -ESRCH;
8421 		} else if (!ext->is_set) {
8422 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8423 				 ext->name);
8424 		}
8425 	}
8426 
8427 	return 0;
8428 }
8429 
8430 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8431 {
8432 	struct bpf_struct_ops *st_ops;
8433 	__u32 i;
8434 
8435 	st_ops = map->st_ops;
8436 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8437 		struct bpf_program *prog = st_ops->progs[i];
8438 		void *kern_data;
8439 		int prog_fd;
8440 
8441 		if (!prog)
8442 			continue;
8443 
8444 		prog_fd = bpf_program__fd(prog);
8445 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8446 		*(unsigned long *)kern_data = prog_fd;
8447 	}
8448 }
8449 
8450 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8451 {
8452 	int i;
8453 
8454 	for (i = 0; i < obj->nr_maps; i++)
8455 		if (bpf_map__is_struct_ops(&obj->maps[i]))
8456 			bpf_map_prepare_vdata(&obj->maps[i]);
8457 
8458 	return 0;
8459 }
8460 
8461 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8462 {
8463 	int err, i;
8464 
8465 	if (!obj)
8466 		return libbpf_err(-EINVAL);
8467 
8468 	if (obj->loaded) {
8469 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8470 		return libbpf_err(-EINVAL);
8471 	}
8472 
8473 	if (obj->gen_loader)
8474 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8475 
8476 	err = bpf_object__probe_loading(obj);
8477 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8478 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8479 	err = err ? : bpf_object__sanitize_maps(obj);
8480 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8481 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8482 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8483 	err = err ? : bpf_object__create_maps(obj);
8484 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8485 	err = err ? : bpf_object_init_prog_arrays(obj);
8486 	err = err ? : bpf_object_prepare_struct_ops(obj);
8487 
8488 	if (obj->gen_loader) {
8489 		/* reset FDs */
8490 		if (obj->btf)
8491 			btf__set_fd(obj->btf, -1);
8492 		if (!err)
8493 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8494 	}
8495 
8496 	/* clean up fd_array */
8497 	zfree(&obj->fd_array);
8498 
8499 	/* clean up module BTFs */
8500 	for (i = 0; i < obj->btf_module_cnt; i++) {
8501 		close(obj->btf_modules[i].fd);
8502 		btf__free(obj->btf_modules[i].btf);
8503 		free(obj->btf_modules[i].name);
8504 	}
8505 	free(obj->btf_modules);
8506 
8507 	/* clean up vmlinux BTF */
8508 	btf__free(obj->btf_vmlinux);
8509 	obj->btf_vmlinux = NULL;
8510 
8511 	obj->loaded = true; /* doesn't matter if successfully or not */
8512 
8513 	if (err)
8514 		goto out;
8515 
8516 	return 0;
8517 out:
8518 	/* unpin any maps that were auto-pinned during load */
8519 	for (i = 0; i < obj->nr_maps; i++)
8520 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8521 			bpf_map__unpin(&obj->maps[i], NULL);
8522 
8523 	bpf_object_unload(obj);
8524 	pr_warn("failed to load object '%s'\n", obj->path);
8525 	return libbpf_err(err);
8526 }
8527 
8528 int bpf_object__load(struct bpf_object *obj)
8529 {
8530 	return bpf_object_load(obj, 0, NULL);
8531 }
8532 
8533 static int make_parent_dir(const char *path)
8534 {
8535 	char *cp, errmsg[STRERR_BUFSIZE];
8536 	char *dname, *dir;
8537 	int err = 0;
8538 
8539 	dname = strdup(path);
8540 	if (dname == NULL)
8541 		return -ENOMEM;
8542 
8543 	dir = dirname(dname);
8544 	if (mkdir(dir, 0700) && errno != EEXIST)
8545 		err = -errno;
8546 
8547 	free(dname);
8548 	if (err) {
8549 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8550 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8551 	}
8552 	return err;
8553 }
8554 
8555 static int check_path(const char *path)
8556 {
8557 	char *cp, errmsg[STRERR_BUFSIZE];
8558 	struct statfs st_fs;
8559 	char *dname, *dir;
8560 	int err = 0;
8561 
8562 	if (path == NULL)
8563 		return -EINVAL;
8564 
8565 	dname = strdup(path);
8566 	if (dname == NULL)
8567 		return -ENOMEM;
8568 
8569 	dir = dirname(dname);
8570 	if (statfs(dir, &st_fs)) {
8571 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8572 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8573 		err = -errno;
8574 	}
8575 	free(dname);
8576 
8577 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8578 		pr_warn("specified path %s is not on BPF FS\n", path);
8579 		err = -EINVAL;
8580 	}
8581 
8582 	return err;
8583 }
8584 
8585 int bpf_program__pin(struct bpf_program *prog, const char *path)
8586 {
8587 	char *cp, errmsg[STRERR_BUFSIZE];
8588 	int err;
8589 
8590 	if (prog->fd < 0) {
8591 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8592 		return libbpf_err(-EINVAL);
8593 	}
8594 
8595 	err = make_parent_dir(path);
8596 	if (err)
8597 		return libbpf_err(err);
8598 
8599 	err = check_path(path);
8600 	if (err)
8601 		return libbpf_err(err);
8602 
8603 	if (bpf_obj_pin(prog->fd, path)) {
8604 		err = -errno;
8605 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8606 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8607 		return libbpf_err(err);
8608 	}
8609 
8610 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8611 	return 0;
8612 }
8613 
8614 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8615 {
8616 	int err;
8617 
8618 	if (prog->fd < 0) {
8619 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8620 		return libbpf_err(-EINVAL);
8621 	}
8622 
8623 	err = check_path(path);
8624 	if (err)
8625 		return libbpf_err(err);
8626 
8627 	err = unlink(path);
8628 	if (err)
8629 		return libbpf_err(-errno);
8630 
8631 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8632 	return 0;
8633 }
8634 
8635 int bpf_map__pin(struct bpf_map *map, const char *path)
8636 {
8637 	char *cp, errmsg[STRERR_BUFSIZE];
8638 	int err;
8639 
8640 	if (map == NULL) {
8641 		pr_warn("invalid map pointer\n");
8642 		return libbpf_err(-EINVAL);
8643 	}
8644 
8645 	if (map->pin_path) {
8646 		if (path && strcmp(path, map->pin_path)) {
8647 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8648 				bpf_map__name(map), map->pin_path, path);
8649 			return libbpf_err(-EINVAL);
8650 		} else if (map->pinned) {
8651 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8652 				 bpf_map__name(map), map->pin_path);
8653 			return 0;
8654 		}
8655 	} else {
8656 		if (!path) {
8657 			pr_warn("missing a path to pin map '%s' at\n",
8658 				bpf_map__name(map));
8659 			return libbpf_err(-EINVAL);
8660 		} else if (map->pinned) {
8661 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8662 			return libbpf_err(-EEXIST);
8663 		}
8664 
8665 		map->pin_path = strdup(path);
8666 		if (!map->pin_path) {
8667 			err = -errno;
8668 			goto out_err;
8669 		}
8670 	}
8671 
8672 	err = make_parent_dir(map->pin_path);
8673 	if (err)
8674 		return libbpf_err(err);
8675 
8676 	err = check_path(map->pin_path);
8677 	if (err)
8678 		return libbpf_err(err);
8679 
8680 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8681 		err = -errno;
8682 		goto out_err;
8683 	}
8684 
8685 	map->pinned = true;
8686 	pr_debug("pinned map '%s'\n", map->pin_path);
8687 
8688 	return 0;
8689 
8690 out_err:
8691 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8692 	pr_warn("failed to pin map: %s\n", cp);
8693 	return libbpf_err(err);
8694 }
8695 
8696 int bpf_map__unpin(struct bpf_map *map, const char *path)
8697 {
8698 	int err;
8699 
8700 	if (map == NULL) {
8701 		pr_warn("invalid map pointer\n");
8702 		return libbpf_err(-EINVAL);
8703 	}
8704 
8705 	if (map->pin_path) {
8706 		if (path && strcmp(path, map->pin_path)) {
8707 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8708 				bpf_map__name(map), map->pin_path, path);
8709 			return libbpf_err(-EINVAL);
8710 		}
8711 		path = map->pin_path;
8712 	} else if (!path) {
8713 		pr_warn("no path to unpin map '%s' from\n",
8714 			bpf_map__name(map));
8715 		return libbpf_err(-EINVAL);
8716 	}
8717 
8718 	err = check_path(path);
8719 	if (err)
8720 		return libbpf_err(err);
8721 
8722 	err = unlink(path);
8723 	if (err != 0)
8724 		return libbpf_err(-errno);
8725 
8726 	map->pinned = false;
8727 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8728 
8729 	return 0;
8730 }
8731 
8732 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8733 {
8734 	char *new = NULL;
8735 
8736 	if (path) {
8737 		new = strdup(path);
8738 		if (!new)
8739 			return libbpf_err(-errno);
8740 	}
8741 
8742 	free(map->pin_path);
8743 	map->pin_path = new;
8744 	return 0;
8745 }
8746 
8747 __alias(bpf_map__pin_path)
8748 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8749 
8750 const char *bpf_map__pin_path(const struct bpf_map *map)
8751 {
8752 	return map->pin_path;
8753 }
8754 
8755 bool bpf_map__is_pinned(const struct bpf_map *map)
8756 {
8757 	return map->pinned;
8758 }
8759 
8760 static void sanitize_pin_path(char *s)
8761 {
8762 	/* bpffs disallows periods in path names */
8763 	while (*s) {
8764 		if (*s == '.')
8765 			*s = '_';
8766 		s++;
8767 	}
8768 }
8769 
8770 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8771 {
8772 	struct bpf_map *map;
8773 	int err;
8774 
8775 	if (!obj)
8776 		return libbpf_err(-ENOENT);
8777 
8778 	if (!obj->loaded) {
8779 		pr_warn("object not yet loaded; load it first\n");
8780 		return libbpf_err(-ENOENT);
8781 	}
8782 
8783 	bpf_object__for_each_map(map, obj) {
8784 		char *pin_path = NULL;
8785 		char buf[PATH_MAX];
8786 
8787 		if (!map->autocreate)
8788 			continue;
8789 
8790 		if (path) {
8791 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8792 			if (err)
8793 				goto err_unpin_maps;
8794 			sanitize_pin_path(buf);
8795 			pin_path = buf;
8796 		} else if (!map->pin_path) {
8797 			continue;
8798 		}
8799 
8800 		err = bpf_map__pin(map, pin_path);
8801 		if (err)
8802 			goto err_unpin_maps;
8803 	}
8804 
8805 	return 0;
8806 
8807 err_unpin_maps:
8808 	while ((map = bpf_object__prev_map(obj, map))) {
8809 		if (!map->pin_path)
8810 			continue;
8811 
8812 		bpf_map__unpin(map, NULL);
8813 	}
8814 
8815 	return libbpf_err(err);
8816 }
8817 
8818 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8819 {
8820 	struct bpf_map *map;
8821 	int err;
8822 
8823 	if (!obj)
8824 		return libbpf_err(-ENOENT);
8825 
8826 	bpf_object__for_each_map(map, obj) {
8827 		char *pin_path = NULL;
8828 		char buf[PATH_MAX];
8829 
8830 		if (path) {
8831 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8832 			if (err)
8833 				return libbpf_err(err);
8834 			sanitize_pin_path(buf);
8835 			pin_path = buf;
8836 		} else if (!map->pin_path) {
8837 			continue;
8838 		}
8839 
8840 		err = bpf_map__unpin(map, pin_path);
8841 		if (err)
8842 			return libbpf_err(err);
8843 	}
8844 
8845 	return 0;
8846 }
8847 
8848 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8849 {
8850 	struct bpf_program *prog;
8851 	char buf[PATH_MAX];
8852 	int err;
8853 
8854 	if (!obj)
8855 		return libbpf_err(-ENOENT);
8856 
8857 	if (!obj->loaded) {
8858 		pr_warn("object not yet loaded; load it first\n");
8859 		return libbpf_err(-ENOENT);
8860 	}
8861 
8862 	bpf_object__for_each_program(prog, obj) {
8863 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8864 		if (err)
8865 			goto err_unpin_programs;
8866 
8867 		err = bpf_program__pin(prog, buf);
8868 		if (err)
8869 			goto err_unpin_programs;
8870 	}
8871 
8872 	return 0;
8873 
8874 err_unpin_programs:
8875 	while ((prog = bpf_object__prev_program(obj, prog))) {
8876 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8877 			continue;
8878 
8879 		bpf_program__unpin(prog, buf);
8880 	}
8881 
8882 	return libbpf_err(err);
8883 }
8884 
8885 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8886 {
8887 	struct bpf_program *prog;
8888 	int err;
8889 
8890 	if (!obj)
8891 		return libbpf_err(-ENOENT);
8892 
8893 	bpf_object__for_each_program(prog, obj) {
8894 		char buf[PATH_MAX];
8895 
8896 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8897 		if (err)
8898 			return libbpf_err(err);
8899 
8900 		err = bpf_program__unpin(prog, buf);
8901 		if (err)
8902 			return libbpf_err(err);
8903 	}
8904 
8905 	return 0;
8906 }
8907 
8908 int bpf_object__pin(struct bpf_object *obj, const char *path)
8909 {
8910 	int err;
8911 
8912 	err = bpf_object__pin_maps(obj, path);
8913 	if (err)
8914 		return libbpf_err(err);
8915 
8916 	err = bpf_object__pin_programs(obj, path);
8917 	if (err) {
8918 		bpf_object__unpin_maps(obj, path);
8919 		return libbpf_err(err);
8920 	}
8921 
8922 	return 0;
8923 }
8924 
8925 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8926 {
8927 	int err;
8928 
8929 	err = bpf_object__unpin_programs(obj, path);
8930 	if (err)
8931 		return libbpf_err(err);
8932 
8933 	err = bpf_object__unpin_maps(obj, path);
8934 	if (err)
8935 		return libbpf_err(err);
8936 
8937 	return 0;
8938 }
8939 
8940 static void bpf_map__destroy(struct bpf_map *map)
8941 {
8942 	if (map->inner_map) {
8943 		bpf_map__destroy(map->inner_map);
8944 		zfree(&map->inner_map);
8945 	}
8946 
8947 	zfree(&map->init_slots);
8948 	map->init_slots_sz = 0;
8949 
8950 	if (map->mmaped) {
8951 		size_t mmap_sz;
8952 
8953 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8954 		munmap(map->mmaped, mmap_sz);
8955 		map->mmaped = NULL;
8956 	}
8957 
8958 	if (map->st_ops) {
8959 		zfree(&map->st_ops->data);
8960 		zfree(&map->st_ops->progs);
8961 		zfree(&map->st_ops->kern_func_off);
8962 		zfree(&map->st_ops);
8963 	}
8964 
8965 	zfree(&map->name);
8966 	zfree(&map->real_name);
8967 	zfree(&map->pin_path);
8968 
8969 	if (map->fd >= 0)
8970 		zclose(map->fd);
8971 }
8972 
8973 void bpf_object__close(struct bpf_object *obj)
8974 {
8975 	size_t i;
8976 
8977 	if (IS_ERR_OR_NULL(obj))
8978 		return;
8979 
8980 	usdt_manager_free(obj->usdt_man);
8981 	obj->usdt_man = NULL;
8982 
8983 	bpf_gen__free(obj->gen_loader);
8984 	bpf_object__elf_finish(obj);
8985 	bpf_object_unload(obj);
8986 	btf__free(obj->btf);
8987 	btf__free(obj->btf_vmlinux);
8988 	btf_ext__free(obj->btf_ext);
8989 
8990 	for (i = 0; i < obj->nr_maps; i++)
8991 		bpf_map__destroy(&obj->maps[i]);
8992 
8993 	zfree(&obj->btf_custom_path);
8994 	zfree(&obj->kconfig);
8995 
8996 	for (i = 0; i < obj->nr_extern; i++)
8997 		zfree(&obj->externs[i].essent_name);
8998 
8999 	zfree(&obj->externs);
9000 	obj->nr_extern = 0;
9001 
9002 	zfree(&obj->maps);
9003 	obj->nr_maps = 0;
9004 
9005 	if (obj->programs && obj->nr_programs) {
9006 		for (i = 0; i < obj->nr_programs; i++)
9007 			bpf_program__exit(&obj->programs[i]);
9008 	}
9009 	zfree(&obj->programs);
9010 
9011 	free(obj);
9012 }
9013 
9014 const char *bpf_object__name(const struct bpf_object *obj)
9015 {
9016 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9017 }
9018 
9019 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9020 {
9021 	return obj ? obj->kern_version : 0;
9022 }
9023 
9024 struct btf *bpf_object__btf(const struct bpf_object *obj)
9025 {
9026 	return obj ? obj->btf : NULL;
9027 }
9028 
9029 int bpf_object__btf_fd(const struct bpf_object *obj)
9030 {
9031 	return obj->btf ? btf__fd(obj->btf) : -1;
9032 }
9033 
9034 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9035 {
9036 	if (obj->loaded)
9037 		return libbpf_err(-EINVAL);
9038 
9039 	obj->kern_version = kern_version;
9040 
9041 	return 0;
9042 }
9043 
9044 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9045 {
9046 	struct bpf_gen *gen;
9047 
9048 	if (!opts)
9049 		return -EFAULT;
9050 	if (!OPTS_VALID(opts, gen_loader_opts))
9051 		return -EINVAL;
9052 	gen = calloc(sizeof(*gen), 1);
9053 	if (!gen)
9054 		return -ENOMEM;
9055 	gen->opts = opts;
9056 	obj->gen_loader = gen;
9057 	return 0;
9058 }
9059 
9060 static struct bpf_program *
9061 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9062 		    bool forward)
9063 {
9064 	size_t nr_programs = obj->nr_programs;
9065 	ssize_t idx;
9066 
9067 	if (!nr_programs)
9068 		return NULL;
9069 
9070 	if (!p)
9071 		/* Iter from the beginning */
9072 		return forward ? &obj->programs[0] :
9073 			&obj->programs[nr_programs - 1];
9074 
9075 	if (p->obj != obj) {
9076 		pr_warn("error: program handler doesn't match object\n");
9077 		return errno = EINVAL, NULL;
9078 	}
9079 
9080 	idx = (p - obj->programs) + (forward ? 1 : -1);
9081 	if (idx >= obj->nr_programs || idx < 0)
9082 		return NULL;
9083 	return &obj->programs[idx];
9084 }
9085 
9086 struct bpf_program *
9087 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9088 {
9089 	struct bpf_program *prog = prev;
9090 
9091 	do {
9092 		prog = __bpf_program__iter(prog, obj, true);
9093 	} while (prog && prog_is_subprog(obj, prog));
9094 
9095 	return prog;
9096 }
9097 
9098 struct bpf_program *
9099 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9100 {
9101 	struct bpf_program *prog = next;
9102 
9103 	do {
9104 		prog = __bpf_program__iter(prog, obj, false);
9105 	} while (prog && prog_is_subprog(obj, prog));
9106 
9107 	return prog;
9108 }
9109 
9110 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9111 {
9112 	prog->prog_ifindex = ifindex;
9113 }
9114 
9115 const char *bpf_program__name(const struct bpf_program *prog)
9116 {
9117 	return prog->name;
9118 }
9119 
9120 const char *bpf_program__section_name(const struct bpf_program *prog)
9121 {
9122 	return prog->sec_name;
9123 }
9124 
9125 bool bpf_program__autoload(const struct bpf_program *prog)
9126 {
9127 	return prog->autoload;
9128 }
9129 
9130 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9131 {
9132 	if (prog->obj->loaded)
9133 		return libbpf_err(-EINVAL);
9134 
9135 	prog->autoload = autoload;
9136 	return 0;
9137 }
9138 
9139 bool bpf_program__autoattach(const struct bpf_program *prog)
9140 {
9141 	return prog->autoattach;
9142 }
9143 
9144 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9145 {
9146 	prog->autoattach = autoattach;
9147 }
9148 
9149 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9150 {
9151 	return prog->insns;
9152 }
9153 
9154 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9155 {
9156 	return prog->insns_cnt;
9157 }
9158 
9159 int bpf_program__set_insns(struct bpf_program *prog,
9160 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9161 {
9162 	struct bpf_insn *insns;
9163 
9164 	if (prog->obj->loaded)
9165 		return -EBUSY;
9166 
9167 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9168 	/* NULL is a valid return from reallocarray if the new count is zero */
9169 	if (!insns && new_insn_cnt) {
9170 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9171 		return -ENOMEM;
9172 	}
9173 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9174 
9175 	prog->insns = insns;
9176 	prog->insns_cnt = new_insn_cnt;
9177 	return 0;
9178 }
9179 
9180 int bpf_program__fd(const struct bpf_program *prog)
9181 {
9182 	if (!prog)
9183 		return libbpf_err(-EINVAL);
9184 
9185 	if (prog->fd < 0)
9186 		return libbpf_err(-ENOENT);
9187 
9188 	return prog->fd;
9189 }
9190 
9191 __alias(bpf_program__type)
9192 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9193 
9194 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9195 {
9196 	return prog->type;
9197 }
9198 
9199 static size_t custom_sec_def_cnt;
9200 static struct bpf_sec_def *custom_sec_defs;
9201 static struct bpf_sec_def custom_fallback_def;
9202 static bool has_custom_fallback_def;
9203 static int last_custom_sec_def_handler_id;
9204 
9205 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9206 {
9207 	if (prog->obj->loaded)
9208 		return libbpf_err(-EBUSY);
9209 
9210 	/* if type is not changed, do nothing */
9211 	if (prog->type == type)
9212 		return 0;
9213 
9214 	prog->type = type;
9215 
9216 	/* If a program type was changed, we need to reset associated SEC()
9217 	 * handler, as it will be invalid now. The only exception is a generic
9218 	 * fallback handler, which by definition is program type-agnostic and
9219 	 * is a catch-all custom handler, optionally set by the application,
9220 	 * so should be able to handle any type of BPF program.
