1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static int __base_pr(enum libbpf_print_level level, const char *format, 75 va_list args) 76 { 77 if (level == LIBBPF_DEBUG) 78 return 0; 79 80 return vfprintf(stderr, format, args); 81 } 82 83 static libbpf_print_fn_t __libbpf_pr = __base_pr; 84 85 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 86 { 87 libbpf_print_fn_t old_print_fn = __libbpf_pr; 88 89 __libbpf_pr = fn; 90 return old_print_fn; 91 } 92 93 __printf(2, 3) 94 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 95 { 96 va_list args; 97 98 if (!__libbpf_pr) 99 return; 100 101 va_start(args, format); 102 __libbpf_pr(level, format, args); 103 va_end(args); 104 } 105 106 static void pr_perm_msg(int err) 107 { 108 struct rlimit limit; 109 char buf[100]; 110 111 if (err != -EPERM || geteuid() != 0) 112 return; 113 114 err = getrlimit(RLIMIT_MEMLOCK, &limit); 115 if (err) 116 return; 117 118 if (limit.rlim_cur == RLIM_INFINITY) 119 return; 120 121 if (limit.rlim_cur < 1024) 122 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 123 else if (limit.rlim_cur < 1024*1024) 124 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 125 else 126 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 127 128 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 129 buf); 130 } 131 132 #define STRERR_BUFSIZE 128 133 134 /* Copied from tools/perf/util/util.h */ 135 #ifndef zfree 136 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 137 #endif 138 139 #ifndef zclose 140 # define zclose(fd) ({ \ 141 int ___err = 0; \ 142 if ((fd) >= 0) \ 143 ___err = close((fd)); \ 144 fd = -1; \ 145 ___err; }) 146 #endif 147 148 static inline __u64 ptr_to_u64(const void *ptr) 149 { 150 return (__u64) (unsigned long) ptr; 151 } 152 153 enum kern_feature_id { 154 /* v4.14: kernel support for program & map names. */ 155 FEAT_PROG_NAME, 156 /* v5.2: kernel support for global data sections. */ 157 FEAT_GLOBAL_DATA, 158 /* BTF support */ 159 FEAT_BTF, 160 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 161 FEAT_BTF_FUNC, 162 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 163 FEAT_BTF_DATASEC, 164 /* BTF_FUNC_GLOBAL is supported */ 165 FEAT_BTF_GLOBAL_FUNC, 166 /* BPF_F_MMAPABLE is supported for arrays */ 167 FEAT_ARRAY_MMAP, 168 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 169 FEAT_EXP_ATTACH_TYPE, 170 /* bpf_probe_read_{kernel,user}[_str] helpers */ 171 FEAT_PROBE_READ_KERN, 172 /* BPF_PROG_BIND_MAP is supported */ 173 FEAT_PROG_BIND_MAP, 174 /* Kernel support for module BTFs */ 175 FEAT_MODULE_BTF, 176 /* BTF_KIND_FLOAT support */ 177 FEAT_BTF_FLOAT, 178 __FEAT_CNT, 179 }; 180 181 static bool kernel_supports(enum kern_feature_id feat_id); 182 183 enum reloc_type { 184 RELO_LD64, 185 RELO_CALL, 186 RELO_DATA, 187 RELO_EXTERN_VAR, 188 RELO_EXTERN_FUNC, 189 RELO_SUBPROG_ADDR, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 int map_idx; 196 int sym_off; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214 }; 215 216 /* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220 struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 bool mark_btf_static; 277 enum bpf_prog_type type; 278 enum bpf_attach_type expected_attach_type; 279 int prog_ifindex; 280 __u32 attach_btf_obj_fd; 281 __u32 attach_btf_id; 282 __u32 attach_prog_fd; 283 void *func_info; 284 __u32 func_info_rec_size; 285 __u32 func_info_cnt; 286 287 void *line_info; 288 __u32 line_info_rec_size; 289 __u32 line_info_cnt; 290 __u32 prog_flags; 291 }; 292 293 struct bpf_struct_ops { 294 const char *tname; 295 const struct btf_type *type; 296 struct bpf_program **progs; 297 __u32 *kern_func_off; 298 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 299 void *data; 300 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 301 * btf_vmlinux's format. 302 * struct bpf_struct_ops_tcp_congestion_ops { 303 * [... some other kernel fields ...] 304 * struct tcp_congestion_ops data; 305 * } 306 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 307 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 308 * from "data". 309 */ 310 void *kern_vdata; 311 __u32 type_id; 312 }; 313 314 #define DATA_SEC ".data" 315 #define BSS_SEC ".bss" 316 #define RODATA_SEC ".rodata" 317 #define KCONFIG_SEC ".kconfig" 318 #define KSYMS_SEC ".ksyms" 319 #define STRUCT_OPS_SEC ".struct_ops" 320 321 enum libbpf_map_type { 322 LIBBPF_MAP_UNSPEC, 323 LIBBPF_MAP_DATA, 324 LIBBPF_MAP_BSS, 325 LIBBPF_MAP_RODATA, 326 LIBBPF_MAP_KCONFIG, 327 }; 328 329 static const char * const libbpf_type_to_btf_name[] = { 330 [LIBBPF_MAP_DATA] = DATA_SEC, 331 [LIBBPF_MAP_BSS] = BSS_SEC, 332 [LIBBPF_MAP_RODATA] = RODATA_SEC, 333 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 334 }; 335 336 struct bpf_map { 337 char *name; 338 int fd; 339 int sec_idx; 340 size_t sec_offset; 341 int map_ifindex; 342 int inner_map_fd; 343 struct bpf_map_def def; 344 __u32 numa_node; 345 __u32 btf_var_idx; 346 __u32 btf_key_type_id; 347 __u32 btf_value_type_id; 348 __u32 btf_vmlinux_value_type_id; 349 void *priv; 350 bpf_map_clear_priv_t clear_priv; 351 enum libbpf_map_type libbpf_type; 352 void *mmaped; 353 struct bpf_struct_ops *st_ops; 354 struct bpf_map *inner_map; 355 void **init_slots; 356 int init_slots_sz; 357 char *pin_path; 358 bool pinned; 359 bool reused; 360 }; 361 362 enum extern_type { 363 EXT_UNKNOWN, 364 EXT_KCFG, 365 EXT_KSYM, 366 }; 367 368 enum kcfg_type { 369 KCFG_UNKNOWN, 370 KCFG_CHAR, 371 KCFG_BOOL, 372 KCFG_INT, 373 KCFG_TRISTATE, 374 KCFG_CHAR_ARR, 375 }; 376 377 struct extern_desc { 378 enum extern_type type; 379 int sym_idx; 380 int btf_id; 381 int sec_btf_id; 382 const char *name; 383 bool is_set; 384 bool is_weak; 385 union { 386 struct { 387 enum kcfg_type type; 388 int sz; 389 int align; 390 int data_off; 391 bool is_signed; 392 } kcfg; 393 struct { 394 unsigned long long addr; 395 396 /* target btf_id of the corresponding kernel var. */ 397 int kernel_btf_obj_fd; 398 int kernel_btf_id; 399 400 /* local btf_id of the ksym extern's type. */ 401 __u32 type_id; 402 } ksym; 403 }; 404 }; 405 406 static LIST_HEAD(bpf_objects_list); 407 408 struct module_btf { 409 struct btf *btf; 410 char *name; 411 __u32 id; 412 int fd; 413 }; 414 415 struct bpf_object { 416 char name[BPF_OBJ_NAME_LEN]; 417 char license[64]; 418 __u32 kern_version; 419 420 struct bpf_program *programs; 421 size_t nr_programs; 422 struct bpf_map *maps; 423 size_t nr_maps; 424 size_t maps_cap; 425 426 char *kconfig; 427 struct extern_desc *externs; 428 int nr_extern; 429 int kconfig_map_idx; 430 int rodata_map_idx; 431 432 bool loaded; 433 bool has_subcalls; 434 435 /* 436 * Information when doing elf related work. Only valid if fd 437 * is valid. 438 */ 439 struct { 440 int fd; 441 const void *obj_buf; 442 size_t obj_buf_sz; 443 Elf *elf; 444 GElf_Ehdr ehdr; 445 Elf_Data *symbols; 446 Elf_Data *data; 447 Elf_Data *rodata; 448 Elf_Data *bss; 449 Elf_Data *st_ops_data; 450 size_t shstrndx; /* section index for section name strings */ 451 size_t strtabidx; 452 struct { 453 GElf_Shdr shdr; 454 Elf_Data *data; 455 } *reloc_sects; 456 int nr_reloc_sects; 457 int maps_shndx; 458 int btf_maps_shndx; 459 __u32 btf_maps_sec_btf_id; 460 int text_shndx; 461 int symbols_shndx; 462 int data_shndx; 463 int rodata_shndx; 464 int bss_shndx; 465 int st_ops_shndx; 466 } efile; 467 /* 468 * All loaded bpf_object is linked in a list, which is 469 * hidden to caller. bpf_objects__<func> handlers deal with 470 * all objects. 471 */ 472 struct list_head list; 473 474 struct btf *btf; 475 struct btf_ext *btf_ext; 476 477 /* Parse and load BTF vmlinux if any of the programs in the object need 478 * it at load time. 479 */ 480 struct btf *btf_vmlinux; 481 /* vmlinux BTF override for CO-RE relocations */ 482 struct btf *btf_vmlinux_override; 483 /* Lazily initialized kernel module BTFs */ 484 struct module_btf *btf_modules; 485 bool btf_modules_loaded; 486 size_t btf_module_cnt; 487 size_t btf_module_cap; 488 489 void *priv; 490 bpf_object_clear_priv_t clear_priv; 491 492 char path[]; 493 }; 494 #define obj_elf_valid(o) ((o)->efile.elf) 495 496 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 497 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 498 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 499 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 500 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 501 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 502 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 503 504 void bpf_program__unload(struct bpf_program *prog) 505 { 506 int i; 507 508 if (!prog) 509 return; 510 511 /* 512 * If the object is opened but the program was never loaded, 513 * it is possible that prog->instances.nr == -1. 514 */ 515 if (prog->instances.nr > 0) { 516 for (i = 0; i < prog->instances.nr; i++) 517 zclose(prog->instances.fds[i]); 518 } else if (prog->instances.nr != -1) { 519 pr_warn("Internal error: instances.nr is %d\n", 520 prog->instances.nr); 521 } 522 523 prog->instances.nr = -1; 524 zfree(&prog->instances.fds); 525 526 zfree(&prog->func_info); 527 zfree(&prog->line_info); 528 } 529 530 static void bpf_program__exit(struct bpf_program *prog) 531 { 532 if (!prog) 533 return; 534 535 if (prog->clear_priv) 536 prog->clear_priv(prog, prog->priv); 537 538 prog->priv = NULL; 539 prog->clear_priv = NULL; 540 541 bpf_program__unload(prog); 542 zfree(&prog->name); 543 zfree(&prog->sec_name); 544 zfree(&prog->pin_name); 545 zfree(&prog->insns); 546 zfree(&prog->reloc_desc); 547 548 prog->nr_reloc = 0; 549 prog->insns_cnt = 0; 550 prog->sec_idx = -1; 551 } 552 553 static char *__bpf_program__pin_name(struct bpf_program *prog) 554 { 555 char *name, *p; 556 557 name = p = strdup(prog->sec_name); 558 while ((p = strchr(p, '/'))) 559 *p = '_'; 560 561 return name; 562 } 563 564 static bool insn_is_subprog_call(const struct bpf_insn *insn) 565 { 566 return BPF_CLASS(insn->code) == BPF_JMP && 567 BPF_OP(insn->code) == BPF_CALL && 568 BPF_SRC(insn->code) == BPF_K && 569 insn->src_reg == BPF_PSEUDO_CALL && 570 insn->dst_reg == 0 && 571 insn->off == 0; 572 } 573 574 static bool is_ldimm64_insn(struct bpf_insn *insn) 575 { 576 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 577 } 578 579 static bool is_call_insn(const struct bpf_insn *insn) 580 { 581 return insn->code == (BPF_JMP | BPF_CALL); 582 } 583 584 static bool insn_is_pseudo_func(struct bpf_insn *insn) 585 { 586 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 587 } 588 589 static int 590 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 591 const char *name, size_t sec_idx, const char *sec_name, 592 size_t sec_off, void *insn_data, size_t insn_data_sz) 593 { 594 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 595 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 596 sec_name, name, sec_off, insn_data_sz); 597 return -EINVAL; 598 } 599 600 memset(prog, 0, sizeof(*prog)); 601 prog->obj = obj; 602 603 prog->sec_idx = sec_idx; 604 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 605 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 606 /* insns_cnt can later be increased by appending used subprograms */ 607 prog->insns_cnt = prog->sec_insn_cnt; 608 609 prog->type = BPF_PROG_TYPE_UNSPEC; 610 prog->load = true; 611 612 prog->instances.fds = NULL; 613 prog->instances.nr = -1; 614 615 prog->sec_name = strdup(sec_name); 616 if (!prog->sec_name) 617 goto errout; 618 619 prog->name = strdup(name); 620 if (!prog->name) 621 goto errout; 622 623 prog->pin_name = __bpf_program__pin_name(prog); 624 if (!prog->pin_name) 625 goto errout; 626 627 prog->insns = malloc(insn_data_sz); 628 if (!prog->insns) 629 goto errout; 630 memcpy(prog->insns, insn_data, insn_data_sz); 631 632 return 0; 633 errout: 634 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 635 bpf_program__exit(prog); 636 return -ENOMEM; 637 } 638 639 static int 640 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 641 const char *sec_name, int sec_idx) 642 { 643 Elf_Data *symbols = obj->efile.symbols; 644 struct bpf_program *prog, *progs; 645 void *data = sec_data->d_buf; 646 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 647 int nr_progs, err, i; 648 const char *name; 649 GElf_Sym sym; 650 651 progs = obj->programs; 652 nr_progs = obj->nr_programs; 653 nr_syms = symbols->d_size / sizeof(GElf_Sym); 654 sec_off = 0; 655 656 for (i = 0; i < nr_syms; i++) { 657 if (!gelf_getsym(symbols, i, &sym)) 658 continue; 659 if (sym.st_shndx != sec_idx) 660 continue; 661 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 662 continue; 663 664 prog_sz = sym.st_size; 665 sec_off = sym.st_value; 666 667 name = elf_sym_str(obj, sym.st_name); 668 if (!name) { 669 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 670 sec_name, sec_off); 671 return -LIBBPF_ERRNO__FORMAT; 672 } 673 674 if (sec_off + prog_sz > sec_sz) { 675 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 676 sec_name, sec_off); 677 return -LIBBPF_ERRNO__FORMAT; 678 } 679 680 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 681 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 682 683 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 684 if (!progs) { 685 /* 686 * In this case the original obj->programs 687 * is still valid, so don't need special treat for 688 * bpf_close_object(). 689 */ 690 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 691 sec_name, name); 692 return -ENOMEM; 693 } 694 obj->programs = progs; 695 696 prog = &progs[nr_progs]; 697 698 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 699 sec_off, data + sec_off, prog_sz); 700 if (err) 701 return err; 702 703 /* if function is a global/weak symbol, but has hidden 704 * visibility (STV_HIDDEN), mark its BTF FUNC as static to 705 * enable more permissive BPF verification mode with more 706 * outside context available to BPF verifier 707 */ 708 if (GELF_ST_BIND(sym.st_info) != STB_LOCAL 709 && GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN) 710 prog->mark_btf_static = true; 711 712 nr_progs++; 713 obj->nr_programs = nr_progs; 714 } 715 716 return 0; 717 } 718 719 static __u32 get_kernel_version(void) 720 { 721 __u32 major, minor, patch; 722 struct utsname info; 723 724 uname(&info); 725 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 726 return 0; 727 return KERNEL_VERSION(major, minor, patch); 728 } 729 730 static const struct btf_member * 731 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 732 { 733 struct btf_member *m; 734 int i; 735 736 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 737 if (btf_member_bit_offset(t, i) == bit_offset) 738 return m; 739 } 740 741 return NULL; 742 } 743 744 static const struct btf_member * 745 find_member_by_name(const struct btf *btf, const struct btf_type *t, 746 const char *name) 747 { 748 struct btf_member *m; 749 int i; 750 751 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 752 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 753 return m; 754 } 755 756 return NULL; 757 } 758 759 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 760 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 761 const char *name, __u32 kind); 762 763 static int 764 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 765 const struct btf_type **type, __u32 *type_id, 766 const struct btf_type **vtype, __u32 *vtype_id, 767 const struct btf_member **data_member) 768 { 769 const struct btf_type *kern_type, *kern_vtype; 770 const struct btf_member *kern_data_member; 771 __s32 kern_vtype_id, kern_type_id; 772 __u32 i; 773 774 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 775 if (kern_type_id < 0) { 776 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 777 tname); 778 return kern_type_id; 779 } 780 kern_type = btf__type_by_id(btf, kern_type_id); 781 782 /* Find the corresponding "map_value" type that will be used 783 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 784 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 785 * btf_vmlinux. 786 */ 787 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 788 tname, BTF_KIND_STRUCT); 789 if (kern_vtype_id < 0) { 790 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 791 STRUCT_OPS_VALUE_PREFIX, tname); 792 return kern_vtype_id; 793 } 794 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 795 796 /* Find "struct tcp_congestion_ops" from 797 * struct bpf_struct_ops_tcp_congestion_ops { 798 * [ ... ] 799 * struct tcp_congestion_ops data; 800 * } 801 */ 802 kern_data_member = btf_members(kern_vtype); 803 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 804 if (kern_data_member->type == kern_type_id) 805 break; 806 } 807 if (i == btf_vlen(kern_vtype)) { 808 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 809 tname, STRUCT_OPS_VALUE_PREFIX, tname); 810 return -EINVAL; 811 } 812 813 *type = kern_type; 814 *type_id = kern_type_id; 815 *vtype = kern_vtype; 816 *vtype_id = kern_vtype_id; 817 *data_member = kern_data_member; 818 819 return 0; 820 } 821 822 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 823 { 824 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 825 } 826 827 /* Init the map's fields that depend on kern_btf */ 828 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 829 const struct btf *btf, 830 const struct btf *kern_btf) 831 { 832 const struct btf_member *member, *kern_member, *kern_data_member; 833 const struct btf_type *type, *kern_type, *kern_vtype; 834 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 835 struct bpf_struct_ops *st_ops; 836 void *data, *kern_data; 837 const char *tname; 838 int err; 839 840 st_ops = map->st_ops; 841 type = st_ops->type; 842 tname = st_ops->tname; 843 err = find_struct_ops_kern_types(kern_btf, tname, 844 &kern_type, &kern_type_id, 845 &kern_vtype, &kern_vtype_id, 846 &kern_data_member); 847 if (err) 848 return err; 849 850 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 851 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 852 853 map->def.value_size = kern_vtype->size; 854 map->btf_vmlinux_value_type_id = kern_vtype_id; 855 856 st_ops->kern_vdata = calloc(1, kern_vtype->size); 857 if (!st_ops->kern_vdata) 858 return -ENOMEM; 859 860 data = st_ops->data; 861 kern_data_off = kern_data_member->offset / 8; 862 kern_data = st_ops->kern_vdata + kern_data_off; 863 864 member = btf_members(type); 865 for (i = 0; i < btf_vlen(type); i++, member++) { 866 const struct btf_type *mtype, *kern_mtype; 867 __u32 mtype_id, kern_mtype_id; 868 void *mdata, *kern_mdata; 869 __s64 msize, kern_msize; 870 __u32 moff, kern_moff; 871 __u32 kern_member_idx; 872 const char *mname; 873 874 mname = btf__name_by_offset(btf, member->name_off); 875 kern_member = find_member_by_name(kern_btf, kern_type, mname); 876 if (!kern_member) { 877 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 878 map->name, mname); 879 return -ENOTSUP; 880 } 881 882 kern_member_idx = kern_member - btf_members(kern_type); 883 if (btf_member_bitfield_size(type, i) || 884 btf_member_bitfield_size(kern_type, kern_member_idx)) { 885 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 886 map->name, mname); 887 return -ENOTSUP; 888 } 889 890 moff = member->offset / 8; 891 kern_moff = kern_member->offset / 8; 892 893 mdata = data + moff; 894 kern_mdata = kern_data + kern_moff; 895 896 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 897 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 898 &kern_mtype_id); 899 if (BTF_INFO_KIND(mtype->info) != 900 BTF_INFO_KIND(kern_mtype->info)) { 901 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 902 map->name, mname, BTF_INFO_KIND(mtype->info), 903 BTF_INFO_KIND(kern_mtype->info)); 904 return -ENOTSUP; 905 } 906 907 if (btf_is_ptr(mtype)) { 908 struct bpf_program *prog; 909 910 prog = st_ops->progs[i]; 911 if (!prog) 912 continue; 913 914 kern_mtype = skip_mods_and_typedefs(kern_btf, 915 kern_mtype->type, 916 &kern_mtype_id); 917 918 /* mtype->type must be a func_proto which was 919 * guaranteed in bpf_object__collect_st_ops_relos(), 920 * so only check kern_mtype for func_proto here. 921 */ 922 if (!btf_is_func_proto(kern_mtype)) { 923 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 924 map->name, mname); 925 return -ENOTSUP; 926 } 927 928 prog->attach_btf_id = kern_type_id; 929 prog->expected_attach_type = kern_member_idx; 930 931 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 932 933 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 934 map->name, mname, prog->name, moff, 935 kern_moff); 936 937 continue; 938 } 939 940 msize = btf__resolve_size(btf, mtype_id); 941 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 942 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 943 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 944 map->name, mname, (ssize_t)msize, 945 (ssize_t)kern_msize); 946 return -ENOTSUP; 947 } 948 949 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 950 map->name, mname, (unsigned int)msize, 951 moff, kern_moff); 952 memcpy(kern_mdata, mdata, msize); 953 } 954 955 return 0; 956 } 957 958 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 959 { 960 struct bpf_map *map; 961 size_t i; 962 int err; 963 964 for (i = 0; i < obj->nr_maps; i++) { 965 map = &obj->maps[i]; 966 967 if (!bpf_map__is_struct_ops(map)) 968 continue; 969 970 err = bpf_map__init_kern_struct_ops(map, obj->btf, 971 obj->btf_vmlinux); 972 if (err) 973 return err; 974 } 975 976 return 0; 977 } 978 979 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 980 { 981 const struct btf_type *type, *datasec; 982 const struct btf_var_secinfo *vsi; 983 struct bpf_struct_ops *st_ops; 984 const char *tname, *var_name; 985 __s32 type_id, datasec_id; 986 const struct btf *btf; 987 struct bpf_map *map; 988 __u32 i; 989 990 if (obj->efile.st_ops_shndx == -1) 991 return 0; 992 993 btf = obj->btf; 994 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 995 BTF_KIND_DATASEC); 996 if (datasec_id < 0) { 997 pr_warn("struct_ops init: DATASEC %s not found\n", 998 STRUCT_OPS_SEC); 999 return -EINVAL; 1000 } 1001 1002 datasec = btf__type_by_id(btf, datasec_id); 1003 vsi = btf_var_secinfos(datasec); 1004 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1005 type = btf__type_by_id(obj->btf, vsi->type); 1006 var_name = btf__name_by_offset(obj->btf, type->name_off); 1007 1008 type_id = btf__resolve_type(obj->btf, vsi->type); 1009 if (type_id < 0) { 1010 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1011 vsi->type, STRUCT_OPS_SEC); 1012 return -EINVAL; 1013 } 1014 1015 type = btf__type_by_id(obj->btf, type_id); 1016 tname = btf__name_by_offset(obj->btf, type->name_off); 1017 if (!tname[0]) { 1018 pr_warn("struct_ops init: anonymous type is not supported\n"); 1019 return -ENOTSUP; 1020 } 1021 if (!btf_is_struct(type)) { 1022 pr_warn("struct_ops init: %s is not a struct\n", tname); 1023 return -EINVAL; 1024 } 1025 1026 map = bpf_object__add_map(obj); 1027 if (IS_ERR(map)) 1028 return PTR_ERR(map); 1029 1030 map->sec_idx = obj->efile.st_ops_shndx; 1031 map->sec_offset = vsi->offset; 1032 map->name = strdup(var_name); 1033 if (!map->name) 1034 return -ENOMEM; 1035 1036 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1037 map->def.key_size = sizeof(int); 1038 map->def.value_size = type->size; 1039 map->def.max_entries = 1; 1040 1041 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1042 if (!map->st_ops) 1043 return -ENOMEM; 1044 st_ops = map->st_ops; 1045 st_ops->data = malloc(type->size); 1046 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1047 st_ops->kern_func_off = malloc(btf_vlen(type) * 1048 sizeof(*st_ops->kern_func_off)); 1049 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1050 return -ENOMEM; 1051 1052 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1053 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1054 var_name, STRUCT_OPS_SEC); 1055 return -EINVAL; 1056 } 1057 1058 memcpy(st_ops->data, 1059 obj->efile.st_ops_data->d_buf + vsi->offset, 1060 type->size); 1061 st_ops->tname = tname; 1062 st_ops->type = type; 1063 st_ops->type_id = type_id; 1064 1065 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1066 tname, type_id, var_name, vsi->offset); 1067 } 1068 1069 return 0; 1070 } 1071 1072 static struct bpf_object *bpf_object__new(const char *path, 1073 const void *obj_buf, 1074 size_t obj_buf_sz, 1075 const char *obj_name) 1076 { 1077 struct bpf_object *obj; 1078 char *end; 1079 1080 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1081 if (!obj) { 1082 pr_warn("alloc memory failed for %s\n", path); 1083 return ERR_PTR(-ENOMEM); 1084 } 1085 1086 strcpy(obj->path, path); 1087 if (obj_name) { 1088 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1089 obj->name[sizeof(obj->name) - 1] = 0; 1090 } else { 1091 /* Using basename() GNU version which doesn't modify arg. */ 1092 strncpy(obj->name, basename((void *)path), 1093 sizeof(obj->name) - 1); 1094 end = strchr(obj->name, '.'); 1095 if (end) 1096 *end = 0; 1097 } 1098 1099 obj->efile.fd = -1; 1100 /* 1101 * Caller of this function should also call 1102 * bpf_object__elf_finish() after data collection to return 1103 * obj_buf to user. If not, we should duplicate the buffer to 1104 * avoid user freeing them before elf finish. 1105 */ 1106 obj->efile.obj_buf = obj_buf; 1107 obj->efile.obj_buf_sz = obj_buf_sz; 1108 obj->efile.maps_shndx = -1; 1109 obj->efile.btf_maps_shndx = -1; 1110 obj->efile.data_shndx = -1; 1111 obj->efile.rodata_shndx = -1; 1112 obj->efile.bss_shndx = -1; 1113 obj->efile.st_ops_shndx = -1; 1114 obj->kconfig_map_idx = -1; 1115 obj->rodata_map_idx = -1; 1116 1117 obj->kern_version = get_kernel_version(); 1118 obj->loaded = false; 1119 1120 INIT_LIST_HEAD(&obj->list); 1121 list_add(&obj->list, &bpf_objects_list); 1122 return obj; 1123 } 1124 1125 static void bpf_object__elf_finish(struct bpf_object *obj) 1126 { 1127 if (!obj_elf_valid(obj)) 1128 return; 1129 1130 if (obj->efile.elf) { 1131 elf_end(obj->efile.elf); 1132 obj->efile.elf = NULL; 1133 } 1134 obj->efile.symbols = NULL; 1135 obj->efile.data = NULL; 1136 obj->efile.rodata = NULL; 1137 obj->efile.bss = NULL; 1138 obj->efile.st_ops_data = NULL; 1139 1140 zfree(&obj->efile.reloc_sects); 1141 obj->efile.nr_reloc_sects = 0; 1142 zclose(obj->efile.fd); 1143 obj->efile.obj_buf = NULL; 1144 obj->efile.obj_buf_sz = 0; 1145 } 1146 1147 static int bpf_object__elf_init(struct bpf_object *obj) 1148 { 1149 int err = 0; 1150 GElf_Ehdr *ep; 1151 1152 if (obj_elf_valid(obj)) { 1153 pr_warn("elf: init internal error\n"); 1154 return -LIBBPF_ERRNO__LIBELF; 1155 } 1156 1157 if (obj->efile.obj_buf_sz > 0) { 1158 /* 1159 * obj_buf should have been validated by 1160 * bpf_object__open_buffer(). 1161 */ 1162 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1163 obj->efile.obj_buf_sz); 1164 } else { 1165 obj->efile.fd = open(obj->path, O_RDONLY); 1166 if (obj->efile.fd < 0) { 1167 char errmsg[STRERR_BUFSIZE], *cp; 1168 1169 err = -errno; 1170 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1171 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1172 return err; 1173 } 1174 1175 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1176 } 1177 1178 if (!obj->efile.elf) { 1179 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1180 err = -LIBBPF_ERRNO__LIBELF; 1181 goto errout; 1182 } 1183 1184 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1185 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1186 err = -LIBBPF_ERRNO__FORMAT; 1187 goto errout; 1188 } 1189 ep = &obj->efile.ehdr; 1190 1191 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1192 pr_warn("elf: failed to get section names section index for %s: %s\n", 1193 obj->path, elf_errmsg(-1)); 1194 err = -LIBBPF_ERRNO__FORMAT; 1195 goto errout; 1196 } 1197 1198 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1199 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1200 pr_warn("elf: failed to get section names strings from %s: %s\n", 1201 obj->path, elf_errmsg(-1)); 1202 err = -LIBBPF_ERRNO__FORMAT; 1203 goto errout; 1204 } 1205 1206 /* Old LLVM set e_machine to EM_NONE */ 1207 if (ep->e_type != ET_REL || 1208 (ep->e_machine && ep->e_machine != EM_BPF)) { 1209 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1210 err = -LIBBPF_ERRNO__FORMAT; 1211 goto errout; 1212 } 1213 1214 return 0; 1215 errout: 1216 bpf_object__elf_finish(obj); 1217 return err; 1218 } 1219 1220 static int bpf_object__check_endianness(struct bpf_object *obj) 1221 { 1222 #if __BYTE_ORDER == __LITTLE_ENDIAN 1223 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1224 return 0; 1225 #elif __BYTE_ORDER == __BIG_ENDIAN 1226 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1227 return 0; 1228 #else 1229 # error "Unrecognized __BYTE_ORDER__" 1230 #endif 1231 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1232 return -LIBBPF_ERRNO__ENDIAN; 1233 } 1234 1235 static int 1236 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1237 { 1238 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1239 pr_debug("license of %s is %s\n", obj->path, obj->license); 1240 return 0; 1241 } 1242 1243 static int 1244 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1245 { 1246 __u32 kver; 1247 1248 if (size != sizeof(kver)) { 1249 pr_warn("invalid kver section in %s\n", obj->path); 1250 return -LIBBPF_ERRNO__FORMAT; 1251 } 1252 memcpy(&kver, data, sizeof(kver)); 1253 obj->kern_version = kver; 1254 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1255 return 0; 1256 } 1257 1258 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1259 { 1260 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1261 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1262 return true; 1263 return false; 1264 } 1265 1266 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1267 __u32 *size) 1268 { 1269 int ret = -ENOENT; 1270 1271 *size = 0; 1272 if (!name) { 1273 return -EINVAL; 1274 } else if (!strcmp(name, DATA_SEC)) { 1275 if (obj->efile.data) 1276 *size = obj->efile.data->d_size; 1277 } else if (!strcmp(name, BSS_SEC)) { 1278 if (obj->efile.bss) 1279 *size = obj->efile.bss->d_size; 1280 } else if (!strcmp(name, RODATA_SEC)) { 1281 if (obj->efile.rodata) 1282 *size = obj->efile.rodata->d_size; 1283 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1284 if (obj->efile.st_ops_data) 1285 *size = obj->efile.st_ops_data->d_size; 1286 } else { 1287 Elf_Scn *scn = elf_sec_by_name(obj, name); 1288 Elf_Data *data = elf_sec_data(obj, scn); 1289 1290 if (data) { 1291 ret = 0; /* found it */ 1292 *size = data->d_size; 1293 } 1294 } 1295 1296 return *size ? 0 : ret; 1297 } 1298 1299 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1300 __u32 *off) 1301 { 1302 Elf_Data *symbols = obj->efile.symbols; 1303 const char *sname; 1304 size_t si; 1305 1306 if (!name || !off) 1307 return -EINVAL; 1308 1309 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1310 GElf_Sym sym; 1311 1312 if (!gelf_getsym(symbols, si, &sym)) 1313 continue; 1314 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1315 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1316 continue; 1317 1318 sname = elf_sym_str(obj, sym.st_name); 1319 if (!sname) { 1320 pr_warn("failed to get sym name string for var %s\n", 1321 name); 1322 return -EIO; 1323 } 1324 if (strcmp(name, sname) == 0) { 1325 *off = sym.st_value; 1326 return 0; 1327 } 1328 } 1329 1330 return -ENOENT; 1331 } 1332 1333 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1334 { 1335 struct bpf_map *new_maps; 1336 size_t new_cap; 1337 int i; 1338 1339 if (obj->nr_maps < obj->maps_cap) 1340 return &obj->maps[obj->nr_maps++]; 1341 1342 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1343 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1344 if (!new_maps) { 1345 pr_warn("alloc maps for object failed\n"); 1346 return ERR_PTR(-ENOMEM); 1347 } 1348 1349 obj->maps_cap = new_cap; 1350 obj->maps = new_maps; 1351 1352 /* zero out new maps */ 1353 memset(obj->maps + obj->nr_maps, 0, 1354 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1355 /* 1356 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1357 * when failure (zclose won't close negative fd)). 1358 */ 1359 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1360 obj->maps[i].fd = -1; 1361 obj->maps[i].inner_map_fd = -1; 1362 } 1363 1364 return &obj->maps[obj->nr_maps++]; 1365 } 1366 1367 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1368 { 1369 long page_sz = sysconf(_SC_PAGE_SIZE); 1370 size_t map_sz; 1371 1372 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1373 map_sz = roundup(map_sz, page_sz); 1374 return map_sz; 1375 } 1376 1377 static char *internal_map_name(struct bpf_object *obj, 1378 enum libbpf_map_type type) 1379 { 1380 char map_name[BPF_OBJ_NAME_LEN], *p; 1381 const char *sfx = libbpf_type_to_btf_name[type]; 1382 int sfx_len = max((size_t)7, strlen(sfx)); 1383 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1384 strlen(obj->name)); 1385 1386 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1387 sfx_len, libbpf_type_to_btf_name[type]); 1388 1389 /* sanitise map name to characters allowed by kernel */ 1390 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1391 if (!isalnum(*p) && *p != '_' && *p != '.') 1392 *p = '_'; 1393 1394 return strdup(map_name); 1395 } 1396 1397 static int 1398 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1399 int sec_idx, void *data, size_t data_sz) 1400 { 1401 struct bpf_map_def *def; 1402 struct bpf_map *map; 1403 int err; 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->libbpf_type = type; 1410 map->sec_idx = sec_idx; 1411 map->sec_offset = 0; 1412 map->name = internal_map_name(obj, type); 1413 if (!map->name) { 1414 pr_warn("failed to alloc map name\n"); 1415 return -ENOMEM; 1416 } 1417 1418 def = &map->def; 1419 def->type = BPF_MAP_TYPE_ARRAY; 1420 def->key_size = sizeof(int); 1421 def->value_size = data_sz; 1422 def->max_entries = 1; 1423 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1424 ? BPF_F_RDONLY_PROG : 0; 1425 def->map_flags |= BPF_F_MMAPABLE; 1426 1427 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1428 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1429 1430 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1431 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1432 if (map->mmaped == MAP_FAILED) { 1433 err = -errno; 1434 map->mmaped = NULL; 1435 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1436 map->name, err); 1437 zfree(&map->name); 1438 return err; 1439 } 1440 1441 if (data) 1442 memcpy(map->mmaped, data, data_sz); 1443 1444 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1445 return 0; 1446 } 1447 1448 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1449 { 1450 int err; 1451 1452 /* 1453 * Populate obj->maps with libbpf internal maps. 1454 */ 1455 if (obj->efile.data_shndx >= 0) { 1456 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1457 obj->efile.data_shndx, 1458 obj->efile.data->d_buf, 1459 obj->efile.data->d_size); 1460 if (err) 1461 return err; 1462 } 1463 if (obj->efile.rodata_shndx >= 0) { 1464 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1465 obj->efile.rodata_shndx, 1466 obj->efile.rodata->d_buf, 1467 obj->efile.rodata->d_size); 1468 if (err) 1469 return err; 1470 1471 obj->rodata_map_idx = obj->nr_maps - 1; 1472 } 1473 if (obj->efile.bss_shndx >= 0) { 1474 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1475 obj->efile.bss_shndx, 1476 NULL, 1477 obj->efile.bss->d_size); 1478 if (err) 1479 return err; 1480 } 1481 return 0; 1482 } 1483 1484 1485 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1486 const void *name) 1487 { 1488 int i; 1489 1490 for (i = 0; i < obj->nr_extern; i++) { 1491 if (strcmp(obj->externs[i].name, name) == 0) 1492 return &obj->externs[i]; 1493 } 1494 return NULL; 1495 } 1496 1497 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1498 char value) 1499 { 1500 switch (ext->kcfg.type) { 1501 case KCFG_BOOL: 1502 if (value == 'm') { 1503 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1504 ext->name, value); 1505 return -EINVAL; 1506 } 1507 *(bool *)ext_val = value == 'y' ? true : false; 1508 break; 1509 case KCFG_TRISTATE: 1510 if (value == 'y') 1511 *(enum libbpf_tristate *)ext_val = TRI_YES; 1512 else if (value == 'm') 1513 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1514 else /* value == 'n' */ 1515 *(enum libbpf_tristate *)ext_val = TRI_NO; 1516 break; 1517 case KCFG_CHAR: 1518 *(char *)ext_val = value; 1519 break; 1520 case KCFG_UNKNOWN: 1521 case KCFG_INT: 1522 case KCFG_CHAR_ARR: 1523 default: 1524 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1525 ext->name, value); 1526 return -EINVAL; 1527 } 1528 ext->is_set = true; 1529 return 0; 1530 } 1531 1532 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1533 const char *value) 1534 { 1535 size_t len; 1536 1537 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1538 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1539 return -EINVAL; 1540 } 1541 1542 len = strlen(value); 1543 if (value[len - 1] != '"') { 1544 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1545 ext->name, value); 1546 return -EINVAL; 1547 } 1548 1549 /* strip quotes */ 1550 len -= 2; 1551 if (len >= ext->kcfg.sz) { 1552 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1553 ext->name, value, len, ext->kcfg.sz - 1); 1554 len = ext->kcfg.sz - 1; 1555 } 1556 memcpy(ext_val, value + 1, len); 1557 ext_val[len] = '\0'; 1558 ext->is_set = true; 1559 return 0; 1560 } 1561 1562 static int parse_u64(const char *value, __u64 *res) 1563 { 1564 char *value_end; 1565 int err; 1566 1567 errno = 0; 1568 *res = strtoull(value, &value_end, 0); 1569 if (errno) { 1570 err = -errno; 1571 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1572 return err; 1573 } 1574 if (*value_end) { 1575 pr_warn("failed to parse '%s' as integer completely\n", value); 1576 return -EINVAL; 1577 } 1578 return 0; 1579 } 1580 1581 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1582 { 1583 int bit_sz = ext->kcfg.sz * 8; 1584 1585 if (ext->kcfg.sz == 8) 1586 return true; 1587 1588 /* Validate that value stored in u64 fits in integer of `ext->sz` 1589 * bytes size without any loss of information. If the target integer 1590 * is signed, we rely on the following limits of integer type of 1591 * Y bits and subsequent transformation: 1592 * 1593 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1594 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1595 * 0 <= X + 2^(Y-1) < 2^Y 1596 * 1597 * For unsigned target integer, check that all the (64 - Y) bits are 1598 * zero. 1599 */ 1600 if (ext->kcfg.is_signed) 1601 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1602 else 1603 return (v >> bit_sz) == 0; 1604 } 1605 1606 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1607 __u64 value) 1608 { 1609 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1610 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1611 ext->name, (unsigned long long)value); 1612 return -EINVAL; 1613 } 1614 if (!is_kcfg_value_in_range(ext, value)) { 1615 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1616 ext->name, (unsigned long long)value, ext->kcfg.sz); 1617 return -ERANGE; 1618 } 1619 switch (ext->kcfg.sz) { 1620 case 1: *(__u8 *)ext_val = value; break; 1621 case 2: *(__u16 *)ext_val = value; break; 1622 case 4: *(__u32 *)ext_val = value; break; 1623 case 8: *(__u64 *)ext_val = value; break; 1624 default: 1625 return -EINVAL; 1626 } 1627 ext->is_set = true; 1628 return 0; 1629 } 1630 1631 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1632 char *buf, void *data) 1633 { 1634 struct extern_desc *ext; 1635 char *sep, *value; 1636 int len, err = 0; 1637 void *ext_val; 1638 __u64 num; 1639 1640 if (strncmp(buf, "CONFIG_", 7)) 1641 return 0; 1642 1643 sep = strchr(buf, '='); 1644 if (!sep) { 1645 pr_warn("failed to parse '%s': no separator\n", buf); 1646 return -EINVAL; 1647 } 1648 1649 /* Trim ending '\n' */ 1650 len = strlen(buf); 1651 if (buf[len - 1] == '\n') 1652 buf[len - 1] = '\0'; 1653 /* Split on '=' and ensure that a value is present. */ 1654 *sep = '\0'; 1655 if (!sep[1]) { 1656 *sep = '='; 1657 pr_warn("failed to parse '%s': no value\n", buf); 1658 return -EINVAL; 1659 } 1660 1661 ext = find_extern_by_name(obj, buf); 1662 if (!ext || ext->is_set) 1663 return 0; 1664 1665 ext_val = data + ext->kcfg.data_off; 1666 value = sep + 1; 1667 1668 switch (*value) { 1669 case 'y': case 'n': case 'm': 1670 err = set_kcfg_value_tri(ext, ext_val, *value); 1671 break; 1672 case '"': 1673 err = set_kcfg_value_str(ext, ext_val, value); 1674 break; 1675 default: 1676 /* assume integer */ 1677 err = parse_u64(value, &num); 1678 if (err) { 1679 pr_warn("extern (kcfg) %s=%s should be integer\n", 1680 ext->name, value); 1681 return err; 1682 } 1683 err = set_kcfg_value_num(ext, ext_val, num); 1684 break; 1685 } 1686 if (err) 1687 return err; 1688 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1689 return 0; 1690 } 1691 1692 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1693 { 1694 char buf[PATH_MAX]; 1695 struct utsname uts; 1696 int len, err = 0; 1697 gzFile file; 1698 1699 uname(&uts); 1700 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1701 if (len < 0) 1702 return -EINVAL; 1703 else if (len >= PATH_MAX) 1704 return -ENAMETOOLONG; 1705 1706 /* gzopen also accepts uncompressed files. */ 1707 file = gzopen(buf, "r"); 1708 if (!file) 1709 file = gzopen("/proc/config.gz", "r"); 1710 1711 if (!file) { 1712 pr_warn("failed to open system Kconfig\n"); 1713 return -ENOENT; 1714 } 1715 1716 while (gzgets(file, buf, sizeof(buf))) { 1717 err = bpf_object__process_kconfig_line(obj, buf, data); 1718 if (err) { 1719 pr_warn("error parsing system Kconfig line '%s': %d\n", 1720 buf, err); 1721 goto out; 1722 } 1723 } 1724 1725 out: 1726 gzclose(file); 1727 return err; 1728 } 1729 1730 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1731 const char *config, void *data) 1732 { 1733 char buf[PATH_MAX]; 1734 int err = 0; 1735 FILE *file; 1736 1737 file = fmemopen((void *)config, strlen(config), "r"); 1738 if (!file) { 1739 err = -errno; 1740 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1741 return err; 1742 } 1743 1744 while (fgets(buf, sizeof(buf), file)) { 1745 err = bpf_object__process_kconfig_line(obj, buf, data); 1746 if (err) { 1747 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1748 buf, err); 1749 break; 1750 } 1751 } 1752 1753 fclose(file); 1754 return err; 1755 } 1756 1757 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1758 { 1759 struct extern_desc *last_ext = NULL, *ext; 1760 size_t map_sz; 1761 int i, err; 1762 1763 for (i = 0; i < obj->nr_extern; i++) { 1764 ext = &obj->externs[i]; 1765 if (ext->type == EXT_KCFG) 1766 last_ext = ext; 1767 } 1768 1769 if (!last_ext) 1770 return 0; 1771 1772 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1773 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1774 obj->efile.symbols_shndx, 1775 NULL, map_sz); 1776 if (err) 1777 return err; 1778 1779 obj->kconfig_map_idx = obj->nr_maps - 1; 1780 1781 return 0; 1782 } 1783 1784 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1785 { 1786 Elf_Data *symbols = obj->efile.symbols; 1787 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1788 Elf_Data *data = NULL; 1789 Elf_Scn *scn; 1790 1791 if (obj->efile.maps_shndx < 0) 1792 return 0; 1793 1794 if (!symbols) 1795 return -EINVAL; 1796 1797 1798 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1799 data = elf_sec_data(obj, scn); 1800 if (!scn || !data) { 1801 pr_warn("elf: failed to get legacy map definitions for %s\n", 1802 obj->path); 1803 return -EINVAL; 1804 } 1805 1806 /* 1807 * Count number of maps. Each map has a name. 1808 * Array of maps is not supported: only the first element is 1809 * considered. 