1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 }; 167 168 static const char * const prog_type_name[] = { 169 [BPF_PROG_TYPE_UNSPEC] = "unspec", 170 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 171 [BPF_PROG_TYPE_KPROBE] = "kprobe", 172 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 173 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 174 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 175 [BPF_PROG_TYPE_XDP] = "xdp", 176 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 177 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 178 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 179 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 180 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 181 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 182 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 183 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 184 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 185 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 186 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 187 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 188 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 189 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 190 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 191 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 192 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 193 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 194 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 195 [BPF_PROG_TYPE_TRACING] = "tracing", 196 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 197 [BPF_PROG_TYPE_EXT] = "ext", 198 [BPF_PROG_TYPE_LSM] = "lsm", 199 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 200 [BPF_PROG_TYPE_SYSCALL] = "syscall", 201 }; 202 203 static int __base_pr(enum libbpf_print_level level, const char *format, 204 va_list args) 205 { 206 if (level == LIBBPF_DEBUG) 207 return 0; 208 209 return vfprintf(stderr, format, args); 210 } 211 212 static libbpf_print_fn_t __libbpf_pr = __base_pr; 213 214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 215 { 216 libbpf_print_fn_t old_print_fn = __libbpf_pr; 217 218 __libbpf_pr = fn; 219 return old_print_fn; 220 } 221 222 __printf(2, 3) 223 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 224 { 225 va_list args; 226 227 if (!__libbpf_pr) 228 return; 229 230 va_start(args, format); 231 __libbpf_pr(level, format, args); 232 va_end(args); 233 } 234 235 static void pr_perm_msg(int err) 236 { 237 struct rlimit limit; 238 char buf[100]; 239 240 if (err != -EPERM || geteuid() != 0) 241 return; 242 243 err = getrlimit(RLIMIT_MEMLOCK, &limit); 244 if (err) 245 return; 246 247 if (limit.rlim_cur == RLIM_INFINITY) 248 return; 249 250 if (limit.rlim_cur < 1024) 251 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 252 else if (limit.rlim_cur < 1024*1024) 253 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 254 else 255 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 256 257 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 258 buf); 259 } 260 261 #define STRERR_BUFSIZE 128 262 263 /* Copied from tools/perf/util/util.h */ 264 #ifndef zfree 265 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 266 #endif 267 268 #ifndef zclose 269 # define zclose(fd) ({ \ 270 int ___err = 0; \ 271 if ((fd) >= 0) \ 272 ___err = close((fd)); \ 273 fd = -1; \ 274 ___err; }) 275 #endif 276 277 static inline __u64 ptr_to_u64(const void *ptr) 278 { 279 return (__u64) (unsigned long) ptr; 280 } 281 282 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 283 { 284 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 285 return 0; 286 } 287 288 __u32 libbpf_major_version(void) 289 { 290 return LIBBPF_MAJOR_VERSION; 291 } 292 293 __u32 libbpf_minor_version(void) 294 { 295 return LIBBPF_MINOR_VERSION; 296 } 297 298 const char *libbpf_version_string(void) 299 { 300 #define __S(X) #X 301 #define _S(X) __S(X) 302 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 303 #undef _S 304 #undef __S 305 } 306 307 enum reloc_type { 308 RELO_LD64, 309 RELO_CALL, 310 RELO_DATA, 311 RELO_EXTERN_VAR, 312 RELO_EXTERN_FUNC, 313 RELO_SUBPROG_ADDR, 314 RELO_CORE, 315 }; 316 317 struct reloc_desc { 318 enum reloc_type type; 319 int insn_idx; 320 union { 321 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 322 struct { 323 int map_idx; 324 int sym_off; 325 }; 326 }; 327 }; 328 329 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 330 enum sec_def_flags { 331 SEC_NONE = 0, 332 /* expected_attach_type is optional, if kernel doesn't support that */ 333 SEC_EXP_ATTACH_OPT = 1, 334 /* legacy, only used by libbpf_get_type_names() and 335 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 336 * This used to be associated with cgroup (and few other) BPF programs 337 * that were attachable through BPF_PROG_ATTACH command. Pretty 338 * meaningless nowadays, though. 339 */ 340 SEC_ATTACHABLE = 2, 341 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 342 /* attachment target is specified through BTF ID in either kernel or 343 * other BPF program's BTF object */ 344 SEC_ATTACH_BTF = 4, 345 /* BPF program type allows sleeping/blocking in kernel */ 346 SEC_SLEEPABLE = 8, 347 /* BPF program support non-linear XDP buffer */ 348 SEC_XDP_FRAGS = 16, 349 }; 350 351 struct bpf_sec_def { 352 char *sec; 353 enum bpf_prog_type prog_type; 354 enum bpf_attach_type expected_attach_type; 355 long cookie; 356 int handler_id; 357 358 libbpf_prog_setup_fn_t prog_setup_fn; 359 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 360 libbpf_prog_attach_fn_t prog_attach_fn; 361 }; 362 363 /* 364 * bpf_prog should be a better name but it has been used in 365 * linux/filter.h. 366 */ 367 struct bpf_program { 368 char *name; 369 char *sec_name; 370 size_t sec_idx; 371 const struct bpf_sec_def *sec_def; 372 /* this program's instruction offset (in number of instructions) 373 * within its containing ELF section 374 */ 375 size_t sec_insn_off; 376 /* number of original instructions in ELF section belonging to this 377 * program, not taking into account subprogram instructions possible 378 * appended later during relocation 379 */ 380 size_t sec_insn_cnt; 381 /* Offset (in number of instructions) of the start of instruction 382 * belonging to this BPF program within its containing main BPF 383 * program. For the entry-point (main) BPF program, this is always 384 * zero. For a sub-program, this gets reset before each of main BPF 385 * programs are processed and relocated and is used to determined 386 * whether sub-program was already appended to the main program, and 387 * if yes, at which instruction offset. 388 */ 389 size_t sub_insn_off; 390 391 /* instructions that belong to BPF program; insns[0] is located at 392 * sec_insn_off instruction within its ELF section in ELF file, so 393 * when mapping ELF file instruction index to the local instruction, 394 * one needs to subtract sec_insn_off; and vice versa. 