xref: /linux/tools/lib/bpf/libbpf.c (revision 23c48a124b469cee2eb0c75e6d22d366d1caa118)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 };
120 
121 static const char * const link_type_name[] = {
122 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
123 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
124 	[BPF_LINK_TYPE_TRACING]			= "tracing",
125 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
126 	[BPF_LINK_TYPE_ITER]			= "iter",
127 	[BPF_LINK_TYPE_NETNS]			= "netns",
128 	[BPF_LINK_TYPE_XDP]			= "xdp",
129 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
130 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
131 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
132 };
133 
134 static const char * const map_type_name[] = {
135 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
136 	[BPF_MAP_TYPE_HASH]			= "hash",
137 	[BPF_MAP_TYPE_ARRAY]			= "array",
138 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
139 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
140 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
141 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
142 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
143 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
144 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
145 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
146 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
147 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
148 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
149 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
150 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
151 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
152 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
153 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
154 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
155 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
156 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
157 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
158 	[BPF_MAP_TYPE_QUEUE]			= "queue",
159 	[BPF_MAP_TYPE_STACK]			= "stack",
160 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
161 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
162 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
163 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
164 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
165 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
166 };
167 
168 static const char * const prog_type_name[] = {
169 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
170 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
171 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
172 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
173 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
174 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
175 	[BPF_PROG_TYPE_XDP]			= "xdp",
176 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
177 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
178 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
179 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
180 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
181 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
182 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
183 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
184 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
185 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
186 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
187 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
188 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
189 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
190 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
191 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
192 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
193 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
194 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
195 	[BPF_PROG_TYPE_TRACING]			= "tracing",
196 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
197 	[BPF_PROG_TYPE_EXT]			= "ext",
198 	[BPF_PROG_TYPE_LSM]			= "lsm",
199 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
200 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
201 };
202 
203 static int __base_pr(enum libbpf_print_level level, const char *format,
204 		     va_list args)
205 {
206 	if (level == LIBBPF_DEBUG)
207 		return 0;
208 
209 	return vfprintf(stderr, format, args);
210 }
211 
212 static libbpf_print_fn_t __libbpf_pr = __base_pr;
213 
214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
215 {
216 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
217 
218 	__libbpf_pr = fn;
219 	return old_print_fn;
220 }
221 
222 __printf(2, 3)
223 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
224 {
225 	va_list args;
226 
227 	if (!__libbpf_pr)
228 		return;
229 
230 	va_start(args, format);
231 	__libbpf_pr(level, format, args);
232 	va_end(args);
233 }
234 
235 static void pr_perm_msg(int err)
236 {
237 	struct rlimit limit;
238 	char buf[100];
239 
240 	if (err != -EPERM || geteuid() != 0)
241 		return;
242 
243 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
244 	if (err)
245 		return;
246 
247 	if (limit.rlim_cur == RLIM_INFINITY)
248 		return;
249 
250 	if (limit.rlim_cur < 1024)
251 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
252 	else if (limit.rlim_cur < 1024*1024)
253 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
254 	else
255 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
256 
257 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
258 		buf);
259 }
260 
261 #define STRERR_BUFSIZE  128
262 
263 /* Copied from tools/perf/util/util.h */
264 #ifndef zfree
265 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
266 #endif
267 
268 #ifndef zclose
269 # define zclose(fd) ({			\
270 	int ___err = 0;			\
271 	if ((fd) >= 0)			\
272 		___err = close((fd));	\
273 	fd = -1;			\
274 	___err; })
275 #endif
276 
277 static inline __u64 ptr_to_u64(const void *ptr)
278 {
279 	return (__u64) (unsigned long) ptr;
280 }
281 
282 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
283 {
284 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
285 	return 0;
286 }
287 
288 __u32 libbpf_major_version(void)
289 {
290 	return LIBBPF_MAJOR_VERSION;
291 }
292 
293 __u32 libbpf_minor_version(void)
294 {
295 	return LIBBPF_MINOR_VERSION;
296 }
297 
298 const char *libbpf_version_string(void)
299 {
300 #define __S(X) #X
301 #define _S(X) __S(X)
302 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
303 #undef _S
304 #undef __S
305 }
306 
307 enum reloc_type {
308 	RELO_LD64,
309 	RELO_CALL,
310 	RELO_DATA,
311 	RELO_EXTERN_VAR,
312 	RELO_EXTERN_FUNC,
313 	RELO_SUBPROG_ADDR,
314 	RELO_CORE,
315 };
316 
317 struct reloc_desc {
318 	enum reloc_type type;
319 	int insn_idx;
320 	union {
321 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
322 		struct {
323 			int map_idx;
324 			int sym_off;
325 		};
326 	};
327 };
328 
329 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
330 enum sec_def_flags {
331 	SEC_NONE = 0,
332 	/* expected_attach_type is optional, if kernel doesn't support that */
333 	SEC_EXP_ATTACH_OPT = 1,
334 	/* legacy, only used by libbpf_get_type_names() and
335 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
336 	 * This used to be associated with cgroup (and few other) BPF programs
337 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
338 	 * meaningless nowadays, though.
339 	 */
340 	SEC_ATTACHABLE = 2,
341 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
342 	/* attachment target is specified through BTF ID in either kernel or
343 	 * other BPF program's BTF object */
344 	SEC_ATTACH_BTF = 4,
345 	/* BPF program type allows sleeping/blocking in kernel */
346 	SEC_SLEEPABLE = 8,
347 	/* BPF program support non-linear XDP buffer */
348 	SEC_XDP_FRAGS = 16,
349 };
350 
351 struct bpf_sec_def {
352 	char *sec;
353 	enum bpf_prog_type prog_type;
354 	enum bpf_attach_type expected_attach_type;
355 	long cookie;
356 	int handler_id;
357 
358 	libbpf_prog_setup_fn_t prog_setup_fn;
359 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
360 	libbpf_prog_attach_fn_t prog_attach_fn;
361 };
362 
363 /*
364  * bpf_prog should be a better name but it has been used in
365  * linux/filter.h.
366  */
367 struct bpf_program {
368 	char *name;
369 	char *sec_name;
370 	size_t sec_idx;
371 	const struct bpf_sec_def *sec_def;
372 	/* this program's instruction offset (in number of instructions)
373 	 * within its containing ELF section
374 	 */
375 	size_t sec_insn_off;
376 	/* number of original instructions in ELF section belonging to this
377 	 * program, not taking into account subprogram instructions possible
378 	 * appended later during relocation
379 	 */
380 	size_t sec_insn_cnt;
381 	/* Offset (in number of instructions) of the start of instruction
382 	 * belonging to this BPF program  within its containing main BPF
383 	 * program. For the entry-point (main) BPF program, this is always
384 	 * zero. For a sub-program, this gets reset before each of main BPF
385 	 * programs are processed and relocated and is used to determined
386 	 * whether sub-program was already appended to the main program, and
387 	 * if yes, at which instruction offset.
388 	 */
389 	size_t sub_insn_off;
390 
391 	/* instructions that belong to BPF program; insns[0] is located at
392 	 * sec_insn_off instruction within its ELF section in ELF file, so
393 	 * when mapping ELF file instruction index to the local instruction,
394 	 * one needs to subtract sec_insn_off; and vice versa.
395 	 */
396 	struct bpf_insn *insns;
397 	/* actual number of instruction in this BPF program's image; for
398 	 * entry-point BPF programs this includes the size of main program
399 	 * itself plus all the used sub-programs, appended at the end
400 	 */
401 	size_t insns_cnt;
402 
403 	struct reloc_desc *reloc_desc;
404 	int nr_reloc;
405 
406 	/* BPF verifier log settings */
407 	char *log_buf;
408 	size_t log_size;
409 	__u32 log_level;
410 
411 	struct bpf_object *obj;
412 
413 	int fd;
414 	bool autoload;
415 	bool mark_btf_static;
416 	enum bpf_prog_type type;
417 	enum bpf_attach_type expected_attach_type;
418 
419 	int prog_ifindex;
420 	__u32 attach_btf_obj_fd;
421 	__u32 attach_btf_id;
422 	__u32 attach_prog_fd;
423 
424 	void *func_info;
425 	__u32 func_info_rec_size;
426 	__u32 func_info_cnt;
427 
428 	void *line_info;
429 	__u32 line_info_rec_size;
430 	__u32 line_info_cnt;
431 	__u32 prog_flags;
432 };
433 
434 struct bpf_struct_ops {
435 	const char *tname;
436 	const struct btf_type *type;
437 	struct bpf_program **progs;
438 	__u32 *kern_func_off;
439 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
440 	void *data;
441 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
442 	 *      btf_vmlinux's format.
443 	 * struct bpf_struct_ops_tcp_congestion_ops {
444 	 *	[... some other kernel fields ...]
445 	 *	struct tcp_congestion_ops data;
446 	 * }
447 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
448 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
449 	 * from "data".
450 	 */
451 	void *kern_vdata;
452 	__u32 type_id;
453 };
454 
455 #define DATA_SEC ".data"
456 #define BSS_SEC ".bss"
457 #define RODATA_SEC ".rodata"
458 #define KCONFIG_SEC ".kconfig"
459 #define KSYMS_SEC ".ksyms"
460 #define STRUCT_OPS_SEC ".struct_ops"
461 
462 enum libbpf_map_type {
463 	LIBBPF_MAP_UNSPEC,
464 	LIBBPF_MAP_DATA,
465 	LIBBPF_MAP_BSS,
466 	LIBBPF_MAP_RODATA,
467 	LIBBPF_MAP_KCONFIG,
468 };
469 
470 struct bpf_map_def {
471 	unsigned int type;
472 	unsigned int key_size;
473 	unsigned int value_size;
474 	unsigned int max_entries;
475 	unsigned int map_flags;
476 };
477 
478 struct bpf_map {
479 	struct bpf_object *obj;
480 	char *name;
481 	/* real_name is defined for special internal maps (.rodata*,
482 	 * .data*, .bss, .kconfig) and preserves their original ELF section
483 	 * name. This is important to be be able to find corresponding BTF
484 	 * DATASEC information.
485 	 */
486 	char *real_name;
487 	int fd;
488 	int sec_idx;
489 	size_t sec_offset;
490 	int map_ifindex;
491 	int inner_map_fd;
492 	struct bpf_map_def def;
493 	__u32 numa_node;
494 	__u32 btf_var_idx;
495 	__u32 btf_key_type_id;
496 	__u32 btf_value_type_id;
497 	__u32 btf_vmlinux_value_type_id;
498 	enum libbpf_map_type libbpf_type;
499 	void *mmaped;
500 	struct bpf_struct_ops *st_ops;
501 	struct bpf_map *inner_map;
502 	void **init_slots;
503 	int init_slots_sz;
504 	char *pin_path;
505 	bool pinned;
506 	bool reused;
507 	bool autocreate;
508 	__u64 map_extra;
509 };
510 
511 enum extern_type {
512 	EXT_UNKNOWN,
513 	EXT_KCFG,
514 	EXT_KSYM,
515 };
516 
517 enum kcfg_type {
518 	KCFG_UNKNOWN,
519 	KCFG_CHAR,
520 	KCFG_BOOL,
521 	KCFG_INT,
522 	KCFG_TRISTATE,
523 	KCFG_CHAR_ARR,
524 };
525 
526 struct extern_desc {
527 	enum extern_type type;
528 	int sym_idx;
529 	int btf_id;
530 	int sec_btf_id;
531 	const char *name;
532 	bool is_set;
533 	bool is_weak;
534 	union {
535 		struct {
536 			enum kcfg_type type;
537 			int sz;
538 			int align;
539 			int data_off;
540 			bool is_signed;
541 		} kcfg;
542 		struct {
543 			unsigned long long addr;
544 
545 			/* target btf_id of the corresponding kernel var. */
546 			int kernel_btf_obj_fd;
547 			int kernel_btf_id;
548 
549 			/* local btf_id of the ksym extern's type. */
550 			__u32 type_id;
551 			/* BTF fd index to be patched in for insn->off, this is
552 			 * 0 for vmlinux BTF, index in obj->fd_array for module
553 			 * BTF
554 			 */
555 			__s16 btf_fd_idx;
556 		} ksym;
557 	};
558 };
559 
560 struct module_btf {
561 	struct btf *btf;
562 	char *name;
563 	__u32 id;
564 	int fd;
565 	int fd_array_idx;
566 };
567 
568 enum sec_type {
569 	SEC_UNUSED = 0,
570 	SEC_RELO,
571 	SEC_BSS,
572 	SEC_DATA,
573 	SEC_RODATA,
574 };
575 
576 struct elf_sec_desc {
577 	enum sec_type sec_type;
578 	Elf64_Shdr *shdr;
579 	Elf_Data *data;
580 };
581 
582 struct elf_state {
583 	int fd;
584 	const void *obj_buf;
585 	size_t obj_buf_sz;
586 	Elf *elf;
587 	Elf64_Ehdr *ehdr;
588 	Elf_Data *symbols;
589 	Elf_Data *st_ops_data;
590 	size_t shstrndx; /* section index for section name strings */
591 	size_t strtabidx;
592 	struct elf_sec_desc *secs;
593 	int sec_cnt;
594 	int maps_shndx;
595 	int btf_maps_shndx;
596 	__u32 btf_maps_sec_btf_id;
597 	int text_shndx;
598 	int symbols_shndx;
599 	int st_ops_shndx;
600 };
601 
602 struct usdt_manager;
603 
604 struct bpf_object {
605 	char name[BPF_OBJ_NAME_LEN];
606 	char license[64];
607 	__u32 kern_version;
608 
609 	struct bpf_program *programs;
610 	size_t nr_programs;
611 	struct bpf_map *maps;
612 	size_t nr_maps;
613 	size_t maps_cap;
614 
615 	char *kconfig;
616 	struct extern_desc *externs;
617 	int nr_extern;
618 	int kconfig_map_idx;
619 
620 	bool loaded;
621 	bool has_subcalls;
622 	bool has_rodata;
623 
624 	struct bpf_gen *gen_loader;
625 
626 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
627 	struct elf_state efile;
628 
629 	struct btf *btf;
630 	struct btf_ext *btf_ext;
631 
632 	/* Parse and load BTF vmlinux if any of the programs in the object need
633 	 * it at load time.
634 	 */
635 	struct btf *btf_vmlinux;
636 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
637 	 * override for vmlinux BTF.
638 	 */
639 	char *btf_custom_path;
640 	/* vmlinux BTF override for CO-RE relocations */
641 	struct btf *btf_vmlinux_override;
642 	/* Lazily initialized kernel module BTFs */
643 	struct module_btf *btf_modules;
644 	bool btf_modules_loaded;
645 	size_t btf_module_cnt;
646 	size_t btf_module_cap;
647 
648 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
649 	char *log_buf;
650 	size_t log_size;
651 	__u32 log_level;
652 
653 	int *fd_array;
654 	size_t fd_array_cap;
655 	size_t fd_array_cnt;
656 
657 	struct usdt_manager *usdt_man;
658 
659 	char path[];
660 };
661 
662 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
663 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
664 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
665 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
666 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
667 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
668 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
669 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
670 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
671 
672 void bpf_program__unload(struct bpf_program *prog)
673 {
674 	if (!prog)
675 		return;
676 
677 	zclose(prog->fd);
678 
679 	zfree(&prog->func_info);
680 	zfree(&prog->line_info);
681 }
682 
683 static void bpf_program__exit(struct bpf_program *prog)
684 {
685 	if (!prog)
686 		return;
687 
688 	bpf_program__unload(prog);
689 	zfree(&prog->name);
690 	zfree(&prog->sec_name);
691 	zfree(&prog->insns);
692 	zfree(&prog->reloc_desc);
693 
694 	prog->nr_reloc = 0;
695 	prog->insns_cnt = 0;
696 	prog->sec_idx = -1;
697 }
698 
699 static bool insn_is_subprog_call(const struct bpf_insn *insn)
700 {
701 	return BPF_CLASS(insn->code) == BPF_JMP &&
702 	       BPF_OP(insn->code) == BPF_CALL &&
703 	       BPF_SRC(insn->code) == BPF_K &&
704 	       insn->src_reg == BPF_PSEUDO_CALL &&
705 	       insn->dst_reg == 0 &&
706 	       insn->off == 0;
707 }
708 
709 static bool is_call_insn(const struct bpf_insn *insn)
710 {
711 	return insn->code == (BPF_JMP | BPF_CALL);
712 }
713 
714 static bool insn_is_pseudo_func(struct bpf_insn *insn)
715 {
716 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
717 }
718 
719 static int
720 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
721 		      const char *name, size_t sec_idx, const char *sec_name,
722 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
723 {
724 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
725 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
726 			sec_name, name, sec_off, insn_data_sz);
727 		return -EINVAL;
728 	}
729 
730 	memset(prog, 0, sizeof(*prog));
731 	prog->obj = obj;
732 
733 	prog->sec_idx = sec_idx;
734 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
735 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
736 	/* insns_cnt can later be increased by appending used subprograms */
737 	prog->insns_cnt = prog->sec_insn_cnt;
738 
739 	prog->type = BPF_PROG_TYPE_UNSPEC;
740 	prog->fd = -1;
741 
742 	/* libbpf's convention for SEC("?abc...") is that it's just like
743 	 * SEC("abc...") but the corresponding bpf_program starts out with
744 	 * autoload set to false.
745 	 */
746 	if (sec_name[0] == '?') {
747 		prog->autoload = false;
748 		/* from now on forget there was ? in section name */
749 		sec_name++;
750 	} else {
751 		prog->autoload = true;
752 	}
753 
754 	/* inherit object's log_level */
755 	prog->log_level = obj->log_level;
756 
757 	prog->sec_name = strdup(sec_name);
758 	if (!prog->sec_name)
759 		goto errout;
760 
761 	prog->name = strdup(name);
762 	if (!prog->name)
763 		goto errout;
764 
765 	prog->insns = malloc(insn_data_sz);
766 	if (!prog->insns)
767 		goto errout;
768 	memcpy(prog->insns, insn_data, insn_data_sz);
769 
770 	return 0;
771 errout:
772 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
773 	bpf_program__exit(prog);
774 	return -ENOMEM;
775 }
776 
777 static int
778 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
779 			 const char *sec_name, int sec_idx)
780 {
781 	Elf_Data *symbols = obj->efile.symbols;
782 	struct bpf_program *prog, *progs;
783 	void *data = sec_data->d_buf;
784 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
785 	int nr_progs, err, i;
786 	const char *name;
787 	Elf64_Sym *sym;
788 
789 	progs = obj->programs;
790 	nr_progs = obj->nr_programs;
791 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
792 	sec_off = 0;
793 
794 	for (i = 0; i < nr_syms; i++) {
795 		sym = elf_sym_by_idx(obj, i);
796 
797 		if (sym->st_shndx != sec_idx)
798 			continue;
799 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
800 			continue;
801 
802 		prog_sz = sym->st_size;
803 		sec_off = sym->st_value;
804 
805 		name = elf_sym_str(obj, sym->st_name);
806 		if (!name) {
807 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
808 				sec_name, sec_off);
809 			return -LIBBPF_ERRNO__FORMAT;
810 		}
811 
812 		if (sec_off + prog_sz > sec_sz) {
813 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
814 				sec_name, sec_off);
815 			return -LIBBPF_ERRNO__FORMAT;
816 		}
817 
818 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
819 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
820 			return -ENOTSUP;
821 		}
822 
823 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
824 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
825 
826 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
827 		if (!progs) {
828 			/*
829 			 * In this case the original obj->programs
830 			 * is still valid, so don't need special treat for
831 			 * bpf_close_object().
832 			 */
833 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
834 				sec_name, name);
835 			return -ENOMEM;
836 		}
837 		obj->programs = progs;
838 
839 		prog = &progs[nr_progs];
840 
841 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
842 					    sec_off, data + sec_off, prog_sz);
843 		if (err)
844 			return err;
845 
846 		/* if function is a global/weak symbol, but has restricted
847 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
848 		 * as static to enable more permissive BPF verification mode
849 		 * with more outside context available to BPF verifier
850 		 */
851 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
852 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
853 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
854 			prog->mark_btf_static = true;
855 
856 		nr_progs++;
857 		obj->nr_programs = nr_progs;
858 	}
859 
860 	return 0;
861 }
862 
863 __u32 get_kernel_version(void)
864 {
865 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
866 	 * but Ubuntu provides /proc/version_signature file, as described at
867 	 * https://ubuntu.com/kernel, with an example contents below, which we
868 	 * can use to get a proper LINUX_VERSION_CODE.
869 	 *
870 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
871 	 *
872 	 * In the above, 5.4.8 is what kernel is actually expecting, while
873 	 * uname() call will return 5.4.0 in info.release.
874 	 */
875 	const char *ubuntu_kver_file = "/proc/version_signature";
876 	__u32 major, minor, patch;
877 	struct utsname info;
878 
879 	if (access(ubuntu_kver_file, R_OK) == 0) {
880 		FILE *f;
881 
882 		f = fopen(ubuntu_kver_file, "r");
883 		if (f) {
884 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
885 				fclose(f);
886 				return KERNEL_VERSION(major, minor, patch);
887 			}
888 			fclose(f);
889 		}
890 		/* something went wrong, fall back to uname() approach */
891 	}
892 
893 	uname(&info);
894 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
895 		return 0;
896 	return KERNEL_VERSION(major, minor, patch);
897 }
898 
899 static const struct btf_member *
900 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
901 {
902 	struct btf_member *m;
903 	int i;
904 
905 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
906 		if (btf_member_bit_offset(t, i) == bit_offset)
907 			return m;
908 	}
909 
910 	return NULL;
911 }
912 
913 static const struct btf_member *
914 find_member_by_name(const struct btf *btf, const struct btf_type *t,
915 		    const char *name)
916 {
917 	struct btf_member *m;
918 	int i;
919 
920 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
921 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
922 			return m;
923 	}
924 
925 	return NULL;
926 }
927 
928 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
929 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
930 				   const char *name, __u32 kind);
931 
932 static int
933 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
934 			   const struct btf_type **type, __u32 *type_id,
935 			   const struct btf_type **vtype, __u32 *vtype_id,
936 			   const struct btf_member **data_member)
937 {
938 	const struct btf_type *kern_type, *kern_vtype;
939 	const struct btf_member *kern_data_member;
940 	__s32 kern_vtype_id, kern_type_id;
941 	__u32 i;
942 
943 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
944 	if (kern_type_id < 0) {
945 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
946 			tname);
947 		return kern_type_id;
948 	}
949 	kern_type = btf__type_by_id(btf, kern_type_id);
950 
951 	/* Find the corresponding "map_value" type that will be used
952 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
953 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
954 	 * btf_vmlinux.
955 	 */
956 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
957 						tname, BTF_KIND_STRUCT);
958 	if (kern_vtype_id < 0) {
959 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
960 			STRUCT_OPS_VALUE_PREFIX, tname);
961 		return kern_vtype_id;
962 	}
963 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
964 
965 	/* Find "struct tcp_congestion_ops" from
966 	 * struct bpf_struct_ops_tcp_congestion_ops {
967 	 *	[ ... ]
968 	 *	struct tcp_congestion_ops data;
969 	 * }
970 	 */
971 	kern_data_member = btf_members(kern_vtype);
972 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
973 		if (kern_data_member->type == kern_type_id)
974 			break;
975 	}
976 	if (i == btf_vlen(kern_vtype)) {
977 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
978 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
979 		return -EINVAL;
980 	}
981 
982 	*type = kern_type;
983 	*type_id = kern_type_id;
984 	*vtype = kern_vtype;
985 	*vtype_id = kern_vtype_id;
986 	*data_member = kern_data_member;
987 
988 	return 0;
989 }
990 
991 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
992 {
993 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
994 }
995 
996 /* Init the map's fields that depend on kern_btf */
997 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
998 					 const struct btf *btf,
999 					 const struct btf *kern_btf)
1000 {
1001 	const struct btf_member *member, *kern_member, *kern_data_member;
1002 	const struct btf_type *type, *kern_type, *kern_vtype;
1003 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1004 	struct bpf_struct_ops *st_ops;
1005 	void *data, *kern_data;
1006 	const char *tname;
1007 	int err;
1008 
1009 	st_ops = map->st_ops;
1010 	type = st_ops->type;
1011 	tname = st_ops->tname;
1012 	err = find_struct_ops_kern_types(kern_btf, tname,
1013 					 &kern_type, &kern_type_id,
1014 					 &kern_vtype, &kern_vtype_id,
1015 					 &kern_data_member);
1016 	if (err)
1017 		return err;
1018 
1019 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1020 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1021 
1022 	map->def.value_size = kern_vtype->size;
1023 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1024 
1025 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1026 	if (!st_ops->kern_vdata)
1027 		return -ENOMEM;
1028 
1029 	data = st_ops->data;
1030 	kern_data_off = kern_data_member->offset / 8;
1031 	kern_data = st_ops->kern_vdata + kern_data_off;
1032 
1033 	member = btf_members(type);
1034 	for (i = 0; i < btf_vlen(type); i++, member++) {
1035 		const struct btf_type *mtype, *kern_mtype;
1036 		__u32 mtype_id, kern_mtype_id;
1037 		void *mdata, *kern_mdata;
1038 		__s64 msize, kern_msize;
1039 		__u32 moff, kern_moff;
1040 		__u32 kern_member_idx;
1041 		const char *mname;
1042 
1043 		mname = btf__name_by_offset(btf, member->name_off);
1044 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1045 		if (!kern_member) {
1046 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1047 				map->name, mname);
1048 			return -ENOTSUP;
1049 		}
1050 
1051 		kern_member_idx = kern_member - btf_members(kern_type);
1052 		if (btf_member_bitfield_size(type, i) ||
1053 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1054 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1055 				map->name, mname);
1056 			return -ENOTSUP;
1057 		}
1058 
1059 		moff = member->offset / 8;
1060 		kern_moff = kern_member->offset / 8;
1061 
1062 		mdata = data + moff;
1063 		kern_mdata = kern_data + kern_moff;
1064 
1065 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1066 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1067 						    &kern_mtype_id);
1068 		if (BTF_INFO_KIND(mtype->info) !=
1069 		    BTF_INFO_KIND(kern_mtype->info)) {
1070 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1071 				map->name, mname, BTF_INFO_KIND(mtype->info),
1072 				BTF_INFO_KIND(kern_mtype->info));
1073 			return -ENOTSUP;
1074 		}
1075 
1076 		if (btf_is_ptr(mtype)) {
1077 			struct bpf_program *prog;
1078 
1079 			prog = st_ops->progs[i];
1080 			if (!prog)
1081 				continue;
1082 
1083 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1084 							    kern_mtype->type,
1085 							    &kern_mtype_id);
1086 
1087 			/* mtype->type must be a func_proto which was
1088 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1089 			 * so only check kern_mtype for func_proto here.
1090 			 */
1091 			if (!btf_is_func_proto(kern_mtype)) {
1092 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1093 					map->name, mname);
1094 				return -ENOTSUP;
1095 			}
1096 
1097 			prog->attach_btf_id = kern_type_id;
1098 			prog->expected_attach_type = kern_member_idx;
1099 
1100 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1101 
1102 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1103 				 map->name, mname, prog->name, moff,
1104 				 kern_moff);
1105 
1106 			continue;
1107 		}
1108 
1109 		msize = btf__resolve_size(btf, mtype_id);
1110 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1111 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1112 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1113 				map->name, mname, (ssize_t)msize,
1114 				(ssize_t)kern_msize);
1115 			return -ENOTSUP;
1116 		}
1117 
1118 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1119 			 map->name, mname, (unsigned int)msize,
1120 			 moff, kern_moff);
1121 		memcpy(kern_mdata, mdata, msize);
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1128 {
1129 	struct bpf_map *map;
1130 	size_t i;
1131 	int err;
1132 
1133 	for (i = 0; i < obj->nr_maps; i++) {
1134 		map = &obj->maps[i];
1135 
1136 		if (!bpf_map__is_struct_ops(map))
1137 			continue;
1138 
1139 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1140 						    obj->btf_vmlinux);
1141 		if (err)
1142 			return err;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1149 {
1150 	const struct btf_type *type, *datasec;
1151 	const struct btf_var_secinfo *vsi;
1152 	struct bpf_struct_ops *st_ops;
1153 	const char *tname, *var_name;
1154 	__s32 type_id, datasec_id;
1155 	const struct btf *btf;
1156 	struct bpf_map *map;
1157 	__u32 i;
1158 
1159 	if (obj->efile.st_ops_shndx == -1)
1160 		return 0;
1161 
1162 	btf = obj->btf;
1163 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1164 					    BTF_KIND_DATASEC);
1165 	if (datasec_id < 0) {
1166 		pr_warn("struct_ops init: DATASEC %s not found\n",
1167 			STRUCT_OPS_SEC);
1168 		return -EINVAL;
1169 	}
1170 
1171 	datasec = btf__type_by_id(btf, datasec_id);
1172 	vsi = btf_var_secinfos(datasec);
1173 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1174 		type = btf__type_by_id(obj->btf, vsi->type);
1175 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1176 
1177 		type_id = btf__resolve_type(obj->btf, vsi->type);
1178 		if (type_id < 0) {
1179 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1180 				vsi->type, STRUCT_OPS_SEC);
1181 			return -EINVAL;
1182 		}
1183 
1184 		type = btf__type_by_id(obj->btf, type_id);
1185 		tname = btf__name_by_offset(obj->btf, type->name_off);
1186 		if (!tname[0]) {
1187 			pr_warn("struct_ops init: anonymous type is not supported\n");
1188 			return -ENOTSUP;
1189 		}
1190 		if (!btf_is_struct(type)) {
1191 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1192 			return -EINVAL;
1193 		}
1194 
1195 		map = bpf_object__add_map(obj);
1196 		if (IS_ERR(map))
1197 			return PTR_ERR(map);
1198 
1199 		map->sec_idx = obj->efile.st_ops_shndx;
1200 		map->sec_offset = vsi->offset;
1201 		map->name = strdup(var_name);
1202 		if (!map->name)
1203 			return -ENOMEM;
1204 
1205 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1206 		map->def.key_size = sizeof(int);
1207 		map->def.value_size = type->size;
1208 		map->def.max_entries = 1;
1209 
1210 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1211 		if (!map->st_ops)
1212 			return -ENOMEM;
1213 		st_ops = map->st_ops;
1214 		st_ops->data = malloc(type->size);
1215 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1216 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1217 					       sizeof(*st_ops->kern_func_off));
1218 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1219 			return -ENOMEM;
1220 
1221 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1222 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1223 				var_name, STRUCT_OPS_SEC);
1224 			return -EINVAL;
1225 		}
1226 
1227 		memcpy(st_ops->data,
1228 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1229 		       type->size);
1230 		st_ops->tname = tname;
1231 		st_ops->type = type;
1232 		st_ops->type_id = type_id;
1233 
1234 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1235 			 tname, type_id, var_name, vsi->offset);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static struct bpf_object *bpf_object__new(const char *path,
1242 					  const void *obj_buf,
1243 					  size_t obj_buf_sz,
1244 					  const char *obj_name)
1245 {
1246 	struct bpf_object *obj;
1247 	char *end;
1248 
1249 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1250 	if (!obj) {
1251 		pr_warn("alloc memory failed for %s\n", path);
1252 		return ERR_PTR(-ENOMEM);
1253 	}
1254 
1255 	strcpy(obj->path, path);
1256 	if (obj_name) {
1257 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1258 	} else {
1259 		/* Using basename() GNU version which doesn't modify arg. */
1260 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1261 		end = strchr(obj->name, '.');
1262 		if (end)
1263 			*end = 0;
1264 	}
1265 
1266 	obj->efile.fd = -1;
1267 	/*
1268 	 * Caller of this function should also call
1269 	 * bpf_object__elf_finish() after data collection to return
1270 	 * obj_buf to user. If not, we should duplicate the buffer to
1271 	 * avoid user freeing them before elf finish.
1272 	 */
1273 	obj->efile.obj_buf = obj_buf;
1274 	obj->efile.obj_buf_sz = obj_buf_sz;
1275 	obj->efile.maps_shndx = -1;
1276 	obj->efile.btf_maps_shndx = -1;
1277 	obj->efile.st_ops_shndx = -1;
1278 	obj->kconfig_map_idx = -1;
1279 
1280 	obj->kern_version = get_kernel_version();
1281 	obj->loaded = false;
1282 
1283 	return obj;
1284 }
1285 
1286 static void bpf_object__elf_finish(struct bpf_object *obj)
1287 {
1288 	if (!obj->efile.elf)
1289 		return;
1290 
1291 	elf_end(obj->efile.elf);
1292 	obj->efile.elf = NULL;
1293 	obj->efile.symbols = NULL;
1294 	obj->efile.st_ops_data = NULL;
1295 
1296 	zfree(&obj->efile.secs);
1297 	obj->efile.sec_cnt = 0;
1298 	zclose(obj->efile.fd);
1299 	obj->efile.obj_buf = NULL;
1300 	obj->efile.obj_buf_sz = 0;
1301 }
1302 
1303 static int bpf_object__elf_init(struct bpf_object *obj)
1304 {
1305 	Elf64_Ehdr *ehdr;
1306 	int err = 0;
1307 	Elf *elf;
1308 
1309 	if (obj->efile.elf) {
1310 		pr_warn("elf: init internal error\n");
1311 		return -LIBBPF_ERRNO__LIBELF;
1312 	}
1313 
1314 	if (obj->efile.obj_buf_sz > 0) {
1315 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1316 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1317 	} else {
1318 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1319 		if (obj->efile.fd < 0) {
1320 			char errmsg[STRERR_BUFSIZE], *cp;
1321 
1322 			err = -errno;
1323 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1324 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1325 			return err;
1326 		}
1327 
1328 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1329 	}
1330 
1331 	if (!elf) {
1332 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1333 		err = -LIBBPF_ERRNO__LIBELF;
1334 		goto errout;
1335 	}
1336 
1337 	obj->efile.elf = elf;
1338 
1339 	if (elf_kind(elf) != ELF_K_ELF) {
1340 		err = -LIBBPF_ERRNO__FORMAT;
1341 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1342 		goto errout;
1343 	}
1344 
1345 	if (gelf_getclass(elf) != ELFCLASS64) {
1346 		err = -LIBBPF_ERRNO__FORMAT;
1347 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1348 		goto errout;
1349 	}
1350 
1351 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1352 	if (!obj->efile.ehdr) {
1353 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__FORMAT;
1355 		goto errout;
1356 	}
1357 
1358 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1359 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1360 			obj->path, elf_errmsg(-1));
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		goto errout;
1363 	}
1364 
1365 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1366 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1367 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1368 			obj->path, elf_errmsg(-1));
1369 		err = -LIBBPF_ERRNO__FORMAT;
1370 		goto errout;
1371 	}
1372 
1373 	/* Old LLVM set e_machine to EM_NONE */
1374 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1375 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1376 		err = -LIBBPF_ERRNO__FORMAT;
1377 		goto errout;
1378 	}
1379 
1380 	return 0;
1381 errout:
1382 	bpf_object__elf_finish(obj);
1383 	return err;
1384 }
1385 
1386 static int bpf_object__check_endianness(struct bpf_object *obj)
1387 {
1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1389 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1390 		return 0;
1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1392 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1393 		return 0;
1394 #else
1395 # error "Unrecognized __BYTE_ORDER__"
1396 #endif
1397 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1398 	return -LIBBPF_ERRNO__ENDIAN;
1399 }
1400 
1401 static int
1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1403 {
1404 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1405 	 * go over allowed ELF data section buffer
1406 	 */
1407 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1408 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1409 	return 0;
1410 }
1411 
1412 static int
1413 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1414 {
1415 	__u32 kver;
1416 
1417 	if (size != sizeof(kver)) {
1418 		pr_warn("invalid kver section in %s\n", obj->path);
1419 		return -LIBBPF_ERRNO__FORMAT;
1420 	}
1421 	memcpy(&kver, data, sizeof(kver));
1422 	obj->kern_version = kver;
1423 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1424 	return 0;
1425 }
1426 
1427 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1428 {
1429 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1430 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1431 		return true;
1432 	return false;
1433 }
1434 
1435 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1436 {
1437 	Elf_Data *data;
1438 	Elf_Scn *scn;
1439 
1440 	if (!name)
1441 		return -EINVAL;
1442 
1443 	scn = elf_sec_by_name(obj, name);
1444 	data = elf_sec_data(obj, scn);
1445 	if (data) {
1446 		*size = data->d_size;
1447 		return 0; /* found it */
1448 	}
1449 
1450 	return -ENOENT;
1451 }
1452 
1453 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1454 {
1455 	Elf_Data *symbols = obj->efile.symbols;
1456 	const char *sname;
1457 	size_t si;
1458 
1459 	if (!name || !off)
1460 		return -EINVAL;
1461 
1462 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1463 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1464 
1465 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1466 			continue;
1467 
1468 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1469 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1470 			continue;
1471 
1472 		sname = elf_sym_str(obj, sym->st_name);
1473 		if (!sname) {
1474 			pr_warn("failed to get sym name string for var %s\n", name);
1475 			return -EIO;
1476 		}
1477 		if (strcmp(name, sname) == 0) {
1478 			*off = sym->st_value;
1479 			return 0;
1480 		}
1481 	}
1482 
1483 	return -ENOENT;
1484 }
1485 
1486 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1487 {
1488 	struct bpf_map *map;
1489 	int err;
1490 
1491 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1492 				sizeof(*obj->maps), obj->nr_maps + 1);
1493 	if (err)
1494 		return ERR_PTR(err);
1495 
1496 	map = &obj->maps[obj->nr_maps++];
1497 	map->obj = obj;
1498 	map->fd = -1;
1499 	map->inner_map_fd = -1;
1500 	map->autocreate = true;
1501 
1502 	return map;
1503 }
1504 
1505 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1506 {
1507 	long page_sz = sysconf(_SC_PAGE_SIZE);
1508 	size_t map_sz;
1509 
1510 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1511 	map_sz = roundup(map_sz, page_sz);
1512 	return map_sz;
1513 }
1514 
1515 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1516 {
1517 	char map_name[BPF_OBJ_NAME_LEN], *p;
1518 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1519 
1520 	/* This is one of the more confusing parts of libbpf for various
1521 	 * reasons, some of which are historical. The original idea for naming
1522 	 * internal names was to include as much of BPF object name prefix as
1523 	 * possible, so that it can be distinguished from similar internal
1524 	 * maps of a different BPF object.
1525 	 * As an example, let's say we have bpf_object named 'my_object_name'
1526 	 * and internal map corresponding to '.rodata' ELF section. The final
1527 	 * map name advertised to user and to the kernel will be
1528 	 * 'my_objec.rodata', taking first 8 characters of object name and
1529 	 * entire 7 characters of '.rodata'.
1530 	 * Somewhat confusingly, if internal map ELF section name is shorter
1531 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1532 	 * for the suffix, even though we only have 4 actual characters, and
1533 	 * resulting map will be called 'my_objec.bss', not even using all 15
1534 	 * characters allowed by the kernel. Oh well, at least the truncated
1535 	 * object name is somewhat consistent in this case. But if the map
1536 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1537 	 * (8 chars) and thus will be left with only first 7 characters of the
1538 	 * object name ('my_obje'). Happy guessing, user, that the final map
1539 	 * name will be "my_obje.kconfig".
1540 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1541 	 * and .data.* data sections, it's possible that ELF section name is
1542 	 * longer than allowed 15 chars, so we now need to be careful to take
1543 	 * only up to 15 first characters of ELF name, taking no BPF object
1544 	 * name characters at all. So '.rodata.abracadabra' will result in
1545 	 * '.rodata.abracad' kernel and user-visible name.
1546 	 * We need to keep this convoluted logic intact for .data, .bss and
1547 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1548 	 * maps we use their ELF names as is, not prepending bpf_object name
1549 	 * in front. We still need to truncate them to 15 characters for the
1550 	 * kernel. Full name can be recovered for such maps by using DATASEC
1551 	 * BTF type associated with such map's value type, though.
1552 	 */
1553 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1554 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1555 
1556 	/* if there are two or more dots in map name, it's a custom dot map */
1557 	if (strchr(real_name + 1, '.') != NULL)
1558 		pfx_len = 0;
1559 	else
1560 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1561 
1562 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1563 		 sfx_len, real_name);
1564 
1565 	/* sanitise map name to characters allowed by kernel */
1566 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1567 		if (!isalnum(*p) && *p != '_' && *p != '.')
1568 			*p = '_';
1569 
1570 	return strdup(map_name);
1571 }
1572 
1573 static int
1574 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1575 
1576 static int
1577 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1578 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1579 {
1580 	struct bpf_map_def *def;
1581 	struct bpf_map *map;
1582 	int err;
1583 
1584 	map = bpf_object__add_map(obj);
1585 	if (IS_ERR(map))
1586 		return PTR_ERR(map);
1587 
1588 	map->libbpf_type = type;
1589 	map->sec_idx = sec_idx;
1590 	map->sec_offset = 0;
1591 	map->real_name = strdup(real_name);
1592 	map->name = internal_map_name(obj, real_name);
1593 	if (!map->real_name || !map->name) {
1594 		zfree(&map->real_name);
1595 		zfree(&map->name);
1596 		return -ENOMEM;
1597 	}
1598 
1599 	def = &map->def;
1600 	def->type = BPF_MAP_TYPE_ARRAY;
1601 	def->key_size = sizeof(int);
1602 	def->value_size = data_sz;
1603 	def->max_entries = 1;
1604 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1605 			 ? BPF_F_RDONLY_PROG : 0;
1606 	def->map_flags |= BPF_F_MMAPABLE;
1607 
1608 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1609 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1610 
1611 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1612 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1613 	if (map->mmaped == MAP_FAILED) {
1614 		err = -errno;
1615 		map->mmaped = NULL;
1616 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1617 			map->name, err);
1618 		zfree(&map->real_name);
1619 		zfree(&map->name);
1620 		return err;
1621 	}
1622 
1623 	/* failures are fine because of maps like .rodata.str1.1 */
1624 	(void) bpf_map_find_btf_info(obj, map);
1625 
1626 	if (data)
1627 		memcpy(map->mmaped, data, data_sz);
1628 
1629 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1630 	return 0;
1631 }
1632 
1633 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1634 {
1635 	struct elf_sec_desc *sec_desc;
1636 	const char *sec_name;
1637 	int err = 0, sec_idx;
1638 
1639 	/*
1640 	 * Populate obj->maps with libbpf internal maps.