1810 * 1811 * TODO: Detect array of map and report error. 1812 */ 1813 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1814 for (i = 0; i < nr_syms; i++) { 1815 GElf_Sym sym; 1816 1817 if (!gelf_getsym(symbols, i, &sym)) 1818 continue; 1819 if (sym.st_shndx != obj->efile.maps_shndx) 1820 continue; 1821 nr_maps++; 1822 } 1823 /* Assume equally sized map definitions */ 1824 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1825 nr_maps, data->d_size, obj->path); 1826 1827 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1828 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1829 obj->path); 1830 return -EINVAL; 1831 } 1832 map_def_sz = data->d_size / nr_maps; 1833 1834 /* Fill obj->maps using data in "maps" section. */ 1835 for (i = 0; i < nr_syms; i++) { 1836 GElf_Sym sym; 1837 const char *map_name; 1838 struct bpf_map_def *def; 1839 struct bpf_map *map; 1840 1841 if (!gelf_getsym(symbols, i, &sym)) 1842 continue; 1843 if (sym.st_shndx != obj->efile.maps_shndx) 1844 continue; 1845 1846 map = bpf_object__add_map(obj); 1847 if (IS_ERR(map)) 1848 return PTR_ERR(map); 1849 1850 map_name = elf_sym_str(obj, sym.st_name); 1851 if (!map_name) { 1852 pr_warn("failed to get map #%d name sym string for obj %s\n", 1853 i, obj->path); 1854 return -LIBBPF_ERRNO__FORMAT; 1855 } 1856 1857 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1858 map->sec_idx = sym.st_shndx; 1859 map->sec_offset = sym.st_value; 1860 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1861 map_name, map->sec_idx, map->sec_offset); 1862 if (sym.st_value + map_def_sz > data->d_size) { 1863 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1864 obj->path, map_name); 1865 return -EINVAL; 1866 } 1867 1868 map->name = strdup(map_name); 1869 if (!map->name) { 1870 pr_warn("failed to alloc map name\n"); 1871 return -ENOMEM; 1872 } 1873 pr_debug("map %d is \"%s\"\n", i, map->name); 1874 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1875 /* 1876 * If the definition of the map in the object file fits in 1877 * bpf_map_def, copy it. Any extra fields in our version 1878 * of bpf_map_def will default to zero as a result of the 1879 * calloc above. 1880 */ 1881 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1882 memcpy(&map->def, def, map_def_sz); 1883 } else { 1884 /* 1885 * Here the map structure being read is bigger than what 1886 * we expect, truncate if the excess bits are all zero. 1887 * If they are not zero, reject this map as 1888 * incompatible. 1889 */ 1890 char *b; 1891 1892 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1893 b < ((char *)def) + map_def_sz; b++) { 1894 if (*b != 0) { 1895 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1896 obj->path, map_name); 1897 if (strict) 1898 return -EINVAL; 1899 } 1900 } 1901 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1902 } 1903 } 1904 return 0; 1905 } 1906 1907 const struct btf_type * 1908 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1909 { 1910 const struct btf_type *t = btf__type_by_id(btf, id); 1911 1912 if (res_id) 1913 *res_id = id; 1914 1915 while (btf_is_mod(t) || btf_is_typedef(t)) { 1916 if (res_id) 1917 *res_id = t->type; 1918 t = btf__type_by_id(btf, t->type); 1919 } 1920 1921 return t; 1922 } 1923 1924 static const struct btf_type * 1925 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1926 { 1927 const struct btf_type *t; 1928 1929 t = skip_mods_and_typedefs(btf, id, NULL); 1930 if (!btf_is_ptr(t)) 1931 return NULL; 1932 1933 t = skip_mods_and_typedefs(btf, t->type, res_id); 1934 1935 return btf_is_func_proto(t) ? t : NULL; 1936 } 1937 1938 static const char *__btf_kind_str(__u16 kind) 1939 { 1940 switch (kind) { 1941 case BTF_KIND_UNKN: return "void"; 1942 case BTF_KIND_INT: return "int"; 1943 case BTF_KIND_PTR: return "ptr"; 1944 case BTF_KIND_ARRAY: return "array"; 1945 case BTF_KIND_STRUCT: return "struct"; 1946 case BTF_KIND_UNION: return "union"; 1947 case BTF_KIND_ENUM: return "enum"; 1948 case BTF_KIND_FWD: return "fwd"; 1949 case BTF_KIND_TYPEDEF: return "typedef"; 1950 case BTF_KIND_VOLATILE: return "volatile"; 1951 case BTF_KIND_CONST: return "const"; 1952 case BTF_KIND_RESTRICT: return "restrict"; 1953 case BTF_KIND_FUNC: return "func"; 1954 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1955 case BTF_KIND_VAR: return "var"; 1956 case BTF_KIND_DATASEC: return "datasec"; 1957 case BTF_KIND_FLOAT: return "float"; 1958 default: return "unknown"; 1959 } 1960 } 1961 1962 const char *btf_kind_str(const struct btf_type *t) 1963 { 1964 return __btf_kind_str(btf_kind(t)); 1965 } 1966 1967 /* 1968 * Fetch integer attribute of BTF map definition. Such attributes are 1969 * represented using a pointer to an array, in which dimensionality of array 1970 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1971 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1972 * type definition, while using only sizeof(void *) space in ELF data section. 1973 */ 1974 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1975 const struct btf_member *m, __u32 *res) 1976 { 1977 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1978 const char *name = btf__name_by_offset(btf, m->name_off); 1979 const struct btf_array *arr_info; 1980 const struct btf_type *arr_t; 1981 1982 if (!btf_is_ptr(t)) { 1983 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1984 map_name, name, btf_kind_str(t)); 1985 return false; 1986 } 1987 1988 arr_t = btf__type_by_id(btf, t->type); 1989 if (!arr_t) { 1990 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1991 map_name, name, t->type); 1992 return false; 1993 } 1994 if (!btf_is_array(arr_t)) { 1995 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1996 map_name, name, btf_kind_str(arr_t)); 1997 return false; 1998 } 1999 arr_info = btf_array(arr_t); 2000 *res = arr_info->nelems; 2001 return true; 2002 } 2003 2004 static int build_map_pin_path(struct bpf_map *map, const char *path) 2005 { 2006 char buf[PATH_MAX]; 2007 int len; 2008 2009 if (!path) 2010 path = "/sys/fs/bpf"; 2011 2012 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2013 if (len < 0) 2014 return -EINVAL; 2015 else if (len >= PATH_MAX) 2016 return -ENAMETOOLONG; 2017 2018 return bpf_map__set_pin_path(map, buf); 2019 } 2020 2021 int parse_btf_map_def(const char *map_name, struct btf *btf, 2022 const struct btf_type *def_t, bool strict, 2023 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2024 { 2025 const struct btf_type *t; 2026 const struct btf_member *m; 2027 bool is_inner = inner_def == NULL; 2028 int vlen, i; 2029 2030 vlen = btf_vlen(def_t); 2031 m = btf_members(def_t); 2032 for (i = 0; i < vlen; i++, m++) { 2033 const char *name = btf__name_by_offset(btf, m->name_off); 2034 2035 if (!name) { 2036 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2037 return -EINVAL; 2038 } 2039 if (strcmp(name, "type") == 0) { 2040 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2041 return -EINVAL; 2042 map_def->parts |= MAP_DEF_MAP_TYPE; 2043 } else if (strcmp(name, "max_entries") == 0) { 2044 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2045 return -EINVAL; 2046 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2047 } else if (strcmp(name, "map_flags") == 0) { 2048 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2049 return -EINVAL; 2050 map_def->parts |= MAP_DEF_MAP_FLAGS; 2051 } else if (strcmp(name, "numa_node") == 0) { 2052 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2053 return -EINVAL; 2054 map_def->parts |= MAP_DEF_NUMA_NODE; 2055 } else if (strcmp(name, "key_size") == 0) { 2056 __u32 sz; 2057 2058 if (!get_map_field_int(map_name, btf, m, &sz)) 2059 return -EINVAL; 2060 if (map_def->key_size && map_def->key_size != sz) { 2061 pr_warn("map '%s': conflicting key size %u != %u.\n", 2062 map_name, map_def->key_size, sz); 2063 return -EINVAL; 2064 } 2065 map_def->key_size = sz; 2066 map_def->parts |= MAP_DEF_KEY_SIZE; 2067 } else if (strcmp(name, "key") == 0) { 2068 __s64 sz; 2069 2070 t = btf__type_by_id(btf, m->type); 2071 if (!t) { 2072 pr_warn("map '%s': key type [%d] not found.\n", 2073 map_name, m->type); 2074 return -EINVAL; 2075 } 2076 if (!btf_is_ptr(t)) { 2077 pr_warn("map '%s': key spec is not PTR: %s.\n", 2078 map_name, btf_kind_str(t)); 2079 return -EINVAL; 2080 } 2081 sz = btf__resolve_size(btf, t->type); 2082 if (sz < 0) { 2083 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2084 map_name, t->type, (ssize_t)sz); 2085 return sz; 2086 } 2087 if (map_def->key_size && map_def->key_size != sz) { 2088 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2089 map_name, map_def->key_size, (ssize_t)sz); 2090 return -EINVAL; 2091 } 2092 map_def->key_size = sz; 2093 map_def->key_type_id = t->type; 2094 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2095 } else if (strcmp(name, "value_size") == 0) { 2096 __u32 sz; 2097 2098 if (!get_map_field_int(map_name, btf, m, &sz)) 2099 return -EINVAL; 2100 if (map_def->value_size && map_def->value_size != sz) { 2101 pr_warn("map '%s': conflicting value size %u != %u.\n", 2102 map_name, map_def->value_size, sz); 2103 return -EINVAL; 2104 } 2105 map_def->value_size = sz; 2106 map_def->parts |= MAP_DEF_VALUE_SIZE; 2107 } else if (strcmp(name, "value") == 0) { 2108 __s64 sz; 2109 2110 t = btf__type_by_id(btf, m->type); 2111 if (!t) { 2112 pr_warn("map '%s': value type [%d] not found.\n", 2113 map_name, m->type); 2114 return -EINVAL; 2115 } 2116 if (!btf_is_ptr(t)) { 2117 pr_warn("map '%s': value spec is not PTR: %s.\n", 2118 map_name, btf_kind_str(t)); 2119 return -EINVAL; 2120 } 2121 sz = btf__resolve_size(btf, t->type); 2122 if (sz < 0) { 2123 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2124 map_name, t->type, (ssize_t)sz); 2125 return sz; 2126 } 2127 if (map_def->value_size && map_def->value_size != sz) { 2128 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2129 map_name, map_def->value_size, (ssize_t)sz); 2130 return -EINVAL; 2131 } 2132 map_def->value_size = sz; 2133 map_def->value_type_id = t->type; 2134 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2135 } 2136 else if (strcmp(name, "values") == 0) { 2137 char inner_map_name[128]; 2138 int err; 2139 2140 if (is_inner) { 2141 pr_warn("map '%s': multi-level inner maps not supported.\n", 2142 map_name); 2143 return -ENOTSUP; 2144 } 2145 if (i != vlen - 1) { 2146 pr_warn("map '%s': '%s' member should be last.\n", 2147 map_name, name); 2148 return -EINVAL; 2149 } 2150 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2151 pr_warn("map '%s': should be map-in-map.\n", 2152 map_name); 2153 return -ENOTSUP; 2154 } 2155 if (map_def->value_size && map_def->value_size != 4) { 2156 pr_warn("map '%s': conflicting value size %u != 4.\n", 2157 map_name, map_def->value_size); 2158 return -EINVAL; 2159 } 2160 map_def->value_size = 4; 2161 t = btf__type_by_id(btf, m->type); 2162 if (!t) { 2163 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2164 map_name, m->type); 2165 return -EINVAL; 2166 } 2167 if (!btf_is_array(t) || btf_array(t)->nelems) { 2168 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2169 map_name); 2170 return -EINVAL; 2171 } 2172 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2173 if (!btf_is_ptr(t)) { 2174 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2175 map_name, btf_kind_str(t)); 2176 return -EINVAL; 2177 } 2178 t = skip_mods_and_typedefs(btf, t->type, NULL); 2179 if (!btf_is_struct(t)) { 2180 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2181 map_name, btf_kind_str(t)); 2182 return -EINVAL; 2183 } 2184 2185 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2186 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2187 if (err) 2188 return err; 2189 2190 map_def->parts |= MAP_DEF_INNER_MAP; 2191 } else if (strcmp(name, "pinning") == 0) { 2192 __u32 val; 2193 2194 if (is_inner) { 2195 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2196 return -EINVAL; 2197 } 2198 if (!get_map_field_int(map_name, btf, m, &val)) 2199 return -EINVAL; 2200 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2201 pr_warn("map '%s': invalid pinning value %u.\n", 2202 map_name, val); 2203 return -EINVAL; 2204 } 2205 map_def->pinning = val; 2206 map_def->parts |= MAP_DEF_PINNING; 2207 } else { 2208 if (strict) { 2209 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2210 return -ENOTSUP; 2211 } 2212 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2213 } 2214 } 2215 2216 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2217 pr_warn("map '%s': map type isn't specified.\n", map_name); 2218 return -EINVAL; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2225 { 2226 map->def.type = def->map_type; 2227 map->def.key_size = def->key_size; 2228 map->def.value_size = def->value_size; 2229 map->def.max_entries = def->max_entries; 2230 map->def.map_flags = def->map_flags; 2231 2232 map->numa_node = def->numa_node; 2233 map->btf_key_type_id = def->key_type_id; 2234 map->btf_value_type_id = def->value_type_id; 2235 2236 if (def->parts & MAP_DEF_MAP_TYPE) 2237 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2238 2239 if (def->parts & MAP_DEF_KEY_TYPE) 2240 pr_debug("map '%s': found key [%u], sz = %u.\n", 2241 map->name, def->key_type_id, def->key_size); 2242 else if (def->parts & MAP_DEF_KEY_SIZE) 2243 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2244 2245 if (def->parts & MAP_DEF_VALUE_TYPE) 2246 pr_debug("map '%s': found value [%u], sz = %u.\n", 2247 map->name, def->value_type_id, def->value_size); 2248 else if (def->parts & MAP_DEF_VALUE_SIZE) 2249 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2250 2251 if (def->parts & MAP_DEF_MAX_ENTRIES) 2252 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2253 if (def->parts & MAP_DEF_MAP_FLAGS) 2254 pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags); 2255 if (def->parts & MAP_DEF_PINNING) 2256 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2257 if (def->parts & MAP_DEF_NUMA_NODE) 2258 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2259 2260 if (def->parts & MAP_DEF_INNER_MAP) 2261 pr_debug("map '%s': found inner map definition.\n", map->name); 2262 } 2263 2264 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2265 const struct btf_type *sec, 2266 int var_idx, int sec_idx, 2267 const Elf_Data *data, bool strict, 2268 const char *pin_root_path) 2269 { 2270 struct btf_map_def map_def = {}, inner_def = {}; 2271 const struct btf_type *var, *def; 2272 const struct btf_var_secinfo *vi; 2273 const struct btf_var *var_extra; 2274 const char *map_name; 2275 struct bpf_map *map; 2276 int err; 2277 2278 vi = btf_var_secinfos(sec) + var_idx; 2279 var = btf__type_by_id(obj->btf, vi->type); 2280 var_extra = btf_var(var); 2281 map_name = btf__name_by_offset(obj->btf, var->name_off); 2282 2283 if (map_name == NULL || map_name[0] == '\0') { 2284 pr_warn("map #%d: empty name.\n", var_idx); 2285 return -EINVAL; 2286 } 2287 if ((__u64)vi->offset + vi->size > data->d_size) { 2288 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2289 return -EINVAL; 2290 } 2291 if (!btf_is_var(var)) { 2292 pr_warn("map '%s': unexpected var kind %s.\n", 2293 map_name, btf_kind_str(var)); 2294 return -EINVAL; 2295 } 2296 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2297 var_extra->linkage != BTF_VAR_STATIC) { 2298 pr_warn("map '%s': unsupported var linkage %u.\n", 2299 map_name, var_extra->linkage); 2300 return -EOPNOTSUPP; 2301 } 2302 2303 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2304 if (!btf_is_struct(def)) { 2305 pr_warn("map '%s': unexpected def kind %s.\n", 2306 map_name, btf_kind_str(var)); 2307 return -EINVAL; 2308 } 2309 if (def->size > vi->size) { 2310 pr_warn("map '%s': invalid def size.\n", map_name); 2311 return -EINVAL; 2312 } 2313 2314 map = bpf_object__add_map(obj); 2315 if (IS_ERR(map)) 2316 return PTR_ERR(map); 2317 map->name = strdup(map_name); 2318 if (!map->name) { 2319 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2320 return -ENOMEM; 2321 } 2322 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2323 map->def.type = BPF_MAP_TYPE_UNSPEC; 2324 map->sec_idx = sec_idx; 2325 map->sec_offset = vi->offset; 2326 map->btf_var_idx = var_idx; 2327 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2328 map_name, map->sec_idx, map->sec_offset); 2329 2330 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2331 if (err) 2332 return err; 2333 2334 fill_map_from_def(map, &map_def); 2335 2336 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2337 err = build_map_pin_path(map, pin_root_path); 2338 if (err) { 2339 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2340 return err; 2341 } 2342 } 2343 2344 if (map_def.parts & MAP_DEF_INNER_MAP) { 2345 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2346 if (!map->inner_map) 2347 return -ENOMEM; 2348 map->inner_map->fd = -1; 2349 map->inner_map->sec_idx = sec_idx; 2350 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2351 if (!map->inner_map->name) 2352 return -ENOMEM; 2353 sprintf(map->inner_map->name, "%s.inner", map_name); 2354 2355 fill_map_from_def(map->inner_map, &inner_def); 2356 } 2357 2358 return 0; 2359 } 2360 2361 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2362 const char *pin_root_path) 2363 { 2364 const struct btf_type *sec = NULL; 2365 int nr_types, i, vlen, err; 2366 const struct btf_type *t; 2367 const char *name; 2368 Elf_Data *data; 2369 Elf_Scn *scn; 2370 2371 if (obj->efile.btf_maps_shndx < 0) 2372 return 0; 2373 2374 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2375 data = elf_sec_data(obj, scn); 2376 if (!scn || !data) { 2377 pr_warn("elf: failed to get %s map definitions for %s\n", 2378 MAPS_ELF_SEC, obj->path); 2379 return -EINVAL; 2380 } 2381 2382 nr_types = btf__get_nr_types(obj->btf); 2383 for (i = 1; i <= nr_types; i++) { 2384 t = btf__type_by_id(obj->btf, i); 2385 if (!btf_is_datasec(t)) 2386 continue; 2387 name = btf__name_by_offset(obj->btf, t->name_off); 2388 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2389 sec = t; 2390 obj->efile.btf_maps_sec_btf_id = i; 2391 break; 2392 } 2393 } 2394 2395 if (!sec) { 2396 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2397 return -ENOENT; 2398 } 2399 2400 vlen = btf_vlen(sec); 2401 for (i = 0; i < vlen; i++) { 2402 err = bpf_object__init_user_btf_map(obj, sec, i, 2403 obj->efile.btf_maps_shndx, 2404 data, strict, 2405 pin_root_path); 2406 if (err) 2407 return err; 2408 } 2409 2410 return 0; 2411 } 2412 2413 static int bpf_object__init_maps(struct bpf_object *obj, 2414 const struct bpf_object_open_opts *opts) 2415 { 2416 const char *pin_root_path; 2417 bool strict; 2418 int err; 2419 2420 strict = !OPTS_GET(opts, relaxed_maps, false); 2421 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2422 2423 err = bpf_object__init_user_maps(obj, strict); 2424 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2425 err = err ?: bpf_object__init_global_data_maps(obj); 2426 err = err ?: bpf_object__init_kconfig_map(obj); 2427 err = err ?: bpf_object__init_struct_ops_maps(obj); 2428 if (err) 2429 return err; 2430 2431 return 0; 2432 } 2433 2434 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2435 { 2436 GElf_Shdr sh; 2437 2438 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2439 return false; 2440 2441 return sh.sh_flags & SHF_EXECINSTR; 2442 } 2443 2444 static bool btf_needs_sanitization(struct bpf_object *obj) 2445 { 2446 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2447 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2448 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2449 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2450 2451 return !has_func || !has_datasec || !has_func_global || !has_float; 2452 } 2453 2454 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2455 { 2456 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2457 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2458 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2459 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2460 struct btf_type *t; 2461 int i, j, vlen; 2462 2463 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2464 t = (struct btf_type *)btf__type_by_id(btf, i); 2465 2466 if (!has_datasec && btf_is_var(t)) { 2467 /* replace VAR with INT */ 2468 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2469 /* 2470 * using size = 1 is the safest choice, 4 will be too 2471 * big and cause kernel BTF validation failure if 2472 * original variable took less than 4 bytes 2473 */ 2474 t->size = 1; 2475 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2476 } else if (!has_datasec && btf_is_datasec(t)) { 2477 /* replace DATASEC with STRUCT */ 2478 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2479 struct btf_member *m = btf_members(t); 2480 struct btf_type *vt; 2481 char *name; 2482 2483 name = (char *)btf__name_by_offset(btf, t->name_off); 2484 while (*name) { 2485 if (*name == '.') 2486 *name = '_'; 2487 name++; 2488 } 2489 2490 vlen = btf_vlen(t); 2491 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2492 for (j = 0; j < vlen; j++, v++, m++) { 2493 /* order of field assignments is important */ 2494 m->offset = v->offset * 8; 2495 m->type = v->type; 2496 /* preserve variable name as member name */ 2497 vt = (void *)btf__type_by_id(btf, v->type); 2498 m->name_off = vt->name_off; 2499 } 2500 } else if (!has_func && btf_is_func_proto(t)) { 2501 /* replace FUNC_PROTO with ENUM */ 2502 vlen = btf_vlen(t); 2503 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2504 t->size = sizeof(__u32); /* kernel enforced */ 2505 } else if (!has_func && btf_is_func(t)) { 2506 /* replace FUNC with TYPEDEF */ 2507 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2508 } else if (!has_func_global && btf_is_func(t)) { 2509 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2510 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2511 } else if (!has_float && btf_is_float(t)) { 2512 /* replace FLOAT with an equally-sized empty STRUCT; 2513 * since C compilers do not accept e.g. "float" as a 2514 * valid struct name, make it anonymous 2515 */ 2516 t->name_off = 0; 2517 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2518 } 2519 } 2520 } 2521 2522 static bool libbpf_needs_btf(const struct bpf_object *obj) 2523 { 2524 return obj->efile.btf_maps_shndx >= 0 || 2525 obj->efile.st_ops_shndx >= 0 || 2526 obj->nr_extern > 0; 2527 } 2528 2529 static bool kernel_needs_btf(const struct bpf_object *obj) 2530 { 2531 return obj->efile.st_ops_shndx >= 0; 2532 } 2533 2534 static int bpf_object__init_btf(struct bpf_object *obj, 2535 Elf_Data *btf_data, 2536 Elf_Data *btf_ext_data) 2537 { 2538 int err = -ENOENT; 2539 2540 if (btf_data) { 2541 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2542 if (IS_ERR(obj->btf)) { 2543 err = PTR_ERR(obj->btf); 2544 obj->btf = NULL; 2545 pr_warn("Error loading ELF section %s: %d.\n", 2546 BTF_ELF_SEC, err); 2547 goto out; 2548 } 2549 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2550 btf__set_pointer_size(obj->btf, 8); 2551 err = 0; 2552 } 2553 if (btf_ext_data) { 2554 if (!obj->btf) { 2555 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2556 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2557 goto out; 2558 } 2559 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2560 btf_ext_data->d_size); 2561 if (IS_ERR(obj->btf_ext)) { 2562 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2563 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2564 obj->btf_ext = NULL; 2565 goto out; 2566 } 2567 } 2568 out: 2569 if (err && libbpf_needs_btf(obj)) { 2570 pr_warn("BTF is required, but is missing or corrupted.\n"); 2571 return err; 2572 } 2573 return 0; 2574 } 2575 2576 static int bpf_object__finalize_btf(struct bpf_object *obj) 2577 { 2578 int err; 2579 2580 if (!obj->btf) 2581 return 0; 2582 2583 err = btf__finalize_data(obj, obj->btf); 2584 if (err) { 2585 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2586 return err; 2587 } 2588 2589 return 0; 2590 } 2591 2592 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2593 { 2594 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2595 prog->type == BPF_PROG_TYPE_LSM) 2596 return true; 2597 2598 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2599 * also need vmlinux BTF 2600 */ 2601 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2602 return true; 2603 2604 return false; 2605 } 2606 2607 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2608 { 2609 struct bpf_program *prog; 2610 int i; 2611 2612 /* CO-RE relocations need kernel BTF */ 2613 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2614 return true; 2615 2616 /* Support for typed ksyms needs kernel BTF */ 2617 for (i = 0; i < obj->nr_extern; i++) { 2618 const struct extern_desc *ext; 2619 2620 ext = &obj->externs[i]; 2621 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2622 return true; 2623 } 2624 2625 bpf_object__for_each_program(prog, obj) { 2626 if (!prog->load) 2627 continue; 2628 if (prog_needs_vmlinux_btf(prog)) 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 2635 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2636 { 2637 int err; 2638 2639 /* btf_vmlinux could be loaded earlier */ 2640 if (obj->btf_vmlinux) 2641 return 0; 2642 2643 if (!force && !obj_needs_vmlinux_btf(obj)) 2644 return 0; 2645 2646 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2647 if (IS_ERR(obj->btf_vmlinux)) { 2648 err = PTR_ERR(obj->btf_vmlinux); 2649 pr_warn("Error loading vmlinux BTF: %d\n", err); 2650 obj->btf_vmlinux = NULL; 2651 return err; 2652 } 2653 return 0; 2654 } 2655 2656 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2657 { 2658 struct btf *kern_btf = obj->btf; 2659 bool btf_mandatory, sanitize; 2660 int i, err = 0; 2661 2662 if (!obj->btf) 2663 return 0; 2664 2665 if (!kernel_supports(FEAT_BTF)) { 2666 if (kernel_needs_btf(obj)) { 2667 err = -EOPNOTSUPP; 2668 goto report; 2669 } 2670 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2671 return 0; 2672 } 2673 2674 /* Even though some subprogs are global/weak, user might prefer more 2675 * permissive BPF verification process that BPF verifier performs for 2676 * static functions, taking into account more context from the caller 2677 * functions. In such case, they need to mark such subprogs with 2678 * __attribute__((visibility("hidden"))) and libbpf will adjust 2679 * corresponding FUNC BTF type to be marked as static and trigger more 2680 * involved BPF verification process. 2681 */ 2682 for (i = 0; i < obj->nr_programs; i++) { 2683 struct bpf_program *prog = &obj->programs[i]; 2684 struct btf_type *t; 2685 const char *name; 2686 int j, n; 2687 2688 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2689 continue; 2690 2691 n = btf__get_nr_types(obj->btf); 2692 for (j = 1; j <= n; j++) { 2693 t = btf_type_by_id(obj->btf, j); 2694 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2695 continue; 2696 2697 name = btf__str_by_offset(obj->btf, t->name_off); 2698 if (strcmp(name, prog->name) != 0) 2699 continue; 2700 2701 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2702 break; 2703 } 2704 } 2705 2706 sanitize = btf_needs_sanitization(obj); 2707 if (sanitize) { 2708 const void *raw_data; 2709 __u32 sz; 2710 2711 /* clone BTF to sanitize a copy and leave the original intact */ 2712 raw_data = btf__get_raw_data(obj->btf, &sz); 2713 kern_btf = btf__new(raw_data, sz); 2714 if (IS_ERR(kern_btf)) 2715 return PTR_ERR(kern_btf); 2716 2717 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2718 btf__set_pointer_size(obj->btf, 8); 2719 bpf_object__sanitize_btf(obj, kern_btf); 2720 } 2721 2722 err = btf__load(kern_btf); 2723 if (sanitize) { 2724 if (!err) { 2725 /* move fd to libbpf's BTF */ 2726 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2727 btf__set_fd(kern_btf, -1); 2728 } 2729 btf__free(kern_btf); 2730 } 2731 report: 2732 if (err) { 2733 btf_mandatory = kernel_needs_btf(obj); 2734 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2735 btf_mandatory ? "BTF is mandatory, can't proceed." 2736 : "BTF is optional, ignoring."); 2737 if (!btf_mandatory) 2738 err = 0; 2739 } 2740 return err; 2741 } 2742 2743 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2744 { 2745 const char *name; 2746 2747 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2748 if (!name) { 2749 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2750 off, obj->path, elf_errmsg(-1)); 2751 return NULL; 2752 } 2753 2754 return name; 2755 } 2756 2757 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2758 { 2759 const char *name; 2760 2761 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2762 if (!name) { 2763 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2764 off, obj->path, elf_errmsg(-1)); 2765 return NULL; 2766 } 2767 2768 return name; 2769 } 2770 2771 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2772 { 2773 Elf_Scn *scn; 2774 2775 scn = elf_getscn(obj->efile.elf, idx); 2776 if (!scn) { 2777 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2778 idx, obj->path, elf_errmsg(-1)); 2779 return NULL; 2780 } 2781 return scn; 2782 } 2783 2784 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2785 { 2786 Elf_Scn *scn = NULL; 2787 Elf *elf = obj->efile.elf; 2788 const char *sec_name; 2789 2790 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2791 sec_name = elf_sec_name(obj, scn); 2792 if (!sec_name) 2793 return NULL; 2794 2795 if (strcmp(sec_name, name) != 0) 2796 continue; 2797 2798 return scn; 2799 } 2800 return NULL; 2801 } 2802 2803 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2804 { 2805 if (!scn) 2806 return -EINVAL; 2807 2808 if (gelf_getshdr(scn, hdr) != hdr) { 2809 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2810 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2811 return -EINVAL; 2812 } 2813 2814 return 0; 2815 } 2816 2817 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2818 { 2819 const char *name; 2820 GElf_Shdr sh; 2821 2822 if (!scn) 2823 return NULL; 2824 2825 if (elf_sec_hdr(obj, scn, &sh)) 2826 return NULL; 2827 2828 name = elf_sec_str(obj, sh.sh_name); 2829 if (!name) { 2830 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2831 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2832 return NULL; 2833 } 2834 2835 return name; 2836 } 2837 2838 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2839 { 2840 Elf_Data *data; 2841 2842 if (!scn) 2843 return NULL; 2844 2845 data = elf_getdata(scn, 0); 2846 if (!data) { 2847 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2848 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2849 obj->path, elf_errmsg(-1)); 2850 return NULL; 2851 } 2852 2853 return data; 2854 } 2855 2856 static bool is_sec_name_dwarf(const char *name) 2857 { 2858 /* approximation, but the actual list is too long */ 2859 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2860 } 2861 2862 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2863 { 2864 /* no special handling of .strtab */ 2865 if (hdr->sh_type == SHT_STRTAB) 2866 return true; 2867 2868 /* ignore .llvm_addrsig section as well */ 2869 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2870 return true; 2871 2872 /* no subprograms will lead to an empty .text section, ignore it */ 2873 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2874 strcmp(name, ".text") == 0) 2875 return true; 2876 2877 /* DWARF sections */ 2878 if (is_sec_name_dwarf(name)) 2879 return true; 2880 2881 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2882 name += sizeof(".rel") - 1; 2883 /* DWARF section relocations */ 2884 if (is_sec_name_dwarf(name)) 2885 return true; 2886 2887 /* .BTF and .BTF.ext don't need relocations */ 2888 if (strcmp(name, BTF_ELF_SEC) == 0 || 2889 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2890 return true; 2891 } 2892 2893 return false; 2894 } 2895 2896 static int cmp_progs(const void *_a, const void *_b) 2897 { 2898 const struct bpf_program *a = _a; 2899 const struct bpf_program *b = _b; 2900 2901 if (a->sec_idx != b->sec_idx) 2902 return a->sec_idx < b->sec_idx ? -1 : 1; 2903 2904 /* sec_insn_off can't be the same within the section */ 2905 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2906 } 2907 2908 static int bpf_object__elf_collect(struct bpf_object *obj) 2909 { 2910 Elf *elf = obj->efile.elf; 2911 Elf_Data *btf_ext_data = NULL; 2912 Elf_Data *btf_data = NULL; 2913 int idx = 0, err = 0; 2914 const char *name; 2915 Elf_Data *data; 2916 Elf_Scn *scn; 2917 GElf_Shdr sh; 2918 2919 /* a bunch of ELF parsing functionality depends on processing symbols, 2920 * so do the first pass and find the symbol table 2921 */ 2922 scn = NULL; 2923 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2924 if (elf_sec_hdr(obj, scn, &sh)) 2925 return -LIBBPF_ERRNO__FORMAT; 2926 2927 if (sh.sh_type == SHT_SYMTAB) { 2928 if (obj->efile.symbols) { 2929 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2930 return -LIBBPF_ERRNO__FORMAT; 2931 } 2932 2933 data = elf_sec_data(obj, scn); 2934 if (!data) 2935 return -LIBBPF_ERRNO__FORMAT; 2936 2937 obj->efile.symbols = data; 2938 obj->efile.symbols_shndx = elf_ndxscn(scn); 2939 obj->efile.strtabidx = sh.sh_link; 2940 } 2941 } 2942 2943 scn = NULL; 2944 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2945 idx++; 2946 2947 if (elf_sec_hdr(obj, scn, &sh)) 2948 return -LIBBPF_ERRNO__FORMAT; 2949 2950 name = elf_sec_str(obj, sh.sh_name); 2951 if (!name) 2952 return -LIBBPF_ERRNO__FORMAT; 2953 2954 if (ignore_elf_section(&sh, name)) 2955 continue; 2956 2957 data = elf_sec_data(obj, scn); 2958 if (!data) 2959 return -LIBBPF_ERRNO__FORMAT; 2960 2961 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2962 idx, name, (unsigned long)data->d_size, 2963 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2964 (int)sh.sh_type); 2965 2966 if (strcmp(name, "license") == 0) { 2967 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2968 if (err) 2969 return err; 2970 } else if (strcmp(name, "version") == 0) { 2971 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2972 if (err) 2973 return err; 2974 } else if (strcmp(name, "maps") == 0) { 2975 obj->efile.maps_shndx = idx; 2976 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2977 obj->efile.btf_maps_shndx = idx; 2978 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2979 btf_data = data; 2980 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2981 btf_ext_data = data; 2982 } else if (sh.sh_type == SHT_SYMTAB) { 2983 /* already processed during the first pass above */ 2984 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2985 if (sh.sh_flags & SHF_EXECINSTR) { 2986 if (strcmp(name, ".text") == 0) 2987 obj->efile.text_shndx = idx; 2988 err = bpf_object__add_programs(obj, data, name, idx); 2989 if (err) 2990 return err; 2991 } else if (strcmp(name, DATA_SEC) == 0) { 2992 obj->efile.data = data; 2993 obj->efile.data_shndx = idx; 2994 } else if (strcmp(name, RODATA_SEC) == 0) { 2995 obj->efile.rodata = data; 2996 obj->efile.rodata_shndx = idx; 2997 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2998 obj->efile.st_ops_data = data; 2999 obj->efile.st_ops_shndx = idx; 3000 } else { 3001 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3002 idx, name); 3003 } 3004 } else if (sh.sh_type == SHT_REL) { 3005 int nr_sects = obj->efile.nr_reloc_sects; 3006 void *sects = obj->efile.reloc_sects; 3007 int sec = sh.sh_info; /* points to other section */ 3008 3009 /* Only do relo for section with exec instructions */ 3010 if (!section_have_execinstr(obj, sec) && 3011 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3012 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3013 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3014 idx, name, sec, 3015 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 3016 continue; 3017 } 3018 3019 sects = libbpf_reallocarray(sects, nr_sects + 1, 3020 sizeof(*obj->efile.reloc_sects)); 3021 if (!sects) 3022 return -ENOMEM; 3023 3024 obj->efile.reloc_sects = sects; 3025 obj->efile.nr_reloc_sects++; 3026 3027 obj->efile.reloc_sects[nr_sects].shdr = sh; 3028 obj->efile.reloc_sects[nr_sects].data = data; 3029 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3030 obj->efile.bss = data; 3031 obj->efile.bss_shndx = idx; 3032 } else { 3033 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3034 (size_t)sh.sh_size); 3035 } 3036 } 3037 3038 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3039 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3040 return -LIBBPF_ERRNO__FORMAT; 3041 } 3042 3043 /* sort BPF programs by section name and in-section instruction offset 3044 * for faster search */ 3045 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3046 3047 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3048 } 3049 3050 static bool sym_is_extern(const GElf_Sym *sym) 3051 { 3052 int bind = GELF_ST_BIND(sym->st_info); 3053 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3054 return sym->st_shndx == SHN_UNDEF && 3055 (bind == STB_GLOBAL || bind == STB_WEAK) && 3056 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3057 } 3058 3059 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3060 { 3061 int bind = GELF_ST_BIND(sym->st_info); 3062 int type = GELF_ST_TYPE(sym->st_info); 3063 3064 /* in .text section */ 3065 if (sym->st_shndx != text_shndx) 3066 return false; 3067 3068 /* local function */ 3069 if (bind == STB_LOCAL && type == STT_SECTION) 3070 return true; 3071 3072 /* global function */ 3073 return bind == STB_GLOBAL && type == STT_FUNC; 3074 } 3075 3076 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3077 { 3078 const struct btf_type *t; 3079 const char *tname; 3080 int i, n; 3081 3082 if (!btf) 3083 return -ESRCH; 3084 3085 n = btf__get_nr_types(btf); 3086 for (i = 1; i <= n; i++) { 3087 t = btf__type_by_id(btf, i); 3088 3089 if (!btf_is_var(t) && !btf_is_func(t)) 3090 continue; 3091 3092 tname = btf__name_by_offset(btf, t->name_off); 3093 if (strcmp(tname, ext_name)) 3094 continue; 3095 3096 if (btf_is_var(t) && 3097 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3098 return -EINVAL; 3099 3100 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3101 return -EINVAL; 3102 3103 return i; 3104 } 3105 3106 return -ENOENT; 3107 } 3108 3109 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3110 const struct btf_var_secinfo *vs; 3111 const struct btf_type *t; 3112 int i, j, n; 3113 3114 if (!btf) 3115 return -ESRCH; 3116 3117 n = btf__get_nr_types(btf); 3118 for (i = 1; i <= n; i++) { 3119 t = btf__type_by_id(btf, i); 3120 3121 if (!btf_is_datasec(t)) 3122 continue; 3123 3124 vs = btf_var_secinfos(t); 3125 for (j = 0; j < btf_vlen(t); j++, vs++) { 3126 if (vs->type == ext_btf_id) 3127 return i; 3128 } 3129 } 3130 3131 return -ENOENT; 3132 } 3133 3134 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3135 bool *is_signed) 3136 { 3137 const struct btf_type *t; 3138 const char *name; 3139 3140 t = skip_mods_and_typedefs(btf, id, NULL); 3141 name = btf__name_by_offset(btf, t->name_off); 3142 3143 if (is_signed) 3144 *is_signed = false; 3145 switch (btf_kind(t)) { 3146 case BTF_KIND_INT: { 3147 int enc = btf_int_encoding(t); 3148 3149 if (enc & BTF_INT_BOOL) 3150 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3151 if (is_signed) 3152 *is_signed = enc & BTF_INT_SIGNED; 3153 if (t->size == 1) 3154 return KCFG_CHAR; 3155 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3156 return KCFG_UNKNOWN; 3157 return KCFG_INT; 3158 } 3159 case BTF_KIND_ENUM: 3160 if (t->size != 4) 3161 return KCFG_UNKNOWN; 3162 if (strcmp(name, "libbpf_tristate")) 3163 return KCFG_UNKNOWN; 3164 return KCFG_TRISTATE; 3165 case BTF_KIND_ARRAY: 3166 if (btf_array(t)->nelems == 0) 3167 return KCFG_UNKNOWN; 3168 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3169 return KCFG_UNKNOWN; 3170 return KCFG_CHAR_ARR; 3171 default: 3172 return KCFG_UNKNOWN; 3173 } 3174 } 3175 3176 static int cmp_externs(const void *_a, const void *_b) 3177 { 3178 const struct extern_desc *a = _a; 3179 const struct extern_desc *b = _b; 3180 3181 if (a->type != b->type) 3182 return a->type < b->type ? -1 : 1; 3183 3184 if (a->type == EXT_KCFG) { 3185 /* descending order by alignment requirements */ 3186 if (a->kcfg.align != b->kcfg.align) 3187 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3188 /* ascending order by size, within same alignment class */ 3189 if (a->kcfg.sz != b->kcfg.sz) 3190 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3191 } 3192 3193 /* resolve ties by name */ 3194 return strcmp(a->name, b->name); 3195 } 3196 3197 static int find_int_btf_id(const struct btf *btf) 3198 { 3199 const struct btf_type *t; 3200 int i, n; 3201 3202 n = btf__get_nr_types(btf); 3203 for (i = 1; i <= n; i++) { 3204 t = btf__type_by_id(btf, i); 3205 3206 if (btf_is_int(t) && btf_int_bits(t) == 32) 3207 return i; 3208 } 3209 3210 return 0; 3211 } 3212 3213 static int add_dummy_ksym_var(struct btf *btf) 3214 { 3215 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3216 const struct btf_var_secinfo *vs; 3217 const struct btf_type *sec; 3218 3219 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3220 BTF_KIND_DATASEC); 3221 if (sec_btf_id < 0) 3222 return 0; 3223 3224 sec = btf__type_by_id(btf, sec_btf_id); 3225 vs = btf_var_secinfos(sec); 3226 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3227 const struct btf_type *vt; 3228 3229 vt = btf__type_by_id(btf, vs->type); 3230 if (btf_is_func(vt)) 3231 break; 3232 } 3233 3234 /* No func in ksyms sec. No need to add dummy var. */ 3235 if (i == btf_vlen(sec)) 3236 return 0; 3237 3238 int_btf_id = find_int_btf_id(btf); 3239 dummy_var_btf_id = btf__add_var(btf, 3240 "dummy_ksym", 3241 BTF_VAR_GLOBAL_ALLOCATED, 3242 int_btf_id); 3243 if (dummy_var_btf_id < 0) 3244 pr_warn("cannot create a dummy_ksym var\n"); 3245 3246 return dummy_var_btf_id; 3247 } 3248 3249 static int bpf_object__collect_externs(struct bpf_object *obj) 3250 { 3251 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3252 const struct btf_type *t; 3253 struct extern_desc *ext; 3254 int i, n, off, dummy_var_btf_id; 3255 const char *ext_name, *sec_name; 3256 Elf_Scn *scn; 3257 GElf_Shdr sh; 3258 3259 if (!obj->efile.symbols) 3260 return 0; 3261 3262 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3263 if (elf_sec_hdr(obj, scn, &sh)) 3264 return -LIBBPF_ERRNO__FORMAT; 3265 3266 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3267 if (dummy_var_btf_id < 0) 3268 return dummy_var_btf_id; 3269 3270 n = sh.sh_size / sh.sh_entsize; 3271 pr_debug("looking for externs among %d symbols...