395 */ 396 struct bpf_insn *insns; 397 /* actual number of instruction in this BPF program's image; for 398 * entry-point BPF programs this includes the size of main program 399 * itself plus all the used sub-programs, appended at the end 400 */ 401 size_t insns_cnt; 402 403 struct reloc_desc *reloc_desc; 404 int nr_reloc; 405 406 /* BPF verifier log settings */ 407 char *log_buf; 408 size_t log_size; 409 __u32 log_level; 410 411 struct bpf_object *obj; 412 413 int fd; 414 bool autoload; 415 bool mark_btf_static; 416 enum bpf_prog_type type; 417 enum bpf_attach_type expected_attach_type; 418 419 int prog_ifindex; 420 __u32 attach_btf_obj_fd; 421 __u32 attach_btf_id; 422 __u32 attach_prog_fd; 423 424 void *func_info; 425 __u32 func_info_rec_size; 426 __u32 func_info_cnt; 427 428 void *line_info; 429 __u32 line_info_rec_size; 430 __u32 line_info_cnt; 431 __u32 prog_flags; 432 }; 433 434 struct bpf_struct_ops { 435 const char *tname; 436 const struct btf_type *type; 437 struct bpf_program **progs; 438 __u32 *kern_func_off; 439 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 440 void *data; 441 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 442 * btf_vmlinux's format. 443 * struct bpf_struct_ops_tcp_congestion_ops { 444 * [... some other kernel fields ...] 445 * struct tcp_congestion_ops data; 446 * } 447 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 448 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 449 * from "data". 450 */ 451 void *kern_vdata; 452 __u32 type_id; 453 }; 454 455 #define DATA_SEC ".data" 456 #define BSS_SEC ".bss" 457 #define RODATA_SEC ".rodata" 458 #define KCONFIG_SEC ".kconfig" 459 #define KSYMS_SEC ".ksyms" 460 #define STRUCT_OPS_SEC ".struct_ops" 461 462 enum libbpf_map_type { 463 LIBBPF_MAP_UNSPEC, 464 LIBBPF_MAP_DATA, 465 LIBBPF_MAP_BSS, 466 LIBBPF_MAP_RODATA, 467 LIBBPF_MAP_KCONFIG, 468 }; 469 470 struct bpf_map_def { 471 unsigned int type; 472 unsigned int key_size; 473 unsigned int value_size; 474 unsigned int max_entries; 475 unsigned int map_flags; 476 }; 477 478 struct bpf_map { 479 struct bpf_object *obj; 480 char *name; 481 /* real_name is defined for special internal maps (.rodata*, 482 * .data*, .bss, .kconfig) and preserves their original ELF section 483 * name. This is important to be be able to find corresponding BTF 484 * DATASEC information. 485 */ 486 char *real_name; 487 int fd; 488 int sec_idx; 489 size_t sec_offset; 490 int map_ifindex; 491 int inner_map_fd; 492 struct bpf_map_def def; 493 __u32 numa_node; 494 __u32 btf_var_idx; 495 __u32 btf_key_type_id; 496 __u32 btf_value_type_id; 497 __u32 btf_vmlinux_value_type_id; 498 enum libbpf_map_type libbpf_type; 499 void *mmaped; 500 struct bpf_struct_ops *st_ops; 501 struct bpf_map *inner_map; 502 void **init_slots; 503 int init_slots_sz; 504 char *pin_path; 505 bool pinned; 506 bool reused; 507 bool autocreate; 508 __u64 map_extra; 509 }; 510 511 enum extern_type { 512 EXT_UNKNOWN, 513 EXT_KCFG, 514 EXT_KSYM, 515 }; 516 517 enum kcfg_type { 518 KCFG_UNKNOWN, 519 KCFG_CHAR, 520 KCFG_BOOL, 521 KCFG_INT, 522 KCFG_TRISTATE, 523 KCFG_CHAR_ARR, 524 }; 525 526 struct extern_desc { 527 enum extern_type type; 528 int sym_idx; 529 int btf_id; 530 int sec_btf_id; 531 const char *name; 532 bool is_set; 533 bool is_weak; 534 union { 535 struct { 536 enum kcfg_type type; 537 int sz; 538 int align; 539 int data_off; 540 bool is_signed; 541 } kcfg; 542 struct { 543 unsigned long long addr; 544 545 /* target btf_id of the corresponding kernel var. */ 546 int kernel_btf_obj_fd; 547 int kernel_btf_id; 548 549 /* local btf_id of the ksym extern's type. */ 550 __u32 type_id; 551 /* BTF fd index to be patched in for insn->off, this is 552 * 0 for vmlinux BTF, index in obj->fd_array for module 553 * BTF 554 */ 555 __s16 btf_fd_idx; 556 } ksym; 557 }; 558 }; 559 560 struct module_btf { 561 struct btf *btf; 562 char *name; 563 __u32 id; 564 int fd; 565 int fd_array_idx; 566 }; 567 568 enum sec_type { 569 SEC_UNUSED = 0, 570 SEC_RELO, 571 SEC_BSS, 572 SEC_DATA, 573 SEC_RODATA, 574 }; 575 576 struct elf_sec_desc { 577 enum sec_type sec_type; 578 Elf64_Shdr *shdr; 579 Elf_Data *data; 580 }; 581 582 struct elf_state { 583 int fd; 584 const void *obj_buf; 585 size_t obj_buf_sz; 586 Elf *elf; 587 Elf64_Ehdr *ehdr; 588 Elf_Data *symbols; 589 Elf_Data *st_ops_data; 590 size_t shstrndx; /* section index for section name strings */ 591 size_t strtabidx; 592 struct elf_sec_desc *secs; 593 int sec_cnt; 594 int maps_shndx; 595 int btf_maps_shndx; 596 __u32 btf_maps_sec_btf_id; 597 int text_shndx; 598 int symbols_shndx; 599 int st_ops_shndx; 600 }; 601 602 struct usdt_manager; 603 604 struct bpf_object { 605 char name[BPF_OBJ_NAME_LEN]; 606 char license[64]; 607 __u32 kern_version; 608 609 struct bpf_program *programs; 610 size_t nr_programs; 611 struct bpf_map *maps; 612 size_t nr_maps; 613 size_t maps_cap; 614 615 char *kconfig; 616 struct extern_desc *externs; 617 int nr_extern; 618 int kconfig_map_idx; 619 620 bool loaded; 621 bool has_subcalls; 622 bool has_rodata; 623 624 struct bpf_gen *gen_loader; 625 626 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 627 struct elf_state efile; 628 629 struct btf *btf; 630 struct btf_ext *btf_ext; 631 632 /* Parse and load BTF vmlinux if any of the programs in the object need 633 * it at load time. 634 */ 635 struct btf *btf_vmlinux; 636 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 637 * override for vmlinux BTF. 638 */ 639 char *btf_custom_path; 640 /* vmlinux BTF override for CO-RE relocations */ 641 struct btf *btf_vmlinux_override; 642 /* Lazily initialized kernel module BTFs */ 643 struct module_btf *btf_modules; 644 bool btf_modules_loaded; 645 size_t btf_module_cnt; 646 size_t btf_module_cap; 647 648 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 649 char *log_buf; 650 size_t log_size; 651 __u32 log_level; 652 653 int *fd_array; 654 size_t fd_array_cap; 655 size_t fd_array_cnt; 656 657 struct usdt_manager *usdt_man; 658 659 char path[]; 660 }; 661 662 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 663 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 664 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 665 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 666 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 667 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 668 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 669 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 670 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 671 672 void bpf_program__unload(struct bpf_program *prog) 673 { 674 if (!prog) 675 return; 676 677 zclose(prog->fd); 678 679 zfree(&prog->func_info); 680 zfree(&prog->line_info); 681 } 682 683 static void bpf_program__exit(struct bpf_program *prog) 684 { 685 if (!prog) 686 return; 687 688 bpf_program__unload(prog); 689 zfree(&prog->name); 690 zfree(&prog->sec_name); 691 zfree(&prog->insns); 692 zfree(&prog->reloc_desc); 693 694 prog->nr_reloc = 0; 695 prog->insns_cnt = 0; 696 prog->sec_idx = -1; 697 } 698 699 static bool insn_is_subprog_call(const struct bpf_insn *insn) 700 { 701 return BPF_CLASS(insn->code) == BPF_JMP && 702 BPF_OP(insn->code) == BPF_CALL && 703 BPF_SRC(insn->code) == BPF_K && 704 insn->src_reg == BPF_PSEUDO_CALL && 705 insn->dst_reg == 0 && 706 insn->off == 0; 707 } 708 709 static bool is_call_insn(const struct bpf_insn *insn) 710 { 711 return insn->code == (BPF_JMP | BPF_CALL); 712 } 713 714 static bool insn_is_pseudo_func(struct bpf_insn *insn) 715 { 716 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 717 } 718 719 static int 720 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 721 const char *name, size_t sec_idx, const char *sec_name, 722 size_t sec_off, void *insn_data, size_t insn_data_sz) 723 { 724 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 725 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 726 sec_name, name, sec_off, insn_data_sz); 727 return -EINVAL; 728 } 729 730 memset(prog, 0, sizeof(*prog)); 731 prog->obj = obj; 732 733 prog->sec_idx = sec_idx; 734 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 735 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 736 /* insns_cnt can later be increased by appending used subprograms */ 737 prog->insns_cnt = prog->sec_insn_cnt; 738 739 prog->type = BPF_PROG_TYPE_UNSPEC; 740 prog->fd = -1; 741 742 /* libbpf's convention for SEC("?abc...") is that it's just like 743 * SEC("abc...") but the corresponding bpf_program starts out with 744 * autoload set to false. 