9221 	 */
9222 	if (prog->sec_def != &custom_fallback_def)
9223 		prog->sec_def = NULL;
9224 	return 0;
9225 }
9226 
9227 __alias(bpf_program__expected_attach_type)
9228 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9229 
9230 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9231 {
9232 	return prog->expected_attach_type;
9233 }
9234 
9235 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9236 					   enum bpf_attach_type type)
9237 {
9238 	if (prog->obj->loaded)
9239 		return libbpf_err(-EBUSY);
9240 
9241 	prog->expected_attach_type = type;
9242 	return 0;
9243 }
9244 
9245 __u32 bpf_program__flags(const struct bpf_program *prog)
9246 {
9247 	return prog->prog_flags;
9248 }
9249 
9250 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9251 {
9252 	if (prog->obj->loaded)
9253 		return libbpf_err(-EBUSY);
9254 
9255 	prog->prog_flags = flags;
9256 	return 0;
9257 }
9258 
9259 __u32 bpf_program__log_level(const struct bpf_program *prog)
9260 {
9261 	return prog->log_level;
9262 }
9263 
9264 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9265 {
9266 	if (prog->obj->loaded)
9267 		return libbpf_err(-EBUSY);
9268 
9269 	prog->log_level = log_level;
9270 	return 0;
9271 }
9272 
9273 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9274 {
9275 	*log_size = prog->log_size;
9276 	return prog->log_buf;
9277 }
9278 
9279 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9280 {
9281 	if (log_size && !log_buf)
9282 		return -EINVAL;
9283 	if (prog->log_size > UINT_MAX)
9284 		return -EINVAL;
9285 	if (prog->obj->loaded)
9286 		return -EBUSY;
9287 
9288 	prog->log_buf = log_buf;
9289 	prog->log_size = log_size;
9290 	return 0;
9291 }
9292 
9293 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9294 	.sec = (char *)sec_pfx,						    \
9295 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9296 	.expected_attach_type = atype,					    \
9297 	.cookie = (long)(flags),					    \
9298 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9299 	__VA_ARGS__							    \
9300 }
9301 
9302 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9303 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9304 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9305 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9306 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9307 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9308 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9309 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9310 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9311 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9312 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9313 
9314 static const struct bpf_sec_def section_defs[] = {
9315 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9316 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9317 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9318 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9319 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9320 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9321 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9322 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9323 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9324 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9325 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9326 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9327 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9328 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9329 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9330 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9331 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9332 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9333 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9334 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9335 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9336 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9337 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9338 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9339 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9340 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9341 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9342 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9343 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9344 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9345 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9346 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9347 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9348 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9349 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9350 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9351 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9352 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9353 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9354 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9355 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9356 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9357 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9358 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9359 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9360 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9361 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9362 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9363 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9364 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9365 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9366 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9367 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9368 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9369 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9370 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9371 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9372 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9373 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9374 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9375 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9376 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9377 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9378 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9379 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9380 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9381 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9382 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9383 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9384 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9385 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9386 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9387 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9388 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9389 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9390 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9391 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9392 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9393 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9394 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9395 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9396 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9397 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9398 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9399 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9400 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9401 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9402 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9403 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9404 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9405 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9406 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9407 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9408 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9409 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9410 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9411 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9412 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9413 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9414 };
9415 
9416 int libbpf_register_prog_handler(const char *sec,
9417 				 enum bpf_prog_type prog_type,
9418 				 enum bpf_attach_type exp_attach_type,
9419 				 const struct libbpf_prog_handler_opts *opts)
9420 {
9421 	struct bpf_sec_def *sec_def;
9422 
9423 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9424 		return libbpf_err(-EINVAL);
9425 
9426 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9427 		return libbpf_err(-E2BIG);
9428 
9429 	if (sec) {
9430 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9431 					      sizeof(*sec_def));
9432 		if (!sec_def)
9433 			return libbpf_err(-ENOMEM);
9434 
9435 		custom_sec_defs = sec_def;
9436 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9437 	} else {
9438 		if (has_custom_fallback_def)
9439 			return libbpf_err(-EBUSY);
9440 
9441 		sec_def = &custom_fallback_def;
9442 	}
9443 
9444 	sec_def->sec = sec ? strdup(sec) : NULL;
9445 	if (sec && !sec_def->sec)
9446 		return libbpf_err(-ENOMEM);
9447 
9448 	sec_def->prog_type = prog_type;
9449 	sec_def->expected_attach_type = exp_attach_type;
9450 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9451 
9452 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9453 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9454 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9455 
9456 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9457 
9458 	if (sec)
9459 		custom_sec_def_cnt++;
9460 	else
9461 		has_custom_fallback_def = true;
9462 
9463 	return sec_def->handler_id;
9464 }
9465 
9466 int libbpf_unregister_prog_handler(int handler_id)
9467 {
9468 	struct bpf_sec_def *sec_defs;
9469 	int i;
9470 
9471 	if (handler_id <= 0)
9472 		return libbpf_err(-EINVAL);
9473 
9474 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9475 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9476 		has_custom_fallback_def = false;
9477 		return 0;
9478 	}
9479 
9480 	for (i = 0; i < custom_sec_def_cnt; i++) {
9481 		if (custom_sec_defs[i].handler_id == handler_id)
9482 			break;
9483 	}
9484 
9485 	if (i == custom_sec_def_cnt)
9486 		return libbpf_err(-ENOENT);
9487 
9488 	free(custom_sec_defs[i].sec);
9489 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9490 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9491 	custom_sec_def_cnt--;
9492 
9493 	/* try to shrink the array, but it's ok if we couldn't */
9494 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9495 	/* if new count is zero, reallocarray can return a valid NULL result;
9496 	 * in this case the previous pointer will be freed, so we *have to*
9497 	 * reassign old pointer to the new value (even if it's NULL)
9498 	 */
9499 	if (sec_defs || custom_sec_def_cnt == 0)
9500 		custom_sec_defs = sec_defs;
9501 
9502 	return 0;
9503 }
9504 
9505 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9506 {
9507 	size_t len = strlen(sec_def->sec);
9508 
9509 	/* "type/" always has to have proper SEC("type/extras") form */
9510 	if (sec_def->sec[len - 1] == '/') {
9511 		if (str_has_pfx(sec_name, sec_def->sec))
9512 			return true;
9513 		return false;
9514 	}
9515 
9516 	/* "type+" means it can be either exact SEC("type") or
9517 	 * well-formed SEC("type/extras") with proper '/' separator
9518 	 */
9519 	if (sec_def->sec[len - 1] == '+') {
9520 		len--;
9521 		/* not even a prefix */
9522 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9523 			return false;
9524 		/* exact match or has '/' separator */
9525 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9526 			return true;
9527 		return false;
9528 	}
9529 
9530 	return strcmp(sec_name, sec_def->sec) == 0;
9531 }
9532 
9533 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9534 {
9535 	const struct bpf_sec_def *sec_def;
9536 	int i, n;
9537 
9538 	n = custom_sec_def_cnt;
9539 	for (i = 0; i < n; i++) {
9540 		sec_def = &custom_sec_defs[i];
9541 		if (sec_def_matches(sec_def, sec_name))
9542 			return sec_def;
9543 	}
9544 
9545 	n = ARRAY_SIZE(section_defs);
9546 	for (i = 0; i < n; i++) {
9547 		sec_def = &section_defs[i];
9548 		if (sec_def_matches(sec_def, sec_name))
9549 			return sec_def;
9550 	}
9551 
9552 	if (has_custom_fallback_def)
9553 		return &custom_fallback_def;
9554 
9555 	return NULL;
9556 }
9557 
9558 #define MAX_TYPE_NAME_SIZE 32
9559 
9560 static char *libbpf_get_type_names(bool attach_type)
9561 {
9562 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9563 	char *buf;
9564 
9565 	buf = malloc(len);
9566 	if (!buf)
9567 		return NULL;
9568 
9569 	buf[0] = '\0';
9570 	/* Forge string buf with all available names */
9571 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9572 		const struct bpf_sec_def *sec_def = &section_defs[i];
9573 
9574 		if (attach_type) {
9575 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9576 				continue;
9577 
9578 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9579 				continue;
9580 		}
9581 
9582 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9583 			free(buf);
9584 			return NULL;
9585 		}
9586 		strcat(buf, " ");
9587 		strcat(buf, section_defs[i].sec);
9588 	}
9589 
9590 	return buf;
9591 }
9592 
9593 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9594 			     enum bpf_attach_type *expected_attach_type)
9595 {
9596 	const struct bpf_sec_def *sec_def;
9597 	char *type_names;
9598 
9599 	if (!name)
9600 		return libbpf_err(-EINVAL);
9601 
9602 	sec_def = find_sec_def(name);
9603 	if (sec_def) {
9604 		*prog_type = sec_def->prog_type;
9605 		*expected_attach_type = sec_def->expected_attach_type;
9606 		return 0;
9607 	}
9608 
9609 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9610 	type_names = libbpf_get_type_names(false);
9611 	if (type_names != NULL) {
9612 		pr_debug("supported section(type) names are:%s\n", type_names);
9613 		free(type_names);
9614 	}
9615 
9616 	return libbpf_err(-ESRCH);
9617 }
9618 
9619 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9620 {
9621 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9622 		return NULL;
9623 
9624 	return attach_type_name[t];
9625 }
9626 
9627 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9628 {
9629 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9630 		return NULL;
9631 
9632 	return link_type_name[t];
9633 }
9634 
9635 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9636 {
9637 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9638 		return NULL;
9639 
9640 	return map_type_name[t];
9641 }
9642 
9643 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9644 {
9645 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9646 		return NULL;
9647 
9648 	return prog_type_name[t];
9649 }
9650 
9651 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9652 						     int sec_idx,
9653 						     size_t offset)
9654 {
9655 	struct bpf_map *map;
9656 	size_t i;
9657 
9658 	for (i = 0; i < obj->nr_maps; i++) {
9659 		map = &obj->maps[i];
9660 		if (!bpf_map__is_struct_ops(map))
9661 			continue;
9662 		if (map->sec_idx == sec_idx &&
9663 		    map->sec_offset <= offset &&
9664 		    offset - map->sec_offset < map->def.value_size)
9665 			return map;
9666 	}
9667 
9668 	return NULL;
9669 }
9670 
9671 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9672 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9673 					    Elf64_Shdr *shdr, Elf_Data *data)
9674 {
9675 	const struct btf_member *member;
9676 	struct bpf_struct_ops *st_ops;
9677 	struct bpf_program *prog;
9678 	unsigned int shdr_idx;
9679 	const struct btf *btf;
9680 	struct bpf_map *map;
9681 	unsigned int moff, insn_idx;
9682 	const char *name;
9683 	__u32 member_idx;
9684 	Elf64_Sym *sym;
9685 	Elf64_Rel *rel;
9686 	int i, nrels;
9687 
9688 	btf = obj->btf;
9689 	nrels = shdr->sh_size / shdr->sh_entsize;
9690 	for (i = 0; i < nrels; i++) {
9691 		rel = elf_rel_by_idx(data, i);
9692 		if (!rel) {
9693 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9694 			return -LIBBPF_ERRNO__FORMAT;
9695 		}
9696 
9697 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9698 		if (!sym) {
9699 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9700 				(size_t)ELF64_R_SYM(rel->r_info));
9701 			return -LIBBPF_ERRNO__FORMAT;
9702 		}
9703 
9704 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9705 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9706 		if (!map) {
9707 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9708 				(size_t)rel->r_offset);
9709 			return -EINVAL;
9710 		}
9711 
9712 		moff = rel->r_offset - map->sec_offset;
9713 		shdr_idx = sym->st_shndx;
9714 		st_ops = map->st_ops;
9715 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9716 			 map->name,
9717 			 (long long)(rel->r_info >> 32),
9718 			 (long long)sym->st_value,
9719 			 shdr_idx, (size_t)rel->r_offset,
9720 			 map->sec_offset, sym->st_name, name);
9721 
9722 		if (shdr_idx >= SHN_LORESERVE) {
9723 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9724 				map->name, (size_t)rel->r_offset, shdr_idx);
9725 			return -LIBBPF_ERRNO__RELOC;
9726 		}
9727 		if (sym->st_value % BPF_INSN_SZ) {
9728 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9729 				map->name, (unsigned long long)sym->st_value);
9730 			return -LIBBPF_ERRNO__FORMAT;
9731 		}
9732 		insn_idx = sym->st_value / BPF_INSN_SZ;
9733 
9734 		member = find_member_by_offset(st_ops->type, moff * 8);
9735 		if (!member) {
9736 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9737 				map->name, moff);
9738 			return -EINVAL;
9739 		}
9740 		member_idx = member - btf_members(st_ops->type);
9741 		name = btf__name_by_offset(btf, member->name_off);
9742 
9743 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9744 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9745 				map->name, name);
9746 			return -EINVAL;
9747 		}
9748 
9749 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9750 		if (!prog) {
9751 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9752 				map->name, shdr_idx, name);
9753 			return -EINVAL;
9754 		}
9755 
9756 		/* prevent the use of BPF prog with invalid type */
9757 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9758 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9759 				map->name, prog->name);
9760 			return -EINVAL;
9761 		}
9762 
9763 		/* if we haven't yet processed this BPF program, record proper
9764 		 * attach_btf_id and member_idx
9765 		 */
9766 		if (!prog->attach_btf_id) {
9767 			prog->attach_btf_id = st_ops->type_id;
9768 			prog->expected_attach_type = member_idx;
9769 		}
9770 
9771 		/* struct_ops BPF prog can be re-used between multiple
9772 		 * .struct_ops & .struct_ops.link as long as it's the
9773 		 * same struct_ops struct definition and the same
9774 		 * function pointer field
9775 		 */
9776 		if (prog->attach_btf_id != st_ops->type_id ||
9777 		    prog->expected_attach_type != member_idx) {
9778 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9779 				map->name, prog->name, prog->sec_name, prog->type,
9780 				prog->attach_btf_id, prog->expected_attach_type, name);
9781 			return -EINVAL;
9782 		}
9783 
9784 		st_ops->progs[member_idx] = prog;
9785 	}
9786 
9787 	return 0;
9788 }
9789 
9790 #define BTF_TRACE_PREFIX "btf_trace_"
9791 #define BTF_LSM_PREFIX "bpf_lsm_"
9792 #define BTF_ITER_PREFIX "bpf_iter_"
9793 #define BTF_MAX_NAME_SIZE 128
9794 
9795 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9796 				const char **prefix, int *kind)
9797 {
9798 	switch (attach_type) {
9799 	case BPF_TRACE_RAW_TP:
9800 		*prefix = BTF_TRACE_PREFIX;
9801 		*kind = BTF_KIND_TYPEDEF;
9802 		break;
9803 	case BPF_LSM_MAC:
9804 	case BPF_LSM_CGROUP:
9805 		*prefix = BTF_LSM_PREFIX;
9806 		*kind = BTF_KIND_FUNC;
9807 		break;
9808 	case BPF_TRACE_ITER:
9809 		*prefix = BTF_ITER_PREFIX;
9810 		*kind = BTF_KIND_FUNC;
9811 		break;
9812 	default:
9813 		*prefix = "";
9814 		*kind = BTF_KIND_FUNC;
9815 	}
9816 }
9817 
9818 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9819 				   const char *name, __u32 kind)
9820 {
9821 	char btf_type_name[BTF_MAX_NAME_SIZE];
9822 	int ret;
9823 
9824 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9825 		       "%s%s", prefix, name);
9826 	/* snprintf returns the number of characters written excluding the
9827 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9828 	 * indicates truncation.