\n", n); 3272 3273 for (i = 0; i < n; i++) { 3274 GElf_Sym sym; 3275 3276 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3277 return -LIBBPF_ERRNO__FORMAT; 3278 if (!sym_is_extern(&sym)) 3279 continue; 3280 ext_name = elf_sym_str(obj, sym.st_name); 3281 if (!ext_name || !ext_name[0]) 3282 continue; 3283 3284 ext = obj->externs; 3285 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3286 if (!ext) 3287 return -ENOMEM; 3288 obj->externs = ext; 3289 ext = &ext[obj->nr_extern]; 3290 memset(ext, 0, sizeof(*ext)); 3291 obj->nr_extern++; 3292 3293 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3294 if (ext->btf_id <= 0) { 3295 pr_warn("failed to find BTF for extern '%s': %d\n", 3296 ext_name, ext->btf_id); 3297 return ext->btf_id; 3298 } 3299 t = btf__type_by_id(obj->btf, ext->btf_id); 3300 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3301 ext->sym_idx = i; 3302 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3303 3304 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3305 if (ext->sec_btf_id <= 0) { 3306 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3307 ext_name, ext->btf_id, ext->sec_btf_id); 3308 return ext->sec_btf_id; 3309 } 3310 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3311 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3312 3313 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3314 if (btf_is_func(t)) { 3315 pr_warn("extern function %s is unsupported under %s section\n", 3316 ext->name, KCONFIG_SEC); 3317 return -ENOTSUP; 3318 } 3319 kcfg_sec = sec; 3320 ext->type = EXT_KCFG; 3321 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3322 if (ext->kcfg.sz <= 0) { 3323 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3324 ext_name, ext->kcfg.sz); 3325 return ext->kcfg.sz; 3326 } 3327 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3328 if (ext->kcfg.align <= 0) { 3329 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3330 ext_name, ext->kcfg.align); 3331 return -EINVAL; 3332 } 3333 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3334 &ext->kcfg.is_signed); 3335 if (ext->kcfg.type == KCFG_UNKNOWN) { 3336 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3337 return -ENOTSUP; 3338 } 3339 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3340 if (btf_is_func(t) && ext->is_weak) { 3341 pr_warn("extern weak function %s is unsupported\n", 3342 ext->name); 3343 return -ENOTSUP; 3344 } 3345 ksym_sec = sec; 3346 ext->type = EXT_KSYM; 3347 skip_mods_and_typedefs(obj->btf, t->type, 3348 &ext->ksym.type_id); 3349 } else { 3350 pr_warn("unrecognized extern section '%s'\n", sec_name); 3351 return -ENOTSUP; 3352 } 3353 } 3354 pr_debug("collected %d externs total\n", obj->nr_extern); 3355 3356 if (!obj->nr_extern) 3357 return 0; 3358 3359 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3360 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3361 3362 /* for .ksyms section, we need to turn all externs into allocated 3363 * variables in BTF to pass kernel verification; we do this by 3364 * pretending that each extern is a 8-byte variable 3365 */ 3366 if (ksym_sec) { 3367 /* find existing 4-byte integer type in BTF to use for fake 3368 * extern variables in DATASEC 3369 */ 3370 int int_btf_id = find_int_btf_id(obj->btf); 3371 /* For extern function, a dummy_var added earlier 3372 * will be used to replace the vs->type and 3373 * its name string will be used to refill 3374 * the missing param's name. 3375 */ 3376 const struct btf_type *dummy_var; 3377 3378 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3379 for (i = 0; i < obj->nr_extern; i++) { 3380 ext = &obj->externs[i]; 3381 if (ext->type != EXT_KSYM) 3382 continue; 3383 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3384 i, ext->sym_idx, ext->name); 3385 } 3386 3387 sec = ksym_sec; 3388 n = btf_vlen(sec); 3389 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3390 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3391 struct btf_type *vt; 3392 3393 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3394 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3395 ext = find_extern_by_name(obj, ext_name); 3396 if (!ext) { 3397 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3398 btf_kind_str(vt), ext_name); 3399 return -ESRCH; 3400 } 3401 if (btf_is_func(vt)) { 3402 const struct btf_type *func_proto; 3403 struct btf_param *param; 3404 int j; 3405 3406 func_proto = btf__type_by_id(obj->btf, 3407 vt->type); 3408 param = btf_params(func_proto); 3409 /* Reuse the dummy_var string if the 3410 * func proto does not have param name. 3411 */ 3412 for (j = 0; j < btf_vlen(func_proto); j++) 3413 if (param[j].type && !param[j].name_off) 3414 param[j].name_off = 3415 dummy_var->name_off; 3416 vs->type = dummy_var_btf_id; 3417 vt->info &= ~0xffff; 3418 vt->info |= BTF_FUNC_GLOBAL; 3419 } else { 3420 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3421 vt->type = int_btf_id; 3422 } 3423 vs->offset = off; 3424 vs->size = sizeof(int); 3425 } 3426 sec->size = off; 3427 } 3428 3429 if (kcfg_sec) { 3430 sec = kcfg_sec; 3431 /* for kcfg externs calculate their offsets within a .kconfig map */ 3432 off = 0; 3433 for (i = 0; i < obj->nr_extern; i++) { 3434 ext = &obj->externs[i]; 3435 if (ext->type != EXT_KCFG) 3436 continue; 3437 3438 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3439 off = ext->kcfg.data_off + ext->kcfg.sz; 3440 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3441 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3442 } 3443 sec->size = off; 3444 n = btf_vlen(sec); 3445 for (i = 0; i < n; i++) { 3446 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3447 3448 t = btf__type_by_id(obj->btf, vs->type); 3449 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3450 ext = find_extern_by_name(obj, ext_name); 3451 if (!ext) { 3452 pr_warn("failed to find extern definition for BTF var '%s'\n", 3453 ext_name); 3454 return -ESRCH; 3455 } 3456 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3457 vs->offset = ext->kcfg.data_off; 3458 } 3459 } 3460 return 0; 3461 } 3462 3463 struct bpf_program * 3464 bpf_object__find_program_by_title(const struct bpf_object *obj, 3465 const char *title) 3466 { 3467 struct bpf_program *pos; 3468 3469 bpf_object__for_each_program(pos, obj) { 3470 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3471 return pos; 3472 } 3473 return NULL; 3474 } 3475 3476 static bool prog_is_subprog(const struct bpf_object *obj, 3477 const struct bpf_program *prog) 3478 { 3479 /* For legacy reasons, libbpf supports an entry-point BPF programs 3480 * without SEC() attribute, i.e., those in the .text section. But if 3481 * there are 2 or more such programs in the .text section, they all 3482 * must be subprograms called from entry-point BPF programs in 3483 * designated SEC()'tions, otherwise there is no way to distinguish 3484 * which of those programs should be loaded vs which are a subprogram. 3485 * Similarly, if there is a function/program in .text and at least one 3486 * other BPF program with custom SEC() attribute, then we just assume 3487 * .text programs are subprograms (even if they are not called from 3488 * other programs), because libbpf never explicitly supported mixing 3489 * SEC()-designated BPF programs and .text entry-point BPF programs. 3490 */ 3491 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3492 } 3493 3494 struct bpf_program * 3495 bpf_object__find_program_by_name(const struct bpf_object *obj, 3496 const char *name) 3497 { 3498 struct bpf_program *prog; 3499 3500 bpf_object__for_each_program(prog, obj) { 3501 if (prog_is_subprog(obj, prog)) 3502 continue; 3503 if (!strcmp(prog->name, name)) 3504 return prog; 3505 } 3506 return NULL; 3507 } 3508 3509 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3510 int shndx) 3511 { 3512 return shndx == obj->efile.data_shndx || 3513 shndx == obj->efile.bss_shndx || 3514 shndx == obj->efile.rodata_shndx; 3515 } 3516 3517 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3518 int shndx) 3519 { 3520 return shndx == obj->efile.maps_shndx || 3521 shndx == obj->efile.btf_maps_shndx; 3522 } 3523 3524 static enum libbpf_map_type 3525 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3526 { 3527 if (shndx == obj->efile.data_shndx) 3528 return LIBBPF_MAP_DATA; 3529 else if (shndx == obj->efile.bss_shndx) 3530 return LIBBPF_MAP_BSS; 3531 else if (shndx == obj->efile.rodata_shndx) 3532 return LIBBPF_MAP_RODATA; 3533 else if (shndx == obj->efile.symbols_shndx) 3534 return LIBBPF_MAP_KCONFIG; 3535 else 3536 return LIBBPF_MAP_UNSPEC; 3537 } 3538 3539 static int bpf_program__record_reloc(struct bpf_program *prog, 3540 struct reloc_desc *reloc_desc, 3541 __u32 insn_idx, const char *sym_name, 3542 const GElf_Sym *sym, const GElf_Rel *rel) 3543 { 3544 struct bpf_insn *insn = &prog->insns[insn_idx]; 3545 size_t map_idx, nr_maps = prog->obj->nr_maps; 3546 struct bpf_object *obj = prog->obj; 3547 __u32 shdr_idx = sym->st_shndx; 3548 enum libbpf_map_type type; 3549 const char *sym_sec_name; 3550 struct bpf_map *map; 3551 3552 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3553 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3554 prog->name, sym_name, insn_idx, insn->code); 3555 return -LIBBPF_ERRNO__RELOC; 3556 } 3557 3558 if (sym_is_extern(sym)) { 3559 int sym_idx = GELF_R_SYM(rel->r_info); 3560 int i, n = obj->nr_extern; 3561 struct extern_desc *ext; 3562 3563 for (i = 0; i < n; i++) { 3564 ext = &obj->externs[i]; 3565 if (ext->sym_idx == sym_idx) 3566 break; 3567 } 3568 if (i >= n) { 3569 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3570 prog->name, sym_name, sym_idx); 3571 return -LIBBPF_ERRNO__RELOC; 3572 } 3573 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3574 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3575 if (insn->code == (BPF_JMP | BPF_CALL)) 3576 reloc_desc->type = RELO_EXTERN_FUNC; 3577 else 3578 reloc_desc->type = RELO_EXTERN_VAR; 3579 reloc_desc->insn_idx = insn_idx; 3580 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3581 return 0; 3582 } 3583 3584 /* sub-program call relocation */ 3585 if (is_call_insn(insn)) { 3586 if (insn->src_reg != BPF_PSEUDO_CALL) { 3587 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3588 return -LIBBPF_ERRNO__RELOC; 3589 } 3590 /* text_shndx can be 0, if no default "main" program exists */ 3591 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3592 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3593 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3594 prog->name, sym_name, sym_sec_name); 3595 return -LIBBPF_ERRNO__RELOC; 3596 } 3597 if (sym->st_value % BPF_INSN_SZ) { 3598 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3599 prog->name, sym_name, (size_t)sym->st_value); 3600 return -LIBBPF_ERRNO__RELOC; 3601 } 3602 reloc_desc->type = RELO_CALL; 3603 reloc_desc->insn_idx = insn_idx; 3604 reloc_desc->sym_off = sym->st_value; 3605 return 0; 3606 } 3607 3608 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3609 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3610 prog->name, sym_name, shdr_idx); 3611 return -LIBBPF_ERRNO__RELOC; 3612 } 3613 3614 /* loading subprog addresses */ 3615 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3616 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3617 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3618 */ 3619 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3620 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3621 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3622 return -LIBBPF_ERRNO__RELOC; 3623 } 3624 3625 reloc_desc->type = RELO_SUBPROG_ADDR; 3626 reloc_desc->insn_idx = insn_idx; 3627 reloc_desc->sym_off = sym->st_value; 3628 return 0; 3629 } 3630 3631 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3632 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3633 3634 /* generic map reference relocation */ 3635 if (type == LIBBPF_MAP_UNSPEC) { 3636 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3637 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3638 prog->name, sym_name, sym_sec_name); 3639 return -LIBBPF_ERRNO__RELOC; 3640 } 3641 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3642 map = &obj->maps[map_idx]; 3643 if (map->libbpf_type != type || 3644 map->sec_idx != sym->st_shndx || 3645 map->sec_offset != sym->st_value) 3646 continue; 3647 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3648 prog->name, map_idx, map->name, map->sec_idx, 3649 map->sec_offset, insn_idx); 3650 break; 3651 } 3652 if (map_idx >= nr_maps) { 3653 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3654 prog->name, sym_sec_name, (size_t)sym->st_value); 3655 return -LIBBPF_ERRNO__RELOC; 3656 } 3657 reloc_desc->type = RELO_LD64; 3658 reloc_desc->insn_idx = insn_idx; 3659 reloc_desc->map_idx = map_idx; 3660 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3661 return 0; 3662 } 3663 3664 /* global data map relocation */ 3665 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3666 pr_warn("prog '%s': bad data relo against section '%s'\n", 3667 prog->name, sym_sec_name); 3668 return -LIBBPF_ERRNO__RELOC; 3669 } 3670 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3671 map = &obj->maps[map_idx]; 3672 if (map->libbpf_type != type) 3673 continue; 3674 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3675 prog->name, map_idx, map->name, map->sec_idx, 3676 map->sec_offset, insn_idx); 3677 break; 3678 } 3679 if (map_idx >= nr_maps) { 3680 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3681 prog->name, sym_sec_name); 3682 return -LIBBPF_ERRNO__RELOC; 3683 } 3684 3685 reloc_desc->type = RELO_DATA; 3686 reloc_desc->insn_idx = insn_idx; 3687 reloc_desc->map_idx = map_idx; 3688 reloc_desc->sym_off = sym->st_value; 3689 return 0; 3690 } 3691 3692 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3693 { 3694 return insn_idx >= prog->sec_insn_off && 3695 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3696 } 3697 3698 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3699 size_t sec_idx, size_t insn_idx) 3700 { 3701 int l = 0, r = obj->nr_programs - 1, m; 3702 struct bpf_program *prog; 3703 3704 while (l < r) { 3705 m = l + (r - l + 1) / 2; 3706 prog = &obj->programs[m]; 3707 3708 if (prog->sec_idx < sec_idx || 3709 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3710 l = m; 3711 else 3712 r = m - 1; 3713 } 3714 /* matching program could be at index l, but it still might be the 3715 * wrong one, so we need to double check conditions for the last time 3716 */ 3717 prog = &obj->programs[l]; 3718 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3719 return prog; 3720 return NULL; 3721 } 3722 3723 static int 3724 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3725 { 3726 Elf_Data *symbols = obj->efile.symbols; 3727 const char *relo_sec_name, *sec_name; 3728 size_t sec_idx = shdr->sh_info; 3729 struct bpf_program *prog; 3730 struct reloc_desc *relos; 3731 int err, i, nrels; 3732 const char *sym_name; 3733 __u32 insn_idx; 3734 Elf_Scn *scn; 3735 Elf_Data *scn_data; 3736 GElf_Sym sym; 3737 GElf_Rel rel; 3738 3739 scn = elf_sec_by_idx(obj, sec_idx); 3740 scn_data = elf_sec_data(obj, scn); 3741 3742 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3743 sec_name = elf_sec_name(obj, scn); 3744 if (!relo_sec_name || !sec_name) 3745 return -EINVAL; 3746 3747 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3748 relo_sec_name, sec_idx, sec_name); 3749 nrels = shdr->sh_size / shdr->sh_entsize; 3750 3751 for (i = 0; i < nrels; i++) { 3752 if (!gelf_getrel(data, i, &rel)) { 3753 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3754 return -LIBBPF_ERRNO__FORMAT; 3755 } 3756 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3757 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3758 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3759 return -LIBBPF_ERRNO__FORMAT; 3760 } 3761 3762 if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) { 3763 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3764 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3765 return -LIBBPF_ERRNO__FORMAT; 3766 } 3767 3768 insn_idx = rel.r_offset / BPF_INSN_SZ; 3769 /* relocations against static functions are recorded as 3770 * relocations against the section that contains a function; 3771 * in such case, symbol will be STT_SECTION and sym.st_name 3772 * will point to empty string (0), so fetch section name 3773 * instead 3774 */ 3775 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3776 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3777 else 3778 sym_name = elf_sym_str(obj, sym.st_name); 3779 sym_name = sym_name ?: "<?"; 3780 3781 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3782 relo_sec_name, i, insn_idx, sym_name); 3783 3784 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3785 if (!prog) { 3786 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 3787 relo_sec_name, i, sec_name, insn_idx); 3788 continue; 3789 } 3790 3791 relos = libbpf_reallocarray(prog->reloc_desc, 3792 prog->nr_reloc + 1, sizeof(*relos)); 3793 if (!relos) 3794 return -ENOMEM; 3795 prog->reloc_desc = relos; 3796 3797 /* adjust insn_idx to local BPF program frame of reference */ 3798 insn_idx -= prog->sec_insn_off; 3799 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3800 insn_idx, sym_name, &sym, &rel); 3801 if (err) 3802 return err; 3803 3804 prog->nr_reloc++; 3805 } 3806 return 0; 3807 } 3808 3809 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3810 { 3811 struct bpf_map_def *def = &map->def; 3812 __u32 key_type_id = 0, value_type_id = 0; 3813 int ret; 3814 3815 /* if it's BTF-defined map, we don't need to search for type IDs. 3816 * For struct_ops map, it does not need btf_key_type_id and 3817 * btf_value_type_id. 3818 */ 3819 if (map->sec_idx == obj->efile.btf_maps_shndx || 3820 bpf_map__is_struct_ops(map)) 3821 return 0; 3822 3823 if (!bpf_map__is_internal(map)) { 3824 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3825 def->value_size, &key_type_id, 3826 &value_type_id); 3827 } else { 3828 /* 3829 * LLVM annotates global data differently in BTF, that is, 3830 * only as '.data', '.bss' or '.rodata'. 3831 */ 3832 ret = btf__find_by_name(obj->btf, 3833 libbpf_type_to_btf_name[map->libbpf_type]); 3834 } 3835 if (ret < 0) 3836 return ret; 3837 3838 map->btf_key_type_id = key_type_id; 3839 map->btf_value_type_id = bpf_map__is_internal(map) ? 3840 ret : value_type_id; 3841 return 0; 3842 } 3843 3844 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3845 { 3846 struct bpf_map_info info = {}; 3847 __u32 len = sizeof(info); 3848 int new_fd, err; 3849 char *new_name; 3850 3851 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3852 if (err) 3853 return err; 3854 3855 new_name = strdup(info.name); 3856 if (!new_name) 3857 return -errno; 3858 3859 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3860 if (new_fd < 0) { 3861 err = -errno; 3862 goto err_free_new_name; 3863 } 3864 3865 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3866 if (new_fd < 0) { 3867 err = -errno; 3868 goto err_close_new_fd; 3869 } 3870 3871 err = zclose(map->fd); 3872 if (err) { 3873 err = -errno; 3874 goto err_close_new_fd; 3875 } 3876 free(map->name); 3877 3878 map->fd = new_fd; 3879 map->name = new_name; 3880 map->def.type = info.type; 3881 map->def.key_size = info.key_size; 3882 map->def.value_size = info.value_size; 3883 map->def.max_entries = info.max_entries; 3884 map->def.map_flags = info.map_flags; 3885 map->btf_key_type_id = info.btf_key_type_id; 3886 map->btf_value_type_id = info.btf_value_type_id; 3887 map->reused = true; 3888 3889 return 0; 3890 3891 err_close_new_fd: 3892 close(new_fd); 3893 err_free_new_name: 3894 free(new_name); 3895 return err; 3896 } 3897 3898 __u32 bpf_map__max_entries(const struct bpf_map *map) 3899 { 3900 return map->def.max_entries; 3901 } 3902 3903 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 3904 { 3905 if (!bpf_map_type__is_map_in_map(map->def.type)) 3906 return NULL; 3907 3908 return map->inner_map; 3909 } 3910 3911 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3912 { 3913 if (map->fd >= 0) 3914 return -EBUSY; 3915 map->def.max_entries = max_entries; 3916 return 0; 3917 } 3918 3919 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3920 { 3921 if (!map || !max_entries) 3922 return -EINVAL; 3923 3924 return bpf_map__set_max_entries(map, max_entries); 3925 } 3926 3927 static int 3928 bpf_object__probe_loading(struct bpf_object *obj) 3929 { 3930 struct bpf_load_program_attr attr; 3931 char *cp, errmsg[STRERR_BUFSIZE]; 3932 struct bpf_insn insns[] = { 3933 BPF_MOV64_IMM(BPF_REG_0, 0), 3934 BPF_EXIT_INSN(), 3935 }; 3936 int ret; 3937 3938 /* make sure basic loading works */ 3939 3940 memset(&attr, 0, sizeof(attr)); 3941 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3942 attr.insns = insns; 3943 attr.insns_cnt = ARRAY_SIZE(insns); 3944 attr.license = "GPL"; 3945 3946 ret = bpf_load_program_xattr(&attr, NULL, 0); 3947 if (ret < 0) { 3948 ret = errno; 3949 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3950 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3951 "program. Make sure your kernel supports BPF " 3952 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3953 "set to big enough value.\n", __func__, cp, ret); 3954 return -ret; 3955 } 3956 close(ret); 3957 3958 return 0; 3959 } 3960 3961 static int probe_fd(int fd) 3962 { 3963 if (fd >= 0) 3964 close(fd); 3965 return fd >= 0; 3966 } 3967 3968 static int probe_kern_prog_name(void) 3969 { 3970 struct bpf_load_program_attr attr; 3971 struct bpf_insn insns[] = { 3972 BPF_MOV64_IMM(BPF_REG_0, 0), 3973 BPF_EXIT_INSN(), 3974 }; 3975 int ret; 3976 3977 /* make sure loading with name works */ 3978 3979 memset(&attr, 0, sizeof(attr)); 3980 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3981 attr.insns = insns; 3982 attr.insns_cnt = ARRAY_SIZE(insns); 3983 attr.license = "GPL"; 3984 attr.name = "test"; 3985 ret = bpf_load_program_xattr(&attr, NULL, 0); 3986 return probe_fd(ret); 3987 } 3988 3989 static int probe_kern_global_data(void) 3990 { 3991 struct bpf_load_program_attr prg_attr; 3992 struct bpf_create_map_attr map_attr; 3993 char *cp, errmsg[STRERR_BUFSIZE]; 3994 struct bpf_insn insns[] = { 3995 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3996 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3997 BPF_MOV64_IMM(BPF_REG_0, 0), 3998 BPF_EXIT_INSN(), 3999 }; 4000 int ret, map; 4001 4002 memset(&map_attr, 0, sizeof(map_attr)); 4003 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4004 map_attr.key_size = sizeof(int); 4005 map_attr.value_size = 32; 4006 map_attr.max_entries = 1; 4007 4008 map = bpf_create_map_xattr(&map_attr); 4009 if (map < 0) { 4010 ret = -errno; 4011 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4012 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4013 __func__, cp, -ret); 4014 return ret; 4015 } 4016 4017 insns[0].imm = map; 4018 4019 memset(&prg_attr, 0, sizeof(prg_attr)); 4020 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4021 prg_attr.insns = insns; 4022 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4023 prg_attr.license = "GPL"; 4024 4025 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4026 close(map); 4027 return probe_fd(ret); 4028 } 4029 4030 static int probe_kern_btf(void) 4031 { 4032 static const char strs[] = "\0int"; 4033 __u32 types[] = { 4034 /* int */ 4035 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4036 }; 4037 4038 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4039 strs, sizeof(strs))); 4040 } 4041 4042 static int probe_kern_btf_func(void) 4043 { 4044 static const char strs[] = "\0int\0x\0a"; 4045 /* void x(int a) {} */ 4046 __u32 types[] = { 4047 /* int */ 4048 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4049 /* FUNC_PROTO */ /* [2] */ 4050 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4051 BTF_PARAM_ENC(7, 1), 4052 /* FUNC x */ /* [3] */ 4053 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4054 }; 4055 4056 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4057 strs, sizeof(strs))); 4058 } 4059 4060 static int probe_kern_btf_func_global(void) 4061 { 4062 static const char strs[] = "\0int\0x\0a"; 4063 /* static void x(int a) {} */ 4064 __u32 types[] = { 4065 /* int */ 4066 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4067 /* FUNC_PROTO */ /* [2] */ 4068 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4069 BTF_PARAM_ENC(7, 1), 4070 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4071 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4072 }; 4073 4074 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4075 strs, sizeof(strs))); 4076 } 4077 4078 static int probe_kern_btf_datasec(void) 4079 { 4080 static const char strs[] = "\0x\0.data"; 4081 /* static int a; */ 4082 __u32 types[] = { 4083 /* int */ 4084 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4085 /* VAR x */ /* [2] */ 4086 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4087 BTF_VAR_STATIC, 4088 /* DATASEC val */ /* [3] */ 4089 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4090 BTF_VAR_SECINFO_ENC(2, 0, 4), 4091 }; 4092 4093 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4094 strs, sizeof(strs))); 4095 } 4096 4097 static int probe_kern_btf_float(void) 4098 { 4099 static const char strs[] = "\0float"; 4100 __u32 types[] = { 4101 /* float */ 4102 BTF_TYPE_FLOAT_ENC(1, 4), 4103 }; 4104 4105 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4106 strs, sizeof(strs))); 4107 } 4108 4109 static int probe_kern_array_mmap(void) 4110 { 4111 struct bpf_create_map_attr attr = { 4112 .map_type = BPF_MAP_TYPE_ARRAY, 4113 .map_flags = BPF_F_MMAPABLE, 4114 .key_size = sizeof(int), 4115 .value_size = sizeof(int), 4116 .max_entries = 1, 4117 }; 4118 4119 return probe_fd(bpf_create_map_xattr(&attr)); 4120 } 4121 4122 static int probe_kern_exp_attach_type(void) 4123 { 4124 struct bpf_load_program_attr attr; 4125 struct bpf_insn insns[] = { 4126 BPF_MOV64_IMM(BPF_REG_0, 0), 4127 BPF_EXIT_INSN(), 4128 }; 4129 4130 memset(&attr, 0, sizeof(attr)); 4131 /* use any valid combination of program type and (optional) 4132 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4133 * to see if kernel supports expected_attach_type field for 4134 * BPF_PROG_LOAD command 4135 */ 4136 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4137 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4138 attr.insns = insns; 4139 attr.insns_cnt = ARRAY_SIZE(insns); 4140 attr.license = "GPL"; 4141 4142 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4143 } 4144 4145 static int probe_kern_probe_read_kernel(void) 4146 { 4147 struct bpf_load_program_attr attr; 4148 struct bpf_insn insns[] = { 4149 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4150 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4151 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4152 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4153 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4154 BPF_EXIT_INSN(), 4155 }; 4156 4157 memset(&attr, 0, sizeof(attr)); 4158 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4159 attr.insns = insns; 4160 attr.insns_cnt = ARRAY_SIZE(insns); 4161 attr.license = "GPL"; 4162 4163 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4164 } 4165 4166 static int probe_prog_bind_map(void) 4167 { 4168 struct bpf_load_program_attr prg_attr; 4169 struct bpf_create_map_attr map_attr; 4170 char *cp, errmsg[STRERR_BUFSIZE]; 4171 struct bpf_insn insns[] = { 4172 BPF_MOV64_IMM(BPF_REG_0, 0), 4173 BPF_EXIT_INSN(), 4174 }; 4175 int ret, map, prog; 4176 4177 memset(&map_attr, 0, sizeof(map_attr)); 4178 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4179 map_attr.key_size = sizeof(int); 4180 map_attr.value_size = 32; 4181 map_attr.max_entries = 1; 4182 4183 map = bpf_create_map_xattr(&map_attr); 4184 if (map < 0) { 4185 ret = -errno; 4186 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4187 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4188 __func__, cp, -ret); 4189 return ret; 4190 } 4191 4192 memset(&prg_attr, 0, sizeof(prg_attr)); 4193 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4194 prg_attr.insns = insns; 4195 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4196 prg_attr.license = "GPL"; 4197 4198 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4199 if (prog < 0) { 4200 close(map); 4201 return 0; 4202 } 4203 4204 ret = bpf_prog_bind_map(prog, map, NULL); 4205 4206 close(map); 4207 close(prog); 4208 4209 return ret >= 0; 4210 } 4211 4212 static int probe_module_btf(void) 4213 { 4214 static const char strs[] = "\0int"; 4215 __u32 types[] = { 4216 /* int */ 4217 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4218 }; 4219 struct bpf_btf_info info; 4220 __u32 len = sizeof(info); 4221 char name[16]; 4222 int fd, err; 4223 4224 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4225 if (fd < 0) 4226 return 0; /* BTF not supported at all */ 4227 4228 memset(&info, 0, sizeof(info)); 4229 info.name = ptr_to_u64(name); 4230 info.name_len = sizeof(name); 4231 4232 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4233 * kernel's module BTF support coincides with support for 4234 * name/name_len fields in struct bpf_btf_info. 4235 */ 4236 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4237 close(fd); 4238 return !err; 4239 } 4240 4241 enum kern_feature_result { 4242 FEAT_UNKNOWN = 0, 4243 FEAT_SUPPORTED = 1, 4244 FEAT_MISSING = 2, 4245 }; 4246 4247 typedef int (*feature_probe_fn)(void); 4248 4249 static struct kern_feature_desc { 4250 const char *desc; 4251 feature_probe_fn probe; 4252 enum kern_feature_result res; 4253 } feature_probes[__FEAT_CNT] = { 4254 [FEAT_PROG_NAME] = { 4255 "BPF program name", probe_kern_prog_name, 4256 }, 4257 [FEAT_GLOBAL_DATA] = { 4258 "global variables", probe_kern_global_data, 4259 }, 4260 [FEAT_BTF] = { 4261 "minimal BTF", probe_kern_btf, 4262 }, 4263 [FEAT_BTF_FUNC] = { 4264 "BTF functions", probe_kern_btf_func, 4265 }, 4266 [FEAT_BTF_GLOBAL_FUNC] = { 4267 "BTF global function", probe_kern_btf_func_global, 4268 }, 4269 [FEAT_BTF_DATASEC] = { 4270 "BTF data section and variable", probe_kern_btf_datasec, 4271 }, 4272 [FEAT_ARRAY_MMAP] = { 4273 "ARRAY map mmap()", probe_kern_array_mmap, 4274 }, 4275 [FEAT_EXP_ATTACH_TYPE] = { 4276 "BPF_PROG_LOAD expected_attach_type attribute", 4277 probe_kern_exp_attach_type, 4278 }, 4279 [FEAT_PROBE_READ_KERN] = { 4280 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4281 }, 4282 [FEAT_PROG_BIND_MAP] = { 4283 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4284 }, 4285 [FEAT_MODULE_BTF] = { 4286 "module BTF support", probe_module_btf, 4287 }, 4288 [FEAT_BTF_FLOAT] = { 4289 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4290 }, 4291 }; 4292 4293 static bool kernel_supports(enum kern_feature_id feat_id) 4294 { 4295 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4296 int ret; 4297 4298 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4299 ret = feat->probe(); 4300 if (ret > 0) { 4301 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4302 } else if (ret == 0) { 4303 WRITE_ONCE(feat->res, FEAT_MISSING); 4304 } else { 4305 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4306 WRITE_ONCE(feat->res, FEAT_MISSING); 4307 } 4308 } 4309 4310 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4311 } 4312 4313 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4314 { 4315 struct bpf_map_info map_info = {}; 4316 char msg[STRERR_BUFSIZE]; 4317 __u32 map_info_len; 4318 4319 map_info_len = sizeof(map_info); 4320 4321 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4322 pr_warn("failed to get map info for map FD %d: %s\n", 4323 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4324 return false; 4325 } 4326 4327 return (map_info.type == map->def.type && 4328 map_info.key_size == map->def.key_size && 4329 map_info.value_size == map->def.value_size && 4330 map_info.max_entries == map->def.max_entries && 4331 map_info.map_flags == map->def.map_flags); 4332 } 4333 4334 static int 4335 bpf_object__reuse_map(struct bpf_map *map) 4336 { 4337 char *cp, errmsg[STRERR_BUFSIZE]; 4338 int err, pin_fd; 4339 4340 pin_fd = bpf_obj_get(map->pin_path); 4341 if (pin_fd < 0) { 4342 err = -errno; 4343 if (err == -ENOENT) { 4344 pr_debug("found no pinned map to reuse at '%s'\n", 4345 map->pin_path); 4346 return 0; 4347 } 4348 4349 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4350 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4351 map->pin_path, cp); 4352 return err; 4353 } 4354 4355 if (!map_is_reuse_compat(map, pin_fd)) { 4356 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4357 map->pin_path); 4358 close(pin_fd); 4359 return -EINVAL; 4360 } 4361 4362 err = bpf_map__reuse_fd(map, pin_fd); 4363 if (err) { 4364 close(pin_fd); 4365 return err; 4366 } 4367 map->pinned = true; 4368 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4369 4370 return 0; 4371 } 4372 4373 static int 4374 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4375 { 4376 enum libbpf_map_type map_type = map->libbpf_type; 4377 char *cp, errmsg[STRERR_BUFSIZE]; 4378 int err, zero = 0; 4379 4380 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4381 if (err) { 4382 err = -errno; 4383 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4384 pr_warn("Error setting initial map(%s) contents: %s\n", 4385 map->name, cp); 4386 return err; 4387 } 4388 4389 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4390 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4391 err = bpf_map_freeze(map->fd); 4392 if (err) { 4393 err = -errno; 4394 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4395 pr_warn("Error freezing map(%s) as read-only: %s\n", 4396 map->name, cp); 4397 return err; 4398 } 4399 } 4400 return 0; 4401 } 4402 4403 static void bpf_map__destroy(struct bpf_map *map); 4404 4405 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4406 { 4407 struct bpf_create_map_attr create_attr; 4408 struct bpf_map_def *def = &map->def; 4409 4410 memset(&create_attr, 0, sizeof(create_attr)); 4411 4412 if (kernel_supports(FEAT_PROG_NAME)) 4413 create_attr.name = map->name; 4414 create_attr.map_ifindex = map->map_ifindex; 4415 create_attr.map_type = def->type; 4416 create_attr.map_flags = def->map_flags; 4417 create_attr.key_size = def->key_size; 4418 create_attr.value_size = def->value_size; 4419 create_attr.numa_node = map->numa_node; 4420 4421 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4422 int nr_cpus; 4423 4424 nr_cpus = libbpf_num_possible_cpus(); 4425 if (nr_cpus < 0) { 4426 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4427 map->name, nr_cpus); 4428 return nr_cpus; 4429 } 4430 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4431 create_attr.max_entries = nr_cpus; 4432 } else { 4433 create_attr.max_entries = def->max_entries; 4434 } 4435 4436 if (bpf_map__is_struct_ops(map)) 4437 create_attr.btf_vmlinux_value_type_id = 4438 map->btf_vmlinux_value_type_id; 4439 4440 create_attr.btf_fd = 0; 4441 create_attr.btf_key_type_id = 0; 4442 create_attr.btf_value_type_id = 0; 4443 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4444 create_attr.btf_fd = btf__fd(obj->btf); 4445 create_attr.btf_key_type_id = map->btf_key_type_id; 4446 create_attr.btf_value_type_id = map->btf_value_type_id; 4447 } 4448 4449 if (bpf_map_type__is_map_in_map(def->type)) { 4450 if (map->inner_map) { 4451 int err; 4452 4453 err = bpf_object__create_map(obj, map->inner_map); 4454 if (err) { 4455 pr_warn("map '%s': failed to create inner map: %d\n", 4456 map->name, err); 4457 return err; 4458 } 4459 map->inner_map_fd = bpf_map__fd(map->inner_map); 4460 } 4461 if (map->inner_map_fd >= 0) 4462 create_attr.inner_map_fd = map->inner_map_fd; 4463 } 4464 4465 map->fd = bpf_create_map_xattr(&create_attr); 4466 if (map->fd < 0 && (create_attr.btf_key_type_id || 4467 create_attr.btf_value_type_id)) { 4468 char *cp, errmsg[STRERR_BUFSIZE]; 4469 int err = -errno; 4470 4471 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4472 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4473 map->name, cp, err); 4474 create_attr.btf_fd = 0; 4475 