745 */ 746 if (sec_name[0] == '?') { 747 prog->autoload = false; 748 /* from now on forget there was ? in section name */ 749 sec_name++; 750 } else { 751 prog->autoload = true; 752 } 753 754 /* inherit object's log_level */ 755 prog->log_level = obj->log_level; 756 757 prog->sec_name = strdup(sec_name); 758 if (!prog->sec_name) 759 goto errout; 760 761 prog->name = strdup(name); 762 if (!prog->name) 763 goto errout; 764 765 prog->insns = malloc(insn_data_sz); 766 if (!prog->insns) 767 goto errout; 768 memcpy(prog->insns, insn_data, insn_data_sz); 769 770 return 0; 771 errout: 772 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 773 bpf_program__exit(prog); 774 return -ENOMEM; 775 } 776 777 static int 778 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 779 const char *sec_name, int sec_idx) 780 { 781 Elf_Data *symbols = obj->efile.symbols; 782 struct bpf_program *prog, *progs; 783 void *data = sec_data->d_buf; 784 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 785 int nr_progs, err, i; 786 const char *name; 787 Elf64_Sym *sym; 788 789 progs = obj->programs; 790 nr_progs = obj->nr_programs; 791 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 792 sec_off = 0; 793 794 for (i = 0; i < nr_syms; i++) { 795 sym = elf_sym_by_idx(obj, i); 796 797 if (sym->st_shndx != sec_idx) 798 continue; 799 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 800 continue; 801 802 prog_sz = sym->st_size; 803 sec_off = sym->st_value; 804 805 name = elf_sym_str(obj, sym->st_name); 806 if (!name) { 807 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 808 sec_name, sec_off); 809 return -LIBBPF_ERRNO__FORMAT; 810 } 811 812 if (sec_off + prog_sz > sec_sz) { 813 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 814 sec_name, sec_off); 815 return -LIBBPF_ERRNO__FORMAT; 816 } 817 818 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 819 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 820 return -ENOTSUP; 821 } 822 823 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 824 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 825 826 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 827 if (!progs) { 828 /* 829 * In this case the original obj->programs 830 * is still valid, so don't need special treat for 831 * bpf_close_object(). 832 */ 833 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 834 sec_name, name); 835 return -ENOMEM; 836 } 837 obj->programs = progs; 838 839 prog = &progs[nr_progs]; 840 841 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 842 sec_off, data + sec_off, prog_sz); 843 if (err) 844 return err; 845 846 /* if function is a global/weak symbol, but has restricted 847 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 848 * as static to enable more permissive BPF verification mode 849 * with more outside context available to BPF verifier 850 */ 851 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 852 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 853 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 854 prog->mark_btf_static = true; 855 856 nr_progs++; 857 obj->nr_programs = nr_progs; 858 } 859 860 return 0; 861 } 862 863 __u32 get_kernel_version(void) 864 { 865 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 866 * but Ubuntu provides /proc/version_signature file, as described at 867 * https://ubuntu.com/kernel, with an example contents below, which we 868 * can use to get a proper LINUX_VERSION_CODE. 869 * 870 * Ubuntu 5.4.0-12.15-generic 5.4.8 871 * 872 * In the above, 5.4.8 is what kernel is actually expecting, while 873 * uname() call will return 5.4.0 in info.release. 874 */ 875 const char *ubuntu_kver_file = "/proc/version_signature"; 876 __u32 major, minor, patch; 877 struct utsname info; 878 879 if (access(ubuntu_kver_file, R_OK) == 0) { 880 FILE *f; 881 882 f = fopen(ubuntu_kver_file, "r"); 883 if (f) { 884 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 885 fclose(f); 886 return KERNEL_VERSION(major, minor, patch); 887 } 888 fclose(f); 889 } 890 /* something went wrong, fall back to uname() approach */ 891 } 892 893 uname(&info); 894 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 895 return 0; 896 return KERNEL_VERSION(major, minor, patch); 897 } 898 899 static const struct btf_member * 900 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 901 { 902 struct btf_member *m; 903 int i; 904 905 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 906 if (btf_member_bit_offset(t, i) == bit_offset) 907 return m; 908 } 909 910 return NULL; 911 } 912 913 static const struct btf_member * 914 find_member_by_name(const struct btf *btf, const struct btf_type *t, 915 const char *name) 916 { 917 struct btf_member *m; 918 int i; 919 920 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 921 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 922 return m; 923 } 924 925 return NULL; 926 } 927 928 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 929 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 930 const char *name, __u32 kind); 931 932 static int 933 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 934 const struct btf_type **type, __u32 *type_id, 935 const struct btf_type **vtype, __u32 *vtype_id, 936 const struct btf_member **data_member) 937 { 938 const struct btf_type *kern_type, *kern_vtype; 939 const struct btf_member *kern_data_member; 940 __s32 kern_vtype_id, kern_type_id; 941 __u32 i; 942 943 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 944 if (kern_type_id < 0) { 945 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 946 tname); 947 return kern_type_id; 948 } 949 kern_type = btf__type_by_id(btf, kern_type_id); 950 951 /* Find the corresponding "map_value" type that will be used 952 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 953 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 954 * btf_vmlinux. 