9829 	 */
9830 	if (ret < 0 || ret >= sizeof(btf_type_name))
9831 		return -ENAMETOOLONG;
9832 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9833 }
9834 
9835 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9836 				     enum bpf_attach_type attach_type)
9837 {
9838 	const char *prefix;
9839 	int kind;
9840 
9841 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9842 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9843 }
9844 
9845 int libbpf_find_vmlinux_btf_id(const char *name,
9846 			       enum bpf_attach_type attach_type)
9847 {
9848 	struct btf *btf;
9849 	int err;
9850 
9851 	btf = btf__load_vmlinux_btf();
9852 	err = libbpf_get_error(btf);
9853 	if (err) {
9854 		pr_warn("vmlinux BTF is not found\n");
9855 		return libbpf_err(err);
9856 	}
9857 
9858 	err = find_attach_btf_id(btf, name, attach_type);
9859 	if (err <= 0)
9860 		pr_warn("%s is not found in vmlinux BTF\n", name);
9861 
9862 	btf__free(btf);
9863 	return libbpf_err(err);
9864 }
9865 
9866 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9867 {
9868 	struct bpf_prog_info info;
9869 	__u32 info_len = sizeof(info);
9870 	struct btf *btf;
9871 	int err;
9872 
9873 	memset(&info, 0, info_len);
9874 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9875 	if (err) {
9876 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9877 			attach_prog_fd, err);
9878 		return err;
9879 	}
9880 
9881 	err = -EINVAL;
9882 	if (!info.btf_id) {
9883 		pr_warn("The target program doesn't have BTF\n");
9884 		goto out;
9885 	}
9886 	btf = btf__load_from_kernel_by_id(info.btf_id);
9887 	err = libbpf_get_error(btf);
9888 	if (err) {
9889 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9890 		goto out;
9891 	}
9892 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9893 	btf__free(btf);
9894 	if (err <= 0) {
9895 		pr_warn("%s is not found in prog's BTF\n", name);
9896 		goto out;
9897 	}
9898 out:
9899 	return err;
9900 }
9901 
9902 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9903 			      enum bpf_attach_type attach_type,
9904 			      int *btf_obj_fd, int *btf_type_id)
9905 {
9906 	int ret, i;
9907 
9908 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9909 	if (ret > 0) {
9910 		*btf_obj_fd = 0; /* vmlinux BTF */
9911 		*btf_type_id = ret;
9912 		return 0;
9913 	}
9914 	if (ret != -ENOENT)
9915 		return ret;
9916 
9917 	ret = load_module_btfs(obj);
9918 	if (ret)
9919 		return ret;
9920 
9921 	for (i = 0; i < obj->btf_module_cnt; i++) {
9922 		const struct module_btf *mod = &obj->btf_modules[i];
9923 
9924 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9925 		if (ret > 0) {
9926 			*btf_obj_fd = mod->fd;
9927 			*btf_type_id = ret;
9928 			return 0;
9929 		}
9930 		if (ret == -ENOENT)
9931 			continue;
9932 
9933 		return ret;
9934 	}
9935 
9936 	return -ESRCH;
9937 }
9938 
9939 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9940 				     int *btf_obj_fd, int *btf_type_id)
9941 {
9942 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9943 	__u32 attach_prog_fd = prog->attach_prog_fd;
9944 	int err = 0;
9945 
9946 	/* BPF program's BTF ID */
9947 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9948 		if (!attach_prog_fd) {
9949 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9950 			return -EINVAL;
9951 		}
9952 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9953 		if (err < 0) {
9954 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9955 				 prog->name, attach_prog_fd, attach_name, err);
9956 			return err;
9957 		}
9958 		*btf_obj_fd = 0;
9959 		*btf_type_id = err;
9960 		return 0;
9961 	}
9962 
9963 	/* kernel/module BTF ID */
9964 	if (prog->obj->gen_loader) {
9965 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9966 		*btf_obj_fd = 0;
9967 		*btf_type_id = 1;
9968 	} else {
9969 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9970 	}
9971 	if (err) {
9972 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9973 			prog->name, attach_name, err);
9974 		return err;
9975 	}
9976 	return 0;
9977 }
9978 
9979 int libbpf_attach_type_by_name(const char *name,
9980 			       enum bpf_attach_type *attach_type)
9981 {
9982 	char *type_names;
9983 	const struct bpf_sec_def *sec_def;
9984 
9985 	if (!name)
9986 		return libbpf_err(-EINVAL);
9987 
9988 	sec_def = find_sec_def(name);
9989 	if (!sec_def) {
9990 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9991 		type_names = libbpf_get_type_names(true);
9992 		if (type_names != NULL) {
9993 			pr_debug("attachable section(type) names are:%s\n", type_names);
9994 			free(type_names);
9995 		}
9996 
9997 		return libbpf_err(-EINVAL);
9998 	}
9999 
10000 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10001 		return libbpf_err(-EINVAL);
10002 	if (!(sec_def->cookie & SEC_ATTACHABLE))
10003 		return libbpf_err(-EINVAL);
10004 
10005 	*attach_type = sec_def->expected_attach_type;
10006 	return 0;
10007 }
10008 
10009 int bpf_map__fd(const struct bpf_map *map)
10010 {
10011 	if (!map)
10012 		return libbpf_err(-EINVAL);
10013 	if (!map_is_created(map))
10014 		return -1;
10015 	return map->fd;
10016 }
10017 
10018 static bool map_uses_real_name(const struct bpf_map *map)
10019 {
10020 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
10021 	 * their user-visible name differs from kernel-visible name. Users see
10022 	 * such map's corresponding ELF section name as a map name.
10023 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10024 	 * maps to know which name has to be returned to the user.
10025 	 */
10026 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10027 		return true;
10028 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10029 		return true;
10030 	return false;
10031 }
10032 
10033 const char *bpf_map__name(const struct bpf_map *map)
10034 {
10035 	if (!map)
10036 		return NULL;
10037 
10038 	if (map_uses_real_name(map))
10039 		return map->real_name;
10040 
10041 	return map->name;
10042 }
10043 
10044 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10045 {
10046 	return map->def.type;
10047 }
10048 
10049 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10050 {
10051 	if (map_is_created(map))
10052 		return libbpf_err(-EBUSY);
10053 	map->def.type = type;
10054 	return 0;
10055 }
10056 
10057 __u32 bpf_map__map_flags(const struct bpf_map *map)
10058 {
10059 	return map->def.map_flags;
10060 }
10061 
10062 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10063 {
10064 	if (map_is_created(map))
10065 		return libbpf_err(-EBUSY);
10066 	map->def.map_flags = flags;
10067 	return 0;
10068 }
10069 
10070 __u64 bpf_map__map_extra(const struct bpf_map *map)
10071 {
10072 	return map->map_extra;
10073 }
10074 
10075 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10076 {
10077 	if (map_is_created(map))
10078 		return libbpf_err(-EBUSY);
10079 	map->map_extra = map_extra;
10080 	return 0;
10081 }
10082 
10083 __u32 bpf_map__numa_node(const struct bpf_map *map)
10084 {
10085 	return map->numa_node;
10086 }
10087 
10088 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10089 {
10090 	if (map_is_created(map))
10091 		return libbpf_err(-EBUSY);
10092 	map->numa_node = numa_node;
10093 	return 0;
10094 }
10095 
10096 __u32 bpf_map__key_size(const struct bpf_map *map)
10097 {
10098 	return map->def.key_size;
10099 }
10100 
10101 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10102 {
10103 	if (map_is_created(map))
10104 		return libbpf_err(-EBUSY);
10105 	map->def.key_size = size;
10106 	return 0;
10107 }
10108 
10109 __u32 bpf_map__value_size(const struct bpf_map *map)
10110 {
10111 	return map->def.value_size;
10112 }
10113 
10114 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10115 {
10116 	struct btf *btf;
10117 	struct btf_type *datasec_type, *var_type;
10118 	struct btf_var_secinfo *var;
10119 	const struct btf_type *array_type;
10120 	const struct btf_array *array;
10121 	int vlen, element_sz, new_array_id;
10122 	__u32 nr_elements;
10123 
10124 	/* check btf existence */
10125 	btf = bpf_object__btf(map->obj);
10126 	if (!btf)
10127 		return -ENOENT;
10128 
10129 	/* verify map is datasec */
10130 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10131 	if (!btf_is_datasec(datasec_type)) {
10132 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10133 			bpf_map__name(map));
10134 		return -EINVAL;
10135 	}
10136 
10137 	/* verify datasec has at least one var */
10138 	vlen = btf_vlen(datasec_type);
10139 	if (vlen == 0) {
10140 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10141 			bpf_map__name(map));
10142 		return -EINVAL;
10143 	}
10144 
10145 	/* verify last var in the datasec is an array */
10146 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10147 	var_type = btf_type_by_id(btf, var->type);
10148 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10149 	if (!btf_is_array(array_type)) {
10150 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10151 			bpf_map__name(map));
10152 		return -EINVAL;
10153 	}
10154 
10155 	/* verify request size aligns with array */
10156 	array = btf_array(array_type);
10157 	element_sz = btf__resolve_size(btf, array->type);
10158 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10159 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10160 			bpf_map__name(map), element_sz, size);
10161 		return -EINVAL;
10162 	}
10163 
10164 	/* create a new array based on the existing array, but with new length */
10165 	nr_elements = (size - var->offset) / element_sz;
10166 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10167 	if (new_array_id < 0)
10168 		return new_array_id;
10169 
10170 	/* adding a new btf type invalidates existing pointers to btf objects,
10171 	 * so refresh pointers before proceeding
10172 	 */
10173 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10174 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10175 	var_type = btf_type_by_id(btf, var->type);
10176 
10177 	/* finally update btf info */
10178 	datasec_type->size = size;
10179 	var->size = size - var->offset;
10180 	var_type->type = new_array_id;
10181 
10182 	return 0;
10183 }
10184 
10185 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10186 {
10187 	if (map->obj->loaded || map->reused)
10188 		return libbpf_err(-EBUSY);
10189 
10190 	if (map->mmaped) {
10191 		int err;
10192 		size_t mmap_old_sz, mmap_new_sz;
10193 
10194 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
10195 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
10196 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10197 		if (err) {
10198 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10199 				bpf_map__name(map), err);
10200 			return err;
10201 		}
10202 		err = map_btf_datasec_resize(map, size);
10203 		if (err && err != -ENOENT) {
10204 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10205 				bpf_map__name(map), err);
10206 			map->btf_value_type_id = 0;
10207 			map->btf_key_type_id = 0;
10208 		}
10209 	}
10210 
10211 	map->def.value_size = size;
10212 	return 0;
10213 }
10214 
10215 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10216 {
10217 	return map ? map->btf_key_type_id : 0;
10218 }
10219 
10220 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10221 {
10222 	return map ? map->btf_value_type_id : 0;
10223 }
10224 
10225 int bpf_map__set_initial_value(struct bpf_map *map,
10226 			       const void *data, size_t size)
10227 {
10228 	if (map->obj->loaded || map->reused)
10229 		return libbpf_err(-EBUSY);
10230 
10231 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
10232 	    size != map->def.value_size)
10233 		return libbpf_err(-EINVAL);
10234 
10235 	memcpy(map->mmaped, data, size);
10236 	return 0;
10237 }
10238 
10239 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
10240 {
10241 	if (!map->mmaped)
10242 		return NULL;
10243 	*psize = map->def.value_size;
10244 	return map->mmaped;
10245 }
10246 
10247 bool bpf_map__is_internal(const struct bpf_map *map)
10248 {
10249 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10250 }
10251 
10252 __u32 bpf_map__ifindex(const struct bpf_map *map)
10253 {
10254 	return map->map_ifindex;
10255 }
10256 
10257 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10258 {
10259 	if (map_is_created(map))
10260 		return libbpf_err(-EBUSY);
10261 	map->map_ifindex = ifindex;
10262 	return 0;
10263 }
10264 
10265 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10266 {
10267 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10268 		pr_warn("error: unsupported map type\n");
10269 		return libbpf_err(-EINVAL);
10270 	}
10271 	if (map->inner_map_fd != -1) {
10272 		pr_warn("error: inner_map_fd already specified\n");
10273 		return libbpf_err(-EINVAL);
10274 	}
10275 	if (map->inner_map) {
10276 		bpf_map__destroy(map->inner_map);
10277 		zfree(&map->inner_map);
10278 	}
10279 	map->inner_map_fd = fd;
10280 	return 0;
10281 }
10282 
10283 static struct bpf_map *
10284 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10285 {
10286 	ssize_t idx;
10287 	struct bpf_map *s, *e;
10288 
10289 	if (!obj || !obj->maps)
10290 		return errno = EINVAL, NULL;
10291 
10292 	s = obj->maps;
10293 	e = obj->maps + obj->nr_maps;
10294 
10295 	if ((m < s) || (m >= e)) {
10296 		pr_warn("error in %s: map handler doesn't belong to object\n",
10297 			 __func__);
10298 		return errno = EINVAL, NULL;
10299 	}
10300 
10301 	idx = (m - obj->maps) + i;
10302 	if (idx >= obj->nr_maps || idx < 0)
10303 		return NULL;
10304 	return &obj->maps[idx];
10305 }
10306 
10307 struct bpf_map *
10308 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10309 {
10310 	if (prev == NULL)
10311 		return obj->maps;
10312 
10313 	return __bpf_map__iter(prev, obj, 1);
10314 }
10315 
10316 struct bpf_map *
10317 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10318 {
10319 	if (next == NULL) {
10320 		if (!obj->nr_maps)
10321 			return NULL;
10322 		return obj->maps + obj->nr_maps - 1;
10323 	}
10324 
10325 	return __bpf_map__iter(next, obj, -1);
10326 }
10327 
10328 struct bpf_map *
10329 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10330 {
10331 	struct bpf_map *pos;
10332 
10333 	bpf_object__for_each_map(pos, obj) {
10334 		/* if it's a special internal map name (which always starts
10335 		 * with dot) then check if that special name matches the
10336 		 * real map name (ELF section name)
10337 		 */
10338 		if (name[0] == '.') {
10339 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10340 				return pos;
10341 			continue;
10342 		}
10343 		/* otherwise map name has to be an exact match */
10344 		if (map_uses_real_name(pos)) {
10345 			if (strcmp(pos->real_name, name) == 0)
10346 				return pos;
10347 			continue;
10348 		}
10349 		if (strcmp(pos->name, name) == 0)
10350 			return pos;
10351 	}
10352 	return errno = ENOENT, NULL;
10353 }
10354 
10355 int
10356 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10357 {
10358 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10359 }
10360 
10361 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10362 			   size_t value_sz, bool check_value_sz)
10363 {
10364 	if (!map_is_created(map)) /* map is not yet created */
10365 		return -ENOENT;
10366 
10367 	if (map->def.key_size != key_sz) {
10368 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10369 			map->name, key_sz, map->def.key_size);
10370 		return -EINVAL;
10371 	}
10372 
10373 	if (!check_value_sz)
10374 		return 0;
10375 
10376 	switch (map->def.type) {
10377 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10378 	case BPF_MAP_TYPE_PERCPU_HASH:
10379 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10380 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10381 		int num_cpu = libbpf_num_possible_cpus();
10382 		size_t elem_sz = roundup(map->def.value_size, 8);
10383 
10384 		if (value_sz != num_cpu * elem_sz) {
10385 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10386 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10387 			return -EINVAL;
10388 		}
10389 		break;
10390 	}
10391 	default:
10392 		if (map->def.value_size != value_sz) {
10393 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10394 				map->name, value_sz, map->def.value_size);
10395 			return -EINVAL;
10396 		}
10397 		break;
10398 	}
10399 	return 0;
10400 }
10401 
10402 int bpf_map__lookup_elem(const struct bpf_map *map,
10403 			 const void *key, size_t key_sz,
10404 			 void *value, size_t value_sz, __u64 flags)
10405 {
10406 	int err;
10407 
10408 	err = validate_map_op(map, key_sz, value_sz, true);
10409 	if (err)
10410 		return libbpf_err(err);
10411 
10412 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10413 }
10414 
10415 int bpf_map__update_elem(const struct bpf_map *map,
10416 			 const void *key, size_t key_sz,
10417 			 const void *value, size_t value_sz, __u64 flags)
10418 {
10419 	int err;
10420 
10421 	err = validate_map_op(map, key_sz, value_sz, true);
10422 	if (err)
10423 		return libbpf_err(err);
10424 
10425 	return bpf_map_update_elem(map->fd, key, value, flags);
10426 }
10427 
10428 int bpf_map__delete_elem(const struct bpf_map *map,
10429 			 const void *key, size_t key_sz, __u64 flags)
10430 {
10431 	int err;
10432 
10433 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10434 	if (err)
10435 		return libbpf_err(err);
10436 
10437 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10438 }
10439 
10440 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10441 				    const void *key, size_t key_sz,
10442 				    void *value, size_t value_sz, __u64 flags)
10443 {
10444 	int err;
10445 
10446 	err = validate_map_op(map, key_sz, value_sz, true);
10447 	if (err)
10448 		return libbpf_err(err);
10449 
10450 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10451 }
10452 
10453 int bpf_map__get_next_key(const struct bpf_map *map,
10454 			  const void *cur_key, void *next_key, size_t key_sz)
10455 {
10456 	int err;
10457 
10458 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10459 	if (err)
10460 		return libbpf_err(err);
10461 
10462 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10463 }
10464 
10465 long libbpf_get_error(const void *ptr)
10466 {
10467 	if (!IS_ERR_OR_NULL(ptr))
10468 		return 0;
10469 
10470 	if (IS_ERR(ptr))
10471 		errno = -PTR_ERR(ptr);
10472 
10473 	/* If ptr == NULL, then errno should be already set by the failing
10474 	 * API, because libbpf never returns NULL on success and it now always
10475 	 * sets errno on error. So no extra errno handling for ptr == NULL
10476 	 * case.
10477 	 */
10478 	return -errno;
10479 }
10480 
10481 /* Replace link's underlying BPF program with the new one */
10482 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10483 {
10484 	int ret;
10485 
10486 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10487 	return libbpf_err_errno(ret);
10488 }
10489 
10490 /* Release "ownership" of underlying BPF resource (typically, BPF program
10491  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10492  * link, when destructed through bpf_link__destroy() call won't attempt to
10493  * detach/unregisted that BPF resource. This is useful in situations where,
10494  * say, attached BPF program has to outlive userspace program that attached it
10495  * in the system. Depending on type of BPF program, though, there might be
10496  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10497  * exit of userspace program doesn't trigger automatic detachment and clean up
10498  * inside the kernel.