create_attr.btf_key_type_id = 0; 4476 create_attr.btf_value_type_id = 0; 4477 map->btf_key_type_id = 0; 4478 map->btf_value_type_id = 0; 4479 map->fd = bpf_create_map_xattr(&create_attr); 4480 } 4481 4482 if (map->fd < 0) 4483 return -errno; 4484 4485 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4486 bpf_map__destroy(map->inner_map); 4487 zfree(&map->inner_map); 4488 } 4489 4490 return 0; 4491 } 4492 4493 static int init_map_slots(struct bpf_map *map) 4494 { 4495 const struct bpf_map *targ_map; 4496 unsigned int i; 4497 int fd, err; 4498 4499 for (i = 0; i < map->init_slots_sz; i++) { 4500 if (!map->init_slots[i]) 4501 continue; 4502 4503 targ_map = map->init_slots[i]; 4504 fd = bpf_map__fd(targ_map); 4505 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4506 if (err) { 4507 err = -errno; 4508 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4509 map->name, i, targ_map->name, 4510 fd, err); 4511 return err; 4512 } 4513 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4514 map->name, i, targ_map->name, fd); 4515 } 4516 4517 zfree(&map->init_slots); 4518 map->init_slots_sz = 0; 4519 4520 return 0; 4521 } 4522 4523 static int 4524 bpf_object__create_maps(struct bpf_object *obj) 4525 { 4526 struct bpf_map *map; 4527 char *cp, errmsg[STRERR_BUFSIZE]; 4528 unsigned int i, j; 4529 int err; 4530 4531 for (i = 0; i < obj->nr_maps; i++) { 4532 map = &obj->maps[i]; 4533 4534 if (map->pin_path) { 4535 err = bpf_object__reuse_map(map); 4536 if (err) { 4537 pr_warn("map '%s': error reusing pinned map\n", 4538 map->name); 4539 goto err_out; 4540 } 4541 } 4542 4543 if (map->fd >= 0) { 4544 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4545 map->name, map->fd); 4546 } else { 4547 err = bpf_object__create_map(obj, map); 4548 if (err) 4549 goto err_out; 4550 4551 pr_debug("map '%s': created successfully, fd=%d\n", 4552 map->name, map->fd); 4553 4554 if (bpf_map__is_internal(map)) { 4555 err = bpf_object__populate_internal_map(obj, map); 4556 if (err < 0) { 4557 zclose(map->fd); 4558 goto err_out; 4559 } 4560 } 4561 4562 if (map->init_slots_sz) { 4563 err = init_map_slots(map); 4564 if (err < 0) { 4565 zclose(map->fd); 4566 goto err_out; 4567 } 4568 } 4569 } 4570 4571 if (map->pin_path && !map->pinned) { 4572 err = bpf_map__pin(map, NULL); 4573 if (err) { 4574 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4575 map->name, map->pin_path, err); 4576 zclose(map->fd); 4577 goto err_out; 4578 } 4579 } 4580 } 4581 4582 return 0; 4583 4584 err_out: 4585 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4586 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4587 pr_perm_msg(err); 4588 for (j = 0; j < i; j++) 4589 zclose(obj->maps[j].fd); 4590 return err; 4591 } 4592 4593 #define BPF_CORE_SPEC_MAX_LEN 64 4594 4595 /* represents BPF CO-RE field or array element accessor */ 4596 struct bpf_core_accessor { 4597 __u32 type_id; /* struct/union type or array element type */ 4598 __u32 idx; /* field index or array index */ 4599 const char *name; /* field name or NULL for array accessor */ 4600 }; 4601 4602 struct bpf_core_spec { 4603 const struct btf *btf; 4604 /* high-level spec: named fields and array indices only */ 4605 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4606 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4607 __u32 root_type_id; 4608 /* CO-RE relocation kind */ 4609 enum bpf_core_relo_kind relo_kind; 4610 /* high-level spec length */ 4611 int len; 4612 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4613 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4614 /* raw spec length */ 4615 int raw_len; 4616 /* field bit offset represented by spec */ 4617 __u32 bit_offset; 4618 }; 4619 4620 static bool str_is_empty(const char *s) 4621 { 4622 return !s || !s[0]; 4623 } 4624 4625 static bool is_flex_arr(const struct btf *btf, 4626 const struct bpf_core_accessor *acc, 4627 const struct btf_array *arr) 4628 { 4629 const struct btf_type *t; 4630 4631 /* not a flexible array, if not inside a struct or has non-zero size */ 4632 if (!acc->name || arr->nelems > 0) 4633 return false; 4634 4635 /* has to be the last member of enclosing struct */ 4636 t = btf__type_by_id(btf, acc->type_id); 4637 return acc->idx == btf_vlen(t) - 1; 4638 } 4639 4640 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4641 { 4642 switch (kind) { 4643 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4644 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4645 case BPF_FIELD_EXISTS: return "field_exists"; 4646 case BPF_FIELD_SIGNED: return "signed"; 4647 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4648 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4649 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4650 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4651 case BPF_TYPE_EXISTS: return "type_exists"; 4652 case BPF_TYPE_SIZE: return "type_size"; 4653 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4654 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4655 default: return "unknown"; 4656 } 4657 } 4658 4659 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4660 { 4661 switch (kind) { 4662 case BPF_FIELD_BYTE_OFFSET: 4663 case BPF_FIELD_BYTE_SIZE: 4664 case BPF_FIELD_EXISTS: 4665 case BPF_FIELD_SIGNED: 4666 case BPF_FIELD_LSHIFT_U64: 4667 case BPF_FIELD_RSHIFT_U64: 4668 return true; 4669 default: 4670 return false; 4671 } 4672 } 4673 4674 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4675 { 4676 switch (kind) { 4677 case BPF_TYPE_ID_LOCAL: 4678 case BPF_TYPE_ID_TARGET: 4679 case BPF_TYPE_EXISTS: 4680 case BPF_TYPE_SIZE: 4681 return true; 4682 default: 4683 return false; 4684 } 4685 } 4686 4687 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4688 { 4689 switch (kind) { 4690 case BPF_ENUMVAL_EXISTS: 4691 case BPF_ENUMVAL_VALUE: 4692 return true; 4693 default: 4694 return false; 4695 } 4696 } 4697 4698 /* 4699 * Turn bpf_core_relo into a low- and high-level spec representation, 4700 * validating correctness along the way, as well as calculating resulting 4701 * field bit offset, specified by accessor string. Low-level spec captures 4702 * every single level of nestedness, including traversing anonymous 4703 * struct/union members. High-level one only captures semantically meaningful 4704 * "turning points": named fields and array indicies. 4705 * E.g., for this case: 4706 * 4707 * struct sample { 4708 * int __unimportant; 4709 * struct { 4710 * int __1; 4711 * int __2; 4712 * int a[7]; 4713 * }; 4714 * }; 4715 * 4716 * struct sample *s = ...; 4717 * 4718 * int x = &s->a[3]; // access string = '0:1:2:3' 4719 * 4720 * Low-level spec has 1:1 mapping with each element of access string (it's 4721 * just a parsed access string representation): [0, 1, 2, 3]. 4722 * 4723 * High-level spec will capture only 3 points: 4724 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4725 * - field 'a' access (corresponds to '2' in low-level spec); 4726 * - array element #3 access (corresponds to '3' in low-level spec). 4727 * 4728 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4729 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4730 * spec and raw_spec are kept empty. 4731 * 4732 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4733 * string to specify enumerator's value index that need to be relocated. 4734 */ 4735 static int bpf_core_parse_spec(const struct btf *btf, 4736 __u32 type_id, 4737 const char *spec_str, 4738 enum bpf_core_relo_kind relo_kind, 4739 struct bpf_core_spec *spec) 4740 { 4741 int access_idx, parsed_len, i; 4742 struct bpf_core_accessor *acc; 4743 const struct btf_type *t; 4744 const char *name; 4745 __u32 id; 4746 __s64 sz; 4747 4748 if (str_is_empty(spec_str) || *spec_str == ':') 4749 return -EINVAL; 4750 4751 memset(spec, 0, sizeof(*spec)); 4752 spec->btf = btf; 4753 spec->root_type_id = type_id; 4754 spec->relo_kind = relo_kind; 4755 4756 /* type-based relocations don't have a field access string */ 4757 if (core_relo_is_type_based(relo_kind)) { 4758 if (strcmp(spec_str, "0")) 4759 return -EINVAL; 4760 return 0; 4761 } 4762 4763 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4764 while (*spec_str) { 4765 if (*spec_str == ':') 4766 ++spec_str; 4767 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4768 return -EINVAL; 4769 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4770 return -E2BIG; 4771 spec_str += parsed_len; 4772 spec->raw_spec[spec->raw_len++] = access_idx; 4773 } 4774 4775 if (spec->raw_len == 0) 4776 return -EINVAL; 4777 4778 t = skip_mods_and_typedefs(btf, type_id, &id); 4779 if (!t) 4780 return -EINVAL; 4781 4782 access_idx = spec->raw_spec[0]; 4783 acc = &spec->spec[0]; 4784 acc->type_id = id; 4785 acc->idx = access_idx; 4786 spec->len++; 4787 4788 if (core_relo_is_enumval_based(relo_kind)) { 4789 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4790 return -EINVAL; 4791 4792 /* record enumerator name in a first accessor */ 4793 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4794 return 0; 4795 } 4796 4797 if (!core_relo_is_field_based(relo_kind)) 4798 return -EINVAL; 4799 4800 sz = btf__resolve_size(btf, id); 4801 if (sz < 0) 4802 return sz; 4803 spec->bit_offset = access_idx * sz * 8; 4804 4805 for (i = 1; i < spec->raw_len; i++) { 4806 t = skip_mods_and_typedefs(btf, id, &id); 4807 if (!t) 4808 return -EINVAL; 4809 4810 access_idx = spec->raw_spec[i]; 4811 acc = &spec->spec[spec->len]; 4812 4813 if (btf_is_composite(t)) { 4814 const struct btf_member *m; 4815 __u32 bit_offset; 4816 4817 if (access_idx >= btf_vlen(t)) 4818 return -EINVAL; 4819 4820 bit_offset = btf_member_bit_offset(t, access_idx); 4821 spec->bit_offset += bit_offset; 4822 4823 m = btf_members(t) + access_idx; 4824 if (m->name_off) { 4825 name = btf__name_by_offset(btf, m->name_off); 4826 if (str_is_empty(name)) 4827 return -EINVAL; 4828 4829 acc->type_id = id; 4830 acc->idx = access_idx; 4831 acc->name = name; 4832 spec->len++; 4833 } 4834 4835 id = m->type; 4836 } else if (btf_is_array(t)) { 4837 const struct btf_array *a = btf_array(t); 4838 bool flex; 4839 4840 t = skip_mods_and_typedefs(btf, a->type, &id); 4841 if (!t) 4842 return -EINVAL; 4843 4844 flex = is_flex_arr(btf, acc - 1, a); 4845 if (!flex && access_idx >= a->nelems) 4846 return -EINVAL; 4847 4848 spec->spec[spec->len].type_id = id; 4849 spec->spec[spec->len].idx = access_idx; 4850 spec->len++; 4851 4852 sz = btf__resolve_size(btf, id); 4853 if (sz < 0) 4854 return sz; 4855 spec->bit_offset += access_idx * sz * 8; 4856 } else { 4857 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4858 type_id, spec_str, i, id, btf_kind_str(t)); 4859 return -EINVAL; 4860 } 4861 } 4862 4863 return 0; 4864 } 4865 4866 static bool bpf_core_is_flavor_sep(const char *s) 4867 { 4868 /* check X___Y name pattern, where X and Y are not underscores */ 4869 return s[0] != '_' && /* X */ 4870 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4871 s[4] != '_'; /* Y */ 4872 } 4873 4874 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4875 * before last triple underscore. Struct name part after last triple 4876 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4877 */ 4878 static size_t bpf_core_essential_name_len(const char *name) 4879 { 4880 size_t n = strlen(name); 4881 int i; 4882 4883 for (i = n - 5; i >= 0; i--) { 4884 if (bpf_core_is_flavor_sep(name + i)) 4885 return i + 1; 4886 } 4887 return n; 4888 } 4889 4890 struct core_cand 4891 { 4892 const struct btf *btf; 4893 const struct btf_type *t; 4894 const char *name; 4895 __u32 id; 4896 }; 4897 4898 /* dynamically sized list of type IDs and its associated struct btf */ 4899 struct core_cand_list { 4900 struct core_cand *cands; 4901 int len; 4902 }; 4903 4904 static void bpf_core_free_cands(struct core_cand_list *cands) 4905 { 4906 free(cands->cands); 4907 free(cands); 4908 } 4909 4910 static int bpf_core_add_cands(struct core_cand *local_cand, 4911 size_t local_essent_len, 4912 const struct btf *targ_btf, 4913 const char *targ_btf_name, 4914 int targ_start_id, 4915 struct core_cand_list *cands) 4916 { 4917 struct core_cand *new_cands, *cand; 4918 const struct btf_type *t; 4919 const char *targ_name; 4920 size_t targ_essent_len; 4921 int n, i; 4922 4923 n = btf__get_nr_types(targ_btf); 4924 for (i = targ_start_id; i <= n; i++) { 4925 t = btf__type_by_id(targ_btf, i); 4926 if (btf_kind(t) != btf_kind(local_cand->t)) 4927 continue; 4928 4929 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4930 if (str_is_empty(targ_name)) 4931 continue; 4932 4933 targ_essent_len = bpf_core_essential_name_len(targ_name); 4934 if (targ_essent_len != local_essent_len) 4935 continue; 4936 4937 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4938 continue; 4939 4940 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4941 local_cand->id, btf_kind_str(local_cand->t), 4942 local_cand->name, i, btf_kind_str(t), targ_name, 4943 targ_btf_name); 4944 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4945 sizeof(*cands->cands)); 4946 if (!new_cands) 4947 return -ENOMEM; 4948 4949 cand = &new_cands[cands->len]; 4950 cand->btf = targ_btf; 4951 cand->t = t; 4952 cand->name = targ_name; 4953 cand->id = i; 4954 4955 cands->cands = new_cands; 4956 cands->len++; 4957 } 4958 return 0; 4959 } 4960 4961 static int load_module_btfs(struct bpf_object *obj) 4962 { 4963 struct bpf_btf_info info; 4964 struct module_btf *mod_btf; 4965 struct btf *btf; 4966 char name[64]; 4967 __u32 id = 0, len; 4968 int err, fd; 4969 4970 if (obj->btf_modules_loaded) 4971 return 0; 4972 4973 /* don't do this again, even if we find no module BTFs */ 4974 obj->btf_modules_loaded = true; 4975 4976 /* kernel too old to support module BTFs */ 4977 if (!kernel_supports(FEAT_MODULE_BTF)) 4978 return 0; 4979 4980 while (true) { 4981 err = bpf_btf_get_next_id(id, &id); 4982 if (err && errno == ENOENT) 4983 return 0; 4984 if (err) { 4985 err = -errno; 4986 pr_warn("failed to iterate BTF objects: %d\n", err); 4987 return err; 4988 } 4989 4990 fd = bpf_btf_get_fd_by_id(id); 4991 if (fd < 0) { 4992 if (errno == ENOENT) 4993 continue; /* expected race: BTF was unloaded */ 4994 err = -errno; 4995 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4996 return err; 4997 } 4998 4999 len = sizeof(info); 5000 memset(&info, 0, sizeof(info)); 5001 info.name = ptr_to_u64(name); 5002 info.name_len = sizeof(name); 5003 5004 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5005 if (err) { 5006 err = -errno; 5007 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5008 goto err_out; 5009 } 5010 5011 /* ignore non-module BTFs */ 5012 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5013 close(fd); 5014 continue; 5015 } 5016 5017 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5018 if (IS_ERR(btf)) { 5019 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 5020 name, id, PTR_ERR(btf)); 5021 err = PTR_ERR(btf); 5022 goto err_out; 5023 } 5024 5025 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5026 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5027 if (err) 5028 goto err_out; 5029 5030 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5031 5032 mod_btf->btf = btf; 5033 mod_btf->id = id; 5034 mod_btf->fd = fd; 5035 mod_btf->name = strdup(name); 5036 if (!mod_btf->name) { 5037 err = -ENOMEM; 5038 goto err_out; 5039 } 5040 continue; 5041 5042 err_out: 5043 close(fd); 5044 return err; 5045 } 5046 5047 return 0; 5048 } 5049 5050 static struct core_cand_list * 5051 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5052 { 5053 struct core_cand local_cand = {}; 5054 struct core_cand_list *cands; 5055 const struct btf *main_btf; 5056 size_t local_essent_len; 5057 int err, i; 5058 5059 local_cand.btf = local_btf; 5060 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5061 if (!local_cand.t) 5062 return ERR_PTR(-EINVAL); 5063 5064 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5065 if (str_is_empty(local_cand.name)) 5066 return ERR_PTR(-EINVAL); 5067 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5068 5069 cands = calloc(1, sizeof(*cands)); 5070 if (!cands) 5071 return ERR_PTR(-ENOMEM); 5072 5073 /* Attempt to find target candidates in vmlinux BTF first */ 5074 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5075 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5076 if (err) 5077 goto err_out; 5078 5079 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5080 if (cands->len) 5081 return cands; 5082 5083 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5084 if (obj->btf_vmlinux_override) 5085 return cands; 5086 5087 /* now look through module BTFs, trying to still find candidates */ 5088 err = load_module_btfs(obj); 5089 if (err) 5090 goto err_out; 5091 5092 for (i = 0; i < obj->btf_module_cnt; i++) { 5093 err = bpf_core_add_cands(&local_cand, local_essent_len, 5094 obj->btf_modules[i].btf, 5095 obj->btf_modules[i].name, 5096 btf__get_nr_types(obj->btf_vmlinux) + 1, 5097 cands); 5098 if (err) 5099 goto err_out; 5100 } 5101 5102 return cands; 5103 err_out: 5104 bpf_core_free_cands(cands); 5105 return ERR_PTR(err); 5106 } 5107 5108 /* Check two types for compatibility for the purpose of field access 5109 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 5110 * are relocating semantically compatible entities: 5111 * - any two STRUCTs/UNIONs are compatible and can be mixed; 5112 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 5113 * - any two PTRs are always compatible; 5114 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 5115 * least one of enums should be anonymous; 5116 * - for ENUMs, check sizes, names are ignored; 5117 * - for INT, size and signedness are ignored; 5118 * - for ARRAY, dimensionality is ignored, element types are checked for 5119 * compatibility recursively; 5120 * - everything else shouldn't be ever a target of relocation. 5121 * These rules are not set in stone and probably will be adjusted as we get 5122 * more experience with using BPF CO-RE relocations. 5123 */ 5124 static int bpf_core_fields_are_compat(const struct btf *local_btf, 5125 __u32 local_id, 5126 const struct btf *targ_btf, 5127 __u32 targ_id) 5128 { 5129 const struct btf_type *local_type, *targ_type; 5130 5131 recur: 5132 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5133 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5134 if (!local_type || !targ_type) 5135 return -EINVAL; 5136 5137 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 5138 return 1; 5139 if (btf_kind(local_type) != btf_kind(targ_type)) 5140 return 0; 5141 5142 switch (btf_kind(local_type)) { 5143 case BTF_KIND_PTR: 5144 return 1; 5145 case BTF_KIND_FWD: 5146 case BTF_KIND_ENUM: { 5147 const char *local_name, *targ_name; 5148 size_t local_len, targ_len; 5149 5150 local_name = btf__name_by_offset(local_btf, 5151 local_type->name_off); 5152 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 5153 local_len = bpf_core_essential_name_len(local_name); 5154 targ_len = bpf_core_essential_name_len(targ_name); 5155 /* one of them is anonymous or both w/ same flavor-less names */ 5156 return local_len == 0 || targ_len == 0 || 5157 (local_len == targ_len && 5158 strncmp(local_name, targ_name, local_len) == 0); 5159 } 5160 case BTF_KIND_INT: 5161 /* just reject deprecated bitfield-like integers; all other 5162 * integers are by default compatible between each other 5163 */ 5164 return btf_int_offset(local_type) == 0 && 5165 btf_int_offset(targ_type) == 0; 5166 case BTF_KIND_ARRAY: 5167 local_id = btf_array(local_type)->type; 5168 targ_id = btf_array(targ_type)->type; 5169 goto recur; 5170 default: 5171 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5172 btf_kind(local_type), local_id, targ_id); 5173 return 0; 5174 } 5175 } 5176 5177 /* 5178 * Given single high-level named field accessor in local type, find 5179 * corresponding high-level accessor for a target type. Along the way, 5180 * maintain low-level spec for target as well. Also keep updating target 5181 * bit offset. 5182 * 5183 * Searching is performed through recursive exhaustive enumeration of all 5184 * fields of a struct/union. If there are any anonymous (embedded) 5185 * structs/unions, they are recursively searched as well. If field with 5186 * desired name is found, check compatibility between local and target types, 5187 * before returning result. 5188 * 5189 * 1 is returned, if field is found. 5190 * 0 is returned if no compatible field is found. 5191 * <0 is returned on error. 5192 */ 5193 static int bpf_core_match_member(const struct btf *local_btf, 5194 const struct bpf_core_accessor *local_acc, 5195 const struct btf *targ_btf, 5196 __u32 targ_id, 5197 struct bpf_core_spec *spec, 5198 __u32 *next_targ_id) 5199 { 5200 const struct btf_type *local_type, *targ_type; 5201 const struct btf_member *local_member, *m; 5202 const char *local_name, *targ_name; 5203 __u32 local_id; 5204 int i, n, found; 5205 5206 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5207 if (!targ_type) 5208 return -EINVAL; 5209 if (!btf_is_composite(targ_type)) 5210 return 0; 5211 5212 local_id = local_acc->type_id; 5213 local_type = btf__type_by_id(local_btf, local_id); 5214 local_member = btf_members(local_type) + local_acc->idx; 5215 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5216 5217 n = btf_vlen(targ_type); 5218 m = btf_members(targ_type); 5219 for (i = 0; i < n; i++, m++) { 5220 __u32 bit_offset; 5221 5222 bit_offset = btf_member_bit_offset(targ_type, i); 5223 5224 /* too deep struct/union/array nesting */ 5225 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5226 return -E2BIG; 5227 5228 /* speculate this member will be the good one */ 5229 spec->bit_offset += bit_offset; 5230 spec->raw_spec[spec->raw_len++] = i; 5231 5232 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5233 if (str_is_empty(targ_name)) { 5234 /* embedded struct/union, we need to go deeper */ 5235 found = bpf_core_match_member(local_btf, local_acc, 5236 targ_btf, m->type, 5237 spec, next_targ_id); 5238 if (found) /* either found or error */ 5239 return found; 5240 } else if (strcmp(local_name, targ_name) == 0) { 5241 /* matching named field */ 5242 struct bpf_core_accessor *targ_acc; 5243 5244 targ_acc = &spec->spec[spec->len++]; 5245 targ_acc->type_id = targ_id; 5246 targ_acc->idx = i; 5247 targ_acc->name = targ_name; 5248 5249 *next_targ_id = m->type; 5250 found = bpf_core_fields_are_compat(local_btf, 5251 local_member->type, 5252 targ_btf, m->type); 5253 if (!found) 5254 spec->len--; /* pop accessor */ 5255 return found; 5256 } 5257 /* member turned out not to be what we looked for */ 5258 spec->bit_offset -= bit_offset; 5259 spec->raw_len--; 5260 } 5261 5262 return 0; 5263 } 5264 5265 /* Check local and target types for compatibility. This check is used for 5266 * type-based CO-RE relocations and follow slightly different rules than 5267 * field-based relocations. This function assumes that root types were already 5268 * checked for name match. Beyond that initial root-level name check, names 5269 * are completely ignored. Compatibility rules are as follows: 5270 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5271 * kind should match for local and target types (i.e., STRUCT is not 5272 * compatible with UNION); 5273 * - for ENUMs, the size is ignored; 5274 * - for INT, size and signedness are ignored; 5275 * - for ARRAY, dimensionality is ignored, element types are checked for 5276 * compatibility recursively; 5277 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5278 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5279 * - FUNC_PROTOs are compatible if they have compatible signature: same 5280 * number of input args and compatible return and argument types. 5281 * These rules are not set in stone and probably will be adjusted as we get 5282 * more experience with using BPF CO-RE relocations. 5283 */ 5284 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5285 const struct btf *targ_btf, __u32 targ_id) 5286 { 5287 const struct btf_type *local_type, *targ_type; 5288 int depth = 32; /* max recursion depth */ 5289 5290 /* caller made sure that names match (ignoring flavor suffix) */ 5291 local_type = btf__type_by_id(local_btf, local_id); 5292 targ_type = btf__type_by_id(targ_btf, targ_id); 5293 if (btf_kind(local_type) != btf_kind(targ_type)) 5294 return 0; 5295 5296 recur: 5297 depth--; 5298 if (depth < 0) 5299 return -EINVAL; 5300 5301 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5302 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5303 if (!local_type || !targ_type) 5304 return -EINVAL; 5305 5306 if (btf_kind(local_type) != btf_kind(targ_type)) 5307 return 0; 5308 5309 switch (btf_kind(local_type)) { 5310 case BTF_KIND_UNKN: 5311 case BTF_KIND_STRUCT: 5312 case BTF_KIND_UNION: 5313 case BTF_KIND_ENUM: 5314 case BTF_KIND_FWD: 5315 return 1; 5316 case BTF_KIND_INT: 5317 /* just reject deprecated bitfield-like integers; all other 5318 * integers are by default compatible between each other 5319 */ 5320 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5321 case BTF_KIND_PTR: 5322 local_id = local_type->type; 5323 targ_id = targ_type->type; 5324 goto recur; 5325 case BTF_KIND_ARRAY: 5326 local_id = btf_array(local_type)->type; 5327 targ_id = btf_array(targ_type)->type; 5328 goto recur; 5329 case BTF_KIND_FUNC_PROTO: { 5330 struct btf_param *local_p = btf_params(local_type); 5331 struct btf_param *targ_p = btf_params(targ_type); 5332 __u16 local_vlen = btf_vlen(local_type); 5333 __u16 targ_vlen = btf_vlen(targ_type); 5334 int i, err; 5335 5336 if (local_vlen != targ_vlen) 5337 return 0; 5338 5339 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5340 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5341 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5342 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5343 if (err <= 0) 5344 return err; 5345 } 5346 5347 /* tail recurse for return type check */ 5348 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5349 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5350 goto recur; 5351 } 5352 default: 5353 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5354 btf_kind_str(local_type), local_id, targ_id); 5355 return 0; 5356 } 5357 } 5358 5359 /* 5360 * Try to match local spec to a target type and, if successful, produce full 5361 * target spec (high-level, low-level + bit offset). 5362 */ 5363 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5364 const struct btf *targ_btf, __u32 targ_id, 5365 struct bpf_core_spec *targ_spec) 5366 { 5367 const struct btf_type *targ_type; 5368 const struct bpf_core_accessor *local_acc; 5369 struct bpf_core_accessor *targ_acc; 5370 int i, sz, matched; 5371 5372 memset(targ_spec, 0, sizeof(*targ_spec)); 5373 targ_spec->btf = targ_btf; 5374 targ_spec->root_type_id = targ_id; 5375 targ_spec->relo_kind = local_spec->relo_kind; 5376 5377 if (core_relo_is_type_based(local_spec->relo_kind)) { 5378 return bpf_core_types_are_compat(local_spec->btf, 5379 local_spec->root_type_id, 5380 targ_btf, targ_id); 5381 } 5382 5383 local_acc = &local_spec->spec[0]; 5384 targ_acc = &targ_spec->spec[0]; 5385 5386 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5387 size_t local_essent_len, targ_essent_len; 5388 const struct btf_enum *e; 5389 const char *targ_name; 5390 5391 /* has to resolve to an enum */ 5392 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5393 if (!btf_is_enum(targ_type)) 5394 return 0; 5395 5396 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5397 5398 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5399 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5400 targ_essent_len = bpf_core_essential_name_len(targ_name); 5401 if (targ_essent_len != local_essent_len) 5402 continue; 5403 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5404 targ_acc->type_id = targ_id; 5405 targ_acc->idx = i; 5406 targ_acc->name = targ_name; 5407 targ_spec->len++; 5408 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5409 targ_spec->raw_len++; 5410 return 1; 5411 } 5412 } 5413 return 0; 5414 } 5415 5416 if (!core_relo_is_field_based(local_spec->relo_kind)) 5417 return -EINVAL; 5418 5419 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5420 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5421 &targ_id); 5422 if (!targ_type) 5423 return -EINVAL; 5424 5425 if (local_acc->name) { 5426 matched = bpf_core_match_member(local_spec->btf, 5427 local_acc, 5428 targ_btf, targ_id, 5429 targ_spec, &targ_id); 5430 if (matched <= 0) 5431 return matched; 5432 } else { 5433 /* for i=0, targ_id is already treated as array element 5434 * type (because it's the original struct), for others 5435 * we should find array element type first 5436 */ 5437 if (i > 0) { 5438 const struct btf_array *a; 5439 bool flex; 5440 5441 if (!btf_is_array(targ_type)) 5442 return 0; 5443 5444 a = btf_array(targ_type); 5445 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5446 if (!flex && local_acc->idx >= a->nelems) 5447 return 0; 5448 if (!skip_mods_and_typedefs(targ_btf, a->type, 5449 &targ_id)) 5450 return -EINVAL; 5451 } 5452 5453 /* too deep struct/union/array nesting */ 5454 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5455 return -E2BIG; 5456 5457 targ_acc->type_id = targ_id; 5458 targ_acc->idx = local_acc->idx; 5459 targ_acc->name = NULL; 5460 targ_spec->len++; 5461 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5462 targ_spec->raw_len++; 5463 5464 sz = btf__resolve_size(targ_btf, targ_id); 5465 if (sz < 0) 5466 return sz; 5467 targ_spec->bit_offset += local_acc->idx * sz * 8; 5468 } 5469 } 5470 5471 return 1; 5472 } 5473 5474 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5475 const struct bpf_core_relo *relo, 5476 const struct bpf_core_spec *spec, 5477 __u32 *val, __u32 *field_sz, __u32 *type_id, 5478 bool *validate) 5479 { 5480 const struct bpf_core_accessor *acc; 5481 const struct btf_type *t; 5482 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5483 const struct btf_member *m; 5484 const struct btf_type *mt; 5485 bool bitfield; 5486 __s64 sz; 5487 5488 *field_sz = 0; 5489 5490 if (relo->kind == BPF_FIELD_EXISTS) { 5491 *val = spec ? 1 : 0; 5492 return 0; 5493 } 5494 5495 if (!spec) 5496 return -EUCLEAN; /* request instruction poisoning */ 5497 5498 acc = &spec->spec[spec->len - 1]; 5499 t = btf__type_by_id(spec->btf, acc->type_id); 5500 5501 /* a[n] accessor needs special handling */ 5502 if (!acc->name) { 5503 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5504 *val = spec->bit_offset / 8; 5505 /* remember field size for load/store mem size */ 5506 sz = btf__resolve_size(spec->btf, acc->type_id); 5507 if (sz < 0) 5508 return -EINVAL; 5509 *field_sz = sz; 5510 *type_id = acc->type_id; 5511 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5512 sz = btf__resolve_size(spec->btf, acc->type_id); 5513 if (sz < 0) 5514 return -EINVAL; 5515 *val = sz; 5516 } else { 5517 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5518 prog->name, relo->kind, relo->insn_off / 8); 5519 return -EINVAL; 5520 } 5521 if (validate) 5522 *validate = true; 5523 return 0; 5524 } 5525 5526 m = btf_members(t) + acc->idx; 5527 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5528 bit_off = spec->bit_offset; 5529 bit_sz = btf_member_bitfield_size(t, acc->idx); 5530 5531 bitfield = bit_sz > 0; 5532 if (bitfield) { 5533 byte_sz = mt->size; 5534 byte_off = bit_off / 8 / byte_sz * byte_sz; 5535 /* figure out smallest int size necessary for bitfield load */ 5536 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5537 if (byte_sz >= 8) { 5538 /* bitfield can't be read with 64-bit read */ 5539 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5540 prog->name, relo->kind, relo->insn_off / 8); 5541 return -E2BIG; 5542 } 5543 byte_sz *= 2; 5544 byte_off = bit_off / 8 / byte_sz * byte_sz; 5545 } 5546 } else { 5547 sz = btf__resolve_size(spec->btf, field_type_id); 5548 if (sz < 0) 5549 return -EINVAL; 5550 byte_sz = sz; 5551 byte_off = spec->bit_offset / 8; 5552 bit_sz = byte_sz * 8; 5553 } 5554 5555 /* for bitfields, all the relocatable aspects are ambiguous and we 5556 * might disagree with compiler, so turn off validation of expected 5557 * value, except for signedness 5558 */ 5559 if (validate) 5560 *validate = !bitfield; 5561 5562 switch (relo->kind) { 5563 case BPF_FIELD_BYTE_OFFSET: 5564 *val = byte_off; 5565 if (!bitfield) { 5566 *field_sz = byte_sz; 5567 *type_id = field_type_id; 5568 } 5569 break; 5570 case BPF_FIELD_BYTE_SIZE: 5571 *val = byte_sz; 5572 break; 5573 case BPF_FIELD_SIGNED: 5574 /* enums will be assumed unsigned */ 5575 *val = btf_is_enum(mt) || 5576 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5577 if (validate) 5578 *validate = true; /* signedness is never ambiguous */ 5579 break; 5580 case BPF_FIELD_LSHIFT_U64: 5581 #if __BYTE_ORDER == __LITTLE_ENDIAN 5582 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5583 #else 5584 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5585 #endif 5586 break; 5587 case BPF_FIELD_RSHIFT_U64: 5588 *val = 64 - bit_sz; 5589 if (validate) 5590 *validate = true; /* right shift is never ambiguous */ 5591 break; 5592 case BPF_FIELD_EXISTS: 5593 default: 5594 return -EOPNOTSUPP; 5595 } 5596 5597 return 0; 5598 } 5599 5600 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5601 const struct bpf_core_spec *spec, 5602 __u32 *val) 5603 { 5604 __s64 sz; 5605 5606 /* type-based relos return zero when target type is not found */ 5607 if (!spec) { 5608 *val = 0; 5609 return 0; 5610 } 5611 5612 switch (relo->kind) { 5613 case BPF_TYPE_ID_TARGET: 5614 *val = spec->root_type_id; 5615 break; 5616 case BPF_TYPE_EXISTS: 5617 *val = 1; 5618 break; 5619 case BPF_TYPE_SIZE: 5620 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5621 if (sz < 0) 5622 return -EINVAL; 5623 *val = sz; 5624 break; 5625 case BPF_TYPE_ID_LOCAL: 5626 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5627 default: 5628 return -EOPNOTSUPP; 5629 } 5630 5631 return 0; 5632 } 5633 5634 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5635 const struct bpf_core_spec *spec, 5636 __u32 *val) 5637 { 5638 const struct btf_type *t; 5639 const struct btf_enum *e; 5640 5641 switch (relo->kind) { 5642 case BPF_ENUMVAL_EXISTS: 5643 *val = spec ? 1 : 0; 5644 break; 5645 case BPF_ENUMVAL_VALUE: 5646 if (!spec) 5647 return -EUCLEAN; /* request instruction poisoning */ 5648 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5649 e = btf_enum(t) + spec->spec[0].idx; 5650 *val = e->val; 5651 break; 5652 default: 5653 return -EOPNOTSUPP; 5654 } 5655 5656 return 0; 5657 } 5658 5659 struct bpf_core_relo_res 5660 { 5661 /* expected value in the instruction, unless validate == false */ 5662 __u32 orig_val; 5663 /* new value that needs to be patched up to */ 5664 __u32 new_val; 5665 /* relocation unsuccessful, poison instruction, but don't fail load */ 5666 bool poison; 5667 /* some relocations can't be validated against orig_val */ 5668 bool validate; 5669 /* for field byte offset relocations or the forms: 5670 * *(T *)(rX + <off>) = rY 5671 * rX = *(T *)(rY + <off>), 5672 * we remember original and resolved field size to adjust direct 5673 * memory loads of pointers and integers; this is necessary for 32-bit 5674 * host kernel architectures, but also allows to automatically 5675 * relocate fields that were resized from, e.g., u32 to u64, etc. 5676 */ 5677 bool fail_memsz_adjust; 5678 __u32 orig_sz; 5679 __u32 orig_type_id; 5680 __u32 new_sz; 5681 __u32 new_type_id; 5682 }; 5683 5684 /* Calculate original and target relocation values, given local and target 5685 * specs and relocation kind. These values are calculated for each candidate. 5686 * If there are multiple candidates, resulting values should all be consistent 5687 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5688 * If instruction has to be poisoned, *poison will be set to true. 5689 */ 5690 static int bpf_core_calc_relo(const struct bpf_program *prog, 5691 const struct bpf_core_relo *relo, 5692 int relo_idx, 5693 const struct bpf_core_spec *local_spec, 5694 const struct bpf_core_spec *targ_spec, 5695 struct bpf_core_relo_res *res) 5696 { 5697 int err = -EOPNOTSUPP; 5698 5699 res->orig_val = 0; 5700 res->new_val = 0; 5701 res->poison = false; 5702 res->validate = true; 5703 res->fail_memsz_adjust = false; 5704 res->orig_sz = res->new_sz = 0; 5705 res->orig_type_id = res->new_type_id = 0; 5706 5707 if (core_relo_is_field_based(relo->kind)) { 5708 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5709 &res->orig_val, &res->orig_sz, 5710 &res->orig_type_id, &res->validate); 5711 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5712 &res->new_val, &res->new_sz, 5713 &res->new_type_id, NULL); 5714 if (err) 5715 goto done; 5716 /* Validate if it's safe to adjust load/store memory size. 5717 * Adjustments are performed only if original and new memory 5718 * sizes differ. 5719 */ 5720 res->fail_memsz_adjust = false; 5721 if (res->orig_sz != res->new_sz) { 5722 const struct btf_type *orig_t, *new_t; 5723 5724 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5725 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5726 5727 /* There are two use cases in which it's safe to 5728 * adjust load/store's mem size: 5729 * - reading a 32-bit kernel pointer, while on BPF 5730 * size pointers are always 64-bit; in this case 5731 * it's safe to "downsize" instruction size due to 5732 * pointer being treated as unsigned integer with 5733 * zero-extended upper 32-bits; 5734 * - reading unsigned integers, again due to 5735 * zero-extension is preserving the value correctly. 5736 * 5737 * In all other cases it's incorrect to attempt to 5738 * load/store field because read value will be 5739 * incorrect, so we poison relocated instruction. 5740 */ 5741 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5742 goto done; 5743 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5744 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5745 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5746 goto done; 5747 5748 /* mark as invalid mem size adjustment, but this will 5749 * only be checked for LDX/STX/ST insns 5750 */ 5751 res->fail_memsz_adjust = true; 5752 } 5753 } else if (core_relo_is_type_based(relo->kind)) { 5754 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5755 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5756 } else if (core_relo_is_enumval_based(relo->kind)) { 5757 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5758 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5759 } 5760 5761 done: 5762 if (err == -EUCLEAN) { 5763 /* EUCLEAN is used to signal instruction poisoning request */ 5764 res->poison = true; 5765 err = 0; 5766 } else if (err == -EOPNOTSUPP) { 5767 /* EOPNOTSUPP means unknown/unsupported relocation */ 5768 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5769 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5770 relo->kind, relo->insn_off / 8); 5771 } 5772 5773 return err; 5774 } 5775 5776 /* 5777 * Turn instruction for which CO_RE relocation failed into invalid one with 5778 * distinct signature. 5779 */ 5780 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5781 int insn_idx, struct bpf_insn *insn) 5782 { 5783 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5784 prog->name, relo_idx, insn_idx); 5785 insn->code = BPF_JMP | BPF_CALL; 5786 insn->dst_reg = 0; 5787 insn->src_reg = 0; 5788 insn->off = 0; 5789 /* if this instruction is reachable (not a dead code), 5790 * verifier will complain with the following message: 5791 * invalid func unknown#195896080 5792 */ 5793 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5794 } 5795 5796 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5797 { 5798 switch (BPF_SIZE(insn->code)) { 5799 case BPF_DW: return 8; 5800 case BPF_W: return 4; 5801 case BPF_H: return 2; 5802 case BPF_B: return 1; 5803 default: return -1; 5804 } 5805 } 5806 5807 static int insn_bytes_to_bpf_size(__u32 sz) 5808 { 5809 switch (sz) { 5810 case 8: return BPF_DW; 5811 case 4: return BPF_W; 5812 case 2: return BPF_H; 5813 case 1: return BPF_B; 5814 default: return -1; 5815 } 5816 } 5817 5818 /* 5819 * Patch relocatable BPF instruction. 5820 * 5821 * Patched value is determined by relocation kind and target specification. 5822 * For existence relocations target spec will be NULL if field/type is not found. 5823 * Expected insn->imm value is determined using relocation kind and local 5824 * spec, and is checked before patching instruction. If actual insn->imm value 5825 * is wrong, bail out with error. 