1641 	 */
1642 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1643 		sec_desc = &obj->efile.secs[sec_idx];
1644 
1645 		switch (sec_desc->sec_type) {
1646 		case SEC_DATA:
1647 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1648 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1649 							    sec_name, sec_idx,
1650 							    sec_desc->data->d_buf,
1651 							    sec_desc->data->d_size);
1652 			break;
1653 		case SEC_RODATA:
1654 			obj->has_rodata = true;
1655 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1656 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1657 							    sec_name, sec_idx,
1658 							    sec_desc->data->d_buf,
1659 							    sec_desc->data->d_size);
1660 			break;
1661 		case SEC_BSS:
1662 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1663 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1664 							    sec_name, sec_idx,
1665 							    NULL,
1666 							    sec_desc->data->d_size);
1667 			break;
1668 		default:
1669 			/* skip */
1670 			break;
1671 		}
1672 		if (err)
1673 			return err;
1674 	}
1675 	return 0;
1676 }
1677 
1678 
1679 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1680 					       const void *name)
1681 {
1682 	int i;
1683 
1684 	for (i = 0; i < obj->nr_extern; i++) {
1685 		if (strcmp(obj->externs[i].name, name) == 0)
1686 			return &obj->externs[i];
1687 	}
1688 	return NULL;
1689 }
1690 
1691 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1692 			      char value)
1693 {
1694 	switch (ext->kcfg.type) {
1695 	case KCFG_BOOL:
1696 		if (value == 'm') {
1697 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1698 				ext->name, value);
1699 			return -EINVAL;
1700 		}
1701 		*(bool *)ext_val = value == 'y' ? true : false;
1702 		break;
1703 	case KCFG_TRISTATE:
1704 		if (value == 'y')
1705 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1706 		else if (value == 'm')
1707 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1708 		else /* value == 'n' */
1709 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1710 		break;
1711 	case KCFG_CHAR:
1712 		*(char *)ext_val = value;
1713 		break;
1714 	case KCFG_UNKNOWN:
1715 	case KCFG_INT:
1716 	case KCFG_CHAR_ARR:
1717 	default:
1718 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1719 			ext->name, value);
1720 		return -EINVAL;
1721 	}
1722 	ext->is_set = true;
1723 	return 0;
1724 }
1725 
1726 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1727 			      const char *value)
1728 {
1729 	size_t len;
1730 
1731 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1732 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1733 			ext->name, value);
1734 		return -EINVAL;
1735 	}
1736 
1737 	len = strlen(value);
1738 	if (value[len - 1] != '"') {
1739 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1740 			ext->name, value);
1741 		return -EINVAL;
1742 	}
1743 
1744 	/* strip quotes */
1745 	len -= 2;
1746 	if (len >= ext->kcfg.sz) {
1747 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1748 			ext->name, value, len, ext->kcfg.sz - 1);
1749 		len = ext->kcfg.sz - 1;
1750 	}
1751 	memcpy(ext_val, value + 1, len);
1752 	ext_val[len] = '\0';
1753 	ext->is_set = true;
1754 	return 0;
1755 }
1756 
1757 static int parse_u64(const char *value, __u64 *res)
1758 {
1759 	char *value_end;
1760 	int err;
1761 
1762 	errno = 0;
1763 	*res = strtoull(value, &value_end, 0);
1764 	if (errno) {
1765 		err = -errno;
1766 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1767 		return err;
1768 	}
1769 	if (*value_end) {
1770 		pr_warn("failed to parse '%s' as integer completely\n", value);
1771 		return -EINVAL;
1772 	}
1773 	return 0;
1774 }
1775 
1776 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1777 {
1778 	int bit_sz = ext->kcfg.sz * 8;
1779 
1780 	if (ext->kcfg.sz == 8)
1781 		return true;
1782 
1783 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1784 	 * bytes size without any loss of information. If the target integer
1785 	 * is signed, we rely on the following limits of integer type of
1786 	 * Y bits and subsequent transformation:
1787 	 *
1788 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1789 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1790 	 *            0 <= X + 2^(Y-1) <  2^Y
1791 	 *
1792 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1793 	 *  zero.
1794 	 */
1795 	if (ext->kcfg.is_signed)
1796 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1797 	else
1798 		return (v >> bit_sz) == 0;
1799 }
1800 
1801 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1802 			      __u64 value)
1803 {
1804 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1805 	    ext->kcfg.type != KCFG_BOOL) {
1806 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1807 			ext->name, (unsigned long long)value);
1808 		return -EINVAL;
1809 	}
1810 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1811 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1812 			ext->name, (unsigned long long)value);
1813 		return -EINVAL;
1814 
1815 	}
1816 	if (!is_kcfg_value_in_range(ext, value)) {
1817 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1818 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1819 		return -ERANGE;
1820 	}
1821 	switch (ext->kcfg.sz) {
1822 		case 1: *(__u8 *)ext_val = value; break;
1823 		case 2: *(__u16 *)ext_val = value; break;
1824 		case 4: *(__u32 *)ext_val = value; break;
1825 		case 8: *(__u64 *)ext_val = value; break;
1826 		default:
1827 			return -EINVAL;
1828 	}
1829 	ext->is_set = true;
1830 	return 0;
1831 }
1832 
1833 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1834 					    char *buf, void *data)
1835 {
1836 	struct extern_desc *ext;
1837 	char *sep, *value;
1838 	int len, err = 0;
1839 	void *ext_val;
1840 	__u64 num;
1841 
1842 	if (!str_has_pfx(buf, "CONFIG_"))
1843 		return 0;
1844 
1845 	sep = strchr(buf, '=');
1846 	if (!sep) {
1847 		pr_warn("failed to parse '%s': no separator\n", buf);
1848 		return -EINVAL;
1849 	}
1850 
1851 	/* Trim ending '\n' */
1852 	len = strlen(buf);
1853 	if (buf[len - 1] == '\n')
1854 		buf[len - 1] = '\0';
1855 	/* Split on '=' and ensure that a value is present. */
1856 	*sep = '\0';
1857 	if (!sep[1]) {
1858 		*sep = '=';
1859 		pr_warn("failed to parse '%s': no value\n", buf);
1860 		return -EINVAL;
1861 	}
1862 
1863 	ext = find_extern_by_name(obj, buf);
1864 	if (!ext || ext->is_set)
1865 		return 0;
1866 
1867 	ext_val = data + ext->kcfg.data_off;
1868 	value = sep + 1;
1869 
1870 	switch (*value) {
1871 	case 'y': case 'n': case 'm':
1872 		err = set_kcfg_value_tri(ext, ext_val, *value);
1873 		break;
1874 	case '"':
1875 		err = set_kcfg_value_str(ext, ext_val, value);
1876 		break;
1877 	default:
1878 		/* assume integer */
1879 		err = parse_u64(value, &num);
1880 		if (err) {
1881 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1882 			return err;
1883 		}
1884 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1885 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1886 			return -EINVAL;
1887 		}
1888 		err = set_kcfg_value_num(ext, ext_val, num);
1889 		break;
1890 	}
1891 	if (err)
1892 		return err;
1893 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1894 	return 0;
1895 }
1896 
1897 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1898 {
1899 	char buf[PATH_MAX];
1900 	struct utsname uts;
1901 	int len, err = 0;
1902 	gzFile file;
1903 
1904 	uname(&uts);
1905 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1906 	if (len < 0)
1907 		return -EINVAL;
1908 	else if (len >= PATH_MAX)
1909 		return -ENAMETOOLONG;
1910 
1911 	/* gzopen also accepts uncompressed files. */
1912 	file = gzopen(buf, "r");
1913 	if (!file)
1914 		file = gzopen("/proc/config.gz", "r");
1915 
1916 	if (!file) {
1917 		pr_warn("failed to open system Kconfig\n");
1918 		return -ENOENT;
1919 	}
1920 
1921 	while (gzgets(file, buf, sizeof(buf))) {
1922 		err = bpf_object__process_kconfig_line(obj, buf, data);
1923 		if (err) {
1924 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1925 				buf, err);
1926 			goto out;
1927 		}
1928 	}
1929 
1930 out:
1931 	gzclose(file);
1932 	return err;
1933 }
1934 
1935 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1936 					const char *config, void *data)
1937 {
1938 	char buf[PATH_MAX];
1939 	int err = 0;
1940 	FILE *file;
1941 
1942 	file = fmemopen((void *)config, strlen(config), "r");
1943 	if (!file) {
1944 		err = -errno;
1945 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1946 		return err;
1947 	}
1948 
1949 	while (fgets(buf, sizeof(buf), file)) {
1950 		err = bpf_object__process_kconfig_line(obj, buf, data);
1951 		if (err) {
1952 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1953 				buf, err);
1954 			break;
1955 		}
1956 	}
1957 
1958 	fclose(file);
1959 	return err;
1960 }
1961 
1962 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1963 {
1964 	struct extern_desc *last_ext = NULL, *ext;
1965 	size_t map_sz;
1966 	int i, err;
1967 
1968 	for (i = 0; i < obj->nr_extern; i++) {
1969 		ext = &obj->externs[i];
1970 		if (ext->type == EXT_KCFG)
1971 			last_ext = ext;
1972 	}
1973 
1974 	if (!last_ext)
1975 		return 0;
1976 
1977 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1978 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1979 					    ".kconfig", obj->efile.symbols_shndx,
1980 					    NULL, map_sz);
1981 	if (err)
1982 		return err;
1983 
1984 	obj->kconfig_map_idx = obj->nr_maps - 1;
1985 
1986 	return 0;
1987 }
1988 
1989 const struct btf_type *
1990 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1991 {
1992 	const struct btf_type *t = btf__type_by_id(btf, id);
1993 
1994 	if (res_id)
1995 		*res_id = id;
1996 
1997 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1998 		if (res_id)
1999 			*res_id = t->type;
2000 		t = btf__type_by_id(btf, t->type);
2001 	}
2002 
2003 	return t;
2004 }
2005 
2006 static const struct btf_type *
2007 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2008 {
2009 	const struct btf_type *t;
2010 
2011 	t = skip_mods_and_typedefs(btf, id, NULL);
2012 	if (!btf_is_ptr(t))
2013 		return NULL;
2014 
2015 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2016 
2017 	return btf_is_func_proto(t) ? t : NULL;
2018 }
2019 
2020 static const char *__btf_kind_str(__u16 kind)
2021 {
2022 	switch (kind) {
2023 	case BTF_KIND_UNKN: return "void";
2024 	case BTF_KIND_INT: return "int";
2025 	case BTF_KIND_PTR: return "ptr";
2026 	case BTF_KIND_ARRAY: return "array";
2027 	case BTF_KIND_STRUCT: return "struct";
2028 	case BTF_KIND_UNION: return "union";
2029 	case BTF_KIND_ENUM: return "enum";
2030 	case BTF_KIND_FWD: return "fwd";
2031 	case BTF_KIND_TYPEDEF: return "typedef";
2032 	case BTF_KIND_VOLATILE: return "volatile";
2033 	case BTF_KIND_CONST: return "const";
2034 	case BTF_KIND_RESTRICT: return "restrict";
2035 	case BTF_KIND_FUNC: return "func";
2036 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2037 	case BTF_KIND_VAR: return "var";
2038 	case BTF_KIND_DATASEC: return "datasec";
2039 	case BTF_KIND_FLOAT: return "float";
2040 	case BTF_KIND_DECL_TAG: return "decl_tag";
2041 	case BTF_KIND_TYPE_TAG: return "type_tag";
2042 	case BTF_KIND_ENUM64: return "enum64";
2043 	default: return "unknown";
2044 	}
2045 }
2046 
2047 const char *btf_kind_str(const struct btf_type *t)
2048 {
2049 	return __btf_kind_str(btf_kind(t));
2050 }
2051 
2052 /*
2053  * Fetch integer attribute of BTF map definition. Such attributes are
2054  * represented using a pointer to an array, in which dimensionality of array
2055  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2056  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2057  * type definition, while using only sizeof(void *) space in ELF data section.
2058  */
2059 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2060 			      const struct btf_member *m, __u32 *res)
2061 {
2062 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2063 	const char *name = btf__name_by_offset(btf, m->name_off);
2064 	const struct btf_array *arr_info;
2065 	const struct btf_type *arr_t;
2066 
2067 	if (!btf_is_ptr(t)) {
2068 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2069 			map_name, name, btf_kind_str(t));
2070 		return false;
2071 	}
2072 
2073 	arr_t = btf__type_by_id(btf, t->type);
2074 	if (!arr_t) {
2075 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2076 			map_name, name, t->type);
2077 		return false;
2078 	}
2079 	if (!btf_is_array(arr_t)) {
2080 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2081 			map_name, name, btf_kind_str(arr_t));
2082 		return false;
2083 	}
2084 	arr_info = btf_array(arr_t);
2085 	*res = arr_info->nelems;
2086 	return true;
2087 }
2088 
2089 static int build_map_pin_path(struct bpf_map *map, const char *path)
2090 {
2091 	char buf[PATH_MAX];
2092 	int len;
2093 
2094 	if (!path)
2095 		path = "/sys/fs/bpf";
2096 
2097 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2098 	if (len < 0)
2099 		return -EINVAL;
2100 	else if (len >= PATH_MAX)
2101 		return -ENAMETOOLONG;
2102 
2103 	return bpf_map__set_pin_path(map, buf);
2104 }
2105 
2106 /* should match definition in bpf_helpers.h */
2107 enum libbpf_pin_type {
2108 	LIBBPF_PIN_NONE,
2109 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2110 	LIBBPF_PIN_BY_NAME,
2111 };
2112 
2113 int parse_btf_map_def(const char *map_name, struct btf *btf,
2114 		      const struct btf_type *def_t, bool strict,
2115 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2116 {
2117 	const struct btf_type *t;
2118 	const struct btf_member *m;
2119 	bool is_inner = inner_def == NULL;
2120 	int vlen, i;
2121 
2122 	vlen = btf_vlen(def_t);
2123 	m = btf_members(def_t);
2124 	for (i = 0; i < vlen; i++, m++) {
2125 		const char *name = btf__name_by_offset(btf, m->name_off);
2126 
2127 		if (!name) {
2128 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2129 			return -EINVAL;
2130 		}
2131 		if (strcmp(name, "type") == 0) {
2132 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2133 				return -EINVAL;
2134 			map_def->parts |= MAP_DEF_MAP_TYPE;
2135 		} else if (strcmp(name, "max_entries") == 0) {
2136 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2137 				return -EINVAL;
2138 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2139 		} else if (strcmp(name, "map_flags") == 0) {
2140 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2141 				return -EINVAL;
2142 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2143 		} else if (strcmp(name, "numa_node") == 0) {
2144 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2145 				return -EINVAL;
2146 			map_def->parts |= MAP_DEF_NUMA_NODE;
2147 		} else if (strcmp(name, "key_size") == 0) {
2148 			__u32 sz;
2149 
2150 			if (!get_map_field_int(map_name, btf, m, &sz))
2151 				return -EINVAL;
2152 			if (map_def->key_size && map_def->key_size != sz) {
2153 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2154 					map_name, map_def->key_size, sz);
2155 				return -EINVAL;
2156 			}
2157 			map_def->key_size = sz;
2158 			map_def->parts |= MAP_DEF_KEY_SIZE;
2159 		} else if (strcmp(name, "key") == 0) {
2160 			__s64 sz;
2161 
2162 			t = btf__type_by_id(btf, m->type);
2163 			if (!t) {
2164 				pr_warn("map '%s': key type [%d] not found.\n",
2165 					map_name, m->type);
2166 				return -EINVAL;
2167 			}
2168 			if (!btf_is_ptr(t)) {
2169 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2170 					map_name, btf_kind_str(t));
2171 				return -EINVAL;
2172 			}
2173 			sz = btf__resolve_size(btf, t->type);
2174 			if (sz < 0) {
2175 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2176 					map_name, t->type, (ssize_t)sz);
2177 				return sz;
2178 			}
2179 			if (map_def->key_size && map_def->key_size != sz) {
2180 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2181 					map_name, map_def->key_size, (ssize_t)sz);
2182 				return -EINVAL;
2183 			}
2184 			map_def->key_size = sz;
2185 			map_def->key_type_id = t->type;
2186 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2187 		} else if (strcmp(name, "value_size") == 0) {
2188 			__u32 sz;
2189 
2190 			if (!get_map_field_int(map_name, btf, m, &sz))
2191 				return -EINVAL;
2192 			if (map_def->value_size && map_def->value_size != sz) {
2193 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2194 					map_name, map_def->value_size, sz);
2195 				return -EINVAL;
2196 			}
2197 			map_def->value_size = sz;
2198 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2199 		} else if (strcmp(name, "value") == 0) {
2200 			__s64 sz;
2201 
2202 			t = btf__type_by_id(btf, m->type);
2203 			if (!t) {
2204 				pr_warn("map '%s': value type [%d] not found.\n",
2205 					map_name, m->type);
2206 				return -EINVAL;
2207 			}
2208 			if (!btf_is_ptr(t)) {
2209 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2210 					map_name, btf_kind_str(t));
2211 				return -EINVAL;
2212 			}
2213 			sz = btf__resolve_size(btf, t->type);
2214 			if (sz < 0) {
2215 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2216 					map_name, t->type, (ssize_t)sz);
2217 				return sz;
2218 			}
2219 			if (map_def->value_size && map_def->value_size != sz) {
2220 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2221 					map_name, map_def->value_size, (ssize_t)sz);
2222 				return -EINVAL;
2223 			}
2224 			map_def->value_size = sz;
2225 			map_def->value_type_id = t->type;
2226 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2227 		}
2228 		else if (strcmp(name, "values") == 0) {
2229 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2230 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2231 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2232 			char inner_map_name[128];
2233 			int err;
2234 
2235 			if (is_inner) {
2236 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2237 					map_name);
2238 				return -ENOTSUP;
2239 			}
2240 			if (i != vlen - 1) {
2241 				pr_warn("map '%s': '%s' member should be last.\n",
2242 					map_name, name);
2243 				return -EINVAL;
2244 			}
2245 			if (!is_map_in_map && !is_prog_array) {
2246 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2247 					map_name);
2248 				return -ENOTSUP;
2249 			}
2250 			if (map_def->value_size && map_def->value_size != 4) {
2251 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2252 					map_name, map_def->value_size);
2253 				return -EINVAL;
2254 			}
2255 			map_def->value_size = 4;
2256 			t = btf__type_by_id(btf, m->type);
2257 			if (!t) {
2258 				pr_warn("map '%s': %s type [%d] not found.\n",
2259 					map_name, desc, m->type);
2260 				return -EINVAL;
2261 			}
2262 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2263 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2264 					map_name, desc);
2265 				return -EINVAL;
2266 			}
2267 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2268 			if (!btf_is_ptr(t)) {
2269 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2270 					map_name, desc, btf_kind_str(t));
2271 				return -EINVAL;
2272 			}
2273 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2274 			if (is_prog_array) {
2275 				if (!btf_is_func_proto(t)) {
2276 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2277 						map_name, btf_kind_str(t));
2278 					return -EINVAL;
2279 				}
2280 				continue;
2281 			}
2282 			if (!btf_is_struct(t)) {
2283 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2284 					map_name, btf_kind_str(t));
2285 				return -EINVAL;
2286 			}
2287 
2288 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2289 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2290 			if (err)
2291 				return err;
2292 
2293 			map_def->parts |= MAP_DEF_INNER_MAP;
2294 		} else if (strcmp(name, "pinning") == 0) {
2295 			__u32 val;
2296 
2297 			if (is_inner) {
2298 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2299 				return -EINVAL;
2300 			}
2301 			if (!get_map_field_int(map_name, btf, m, &val))
2302 				return -EINVAL;
2303 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2304 				pr_warn("map '%s': invalid pinning value %u.\n",
2305 					map_name, val);
2306 				return -EINVAL;
2307 			}
2308 			map_def->pinning = val;
2309 			map_def->parts |= MAP_DEF_PINNING;
2310 		} else if (strcmp(name, "map_extra") == 0) {
2311 			__u32 map_extra;
2312 
2313 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2314 				return -EINVAL;
2315 			map_def->map_extra = map_extra;
2316 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2317 		} else {
2318 			if (strict) {
2319 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2320 				return -ENOTSUP;
2321 			}
2322 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2323 		}
2324 	}
2325 
2326 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2327 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2328 		return -EINVAL;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static size_t adjust_ringbuf_sz(size_t sz)
2335 {
2336 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2337 	__u32 mul;
2338 
2339 	/* if user forgot to set any size, make sure they see error */
2340 	if (sz == 0)
2341 		return 0;
2342 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2343 	 * a power-of-2 multiple of kernel's page size. If user diligently
2344 	 * satisified these conditions, pass the size through.
2345 	 */
2346 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2347 		return sz;
2348 
2349 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2350 	 * user-set size to satisfy both user size request and kernel
2351 	 * requirements and substitute correct max_entries for map creation.
2352 	 */
2353 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2354 		if (mul * page_sz > sz)
2355 			return mul * page_sz;
2356 	}
2357 
2358 	/* if it's impossible to satisfy the conditions (i.e., user size is
2359 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2360 	 * page_size) then just return original size and let kernel reject it
2361 	 */
2362 	return sz;
2363 }
2364 
2365 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2366 {
2367 	map->def.type = def->map_type;
2368 	map->def.key_size = def->key_size;
2369 	map->def.value_size = def->value_size;
2370 	map->def.max_entries = def->max_entries;
2371 	map->def.map_flags = def->map_flags;
2372 	map->map_extra = def->map_extra;
2373 
2374 	map->numa_node = def->numa_node;
2375 	map->btf_key_type_id = def->key_type_id;
2376 	map->btf_value_type_id = def->value_type_id;
2377 
2378 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2379 	if (map->def.type == BPF_MAP_TYPE_RINGBUF)
2380 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2381 
2382 	if (def->parts & MAP_DEF_MAP_TYPE)
2383 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2384 
2385 	if (def->parts & MAP_DEF_KEY_TYPE)
2386 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2387 			 map->name, def->key_type_id, def->key_size);
2388 	else if (def->parts & MAP_DEF_KEY_SIZE)
2389 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2390 
2391 	if (def->parts & MAP_DEF_VALUE_TYPE)
2392 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2393 			 map->name, def->value_type_id, def->value_size);
2394 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2395 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2396 
2397 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2398 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2399 	if (def->parts & MAP_DEF_MAP_FLAGS)
2400 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2401 	if (def->parts & MAP_DEF_MAP_EXTRA)
2402 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2403 			 (unsigned long long)def->map_extra);
2404 	if (def->parts & MAP_DEF_PINNING)
2405 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2406 	if (def->parts & MAP_DEF_NUMA_NODE)
2407 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2408 
2409 	if (def->parts & MAP_DEF_INNER_MAP)
2410 		pr_debug("map '%s': found inner map definition.\n", map->name);
2411 }
2412 
2413 static const char *btf_var_linkage_str(__u32 linkage)
2414 {
2415 	switch (linkage) {
2416 	case BTF_VAR_STATIC: return "static";
2417 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2418 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2419 	default: return "unknown";
2420 	}
2421 }
2422 
2423 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2424 					 const struct btf_type *sec,
2425 					 int var_idx, int sec_idx,
2426 					 const Elf_Data *data, bool strict,
2427 					 const char *pin_root_path)
2428 {
2429 	struct btf_map_def map_def = {}, inner_def = {};
2430 	const struct btf_type *var, *def;
2431 	const struct btf_var_secinfo *vi;
2432 	const struct btf_var *var_extra;
2433 	const char *map_name;
2434 	struct bpf_map *map;
2435 	int err;
2436 
2437 	vi = btf_var_secinfos(sec) + var_idx;
2438 	var = btf__type_by_id(obj->btf, vi->type);
2439 	var_extra = btf_var(var);
2440 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2441 
2442 	if (map_name == NULL || map_name[0] == '\0') {
2443 		pr_warn("map #%d: empty name.\n", var_idx);
2444 		return -EINVAL;
2445 	}
2446 	if ((__u64)vi->offset + vi->size > data->d_size) {
2447 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2448 		return -EINVAL;
2449 	}
2450 	if (!btf_is_var(var)) {
2451 		pr_warn("map '%s': unexpected var kind %s.\n",
2452 			map_name, btf_kind_str(var));
2453 		return -EINVAL;
2454 	}
2455 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2456 		pr_warn("map '%s': unsupported map linkage %s.\n",
2457 			map_name, btf_var_linkage_str(var_extra->linkage));
2458 		return -EOPNOTSUPP;
2459 	}
2460 
2461 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2462 	if (!btf_is_struct(def)) {
2463 		pr_warn("map '%s': unexpected def kind %s.\n",
2464 			map_name, btf_kind_str(var));
2465 		return -EINVAL;
2466 	}
2467 	if (def->size > vi->size) {
2468 		pr_warn("map '%s': invalid def size.\n", map_name);
2469 		return -EINVAL;
2470 	}
2471 
2472 	map = bpf_object__add_map(obj);
2473 	if (IS_ERR(map))
2474 		return PTR_ERR(map);
2475 	map->name = strdup(map_name);
2476 	if (!map->name) {
2477 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2478 		return -ENOMEM;
2479 	}
2480 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2481 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2482 	map->sec_idx = sec_idx;
2483 	map->sec_offset = vi->offset;
2484 	map->btf_var_idx = var_idx;
2485 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2486 		 map_name, map->sec_idx, map->sec_offset);
2487 
2488 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2489 	if (err)
2490 		return err;
2491 
2492 	fill_map_from_def(map, &map_def);
2493 
2494 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2495 		err = build_map_pin_path(map, pin_root_path);
2496 		if (err) {
2497 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2498 			return err;
2499 		}
2500 	}
2501 
2502 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2503 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2504 		if (!map->inner_map)
2505 			return -ENOMEM;
2506 		map->inner_map->fd = -1;
2507 		map->inner_map->sec_idx = sec_idx;
2508 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2509 		if (!map->inner_map->name)
2510 			return -ENOMEM;
2511 		sprintf(map->inner_map->name, "%s.inner", map_name);
2512 
2513 		fill_map_from_def(map->inner_map, &inner_def);
2514 	}
2515 
2516 	err = bpf_map_find_btf_info(obj, map);
2517 	if (err)
2518 		return err;
2519 
2520 	return 0;
2521 }
2522 
2523 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2524 					  const char *pin_root_path)
2525 {
2526 	const struct btf_type *sec = NULL;
2527 	int nr_types, i, vlen, err;
2528 	const struct btf_type *t;
2529 	const char *name;
2530 	Elf_Data *data;
2531 	Elf_Scn *scn;
2532 
2533 	if (obj->efile.btf_maps_shndx < 0)
2534 		return 0;
2535 
2536 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2537 	data = elf_sec_data(obj, scn);
2538 	if (!scn || !data) {
2539 		pr_warn("elf: failed to get %s map definitions for %s\n",
2540 			MAPS_ELF_SEC, obj->path);
2541 		return -EINVAL;
2542 	}
2543 
2544 	nr_types = btf__type_cnt(obj->btf);
2545 	for (i = 1; i < nr_types; i++) {
2546 		t = btf__type_by_id(obj->btf, i);
2547 		if (!btf_is_datasec(t))
2548 			continue;
2549 		name = btf__name_by_offset(obj->btf, t->name_off);
2550 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2551 			sec = t;
2552 			obj->efile.btf_maps_sec_btf_id = i;
2553 			break;
2554 		}
2555 	}
2556 
2557 	if (!sec) {
2558 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2559 		return -ENOENT;
2560 	}
2561 
2562 	vlen = btf_vlen(sec);
2563 	for (i = 0; i < vlen; i++) {
2564 		err = bpf_object__init_user_btf_map(obj, sec, i,
2565 						    obj->efile.btf_maps_shndx,
2566 						    data, strict,
2567 						    pin_root_path);
2568 		if (err)
2569 			return err;
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static int bpf_object__init_maps(struct bpf_object *obj,
2576 				 const struct bpf_object_open_opts *opts)
2577 {
2578 	const char *pin_root_path;
2579 	bool strict;
2580 	int err = 0;
2581 
2582 	strict = !OPTS_GET(opts, relaxed_maps, false);
2583 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2584 
2585 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2586 	err = err ?: bpf_object__init_global_data_maps(obj);
2587 	err = err ?: bpf_object__init_kconfig_map(obj);
2588 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2589 
2590 	return err;
2591 }
2592 
2593 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2594 {
2595 	Elf64_Shdr *sh;
2596 
2597 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2598 	if (!sh)
2599 		return false;
2600 
2601 	return sh->sh_flags & SHF_EXECINSTR;
2602 }
2603 
2604 static bool btf_needs_sanitization(struct bpf_object *obj)
2605 {
2606 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2607 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2608 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2609 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2610 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2611 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2612 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2613 
2614 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2615 	       !has_decl_tag || !has_type_tag || !has_enum64;
2616 }
2617 
2618 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2619 {
2620 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2621 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2622 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2623 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2624 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2625 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2626 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2627 	int enum64_placeholder_id = 0;
2628 	struct btf_type *t;
2629 	int i, j, vlen;
2630 
2631 	for (i = 1; i < btf__type_cnt(btf); i++) {
2632 		t = (struct btf_type *)btf__type_by_id(btf, i);
2633 
2634 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2635 			/* replace VAR/DECL_TAG with INT */
2636 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2637 			/*
2638 			 * using size = 1 is the safest choice, 4 will be too
2639 			 * big and cause kernel BTF validation failure if
2640 			 * original variable took less than 4 bytes
2641 			 */
2642 			t->size = 1;
2643 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2644 		} else if (!has_datasec && btf_is_datasec(t)) {
2645 			/* replace DATASEC with STRUCT */
2646 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2647 			struct btf_member *m = btf_members(t);
2648 			struct btf_type *vt;
2649 			char *name;
2650 
2651 			name = (char *)btf__name_by_offset(btf, t->name_off);
2652 			while (*name) {
2653 				if (*name == '.')
2654 					*name = '_';
2655 				name++;
2656 			}
2657 
2658 			vlen = btf_vlen(t);
2659 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2660 			for (j = 0; j < vlen; j++, v++, m++) {
2661 				/* order of field assignments is important */
2662 				m->offset = v->offset * 8;
2663 				m->type = v->type;
2664 				/* preserve variable name as member name */
2665 				vt = (void *)btf__type_by_id(btf, v->type);
2666 				m->name_off = vt->name_off;
2667 			}
2668 		} else if (!has_func && btf_is_func_proto(t)) {
2669 			/* replace FUNC_PROTO with ENUM */
2670 			vlen = btf_vlen(t);
2671 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2672 			t->size = sizeof(__u32); /* kernel enforced */
2673 		} else if (!has_func && btf_is_func(t)) {
2674 			/* replace FUNC with TYPEDEF */
2675 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2676 		} else if (!has_func_global && btf_is_func(t)) {
2677 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2678 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2679 		} else if (!has_float && btf_is_float(t)) {
2680 			/* replace FLOAT with an equally-sized empty STRUCT;
2681 			 * since C compilers do not accept e.g. "float" as a
2682 			 * valid struct name, make it anonymous
2683 			 */
2684 			t->name_off = 0;
2685 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2686 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2687 			/* replace TYPE_TAG with a CONST */
2688 			t->name_off = 0;
2689 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2690 		} else if (!has_enum64 && btf_is_enum(t)) {
2691 			/* clear the kflag */
2692 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2693 		} else if (!has_enum64 && btf_is_enum64(t)) {
2694 			/* replace ENUM64 with a union */
2695 			struct btf_member *m;
2696 
2697 			if (enum64_placeholder_id == 0) {
2698 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2699 				if (enum64_placeholder_id < 0)
2700 					return enum64_placeholder_id;
2701 
2702 				t = (struct btf_type *)btf__type_by_id(btf, i);
2703 			}
2704 
2705 			m = btf_members(t);
2706 			vlen = btf_vlen(t);
2707 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2708 			for (j = 0; j < vlen; j++, m++) {
2709 				m->type = enum64_placeholder_id;
2710 				m->offset = 0;
2711 			}
2712                 }
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 static bool libbpf_needs_btf(const struct bpf_object *obj)
2719 {
2720 	return obj->efile.btf_maps_shndx >= 0 ||
2721 	       obj->efile.st_ops_shndx >= 0 ||
2722 	       obj->nr_extern > 0;
2723 }
2724 
2725 static bool kernel_needs_btf(const struct bpf_object *obj)
2726 {
2727 	return obj->efile.st_ops_shndx >= 0;
2728 }
2729 
2730 static int bpf_object__init_btf(struct bpf_object *obj,
2731 				Elf_Data *btf_data,
2732 				Elf_Data *btf_ext_data)
2733 {
2734 	int err = -ENOENT;
2735 
2736 	if (btf_data) {
2737 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2738 		err = libbpf_get_error(obj->btf);
2739 		if (err) {
2740 			obj->btf = NULL;
2741 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2742 			goto out;
2743 		}
2744 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2745 		btf__set_pointer_size(obj->btf, 8);
2746 	}
2747 	if (btf_ext_data) {
2748 		struct btf_ext_info *ext_segs[3];
2749 		int seg_num, sec_num;
2750 
2751 		if (!obj->btf) {
2752 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2753 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2754 			goto out;
2755 		}
2756 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2757 		err = libbpf_get_error(obj->btf_ext);
2758 		if (err) {
2759 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2760 				BTF_EXT_ELF_SEC, err);
2761 			obj->btf_ext = NULL;
2762 			goto out;
2763 		}
2764 
2765 		/* setup .BTF.ext to ELF section mapping */
2766 		ext_segs[0] = &obj->btf_ext->func_info;
2767 		ext_segs[1] = &obj->btf_ext->line_info;
2768 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2769 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2770 			struct btf_ext_info *seg = ext_segs[seg_num];
2771 			const struct btf_ext_info_sec *sec;
2772 			const char *sec_name;
2773 			Elf_Scn *scn;
2774 
2775 			if (seg->sec_cnt == 0)
2776 				continue;
2777 
2778 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2779 			if (!seg->sec_idxs) {
2780 				err = -ENOMEM;
2781 				goto out;
2782 			}
2783 
2784 			sec_num = 0;
2785 			for_each_btf_ext_sec(seg, sec) {
2786 				/* preventively increment index to avoid doing
2787 				 * this before every continue below
2788 				 */
2789 				sec_num++;
2790 
2791 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2792 				if (str_is_empty(sec_name))
2793 					continue;
2794 				scn = elf_sec_by_name(obj, sec_name);
2795 				if (!scn)
2796 					continue;
2797 
2798 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2799 			}
2800 		}
2801 	}
2802 out:
2803 	if (err && libbpf_needs_btf(obj)) {
2804 		pr_warn("BTF is required, but is missing or corrupted.\n");
2805 		return err;
2806 	}
2807 	return 0;
2808 }
2809 
2810 static int compare_vsi_off(const void *_a, const void *_b)
2811 {
2812 	const struct btf_var_secinfo *a = _a;
2813 	const struct btf_var_secinfo *b = _b;
2814 
2815 	return a->offset - b->offset;
2816 }
2817 
2818 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2819 			     struct btf_type *t)
2820 {
2821 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2822 	const char *name = btf__name_by_offset(btf, t->name_off);
2823 	const struct btf_type *t_var;
2824 	struct btf_var_secinfo *vsi;
2825 	const struct btf_var *var;
2826 	int ret;
2827 
2828 	if (!name) {
2829 		pr_debug("No name found in string section for DATASEC kind.\n");
2830 		return -ENOENT;
2831 	}
2832 
2833 	/* .extern datasec size and var offsets were set correctly during
2834 	 * extern collection step, so just skip straight to sorting variables
2835 	 */
2836 	if (t->size)
2837 		goto sort_vars;
2838 
2839 	ret = find_elf_sec_sz(obj, name, &size);
2840 	if (ret || !size) {
2841 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2842 		return -ENOENT;
2843 	}
2844 
2845 	t->size = size;
2846 
2847 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2848 		t_var = btf__type_by_id(btf, vsi->type);
2849 		if (!t_var || !btf_is_var(t_var)) {
2850 			pr_debug("Non-VAR type seen in section %s\n", name);
2851 			return -EINVAL;
2852 		}
2853 
2854 		var = btf_var(t_var);
2855 		if (var->linkage == BTF_VAR_STATIC)
2856 			continue;
2857 
2858 		name = btf__name_by_offset(btf, t_var->name_off);
2859 		if (!name) {
2860 			pr_debug("No name found in string section for VAR kind\n");
2861 			return -ENOENT;
2862 		}
2863 
2864 		ret = find_elf_var_offset(obj, name, &off);
2865 		if (ret) {
2866 			pr_debug("No offset found in symbol table for VAR %s\n",
2867 				 name);
2868 			return -ENOENT;
2869 		}
2870 
2871 		vsi->offset = off;
2872 	}
2873 
2874 sort_vars:
2875 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2876 	return 0;
2877 }
2878 
2879 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2880 {
2881 	int err = 0;
2882 	__u32 i, n = btf__type_cnt(btf);
2883 
2884 	for (i = 1; i < n; i++) {
2885 		struct btf_type *t = btf_type_by_id(btf, i);
2886 
2887 		/* Loader needs to fix up some of the things compiler
2888 		 * couldn't get its hands on while emitting BTF. This
2889 		 * is section size and global variable offset. We use
2890 		 * the info from the ELF itself for this purpose.
2891 		 */
2892 		if (btf_is_datasec(t)) {
2893 			err = btf_fixup_datasec(obj, btf, t);
2894 			if (err)
2895 				break;
2896 		}
2897 	}
2898 
2899 	return libbpf_err(err);
2900 }
2901 
2902 static int bpf_object__finalize_btf(struct bpf_object *obj)
2903 {
2904 	int err;
2905 
2906 	if (!obj->btf)
2907 		return 0;
2908 
2909 	err = btf_finalize_data(obj, obj->btf);
2910 	if (err) {
2911 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2912 		return err;
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2919 {
2920 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2921 	    prog->type == BPF_PROG_TYPE_LSM)
2922 		return true;
2923 
2924 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2925 	 * also need vmlinux BTF
2926 	 */
2927 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2928 		return true;
2929 
2930 	return false;
2931 }
2932 
2933 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2934 {
2935 	struct bpf_program *prog;
2936 	int i;
2937 
2938 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2939 	 * is not specified
2940 	 */
2941 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2942 		return true;
2943 
2944 	/* Support for typed ksyms needs kernel BTF */
2945 	for (i = 0; i < obj->nr_extern; i++) {
2946 		const struct extern_desc *ext;
2947 
2948 		ext = &obj->externs[i];
2949 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2950 			return true;
2951 	}
2952 
2953 	bpf_object__for_each_program(prog, obj) {
2954 		if (!prog->autoload)
2955 			continue;
2956 		if (prog_needs_vmlinux_btf(prog))
2957 			return true;
2958 	}
2959 
2960 	return false;
2961 }
2962 
2963 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2964 {
2965 	int err;
2966 
2967 	/* btf_vmlinux could be loaded earlier */
2968 	if (obj->btf_vmlinux || obj->gen_loader)
2969 		return 0;
2970 
2971 	if (!force && !obj_needs_vmlinux_btf(obj))
2972 		return 0;
2973 
2974 	obj->btf_vmlinux = btf__load_vmlinux_btf();
2975 	err = libbpf_get_error(obj->btf_vmlinux);
2976 	if (err) {
2977 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2978 		obj->btf_vmlinux = NULL;
2979 		return err;
2980 	}
2981 	return 0;
2982 }
2983 
2984 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2985 {
2986 	struct btf *kern_btf = obj->btf;
2987 	bool btf_mandatory, sanitize;
2988 	int i, err = 0;
2989 
2990 	if (!obj->btf)
2991 		return 0;
2992 
2993 	if (!kernel_supports(obj, FEAT_BTF)) {
2994 		if (kernel_needs_btf(obj)) {
2995 			err = -EOPNOTSUPP;
2996 			goto report;
2997 		}
2998 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2999 		return 0;
3000 	}
3001 
3002 	/* Even though some subprogs are global/weak, user might prefer more
3003 	 * permissive BPF verification process that BPF verifier performs for
3004 	 * static functions, taking into account more context from the caller
3005 	 * functions. In such case, they need to mark such subprogs with
3006 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3007 	 * corresponding FUNC BTF type to be marked as static and trigger more
3008 	 * involved BPF verification process.
3009 	 */
3010 	for (i = 0; i < obj->nr_programs; i++) {
3011 		struct bpf_program *prog = &obj->programs[i];
3012 		struct btf_type *t;
3013 		const char *name;
3014 		int j, n;
3015 
3016 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3017 			continue;
3018 
3019 		n = btf__type_cnt(obj->btf);
3020 		for (j = 1; j < n; j++) {
3021 			t = btf_type_by_id(obj->btf, j);
3022 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3023 				continue;
3024 
3025 			name = btf__str_by_offset(obj->btf, t->name_off);
3026 			if (strcmp(name, prog->name) != 0)
3027 				continue;
3028 
3029 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3030 			break;
3031 		}
3032 	}
3033 
3034 	sanitize = btf_needs_sanitization(obj);
3035 	if (sanitize) {
3036 		const void *raw_data;
3037 		__u32 sz;
3038 
3039 		/* clone BTF to sanitize a copy and leave the original intact */
3040 		raw_data = btf__raw_data(obj->btf, &sz);
3041 		kern_btf = btf__new(raw_data, sz);
3042 		err = libbpf_get_error(kern_btf);
3043 		if (err)
3044 			return err;
3045 
3046 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3047 		btf__set_pointer_size(obj->btf, 8);
3048 		err = bpf_object__sanitize_btf(obj, kern_btf);
3049 		if (err)
3050 			return err;
3051 	}
3052 
3053 	if (obj->gen_loader) {
3054 		__u32 raw_size = 0;
3055 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3056 
3057 		if (!raw_data)
3058 			return -ENOMEM;
3059 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3060 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3061 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3062 		 */
3063 		btf__set_fd(kern_btf, 0);
3064 	} else {
3065 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3066 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3067 					   obj->log_level ? 1 : 0);
3068 	}
3069 	if (sanitize) {
3070 		if (!err) {
3071 			/* move fd to libbpf's BTF */
3072 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3073 			btf__set_fd(kern_btf, -1);
3074 		}
3075 		btf__free(kern_btf);
3076 	}
3077 report:
3078 	if (err) {
3079 		btf_mandatory = kernel_needs_btf(obj);
3080 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3081 			btf_mandatory ? "BTF is mandatory, can't proceed."
3082 				      : "BTF is optional, ignoring.");
3083 		if (!btf_mandatory)
3084 			err = 0;
3085 	}
3086 	return err;
3087 }
3088 
3089 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3090 {
3091 	const char *name;
3092 
3093 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3094 	if (!name) {
3095 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3096 			off, obj->path, elf_errmsg(-1));
3097 		return NULL;
3098 	}
3099 
3100 	return name;
3101 }
3102 
3103 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3104 {
3105 	const char *name;
3106 
3107 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3108 	if (!name) {
3109 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3110 			off, obj->path, elf_errmsg(-1));
3111 		return NULL;
3112 	}
3113 
3114 	return name;
3115 }
3116 
3117 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3118 {
3119 	Elf_Scn *scn;
3120 
3121 	scn = elf_getscn(obj->efile.elf, idx);
3122 	if (!scn) {
3123 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3124 			idx, obj->path, elf_errmsg(-1));
3125 		return NULL;
3126 	}
3127 	return scn;
3128 }
3129 
3130 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3131 {
3132 	Elf_Scn *scn = NULL;
3133 	Elf *elf = obj->efile.elf;
3134 	const char *sec_name;
3135 
3136 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3137 		sec_name = elf_sec_name(obj, scn);
3138 		if (!sec_name)
3139 			return NULL;
3140 
3141 		if (strcmp(sec_name, name) != 0)
3142 			continue;
3143 
3144 		return scn;
3145 	}
3146 	return NULL;
3147 }
3148 
3149 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3150 {
3151 	Elf64_Shdr *shdr;
3152 
3153 	if (!scn)
3154 		return NULL;
3155 
3156 	shdr = elf64_getshdr(scn);
3157 	if (!shdr) {
3158 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3159 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3160 		return NULL;
3161 	}
3162 
3163 	return shdr;
3164 }
3165 
3166 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3167 {
3168 	const char *name;
3169 	Elf64_Shdr *sh;
3170 
3171 	if (!scn)
3172 		return NULL;
3173 
3174 	sh = elf_sec_hdr(obj, scn);
3175 	if (!sh)
3176 		return NULL;
3177 
3178 	name = elf_sec_str(obj, sh->sh_name);
3179 	if (!name) {
3180 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3181 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3182 		return NULL;
3183 	}
3184 
3185 	return name;
3186 }
3187 
3188 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3189 {
3190 	Elf_Data *data;
3191 
3192 	if (!scn)
3193 		return NULL;
3194 
3195 	data = elf_getdata(scn, 0);
3196 	if (!data) {
3197 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3198 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3199 			obj->path, elf_errmsg(-1));
3200 		return NULL;
3201 	}
3202 
3203 	return data;
3204 }
3205 
3206 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3207 {
3208 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3209 		return NULL;
3210 
3211 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3212 }
3213 
3214 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3215 {
3216 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3217 		return NULL;
3218 
3219 	return (Elf64_Rel *)data->d_buf + idx;
3220 }
3221 
3222 static bool is_sec_name_dwarf(const char *name)
3223 {
3224 	/* approximation, but the actual list is too long */
3225 	return str_has_pfx(name, ".debug_");
3226 }
3227 
3228 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3229 {
3230 	/* no special handling of .strtab */
3231 	if (hdr->sh_type == SHT_STRTAB)
3232 		return true;
3233 
3234 	/* ignore .llvm_addrsig section as well */
3235 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3236 		return true;
3237 
3238 	/* no subprograms will lead to an empty .text section, ignore it */
3239 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3240 	    strcmp(name, ".text") == 0)
3241 		return true;
3242 
3243 	/* DWARF sections */
3244 	if (is_sec_name_dwarf(name))
3245 		return true;
3246 
3247 	if (str_has_pfx(name, ".rel")) {
3248 		name += sizeof(".rel") - 1;
3249 		/* DWARF section relocations */
3250 		if (is_sec_name_dwarf(name))
3251 			return true;
3252 
3253 		/* .BTF and .BTF.ext don't need relocations */
3254 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3255 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3256 			return true;
3257 	}
3258 
3259 	return false;
3260 }
3261 
3262 static int cmp_progs(const void *_a, const void *_b)
3263 {
3264 	const struct bpf_program *a = _a;
3265 	const struct bpf_program *b = _b;
3266 
3267 	if (a->sec_idx != b->sec_idx)
3268 		return a->sec_idx < b->sec_idx ? -1 : 1;
3269 
3270 	/* sec_insn_off can't be the same within the section */
3271 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3272 }
3273 
3274 static int bpf_object__elf_collect(struct bpf_object *obj)
3275 {
3276 	struct elf_sec_desc *sec_desc;
3277 	Elf *elf = obj->efile.elf;
3278 	Elf_Data *btf_ext_data = NULL;
3279 	Elf_Data *btf_data = NULL;
3280 	int idx = 0, err = 0;
3281 	const char *name;
3282 	Elf_Data *data;
3283 	Elf_Scn *scn;
3284 	Elf64_Shdr *sh;
3285 
3286 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3287 	 * section. e_shnum does include sec #0, so e_shnum is the necessary
3288 	 * size of an array to keep all the sections.