10499  */
10500 void bpf_link__disconnect(struct bpf_link *link)
10501 {
10502 	link->disconnected = true;
10503 }
10504 
10505 int bpf_link__destroy(struct bpf_link *link)
10506 {
10507 	int err = 0;
10508 
10509 	if (IS_ERR_OR_NULL(link))
10510 		return 0;
10511 
10512 	if (!link->disconnected && link->detach)
10513 		err = link->detach(link);
10514 	if (link->pin_path)
10515 		free(link->pin_path);
10516 	if (link->dealloc)
10517 		link->dealloc(link);
10518 	else
10519 		free(link);
10520 
10521 	return libbpf_err(err);
10522 }
10523 
10524 int bpf_link__fd(const struct bpf_link *link)
10525 {
10526 	return link->fd;
10527 }
10528 
10529 const char *bpf_link__pin_path(const struct bpf_link *link)
10530 {
10531 	return link->pin_path;
10532 }
10533 
10534 static int bpf_link__detach_fd(struct bpf_link *link)
10535 {
10536 	return libbpf_err_errno(close(link->fd));
10537 }
10538 
10539 struct bpf_link *bpf_link__open(const char *path)
10540 {
10541 	struct bpf_link *link;
10542 	int fd;
10543 
10544 	fd = bpf_obj_get(path);
10545 	if (fd < 0) {
10546 		fd = -errno;
10547 		pr_warn("failed to open link at %s: %d\n", path, fd);
10548 		return libbpf_err_ptr(fd);
10549 	}
10550 
10551 	link = calloc(1, sizeof(*link));
10552 	if (!link) {
10553 		close(fd);
10554 		return libbpf_err_ptr(-ENOMEM);
10555 	}
10556 	link->detach = &bpf_link__detach_fd;
10557 	link->fd = fd;
10558 
10559 	link->pin_path = strdup(path);
10560 	if (!link->pin_path) {
10561 		bpf_link__destroy(link);
10562 		return libbpf_err_ptr(-ENOMEM);
10563 	}
10564 
10565 	return link;
10566 }
10567 
10568 int bpf_link__detach(struct bpf_link *link)
10569 {
10570 	return bpf_link_detach(link->fd) ? -errno : 0;
10571 }
10572 
10573 int bpf_link__pin(struct bpf_link *link, const char *path)
10574 {
10575 	int err;
10576 
10577 	if (link->pin_path)
10578 		return libbpf_err(-EBUSY);
10579 	err = make_parent_dir(path);
10580 	if (err)
10581 		return libbpf_err(err);
10582 	err = check_path(path);
10583 	if (err)
10584 		return libbpf_err(err);
10585 
10586 	link->pin_path = strdup(path);
10587 	if (!link->pin_path)
10588 		return libbpf_err(-ENOMEM);
10589 
10590 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10591 		err = -errno;
10592 		zfree(&link->pin_path);
10593 		return libbpf_err(err);
10594 	}
10595 
10596 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10597 	return 0;
10598 }
10599 
10600 int bpf_link__unpin(struct bpf_link *link)
10601 {
10602 	int err;
10603 
10604 	if (!link->pin_path)
10605 		return libbpf_err(-EINVAL);
10606 
10607 	err = unlink(link->pin_path);
10608 	if (err != 0)
10609 		return -errno;
10610 
10611 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10612 	zfree(&link->pin_path);
10613 	return 0;
10614 }
10615 
10616 struct bpf_link_perf {
10617 	struct bpf_link link;
10618 	int perf_event_fd;
10619 	/* legacy kprobe support: keep track of probe identifier and type */
10620 	char *legacy_probe_name;
10621 	bool legacy_is_kprobe;
10622 	bool legacy_is_retprobe;
10623 };
10624 
10625 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10626 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10627 
10628 static int bpf_link_perf_detach(struct bpf_link *link)
10629 {
10630 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10631 	int err = 0;
10632 
10633 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10634 		err = -errno;
10635 
10636 	if (perf_link->perf_event_fd != link->fd)
10637 		close(perf_link->perf_event_fd);
10638 	close(link->fd);
10639 
10640 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10641 	if (perf_link->legacy_probe_name) {
10642 		if (perf_link->legacy_is_kprobe) {
10643 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10644 							 perf_link->legacy_is_retprobe);
10645 		} else {
10646 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10647 							 perf_link->legacy_is_retprobe);
10648 		}
10649 	}
10650 
10651 	return err;
10652 }
10653 
10654 static void bpf_link_perf_dealloc(struct bpf_link *link)
10655 {
10656 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10657 
10658 	free(perf_link->legacy_probe_name);
10659 	free(perf_link);
10660 }
10661 
10662 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10663 						     const struct bpf_perf_event_opts *opts)
10664 {
10665 	char errmsg[STRERR_BUFSIZE];
10666 	struct bpf_link_perf *link;
10667 	int prog_fd, link_fd = -1, err;
10668 	bool force_ioctl_attach;
10669 
10670 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10671 		return libbpf_err_ptr(-EINVAL);
10672 
10673 	if (pfd < 0) {
10674 		pr_warn("prog '%s': invalid perf event FD %d\n",
10675 			prog->name, pfd);
10676 		return libbpf_err_ptr(-EINVAL);
10677 	}
10678 	prog_fd = bpf_program__fd(prog);
10679 	if (prog_fd < 0) {
10680 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10681 			prog->name);
10682 		return libbpf_err_ptr(-EINVAL);
10683 	}
10684 
10685 	link = calloc(1, sizeof(*link));
10686 	if (!link)
10687 		return libbpf_err_ptr(-ENOMEM);
10688 	link->link.detach = &bpf_link_perf_detach;
10689 	link->link.dealloc = &bpf_link_perf_dealloc;
10690 	link->perf_event_fd = pfd;
10691 
10692 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10693 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10694 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10695 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10696 
10697 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10698 		if (link_fd < 0) {
10699 			err = -errno;
10700 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10701 				prog->name, pfd,
10702 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10703 			goto err_out;
10704 		}
10705 		link->link.fd = link_fd;
10706 	} else {
10707 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10708 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10709 			err = -EOPNOTSUPP;
10710 			goto err_out;
10711 		}
10712 
10713 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10714 			err = -errno;
10715 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10716 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10717 			if (err == -EPROTO)
10718 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10719 					prog->name, pfd);
10720 			goto err_out;
10721 		}
10722 		link->link.fd = pfd;
10723 	}
10724 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10725 		err = -errno;
10726 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10727 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10728 		goto err_out;
10729 	}
10730 
10731 	return &link->link;
10732 err_out:
10733 	if (link_fd >= 0)
10734 		close(link_fd);
10735 	free(link);
10736 	return libbpf_err_ptr(err);
10737 }
10738 
10739 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10740 {
10741 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10742 }
10743 
10744 /*
10745  * this function is expected to parse integer in the range of [0, 2^31-1] from
10746  * given file using scanf format string fmt. If actual parsed value is
10747  * negative, the result might be indistinguishable from error
10748  */
10749 static int parse_uint_from_file(const char *file, const char *fmt)
10750 {
10751 	char buf[STRERR_BUFSIZE];
10752 	int err, ret;
10753 	FILE *f;
10754 
10755 	f = fopen(file, "re");
10756 	if (!f) {
10757 		err = -errno;
10758 		pr_debug("failed to open '%s': %s\n", file,
10759 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10760 		return err;
10761 	}
10762 	err = fscanf(f, fmt, &ret);
10763 	if (err != 1) {
10764 		err = err == EOF ? -EIO : -errno;
10765 		pr_debug("failed to parse '%s': %s\n", file,
10766 			libbpf_strerror_r(err, buf, sizeof(buf)));
10767 		fclose(f);
10768 		return err;
10769 	}
10770 	fclose(f);
10771 	return ret;
10772 }
10773 
10774 static int determine_kprobe_perf_type(void)
10775 {
10776 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10777 
10778 	return parse_uint_from_file(file, "%d\n");
10779 }
10780 
10781 static int determine_uprobe_perf_type(void)
10782 {
10783 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10784 
10785 	return parse_uint_from_file(file, "%d\n");
10786 }
10787 
10788 static int determine_kprobe_retprobe_bit(void)
10789 {
10790 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10791 
10792 	return parse_uint_from_file(file, "config:%d\n");
10793 }
10794 
10795 static int determine_uprobe_retprobe_bit(void)
10796 {
10797 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10798 
10799 	return parse_uint_from_file(file, "config:%d\n");
10800 }
10801 
10802 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10803 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10804 
10805 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10806 				 uint64_t offset, int pid, size_t ref_ctr_off)
10807 {
10808 	const size_t attr_sz = sizeof(struct perf_event_attr);
10809 	struct perf_event_attr attr;
10810 	char errmsg[STRERR_BUFSIZE];
10811 	int type, pfd;
10812 
10813 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10814 		return -EINVAL;
10815 
10816 	memset(&attr, 0, attr_sz);
10817 
10818 	type = uprobe ? determine_uprobe_perf_type()
10819 		      : determine_kprobe_perf_type();
10820 	if (type < 0) {
10821 		pr_warn("failed to determine %s perf type: %s\n",
10822 			uprobe ? "uprobe" : "kprobe",
10823 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10824 		return type;
10825 	}
10826 	if (retprobe) {
10827 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10828 				 : determine_kprobe_retprobe_bit();
10829 
10830 		if (bit < 0) {
10831 			pr_warn("failed to determine %s retprobe bit: %s\n",
10832 				uprobe ? "uprobe" : "kprobe",
10833 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10834 			return bit;
10835 		}
10836 		attr.config |= 1 << bit;
10837 	}
10838 	attr.size = attr_sz;
10839 	attr.type = type;
10840 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10841 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10842 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10843 
10844 	/* pid filter is meaningful only for uprobes */
10845 	pfd = syscall(__NR_perf_event_open, &attr,
10846 		      pid < 0 ? -1 : pid /* pid */,
10847 		      pid == -1 ? 0 : -1 /* cpu */,
10848 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10849 	return pfd >= 0 ? pfd : -errno;
10850 }
10851 
10852 static int append_to_file(const char *file, const char *fmt, ...)
10853 {
10854 	int fd, n, err = 0;
10855 	va_list ap;
10856 	char buf[1024];
10857 
10858 	va_start(ap, fmt);
10859 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10860 	va_end(ap);
10861 
10862 	if (n < 0 || n >= sizeof(buf))
10863 		return -EINVAL;
10864 
10865 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10866 	if (fd < 0)
10867 		return -errno;
10868 
10869 	if (write(fd, buf, n) < 0)
10870 		err = -errno;
10871 
10872 	close(fd);
10873 	return err;
10874 }
10875 
10876 #define DEBUGFS "/sys/kernel/debug/tracing"
10877 #define TRACEFS "/sys/kernel/tracing"
10878 
10879 static bool use_debugfs(void)
10880 {
10881 	static int has_debugfs = -1;
10882 
10883 	if (has_debugfs < 0)
10884 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10885 
10886 	return has_debugfs == 1;
10887 }
10888 
10889 static const char *tracefs_path(void)
10890 {
10891 	return use_debugfs() ? DEBUGFS : TRACEFS;
10892 }
10893 
10894 static const char *tracefs_kprobe_events(void)
10895 {
10896 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10897 }
10898 
10899 static const char *tracefs_uprobe_events(void)
10900 {
10901 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10902 }
10903 
10904 static const char *tracefs_available_filter_functions(void)
10905 {
10906 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10907 			     : TRACEFS"/available_filter_functions";
10908 }
10909 
10910 static const char *tracefs_available_filter_functions_addrs(void)
10911 {
10912 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10913 			     : TRACEFS"/available_filter_functions_addrs";
10914 }
10915 
10916 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10917 					 const char *kfunc_name, size_t offset)
10918 {
10919 	static int index = 0;
10920 	int i;
10921 
10922 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10923 		 __sync_fetch_and_add(&index, 1));
10924 
10925 	/* sanitize binary_path in the probe name */
10926 	for (i = 0; buf[i]; i++) {
10927 		if (!isalnum(buf[i]))
10928 			buf[i] = '_';
10929 	}
10930 }
10931 
10932 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10933 				   const char *kfunc_name, size_t offset)
10934 {
10935 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10936 			      retprobe ? 'r' : 'p',
10937 			      retprobe ? "kretprobes" : "kprobes",
10938 			      probe_name, kfunc_name, offset);
10939 }
10940 
10941 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10942 {
10943 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10944 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10945 }
10946 
10947 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10948 {
10949 	char file[256];
10950 
10951 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10952 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10953 
10954 	return parse_uint_from_file(file, "%d\n");
10955 }
10956 
10957 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10958 					 const char *kfunc_name, size_t offset, int pid)
10959 {
10960 	const size_t attr_sz = sizeof(struct perf_event_attr);
10961 	struct perf_event_attr attr;
10962 	char errmsg[STRERR_BUFSIZE];
10963 	int type, pfd, err;
10964 
10965 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10966 	if (err < 0) {
10967 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10968 			kfunc_name, offset,
10969 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10970 		return err;
10971 	}
10972 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10973 	if (type < 0) {
10974 		err = type;
10975 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10976 			kfunc_name, offset,
10977 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10978 		goto err_clean_legacy;
10979 	}
10980 
10981 	memset(&attr, 0, attr_sz);
10982 	attr.size = attr_sz;
10983 	attr.config = type;
10984 	attr.type = PERF_TYPE_TRACEPOINT;
10985 
10986 	pfd = syscall(__NR_perf_event_open, &attr,
10987 		      pid < 0 ? -1 : pid, /* pid */
10988 		      pid == -1 ? 0 : -1, /* cpu */
10989 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10990 	if (pfd < 0) {
10991 		err = -errno;
10992 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10993 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10994 		goto err_clean_legacy;
10995 	}
10996 	return pfd;
10997 
10998 err_clean_legacy:
10999 	/* Clear the newly added legacy kprobe_event */
11000 	remove_kprobe_event_legacy(probe_name, retprobe);
11001 	return err;
11002 }
11003 
11004 static const char *arch_specific_syscall_pfx(void)
11005 {
11006 #if defined(__x86_64__)
11007 	return "x64";
11008 #elif defined(__i386__)
11009 	return "ia32";
11010 #elif defined(__s390x__)
11011 	return "s390x";
11012 #elif defined(__s390__)
11013 	return "s390";
11014 #elif defined(__arm__)
11015 	return "arm";
11016 #elif defined(__aarch64__)
11017 	return "arm64";
11018 #elif defined(__mips__)
11019 	return "mips";
11020 #elif defined(__riscv)
11021 	return "riscv";
11022 #elif defined(__powerpc__)
11023 	return "powerpc";
11024 #elif defined(__powerpc64__)
11025 	return "powerpc64";
11026 #else
11027 	return NULL;
11028 #endif
11029 }
11030 
11031 static int probe_kern_syscall_wrapper(void)
11032 {
11033 	char syscall_name[64];
11034 	const char *ksys_pfx;
11035 
11036 	ksys_pfx = arch_specific_syscall_pfx();
11037 	if (!ksys_pfx)
11038 		return 0;
11039 
11040 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11041 
11042 	if (determine_kprobe_perf_type() >= 0) {
11043 		int pfd;
11044 
11045 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11046 		if (pfd >= 0)
11047 			close(pfd);
11048 
11049 		return pfd >= 0 ? 1 : 0;
11050 	} else { /* legacy mode */
11051 		char probe_name[128];
11052 
11053 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11054 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11055 			return 0;
11056 
11057 		(void)remove_kprobe_event_legacy(probe_name, false);
11058 		return 1;
11059 	}
11060 }
11061 
11062 struct bpf_link *
11063 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11064 				const char *func_name,
11065 				const struct bpf_kprobe_opts *opts)
11066 {
11067 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11068 	enum probe_attach_mode attach_mode;
11069 	char errmsg[STRERR_BUFSIZE];
11070 	char *legacy_probe = NULL;
11071 	struct bpf_link *link;
11072 	size_t offset;
11073 	bool retprobe, legacy;
11074 	int pfd, err;
11075 
11076 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11077 		return libbpf_err_ptr(-EINVAL);
11078 
11079 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11080 	retprobe = OPTS_GET(opts, retprobe, false);
11081 	offset = OPTS_GET(opts, offset, 0);
11082 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11083 
11084 	legacy = determine_kprobe_perf_type() < 0;
11085 	switch (attach_mode) {
11086 	case PROBE_ATTACH_MODE_LEGACY:
11087 		legacy = true;
11088 		pe_opts.force_ioctl_attach = true;
11089 		break;
11090 	case PROBE_ATTACH_MODE_PERF:
11091 		if (legacy)
11092 			return libbpf_err_ptr(-ENOTSUP);
11093 		pe_opts.force_ioctl_attach = true;
11094 		break;
11095 	case PROBE_ATTACH_MODE_LINK:
11096 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11097 			return libbpf_err_ptr(-ENOTSUP);
11098 		break;
11099 	case PROBE_ATTACH_MODE_DEFAULT:
11100 		break;
11101 	default:
11102 		return libbpf_err_ptr(-EINVAL);
11103 	}
11104 
11105 	if (!legacy) {
11106 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11107 					    func_name, offset,
11108 					    -1 /* pid */, 0 /* ref_ctr_off */);
11109 	} else {
11110 		char probe_name[256];
11111 
11112 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11113 					     func_name, offset);
11114 
11115 		legacy_probe = strdup(probe_name);
11116 		if (!legacy_probe)
11117 			return libbpf_err_ptr(-ENOMEM);
11118 
11119 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11120 						    offset, -1 /* pid */);
11121 	}
11122 	if (pfd < 0) {
11123 		err = -errno;
11124 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11125 			prog->name, retprobe ? "kretprobe" : "kprobe",
11126 			func_name, offset,
11127 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11128 		goto err_out;
11129 	}
11130 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11131 	err = libbpf_get_error(link);
11132 	if (err) {
11133 		close(pfd);
11134 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11135 			prog->name, retprobe ? "kretprobe" : "kprobe",
11136 			func_name, offset,
11137 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11138 		goto err_clean_legacy;
11139 	}
11140 	if (legacy) {
11141 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11142 
11143 		perf_link->legacy_probe_name = legacy_probe;
11144 		perf_link->legacy_is_kprobe = true;
11145 		perf_link->legacy_is_retprobe = retprobe;
11146 	}
11147 
11148 	return link;
11149 
11150 err_clean_legacy:
11151 	if (legacy)
11152 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11153 err_out:
11154 	free(legacy_probe);
11155 	return libbpf_err_ptr(err);
11156 }
11157 
11158 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11159 					    bool retprobe,
11160 					    const char *func_name)
11161 {
11162 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11163 		.retprobe = retprobe,
11164 	);
11165 
11166 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11167 }
11168 
11169 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11170 					      const char *syscall_name,
11171 					      const struct bpf_ksyscall_opts *opts)
11172 {
11173 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11174 	char func_name[128];
11175 
11176 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11177 		return libbpf_err_ptr(-EINVAL);
11178 
11179 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11180 		/* arch_specific_syscall_pfx() should never return NULL here
11181 		 * because it is guarded by kernel_supports(). However, since
11182 		 * compiler does not know that we have an explicit conditional
11183 		 * as well.