5826 * 5827 * Currently supported classes of BPF instruction are: 5828 * 1. rX = <imm> (assignment with immediate operand); 5829 * 2. rX += <imm> (arithmetic operations with immediate operand); 5830 * 3. rX = <imm64> (load with 64-bit immediate value); 5831 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5832 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5833 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5834 */ 5835 static int bpf_core_patch_insn(struct bpf_program *prog, 5836 const struct bpf_core_relo *relo, 5837 int relo_idx, 5838 const struct bpf_core_relo_res *res) 5839 { 5840 __u32 orig_val, new_val; 5841 struct bpf_insn *insn; 5842 int insn_idx; 5843 __u8 class; 5844 5845 if (relo->insn_off % BPF_INSN_SZ) 5846 return -EINVAL; 5847 insn_idx = relo->insn_off / BPF_INSN_SZ; 5848 /* adjust insn_idx from section frame of reference to the local 5849 * program's frame of reference; (sub-)program code is not yet 5850 * relocated, so it's enough to just subtract in-section offset 5851 */ 5852 insn_idx = insn_idx - prog->sec_insn_off; 5853 insn = &prog->insns[insn_idx]; 5854 class = BPF_CLASS(insn->code); 5855 5856 if (res->poison) { 5857 poison: 5858 /* poison second part of ldimm64 to avoid confusing error from 5859 * verifier about "unknown opcode 00" 5860 */ 5861 if (is_ldimm64_insn(insn)) 5862 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5863 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5864 return 0; 5865 } 5866 5867 orig_val = res->orig_val; 5868 new_val = res->new_val; 5869 5870 switch (class) { 5871 case BPF_ALU: 5872 case BPF_ALU64: 5873 if (BPF_SRC(insn->code) != BPF_K) 5874 return -EINVAL; 5875 if (res->validate && insn->imm != orig_val) { 5876 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5877 prog->name, relo_idx, 5878 insn_idx, insn->imm, orig_val, new_val); 5879 return -EINVAL; 5880 } 5881 orig_val = insn->imm; 5882 insn->imm = new_val; 5883 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5884 prog->name, relo_idx, insn_idx, 5885 orig_val, new_val); 5886 break; 5887 case BPF_LDX: 5888 case BPF_ST: 5889 case BPF_STX: 5890 if (res->validate && insn->off != orig_val) { 5891 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5892 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5893 return -EINVAL; 5894 } 5895 if (new_val > SHRT_MAX) { 5896 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5897 prog->name, relo_idx, insn_idx, new_val); 5898 return -ERANGE; 5899 } 5900 if (res->fail_memsz_adjust) { 5901 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5902 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5903 prog->name, relo_idx, insn_idx); 5904 goto poison; 5905 } 5906 5907 orig_val = insn->off; 5908 insn->off = new_val; 5909 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5910 prog->name, relo_idx, insn_idx, orig_val, new_val); 5911 5912 if (res->new_sz != res->orig_sz) { 5913 int insn_bytes_sz, insn_bpf_sz; 5914 5915 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5916 if (insn_bytes_sz != res->orig_sz) { 5917 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5918 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5919 return -EINVAL; 5920 } 5921 5922 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5923 if (insn_bpf_sz < 0) { 5924 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5925 prog->name, relo_idx, insn_idx, res->new_sz); 5926 return -EINVAL; 5927 } 5928 5929 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5930 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5931 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5932 } 5933 break; 5934 case BPF_LD: { 5935 __u64 imm; 5936 5937 if (!is_ldimm64_insn(insn) || 5938 insn[0].src_reg != 0 || insn[0].off != 0 || 5939 insn_idx + 1 >= prog->insns_cnt || 5940 insn[1].code != 0 || insn[1].dst_reg != 0 || 5941 insn[1].src_reg != 0 || insn[1].off != 0) { 5942 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5943 prog->name, relo_idx, insn_idx); 5944 return -EINVAL; 5945 } 5946 5947 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5948 if (res->validate && imm != orig_val) { 5949 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5950 prog->name, relo_idx, 5951 insn_idx, (unsigned long long)imm, 5952 orig_val, new_val); 5953 return -EINVAL; 5954 } 5955 5956 insn[0].imm = new_val; 5957 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5958 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5959 prog->name, relo_idx, insn_idx, 5960 (unsigned long long)imm, new_val); 5961 break; 5962 } 5963 default: 5964 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5965 prog->name, relo_idx, insn_idx, insn->code, 5966 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5967 return -EINVAL; 5968 } 5969 5970 return 0; 5971 } 5972 5973 /* Output spec definition in the format: 5974 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5975 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5976 */ 5977 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5978 { 5979 const struct btf_type *t; 5980 const struct btf_enum *e; 5981 const char *s; 5982 __u32 type_id; 5983 int i; 5984 5985 type_id = spec->root_type_id; 5986 t = btf__type_by_id(spec->btf, type_id); 5987 s = btf__name_by_offset(spec->btf, t->name_off); 5988 5989 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5990 5991 if (core_relo_is_type_based(spec->relo_kind)) 5992 return; 5993 5994 if (core_relo_is_enumval_based(spec->relo_kind)) { 5995 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5996 e = btf_enum(t) + spec->raw_spec[0]; 5997 s = btf__name_by_offset(spec->btf, e->name_off); 5998 5999 libbpf_print(level, "::%s = %u", s, e->val); 6000 return; 6001 } 6002 6003 if (core_relo_is_field_based(spec->relo_kind)) { 6004 for (i = 0; i < spec->len; i++) { 6005 if (spec->spec[i].name) 6006 libbpf_print(level, ".%s", spec->spec[i].name); 6007 else if (i > 0 || spec->spec[i].idx > 0) 6008 libbpf_print(level, "[%u]", spec->spec[i].idx); 6009 } 6010 6011 libbpf_print(level, " ("); 6012 for (i = 0; i < spec->raw_len; i++) 6013 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 6014 6015 if (spec->bit_offset % 8) 6016 libbpf_print(level, " @ offset %u.%u)", 6017 spec->bit_offset / 8, spec->bit_offset % 8); 6018 else 6019 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 6020 return; 6021 } 6022 } 6023 6024 static size_t bpf_core_hash_fn(const void *key, void *ctx) 6025 { 6026 return (size_t)key; 6027 } 6028 6029 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 6030 { 6031 return k1 == k2; 6032 } 6033 6034 static void *u32_as_hash_key(__u32 x) 6035 { 6036 return (void *)(uintptr_t)x; 6037 } 6038 6039 /* 6040 * CO-RE relocate single instruction. 6041 * 6042 * The outline and important points of the algorithm: 6043 * 1. For given local type, find corresponding candidate target types. 6044 * Candidate type is a type with the same "essential" name, ignoring 6045 * everything after last triple underscore (___). E.g., `sample`, 6046 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 6047 * for each other. Names with triple underscore are referred to as 6048 * "flavors" and are useful, among other things, to allow to 6049 * specify/support incompatible variations of the same kernel struct, which 6050 * might differ between different kernel versions and/or build 6051 * configurations. 6052 * 6053 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 6054 * converter, when deduplicated BTF of a kernel still contains more than 6055 * one different types with the same name. In that case, ___2, ___3, etc 6056 * are appended starting from second name conflict. But start flavors are 6057 * also useful to be defined "locally", in BPF program, to extract same 6058 * data from incompatible changes between different kernel 6059 * versions/configurations. For instance, to handle field renames between 6060 * kernel versions, one can use two flavors of the struct name with the 6061 * same common name and use conditional relocations to extract that field, 6062 * depending on target kernel version. 6063 * 2. For each candidate type, try to match local specification to this 6064 * candidate target type. Matching involves finding corresponding 6065 * high-level spec accessors, meaning that all named fields should match, 6066 * as well as all array accesses should be within the actual bounds. Also, 6067 * types should be compatible (see bpf_core_fields_are_compat for details). 6068 * 3. It is supported and expected that there might be multiple flavors 6069 * matching the spec. As long as all the specs resolve to the same set of 6070 * offsets across all candidates, there is no error. If there is any 6071 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 6072 * imprefection of BTF deduplication, which can cause slight duplication of 6073 * the same BTF type, if some directly or indirectly referenced (by 6074 * pointer) type gets resolved to different actual types in different 6075 * object files. If such situation occurs, deduplicated BTF will end up 6076 * with two (or more) structurally identical types, which differ only in 6077 * types they refer to through pointer. This should be OK in most cases and 6078 * is not an error. 6079 * 4. Candidate types search is performed by linearly scanning through all 6080 * types in target BTF. It is anticipated that this is overall more 6081 * efficient memory-wise and not significantly worse (if not better) 6082 * CPU-wise compared to prebuilding a map from all local type names to 6083 * a list of candidate type names. It's also sped up by caching resolved 6084 * list of matching candidates per each local "root" type ID, that has at 6085 * least one bpf_core_relo associated with it. This list is shared 6086 * between multiple relocations for the same type ID and is updated as some 6087 * of the candidates are pruned due to structural incompatibility. 6088 */ 6089 static int bpf_core_apply_relo(struct bpf_program *prog, 6090 const struct bpf_core_relo *relo, 6091 int relo_idx, 6092 const struct btf *local_btf, 6093 struct hashmap *cand_cache) 6094 { 6095 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 6096 const void *type_key = u32_as_hash_key(relo->type_id); 6097 struct bpf_core_relo_res cand_res, targ_res; 6098 const struct btf_type *local_type; 6099 const char *local_name; 6100 struct core_cand_list *cands = NULL; 6101 __u32 local_id; 6102 const char *spec_str; 6103 int i, j, err; 6104 6105 local_id = relo->type_id; 6106 local_type = btf__type_by_id(local_btf, local_id); 6107 if (!local_type) 6108 return -EINVAL; 6109 6110 local_name = btf__name_by_offset(local_btf, local_type->name_off); 6111 if (!local_name) 6112 return -EINVAL; 6113 6114 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 6115 if (str_is_empty(spec_str)) 6116 return -EINVAL; 6117 6118 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 6119 if (err) { 6120 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 6121 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6122 str_is_empty(local_name) ? "<anon>" : local_name, 6123 spec_str, err); 6124 return -EINVAL; 6125 } 6126 6127 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 6128 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6129 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 6130 libbpf_print(LIBBPF_DEBUG, "\n"); 6131 6132 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 6133 if (relo->kind == BPF_TYPE_ID_LOCAL) { 6134 targ_res.validate = true; 6135 targ_res.poison = false; 6136 targ_res.orig_val = local_spec.root_type_id; 6137 targ_res.new_val = local_spec.root_type_id; 6138 goto patch_insn; 6139 } 6140 6141 /* libbpf doesn't support candidate search for anonymous types */ 6142 if (str_is_empty(spec_str)) { 6143 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 6144 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6145 return -EOPNOTSUPP; 6146 } 6147 6148 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 6149 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6150 if (IS_ERR(cands)) { 6151 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6152 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6153 local_name, PTR_ERR(cands)); 6154 return PTR_ERR(cands); 6155 } 6156 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6157 if (err) { 6158 bpf_core_free_cands(cands); 6159 return err; 6160 } 6161 } 6162 6163 for (i = 0, j = 0; i < cands->len; i++) { 6164 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6165 cands->cands[i].id, &cand_spec); 6166 if (err < 0) { 6167 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6168 prog->name, relo_idx, i); 6169 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6170 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6171 return err; 6172 } 6173 6174 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6175 relo_idx, err == 0 ? "non-matching" : "matching", i); 6176 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6177 libbpf_print(LIBBPF_DEBUG, "\n"); 6178 6179 if (err == 0) 6180 continue; 6181 6182 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6183 if (err) 6184 return err; 6185 6186 if (j == 0) { 6187 targ_res = cand_res; 6188 targ_spec = cand_spec; 6189 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6190 /* if there are many field relo candidates, they 6191 * should all resolve to the same bit offset 6192 */ 6193 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6194 prog->name, relo_idx, cand_spec.bit_offset, 6195 targ_spec.bit_offset); 6196 return -EINVAL; 6197 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6198 /* all candidates should result in the same relocation 6199 * decision and value, otherwise it's dangerous to 6200 * proceed due to ambiguity 6201 */ 6202 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6203 prog->name, relo_idx, 6204 cand_res.poison ? "failure" : "success", cand_res.new_val, 6205 targ_res.poison ? "failure" : "success", targ_res.new_val); 6206 return -EINVAL; 6207 } 6208 6209 cands->cands[j++] = cands->cands[i]; 6210 } 6211 6212 /* 6213 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6214 * existence checks or kernel version/config checks, it's expected 6215 * that we might not find any candidates. In this case, if field 6216 * wasn't found in any candidate, the list of candidates shouldn't 6217 * change at all, we'll just handle relocating appropriately, 6218 * depending on relo's kind. 6219 */ 6220 if (j > 0) 6221 cands->len = j; 6222 6223 /* 6224 * If no candidates were found, it might be both a programmer error, 6225 * as well as expected case, depending whether instruction w/ 6226 * relocation is guarded in some way that makes it unreachable (dead 6227 * code) if relocation can't be resolved. This is handled in 6228 * bpf_core_patch_insn() uniformly by replacing that instruction with 6229 * BPF helper call insn (using invalid helper ID). If that instruction 6230 * is indeed unreachable, then it will be ignored and eliminated by 6231 * verifier. If it was an error, then verifier will complain and point 6232 * to a specific instruction number in its log. 6233 */ 6234 if (j == 0) { 6235 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6236 prog->name, relo_idx); 6237 6238 /* calculate single target relo result explicitly */ 6239 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6240 if (err) 6241 return err; 6242 } 6243 6244 patch_insn: 6245 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6246 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6247 if (err) { 6248 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6249 prog->name, relo_idx, relo->insn_off, err); 6250 return -EINVAL; 6251 } 6252 6253 return 0; 6254 } 6255 6256 static int 6257 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6258 { 6259 const struct btf_ext_info_sec *sec; 6260 const struct bpf_core_relo *rec; 6261 const struct btf_ext_info *seg; 6262 struct hashmap_entry *entry; 6263 struct hashmap *cand_cache = NULL; 6264 struct bpf_program *prog; 6265 const char *sec_name; 6266 int i, err = 0, insn_idx, sec_idx; 6267 6268 if (obj->btf_ext->core_relo_info.len == 0) 6269 return 0; 6270 6271 if (targ_btf_path) { 6272 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6273 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6274 err = PTR_ERR(obj->btf_vmlinux_override); 6275 pr_warn("failed to parse target BTF: %d\n", err); 6276 return err; 6277 } 6278 } 6279 6280 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6281 if (IS_ERR(cand_cache)) { 6282 err = PTR_ERR(cand_cache); 6283 goto out; 6284 } 6285 6286 seg = &obj->btf_ext->core_relo_info; 6287 for_each_btf_ext_sec(seg, sec) { 6288 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6289 if (str_is_empty(sec_name)) { 6290 err = -EINVAL; 6291 goto out; 6292 } 6293 /* bpf_object's ELF is gone by now so it's not easy to find 6294 * section index by section name, but we can find *any* 6295 * bpf_program within desired section name and use it's 6296 * prog->sec_idx to do a proper search by section index and 6297 * instruction offset 6298 */ 6299 prog = NULL; 6300 for (i = 0; i < obj->nr_programs; i++) { 6301 prog = &obj->programs[i]; 6302 if (strcmp(prog->sec_name, sec_name) == 0) 6303 break; 6304 } 6305 if (!prog) { 6306 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6307 return -ENOENT; 6308 } 6309 sec_idx = prog->sec_idx; 6310 6311 pr_debug("sec '%s': found %d CO-RE relocations\n", 6312 sec_name, sec->num_info); 6313 6314 for_each_btf_ext_rec(seg, sec, i, rec) { 6315 insn_idx = rec->insn_off / BPF_INSN_SZ; 6316 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6317 if (!prog) { 6318 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6319 sec_name, insn_idx, i); 6320 err = -EINVAL; 6321 goto out; 6322 } 6323 /* no need to apply CO-RE relocation if the program is 6324 * not going to be loaded 6325 */ 6326 if (!prog->load) 6327 continue; 6328 6329 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6330 if (err) { 6331 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6332 prog->name, i, err); 6333 goto out; 6334 } 6335 } 6336 } 6337 6338 out: 6339 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6340 btf__free(obj->btf_vmlinux_override); 6341 obj->btf_vmlinux_override = NULL; 6342 6343 if (!IS_ERR_OR_NULL(cand_cache)) { 6344 hashmap__for_each_entry(cand_cache, entry, i) { 6345 bpf_core_free_cands(entry->value); 6346 } 6347 hashmap__free(cand_cache); 6348 } 6349 return err; 6350 } 6351 6352 /* Relocate data references within program code: 6353 * - map references; 6354 * - global variable references; 6355 * - extern references. 6356 */ 6357 static int 6358 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6359 { 6360 int i; 6361 6362 for (i = 0; i < prog->nr_reloc; i++) { 6363 struct reloc_desc *relo = &prog->reloc_desc[i]; 6364 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6365 struct extern_desc *ext; 6366 6367 switch (relo->type) { 6368 case RELO_LD64: 6369 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6370 insn[0].imm = obj->maps[relo->map_idx].fd; 6371 break; 6372 case RELO_DATA: 6373 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6374 insn[1].imm = insn[0].imm + relo->sym_off; 6375 insn[0].imm = obj->maps[relo->map_idx].fd; 6376 break; 6377 case RELO_EXTERN_VAR: 6378 ext = &obj->externs[relo->sym_off]; 6379 if (ext->type == EXT_KCFG) { 6380 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6381 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6382 insn[1].imm = ext->kcfg.data_off; 6383 } else /* EXT_KSYM */ { 6384 if (ext->ksym.type_id) { /* typed ksyms */ 6385 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6386 insn[0].imm = ext->ksym.kernel_btf_id; 6387 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6388 } else { /* typeless ksyms */ 6389 insn[0].imm = (__u32)ext->ksym.addr; 6390 insn[1].imm = ext->ksym.addr >> 32; 6391 } 6392 } 6393 break; 6394 case RELO_EXTERN_FUNC: 6395 ext = &obj->externs[relo->sym_off]; 6396 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6397 insn[0].imm = ext->ksym.kernel_btf_id; 6398 break; 6399 case RELO_SUBPROG_ADDR: 6400 insn[0].src_reg = BPF_PSEUDO_FUNC; 6401 /* will be handled as a follow up pass */ 6402 break; 6403 case RELO_CALL: 6404 /* will be handled as a follow up pass */ 6405 break; 6406 default: 6407 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6408 prog->name, i, relo->type); 6409 return -EINVAL; 6410 } 6411 } 6412 6413 return 0; 6414 } 6415 6416 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6417 const struct bpf_program *prog, 6418 const struct btf_ext_info *ext_info, 6419 void **prog_info, __u32 *prog_rec_cnt, 6420 __u32 *prog_rec_sz) 6421 { 6422 void *copy_start = NULL, *copy_end = NULL; 6423 void *rec, *rec_end, *new_prog_info; 6424 const struct btf_ext_info_sec *sec; 6425 size_t old_sz, new_sz; 6426 const char *sec_name; 6427 int i, off_adj; 6428 6429 for_each_btf_ext_sec(ext_info, sec) { 6430 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6431 if (!sec_name) 6432 return -EINVAL; 6433 if (strcmp(sec_name, prog->sec_name) != 0) 6434 continue; 6435 6436 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6437 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6438 6439 if (insn_off < prog->sec_insn_off) 6440 continue; 6441 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6442 break; 6443 6444 if (!copy_start) 6445 copy_start = rec; 6446 copy_end = rec + ext_info->rec_size; 6447 } 6448 6449 if (!copy_start) 6450 return -ENOENT; 6451 6452 /* append func/line info of a given (sub-)program to the main 6453 * program func/line info 6454 */ 6455 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6456 new_sz = old_sz + (copy_end - copy_start); 6457 new_prog_info = realloc(*prog_info, new_sz); 6458 if (!new_prog_info) 6459 return -ENOMEM; 6460 *prog_info = new_prog_info; 6461 *prog_rec_cnt = new_sz / ext_info->rec_size; 6462 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6463 6464 /* Kernel instruction offsets are in units of 8-byte 6465 * instructions, while .BTF.ext instruction offsets generated 6466 * by Clang are in units of bytes. So convert Clang offsets 6467 * into kernel offsets and adjust offset according to program 6468 * relocated position. 6469 */ 6470 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6471 rec = new_prog_info + old_sz; 6472 rec_end = new_prog_info + new_sz; 6473 for (; rec < rec_end; rec += ext_info->rec_size) { 6474 __u32 *insn_off = rec; 6475 6476 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6477 } 6478 *prog_rec_sz = ext_info->rec_size; 6479 return 0; 6480 } 6481 6482 return -ENOENT; 6483 } 6484 6485 static int 6486 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6487 struct bpf_program *main_prog, 6488 const struct bpf_program *prog) 6489 { 6490 int err; 6491 6492 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6493 * supprot func/line info 6494 */ 6495 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6496 return 0; 6497 6498 /* only attempt func info relocation if main program's func_info 6499 * relocation was successful 6500 */ 6501 if (main_prog != prog && !main_prog->func_info) 6502 goto line_info; 6503 6504 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6505 &main_prog->func_info, 6506 &main_prog->func_info_cnt, 6507 &main_prog->func_info_rec_size); 6508 if (err) { 6509 if (err != -ENOENT) { 6510 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6511 prog->name, err); 6512 return err; 6513 } 6514 if (main_prog->func_info) { 6515 /* 6516 * Some info has already been found but has problem 6517 * in the last btf_ext reloc. Must have to error out. 6518 */ 6519 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6520 return err; 6521 } 6522 /* Have problem loading the very first info. Ignore the rest. */ 6523 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6524 prog->name); 6525 } 6526 6527 line_info: 6528 /* don't relocate line info if main program's relocation failed */ 6529 if (main_prog != prog && !main_prog->line_info) 6530 return 0; 6531 6532 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6533 &main_prog->line_info, 6534 &main_prog->line_info_cnt, 6535 &main_prog->line_info_rec_size); 6536 if (err) { 6537 if (err != -ENOENT) { 6538 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6539 prog->name, err); 6540 return err; 6541 } 6542 if (main_prog->line_info) { 6543 /* 6544 * Some info has already been found but has problem 6545 * in the last btf_ext reloc. Must have to error out. 6546 */ 6547 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6548 return err; 6549 } 6550 /* Have problem loading the very first info. Ignore the rest. */ 6551 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6552 prog->name); 6553 } 6554 return 0; 6555 } 6556 6557 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6558 { 6559 size_t insn_idx = *(const size_t *)key; 6560 const struct reloc_desc *relo = elem; 6561 6562 if (insn_idx == relo->insn_idx) 6563 return 0; 6564 return insn_idx < relo->insn_idx ? -1 : 1; 6565 } 6566 6567 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6568 { 6569 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6570 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6571 } 6572 6573 static int 6574 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6575 struct bpf_program *prog) 6576 { 6577 size_t sub_insn_idx, insn_idx, new_cnt; 6578 struct bpf_program *subprog; 6579 struct bpf_insn *insns, *insn; 6580 struct reloc_desc *relo; 6581 int err; 6582 6583 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6584 if (err) 6585 return err; 6586 6587 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6588 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6589 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6590 continue; 6591 6592 relo = find_prog_insn_relo(prog, insn_idx); 6593 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6594 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6595 prog->name, insn_idx, relo->type); 6596 return -LIBBPF_ERRNO__RELOC; 6597 } 6598 if (relo) { 6599 /* sub-program instruction index is a combination of 6600 * an offset of a symbol pointed to by relocation and 6601 * call instruction's imm field; for global functions, 6602 * call always has imm = -1, but for static functions 6603 * relocation is against STT_SECTION and insn->imm 6604 * points to a start of a static function 6605 * 6606 * for subprog addr relocation, the relo->sym_off + insn->imm is 6607 * the byte offset in the corresponding section. 6608 */ 6609 if (relo->type == RELO_CALL) 6610 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6611 else 6612 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6613 } else if (insn_is_pseudo_func(insn)) { 6614 /* 6615 * RELO_SUBPROG_ADDR relo is always emitted even if both 6616 * functions are in the same section, so it shouldn't reach here. 6617 */ 6618 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6619 prog->name, insn_idx); 6620 return -LIBBPF_ERRNO__RELOC; 6621 } else { 6622 /* if subprogram call is to a static function within 6623 * the same ELF section, there won't be any relocation 6624 * emitted, but it also means there is no additional 6625 * offset necessary, insns->imm is relative to 6626 * instruction's original position within the section 6627 */ 6628 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6629 } 6630 6631 /* we enforce that sub-programs should be in .text section */ 6632 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6633 if (!subprog) { 6634 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6635 prog->name); 6636 return -LIBBPF_ERRNO__RELOC; 6637 } 6638 6639 /* if it's the first call instruction calling into this 6640 * subprogram (meaning this subprog hasn't been processed 6641 * yet) within the context of current main program: 6642 * - append it at the end of main program's instructions blog; 6643 * - process is recursively, while current program is put on hold; 6644 * - if that subprogram calls some other not yet processes 6645 * subprogram, same thing will happen recursively until 6646 * there are no more unprocesses subprograms left to append 6647 * and relocate. 6648 */ 6649 if (subprog->sub_insn_off == 0) { 6650 subprog->sub_insn_off = main_prog->insns_cnt; 6651 6652 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6653 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6654 if (!insns) { 6655 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6656 return -ENOMEM; 6657 } 6658 main_prog->insns = insns; 6659 main_prog->insns_cnt = new_cnt; 6660 6661 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6662 subprog->insns_cnt * sizeof(*insns)); 6663 6664 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6665 main_prog->name, subprog->insns_cnt, subprog->name); 6666 6667 err = bpf_object__reloc_code(obj, main_prog, subprog); 6668 if (err) 6669 return err; 6670 } 6671 6672 /* main_prog->insns memory could have been re-allocated, so 6673 * calculate pointer again 6674 */ 6675 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6676 /* calculate correct instruction position within current main 6677 * prog; each main prog can have a different set of 6678 * subprograms appended (potentially in different order as 6679 * well), so position of any subprog can be different for 6680 * different main programs */ 6681 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6682 6683 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6684 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6685 } 6686 6687 return 0; 6688 } 6689 6690 /* 6691 * Relocate sub-program calls. 6692 * 6693 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6694 * main prog) is processed separately. For each subprog (non-entry functions, 6695 * that can be called from either entry progs or other subprogs) gets their 6696 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6697 * hasn't been yet appended and relocated within current main prog. Once its 6698 * relocated, sub_insn_off will point at the position within current main prog 6699 * where given subprog was appended. This will further be used to relocate all 6700 * the call instructions jumping into this subprog. 6701 * 6702 * We start with main program and process all call instructions. If the call 6703 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6704 * is zero), subprog instructions are appended at the end of main program's 6705 * instruction array. Then main program is "put on hold" while we recursively 6706 * process newly appended subprogram. If that subprogram calls into another 6707 * subprogram that hasn't been appended, new subprogram is appended again to 6708 * the *main* prog's instructions (subprog's instructions are always left 6709 * untouched, as they need to be in unmodified state for subsequent main progs 6710 * and subprog instructions are always sent only as part of a main prog) and 6711 * the process continues recursively. Once all the subprogs called from a main 6712 * prog or any of its subprogs are appended (and relocated), all their 6713 * positions within finalized instructions array are known, so it's easy to 6714 * rewrite call instructions with correct relative offsets, corresponding to 6715 * desired target subprog. 6716 * 6717 * Its important to realize that some subprogs might not be called from some 6718 * main prog and any of its called/used subprogs. Those will keep their 6719 * subprog->sub_insn_off as zero at all times and won't be appended to current 6720 * main prog and won't be relocated within the context of current main prog. 6721 * They might still be used from other main progs later. 6722 * 6723 * Visually this process can be shown as below. Suppose we have two main 6724 * programs mainA and mainB and BPF object contains three subprogs: subA, 6725 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6726 * subC both call subB: 6727 * 6728 * +--------+ +-------+ 6729 * | v v | 6730 * +--+---+ +--+-+-+ +---+--+ 6731 * | subA | | subB | | subC | 6732 * +--+---+ +------+ +---+--+ 6733 * ^ ^ 6734 * | | 6735 * +---+-------+ +------+----+ 6736 * | mainA | | mainB | 6737 * +-----------+ +-----------+ 6738 * 6739 * We'll start relocating mainA, will find subA, append it and start 6740 * processing sub A recursively: 6741 * 6742 * +-----------+------+ 6743 * | mainA | subA | 6744 * +-----------+------+ 6745 * 6746 * At this point we notice that subB is used from subA, so we append it and 6747 * relocate (there are no further subcalls from subB): 6748 * 6749 * +-----------+------+------+ 6750 * | mainA | subA | subB | 6751 * +-----------+------+------+ 6752 * 6753 * At this point, we relocate subA calls, then go one level up and finish with 6754 * relocatin mainA calls. mainA is done. 6755 * 6756 * For mainB process is similar but results in different order. We start with 6757 * mainB and skip subA and subB, as mainB never calls them (at least 6758 * directly), but we see subC is needed, so we append and start processing it: 6759 * 6760 * +-----------+------+ 6761 * | mainB | subC | 6762 * +-----------+------+ 6763 * Now we see subC needs subB, so we go back to it, append and relocate it: 6764 * 6765 * +-----------+------+------+ 6766 * | mainB | subC | subB | 6767 * +-----------+------+------+ 6768 * 6769 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6770 */ 6771 static int 6772 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6773 { 6774 struct bpf_program *subprog; 6775 int i, err; 6776 6777 /* mark all subprogs as not relocated (yet) within the context of 6778 * current main program 6779 */ 6780 for (i = 0; i < obj->nr_programs; i++) { 6781 subprog = &obj->programs[i]; 6782 if (!prog_is_subprog(obj, subprog)) 6783 continue; 6784 6785 subprog->sub_insn_off = 0; 6786 } 6787 6788 err = bpf_object__reloc_code(obj, prog, prog); 6789 if (err) 6790 return err; 6791 6792 6793 return 0; 6794 } 6795 6796 static int 6797 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6798 { 6799 struct bpf_program *prog; 6800 size_t i; 6801 int err; 6802 6803 if (obj->btf_ext) { 6804 err = bpf_object__relocate_core(obj, targ_btf_path); 6805 if (err) { 6806 pr_warn("failed to perform CO-RE relocations: %d\n", 6807 err); 6808 return err; 6809 } 6810 } 6811 /* relocate data references first for all programs and sub-programs, 6812 * as they don't change relative to code locations, so subsequent 6813 * subprogram processing won't need to re-calculate any of them 6814 */ 6815 for (i = 0; i < obj->nr_programs; i++) { 6816 prog = &obj->programs[i]; 6817 err = bpf_object__relocate_data(obj, prog); 6818 if (err) { 6819 pr_warn("prog '%s': failed to relocate data references: %d\n", 6820 prog->name, err); 6821 return err; 6822 } 6823 } 6824 /* now relocate subprogram calls and append used subprograms to main 6825 * programs; each copy of subprogram code needs to be relocated 6826 * differently for each main program, because its code location might 6827 * have changed 6828 */ 6829 for (i = 0; i < obj->nr_programs; i++) { 6830 prog = &obj->programs[i]; 6831 /* sub-program's sub-calls are relocated within the context of 6832 * its main program only 6833 */ 6834 if (prog_is_subprog(obj, prog)) 6835 continue; 6836 6837 err = bpf_object__relocate_calls(obj, prog); 6838 if (err) { 6839 pr_warn("prog '%s': failed to relocate calls: %d\n", 6840 prog->name, err); 6841 return err; 6842 } 6843 } 6844 /* free up relocation descriptors */ 6845 for (i = 0; i < obj->nr_programs; i++) { 6846 prog = &obj->programs[i]; 6847 zfree(&prog->reloc_desc); 6848 prog->nr_reloc = 0; 6849 } 6850 return 0; 6851 } 6852 6853 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6854 GElf_Shdr *shdr, Elf_Data *data); 6855 6856 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6857 GElf_Shdr *shdr, Elf_Data *data) 6858 { 6859 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6860 int i, j, nrels, new_sz; 6861 const struct btf_var_secinfo *vi = NULL; 6862 const struct btf_type *sec, *var, *def; 6863 struct bpf_map *map = NULL, *targ_map; 6864 const struct btf_member *member; 6865 const char *name, *mname; 6866 Elf_Data *symbols; 6867 unsigned int moff; 6868 GElf_Sym sym; 6869 GElf_Rel rel; 6870 void *tmp; 6871 6872 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6873 return -EINVAL; 6874 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6875 if (!sec) 6876 return -EINVAL; 6877 6878 symbols = obj->efile.symbols; 6879 nrels = shdr->sh_size / shdr->sh_entsize; 6880 for (i = 0; i < nrels; i++) { 6881 if (!gelf_getrel(data, i, &rel)) { 6882 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6883 return -LIBBPF_ERRNO__FORMAT; 6884 } 6885 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6886 pr_warn(".maps relo #%d: symbol %zx not found\n", 6887 i, (size_t)GELF_R_SYM(rel.r_info)); 6888 return -LIBBPF_ERRNO__FORMAT; 6889 } 6890 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6891 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6892 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6893 i, name); 6894 return -LIBBPF_ERRNO__RELOC; 6895 } 6896 6897 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6898 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6899 (size_t)rel.r_offset, sym.st_name, name); 6900 6901 for (j = 0; j < obj->nr_maps; j++) { 6902 map = &obj->maps[j]; 6903 if (map->sec_idx != obj->efile.btf_maps_shndx) 6904 continue; 6905 6906 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6907 if (vi->offset <= rel.r_offset && 6908 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6909 break; 6910 } 6911 if (j == obj->nr_maps) { 6912 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6913 i, name, (size_t)rel.r_offset); 6914 return -EINVAL; 6915 } 6916 6917 if (!bpf_map_type__is_map_in_map(map->def.type)) 6918 return -EINVAL; 6919 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6920 map->def.key_size != sizeof(int)) { 6921 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6922 i, map->name, sizeof(int)); 6923 return -EINVAL; 6924 } 6925 6926 targ_map = bpf_object__find_map_by_name(obj, name); 6927 if (!targ_map) 6928 return -ESRCH; 6929 6930 var = btf__type_by_id(obj->btf, vi->type); 6931 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6932 if (btf_vlen(def) == 0) 6933 return -EINVAL; 6934 member = btf_members(def) + btf_vlen(def) - 1; 6935 mname = btf__name_by_offset(obj->btf, member->name_off); 6936 if (strcmp(mname, "values")) 6937 return -EINVAL; 6938 6939 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6940 if (rel.r_offset - vi->offset < moff) 6941 return -EINVAL; 6942 6943 moff = rel.r_offset - vi->offset - moff; 6944 /* here we use BPF pointer size, which is always 64 bit, as we 6945 * are parsing ELF that was built for BPF target 6946 */ 6947 if (moff % bpf_ptr_sz) 6948 return -EINVAL; 6949 moff /= bpf_ptr_sz; 6950 if (moff >= map->init_slots_sz) { 6951 new_sz = moff + 1; 6952 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6953 if (!tmp) 6954 return -ENOMEM; 6955 map->init_slots = tmp; 6956 memset(map->init_slots + map->init_slots_sz, 0, 6957 (new_sz - map->init_slots_sz) * host_ptr_sz); 6958 map->init_slots_sz = new_sz; 6959 } 6960 map->init_slots[moff] = targ_map; 6961 6962 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6963 i, map->name, moff, name); 6964 } 6965 6966 return 0; 6967 } 6968 6969 static int cmp_relocs(const void *_a, const void *_b) 6970 { 6971 const struct reloc_desc *a = _a; 6972 const struct reloc_desc *b = _b; 6973 6974 if (a->insn_idx != b->insn_idx) 6975 return a->insn_idx < b->insn_idx ? -1 : 1; 6976 6977 /* no two relocations should have the same insn_idx, but ... */ 6978 if (a->type != b->type) 6979 return a->type < b->type ? -1 : 1; 6980 6981 return 0; 6982 } 6983 6984 static int bpf_object__collect_relos(struct bpf_object *obj) 6985 { 6986 int i, err; 6987 6988 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6989 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6990 Elf_Data *data = obj->efile.reloc_sects[i].data; 6991 int idx = shdr->sh_info; 6992 6993 if (shdr->sh_type != SHT_REL) { 6994 pr_warn("internal error at %d\n", __LINE__); 6995 return -LIBBPF_ERRNO__INTERNAL; 6996 } 6997 6998 if (idx == obj->efile.st_ops_shndx) 6999 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7000 else if (idx == obj->efile.btf_maps_shndx) 7001 err = bpf_object__collect_map_relos(obj, shdr, data); 7002 else 7003 err = bpf_object__collect_prog_relos(obj, shdr, data); 7004 if (err) 7005 return err; 7006 } 7007 7008 for (i = 0; i < obj->nr_programs; i++) { 7009 struct bpf_program *p = &obj->programs[i]; 7010 7011 if (!p->nr_reloc) 7012 continue; 7013 7014 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 7015 } 7016 return 0; 7017 } 7018 7019 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7020 { 7021 if (BPF_CLASS(insn->code) == BPF_JMP && 7022 BPF_OP(insn->code) == BPF_CALL && 7023 BPF_SRC(insn->code) == BPF_K && 7024 insn->src_reg == 0 && 7025 insn->dst_reg == 0) { 7026 *func_id = insn->imm; 7027 return