3289 	 */
3290 	obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3291 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3292 	if (!obj->efile.secs)
3293 		return -ENOMEM;
3294 
3295 	/* a bunch of ELF parsing functionality depends on processing symbols,
3296 	 * so do the first pass and find the symbol table
3297 	 */
3298 	scn = NULL;
3299 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3300 		sh = elf_sec_hdr(obj, scn);
3301 		if (!sh)
3302 			return -LIBBPF_ERRNO__FORMAT;
3303 
3304 		if (sh->sh_type == SHT_SYMTAB) {
3305 			if (obj->efile.symbols) {
3306 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3307 				return -LIBBPF_ERRNO__FORMAT;
3308 			}
3309 
3310 			data = elf_sec_data(obj, scn);
3311 			if (!data)
3312 				return -LIBBPF_ERRNO__FORMAT;
3313 
3314 			idx = elf_ndxscn(scn);
3315 
3316 			obj->efile.symbols = data;
3317 			obj->efile.symbols_shndx = idx;
3318 			obj->efile.strtabidx = sh->sh_link;
3319 		}
3320 	}
3321 
3322 	if (!obj->efile.symbols) {
3323 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3324 			obj->path);
3325 		return -ENOENT;
3326 	}
3327 
3328 	scn = NULL;
3329 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3330 		idx = elf_ndxscn(scn);
3331 		sec_desc = &obj->efile.secs[idx];
3332 
3333 		sh = elf_sec_hdr(obj, scn);
3334 		if (!sh)
3335 			return -LIBBPF_ERRNO__FORMAT;
3336 
3337 		name = elf_sec_str(obj, sh->sh_name);
3338 		if (!name)
3339 			return -LIBBPF_ERRNO__FORMAT;
3340 
3341 		if (ignore_elf_section(sh, name))
3342 			continue;
3343 
3344 		data = elf_sec_data(obj, scn);
3345 		if (!data)
3346 			return -LIBBPF_ERRNO__FORMAT;
3347 
3348 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3349 			 idx, name, (unsigned long)data->d_size,
3350 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3351 			 (int)sh->sh_type);
3352 
3353 		if (strcmp(name, "license") == 0) {
3354 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3355 			if (err)
3356 				return err;
3357 		} else if (strcmp(name, "version") == 0) {
3358 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3359 			if (err)
3360 				return err;
3361 		} else if (strcmp(name, "maps") == 0) {
3362 			obj->efile.maps_shndx = idx;
3363 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3364 			obj->efile.btf_maps_shndx = idx;
3365 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3366 			if (sh->sh_type != SHT_PROGBITS)
3367 				return -LIBBPF_ERRNO__FORMAT;
3368 			btf_data = data;
3369 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3370 			if (sh->sh_type != SHT_PROGBITS)
3371 				return -LIBBPF_ERRNO__FORMAT;
3372 			btf_ext_data = data;
3373 		} else if (sh->sh_type == SHT_SYMTAB) {
3374 			/* already processed during the first pass above */
3375 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3376 			if (sh->sh_flags & SHF_EXECINSTR) {
3377 				if (strcmp(name, ".text") == 0)
3378 					obj->efile.text_shndx = idx;
3379 				err = bpf_object__add_programs(obj, data, name, idx);
3380 				if (err)
3381 					return err;
3382 			} else if (strcmp(name, DATA_SEC) == 0 ||
3383 				   str_has_pfx(name, DATA_SEC ".")) {
3384 				sec_desc->sec_type = SEC_DATA;
3385 				sec_desc->shdr = sh;
3386 				sec_desc->data = data;
3387 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3388 				   str_has_pfx(name, RODATA_SEC ".")) {
3389 				sec_desc->sec_type = SEC_RODATA;
3390 				sec_desc->shdr = sh;
3391 				sec_desc->data = data;
3392 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3393 				obj->efile.st_ops_data = data;
3394 				obj->efile.st_ops_shndx = idx;
3395 			} else {
3396 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3397 					idx, name);
3398 			}
3399 		} else if (sh->sh_type == SHT_REL) {
3400 			int targ_sec_idx = sh->sh_info; /* points to other section */
3401 
3402 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3403 			    targ_sec_idx >= obj->efile.sec_cnt)
3404 				return -LIBBPF_ERRNO__FORMAT;
3405 
3406 			/* Only do relo for section with exec instructions */
3407 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3408 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3409 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3410 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3411 					idx, name, targ_sec_idx,
3412 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3413 				continue;
3414 			}
3415 
3416 			sec_desc->sec_type = SEC_RELO;
3417 			sec_desc->shdr = sh;
3418 			sec_desc->data = data;
3419 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3420 			sec_desc->sec_type = SEC_BSS;
3421 			sec_desc->shdr = sh;
3422 			sec_desc->data = data;
3423 		} else {
3424 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3425 				(size_t)sh->sh_size);
3426 		}
3427 	}
3428 
3429 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3430 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3431 		return -LIBBPF_ERRNO__FORMAT;
3432 	}
3433 
3434 	/* sort BPF programs by section name and in-section instruction offset
3435 	 * for faster search */
3436 	if (obj->nr_programs)
3437 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3438 
3439 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3440 }
3441 
3442 static bool sym_is_extern(const Elf64_Sym *sym)
3443 {
3444 	int bind = ELF64_ST_BIND(sym->st_info);
3445 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3446 	return sym->st_shndx == SHN_UNDEF &&
3447 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3448 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3449 }
3450 
3451 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3452 {
3453 	int bind = ELF64_ST_BIND(sym->st_info);
3454 	int type = ELF64_ST_TYPE(sym->st_info);
3455 
3456 	/* in .text section */
3457 	if (sym->st_shndx != text_shndx)
3458 		return false;
3459 
3460 	/* local function */
3461 	if (bind == STB_LOCAL && type == STT_SECTION)
3462 		return true;
3463 
3464 	/* global function */
3465 	return bind == STB_GLOBAL && type == STT_FUNC;
3466 }
3467 
3468 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3469 {
3470 	const struct btf_type *t;
3471 	const char *tname;
3472 	int i, n;
3473 
3474 	if (!btf)
3475 		return -ESRCH;
3476 
3477 	n = btf__type_cnt(btf);
3478 	for (i = 1; i < n; i++) {
3479 		t = btf__type_by_id(btf, i);
3480 
3481 		if (!btf_is_var(t) && !btf_is_func(t))
3482 			continue;
3483 
3484 		tname = btf__name_by_offset(btf, t->name_off);
3485 		if (strcmp(tname, ext_name))
3486 			continue;
3487 
3488 		if (btf_is_var(t) &&
3489 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3490 			return -EINVAL;
3491 
3492 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3493 			return -EINVAL;
3494 
3495 		return i;
3496 	}
3497 
3498 	return -ENOENT;
3499 }
3500 
3501 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3502 	const struct btf_var_secinfo *vs;
3503 	const struct btf_type *t;
3504 	int i, j, n;
3505 
3506 	if (!btf)
3507 		return -ESRCH;
3508 
3509 	n = btf__type_cnt(btf);
3510 	for (i = 1; i < n; i++) {
3511 		t = btf__type_by_id(btf, i);
3512 
3513 		if (!btf_is_datasec(t))
3514 			continue;
3515 
3516 		vs = btf_var_secinfos(t);
3517 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3518 			if (vs->type == ext_btf_id)
3519 				return i;
3520 		}
3521 	}
3522 
3523 	return -ENOENT;
3524 }
3525 
3526 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3527 				     bool *is_signed)
3528 {
3529 	const struct btf_type *t;
3530 	const char *name;
3531 
3532 	t = skip_mods_and_typedefs(btf, id, NULL);
3533 	name = btf__name_by_offset(btf, t->name_off);
3534 
3535 	if (is_signed)
3536 		*is_signed = false;
3537 	switch (btf_kind(t)) {
3538 	case BTF_KIND_INT: {
3539 		int enc = btf_int_encoding(t);
3540 
3541 		if (enc & BTF_INT_BOOL)
3542 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3543 		if (is_signed)
3544 			*is_signed = enc & BTF_INT_SIGNED;
3545 		if (t->size == 1)
3546 			return KCFG_CHAR;
3547 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3548 			return KCFG_UNKNOWN;
3549 		return KCFG_INT;
3550 	}
3551 	case BTF_KIND_ENUM:
3552 		if (t->size != 4)
3553 			return KCFG_UNKNOWN;
3554 		if (strcmp(name, "libbpf_tristate"))
3555 			return KCFG_UNKNOWN;
3556 		return KCFG_TRISTATE;
3557 	case BTF_KIND_ENUM64:
3558 		if (strcmp(name, "libbpf_tristate"))
3559 			return KCFG_UNKNOWN;
3560 		return KCFG_TRISTATE;
3561 	case BTF_KIND_ARRAY:
3562 		if (btf_array(t)->nelems == 0)
3563 			return KCFG_UNKNOWN;
3564 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3565 			return KCFG_UNKNOWN;
3566 		return KCFG_CHAR_ARR;
3567 	default:
3568 		return KCFG_UNKNOWN;
3569 	}
3570 }
3571 
3572 static int cmp_externs(const void *_a, const void *_b)
3573 {
3574 	const struct extern_desc *a = _a;
3575 	const struct extern_desc *b = _b;
3576 
3577 	if (a->type != b->type)
3578 		return a->type < b->type ? -1 : 1;
3579 
3580 	if (a->type == EXT_KCFG) {
3581 		/* descending order by alignment requirements */
3582 		if (a->kcfg.align != b->kcfg.align)
3583 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3584 		/* ascending order by size, within same alignment class */
3585 		if (a->kcfg.sz != b->kcfg.sz)
3586 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3587 	}
3588 
3589 	/* resolve ties by name */
3590 	return strcmp(a->name, b->name);
3591 }
3592 
3593 static int find_int_btf_id(const struct btf *btf)
3594 {
3595 	const struct btf_type *t;
3596 	int i, n;
3597 
3598 	n = btf__type_cnt(btf);
3599 	for (i = 1; i < n; i++) {
3600 		t = btf__type_by_id(btf, i);
3601 
3602 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3603 			return i;
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 static int add_dummy_ksym_var(struct btf *btf)
3610 {
3611 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3612 	const struct btf_var_secinfo *vs;
3613 	const struct btf_type *sec;
3614 
3615 	if (!btf)
3616 		return 0;
3617 
3618 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3619 					    BTF_KIND_DATASEC);
3620 	if (sec_btf_id < 0)
3621 		return 0;
3622 
3623 	sec = btf__type_by_id(btf, sec_btf_id);
3624 	vs = btf_var_secinfos(sec);
3625 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3626 		const struct btf_type *vt;
3627 
3628 		vt = btf__type_by_id(btf, vs->type);
3629 		if (btf_is_func(vt))
3630 			break;
3631 	}
3632 
3633 	/* No func in ksyms sec.  No need to add dummy var. */
3634 	if (i == btf_vlen(sec))
3635 		return 0;
3636 
3637 	int_btf_id = find_int_btf_id(btf);
3638 	dummy_var_btf_id = btf__add_var(btf,
3639 					"dummy_ksym",
3640 					BTF_VAR_GLOBAL_ALLOCATED,
3641 					int_btf_id);
3642 	if (dummy_var_btf_id < 0)
3643 		pr_warn("cannot create a dummy_ksym var\n");
3644 
3645 	return dummy_var_btf_id;
3646 }
3647 
3648 static int bpf_object__collect_externs(struct bpf_object *obj)
3649 {
3650 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3651 	const struct btf_type *t;
3652 	struct extern_desc *ext;
3653 	int i, n, off, dummy_var_btf_id;
3654 	const char *ext_name, *sec_name;
3655 	Elf_Scn *scn;
3656 	Elf64_Shdr *sh;
3657 
3658 	if (!obj->efile.symbols)
3659 		return 0;
3660 
3661 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3662 	sh = elf_sec_hdr(obj, scn);
3663 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3664 		return -LIBBPF_ERRNO__FORMAT;
3665 
3666 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3667 	if (dummy_var_btf_id < 0)
3668 		return dummy_var_btf_id;
3669 
3670 	n = sh->sh_size / sh->sh_entsize;
3671 	pr_debug("looking for externs among %d symbols...\n", n);
3672 
3673 	for (i = 0; i < n; i++) {
3674 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3675 
3676 		if (!sym)
3677 			return -LIBBPF_ERRNO__FORMAT;
3678 		if (!sym_is_extern(sym))
3679 			continue;
3680 		ext_name = elf_sym_str(obj, sym->st_name);
3681 		if (!ext_name || !ext_name[0])
3682 			continue;
3683 
3684 		ext = obj->externs;
3685 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3686 		if (!ext)
3687 			return -ENOMEM;
3688 		obj->externs = ext;
3689 		ext = &ext[obj->nr_extern];
3690 		memset(ext, 0, sizeof(*ext));
3691 		obj->nr_extern++;
3692 
3693 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3694 		if (ext->btf_id <= 0) {
3695 			pr_warn("failed to find BTF for extern '%s': %d\n",
3696 				ext_name, ext->btf_id);
3697 			return ext->btf_id;
3698 		}
3699 		t = btf__type_by_id(obj->btf, ext->btf_id);
3700 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3701 		ext->sym_idx = i;
3702 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3703 
3704 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3705 		if (ext->sec_btf_id <= 0) {
3706 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3707 				ext_name, ext->btf_id, ext->sec_btf_id);
3708 			return ext->sec_btf_id;
3709 		}
3710 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3711 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3712 
3713 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3714 			if (btf_is_func(t)) {
3715 				pr_warn("extern function %s is unsupported under %s section\n",
3716 					ext->name, KCONFIG_SEC);
3717 				return -ENOTSUP;
3718 			}
3719 			kcfg_sec = sec;
3720 			ext->type = EXT_KCFG;
3721 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3722 			if (ext->kcfg.sz <= 0) {
3723 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3724 					ext_name, ext->kcfg.sz);
3725 				return ext->kcfg.sz;
3726 			}
3727 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3728 			if (ext->kcfg.align <= 0) {
3729 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3730 					ext_name, ext->kcfg.align);
3731 				return -EINVAL;
3732 			}
3733 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3734 						        &ext->kcfg.is_signed);
3735 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3736 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3737 				return -ENOTSUP;
3738 			}
3739 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3740 			ksym_sec = sec;
3741 			ext->type = EXT_KSYM;
3742 			skip_mods_and_typedefs(obj->btf, t->type,
3743 					       &ext->ksym.type_id);
3744 		} else {
3745 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3746 			return -ENOTSUP;
3747 		}
3748 	}
3749 	pr_debug("collected %d externs total\n", obj->nr_extern);
3750 
3751 	if (!obj->nr_extern)
3752 		return 0;
3753 
3754 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3755 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3756 
3757 	/* for .ksyms section, we need to turn all externs into allocated
3758 	 * variables in BTF to pass kernel verification; we do this by
3759 	 * pretending that each extern is a 8-byte variable
3760 	 */
3761 	if (ksym_sec) {
3762 		/* find existing 4-byte integer type in BTF to use for fake
3763 		 * extern variables in DATASEC
3764 		 */
3765 		int int_btf_id = find_int_btf_id(obj->btf);
3766 		/* For extern function, a dummy_var added earlier
3767 		 * will be used to replace the vs->type and
3768 		 * its name string will be used to refill
3769 		 * the missing param's name.
3770 		 */
3771 		const struct btf_type *dummy_var;
3772 
3773 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3774 		for (i = 0; i < obj->nr_extern; i++) {
3775 			ext = &obj->externs[i];
3776 			if (ext->type != EXT_KSYM)
3777 				continue;
3778 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3779 				 i, ext->sym_idx, ext->name);
3780 		}
3781 
3782 		sec = ksym_sec;
3783 		n = btf_vlen(sec);
3784 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3785 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3786 			struct btf_type *vt;
3787 
3788 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3789 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3790 			ext = find_extern_by_name(obj, ext_name);
3791 			if (!ext) {
3792 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3793 					btf_kind_str(vt), ext_name);
3794 				return -ESRCH;
3795 			}
3796 			if (btf_is_func(vt)) {
3797 				const struct btf_type *func_proto;
3798 				struct btf_param *param;
3799 				int j;
3800 
3801 				func_proto = btf__type_by_id(obj->btf,
3802 							     vt->type);
3803 				param = btf_params(func_proto);
3804 				/* Reuse the dummy_var string if the
3805 				 * func proto does not have param name.
3806 				 */
3807 				for (j = 0; j < btf_vlen(func_proto); j++)
3808 					if (param[j].type && !param[j].name_off)
3809 						param[j].name_off =
3810 							dummy_var->name_off;
3811 				vs->type = dummy_var_btf_id;
3812 				vt->info &= ~0xffff;
3813 				vt->info |= BTF_FUNC_GLOBAL;
3814 			} else {
3815 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3816 				vt->type = int_btf_id;
3817 			}
3818 			vs->offset = off;
3819 			vs->size = sizeof(int);
3820 		}
3821 		sec->size = off;
3822 	}
3823 
3824 	if (kcfg_sec) {
3825 		sec = kcfg_sec;
3826 		/* for kcfg externs calculate their offsets within a .kconfig map */
3827 		off = 0;
3828 		for (i = 0; i < obj->nr_extern; i++) {
3829 			ext = &obj->externs[i];
3830 			if (ext->type != EXT_KCFG)
3831 				continue;
3832 
3833 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3834 			off = ext->kcfg.data_off + ext->kcfg.sz;
3835 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3836 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3837 		}
3838 		sec->size = off;
3839 		n = btf_vlen(sec);
3840 		for (i = 0; i < n; i++) {
3841 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3842 
3843 			t = btf__type_by_id(obj->btf, vs->type);
3844 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3845 			ext = find_extern_by_name(obj, ext_name);
3846 			if (!ext) {
3847 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3848 					ext_name);
3849 				return -ESRCH;
3850 			}
3851 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3852 			vs->offset = ext->kcfg.data_off;
3853 		}
3854 	}
3855 	return 0;
3856 }
3857 
3858 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3859 {
3860 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3861 }
3862 
3863 struct bpf_program *
3864 bpf_object__find_program_by_name(const struct bpf_object *obj,
3865 				 const char *name)
3866 {
3867 	struct bpf_program *prog;
3868 
3869 	bpf_object__for_each_program(prog, obj) {
3870 		if (prog_is_subprog(obj, prog))
3871 			continue;
3872 		if (!strcmp(prog->name, name))
3873 			return prog;
3874 	}
3875 	return errno = ENOENT, NULL;
3876 }
3877 
3878 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3879 				      int shndx)
3880 {
3881 	switch (obj->efile.secs[shndx].sec_type) {
3882 	case SEC_BSS:
3883 	case SEC_DATA:
3884 	case SEC_RODATA:
3885 		return true;
3886 	default:
3887 		return false;
3888 	}
3889 }
3890 
3891 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3892 				      int shndx)
3893 {
3894 	return shndx == obj->efile.maps_shndx ||
3895 	       shndx == obj->efile.btf_maps_shndx;
3896 }
3897 
3898 static enum libbpf_map_type
3899 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3900 {
3901 	if (shndx == obj->efile.symbols_shndx)
3902 		return LIBBPF_MAP_KCONFIG;
3903 
3904 	switch (obj->efile.secs[shndx].sec_type) {
3905 	case SEC_BSS:
3906 		return LIBBPF_MAP_BSS;
3907 	case SEC_DATA:
3908 		return LIBBPF_MAP_DATA;
3909 	case SEC_RODATA:
3910 		return LIBBPF_MAP_RODATA;
3911 	default:
3912 		return LIBBPF_MAP_UNSPEC;
3913 	}
3914 }
3915 
3916 static int bpf_program__record_reloc(struct bpf_program *prog,
3917 				     struct reloc_desc *reloc_desc,
3918 				     __u32 insn_idx, const char *sym_name,
3919 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3920 {
3921 	struct bpf_insn *insn = &prog->insns[insn_idx];
3922 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3923 	struct bpf_object *obj = prog->obj;
3924 	__u32 shdr_idx = sym->st_shndx;
3925 	enum libbpf_map_type type;
3926 	const char *sym_sec_name;
3927 	struct bpf_map *map;
3928 
3929 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3930 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3931 			prog->name, sym_name, insn_idx, insn->code);
3932 		return -LIBBPF_ERRNO__RELOC;
3933 	}
3934 
3935 	if (sym_is_extern(sym)) {
3936 		int sym_idx = ELF64_R_SYM(rel->r_info);
3937 		int i, n = obj->nr_extern;
3938 		struct extern_desc *ext;
3939 
3940 		for (i = 0; i < n; i++) {
3941 			ext = &obj->externs[i];
3942 			if (ext->sym_idx == sym_idx)
3943 				break;
3944 		}
3945 		if (i >= n) {
3946 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3947 				prog->name, sym_name, sym_idx);
3948 			return -LIBBPF_ERRNO__RELOC;
3949 		}
3950 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3951 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3952 		if (insn->code == (BPF_JMP | BPF_CALL))
3953 			reloc_desc->type = RELO_EXTERN_FUNC;
3954 		else
3955 			reloc_desc->type = RELO_EXTERN_VAR;
3956 		reloc_desc->insn_idx = insn_idx;
3957 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3958 		return 0;
3959 	}
3960 
3961 	/* sub-program call relocation */
3962 	if (is_call_insn(insn)) {
3963 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3964 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3965 			return -LIBBPF_ERRNO__RELOC;
3966 		}
3967 		/* text_shndx can be 0, if no default "main" program exists */
3968 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3969 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3970 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3971 				prog->name, sym_name, sym_sec_name);
3972 			return -LIBBPF_ERRNO__RELOC;
3973 		}
3974 		if (sym->st_value % BPF_INSN_SZ) {
3975 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3976 				prog->name, sym_name, (size_t)sym->st_value);
3977 			return -LIBBPF_ERRNO__RELOC;
3978 		}
3979 		reloc_desc->type = RELO_CALL;
3980 		reloc_desc->insn_idx = insn_idx;
3981 		reloc_desc->sym_off = sym->st_value;
3982 		return 0;
3983 	}
3984 
3985 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3986 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3987 			prog->name, sym_name, shdr_idx);
3988 		return -LIBBPF_ERRNO__RELOC;
3989 	}
3990 
3991 	/* loading subprog addresses */
3992 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3993 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3994 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3995 		 */
3996 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3997 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3998 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3999 			return -LIBBPF_ERRNO__RELOC;
4000 		}
4001 
4002 		reloc_desc->type = RELO_SUBPROG_ADDR;
4003 		reloc_desc->insn_idx = insn_idx;
4004 		reloc_desc->sym_off = sym->st_value;
4005 		return 0;
4006 	}
4007 
4008 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4009 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4010 
4011 	/* generic map reference relocation */
4012 	if (type == LIBBPF_MAP_UNSPEC) {
4013 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4014 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4015 				prog->name, sym_name, sym_sec_name);
4016 			return -LIBBPF_ERRNO__RELOC;
4017 		}
4018 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4019 			map = &obj->maps[map_idx];
4020 			if (map->libbpf_type != type ||
4021 			    map->sec_idx != sym->st_shndx ||
4022 			    map->sec_offset != sym->st_value)
4023 				continue;
4024 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4025 				 prog->name, map_idx, map->name, map->sec_idx,
4026 				 map->sec_offset, insn_idx);
4027 			break;
4028 		}
4029 		if (map_idx >= nr_maps) {
4030 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4031 				prog->name, sym_sec_name, (size_t)sym->st_value);
4032 			return -LIBBPF_ERRNO__RELOC;
4033 		}
4034 		reloc_desc->type = RELO_LD64;
4035 		reloc_desc->insn_idx = insn_idx;
4036 		reloc_desc->map_idx = map_idx;
4037 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4038 		return 0;
4039 	}
4040 
4041 	/* global data map relocation */
4042 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4043 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4044 			prog->name, sym_sec_name);
4045 		return -LIBBPF_ERRNO__RELOC;
4046 	}
4047 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4048 		map = &obj->maps[map_idx];
4049 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4050 			continue;
4051 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4052 			 prog->name, map_idx, map->name, map->sec_idx,
4053 			 map->sec_offset, insn_idx);
4054 		break;
4055 	}
4056 	if (map_idx >= nr_maps) {
4057 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4058 			prog->name, sym_sec_name);
4059 		return -LIBBPF_ERRNO__RELOC;
4060 	}
4061 
4062 	reloc_desc->type = RELO_DATA;
4063 	reloc_desc->insn_idx = insn_idx;
4064 	reloc_desc->map_idx = map_idx;
4065 	reloc_desc->sym_off = sym->st_value;
4066 	return 0;
4067 }
4068 
4069 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4070 {
4071 	return insn_idx >= prog->sec_insn_off &&
4072 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4073 }
4074 
4075 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4076 						 size_t sec_idx, size_t insn_idx)
4077 {
4078 	int l = 0, r = obj->nr_programs - 1, m;
4079 	struct bpf_program *prog;
4080 
4081 	while (l < r) {
4082 		m = l + (r - l + 1) / 2;
4083 		prog = &obj->programs[m];
4084 
4085 		if (prog->sec_idx < sec_idx ||
4086 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4087 			l = m;
4088 		else
4089 			r = m - 1;
4090 	}
4091 	/* matching program could be at index l, but it still might be the
4092 	 * wrong one, so we need to double check conditions for the last time
4093 	 */
4094 	prog = &obj->programs[l];
4095 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4096 		return prog;
4097 	return NULL;
4098 }
4099 
4100 static int
4101 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4102 {
4103 	const char *relo_sec_name, *sec_name;
4104 	size_t sec_idx = shdr->sh_info, sym_idx;
4105 	struct bpf_program *prog;
4106 	struct reloc_desc *relos;
4107 	int err, i, nrels;
4108 	const char *sym_name;
4109 	__u32 insn_idx;
4110 	Elf_Scn *scn;
4111 	Elf_Data *scn_data;
4112 	Elf64_Sym *sym;
4113 	Elf64_Rel *rel;
4114 
4115 	if (sec_idx >= obj->efile.sec_cnt)
4116 		return -EINVAL;
4117 
4118 	scn = elf_sec_by_idx(obj, sec_idx);
4119 	scn_data = elf_sec_data(obj, scn);
4120 
4121 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4122 	sec_name = elf_sec_name(obj, scn);
4123 	if (!relo_sec_name || !sec_name)
4124 		return -EINVAL;
4125 
4126 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4127 		 relo_sec_name, sec_idx, sec_name);
4128 	nrels = shdr->sh_size / shdr->sh_entsize;
4129 
4130 	for (i = 0; i < nrels; i++) {
4131 		rel = elf_rel_by_idx(data, i);
4132 		if (!rel) {
4133 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4134 			return -LIBBPF_ERRNO__FORMAT;
4135 		}
4136 
4137 		sym_idx = ELF64_R_SYM(rel->r_info);
4138 		sym = elf_sym_by_idx(obj, sym_idx);
4139 		if (!sym) {
4140 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4141 				relo_sec_name, sym_idx, i);
4142 			return -LIBBPF_ERRNO__FORMAT;
4143 		}
4144 
4145 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4146 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4147 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4148 			return -LIBBPF_ERRNO__FORMAT;
4149 		}
4150 
4151 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4152 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4153 				relo_sec_name, (size_t)rel->r_offset, i);
4154 			return -LIBBPF_ERRNO__FORMAT;
4155 		}
4156 
4157 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4158 		/* relocations against static functions are recorded as
4159 		 * relocations against the section that contains a function;
4160 		 * in such case, symbol will be STT_SECTION and sym.st_name
4161 		 * will point to empty string (0), so fetch section name
4162 		 * instead
4163 		 */
4164 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4165 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4166 		else
4167 			sym_name = elf_sym_str(obj, sym->st_name);
4168 		sym_name = sym_name ?: "<?";
4169 
4170 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4171 			 relo_sec_name, i, insn_idx, sym_name);
4172 
4173 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4174 		if (!prog) {
4175 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4176 				relo_sec_name, i, sec_name, insn_idx);
4177 			continue;
4178 		}
4179 
4180 		relos = libbpf_reallocarray(prog->reloc_desc,
4181 					    prog->nr_reloc + 1, sizeof(*relos));
4182 		if (!relos)
4183 			return -ENOMEM;
4184 		prog->reloc_desc = relos;
4185 
4186 		/* adjust insn_idx to local BPF program frame of reference */
4187 		insn_idx -= prog->sec_insn_off;
4188 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4189 						insn_idx, sym_name, sym, rel);
4190 		if (err)
4191 			return err;
4192 
4193 		prog->nr_reloc++;
4194 	}
4195 	return 0;
4196 }
4197 
4198 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4199 {
4200 	int id;
4201 
4202 	if (!obj->btf)
4203 		return -ENOENT;
4204 
4205 	/* if it's BTF-defined map, we don't need to search for type IDs.
4206 	 * For struct_ops map, it does not need btf_key_type_id and
4207 	 * btf_value_type_id.
4208 	 */
4209 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4210 		return 0;
4211 
4212 	/*
4213 	 * LLVM annotates global data differently in BTF, that is,
4214 	 * only as '.data', '.bss' or '.rodata'.
4215 	 */
4216 	if (!bpf_map__is_internal(map))
4217 		return -ENOENT;
4218 
4219 	id = btf__find_by_name(obj->btf, map->real_name);
4220 	if (id < 0)
4221 		return id;
4222 
4223 	map->btf_key_type_id = 0;
4224 	map->btf_value_type_id = id;
4225 	return 0;
4226 }
4227 
4228 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4229 {
4230 	char file[PATH_MAX], buff[4096];
4231 	FILE *fp;
4232 	__u32 val;
4233 	int err;
4234 
4235 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4236 	memset(info, 0, sizeof(*info));
4237 
4238 	fp = fopen(file, "r");
4239 	if (!fp) {
4240 		err = -errno;
4241 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4242 			err);
4243 		return err;
4244 	}
4245 
4246 	while (fgets(buff, sizeof(buff), fp)) {
4247 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4248 			info->type = val;
4249 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4250 			info->key_size = val;
4251 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4252 			info->value_size = val;
4253 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4254 			info->max_entries = val;
4255 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4256 			info->map_flags = val;
4257 	}
4258 
4259 	fclose(fp);
4260 
4261 	return 0;
4262 }
4263 
4264 bool bpf_map__autocreate(const struct bpf_map *map)
4265 {
4266 	return map->autocreate;
4267 }
4268 
4269 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4270 {
4271 	if (map->obj->loaded)
4272 		return libbpf_err(-EBUSY);
4273 
4274 	map->autocreate = autocreate;
4275 	return 0;
4276 }
4277 
4278 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4279 {
4280 	struct bpf_map_info info = {};
4281 	__u32 len = sizeof(info), name_len;
4282 	int new_fd, err;
4283 	char *new_name;
4284 
4285 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4286 	if (err && errno == EINVAL)
4287 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4288 	if (err)
4289 		return libbpf_err(err);
4290 
4291 	name_len = strlen(info.name);
4292 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4293 		new_name = strdup(map->name);
4294 	else
4295 		new_name = strdup(info.name);
4296 
4297 	if (!new_name)
4298 		return libbpf_err(-errno);
4299 
4300 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4301 	if (new_fd < 0) {
4302 		err = -errno;
4303 		goto err_free_new_name;
4304 	}
4305 
4306 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4307 	if (new_fd < 0) {
4308 		err = -errno;
4309 		goto err_close_new_fd;
4310 	}
4311 
4312 	err = zclose(map->fd);
4313 	if (err) {
4314 		err = -errno;
4315 		goto err_close_new_fd;
4316 	}
4317 	free(map->name);
4318 
4319 	map->fd = new_fd;
4320 	map->name = new_name;
4321 	map->def.type = info.type;
4322 	map->def.key_size = info.key_size;
4323 	map->def.value_size = info.value_size;
4324 	map->def.max_entries = info.max_entries;
4325 	map->def.map_flags = info.map_flags;
4326 	map->btf_key_type_id = info.btf_key_type_id;
4327 	map->btf_value_type_id = info.btf_value_type_id;
4328 	map->reused = true;
4329 	map->map_extra = info.map_extra;
4330 
4331 	return 0;
4332 
4333 err_close_new_fd:
4334 	close(new_fd);
4335 err_free_new_name:
4336 	free(new_name);
4337 	return libbpf_err(err);
4338 }
4339 
4340 __u32 bpf_map__max_entries(const struct bpf_map *map)
4341 {
4342 	return map->def.max_entries;
4343 }
4344 
4345 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4346 {
4347 	if (!bpf_map_type__is_map_in_map(map->def.type))
4348 		return errno = EINVAL, NULL;
4349 
4350 	return map->inner_map;
4351 }
4352 
4353 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4354 {
4355 	if (map->obj->loaded)
4356 		return libbpf_err(-EBUSY);
4357 
4358 	map->def.max_entries = max_entries;
4359 
4360 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4361 	if (map->def.type == BPF_MAP_TYPE_RINGBUF)
4362 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4363 
4364 	return 0;
4365 }
4366 
4367 static int
4368 bpf_object__probe_loading(struct bpf_object *obj)
4369 {
4370 	char *cp, errmsg[STRERR_BUFSIZE];
4371 	struct bpf_insn insns[] = {
4372 		BPF_MOV64_IMM(BPF_REG_0, 0),
4373 		BPF_EXIT_INSN(),
4374 	};
4375 	int ret, insn_cnt = ARRAY_SIZE(insns);
4376 
4377 	if (obj->gen_loader)
4378 		return 0;
4379 
4380 	ret = bump_rlimit_memlock();
4381 	if (ret)
4382 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4383 
4384 	/* make sure basic loading works */
4385 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4386 	if (ret < 0)
4387 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4388 	if (ret < 0) {
4389 		ret = errno;
4390 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4391 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4392 			"program. Make sure your kernel supports BPF "
4393 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4394 			"set to big enough value.\n", __func__, cp, ret);
4395 		return -ret;
4396 	}
4397 	close(ret);
4398 
4399 	return 0;
4400 }
4401 
4402 static int probe_fd(int fd)
4403 {
4404 	if (fd >= 0)
4405 		close(fd);
4406 	return fd >= 0;
4407 }
4408 
4409 static int probe_kern_prog_name(void)
4410 {
4411 	struct bpf_insn insns[] = {
4412 		BPF_MOV64_IMM(BPF_REG_0, 0),
4413 		BPF_EXIT_INSN(),
4414 	};
4415 	int ret, insn_cnt = ARRAY_SIZE(insns);
4416 
4417 	/* make sure loading with name works */
4418 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4419 	return probe_fd(ret);
4420 }
4421 
4422 static int probe_kern_global_data(void)
4423 {
4424 	char *cp, errmsg[STRERR_BUFSIZE];
4425 	struct bpf_insn insns[] = {
4426 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4427 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4428 		BPF_MOV64_IMM(BPF_REG_0, 0),
4429 		BPF_EXIT_INSN(),
4430 	};
4431 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4432 
4433 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4434 	if (map < 0) {
4435 		ret = -errno;
4436 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4437 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4438 			__func__, cp, -ret);
4439 		return ret;
4440 	}
4441 
4442 	insns[0].imm = map;
4443 
4444 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4445 	close(map);
4446 	return probe_fd(ret);
4447 }
4448 
4449 static int probe_kern_btf(void)
4450 {
4451 	static const char strs[] = "\0int";
4452 	__u32 types[] = {
4453 		/* int */
4454 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4455 	};
4456 
4457 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4458 					     strs, sizeof(strs)));
4459 }
4460 
4461 static int probe_kern_btf_func(void)
4462 {
4463 	static const char strs[] = "\0int\0x\0a";
4464 	/* void x(int a) {} */
4465 	__u32 types[] = {
4466 		/* int */
4467 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4468 		/* FUNC_PROTO */                                /* [2] */
4469 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4470 		BTF_PARAM_ENC(7, 1),
4471 		/* FUNC x */                                    /* [3] */
4472 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4473 	};
4474 
4475 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4476 					     strs, sizeof(strs)));
4477 }
4478 
4479 static int probe_kern_btf_func_global(void)
4480 {
4481 	static const char strs[] = "\0int\0x\0a";
4482 	/* static void x(int a) {} */
4483 	__u32 types[] = {
4484 		/* int */
4485 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4486 		/* FUNC_PROTO */                                /* [2] */
4487 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4488 		BTF_PARAM_ENC(7, 1),
4489 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4490 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4491 	};
4492 
4493 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4494 					     strs, sizeof(strs)));
4495 }
4496 
4497 static int probe_kern_btf_datasec(void)
4498 {
4499 	static const char strs[] = "\0x\0.data";
4500 	/* static int a; */
4501 	__u32 types[] = {
4502 		/* int */
4503 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4504 		/* VAR x */                                     /* [2] */
4505 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4506 		BTF_VAR_STATIC,
4507 		/* DATASEC val */                               /* [3] */
4508 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4509 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4510 	};
4511 
4512 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4513 					     strs, sizeof(strs)));
4514 }
4515 
4516 static int probe_kern_btf_float(void)
4517 {
4518 	static const char strs[] = "\0float";
4519 	__u32 types[] = {
4520 		/* float */
4521 		BTF_TYPE_FLOAT_ENC(1, 4),
4522 	};
4523 
4524 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4525 					     strs, sizeof(strs)));
4526 }
4527 
4528 static int probe_kern_btf_decl_tag(void)
4529 {
4530 	static const char strs[] = "\0tag";
4531 	__u32 types[] = {
4532 		/* int */
4533 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4534 		/* VAR x */                                     /* [2] */
4535 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4536 		BTF_VAR_STATIC,
4537 		/* attr */
4538 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4539 	};
4540 
4541 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4542 					     strs, sizeof(strs)));
4543 }
4544 
4545 static int probe_kern_btf_type_tag(void)
4546 {
4547 	static const char strs[] = "\0tag";
4548 	__u32 types[] = {
4549 		/* int */
4550 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4551 		/* attr */
4552 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4553 		/* ptr */
4554 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4555 	};
4556 
4557 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4558 					     strs, sizeof(strs)));
4559 }
4560 
4561 static int probe_kern_array_mmap(void)
4562 {
4563 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4564 	int fd;
4565 
4566 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4567 	return probe_fd(fd);
4568 }
4569 
4570 static int probe_kern_exp_attach_type(void)
4571 {
4572 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4573 	struct bpf_insn insns[] = {
4574 		BPF_MOV64_IMM(BPF_REG_0, 0),
4575 		BPF_EXIT_INSN(),
4576 	};
4577 	int fd, insn_cnt = ARRAY_SIZE(insns);
4578 
4579 	/* use any valid combination of program type and (optional)
4580 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4581 	 * to see if kernel supports expected_attach_type field for
4582 	 * BPF_PROG_LOAD command
4583 	 */
4584 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4585 	return probe_fd(fd);
4586 }
4587 
4588 static int probe_kern_probe_read_kernel(void)
4589 {
4590 	struct bpf_insn insns[] = {
4591 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4592 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4593 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4594 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4595 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4596 		BPF_EXIT_INSN(),
4597 	};
4598 	int fd, insn_cnt = ARRAY_SIZE(insns);
4599 
4600 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4601 	return probe_fd(fd);
4602 }
4603 
4604 static int probe_prog_bind_map(void)
4605 {
4606 	char *cp, errmsg[STRERR_BUFSIZE];
4607 	struct bpf_insn insns[] = {
4608 		BPF_MOV64_IMM(BPF_REG_0, 0),
4609 		BPF_EXIT_INSN(),
4610 	};
4611 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4612 
4613 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4614 	if (map < 0) {
4615 		ret = -errno;
4616 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4617 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4618 			__func__, cp, -ret);
4619 		return ret;
4620 	}
4621 
4622 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4623 	if (prog < 0) {
4624 		close(map);
4625 		return 0;
4626 	}
4627 
4628 	ret = bpf_prog_bind_map(prog, map, NULL);
4629 
4630 	close(map);
4631 	close(prog);
4632 
4633 	return ret >= 0;
4634 }
4635 
4636 static int probe_module_btf(void)
4637 {
4638 	static const char strs[] = "\0int";
4639 	__u32 types[] = {
4640 		/* int */
4641 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4642 	};
4643 	struct bpf_btf_info info;
4644 	__u32 len = sizeof(info);
4645 	char name[16];
4646 	int fd, err;
4647 
4648 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4649 	if (fd < 0)
4650 		return 0; /* BTF not supported at all */
4651 
4652 	memset(&info, 0, sizeof(info));
4653 	info.name = ptr_to_u64(name);
4654 	info.name_len = sizeof(name);
4655 
4656 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4657 	 * kernel's module BTF support coincides with support for
4658 	 * name/name_len fields in struct bpf_btf_info.