11184 		 */
11185 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11186 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11187 	} else {
11188 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11189 	}
11190 
11191 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11192 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11193 
11194 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11195 }
11196 
11197 /* Adapted from perf/util/string.c */
11198 bool glob_match(const char *str, const char *pat)
11199 {
11200 	while (*str && *pat && *pat != '*') {
11201 		if (*pat == '?') {      /* Matches any single character */
11202 			str++;
11203 			pat++;
11204 			continue;
11205 		}
11206 		if (*str != *pat)
11207 			return false;
11208 		str++;
11209 		pat++;
11210 	}
11211 	/* Check wild card */
11212 	if (*pat == '*') {
11213 		while (*pat == '*')
11214 			pat++;
11215 		if (!*pat) /* Tail wild card matches all */
11216 			return true;
11217 		while (*str)
11218 			if (glob_match(str++, pat))
11219 				return true;
11220 	}
11221 	return !*str && !*pat;
11222 }
11223 
11224 struct kprobe_multi_resolve {
11225 	const char *pattern;
11226 	unsigned long *addrs;
11227 	size_t cap;
11228 	size_t cnt;
11229 };
11230 
11231 struct avail_kallsyms_data {
11232 	char **syms;
11233 	size_t cnt;
11234 	struct kprobe_multi_resolve *res;
11235 };
11236 
11237 static int avail_func_cmp(const void *a, const void *b)
11238 {
11239 	return strcmp(*(const char **)a, *(const char **)b);
11240 }
11241 
11242 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11243 			     const char *sym_name, void *ctx)
11244 {
11245 	struct avail_kallsyms_data *data = ctx;
11246 	struct kprobe_multi_resolve *res = data->res;
11247 	int err;
11248 
11249 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11250 		return 0;
11251 
11252 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11253 	if (err)
11254 		return err;
11255 
11256 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11257 	return 0;
11258 }
11259 
11260 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11261 {
11262 	const char *available_functions_file = tracefs_available_filter_functions();
11263 	struct avail_kallsyms_data data;
11264 	char sym_name[500];
11265 	FILE *f;
11266 	int err = 0, ret, i;
11267 	char **syms = NULL;
11268 	size_t cap = 0, cnt = 0;
11269 
11270 	f = fopen(available_functions_file, "re");
11271 	if (!f) {
11272 		err = -errno;
11273 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11274 		return err;
11275 	}
11276 
11277 	while (true) {
11278 		char *name;
11279 
11280 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11281 		if (ret == EOF && feof(f))
11282 			break;
11283 
11284 		if (ret != 1) {
11285 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11286 			err = -EINVAL;
11287 			goto cleanup;
11288 		}
11289 
11290 		if (!glob_match(sym_name, res->pattern))
11291 			continue;
11292 
11293 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11294 		if (err)
11295 			goto cleanup;
11296 
11297 		name = strdup(sym_name);
11298 		if (!name) {
11299 			err = -errno;
11300 			goto cleanup;
11301 		}
11302 
11303 		syms[cnt++] = name;
11304 	}
11305 
11306 	/* no entries found, bail out */
11307 	if (cnt == 0) {
11308 		err = -ENOENT;
11309 		goto cleanup;
11310 	}
11311 
11312 	/* sort available functions */
11313 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11314 
11315 	data.syms = syms;
11316 	data.res = res;
11317 	data.cnt = cnt;
11318 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11319 
11320 	if (res->cnt == 0)
11321 		err = -ENOENT;
11322 
11323 cleanup:
11324 	for (i = 0; i < cnt; i++)
11325 		free((char *)syms[i]);
11326 	free(syms);
11327 
11328 	fclose(f);
11329 	return err;
11330 }
11331 
11332 static bool has_available_filter_functions_addrs(void)
11333 {
11334 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11335 }
11336 
11337 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11338 {
11339 	const char *available_path = tracefs_available_filter_functions_addrs();
11340 	char sym_name[500];
11341 	FILE *f;
11342 	int ret, err = 0;
11343 	unsigned long long sym_addr;
11344 
11345 	f = fopen(available_path, "re");
11346 	if (!f) {
11347 		err = -errno;
11348 		pr_warn("failed to open %s: %d\n", available_path, err);
11349 		return err;
11350 	}
11351 
11352 	while (true) {
11353 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11354 		if (ret == EOF && feof(f))
11355 			break;
11356 
11357 		if (ret != 2) {
11358 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11359 				ret);
11360 			err = -EINVAL;
11361 			goto cleanup;
11362 		}
11363 
11364 		if (!glob_match(sym_name, res->pattern))
11365 			continue;
11366 
11367 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11368 					sizeof(*res->addrs), res->cnt + 1);
11369 		if (err)
11370 			goto cleanup;
11371 
11372 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11373 	}
11374 
11375 	if (res->cnt == 0)
11376 		err = -ENOENT;
11377 
11378 cleanup:
11379 	fclose(f);
11380 	return err;
11381 }
11382 
11383 struct bpf_link *
11384 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11385 				      const char *pattern,
11386 				      const struct bpf_kprobe_multi_opts *opts)
11387 {
11388 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11389 	struct kprobe_multi_resolve res = {
11390 		.pattern = pattern,
11391 	};
11392 	struct bpf_link *link = NULL;
11393 	char errmsg[STRERR_BUFSIZE];
11394 	const unsigned long *addrs;
11395 	int err, link_fd, prog_fd;
11396 	const __u64 *cookies;
11397 	const char **syms;
11398 	bool retprobe;
11399 	size_t cnt;
11400 
11401 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11402 		return libbpf_err_ptr(-EINVAL);
11403 
11404 	syms    = OPTS_GET(opts, syms, false);
11405 	addrs   = OPTS_GET(opts, addrs, false);
11406 	cnt     = OPTS_GET(opts, cnt, false);
11407 	cookies = OPTS_GET(opts, cookies, false);
11408 
11409 	if (!pattern && !addrs && !syms)
11410 		return libbpf_err_ptr(-EINVAL);
11411 	if (pattern && (addrs || syms || cookies || cnt))
11412 		return libbpf_err_ptr(-EINVAL);
11413 	if (!pattern && !cnt)
11414 		return libbpf_err_ptr(-EINVAL);
11415 	if (addrs && syms)
11416 		return libbpf_err_ptr(-EINVAL);
11417 
11418 	if (pattern) {
11419 		if (has_available_filter_functions_addrs())
11420 			err = libbpf_available_kprobes_parse(&res);
11421 		else
11422 			err = libbpf_available_kallsyms_parse(&res);
11423 		if (err)
11424 			goto error;
11425 		addrs = res.addrs;
11426 		cnt = res.cnt;
11427 	}
11428 
11429 	retprobe = OPTS_GET(opts, retprobe, false);
11430 
11431 	lopts.kprobe_multi.syms = syms;
11432 	lopts.kprobe_multi.addrs = addrs;
11433 	lopts.kprobe_multi.cookies = cookies;
11434 	lopts.kprobe_multi.cnt = cnt;
11435 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11436 
11437 	link = calloc(1, sizeof(*link));
11438 	if (!link) {
11439 		err = -ENOMEM;
11440 		goto error;
11441 	}
11442 	link->detach = &bpf_link__detach_fd;
11443 
11444 	prog_fd = bpf_program__fd(prog);
11445 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11446 	if (link_fd < 0) {
11447 		err = -errno;
11448 		pr_warn("prog '%s': failed to attach: %s\n",
11449 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11450 		goto error;
11451 	}
11452 	link->fd = link_fd;
11453 	free(res.addrs);
11454 	return link;
11455 
11456 error:
11457 	free(link);
11458 	free(res.addrs);
11459 	return libbpf_err_ptr(err);
11460 }
11461 
11462 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11463 {
11464 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11465 	unsigned long offset = 0;
11466 	const char *func_name;
11467 	char *func;
11468 	int n;
11469 
11470 	*link = NULL;
11471 
11472 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11473 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11474 		return 0;
11475 
11476 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11477 	if (opts.retprobe)
11478 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11479 	else
11480 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11481 
11482 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11483 	if (n < 1) {
11484 		pr_warn("kprobe name is invalid: %s\n", func_name);
11485 		return -EINVAL;
11486 	}
11487 	if (opts.retprobe && offset != 0) {
11488 		free(func);
11489 		pr_warn("kretprobes do not support offset specification\n");
11490 		return -EINVAL;
11491 	}
11492 
11493 	opts.offset = offset;
11494 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11495 	free(func);
11496 	return libbpf_get_error(*link);
11497 }
11498 
11499 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11500 {
11501 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11502 	const char *syscall_name;
11503 
11504 	*link = NULL;
11505 
11506 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11507 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11508 		return 0;
11509 
11510 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11511 	if (opts.retprobe)
11512 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11513 	else
11514 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11515 
11516 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11517 	return *link ? 0 : -errno;
11518 }
11519 
11520 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11521 {
11522 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11523 	const char *spec;
11524 	char *pattern;
11525 	int n;
11526 
11527 	*link = NULL;
11528 
11529 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11530 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11531 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11532 		return 0;
11533 
11534 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11535 	if (opts.retprobe)
11536 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11537 	else
11538 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11539 
11540 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11541 	if (n < 1) {
11542 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11543 		return -EINVAL;
11544 	}
11545 
11546 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11547 	free(pattern);
11548 	return libbpf_get_error(*link);
11549 }
11550 
11551 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11552 {
11553 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11554 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11555 	int n, ret = -EINVAL;
11556 
11557 	*link = NULL;
11558 
11559 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11560 		   &probe_type, &binary_path, &func_name);
11561 	switch (n) {
11562 	case 1:
11563 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11564 		ret = 0;
11565 		break;
11566 	case 3:
11567 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11568 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11569 		ret = libbpf_get_error(*link);
11570 		break;
11571 	default:
11572 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11573 			prog->sec_name);
11574 		break;
11575 	}
11576 	free(probe_type);
11577 	free(binary_path);
11578 	free(func_name);
11579 	return ret;
11580 }
11581 
11582 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11583 					 const char *binary_path, uint64_t offset)
11584 {
11585 	int i;
11586 
11587 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11588 
11589 	/* sanitize binary_path in the probe name */
11590 	for (i = 0; buf[i]; i++) {
11591 		if (!isalnum(buf[i]))
11592 			buf[i] = '_';
11593 	}
11594 }
11595 
11596 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11597 					  const char *binary_path, size_t offset)
11598 {
11599 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11600 			      retprobe ? 'r' : 'p',
11601 			      retprobe ? "uretprobes" : "uprobes",
11602 			      probe_name, binary_path, offset);
11603 }
11604 
11605 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11606 {
11607 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11608 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11609 }
11610 
11611 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11612 {
11613 	char file[512];
11614 
11615 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11616 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11617 
11618 	return parse_uint_from_file(file, "%d\n");
11619 }
11620 
11621 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11622 					 const char *binary_path, size_t offset, int pid)
11623 {
11624 	const size_t attr_sz = sizeof(struct perf_event_attr);
11625 	struct perf_event_attr attr;
11626 	int type, pfd, err;
11627 
11628 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11629 	if (err < 0) {
11630 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11631 			binary_path, (size_t)offset, err);
11632 		return err;
11633 	}
11634 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11635 	if (type < 0) {
11636 		err = type;
11637 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11638 			binary_path, offset, err);
11639 		goto err_clean_legacy;
11640 	}
11641 
11642 	memset(&attr, 0, attr_sz);
11643 	attr.size = attr_sz;
11644 	attr.config = type;
11645 	attr.type = PERF_TYPE_TRACEPOINT;
11646 
11647 	pfd = syscall(__NR_perf_event_open, &attr,
11648 		      pid < 0 ? -1 : pid, /* pid */
11649 		      pid == -1 ? 0 : -1, /* cpu */
11650 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11651 	if (pfd < 0) {
11652 		err = -errno;
11653 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11654 		goto err_clean_legacy;
11655 	}
11656 	return pfd;
11657 
11658 err_clean_legacy:
11659 	/* Clear the newly added legacy uprobe_event */
11660 	remove_uprobe_event_legacy(probe_name, retprobe);
11661 	return err;
11662 }
11663 
11664 /* Find offset of function name in archive specified by path. Currently
11665  * supported are .zip files that do not compress their contents, as used on
11666  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11667  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11668  * library functions.
11669  *
11670  * An overview of the APK format specifically provided here:
11671  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11672  */
11673 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11674 					      const char *func_name)
11675 {
11676 	struct zip_archive *archive;
11677 	struct zip_entry entry;
11678 	long ret;
11679 	Elf *elf;
11680 
11681 	archive = zip_archive_open(archive_path);
11682 	if (IS_ERR(archive)) {
11683 		ret = PTR_ERR(archive);
11684 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11685 		return ret;
11686 	}
11687 
11688 	ret = zip_archive_find_entry(archive, file_name, &entry);
11689 	if (ret) {
11690 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11691 			archive_path, ret);
11692 		goto out;
11693 	}
11694 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11695 		 (unsigned long)entry.data_offset);
11696 
11697 	if (entry.compression) {
11698 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11699 			archive_path);
11700 		ret = -LIBBPF_ERRNO__FORMAT;
11701 		goto out;
11702 	}
11703 
11704 	elf = elf_memory((void *)entry.data, entry.data_length);
11705 	if (!elf) {
11706 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11707 			elf_errmsg(-1));
11708 		ret = -LIBBPF_ERRNO__LIBELF;
11709 		goto out;
11710 	}
11711 
11712 	ret = elf_find_func_offset(elf, file_name, func_name);
11713 	if (ret > 0) {
11714 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11715 			 func_name, file_name, archive_path, entry.data_offset, ret,
11716 			 ret + entry.data_offset);
11717 		ret += entry.data_offset;
11718 	}
11719 	elf_end(elf);
11720 
11721 out:
11722 	zip_archive_close(archive);
11723 	return ret;
11724 }
11725 
11726 static const char *arch_specific_lib_paths(void)
11727 {
11728 	/*
11729 	 * Based on https://packages.debian.org/sid/libc6.
11730 	 *
11731 	 * Assume that the traced program is built for the same architecture
11732 	 * as libbpf, which should cover the vast majority of cases.
11733 	 */
11734 #if defined(__x86_64__)
11735 	return "/lib/x86_64-linux-gnu";
11736 #elif defined(__i386__)
11737 	return "/lib/i386-linux-gnu";
11738 #elif defined(__s390x__)
11739 	return "/lib/s390x-linux-gnu";
11740 #elif defined(__s390__)
11741 	return "/lib/s390-linux-gnu";
11742 #elif defined(__arm__) && defined(__SOFTFP__)
11743 	return "/lib/arm-linux-gnueabi";
11744 #elif defined(__arm__) && !defined(__SOFTFP__)
11745 	return "/lib/arm-linux-gnueabihf";
11746 #elif defined(__aarch64__)
11747 	return "/lib/aarch64-linux-gnu";
11748 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11749 	return "/lib/mips64el-linux-gnuabi64";
11750 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11751 	return "/lib/mipsel-linux-gnu";
11752 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11753 	return "/lib/powerpc64le-linux-gnu";
11754 #elif defined(__sparc__) && defined(__arch64__)
11755 	return "/lib/sparc64-linux-gnu";
11756 #elif defined(__riscv) && __riscv_xlen == 64
11757 	return "/lib/riscv64-linux-gnu";
11758 #else
11759 	return NULL;
11760 #endif
11761 }
11762 
11763 /* Get full path to program/shared library. */
11764 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11765 {
11766 	const char *search_paths[3] = {};
11767 	int i, perm;
11768 
11769 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11770 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11771 		search_paths[1] = "/usr/lib64:/usr/lib";
11772 		search_paths[2] = arch_specific_lib_paths();
11773 		perm = R_OK;
11774 	} else {
11775 		search_paths[0] = getenv("PATH");
11776 		search_paths[1] = "/usr/bin:/usr/sbin";
11777 		perm = R_OK | X_OK;
11778 	}
11779 
11780 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11781 		const char *s;
11782 
11783 		if (!search_paths[i])
11784 			continue;
11785 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11786 			char *next_path;
11787 			int seg_len;
11788 
11789 			if (s[0] == ':')
11790 				s++;
11791 			next_path = strchr(s, ':');
11792 			seg_len = next_path ? next_path - s : strlen(s);
11793 			if (!seg_len)
11794 				continue;
11795 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11796 			/* ensure it has required permissions */
11797 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11798 				continue;
11799 			pr_debug("resolved '%s' to '%s'\n", file, result);
11800 			return 0;
11801 		}
11802 	}
11803 	return -ENOENT;
11804 }
11805 
11806 struct bpf_link *
11807 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11808 				 pid_t pid,
11809 				 const char *path,
11810 				 const char *func_pattern,
11811 				 const struct bpf_uprobe_multi_opts *opts)
11812 {
11813 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11814 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11815 	unsigned long *resolved_offsets = NULL;
11816 	int err = 0, link_fd, prog_fd;
11817 	struct bpf_link *link = NULL;
11818 	char errmsg[STRERR_BUFSIZE];
11819 	char full_path[PATH_MAX];
11820 	const __u64 *cookies;
11821 	const char **syms;
11822 	size_t cnt;
11823 
11824 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11825 		return libbpf_err_ptr(-EINVAL);
11826 
11827 	syms = OPTS_GET(opts, syms, NULL);
11828 	offsets = OPTS_GET(opts, offsets, NULL);
11829 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11830 	cookies = OPTS_GET(opts, cookies, NULL);
11831 	cnt = OPTS_GET(opts, cnt, 0);
11832 
11833 	/*
11834 	 * User can specify 2 mutually exclusive set of inputs:
11835 	 *
11836 	 * 1) use only path/func_pattern/pid arguments
11837 	 *
11838 	 * 2) use path/pid with allowed combinations of:
11839 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11840 	 *
11841 	 *    - syms and offsets are mutually exclusive
11842 	 *    - ref_ctr_offsets and cookies are optional
11843 	 *
11844 	 * Any other usage results in error.