true; 7028 } 7029 return false; 7030 } 7031 7032 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7033 { 7034 struct bpf_insn *insn = prog->insns; 7035 enum bpf_func_id func_id; 7036 int i; 7037 7038 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7039 if (!insn_is_helper_call(insn, &func_id)) 7040 continue; 7041 7042 /* on kernels that don't yet support 7043 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7044 * to bpf_probe_read() which works well for old kernels 7045 */ 7046 switch (func_id) { 7047 case BPF_FUNC_probe_read_kernel: 7048 case BPF_FUNC_probe_read_user: 7049 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 7050 insn->imm = BPF_FUNC_probe_read; 7051 break; 7052 case BPF_FUNC_probe_read_kernel_str: 7053 case BPF_FUNC_probe_read_user_str: 7054 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 7055 insn->imm = BPF_FUNC_probe_read_str; 7056 break; 7057 default: 7058 break; 7059 } 7060 } 7061 return 0; 7062 } 7063 7064 static int 7065 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 7066 char *license, __u32 kern_version, int *pfd) 7067 { 7068 struct bpf_prog_load_params load_attr = {}; 7069 char *cp, errmsg[STRERR_BUFSIZE]; 7070 size_t log_buf_size = 0; 7071 char *log_buf = NULL; 7072 int btf_fd, ret; 7073 7074 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7075 /* 7076 * The program type must be set. Most likely we couldn't find a proper 7077 * section definition at load time, and thus we didn't infer the type. 7078 */ 7079 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7080 prog->name, prog->sec_name); 7081 return -EINVAL; 7082 } 7083 7084 if (!insns || !insns_cnt) 7085 return -EINVAL; 7086 7087 load_attr.prog_type = prog->type; 7088 /* old kernels might not support specifying expected_attach_type */ 7089 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 7090 prog->sec_def->is_exp_attach_type_optional) 7091 load_attr.expected_attach_type = 0; 7092 else 7093 load_attr.expected_attach_type = prog->expected_attach_type; 7094 if (kernel_supports(FEAT_PROG_NAME)) 7095 load_attr.name = prog->name; 7096 load_attr.insns = insns; 7097 load_attr.insn_cnt = insns_cnt; 7098 load_attr.license = license; 7099 load_attr.attach_btf_id = prog->attach_btf_id; 7100 if (prog->attach_prog_fd) 7101 load_attr.attach_prog_fd = prog->attach_prog_fd; 7102 else 7103 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7104 load_attr.attach_btf_id = prog->attach_btf_id; 7105 load_attr.kern_version = kern_version; 7106 load_attr.prog_ifindex = prog->prog_ifindex; 7107 7108 /* specify func_info/line_info only if kernel supports them */ 7109 btf_fd = bpf_object__btf_fd(prog->obj); 7110 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 7111 load_attr.prog_btf_fd = btf_fd; 7112 load_attr.func_info = prog->func_info; 7113 load_attr.func_info_rec_size = prog->func_info_rec_size; 7114 load_attr.func_info_cnt = prog->func_info_cnt; 7115 load_attr.line_info = prog->line_info; 7116 load_attr.line_info_rec_size = prog->line_info_rec_size; 7117 load_attr.line_info_cnt = prog->line_info_cnt; 7118 } 7119 load_attr.log_level = prog->log_level; 7120 load_attr.prog_flags = prog->prog_flags; 7121 7122 retry_load: 7123 if (log_buf_size) { 7124 log_buf = malloc(log_buf_size); 7125 if (!log_buf) 7126 return -ENOMEM; 7127 7128 *log_buf = 0; 7129 } 7130 7131 load_attr.log_buf = log_buf; 7132 load_attr.log_buf_sz = log_buf_size; 7133 ret = libbpf__bpf_prog_load(&load_attr); 7134 7135 if (ret >= 0) { 7136 if (log_buf && load_attr.log_level) 7137 pr_debug("verifier log:\n%s", log_buf); 7138 7139 if (prog->obj->rodata_map_idx >= 0 && 7140 kernel_supports(FEAT_PROG_BIND_MAP)) { 7141 struct bpf_map *rodata_map = 7142 &prog->obj->maps[prog->obj->rodata_map_idx]; 7143 7144 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 7145 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7146 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 7147 prog->name, cp); 7148 /* Don't fail hard if can't bind rodata. */ 7149 } 7150 } 7151 7152 *pfd = ret; 7153 ret = 0; 7154 goto out; 7155 } 7156 7157 if (!log_buf || errno == ENOSPC) { 7158 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7159 log_buf_size << 1); 7160 7161 free(log_buf); 7162 goto retry_load; 7163 } 7164 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7165 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7166 pr_warn("load bpf program failed: %s\n", cp); 7167 pr_perm_msg(ret); 7168 7169 if (log_buf && log_buf[0] != '\0') { 7170 ret = -LIBBPF_ERRNO__VERIFY; 7171 pr_warn("-- BEGIN DUMP LOG ---\n"); 7172 pr_warn("\n%s\n", log_buf); 7173 pr_warn("-- END LOG --\n"); 7174 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7175 pr_warn("Program too large (%zu insns), at most %d insns\n", 7176 load_attr.insn_cnt, BPF_MAXINSNS); 7177 ret = -LIBBPF_ERRNO__PROG2BIG; 7178 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7179 /* Wrong program type? */ 7180 int fd; 7181 7182 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7183 load_attr.expected_attach_type = 0; 7184 load_attr.log_buf = NULL; 7185 load_attr.log_buf_sz = 0; 7186 fd = libbpf__bpf_prog_load(&load_attr); 7187 if (fd >= 0) { 7188 close(fd); 7189 ret = -LIBBPF_ERRNO__PROGTYPE; 7190 goto out; 7191 } 7192 } 7193 7194 out: 7195 free(log_buf); 7196 return ret; 7197 } 7198 7199 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7200 7201 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7202 { 7203 int err = 0, fd, i; 7204 7205 if (prog->obj->loaded) { 7206 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7207 return -EINVAL; 7208 } 7209 7210 if ((prog->type == BPF_PROG_TYPE_TRACING || 7211 prog->type == BPF_PROG_TYPE_LSM || 7212 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7213 int btf_obj_fd = 0, btf_type_id = 0; 7214 7215 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7216 if (err) 7217 return err; 7218 7219 prog->attach_btf_obj_fd = btf_obj_fd; 7220 prog->attach_btf_id = btf_type_id; 7221 } 7222 7223 if (prog->instances.nr < 0 || !prog->instances.fds) { 7224 if (prog->preprocessor) { 7225 pr_warn("Internal error: can't load program '%s'\n", 7226 prog->name); 7227 return -LIBBPF_ERRNO__INTERNAL; 7228 } 7229 7230 prog->instances.fds = malloc(sizeof(int)); 7231 if (!prog->instances.fds) { 7232 pr_warn("Not enough memory for BPF fds\n"); 7233 return -ENOMEM; 7234 } 7235 prog->instances.nr = 1; 7236 prog->instances.fds[0] = -1; 7237 } 7238 7239 if (!prog->preprocessor) { 7240 if (prog->instances.nr != 1) { 7241 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7242 prog->name, prog->instances.nr); 7243 } 7244 err = load_program(prog, prog->insns, prog->insns_cnt, 7245 license, kern_ver, &fd); 7246 if (!err) 7247 prog->instances.fds[0] = fd; 7248 goto out; 7249 } 7250 7251 for (i = 0; i < prog->instances.nr; i++) { 7252 struct bpf_prog_prep_result result; 7253 bpf_program_prep_t preprocessor = prog->preprocessor; 7254 7255 memset(&result, 0, sizeof(result)); 7256 err = preprocessor(prog, i, prog->insns, 7257 prog->insns_cnt, &result); 7258 if (err) { 7259 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7260 i, prog->name); 7261 goto out; 7262 } 7263 7264 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7265 pr_debug("Skip loading the %dth instance of program '%s'\n", 7266 i, prog->name); 7267 prog->instances.fds[i] = -1; 7268 if (result.pfd) 7269 *result.pfd = -1; 7270 continue; 7271 } 7272 7273 err = load_program(prog, result.new_insn_ptr, 7274 result.new_insn_cnt, license, kern_ver, &fd); 7275 if (err) { 7276 pr_warn("Loading the %dth instance of program '%s' failed\n", 7277 i, prog->name); 7278 goto out; 7279 } 7280 7281 if (result.pfd) 7282 *result.pfd = fd; 7283 prog->instances.fds[i] = fd; 7284 } 7285 out: 7286 if (err) 7287 pr_warn("failed to load program '%s'\n", prog->name); 7288 zfree(&prog->insns); 7289 prog->insns_cnt = 0; 7290 return err; 7291 } 7292 7293 static int 7294 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7295 { 7296 struct bpf_program *prog; 7297 size_t i; 7298 int err; 7299 7300 for (i = 0; i < obj->nr_programs; i++) { 7301 prog = &obj->programs[i]; 7302 err = bpf_object__sanitize_prog(obj, prog); 7303 if (err) 7304 return err; 7305 } 7306 7307 for (i = 0; i < obj->nr_programs; i++) { 7308 prog = &obj->programs[i]; 7309 if (prog_is_subprog(obj, prog)) 7310 continue; 7311 if (!prog->load) { 7312 pr_debug("prog '%s': skipped loading\n", prog->name); 7313 continue; 7314 } 7315 prog->log_level |= log_level; 7316 err = bpf_program__load(prog, obj->license, obj->kern_version); 7317 if (err) 7318 return err; 7319 } 7320 return 0; 7321 } 7322 7323 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7324 7325 static struct bpf_object * 7326 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7327 const struct bpf_object_open_opts *opts) 7328 { 7329 const char *obj_name, *kconfig; 7330 struct bpf_program *prog; 7331 struct bpf_object *obj; 7332 char tmp_name[64]; 7333 int err; 7334 7335 if (elf_version(EV_CURRENT) == EV_NONE) { 7336 pr_warn("failed to init libelf for %s\n", 7337 path ? : "(mem buf)"); 7338 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7339 } 7340 7341 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7342 return ERR_PTR(-EINVAL); 7343 7344 obj_name = OPTS_GET(opts, object_name, NULL); 7345 if (obj_buf) { 7346 if (!obj_name) { 7347 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7348 (unsigned long)obj_buf, 7349 (unsigned long)obj_buf_sz); 7350 obj_name = tmp_name; 7351 } 7352 path = obj_name; 7353 pr_debug("loading object '%s' from buffer\n", obj_name); 7354 } 7355 7356 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7357 if (IS_ERR(obj)) 7358 return obj; 7359 7360 kconfig = OPTS_GET(opts, kconfig, NULL); 7361 if (kconfig) { 7362 obj->kconfig = strdup(kconfig); 7363 if (!obj->kconfig) 7364 return ERR_PTR(-ENOMEM); 7365 } 7366 7367 err = bpf_object__elf_init(obj); 7368 err = err ? : bpf_object__check_endianness(obj); 7369 err = err ? : bpf_object__elf_collect(obj); 7370 err = err ? : bpf_object__collect_externs(obj); 7371 err = err ? : bpf_object__finalize_btf(obj); 7372 err = err ? : bpf_object__init_maps(obj, opts); 7373 err = err ? : bpf_object__collect_relos(obj); 7374 if (err) 7375 goto out; 7376 bpf_object__elf_finish(obj); 7377 7378 bpf_object__for_each_program(prog, obj) { 7379 prog->sec_def = find_sec_def(prog->sec_name); 7380 if (!prog->sec_def) { 7381 /* couldn't guess, but user might manually specify */ 7382 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7383 prog->name, prog->sec_name); 7384 continue; 7385 } 7386 7387 if (prog->sec_def->is_sleepable) 7388 prog->prog_flags |= BPF_F_SLEEPABLE; 7389 bpf_program__set_type(prog, prog->sec_def->prog_type); 7390 bpf_program__set_expected_attach_type(prog, 7391 prog->sec_def->expected_attach_type); 7392 7393 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7394 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7395 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7396 } 7397 7398 return obj; 7399 out: 7400 bpf_object__close(obj); 7401 return ERR_PTR(err); 7402 } 7403 7404 static struct bpf_object * 7405 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7406 { 7407 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7408 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7409 ); 7410 7411 /* param validation */ 7412 if (!attr->file) 7413 return NULL; 7414 7415 pr_debug("loading %s\n", attr->file); 7416 return __bpf_object__open(attr->file, NULL, 0, &opts); 7417 } 7418 7419 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7420 { 7421 return __bpf_object__open_xattr(attr, 0); 7422 } 7423 7424 struct bpf_object *bpf_object__open(const char *path) 7425 { 7426 struct bpf_object_open_attr attr = { 7427 .file = path, 7428 .prog_type = BPF_PROG_TYPE_UNSPEC, 7429 }; 7430 7431 return bpf_object__open_xattr(&attr); 7432 } 7433 7434 struct bpf_object * 7435 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7436 { 7437 if (!path) 7438 return ERR_PTR(-EINVAL); 7439 7440 pr_debug("loading %s\n", path); 7441 7442 return __bpf_object__open(path, NULL, 0, opts); 7443 } 7444 7445 struct bpf_object * 7446 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7447 const struct bpf_object_open_opts *opts) 7448 { 7449 if (!obj_buf || obj_buf_sz == 0) 7450 return ERR_PTR(-EINVAL); 7451 7452 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7453 } 7454 7455 struct bpf_object * 7456 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7457 const char *name) 7458 { 7459 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7460 .object_name = name, 7461 /* wrong default, but backwards-compatible */ 7462 .relaxed_maps = true, 7463 ); 7464 7465 /* returning NULL is wrong, but backwards-compatible */ 7466 if (!obj_buf || obj_buf_sz == 0) 7467 return NULL; 7468 7469 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7470 } 7471 7472 int bpf_object__unload(struct bpf_object *obj) 7473 { 7474 size_t i; 7475 7476 if (!obj) 7477 return -EINVAL; 7478 7479 for (i = 0; i < obj->nr_maps; i++) { 7480 zclose(obj->maps[i].fd); 7481 if (obj->maps[i].st_ops) 7482 zfree(&obj->maps[i].st_ops->kern_vdata); 7483 } 7484 7485 for (i = 0; i < obj->nr_programs; i++) 7486 bpf_program__unload(&obj->programs[i]); 7487 7488 return 0; 7489 } 7490 7491 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7492 { 7493 struct bpf_map *m; 7494 7495 bpf_object__for_each_map(m, obj) { 7496 if (!bpf_map__is_internal(m)) 7497 continue; 7498 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7499 pr_warn("kernel doesn't support global data\n"); 7500 return -ENOTSUP; 7501 } 7502 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7503 m->def.map_flags ^= BPF_F_MMAPABLE; 7504 } 7505 7506 return 0; 7507 } 7508 7509 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7510 { 7511 char sym_type, sym_name[500]; 7512 unsigned long long sym_addr; 7513 const struct btf_type *t; 7514 struct extern_desc *ext; 7515 int ret, err = 0; 7516 FILE *f; 7517 7518 f = fopen("/proc/kallsyms", "r"); 7519 if (!f) { 7520 err = -errno; 7521 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7522 return err; 7523 } 7524 7525 while (true) { 7526 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7527 &sym_addr, &sym_type, sym_name); 7528 if (ret == EOF && feof(f)) 7529 break; 7530 if (ret != 3) { 7531 pr_warn("failed to read kallsyms entry: %d\n", ret); 7532 err = -EINVAL; 7533 goto out; 7534 } 7535 7536 ext = find_extern_by_name(obj, sym_name); 7537 if (!ext || ext->type != EXT_KSYM) 7538 continue; 7539 7540 t = btf__type_by_id(obj->btf, ext->btf_id); 7541 if (!btf_is_var(t)) 7542 continue; 7543 7544 if (ext->is_set && ext->ksym.addr != sym_addr) { 7545 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7546 sym_name, ext->ksym.addr, sym_addr); 7547 err = -EINVAL; 7548 goto out; 7549 } 7550 if (!ext->is_set) { 7551 ext->is_set = true; 7552 ext->ksym.addr = sym_addr; 7553 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7554 } 7555 } 7556 7557 out: 7558 fclose(f); 7559 return err; 7560 } 7561 7562 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7563 __u16 kind, struct btf **res_btf, 7564 int *res_btf_fd) 7565 { 7566 int i, id, btf_fd, err; 7567 struct btf *btf; 7568 7569 btf = obj->btf_vmlinux; 7570 btf_fd = 0; 7571 id = btf__find_by_name_kind(btf, ksym_name, kind); 7572 7573 if (id == -ENOENT) { 7574 err = load_module_btfs(obj); 7575 if (err) 7576 return err; 7577 7578 for (i = 0; i < obj->btf_module_cnt; i++) { 7579 btf = obj->btf_modules[i].btf; 7580 /* we assume module BTF FD is always >0 */ 7581 btf_fd = obj->btf_modules[i].fd; 7582 id = btf__find_by_name_kind(btf, ksym_name, kind); 7583 if (id != -ENOENT) 7584 break; 7585 } 7586 } 7587 if (id <= 0) { 7588 pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7589 __btf_kind_str(kind), ksym_name); 7590 return -ESRCH; 7591 } 7592 7593 *res_btf = btf; 7594 *res_btf_fd = btf_fd; 7595 return id; 7596 } 7597 7598 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7599 struct extern_desc *ext) 7600 { 7601 const struct btf_type *targ_var, *targ_type; 7602 __u32 targ_type_id, local_type_id; 7603 const char *targ_var_name; 7604 int id, btf_fd = 0, err; 7605 struct btf *btf = NULL; 7606 7607 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 7608 if (id < 0) 7609 return id; 7610 7611 /* find local type_id */ 7612 local_type_id = ext->ksym.type_id; 7613 7614 /* find target type_id */ 7615 targ_var = btf__type_by_id(btf, id); 7616 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7617 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7618 7619 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7620 btf, targ_type_id); 7621 if (err <= 0) { 7622 const struct btf_type *local_type; 7623 const char *targ_name, *local_name; 7624 7625 local_type = btf__type_by_id(obj->btf, local_type_id); 7626 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7627 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7628 7629 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7630 ext->name, local_type_id, 7631 btf_kind_str(local_type), local_name, targ_type_id, 7632 btf_kind_str(targ_type), targ_name); 7633 return -EINVAL; 7634 } 7635 7636 ext->is_set = true; 7637 ext->ksym.kernel_btf_obj_fd = btf_fd; 7638 ext->ksym.kernel_btf_id = id; 7639 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7640 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7641 7642 return 0; 7643 } 7644 7645 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7646 struct extern_desc *ext) 7647 { 7648 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7649 const struct btf_type *kern_func; 7650 struct btf *kern_btf = NULL; 7651 int ret, kern_btf_fd = 0; 7652 7653 local_func_proto_id = ext->ksym.type_id; 7654 7655 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 7656 &kern_btf, &kern_btf_fd); 7657 if (kfunc_id < 0) { 7658 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 7659 ext->name); 7660 return kfunc_id; 7661 } 7662 7663 if (kern_btf != obj->btf_vmlinux) { 7664 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 7665 ext->name); 7666 return -ENOTSUP; 7667 } 7668 7669 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7670 kfunc_proto_id = kern_func->type; 7671 7672 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7673 kern_btf, kfunc_proto_id); 7674 if (ret <= 0) { 7675 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7676 ext->name, local_func_proto_id, kfunc_proto_id); 7677 return -EINVAL; 7678 } 7679 7680 ext->is_set = true; 7681 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 7682 ext->ksym.kernel_btf_id = kfunc_id; 7683 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7684 ext->name, kfunc_id); 7685 7686 return 0; 7687 } 7688 7689 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7690 { 7691 const struct btf_type *t; 7692 struct extern_desc *ext; 7693 int i, err; 7694 7695 for (i = 0; i < obj->nr_extern; i++) { 7696 ext = &obj->externs[i]; 7697 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7698 continue; 7699 7700 t = btf__type_by_id(obj->btf, ext->btf_id); 7701 if (btf_is_var(t)) 7702 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7703 else 7704 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7705 if (err) 7706 return err; 7707 } 7708 return 0; 7709 } 7710 7711 static int bpf_object__resolve_externs(struct bpf_object *obj, 7712 const char *extra_kconfig) 7713 { 7714 bool need_config = false, need_kallsyms = false; 7715 bool need_vmlinux_btf = false; 7716 struct extern_desc *ext; 7717 void *kcfg_data = NULL; 7718 int err, i; 7719 7720 if (obj->nr_extern == 0) 7721 return 0; 7722 7723 if (obj->kconfig_map_idx >= 0) 7724 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7725 7726 for (i = 0; i < obj->nr_extern; i++) { 7727 ext = &obj->externs[i]; 7728 7729 if (ext->type == EXT_KCFG && 7730 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7731 void *ext_val = kcfg_data + ext->kcfg.data_off; 7732 __u32 kver = get_kernel_version(); 7733 7734 if (!kver) { 7735 pr_warn("failed to get kernel version\n"); 7736 return -EINVAL; 7737 } 7738 err = set_kcfg_value_num(ext, ext_val, kver); 7739 if (err) 7740 return err; 7741 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7742 } else if (ext->type == EXT_KCFG && 7743 strncmp(ext->name, "CONFIG_", 7) == 0) { 7744 need_config = true; 7745 } else if (ext->type == EXT_KSYM) { 7746 if (ext->ksym.type_id) 7747 need_vmlinux_btf = true; 7748 else 7749 need_kallsyms = true; 7750 } else { 7751 pr_warn("unrecognized extern '%s'\n", ext->name); 7752 return -EINVAL; 7753 } 7754 } 7755 if (need_config && extra_kconfig) { 7756 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7757 if (err) 7758 return -EINVAL; 7759 need_config = false; 7760 for (i = 0; i < obj->nr_extern; i++) { 7761 ext = &obj->externs[i]; 7762 if (ext->type == EXT_KCFG && !ext->is_set) { 7763 need_config = true; 7764 break; 7765 } 7766 } 7767 } 7768 if (need_config) { 7769 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7770 if (err) 7771 return -EINVAL; 7772 } 7773 if (need_kallsyms) { 7774 err = bpf_object__read_kallsyms_file(obj); 7775 if (err) 7776 return -EINVAL; 7777 } 7778 if (need_vmlinux_btf) { 7779 err = bpf_object__resolve_ksyms_btf_id(obj); 7780 if (err) 7781 return -EINVAL; 7782 } 7783 for (i = 0; i < obj->nr_extern; i++) { 7784 ext = &obj->externs[i]; 7785 7786 if (!ext->is_set && !ext->is_weak) { 7787 pr_warn("extern %s (strong) not resolved\n", ext->name); 7788 return -ESRCH; 7789 } else if (!ext->is_set) { 7790 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7791 ext->name); 7792 } 7793 } 7794 7795 return 0; 7796 } 7797 7798 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7799 { 7800 struct bpf_object *obj; 7801 int err, i; 7802 7803 if (!attr) 7804 return -EINVAL; 7805 obj = attr->obj; 7806 if (!obj) 7807 return -EINVAL; 7808 7809 if (obj->loaded) { 7810 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7811 return -EINVAL; 7812 } 7813 7814 err = bpf_object__probe_loading(obj); 7815 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7816 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7817 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7818 err = err ? : bpf_object__sanitize_maps(obj); 7819 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7820 err = err ? : bpf_object__create_maps(obj); 7821 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7822 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7823 7824 /* clean up module BTFs */ 7825 for (i = 0; i < obj->btf_module_cnt; i++) { 7826 close(obj->btf_modules[i].fd); 7827 btf__free(obj->btf_modules[i].btf); 7828 free(obj->btf_modules[i].name); 7829 } 7830 free(obj->btf_modules); 7831 7832 /* clean up vmlinux BTF */ 7833 btf__free(obj->btf_vmlinux); 7834 obj->btf_vmlinux = NULL; 7835 7836 obj->loaded = true; /* doesn't matter if successfully or not */ 7837 7838 if (err) 7839 goto out; 7840 7841 return 0; 7842 out: 7843 /* unpin any maps that were auto-pinned during load */ 7844 for (i = 0; i < obj->nr_maps; i++) 7845 if (obj->maps[i].pinned && !obj->maps[i].reused) 7846 bpf_map__unpin(&obj->maps[i], NULL); 7847 7848 bpf_object__unload(obj); 7849 pr_warn("failed to load object '%s'\n", obj->path); 7850 return err; 7851 } 7852 7853 int bpf_object__load(struct bpf_object *obj) 7854 { 7855 struct bpf_object_load_attr attr = { 7856 .obj = obj, 7857 }; 7858 7859 return bpf_object__load_xattr(&attr); 7860 } 7861 7862 static int make_parent_dir(const char *path) 7863 { 7864 char *cp, errmsg[STRERR_BUFSIZE]; 7865 char *dname, *dir; 7866 int err = 0; 7867 7868 dname = strdup(path); 7869 if (dname == NULL) 7870 return -ENOMEM; 7871 7872 dir = dirname(dname); 7873 if (mkdir(dir, 0700) && errno != EEXIST) 7874 err = -errno; 7875 7876 free(dname); 7877 if (err) { 7878 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7879 pr_warn("failed to mkdir %s: %s\n", path, cp); 7880 } 7881 return err; 7882 } 7883 7884 static int check_path(const char *path) 7885 { 7886 char *cp, errmsg[STRERR_BUFSIZE]; 7887 struct statfs st_fs; 7888 char *dname, *dir; 7889 int err = 0; 7890 7891 if (path == NULL) 7892 return -EINVAL; 7893 7894 dname = strdup(path); 7895 if (dname == NULL) 7896 return -ENOMEM; 7897 7898 dir = dirname(dname); 7899 if (statfs(dir, &st_fs)) { 7900 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7901 pr_warn("failed to statfs %s: %s\n", dir, cp); 7902 err = -errno; 7903 } 7904 free(dname); 7905 7906 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7907 pr_warn("specified path %s is not on BPF FS\n", path); 7908 err = -EINVAL; 7909 } 7910 7911 return err; 7912 } 7913 7914 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7915 int instance) 7916 { 7917 char *cp, errmsg[STRERR_BUFSIZE]; 7918 int err; 7919 7920 err = make_parent_dir(path); 7921 if (err) 7922 return err; 7923 7924 err = check_path(path); 7925 if (err) 7926 return err; 7927 7928 if (prog == NULL) { 7929 pr_warn("invalid program pointer\n"); 7930 return -EINVAL; 7931 } 7932 7933 if (instance < 0 || instance >= prog->instances.nr) { 7934 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7935 instance, prog->name, prog->instances.nr); 7936 return -EINVAL; 7937 } 7938 7939 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7940 err = -errno; 7941 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7942 pr_warn("failed to pin program: %s\n", cp); 7943 return err; 7944 } 7945 pr_debug("pinned program '%s'\n", path); 7946 7947 return 0; 7948 } 7949 7950 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7951 int instance) 7952 { 7953 int err; 7954 7955 err = check_path(path); 7956 if (err) 7957 return err; 7958 7959 if (prog == NULL) { 7960 pr_warn("invalid program pointer\n"); 7961 return -EINVAL; 7962 } 7963 7964 if (instance < 0 || instance >= prog->instances.nr) { 7965 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7966 instance, prog->name, prog->instances.nr); 7967 return -EINVAL; 7968 } 7969 7970 err = unlink(path); 7971 if (err != 0) 7972 return -errno; 7973 pr_debug("unpinned program '%s'\n", path); 7974 7975 return 0; 7976 } 7977 7978 int bpf_program__pin(struct bpf_program *prog, const char *path) 7979 { 7980 int i, err; 7981 7982 err = make_parent_dir(path); 7983 if (err) 7984 return err; 7985 7986 err = check_path(path); 7987 if (err) 7988 return err; 7989 7990 if (prog == NULL) { 7991 pr_warn("invalid program pointer\n"); 7992 return -EINVAL; 7993 } 7994 7995 if (prog->instances.nr <= 0) { 7996 pr_warn("no instances of prog %s to pin\n", prog->name); 7997 return -EINVAL; 7998 } 7999 8000 if (prog->instances.nr == 1) { 8001 /* don't create subdirs when pinning single instance */ 8002 return bpf_program__pin_instance(prog, path, 0); 8003 } 8004 8005 for (i = 0; i < prog->instances.nr; i++) { 8006 char buf[PATH_MAX]; 8007 int len; 8008 8009 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8010 if (len < 0) { 8011 err = -EINVAL; 8012 goto err_unpin; 8013 } else if (len >= PATH_MAX) { 8014 err = -ENAMETOOLONG; 8015 goto err_unpin; 8016 } 8017 8018 err = bpf_program__pin_instance(prog, buf, i); 8019 if (err) 8020 goto err_unpin; 8021 } 8022 8023 return 0; 8024 8025 err_unpin: 8026 for (i = i - 1; i >= 0; i--) { 8027 char buf[PATH_MAX]; 8028 int len; 8029 8030 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8031 if (len < 0) 8032 continue; 8033 else if (len >= PATH_MAX) 8034 continue; 8035 8036 bpf_program__unpin_instance(prog, buf, i); 8037 } 8038 8039 rmdir(path); 8040 8041 return err; 8042 } 8043 8044 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8045 { 8046 int i, err; 8047 8048 err = check_path(path); 8049 if (err) 8050 return err; 8051 8052 if (prog == NULL) { 8053 pr_warn("invalid program pointer\n"); 8054 return -EINVAL; 8055 } 8056 8057 if (prog->instances.nr <= 0) { 8058 pr_warn("no instances of prog %s to pin\n", prog->name); 8059 return -EINVAL; 8060 } 8061 8062 if (prog->instances.nr == 1) { 8063 /* don't create subdirs when pinning single instance */ 8064 return bpf_program__unpin_instance(prog, path, 0); 8065 } 8066 8067 for (i = 0; i < prog->instances.nr; i++) { 8068 char buf[PATH_MAX]; 8069 int len; 8070 8071 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8072 if (len < 0) 8073 return -EINVAL; 8074 else if (len >= PATH_MAX) 8075 return -ENAMETOOLONG; 8076 8077 err = bpf_program__unpin_instance(prog, buf, i); 8078 if (err) 8079 return err; 8080 } 8081 8082 err = rmdir(path); 8083 if (err) 8084 return -errno; 8085 8086 return 0; 8087 } 8088 8089 int bpf_map__pin(struct bpf_map *map, const char *path) 8090 { 8091 char *cp, errmsg[STRERR_BUFSIZE]; 8092 int err; 8093 8094 if (map == NULL) { 8095 pr_warn("invalid map pointer\n"); 8096 return -EINVAL; 8097 } 8098 8099 if (map->pin_path) { 8100 if (path && strcmp(path, map->pin_path)) { 8101 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8102 bpf_map__name(map), map->pin_path, path); 8103 return -EINVAL; 8104 } else if (map->pinned) { 8105 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8106 bpf_map__name(map), map->pin_path); 8107 return 0; 8108 } 8109 } else { 8110 if (!path) { 8111 pr_warn("missing a path to pin map '%s' at\n", 8112 bpf_map__name(map)); 8113 return -EINVAL; 8114 } else if (map->pinned) { 8115 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8116 return -EEXIST; 8117 } 8118 8119 map->pin_path = strdup(path); 8120 if (!map->pin_path) { 8121 err = -errno; 8122 goto out_err; 8123 } 8124 } 8125 8126 err = make_parent_dir(map->pin_path); 8127 if (err) 8128 return err; 8129 8130 err = check_path(map->pin_path); 8131 if (err) 8132 return err; 8133 8134 if (bpf_obj_pin(map->fd, map->pin_path)) { 8135 err = -errno; 8136 goto out_err; 8137 } 8138 8139 map->pinned = true; 8140 pr_debug("pinned map '%s'\n", map->pin_path); 8141 8142 return 0; 8143 8144 out_err: 8145 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8146 pr_warn("failed to pin map: %s\n", cp); 8147 return err; 8148 } 8149 8150 int bpf_map__unpin(struct bpf_map *map, const char *path) 8151 { 8152 int err; 8153 8154 if (map == NULL) { 8155 pr_warn("invalid map pointer\n"); 8156 return -EINVAL; 8157 } 8158 8159 if (map->pin_path) { 8160 if (path && strcmp(path, map->pin_path)) { 8161 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8162 bpf_map__name(map), map->pin_path, path); 8163 return -EINVAL; 8164 } 8165 path = map->pin_path; 8166 } else if (!path) { 8167 pr_warn("no path to unpin map '%s' from\n", 8168 bpf_map__name(map)); 8169 return -EINVAL; 8170 } 8171 8172 err = check_path(path); 8173 if (err) 8174 return err; 8175 8176 err = unlink(path); 8177 if (err != 0) 8178 return -errno; 8179 8180 map->pinned = false; 8181 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8182 8183 return 0; 8184 } 8185 8186 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8187 { 8188 char *new = NULL; 8189 8190 if (path) { 8191 new = strdup(path); 8192 if (!new) 8193 return -errno; 8194 } 8195 8196 free(map->pin_path); 8197 map->pin_path = new; 8198 return 0; 8199 } 8200 8201 const char *bpf_map__get_pin_path(const struct bpf_map *map) 8202 { 8203 return map->pin_path; 8204 } 8205 8206 bool bpf_map__is_pinned(const struct bpf_map *map) 8207 { 8208 return map->pinned; 8209 } 8210 8211 static void sanitize_pin_path(char *s) 8212 { 8213 /* bpffs disallows periods in path names */ 8214 while (*s) { 8215 if (*s == '.') 8216 *s = '_'; 8217 s++; 8218 } 8219 } 8220 8221 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8222 { 8223 struct bpf_map *map; 8224 int err; 8225 8226 if (!obj) 8227 return -ENOENT; 8228 8229 if (!obj->loaded) { 8230 pr_warn("object not yet loaded; load it first\n"); 8231 return -ENOENT; 8232 } 8233 8234 bpf_object__for_each_map(map, obj) { 8235 char *pin_path = NULL; 8236 char buf[PATH_MAX]; 8237 8238 if (path) { 8239 int len; 8240 8241 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8242 bpf_map__name(map)); 8243 if (len < 0) { 8244 err = -EINVAL; 8245 goto err_unpin_maps; 8246 } else if (len >= PATH_MAX) { 8247 err = -ENAMETOOLONG; 8248 goto err_unpin_maps; 8249 } 8250 sanitize_pin_path(buf); 8251 pin_path = buf; 8252 } else if (!map->pin_path) { 8253 continue; 8254 } 8255 8256 err = bpf_map__pin(map, pin_path); 8257 if (err) 8258 goto err_unpin_maps; 8259 } 8260 8261 return 0; 8262 8263 err_unpin_maps: 8264 while ((map = bpf_map__prev(map, obj))) { 8265 if (!map->pin_path) 8266 continue; 8267 8268 bpf_map__unpin(map, NULL); 8269 } 8270 8271 return err; 8272 } 8273 8274 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8275 { 8276 struct bpf_map *map; 8277 int err; 8278 8279 if (!obj) 8280 return -ENOENT; 8281 8282 bpf_object__for_each_map(map, obj) { 8283 char *pin_path = NULL; 8284 char buf[PATH_MAX]; 8285 8286 if (path) { 8287 int len; 8288 8289 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8290 bpf_map__name(map)); 8291 if (len < 0) 8292 return -EINVAL; 8293 else if (len >= PATH_MAX) 8294 return -ENAMETOOLONG; 8295 sanitize_pin_path(buf); 8296 pin_path = buf; 8297 } else if (!map->pin_path) { 8298 continue; 8299 } 8300 8301 err = bpf_map__unpin(map, pin_path); 8302 if (err) 8303 return err; 8304 } 8305 8306 return 0; 8307 } 8308 8309 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8310 { 8311 struct bpf_program *prog; 8312 int err; 8313 8314 if (!obj) 8315 return -ENOENT; 8316 8317 if (!obj->loaded) { 8318 pr_warn("object not yet loaded; load it first\n"); 8319 return -ENOENT; 8320 } 8321 8322 bpf_object__for_each_program(prog, obj) { 8323 char buf[PATH_MAX]; 8324 int len; 8325 8326 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8327 prog->pin_name); 8328 if (len < 0) { 8329 err = -EINVAL; 8330 goto err_unpin_programs; 8331 } else if (len >= PATH_MAX) { 8332 err = -ENAMETOOLONG; 8333 goto err_unpin_programs; 8334 } 8335 8336 err = bpf_program__pin(prog, buf); 8337 if (err) 8338 goto err_unpin_programs; 8339 } 8340 8341 return 0; 8342 8343 err_unpin_programs: 8344 while ((prog = bpf_program__prev(prog, obj))) { 8345 char buf[PATH_MAX]; 8346 int len; 8347 8348 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8349 prog->pin_name); 8350 if (len < 0) 8351 continue; 8352 else if (len >= PATH_MAX) 8353 continue; 8354 8355 bpf_program__unpin(prog, buf); 8356 } 8357 8358 return err; 8359 } 8360 8361 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8362 { 8363 struct bpf_program *prog; 8364 int err; 8365 8366 if (!obj) 8367 return -ENOENT; 8368 8369 bpf_object__for_each_program(prog, obj) { 8370 char buf[PATH_MAX]; 8371 int len; 8372 8373 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8374 prog->pin_name); 8375 if (len < 0) 8376 return -EINVAL; 8377 else if (len >= PATH_MAX) 8378 return -ENAMETOOLONG; 8379 8380 err = bpf_program__unpin(prog, buf); 8381 if (err) 8382 return err; 8383 } 8384 8385 return 0; 8386 } 8387 8388 int bpf_object__pin(struct bpf_object *obj, const char *path) 8389 { 8390 int err; 8391 8392 err = bpf_object__pin_maps(obj, path); 8393 if (err) 8394 return err; 8395 8396 err = bpf_object__pin_programs(obj, path); 8397 if (err) { 8398 bpf_object__unpin_maps(obj, path); 8399 return err; 8400 } 8401 8402 return 0; 8403 } 8404 8405 static void bpf_map__destroy(struct bpf_map *map) 8406 { 8407 if (map->clear_priv) 8408 map->clear_priv(map, map->priv); 8409 map->priv = NULL; 8410 map->clear_priv = NULL; 8411 8412 if (map->inner_map) { 8413 bpf_map__destroy(map->inner_map); 8414 zfree(&map->inner_map); 8415 } 8416 8417 zfree(&map->init_slots); 8418 map->init_slots_sz = 0; 8419 8420 if (map->mmaped) { 8421 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8422 map->mmaped = NULL; 8423 } 8424 8425 if (map->st_ops) { 8426 zfree(&map->st_ops->data); 8427 zfree(&map->st_ops->progs); 8428 zfree(&map->st_ops->kern_func_off); 8429 zfree(&map->st_ops); 8430 } 8431 8432 zfree(&map->name); 8433 zfree(&map->pin_path); 8434 8435 if (map->fd >= 0) 8436 zclose(map->fd); 8437 } 8438 8439 void bpf_object__close(struct bpf_object *obj) 8440 { 8441 size_t i; 8442 8443 if (IS_ERR_OR_NULL(obj)) 8444 return; 8445 8446 if (obj->clear_priv) 8447 obj->clear_priv(obj, obj->priv); 8448 8449 bpf_object__elf_finish(obj); 8450 bpf_object__unload(obj); 8451 btf__free(obj->btf); 8452 btf_ext__free(obj->btf_ext); 8453 8454 for (i = 0; i < obj->nr_maps; i++) 8455 bpf_map__destroy(&obj->maps[i]); 8456 8457 zfree(&obj->kconfig); 8458 zfree(&obj->externs); 8459 obj->nr_extern = 0; 8460 8461 zfree(&obj->maps); 8462 obj->nr_maps = 0; 8463 8464 if (obj->programs && obj->nr_programs) { 8465 for (i = 0; i < obj->nr_programs; i++) 8466 bpf_program__exit(&obj->programs[i]); 8467 } 8468 zfree(&obj->programs); 8469 8470 list_del(&obj->list); 8471 free(obj); 8472 } 8473 8474 struct bpf_object * 8475 bpf_object__next(struct bpf_object *prev) 8476 { 8477 struct bpf_object *next; 8478 8479 if (!prev) 8480 next = list_first_entry(&bpf_objects_list, 8481 struct bpf_object, 8482 list); 8483 else 8484 next = list_next_entry(prev, list); 8485 8486 /* Empty list is noticed here so don't need checking on entry. */ 8487 if (&next->list == &bpf_objects_list) 8488 return NULL; 8489 8490 return next; 8491 } 8492 8493 const char *bpf_object__name(const struct bpf_object *obj) 8494 { 8495 return obj ? obj->name : ERR_PTR(-EINVAL); 8496 } 8497 8498 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8499 { 8500 return obj ? obj->kern_version : 0; 8501 } 8502 8503 struct btf *bpf_object__btf(const struct bpf_object *obj) 8504 { 8505 return obj ? obj->btf : NULL; 8506 } 8507 8508 int bpf_object__btf_fd(const struct bpf_object *obj) 8509 { 8510 return obj->btf ? btf__fd(obj->btf) : -1; 8511 } 8512 8513 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8514 { 8515 if (obj->loaded) 8516 return -EINVAL; 8517 8518 obj->kern_version = kern_version; 8519 8520 return 0; 8521 } 8522 8523 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8524 bpf_object_clear_priv_t clear_priv) 8525 { 8526 if (obj->priv && obj->clear_priv) 8527 obj->clear_priv(obj, obj->priv); 8528 8529 obj->priv = priv; 8530 obj->clear_priv = clear_priv; 8531 return 0; 8532 } 8533 8534 void *bpf_object__priv(const struct bpf_object *obj) 8535 { 8536 return obj ? obj->priv : ERR_PTR(-EINVAL); 8537 } 8538 8539 static struct bpf_program * 8540 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8541 bool forward) 8542 { 8543 size_t nr_programs = obj->nr_programs; 8544 ssize_t idx; 8545 8546 if (!nr_programs) 8547 return NULL; 8548 8549 if (!p) 8550 /* Iter from the beginning */ 8551 return forward ? &obj->programs[0] : 8552 &obj->programs[nr_programs - 1]; 8553 8554 if (p->obj != obj) { 8555 pr_warn("error: program handler doesn't match object\n"); 8556 return NULL; 8557 } 8558 8559 idx = (p - obj->programs) + (forward ? 