4659 	 */
4660 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4661 	close(fd);
4662 	return !err;
4663 }
4664 
4665 static int probe_perf_link(void)
4666 {
4667 	struct bpf_insn insns[] = {
4668 		BPF_MOV64_IMM(BPF_REG_0, 0),
4669 		BPF_EXIT_INSN(),
4670 	};
4671 	int prog_fd, link_fd, err;
4672 
4673 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4674 				insns, ARRAY_SIZE(insns), NULL);
4675 	if (prog_fd < 0)
4676 		return -errno;
4677 
4678 	/* use invalid perf_event FD to get EBADF, if link is supported;
4679 	 * otherwise EINVAL should be returned
4680 	 */
4681 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4682 	err = -errno; /* close() can clobber errno */
4683 
4684 	if (link_fd >= 0)
4685 		close(link_fd);
4686 	close(prog_fd);
4687 
4688 	return link_fd < 0 && err == -EBADF;
4689 }
4690 
4691 static int probe_kern_bpf_cookie(void)
4692 {
4693 	struct bpf_insn insns[] = {
4694 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4695 		BPF_EXIT_INSN(),
4696 	};
4697 	int ret, insn_cnt = ARRAY_SIZE(insns);
4698 
4699 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4700 	return probe_fd(ret);
4701 }
4702 
4703 static int probe_kern_btf_enum64(void)
4704 {
4705 	static const char strs[] = "\0enum64";
4706 	__u32 types[] = {
4707 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4708 	};
4709 
4710 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4711 					     strs, sizeof(strs)));
4712 }
4713 
4714 static int probe_kern_syscall_wrapper(void);
4715 
4716 enum kern_feature_result {
4717 	FEAT_UNKNOWN = 0,
4718 	FEAT_SUPPORTED = 1,
4719 	FEAT_MISSING = 2,
4720 };
4721 
4722 typedef int (*feature_probe_fn)(void);
4723 
4724 static struct kern_feature_desc {
4725 	const char *desc;
4726 	feature_probe_fn probe;
4727 	enum kern_feature_result res;
4728 } feature_probes[__FEAT_CNT] = {
4729 	[FEAT_PROG_NAME] = {
4730 		"BPF program name", probe_kern_prog_name,
4731 	},
4732 	[FEAT_GLOBAL_DATA] = {
4733 		"global variables", probe_kern_global_data,
4734 	},
4735 	[FEAT_BTF] = {
4736 		"minimal BTF", probe_kern_btf,
4737 	},
4738 	[FEAT_BTF_FUNC] = {
4739 		"BTF functions", probe_kern_btf_func,
4740 	},
4741 	[FEAT_BTF_GLOBAL_FUNC] = {
4742 		"BTF global function", probe_kern_btf_func_global,
4743 	},
4744 	[FEAT_BTF_DATASEC] = {
4745 		"BTF data section and variable", probe_kern_btf_datasec,
4746 	},
4747 	[FEAT_ARRAY_MMAP] = {
4748 		"ARRAY map mmap()", probe_kern_array_mmap,
4749 	},
4750 	[FEAT_EXP_ATTACH_TYPE] = {
4751 		"BPF_PROG_LOAD expected_attach_type attribute",
4752 		probe_kern_exp_attach_type,
4753 	},
4754 	[FEAT_PROBE_READ_KERN] = {
4755 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4756 	},
4757 	[FEAT_PROG_BIND_MAP] = {
4758 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4759 	},
4760 	[FEAT_MODULE_BTF] = {
4761 		"module BTF support", probe_module_btf,
4762 	},
4763 	[FEAT_BTF_FLOAT] = {
4764 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4765 	},
4766 	[FEAT_PERF_LINK] = {
4767 		"BPF perf link support", probe_perf_link,
4768 	},
4769 	[FEAT_BTF_DECL_TAG] = {
4770 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4771 	},
4772 	[FEAT_BTF_TYPE_TAG] = {
4773 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4774 	},
4775 	[FEAT_MEMCG_ACCOUNT] = {
4776 		"memcg-based memory accounting", probe_memcg_account,
4777 	},
4778 	[FEAT_BPF_COOKIE] = {
4779 		"BPF cookie support", probe_kern_bpf_cookie,
4780 	},
4781 	[FEAT_BTF_ENUM64] = {
4782 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4783 	},
4784 	[FEAT_SYSCALL_WRAPPER] = {
4785 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4786 	},
4787 };
4788 
4789 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4790 {
4791 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4792 	int ret;
4793 
4794 	if (obj && obj->gen_loader)
4795 		/* To generate loader program assume the latest kernel
4796 		 * to avoid doing extra prog_load, map_create syscalls.
4797 		 */
4798 		return true;
4799 
4800 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4801 		ret = feat->probe();
4802 		if (ret > 0) {
4803 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4804 		} else if (ret == 0) {
4805 			WRITE_ONCE(feat->res, FEAT_MISSING);
4806 		} else {
4807 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4808 			WRITE_ONCE(feat->res, FEAT_MISSING);
4809 		}
4810 	}
4811 
4812 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4813 }
4814 
4815 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4816 {
4817 	struct bpf_map_info map_info = {};
4818 	char msg[STRERR_BUFSIZE];
4819 	__u32 map_info_len;
4820 	int err;
4821 
4822 	map_info_len = sizeof(map_info);
4823 
4824 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4825 	if (err && errno == EINVAL)
4826 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4827 	if (err) {
4828 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4829 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4830 		return false;
4831 	}
4832 
4833 	return (map_info.type == map->def.type &&
4834 		map_info.key_size == map->def.key_size &&
4835 		map_info.value_size == map->def.value_size &&
4836 		map_info.max_entries == map->def.max_entries &&
4837 		map_info.map_flags == map->def.map_flags &&
4838 		map_info.map_extra == map->map_extra);
4839 }
4840 
4841 static int
4842 bpf_object__reuse_map(struct bpf_map *map)
4843 {
4844 	char *cp, errmsg[STRERR_BUFSIZE];
4845 	int err, pin_fd;
4846 
4847 	pin_fd = bpf_obj_get(map->pin_path);
4848 	if (pin_fd < 0) {
4849 		err = -errno;
4850 		if (err == -ENOENT) {
4851 			pr_debug("found no pinned map to reuse at '%s'\n",
4852 				 map->pin_path);
4853 			return 0;
4854 		}
4855 
4856 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4857 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4858 			map->pin_path, cp);
4859 		return err;
4860 	}
4861 
4862 	if (!map_is_reuse_compat(map, pin_fd)) {
4863 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4864 			map->pin_path);
4865 		close(pin_fd);
4866 		return -EINVAL;
4867 	}
4868 
4869 	err = bpf_map__reuse_fd(map, pin_fd);
4870 	close(pin_fd);
4871 	if (err) {
4872 		return err;
4873 	}
4874 	map->pinned = true;
4875 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4876 
4877 	return 0;
4878 }
4879 
4880 static int
4881 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4882 {
4883 	enum libbpf_map_type map_type = map->libbpf_type;
4884 	char *cp, errmsg[STRERR_BUFSIZE];
4885 	int err, zero = 0;
4886 
4887 	if (obj->gen_loader) {
4888 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4889 					 map->mmaped, map->def.value_size);
4890 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4891 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4892 		return 0;
4893 	}
4894 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4895 	if (err) {
4896 		err = -errno;
4897 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4898 		pr_warn("Error setting initial map(%s) contents: %s\n",
4899 			map->name, cp);
4900 		return err;
4901 	}
4902 
4903 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4904 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4905 		err = bpf_map_freeze(map->fd);
4906 		if (err) {
4907 			err = -errno;
4908 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4909 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4910 				map->name, cp);
4911 			return err;
4912 		}
4913 	}
4914 	return 0;
4915 }
4916 
4917 static void bpf_map__destroy(struct bpf_map *map);
4918 
4919 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4920 {
4921 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4922 	struct bpf_map_def *def = &map->def;
4923 	const char *map_name = NULL;
4924 	int err = 0;
4925 
4926 	if (kernel_supports(obj, FEAT_PROG_NAME))
4927 		map_name = map->name;
4928 	create_attr.map_ifindex = map->map_ifindex;
4929 	create_attr.map_flags = def->map_flags;
4930 	create_attr.numa_node = map->numa_node;
4931 	create_attr.map_extra = map->map_extra;
4932 
4933 	if (bpf_map__is_struct_ops(map))
4934 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4935 
4936 	if (obj->btf && btf__fd(obj->btf) >= 0) {
4937 		create_attr.btf_fd = btf__fd(obj->btf);
4938 		create_attr.btf_key_type_id = map->btf_key_type_id;
4939 		create_attr.btf_value_type_id = map->btf_value_type_id;
4940 	}
4941 
4942 	if (bpf_map_type__is_map_in_map(def->type)) {
4943 		if (map->inner_map) {
4944 			err = bpf_object__create_map(obj, map->inner_map, true);
4945 			if (err) {
4946 				pr_warn("map '%s': failed to create inner map: %d\n",
4947 					map->name, err);
4948 				return err;
4949 			}
4950 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4951 		}
4952 		if (map->inner_map_fd >= 0)
4953 			create_attr.inner_map_fd = map->inner_map_fd;
4954 	}
4955 
4956 	switch (def->type) {
4957 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4958 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4959 	case BPF_MAP_TYPE_STACK_TRACE:
4960 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4961 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4962 	case BPF_MAP_TYPE_DEVMAP:
4963 	case BPF_MAP_TYPE_DEVMAP_HASH:
4964 	case BPF_MAP_TYPE_CPUMAP:
4965 	case BPF_MAP_TYPE_XSKMAP:
4966 	case BPF_MAP_TYPE_SOCKMAP:
4967 	case BPF_MAP_TYPE_SOCKHASH:
4968 	case BPF_MAP_TYPE_QUEUE:
4969 	case BPF_MAP_TYPE_STACK:
4970 		create_attr.btf_fd = 0;
4971 		create_attr.btf_key_type_id = 0;
4972 		create_attr.btf_value_type_id = 0;
4973 		map->btf_key_type_id = 0;
4974 		map->btf_value_type_id = 0;
4975 	default:
4976 		break;
4977 	}
4978 
4979 	if (obj->gen_loader) {
4980 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4981 				    def->key_size, def->value_size, def->max_entries,
4982 				    &create_attr, is_inner ? -1 : map - obj->maps);
4983 		/* Pretend to have valid FD to pass various fd >= 0 checks.
4984 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4985 		 */
4986 		map->fd = 0;
4987 	} else {
4988 		map->fd = bpf_map_create(def->type, map_name,
4989 					 def->key_size, def->value_size,
4990 					 def->max_entries, &create_attr);
4991 	}
4992 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4993 			    create_attr.btf_value_type_id)) {
4994 		char *cp, errmsg[STRERR_BUFSIZE];
4995 
4996 		err = -errno;
4997 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4998 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4999 			map->name, cp, err);
5000 		create_attr.btf_fd = 0;
5001 		create_attr.btf_key_type_id = 0;
5002 		create_attr.btf_value_type_id = 0;
5003 		map->btf_key_type_id = 0;
5004 		map->btf_value_type_id = 0;
5005 		map->fd = bpf_map_create(def->type, map_name,
5006 					 def->key_size, def->value_size,
5007 					 def->max_entries, &create_attr);
5008 	}
5009 
5010 	err = map->fd < 0 ? -errno : 0;
5011 
5012 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5013 		if (obj->gen_loader)
5014 			map->inner_map->fd = -1;
5015 		bpf_map__destroy(map->inner_map);
5016 		zfree(&map->inner_map);
5017 	}
5018 
5019 	return err;
5020 }
5021 
5022 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5023 {
5024 	const struct bpf_map *targ_map;
5025 	unsigned int i;
5026 	int fd, err = 0;
5027 
5028 	for (i = 0; i < map->init_slots_sz; i++) {
5029 		if (!map->init_slots[i])
5030 			continue;
5031 
5032 		targ_map = map->init_slots[i];
5033 		fd = bpf_map__fd(targ_map);
5034 
5035 		if (obj->gen_loader) {
5036 			bpf_gen__populate_outer_map(obj->gen_loader,
5037 						    map - obj->maps, i,
5038 						    targ_map - obj->maps);
5039 		} else {
5040 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5041 		}
5042 		if (err) {
5043 			err = -errno;
5044 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5045 				map->name, i, targ_map->name, fd, err);
5046 			return err;
5047 		}
5048 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5049 			 map->name, i, targ_map->name, fd);
5050 	}
5051 
5052 	zfree(&map->init_slots);
5053 	map->init_slots_sz = 0;
5054 
5055 	return 0;
5056 }
5057 
5058 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5059 {
5060 	const struct bpf_program *targ_prog;
5061 	unsigned int i;
5062 	int fd, err;
5063 
5064 	if (obj->gen_loader)
5065 		return -ENOTSUP;
5066 
5067 	for (i = 0; i < map->init_slots_sz; i++) {
5068 		if (!map->init_slots[i])
5069 			continue;
5070 
5071 		targ_prog = map->init_slots[i];
5072 		fd = bpf_program__fd(targ_prog);
5073 
5074 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5075 		if (err) {
5076 			err = -errno;
5077 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5078 				map->name, i, targ_prog->name, fd, err);
5079 			return err;
5080 		}
5081 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5082 			 map->name, i, targ_prog->name, fd);
5083 	}
5084 
5085 	zfree(&map->init_slots);
5086 	map->init_slots_sz = 0;
5087 
5088 	return 0;
5089 }
5090 
5091 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5092 {
5093 	struct bpf_map *map;
5094 	int i, err;
5095 
5096 	for (i = 0; i < obj->nr_maps; i++) {
5097 		map = &obj->maps[i];
5098 
5099 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5100 			continue;
5101 
5102 		err = init_prog_array_slots(obj, map);
5103 		if (err < 0) {
5104 			zclose(map->fd);
5105 			return err;
5106 		}
5107 	}
5108 	return 0;
5109 }
5110 
5111 static int map_set_def_max_entries(struct bpf_map *map)
5112 {
5113 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5114 		int nr_cpus;
5115 
5116 		nr_cpus = libbpf_num_possible_cpus();
5117 		if (nr_cpus < 0) {
5118 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5119 				map->name, nr_cpus);
5120 			return nr_cpus;
5121 		}
5122 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5123 		map->def.max_entries = nr_cpus;
5124 	}
5125 
5126 	return 0;
5127 }
5128 
5129 static int
5130 bpf_object__create_maps(struct bpf_object *obj)
5131 {
5132 	struct bpf_map *map;
5133 	char *cp, errmsg[STRERR_BUFSIZE];
5134 	unsigned int i, j;
5135 	int err;
5136 	bool retried;
5137 
5138 	for (i = 0; i < obj->nr_maps; i++) {
5139 		map = &obj->maps[i];
5140 
5141 		/* To support old kernels, we skip creating global data maps
5142 		 * (.rodata, .data, .kconfig, etc); later on, during program
5143 		 * loading, if we detect that at least one of the to-be-loaded
5144 		 * programs is referencing any global data map, we'll error
5145 		 * out with program name and relocation index logged.
5146 		 * This approach allows to accommodate Clang emitting
5147 		 * unnecessary .rodata.str1.1 sections for string literals,
5148 		 * but also it allows to have CO-RE applications that use
5149 		 * global variables in some of BPF programs, but not others.
5150 		 * If those global variable-using programs are not loaded at
5151 		 * runtime due to bpf_program__set_autoload(prog, false),
5152 		 * bpf_object loading will succeed just fine even on old
5153 		 * kernels.
5154 		 */
5155 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5156 			map->autocreate = false;
5157 
5158 		if (!map->autocreate) {
5159 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5160 			continue;
5161 		}
5162 
5163 		err = map_set_def_max_entries(map);
5164 		if (err)
5165 			goto err_out;
5166 
5167 		retried = false;
5168 retry:
5169 		if (map->pin_path) {
5170 			err = bpf_object__reuse_map(map);
5171 			if (err) {
5172 				pr_warn("map '%s': error reusing pinned map\n",
5173 					map->name);
5174 				goto err_out;
5175 			}
5176 			if (retried && map->fd < 0) {
5177 				pr_warn("map '%s': cannot find pinned map\n",
5178 					map->name);
5179 				err = -ENOENT;
5180 				goto err_out;
5181 			}
5182 		}
5183 
5184 		if (map->fd >= 0) {
5185 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5186 				 map->name, map->fd);
5187 		} else {
5188 			err = bpf_object__create_map(obj, map, false);
5189 			if (err)
5190 				goto err_out;
5191 
5192 			pr_debug("map '%s': created successfully, fd=%d\n",
5193 				 map->name, map->fd);
5194 
5195 			if (bpf_map__is_internal(map)) {
5196 				err = bpf_object__populate_internal_map(obj, map);
5197 				if (err < 0) {
5198 					zclose(map->fd);
5199 					goto err_out;
5200 				}
5201 			}
5202 
5203 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5204 				err = init_map_in_map_slots(obj, map);
5205 				if (err < 0) {
5206 					zclose(map->fd);
5207 					goto err_out;
5208 				}
5209 			}
5210 		}
5211 
5212 		if (map->pin_path && !map->pinned) {
5213 			err = bpf_map__pin(map, NULL);
5214 			if (err) {
5215 				zclose(map->fd);
5216 				if (!retried && err == -EEXIST) {
5217 					retried = true;
5218 					goto retry;
5219 				}
5220 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5221 					map->name, map->pin_path, err);
5222 				goto err_out;
5223 			}
5224 		}
5225 	}
5226 
5227 	return 0;
5228 
5229 err_out:
5230 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5231 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5232 	pr_perm_msg(err);
5233 	for (j = 0; j < i; j++)
5234 		zclose(obj->maps[j].fd);
5235 	return err;
5236 }
5237 
5238 static bool bpf_core_is_flavor_sep(const char *s)
5239 {
5240 	/* check X___Y name pattern, where X and Y are not underscores */
5241 	return s[0] != '_' &&				      /* X */
5242 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5243 	       s[4] != '_';				      /* Y */
5244 }
5245 
5246 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5247  * before last triple underscore. Struct name part after last triple
5248  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5249  */
5250 size_t bpf_core_essential_name_len(const char *name)
5251 {
5252 	size_t n = strlen(name);
5253 	int i;
5254 
5255 	for (i = n - 5; i >= 0; i--) {
5256 		if (bpf_core_is_flavor_sep(name + i))
5257 			return i + 1;
5258 	}
5259 	return n;
5260 }
5261 
5262 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5263 {
5264 	if (!cands)
5265 		return;
5266 
5267 	free(cands->cands);
5268 	free(cands);
5269 }
5270 
5271 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5272 		       size_t local_essent_len,
5273 		       const struct btf *targ_btf,
5274 		       const char *targ_btf_name,
5275 		       int targ_start_id,
5276 		       struct bpf_core_cand_list *cands)
5277 {
5278 	struct bpf_core_cand *new_cands, *cand;
5279 	const struct btf_type *t, *local_t;
5280 	const char *targ_name, *local_name;
5281 	size_t targ_essent_len;
5282 	int n, i;
5283 
5284 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5285 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5286 
5287 	n = btf__type_cnt(targ_btf);
5288 	for (i = targ_start_id; i < n; i++) {
5289 		t = btf__type_by_id(targ_btf, i);
5290 		if (!btf_kind_core_compat(t, local_t))
5291 			continue;
5292 
5293 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5294 		if (str_is_empty(targ_name))
5295 			continue;
5296 
5297 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5298 		if (targ_essent_len != local_essent_len)
5299 			continue;
5300 
5301 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5302 			continue;
5303 
5304 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5305 			 local_cand->id, btf_kind_str(local_t),
5306 			 local_name, i, btf_kind_str(t), targ_name,
5307 			 targ_btf_name);
5308 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5309 					      sizeof(*cands->cands));
5310 		if (!new_cands)
5311 			return -ENOMEM;
5312 
5313 		cand = &new_cands[cands->len];
5314 		cand->btf = targ_btf;
5315 		cand->id = i;
5316 
5317 		cands->cands = new_cands;
5318 		cands->len++;
5319 	}
5320 	return 0;
5321 }
5322 
5323 static int load_module_btfs(struct bpf_object *obj)
5324 {
5325 	struct bpf_btf_info info;
5326 	struct module_btf *mod_btf;
5327 	struct btf *btf;
5328 	char name[64];
5329 	__u32 id = 0, len;
5330 	int err, fd;
5331 
5332 	if (obj->btf_modules_loaded)
5333 		return 0;
5334 
5335 	if (obj->gen_loader)
5336 		return 0;
5337 
5338 	/* don't do this again, even if we find no module BTFs */
5339 	obj->btf_modules_loaded = true;
5340 
5341 	/* kernel too old to support module BTFs */
5342 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5343 		return 0;
5344 
5345 	while (true) {
5346 		err = bpf_btf_get_next_id(id, &id);
5347 		if (err && errno == ENOENT)
5348 			return 0;
5349 		if (err) {
5350 			err = -errno;
5351 			pr_warn("failed to iterate BTF objects: %d\n", err);
5352 			return err;
5353 		}
5354 
5355 		fd = bpf_btf_get_fd_by_id(id);
5356 		if (fd < 0) {
5357 			if (errno == ENOENT)
5358 				continue; /* expected race: BTF was unloaded */
5359 			err = -errno;
5360 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5361 			return err;
5362 		}
5363 
5364 		len = sizeof(info);
5365 		memset(&info, 0, sizeof(info));
5366 		info.name = ptr_to_u64(name);
5367 		info.name_len = sizeof(name);
5368 
5369 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5370 		if (err) {
5371 			err = -errno;
5372 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5373 			goto err_out;
5374 		}
5375 
5376 		/* ignore non-module BTFs */
5377 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5378 			close(fd);
5379 			continue;
5380 		}
5381 
5382 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5383 		err = libbpf_get_error(btf);
5384 		if (err) {
5385 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5386 				name, id, err);
5387 			goto err_out;
5388 		}
5389 
5390 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5391 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5392 		if (err)
5393 			goto err_out;
5394 
5395 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5396 
5397 		mod_btf->btf = btf;
5398 		mod_btf->id = id;
5399 		mod_btf->fd = fd;
5400 		mod_btf->name = strdup(name);
5401 		if (!mod_btf->name) {
5402 			err = -ENOMEM;
5403 			goto err_out;
5404 		}
5405 		continue;
5406 
5407 err_out:
5408 		close(fd);
5409 		return err;
5410 	}
5411 
5412 	return 0;
5413 }
5414 
5415 static struct bpf_core_cand_list *
5416 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5417 {
5418 	struct bpf_core_cand local_cand = {};
5419 	struct bpf_core_cand_list *cands;
5420 	const struct btf *main_btf;
5421 	const struct btf_type *local_t;
5422 	const char *local_name;
5423 	size_t local_essent_len;
5424 	int err, i;
5425 
5426 	local_cand.btf = local_btf;
5427 	local_cand.id = local_type_id;
5428 	local_t = btf__type_by_id(local_btf, local_type_id);
5429 	if (!local_t)
5430 		return ERR_PTR(-EINVAL);
5431 
5432 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5433 	if (str_is_empty(local_name))
5434 		return ERR_PTR(-EINVAL);
5435 	local_essent_len = bpf_core_essential_name_len(local_name);
5436 
5437 	cands = calloc(1, sizeof(*cands));
5438 	if (!cands)
5439 		return ERR_PTR(-ENOMEM);
5440 
5441 	/* Attempt to find target candidates in vmlinux BTF first */
5442 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5443 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5444 	if (err)
5445 		goto err_out;
5446 
5447 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5448 	if (cands->len)
5449 		return cands;
5450 
5451 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5452 	if (obj->btf_vmlinux_override)
5453 		return cands;
5454 
5455 	/* now look through module BTFs, trying to still find candidates */
5456 	err = load_module_btfs(obj);
5457 	if (err)
5458 		goto err_out;
5459 
5460 	for (i = 0; i < obj->btf_module_cnt; i++) {
5461 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5462 					 obj->btf_modules[i].btf,
5463 					 obj->btf_modules[i].name,
5464 					 btf__type_cnt(obj->btf_vmlinux),
5465 					 cands);
5466 		if (err)
5467 			goto err_out;
5468 	}
5469 
5470 	return cands;
5471 err_out:
5472 	bpf_core_free_cands(cands);
5473 	return ERR_PTR(err);
5474 }
5475 
5476 /* Check local and target types for compatibility. This check is used for
5477  * type-based CO-RE relocations and follow slightly different rules than
5478  * field-based relocations. This function assumes that root types were already
5479  * checked for name match. Beyond that initial root-level name check, names
5480  * are completely ignored. Compatibility rules are as follows:
5481  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5482  *     kind should match for local and target types (i.e., STRUCT is not
5483  *     compatible with UNION);
5484  *   - for ENUMs, the size is ignored;
5485  *   - for INT, size and signedness are ignored;
5486  *   - for ARRAY, dimensionality is ignored, element types are checked for
5487  *     compatibility recursively;
5488  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5489  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5490  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5491  *     number of input args and compatible return and argument types.
5492  * These rules are not set in stone and probably will be adjusted as we get
5493  * more experience with using BPF CO-RE relocations.
5494  */
5495 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5496 			      const struct btf *targ_btf, __u32 targ_id)
5497 {
5498 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5499 }
5500 
5501 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5502 			 const struct btf *targ_btf, __u32 targ_id)
5503 {
5504 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5505 }
5506 
5507 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5508 {
5509 	return (size_t)key;
5510 }
5511 
5512 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5513 {
5514 	return k1 == k2;
5515 }
5516 
5517 static void *u32_as_hash_key(__u32 x)
5518 {
5519 	return (void *)(uintptr_t)x;
5520 }
5521 
5522 static int record_relo_core(struct bpf_program *prog,
5523 			    const struct bpf_core_relo *core_relo, int insn_idx)
5524 {
5525 	struct reloc_desc *relos, *relo;
5526 
5527 	relos = libbpf_reallocarray(prog->reloc_desc,
5528 				    prog->nr_reloc + 1, sizeof(*relos));
5529 	if (!relos)
5530 		return -ENOMEM;
5531 	relo = &relos[prog->nr_reloc];
5532 	relo->type = RELO_CORE;
5533 	relo->insn_idx = insn_idx;
5534 	relo->core_relo = core_relo;
5535 	prog->reloc_desc = relos;
5536 	prog->nr_reloc++;
5537 	return 0;
5538 }
5539 
5540 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5541 {
5542 	struct reloc_desc *relo;
5543 	int i;
5544 
5545 	for (i = 0; i < prog->nr_reloc; i++) {
5546 		relo = &prog->reloc_desc[i];
5547 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5548 			continue;
5549 
5550 		return relo->core_relo;
5551 	}
5552 
5553 	return NULL;
5554 }
5555 
5556 static int bpf_core_resolve_relo(struct bpf_program *prog,
5557 				 const struct bpf_core_relo *relo,
5558 				 int relo_idx,
5559 				 const struct btf *local_btf,
5560 				 struct hashmap *cand_cache,
5561 				 struct bpf_core_relo_res *targ_res)
5562 {
5563 	struct bpf_core_spec specs_scratch[3] = {};
5564 	const void *type_key = u32_as_hash_key(relo->type_id);
5565 	struct bpf_core_cand_list *cands = NULL;
5566 	const char *prog_name = prog->name;
5567 	const struct btf_type *local_type;
5568 	const char *local_name;
5569 	__u32 local_id = relo->type_id;
5570 	int err;
5571 
5572 	local_type = btf__type_by_id(local_btf, local_id);
5573 	if (!local_type)
5574 		return -EINVAL;
5575 
5576 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5577 	if (!local_name)
5578 		return -EINVAL;
5579 
5580 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5581 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5582 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5583 		if (IS_ERR(cands)) {
5584 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5585 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5586 				local_name, PTR_ERR(cands));
5587 			return PTR_ERR(cands);
5588 		}
5589 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5590 		if (err) {
5591 			bpf_core_free_cands(cands);
5592 			return err;
5593 		}
5594 	}
5595 
5596 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5597 				       targ_res);
5598 }
5599 
5600 static int
5601 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5602 {
5603 	const struct btf_ext_info_sec *sec;
5604 	struct bpf_core_relo_res targ_res;
5605 	const struct bpf_core_relo *rec;
5606 	const struct btf_ext_info *seg;
5607 	struct hashmap_entry *entry;
5608 	struct hashmap *cand_cache = NULL;
5609 	struct bpf_program *prog;
5610 	struct bpf_insn *insn;
5611 	const char *sec_name;
5612 	int i, err = 0, insn_idx, sec_idx, sec_num;
5613 
5614 	if (obj->btf_ext->core_relo_info.len == 0)
5615 		return 0;
5616 
5617 	if (targ_btf_path) {
5618 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5619 		err = libbpf_get_error(obj->btf_vmlinux_override);
5620 		if (err) {
5621 			pr_warn("failed to parse target BTF: %d\n", err);
5622 			return err;
5623 		}
5624 	}
5625 
5626 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5627 	if (IS_ERR(cand_cache)) {
5628 		err = PTR_ERR(cand_cache);
5629 		goto out;
5630 	}
5631 
5632 	seg = &obj->btf_ext->core_relo_info;
5633 	sec_num = 0;
5634 	for_each_btf_ext_sec(seg, sec) {
5635 		sec_idx = seg->sec_idxs[sec_num];
5636 		sec_num++;
5637 
5638 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5639 		if (str_is_empty(sec_name)) {
5640 			err = -EINVAL;
5641 			goto out;
5642 		}
5643 
5644 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5645 
5646 		for_each_btf_ext_rec(seg, sec, i, rec) {
5647 			if (rec->insn_off % BPF_INSN_SZ)
5648 				return -EINVAL;
5649 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5650 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5651 			if (!prog) {
5652 				/* When __weak subprog is "overridden" by another instance
5653 				 * of the subprog from a different object file, linker still
5654 				 * appends all the .BTF.ext info that used to belong to that
5655 				 * eliminated subprogram.
5656 				 * This is similar to what x86-64 linker does for relocations.
5657 				 * So just ignore such relocations just like we ignore
5658 				 * subprog instructions when discovering subprograms.
5659 				 */
5660 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5661 					 sec_name, i, insn_idx);
5662 				continue;
5663 			}
5664 			/* no need to apply CO-RE relocation if the program is
5665 			 * not going to be loaded
5666 			 */
5667 			if (!prog->autoload)
5668 				continue;
5669 
5670 			/* adjust insn_idx from section frame of reference to the local
5671 			 * program's frame of reference; (sub-)program code is not yet
5672 			 * relocated, so it's enough to just subtract in-section offset
5673 			 */
5674 			insn_idx = insn_idx - prog->sec_insn_off;
5675 			if (insn_idx >= prog->insns_cnt)
5676 				return -EINVAL;
5677 			insn = &prog->insns[insn_idx];
5678 
5679 			err = record_relo_core(prog, rec, insn_idx);
5680 			if (err) {
5681 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5682 					prog->name, i, err);
5683 				goto out;
5684 			}
5685 
5686 			if (prog->obj->gen_loader)
5687 				continue;
5688 
5689 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5690 			if (err) {
5691 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5692 					prog->name, i, err);
5693 				goto out;
5694 			}
5695 
5696 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5697 			if (err) {
5698 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5699 					prog->name, i, insn_idx, err);
5700 				goto out;
5701 			}
5702 		}
5703 	}
5704 
5705 out:
5706 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5707 	btf__free(obj->btf_vmlinux_override);
5708 	obj->btf_vmlinux_override = NULL;
5709 
5710 	if (!IS_ERR_OR_NULL(cand_cache)) {
5711 		hashmap__for_each_entry(cand_cache, entry, i) {
5712 			bpf_core_free_cands(entry->value);
5713 		}
5714 		hashmap__free(cand_cache);
5715 	}
5716 	return err;
5717 }
5718 
5719 /* base map load ldimm64 special constant, used also for log fixup logic */
5720 #define MAP_LDIMM64_POISON_BASE 2001000000
5721 #define MAP_LDIMM64_POISON_PFX "200100"
5722 
5723 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5724 			       int insn_idx, struct bpf_insn *insn,
5725 			       int map_idx, const struct bpf_map *map)
5726 {
5727 	int i;
5728 
5729 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5730 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5731 
5732 	/* we turn single ldimm64 into two identical invalid calls */
5733 	for (i = 0; i < 2; i++) {
5734 		insn->code = BPF_JMP | BPF_CALL;
5735 		insn->dst_reg = 0;
5736 		insn->src_reg = 0;
5737 		insn->off = 0;
5738 		/* if this instruction is reachable (not a dead code),
5739 		 * verifier will complain with something like:
5740 		 * invalid func unknown#2001000123
5741 		 * where lower 123 is map index into obj->maps[] array
5742 		 */
5743 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5744 
5745 		insn++;
5746 	}
5747 }
5748 
5749 /* Relocate data references within program code:
5750  *  - map references;
5751  *  - global variable references;
5752  *  - extern references.
5753  */
5754 static int
5755 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5756 {
5757 	int i;
5758 
5759 	for (i = 0; i < prog->nr_reloc; i++) {
5760 		struct reloc_desc *relo = &prog->reloc_desc[i];
5761 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5762 		const struct bpf_map *map;
5763 		struct extern_desc *ext;
5764 
5765 		switch (relo->type) {
5766 		case RELO_LD64:
5767 			map = &obj->maps[relo->map_idx];
5768 			if (obj->gen_loader) {
5769 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5770 				insn[0].imm = relo->map_idx;
5771 			} else if (map->autocreate) {
5772 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5773 				insn[0].imm = map->fd;
5774 			} else {
5775 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5776 						   relo->map_idx, map);
5777 			}
5778 			break;
5779 		case RELO_DATA:
5780 			map = &obj->maps[relo->map_idx];
5781 			insn[1].imm = insn[0].imm + relo->sym_off;
5782 			if (obj->gen_loader) {
5783 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5784 				insn[0].imm = relo->map_idx;
5785 			} else if (map->autocreate) {
5786 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5787 				insn[0].imm = map->fd;
5788 			} else {
5789 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5790 						   relo->map_idx, map);
5791 			}
5792 			break;
5793 		case RELO_EXTERN_VAR:
5794 			ext = &obj->externs[relo->sym_off];
5795 			if (ext->type == EXT_KCFG) {
5796 				if (obj->gen_loader) {
5797 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5798 					insn[0].imm = obj->kconfig_map_idx;
5799 				} else {
5800 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5801 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5802 				}
5803 				insn[1].imm = ext->kcfg.data_off;
5804 			} else /* EXT_KSYM */ {
5805 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5806 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5807 					insn[0].imm = ext->ksym.kernel_btf_id;
5808 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5809 				} else { /* typeless ksyms or unresolved typed ksyms */
5810 					insn[0].imm = (__u32)ext->ksym.addr;
5811 					insn[1].imm = ext->ksym.addr >> 32;
5812 				}
5813 			}
5814 			break;
5815 		case RELO_EXTERN_FUNC:
5816 			ext = &obj->externs[relo->sym_off];
5817 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5818 			if (ext->is_set) {
5819 				insn[0].imm = ext->ksym.kernel_btf_id;
5820 				insn[0].off = ext->ksym.btf_fd_idx;
5821 			} else { /* unresolved weak kfunc */
5822 				insn[0].imm = 0;
5823 				insn[0].off = 0;
5824 			}
5825 			break;
5826 		case RELO_SUBPROG_ADDR:
5827 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5828 				pr_warn("prog '%s': relo #%d: bad insn\n",
5829 					prog->name, i);
5830 				return -EINVAL;
5831 			}
5832 			/* handled already */
5833 			break;
5834 		case RELO_CALL:
5835 			/* handled already */
5836 			break;
5837 		case RELO_CORE:
5838 			/* will be handled by bpf_program_record_relos() */
5839 			break;
5840 		default:
5841 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5842 				prog->name, i, relo->type);
5843 			return -EINVAL;
5844 		}
5845 	}
5846 
5847 	return 0;
5848 }
5849 
5850 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5851 				    const struct bpf_program *prog,
5852 				    const struct btf_ext_info *ext_info,
5853 				    void **prog_info, __u32 *prog_rec_cnt,
5854 				    __u32 *prog_rec_sz)
5855 {
5856 	void *copy_start = NULL, *copy_end = NULL;
5857 	void *rec, *rec_end, *new_prog_info;
5858 	const struct btf_ext_info_sec *sec;
5859 	size_t old_sz, new_sz;
5860 	int i, sec_num, sec_idx, off_adj;
5861 
5862 	sec_num = 0;
5863 	for_each_btf_ext_sec(ext_info, sec) {
5864 		sec_idx = ext_info->sec_idxs[sec_num];
5865 		sec_num++;
5866 		if (prog->sec_idx != sec_idx)
5867 			continue;
5868 
5869 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5870 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5871 
5872 			if (insn_off < prog->sec_insn_off)
5873 				continue;
5874 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5875 				break;
5876 
5877 			if (!copy_start)
5878 				copy_start = rec;
5879 			copy_end = rec + ext_info->rec_size;
5880 		}
5881 
5882 		if (!copy_start)
5883 			return -ENOENT;
5884 
5885 		/* append func/line info of a given (sub-)program to the main
5886 		 * program func/line info
5887 		 */
5888 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5889 		new_sz = old_sz + (copy_end - copy_start);
5890 		new_prog_info = realloc(*prog_info, new_sz);
5891 		if (!new_prog_info)
5892 			return -ENOMEM;
5893 		*prog_info = new_prog_info;
5894 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5895 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5896 
5897 		/* Kernel instruction offsets are in units of 8-byte
5898 		 * instructions, while .BTF.ext instruction offsets generated
5899 		 * by Clang are in units of bytes. So convert Clang offsets
5900 		 * into kernel offsets and adjust offset according to program
5901 		 * relocated position.
5902 		 */
5903 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5904 		rec = new_prog_info + old_sz;
5905 		rec_end = new_prog_info + new_sz;
5906 		for (; rec < rec_end; rec += ext_info->rec_size) {
5907 			__u32 *insn_off = rec;
5908 
5909 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5910 		}
5911 		*prog_rec_sz = ext_info->rec_size;
5912 		return 0;
5913 	}
5914 
5915 	return -ENOENT;
5916 }
5917 
5918 static int
5919 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5920 			      struct bpf_program *main_prog,
5921 			      const struct bpf_program *prog)
5922 {
5923 	int err;
5924 
5925 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5926 	 * supprot func/line info
5927 	 */
5928 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5929 		return 0;
5930 
5931 	/* only attempt func info relocation if main program's func_info
5932 	 * relocation was successful
5933 	 */
5934 	if (main_prog != prog && !main_prog->func_info)
5935 		goto line_info;
5936 
5937 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5938 				       &main_prog->func_info,
5939 				       &main_prog->func_info_cnt,
5940 				       &main_prog->func_info_rec_size);
5941 	if (err) {
5942 		if (err != -ENOENT) {
5943 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5944 				prog->name, err);
5945 			return err;
5946 		}
5947 		if (main_prog->func_info) {
5948 			/*
5949 			 * Some info has already been found but has problem
5950 			 * in the last btf_ext reloc. Must have to error out.
5951 			 */
5952 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5953 			return err;
5954 		}
5955 		/* Have problem loading the very first info. Ignore the rest. */
5956 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5957 			prog->name);
5958 	}
5959 
5960 line_info:
5961 	/* don't relocate line info if main program's relocation failed */
5962 	if (main_prog != prog && !main_prog->line_info)
5963 		return 0;
5964 
5965 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5966 				       &main_prog->line_info,
5967 				       &main_prog->line_info_cnt,
5968 				       &main_prog->line_info_rec_size);
5969 	if (err) {
5970 		if (err != -ENOENT) {
5971 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5972 				prog->name, err);
5973 			return err;
5974 		}
5975 		if (main_prog->line_info) {
5976 			/*
5977 			 * Some info has already been found but has problem
5978 			 * in the last btf_ext reloc. Must have to error out.
5979 			 */
5980 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5981 			return err;
5982 		}
5983 		/* Have problem loading the very first info. Ignore the rest. */
5984 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5985 			prog->name);
5986 	}
5987 	return 0;
5988 }
5989 
5990 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5991 {
5992 	size_t insn_idx = *(const size_t *)key;
5993 	const struct reloc_desc *relo = elem;
5994 
5995 	if (insn_idx == relo->insn_idx)
5996 		return 0;
5997 	return insn_idx < relo->insn_idx ? -1 : 1;
5998 }
5999 
6000 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6001 {
6002 	if (!prog->nr_reloc)
6003 		return NULL;
6004 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6005 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6006 }
6007 
6008 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6009 {
6010 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6011 	struct reloc_desc *relos;
6012 	int i;
6013 
6014 	if (main_prog == subprog)
6015 		return 0;
6016 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6017 	if (!relos)
6018 		return -ENOMEM;
6019 	if (subprog->nr_reloc)
6020 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6021 		       sizeof(*relos) * subprog->nr_reloc);
6022 
6023 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6024 		relos[i].insn_idx += subprog->sub_insn_off;
6025 	/* After insn_idx adjustment the 'relos' array is still sorted
6026 	 * by insn_idx and doesn't break bsearch.
6027 	 */
6028 	main_prog->reloc_desc = relos;
6029 	main_prog->nr_reloc = new_cnt;
6030 	return 0;
6031 }
6032 
6033 static int
6034 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6035 		       struct bpf_program *prog)
6036 {
6037 	size_t sub_insn_idx, insn_idx, new_cnt;
6038 	struct bpf_program *subprog;
6039 	struct bpf_insn *insns, *insn;
6040 	struct reloc_desc *relo;
6041 	int err;
6042 
6043 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6044 	if (err)
6045 		return err;
6046 
6047 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6048 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6049 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6050 			continue;
6051 
6052 		relo = find_prog_insn_relo(prog, insn_idx);
6053 		if (relo && relo->type == RELO_EXTERN_FUNC)
6054 			/* kfunc relocations will be handled later
6055 			 * in bpf_object__relocate_data()
6056 			 */
6057 			continue;
6058 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6059 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6060 				prog->name, insn_idx, relo->type);
6061 			return -LIBBPF_ERRNO__RELOC;
6062 		}
6063 		if (relo) {
6064 			/* sub-program instruction index is a combination of
6065 			 * an offset of a symbol pointed to by relocation and
6066 			 * call instruction's imm field; for global functions,
6067 			 * call always has imm = -1, but for static functions
6068 			 * relocation is against STT_SECTION and insn->imm
6069 			 * points to a start of a static function
6070 			 *
6071 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6072 			 * the byte offset in the corresponding section.
6073 			 */
6074 			if (relo->type == RELO_CALL)
6075 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6076 			else
6077 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6078 		} else if (insn_is_pseudo_func(insn)) {
6079 			/*
6080 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6081 			 * functions are in the same section, so it shouldn't reach here.
6082 			 */
6083 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6084 				prog->name, insn_idx);
6085 			return -LIBBPF_ERRNO__RELOC;
6086 		} else {
6087 			/* if subprogram call is to a static function within
6088 			 * the same ELF section, there won't be any relocation
6089 			 * emitted, but it also means there is no additional
6090 			 * offset necessary, insns->imm is relative to
6091 			 * instruction's original position within the section
6092 			 */
6093 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6094 		}
6095 
6096 		/* we enforce that sub-programs should be in .text section */
6097 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6098 		if (!subprog) {
6099 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6100 				prog->name);
6101 			return -LIBBPF_ERRNO__RELOC;
6102 		}
6103 
6104 		/* if it's the first call instruction calling into this
6105 		 * subprogram (meaning this subprog hasn't been processed
6106 		 * yet) within the context of current main program:
6107 		 *   - append it at the end of main program's instructions blog;
6108 		 *   - process is recursively, while current program is put on hold;
6109 		 *   - if that subprogram calls some other not yet processes
6110 		 *   subprogram, same thing will happen recursively until
6111 		 *   there are no more unprocesses subprograms left to append
6112 		 *   and relocate.
6113 		 */
6114 		if (subprog->sub_insn_off == 0) {
6115 			subprog->sub_insn_off = main_prog->insns_cnt;
6116 
6117 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6118 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6119 			if (!insns) {
6120 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6121 				return -ENOMEM;
6122 			}
6123 			main_prog->insns = insns;
6124 			main_prog->insns_cnt = new_cnt;
6125 
6126 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6127 			       subprog->insns_cnt * sizeof(*insns));
6128 
6129 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6130 				 main_prog->name, subprog->insns_cnt, subprog->name);
6131 
6132 			/* The subprog insns are now appended. Append its relos too. */
6133 			err = append_subprog_relos(main_prog, subprog);
6134 			if (err)
6135 				return err;
6136 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6137 			if (err)
6138 				return err;
6139 		}
6140 
6141 		/* main_prog->insns memory could have been re-allocated, so
6142 		 * calculate pointer again
6143 		 */
6144 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6145 		/* calculate correct instruction position within current main
6146 		 * prog; each main prog can have a different set of
6147 		 * subprograms appended (potentially in different order as
6148 		 * well), so position of any subprog can be different for
6149 		 * different main programs */
6150 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6151 
6152 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6153 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6154 	}
6155 
6156 	return 0;
6157 }
6158 
6159 /*
6160  * Relocate sub-program calls.
6161  *
6162  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6163  * main prog) is processed separately. For each subprog (non-entry functions,
6164  * that can be called from either entry progs or other subprogs) gets their
6165  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6166  * hasn't been yet appended and relocated within current main prog. Once its
6167  * relocated, sub_insn_off will point at the position within current main prog
6168  * where given subprog was appended. This will further be used to relocate all
6169  * the call instructions jumping into this subprog.