955 */ 956 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 957 tname, BTF_KIND_STRUCT); 958 if (kern_vtype_id < 0) { 959 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 960 STRUCT_OPS_VALUE_PREFIX, tname); 961 return kern_vtype_id; 962 } 963 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 964 965 /* Find "struct tcp_congestion_ops" from 966 * struct bpf_struct_ops_tcp_congestion_ops { 967 * [ ... ] 968 * struct tcp_congestion_ops data; 969 * } 970 */ 971 kern_data_member = btf_members(kern_vtype); 972 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 973 if (kern_data_member->type == kern_type_id) 974 break; 975 } 976 if (i == btf_vlen(kern_vtype)) { 977 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 978 tname, STRUCT_OPS_VALUE_PREFIX, tname); 979 return -EINVAL; 980 } 981 982 *type = kern_type; 983 *type_id = kern_type_id; 984 *vtype = kern_vtype; 985 *vtype_id = kern_vtype_id; 986 *data_member = kern_data_member; 987 988 return 0; 989 } 990 991 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 992 { 993 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 994 } 995 996 /* Init the map's fields that depend on kern_btf */ 997 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 998 const struct btf *btf, 999 const struct btf *kern_btf) 1000 { 1001 const struct btf_member *member, *kern_member, *kern_data_member; 1002 const struct btf_type *type, *kern_type, *kern_vtype; 1003 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1004 struct bpf_struct_ops *st_ops; 1005 void *data, *kern_data; 1006 const char *tname; 1007 int err; 1008 1009 st_ops = map->st_ops; 1010 type = st_ops->type; 1011 tname = st_ops->tname; 1012 err = find_struct_ops_kern_types(kern_btf, tname, 1013 &kern_type, &kern_type_id, 1014 &kern_vtype, &kern_vtype_id, 1015 &kern_data_member); 1016 if (err) 1017 return err; 1018 1019 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1020 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1021 1022 map->def.value_size = kern_vtype->size; 1023 map->btf_vmlinux_value_type_id = kern_vtype_id; 1024 1025 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1026 if (!st_ops->kern_vdata) 1027 return -ENOMEM; 1028 1029 data = st_ops->data; 1030 kern_data_off = kern_data_member->offset / 8; 1031 kern_data = st_ops->kern_vdata + kern_data_off; 1032 1033 member = btf_members(type); 1034 for (i = 0; i < btf_vlen(type); i++, member++) { 1035 const struct btf_type *mtype, *kern_mtype; 1036 __u32 mtype_id, kern_mtype_id; 1037 void *mdata, *kern_mdata; 1038 __s64 msize, kern_msize; 1039 __u32 moff, kern_moff; 1040 __u32 kern_member_idx; 1041 const char *mname; 1042 1043 mname = btf__name_by_offset(btf, member->name_off); 1044 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1045 if (!kern_member) { 1046 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1047 map->name, mname); 1048 return -ENOTSUP; 1049 } 1050 1051 kern_member_idx = kern_member - btf_members(kern_type); 1052 if (btf_member_bitfield_size(type, i) || 1053 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1054 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1055 map->name, mname); 1056 return -ENOTSUP; 1057 } 1058 1059 moff = member->offset / 8; 1060 kern_moff = kern_member->offset / 8; 1061 1062 mdata = data + moff; 1063 kern_mdata = kern_data + kern_moff; 1064 1065 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1066 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1067 &kern_mtype_id); 1068 if (BTF_INFO_KIND(mtype->info) != 1069 BTF_INFO_KIND(kern_mtype->info)) { 1070 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1071 map->name, mname, BTF_INFO_KIND(mtype->info), 1072 BTF_INFO_KIND(kern_mtype->info)); 1073 return -ENOTSUP; 1074 } 1075 1076 if (btf_is_ptr(mtype)) { 1077 struct bpf_program *prog; 1078 1079 prog = st_ops->progs[i]; 1080 if (!prog) 1081 continue; 1082 1083 kern_mtype = skip_mods_and_typedefs(kern_btf, 1084 kern_mtype->type, 1085 &kern_mtype_id); 1086 1087 /* mtype->type must be a func_proto which was 1088 * guaranteed in bpf_object__collect_st_ops_relos(), 1089 * so only check kern_mtype for func_proto here. 1090 */ 1091 if (!btf_is_func_proto(kern_mtype)) { 1092 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1093 map->name, mname); 1094 return -ENOTSUP; 1095 } 1096 1097 prog->attach_btf_id = kern_type_id; 1098 prog->expected_attach_type = kern_member_idx; 1099 1100 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1101 1102 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1103 map->name, mname, prog->name, moff, 1104 kern_moff); 1105 1106 continue; 1107 } 1108 1109 msize = btf__resolve_size(btf, mtype_id); 1110 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1111 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1112 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1113 map->name, mname, (ssize_t)msize, 1114 (ssize_t)kern_msize); 1115 return -ENOTSUP; 1116 } 1117 1118 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1119 map->name, mname, (unsigned int)msize, 1120 moff, kern_moff); 1121 memcpy(kern_mdata, mdata, msize); 1122 } 1123 1124 return 0; 1125 } 1126 1127 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1128 { 1129 struct bpf_map *map; 1130 size_t i; 1131 int err; 1132 1133 for (i = 0; i < obj->nr_maps; i++) { 1134 map = &obj->maps[i]; 1135 1136 if (!bpf_map__is_struct_ops(map)) 1137 continue; 1138 1139 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1140 obj->btf_vmlinux); 1141 if (err) 1142 return err; 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1149 { 1150 const struct btf_type *type, *datasec; 1151 const struct btf_var_secinfo *vsi; 1152 struct bpf_struct_ops *st_ops; 1153 const char *tname, *var_name; 1154 __s32 type_id, datasec_id; 1155 const struct btf *btf; 1156 struct bpf_map *map; 1157 __u32 i; 1158 1159 if (obj->efile.st_ops_shndx == -1) 1160 return 0; 1161 1162 btf = obj->btf; 1163 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1164 BTF_KIND_DATASEC); 1165 if (datasec_id < 0) { 1166 pr_warn("struct_ops init: DATASEC %s not found\n", 1167 STRUCT_OPS_SEC); 1168 return -EINVAL; 1169 } 1170 1171 datasec = btf__type_by_id(btf, datasec_id); 1172 vsi = btf_var_secinfos(datasec); 1173 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1174 type = btf__type_by_id(obj->btf, vsi->type); 1175 var_name = btf__name_by_offset(obj->btf, type->name_off); 1176 1177 type_id = btf__resolve_type(obj->btf, vsi->type); 1178 if (type_id < 0) { 1179 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1180 vsi->type, STRUCT_OPS_SEC); 1181 return -EINVAL; 1182 } 1183 1184 type = btf__type_by_id(obj->btf, type_id); 1185 tname = btf__name_by_offset(obj->btf, type->name_off); 1186 if (!tname[0]) { 1187 pr_warn("struct_ops init: anonymous type is not supported\n"); 1188 return -ENOTSUP; 1189 } 1190 if (!btf_is_struct(type)) { 1191 pr_warn("struct_ops init: %s is not a struct\n", tname); 1192 return -EINVAL; 1193 } 1194 1195 map = bpf_object__add_map(obj); 1196 if (IS_ERR(map)) 1197 return PTR_ERR(map); 1198 1199 map->sec_idx = obj->efile.st_ops_shndx; 1200 map->sec_offset = vsi->offset; 1201 map->name = strdup(var_name); 1202 if (!map->name) 1203 return -ENOMEM; 1204 1205 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1206 map->def.key_size = sizeof(int); 1207 map->def.value_size = type->size; 1208 map->def.max_entries = 1; 1209 1210 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1211 if (!map->st_ops) 1212 return -ENOMEM; 1213 st_ops = map->st_ops; 1214 st_ops->data = malloc(type->size); 1215 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1216 st_ops->kern_func_off = malloc(btf_vlen(type) * 1217 sizeof(*st_ops->kern_func_off)); 1218 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1219 return -ENOMEM; 1220 1221 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1222 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1223 var_name, STRUCT_OPS_SEC); 1224 return -EINVAL; 1225 } 1226 1227 memcpy(st_ops->data, 1228 obj->efile.st_ops_data->d_buf + vsi->offset, 1229 type->size); 1230 st_ops->tname = tname; 1231 st_ops->type = type; 1232 st_ops->type_id = type_id; 1233 1234 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1235 tname, type_id, var_name, vsi->offset); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static struct bpf_object *bpf_object__new(const char *path, 1242 const void *obj_buf, 1243 size_t obj_buf_sz, 1244 const char *obj_name) 1245 { 1246 struct bpf_object *obj; 1247 char *end; 1248 1249 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1250 if (!obj) { 1251 pr_warn("alloc memory failed for %s\n", path); 1252 return ERR_PTR(-ENOMEM); 1253 } 1254 1255 strcpy(obj->path, path); 1256 if (obj_name) { 1257 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1258 } else { 1259 /* Using basename() GNU version which doesn't modify arg. */ 1260 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1261 end = strchr(obj->name, '.'); 1262 if (end) 1263 *end = 0; 1264 } 1265 1266 obj->efile.fd = -1; 1267 /* 1268 * Caller of this function should also call 1269 * bpf_object__elf_finish() after data collection to return 1270 * obj_buf to user. If not, we should duplicate the buffer to 1271 * avoid user freeing them before elf finish. 