1 : -1); 8560 if (idx >= obj->nr_programs || idx < 0) 8561 return NULL; 8562 return &obj->programs[idx]; 8563 } 8564 8565 struct bpf_program * 8566 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8567 { 8568 struct bpf_program *prog = prev; 8569 8570 do { 8571 prog = __bpf_program__iter(prog, obj, true); 8572 } while (prog && prog_is_subprog(obj, prog)); 8573 8574 return prog; 8575 } 8576 8577 struct bpf_program * 8578 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8579 { 8580 struct bpf_program *prog = next; 8581 8582 do { 8583 prog = __bpf_program__iter(prog, obj, false); 8584 } while (prog && prog_is_subprog(obj, prog)); 8585 8586 return prog; 8587 } 8588 8589 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8590 bpf_program_clear_priv_t clear_priv) 8591 { 8592 if (prog->priv && prog->clear_priv) 8593 prog->clear_priv(prog, prog->priv); 8594 8595 prog->priv = priv; 8596 prog->clear_priv = clear_priv; 8597 return 0; 8598 } 8599 8600 void *bpf_program__priv(const struct bpf_program *prog) 8601 { 8602 return prog ? prog->priv : ERR_PTR(-EINVAL); 8603 } 8604 8605 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8606 { 8607 prog->prog_ifindex = ifindex; 8608 } 8609 8610 const char *bpf_program__name(const struct bpf_program *prog) 8611 { 8612 return prog->name; 8613 } 8614 8615 const char *bpf_program__section_name(const struct bpf_program *prog) 8616 { 8617 return prog->sec_name; 8618 } 8619 8620 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8621 { 8622 const char *title; 8623 8624 title = prog->sec_name; 8625 if (needs_copy) { 8626 title = strdup(title); 8627 if (!title) { 8628 pr_warn("failed to strdup program title\n"); 8629 return ERR_PTR(-ENOMEM); 8630 } 8631 } 8632 8633 return title; 8634 } 8635 8636 bool bpf_program__autoload(const struct bpf_program *prog) 8637 { 8638 return prog->load; 8639 } 8640 8641 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8642 { 8643 if (prog->obj->loaded) 8644 return -EINVAL; 8645 8646 prog->load = autoload; 8647 return 0; 8648 } 8649 8650 int bpf_program__fd(const struct bpf_program *prog) 8651 { 8652 return bpf_program__nth_fd(prog, 0); 8653 } 8654 8655 size_t bpf_program__size(const struct bpf_program *prog) 8656 { 8657 return prog->insns_cnt * BPF_INSN_SZ; 8658 } 8659 8660 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8661 bpf_program_prep_t prep) 8662 { 8663 int *instances_fds; 8664 8665 if (nr_instances <= 0 || !prep) 8666 return -EINVAL; 8667 8668 if (prog->instances.nr > 0 || prog->instances.fds) { 8669 pr_warn("Can't set pre-processor after loading\n"); 8670 return -EINVAL; 8671 } 8672 8673 instances_fds = malloc(sizeof(int) * nr_instances); 8674 if (!instances_fds) { 8675 pr_warn("alloc memory failed for fds\n"); 8676 return -ENOMEM; 8677 } 8678 8679 /* fill all fd with -1 */ 8680 memset(instances_fds, -1, sizeof(int) * nr_instances); 8681 8682 prog->instances.nr = nr_instances; 8683 prog->instances.fds = instances_fds; 8684 prog->preprocessor = prep; 8685 return 0; 8686 } 8687 8688 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8689 { 8690 int fd; 8691 8692 if (!prog) 8693 return -EINVAL; 8694 8695 if (n >= prog->instances.nr || n < 0) { 8696 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8697 n, prog->name, prog->instances.nr); 8698 return -EINVAL; 8699 } 8700 8701 fd = prog->instances.fds[n]; 8702 if (fd < 0) { 8703 pr_warn("%dth instance of program '%s' is invalid\n", 8704 n, prog->name); 8705 return -ENOENT; 8706 } 8707 8708 return fd; 8709 } 8710 8711 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8712 { 8713 return prog->type; 8714 } 8715 8716 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8717 { 8718 prog->type = type; 8719 } 8720 8721 static bool bpf_program__is_type(const struct bpf_program *prog, 8722 enum bpf_prog_type type) 8723 { 8724 return prog ? (prog->type == type) : false; 8725 } 8726 8727 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8728 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8729 { \ 8730 if (!prog) \ 8731 return -EINVAL; \ 8732 bpf_program__set_type(prog, TYPE); \ 8733 return 0; \ 8734 } \ 8735 \ 8736 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8737 { \ 8738 return bpf_program__is_type(prog, TYPE); \ 8739 } \ 8740 8741 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8742 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8743 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8744 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8745 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8746 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8747 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8748 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8749 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8750 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8751 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8752 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8753 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8754 8755 enum bpf_attach_type 8756 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8757 { 8758 return prog->expected_attach_type; 8759 } 8760 8761 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8762 enum bpf_attach_type type) 8763 { 8764 prog->expected_attach_type = type; 8765 } 8766 8767 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8768 attachable, attach_btf) \ 8769 { \ 8770 .sec = string, \ 8771 .len = sizeof(string) - 1, \ 8772 .prog_type = ptype, \ 8773 .expected_attach_type = eatype, \ 8774 .is_exp_attach_type_optional = eatype_optional, \ 8775 .is_attachable = attachable, \ 8776 .is_attach_btf = attach_btf, \ 8777 } 8778 8779 /* Programs that can NOT be attached. */ 8780 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8781 8782 /* Programs that can be attached. */ 8783 #define BPF_APROG_SEC(string, ptype, atype) \ 8784 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8785 8786 /* Programs that must specify expected attach type at load time. */ 8787 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8788 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8789 8790 /* Programs that use BTF to identify attach point */ 8791 #define BPF_PROG_BTF(string, ptype, eatype) \ 8792 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8793 8794 /* Programs that can be attached but attach type can't be identified by section 8795 * name. Kept for backward compatibility. 8796 */ 8797 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8798 8799 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8800 .sec = sec_pfx, \ 8801 .len = sizeof(sec_pfx) - 1, \ 8802 .prog_type = BPF_PROG_TYPE_##ptype, \ 8803 __VA_ARGS__ \ 8804 } 8805 8806 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8807 struct bpf_program *prog); 8808 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8809 struct bpf_program *prog); 8810 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8811 struct bpf_program *prog); 8812 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8813 struct bpf_program *prog); 8814 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8815 struct bpf_program *prog); 8816 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8817 struct bpf_program *prog); 8818 8819 static const struct bpf_sec_def section_defs[] = { 8820 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8821 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8822 SEC_DEF("kprobe/", KPROBE, 8823 .attach_fn = attach_kprobe), 8824 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8825 SEC_DEF("kretprobe/", KPROBE, 8826 .attach_fn = attach_kprobe), 8827 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8828 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8829 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8830 SEC_DEF("tracepoint/", TRACEPOINT, 8831 .attach_fn = attach_tp), 8832 SEC_DEF("tp/", TRACEPOINT, 8833 .attach_fn = attach_tp), 8834 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8835 .attach_fn = attach_raw_tp), 8836 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8837 .attach_fn = attach_raw_tp), 8838 SEC_DEF("tp_btf/", TRACING, 8839 .expected_attach_type = BPF_TRACE_RAW_TP, 8840 .is_attach_btf = true, 8841 .attach_fn = attach_trace), 8842 SEC_DEF("fentry/", TRACING, 8843 .expected_attach_type = BPF_TRACE_FENTRY, 8844 .is_attach_btf = true, 8845 .attach_fn = attach_trace), 8846 SEC_DEF("fmod_ret/", TRACING, 8847 .expected_attach_type = BPF_MODIFY_RETURN, 8848 .is_attach_btf = true, 8849 .attach_fn = attach_trace), 8850 SEC_DEF("fexit/", TRACING, 8851 .expected_attach_type = BPF_TRACE_FEXIT, 8852 .is_attach_btf = true, 8853 .attach_fn = attach_trace), 8854 SEC_DEF("fentry.s/", TRACING, 8855 .expected_attach_type = BPF_TRACE_FENTRY, 8856 .is_attach_btf = true, 8857 .is_sleepable = true, 8858 .attach_fn = attach_trace), 8859 SEC_DEF("fmod_ret.s/", TRACING, 8860 .expected_attach_type = BPF_MODIFY_RETURN, 8861 .is_attach_btf = true, 8862 .is_sleepable = true, 8863 .attach_fn = attach_trace), 8864 SEC_DEF("fexit.s/", TRACING, 8865 .expected_attach_type = BPF_TRACE_FEXIT, 8866 .is_attach_btf = true, 8867 .is_sleepable = true, 8868 .attach_fn = attach_trace), 8869 SEC_DEF("freplace/", EXT, 8870 .is_attach_btf = true, 8871 .attach_fn = attach_trace), 8872 SEC_DEF("lsm/", LSM, 8873 .is_attach_btf = true, 8874 .expected_attach_type = BPF_LSM_MAC, 8875 .attach_fn = attach_lsm), 8876 SEC_DEF("lsm.s/", LSM, 8877 .is_attach_btf = true, 8878 .is_sleepable = true, 8879 .expected_attach_type = BPF_LSM_MAC, 8880 .attach_fn = attach_lsm), 8881 SEC_DEF("iter/", TRACING, 8882 .expected_attach_type = BPF_TRACE_ITER, 8883 .is_attach_btf = true, 8884 .attach_fn = attach_iter), 8885 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8886 BPF_XDP_DEVMAP), 8887 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8888 BPF_XDP_CPUMAP), 8889 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8890 BPF_XDP), 8891 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8892 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8893 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8894 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8895 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8896 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8897 BPF_CGROUP_INET_INGRESS), 8898 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8899 BPF_CGROUP_INET_EGRESS), 8900 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8901 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8902 BPF_CGROUP_INET_SOCK_CREATE), 8903 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8904 BPF_CGROUP_INET_SOCK_RELEASE), 8905 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8906 BPF_CGROUP_INET_SOCK_CREATE), 8907 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8908 BPF_CGROUP_INET4_POST_BIND), 8909 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8910 BPF_CGROUP_INET6_POST_BIND), 8911 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8912 BPF_CGROUP_DEVICE), 8913 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8914 BPF_CGROUP_SOCK_OPS), 8915 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8916 BPF_SK_SKB_STREAM_PARSER), 8917 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8918 BPF_SK_SKB_STREAM_VERDICT), 8919 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8920 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8921 BPF_SK_MSG_VERDICT), 8922 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8923 BPF_LIRC_MODE2), 8924 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8925 BPF_FLOW_DISSECTOR), 8926 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8927 BPF_CGROUP_INET4_BIND), 8928 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8929 BPF_CGROUP_INET6_BIND), 8930 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8931 BPF_CGROUP_INET4_CONNECT), 8932 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8933 BPF_CGROUP_INET6_CONNECT), 8934 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8935 BPF_CGROUP_UDP4_SENDMSG), 8936 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8937 BPF_CGROUP_UDP6_SENDMSG), 8938 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8939 BPF_CGROUP_UDP4_RECVMSG), 8940 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8941 BPF_CGROUP_UDP6_RECVMSG), 8942 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8943 BPF_CGROUP_INET4_GETPEERNAME), 8944 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8945 BPF_CGROUP_INET6_GETPEERNAME), 8946 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8947 BPF_CGROUP_INET4_GETSOCKNAME), 8948 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8949 BPF_CGROUP_INET6_GETSOCKNAME), 8950 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8951 BPF_CGROUP_SYSCTL), 8952 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8953 BPF_CGROUP_GETSOCKOPT), 8954 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8955 BPF_CGROUP_SETSOCKOPT), 8956 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8957 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8958 BPF_SK_LOOKUP), 8959 }; 8960 8961 #undef BPF_PROG_SEC_IMPL 8962 #undef BPF_PROG_SEC 8963 #undef BPF_APROG_SEC 8964 #undef BPF_EAPROG_SEC 8965 #undef BPF_APROG_COMPAT 8966 #undef SEC_DEF 8967 8968 #define MAX_TYPE_NAME_SIZE 32 8969 8970 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8971 { 8972 int i, n = ARRAY_SIZE(section_defs); 8973 8974 for (i = 0; i < n; i++) { 8975 if (strncmp(sec_name, 8976 section_defs[i].sec, section_defs[i].len)) 8977 continue; 8978 return §ion_defs[i]; 8979 } 8980 return NULL; 8981 } 8982 8983 static char *libbpf_get_type_names(bool attach_type) 8984 { 8985 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8986 char *buf; 8987 8988 buf = malloc(len); 8989 if (!buf) 8990 return NULL; 8991 8992 buf[0] = '\0'; 8993 /* Forge string buf with all available names */ 8994 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8995 if (attach_type && !section_defs[i].is_attachable) 8996 continue; 8997 8998 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8999 free(buf); 9000 return NULL; 9001 } 9002 strcat(buf, " "); 9003 strcat(buf, section_defs[i].sec); 9004 } 9005 9006 return buf; 9007 } 9008 9009 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9010 enum bpf_attach_type *expected_attach_type) 9011 { 9012 const struct bpf_sec_def *sec_def; 9013 char *type_names; 9014 9015 if (!name) 9016 return -EINVAL; 9017 9018 sec_def = find_sec_def(name); 9019 if (sec_def) { 9020 *prog_type = sec_def->prog_type; 9021 *expected_attach_type = sec_def->expected_attach_type; 9022 return 0; 9023 } 9024 9025 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9026 type_names = libbpf_get_type_names(false); 9027 if (type_names != NULL) { 9028 pr_debug("supported section(type) names are:%s\n", type_names); 9029 free(type_names); 9030 } 9031 9032 return -ESRCH; 9033 } 9034 9035 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9036 size_t offset) 9037 { 9038 struct bpf_map *map; 9039 size_t i; 9040 9041 for (i = 0; i < obj->nr_maps; i++) { 9042 map = &obj->maps[i]; 9043 if (!bpf_map__is_struct_ops(map)) 9044 continue; 9045 if (map->sec_offset <= offset && 9046 offset - map->sec_offset < map->def.value_size) 9047 return map; 9048 } 9049 9050 return NULL; 9051 } 9052 9053 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9054 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9055 GElf_Shdr *shdr, Elf_Data *data) 9056 { 9057 const struct btf_member *member; 9058 struct bpf_struct_ops *st_ops; 9059 struct bpf_program *prog; 9060 unsigned int shdr_idx; 9061 const struct btf *btf; 9062 struct bpf_map *map; 9063 Elf_Data *symbols; 9064 unsigned int moff, insn_idx; 9065 const char *name; 9066 __u32 member_idx; 9067 GElf_Sym sym; 9068 GElf_Rel rel; 9069 int i, nrels; 9070 9071 symbols = obj->efile.symbols; 9072 btf = obj->btf; 9073 nrels = shdr->sh_size / shdr->sh_entsize; 9074 for (i = 0; i < nrels; i++) { 9075 if (!gelf_getrel(data, i, &rel)) { 9076 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9077 return -LIBBPF_ERRNO__FORMAT; 9078 } 9079 9080 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 9081 pr_warn("struct_ops reloc: symbol %zx not found\n", 9082 (size_t)GELF_R_SYM(rel.r_info)); 9083 return -LIBBPF_ERRNO__FORMAT; 9084 } 9085 9086 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 9087 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 9088 if (!map) { 9089 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 9090 (size_t)rel.r_offset); 9091 return -EINVAL; 9092 } 9093 9094 moff = rel.r_offset - map->sec_offset; 9095 shdr_idx = sym.st_shndx; 9096 st_ops = map->st_ops; 9097 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9098 map->name, 9099 (long long)(rel.r_info >> 32), 9100 (long long)sym.st_value, 9101 shdr_idx, (size_t)rel.r_offset, 9102 map->sec_offset, sym.st_name, name); 9103 9104 if (shdr_idx >= SHN_LORESERVE) { 9105 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 9106 map->name, (size_t)rel.r_offset, shdr_idx); 9107 return -LIBBPF_ERRNO__RELOC; 9108 } 9109 if (sym.st_value % BPF_INSN_SZ) { 9110 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9111 map->name, (unsigned long long)sym.st_value); 9112 return -LIBBPF_ERRNO__FORMAT; 9113 } 9114 insn_idx = sym.st_value / BPF_INSN_SZ; 9115 9116 member = find_member_by_offset(st_ops->type, moff * 8); 9117 if (!member) { 9118 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9119 map->name, moff); 9120 return -EINVAL; 9121 } 9122 member_idx = member - btf_members(st_ops->type); 9123 name = btf__name_by_offset(btf, member->name_off); 9124 9125 if (!resolve_func_ptr(btf, member->type, NULL)) { 9126 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9127 map->name, name); 9128 return -EINVAL; 9129 } 9130 9131 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9132 if (!prog) { 9133 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9134 map->name, shdr_idx, name); 9135 return -EINVAL; 9136 } 9137 9138 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 9139 const struct bpf_sec_def *sec_def; 9140 9141 sec_def = find_sec_def(prog->sec_name); 9142 if (sec_def && 9143 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 9144 /* for pr_warn */ 9145 prog->type = sec_def->prog_type; 9146 goto invalid_prog; 9147 } 9148 9149 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 9150 prog->attach_btf_id = st_ops->type_id; 9151 prog->expected_attach_type = member_idx; 9152 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 9153 prog->attach_btf_id != st_ops->type_id || 9154 prog->expected_attach_type != member_idx) { 9155 goto invalid_prog; 9156 } 9157 st_ops->progs[member_idx] = prog; 9158 } 9159 9160 return 0; 9161 9162 invalid_prog: 9163 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9164 map->name, prog->name, prog->sec_name, prog->type, 9165 prog->attach_btf_id, prog->expected_attach_type, name); 9166 return -EINVAL; 9167 } 9168 9169 #define BTF_TRACE_PREFIX "btf_trace_" 9170 #define BTF_LSM_PREFIX "bpf_lsm_" 9171 #define BTF_ITER_PREFIX "bpf_iter_" 9172 #define BTF_MAX_NAME_SIZE 128 9173 9174 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9175 const char *name, __u32 kind) 9176 { 9177 char btf_type_name[BTF_MAX_NAME_SIZE]; 9178 int ret; 9179 9180 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9181 "%s%s", prefix, name); 9182 /* snprintf returns the number of characters written excluding the 9183 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9184 * indicates truncation. 9185 */ 9186 if (ret < 0 || ret >= sizeof(btf_type_name)) 9187 return -ENAMETOOLONG; 9188 return btf__find_by_name_kind(btf, btf_type_name, kind); 9189 } 9190 9191 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9192 enum bpf_attach_type attach_type) 9193 { 9194 int err; 9195 9196 if (attach_type == BPF_TRACE_RAW_TP) 9197 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 9198 BTF_KIND_TYPEDEF); 9199 else if (attach_type == BPF_LSM_MAC) 9200 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 9201 BTF_KIND_FUNC); 9202 else if (attach_type == BPF_TRACE_ITER) 9203 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 9204 BTF_KIND_FUNC); 9205 else 9206 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9207 9208 return err; 9209 } 9210 9211 int libbpf_find_vmlinux_btf_id(const char *name, 9212 enum bpf_attach_type attach_type) 9213 { 9214 struct btf *btf; 9215 int err; 9216 9217 btf = libbpf_find_kernel_btf(); 9218 if (IS_ERR(btf)) { 9219 pr_warn("vmlinux BTF is not found\n"); 9220 return -EINVAL; 9221 } 9222 9223 err = find_attach_btf_id(btf, name, attach_type); 9224 if (err <= 0) 9225 pr_warn("%s is not found in vmlinux BTF\n", name); 9226 9227 btf__free(btf); 9228 return err; 9229 } 9230 9231 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9232 { 9233 struct bpf_prog_info_linear *info_linear; 9234 struct bpf_prog_info *info; 9235 struct btf *btf = NULL; 9236 int err = -EINVAL; 9237 9238 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 9239 if (IS_ERR_OR_NULL(info_linear)) { 9240 pr_warn("failed get_prog_info_linear for FD %d\n", 9241 attach_prog_fd); 9242 return -EINVAL; 9243 } 9244 info = &info_linear->info; 9245 if (!info->btf_id) { 9246 pr_warn("The target program doesn't have BTF\n"); 9247 goto out; 9248 } 9249 if (btf__get_from_id(info->btf_id, &btf)) { 9250 pr_warn("Failed to get BTF of the program\n"); 9251 goto out; 9252 } 9253 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9254 btf__free(btf); 9255 if (err <= 0) { 9256 pr_warn("%s is not found in prog's BTF\n", name); 9257 goto out; 9258 } 9259 out: 9260 free(info_linear); 9261 return err; 9262 } 9263 9264 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9265 enum bpf_attach_type attach_type, 9266 int *btf_obj_fd, int *btf_type_id) 9267 { 9268 int ret, i; 9269 9270 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9271 if (ret > 0) { 9272 *btf_obj_fd = 0; /* vmlinux BTF */ 9273 *btf_type_id = ret; 9274 return 0; 9275 } 9276 if (ret != -ENOENT) 9277 return ret; 9278 9279 ret = load_module_btfs(obj); 9280 if (ret) 9281 return ret; 9282 9283 for (i = 0; i < obj->btf_module_cnt; i++) { 9284 const struct module_btf *mod = &obj->btf_modules[i]; 9285 9286 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9287 if (ret > 0) { 9288 *btf_obj_fd = mod->fd; 9289 *btf_type_id = ret; 9290 return 0; 9291 } 9292 if (ret == -ENOENT) 9293 continue; 9294 9295 return ret; 9296 } 9297 9298 return -ESRCH; 9299 } 9300 9301 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9302 { 9303 enum bpf_attach_type attach_type = prog->expected_attach_type; 9304 __u32 attach_prog_fd = prog->attach_prog_fd; 9305 const char *name = prog->sec_name, *attach_name; 9306 const struct bpf_sec_def *sec = NULL; 9307 int i, err; 9308 9309 if (!name) 9310 return -EINVAL; 9311 9312 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9313 if (!section_defs[i].is_attach_btf) 9314 continue; 9315 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9316 continue; 9317 9318 sec = §ion_defs[i]; 9319 break; 9320 } 9321 9322 if (!sec) { 9323 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9324 return -ESRCH; 9325 } 9326 attach_name = name + sec->len; 9327 9328 /* BPF program's BTF ID */ 9329 if (attach_prog_fd) { 9330 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9331 if (err < 0) { 9332 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9333 attach_prog_fd, attach_name, err); 9334 return err; 9335 } 9336 *btf_obj_fd = 0; 9337 *btf_type_id = err; 9338 return 0; 9339 } 9340 9341 /* kernel/module BTF ID */ 9342 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9343 if (err) { 9344 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9345 return err; 9346 } 9347 return 0; 9348 } 9349 9350 int libbpf_attach_type_by_name(const char *name, 9351 enum bpf_attach_type *attach_type) 9352 { 9353 char *type_names; 9354 int i; 9355 9356 if (!name) 9357 return -EINVAL; 9358 9359 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9360 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9361 continue; 9362 if (!section_defs[i].is_attachable) 9363 return -EINVAL; 9364 *attach_type = section_defs[i].expected_attach_type; 9365 return 0; 9366 } 9367 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9368 type_names = libbpf_get_type_names(true); 9369 if (type_names != NULL) { 9370 pr_debug("attachable section(type) names are:%s\n", type_names); 9371 free(type_names); 9372 } 9373 9374 return -EINVAL; 9375 } 9376 9377 int bpf_map__fd(const struct bpf_map *map) 9378 { 9379 return map ? map->fd : -EINVAL; 9380 } 9381 9382 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9383 { 9384 return map ? &map->def : ERR_PTR(-EINVAL); 9385 } 9386 9387 const char *bpf_map__name(const struct bpf_map *map) 9388 { 9389 return map ? map->name : NULL; 9390 } 9391 9392 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9393 { 9394 return map->def.type; 9395 } 9396 9397 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9398 { 9399 if (map->fd >= 0) 9400 return -EBUSY; 9401 map->def.type = type; 9402 return 0; 9403 } 9404 9405 __u32 bpf_map__map_flags(const struct bpf_map *map) 9406 { 9407 return map->def.map_flags; 9408 } 9409 9410 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9411 { 9412 if (map->fd >= 0) 9413 return -EBUSY; 9414 map->def.map_flags = flags; 9415 return 0; 9416 } 9417 9418 __u32 bpf_map__numa_node(const struct bpf_map *map) 9419 { 9420 return map->numa_node; 9421 } 9422 9423 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9424 { 9425 if (map->fd >= 0) 9426 return -EBUSY; 9427 map->numa_node = numa_node; 9428 return 0; 9429 } 9430 9431 __u32 bpf_map__key_size(const struct bpf_map *map) 9432 { 9433 return map->def.key_size; 9434 } 9435 9436 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9437 { 9438 if (map->fd >= 0) 9439 return -EBUSY; 9440 map->def.key_size = size; 9441 return 0; 9442 } 9443 9444 __u32 bpf_map__value_size(const struct bpf_map *map) 9445 { 9446 return map->def.value_size; 9447 } 9448 9449 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9450 { 9451 if (map->fd >= 0) 9452 return -EBUSY; 9453 map->def.value_size = size; 9454 return 0; 9455 } 9456 9457 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9458 { 9459 return map ? map->btf_key_type_id : 0; 9460 } 9461 9462 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9463 { 9464 return map ? map->btf_value_type_id : 0; 9465 } 9466 9467 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9468 bpf_map_clear_priv_t clear_priv) 9469 { 9470 if (!map) 9471 return -EINVAL; 9472 9473 if (map->priv) { 9474 if (map->clear_priv) 9475 map->clear_priv(map, map->priv); 9476 } 9477 9478 map->priv = priv; 9479 map->clear_priv = clear_priv; 9480 return 0; 9481 } 9482 9483 void *bpf_map__priv(const struct bpf_map *map) 9484 { 9485 return map ? map->priv : ERR_PTR(-EINVAL); 9486 } 9487 9488 int bpf_map__set_initial_value(struct bpf_map *map, 9489 const void *data, size_t size) 9490 { 9491 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9492 size != map->def.value_size || map->fd >= 0) 9493 return -EINVAL; 9494 9495 memcpy(map->mmaped, data, size); 9496 return 0; 9497 } 9498 9499 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9500 { 9501 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9502 } 9503 9504 bool bpf_map__is_internal(const struct bpf_map *map) 9505 { 9506 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9507 } 9508 9509 __u32 bpf_map__ifindex(const struct bpf_map *map) 9510 { 9511 return map->map_ifindex; 9512 } 9513 9514 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9515 { 9516 if (map->fd >= 0) 9517 return -EBUSY; 9518 map->map_ifindex = ifindex; 9519 return 0; 9520 } 9521 9522 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9523 { 9524 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9525 pr_warn("error: unsupported map type\n"); 9526 return -EINVAL; 9527 } 9528 if (map->inner_map_fd != -1) { 9529 pr_warn("error: inner_map_fd already specified\n"); 9530 return -EINVAL; 9531 } 9532 zfree(&map->inner_map); 9533 map->inner_map_fd = fd; 9534 return 0; 9535 } 9536 9537 static struct bpf_map * 9538 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9539 { 9540 ssize_t idx; 9541 struct bpf_map *s, *e; 9542 9543 if (!obj || !obj->maps) 9544 return NULL; 9545 9546 s = obj->maps; 9547 e = obj->maps + obj->nr_maps; 9548 9549 if ((m < s) || (m >= e)) { 9550 pr_warn("error in %s: map handler doesn't belong to object\n", 9551 __func__); 9552 return NULL; 9553 } 9554 9555 idx = (m - obj->maps) + i; 9556 if (idx >= obj->nr_maps || idx < 0) 9557 return NULL; 9558 return &obj->maps[idx]; 9559 } 9560 9561 struct bpf_map * 9562 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9563 { 9564 if (prev == NULL) 9565 return obj->maps; 9566 9567 return __bpf_map__iter(prev, obj, 1); 9568 } 9569 9570 struct bpf_map * 9571 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9572 { 9573 if (next == NULL) { 9574 if (!obj->nr_maps) 9575 return NULL; 9576 return obj->maps + obj->nr_maps - 1; 9577 } 9578 9579 return __bpf_map__iter(next, obj, -1); 9580 } 9581 9582 struct bpf_map * 9583 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9584 { 9585 struct bpf_map *pos; 9586 9587 bpf_object__for_each_map(pos, obj) { 9588 if (pos->name && !strcmp(pos->name, name)) 9589 return pos; 9590 } 9591 return NULL; 9592 } 9593 9594 int 9595 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9596 { 9597 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9598 } 9599 9600 struct bpf_map * 9601 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9602 { 9603 return ERR_PTR(-ENOTSUP); 9604 } 9605 9606 long libbpf_get_error(const void *ptr) 9607 { 9608 return PTR_ERR_OR_ZERO(ptr); 9609 } 9610 9611 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9612 struct bpf_object **pobj, int *prog_fd) 9613 { 9614 struct bpf_prog_load_attr attr; 9615 9616 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9617 attr.file = file; 9618 attr.prog_type = type; 9619 attr.expected_attach_type = 0; 9620 9621 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9622 } 9623 9624 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9625 struct bpf_object **pobj, int *prog_fd) 9626 { 9627 struct bpf_object_open_attr open_attr = {}; 9628 struct bpf_program *prog, *first_prog = NULL; 9629 struct bpf_object *obj; 9630 struct bpf_map *map; 9631 int err; 9632 9633 if (!attr) 9634 return -EINVAL; 9635 if (!attr->file) 9636 return -EINVAL; 9637 9638 open_attr.file = attr->file; 9639 open_attr.prog_type = attr->prog_type; 9640 9641 obj = bpf_object__open_xattr(&open_attr); 9642 if (IS_ERR_OR_NULL(obj)) 9643 return -ENOENT; 9644 9645 bpf_object__for_each_program(prog, obj) { 9646 enum bpf_attach_type attach_type = attr->expected_attach_type; 9647 /* 9648 * to preserve backwards compatibility, bpf_prog_load treats 9649 * attr->prog_type, if specified, as an override to whatever 9650 * bpf_object__open guessed 9651 */ 9652 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9653 bpf_program__set_type(prog, attr->prog_type); 9654 bpf_program__set_expected_attach_type(prog, 9655 attach_type); 9656 } 9657 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9658 /* 9659 * we haven't guessed from section name and user 9660 * didn't provide a fallback type, too bad... 9661 */ 9662 bpf_object__close(obj); 9663 return -EINVAL; 9664 } 9665 9666 prog->prog_ifindex = attr->ifindex; 9667 prog->log_level = attr->log_level; 9668 prog->prog_flags |= attr->prog_flags; 9669 if (!first_prog) 9670 first_prog = prog; 9671 } 9672 9673 bpf_object__for_each_map(map, obj) { 9674 if (!bpf_map__is_offload_neutral(map)) 9675 map->map_ifindex = attr->ifindex; 9676 } 9677 9678 if (!first_prog) { 9679 pr_warn("object file doesn't contain bpf program\n"); 9680 bpf_object__close(obj); 9681 return -ENOENT; 9682 } 9683 9684 err = bpf_object__load(obj); 9685 if (err) { 9686 bpf_object__close(obj); 9687 return err; 9688 } 9689 9690 *pobj = obj; 9691 *prog_fd = bpf_program__fd(first_prog); 9692 return 0; 9693 } 9694 9695 struct bpf_link { 9696 int (*detach)(struct bpf_link *link); 9697 int (*destroy)(struct bpf_link *link); 9698 char *pin_path; /* NULL, if not pinned */ 9699 int fd; /* hook FD, -1 if not applicable */ 9700 bool disconnected; 9701 }; 9702 9703 /* Replace link's underlying BPF program with the new one */ 9704 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9705 { 9706 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9707 } 9708 9709 /* Release "ownership" of underlying BPF resource (typically, BPF program 9710 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9711 * link, when destructed through bpf_link__destroy() call won't attempt to 9712 * detach/unregisted that BPF resource. This is useful in situations where, 9713 * say, attached BPF program has to outlive userspace program that attached it 9714 * in the system. Depending on type of BPF program, though, there might be 9715 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9716 * exit of userspace program doesn't trigger automatic detachment and clean up 9717 * inside the kernel. 9718 */ 9719 void bpf_link__disconnect(struct bpf_link *link) 9720 { 9721 link->disconnected = true; 9722 } 9723 9724 int bpf_link__destroy(struct bpf_link *link) 9725 { 9726 int err = 0; 9727 9728 if (IS_ERR_OR_NULL(link)) 9729 return 0; 9730 9731 if (!link->disconnected && link->detach) 9732 err = link->detach(link); 9733 if (link->destroy) 9734 link->destroy(link); 9735 if (link->pin_path) 9736 free(link->pin_path); 9737 free(link); 9738 9739 return err; 9740 } 9741 9742 int bpf_link__fd(const struct bpf_link *link) 9743 { 9744 return link->fd; 9745 } 9746 9747 const char *bpf_link__pin_path(const struct bpf_link *link) 9748 { 9749 return link->pin_path; 9750 } 9751 9752 static int bpf_link__detach_fd(struct bpf_link *link) 9753 { 9754 return close(link->fd); 9755 } 9756 9757 struct bpf_link *bpf_link__open(const char *path) 9758 { 9759 struct bpf_link *link; 9760 int fd; 9761 9762 fd = bpf_obj_get(path); 9763 if (fd < 0) { 9764 fd = -errno; 9765 pr_warn("failed to open link at %s: %d\n", path, fd); 9766 return ERR_PTR(fd); 9767 } 9768 9769 link = calloc(1, sizeof(*link)); 9770 if (!link) { 9771 close(fd); 9772 return ERR_PTR(-ENOMEM); 9773 } 9774 link->detach = &bpf_link__detach_fd; 9775 link->fd = fd; 9776 9777 link->pin_path = strdup(path); 9778 if (!link->pin_path) { 9779 bpf_link__destroy(link); 9780 return ERR_PTR(-ENOMEM); 9781 } 9782 9783 return link; 9784 } 9785 9786 int bpf_link__detach(struct bpf_link *link) 9787 { 9788 return bpf_link_detach(link->fd) ? -errno : 0; 9789 } 9790 9791 int bpf_link__pin(struct bpf_link *link, const char *path) 9792 { 9793 int err; 9794 9795 if (link->pin_path) 9796 return -EBUSY; 9797 err = make_parent_dir(path); 9798 if (err) 9799 return err; 9800 err = check_path(path); 9801 if (err) 9802 return err; 9803 9804 link->pin_path = strdup(path); 9805 if (!link->pin_path) 9806 return -ENOMEM; 9807 9808 if (bpf_obj_pin(link->fd, link->pin_path)) { 9809 err = -errno; 9810 zfree(&link->pin_path); 9811 return err; 9812 } 9813 9814 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9815 return 0; 9816 } 9817 9818 int bpf_link__unpin(struct bpf_link *link) 9819 { 9820 int err; 9821 9822 if (!link->pin_path) 9823 return -EINVAL; 9824 9825 err = unlink(link->pin_path); 9826 if (err != 0) 9827 return -errno; 9828 9829 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9830 zfree(&link->pin_path); 9831 return 0; 9832 } 9833 9834 static int bpf_link__detach_perf_event(struct bpf_link *link) 9835 { 9836 int err; 9837 9838 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9839 if (err) 9840 err = -errno; 9841 9842 close(link->fd); 9843 return err; 9844 } 9845 9846 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9847 int pfd) 9848 { 9849 char errmsg[STRERR_BUFSIZE]; 9850 struct bpf_link *link; 9851 int prog_fd, err; 9852 9853 if (pfd < 0) { 9854 pr_warn("prog '%s': invalid perf event FD %d\n", 9855 prog->name, pfd); 9856 return ERR_PTR(-EINVAL); 9857 } 9858 prog_fd = bpf_program__fd(prog); 9859 if (prog_fd < 0) { 9860 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9861 prog->name); 9862 return ERR_PTR(-EINVAL); 9863 } 9864 9865 link = calloc(1, sizeof(*link)); 9866 if (!link) 9867 return ERR_PTR(-ENOMEM); 9868 link->detach = &bpf_link__detach_perf_event; 9869 link->fd = pfd; 9870 9871 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9872 err = -errno; 9873 free(link); 9874 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9875 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9876 if (err == -EPROTO) 9877 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9878 prog->name, pfd); 9879 return ERR_PTR(err); 9880 } 9881 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9882 err = -errno; 9883 free(link); 9884 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9885 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9886 return ERR_PTR(err); 9887 } 9888 return link; 9889 } 9890 9891 /* 9892 * this function is expected to parse integer in the range of [0, 2^31-1] from 9893 * given file using scanf format string fmt. If actual parsed value is 9894 * negative, the result might be indistinguishable from error 9895 */ 9896 static int parse_uint_from_file(const char *file, const char *fmt) 9897 { 9898 char buf[STRERR_BUFSIZE]; 9899 int err, ret; 9900 FILE *f; 9901 9902 f = fopen(file, "r"); 9903 if (!f) { 9904 err = -errno; 9905 pr_debug("failed to open '%s': %s\n", file, 9906 libbpf_strerror_r(err, buf, sizeof(buf))); 9907 return err; 9908 } 9909 err = fscanf(f, fmt, &ret); 9910 if (err != 1) { 9911 err = err == EOF ? -EIO : -errno; 9912 pr_debug("failed to parse '%s': %s\n", file, 9913 libbpf_strerror_r(err, buf, sizeof(buf))); 9914 fclose(f); 9915 return err; 9916 } 9917 fclose(f); 9918 return ret; 9919 } 9920 9921 static int determine_kprobe_perf_type(void) 9922 { 9923 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9924 9925 return parse_uint_from_file(file, "%d\n"); 9926 } 9927 9928 static int determine_uprobe_perf_type(void) 9929 { 9930 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9931 9932 return parse_uint_from_file(file, "%d\n"); 9933 } 9934 9935 static int determine_kprobe_retprobe_bit(void) 9936 { 9937 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9938 9939 return parse_uint_from_file(file, "config:%d\n"); 9940 } 9941 9942 static int determine_uprobe_retprobe_bit(void) 9943 { 9944 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9945 9946 return parse_uint_from_file(file, "config:%d\n"); 9947 } 9948 9949 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9950 uint64_t offset, int pid) 9951 { 9952 struct perf_event_attr attr = {}; 9953 char errmsg[STRERR_BUFSIZE]; 9954 int type, pfd, err; 9955 9956 type = uprobe ? determine_uprobe_perf_type() 9957 : determine_kprobe_perf_type(); 9958 if (type < 0) { 9959 pr_warn("failed to determine %s perf type: %s\n", 9960 uprobe ? "uprobe" : "kprobe", 9961 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9962 return type; 9963 } 9964 if (retprobe) { 9965 int bit = uprobe ? determine_uprobe_retprobe_bit() 9966 : determine_kprobe_retprobe_bit(); 9967 9968 if (bit < 0) { 9969 pr_warn("failed to determine %s retprobe bit: %s\n", 9970 uprobe ? "uprobe" : "kprobe", 9971 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9972 return bit; 9973 } 9974 attr.config |= 1 << bit; 9975 } 9976 attr.size = sizeof(attr); 9977 attr.type = type; 9978 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9979 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9980 9981 /* pid filter is meaningful only for uprobes */ 9982 pfd = syscall(__NR_perf_event_open, &attr, 9983 pid < 0 ? -1 : pid /* pid */, 9984 pid == -1 ? 