6170  *
6171  * We start with main program and process all call instructions. If the call
6172  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6173  * is zero), subprog instructions are appended at the end of main program's
6174  * instruction array. Then main program is "put on hold" while we recursively
6175  * process newly appended subprogram. If that subprogram calls into another
6176  * subprogram that hasn't been appended, new subprogram is appended again to
6177  * the *main* prog's instructions (subprog's instructions are always left
6178  * untouched, as they need to be in unmodified state for subsequent main progs
6179  * and subprog instructions are always sent only as part of a main prog) and
6180  * the process continues recursively. Once all the subprogs called from a main
6181  * prog or any of its subprogs are appended (and relocated), all their
6182  * positions within finalized instructions array are known, so it's easy to
6183  * rewrite call instructions with correct relative offsets, corresponding to
6184  * desired target subprog.
6185  *
6186  * Its important to realize that some subprogs might not be called from some
6187  * main prog and any of its called/used subprogs. Those will keep their
6188  * subprog->sub_insn_off as zero at all times and won't be appended to current
6189  * main prog and won't be relocated within the context of current main prog.
6190  * They might still be used from other main progs later.
6191  *
6192  * Visually this process can be shown as below. Suppose we have two main
6193  * programs mainA and mainB and BPF object contains three subprogs: subA,
6194  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6195  * subC both call subB:
6196  *
6197  *        +--------+ +-------+
6198  *        |        v v       |
6199  *     +--+---+ +--+-+-+ +---+--+
6200  *     | subA | | subB | | subC |
6201  *     +--+---+ +------+ +---+--+
6202  *        ^                  ^
6203  *        |                  |
6204  *    +---+-------+   +------+----+
6205  *    |   mainA   |   |   mainB   |
6206  *    +-----------+   +-----------+
6207  *
6208  * We'll start relocating mainA, will find subA, append it and start
6209  * processing sub A recursively:
6210  *
6211  *    +-----------+------+
6212  *    |   mainA   | subA |
6213  *    +-----------+------+
6214  *
6215  * At this point we notice that subB is used from subA, so we append it and
6216  * relocate (there are no further subcalls from subB):
6217  *
6218  *    +-----------+------+------+
6219  *    |   mainA   | subA | subB |
6220  *    +-----------+------+------+
6221  *
6222  * At this point, we relocate subA calls, then go one level up and finish with
6223  * relocatin mainA calls. mainA is done.
6224  *
6225  * For mainB process is similar but results in different order. We start with
6226  * mainB and skip subA and subB, as mainB never calls them (at least
6227  * directly), but we see subC is needed, so we append and start processing it:
6228  *
6229  *    +-----------+------+
6230  *    |   mainB   | subC |
6231  *    +-----------+------+
6232  * Now we see subC needs subB, so we go back to it, append and relocate it:
6233  *
6234  *    +-----------+------+------+
6235  *    |   mainB   | subC | subB |
6236  *    +-----------+------+------+
6237  *
6238  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6239  */
6240 static int
6241 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6242 {
6243 	struct bpf_program *subprog;
6244 	int i, err;
6245 
6246 	/* mark all subprogs as not relocated (yet) within the context of
6247 	 * current main program
6248 	 */
6249 	for (i = 0; i < obj->nr_programs; i++) {
6250 		subprog = &obj->programs[i];
6251 		if (!prog_is_subprog(obj, subprog))
6252 			continue;
6253 
6254 		subprog->sub_insn_off = 0;
6255 	}
6256 
6257 	err = bpf_object__reloc_code(obj, prog, prog);
6258 	if (err)
6259 		return err;
6260 
6261 	return 0;
6262 }
6263 
6264 static void
6265 bpf_object__free_relocs(struct bpf_object *obj)
6266 {
6267 	struct bpf_program *prog;
6268 	int i;
6269 
6270 	/* free up relocation descriptors */
6271 	for (i = 0; i < obj->nr_programs; i++) {
6272 		prog = &obj->programs[i];
6273 		zfree(&prog->reloc_desc);
6274 		prog->nr_reloc = 0;
6275 	}
6276 }
6277 
6278 static int cmp_relocs(const void *_a, const void *_b)
6279 {
6280 	const struct reloc_desc *a = _a;
6281 	const struct reloc_desc *b = _b;
6282 
6283 	if (a->insn_idx != b->insn_idx)
6284 		return a->insn_idx < b->insn_idx ? -1 : 1;
6285 
6286 	/* no two relocations should have the same insn_idx, but ... */
6287 	if (a->type != b->type)
6288 		return a->type < b->type ? -1 : 1;
6289 
6290 	return 0;
6291 }
6292 
6293 static void bpf_object__sort_relos(struct bpf_object *obj)
6294 {
6295 	int i;
6296 
6297 	for (i = 0; i < obj->nr_programs; i++) {
6298 		struct bpf_program *p = &obj->programs[i];
6299 
6300 		if (!p->nr_reloc)
6301 			continue;
6302 
6303 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6304 	}
6305 }
6306 
6307 static int
6308 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6309 {
6310 	struct bpf_program *prog;
6311 	size_t i, j;
6312 	int err;
6313 
6314 	if (obj->btf_ext) {
6315 		err = bpf_object__relocate_core(obj, targ_btf_path);
6316 		if (err) {
6317 			pr_warn("failed to perform CO-RE relocations: %d\n",
6318 				err);
6319 			return err;
6320 		}
6321 		bpf_object__sort_relos(obj);
6322 	}
6323 
6324 	/* Before relocating calls pre-process relocations and mark
6325 	 * few ld_imm64 instructions that points to subprogs.
6326 	 * Otherwise bpf_object__reloc_code() later would have to consider
6327 	 * all ld_imm64 insns as relocation candidates. That would
6328 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6329 	 * would increase and most of them will fail to find a relo.
6330 	 */
6331 	for (i = 0; i < obj->nr_programs; i++) {
6332 		prog = &obj->programs[i];
6333 		for (j = 0; j < prog->nr_reloc; j++) {
6334 			struct reloc_desc *relo = &prog->reloc_desc[j];
6335 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6336 
6337 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6338 			if (relo->type == RELO_SUBPROG_ADDR)
6339 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6340 		}
6341 	}
6342 
6343 	/* relocate subprogram calls and append used subprograms to main
6344 	 * programs; each copy of subprogram code needs to be relocated
6345 	 * differently for each main program, because its code location might
6346 	 * have changed.
6347 	 * Append subprog relos to main programs to allow data relos to be
6348 	 * processed after text is completely relocated.
6349 	 */
6350 	for (i = 0; i < obj->nr_programs; i++) {
6351 		prog = &obj->programs[i];
6352 		/* sub-program's sub-calls are relocated within the context of
6353 		 * its main program only
6354 		 */
6355 		if (prog_is_subprog(obj, prog))
6356 			continue;
6357 		if (!prog->autoload)
6358 			continue;
6359 
6360 		err = bpf_object__relocate_calls(obj, prog);
6361 		if (err) {
6362 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6363 				prog->name, err);
6364 			return err;
6365 		}
6366 	}
6367 	/* Process data relos for main programs */
6368 	for (i = 0; i < obj->nr_programs; i++) {
6369 		prog = &obj->programs[i];
6370 		if (prog_is_subprog(obj, prog))
6371 			continue;
6372 		if (!prog->autoload)
6373 			continue;
6374 		err = bpf_object__relocate_data(obj, prog);
6375 		if (err) {
6376 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6377 				prog->name, err);
6378 			return err;
6379 		}
6380 	}
6381 
6382 	return 0;
6383 }
6384 
6385 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6386 					    Elf64_Shdr *shdr, Elf_Data *data);
6387 
6388 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6389 					 Elf64_Shdr *shdr, Elf_Data *data)
6390 {
6391 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6392 	int i, j, nrels, new_sz;
6393 	const struct btf_var_secinfo *vi = NULL;
6394 	const struct btf_type *sec, *var, *def;
6395 	struct bpf_map *map = NULL, *targ_map = NULL;
6396 	struct bpf_program *targ_prog = NULL;
6397 	bool is_prog_array, is_map_in_map;
6398 	const struct btf_member *member;
6399 	const char *name, *mname, *type;
6400 	unsigned int moff;
6401 	Elf64_Sym *sym;
6402 	Elf64_Rel *rel;
6403 	void *tmp;
6404 
6405 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6406 		return -EINVAL;
6407 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6408 	if (!sec)
6409 		return -EINVAL;
6410 
6411 	nrels = shdr->sh_size / shdr->sh_entsize;
6412 	for (i = 0; i < nrels; i++) {
6413 		rel = elf_rel_by_idx(data, i);
6414 		if (!rel) {
6415 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6416 			return -LIBBPF_ERRNO__FORMAT;
6417 		}
6418 
6419 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6420 		if (!sym) {
6421 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6422 				i, (size_t)ELF64_R_SYM(rel->r_info));
6423 			return -LIBBPF_ERRNO__FORMAT;
6424 		}
6425 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6426 
6427 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6428 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6429 			 (size_t)rel->r_offset, sym->st_name, name);
6430 
6431 		for (j = 0; j < obj->nr_maps; j++) {
6432 			map = &obj->maps[j];
6433 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6434 				continue;
6435 
6436 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6437 			if (vi->offset <= rel->r_offset &&
6438 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6439 				break;
6440 		}
6441 		if (j == obj->nr_maps) {
6442 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6443 				i, name, (size_t)rel->r_offset);
6444 			return -EINVAL;
6445 		}
6446 
6447 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6448 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6449 		type = is_map_in_map ? "map" : "prog";
6450 		if (is_map_in_map) {
6451 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6452 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6453 					i, name);
6454 				return -LIBBPF_ERRNO__RELOC;
6455 			}
6456 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6457 			    map->def.key_size != sizeof(int)) {
6458 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6459 					i, map->name, sizeof(int));
6460 				return -EINVAL;
6461 			}
6462 			targ_map = bpf_object__find_map_by_name(obj, name);
6463 			if (!targ_map) {
6464 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6465 					i, name);
6466 				return -ESRCH;
6467 			}
6468 		} else if (is_prog_array) {
6469 			targ_prog = bpf_object__find_program_by_name(obj, name);
6470 			if (!targ_prog) {
6471 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6472 					i, name);
6473 				return -ESRCH;
6474 			}
6475 			if (targ_prog->sec_idx != sym->st_shndx ||
6476 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6477 			    prog_is_subprog(obj, targ_prog)) {
6478 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6479 					i, name);
6480 				return -LIBBPF_ERRNO__RELOC;
6481 			}
6482 		} else {
6483 			return -EINVAL;
6484 		}
6485 
6486 		var = btf__type_by_id(obj->btf, vi->type);
6487 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6488 		if (btf_vlen(def) == 0)
6489 			return -EINVAL;
6490 		member = btf_members(def) + btf_vlen(def) - 1;
6491 		mname = btf__name_by_offset(obj->btf, member->name_off);
6492 		if (strcmp(mname, "values"))
6493 			return -EINVAL;
6494 
6495 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6496 		if (rel->r_offset - vi->offset < moff)
6497 			return -EINVAL;
6498 
6499 		moff = rel->r_offset - vi->offset - moff;
6500 		/* here we use BPF pointer size, which is always 64 bit, as we
6501 		 * are parsing ELF that was built for BPF target
6502 		 */
6503 		if (moff % bpf_ptr_sz)
6504 			return -EINVAL;
6505 		moff /= bpf_ptr_sz;
6506 		if (moff >= map->init_slots_sz) {
6507 			new_sz = moff + 1;
6508 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6509 			if (!tmp)
6510 				return -ENOMEM;
6511 			map->init_slots = tmp;
6512 			memset(map->init_slots + map->init_slots_sz, 0,
6513 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6514 			map->init_slots_sz = new_sz;
6515 		}
6516 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6517 
6518 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6519 			 i, map->name, moff, type, name);
6520 	}
6521 
6522 	return 0;
6523 }
6524 
6525 static int bpf_object__collect_relos(struct bpf_object *obj)
6526 {
6527 	int i, err;
6528 
6529 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6530 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6531 		Elf64_Shdr *shdr;
6532 		Elf_Data *data;
6533 		int idx;
6534 
6535 		if (sec_desc->sec_type != SEC_RELO)
6536 			continue;
6537 
6538 		shdr = sec_desc->shdr;
6539 		data = sec_desc->data;
6540 		idx = shdr->sh_info;
6541 
6542 		if (shdr->sh_type != SHT_REL) {
6543 			pr_warn("internal error at %d\n", __LINE__);
6544 			return -LIBBPF_ERRNO__INTERNAL;
6545 		}
6546 
6547 		if (idx == obj->efile.st_ops_shndx)
6548 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6549 		else if (idx == obj->efile.btf_maps_shndx)
6550 			err = bpf_object__collect_map_relos(obj, shdr, data);
6551 		else
6552 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6553 		if (err)
6554 			return err;
6555 	}
6556 
6557 	bpf_object__sort_relos(obj);
6558 	return 0;
6559 }
6560 
6561 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6562 {
6563 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6564 	    BPF_OP(insn->code) == BPF_CALL &&
6565 	    BPF_SRC(insn->code) == BPF_K &&
6566 	    insn->src_reg == 0 &&
6567 	    insn->dst_reg == 0) {
6568 		    *func_id = insn->imm;
6569 		    return true;
6570 	}
6571 	return false;
6572 }
6573 
6574 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6575 {
6576 	struct bpf_insn *insn = prog->insns;
6577 	enum bpf_func_id func_id;
6578 	int i;
6579 
6580 	if (obj->gen_loader)
6581 		return 0;
6582 
6583 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6584 		if (!insn_is_helper_call(insn, &func_id))
6585 			continue;
6586 
6587 		/* on kernels that don't yet support
6588 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6589 		 * to bpf_probe_read() which works well for old kernels
6590 		 */
6591 		switch (func_id) {
6592 		case BPF_FUNC_probe_read_kernel:
6593 		case BPF_FUNC_probe_read_user:
6594 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6595 				insn->imm = BPF_FUNC_probe_read;
6596 			break;
6597 		case BPF_FUNC_probe_read_kernel_str:
6598 		case BPF_FUNC_probe_read_user_str:
6599 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6600 				insn->imm = BPF_FUNC_probe_read_str;
6601 			break;
6602 		default:
6603 			break;
6604 		}
6605 	}
6606 	return 0;
6607 }
6608 
6609 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6610 				     int *btf_obj_fd, int *btf_type_id);
6611 
6612 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6613 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6614 				    struct bpf_prog_load_opts *opts, long cookie)
6615 {
6616 	enum sec_def_flags def = cookie;
6617 
6618 	/* old kernels might not support specifying expected_attach_type */
6619 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6620 		opts->expected_attach_type = 0;
6621 
6622 	if (def & SEC_SLEEPABLE)
6623 		opts->prog_flags |= BPF_F_SLEEPABLE;
6624 
6625 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6626 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6627 
6628 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6629 		int btf_obj_fd = 0, btf_type_id = 0, err;
6630 		const char *attach_name;
6631 
6632 		attach_name = strchr(prog->sec_name, '/');
6633 		if (!attach_name) {
6634 			/* if BPF program is annotated with just SEC("fentry")
6635 			 * (or similar) without declaratively specifying
6636 			 * target, then it is expected that target will be
6637 			 * specified with bpf_program__set_attach_target() at
6638 			 * runtime before BPF object load step. If not, then
6639 			 * there is nothing to load into the kernel as BPF
6640 			 * verifier won't be able to validate BPF program
6641 			 * correctness anyways.
6642 			 */
6643 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6644 				prog->name);
6645 			return -EINVAL;
6646 		}
6647 		attach_name++; /* skip over / */
6648 
6649 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6650 		if (err)
6651 			return err;
6652 
6653 		/* cache resolved BTF FD and BTF type ID in the prog */
6654 		prog->attach_btf_obj_fd = btf_obj_fd;
6655 		prog->attach_btf_id = btf_type_id;
6656 
6657 		/* but by now libbpf common logic is not utilizing
6658 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6659 		 * this callback is called after opts were populated by
6660 		 * libbpf, so this callback has to update opts explicitly here
6661 		 */
6662 		opts->attach_btf_obj_fd = btf_obj_fd;
6663 		opts->attach_btf_id = btf_type_id;
6664 	}
6665 	return 0;
6666 }
6667 
6668 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6669 
6670 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6671 				struct bpf_insn *insns, int insns_cnt,
6672 				const char *license, __u32 kern_version, int *prog_fd)
6673 {
6674 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6675 	const char *prog_name = NULL;
6676 	char *cp, errmsg[STRERR_BUFSIZE];
6677 	size_t log_buf_size = 0;
6678 	char *log_buf = NULL, *tmp;
6679 	int btf_fd, ret, err;
6680 	bool own_log_buf = true;
6681 	__u32 log_level = prog->log_level;
6682 
6683 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6684 		/*
6685 		 * The program type must be set.  Most likely we couldn't find a proper
6686 		 * section definition at load time, and thus we didn't infer the type.
6687 		 */
6688 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6689 			prog->name, prog->sec_name);
6690 		return -EINVAL;
6691 	}
6692 
6693 	if (!insns || !insns_cnt)
6694 		return -EINVAL;
6695 
6696 	load_attr.expected_attach_type = prog->expected_attach_type;
6697 	if (kernel_supports(obj, FEAT_PROG_NAME))
6698 		prog_name = prog->name;
6699 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6700 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6701 	load_attr.attach_btf_id = prog->attach_btf_id;
6702 	load_attr.kern_version = kern_version;
6703 	load_attr.prog_ifindex = prog->prog_ifindex;
6704 
6705 	/* specify func_info/line_info only if kernel supports them */
6706 	btf_fd = bpf_object__btf_fd(obj);
6707 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6708 		load_attr.prog_btf_fd = btf_fd;
6709 		load_attr.func_info = prog->func_info;
6710 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6711 		load_attr.func_info_cnt = prog->func_info_cnt;
6712 		load_attr.line_info = prog->line_info;
6713 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6714 		load_attr.line_info_cnt = prog->line_info_cnt;
6715 	}
6716 	load_attr.log_level = log_level;
6717 	load_attr.prog_flags = prog->prog_flags;
6718 	load_attr.fd_array = obj->fd_array;
6719 
6720 	/* adjust load_attr if sec_def provides custom preload callback */
6721 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6722 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6723 		if (err < 0) {
6724 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6725 				prog->name, err);
6726 			return err;
6727 		}
6728 		insns = prog->insns;
6729 		insns_cnt = prog->insns_cnt;
6730 	}
6731 
6732 	if (obj->gen_loader) {
6733 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6734 				   license, insns, insns_cnt, &load_attr,
6735 				   prog - obj->programs);
6736 		*prog_fd = -1;
6737 		return 0;
6738 	}
6739 
6740 retry_load:
6741 	/* if log_level is zero, we don't request logs initially even if
6742 	 * custom log_buf is specified; if the program load fails, then we'll
6743 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6744 	 * our own and retry the load to get details on what failed
6745 	 */
6746 	if (log_level) {
6747 		if (prog->log_buf) {
6748 			log_buf = prog->log_buf;
6749 			log_buf_size = prog->log_size;
6750 			own_log_buf = false;
6751 		} else if (obj->log_buf) {
6752 			log_buf = obj->log_buf;
6753 			log_buf_size = obj->log_size;
6754 			own_log_buf = false;
6755 		} else {
6756 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6757 			tmp = realloc(log_buf, log_buf_size);
6758 			if (!tmp) {
6759 				ret = -ENOMEM;
6760 				goto out;
6761 			}
6762 			log_buf = tmp;
6763 			log_buf[0] = '\0';
6764 			own_log_buf = true;
6765 		}
6766 	}
6767 
6768 	load_attr.log_buf = log_buf;
6769 	load_attr.log_size = log_buf_size;
6770 	load_attr.log_level = log_level;
6771 
6772 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6773 	if (ret >= 0) {
6774 		if (log_level && own_log_buf) {
6775 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6776 				 prog->name, log_buf);
6777 		}
6778 
6779 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6780 			struct bpf_map *map;
6781 			int i;
6782 
6783 			for (i = 0; i < obj->nr_maps; i++) {
6784 				map = &prog->obj->maps[i];
6785 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6786 					continue;
6787 
6788 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6789 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6790 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6791 						prog->name, map->real_name, cp);
6792 					/* Don't fail hard if can't bind rodata. */
6793 				}
6794 			}
6795 		}
6796 
6797 		*prog_fd = ret;
6798 		ret = 0;
6799 		goto out;
6800 	}
6801 
6802 	if (log_level == 0) {
6803 		log_level = 1;
6804 		goto retry_load;
6805 	}
6806 	/* On ENOSPC, increase log buffer size and retry, unless custom
6807 	 * log_buf is specified.
6808 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6809 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6810 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6811 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6812 	 */
6813 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6814 		goto retry_load;
6815 
6816 	ret = -errno;
6817 
6818 	/* post-process verifier log to improve error descriptions */
6819 	fixup_verifier_log(prog, log_buf, log_buf_size);
6820 
6821 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6822 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6823 	pr_perm_msg(ret);
6824 
6825 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6826 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6827 			prog->name, log_buf);
6828 	}
6829 
6830 out:
6831 	if (own_log_buf)
6832 		free(log_buf);
6833 	return ret;
6834 }
6835 
6836 static char *find_prev_line(char *buf, char *cur)
6837 {
6838 	char *p;
6839 
6840 	if (cur == buf) /* end of a log buf */
6841 		return NULL;
6842 
6843 	p = cur - 1;
6844 	while (p - 1 >= buf && *(p - 1) != '\n')
6845 		p--;
6846 
6847 	return p;
6848 }
6849 
6850 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6851 		      char *orig, size_t orig_sz, const char *patch)
6852 {
6853 	/* size of the remaining log content to the right from the to-be-replaced part */
6854 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6855 	size_t patch_sz = strlen(patch);
6856 
6857 	if (patch_sz != orig_sz) {
6858 		/* If patch line(s) are longer than original piece of verifier log,
6859 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6860 		 * starting from after to-be-replaced part of the log.
6861 		 *
6862 		 * If patch line(s) are shorter than original piece of verifier log,
6863 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6864 		 * starting from after to-be-replaced part of the log
6865 		 *
6866 		 * We need to be careful about not overflowing available
6867 		 * buf_sz capacity. If that's the case, we'll truncate the end
6868 		 * of the original log, as necessary.
6869 		 */
6870 		if (patch_sz > orig_sz) {
6871 			if (orig + patch_sz >= buf + buf_sz) {
6872 				/* patch is big enough to cover remaining space completely */
6873 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6874 				rem_sz = 0;
6875 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6876 				/* patch causes part of remaining log to be truncated */
6877 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6878 			}
6879 		}
6880 		/* shift remaining log to the right by calculated amount */
6881 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6882 	}
6883 
6884 	memcpy(orig, patch, patch_sz);
6885 }
6886 
6887 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6888 				       char *buf, size_t buf_sz, size_t log_sz,
6889 				       char *line1, char *line2, char *line3)
6890 {
6891 	/* Expected log for failed and not properly guarded CO-RE relocation:
6892 	 * line1 -> 123: (85) call unknown#195896080
6893 	 * line2 -> invalid func unknown#195896080
6894 	 * line3 -> <anything else or end of buffer>
6895 	 *
6896 	 * "123" is the index of the instruction that was poisoned. We extract
6897 	 * instruction index to find corresponding CO-RE relocation and
6898 	 * replace this part of the log with more relevant information about
6899 	 * failed CO-RE relocation.
6900 	 */
6901 	const struct bpf_core_relo *relo;
6902 	struct bpf_core_spec spec;
6903 	char patch[512], spec_buf[256];
6904 	int insn_idx, err, spec_len;
6905 
6906 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6907 		return;
6908 
6909 	relo = find_relo_core(prog, insn_idx);
6910 	if (!relo)
6911 		return;
6912 
6913 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6914 	if (err)
6915 		return;
6916 
6917 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6918 	snprintf(patch, sizeof(patch),
6919 		 "%d: <invalid CO-RE relocation>\n"
6920 		 "failed to resolve CO-RE relocation %s%s\n",
6921 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6922 
6923 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6924 }
6925 
6926 static void fixup_log_missing_map_load(struct bpf_program *prog,
6927 				       char *buf, size_t buf_sz, size_t log_sz,
6928 				       char *line1, char *line2, char *line3)
6929 {
6930 	/* Expected log for failed and not properly guarded CO-RE relocation:
6931 	 * line1 -> 123: (85) call unknown#2001000345
6932 	 * line2 -> invalid func unknown#2001000345
6933 	 * line3 -> <anything else or end of buffer>
6934 	 *
6935 	 * "123" is the index of the instruction that was poisoned.
6936 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6937 	 */
6938 	struct bpf_object *obj = prog->obj;
6939 	const struct bpf_map *map;
6940 	int insn_idx, map_idx;
6941 	char patch[128];
6942 
6943 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6944 		return;
6945 
6946 	map_idx -= MAP_LDIMM64_POISON_BASE;
6947 	if (map_idx < 0 || map_idx >= obj->nr_maps)
6948 		return;
6949 	map = &obj->maps[map_idx];
6950 
6951 	snprintf(patch, sizeof(patch),
6952 		 "%d: <invalid BPF map reference>\n"
6953 		 "BPF map '%s' is referenced but wasn't created\n",
6954 		 insn_idx, map->name);
6955 
6956 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6957 }
6958 
6959 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
6960 {
6961 	/* look for familiar error patterns in last N lines of the log */
6962 	const size_t max_last_line_cnt = 10;
6963 	char *prev_line, *cur_line, *next_line;
6964 	size_t log_sz;
6965 	int i;
6966 
6967 	if (!buf)
6968 		return;
6969 
6970 	log_sz = strlen(buf) + 1;
6971 	next_line = buf + log_sz - 1;
6972 
6973 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
6974 		cur_line = find_prev_line(buf, next_line);
6975 		if (!cur_line)
6976 			return;
6977 
6978 		/* failed CO-RE relocation case */
6979 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
6980 			prev_line = find_prev_line(buf, cur_line);
6981 			if (!prev_line)
6982 				continue;
6983 
6984 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
6985 						   prev_line, cur_line, next_line);
6986 			return;
6987 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
6988 			prev_line = find_prev_line(buf, cur_line);
6989 			if (!prev_line)
6990 				continue;
6991 
6992 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
6993 						   prev_line, cur_line, next_line);
6994 			return;
6995 		}
6996 	}
6997 }
6998 
6999 static int bpf_program_record_relos(struct bpf_program *prog)
7000 {
7001 	struct bpf_object *obj = prog->obj;
7002 	int i;
7003 
7004 	for (i = 0; i < prog->nr_reloc; i++) {
7005 		struct reloc_desc *relo = &prog->reloc_desc[i];
7006 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7007 
7008 		switch (relo->type) {
7009 		case RELO_EXTERN_VAR:
7010 			if (ext->type != EXT_KSYM)
7011 				continue;
7012 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7013 					       ext->is_weak, !ext->ksym.type_id,
7014 					       BTF_KIND_VAR, relo->insn_idx);
7015 			break;
7016 		case RELO_EXTERN_FUNC:
7017 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7018 					       ext->is_weak, false, BTF_KIND_FUNC,
7019 					       relo->insn_idx);
7020 			break;
7021 		case RELO_CORE: {
7022 			struct bpf_core_relo cr = {
7023 				.insn_off = relo->insn_idx * 8,
7024 				.type_id = relo->core_relo->type_id,
7025 				.access_str_off = relo->core_relo->access_str_off,
7026 				.kind = relo->core_relo->kind,
7027 			};
7028 
7029 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7030 			break;
7031 		}
7032 		default:
7033 			continue;
7034 		}
7035 	}
7036 	return 0;
7037 }
7038 
7039 static int
7040 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7041 {
7042 	struct bpf_program *prog;
7043 	size_t i;
7044 	int err;
7045 
7046 	for (i = 0; i < obj->nr_programs; i++) {
7047 		prog = &obj->programs[i];
7048 		err = bpf_object__sanitize_prog(obj, prog);
7049 		if (err)
7050 			return err;
7051 	}
7052 
7053 	for (i = 0; i < obj->nr_programs; i++) {
7054 		prog = &obj->programs[i];
7055 		if (prog_is_subprog(obj, prog))
7056 			continue;
7057 		if (!prog->autoload) {
7058 			pr_debug("prog '%s': skipped loading\n", prog->name);
7059 			continue;
7060 		}
7061 		prog->log_level |= log_level;
7062 
7063 		if (obj->gen_loader)
7064 			bpf_program_record_relos(prog);
7065 
7066 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7067 					   obj->license, obj->kern_version, &prog->fd);
7068 		if (err) {
7069 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7070 			return err;
7071 		}
7072 	}
7073 
7074 	bpf_object__free_relocs(obj);
7075 	return 0;
7076 }
7077 
7078 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7079 
7080 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7081 {
7082 	struct bpf_program *prog;
7083 	int err;
7084 
7085 	bpf_object__for_each_program(prog, obj) {
7086 		prog->sec_def = find_sec_def(prog->sec_name);
7087 		if (!prog->sec_def) {
7088 			/* couldn't guess, but user might manually specify */
7089 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7090 				prog->name, prog->sec_name);
7091 			continue;
7092 		}
7093 
7094 		prog->type = prog->sec_def->prog_type;
7095 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7096 
7097 		/* sec_def can have custom callback which should be called
7098 		 * after bpf_program is initialized to adjust its properties
7099 		 */
7100 		if (prog->sec_def->prog_setup_fn) {
7101 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7102 			if (err < 0) {
7103 				pr_warn("prog '%s': failed to initialize: %d\n",
7104 					prog->name, err);
7105 				return err;
7106 			}
7107 		}
7108 	}
7109 
7110 	return 0;
7111 }
7112 
7113 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7114 					  const struct bpf_object_open_opts *opts)
7115 {
7116 	const char *obj_name, *kconfig, *btf_tmp_path;
7117 	struct bpf_object *obj;
7118 	char tmp_name[64];
7119 	int err;
7120 	char *log_buf;
7121 	size_t log_size;
7122 	__u32 log_level;
7123 
7124 	if (elf_version(EV_CURRENT) == EV_NONE) {
7125 		pr_warn("failed to init libelf for %s\n",
7126 			path ? : "(mem buf)");
7127 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7128 	}
7129 
7130 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7131 		return ERR_PTR(-EINVAL);
7132 
7133 	obj_name = OPTS_GET(opts, object_name, NULL);
7134 	if (obj_buf) {
7135 		if (!obj_name) {
7136 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7137 				 (unsigned long)obj_buf,
7138 				 (unsigned long)obj_buf_sz);
7139 			obj_name = tmp_name;
7140 		}
7141 		path = obj_name;
7142 		pr_debug("loading object '%s' from buffer\n", obj_name);
7143 	}
7144 
7145 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7146 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7147 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7148 	if (log_size > UINT_MAX)
7149 		return ERR_PTR(-EINVAL);
7150 	if (log_size && !log_buf)
7151 		return ERR_PTR(-EINVAL);
7152 
7153 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7154 	if (IS_ERR(obj))
7155 		return obj;
7156 
7157 	obj->log_buf = log_buf;
7158 	obj->log_size = log_size;
7159 	obj->log_level = log_level;
7160 
7161 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7162 	if (btf_tmp_path) {
7163 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7164 			err = -ENAMETOOLONG;
7165 			goto out;
7166 		}
7167 		obj->btf_custom_path = strdup(btf_tmp_path);
7168 		if (!obj->btf_custom_path) {
7169 			err = -ENOMEM;
7170 			goto out;
7171 		}
7172 	}
7173 
7174 	kconfig = OPTS_GET(opts, kconfig, NULL);
7175 	if (kconfig) {
7176 		obj->kconfig = strdup(kconfig);
7177 		if (!obj->kconfig) {
7178 			err = -ENOMEM;
7179 			goto out;
7180 		}
7181 	}
7182 
7183 	err = bpf_object__elf_init(obj);
7184 	err = err ? : bpf_object__check_endianness(obj);
7185 	err = err ? : bpf_object__elf_collect(obj);
7186 	err = err ? : bpf_object__collect_externs(obj);
7187 	err = err ? : bpf_object__finalize_btf(obj);
7188 	err = err ? : bpf_object__init_maps(obj, opts);
7189 	err = err ? : bpf_object_init_progs(obj, opts);
7190 	err = err ? : bpf_object__collect_relos(obj);
7191 	if (err)
7192 		goto out;
7193 
7194 	bpf_object__elf_finish(obj);
7195 
7196 	return obj;
7197 out:
7198 	bpf_object__close(obj);
7199 	return ERR_PTR(err);
7200 }
7201 
7202 struct bpf_object *
7203 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7204 {
7205 	if (!path)
7206 		return libbpf_err_ptr(-EINVAL);
7207 
7208 	pr_debug("loading %s\n", path);
7209 
7210 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7211 }
7212 
7213 struct bpf_object *bpf_object__open(const char *path)
7214 {
7215 	return bpf_object__open_file(path, NULL);
7216 }
7217 
7218 struct bpf_object *
7219 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7220 		     const struct bpf_object_open_opts *opts)
7221 {
7222 	if (!obj_buf || obj_buf_sz == 0)
7223 		return libbpf_err_ptr(-EINVAL);
7224 
7225 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7226 }
7227 
7228 static int bpf_object_unload(struct bpf_object *obj)
7229 {
7230 	size_t i;
7231 
7232 	if (!obj)
7233 		return libbpf_err(-EINVAL);
7234 
7235 	for (i = 0; i < obj->nr_maps; i++) {
7236 		zclose(obj->maps[i].fd);
7237 		if (obj->maps[i].st_ops)
7238 			zfree(&obj->maps[i].st_ops->kern_vdata);
7239 	}
7240 
7241 	for (i = 0; i < obj->nr_programs; i++)
7242 		bpf_program__unload(&obj->programs[i]);
7243 
7244 	return 0;
7245 }
7246 
7247 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7248 
7249 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7250 {
7251 	struct bpf_map *m;
7252 
7253 	bpf_object__for_each_map(m, obj) {
7254 		if (!bpf_map__is_internal(m))
7255 			continue;
7256 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7257 			m->def.map_flags ^= BPF_F_MMAPABLE;
7258 	}
7259 
7260 	return 0;
7261 }
7262 
7263 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7264 {
7265 	char sym_type, sym_name[500];
7266 	unsigned long long sym_addr;
7267 	int ret, err = 0;
7268 	FILE *f;
7269 
7270 	f = fopen("/proc/kallsyms", "r");
7271 	if (!f) {
7272 		err = -errno;
7273 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7274 		return err;
7275 	}
7276 
7277 	while (true) {
7278 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7279 			     &sym_addr, &sym_type, sym_name);
7280 		if (ret == EOF && feof(f))
7281 			break;
7282 		if (ret != 3) {
7283 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7284 			err = -EINVAL;
7285 			break;
7286 		}
7287 
7288 		err = cb(sym_addr, sym_type, sym_name, ctx);
7289 		if (err)
7290 			break;
7291 	}
7292 
7293 	fclose(f);
7294 	return err;
7295 }
7296 
7297 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7298 		       const char *sym_name, void *ctx)
7299 {
7300 	struct bpf_object *obj = ctx;
7301 	const struct btf_type *t;
7302 	struct extern_desc *ext;
7303 
7304 	ext = find_extern_by_name(obj, sym_name);
7305 	if (!ext || ext->type != EXT_KSYM)
7306 		return 0;
7307 
7308 	t = btf__type_by_id(obj->btf, ext->btf_id);
7309 	if (!btf_is_var(t))
7310 		return 0;
7311 
7312 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7313 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7314 			sym_name, ext->ksym.addr, sym_addr);
7315 		return -EINVAL;
7316 	}
7317 	if (!ext->is_set) {
7318 		ext->is_set = true;
7319 		ext->ksym.addr = sym_addr;
7320 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7321 	}
7322 	return 0;
7323 }
7324 
7325 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7326 {
7327 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7328 }
7329 
7330 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7331 			    __u16 kind, struct btf **res_btf,
7332 			    struct module_btf **res_mod_btf)
7333 {
7334 	struct module_btf *mod_btf;
7335 	struct btf *btf;
7336 	int i, id, err;
7337 
7338 	btf = obj->btf_vmlinux;
7339 	mod_btf = NULL;
7340 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7341 
7342 	if (id == -ENOENT) {
7343 		err = load_module_btfs(obj);
7344 		if (err)
7345 			return err;
7346 
7347 		for (i = 0; i < obj->btf_module_cnt; i++) {
7348 			/* we assume module_btf's BTF FD is always >0 */
7349 			mod_btf = &obj->btf_modules[i];
7350 			btf = mod_btf->btf;
7351 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7352 			if (id != -ENOENT)
7353 				break;
7354 		}
7355 	}
7356 	if (id <= 0)
7357 		return -ESRCH;
7358 
7359 	*res_btf = btf;
7360 	*res_mod_btf = mod_btf;
7361 	return id;
7362 }
7363 
7364 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7365 					       struct extern_desc *ext)
7366 {
7367 	const struct btf_type *targ_var, *targ_type;
7368 	__u32 targ_type_id, local_type_id;
7369 	struct module_btf *mod_btf = NULL;
7370 	const char *targ_var_name;
7371 	struct btf *btf = NULL;
7372 	int id, err;
7373 
7374 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7375 	if (id < 0) {
7376 		if (id == -ESRCH && ext->is_weak)
7377 			return 0;
7378 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7379 			ext->name);
7380 		return id;
7381 	}
7382 
7383 	/* find local type_id */
7384 	local_type_id = ext->ksym.type_id;
7385 
7386 	/* find target type_id */
7387 	targ_var = btf__type_by_id(btf, id);
7388 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7389 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7390 
7391 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7392 					btf, targ_type_id);
7393 	if (err <= 0) {
7394 		const struct btf_type *local_type;
7395 		const char *targ_name, *local_name;
7396 
7397 		local_type = btf__type_by_id(obj->btf, local_type_id);
7398 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7399 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7400 
7401 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7402 			ext->name, local_type_id,
7403 			btf_kind_str(local_type), local_name, targ_type_id,
7404 			btf_kind_str(targ_type), targ_name);
7405 		return -EINVAL;
7406 	}
7407 
7408 	ext->is_set = true;
7409 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7410 	ext->ksym.kernel_btf_id = id;
7411 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7412 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7413 
7414 	return 0;
7415 }
7416 
7417 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7418 						struct extern_desc *ext)
7419 {
7420 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7421 	struct module_btf *mod_btf = NULL;
7422 	const struct btf_type *kern_func;
7423 	struct btf *kern_btf = NULL;
7424 	int ret;
7425 
7426 	local_func_proto_id = ext->ksym.type_id;
7427 
7428 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7429 	if (kfunc_id < 0) {
7430 		if (kfunc_id == -ESRCH && ext->is_weak)
7431 			return 0;
7432 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7433 			ext->name);
7434 		return kfunc_id;
7435 	}
7436 
7437 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7438 	kfunc_proto_id = kern_func->type;
7439 
7440 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7441 					kern_btf, kfunc_proto_id);
7442 	if (ret <= 0) {
7443 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7444 			ext->name, local_func_proto_id, kfunc_proto_id);
7445 		return -EINVAL;
7446 	}
7447 
7448 	/* set index for module BTF fd in fd_array, if unset */
7449 	if (mod_btf && !mod_btf->fd_array_idx) {
7450 		/* insn->off is s16 */
7451 		if (obj->fd_array_cnt == INT16_MAX) {
7452 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7453 				ext->name, mod_btf->fd_array_idx);
7454 			return -E2BIG;
7455 		}
7456 		/* Cannot use index 0 for module BTF fd */
7457 		if (!obj->fd_array_cnt)
7458 			obj->fd_array_cnt = 1;
7459 
7460 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7461 					obj->fd_array_cnt + 1);
7462 		if (ret)
7463 			return ret;
7464 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7465 		/* we assume module BTF FD is always >0 */
7466 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7467 	}
7468 
7469 	ext->is_set = true;
7470 	ext->ksym.kernel_btf_id = kfunc_id;
7471 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7472 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7473 		 ext->name, kfunc_id);
7474 
7475 	return 0;
7476 }
7477 
7478 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7479 {
7480 	const struct btf_type *t;
7481 	struct extern_desc *ext;
7482 	int i, err;
7483 
7484 	for (i = 0; i < obj->nr_extern; i++) {
7485 		ext = &obj->externs[i];
7486 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7487 			continue;
7488 
7489 		if (obj->gen_loader) {
7490 			ext->is_set = true;
7491 			ext->ksym.kernel_btf_obj_fd = 0;
7492 			ext->ksym.kernel_btf_id = 0;
7493 			continue;
7494 		}
7495 		t = btf__type_by_id(obj->btf, ext->btf_id);
7496 		if (btf_is_var(t))
7497 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7498 		else
7499 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7500 		if (err)
7501 			return err;
7502 	}
7503 	return 0;
7504 }
7505 
7506 static int bpf_object__resolve_externs(struct bpf_object *obj,
7507 				       const char *extra_kconfig)
7508 {
7509 	bool need_config = false, need_kallsyms = false;
7510 	bool need_vmlinux_btf = false;
7511 	struct extern_desc *ext;
7512 	void *kcfg_data = NULL;
7513 	int err, i;
7514 
7515 	if (obj->nr_extern == 0)
7516 		return 0;
7517 
7518 	if (obj->kconfig_map_idx >= 0)
7519 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7520 
7521 	for (i = 0; i < obj->nr_extern; i++) {
7522 		ext = &obj->externs[i];
7523 
7524 		if (ext->type == EXT_KSYM) {
7525 			if (ext->ksym.type_id)
7526 				need_vmlinux_btf = true;
7527 			else
7528 				need_kallsyms = true;
7529 			continue;
7530 		} else if (ext->type == EXT_KCFG) {
7531 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7532 			__u64 value = 0;
7533 
7534 			/* Kconfig externs need actual /proc/config.gz */
7535 			if (str_has_pfx(ext->name, "CONFIG_")) {
7536 				need_config = true;
7537 				continue;
7538 			}
7539 
7540 			/* Virtual kcfg externs are customly handled by libbpf */
7541 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7542 				value = get_kernel_version();
7543 				if (!value) {
7544 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7545 					return -EINVAL;
7546 				}
7547 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7548 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7549 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7550 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7551 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7552 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7553 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7554 				 * customly by libbpf (their values don't come from Kconfig).
7555 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7556 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7557 				 * externs.