11845 	 */
11846 
11847 	if (!path)
11848 		return libbpf_err_ptr(-EINVAL);
11849 	if (!func_pattern && cnt == 0)
11850 		return libbpf_err_ptr(-EINVAL);
11851 
11852 	if (func_pattern) {
11853 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11854 			return libbpf_err_ptr(-EINVAL);
11855 	} else {
11856 		if (!!syms == !!offsets)
11857 			return libbpf_err_ptr(-EINVAL);
11858 	}
11859 
11860 	if (func_pattern) {
11861 		if (!strchr(path, '/')) {
11862 			err = resolve_full_path(path, full_path, sizeof(full_path));
11863 			if (err) {
11864 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11865 					prog->name, path, err);
11866 				return libbpf_err_ptr(err);
11867 			}
11868 			path = full_path;
11869 		}
11870 
11871 		err = elf_resolve_pattern_offsets(path, func_pattern,
11872 						  &resolved_offsets, &cnt);
11873 		if (err < 0)
11874 			return libbpf_err_ptr(err);
11875 		offsets = resolved_offsets;
11876 	} else if (syms) {
11877 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11878 		if (err < 0)
11879 			return libbpf_err_ptr(err);
11880 		offsets = resolved_offsets;
11881 	}
11882 
11883 	lopts.uprobe_multi.path = path;
11884 	lopts.uprobe_multi.offsets = offsets;
11885 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11886 	lopts.uprobe_multi.cookies = cookies;
11887 	lopts.uprobe_multi.cnt = cnt;
11888 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11889 
11890 	if (pid == 0)
11891 		pid = getpid();
11892 	if (pid > 0)
11893 		lopts.uprobe_multi.pid = pid;
11894 
11895 	link = calloc(1, sizeof(*link));
11896 	if (!link) {
11897 		err = -ENOMEM;
11898 		goto error;
11899 	}
11900 	link->detach = &bpf_link__detach_fd;
11901 
11902 	prog_fd = bpf_program__fd(prog);
11903 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11904 	if (link_fd < 0) {
11905 		err = -errno;
11906 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11907 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11908 		goto error;
11909 	}
11910 	link->fd = link_fd;
11911 	free(resolved_offsets);
11912 	return link;
11913 
11914 error:
11915 	free(resolved_offsets);
11916 	free(link);
11917 	return libbpf_err_ptr(err);
11918 }
11919 
11920 LIBBPF_API struct bpf_link *
11921 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11922 				const char *binary_path, size_t func_offset,
11923 				const struct bpf_uprobe_opts *opts)
11924 {
11925 	const char *archive_path = NULL, *archive_sep = NULL;
11926 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11927 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11928 	enum probe_attach_mode attach_mode;
11929 	char full_path[PATH_MAX];
11930 	struct bpf_link *link;
11931 	size_t ref_ctr_off;
11932 	int pfd, err;
11933 	bool retprobe, legacy;
11934 	const char *func_name;
11935 
11936 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11937 		return libbpf_err_ptr(-EINVAL);
11938 
11939 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11940 	retprobe = OPTS_GET(opts, retprobe, false);
11941 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11942 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11943 
11944 	if (!binary_path)
11945 		return libbpf_err_ptr(-EINVAL);
11946 
11947 	/* Check if "binary_path" refers to an archive. */
11948 	archive_sep = strstr(binary_path, "!/");
11949 	if (archive_sep) {
11950 		full_path[0] = '\0';
11951 		libbpf_strlcpy(full_path, binary_path,
11952 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11953 		archive_path = full_path;
11954 		binary_path = archive_sep + 2;
11955 	} else if (!strchr(binary_path, '/')) {
11956 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11957 		if (err) {
11958 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11959 				prog->name, binary_path, err);
11960 			return libbpf_err_ptr(err);
11961 		}
11962 		binary_path = full_path;
11963 	}
11964 	func_name = OPTS_GET(opts, func_name, NULL);
11965 	if (func_name) {
11966 		long sym_off;
11967 
11968 		if (archive_path) {
11969 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11970 								    func_name);
11971 			binary_path = archive_path;
11972 		} else {
11973 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11974 		}
11975 		if (sym_off < 0)
11976 			return libbpf_err_ptr(sym_off);
11977 		func_offset += sym_off;
11978 	}
11979 
11980 	legacy = determine_uprobe_perf_type() < 0;
11981 	switch (attach_mode) {
11982 	case PROBE_ATTACH_MODE_LEGACY:
11983 		legacy = true;
11984 		pe_opts.force_ioctl_attach = true;
11985 		break;
11986 	case PROBE_ATTACH_MODE_PERF:
11987 		if (legacy)
11988 			return libbpf_err_ptr(-ENOTSUP);
11989 		pe_opts.force_ioctl_attach = true;
11990 		break;
11991 	case PROBE_ATTACH_MODE_LINK:
11992 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11993 			return libbpf_err_ptr(-ENOTSUP);
11994 		break;
11995 	case PROBE_ATTACH_MODE_DEFAULT:
11996 		break;
11997 	default:
11998 		return libbpf_err_ptr(-EINVAL);
11999 	}
12000 
12001 	if (!legacy) {
12002 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12003 					    func_offset, pid, ref_ctr_off);
12004 	} else {
12005 		char probe_name[PATH_MAX + 64];
12006 
12007 		if (ref_ctr_off)
12008 			return libbpf_err_ptr(-EINVAL);
12009 
12010 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12011 					     binary_path, func_offset);
12012 
12013 		legacy_probe = strdup(probe_name);
12014 		if (!legacy_probe)
12015 			return libbpf_err_ptr(-ENOMEM);
12016 
12017 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12018 						    binary_path, func_offset, pid);
12019 	}
12020 	if (pfd < 0) {
12021 		err = -errno;
12022 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12023 			prog->name, retprobe ? "uretprobe" : "uprobe",
12024 			binary_path, func_offset,
12025 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12026 		goto err_out;
12027 	}
12028 
12029 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12030 	err = libbpf_get_error(link);
12031 	if (err) {
12032 		close(pfd);
12033 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12034 			prog->name, retprobe ? "uretprobe" : "uprobe",
12035 			binary_path, func_offset,
12036 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12037 		goto err_clean_legacy;
12038 	}
12039 	if (legacy) {
12040 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12041 
12042 		perf_link->legacy_probe_name = legacy_probe;
12043 		perf_link->legacy_is_kprobe = false;
12044 		perf_link->legacy_is_retprobe = retprobe;
12045 	}
12046 	return link;
12047 
12048 err_clean_legacy:
12049 	if (legacy)
12050 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12051 err_out:
12052 	free(legacy_probe);
12053 	return libbpf_err_ptr(err);
12054 }
12055 
12056 /* Format of u[ret]probe section definition supporting auto-attach:
12057  * u[ret]probe/binary:function[+offset]
12058  *
12059  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12060  * full binary path via bpf_program__attach_uprobe_opts.
12061  *
12062  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12063  * specified (and auto-attach is not possible) or the above format is specified for
12064  * auto-attach.
12065  */
12066 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12067 {
12068 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12069 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12070 	int n, c, ret = -EINVAL;
12071 	long offset = 0;
12072 
12073 	*link = NULL;
12074 
12075 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12076 		   &probe_type, &binary_path, &func_name);
12077 	switch (n) {
12078 	case 1:
12079 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12080 		ret = 0;
12081 		break;
12082 	case 2:
12083 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12084 			prog->name, prog->sec_name);
12085 		break;
12086 	case 3:
12087 		/* check if user specifies `+offset`, if yes, this should be
12088 		 * the last part of the string, make sure sscanf read to EOL
12089 		 */
12090 		func_off = strrchr(func_name, '+');
12091 		if (func_off) {
12092 			n = sscanf(func_off, "+%li%n", &offset, &c);
12093 			if (n == 1 && *(func_off + c) == '\0')
12094 				func_off[0] = '\0';
12095 			else
12096 				offset = 0;
12097 		}
12098 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12099 				strcmp(probe_type, "uretprobe.s") == 0;
12100 		if (opts.retprobe && offset != 0) {
12101 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12102 				prog->name);
12103 			break;
12104 		}
12105 		opts.func_name = func_name;
12106 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12107 		ret = libbpf_get_error(*link);
12108 		break;
12109 	default:
12110 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12111 			prog->sec_name);
12112 		break;
12113 	}
12114 	free(probe_type);
12115 	free(binary_path);
12116 	free(func_name);
12117 
12118 	return ret;
12119 }
12120 
12121 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12122 					    bool retprobe, pid_t pid,
12123 					    const char *binary_path,
12124 					    size_t func_offset)
12125 {
12126 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12127 
12128 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12129 }
12130 
12131 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12132 					  pid_t pid, const char *binary_path,
12133 					  const char *usdt_provider, const char *usdt_name,
12134 					  const struct bpf_usdt_opts *opts)
12135 {
12136 	char resolved_path[512];
12137 	struct bpf_object *obj = prog->obj;
12138 	struct bpf_link *link;
12139 	__u64 usdt_cookie;
12140 	int err;
12141 
12142 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12143 		return libbpf_err_ptr(-EINVAL);
12144 
12145 	if (bpf_program__fd(prog) < 0) {
12146 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12147 			prog->name);
12148 		return libbpf_err_ptr(-EINVAL);
12149 	}
12150 
12151 	if (!binary_path)
12152 		return libbpf_err_ptr(-EINVAL);
12153 
12154 	if (!strchr(binary_path, '/')) {
12155 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12156 		if (err) {
12157 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12158 				prog->name, binary_path, err);
12159 			return libbpf_err_ptr(err);
12160 		}
12161 		binary_path = resolved_path;
12162 	}
12163 
12164 	/* USDT manager is instantiated lazily on first USDT attach. It will
12165 	 * be destroyed together with BPF object in bpf_object__close().
12166 	 */
12167 	if (IS_ERR(obj->usdt_man))
12168 		return libbpf_ptr(obj->usdt_man);
12169 	if (!obj->usdt_man) {
12170 		obj->usdt_man = usdt_manager_new(obj);
12171 		if (IS_ERR(obj->usdt_man))
12172 			return libbpf_ptr(obj->usdt_man);
12173 	}
12174 
12175 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12176 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12177 					usdt_provider, usdt_name, usdt_cookie);
12178 	err = libbpf_get_error(link);
12179 	if (err)
12180 		return libbpf_err_ptr(err);
12181 	return link;
12182 }
12183 
12184 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12185 {
12186 	char *path = NULL, *provider = NULL, *name = NULL;
12187 	const char *sec_name;
12188 	int n, err;
12189 
12190 	sec_name = bpf_program__section_name(prog);
12191 	if (strcmp(sec_name, "usdt") == 0) {
12192 		/* no auto-attach for just SEC("usdt") */
12193 		*link = NULL;
12194 		return 0;
12195 	}
12196 
12197 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12198 	if (n != 3) {
12199 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12200 			sec_name);
12201 		err = -EINVAL;
12202 	} else {
12203 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12204 						 provider, name, NULL);
12205 		err = libbpf_get_error(*link);
12206 	}
12207 	free(path);
12208 	free(provider);
12209 	free(name);
12210 	return err;
12211 }
12212 
12213 static int determine_tracepoint_id(const char *tp_category,
12214 				   const char *tp_name)
12215 {
12216 	char file[PATH_MAX];
12217 	int ret;
12218 
12219 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12220 		       tracefs_path(), tp_category, tp_name);
12221 	if (ret < 0)
12222 		return -errno;
12223 	if (ret >= sizeof(file)) {
12224 		pr_debug("tracepoint %s/%s path is too long\n",
12225 			 tp_category, tp_name);
12226 		return -E2BIG;
12227 	}
12228 	return parse_uint_from_file(file, "%d\n");
12229 }
12230 
12231 static int perf_event_open_tracepoint(const char *tp_category,
12232 				      const char *tp_name)
12233 {
12234 	const size_t attr_sz = sizeof(struct perf_event_attr);
12235 	struct perf_event_attr attr;
12236 	char errmsg[STRERR_BUFSIZE];
12237 	int tp_id, pfd, err;
12238 
12239 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12240 	if (tp_id < 0) {
12241 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12242 			tp_category, tp_name,
12243 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12244 		return tp_id;
12245 	}
12246 
12247 	memset(&attr, 0, attr_sz);
12248 	attr.type = PERF_TYPE_TRACEPOINT;
12249 	attr.size = attr_sz;
12250 	attr.config = tp_id;
12251 
12252 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12253 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12254 	if (pfd < 0) {
12255 		err = -errno;
12256 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12257 			tp_category, tp_name,
12258 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12259 		return err;
12260 	}
12261 	return pfd;
12262 }
12263 
12264 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12265 						     const char *tp_category,
12266 						     const char *tp_name,
12267 						     const struct bpf_tracepoint_opts *opts)
12268 {
12269 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12270 	char errmsg[STRERR_BUFSIZE];
12271 	struct bpf_link *link;
12272 	int pfd, err;
12273 
12274 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12275 		return libbpf_err_ptr(-EINVAL);
12276 
12277 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12278 
12279 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12280 	if (pfd < 0) {
12281 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12282 			prog->name, tp_category, tp_name,
12283 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12284 		return libbpf_err_ptr(pfd);
12285 	}
12286 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12287 	err = libbpf_get_error(link);
12288 	if (err) {
12289 		close(pfd);
12290 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12291 			prog->name, tp_category, tp_name,
12292 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12293 		return libbpf_err_ptr(err);
12294 	}
12295 	return link;
12296 }
12297 
12298 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12299 						const char *tp_category,
12300 						const char *tp_name)
12301 {
12302 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12303 }
12304 
12305 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12306 {
12307 	char *sec_name, *tp_cat, *tp_name;
12308 
12309 	*link = NULL;
12310 
12311 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12312 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12313 		return 0;
12314 
12315 	sec_name = strdup(prog->sec_name);
12316 	if (!sec_name)
12317 		return -ENOMEM;
12318 
12319 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12320 	if (str_has_pfx(prog->sec_name, "tp/"))
12321 		tp_cat = sec_name + sizeof("tp/") - 1;
12322 	else
12323 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12324 	tp_name = strchr(tp_cat, '/');
12325 	if (!tp_name) {
12326 		free(sec_name);
12327 		return -EINVAL;
12328 	}
12329 	*tp_name = '\0';
12330 	tp_name++;
12331 
12332 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12333 	free(sec_name);
12334 	return libbpf_get_error(*link);
12335 }
12336 
12337 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12338 						    const char *tp_name)
12339 {
12340 	char errmsg[STRERR_BUFSIZE];
12341 	struct bpf_link *link;
12342 	int prog_fd, pfd;
12343 
12344 	prog_fd = bpf_program__fd(prog);
12345 	if (prog_fd < 0) {
12346 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12347 		return libbpf_err_ptr(-EINVAL);
12348 	}
12349 
12350 	link = calloc(1, sizeof(*link));
12351 	if (!link)
12352 		return libbpf_err_ptr(-ENOMEM);
12353 	link->detach = &bpf_link__detach_fd;
12354 
12355 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12356 	if (pfd < 0) {
12357 		pfd = -errno;
12358 		free(link);
12359 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12360 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12361 		return libbpf_err_ptr(pfd);
12362 	}
12363 	link->fd = pfd;
12364 	return link;
12365 }
12366 
12367 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12368 {
12369 	static const char *const prefixes[] = {
12370 		"raw_tp",
12371 		"raw_tracepoint",
12372 		"raw_tp.w",
12373 		"raw_tracepoint.w",
12374 	};
12375 	size_t i;
12376 	const char *tp_name = NULL;
12377 
12378 	*link = NULL;
12379 
12380 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12381 		size_t pfx_len;
12382 
12383 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12384 			continue;
12385 
12386 		pfx_len = strlen(prefixes[i]);
12387 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12388 		if (prog->sec_name[pfx_len] == '\0')
12389 			return 0;
12390 
12391 		if (prog->sec_name[pfx_len] != '/')
12392 			continue;
12393 
12394 		tp_name = prog->sec_name + pfx_len + 1;
12395 		break;
12396 	}
12397 
12398 	if (!tp_name) {
12399 		pr_warn("prog '%s': invalid section name '%s'\n",
12400 			prog->name, prog->sec_name);
12401 		return -EINVAL;
12402 	}
12403 
12404 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12405 	return libbpf_get_error(*link);
12406 }
12407 
12408 /* Common logic for all BPF program types that attach to a btf_id */
12409 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12410 						   const struct bpf_trace_opts *opts)
12411 {
12412 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12413 	char errmsg[STRERR_BUFSIZE];
12414 	struct bpf_link *link;
12415 	int prog_fd, pfd;
12416 
12417 	if (!OPTS_VALID(opts, bpf_trace_opts))
12418 		return libbpf_err_ptr(-EINVAL);
12419 
12420 	prog_fd = bpf_program__fd(prog);
12421 	if (prog_fd < 0) {
12422 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12423 		return libbpf_err_ptr(-EINVAL);
12424 	}
12425 
12426 	link = calloc(1, sizeof(*link));
12427 	if (!link)
12428 		return libbpf_err_ptr(-ENOMEM);
12429 	link->detach = &bpf_link__detach_fd;
12430 
12431 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12432 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12433 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12434 	if (pfd < 0) {
12435 		pfd = -errno;
12436 		free(link);
12437 		pr_warn("prog '%s': failed to attach: %s\n",
12438 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12439 		return libbpf_err_ptr(pfd);
12440 	}
12441 	link->fd = pfd;
12442 	return link;
12443 }
12444 
12445 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12446 {
12447 	return bpf_program__attach_btf_id(prog, NULL);
12448 }
12449 
12450 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12451 						const struct bpf_trace_opts *opts)
12452 {
12453 	return bpf_program__attach_btf_id(prog, opts);
12454 }
12455 
12456 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12457 {
12458 	return bpf_program__attach_btf_id(prog, NULL);
12459 }
12460 
12461 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12462 {
12463 	*link = bpf_program__attach_trace(prog);
12464 	return libbpf_get_error(*link);
12465 }
12466 
12467 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12468 {
12469 	*link = bpf_program__attach_lsm(prog);
12470 	return libbpf_get_error(*link);
12471 }
12472 
12473 static struct bpf_link *
12474 bpf_program_attach_fd(const struct bpf_program *prog,
12475 		      int target_fd, const char *target_name,
12476 		      const struct bpf_link_create_opts *opts)
12477 {
12478 	enum bpf_attach_type attach_type;
12479 	char errmsg[STRERR_BUFSIZE];
12480 	struct bpf_link *link;
12481 	int prog_fd, link_fd;
12482 
12483 	prog_fd = bpf_program__fd(prog);
12484 	if (prog_fd < 0) {
12485 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12486 		return libbpf_err_ptr(-EINVAL);
12487 	}
12488 
12489 	link = calloc(1, sizeof(*link));
12490 	if (!link)
12491 		return libbpf_err_ptr(-ENOMEM);
12492 	link->detach = &bpf_link__detach_fd;
12493 
12494 	attach_type = bpf_program__expected_attach_type(prog);
12495 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12496 	if (link_fd < 0) {
12497 		link_fd = -errno;
12498 		free(link);
12499 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12500 			prog->name, target_name,
12501 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12502 		return libbpf_err_ptr(link_fd);
12503 	}
12504 	link->fd = link_fd;
12505 	return link;
12506 }
12507 
12508 struct bpf_link *
12509 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12510 {
12511 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12512 }
12513 
12514 struct bpf_link *
12515 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12516 {
12517 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12518 }
12519 
12520 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12521 {
12522 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12523 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12524 }
12525 
12526 struct bpf_link *
12527 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12528 			const struct bpf_tcx_opts *opts)
12529 {
12530 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12531 	__u32 relative_id;
12532 	int relative_fd;
12533 
12534 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12535 		return libbpf_err_ptr(-EINVAL);
12536 
12537 	relative_id = OPTS_GET(opts, relative_id, 0);
12538 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12539 
12540 	/* validate we don't have unexpected combinations of non-zero fields */
12541 	if (!ifindex) {
12542 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12543 			prog->name);
12544 		return libbpf_err_ptr(-EINVAL);
12545 	}
12546 	if (relative_fd && relative_id) {
12547 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12548 			prog->name);
12549 		return libbpf_err_ptr(-EINVAL);
12550 	}
12551 
12552 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12553 	link_create_opts.tcx.relative_fd = relative_fd;
12554 	link_create_opts.tcx.relative_id = relative_id;
12555 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12556 
12557 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12558 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12559 }
12560 
12561 struct bpf_link *
12562 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12563 			   const struct bpf_netkit_opts *opts)
12564 {
12565 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12566 	__u32 relative_id;
12567 	int relative_fd;
12568 
12569 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12570 		return libbpf_err_ptr(-EINVAL);
12571 
12572 	relative_id = OPTS_GET(opts, relative_id, 0);
12573 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12574 
12575 	/* validate we don't have unexpected combinations of non-zero fields */
12576 	if (!ifindex) {
12577 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12578 			prog->name);
12579 		return libbpf_err_ptr(-EINVAL);
12580 	}
12581 	if (relative_fd && relative_id) {
12582 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12583 			prog->name);
12584 		return libbpf_err_ptr(-EINVAL);
12585 	}
12586 
12587 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12588 	link_create_opts.netkit.relative_fd = relative_fd;
12589 	link_create_opts.netkit.relative_id = relative_id;
12590 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12591 
12592 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12593 }
12594 
12595 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12596 					      int target_fd,
12597 					      const char *attach_func_name)
12598 {
12599 	int btf_id;
12600 
12601 	if (!!target_fd != !!attach_func_name) {
12602 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12603 			prog->name);
12604 		return libbpf_err_ptr(-EINVAL);
12605 	}
12606 
12607 	if (prog->type != BPF_PROG_TYPE_EXT) {
12608 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12609 			prog->name);
12610 		return libbpf_err_ptr(-EINVAL);
12611 	}
12612 
12613 	if (target_fd) {
12614 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12615 
12616 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12617 		if (btf_id < 0)
12618 			return libbpf_err_ptr(btf_id);
12619 
12620 		target_opts.target_btf_id = btf_id;
12621 
12622 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12623 					     &target_opts);
12624 	} else {
12625 		/* no target, so use raw_tracepoint_open for compatibility
12626 		 * with old kernels
12627 		 */
12628 		return bpf_program__attach_trace(prog);
12629 	}
12630 }
12631 
12632 struct bpf_link *
12633 bpf_program__attach_iter(const struct bpf_program *prog,
12634 			 const struct bpf_iter_attach_opts *opts)
12635 {
12636 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12637 	char errmsg[STRERR_BUFSIZE];
12638 	struct bpf_link *link;
12639 	int prog_fd, link_fd;
12640 	__u32 target_fd = 0;
12641 
12642 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12643 		return libbpf_err_ptr(-EINVAL);
12644 
12645 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12646 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12647 
12648 	prog_fd = bpf_program__fd(prog);
12649 	if (prog_fd < 0) {
12650 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12651 		return libbpf_err_ptr(-EINVAL);
12652 	}
12653 
12654 	link = calloc(1, sizeof(*link));
12655 	if (!link)
12656 		return libbpf_err_ptr(-ENOMEM);
12657 	link->detach = &bpf_link__detach_fd;
12658 
12659 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12660 				  &link_create_opts);
12661 	if (link_fd < 0) {
12662 		link_fd = -errno;
12663 		free(link);
12664 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12665 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12666 		return libbpf_err_ptr(link_fd);
12667 	}
12668 	link->fd = link_fd;
12669 	return link;
12670 }
12671 
12672 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12673 {
12674 	*link = bpf_program__attach_iter(prog, NULL);
12675 	return libbpf_get_error(*link);
12676 }
12677 
12678 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12679 					       const struct bpf_netfilter_opts *opts)
12680 {
12681 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12682 	struct bpf_link *link;
12683 	int prog_fd, link_fd;
12684 
12685 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12686 		return libbpf_err_ptr(-EINVAL);
12687 
12688 	prog_fd = bpf_program__fd(prog);
12689 	if (prog_fd < 0) {
12690 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12691 		return libbpf_err_ptr(-EINVAL);
12692 	}
12693 
12694 	link = calloc(1, sizeof(*link));
12695 	if (!link)
12696 		return libbpf_err_ptr(-ENOMEM);
12697 
12698 	link->detach = &bpf_link__detach_fd;
12699 
12700 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12701 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12702 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12703 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12704 
12705 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12706 	if (link_fd < 0) {
12707 		char errmsg[STRERR_BUFSIZE];
12708 
12709 		link_fd = -errno;
12710 		free(link);
12711 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12712 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12713 		return libbpf_err_ptr(link_fd);
12714 	}
12715 	link->fd = link_fd;
12716 
12717 	return link;
12718 }
12719 
12720 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12721 {
12722 	struct bpf_link *link = NULL;
12723 	int err;
12724 
12725 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12726 		return libbpf_err_ptr(-EOPNOTSUPP);
12727 
12728 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12729 	if (err)
12730 		return libbpf_err_ptr(err);
12731 
12732 	/* When calling bpf_program__attach() explicitly, auto-attach support
12733 	 * is expected to work, so NULL returned link is considered an error.