0 : -1 /* cpu */, 9985 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9986 if (pfd < 0) { 9987 err = -errno; 9988 pr_warn("%s perf_event_open() failed: %s\n", 9989 uprobe ? "uprobe" : "kprobe", 9990 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9991 return err; 9992 } 9993 return pfd; 9994 } 9995 9996 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9997 bool retprobe, 9998 const char *func_name) 9999 { 10000 char errmsg[STRERR_BUFSIZE]; 10001 struct bpf_link *link; 10002 int pfd, err; 10003 10004 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 10005 0 /* offset */, -1 /* pid */); 10006 if (pfd < 0) { 10007 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 10008 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10009 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10010 return ERR_PTR(pfd); 10011 } 10012 link = bpf_program__attach_perf_event(prog, pfd); 10013 if (IS_ERR(link)) { 10014 close(pfd); 10015 err = PTR_ERR(link); 10016 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 10017 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10018 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10019 return link; 10020 } 10021 return link; 10022 } 10023 10024 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 10025 struct bpf_program *prog) 10026 { 10027 const char *func_name; 10028 bool retprobe; 10029 10030 func_name = prog->sec_name + sec->len; 10031 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 10032 10033 return bpf_program__attach_kprobe(prog, retprobe, func_name); 10034 } 10035 10036 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 10037 bool retprobe, pid_t pid, 10038 const char *binary_path, 10039 size_t func_offset) 10040 { 10041 char errmsg[STRERR_BUFSIZE]; 10042 struct bpf_link *link; 10043 int pfd, err; 10044 10045 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 10046 binary_path, func_offset, pid); 10047 if (pfd < 0) { 10048 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10049 prog->name, retprobe ? "uretprobe" : "uprobe", 10050 binary_path, func_offset, 10051 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10052 return ERR_PTR(pfd); 10053 } 10054 link = bpf_program__attach_perf_event(prog, pfd); 10055 if (IS_ERR(link)) { 10056 close(pfd); 10057 err = PTR_ERR(link); 10058 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10059 prog->name, retprobe ? "uretprobe" : "uprobe", 10060 binary_path, func_offset, 10061 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10062 return link; 10063 } 10064 return link; 10065 } 10066 10067 static int determine_tracepoint_id(const char *tp_category, 10068 const char *tp_name) 10069 { 10070 char file[PATH_MAX]; 10071 int ret; 10072 10073 ret = snprintf(file, sizeof(file), 10074 "/sys/kernel/debug/tracing/events/%s/%s/id", 10075 tp_category, tp_name); 10076 if (ret < 0) 10077 return -errno; 10078 if (ret >= sizeof(file)) { 10079 pr_debug("tracepoint %s/%s path is too long\n", 10080 tp_category, tp_name); 10081 return -E2BIG; 10082 } 10083 return parse_uint_from_file(file, "%d\n"); 10084 } 10085 10086 static int perf_event_open_tracepoint(const char *tp_category, 10087 const char *tp_name) 10088 { 10089 struct perf_event_attr attr = {}; 10090 char errmsg[STRERR_BUFSIZE]; 10091 int tp_id, pfd, err; 10092 10093 tp_id = determine_tracepoint_id(tp_category, tp_name); 10094 if (tp_id < 0) { 10095 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10096 tp_category, tp_name, 10097 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10098 return tp_id; 10099 } 10100 10101 attr.type = PERF_TYPE_TRACEPOINT; 10102 attr.size = sizeof(attr); 10103 attr.config = tp_id; 10104 10105 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10106 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10107 if (pfd < 0) { 10108 err = -errno; 10109 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10110 tp_category, tp_name, 10111 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10112 return err; 10113 } 10114 return pfd; 10115 } 10116 10117 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 10118 const char *tp_category, 10119 const char *tp_name) 10120 { 10121 char errmsg[STRERR_BUFSIZE]; 10122 struct bpf_link *link; 10123 int pfd, err; 10124 10125 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10126 if (pfd < 0) { 10127 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10128 prog->name, tp_category, tp_name, 10129 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10130 return ERR_PTR(pfd); 10131 } 10132 link = bpf_program__attach_perf_event(prog, pfd); 10133 if (IS_ERR(link)) { 10134 close(pfd); 10135 err = PTR_ERR(link); 10136 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10137 prog->name, tp_category, tp_name, 10138 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10139 return link; 10140 } 10141 return link; 10142 } 10143 10144 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 10145 struct bpf_program *prog) 10146 { 10147 char *sec_name, *tp_cat, *tp_name; 10148 struct bpf_link *link; 10149 10150 sec_name = strdup(prog->sec_name); 10151 if (!sec_name) 10152 return ERR_PTR(-ENOMEM); 10153 10154 /* extract "tp/<category>/<name>" */ 10155 tp_cat = sec_name + sec->len; 10156 tp_name = strchr(tp_cat, '/'); 10157 if (!tp_name) { 10158 link = ERR_PTR(-EINVAL); 10159 goto out; 10160 } 10161 *tp_name = '\0'; 10162 tp_name++; 10163 10164 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10165 out: 10166 free(sec_name); 10167 return link; 10168 } 10169 10170 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 10171 const char *tp_name) 10172 { 10173 char errmsg[STRERR_BUFSIZE]; 10174 struct bpf_link *link; 10175 int prog_fd, pfd; 10176 10177 prog_fd = bpf_program__fd(prog); 10178 if (prog_fd < 0) { 10179 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10180 return ERR_PTR(-EINVAL); 10181 } 10182 10183 link = calloc(1, sizeof(*link)); 10184 if (!link) 10185 return ERR_PTR(-ENOMEM); 10186 link->detach = &bpf_link__detach_fd; 10187 10188 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10189 if (pfd < 0) { 10190 pfd = -errno; 10191 free(link); 10192 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10193 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10194 return ERR_PTR(pfd); 10195 } 10196 link->fd = pfd; 10197 return link; 10198 } 10199 10200 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 10201 struct bpf_program *prog) 10202 { 10203 const char *tp_name = prog->sec_name + sec->len; 10204 10205 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10206 } 10207 10208 /* Common logic for all BPF program types that attach to a btf_id */ 10209 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 10210 { 10211 char errmsg[STRERR_BUFSIZE]; 10212 struct bpf_link *link; 10213 int prog_fd, pfd; 10214 10215 prog_fd = bpf_program__fd(prog); 10216 if (prog_fd < 0) { 10217 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10218 return ERR_PTR(-EINVAL); 10219 } 10220 10221 link = calloc(1, sizeof(*link)); 10222 if (!link) 10223 return ERR_PTR(-ENOMEM); 10224 link->detach = &bpf_link__detach_fd; 10225 10226 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10227 if (pfd < 0) { 10228 pfd = -errno; 10229 free(link); 10230 pr_warn("prog '%s': failed to attach: %s\n", 10231 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10232 return ERR_PTR(pfd); 10233 } 10234 link->fd = pfd; 10235 return (struct bpf_link *)link; 10236 } 10237 10238 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 10239 { 10240 return bpf_program__attach_btf_id(prog); 10241 } 10242 10243 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10244 { 10245 return bpf_program__attach_btf_id(prog); 10246 } 10247 10248 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10249 struct bpf_program *prog) 10250 { 10251 return bpf_program__attach_trace(prog); 10252 } 10253 10254 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10255 struct bpf_program *prog) 10256 { 10257 return bpf_program__attach_lsm(prog); 10258 } 10259 10260 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10261 struct bpf_program *prog) 10262 { 10263 return bpf_program__attach_iter(prog, NULL); 10264 } 10265 10266 static struct bpf_link * 10267 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10268 const char *target_name) 10269 { 10270 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10271 .target_btf_id = btf_id); 10272 enum bpf_attach_type attach_type; 10273 char errmsg[STRERR_BUFSIZE]; 10274 struct bpf_link *link; 10275 int prog_fd, link_fd; 10276 10277 prog_fd = bpf_program__fd(prog); 10278 if (prog_fd < 0) { 10279 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10280 return ERR_PTR(-EINVAL); 10281 } 10282 10283 link = calloc(1, sizeof(*link)); 10284 if (!link) 10285 return ERR_PTR(-ENOMEM); 10286 link->detach = &bpf_link__detach_fd; 10287 10288 attach_type = bpf_program__get_expected_attach_type(prog); 10289 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10290 if (link_fd < 0) { 10291 link_fd = -errno; 10292 free(link); 10293 pr_warn("prog '%s': failed to attach to %s: %s\n", 10294 prog->name, target_name, 10295 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10296 return ERR_PTR(link_fd); 10297 } 10298 link->fd = link_fd; 10299 return link; 10300 } 10301 10302 struct bpf_link * 10303 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10304 { 10305 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10306 } 10307 10308 struct bpf_link * 10309 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10310 { 10311 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10312 } 10313 10314 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10315 { 10316 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10317 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10318 } 10319 10320 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10321 int target_fd, 10322 const char *attach_func_name) 10323 { 10324 int btf_id; 10325 10326 if (!!target_fd != !!attach_func_name) { 10327 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10328 prog->name); 10329 return ERR_PTR(-EINVAL); 10330 } 10331 10332 if (prog->type != BPF_PROG_TYPE_EXT) { 10333 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10334 prog->name); 10335 return ERR_PTR(-EINVAL); 10336 } 10337 10338 if (target_fd) { 10339 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10340 if (btf_id < 0) 10341 return ERR_PTR(btf_id); 10342 10343 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10344 } else { 10345 /* no target, so use raw_tracepoint_open for compatibility 10346 * with old kernels 10347 */ 10348 return bpf_program__attach_trace(prog); 10349 } 10350 } 10351 10352 struct bpf_link * 10353 bpf_program__attach_iter(struct bpf_program *prog, 10354 const struct bpf_iter_attach_opts *opts) 10355 { 10356 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10357 char errmsg[STRERR_BUFSIZE]; 10358 struct bpf_link *link; 10359 int prog_fd, link_fd; 10360 __u32 target_fd = 0; 10361 10362 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10363 return ERR_PTR(-EINVAL); 10364 10365 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10366 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10367 10368 prog_fd = bpf_program__fd(prog); 10369 if (prog_fd < 0) { 10370 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10371 return ERR_PTR(-EINVAL); 10372 } 10373 10374 link = calloc(1, sizeof(*link)); 10375 if (!link) 10376 return ERR_PTR(-ENOMEM); 10377 link->detach = &bpf_link__detach_fd; 10378 10379 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10380 &link_create_opts); 10381 if (link_fd < 0) { 10382 link_fd = -errno; 10383 free(link); 10384 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10385 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10386 return ERR_PTR(link_fd); 10387 } 10388 link->fd = link_fd; 10389 return link; 10390 } 10391 10392 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10393 { 10394 const struct bpf_sec_def *sec_def; 10395 10396 sec_def = find_sec_def(prog->sec_name); 10397 if (!sec_def || !sec_def->attach_fn) 10398 return ERR_PTR(-ESRCH); 10399 10400 return sec_def->attach_fn(sec_def, prog); 10401 } 10402 10403 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10404 { 10405 __u32 zero = 0; 10406 10407 if (bpf_map_delete_elem(link->fd, &zero)) 10408 return -errno; 10409 10410 return 0; 10411 } 10412 10413 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10414 { 10415 struct bpf_struct_ops *st_ops; 10416 struct bpf_link *link; 10417 __u32 i, zero = 0; 10418 int err; 10419 10420 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10421 return ERR_PTR(-EINVAL); 10422 10423 link = calloc(1, sizeof(*link)); 10424 if (!link) 10425 return ERR_PTR(-EINVAL); 10426 10427 st_ops = map->st_ops; 10428 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10429 struct bpf_program *prog = st_ops->progs[i]; 10430 void *kern_data; 10431 int prog_fd; 10432 10433 if (!prog) 10434 continue; 10435 10436 prog_fd = bpf_program__fd(prog); 10437 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10438 *(unsigned long *)kern_data = prog_fd; 10439 } 10440 10441 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10442 if (err) { 10443 err = -errno; 10444 free(link); 10445 return ERR_PTR(err); 10446 } 10447 10448 link->detach = bpf_link__detach_struct_ops; 10449 link->fd = map->fd; 10450 10451 return link; 10452 } 10453 10454 enum bpf_perf_event_ret 10455 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10456 void **copy_mem, size_t *copy_size, 10457 bpf_perf_event_print_t fn, void *private_data) 10458 { 10459 struct perf_event_mmap_page *header = mmap_mem; 10460 __u64 data_head = ring_buffer_read_head(header); 10461 __u64 data_tail = header->data_tail; 10462 void *base = ((__u8 *)header) + page_size; 10463 int ret = LIBBPF_PERF_EVENT_CONT; 10464 struct perf_event_header *ehdr; 10465 size_t ehdr_size; 10466 10467 while (data_head != data_tail) { 10468 ehdr = base + (data_tail & (mmap_size - 1)); 10469 ehdr_size = ehdr->size; 10470 10471 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10472 void *copy_start = ehdr; 10473 size_t len_first = base + mmap_size - copy_start; 10474 size_t len_secnd = ehdr_size - len_first; 10475 10476 if (*copy_size < ehdr_size) { 10477 free(*copy_mem); 10478 *copy_mem = malloc(ehdr_size); 10479 if (!*copy_mem) { 10480 *copy_size = 0; 10481 ret = LIBBPF_PERF_EVENT_ERROR; 10482 break; 10483 } 10484 *copy_size = ehdr_size; 10485 } 10486 10487 memcpy(*copy_mem, copy_start, len_first); 10488 memcpy(*copy_mem + len_first, base, len_secnd); 10489 ehdr = *copy_mem; 10490 } 10491 10492 ret = fn(ehdr, private_data); 10493 data_tail += ehdr_size; 10494 if (ret != LIBBPF_PERF_EVENT_CONT) 10495 break; 10496 } 10497 10498 ring_buffer_write_tail(header, data_tail); 10499 return ret; 10500 } 10501 10502 struct perf_buffer; 10503 10504 struct perf_buffer_params { 10505 struct perf_event_attr *attr; 10506 /* if event_cb is specified, it takes precendence */ 10507 perf_buffer_event_fn event_cb; 10508 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10509 perf_buffer_sample_fn sample_cb; 10510 perf_buffer_lost_fn lost_cb; 10511 void *ctx; 10512 int cpu_cnt; 10513 int *cpus; 10514 int *map_keys; 10515 }; 10516 10517 struct perf_cpu_buf { 10518 struct perf_buffer *pb; 10519 void *base; /* mmap()'ed memory */ 10520 void *buf; /* for reconstructing segmented data */ 10521 size_t buf_size; 10522 int fd; 10523 int cpu; 10524 int map_key; 10525 }; 10526 10527 struct perf_buffer { 10528 perf_buffer_event_fn event_cb; 10529 perf_buffer_sample_fn sample_cb; 10530 perf_buffer_lost_fn lost_cb; 10531 void *ctx; /* passed into callbacks */ 10532 10533 size_t page_size; 10534 size_t mmap_size; 10535 struct perf_cpu_buf **cpu_bufs; 10536 struct epoll_event *events; 10537 int cpu_cnt; /* number of allocated CPU buffers */ 10538 int epoll_fd; /* perf event FD */ 10539 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10540 }; 10541 10542 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10543 struct perf_cpu_buf *cpu_buf) 10544 { 10545 if (!cpu_buf) 10546 return; 10547 if (cpu_buf->base && 10548 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10549 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10550 if (cpu_buf->fd >= 0) { 10551 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10552 close(cpu_buf->fd); 10553 } 10554 free(cpu_buf->buf); 10555 free(cpu_buf); 10556 } 10557 10558 void perf_buffer__free(struct perf_buffer *pb) 10559 { 10560 int i; 10561 10562 if (IS_ERR_OR_NULL(pb)) 10563 return; 10564 if (pb->cpu_bufs) { 10565 for (i = 0; i < pb->cpu_cnt; i++) { 10566 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10567 10568 if (!cpu_buf) 10569 continue; 10570 10571 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10572 perf_buffer__free_cpu_buf(pb, cpu_buf); 10573 } 10574 free(pb->cpu_bufs); 10575 } 10576 if (pb->epoll_fd >= 0) 10577 close(pb->epoll_fd); 10578 free(pb->events); 10579 free(pb); 10580 } 10581 10582 static struct perf_cpu_buf * 10583 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10584 int cpu, int map_key) 10585 { 10586 struct perf_cpu_buf *cpu_buf; 10587 char msg[STRERR_BUFSIZE]; 10588 int err; 10589 10590 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10591 if (!cpu_buf) 10592 return ERR_PTR(-ENOMEM); 10593 10594 cpu_buf->pb = pb; 10595 cpu_buf->cpu = cpu; 10596 cpu_buf->map_key = map_key; 10597 10598 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10599 -1, PERF_FLAG_FD_CLOEXEC); 10600 if (cpu_buf->fd < 0) { 10601 err = -errno; 10602 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10603 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10604 goto error; 10605 } 10606 10607 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10608 PROT_READ | PROT_WRITE, MAP_SHARED, 10609 cpu_buf->fd, 0); 10610 if (cpu_buf->base == MAP_FAILED) { 10611 cpu_buf->base = NULL; 10612 err = -errno; 10613 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10614 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10615 goto error; 10616 } 10617 10618 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10619 err = -errno; 10620 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10621 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10622 goto error; 10623 } 10624 10625 return cpu_buf; 10626 10627 error: 10628 perf_buffer__free_cpu_buf(pb, cpu_buf); 10629 return (struct perf_cpu_buf *)ERR_PTR(err); 10630 } 10631 10632 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10633 struct perf_buffer_params *p); 10634 10635 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10636 const struct perf_buffer_opts *opts) 10637 { 10638 struct perf_buffer_params p = {}; 10639 struct perf_event_attr attr = { 0, }; 10640 10641 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10642 attr.type = PERF_TYPE_SOFTWARE; 10643 attr.sample_type = PERF_SAMPLE_RAW; 10644 attr.sample_period = 1; 10645 attr.wakeup_events = 1; 10646 10647 p.attr = &attr; 10648 p.sample_cb = opts ? opts->sample_cb : NULL; 10649 p.lost_cb = opts ? opts->lost_cb : NULL; 10650 p.ctx = opts ? opts->ctx : NULL; 10651 10652 return __perf_buffer__new(map_fd, page_cnt, &p); 10653 } 10654 10655 struct perf_buffer * 10656 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10657 const struct perf_buffer_raw_opts *opts) 10658 { 10659 struct perf_buffer_params p = {}; 10660 10661 p.attr = opts->attr; 10662 p.event_cb = opts->event_cb; 10663 p.ctx = opts->ctx; 10664 p.cpu_cnt = opts->cpu_cnt; 10665 p.cpus = opts->cpus; 10666 p.map_keys = opts->map_keys; 10667 10668 return __perf_buffer__new(map_fd, page_cnt, &p); 10669 } 10670 10671 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10672 struct perf_buffer_params *p) 10673 { 10674 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10675 struct bpf_map_info map; 10676 char msg[STRERR_BUFSIZE]; 10677 struct perf_buffer *pb; 10678 bool *online = NULL; 10679 __u32 map_info_len; 10680 int err, i, j, n; 10681 10682 if (page_cnt & (page_cnt - 1)) { 10683 pr_warn("page count should be power of two, but is %zu\n", 10684 page_cnt); 10685 return ERR_PTR(-EINVAL); 10686 } 10687 10688 /* best-effort sanity checks */ 10689 memset(&map, 0, sizeof(map)); 10690 map_info_len = sizeof(map); 10691 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10692 if (err) { 10693 err = -errno; 10694 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10695 * -EBADFD, -EFAULT, or -E2BIG on real error 10696 */ 10697 if (err != -EINVAL) { 10698 pr_warn("failed to get map info for map FD %d: %s\n", 10699 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10700 return ERR_PTR(err); 10701 } 10702 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10703 map_fd); 10704 } else { 10705 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10706 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10707 map.name); 10708 return ERR_PTR(-EINVAL); 10709 } 10710 } 10711 10712 pb = calloc(1, sizeof(*pb)); 10713 if (!pb) 10714 return ERR_PTR(-ENOMEM); 10715 10716 pb->event_cb = p->event_cb; 10717 pb->sample_cb = p->sample_cb; 10718 pb->lost_cb = p->lost_cb; 10719 pb->ctx = p->ctx; 10720 10721 pb->page_size = getpagesize(); 10722 pb->mmap_size = pb->page_size * page_cnt; 10723 pb->map_fd = map_fd; 10724 10725 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10726 if (pb->epoll_fd < 0) { 10727 err = -errno; 10728 pr_warn("failed to create epoll instance: %s\n", 10729 libbpf_strerror_r(err, msg, sizeof(msg))); 10730 goto error; 10731 } 10732 10733 if (p->cpu_cnt > 0) { 10734 pb->cpu_cnt = p->cpu_cnt; 10735 } else { 10736 pb->cpu_cnt = libbpf_num_possible_cpus(); 10737 if (pb->cpu_cnt < 0) { 10738 err = pb->cpu_cnt; 10739 goto error; 10740 } 10741 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10742 pb->cpu_cnt = map.max_entries; 10743 } 10744 10745 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10746 if (!pb->events) { 10747 err = -ENOMEM; 10748 pr_warn("failed to allocate events: out of memory\n"); 10749 goto error; 10750 } 10751 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10752 if (!pb->cpu_bufs) { 10753 err = -ENOMEM; 10754 pr_warn("failed to allocate buffers: out of memory\n"); 10755 goto error; 10756 } 10757 10758 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10759 if (err) { 10760 pr_warn("failed to get online CPU mask: %d\n", err); 10761 goto error; 10762 } 10763 10764 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10765 struct perf_cpu_buf *cpu_buf; 10766 int cpu, map_key; 10767 10768 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10769 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10770 10771 /* in case user didn't explicitly requested particular CPUs to 10772 * be attached to, skip offline/not present CPUs 10773 */ 10774 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10775 continue; 10776 10777 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10778 if (IS_ERR(cpu_buf)) { 10779 err = PTR_ERR(cpu_buf); 10780 goto error; 10781 } 10782 10783 pb->cpu_bufs[j] = cpu_buf; 10784 10785 err = bpf_map_update_elem(pb->map_fd, &map_key, 10786 &cpu_buf->fd, 0); 10787 if (err) { 10788 err = -errno; 10789 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10790 cpu, map_key, cpu_buf->fd, 10791 libbpf_strerror_r(err, msg, sizeof(msg))); 10792 goto error; 10793 } 10794 10795 pb->events[j].events = EPOLLIN; 10796 pb->events[j].data.ptr = cpu_buf; 10797 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10798 &pb->events[j]) < 0) { 10799 err = -errno; 10800 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10801 cpu, cpu_buf->fd, 10802 libbpf_strerror_r(err, msg, sizeof(msg))); 10803 goto error; 10804 } 10805 j++; 10806 } 10807 pb->cpu_cnt = j; 10808 free(online); 10809 10810 return pb; 10811 10812 error: 10813 free(online); 10814 if (pb) 10815 perf_buffer__free(pb); 10816 return ERR_PTR(err); 10817 } 10818 10819 struct perf_sample_raw { 10820 struct perf_event_header header; 10821 uint32_t size; 10822 char data[]; 10823 }; 10824 10825 struct perf_sample_lost { 10826 struct perf_event_header header; 10827 uint64_t id; 10828 uint64_t lost; 10829 uint64_t sample_id; 10830 }; 10831 10832 static enum bpf_perf_event_ret 10833 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10834 { 10835 struct perf_cpu_buf *cpu_buf = ctx; 10836 struct perf_buffer *pb = cpu_buf->pb; 10837 void *data = e; 10838 10839 /* user wants full control over parsing perf event */ 10840 if (pb->event_cb) 10841 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10842 10843 switch (e->type) { 10844 case PERF_RECORD_SAMPLE: { 10845 struct perf_sample_raw *s = data; 10846 10847 if (pb->sample_cb) 10848 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10849 break; 10850 } 10851 case PERF_RECORD_LOST: { 10852 struct perf_sample_lost *s = data; 10853 10854 if (pb->lost_cb) 10855 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10856 break; 10857 } 10858 default: 10859 pr_warn("unknown perf sample type %d\n", e->type); 10860 return LIBBPF_PERF_EVENT_ERROR; 10861 } 10862 return LIBBPF_PERF_EVENT_CONT; 10863 } 10864 10865 static int perf_buffer__process_records(struct perf_buffer *pb, 10866 struct perf_cpu_buf *cpu_buf) 10867 { 10868 enum bpf_perf_event_ret ret; 10869 10870 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10871 pb->page_size, &cpu_buf->buf, 10872 &cpu_buf->buf_size, 10873 perf_buffer__process_record, cpu_buf); 10874 if (ret != LIBBPF_PERF_EVENT_CONT) 10875 return ret; 10876 return 0; 10877 } 10878 10879 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10880 { 10881 return pb->epoll_fd; 10882 } 10883 10884 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10885 { 10886 int i, cnt, err; 10887 10888 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10889 for (i = 0; i < cnt; i++) { 10890 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10891 10892 err = perf_buffer__process_records(pb, cpu_buf); 10893 if (err) { 10894 pr_warn("error while processing records: %d\n", err); 10895 return err; 10896 } 10897 } 10898 return cnt < 0 ? -errno : cnt; 10899 } 10900 10901 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10902 * manager. 10903 */ 10904 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10905 { 10906 return pb->cpu_cnt; 10907 } 10908 10909 /* 10910 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10911 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10912 * select()/poll()/epoll() Linux syscalls. 10913 */ 10914 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10915 { 10916 struct perf_cpu_buf *cpu_buf; 10917 10918 if (buf_idx >= pb->cpu_cnt) 10919 return -EINVAL; 10920 10921 cpu_buf = pb->cpu_bufs[buf_idx]; 10922 if (!cpu_buf) 10923 return -ENOENT; 10924 10925 return cpu_buf->fd; 10926 } 10927 10928 /* 10929 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10930 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10931 * consume, do nothing and return success. 10932 * Returns: 10933 * - 0 on success; 10934 * - <0 on failure. 10935 */ 10936 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10937 { 10938 struct perf_cpu_buf *cpu_buf; 10939 10940 if (buf_idx >= pb->cpu_cnt) 10941 return -EINVAL; 10942 10943 cpu_buf = pb->cpu_bufs[buf_idx]; 10944 if (!cpu_buf) 10945 return -ENOENT; 10946 10947 return perf_buffer__process_records(pb, cpu_buf); 10948 } 10949 10950 int perf_buffer__consume(struct perf_buffer *pb) 10951 { 10952 int i, err; 10953 10954 for (i = 0; i < pb->cpu_cnt; i++) { 10955 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10956 10957 if (!cpu_buf) 10958 continue; 10959 10960 err = perf_buffer__process_records(pb, cpu_buf); 10961 if (err) { 10962 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10963 return err; 10964 } 10965 } 10966 return 0; 10967 } 10968 10969 struct bpf_prog_info_array_desc { 10970 int array_offset; /* e.g. offset of jited_prog_insns */ 10971 int count_offset; /* e.g. offset of jited_prog_len */ 10972 int size_offset; /* > 0: offset of rec size, 10973 * < 0: fix size of -size_offset 10974 */ 10975 }; 10976 10977 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10978 [BPF_PROG_INFO_JITED_INSNS] = { 10979 offsetof(struct bpf_prog_info, jited_prog_insns), 10980 offsetof(struct bpf_prog_info, jited_prog_len), 10981 -1, 10982 }, 10983 [BPF_PROG_INFO_XLATED_INSNS] = { 10984 offsetof(struct bpf_prog_info, xlated_prog_insns), 10985 offsetof(struct bpf_prog_info, xlated_prog_len), 10986 -1, 10987 }, 10988 [BPF_PROG_INFO_MAP_IDS] = { 10989 offsetof(struct bpf_prog_info, map_ids), 10990 offsetof(struct bpf_prog_info, nr_map_ids), 10991 -(int)sizeof(__u32), 10992 }, 10993 [BPF_PROG_INFO_JITED_KSYMS] = { 10994 offsetof(struct bpf_prog_info, jited_ksyms), 10995 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10996 -(int)sizeof(__u64), 10997 }, 10998 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10999 offsetof(struct bpf_prog_info, jited_func_lens), 11000 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11001 -(int)sizeof(__u32), 11002 }, 11003 [BPF_PROG_INFO_FUNC_INFO] = { 11004 offsetof(struct bpf_prog_info, func_info), 11005 offsetof(struct bpf_prog_info, nr_func_info), 11006 offsetof(struct bpf_prog_info, func_info_rec_size), 11007 }, 11008 [BPF_PROG_INFO_LINE_INFO] = { 11009 offsetof(struct bpf_prog_info, line_info), 11010 offsetof(struct bpf_prog_info, nr_line_info), 11011 offsetof(struct bpf_prog_info, line_info_rec_size), 11012 }, 11013 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11014 offsetof(struct bpf_prog_info, jited_line_info), 11015 offsetof(struct bpf_prog_info, nr_jited_line_info), 11016 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11017 }, 11018 [BPF_PROG_INFO_PROG_TAGS] = { 11019 offsetof(struct bpf_prog_info, prog_tags), 11020 offsetof(struct bpf_prog_info, nr_prog_tags), 11021 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11022 }, 11023 11024 }; 11025 11026 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11027 int offset) 11028 { 11029 __u32 *array = (__u32 *)info; 11030 11031 if (offset >= 0) 11032 return array[offset / sizeof(__u32)]; 11033 return -(int)offset; 11034 } 11035 11036 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11037 int offset) 11038 { 11039 __u64 *array = (__u64 *)info; 11040 11041 if (offset >= 0) 11042 return array[offset / sizeof(__u64)]; 11043 return -(int)offset; 11044 } 11045 11046 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11047 __u32 val) 11048 { 11049 __u32 *array = (__u32 *)info; 11050 11051 if (offset >= 0) 11052 array[offset / sizeof(__u32)] = val; 11053 } 11054 11055 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11056 __u64 val) 11057 { 11058 __u64 *array = (__u64 *)info; 11059 11060 if (offset >= 0) 11061 array[offset / sizeof(__u64)] = val; 11062 } 11063 11064 struct bpf_prog_info_linear * 11065 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11066 { 11067 struct bpf_prog_info_linear *info_linear; 11068 struct bpf_prog_info info = {}; 11069 __u32 info_len = sizeof(info); 11070 __u32 data_len = 0; 11071 int i, err; 11072 void *ptr; 11073 11074 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11075 return ERR_PTR(-EINVAL); 11076 11077 /* step 1: get array dimensions */ 11078 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11079 if (err) { 11080 pr_debug("can't get prog info: %s", strerror(errno)); 11081 return ERR_PTR(-EFAULT); 11082 } 11083 11084 /* step 2: calculate total size of all arrays */ 11085 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11086 bool include_array = (arrays & (1UL << i)) > 0; 11087 struct bpf_prog_info_array_desc *desc; 11088 __u32 count, size; 11089 11090 desc = bpf_prog_info_array_desc + i; 11091 11092 /* kernel is too old to support this field */ 11093 if (info_len < desc->array_offset + sizeof(__u32) || 11094 info_len < desc->count_offset + sizeof(__u32) || 11095 (desc->size_offset > 0 && info_len < desc->size_offset)) 11096 include_array = false; 11097 11098 if (!include_array) { 11099 arrays &= ~(1UL << i); /* clear the bit */ 11100 continue; 11101 } 11102 11103 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11104 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11105 11106 data_len += count * size; 11107 } 11108 11109 /* step 3: allocate continuous memory */ 11110 data_len = roundup(data_len, sizeof(__u64)); 11111 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11112 if (!info_linear) 11113 return ERR_PTR(-ENOMEM); 11114 11115 /* step 4: fill data to info_linear->info */ 11116 info_linear->arrays = arrays; 11117 memset(&info_linear->info, 0, sizeof(info)); 11118 ptr = info_linear->data; 11119 11120 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11121 struct bpf_prog_info_array_desc *desc; 11122 __u32 count, size; 11123 11124 if ((arrays & (1UL << i)) == 0) 11125 continue; 11126 11127 desc = bpf_prog_info_array_desc + i; 11128 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11129 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11130 bpf_prog_info_set_offset_u32(&info_linear->info, 11131 desc->count_offset, count); 11132 bpf_prog_info_set_offset_u32(&info_linear->info, 11133 desc->size_offset, size); 11134 bpf_prog_info_set_offset_u64(&info_linear->info, 11135 desc->array_offset, 11136 ptr_to_u64(ptr)); 11137 ptr += count * size; 11138 } 11139 11140 /* step 5: call syscall again to get required arrays */ 11141 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11142 if (err) { 11143 pr_debug("can't get prog info: %s", strerror(errno)); 11144 free(info_linear); 11145 return ERR_PTR(-EFAULT); 11146 } 11147 11148 /* step 6: verify the data */ 11149 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11150 struct bpf_prog_info_array_desc *desc; 11151 __u32 v1, v2; 11152 11153 if ((arrays & (1UL << i)) == 0) 11154 continue; 11155 11156 desc = bpf_prog_info_array_desc + i; 11157 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11158 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11159 desc->count_offset); 11160 if (v1 != v2) 11161 pr_warn("%s: mismatch in element count\n", __func__); 11162 11163 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11164 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11165 desc->size_offset); 11166 if (v1 != v2) 11167 pr_warn("%s: mismatch in rec size\n", __func__); 11168 } 11169 11170 /* step 7: update info_len and data_len */ 11171 info_linear->info_len = sizeof(struct bpf_prog_info); 11172 info_linear->data_len = data_len; 11173 11174 return info_linear; 11175 } 11176 11177 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11178 { 11179 int i; 11180 11181 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11182 struct bpf_prog_info_array_desc *desc; 11183 __u64 addr, offs; 11184 11185 if ((info_linear->arrays & (1UL << i)) == 0) 11186 continue; 11187 11188 desc = bpf_prog_info_array_desc + i; 11189 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11190 desc->array_offset); 11191 offs = addr - ptr_to_u64(info_linear->data); 11192 bpf_prog_info_set_offset_u64(&info_linear->info, 11193 desc->array_offset, offs); 11194 } 11195 } 11196 11197 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11198 { 11199 int i; 11200 11201 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11202 struct bpf_prog_info_array_desc *desc; 11203 __u64 addr, offs; 11204 11205 if ((info_linear->arrays & (1UL << i)) == 0) 11206 continue; 11207 11208 desc = bpf_prog_info_array_desc + i; 11209 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11210 desc->array_offset); 11211 addr = offs + ptr_to_u64(info_linear->data); 11212 bpf_prog_info_set_offset_u64(&info_linear->info, 11213 desc->array_offset, addr); 11214 } 11215 } 11216 11217 int bpf_program__set_attach_target(struct bpf_program *prog, 11218 int attach_prog_fd, 11219 const char *attach_func_name) 11220 { 11221 int btf_obj_fd = 0, btf_id = 0, err; 11222 11223 if (!prog || attach_prog_fd < 0 || !attach_func_name) 11224 return -EINVAL; 11225 11226 if (prog->obj->loaded) 11227 return -EINVAL; 11228 11229 if (attach_prog_fd) { 11230 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11231 attach_prog_fd); 11232 if (btf_id < 0) 11233 return btf_id; 11234 } else { 11235 /* load btf_vmlinux, if not yet */ 11236 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11237 if (err) 11238 return err; 11239 err = find_kernel_btf_id(prog->obj, attach_func_name, 11240 prog->expected_attach_type, 11241 &btf_obj_fd, &btf_id); 11242 if (err) 11243 return err; 11244 } 11245 11246 prog->attach_btf_id = btf_id; 11247 prog->attach_btf_obj_fd = btf_obj_fd; 11248 prog->attach_prog_fd = attach_prog_fd; 11249 return 0; 11250 } 11251 11252 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11253 { 11254 int err = 0, n, len, start, end = -1; 11255 bool *tmp; 11256 11257 *mask = NULL; 11258 *mask_sz = 0; 11259 11260 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11261 while (*s) { 11262 if (*s == ',' || *s == '\n') { 11263 s++; 11264 continue; 11265 } 11266 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11267 if (n <= 0 || n > 2) { 11268 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11269 err = -EINVAL; 11270 goto cleanup; 11271 } else if (n == 1) { 11272 end = start; 11273 } 11274 if (start < 0 || start > end) { 11275 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11276 start, end, s); 11277 err = -EINVAL; 11278 goto cleanup; 11279 } 11280 tmp = realloc(*mask, end + 1); 11281 if (!tmp) { 11282 err = -ENOMEM; 11283 goto cleanup; 11284 } 11285 *mask = tmp; 11286 memset(tmp + *mask_sz, 0, start - *mask_sz); 11287 memset(tmp + start, 1, end - start + 1); 11288 *mask_sz = end + 1; 11289 s += len; 11290 } 11291 if (!*mask_sz) { 11292 pr_warn("Empty CPU range\n"); 11293 return -EINVAL; 11294 } 11295 return 0; 11296 cleanup: 11297 free(*mask); 11298 *mask = NULL; 11299 return err; 11300 } 11301 11302 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11303 { 11304 int fd, err = 0, len; 11305 char buf[128]; 11306 11307 fd = open(fcpu, O_RDONLY); 11308 if (fd < 0) { 11309 err = -errno; 11310 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11311 return err; 11312 } 11313 len = read(fd, buf, sizeof(buf)); 11314 close(fd); 11315 if (len <= 0) { 11316 err = len ? -errno : -EINVAL; 11317 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11318 return err; 11319 } 11320 if (len >= sizeof(buf)) { 11321 pr_warn("CPU mask is too big in file %s\n", fcpu); 11322 return -E2BIG; 11323 } 11324 buf[len] = '\0'; 11325 11326 return parse_cpu_mask_str(buf, mask, mask_sz); 11327 } 11328 11329 int libbpf_num_possible_cpus(void) 11330 { 11331 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11332 static int cpus; 11333 int err, n, i, tmp_cpus; 11334 bool *mask; 11335 11336 tmp_cpus = READ_ONCE(cpus); 11337 if (tmp_cpus > 0) 11338 return tmp_cpus; 11339 11340 err = parse_cpu_mask_file(fcpu, &mask, &n); 11341 if (err) 11342 return err; 11343 11344 tmp_cpus = 0; 11345 for (i = 0; i < n; i++) { 11346 if (mask[i]) 11347 tmp_cpus++; 11348 } 11349 free(mask); 11350 11351 WRITE_ONCE(cpus, tmp_cpus); 11352 return tmp_cpus; 11353 } 11354 11355 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11356 const struct bpf_object_open_opts *opts) 11357 { 11358 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11359 .object_name = s->name, 11360 ); 11361 struct bpf_object *obj; 11362 int i; 11363 11364 /* Attempt to preserve opts->object_name, unless overriden by user 11365 * explicitly. Overwriting object name for skeletons is discouraged, 11366 * as it breaks global data maps, because they contain object name 11367 * prefix as their own map name prefix. When skeleton is generated, 11368 * bpftool is making an assumption that this name will stay the same. 11369 */ 11370 if (opts) { 11371 memcpy(&skel_opts, opts, sizeof(*opts)); 11372 if (!opts->object_name) 11373 skel_opts.object_name = s->name; 11374 } 11375 11376 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11377 if (IS_ERR(obj)) { 11378 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11379 s->name, PTR_ERR(obj)); 11380 return PTR_ERR(obj); 11381 } 11382 11383 *s->obj = obj; 11384 11385 for (i = 0; i < s->map_cnt; i++) { 11386 struct bpf_map **map = s->maps[i].map; 11387 const char *name = s->maps[i].name; 11388 void **mmaped = s->maps[i].mmaped; 11389 11390 *map = bpf_object__find_map_by_name(obj, name); 11391 if (!*map) { 11392 pr_warn("failed to find skeleton map '%s'\n", name); 11393 return -ESRCH; 11394 } 11395 11396 /* externs shouldn't be pre-setup from user code */ 11397 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11398 *mmaped = (*map)->mmaped; 11399 } 11400 11401 for (i = 0; i < s->prog_cnt; i++) { 11402 struct bpf_program **prog = s->progs[i].prog; 11403 const char *name = s->progs[i].name; 11404 11405 *prog = bpf_object__find_program_by_name(obj, name); 11406 if (!*prog) { 11407 pr_warn("failed to find skeleton program '%s'\n", name); 11408 return -ESRCH; 11409 } 11410 } 11411 11412 return 0; 11413 } 11414 11415 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11416 { 11417 int i, err; 11418 11419 err = bpf_object__load(*s->obj); 11420 if (err) { 11421 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11422 return err; 11423 } 11424 11425 for (i = 0; i < s->map_cnt; i++) { 11426 struct bpf_map *map = *s->maps[i].map; 11427 size_t mmap_sz = bpf_map_mmap_sz(map); 11428 int prot, map_fd = bpf_map__fd(map); 11429 void **mmaped = s->maps[i].mmaped; 11430 11431 if (!mmaped) 11432 continue; 11433 11434 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11435 *mmaped = NULL; 11436 continue; 11437 } 11438 11439 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11440 prot = PROT_READ; 11441 else 11442 prot = PROT_READ | PROT_WRITE; 11443 11444 /* Remap anonymous mmap()-ed "map initialization image" as 11445 * a BPF map-backed mmap()-ed memory, but preserving the same 11446 * memory address. This will cause kernel to change process' 11447 * page table to point to a different piece of kernel memory, 11448 * but from userspace point of view memory address (and its 11449 * contents, being identical at this point) will stay the 11450 * same. This mapping will be released by bpf_object__close() 11451 * as per normal clean up procedure, so we don't need to worry 11452 * about it from skeleton's clean up perspective. 11453 */ 11454 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11455 MAP_SHARED | MAP_FIXED, map_fd, 0); 11456 if (*mmaped == MAP_FAILED) { 11457 err = -errno; 11458 *mmaped = NULL; 11459 pr_warn("failed to re-mmap() map '%s': %d\n", 11460 bpf_map__name(map), err); 11461 return err; 11462 } 11463 } 11464 11465 return 0; 11466 } 11467 11468 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11469 { 11470 int i; 11471 11472 for (i = 0; i < s->prog_cnt; i++) { 11473 struct bpf_program *prog = *s->progs[i].prog; 11474 struct bpf_link **link = s->progs[i].link; 11475 const struct bpf_sec_def *sec_def; 11476 11477 if (!prog->load) 11478 continue; 11479 11480 sec_def = find_sec_def(prog->sec_name); 11481 if (!sec_def || !sec_def->attach_fn) 11482 continue; 11483 11484 *link = sec_def->attach_fn(sec_def, prog); 11485 if (IS_ERR(*link)) { 11486 pr_warn("failed to auto-attach program '%s': %ld\n", 11487 bpf_program__name(prog), PTR_ERR(*link)); 11488 return PTR_ERR(*link); 11489 } 11490 } 11491 11492 return 0; 11493 } 11494 11495 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11496 { 11497 int i; 11498 11499 for (i = 0; i < s->prog_cnt; i++) { 11500 struct bpf_link **link = s->progs[i].link; 11501 11502 bpf_link__destroy(*link); 11503 *link = NULL; 11504 } 11505 } 11506 11507 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11508 { 11509 if (s->progs) 11510 bpf_object__detach_skeleton(s); 11511 if (s->obj) 11512 bpf_object__close(*s->obj); 11513 free(s->maps); 11514 free(s->progs); 11515 free(s); 11516 } 11517