7558 				 */
7559 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7560 				return -EINVAL;
7561 			}
7562 
7563 			err = set_kcfg_value_num(ext, ext_ptr, value);
7564 			if (err)
7565 				return err;
7566 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7567 				 ext->name, (long long)value);
7568 		} else {
7569 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7570 			return -EINVAL;
7571 		}
7572 	}
7573 	if (need_config && extra_kconfig) {
7574 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7575 		if (err)
7576 			return -EINVAL;
7577 		need_config = false;
7578 		for (i = 0; i < obj->nr_extern; i++) {
7579 			ext = &obj->externs[i];
7580 			if (ext->type == EXT_KCFG && !ext->is_set) {
7581 				need_config = true;
7582 				break;
7583 			}
7584 		}
7585 	}
7586 	if (need_config) {
7587 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7588 		if (err)
7589 			return -EINVAL;
7590 	}
7591 	if (need_kallsyms) {
7592 		err = bpf_object__read_kallsyms_file(obj);
7593 		if (err)
7594 			return -EINVAL;
7595 	}
7596 	if (need_vmlinux_btf) {
7597 		err = bpf_object__resolve_ksyms_btf_id(obj);
7598 		if (err)
7599 			return -EINVAL;
7600 	}
7601 	for (i = 0; i < obj->nr_extern; i++) {
7602 		ext = &obj->externs[i];
7603 
7604 		if (!ext->is_set && !ext->is_weak) {
7605 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7606 			return -ESRCH;
7607 		} else if (!ext->is_set) {
7608 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7609 				 ext->name);
7610 		}
7611 	}
7612 
7613 	return 0;
7614 }
7615 
7616 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7617 {
7618 	int err, i;
7619 
7620 	if (!obj)
7621 		return libbpf_err(-EINVAL);
7622 
7623 	if (obj->loaded) {
7624 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7625 		return libbpf_err(-EINVAL);
7626 	}
7627 
7628 	if (obj->gen_loader)
7629 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7630 
7631 	err = bpf_object__probe_loading(obj);
7632 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7633 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7634 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7635 	err = err ? : bpf_object__sanitize_maps(obj);
7636 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7637 	err = err ? : bpf_object__create_maps(obj);
7638 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7639 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7640 	err = err ? : bpf_object_init_prog_arrays(obj);
7641 
7642 	if (obj->gen_loader) {
7643 		/* reset FDs */
7644 		if (obj->btf)
7645 			btf__set_fd(obj->btf, -1);
7646 		for (i = 0; i < obj->nr_maps; i++)
7647 			obj->maps[i].fd = -1;
7648 		if (!err)
7649 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7650 	}
7651 
7652 	/* clean up fd_array */
7653 	zfree(&obj->fd_array);
7654 
7655 	/* clean up module BTFs */
7656 	for (i = 0; i < obj->btf_module_cnt; i++) {
7657 		close(obj->btf_modules[i].fd);
7658 		btf__free(obj->btf_modules[i].btf);
7659 		free(obj->btf_modules[i].name);
7660 	}
7661 	free(obj->btf_modules);
7662 
7663 	/* clean up vmlinux BTF */
7664 	btf__free(obj->btf_vmlinux);
7665 	obj->btf_vmlinux = NULL;
7666 
7667 	obj->loaded = true; /* doesn't matter if successfully or not */
7668 
7669 	if (err)
7670 		goto out;
7671 
7672 	return 0;
7673 out:
7674 	/* unpin any maps that were auto-pinned during load */
7675 	for (i = 0; i < obj->nr_maps; i++)
7676 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7677 			bpf_map__unpin(&obj->maps[i], NULL);
7678 
7679 	bpf_object_unload(obj);
7680 	pr_warn("failed to load object '%s'\n", obj->path);
7681 	return libbpf_err(err);
7682 }
7683 
7684 int bpf_object__load(struct bpf_object *obj)
7685 {
7686 	return bpf_object_load(obj, 0, NULL);
7687 }
7688 
7689 static int make_parent_dir(const char *path)
7690 {
7691 	char *cp, errmsg[STRERR_BUFSIZE];
7692 	char *dname, *dir;
7693 	int err = 0;
7694 
7695 	dname = strdup(path);
7696 	if (dname == NULL)
7697 		return -ENOMEM;
7698 
7699 	dir = dirname(dname);
7700 	if (mkdir(dir, 0700) && errno != EEXIST)
7701 		err = -errno;
7702 
7703 	free(dname);
7704 	if (err) {
7705 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7706 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7707 	}
7708 	return err;
7709 }
7710 
7711 static int check_path(const char *path)
7712 {
7713 	char *cp, errmsg[STRERR_BUFSIZE];
7714 	struct statfs st_fs;
7715 	char *dname, *dir;
7716 	int err = 0;
7717 
7718 	if (path == NULL)
7719 		return -EINVAL;
7720 
7721 	dname = strdup(path);
7722 	if (dname == NULL)
7723 		return -ENOMEM;
7724 
7725 	dir = dirname(dname);
7726 	if (statfs(dir, &st_fs)) {
7727 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7728 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7729 		err = -errno;
7730 	}
7731 	free(dname);
7732 
7733 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7734 		pr_warn("specified path %s is not on BPF FS\n", path);
7735 		err = -EINVAL;
7736 	}
7737 
7738 	return err;
7739 }
7740 
7741 int bpf_program__pin(struct bpf_program *prog, const char *path)
7742 {
7743 	char *cp, errmsg[STRERR_BUFSIZE];
7744 	int err;
7745 
7746 	if (prog->fd < 0) {
7747 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7748 		return libbpf_err(-EINVAL);
7749 	}
7750 
7751 	err = make_parent_dir(path);
7752 	if (err)
7753 		return libbpf_err(err);
7754 
7755 	err = check_path(path);
7756 	if (err)
7757 		return libbpf_err(err);
7758 
7759 	if (bpf_obj_pin(prog->fd, path)) {
7760 		err = -errno;
7761 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7762 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7763 		return libbpf_err(err);
7764 	}
7765 
7766 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7767 	return 0;
7768 }
7769 
7770 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7771 {
7772 	int err;
7773 
7774 	if (prog->fd < 0) {
7775 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7776 		return libbpf_err(-EINVAL);
7777 	}
7778 
7779 	err = check_path(path);
7780 	if (err)
7781 		return libbpf_err(err);
7782 
7783 	err = unlink(path);
7784 	if (err)
7785 		return libbpf_err(-errno);
7786 
7787 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7788 	return 0;
7789 }
7790 
7791 int bpf_map__pin(struct bpf_map *map, const char *path)
7792 {
7793 	char *cp, errmsg[STRERR_BUFSIZE];
7794 	int err;
7795 
7796 	if (map == NULL) {
7797 		pr_warn("invalid map pointer\n");
7798 		return libbpf_err(-EINVAL);
7799 	}
7800 
7801 	if (map->pin_path) {
7802 		if (path && strcmp(path, map->pin_path)) {
7803 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7804 				bpf_map__name(map), map->pin_path, path);
7805 			return libbpf_err(-EINVAL);
7806 		} else if (map->pinned) {
7807 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7808 				 bpf_map__name(map), map->pin_path);
7809 			return 0;
7810 		}
7811 	} else {
7812 		if (!path) {
7813 			pr_warn("missing a path to pin map '%s' at\n",
7814 				bpf_map__name(map));
7815 			return libbpf_err(-EINVAL);
7816 		} else if (map->pinned) {
7817 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7818 			return libbpf_err(-EEXIST);
7819 		}
7820 
7821 		map->pin_path = strdup(path);
7822 		if (!map->pin_path) {
7823 			err = -errno;
7824 			goto out_err;
7825 		}
7826 	}
7827 
7828 	err = make_parent_dir(map->pin_path);
7829 	if (err)
7830 		return libbpf_err(err);
7831 
7832 	err = check_path(map->pin_path);
7833 	if (err)
7834 		return libbpf_err(err);
7835 
7836 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7837 		err = -errno;
7838 		goto out_err;
7839 	}
7840 
7841 	map->pinned = true;
7842 	pr_debug("pinned map '%s'\n", map->pin_path);
7843 
7844 	return 0;
7845 
7846 out_err:
7847 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7848 	pr_warn("failed to pin map: %s\n", cp);
7849 	return libbpf_err(err);
7850 }
7851 
7852 int bpf_map__unpin(struct bpf_map *map, const char *path)
7853 {
7854 	int err;
7855 
7856 	if (map == NULL) {
7857 		pr_warn("invalid map pointer\n");
7858 		return libbpf_err(-EINVAL);
7859 	}
7860 
7861 	if (map->pin_path) {
7862 		if (path && strcmp(path, map->pin_path)) {
7863 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7864 				bpf_map__name(map), map->pin_path, path);
7865 			return libbpf_err(-EINVAL);
7866 		}
7867 		path = map->pin_path;
7868 	} else if (!path) {
7869 		pr_warn("no path to unpin map '%s' from\n",
7870 			bpf_map__name(map));
7871 		return libbpf_err(-EINVAL);
7872 	}
7873 
7874 	err = check_path(path);
7875 	if (err)
7876 		return libbpf_err(err);
7877 
7878 	err = unlink(path);
7879 	if (err != 0)
7880 		return libbpf_err(-errno);
7881 
7882 	map->pinned = false;
7883 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7884 
7885 	return 0;
7886 }
7887 
7888 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7889 {
7890 	char *new = NULL;
7891 
7892 	if (path) {
7893 		new = strdup(path);
7894 		if (!new)
7895 			return libbpf_err(-errno);
7896 	}
7897 
7898 	free(map->pin_path);
7899 	map->pin_path = new;
7900 	return 0;
7901 }
7902 
7903 __alias(bpf_map__pin_path)
7904 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7905 
7906 const char *bpf_map__pin_path(const struct bpf_map *map)
7907 {
7908 	return map->pin_path;
7909 }
7910 
7911 bool bpf_map__is_pinned(const struct bpf_map *map)
7912 {
7913 	return map->pinned;
7914 }
7915 
7916 static void sanitize_pin_path(char *s)
7917 {
7918 	/* bpffs disallows periods in path names */
7919 	while (*s) {
7920 		if (*s == '.')
7921 			*s = '_';
7922 		s++;
7923 	}
7924 }
7925 
7926 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7927 {
7928 	struct bpf_map *map;
7929 	int err;
7930 
7931 	if (!obj)
7932 		return libbpf_err(-ENOENT);
7933 
7934 	if (!obj->loaded) {
7935 		pr_warn("object not yet loaded; load it first\n");
7936 		return libbpf_err(-ENOENT);
7937 	}
7938 
7939 	bpf_object__for_each_map(map, obj) {
7940 		char *pin_path = NULL;
7941 		char buf[PATH_MAX];
7942 
7943 		if (!map->autocreate)
7944 			continue;
7945 
7946 		if (path) {
7947 			int len;
7948 
7949 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7950 				       bpf_map__name(map));
7951 			if (len < 0) {
7952 				err = -EINVAL;
7953 				goto err_unpin_maps;
7954 			} else if (len >= PATH_MAX) {
7955 				err = -ENAMETOOLONG;
7956 				goto err_unpin_maps;
7957 			}
7958 			sanitize_pin_path(buf);
7959 			pin_path = buf;
7960 		} else if (!map->pin_path) {
7961 			continue;
7962 		}
7963 
7964 		err = bpf_map__pin(map, pin_path);
7965 		if (err)
7966 			goto err_unpin_maps;
7967 	}
7968 
7969 	return 0;
7970 
7971 err_unpin_maps:
7972 	while ((map = bpf_object__prev_map(obj, map))) {
7973 		if (!map->pin_path)
7974 			continue;
7975 
7976 		bpf_map__unpin(map, NULL);
7977 	}
7978 
7979 	return libbpf_err(err);
7980 }
7981 
7982 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7983 {
7984 	struct bpf_map *map;
7985 	int err;
7986 
7987 	if (!obj)
7988 		return libbpf_err(-ENOENT);
7989 
7990 	bpf_object__for_each_map(map, obj) {
7991 		char *pin_path = NULL;
7992 		char buf[PATH_MAX];
7993 
7994 		if (path) {
7995 			int len;
7996 
7997 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7998 				       bpf_map__name(map));
7999 			if (len < 0)
8000 				return libbpf_err(-EINVAL);
8001 			else if (len >= PATH_MAX)
8002 				return libbpf_err(-ENAMETOOLONG);
8003 			sanitize_pin_path(buf);
8004 			pin_path = buf;
8005 		} else if (!map->pin_path) {
8006 			continue;
8007 		}
8008 
8009 		err = bpf_map__unpin(map, pin_path);
8010 		if (err)
8011 			return libbpf_err(err);
8012 	}
8013 
8014 	return 0;
8015 }
8016 
8017 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8018 {
8019 	struct bpf_program *prog;
8020 	int err;
8021 
8022 	if (!obj)
8023 		return libbpf_err(-ENOENT);
8024 
8025 	if (!obj->loaded) {
8026 		pr_warn("object not yet loaded; load it first\n");
8027 		return libbpf_err(-ENOENT);
8028 	}
8029 
8030 	bpf_object__for_each_program(prog, obj) {
8031 		char buf[PATH_MAX];
8032 		int len;
8033 
8034 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8035 		if (len < 0) {
8036 			err = -EINVAL;
8037 			goto err_unpin_programs;
8038 		} else if (len >= PATH_MAX) {
8039 			err = -ENAMETOOLONG;
8040 			goto err_unpin_programs;
8041 		}
8042 
8043 		err = bpf_program__pin(prog, buf);
8044 		if (err)
8045 			goto err_unpin_programs;
8046 	}
8047 
8048 	return 0;
8049 
8050 err_unpin_programs:
8051 	while ((prog = bpf_object__prev_program(obj, prog))) {
8052 		char buf[PATH_MAX];
8053 		int len;
8054 
8055 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8056 		if (len < 0)
8057 			continue;
8058 		else if (len >= PATH_MAX)
8059 			continue;
8060 
8061 		bpf_program__unpin(prog, buf);
8062 	}
8063 
8064 	return libbpf_err(err);
8065 }
8066 
8067 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8068 {
8069 	struct bpf_program *prog;
8070 	int err;
8071 
8072 	if (!obj)
8073 		return libbpf_err(-ENOENT);
8074 
8075 	bpf_object__for_each_program(prog, obj) {
8076 		char buf[PATH_MAX];
8077 		int len;
8078 
8079 		len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8080 		if (len < 0)
8081 			return libbpf_err(-EINVAL);
8082 		else if (len >= PATH_MAX)
8083 			return libbpf_err(-ENAMETOOLONG);
8084 
8085 		err = bpf_program__unpin(prog, buf);
8086 		if (err)
8087 			return libbpf_err(err);
8088 	}
8089 
8090 	return 0;
8091 }
8092 
8093 int bpf_object__pin(struct bpf_object *obj, const char *path)
8094 {
8095 	int err;
8096 
8097 	err = bpf_object__pin_maps(obj, path);
8098 	if (err)
8099 		return libbpf_err(err);
8100 
8101 	err = bpf_object__pin_programs(obj, path);
8102 	if (err) {
8103 		bpf_object__unpin_maps(obj, path);
8104 		return libbpf_err(err);
8105 	}
8106 
8107 	return 0;
8108 }
8109 
8110 static void bpf_map__destroy(struct bpf_map *map)
8111 {
8112 	if (map->inner_map) {
8113 		bpf_map__destroy(map->inner_map);
8114 		zfree(&map->inner_map);
8115 	}
8116 
8117 	zfree(&map->init_slots);
8118 	map->init_slots_sz = 0;
8119 
8120 	if (map->mmaped) {
8121 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8122 		map->mmaped = NULL;
8123 	}
8124 
8125 	if (map->st_ops) {
8126 		zfree(&map->st_ops->data);
8127 		zfree(&map->st_ops->progs);
8128 		zfree(&map->st_ops->kern_func_off);
8129 		zfree(&map->st_ops);
8130 	}
8131 
8132 	zfree(&map->name);
8133 	zfree(&map->real_name);
8134 	zfree(&map->pin_path);
8135 
8136 	if (map->fd >= 0)
8137 		zclose(map->fd);
8138 }
8139 
8140 void bpf_object__close(struct bpf_object *obj)
8141 {
8142 	size_t i;
8143 
8144 	if (IS_ERR_OR_NULL(obj))
8145 		return;
8146 
8147 	usdt_manager_free(obj->usdt_man);
8148 	obj->usdt_man = NULL;
8149 
8150 	bpf_gen__free(obj->gen_loader);
8151 	bpf_object__elf_finish(obj);
8152 	bpf_object_unload(obj);
8153 	btf__free(obj->btf);
8154 	btf_ext__free(obj->btf_ext);
8155 
8156 	for (i = 0; i < obj->nr_maps; i++)
8157 		bpf_map__destroy(&obj->maps[i]);
8158 
8159 	zfree(&obj->btf_custom_path);
8160 	zfree(&obj->kconfig);
8161 	zfree(&obj->externs);
8162 	obj->nr_extern = 0;
8163 
8164 	zfree(&obj->maps);
8165 	obj->nr_maps = 0;
8166 
8167 	if (obj->programs && obj->nr_programs) {
8168 		for (i = 0; i < obj->nr_programs; i++)
8169 			bpf_program__exit(&obj->programs[i]);
8170 	}
8171 	zfree(&obj->programs);
8172 
8173 	free(obj);
8174 }
8175 
8176 const char *bpf_object__name(const struct bpf_object *obj)
8177 {
8178 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8179 }
8180 
8181 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8182 {
8183 	return obj ? obj->kern_version : 0;
8184 }
8185 
8186 struct btf *bpf_object__btf(const struct bpf_object *obj)
8187 {
8188 	return obj ? obj->btf : NULL;
8189 }
8190 
8191 int bpf_object__btf_fd(const struct bpf_object *obj)
8192 {
8193 	return obj->btf ? btf__fd(obj->btf) : -1;
8194 }
8195 
8196 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8197 {
8198 	if (obj->loaded)
8199 		return libbpf_err(-EINVAL);
8200 
8201 	obj->kern_version = kern_version;
8202 
8203 	return 0;
8204 }
8205 
8206 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8207 {
8208 	struct bpf_gen *gen;
8209 
8210 	if (!opts)
8211 		return -EFAULT;
8212 	if (!OPTS_VALID(opts, gen_loader_opts))
8213 		return -EINVAL;
8214 	gen = calloc(sizeof(*gen), 1);
8215 	if (!gen)
8216 		return -ENOMEM;
8217 	gen->opts = opts;
8218 	obj->gen_loader = gen;
8219 	return 0;
8220 }
8221 
8222 static struct bpf_program *
8223 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8224 		    bool forward)
8225 {
8226 	size_t nr_programs = obj->nr_programs;
8227 	ssize_t idx;
8228 
8229 	if (!nr_programs)
8230 		return NULL;
8231 
8232 	if (!p)
8233 		/* Iter from the beginning */
8234 		return forward ? &obj->programs[0] :
8235 			&obj->programs[nr_programs - 1];
8236 
8237 	if (p->obj != obj) {
8238 		pr_warn("error: program handler doesn't match object\n");
8239 		return errno = EINVAL, NULL;
8240 	}
8241 
8242 	idx = (p - obj->programs) + (forward ? 1 : -1);
8243 	if (idx >= obj->nr_programs || idx < 0)
8244 		return NULL;
8245 	return &obj->programs[idx];
8246 }
8247 
8248 struct bpf_program *
8249 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8250 {
8251 	struct bpf_program *prog = prev;
8252 
8253 	do {
8254 		prog = __bpf_program__iter(prog, obj, true);
8255 	} while (prog && prog_is_subprog(obj, prog));
8256 
8257 	return prog;
8258 }
8259 
8260 struct bpf_program *
8261 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8262 {
8263 	struct bpf_program *prog = next;
8264 
8265 	do {
8266 		prog = __bpf_program__iter(prog, obj, false);
8267 	} while (prog && prog_is_subprog(obj, prog));
8268 
8269 	return prog;
8270 }
8271 
8272 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8273 {
8274 	prog->prog_ifindex = ifindex;
8275 }
8276 
8277 const char *bpf_program__name(const struct bpf_program *prog)
8278 {
8279 	return prog->name;
8280 }
8281 
8282 const char *bpf_program__section_name(const struct bpf_program *prog)
8283 {
8284 	return prog->sec_name;
8285 }
8286 
8287 bool bpf_program__autoload(const struct bpf_program *prog)
8288 {
8289 	return prog->autoload;
8290 }
8291 
8292 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8293 {
8294 	if (prog->obj->loaded)
8295 		return libbpf_err(-EINVAL);
8296 
8297 	prog->autoload = autoload;
8298 	return 0;
8299 }
8300 
8301 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8302 {
8303 	return prog->insns;
8304 }
8305 
8306 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8307 {
8308 	return prog->insns_cnt;
8309 }
8310 
8311 int bpf_program__set_insns(struct bpf_program *prog,
8312 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8313 {
8314 	struct bpf_insn *insns;
8315 
8316 	if (prog->obj->loaded)
8317 		return -EBUSY;
8318 
8319 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8320 	if (!insns) {
8321 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8322 		return -ENOMEM;
8323 	}
8324 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8325 
8326 	prog->insns = insns;
8327 	prog->insns_cnt = new_insn_cnt;
8328 	return 0;
8329 }
8330 
8331 int bpf_program__fd(const struct bpf_program *prog)
8332 {
8333 	if (!prog)
8334 		return libbpf_err(-EINVAL);
8335 
8336 	if (prog->fd < 0)
8337 		return libbpf_err(-ENOENT);
8338 
8339 	return prog->fd;
8340 }
8341 
8342 __alias(bpf_program__type)
8343 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8344 
8345 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8346 {
8347 	return prog->type;
8348 }
8349 
8350 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8351 {
8352 	if (prog->obj->loaded)
8353 		return libbpf_err(-EBUSY);
8354 
8355 	prog->type = type;
8356 	return 0;
8357 }
8358 
8359 __alias(bpf_program__expected_attach_type)
8360 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8361 
8362 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8363 {
8364 	return prog->expected_attach_type;
8365 }
8366 
8367 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8368 					   enum bpf_attach_type type)
8369 {
8370 	if (prog->obj->loaded)
8371 		return libbpf_err(-EBUSY);
8372 
8373 	prog->expected_attach_type = type;
8374 	return 0;
8375 }
8376 
8377 __u32 bpf_program__flags(const struct bpf_program *prog)
8378 {
8379 	return prog->prog_flags;
8380 }
8381 
8382 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8383 {
8384 	if (prog->obj->loaded)
8385 		return libbpf_err(-EBUSY);
8386 
8387 	prog->prog_flags = flags;
8388 	return 0;
8389 }
8390 
8391 __u32 bpf_program__log_level(const struct bpf_program *prog)
8392 {
8393 	return prog->log_level;
8394 }
8395 
8396 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8397 {
8398 	if (prog->obj->loaded)
8399 		return libbpf_err(-EBUSY);
8400 
8401 	prog->log_level = log_level;
8402 	return 0;
8403 }
8404 
8405 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8406 {
8407 	*log_size = prog->log_size;
8408 	return prog->log_buf;
8409 }
8410 
8411 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8412 {
8413 	if (log_size && !log_buf)
8414 		return -EINVAL;
8415 	if (prog->log_size > UINT_MAX)
8416 		return -EINVAL;
8417 	if (prog->obj->loaded)
8418 		return -EBUSY;
8419 
8420 	prog->log_buf = log_buf;
8421 	prog->log_size = log_size;
8422 	return 0;
8423 }
8424 
8425 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8426 	.sec = (char *)sec_pfx,						    \
8427 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8428 	.expected_attach_type = atype,					    \
8429 	.cookie = (long)(flags),					    \
8430 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8431 	__VA_ARGS__							    \
8432 }
8433 
8434 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8435 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8436 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8437 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8438 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8439 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8440 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8441 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8442 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8443 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8444 
8445 static const struct bpf_sec_def section_defs[] = {
8446 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8447 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8448 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8449 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8450 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8451 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8452 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8453 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8454 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8455 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8456 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8457 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8458 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8459 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8460 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8461 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8462 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8463 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8464 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8465 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8466 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8467 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8468 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8469 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8470 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8471 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8472 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8473 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8474 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8475 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8476 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8477 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8478 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8479 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8480 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8481 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8482 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8483 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8484 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8485 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8486 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8487 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8488 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8489 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8490 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8491 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8492 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8493 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8494 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8495 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8496 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8497 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8498 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8499 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8500 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8501 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8502 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8503 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8504 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8505 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8506 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8507 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8508 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8509 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8510 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8511 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8512 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8513 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8514 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8515 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8516 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8517 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8518 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8519 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8520 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8521 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8522 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8523 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8524 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8525 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8526 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8527 };
8528 
8529 static size_t custom_sec_def_cnt;
8530 static struct bpf_sec_def *custom_sec_defs;
8531 static struct bpf_sec_def custom_fallback_def;
8532 static bool has_custom_fallback_def;
8533 
8534 static int last_custom_sec_def_handler_id;
8535 
8536 int libbpf_register_prog_handler(const char *sec,
8537 				 enum bpf_prog_type prog_type,
8538 				 enum bpf_attach_type exp_attach_type,
8539 				 const struct libbpf_prog_handler_opts *opts)
8540 {
8541 	struct bpf_sec_def *sec_def;
8542 
8543 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8544 		return libbpf_err(-EINVAL);
8545 
8546 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8547 		return libbpf_err(-E2BIG);
8548 
8549 	if (sec) {
8550 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8551 					      sizeof(*sec_def));
8552 		if (!sec_def)
8553 			return libbpf_err(-ENOMEM);
8554 
8555 		custom_sec_defs = sec_def;
8556 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8557 	} else {
8558 		if (has_custom_fallback_def)
8559 			return libbpf_err(-EBUSY);
8560 
8561 		sec_def = &custom_fallback_def;
8562 	}
8563 
8564 	sec_def->sec = sec ? strdup(sec) : NULL;
8565 	if (sec && !sec_def->sec)
8566 		return libbpf_err(-ENOMEM);
8567 
8568 	sec_def->prog_type = prog_type;
8569 	sec_def->expected_attach_type = exp_attach_type;
8570 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8571 
8572 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8573 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8574 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8575 
8576 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8577 
8578 	if (sec)
8579 		custom_sec_def_cnt++;
8580 	else
8581 		has_custom_fallback_def = true;
8582 
8583 	return sec_def->handler_id;
8584 }
8585 
8586 int libbpf_unregister_prog_handler(int handler_id)
8587 {
8588 	struct bpf_sec_def *sec_defs;
8589 	int i;
8590 
8591 	if (handler_id <= 0)
8592 		return libbpf_err(-EINVAL);
8593 
8594 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8595 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8596 		has_custom_fallback_def = false;
8597 		return 0;
8598 	}
8599 
8600 	for (i = 0; i < custom_sec_def_cnt; i++) {
8601 		if (custom_sec_defs[i].handler_id == handler_id)
8602 			break;
8603 	}
8604 
8605 	if (i == custom_sec_def_cnt)
8606 		return libbpf_err(-ENOENT);
8607 
8608 	free(custom_sec_defs[i].sec);
8609 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8610 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8611 	custom_sec_def_cnt--;
8612 
8613 	/* try to shrink the array, but it's ok if we couldn't */
8614 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8615 	if (sec_defs)
8616 		custom_sec_defs = sec_defs;
8617 
8618 	return 0;
8619 }
8620 
8621 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8622 {
8623 	size_t len = strlen(sec_def->sec);
8624 
8625 	/* "type/" always has to have proper SEC("type/extras") form */
8626 	if (sec_def->sec[len - 1] == '/') {
8627 		if (str_has_pfx(sec_name, sec_def->sec))
8628 			return true;
8629 		return false;
8630 	}
8631 
8632 	/* "type+" means it can be either exact SEC("type") or
8633 	 * well-formed SEC("type/extras") with proper '/' separator
8634 	 */
8635 	if (sec_def->sec[len - 1] == '+') {
8636 		len--;
8637 		/* not even a prefix */
8638 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8639 			return false;
8640 		/* exact match or has '/' separator */
8641 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8642 			return true;
8643 		return false;
8644 	}
8645 
8646 	return strcmp(sec_name, sec_def->sec) == 0;
8647 }
8648 
8649 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8650 {
8651 	const struct bpf_sec_def *sec_def;
8652 	int i, n;
8653 
8654 	n = custom_sec_def_cnt;
8655 	for (i = 0; i < n; i++) {
8656 		sec_def = &custom_sec_defs[i];
8657 		if (sec_def_matches(sec_def, sec_name))
8658 			return sec_def;
8659 	}
8660 
8661 	n = ARRAY_SIZE(section_defs);
8662 	for (i = 0; i < n; i++) {
8663 		sec_def = &section_defs[i];
8664 		if (sec_def_matches(sec_def, sec_name))
8665 			return sec_def;
8666 	}
8667 
8668 	if (has_custom_fallback_def)
8669 		return &custom_fallback_def;
8670 
8671 	return NULL;
8672 }
8673 
8674 #define MAX_TYPE_NAME_SIZE 32
8675 
8676 static char *libbpf_get_type_names(bool attach_type)
8677 {
8678 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8679 	char *buf;
8680 
8681 	buf = malloc(len);
8682 	if (!buf)
8683 		return NULL;
8684 
8685 	buf[0] = '\0';
8686 	/* Forge string buf with all available names */
8687 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8688 		const struct bpf_sec_def *sec_def = &section_defs[i];
8689 
8690 		if (attach_type) {
8691 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8692 				continue;
8693 
8694 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8695 				continue;
8696 		}
8697 
8698 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8699 			free(buf);
8700 			return NULL;
8701 		}
8702 		strcat(buf, " ");
8703 		strcat(buf, section_defs[i].sec);
8704 	}
8705 
8706 	return buf;
8707 }
8708 
8709 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8710 			     enum bpf_attach_type *expected_attach_type)
8711 {
8712 	const struct bpf_sec_def *sec_def;
8713 	char *type_names;
8714 
8715 	if (!name)
8716 		return libbpf_err(-EINVAL);
8717 
8718 	sec_def = find_sec_def(name);
8719 	if (sec_def) {
8720 		*prog_type = sec_def->prog_type;
8721 		*expected_attach_type = sec_def->expected_attach_type;
8722 		return 0;
8723 	}
8724 
8725 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8726 	type_names = libbpf_get_type_names(false);
8727 	if (type_names != NULL) {
8728 		pr_debug("supported section(type) names are:%s\n", type_names);
8729 		free(type_names);
8730 	}
8731 
8732 	return libbpf_err(-ESRCH);
8733 }
8734 
8735 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8736 {
8737 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8738 		return NULL;
8739 
8740 	return attach_type_name[t];
8741 }
8742 
8743 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8744 {
8745 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8746 		return NULL;
8747 
8748 	return link_type_name[t];
8749 }
8750 
8751 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8752 {
8753 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8754 		return NULL;
8755 
8756 	return map_type_name[t];
8757 }
8758 
8759 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8760 {
8761 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8762 		return NULL;
8763 
8764 	return prog_type_name[t];
8765 }
8766 
8767 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8768 						     size_t offset)
8769 {
8770 	struct bpf_map *map;
8771 	size_t i;
8772 
8773 	for (i = 0; i < obj->nr_maps; i++) {
8774 		map = &obj->maps[i];
8775 		if (!bpf_map__is_struct_ops(map))
8776 			continue;
8777 		if (map->sec_offset <= offset &&
8778 		    offset - map->sec_offset < map->def.value_size)
8779 			return map;
8780 	}
8781 
8782 	return NULL;
8783 }
8784 
8785 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8786 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8787 					    Elf64_Shdr *shdr, Elf_Data *data)
8788 {
8789 	const struct btf_member *member;
8790 	struct bpf_struct_ops *st_ops;
8791 	struct bpf_program *prog;
8792 	unsigned int shdr_idx;
8793 	const struct btf *btf;
8794 	struct bpf_map *map;
8795 	unsigned int moff, insn_idx;
8796 	const char *name;
8797 	__u32 member_idx;
8798 	Elf64_Sym *sym;
8799 	Elf64_Rel *rel;
8800 	int i, nrels;
8801 
8802 	btf = obj->btf;
8803 	nrels = shdr->sh_size / shdr->sh_entsize;
8804 	for (i = 0; i < nrels; i++) {
8805 		rel = elf_rel_by_idx(data, i);
8806 		if (!rel) {
8807 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8808 			return -LIBBPF_ERRNO__FORMAT;
8809 		}
8810 
8811 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8812 		if (!sym) {
8813 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8814 				(size_t)ELF64_R_SYM(rel->r_info));
8815 			return -LIBBPF_ERRNO__FORMAT;
8816 		}
8817 
8818 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8819 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8820 		if (!map) {
8821 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8822 				(size_t)rel->r_offset);
8823 			return -EINVAL;
8824 		}
8825 
8826 		moff = rel->r_offset - map->sec_offset;
8827 		shdr_idx = sym->st_shndx;
8828 		st_ops = map->st_ops;
8829 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8830 			 map->name,
8831 			 (long long)(rel->r_info >> 32),
8832 			 (long long)sym->st_value,
8833 			 shdr_idx, (size_t)rel->r_offset,
8834 			 map->sec_offset, sym->st_name, name);
8835 
8836 		if (shdr_idx >= SHN_LORESERVE) {
8837 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8838 				map->name, (size_t)rel->r_offset, shdr_idx);
8839 			return -LIBBPF_ERRNO__RELOC;
8840 		}
8841 		if (sym->st_value % BPF_INSN_SZ) {
8842 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8843 				map->name, (unsigned long long)sym->st_value);
8844 			return -LIBBPF_ERRNO__FORMAT;
8845 		}
8846 		insn_idx = sym->st_value / BPF_INSN_SZ;
8847 
8848 		member = find_member_by_offset(st_ops->type, moff * 8);
8849 		if (!member) {
8850 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8851 				map->name, moff);
8852 			return -EINVAL;
8853 		}
8854 		member_idx = member - btf_members(st_ops->type);
8855 		name = btf__name_by_offset(btf, member->name_off);
8856 
8857 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8858 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8859 				map->name, name);
8860 			return -EINVAL;
8861 		}
8862 
8863 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8864 		if (!prog) {
8865 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8866 				map->name, shdr_idx, name);
8867 			return -EINVAL;
8868 		}
8869 
8870 		/* prevent the use of BPF prog with invalid type */
8871 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8872 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8873 				map->name, prog->name);
8874 			return -EINVAL;
8875 		}
8876 
8877 		/* if we haven't yet processed this BPF program, record proper
8878 		 * attach_btf_id and member_idx
8879 		 */
8880 		if (!prog->attach_btf_id) {
8881 			prog->attach_btf_id = st_ops->type_id;
8882 			prog->expected_attach_type = member_idx;
8883 		}
8884 
8885 		/* struct_ops BPF prog can be re-used between multiple
8886 		 * .struct_ops as long as it's the same struct_ops struct
8887 		 * definition and the same function pointer field
8888 		 */
8889 		if (prog->attach_btf_id != st_ops->type_id ||
8890 		    prog->expected_attach_type != member_idx) {
8891 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8892 				map->name, prog->name, prog->sec_name, prog->type,
8893 				prog->attach_btf_id, prog->expected_attach_type, name);
8894 			return -EINVAL;
8895 		}
8896 
8897 		st_ops->progs[member_idx] = prog;
8898 	}
8899 
8900 	return 0;
8901 }
8902 
8903 #define BTF_TRACE_PREFIX "btf_trace_"
8904 #define BTF_LSM_PREFIX "bpf_lsm_"
8905 #define BTF_ITER_PREFIX "bpf_iter_"
8906 #define BTF_MAX_NAME_SIZE 128
8907 
8908 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8909 				const char **prefix, int *kind)
8910 {
8911 	switch (attach_type) {
8912 	case BPF_TRACE_RAW_TP:
8913 		*prefix = BTF_TRACE_PREFIX;
8914 		*kind = BTF_KIND_TYPEDEF;
8915 		break;
8916 	case BPF_LSM_MAC:
8917 	case BPF_LSM_CGROUP:
8918 		*prefix = BTF_LSM_PREFIX;
8919 		*kind = BTF_KIND_FUNC;
8920 		break;
8921 	case BPF_TRACE_ITER:
8922 		*prefix = BTF_ITER_PREFIX;
8923 		*kind = BTF_KIND_FUNC;
8924 		break;
8925 	default:
8926 		*prefix = "";
8927 		*kind = BTF_KIND_FUNC;
8928 	}
8929 }
8930 
8931 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8932 				   const char *name, __u32 kind)
8933 {
8934 	char btf_type_name[BTF_MAX_NAME_SIZE];
8935 	int ret;
8936 
8937 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8938 		       "%s%s", prefix, name);
8939 	/* snprintf returns the number of characters written excluding the
8940 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8941 	 * indicates truncation.
8942 	 */
8943 	if (ret < 0 || ret >= sizeof(btf_type_name))
8944 		return -ENAMETOOLONG;
8945 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8946 }
8947 
8948 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8949 				     enum bpf_attach_type attach_type)
8950 {
8951 	const char *prefix;
8952 	int kind;
8953 
8954 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8955 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
8956 }
8957 
8958 int libbpf_find_vmlinux_btf_id(const char *name,
8959 			       enum bpf_attach_type attach_type)
8960 {
8961 	struct btf *btf;
8962 	int err;
8963 
8964 	btf = btf__load_vmlinux_btf();
8965 	err = libbpf_get_error(btf);
8966 	if (err) {
8967 		pr_warn("vmlinux BTF is not found\n");
8968 		return libbpf_err(err);
8969 	}
8970 
8971 	err = find_attach_btf_id(btf, name, attach_type);
8972 	if (err <= 0)
8973 		pr_warn("%s is not found in vmlinux BTF\n", name);
8974 
8975 	btf__free(btf);
8976 	return libbpf_err(err);
8977 }
8978 
8979 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8980 {
8981 	struct bpf_prog_info info = {};
8982 	__u32 info_len = sizeof(info);
8983 	struct btf *btf;
8984 	int err;
8985 
8986 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
8987 	if (err) {
8988 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
8989 			attach_prog_fd, err);
8990 		return err;
8991 	}
8992 
8993 	err = -EINVAL;
8994 	if (!info.btf_id) {
8995 		pr_warn("The target program doesn't have BTF\n");
8996 		goto out;
8997 	}
8998 	btf = btf__load_from_kernel_by_id(info.btf_id);
8999 	err = libbpf_get_error(btf);
9000 	if (err) {
9001 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9002 		goto out;
9003 	}
9004 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9005 	btf__free(btf);
9006 	if (err <= 0) {
9007 		pr_warn("%s is not found in prog's BTF\n", name);
9008 		goto out;
9009 	}
9010 out:
9011 	return err;
9012 }
9013 
9014 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9015 			      enum bpf_attach_type attach_type,
9016 			      int *btf_obj_fd, int *btf_type_id)
9017 {
9018 	int ret, i;
9019 
9020 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9021 	if (ret > 0) {
9022 		*btf_obj_fd = 0; /* vmlinux BTF */
9023 		*btf_type_id = ret;
9024 		return 0;
9025 	}
9026 	if (ret != -ENOENT)
9027 		return ret;
9028 
9029 	ret = load_module_btfs(obj);
9030 	if (ret)
9031 		return ret;
9032 
9033 	for (i = 0; i < obj->btf_module_cnt; i++) {
9034 		const struct module_btf *mod = &obj->btf_modules[i];
9035 
9036 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9037 		if (ret > 0) {
9038 			*btf_obj_fd = mod->fd;
9039 			*btf_type_id = ret;
9040 			return 0;
9041 		}
9042 		if (ret == -ENOENT)
9043 			continue;
9044 
9045 		return ret;
9046 	}
9047 
9048 	return -ESRCH;
9049 }
9050 
9051 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9052 				     int *btf_obj_fd, int *btf_type_id)
9053 {
9054 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9055 	__u32 attach_prog_fd = prog->attach_prog_fd;
9056 	int err = 0;
9057 
9058 	/* BPF program's BTF ID */
9059 	if (attach_prog_fd) {
9060 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9061 		if (err < 0) {
9062 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9063 				 attach_prog_fd, attach_name, err);
9064 			return err;
9065 		}
9066 		*btf_obj_fd = 0;
9067 		*btf_type_id = err;
9068 		return 0;
9069 	}
9070 
9071 	/* kernel/module BTF ID */
9072 	if (prog->obj->gen_loader) {
9073 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9074 		*btf_obj_fd = 0;
9075 		*btf_type_id = 1;
9076 	} else {
9077 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9078 	}
9079 	if (err) {
9080 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9081 		return err;
9082 	}
9083 	return 0;
9084 }
9085 
9086 int libbpf_attach_type_by_name(const char *name,
9087 			       enum bpf_attach_type *attach_type)
9088 {
9089 	char *type_names;
9090 	const struct bpf_sec_def *sec_def;
9091 
9092 	if (!name)
9093 		return libbpf_err(-EINVAL);
9094 
9095 	sec_def = find_sec_def(name);
9096 	if (!sec_def) {
9097 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9098 		type_names = libbpf_get_type_names(true);
9099 		if (type_names != NULL) {
9100 			pr_debug("attachable section(type) names are:%s\n", type_names);
9101 			free(type_names);
9102 		}
9103 
9104 		return libbpf_err(-EINVAL);
9105 	}
9106 
9107 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9108 		return libbpf_err(-EINVAL);
9109 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9110 		return libbpf_err(-EINVAL);
9111 
9112 	*attach_type = sec_def->expected_attach_type;
9113 	return 0;
9114 }
9115 
9116 int bpf_map__fd(const struct bpf_map *map)
9117 {
9118 	return map ? map->fd : libbpf_err(-EINVAL);
9119 }
9120 
9121 static bool map_uses_real_name(const struct bpf_map *map)
9122 {
9123 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9124 	 * their user-visible name differs from kernel-visible name. Users see
9125 	 * such map's corresponding ELF section name as a map name.
9126 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9127 	 * maps to know which name has to be returned to the user.