1272 */ 1273 obj->efile.obj_buf = obj_buf; 1274 obj->efile.obj_buf_sz = obj_buf_sz; 1275 obj->efile.maps_shndx = -1; 1276 obj->efile.btf_maps_shndx = -1; 1277 obj->efile.st_ops_shndx = -1; 1278 obj->kconfig_map_idx = -1; 1279 1280 obj->kern_version = get_kernel_version(); 1281 obj->loaded = false; 1282 1283 return obj; 1284 } 1285 1286 static void bpf_object__elf_finish(struct bpf_object *obj) 1287 { 1288 if (!obj->efile.elf) 1289 return; 1290 1291 elf_end(obj->efile.elf); 1292 obj->efile.elf = NULL; 1293 obj->efile.symbols = NULL; 1294 obj->efile.st_ops_data = NULL; 1295 1296 zfree(&obj->efile.secs); 1297 obj->efile.sec_cnt = 0; 1298 zclose(obj->efile.fd); 1299 obj->efile.obj_buf = NULL; 1300 obj->efile.obj_buf_sz = 0; 1301 } 1302 1303 static int bpf_object__elf_init(struct bpf_object *obj) 1304 { 1305 Elf64_Ehdr *ehdr; 1306 int err = 0; 1307 Elf *elf; 1308 1309 if (obj->efile.elf) { 1310 pr_warn("elf: init internal error\n"); 1311 return -LIBBPF_ERRNO__LIBELF; 1312 } 1313 1314 if (obj->efile.obj_buf_sz > 0) { 1315 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1316 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1317 } else { 1318 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1319 if (obj->efile.fd < 0) { 1320 char errmsg[STRERR_BUFSIZE], *cp; 1321 1322 err = -errno; 1323 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1324 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1325 return err; 1326 } 1327 1328 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1329 } 1330 1331 if (!elf) { 1332 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1333 err = -LIBBPF_ERRNO__LIBELF; 1334 goto errout; 1335 } 1336 1337 obj->efile.elf = elf; 1338 1339 if (elf_kind(elf) != ELF_K_ELF) { 1340 err = -LIBBPF_ERRNO__FORMAT; 1341 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1342 goto errout; 1343 } 1344 1345 if (gelf_getclass(elf) != ELFCLASS64) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1352 if (!obj->efile.ehdr) { 1353 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__FORMAT; 1355 goto errout; 1356 } 1357 1358 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1359 pr_warn("elf: failed to get section names section index for %s: %s\n", 1360 obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1366 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1367 pr_warn("elf: failed to get section names strings from %s: %s\n", 1368 obj->path, elf_errmsg(-1)); 1369 err = -LIBBPF_ERRNO__FORMAT; 1370 goto errout; 1371 } 1372 1373 /* Old LLVM set e_machine to EM_NONE */ 1374 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1375 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 return 0; 1381 errout: 1382 bpf_object__elf_finish(obj); 1383 return err; 1384 } 1385 1386 static int bpf_object__check_endianness(struct bpf_object *obj) 1387 { 1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1389 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1390 return 0; 1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1393 return 0; 1394 #else 1395 # error "Unrecognized __BYTE_ORDER__" 1396 #endif 1397 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1398 return -LIBBPF_ERRNO__ENDIAN; 1399 } 1400 1401 static int 1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1403 { 1404 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1405 * go over allowed ELF data section buffer 1406 */ 1407 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1408 pr_debug("license of %s is %s\n", obj->path, obj->license); 1409 return 0; 1410 } 1411 1412 static int 1413 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1414 { 1415 __u32 kver; 1416 1417 if (size != sizeof(kver)) { 1418 pr_warn("invalid kver section in %s\n", obj->path); 1419 return -LIBBPF_ERRNO__FORMAT; 1420 } 1421 memcpy(&kver, data, sizeof(kver)); 1422 obj->kern_version = kver; 1423 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1424 return 0; 1425 } 1426 1427 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1428 { 1429 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1430 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1431 return true; 1432 return false; 1433 } 1434 1435 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1436 { 1437 Elf_Data *data; 1438 Elf_Scn *scn; 1439 1440 if (!name) 1441 return -EINVAL; 1442 1443 scn = elf_sec_by_name(obj, name); 1444 data = elf_sec_data(obj, scn); 1445 if (data) { 1446 *size = data->d_size; 1447 return 0; /* found it */ 1448 } 1449 1450 return -ENOENT; 1451 } 1452 1453 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1454 { 1455 Elf_Data *symbols = obj->efile.symbols; 1456 const char *sname; 1457 size_t si; 1458 1459 if (!name || !off) 1460 return -EINVAL; 1461 1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1464 1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1466 continue; 1467 1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1470 continue; 1471 1472 sname = elf_sym_str(obj, sym->st_name); 1473 if (!sname) { 1474 pr_warn("failed to get sym name string for var %s\n", name); 1475 return -EIO; 1476 } 1477 if (strcmp(name, sname) == 0) { 1478 *off = sym->st_value; 1479 return 0; 1480 } 1481 } 1482 1483 return -ENOENT; 1484 } 1485 1486 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1487 { 1488 struct bpf_map *map; 1489 int err; 1490 1491 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1492 sizeof(*obj->maps), obj->nr_maps + 1); 1493 if (err) 1494 return ERR_PTR(err); 1495 1496 map = &obj->maps[obj->nr_maps++]; 1497 map->obj = obj; 1498 map->fd = -1; 1499 map->inner_map_fd = -1; 1500 map->autocreate = true; 1501 1502 return map; 1503 } 1504 1505 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1506 { 1507 long page_sz = sysconf(_SC_PAGE_SIZE); 1508 size_t map_sz; 1509 1510 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1511 map_sz = roundup(map_sz, page_sz); 1512 return map_sz; 1513 } 1514 1515 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1516 { 1517 char map_name[BPF_OBJ_NAME_LEN], *p; 1518 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1519 1520 /* This is one of the more confusing parts of libbpf for various 1521 * reasons, some of which are historical. The original idea for naming 1522 * internal names was to include as much of BPF object name prefix as 1523 * possible, so that it can be distinguished from similar internal 1524 * maps of a different BPF object. 1525 * As an example, let's say we have bpf_object named 'my_object_name' 1526 * and internal map corresponding to '.rodata' ELF section. The final 1527 * map name advertised to user and to the kernel will be 1528 * 'my_objec.rodata', taking first 8 characters of object name and 1529 * entire 7 characters of '.rodata'. 