12734 	 * This is different for skeleton's attach, see comment in
12735 	 * bpf_object__attach_skeleton().
12736 	 */
12737 	if (!link)
12738 		return libbpf_err_ptr(-EOPNOTSUPP);
12739 
12740 	return link;
12741 }
12742 
12743 struct bpf_link_struct_ops {
12744 	struct bpf_link link;
12745 	int map_fd;
12746 };
12747 
12748 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12749 {
12750 	struct bpf_link_struct_ops *st_link;
12751 	__u32 zero = 0;
12752 
12753 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12754 
12755 	if (st_link->map_fd < 0)
12756 		/* w/o a real link */
12757 		return bpf_map_delete_elem(link->fd, &zero);
12758 
12759 	return close(link->fd);
12760 }
12761 
12762 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12763 {
12764 	struct bpf_link_struct_ops *link;
12765 	__u32 zero = 0;
12766 	int err, fd;
12767 
12768 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12769 		return libbpf_err_ptr(-EINVAL);
12770 
12771 	link = calloc(1, sizeof(*link));
12772 	if (!link)
12773 		return libbpf_err_ptr(-EINVAL);
12774 
12775 	/* kern_vdata should be prepared during the loading phase. */
12776 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12777 	/* It can be EBUSY if the map has been used to create or
12778 	 * update a link before.  We don't allow updating the value of
12779 	 * a struct_ops once it is set.  That ensures that the value
12780 	 * never changed.  So, it is safe to skip EBUSY.
12781 	 */
12782 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12783 		free(link);
12784 		return libbpf_err_ptr(err);
12785 	}
12786 
12787 	link->link.detach = bpf_link__detach_struct_ops;
12788 
12789 	if (!(map->def.map_flags & BPF_F_LINK)) {
12790 		/* w/o a real link */
12791 		link->link.fd = map->fd;
12792 		link->map_fd = -1;
12793 		return &link->link;
12794 	}
12795 
12796 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12797 	if (fd < 0) {
12798 		free(link);
12799 		return libbpf_err_ptr(fd);
12800 	}
12801 
12802 	link->link.fd = fd;
12803 	link->map_fd = map->fd;
12804 
12805 	return &link->link;
12806 }
12807 
12808 /*
12809  * Swap the back struct_ops of a link with a new struct_ops map.
12810  */
12811 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12812 {
12813 	struct bpf_link_struct_ops *st_ops_link;
12814 	__u32 zero = 0;
12815 	int err;
12816 
12817 	if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12818 		return -EINVAL;
12819 
12820 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12821 	/* Ensure the type of a link is correct */
12822 	if (st_ops_link->map_fd < 0)
12823 		return -EINVAL;
12824 
12825 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12826 	/* It can be EBUSY if the map has been used to create or
12827 	 * update a link before.  We don't allow updating the value of
12828 	 * a struct_ops once it is set.  That ensures that the value
12829 	 * never changed.  So, it is safe to skip EBUSY.
12830 	 */
12831 	if (err && err != -EBUSY)
12832 		return err;
12833 
12834 	err = bpf_link_update(link->fd, map->fd, NULL);
12835 	if (err < 0)
12836 		return err;
12837 
12838 	st_ops_link->map_fd = map->fd;
12839 
12840 	return 0;
12841 }
12842 
12843 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12844 							  void *private_data);
12845 
12846 static enum bpf_perf_event_ret
12847 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12848 		       void **copy_mem, size_t *copy_size,
12849 		       bpf_perf_event_print_t fn, void *private_data)
12850 {
12851 	struct perf_event_mmap_page *header = mmap_mem;
12852 	__u64 data_head = ring_buffer_read_head(header);
12853 	__u64 data_tail = header->data_tail;
12854 	void *base = ((__u8 *)header) + page_size;
12855 	int ret = LIBBPF_PERF_EVENT_CONT;
12856 	struct perf_event_header *ehdr;
12857 	size_t ehdr_size;
12858 
12859 	while (data_head != data_tail) {
12860 		ehdr = base + (data_tail & (mmap_size - 1));
12861 		ehdr_size = ehdr->size;
12862 
12863 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12864 			void *copy_start = ehdr;
12865 			size_t len_first = base + mmap_size - copy_start;
12866 			size_t len_secnd = ehdr_size - len_first;
12867 
12868 			if (*copy_size < ehdr_size) {
12869 				free(*copy_mem);
12870 				*copy_mem = malloc(ehdr_size);
12871 				if (!*copy_mem) {
12872 					*copy_size = 0;
12873 					ret = LIBBPF_PERF_EVENT_ERROR;
12874 					break;
12875 				}
12876 				*copy_size = ehdr_size;
12877 			}
12878 
12879 			memcpy(*copy_mem, copy_start, len_first);
12880 			memcpy(*copy_mem + len_first, base, len_secnd);
12881 			ehdr = *copy_mem;
12882 		}
12883 
12884 		ret = fn(ehdr, private_data);
12885 		data_tail += ehdr_size;
12886 		if (ret != LIBBPF_PERF_EVENT_CONT)
12887 			break;
12888 	}
12889 
12890 	ring_buffer_write_tail(header, data_tail);
12891 	return libbpf_err(ret);
12892 }
12893 
12894 struct perf_buffer;
12895 
12896 struct perf_buffer_params {
12897 	struct perf_event_attr *attr;
12898 	/* if event_cb is specified, it takes precendence */
12899 	perf_buffer_event_fn event_cb;
12900 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12901 	perf_buffer_sample_fn sample_cb;
12902 	perf_buffer_lost_fn lost_cb;
12903 	void *ctx;
12904 	int cpu_cnt;
12905 	int *cpus;
12906 	int *map_keys;
12907 };
12908 
12909 struct perf_cpu_buf {
12910 	struct perf_buffer *pb;
12911 	void *base; /* mmap()'ed memory */
12912 	void *buf; /* for reconstructing segmented data */
12913 	size_t buf_size;
12914 	int fd;
12915 	int cpu;
12916 	int map_key;
12917 };
12918 
12919 struct perf_buffer {
12920 	perf_buffer_event_fn event_cb;
12921 	perf_buffer_sample_fn sample_cb;
12922 	perf_buffer_lost_fn lost_cb;
12923 	void *ctx; /* passed into callbacks */
12924 
12925 	size_t page_size;
12926 	size_t mmap_size;
12927 	struct perf_cpu_buf **cpu_bufs;
12928 	struct epoll_event *events;
12929 	int cpu_cnt; /* number of allocated CPU buffers */
12930 	int epoll_fd; /* perf event FD */
12931 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12932 };
12933 
12934 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12935 				      struct perf_cpu_buf *cpu_buf)
12936 {
12937 	if (!cpu_buf)
12938 		return;
12939 	if (cpu_buf->base &&
12940 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12941 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12942 	if (cpu_buf->fd >= 0) {
12943 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12944 		close(cpu_buf->fd);
12945 	}
12946 	free(cpu_buf->buf);
12947 	free(cpu_buf);
12948 }
12949 
12950 void perf_buffer__free(struct perf_buffer *pb)
12951 {
12952 	int i;
12953 
12954 	if (IS_ERR_OR_NULL(pb))
12955 		return;
12956 	if (pb->cpu_bufs) {
12957 		for (i = 0; i < pb->cpu_cnt; i++) {
12958 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12959 
12960 			if (!cpu_buf)
12961 				continue;
12962 
12963 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12964 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12965 		}
12966 		free(pb->cpu_bufs);
12967 	}
12968 	if (pb->epoll_fd >= 0)
12969 		close(pb->epoll_fd);
12970 	free(pb->events);
12971 	free(pb);
12972 }
12973 
12974 static struct perf_cpu_buf *
12975 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12976 			  int cpu, int map_key)
12977 {
12978 	struct perf_cpu_buf *cpu_buf;
12979 	char msg[STRERR_BUFSIZE];
12980 	int err;
12981 
12982 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12983 	if (!cpu_buf)
12984 		return ERR_PTR(-ENOMEM);
12985 
12986 	cpu_buf->pb = pb;
12987 	cpu_buf->cpu = cpu;
12988 	cpu_buf->map_key = map_key;
12989 
12990 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12991 			      -1, PERF_FLAG_FD_CLOEXEC);
12992 	if (cpu_buf->fd < 0) {
12993 		err = -errno;
12994 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12995 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12996 		goto error;
12997 	}
12998 
12999 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13000 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13001 			     cpu_buf->fd, 0);
13002 	if (cpu_buf->base == MAP_FAILED) {
13003 		cpu_buf->base = NULL;
13004 		err = -errno;
13005 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13006 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13007 		goto error;
13008 	}
13009 
13010 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13011 		err = -errno;
13012 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13013 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13014 		goto error;
13015 	}
13016 
13017 	return cpu_buf;
13018 
13019 error:
13020 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13021 	return (struct perf_cpu_buf *)ERR_PTR(err);
13022 }
13023 
13024 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13025 					      struct perf_buffer_params *p);
13026 
13027 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13028 				     perf_buffer_sample_fn sample_cb,
13029 				     perf_buffer_lost_fn lost_cb,
13030 				     void *ctx,
13031 				     const struct perf_buffer_opts *opts)
13032 {
13033 	const size_t attr_sz = sizeof(struct perf_event_attr);
13034 	struct perf_buffer_params p = {};
13035 	struct perf_event_attr attr;
13036 	__u32 sample_period;
13037 
13038 	if (!OPTS_VALID(opts, perf_buffer_opts))
13039 		return libbpf_err_ptr(-EINVAL);
13040 
13041 	sample_period = OPTS_GET(opts, sample_period, 1);
13042 	if (!sample_period)
13043 		sample_period = 1;
13044 
13045 	memset(&attr, 0, attr_sz);
13046 	attr.size = attr_sz;
13047 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13048 	attr.type = PERF_TYPE_SOFTWARE;
13049 	attr.sample_type = PERF_SAMPLE_RAW;
13050 	attr.sample_period = sample_period;
13051 	attr.wakeup_events = sample_period;
13052 
13053 	p.attr = &attr;
13054 	p.sample_cb = sample_cb;
13055 	p.lost_cb = lost_cb;
13056 	p.ctx = ctx;
13057 
13058 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13059 }
13060 
13061 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13062 					 struct perf_event_attr *attr,
13063 					 perf_buffer_event_fn event_cb, void *ctx,
13064 					 const struct perf_buffer_raw_opts *opts)
13065 {
13066 	struct perf_buffer_params p = {};
13067 
13068 	if (!attr)
13069 		return libbpf_err_ptr(-EINVAL);
13070 
13071 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13072 		return libbpf_err_ptr(-EINVAL);
13073 
13074 	p.attr = attr;
13075 	p.event_cb = event_cb;
13076 	p.ctx = ctx;
13077 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13078 	p.cpus = OPTS_GET(opts, cpus, NULL);
13079 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13080 
13081 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13082 }
13083 
13084 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13085 					      struct perf_buffer_params *p)
13086 {
13087 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13088 	struct bpf_map_info map;
13089 	char msg[STRERR_BUFSIZE];
13090 	struct perf_buffer *pb;
13091 	bool *online = NULL;
13092 	__u32 map_info_len;
13093 	int err, i, j, n;
13094 
13095 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13096 		pr_warn("page count should be power of two, but is %zu\n",
13097 			page_cnt);
13098 		return ERR_PTR(-EINVAL);
13099 	}
13100 
13101 	/* best-effort sanity checks */
13102 	memset(&map, 0, sizeof(map));
13103 	map_info_len = sizeof(map);
13104 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13105 	if (err) {
13106 		err = -errno;
13107 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13108 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13109 		 */
13110 		if (err != -EINVAL) {
13111 			pr_warn("failed to get map info for map FD %d: %s\n",
13112 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13113 			return ERR_PTR(err);
13114 		}
13115 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13116 			 map_fd);
13117 	} else {
13118 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13119 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13120 				map.name);
13121 			return ERR_PTR(-EINVAL);
13122 		}
13123 	}
13124 
13125 	pb = calloc(1, sizeof(*pb));
13126 	if (!pb)
13127 		return ERR_PTR(-ENOMEM);
13128 
13129 	pb->event_cb = p->event_cb;
13130 	pb->sample_cb = p->sample_cb;
13131 	pb->lost_cb = p->lost_cb;
13132 	pb->ctx = p->ctx;
13133 
13134 	pb->page_size = getpagesize();
13135 	pb->mmap_size = pb->page_size * page_cnt;
13136 	pb->map_fd = map_fd;
13137 
13138 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13139 	if (pb->epoll_fd < 0) {
13140 		err = -errno;
13141 		pr_warn("failed to create epoll instance: %s\n",
13142 			libbpf_strerror_r(err, msg, sizeof(msg)));
13143 		goto error;
13144 	}
13145 
13146 	if (p->cpu_cnt > 0) {
13147 		pb->cpu_cnt = p->cpu_cnt;
13148 	} else {
13149 		pb->cpu_cnt = libbpf_num_possible_cpus();
13150 		if (pb->cpu_cnt < 0) {
13151 			err = pb->cpu_cnt;
13152 			goto error;
13153 		}
13154 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13155 			pb->cpu_cnt = map.max_entries;
13156 	}
13157 
13158 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13159 	if (!pb->events) {
13160 		err = -ENOMEM;
13161 		pr_warn("failed to allocate events: out of memory\n");
13162 		goto error;
13163 	}
13164 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13165 	if (!pb->cpu_bufs) {
13166 		err = -ENOMEM;
13167 		pr_warn("failed to allocate buffers: out of memory\n");
13168 		goto error;
13169 	}
13170 
13171 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13172 	if (err) {
13173 		pr_warn("failed to get online CPU mask: %d\n", err);
13174 		goto error;
13175 	}
13176 
13177 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13178 		struct perf_cpu_buf *cpu_buf;
13179 		int cpu, map_key;
13180 
13181 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13182 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13183 
13184 		/* in case user didn't explicitly requested particular CPUs to
13185 		 * be attached to, skip offline/not present CPUs
13186 		 */
13187 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13188 			continue;
13189 
13190 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13191 		if (IS_ERR(cpu_buf)) {
13192 			err = PTR_ERR(cpu_buf);
13193 			goto error;
13194 		}
13195 
13196 		pb->cpu_bufs[j] = cpu_buf;
13197 
13198 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13199 					  &cpu_buf->fd, 0);
13200 		if (err) {
13201 			err = -errno;
13202 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13203 				cpu, map_key, cpu_buf->fd,
13204 				libbpf_strerror_r(err, msg, sizeof(msg)));
13205 			goto error;
13206 		}
13207 
13208 		pb->events[j].events = EPOLLIN;
13209 		pb->events[j].data.ptr = cpu_buf;
13210 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13211 			      &pb->events[j]) < 0) {
13212 			err = -errno;
13213 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13214 				cpu, cpu_buf->fd,
13215 				libbpf_strerror_r(err, msg, sizeof(msg)));
13216 			goto error;
13217 		}
13218 		j++;
13219 	}
13220 	pb->cpu_cnt = j;
13221 	free(online);
13222 
13223 	return pb;
13224 
13225 error:
13226 	free(online);
13227 	if (pb)
13228 		perf_buffer__free(pb);
13229 	return ERR_PTR(err);
13230 }
13231 
13232 struct perf_sample_raw {
13233 	struct perf_event_header header;
13234 	uint32_t size;
13235 	char data[];
13236 };
13237 
13238 struct perf_sample_lost {
13239 	struct perf_event_header header;
13240 	uint64_t id;
13241 	uint64_t lost;
13242 	uint64_t sample_id;
13243 };
13244 
13245 static enum bpf_perf_event_ret
13246 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13247 {
13248 	struct perf_cpu_buf *cpu_buf = ctx;
13249 	struct perf_buffer *pb = cpu_buf->pb;
13250 	void *data = e;
13251 
13252 	/* user wants full control over parsing perf event */
13253 	if (pb->event_cb)
13254 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13255 
13256 	switch (e->type) {
13257 	case PERF_RECORD_SAMPLE: {
13258 		struct perf_sample_raw *s = data;
13259 
13260 		if (pb->sample_cb)
13261 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13262 		break;
13263 	}
13264 	case PERF_RECORD_LOST: {
13265 		struct perf_sample_lost *s = data;
13266 
13267 		if (pb->lost_cb)
13268 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13269 		break;
13270 	}
13271 	default:
13272 		pr_warn("unknown perf sample type %d\n", e->type);
13273 		return LIBBPF_PERF_EVENT_ERROR;
13274 	}
13275 	return LIBBPF_PERF_EVENT_CONT;
13276 }
13277 
13278 static int perf_buffer__process_records(struct perf_buffer *pb,
13279 					struct perf_cpu_buf *cpu_buf)
13280 {
13281 	enum bpf_perf_event_ret ret;
13282 
13283 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13284 				     pb->page_size, &cpu_buf->buf,
13285 				     &cpu_buf->buf_size,
13286 				     perf_buffer__process_record, cpu_buf);
13287 	if (ret != LIBBPF_PERF_EVENT_CONT)
13288 		return ret;
13289 	return 0;
13290 }
13291 
13292 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13293 {
13294 	return pb->epoll_fd;
13295 }
13296 
13297 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13298 {
13299 	int i, cnt, err;
13300 
13301 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13302 	if (cnt < 0)
13303 		return -errno;
13304 
13305 	for (i = 0; i < cnt; i++) {
13306 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13307 
13308 		err = perf_buffer__process_records(pb, cpu_buf);
13309 		if (err) {
13310 			pr_warn("error while processing records: %d\n", err);
13311 			return libbpf_err(err);
13312 		}
13313 	}
13314 	return cnt;
13315 }
13316 
13317 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13318  * manager.