9128 	 */
9129 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9130 		return true;
9131 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9132 		return true;
9133 	return false;
9134 }
9135 
9136 const char *bpf_map__name(const struct bpf_map *map)
9137 {
9138 	if (!map)
9139 		return NULL;
9140 
9141 	if (map_uses_real_name(map))
9142 		return map->real_name;
9143 
9144 	return map->name;
9145 }
9146 
9147 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9148 {
9149 	return map->def.type;
9150 }
9151 
9152 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9153 {
9154 	if (map->fd >= 0)
9155 		return libbpf_err(-EBUSY);
9156 	map->def.type = type;
9157 	return 0;
9158 }
9159 
9160 __u32 bpf_map__map_flags(const struct bpf_map *map)
9161 {
9162 	return map->def.map_flags;
9163 }
9164 
9165 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9166 {
9167 	if (map->fd >= 0)
9168 		return libbpf_err(-EBUSY);
9169 	map->def.map_flags = flags;
9170 	return 0;
9171 }
9172 
9173 __u64 bpf_map__map_extra(const struct bpf_map *map)
9174 {
9175 	return map->map_extra;
9176 }
9177 
9178 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9179 {
9180 	if (map->fd >= 0)
9181 		return libbpf_err(-EBUSY);
9182 	map->map_extra = map_extra;
9183 	return 0;
9184 }
9185 
9186 __u32 bpf_map__numa_node(const struct bpf_map *map)
9187 {
9188 	return map->numa_node;
9189 }
9190 
9191 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9192 {
9193 	if (map->fd >= 0)
9194 		return libbpf_err(-EBUSY);
9195 	map->numa_node = numa_node;
9196 	return 0;
9197 }
9198 
9199 __u32 bpf_map__key_size(const struct bpf_map *map)
9200 {
9201 	return map->def.key_size;
9202 }
9203 
9204 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9205 {
9206 	if (map->fd >= 0)
9207 		return libbpf_err(-EBUSY);
9208 	map->def.key_size = size;
9209 	return 0;
9210 }
9211 
9212 __u32 bpf_map__value_size(const struct bpf_map *map)
9213 {
9214 	return map->def.value_size;
9215 }
9216 
9217 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9218 {
9219 	if (map->fd >= 0)
9220 		return libbpf_err(-EBUSY);
9221 	map->def.value_size = size;
9222 	return 0;
9223 }
9224 
9225 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9226 {
9227 	return map ? map->btf_key_type_id : 0;
9228 }
9229 
9230 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9231 {
9232 	return map ? map->btf_value_type_id : 0;
9233 }
9234 
9235 int bpf_map__set_initial_value(struct bpf_map *map,
9236 			       const void *data, size_t size)
9237 {
9238 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9239 	    size != map->def.value_size || map->fd >= 0)
9240 		return libbpf_err(-EINVAL);
9241 
9242 	memcpy(map->mmaped, data, size);
9243 	return 0;
9244 }
9245 
9246 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9247 {
9248 	if (!map->mmaped)
9249 		return NULL;
9250 	*psize = map->def.value_size;
9251 	return map->mmaped;
9252 }
9253 
9254 bool bpf_map__is_internal(const struct bpf_map *map)
9255 {
9256 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9257 }
9258 
9259 __u32 bpf_map__ifindex(const struct bpf_map *map)
9260 {
9261 	return map->map_ifindex;
9262 }
9263 
9264 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9265 {
9266 	if (map->fd >= 0)
9267 		return libbpf_err(-EBUSY);
9268 	map->map_ifindex = ifindex;
9269 	return 0;
9270 }
9271 
9272 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9273 {
9274 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9275 		pr_warn("error: unsupported map type\n");
9276 		return libbpf_err(-EINVAL);
9277 	}
9278 	if (map->inner_map_fd != -1) {
9279 		pr_warn("error: inner_map_fd already specified\n");
9280 		return libbpf_err(-EINVAL);
9281 	}
9282 	if (map->inner_map) {
9283 		bpf_map__destroy(map->inner_map);
9284 		zfree(&map->inner_map);
9285 	}
9286 	map->inner_map_fd = fd;
9287 	return 0;
9288 }
9289 
9290 static struct bpf_map *
9291 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9292 {
9293 	ssize_t idx;
9294 	struct bpf_map *s, *e;
9295 
9296 	if (!obj || !obj->maps)
9297 		return errno = EINVAL, NULL;
9298 
9299 	s = obj->maps;
9300 	e = obj->maps + obj->nr_maps;
9301 
9302 	if ((m < s) || (m >= e)) {
9303 		pr_warn("error in %s: map handler doesn't belong to object\n",
9304 			 __func__);
9305 		return errno = EINVAL, NULL;
9306 	}
9307 
9308 	idx = (m - obj->maps) + i;
9309 	if (idx >= obj->nr_maps || idx < 0)
9310 		return NULL;
9311 	return &obj->maps[idx];
9312 }
9313 
9314 struct bpf_map *
9315 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9316 {
9317 	if (prev == NULL)
9318 		return obj->maps;
9319 
9320 	return __bpf_map__iter(prev, obj, 1);
9321 }
9322 
9323 struct bpf_map *
9324 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9325 {
9326 	if (next == NULL) {
9327 		if (!obj->nr_maps)
9328 			return NULL;
9329 		return obj->maps + obj->nr_maps - 1;
9330 	}
9331 
9332 	return __bpf_map__iter(next, obj, -1);
9333 }
9334 
9335 struct bpf_map *
9336 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9337 {
9338 	struct bpf_map *pos;
9339 
9340 	bpf_object__for_each_map(pos, obj) {
9341 		/* if it's a special internal map name (which always starts
9342 		 * with dot) then check if that special name matches the
9343 		 * real map name (ELF section name)
9344 		 */
9345 		if (name[0] == '.') {
9346 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9347 				return pos;
9348 			continue;
9349 		}
9350 		/* otherwise map name has to be an exact match */
9351 		if (map_uses_real_name(pos)) {
9352 			if (strcmp(pos->real_name, name) == 0)
9353 				return pos;
9354 			continue;
9355 		}
9356 		if (strcmp(pos->name, name) == 0)
9357 			return pos;
9358 	}
9359 	return errno = ENOENT, NULL;
9360 }
9361 
9362 int
9363 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9364 {
9365 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9366 }
9367 
9368 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9369 			   size_t value_sz, bool check_value_sz)
9370 {
9371 	if (map->fd <= 0)
9372 		return -ENOENT;
9373 
9374 	if (map->def.key_size != key_sz) {
9375 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9376 			map->name, key_sz, map->def.key_size);
9377 		return -EINVAL;
9378 	}
9379 
9380 	if (!check_value_sz)
9381 		return 0;
9382 
9383 	switch (map->def.type) {
9384 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9385 	case BPF_MAP_TYPE_PERCPU_HASH:
9386 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9387 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9388 		int num_cpu = libbpf_num_possible_cpus();
9389 		size_t elem_sz = roundup(map->def.value_size, 8);
9390 
9391 		if (value_sz != num_cpu * elem_sz) {
9392 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9393 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9394 			return -EINVAL;
9395 		}
9396 		break;
9397 	}
9398 	default:
9399 		if (map->def.value_size != value_sz) {
9400 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9401 				map->name, value_sz, map->def.value_size);
9402 			return -EINVAL;
9403 		}
9404 		break;
9405 	}
9406 	return 0;
9407 }
9408 
9409 int bpf_map__lookup_elem(const struct bpf_map *map,
9410 			 const void *key, size_t key_sz,
9411 			 void *value, size_t value_sz, __u64 flags)
9412 {
9413 	int err;
9414 
9415 	err = validate_map_op(map, key_sz, value_sz, true);
9416 	if (err)
9417 		return libbpf_err(err);
9418 
9419 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9420 }
9421 
9422 int bpf_map__update_elem(const struct bpf_map *map,
9423 			 const void *key, size_t key_sz,
9424 			 const void *value, size_t value_sz, __u64 flags)
9425 {
9426 	int err;
9427 
9428 	err = validate_map_op(map, key_sz, value_sz, true);
9429 	if (err)
9430 		return libbpf_err(err);
9431 
9432 	return bpf_map_update_elem(map->fd, key, value, flags);
9433 }
9434 
9435 int bpf_map__delete_elem(const struct bpf_map *map,
9436 			 const void *key, size_t key_sz, __u64 flags)
9437 {
9438 	int err;
9439 
9440 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9441 	if (err)
9442 		return libbpf_err(err);
9443 
9444 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9445 }
9446 
9447 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9448 				    const void *key, size_t key_sz,
9449 				    void *value, size_t value_sz, __u64 flags)
9450 {
9451 	int err;
9452 
9453 	err = validate_map_op(map, key_sz, value_sz, true);
9454 	if (err)
9455 		return libbpf_err(err);
9456 
9457 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9458 }
9459 
9460 int bpf_map__get_next_key(const struct bpf_map *map,
9461 			  const void *cur_key, void *next_key, size_t key_sz)
9462 {
9463 	int err;
9464 
9465 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9466 	if (err)
9467 		return libbpf_err(err);
9468 
9469 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9470 }
9471 
9472 long libbpf_get_error(const void *ptr)
9473 {
9474 	if (!IS_ERR_OR_NULL(ptr))
9475 		return 0;
9476 
9477 	if (IS_ERR(ptr))
9478 		errno = -PTR_ERR(ptr);
9479 
9480 	/* If ptr == NULL, then errno should be already set by the failing
9481 	 * API, because libbpf never returns NULL on success and it now always
9482 	 * sets errno on error. So no extra errno handling for ptr == NULL
9483 	 * case.
9484 	 */
9485 	return -errno;
9486 }
9487 
9488 /* Replace link's underlying BPF program with the new one */
9489 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9490 {
9491 	int ret;
9492 
9493 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9494 	return libbpf_err_errno(ret);
9495 }
9496 
9497 /* Release "ownership" of underlying BPF resource (typically, BPF program
9498  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9499  * link, when destructed through bpf_link__destroy() call won't attempt to
9500  * detach/unregisted that BPF resource. This is useful in situations where,
9501  * say, attached BPF program has to outlive userspace program that attached it
9502  * in the system. Depending on type of BPF program, though, there might be
9503  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9504  * exit of userspace program doesn't trigger automatic detachment and clean up
9505  * inside the kernel.
9506  */
9507 void bpf_link__disconnect(struct bpf_link *link)
9508 {
9509 	link->disconnected = true;
9510 }
9511 
9512 int bpf_link__destroy(struct bpf_link *link)
9513 {
9514 	int err = 0;
9515 
9516 	if (IS_ERR_OR_NULL(link))
9517 		return 0;
9518 
9519 	if (!link->disconnected && link->detach)
9520 		err = link->detach(link);
9521 	if (link->pin_path)
9522 		free(link->pin_path);
9523 	if (link->dealloc)
9524 		link->dealloc(link);
9525 	else
9526 		free(link);
9527 
9528 	return libbpf_err(err);
9529 }
9530 
9531 int bpf_link__fd(const struct bpf_link *link)
9532 {
9533 	return link->fd;
9534 }
9535 
9536 const char *bpf_link__pin_path(const struct bpf_link *link)
9537 {
9538 	return link->pin_path;
9539 }
9540 
9541 static int bpf_link__detach_fd(struct bpf_link *link)
9542 {
9543 	return libbpf_err_errno(close(link->fd));
9544 }
9545 
9546 struct bpf_link *bpf_link__open(const char *path)
9547 {
9548 	struct bpf_link *link;
9549 	int fd;
9550 
9551 	fd = bpf_obj_get(path);
9552 	if (fd < 0) {
9553 		fd = -errno;
9554 		pr_warn("failed to open link at %s: %d\n", path, fd);
9555 		return libbpf_err_ptr(fd);
9556 	}
9557 
9558 	link = calloc(1, sizeof(*link));
9559 	if (!link) {
9560 		close(fd);
9561 		return libbpf_err_ptr(-ENOMEM);
9562 	}
9563 	link->detach = &bpf_link__detach_fd;
9564 	link->fd = fd;
9565 
9566 	link->pin_path = strdup(path);
9567 	if (!link->pin_path) {
9568 		bpf_link__destroy(link);
9569 		return libbpf_err_ptr(-ENOMEM);
9570 	}
9571 
9572 	return link;
9573 }
9574 
9575 int bpf_link__detach(struct bpf_link *link)
9576 {
9577 	return bpf_link_detach(link->fd) ? -errno : 0;
9578 }
9579 
9580 int bpf_link__pin(struct bpf_link *link, const char *path)
9581 {
9582 	int err;
9583 
9584 	if (link->pin_path)
9585 		return libbpf_err(-EBUSY);
9586 	err = make_parent_dir(path);
9587 	if (err)
9588 		return libbpf_err(err);
9589 	err = check_path(path);
9590 	if (err)
9591 		return libbpf_err(err);
9592 
9593 	link->pin_path = strdup(path);
9594 	if (!link->pin_path)
9595 		return libbpf_err(-ENOMEM);
9596 
9597 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9598 		err = -errno;
9599 		zfree(&link->pin_path);
9600 		return libbpf_err(err);
9601 	}
9602 
9603 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9604 	return 0;
9605 }
9606 
9607 int bpf_link__unpin(struct bpf_link *link)
9608 {
9609 	int err;
9610 
9611 	if (!link->pin_path)
9612 		return libbpf_err(-EINVAL);
9613 
9614 	err = unlink(link->pin_path);
9615 	if (err != 0)
9616 		return -errno;
9617 
9618 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9619 	zfree(&link->pin_path);
9620 	return 0;
9621 }
9622 
9623 struct bpf_link_perf {
9624 	struct bpf_link link;
9625 	int perf_event_fd;
9626 	/* legacy kprobe support: keep track of probe identifier and type */
9627 	char *legacy_probe_name;
9628 	bool legacy_is_kprobe;
9629 	bool legacy_is_retprobe;
9630 };
9631 
9632 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9633 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9634 
9635 static int bpf_link_perf_detach(struct bpf_link *link)
9636 {
9637 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9638 	int err = 0;
9639 
9640 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9641 		err = -errno;
9642 
9643 	if (perf_link->perf_event_fd != link->fd)
9644 		close(perf_link->perf_event_fd);
9645 	close(link->fd);
9646 
9647 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9648 	if (perf_link->legacy_probe_name) {
9649 		if (perf_link->legacy_is_kprobe) {
9650 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9651 							 perf_link->legacy_is_retprobe);
9652 		} else {
9653 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9654 							 perf_link->legacy_is_retprobe);
9655 		}
9656 	}
9657 
9658 	return err;
9659 }
9660 
9661 static void bpf_link_perf_dealloc(struct bpf_link *link)
9662 {
9663 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9664 
9665 	free(perf_link->legacy_probe_name);
9666 	free(perf_link);
9667 }
9668 
9669 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9670 						     const struct bpf_perf_event_opts *opts)
9671 {
9672 	char errmsg[STRERR_BUFSIZE];
9673 	struct bpf_link_perf *link;
9674 	int prog_fd, link_fd = -1, err;
9675 
9676 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9677 		return libbpf_err_ptr(-EINVAL);
9678 
9679 	if (pfd < 0) {
9680 		pr_warn("prog '%s': invalid perf event FD %d\n",
9681 			prog->name, pfd);
9682 		return libbpf_err_ptr(-EINVAL);
9683 	}
9684 	prog_fd = bpf_program__fd(prog);
9685 	if (prog_fd < 0) {
9686 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9687 			prog->name);
9688 		return libbpf_err_ptr(-EINVAL);
9689 	}
9690 
9691 	link = calloc(1, sizeof(*link));
9692 	if (!link)
9693 		return libbpf_err_ptr(-ENOMEM);
9694 	link->link.detach = &bpf_link_perf_detach;
9695 	link->link.dealloc = &bpf_link_perf_dealloc;
9696 	link->perf_event_fd = pfd;
9697 
9698 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9699 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9700 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9701 
9702 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9703 		if (link_fd < 0) {
9704 			err = -errno;
9705 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9706 				prog->name, pfd,
9707 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9708 			goto err_out;
9709 		}
9710 		link->link.fd = link_fd;
9711 	} else {
9712 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9713 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9714 			err = -EOPNOTSUPP;
9715 			goto err_out;
9716 		}
9717 
9718 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9719 			err = -errno;
9720 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9721 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9722 			if (err == -EPROTO)
9723 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9724 					prog->name, pfd);
9725 			goto err_out;
9726 		}
9727 		link->link.fd = pfd;
9728 	}
9729 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9730 		err = -errno;
9731 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9732 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9733 		goto err_out;
9734 	}
9735 
9736 	return &link->link;
9737 err_out:
9738 	if (link_fd >= 0)
9739 		close(link_fd);
9740 	free(link);
9741 	return libbpf_err_ptr(err);
9742 }
9743 
9744 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9745 {
9746 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9747 }
9748 
9749 /*
9750  * this function is expected to parse integer in the range of [0, 2^31-1] from
9751  * given file using scanf format string fmt. If actual parsed value is
9752  * negative, the result might be indistinguishable from error
9753  */
9754 static int parse_uint_from_file(const char *file, const char *fmt)
9755 {
9756 	char buf[STRERR_BUFSIZE];
9757 	int err, ret;
9758 	FILE *f;
9759 
9760 	f = fopen(file, "r");
9761 	if (!f) {
9762 		err = -errno;
9763 		pr_debug("failed to open '%s': %s\n", file,
9764 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9765 		return err;
9766 	}
9767 	err = fscanf(f, fmt, &ret);
9768 	if (err != 1) {
9769 		err = err == EOF ? -EIO : -errno;
9770 		pr_debug("failed to parse '%s': %s\n", file,
9771 			libbpf_strerror_r(err, buf, sizeof(buf)));
9772 		fclose(f);
9773 		return err;
9774 	}
9775 	fclose(f);
9776 	return ret;
9777 }
9778 
9779 static int determine_kprobe_perf_type(void)
9780 {
9781 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9782 
9783 	return parse_uint_from_file(file, "%d\n");
9784 }
9785 
9786 static int determine_uprobe_perf_type(void)
9787 {
9788 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9789 
9790 	return parse_uint_from_file(file, "%d\n");
9791 }
9792 
9793 static int determine_kprobe_retprobe_bit(void)
9794 {
9795 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9796 
9797 	return parse_uint_from_file(file, "config:%d\n");
9798 }
9799 
9800 static int determine_uprobe_retprobe_bit(void)
9801 {
9802 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9803 
9804 	return parse_uint_from_file(file, "config:%d\n");
9805 }
9806 
9807 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9808 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9809 
9810 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9811 				 uint64_t offset, int pid, size_t ref_ctr_off)
9812 {
9813 	struct perf_event_attr attr = {};
9814 	char errmsg[STRERR_BUFSIZE];
9815 	int type, pfd;
9816 
9817 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9818 		return -EINVAL;
9819 
9820 	type = uprobe ? determine_uprobe_perf_type()
9821 		      : determine_kprobe_perf_type();
9822 	if (type < 0) {
9823 		pr_warn("failed to determine %s perf type: %s\n",
9824 			uprobe ? "uprobe" : "kprobe",
9825 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9826 		return type;
9827 	}
9828 	if (retprobe) {
9829 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9830 				 : determine_kprobe_retprobe_bit();
9831 
9832 		if (bit < 0) {
9833 			pr_warn("failed to determine %s retprobe bit: %s\n",
9834 				uprobe ? "uprobe" : "kprobe",
9835 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9836 			return bit;
9837 		}
9838 		attr.config |= 1 << bit;
9839 	}
9840 	attr.size = sizeof(attr);
9841 	attr.type = type;
9842 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9843 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9844 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9845 
9846 	/* pid filter is meaningful only for uprobes */
9847 	pfd = syscall(__NR_perf_event_open, &attr,
9848 		      pid < 0 ? -1 : pid /* pid */,
9849 		      pid == -1 ? 0 : -1 /* cpu */,
9850 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9851 	return pfd >= 0 ? pfd : -errno;
9852 }
9853 
9854 static int append_to_file(const char *file, const char *fmt, ...)
9855 {
9856 	int fd, n, err = 0;
9857 	va_list ap;
9858 
9859 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9860 	if (fd < 0)
9861 		return -errno;
9862 
9863 	va_start(ap, fmt);
9864 	n = vdprintf(fd, fmt, ap);
9865 	va_end(ap);
9866 
9867 	if (n < 0)
9868 		err = -errno;
9869 
9870 	close(fd);
9871 	return err;
9872 }
9873 
9874 #define DEBUGFS "/sys/kernel/debug/tracing"
9875 #define TRACEFS "/sys/kernel/tracing"
9876 
9877 static bool use_debugfs(void)
9878 {
9879 	static int has_debugfs = -1;
9880 
9881 	if (has_debugfs < 0)
9882 		has_debugfs = access(DEBUGFS, F_OK) == 0;
9883 
9884 	return has_debugfs == 1;
9885 }
9886 
9887 static const char *tracefs_path(void)
9888 {
9889 	return use_debugfs() ? DEBUGFS : TRACEFS;
9890 }
9891 
9892 static const char *tracefs_kprobe_events(void)
9893 {
9894 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9895 }
9896 
9897 static const char *tracefs_uprobe_events(void)
9898 {
9899 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9900 }
9901 
9902 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9903 					 const char *kfunc_name, size_t offset)
9904 {
9905 	static int index = 0;
9906 
9907 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9908 		 __sync_fetch_and_add(&index, 1));
9909 }
9910 
9911 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9912 				   const char *kfunc_name, size_t offset)
9913 {
9914 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9915 			      retprobe ? 'r' : 'p',
9916 			      retprobe ? "kretprobes" : "kprobes",
9917 			      probe_name, kfunc_name, offset);
9918 }
9919 
9920 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9921 {
9922 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9923 			      retprobe ? "kretprobes" : "kprobes", probe_name);
9924 }
9925 
9926 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9927 {
9928 	char file[256];
9929 
9930 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9931 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9932 
9933 	return parse_uint_from_file(file, "%d\n");
9934 }
9935 
9936 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9937 					 const char *kfunc_name, size_t offset, int pid)
9938 {
9939 	struct perf_event_attr attr = {};
9940 	char errmsg[STRERR_BUFSIZE];
9941 	int type, pfd, err;
9942 
9943 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9944 	if (err < 0) {
9945 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9946 			kfunc_name, offset,
9947 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9948 		return err;
9949 	}
9950 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9951 	if (type < 0) {
9952 		err = type;
9953 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9954 			kfunc_name, offset,
9955 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9956 		goto err_clean_legacy;
9957 	}
9958 	attr.size = sizeof(attr);
9959 	attr.config = type;
9960 	attr.type = PERF_TYPE_TRACEPOINT;
9961 
9962 	pfd = syscall(__NR_perf_event_open, &attr,
9963 		      pid < 0 ? -1 : pid, /* pid */
9964 		      pid == -1 ? 0 : -1, /* cpu */
9965 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
9966 	if (pfd < 0) {
9967 		err = -errno;
9968 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9969 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9970 		goto err_clean_legacy;
9971 	}
9972 	return pfd;
9973 
9974 err_clean_legacy:
9975 	/* Clear the newly added legacy kprobe_event */
9976 	remove_kprobe_event_legacy(probe_name, retprobe);
9977 	return err;
9978 }
9979 
9980 static const char *arch_specific_syscall_pfx(void)
9981 {
9982 #if defined(__x86_64__)
9983 	return "x64";
9984 #elif defined(__i386__)
9985 	return "ia32";
9986 #elif defined(__s390x__)
9987 	return "s390x";
9988 #elif defined(__s390__)
9989 	return "s390";
9990 #elif defined(__arm__)
9991 	return "arm";
9992 #elif defined(__aarch64__)
9993 	return "arm64";
9994 #elif defined(__mips__)
9995 	return "mips";
9996 #elif defined(__riscv)
9997 	return "riscv";
9998 #elif defined(__powerpc__)
9999 	return "powerpc";
10000 #elif defined(__powerpc64__)
10001 	return "powerpc64";
10002 #else
10003 	return NULL;
10004 #endif
10005 }
10006 
10007 static int probe_kern_syscall_wrapper(void)
10008 {
10009 	char syscall_name[64];
10010 	const char *ksys_pfx;
10011 
10012 	ksys_pfx = arch_specific_syscall_pfx();
10013 	if (!ksys_pfx)
10014 		return 0;
10015 
10016 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10017 
10018 	if (determine_kprobe_perf_type() >= 0) {
10019 		int pfd;
10020 
10021 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10022 		if (pfd >= 0)
10023 			close(pfd);
10024 
10025 		return pfd >= 0 ? 1 : 0;
10026 	} else { /* legacy mode */
10027 		char probe_name[128];
10028 
10029 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10030 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10031 			return 0;
10032 
10033 		(void)remove_kprobe_event_legacy(probe_name, false);
10034 		return 1;
10035 	}
10036 }
10037 
10038 struct bpf_link *
10039 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10040 				const char *func_name,
10041 				const struct bpf_kprobe_opts *opts)
10042 {
10043 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10044 	char errmsg[STRERR_BUFSIZE];
10045 	char *legacy_probe = NULL;
10046 	struct bpf_link *link;
10047 	size_t offset;
10048 	bool retprobe, legacy;
10049 	int pfd, err;
10050 
10051 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10052 		return libbpf_err_ptr(-EINVAL);
10053 
10054 	retprobe = OPTS_GET(opts, retprobe, false);
10055 	offset = OPTS_GET(opts, offset, 0);
10056 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10057 
10058 	legacy = determine_kprobe_perf_type() < 0;
10059 	if (!legacy) {
10060 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10061 					    func_name, offset,
10062 					    -1 /* pid */, 0 /* ref_ctr_off */);
10063 	} else {
10064 		char probe_name[256];
10065 
10066 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10067 					     func_name, offset);
10068 
10069 		legacy_probe = strdup(probe_name);
10070 		if (!legacy_probe)
10071 			return libbpf_err_ptr(-ENOMEM);
10072 
10073 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10074 						    offset, -1 /* pid */);
10075 	}
10076 	if (pfd < 0) {
10077 		err = -errno;
10078 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10079 			prog->name, retprobe ? "kretprobe" : "kprobe",
10080 			func_name, offset,
10081 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10082 		goto err_out;
10083 	}
10084 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10085 	err = libbpf_get_error(link);
10086 	if (err) {
10087 		close(pfd);
10088 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10089 			prog->name, retprobe ? "kretprobe" : "kprobe",
10090 			func_name, offset,
10091 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10092 		goto err_clean_legacy;
10093 	}
10094 	if (legacy) {
10095 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10096 
10097 		perf_link->legacy_probe_name = legacy_probe;
10098 		perf_link->legacy_is_kprobe = true;
10099 		perf_link->legacy_is_retprobe = retprobe;
10100 	}
10101 
10102 	return link;
10103 
10104 err_clean_legacy:
10105 	if (legacy)
10106 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10107 err_out:
10108 	free(legacy_probe);
10109 	return libbpf_err_ptr(err);
10110 }
10111 
10112 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10113 					    bool retprobe,
10114 					    const char *func_name)
10115 {
10116 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10117 		.retprobe = retprobe,
10118 	);
10119 
10120 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10121 }
10122 
10123 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10124 					      const char *syscall_name,
10125 					      const struct bpf_ksyscall_opts *opts)
10126 {
10127 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10128 	char func_name[128];
10129 
10130 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10131 		return libbpf_err_ptr(-EINVAL);
10132 
10133 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10134 		/* arch_specific_syscall_pfx() should never return NULL here
10135 		 * because it is guarded by kernel_supports(). However, since
10136 		 * compiler does not know that we have an explicit conditional
10137 		 * as well.
10138 		 */
10139 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10140 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10141 	} else {
10142 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10143 	}
10144 
10145 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10146 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10147 
10148 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10149 }
10150 
10151 /* Adapted from perf/util/string.c */
10152 static bool glob_match(const char *str, const char *pat)
10153 {
10154 	while (*str && *pat && *pat != '*') {
10155 		if (*pat == '?') {      /* Matches any single character */
10156 			str++;
10157 			pat++;
10158 			continue;
10159 		}
10160 		if (*str != *pat)
10161 			return false;
10162 		str++;
10163 		pat++;
10164 	}
10165 	/* Check wild card */
10166 	if (*pat == '*') {
10167 		while (*pat == '*')
10168 			pat++;
10169 		if (!*pat) /* Tail wild card matches all */
10170 			return true;
10171 		while (*str)
10172 			if (glob_match(str++, pat))
10173 				return true;
10174 	}
10175 	return !*str && !*pat;
10176 }
10177 
10178 struct kprobe_multi_resolve {
10179 	const char *pattern;
10180 	unsigned long *addrs;
10181 	size_t cap;
10182 	size_t cnt;
10183 };
10184 
10185 static int
10186 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10187 			const char *sym_name, void *ctx)
10188 {
10189 	struct kprobe_multi_resolve *res = ctx;
10190 	int err;
10191 
10192 	if (!glob_match(sym_name, res->pattern))
10193 		return 0;
10194 
10195 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10196 				res->cnt + 1);
10197 	if (err)
10198 		return err;
10199 
10200 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10201 	return 0;
10202 }
10203 
10204 struct bpf_link *
10205 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10206 				      const char *pattern,
10207 				      const struct bpf_kprobe_multi_opts *opts)
10208 {
10209 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10210 	struct kprobe_multi_resolve res = {
10211 		.pattern = pattern,
10212 	};
10213 	struct bpf_link *link = NULL;
10214 	char errmsg[STRERR_BUFSIZE];
10215 	const unsigned long *addrs;
10216 	int err, link_fd, prog_fd;
10217 	const __u64 *cookies;
10218 	const char **syms;
10219 	bool retprobe;
10220 	size_t cnt;
10221 
10222 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10223 		return libbpf_err_ptr(-EINVAL);
10224 
10225 	syms    = OPTS_GET(opts, syms, false);
10226 	addrs   = OPTS_GET(opts, addrs, false);
10227 	cnt     = OPTS_GET(opts, cnt, false);
10228 	cookies = OPTS_GET(opts, cookies, false);
10229 
10230 	if (!pattern && !addrs && !syms)
10231 		return libbpf_err_ptr(-EINVAL);
10232 	if (pattern && (addrs || syms || cookies || cnt))
10233 		return libbpf_err_ptr(-EINVAL);
10234 	if (!pattern && !cnt)
10235 		return libbpf_err_ptr(-EINVAL);
10236 	if (addrs && syms)
10237 		return libbpf_err_ptr(-EINVAL);
10238 
10239 	if (pattern) {
10240 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10241 		if (err)
10242 			goto error;
10243 		if (!res.cnt) {
10244 			err = -ENOENT;
10245 			goto error;
10246 		}
10247 		addrs = res.addrs;
10248 		cnt = res.cnt;
10249 	}
10250 
10251 	retprobe = OPTS_GET(opts, retprobe, false);
10252 
10253 	lopts.kprobe_multi.syms = syms;
10254 	lopts.kprobe_multi.addrs = addrs;
10255 	lopts.kprobe_multi.cookies = cookies;
10256 	lopts.kprobe_multi.cnt = cnt;
10257 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10258 
10259 	link = calloc(1, sizeof(*link));
10260 	if (!link) {
10261 		err = -ENOMEM;
10262 		goto error;
10263 	}
10264 	link->detach = &bpf_link__detach_fd;
10265 
10266 	prog_fd = bpf_program__fd(prog);
10267 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10268 	if (link_fd < 0) {
10269 		err = -errno;
10270 		pr_warn("prog '%s': failed to attach: %s\n",
10271 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10272 		goto error;
10273 	}
10274 	link->fd = link_fd;
10275 	free(res.addrs);
10276 	return link;
10277 
10278 error:
10279 	free(link);
10280 	free(res.addrs);
10281 	return libbpf_err_ptr(err);
10282 }
10283 
10284 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10285 {
10286 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10287 	unsigned long offset = 0;
10288 	const char *func_name;
10289 	char *func;
10290 	int n;
10291 
10292 	*link = NULL;
10293 
10294 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10295 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10296 		return 0;
10297 
10298 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10299 	if (opts.retprobe)
10300 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10301 	else
10302 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10303 
10304 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10305 	if (n < 1) {
10306 		pr_warn("kprobe name is invalid: %s\n", func_name);
10307 		return -EINVAL;
10308 	}
10309 	if (opts.retprobe && offset != 0) {
10310 		free(func);
10311 		pr_warn("kretprobes do not support offset specification\n");
10312 		return -EINVAL;
10313 	}
10314 
10315 	opts.offset = offset;
10316 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10317 	free(func);
10318 	return libbpf_get_error(*link);
10319 }
10320 
10321 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10322 {
10323 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10324 	const char *syscall_name;
10325 
10326 	*link = NULL;
10327 
10328 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10329 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10330 		return 0;
10331 
10332 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10333 	if (opts.retprobe)
10334 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10335 	else
10336 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10337 
10338 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10339 	return *link ? 0 : -errno;
10340 }
10341 
10342 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10343 {
10344 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10345 	const char *spec;
10346 	char *pattern;
10347 	int n;
10348 
10349 	*link = NULL;
10350 
10351 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10352 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10353 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10354 		return 0;
10355 
10356 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10357 	if (opts.retprobe)
10358 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10359 	else
10360 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10361 
10362 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10363 	if (n < 1) {
10364 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10365 		return -EINVAL;
10366 	}
10367 
10368 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10369 	free(pattern);
10370 	return libbpf_get_error(*link);
10371 }
10372 
10373 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10374 					 const char *binary_path, uint64_t offset)
10375 {
10376 	int i;
10377 
10378 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10379 
10380 	/* sanitize binary_path in the probe name */
10381 	for (i = 0; buf[i]; i++) {
10382 		if (!isalnum(buf[i]))
10383 			buf[i] = '_';
10384 	}
10385 }
10386 
10387 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10388 					  const char *binary_path, size_t offset)
10389 {
10390 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10391 			      retprobe ? 'r' : 'p',
10392 			      retprobe ? "uretprobes" : "uprobes",
10393 			      probe_name, binary_path, offset);
10394 }
10395 
10396 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10397 {
10398 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10399 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10400 }
10401 
10402 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10403 {
10404 	char file[512];
10405 
10406 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10407 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10408 
10409 	return parse_uint_from_file(file, "%d\n");
10410 }
10411 
10412 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10413 					 const char *binary_path, size_t offset, int pid)
10414 {
10415 	struct perf_event_attr attr;
10416 	int type, pfd, err;
10417 
10418 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10419 	if (err < 0) {
10420 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10421 			binary_path, (size_t)offset, err);
10422 		return err;
10423 	}
10424 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10425 	if (type < 0) {
10426 		err = type;
10427 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10428 			binary_path, offset, err);
10429 		goto err_clean_legacy;
10430 	}
10431 
10432 	memset(&attr, 0, sizeof(attr));
10433 	attr.size = sizeof(attr);
10434 	attr.config = type;
10435 	attr.type = PERF_TYPE_TRACEPOINT;
10436 
10437 	pfd = syscall(__NR_perf_event_open, &attr,
10438 		      pid < 0 ? -1 : pid, /* pid */
10439 		      pid == -1 ? 0 : -1, /* cpu */
10440 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10441 	if (pfd < 0) {
10442 		err = -errno;
10443 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10444 		goto err_clean_legacy;
10445 	}
10446 	return pfd;
10447 
10448 err_clean_legacy:
10449 	/* Clear the newly added legacy uprobe_event */
10450 	remove_uprobe_event_legacy(probe_name, retprobe);
10451 	return err;
10452 }
10453 
10454 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10455 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10456 {
10457 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10458 		GElf_Shdr sh;
10459 
10460 		if (!gelf_getshdr(scn, &sh))
10461 			continue;
10462 		if (sh.sh_type == sh_type)
10463 			return scn;
10464 	}
10465 	return NULL;
10466 }
10467 
10468 /* Find offset of function name in object specified by path.  "name" matches
10469  * symbol name or name@@LIB for library functions.
10470  */
10471 static long elf_find_func_offset(const char *binary_path, const char *name)
10472 {
10473 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10474 	bool is_shared_lib, is_name_qualified;
10475 	char errmsg[STRERR_BUFSIZE];
10476 	long ret = -ENOENT;
10477 	size_t name_len;
10478 	GElf_Ehdr ehdr;
10479 	Elf *elf;
10480 
10481 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10482 	if (fd < 0) {
10483 		ret = -errno;
10484 		pr_warn("failed to open %s: %s\n", binary_path,
10485 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10486 		return ret;
10487 	}
10488 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10489 	if (!elf) {
10490 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10491 		close(fd);
10492 		return -LIBBPF_ERRNO__FORMAT;
10493 	}
10494 	if (!gelf_getehdr(elf, &ehdr)) {
10495 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10496 		ret = -LIBBPF_ERRNO__FORMAT;
10497 		goto out;
10498 	}
10499 	/* for shared lib case, we do not need to calculate relative offset */
10500 	is_shared_lib = ehdr.e_type == ET_DYN;
10501 
10502 	name_len = strlen(name);
10503 	/* Does name specify "@@LIB"? */
10504 	is_name_qualified = strstr(name, "@@") != NULL;
10505 
10506 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
10507 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10508 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10509 	 * reported as a warning/error.
10510 	 */
10511 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10512 		size_t nr_syms, strtabidx, idx;
10513 		Elf_Data *symbols = NULL;
10514 		Elf_Scn *scn = NULL;
10515 		int last_bind = -1;
10516 		const char *sname;
10517 		GElf_Shdr sh;
10518 
10519 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10520 		if (!scn) {
10521 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10522 				 binary_path);
10523 			continue;
10524 		}
10525 		if (!gelf_getshdr(scn, &sh))
10526 			continue;
10527 		strtabidx = sh.sh_link;
10528 		symbols = elf_getdata(scn, 0);
10529 		if (!symbols) {
10530 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10531 				binary_path, elf_errmsg(-1));
10532 			ret = -LIBBPF_ERRNO__FORMAT;
10533 			goto out;
10534 		}
10535 		nr_syms = symbols->d_size / sh.sh_entsize;
10536 
10537 		for (idx = 0; idx < nr_syms; idx++) {
10538 			int curr_bind;
10539 			GElf_Sym sym;
10540 			Elf_Scn *sym_scn;
10541 			GElf_Shdr sym_sh;
10542 
10543 			if (!gelf_getsym(symbols, idx, &sym))
10544 				continue;
10545 
10546 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10547 				continue;
10548 
10549 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10550 			if (!sname)
10551 				continue;
10552 
10553 			curr_bind = GELF_ST_BIND(sym.st_info);
10554 
10555 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10556 			if (strncmp(sname, name, name_len) != 0)
10557 				continue;
10558 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10559 			 * additional characters in sname should be of the form "@@LIB".
10560 			 */
10561 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10562 				continue;
10563 
10564 			if (ret >= 0) {
10565 				/* handle multiple matches */
10566 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10567 					/* Only accept one non-weak bind. */
10568 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10569 						sname, name, binary_path);
10570 					ret = -LIBBPF_ERRNO__FORMAT;
10571 					goto out;
10572 				} else if (curr_bind == STB_WEAK) {
10573 					/* already have a non-weak bind, and
10574 					 * this is a weak bind, so ignore.
10575 					 */
10576 					continue;
10577 				}
10578 			}
10579 
10580 			/* Transform symbol's virtual address (absolute for
10581 			 * binaries and relative for shared libs) into file
10582 			 * offset, which is what kernel is expecting for
10583 			 * uprobe/uretprobe attachment.
10584 			 * See Documentation/trace/uprobetracer.rst for more
10585 			 * details.
10586 			 * This is done by looking up symbol's containing
10587 			 * section's header and using it's virtual address
10588 			 * (sh_addr) and corresponding file offset (sh_offset)
10589 			 * to transform sym.st_value (virtual address) into
10590 			 * desired final file offset.
10591 			 */
10592 			sym_scn = elf_getscn(elf, sym.st_shndx);
10593 			if (!sym_scn)
10594 				continue;
10595 			if (!gelf_getshdr(sym_scn, &sym_sh))
10596 				continue;
10597 
10598 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10599 			last_bind = curr_bind;
10600 		}
10601 		if (ret > 0)
10602 			break;
10603 	}
10604 
10605 	if (ret > 0) {
10606 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10607 			 ret);
10608 	} else {
10609 		if (ret == 0) {
10610 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10611 				is_shared_lib ? "should not be 0 in a shared library" :
10612 						"try using shared library path instead");
10613 			ret = -ENOENT;
10614 		} else {
10615 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10616 		}
10617 	}
10618 out:
10619 	elf_end(elf);
10620 	close(fd);
10621 	return ret;
10622 }
10623 
10624 static const char *arch_specific_lib_paths(void)
10625 {
10626 	/*
10627 	 * Based on https://packages.debian.org/sid/libc6.
10628 	 *
10629 	 * Assume that the traced program is built for the same architecture
10630 	 * as libbpf, which should cover the vast majority of cases.
10631 	 */
10632 #if defined(__x86_64__)
10633 	return "/lib/x86_64-linux-gnu";
10634 #elif defined(__i386__)
10635 	return "/lib/i386-linux-gnu";
10636 #elif defined(__s390x__)
10637 	return "/lib/s390x-linux-gnu";
10638 #elif defined(__s390__)
10639 	return "/lib/s390-linux-gnu";
10640 #elif defined(__arm__) && defined(__SOFTFP__)
10641 	return "/lib/arm-linux-gnueabi";
10642 #elif defined(__arm__) && !defined(__SOFTFP__)
10643 	return "/lib/arm-linux-gnueabihf";
10644 #elif defined(__aarch64__)
10645 	return "/lib/aarch64-linux-gnu";
10646 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10647 	return "/lib/mips64el-linux-gnuabi64";
10648 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10649 	return "/lib/mipsel-linux-gnu";
10650 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10651 	return "/lib/powerpc64le-linux-gnu";
10652 #elif defined(__sparc__) && defined(__arch64__)
10653 	return "/lib/sparc64-linux-gnu";
10654 #elif defined(__riscv) && __riscv_xlen == 64
10655 	return "/lib/riscv64-linux-gnu";
10656 #else
10657 	return NULL;
10658 #endif
10659 }
10660 
10661 /* Get full path to program/shared library. */
10662 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10663 {
10664 	const char *search_paths[3] = {};
10665 	int i;
10666 
10667 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10668 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10669 		search_paths[1] = "/usr/lib64:/usr/lib";
10670 		search_paths[2] = arch_specific_lib_paths();
10671 	} else {
10672 		search_paths[0] = getenv("PATH");
10673 		search_paths[1] = "/usr/bin:/usr/sbin";
10674 	}
10675 
10676 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10677 		const char *s;
10678 
10679 		if (!search_paths[i])
10680 			continue;
10681 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10682 			char *next_path;
10683 			int seg_len;
10684 
10685 			if (s[0] == ':')
10686 				s++;
10687 			next_path = strchr(s, ':');
10688 			seg_len = next_path ? next_path - s : strlen(s);
10689 			if (!seg_len)
10690 				continue;
10691 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10692 			/* ensure it is an executable file/link */
10693 			if (access(result, R_OK | X_OK) < 0)
10694 				continue;
10695 			pr_debug("resolved '%s' to '%s'\n", file, result);
10696 			return 0;
10697 		}
10698 	}
10699 	return -ENOENT;
10700 }
10701 
10702 LIBBPF_API struct bpf_link *
10703 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10704 				const char *binary_path, size_t func_offset,
10705 				const struct bpf_uprobe_opts *opts)
10706 {
10707 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10708 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10709 	char full_binary_path[PATH_MAX];
10710 	struct bpf_link *link;
10711 	size_t ref_ctr_off;
10712 	int pfd, err;
10713 	bool retprobe, legacy;
10714 	const char *func_name;
10715 
10716 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10717 		return libbpf_err_ptr(-EINVAL);
10718 
10719 	retprobe = OPTS_GET(opts, retprobe, false);
10720 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10721 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10722 
10723 	if (!binary_path)
10724 		return libbpf_err_ptr(-EINVAL);
10725 
10726 	if (!strchr(binary_path, '/')) {
10727 		err = resolve_full_path(binary_path, full_binary_path,
10728 					sizeof(full_binary_path));
10729 		if (err) {
10730 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10731 				prog->name, binary_path, err);
10732 			return libbpf_err_ptr(err);
10733 		}
10734 		binary_path = full_binary_path;
10735 	}
10736 	func_name = OPTS_GET(opts, func_name, NULL);
10737 	if (func_name) {
10738 		long sym_off;
10739 
10740 		sym_off = elf_find_func_offset(binary_path, func_name);
10741 		if (sym_off < 0)
10742 			return libbpf_err_ptr(sym_off);
10743 		func_offset += sym_off;
10744 	}
10745 
10746 	legacy = determine_uprobe_perf_type() < 0;
10747 	if (!legacy) {
10748 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10749 					    func_offset, pid, ref_ctr_off);
10750 	} else {
10751 		char probe_name[PATH_MAX + 64];
10752 
10753 		if (ref_ctr_off)
10754 			return libbpf_err_ptr(-EINVAL);
10755 
10756 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10757 					     binary_path, func_offset);
10758 
10759 		legacy_probe = strdup(probe_name);
10760 		if (!legacy_probe)
10761 			return libbpf_err_ptr(-ENOMEM);
10762 
10763 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10764 						    binary_path, func_offset, pid);
10765 	}
10766 	if (pfd < 0) {
10767 		err = -errno;
10768 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10769 			prog->name, retprobe ? "uretprobe" : "uprobe",
10770 			binary_path, func_offset,
10771 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10772 		goto err_out;
10773 	}
10774 
10775 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10776 	err = libbpf_get_error(link);
10777 	if (err) {
10778 		close(pfd);
10779 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10780 			prog->name, retprobe ? "uretprobe" : "uprobe",
10781 			binary_path, func_offset,
10782 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10783 		goto err_clean_legacy;
10784 	}
10785 	if (legacy) {
10786 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10787 
10788 		perf_link->legacy_probe_name = legacy_probe;
10789 		perf_link->legacy_is_kprobe = false;
10790 		perf_link->legacy_is_retprobe = retprobe;
10791 	}
10792 	return link;
10793 
10794 err_clean_legacy:
10795 	if (legacy)
10796 		remove_uprobe_event_legacy(legacy_probe, retprobe);
10797 err_out:
10798 	free(legacy_probe);
10799 	return libbpf_err_ptr(err);
10800 }
10801 
10802 /* Format of u[ret]probe section definition supporting auto-attach:
10803  * u[ret]probe/binary:function[+offset]
10804  *
10805  * binary can be an absolute/relative path or a filename; the latter is resolved to a
10806  * full binary path via bpf_program__attach_uprobe_opts.
10807  *
10808  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10809  * specified (and auto-attach is not possible) or the above format is specified for
10810  * auto-attach.