1530 * Somewhat confusingly, if internal map ELF section name is shorter 1531 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1532 * for the suffix, even though we only have 4 actual characters, and 1533 * resulting map will be called 'my_objec.bss', not even using all 15 1534 * characters allowed by the kernel. Oh well, at least the truncated 1535 * object name is somewhat consistent in this case. But if the map 1536 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1537 * (8 chars) and thus will be left with only first 7 characters of the 1538 * object name ('my_obje'). Happy guessing, user, that the final map 1539 * name will be "my_obje.kconfig". 1540 * Now, with libbpf starting to support arbitrarily named .rodata.* 1541 * and .data.* data sections, it's possible that ELF section name is 1542 * longer than allowed 15 chars, so we now need to be careful to take 1543 * only up to 15 first characters of ELF name, taking no BPF object 1544 * name characters at all. So '.rodata.abracadabra' will result in 1545 * '.rodata.abracad' kernel and user-visible name. 1546 * We need to keep this convoluted logic intact for .data, .bss and 1547 * .rodata maps, but for new custom .data.custom and .rodata.custom 1548 * maps we use their ELF names as is, not prepending bpf_object name 1549 * in front. We still need to truncate them to 15 characters for the 1550 * kernel. Full name can be recovered for such maps by using DATASEC 1551 * BTF type associated with such map's value type, though. 1552 */ 1553 if (sfx_len >= BPF_OBJ_NAME_LEN) 1554 sfx_len = BPF_OBJ_NAME_LEN - 1; 1555 1556 /* if there are two or more dots in map name, it's a custom dot map */ 1557 if (strchr(real_name + 1, '.') != NULL) 1558 pfx_len = 0; 1559 else 1560 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1561 1562 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1563 sfx_len, real_name); 1564 1565 /* sanitise map name to characters allowed by kernel */ 1566 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1567 if (!isalnum(*p) && *p != '_' && *p != '.') 1568 *p = '_'; 1569 1570 return strdup(map_name); 1571 } 1572 1573 static int 1574 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1575 1576 static int 1577 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1578 const char *real_name, int sec_idx, void *data, size_t data_sz) 1579 { 1580 struct bpf_map_def *def; 1581 struct bpf_map *map; 1582 int err; 1583 1584 map = bpf_object__add_map(obj); 1585 if (IS_ERR(map)) 1586 return PTR_ERR(map); 1587 1588 map->libbpf_type = type; 1589 map->sec_idx = sec_idx; 1590 map->sec_offset = 0; 1591 map->real_name = strdup(real_name); 1592 map->name = internal_map_name(obj, real_name); 1593 if (!map->real_name || !map->name) { 1594 zfree(&map->real_name); 1595 zfree(&map->name); 1596 return -ENOMEM; 1597 } 1598 1599 def = &map->def; 1600 def->type = BPF_MAP_TYPE_ARRAY; 1601 def->key_size = sizeof(int); 1602 def->value_size = data_sz; 1603 def->max_entries = 1; 1604 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1605 ? BPF_F_RDONLY_PROG : 0; 1606 def->map_flags |= BPF_F_MMAPABLE; 1607 1608 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1609 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1610 1611 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1612 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1613 if (map->mmaped == MAP_FAILED) { 1614 err = -errno; 1615 map->mmaped = NULL; 1616 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1617 map->name, err); 1618 zfree(&map->real_name); 1619 zfree(&map->name); 1620 return err; 1621 } 1622 1623 /* failures are fine because of maps like .rodata.str1.1 */ 1624 (void) bpf_map_find_btf_info(obj, map); 1625 1626 if (data) 1627 memcpy(map->mmaped, data, data_sz); 1628 1629 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1630 return 0; 1631 } 1632 1633 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1634 { 1635 struct elf_sec_desc *sec_desc; 1636 const char *sec_name; 1637 int err = 0, sec_idx; 1638 1639 /* 1640 * Populate obj->maps with libbpf internal maps. 1641 */ 1642 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1643 sec_desc = &obj->efile.secs[sec_idx]; 1644 1645 switch (sec_desc->sec_type) { 1646 case SEC_DATA: 1647 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1648 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1649 sec_name, sec_idx, 1650 sec_desc->data->d_buf, 1651 sec_desc->data->d_size); 1652 break; 1653 case SEC_RODATA: 1654 obj->has_rodata = true; 1655 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1656 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1657 sec_name, sec_idx, 1658 sec_desc->data->d_buf, 1659 sec_desc->data->d_size); 1660 break; 1661 case SEC_BSS: 1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1664 sec_name, sec_idx, 1665 NULL, 1666 sec_desc->data->d_size); 1667 break; 1668 default: 1669 /* skip */ 1670 break; 1671 } 1672 if (err) 1673 return err; 1674 } 1675 return 0; 1676 } 1677 1678 1679 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1680 const void *name) 1681 { 1682 int i; 1683 1684 for (i = 0; i < obj->nr_extern; i++) { 1685 if (strcmp(obj->externs[i].name, name) == 0) 1686 return &obj->externs[i]; 1687 } 1688 return NULL; 1689 } 1690 1691 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1692 char value) 1693 { 1694 switch (ext->kcfg.type) { 1695 case KCFG_BOOL: 1696 if (value == 'm') { 1697 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1698 ext->name, value); 1699 return -EINVAL; 1700 } 1701 *(bool *)ext_val = value == 'y' ? true : false; 1702 break; 1703 case KCFG_TRISTATE: 1704 if (value == 'y') 1705 *(enum libbpf_tristate *)ext_val = TRI_YES; 1706 else if (value == 'm') 1707 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1708 else /* value == 'n' */ 1709 *(enum libbpf_tristate *)ext_val = TRI_NO; 1710 break; 1711 case KCFG_CHAR: 1712 *(char *)ext_val = value; 1713 break; 1714 case KCFG_UNKNOWN: 1715 case KCFG_INT: 1716 case KCFG_CHAR_ARR: 1717 default: 1718 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1719 ext->name, value); 1720 return -EINVAL; 1721 } 1722 ext->is_set = true; 1723 return 0; 1724 } 1725 1726 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1727 const char *value) 1728 { 1729 size_t len; 1730 1731 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1732 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1733 ext->name, value); 1734 return -EINVAL; 1735 } 1736 1737 len = strlen(value); 1738 if (value[len - 1] != '"') { 1739 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1740 ext->name, value); 1741 return -EINVAL; 1742 } 1743 1744 /* strip quotes */ 1745 len -= 2; 1746 if (len >= ext->kcfg.sz) { 1747 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1748 ext->name, value, len, ext->kcfg.sz - 1); 1749 len = ext->kcfg.sz - 1; 1750 } 1751 memcpy(ext_val, value + 1, len); 1752 ext_val[len] = '\0'; 1753 ext->is_set = true; 1754 return 0; 1755 } 1756 1757 static int parse_u64(const char *value, __u64 *res) 1758 { 1759 char *value_end; 1760 int err; 1761 1762 errno = 0; 1763 *res = strtoull(value, &value_end, 0); 1764 if (errno) { 1765 err = -errno; 1766 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1767 return err; 1768 } 1769 if (*value_end) { 1770 pr_warn("failed to parse '%s' as integer completely\n", value); 1771 return -EINVAL; 1772 } 1773 return 0; 1774 } 1775 1776 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1777 { 1778 int bit_sz = ext->kcfg.sz * 8; 1779 