13319  */
13320 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13321 {
13322 	return pb->cpu_cnt;
13323 }
13324 
13325 /*
13326  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13327  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13328  * select()/poll()/epoll() Linux syscalls.
13329  */
13330 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13331 {
13332 	struct perf_cpu_buf *cpu_buf;
13333 
13334 	if (buf_idx >= pb->cpu_cnt)
13335 		return libbpf_err(-EINVAL);
13336 
13337 	cpu_buf = pb->cpu_bufs[buf_idx];
13338 	if (!cpu_buf)
13339 		return libbpf_err(-ENOENT);
13340 
13341 	return cpu_buf->fd;
13342 }
13343 
13344 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13345 {
13346 	struct perf_cpu_buf *cpu_buf;
13347 
13348 	if (buf_idx >= pb->cpu_cnt)
13349 		return libbpf_err(-EINVAL);
13350 
13351 	cpu_buf = pb->cpu_bufs[buf_idx];
13352 	if (!cpu_buf)
13353 		return libbpf_err(-ENOENT);
13354 
13355 	*buf = cpu_buf->base;
13356 	*buf_size = pb->mmap_size;
13357 	return 0;
13358 }
13359 
13360 /*
13361  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13362  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13363  * consume, do nothing and return success.
13364  * Returns:
13365  *   - 0 on success;
13366  *   - <0 on failure.
13367  */
13368 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13369 {
13370 	struct perf_cpu_buf *cpu_buf;
13371 
13372 	if (buf_idx >= pb->cpu_cnt)
13373 		return libbpf_err(-EINVAL);
13374 
13375 	cpu_buf = pb->cpu_bufs[buf_idx];
13376 	if (!cpu_buf)
13377 		return libbpf_err(-ENOENT);
13378 
13379 	return perf_buffer__process_records(pb, cpu_buf);
13380 }
13381 
13382 int perf_buffer__consume(struct perf_buffer *pb)
13383 {
13384 	int i, err;
13385 
13386 	for (i = 0; i < pb->cpu_cnt; i++) {
13387 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13388 
13389 		if (!cpu_buf)
13390 			continue;
13391 
13392 		err = perf_buffer__process_records(pb, cpu_buf);
13393 		if (err) {
13394 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13395 			return libbpf_err(err);
13396 		}
13397 	}
13398 	return 0;
13399 }
13400 
13401 int bpf_program__set_attach_target(struct bpf_program *prog,
13402 				   int attach_prog_fd,
13403 				   const char *attach_func_name)
13404 {
13405 	int btf_obj_fd = 0, btf_id = 0, err;
13406 
13407 	if (!prog || attach_prog_fd < 0)
13408 		return libbpf_err(-EINVAL);
13409 
13410 	if (prog->obj->loaded)
13411 		return libbpf_err(-EINVAL);
13412 
13413 	if (attach_prog_fd && !attach_func_name) {
13414 		/* remember attach_prog_fd and let bpf_program__load() find
13415 		 * BTF ID during the program load
13416 		 */
13417 		prog->attach_prog_fd = attach_prog_fd;
13418 		return 0;
13419 	}
13420 
13421 	if (attach_prog_fd) {
13422 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13423 						 attach_prog_fd);
13424 		if (btf_id < 0)
13425 			return libbpf_err(btf_id);
13426 	} else {
13427 		if (!attach_func_name)
13428 			return libbpf_err(-EINVAL);
13429 
13430 		/* load btf_vmlinux, if not yet */
13431 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13432 		if (err)
13433 			return libbpf_err(err);
13434 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13435 					 prog->expected_attach_type,
13436 					 &btf_obj_fd, &btf_id);
13437 		if (err)
13438 			return libbpf_err(err);
13439 	}
13440 
13441 	prog->attach_btf_id = btf_id;
13442 	prog->attach_btf_obj_fd = btf_obj_fd;
13443 	prog->attach_prog_fd = attach_prog_fd;
13444 	return 0;
13445 }
13446 
13447 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13448 {
13449 	int err = 0, n, len, start, end = -1;
13450 	bool *tmp;
13451 
13452 	*mask = NULL;
13453 	*mask_sz = 0;
13454 
13455 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13456 	while (*s) {
13457 		if (*s == ',' || *s == '\n') {
13458 			s++;
13459 			continue;
13460 		}
13461 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13462 		if (n <= 0 || n > 2) {
13463 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13464 			err = -EINVAL;
13465 			goto cleanup;
13466 		} else if (n == 1) {
13467 			end = start;
13468 		}
13469 		if (start < 0 || start > end) {
13470 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13471 				start, end, s);
13472 			err = -EINVAL;
13473 			goto cleanup;
13474 		}
13475 		tmp = realloc(*mask, end + 1);
13476 		if (!tmp) {
13477 			err = -ENOMEM;
13478 			goto cleanup;
13479 		}
13480 		*mask = tmp;
13481 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13482 		memset(tmp + start, 1, end - start + 1);
13483 		*mask_sz = end + 1;
13484 		s += len;
13485 	}
13486 	if (!*mask_sz) {
13487 		pr_warn("Empty CPU range\n");
13488 		return -EINVAL;
13489 	}
13490 	return 0;
13491 cleanup:
13492 	free(*mask);
13493 	*mask = NULL;
13494 	return err;
13495 }
13496 
13497 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13498 {
13499 	int fd, err = 0, len;
13500 	char buf[128];
13501 
13502 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13503 	if (fd < 0) {
13504 		err = -errno;
13505 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13506 		return err;
13507 	}
13508 	len = read(fd, buf, sizeof(buf));
13509 	close(fd);
13510 	if (len <= 0) {
13511 		err = len ? -errno : -EINVAL;
13512 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13513 		return err;
13514 	}
13515 	if (len >= sizeof(buf)) {
13516 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13517 		return -E2BIG;
13518 	}
13519 	buf[len] = '\0';
13520 
13521 	return parse_cpu_mask_str(buf, mask, mask_sz);
13522 }
13523 
13524 int libbpf_num_possible_cpus(void)
13525 {
13526 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13527 	static int cpus;
13528 	int err, n, i, tmp_cpus;
13529 	bool *mask;
13530 
13531 	tmp_cpus = READ_ONCE(cpus);
13532 	if (tmp_cpus > 0)
13533 		return tmp_cpus;
13534 
13535 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13536 	if (err)
13537 		return libbpf_err(err);
13538 
13539 	tmp_cpus = 0;
13540 	for (i = 0; i < n; i++) {
13541 		if (mask[i])
13542 			tmp_cpus++;
13543 	}
13544 	free(mask);
13545 
13546 	WRITE_ONCE(cpus, tmp_cpus);
13547 	return tmp_cpus;
13548 }
13549 
13550 static int populate_skeleton_maps(const struct bpf_object *obj,
13551 				  struct bpf_map_skeleton *maps,
13552 				  size_t map_cnt)
13553 {
13554 	int i;
13555 
13556 	for (i = 0; i < map_cnt; i++) {
13557 		struct bpf_map **map = maps[i].map;
13558 		const char *name = maps[i].name;
13559 		void **mmaped = maps[i].mmaped;
13560 
13561 		*map = bpf_object__find_map_by_name(obj, name);
13562 		if (!*map) {
13563 			pr_warn("failed to find skeleton map '%s'\n", name);
13564 			return -ESRCH;
13565 		}
13566 
13567 		/* externs shouldn't be pre-setup from user code */
13568 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13569 			*mmaped = (*map)->mmaped;
13570 	}
13571 	return 0;
13572 }
13573 
13574 static int populate_skeleton_progs(const struct bpf_object *obj,
13575 				   struct bpf_prog_skeleton *progs,
13576 				   size_t prog_cnt)
13577 {
13578 	int i;
13579 
13580 	for (i = 0; i < prog_cnt; i++) {
13581 		struct bpf_program **prog = progs[i].prog;
13582 		const char *name = progs[i].name;
13583 
13584 		*prog = bpf_object__find_program_by_name(obj, name);
13585 		if (!*prog) {
13586 			pr_warn("failed to find skeleton program '%s'\n", name);
13587 			return -ESRCH;
13588 		}
13589 	}
13590 	return 0;
13591 }
13592 
13593 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13594 			      const struct bpf_object_open_opts *opts)
13595 {
13596 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13597 		.object_name = s->name,
13598 	);
13599 	struct bpf_object *obj;
13600 	int err;
13601 
13602 	/* Attempt to preserve opts->object_name, unless overriden by user
13603 	 * explicitly. Overwriting object name for skeletons is discouraged,
13604 	 * as it breaks global data maps, because they contain object name
13605 	 * prefix as their own map name prefix. When skeleton is generated,
13606 	 * bpftool is making an assumption that this name will stay the same.
13607 	 */
13608 	if (opts) {
13609 		memcpy(&skel_opts, opts, sizeof(*opts));
13610 		if (!opts->object_name)
13611 			skel_opts.object_name = s->name;
13612 	}
13613 
13614 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13615 	err = libbpf_get_error(obj);
13616 	if (err) {
13617 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13618 			s->name, err);
13619 		return libbpf_err(err);
13620 	}
13621 
13622 	*s->obj = obj;
13623 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13624 	if (err) {
13625 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13626 		return libbpf_err(err);
13627 	}
13628 
13629 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13630 	if (err) {
13631 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13632 		return libbpf_err(err);
13633 	}
13634 
13635 	return 0;
13636 }
13637 
13638 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13639 {
13640 	int err, len, var_idx, i;
13641 	const char *var_name;
13642 	const struct bpf_map *map;
13643 	struct btf *btf;
13644 	__u32 map_type_id;
13645 	const struct btf_type *map_type, *var_type;
13646 	const struct bpf_var_skeleton *var_skel;
13647 	struct btf_var_secinfo *var;
13648 
13649 	if (!s->obj)
13650 		return libbpf_err(-EINVAL);
13651 
13652 	btf = bpf_object__btf(s->obj);
13653 	if (!btf) {
13654 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13655 			bpf_object__name(s->obj));
13656 		return libbpf_err(-errno);
13657 	}
13658 
13659 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13660 	if (err) {
13661 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13662 		return libbpf_err(err);
13663 	}
13664 
13665 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13666 	if (err) {
13667 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13668 		return libbpf_err(err);
13669 	}
13670 
13671 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13672 		var_skel = &s->vars[var_idx];
13673 		map = *var_skel->map;
13674 		map_type_id = bpf_map__btf_value_type_id(map);
13675 		map_type = btf__type_by_id(btf, map_type_id);
13676 
13677 		if (!btf_is_datasec(map_type)) {
13678 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13679 				bpf_map__name(map),
13680 				__btf_kind_str(btf_kind(map_type)));
13681 			return libbpf_err(-EINVAL);
13682 		}
13683 
13684 		len = btf_vlen(map_type);
13685 		var = btf_var_secinfos(map_type);
13686 		for (i = 0; i < len; i++, var++) {
13687 			var_type = btf__type_by_id(btf, var->type);
13688 			var_name = btf__name_by_offset(btf, var_type->name_off);
13689 			if (strcmp(var_name, var_skel->name) == 0) {
13690 				*var_skel->addr = map->mmaped + var->offset;
13691 				break;
13692 			}
13693 		}
13694 	}
13695 	return 0;
13696 }
13697 
13698 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13699 {
13700 	if (!s)
13701 		return;
13702 	free(s->maps);
13703 	free(s->progs);
13704 	free(s->vars);
13705 	free(s);
13706 }
13707 
13708 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13709 {
13710 	int i, err;
13711 
13712 	err = bpf_object__load(*s->obj);
13713 	if (err) {
13714 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13715 		return libbpf_err(err);
13716 	}
13717 
13718 	for (i = 0; i < s->map_cnt; i++) {
13719 		struct bpf_map *map = *s->maps[i].map;
13720 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13721 		int prot, map_fd = map->fd;
13722 		void **mmaped = s->maps[i].mmaped;
13723 
13724 		if (!mmaped)
13725 			continue;
13726 
13727 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13728 			*mmaped = NULL;
13729 			continue;
13730 		}
13731 
13732 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13733 			prot = PROT_READ;
13734 		else
13735 			prot = PROT_READ | PROT_WRITE;
13736 
13737 		/* Remap anonymous mmap()-ed "map initialization image" as
13738 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13739 		 * memory address. This will cause kernel to change process'
13740 		 * page table to point to a different piece of kernel memory,
13741 		 * but from userspace point of view memory address (and its
13742 		 * contents, being identical at this point) will stay the
13743 		 * same. This mapping will be released by bpf_object__close()
13744 		 * as per normal clean up procedure, so we don't need to worry
13745 		 * about it from skeleton's clean up perspective.
13746 		 */
13747 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13748 		if (*mmaped == MAP_FAILED) {
13749 			err = -errno;
13750 			*mmaped = NULL;
13751 			pr_warn("failed to re-mmap() map '%s': %d\n",
13752 				 bpf_map__name(map), err);
13753 			return libbpf_err(err);
13754 		}
13755 	}
13756 
13757 	return 0;
13758 }
13759 
13760 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13761 {
13762 	int i, err;
13763 
13764 	for (i = 0; i < s->prog_cnt; i++) {
13765 		struct bpf_program *prog = *s->progs[i].prog;
13766 		struct bpf_link **link = s->progs[i].link;
13767 
13768 		if (!prog->autoload || !prog->autoattach)
13769 			continue;
13770 
13771 		/* auto-attaching not supported for this program */
13772 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13773 			continue;
13774 
13775 		/* if user already set the link manually, don't attempt auto-attach */
13776 		if (*link)
13777 			continue;
13778 
13779 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13780 		if (err) {
13781 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13782 				bpf_program__name(prog), err);
13783 			return libbpf_err(err);
13784 		}
13785 
13786 		/* It's possible that for some SEC() definitions auto-attach
13787 		 * is supported in some cases (e.g., if definition completely
13788 		 * specifies target information), but is not in other cases.
13789 		 * SEC("uprobe") is one such case. If user specified target
13790 		 * binary and function name, such BPF program can be
13791 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13792 		 * attach to fail. It should just be skipped.
13793 		 * attach_fn signals such case with returning 0 (no error) and
13794 		 * setting link to NULL.
13795 		 */
13796 	}
13797 
13798 	return 0;
13799 }
13800 
13801 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13802 {
13803 	int i;
13804 
13805 	for (i = 0; i < s->prog_cnt; i++) {
13806 		struct bpf_link **link = s->progs[i].link;
13807 
13808 		bpf_link__destroy(*link);
13809 		*link = NULL;
13810 	}
13811 }
13812 
13813 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13814 {
13815 	if (!s)
13816 		return;
13817 
13818 	if (s->progs)
13819 		bpf_object__detach_skeleton(s);
13820 	if (s->obj)
13821 		bpf_object__close(*s->obj);
13822 	free(s->maps);
13823 	free(s->progs);
13824 	free(s);
13825 }
13826