10811  */
10812 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10813 {
10814 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10815 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10816 	int n, ret = -EINVAL;
10817 	long offset = 0;
10818 
10819 	*link = NULL;
10820 
10821 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10822 		   &probe_type, &binary_path, &func_name, &offset);
10823 	switch (n) {
10824 	case 1:
10825 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10826 		ret = 0;
10827 		break;
10828 	case 2:
10829 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10830 			prog->name, prog->sec_name);
10831 		break;
10832 	case 3:
10833 	case 4:
10834 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10835 				strcmp(probe_type, "uretprobe.s") == 0;
10836 		if (opts.retprobe && offset != 0) {
10837 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
10838 				prog->name);
10839 			break;
10840 		}
10841 		opts.func_name = func_name;
10842 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10843 		ret = libbpf_get_error(*link);
10844 		break;
10845 	default:
10846 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10847 			prog->sec_name);
10848 		break;
10849 	}
10850 	free(probe_type);
10851 	free(binary_path);
10852 	free(func_name);
10853 
10854 	return ret;
10855 }
10856 
10857 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10858 					    bool retprobe, pid_t pid,
10859 					    const char *binary_path,
10860 					    size_t func_offset)
10861 {
10862 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10863 
10864 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10865 }
10866 
10867 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10868 					  pid_t pid, const char *binary_path,
10869 					  const char *usdt_provider, const char *usdt_name,
10870 					  const struct bpf_usdt_opts *opts)
10871 {
10872 	char resolved_path[512];
10873 	struct bpf_object *obj = prog->obj;
10874 	struct bpf_link *link;
10875 	__u64 usdt_cookie;
10876 	int err;
10877 
10878 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10879 		return libbpf_err_ptr(-EINVAL);
10880 
10881 	if (bpf_program__fd(prog) < 0) {
10882 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10883 			prog->name);
10884 		return libbpf_err_ptr(-EINVAL);
10885 	}
10886 
10887 	if (!binary_path)
10888 		return libbpf_err_ptr(-EINVAL);
10889 
10890 	if (!strchr(binary_path, '/')) {
10891 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10892 		if (err) {
10893 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10894 				prog->name, binary_path, err);
10895 			return libbpf_err_ptr(err);
10896 		}
10897 		binary_path = resolved_path;
10898 	}
10899 
10900 	/* USDT manager is instantiated lazily on first USDT attach. It will
10901 	 * be destroyed together with BPF object in bpf_object__close().
10902 	 */
10903 	if (IS_ERR(obj->usdt_man))
10904 		return libbpf_ptr(obj->usdt_man);
10905 	if (!obj->usdt_man) {
10906 		obj->usdt_man = usdt_manager_new(obj);
10907 		if (IS_ERR(obj->usdt_man))
10908 			return libbpf_ptr(obj->usdt_man);
10909 	}
10910 
10911 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10912 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10913 				        usdt_provider, usdt_name, usdt_cookie);
10914 	err = libbpf_get_error(link);
10915 	if (err)
10916 		return libbpf_err_ptr(err);
10917 	return link;
10918 }
10919 
10920 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10921 {
10922 	char *path = NULL, *provider = NULL, *name = NULL;
10923 	const char *sec_name;
10924 	int n, err;
10925 
10926 	sec_name = bpf_program__section_name(prog);
10927 	if (strcmp(sec_name, "usdt") == 0) {
10928 		/* no auto-attach for just SEC("usdt") */
10929 		*link = NULL;
10930 		return 0;
10931 	}
10932 
10933 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10934 	if (n != 3) {
10935 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10936 			sec_name);
10937 		err = -EINVAL;
10938 	} else {
10939 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10940 						 provider, name, NULL);
10941 		err = libbpf_get_error(*link);
10942 	}
10943 	free(path);
10944 	free(provider);
10945 	free(name);
10946 	return err;
10947 }
10948 
10949 static int determine_tracepoint_id(const char *tp_category,
10950 				   const char *tp_name)
10951 {
10952 	char file[PATH_MAX];
10953 	int ret;
10954 
10955 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10956 		       tracefs_path(), tp_category, tp_name);
10957 	if (ret < 0)
10958 		return -errno;
10959 	if (ret >= sizeof(file)) {
10960 		pr_debug("tracepoint %s/%s path is too long\n",
10961 			 tp_category, tp_name);
10962 		return -E2BIG;
10963 	}
10964 	return parse_uint_from_file(file, "%d\n");
10965 }
10966 
10967 static int perf_event_open_tracepoint(const char *tp_category,
10968 				      const char *tp_name)
10969 {
10970 	struct perf_event_attr attr = {};
10971 	char errmsg[STRERR_BUFSIZE];
10972 	int tp_id, pfd, err;
10973 
10974 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10975 	if (tp_id < 0) {
10976 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10977 			tp_category, tp_name,
10978 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10979 		return tp_id;
10980 	}
10981 
10982 	attr.type = PERF_TYPE_TRACEPOINT;
10983 	attr.size = sizeof(attr);
10984 	attr.config = tp_id;
10985 
10986 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10987 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10988 	if (pfd < 0) {
10989 		err = -errno;
10990 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10991 			tp_category, tp_name,
10992 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10993 		return err;
10994 	}
10995 	return pfd;
10996 }
10997 
10998 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10999 						     const char *tp_category,
11000 						     const char *tp_name,
11001 						     const struct bpf_tracepoint_opts *opts)
11002 {
11003 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11004 	char errmsg[STRERR_BUFSIZE];
11005 	struct bpf_link *link;
11006 	int pfd, err;
11007 
11008 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11009 		return libbpf_err_ptr(-EINVAL);
11010 
11011 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11012 
11013 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11014 	if (pfd < 0) {
11015 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11016 			prog->name, tp_category, tp_name,
11017 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11018 		return libbpf_err_ptr(pfd);
11019 	}
11020 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11021 	err = libbpf_get_error(link);
11022 	if (err) {
11023 		close(pfd);
11024 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11025 			prog->name, tp_category, tp_name,
11026 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11027 		return libbpf_err_ptr(err);
11028 	}
11029 	return link;
11030 }
11031 
11032 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11033 						const char *tp_category,
11034 						const char *tp_name)
11035 {
11036 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11037 }
11038 
11039 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11040 {
11041 	char *sec_name, *tp_cat, *tp_name;
11042 
11043 	*link = NULL;
11044 
11045 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11046 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11047 		return 0;
11048 
11049 	sec_name = strdup(prog->sec_name);
11050 	if (!sec_name)
11051 		return -ENOMEM;
11052 
11053 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11054 	if (str_has_pfx(prog->sec_name, "tp/"))
11055 		tp_cat = sec_name + sizeof("tp/") - 1;
11056 	else
11057 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11058 	tp_name = strchr(tp_cat, '/');
11059 	if (!tp_name) {
11060 		free(sec_name);
11061 		return -EINVAL;
11062 	}
11063 	*tp_name = '\0';
11064 	tp_name++;
11065 
11066 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11067 	free(sec_name);
11068 	return libbpf_get_error(*link);
11069 }
11070 
11071 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11072 						    const char *tp_name)
11073 {
11074 	char errmsg[STRERR_BUFSIZE];
11075 	struct bpf_link *link;
11076 	int prog_fd, pfd;
11077 
11078 	prog_fd = bpf_program__fd(prog);
11079 	if (prog_fd < 0) {
11080 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11081 		return libbpf_err_ptr(-EINVAL);
11082 	}
11083 
11084 	link = calloc(1, sizeof(*link));
11085 	if (!link)
11086 		return libbpf_err_ptr(-ENOMEM);
11087 	link->detach = &bpf_link__detach_fd;
11088 
11089 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11090 	if (pfd < 0) {
11091 		pfd = -errno;
11092 		free(link);
11093 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11094 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11095 		return libbpf_err_ptr(pfd);
11096 	}
11097 	link->fd = pfd;
11098 	return link;
11099 }
11100 
11101 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11102 {
11103 	static const char *const prefixes[] = {
11104 		"raw_tp",
11105 		"raw_tracepoint",
11106 		"raw_tp.w",
11107 		"raw_tracepoint.w",
11108 	};
11109 	size_t i;
11110 	const char *tp_name = NULL;
11111 
11112 	*link = NULL;
11113 
11114 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11115 		size_t pfx_len;
11116 
11117 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11118 			continue;
11119 
11120 		pfx_len = strlen(prefixes[i]);
11121 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11122 		if (prog->sec_name[pfx_len] == '\0')
11123 			return 0;
11124 
11125 		if (prog->sec_name[pfx_len] != '/')
11126 			continue;
11127 
11128 		tp_name = prog->sec_name + pfx_len + 1;
11129 		break;
11130 	}
11131 
11132 	if (!tp_name) {
11133 		pr_warn("prog '%s': invalid section name '%s'\n",
11134 			prog->name, prog->sec_name);
11135 		return -EINVAL;
11136 	}
11137 
11138 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11139 	return libbpf_get_error(link);
11140 }
11141 
11142 /* Common logic for all BPF program types that attach to a btf_id */
11143 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11144 						   const struct bpf_trace_opts *opts)
11145 {
11146 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11147 	char errmsg[STRERR_BUFSIZE];
11148 	struct bpf_link *link;
11149 	int prog_fd, pfd;
11150 
11151 	if (!OPTS_VALID(opts, bpf_trace_opts))
11152 		return libbpf_err_ptr(-EINVAL);
11153 
11154 	prog_fd = bpf_program__fd(prog);
11155 	if (prog_fd < 0) {
11156 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11157 		return libbpf_err_ptr(-EINVAL);
11158 	}
11159 
11160 	link = calloc(1, sizeof(*link));
11161 	if (!link)
11162 		return libbpf_err_ptr(-ENOMEM);
11163 	link->detach = &bpf_link__detach_fd;
11164 
11165 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11166 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11167 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11168 	if (pfd < 0) {
11169 		pfd = -errno;
11170 		free(link);
11171 		pr_warn("prog '%s': failed to attach: %s\n",
11172 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11173 		return libbpf_err_ptr(pfd);
11174 	}
11175 	link->fd = pfd;
11176 	return link;
11177 }
11178 
11179 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11180 {
11181 	return bpf_program__attach_btf_id(prog, NULL);
11182 }
11183 
11184 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11185 						const struct bpf_trace_opts *opts)
11186 {
11187 	return bpf_program__attach_btf_id(prog, opts);
11188 }
11189 
11190 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11191 {
11192 	return bpf_program__attach_btf_id(prog, NULL);
11193 }
11194 
11195 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11196 {
11197 	*link = bpf_program__attach_trace(prog);
11198 	return libbpf_get_error(*link);
11199 }
11200 
11201 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11202 {
11203 	*link = bpf_program__attach_lsm(prog);
11204 	return libbpf_get_error(*link);
11205 }
11206 
11207 static struct bpf_link *
11208 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11209 		       const char *target_name)
11210 {
11211 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11212 			    .target_btf_id = btf_id);
11213 	enum bpf_attach_type attach_type;
11214 	char errmsg[STRERR_BUFSIZE];
11215 	struct bpf_link *link;
11216 	int prog_fd, link_fd;
11217 
11218 	prog_fd = bpf_program__fd(prog);
11219 	if (prog_fd < 0) {
11220 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11221 		return libbpf_err_ptr(-EINVAL);
11222 	}
11223 
11224 	link = calloc(1, sizeof(*link));
11225 	if (!link)
11226 		return libbpf_err_ptr(-ENOMEM);
11227 	link->detach = &bpf_link__detach_fd;
11228 
11229 	attach_type = bpf_program__expected_attach_type(prog);
11230 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11231 	if (link_fd < 0) {
11232 		link_fd = -errno;
11233 		free(link);
11234 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11235 			prog->name, target_name,
11236 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11237 		return libbpf_err_ptr(link_fd);
11238 	}
11239 	link->fd = link_fd;
11240 	return link;
11241 }
11242 
11243 struct bpf_link *
11244 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11245 {
11246 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11247 }
11248 
11249 struct bpf_link *
11250 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11251 {
11252 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11253 }
11254 
11255 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11256 {
11257 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11258 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11259 }
11260 
11261 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11262 					      int target_fd,
11263 					      const char *attach_func_name)
11264 {
11265 	int btf_id;
11266 
11267 	if (!!target_fd != !!attach_func_name) {
11268 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11269 			prog->name);
11270 		return libbpf_err_ptr(-EINVAL);
11271 	}
11272 
11273 	if (prog->type != BPF_PROG_TYPE_EXT) {
11274 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11275 			prog->name);
11276 		return libbpf_err_ptr(-EINVAL);
11277 	}
11278 
11279 	if (target_fd) {
11280 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11281 		if (btf_id < 0)
11282 			return libbpf_err_ptr(btf_id);
11283 
11284 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11285 	} else {
11286 		/* no target, so use raw_tracepoint_open for compatibility
11287 		 * with old kernels
11288 		 */
11289 		return bpf_program__attach_trace(prog);
11290 	}
11291 }
11292 
11293 struct bpf_link *
11294 bpf_program__attach_iter(const struct bpf_program *prog,
11295 			 const struct bpf_iter_attach_opts *opts)
11296 {
11297 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11298 	char errmsg[STRERR_BUFSIZE];
11299 	struct bpf_link *link;
11300 	int prog_fd, link_fd;
11301 	__u32 target_fd = 0;
11302 
11303 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11304 		return libbpf_err_ptr(-EINVAL);
11305 
11306 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11307 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11308 
11309 	prog_fd = bpf_program__fd(prog);
11310 	if (prog_fd < 0) {
11311 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11312 		return libbpf_err_ptr(-EINVAL);
11313 	}
11314 
11315 	link = calloc(1, sizeof(*link));
11316 	if (!link)
11317 		return libbpf_err_ptr(-ENOMEM);
11318 	link->detach = &bpf_link__detach_fd;
11319 
11320 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11321 				  &link_create_opts);
11322 	if (link_fd < 0) {
11323 		link_fd = -errno;
11324 		free(link);
11325 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11326 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11327 		return libbpf_err_ptr(link_fd);
11328 	}
11329 	link->fd = link_fd;
11330 	return link;
11331 }
11332 
11333 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11334 {
11335 	*link = bpf_program__attach_iter(prog, NULL);
11336 	return libbpf_get_error(*link);
11337 }
11338 
11339 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11340 {
11341 	struct bpf_link *link = NULL;
11342 	int err;
11343 
11344 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11345 		return libbpf_err_ptr(-EOPNOTSUPP);
11346 
11347 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11348 	if (err)
11349 		return libbpf_err_ptr(err);
11350 
11351 	/* When calling bpf_program__attach() explicitly, auto-attach support
11352 	 * is expected to work, so NULL returned link is considered an error.
11353 	 * This is different for skeleton's attach, see comment in
11354 	 * bpf_object__attach_skeleton().
11355 	 */
11356 	if (!link)
11357 		return libbpf_err_ptr(-EOPNOTSUPP);
11358 
11359 	return link;
11360 }
11361 
11362 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11363 {
11364 	__u32 zero = 0;
11365 
11366 	if (bpf_map_delete_elem(link->fd, &zero))
11367 		return -errno;
11368 
11369 	return 0;
11370 }
11371 
11372 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11373 {
11374 	struct bpf_struct_ops *st_ops;
11375 	struct bpf_link *link;
11376 	__u32 i, zero = 0;
11377 	int err;
11378 
11379 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11380 		return libbpf_err_ptr(-EINVAL);
11381 
11382 	link = calloc(1, sizeof(*link));
11383 	if (!link)
11384 		return libbpf_err_ptr(-EINVAL);
11385 
11386 	st_ops = map->st_ops;
11387 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11388 		struct bpf_program *prog = st_ops->progs[i];
11389 		void *kern_data;
11390 		int prog_fd;
11391 
11392 		if (!prog)
11393 			continue;
11394 
11395 		prog_fd = bpf_program__fd(prog);
11396 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11397 		*(unsigned long *)kern_data = prog_fd;
11398 	}
11399 
11400 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11401 	if (err) {
11402 		err = -errno;
11403 		free(link);
11404 		return libbpf_err_ptr(err);
11405 	}
11406 
11407 	link->detach = bpf_link__detach_struct_ops;
11408 	link->fd = map->fd;
11409 
11410 	return link;
11411 }
11412 
11413 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11414 							  void *private_data);
11415 
11416 static enum bpf_perf_event_ret
11417 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11418 		       void **copy_mem, size_t *copy_size,
11419 		       bpf_perf_event_print_t fn, void *private_data)
11420 {
11421 	struct perf_event_mmap_page *header = mmap_mem;
11422 	__u64 data_head = ring_buffer_read_head(header);
11423 	__u64 data_tail = header->data_tail;
11424 	void *base = ((__u8 *)header) + page_size;
11425 	int ret = LIBBPF_PERF_EVENT_CONT;
11426 	struct perf_event_header *ehdr;
11427 	size_t ehdr_size;
11428 
11429 	while (data_head != data_tail) {
11430 		ehdr = base + (data_tail & (mmap_size - 1));
11431 		ehdr_size = ehdr->size;
11432 
11433 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11434 			void *copy_start = ehdr;
11435 			size_t len_first = base + mmap_size - copy_start;
11436 			size_t len_secnd = ehdr_size - len_first;
11437 
11438 			if (*copy_size < ehdr_size) {
11439 				free(*copy_mem);
11440 				*copy_mem = malloc(ehdr_size);
11441 				if (!*copy_mem) {
11442 					*copy_size = 0;
11443 					ret = LIBBPF_PERF_EVENT_ERROR;
11444 					break;
11445 				}
11446 				*copy_size = ehdr_size;
11447 			}
11448 
11449 			memcpy(*copy_mem, copy_start, len_first);
11450 			memcpy(*copy_mem + len_first, base, len_secnd);
11451 			ehdr = *copy_mem;
11452 		}
11453 
11454 		ret = fn(ehdr, private_data);
11455 		data_tail += ehdr_size;
11456 		if (ret != LIBBPF_PERF_EVENT_CONT)
11457 			break;
11458 	}
11459 
11460 	ring_buffer_write_tail(header, data_tail);
11461 	return libbpf_err(ret);
11462 }
11463 
11464 struct perf_buffer;
11465 
11466 struct perf_buffer_params {
11467 	struct perf_event_attr *attr;
11468 	/* if event_cb is specified, it takes precendence */
11469 	perf_buffer_event_fn event_cb;
11470 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11471 	perf_buffer_sample_fn sample_cb;
11472 	perf_buffer_lost_fn lost_cb;
11473 	void *ctx;
11474 	int cpu_cnt;
11475 	int *cpus;
11476 	int *map_keys;
11477 };
11478 
11479 struct perf_cpu_buf {
11480 	struct perf_buffer *pb;
11481 	void *base; /* mmap()'ed memory */
11482 	void *buf; /* for reconstructing segmented data */
11483 	size_t buf_size;
11484 	int fd;
11485 	int cpu;
11486 	int map_key;
11487 };
11488 
11489 struct perf_buffer {
11490 	perf_buffer_event_fn event_cb;
11491 	perf_buffer_sample_fn sample_cb;
11492 	perf_buffer_lost_fn lost_cb;
11493 	void *ctx; /* passed into callbacks */
11494 
11495 	size_t page_size;
11496 	size_t mmap_size;
11497 	struct perf_cpu_buf **cpu_bufs;
11498 	struct epoll_event *events;
11499 	int cpu_cnt; /* number of allocated CPU buffers */
11500 	int epoll_fd; /* perf event FD */
11501 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11502 };
11503 
11504 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11505 				      struct perf_cpu_buf *cpu_buf)
11506 {
11507 	if (!cpu_buf)
11508 		return;
11509 	if (cpu_buf->base &&
11510 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11511 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11512 	if (cpu_buf->fd >= 0) {
11513 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11514 		close(cpu_buf->fd);
11515 	}
11516 	free(cpu_buf->buf);
11517 	free(cpu_buf);
11518 }
11519 
11520 void perf_buffer__free(struct perf_buffer *pb)
11521 {
11522 	int i;
11523 
11524 	if (IS_ERR_OR_NULL(pb))
11525 		return;
11526 	if (pb->cpu_bufs) {
11527 		for (i = 0; i < pb->cpu_cnt; i++) {
11528 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11529 
11530 			if (!cpu_buf)
11531 				continue;
11532 
11533 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11534 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11535 		}
11536 		free(pb->cpu_bufs);
11537 	}
11538 	if (pb->epoll_fd >= 0)
11539 		close(pb->epoll_fd);
11540 	free(pb->events);
11541 	free(pb);
11542 }
11543 
11544 static struct perf_cpu_buf *
11545 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11546 			  int cpu, int map_key)
11547 {
11548 	struct perf_cpu_buf *cpu_buf;
11549 	char msg[STRERR_BUFSIZE];
11550 	int err;
11551 
11552 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11553 	if (!cpu_buf)
11554 		return ERR_PTR(-ENOMEM);
11555 
11556 	cpu_buf->pb = pb;
11557 	cpu_buf->cpu = cpu;
11558 	cpu_buf->map_key = map_key;
11559 
11560 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11561 			      -1, PERF_FLAG_FD_CLOEXEC);
11562 	if (cpu_buf->fd < 0) {
11563 		err = -errno;
11564 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11565 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11566 		goto error;
11567 	}
11568 
11569 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11570 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11571 			     cpu_buf->fd, 0);
11572 	if (cpu_buf->base == MAP_FAILED) {
11573 		cpu_buf->base = NULL;
11574 		err = -errno;
11575 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11576 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11577 		goto error;
11578 	}
11579 
11580 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11581 		err = -errno;
11582 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11583 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11584 		goto error;
11585 	}
11586 
11587 	return cpu_buf;
11588 
11589 error:
11590 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11591 	return (struct perf_cpu_buf *)ERR_PTR(err);
11592 }
11593 
11594 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11595 					      struct perf_buffer_params *p);
11596 
11597 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11598 				     perf_buffer_sample_fn sample_cb,
11599 				     perf_buffer_lost_fn lost_cb,
11600 				     void *ctx,
11601 				     const struct perf_buffer_opts *opts)
11602 {
11603 	struct perf_buffer_params p = {};
11604 	struct perf_event_attr attr = {};
11605 
11606 	if (!OPTS_VALID(opts, perf_buffer_opts))
11607 		return libbpf_err_ptr(-EINVAL);
11608 
11609 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11610 	attr.type = PERF_TYPE_SOFTWARE;
11611 	attr.sample_type = PERF_SAMPLE_RAW;
11612 	attr.sample_period = 1;
11613 	attr.wakeup_events = 1;
11614 
11615 	p.attr = &attr;
11616 	p.sample_cb = sample_cb;
11617 	p.lost_cb = lost_cb;
11618 	p.ctx = ctx;
11619 
11620 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11621 }
11622 
11623 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11624 					 struct perf_event_attr *attr,
11625 					 perf_buffer_event_fn event_cb, void *ctx,
11626 					 const struct perf_buffer_raw_opts *opts)
11627 {
11628 	struct perf_buffer_params p = {};
11629 
11630 	if (!attr)
11631 		return libbpf_err_ptr(-EINVAL);
11632 
11633 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11634 		return libbpf_err_ptr(-EINVAL);
11635 
11636 	p.attr = attr;
11637 	p.event_cb = event_cb;
11638 	p.ctx = ctx;
11639 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11640 	p.cpus = OPTS_GET(opts, cpus, NULL);
11641 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11642 
11643 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11644 }
11645 
11646 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11647 					      struct perf_buffer_params *p)
11648 {
11649 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11650 	struct bpf_map_info map;
11651 	char msg[STRERR_BUFSIZE];
11652 	struct perf_buffer *pb;
11653 	bool *online = NULL;
11654 	__u32 map_info_len;
11655 	int err, i, j, n;
11656 
11657 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11658 		pr_warn("page count should be power of two, but is %zu\n",
11659 			page_cnt);
11660 		return ERR_PTR(-EINVAL);
11661 	}
11662 
11663 	/* best-effort sanity checks */
11664 	memset(&map, 0, sizeof(map));
11665 	map_info_len = sizeof(map);
11666 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11667 	if (err) {
11668 		err = -errno;
11669 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11670 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11671 		 */
11672 		if (err != -EINVAL) {
11673 			pr_warn("failed to get map info for map FD %d: %s\n",
11674 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11675 			return ERR_PTR(err);
11676 		}
11677 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11678 			 map_fd);
11679 	} else {
11680 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11681 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11682 				map.name);
11683 			return ERR_PTR(-EINVAL);
11684 		}
11685 	}
11686 
11687 	pb = calloc(1, sizeof(*pb));
11688 	if (!pb)
11689 		return ERR_PTR(-ENOMEM);
11690 
11691 	pb->event_cb = p->event_cb;
11692 	pb->sample_cb = p->sample_cb;
11693 	pb->lost_cb = p->lost_cb;
11694 	pb->ctx = p->ctx;
11695 
11696 	pb->page_size = getpagesize();
11697 	pb->mmap_size = pb->page_size * page_cnt;
11698 	pb->map_fd = map_fd;
11699 
11700 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11701 	if (pb->epoll_fd < 0) {
11702 		err = -errno;
11703 		pr_warn("failed to create epoll instance: %s\n",
11704 			libbpf_strerror_r(err, msg, sizeof(msg)));
11705 		goto error;
11706 	}
11707 
11708 	if (p->cpu_cnt > 0) {
11709 		pb->cpu_cnt = p->cpu_cnt;
11710 	} else {
11711 		pb->cpu_cnt = libbpf_num_possible_cpus();
11712 		if (pb->cpu_cnt < 0) {
11713 			err = pb->cpu_cnt;
11714 			goto error;
11715 		}
11716 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11717 			pb->cpu_cnt = map.max_entries;
11718 	}
11719 
11720 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11721 	if (!pb->events) {
11722 		err = -ENOMEM;
11723 		pr_warn("failed to allocate events: out of memory\n");
11724 		goto error;
11725 	}
11726 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11727 	if (!pb->cpu_bufs) {
11728 		err = -ENOMEM;
11729 		pr_warn("failed to allocate buffers: out of memory\n");
11730 		goto error;
11731 	}
11732 
11733 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11734 	if (err) {
11735 		pr_warn("failed to get online CPU mask: %d\n", err);
11736 		goto error;
11737 	}
11738 
11739 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11740 		struct perf_cpu_buf *cpu_buf;
11741 		int cpu, map_key;
11742 
11743 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11744 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11745 
11746 		/* in case user didn't explicitly requested particular CPUs to
11747 		 * be attached to, skip offline/not present CPUs
11748 		 */
11749 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11750 			continue;
11751 
11752 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11753 		if (IS_ERR(cpu_buf)) {
11754 			err = PTR_ERR(cpu_buf);
11755 			goto error;
11756 		}
11757 
11758 		pb->cpu_bufs[j] = cpu_buf;
11759 
11760 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11761 					  &cpu_buf->fd, 0);
11762 		if (err) {
11763 			err = -errno;
11764 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11765 				cpu, map_key, cpu_buf->fd,
11766 				libbpf_strerror_r(err, msg, sizeof(msg)));
11767 			goto error;
11768 		}
11769 
11770 		pb->events[j].events = EPOLLIN;
11771 		pb->events[j].data.ptr = cpu_buf;
11772 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11773 			      &pb->events[j]) < 0) {
11774 			err = -errno;
11775 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11776 				cpu, cpu_buf->fd,
11777 				libbpf_strerror_r(err, msg, sizeof(msg)));
11778 			goto error;
11779 		}
11780 		j++;
11781 	}
11782 	pb->cpu_cnt = j;
11783 	free(online);
11784 
11785 	return pb;
11786 
11787 error:
11788 	free(online);
11789 	if (pb)
11790 		perf_buffer__free(pb);
11791 	return ERR_PTR(err);
11792 }
11793 
11794 struct perf_sample_raw {
11795 	struct perf_event_header header;
11796 	uint32_t size;
11797 	char data[];
11798 };
11799 
11800 struct perf_sample_lost {
11801 	struct perf_event_header header;
11802 	uint64_t id;
11803 	uint64_t lost;
11804 	uint64_t sample_id;
11805 };
11806 
11807 static enum bpf_perf_event_ret
11808 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11809 {
11810 	struct perf_cpu_buf *cpu_buf = ctx;
11811 	struct perf_buffer *pb = cpu_buf->pb;
11812 	void *data = e;
11813 
11814 	/* user wants full control over parsing perf event */
11815 	if (pb->event_cb)
11816 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11817 
11818 	switch (e->type) {
11819 	case PERF_RECORD_SAMPLE: {
11820 		struct perf_sample_raw *s = data;
11821 
11822 		if (pb->sample_cb)
11823 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11824 		break;
11825 	}
11826 	case PERF_RECORD_LOST: {
11827 		struct perf_sample_lost *s = data;
11828 
11829 		if (pb->lost_cb)
11830 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11831 		break;
11832 	}
11833 	default:
11834 		pr_warn("unknown perf sample type %d\n", e->type);
11835 		return LIBBPF_PERF_EVENT_ERROR;
11836 	}
11837 	return LIBBPF_PERF_EVENT_CONT;
11838 }
11839 
11840 static int perf_buffer__process_records(struct perf_buffer *pb,
11841 					struct perf_cpu_buf *cpu_buf)
11842 {
11843 	enum bpf_perf_event_ret ret;
11844 
11845 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11846 				     pb->page_size, &cpu_buf->buf,
11847 				     &cpu_buf->buf_size,
11848 				     perf_buffer__process_record, cpu_buf);
11849 	if (ret != LIBBPF_PERF_EVENT_CONT)
11850 		return ret;
11851 	return 0;
11852 }
11853 
11854 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11855 {
11856 	return pb->epoll_fd;
11857 }
11858 
11859 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11860 {
11861 	int i, cnt, err;
11862 
11863 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11864 	if (cnt < 0)
11865 		return -errno;
11866 
11867 	for (i = 0; i < cnt; i++) {
11868 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11869 
11870 		err = perf_buffer__process_records(pb, cpu_buf);
11871 		if (err) {
11872 			pr_warn("error while processing records: %d\n", err);
11873 			return libbpf_err(err);
11874 		}
11875 	}
11876 	return cnt;
11877 }
11878 
11879 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11880  * manager.
11881  */
11882 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11883 {
11884 	return pb->cpu_cnt;
11885 }
11886 
11887 /*
11888  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11889  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11890  * select()/poll()/epoll() Linux syscalls.
11891  */
11892 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11893 {
11894 	struct perf_cpu_buf *cpu_buf;
11895 
11896 	if (buf_idx >= pb->cpu_cnt)
11897 		return libbpf_err(-EINVAL);
11898 
11899 	cpu_buf = pb->cpu_bufs[buf_idx];
11900 	if (!cpu_buf)
11901 		return libbpf_err(-ENOENT);
11902 
11903 	return cpu_buf->fd;
11904 }
11905 
11906 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11907 {
11908 	struct perf_cpu_buf *cpu_buf;
11909 
11910 	if (buf_idx >= pb->cpu_cnt)
11911 		return libbpf_err(-EINVAL);
11912 
11913 	cpu_buf = pb->cpu_bufs[buf_idx];
11914 	if (!cpu_buf)
11915 		return libbpf_err(-ENOENT);
11916 
11917 	*buf = cpu_buf->base;
11918 	*buf_size = pb->mmap_size;
11919 	return 0;
11920 }
11921 
11922 /*
11923  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11924  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11925  * consume, do nothing and return success.
11926  * Returns:
11927  *   - 0 on success;
11928  *   - <0 on failure.
11929  */
11930 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11931 {
11932 	struct perf_cpu_buf *cpu_buf;
11933 
11934 	if (buf_idx >= pb->cpu_cnt)
11935 		return libbpf_err(-EINVAL);
11936 
11937 	cpu_buf = pb->cpu_bufs[buf_idx];
11938 	if (!cpu_buf)
11939 		return libbpf_err(-ENOENT);
11940 
11941 	return perf_buffer__process_records(pb, cpu_buf);
11942 }
11943 
11944 int perf_buffer__consume(struct perf_buffer *pb)
11945 {
11946 	int i, err;
11947 
11948 	for (i = 0; i < pb->cpu_cnt; i++) {
11949 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11950 
11951 		if (!cpu_buf)
11952 			continue;
11953 
11954 		err = perf_buffer__process_records(pb, cpu_buf);
11955 		if (err) {
11956 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11957 			return libbpf_err(err);
11958 		}
11959 	}
11960 	return 0;
11961 }
11962 
11963 int bpf_program__set_attach_target(struct bpf_program *prog,
11964 				   int attach_prog_fd,
11965 				   const char *attach_func_name)
11966 {
11967 	int btf_obj_fd = 0, btf_id = 0, err;
11968 
11969 	if (!prog || attach_prog_fd < 0)
11970 		return libbpf_err(-EINVAL);
11971 
11972 	if (prog->obj->loaded)
11973 		return libbpf_err(-EINVAL);
11974 
11975 	if (attach_prog_fd && !attach_func_name) {
11976 		/* remember attach_prog_fd and let bpf_program__load() find
11977 		 * BTF ID during the program load
11978 		 */
11979 		prog->attach_prog_fd = attach_prog_fd;
11980 		return 0;
11981 	}
11982 
11983 	if (attach_prog_fd) {
11984 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11985 						 attach_prog_fd);
11986 		if (btf_id < 0)
11987 			return libbpf_err(btf_id);
11988 	} else {
11989 		if (!attach_func_name)
11990 			return libbpf_err(-EINVAL);
11991 
11992 		/* load btf_vmlinux, if not yet */
11993 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11994 		if (err)
11995 			return libbpf_err(err);
11996 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11997 					 prog->expected_attach_type,
11998 					 &btf_obj_fd, &btf_id);
11999 		if (err)
12000 			return libbpf_err(err);
12001 	}
12002 
12003 	prog->attach_btf_id = btf_id;
12004 	prog->attach_btf_obj_fd = btf_obj_fd;
12005 	prog->attach_prog_fd = attach_prog_fd;
12006 	return 0;
12007 }
12008 
12009 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12010 {
12011 	int err = 0, n, len, start, end = -1;
12012 	bool *tmp;
12013 
12014 	*mask = NULL;
12015 	*mask_sz = 0;
12016 
12017 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12018 	while (*s) {
12019 		if (*s == ',' || *s == '\n') {
12020 			s++;
12021 			continue;
12022 		}
12023 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12024 		if (n <= 0 || n > 2) {
12025 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12026 			err = -EINVAL;
12027 			goto cleanup;
12028 		} else if (n == 1) {
12029 			end = start;
12030 		}
12031 		if (start < 0 || start > end) {
12032 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12033 				start, end, s);
12034 			err = -EINVAL;
12035 			goto cleanup;
12036 		}
12037 		tmp = realloc(*mask, end + 1);
12038 		if (!tmp) {
12039 			err = -ENOMEM;
12040 			goto cleanup;
12041 		}
12042 		*mask = tmp;
12043 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12044 		memset(tmp + start, 1, end - start + 1);
12045 		*mask_sz = end + 1;
12046 		s += len;
12047 	}
12048 	if (!*mask_sz) {
12049 		pr_warn("Empty CPU range\n");
12050 		return -EINVAL;
12051 	}
12052 	return 0;
12053 cleanup:
12054 	free(*mask);
12055 	*mask = NULL;
12056 	return err;
12057 }
12058 
12059 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12060 {
12061 	int fd, err = 0, len;
12062 	char buf[128];
12063 
12064 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12065 	if (fd < 0) {
12066 		err = -errno;
12067 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12068 		return err;
12069 	}
12070 	len = read(fd, buf, sizeof(buf));
12071 	close(fd);
12072 	if (len <= 0) {
12073 		err = len ? -errno : -EINVAL;
12074 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12075 		return err;
12076 	}
12077 	if (len >= sizeof(buf)) {
12078 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12079 		return -E2BIG;
12080 	}
12081 	buf[len] = '\0';
12082 
12083 	return parse_cpu_mask_str(buf, mask, mask_sz);
12084 }
12085 
12086 int libbpf_num_possible_cpus(void)
12087 {
12088 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12089 	static int cpus;
12090 	int err, n, i, tmp_cpus;
12091 	bool *mask;
12092 
12093 	tmp_cpus = READ_ONCE(cpus);
12094 	if (tmp_cpus > 0)
12095 		return tmp_cpus;
12096 
12097 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12098 	if (err)
12099 		return libbpf_err(err);
12100 
12101 	tmp_cpus = 0;
12102 	for (i = 0; i < n; i++) {
12103 		if (mask[i])
12104 			tmp_cpus++;
12105 	}
12106 	free(mask);
12107 
12108 	WRITE_ONCE(cpus, tmp_cpus);
12109 	return tmp_cpus;
12110 }
12111 
12112 static int populate_skeleton_maps(const struct bpf_object *obj,
12113 				  struct bpf_map_skeleton *maps,
12114 				  size_t map_cnt)
12115 {
12116 	int i;
12117 
12118 	for (i = 0; i < map_cnt; i++) {
12119 		struct bpf_map **map = maps[i].map;
12120 		const char *name = maps[i].name;
12121 		void **mmaped = maps[i].mmaped;
12122 
12123 		*map = bpf_object__find_map_by_name(obj, name);
12124 		if (!*map) {
12125 			pr_warn("failed to find skeleton map '%s'\n", name);
12126 			return -ESRCH;
12127 		}
12128 
12129 		/* externs shouldn't be pre-setup from user code */
12130 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12131 			*mmaped = (*map)->mmaped;
12132 	}
12133 	return 0;
12134 }
12135 
12136 static int populate_skeleton_progs(const struct bpf_object *obj,
12137 				   struct bpf_prog_skeleton *progs,
12138 				   size_t prog_cnt)
12139 {
12140 	int i;
12141 
12142 	for (i = 0; i < prog_cnt; i++) {
12143 		struct bpf_program **prog = progs[i].prog;
12144 		const char *name = progs[i].name;
12145 
12146 		*prog = bpf_object__find_program_by_name(obj, name);
12147 		if (!*prog) {
12148 			pr_warn("failed to find skeleton program '%s'\n", name);
12149 			return -ESRCH;
12150 		}
12151 	}
12152 	return 0;
12153 }
12154 
12155 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12156 			      const struct bpf_object_open_opts *opts)
12157 {
12158 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12159 		.object_name = s->name,
12160 	);
12161 	struct bpf_object *obj;
12162 	int err;
12163 
12164 	/* Attempt to preserve opts->object_name, unless overriden by user
12165 	 * explicitly. Overwriting object name for skeletons is discouraged,
12166 	 * as it breaks global data maps, because they contain object name
12167 	 * prefix as their own map name prefix. When skeleton is generated,
12168 	 * bpftool is making an assumption that this name will stay the same.
12169 	 */
12170 	if (opts) {
12171 		memcpy(&skel_opts, opts, sizeof(*opts));
12172 		if (!opts->object_name)
12173 			skel_opts.object_name = s->name;
12174 	}
12175 
12176 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12177 	err = libbpf_get_error(obj);
12178 	if (err) {
12179 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12180 			s->name, err);
12181 		return libbpf_err(err);
12182 	}
12183 
12184 	*s->obj = obj;
12185 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12186 	if (err) {
12187 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12188 		return libbpf_err(err);
12189 	}
12190 
12191 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12192 	if (err) {
12193 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12194 		return libbpf_err(err);
12195 	}
12196 
12197 	return 0;
12198 }
12199 
12200 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12201 {
12202 	int err, len, var_idx, i;
12203 	const char *var_name;
12204 	const struct bpf_map *map;
12205 	struct btf *btf;
12206 	__u32 map_type_id;
12207 	const struct btf_type *map_type, *var_type;
12208 	const struct bpf_var_skeleton *var_skel;
12209 	struct btf_var_secinfo *var;
12210 
12211 	if (!s->obj)
12212 		return libbpf_err(-EINVAL);
12213 
12214 	btf = bpf_object__btf(s->obj);
12215 	if (!btf) {
12216 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12217 		        bpf_object__name(s->obj));
12218 		return libbpf_err(-errno);
12219 	}
12220 
12221 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12222 	if (err) {
12223 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12224 		return libbpf_err(err);
12225 	}
12226 
12227 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12228 	if (err) {
12229 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12230 		return libbpf_err(err);
12231 	}
12232 
12233 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12234 		var_skel = &s->vars[var_idx];
12235 		map = *var_skel->map;
12236 		map_type_id = bpf_map__btf_value_type_id(map);
12237 		map_type = btf__type_by_id(btf, map_type_id);
12238 
12239 		if (!btf_is_datasec(map_type)) {
12240 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12241 				bpf_map__name(map),
12242 				__btf_kind_str(btf_kind(map_type)));
12243 			return libbpf_err(-EINVAL);
12244 		}
12245 
12246 		len = btf_vlen(map_type);
12247 		var = btf_var_secinfos(map_type);
12248 		for (i = 0; i < len; i++, var++) {
12249 			var_type = btf__type_by_id(btf, var->type);
12250 			var_name = btf__name_by_offset(btf, var_type->name_off);
12251 			if (strcmp(var_name, var_skel->name) == 0) {
12252 				*var_skel->addr = map->mmaped + var->offset;
12253 				break;
12254 			}
12255 		}
12256 	}
12257 	return 0;
12258 }
12259 
12260 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12261 {
12262 	if (!s)
12263 		return;
12264 	free(s->maps);
12265 	free(s->progs);
12266 	free(s->vars);
12267 	free(s);
12268 }
12269 
12270 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12271 {
12272 	int i, err;
12273 
12274 	err = bpf_object__load(*s->obj);
12275 	if (err) {
12276 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12277 		return libbpf_err(err);
12278 	}
12279 
12280 	for (i = 0; i < s->map_cnt; i++) {
12281 		struct bpf_map *map = *s->maps[i].map;
12282 		size_t mmap_sz = bpf_map_mmap_sz(map);
12283 		int prot, map_fd = bpf_map__fd(map);
12284 		void **mmaped = s->maps[i].mmaped;
12285 
12286 		if (!mmaped)
12287 			continue;
12288 
12289 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12290 			*mmaped = NULL;
12291 			continue;
12292 		}
12293 
12294 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12295 			prot = PROT_READ;
12296 		else
12297 			prot = PROT_READ | PROT_WRITE;
12298 
12299 		/* Remap anonymous mmap()-ed "map initialization image" as
12300 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12301 		 * memory address. This will cause kernel to change process'
12302 		 * page table to point to a different piece of kernel memory,
12303 		 * but from userspace point of view memory address (and its
12304 		 * contents, being identical at this point) will stay the
12305 		 * same. This mapping will be released by bpf_object__close()
12306 		 * as per normal clean up procedure, so we don't need to worry
12307 		 * about it from skeleton's clean up perspective.
12308 		 */
12309 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12310 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12311 		if (*mmaped == MAP_FAILED) {
12312 			err = -errno;
12313 			*mmaped = NULL;
12314 			pr_warn("failed to re-mmap() map '%s': %d\n",
12315 				 bpf_map__name(map), err);
12316 			return libbpf_err(err);
12317 		}
12318 	}
12319 
12320 	return 0;
12321 }
12322 
12323 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12324 {
12325 	int i, err;
12326 
12327 	for (i = 0; i < s->prog_cnt; i++) {
12328 		struct bpf_program *prog = *s->progs[i].prog;
12329 		struct bpf_link **link = s->progs[i].link;
12330 
12331 		if (!prog->autoload)
12332 			continue;
12333 
12334 		/* auto-attaching not supported for this program */
12335 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12336 			continue;
12337 
12338 		/* if user already set the link manually, don't attempt auto-attach */
12339 		if (*link)
12340 			continue;
12341 
12342 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12343 		if (err) {
12344 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12345 				bpf_program__name(prog), err);
12346 			return libbpf_err(err);
12347 		}
12348 
12349 		/* It's possible that for some SEC() definitions auto-attach
12350 		 * is supported in some cases (e.g., if definition completely
12351 		 * specifies target information), but is not in other cases.
12352 		 * SEC("uprobe") is one such case. If user specified target
12353 		 * binary and function name, such BPF program can be
12354 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12355 		 * attach to fail. It should just be skipped.
12356 		 * attach_fn signals such case with returning 0 (no error) and
12357 		 * setting link to NULL.
12358 		 */
12359 	}
12360 
12361 	return 0;
12362 }
12363 
12364 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12365 {
12366 	int i;
12367 
12368 	for (i = 0; i < s->prog_cnt; i++) {
12369 		struct bpf_link **link = s->progs[i].link;
12370 
12371 		bpf_link__destroy(*link);
12372 		*link = NULL;
12373 	}
12374 }
12375 
12376 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12377 {
12378 	if (!s)
12379 		return;
12380 
12381 	if (s->progs)
12382 		bpf_object__detach_skeleton(s);
12383 	if (s->obj)
12384 		bpf_object__close(*s->obj);
12385 	free(s->maps);
12386 	free(s->progs);
12387 	free(s);
12388 }
12389