1780 if (ext->kcfg.sz == 8) 1781 return true; 1782 1783 /* Validate that value stored in u64 fits in integer of `ext->sz` 1784 * bytes size without any loss of information. If the target integer 1785 * is signed, we rely on the following limits of integer type of 1786 * Y bits and subsequent transformation: 1787 * 1788 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1789 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1790 * 0 <= X + 2^(Y-1) < 2^Y 1791 * 1792 * For unsigned target integer, check that all the (64 - Y) bits are 1793 * zero. 1794 */ 1795 if (ext->kcfg.is_signed) 1796 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1797 else 1798 return (v >> bit_sz) == 0; 1799 } 1800 1801 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1802 __u64 value) 1803 { 1804 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1805 ext->kcfg.type != KCFG_BOOL) { 1806 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1807 ext->name, (unsigned long long)value); 1808 return -EINVAL; 1809 } 1810 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1811 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1812 ext->name, (unsigned long long)value); 1813 return -EINVAL; 1814 1815 } 1816 if (!is_kcfg_value_in_range(ext, value)) { 1817 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1818 ext->name, (unsigned long long)value, ext->kcfg.sz); 1819 return -ERANGE; 1820 } 1821 switch (ext->kcfg.sz) { 1822 case 1: *(__u8 *)ext_val = value; break; 1823 case 2: *(__u16 *)ext_val = value; break; 1824 case 4: *(__u32 *)ext_val = value; break; 1825 case 8: *(__u64 *)ext_val = value; break; 1826 default: 1827 return -EINVAL; 1828 } 1829 ext->is_set = true; 1830 return 0; 1831 } 1832 1833 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1834 char *buf, void *data) 1835 { 1836 struct extern_desc *ext; 1837 char *sep, *value; 1838 int len, err = 0; 1839 void *ext_val; 1840 __u64 num; 1841 1842 if (!str_has_pfx(buf, "CONFIG_")) 1843 return 0; 1844 1845 sep = strchr(buf, '='); 1846 if (!sep) { 1847 pr_warn("failed to parse '%s': no separator\n", buf); 1848 return -EINVAL; 1849 } 1850 1851 /* Trim ending '\n' */ 1852 len = strlen(buf); 1853 if (buf[len - 1] == '\n') 1854 buf[len - 1] = '\0'; 1855 /* Split on '=' and ensure that a value is present. */ 1856 *sep = '\0'; 1857 if (!sep[1]) { 1858 *sep = '='; 1859 pr_warn("failed to parse '%s': no value\n", buf); 1860 return -EINVAL; 1861 } 1862 1863 ext = find_extern_by_name(obj, buf); 1864 if (!ext || ext->is_set) 1865 return 0; 1866 1867 ext_val = data + ext->kcfg.data_off; 1868 value = sep + 1; 1869 1870 switch (*value) { 1871 case 'y': case 'n': case 'm': 1872 err = set_kcfg_value_tri(ext, ext_val, *value); 1873 break; 1874 case '"': 1875 err = set_kcfg_value_str(ext, ext_val, value); 1876 break; 1877 default: 1878 /* assume integer */ 1879 err = parse_u64(value, &num); 1880 if (err) { 1881 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1882 return err; 1883 } 1884 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1885 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1886 return -EINVAL; 1887 } 1888 err = set_kcfg_value_num(ext, ext_val, num); 1889 break; 1890 } 1891 if (err) 1892 return err; 1893 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1894 return 0; 1895 } 1896 1897 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1898 { 1899 char buf[PATH_MAX]; 1900 struct utsname uts; 1901 int len, err = 0; 1902 gzFile file; 1903 1904 uname(&uts); 1905 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1906 if (len < 0) 1907 return -EINVAL; 1908 else if (len >= PATH_MAX) 1909 return -ENAMETOOLONG; 1910 1911 /* gzopen also accepts uncompressed files. */ 1912 file = gzopen(buf, "r"); 1913 if (!file) 1914 file = gzopen("/proc/config.gz", "r"); 1915 1916 if (!file) { 1917 pr_warn("failed to open system Kconfig\n"); 1918 return -ENOENT; 1919 } 1920 1921 while (gzgets(file, buf, sizeof(buf))) { 1922 err = bpf_object__process_kconfig_line(obj, buf, data); 1923 if (err) { 1924 pr_warn("error parsing system Kconfig line '%s': %d\n", 1925 buf, err); 1926 goto out; 1927 } 1928 } 1929 1930 out: 1931 gzclose(file); 1932 return err; 1933 } 1934 1935 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1936 const char *config, void *data) 1937 { 1938 char buf[PATH_MAX]; 1939 int err = 0; 1940 FILE *file; 1941 1942 file = fmemopen((void *)config, strlen(config), "r"); 1943 if (!file) { 1944 err = -errno; 1945 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1946 return err; 1947 } 1948 1949 while (fgets(buf, sizeof(buf), file)) { 1950 err = bpf_object__process_kconfig_line(obj, buf, data); 1951 if (err) { 1952 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1953 buf, err); 1954 break; 1955 } 1956 } 1957 1958 fclose(file); 1959 return err; 1960 } 1961 1962 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1963 { 1964 struct extern_desc *last_ext = NULL, *ext; 1965 size_t map_sz; 1966 int i, err; 1967 1968 for (i = 0; i < obj->nr_extern; i++) { 1969 ext = &obj->externs[i]; 1970 if (ext->type == EXT_KCFG) 1971 last_ext = ext; 1972 } 1973 1974 if (!last_ext) 1975 return 0; 1976 1977 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1978 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1979 ".kconfig", obj->efile.symbols_shndx, 1980 NULL, map_sz); 1981 if (err) 1982 return err; 1983 1984 obj->kconfig_map_idx = obj->nr_maps - 1; 1985 1986 return 0; 1987 } 1988 1989 const struct btf_type * 1990 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1991 { 1992 const struct btf_type *t = btf__type_by_id(btf, id); 1993 1994 if (res_id) 1995 *res_id = id; 1996 1997 while (btf_is_mod(t) || btf_is_typedef(t)) { 1998 if (res_id) 1999 *res_id = t->type; 2000 t = btf__type_by_id(btf, t->type); 2001 } 2002 2003 return t; 2004 } 2005 2006 static const struct btf_type * 2007 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2008 { 2009 const struct btf_type *t; 2010 2011 t = skip_mods_and_typedefs(btf, id, NULL); 2012 if (!btf_is_ptr(t)) 2013 return NULL; 2014 2015 t = skip_mods_and_typedefs(btf, t->type, res_id); 2016 2017 return btf_is_func_proto(t) ? t : NULL; 2018 } 2019 2020 static const char *__btf_kind_str(__u16 kind) 2021 { 2022 switch (kind) { 2023 case BTF_KIND_UNKN: return "void"; 2024 case BTF_KIND_INT: return "int"; 2025 case BTF_KIND_PTR: return "ptr"; 2026 case BTF_KIND_ARRAY: return "array"; 2027 case BTF_KIND_STRUCT: return "struct"; 2028 case BTF_KIND_UNION: return "union"; 2029 case BTF_KIND_ENUM: return "enum"; 2030 case BTF_KIND_FWD: return "fwd"; 2031 case BTF_KIND_TYPEDEF: return "typedef"; 2032 case BTF_KIND_VOLATILE: return "volatile"; 2033 case BTF_KIND_CONST: return "const"; 2034 case BTF_KIND_RESTRICT: return "restrict"; 2035 case BTF_KIND_FUNC: return "func"; 2036 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2037 case BTF_KIND_VAR: return "var"; 2038 case BTF_KIND_DATASEC: return "datasec"; 2039 case BTF_KIND_FLOAT: return "float"; 2040 case BTF_KIND_DECL_TAG: return "decl_tag"; 2041 case BTF_KIND_TYPE_TAG: return "type_tag"; 2042 case BTF_KIND_ENUM64: return "enum64"; 2043 default: return "unknown"; 2044 } 2045 } 2046 2047 const char *btf_kind_str(const struct btf_type *t) 2048 { 2049 return __btf_kind_str(btf_kind(t)); 2050 } 2051 2052 /* 2053 * Fetch integer attribute of BTF map definition. Such attributes are 2054 * represented using a pointer to an array, in which dimensionality of array 2055 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2056 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2057 * type definition, while using only sizeof(void *) space in ELF data section. 2058 */ 2059 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2060 const struct btf_member *m, __u32 *res) 2061 { 2062 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2063 const char *name = btf__name_by_offset(btf, m->name_off); 2064 const struct btf_array *arr_info; 2065 const struct btf_type *arr_t; 2066 2067 if (!btf_is_ptr(t)) { 2068 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2069 map_name, name, btf_kind_str(t)); 2070 return false; 2071 } 2072 2073 arr_t = btf__type_by_id(btf, t->type); 2074 if (!arr_t) { 2075 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2076 map_name, name, t->type); 2077 return false; 2078 } 2079 if (!btf_is_array(arr_t)) { 2080 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2081 map_name, name, btf_kind_str(arr_t)); 2082 return false; 2083 } 2084 arr_info = btf_array(arr_t); 2085 *res = arr_info->nelems; 2086 return true; 2087 } 2088 2089 static int build_map_pin_path(struct bpf_map *map, const char *path) 2090 { 2091 char buf[PATH_MAX]; 2092 int len; 2093 2094 if (!path) 2095 path = "/sys/fs/bpf"; 2096 2097 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2098 if (len < 0) 2099 return -EINVAL; 2100 else if (len >= PATH_MAX) 2101 return -ENAMETOOLONG; 2102 2103 return bpf_map__set_pin_path(map, buf); 2104 } 2105 2106 /* should match definition in bpf_helpers.h */ 2107 enum libbpf_pin_type { 2108 LIBBPF_PIN_NONE, 2109 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2110 LIBBPF_PIN_BY_NAME, 2111 }; 2112 2113 int parse_btf_map_def(const char *map_name, struct btf *btf, 2114 const struct btf_type *def_t, bool strict, 2115 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2116 { 2117 const struct btf_type *t; 2118 const struct btf_member *m; 2119 bool is_inner = inner_def == NULL; 2120 int vlen, i; 2121 2122 vlen = btf_vlen(def_t); 2123 m = btf_members(def_t); 2124 for (i = 0; i < vlen; i++, m++) { 2125 const char *name = btf__name_by_offset(btf, m->name_off); 2126 2127 if (!name) { 2128 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2129 return -EINVAL; 2130 } 2131 if (strcmp(name, "type") == 0) { 2132 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2133 return -EINVAL; 2134 map_def->parts |= MAP_DEF_MAP_TYPE; 2135 } else if (strcmp(name, "max_entries") == 0) { 2136 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2137 return -EINVAL; 2138 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2139 } else if (strcmp(name, "map_flags") == 0) { 2140 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2141 return -EINVAL; 2142 map_def->parts |= MAP_DEF_MAP_FLAGS; 2143 } else if (strcmp(name, "numa_node") == 0) { 2144 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2145 return -EINVAL; 2146 map_def->parts |= MAP_DEF_NUMA_NODE; 2147 } else if (strcmp(name, "key_size") == 0) { 2148 __u32 sz; 2149 2150 if (!get_map_field_int(map_name, btf, m, &sz)) 2151 return -EINVAL; 2152 if (map_def->key_size && map_def->key_size != sz) { 2153 pr_warn("map '%s': conflicting key size %u != %u.\n", 2154 map_name, map_def->key_size, sz); 2155 return -EINVAL; 2156 } 2157 map_def->key_size = sz; 2158 map_def->parts |= MAP_DEF_KEY_SIZE; 2159 } else if (strcmp(name, "key") == 0) { 2160 __s64 sz; 2161 2162 t = btf__type_by_id(btf, m->type); 2163 if (!t) { 2164 pr_warn("map '%s': key type [%d] not found.\n", 2165 map_name, m->type); 2166 return -EINVAL; 2167 } 2168 if (!btf_is_ptr(t)) { 2169 pr_warn("map '%s': key spec is not PTR: %s.\n", 2170 map_name, btf_kind_str(t)); 2171 return -EINVAL; 2172 } 2173 sz = btf__resolve_size(btf, t->type); 2174 if (sz < 0) { 2175 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2176 map_name, t->type, (ssize_t)sz); 2177 return sz; 2178 } 2179 if (map_def->key_size && map_def->key_size != sz) { 2180 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2181 map_name, map_def->key_size, (ssize_t)sz); 2182 return -EINVAL; 2183 } 2184 map_def->key_size = sz; 2185 map_def->key_type_id = t->type; 2186 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2187 } else if (strcmp(name, "value_size") == 0) { 2188 __u32 sz; 2189 2190 if (!get_map_field_int(map_name, btf, m, &sz)) 2191 return -EINVAL; 2192 if (map_def->value_size && map_def->value_size != sz) { 2193 pr_warn("map '%s': conflicting value size %u != %u.\n", 2194 map_name, map_def->value_size, sz); 2195 return -EINVAL; 2196 } 2197 map_def->value_size = sz; 2198 map_def->parts |= MAP_DEF_VALUE_SIZE; 2199 } else if (strcmp(name, "value") == 0) { 2200 __s64 sz; 2201 2202 t = btf__type_by_id(btf, m->type); 2203 if (!t) { 2204 pr_warn("map '%s': value type [%d] not found.\n", 2205 map_name, m->type); 2206 return -EINVAL; 2207 } 2208 if (!btf_is_ptr(t)) { 2209 pr_warn("map '%s': value spec is not PTR: %s.\n", 2210 map_name, btf_kind_str(t)); 2211 return -EINVAL; 2212 } 2213 sz = btf__resolve_size(btf, t->type); 2214 if (sz < 0) { 2215 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2216 map_name, t->type, (ssize_t)sz); 2217 return sz; 2218 } 2219 if (map_def->value_size && map_def->value_size != sz) { 2220 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2221 map_name, map_def->value_size, (ssize_t)sz); 2222 return -EINVAL; 2223 } 2224 map_def->value_size = sz; 2225 map_def->value_type_id = t->type; 2226 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2227 } 2228 else if (strcmp(name, "values") == 0) { 2229 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2230 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2231 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2232 char inner_map_name[128]; 2233 int err; 2234 2235 if (is_inner) { 2236 pr_warn("map '%s': multi-level inner maps not supported.\n", 2237 map_name); 2238 return -ENOTSUP; 2239 } 2240 if (i != vlen - 1) { 2241 pr_warn("map '%s': '%s' member should be last.\n", 2242 map_name, name); 2243 return -EINVAL; 2244 } 2245 if (!is_map_in_map && !is_prog_array) { 2246 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2247 map_name); 2248 return -ENOTSUP; 2249 } 2250 if (map_def->value_size && map_def->value_size != 4) { 2251 pr_warn("map '%s': conflicting value size %u != 4.\n", 2252 map_name, map_def->value_size); 2253 return -EINVAL; 2254 } 2255 map_def->value_size = 4; 2256 t = btf__type_by_id(btf, m->type); 2257 if (!t) { 2258 pr_warn("map '%s': %s type [%d] not found.\n", 2259 map_name, desc, m->type); 2260 return -EINVAL; 2261 } 2262 if (!btf_is_array(t) || btf_array(t)->nelems) { 2263 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2264 map_name, desc); 2265 return -EINVAL; 2266 } 2267 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2268 if (!btf_is_ptr(t)) { 2269 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2270 map_name, desc, btf_kind_str(t)); 2271 return -EINVAL; 2272 } 2273 t = skip_mods_and_typedefs(btf, t->type, NULL); 2274 if (is_prog_array) { 2275 if (!btf_is_func_proto(t)) { 2276 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2277 map_name, btf_kind_str(t)); 2278 return -EINVAL; 2279 } 2280 continue; 2281 } 2282 if (!btf_is_struct(t)) { 2283 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2284 map_name, btf_kind_str(t)); 2285 return -EINVAL; 2286 } 2287 2288 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2289 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2290 if (err) 2291 return err; 2292 2293 map_def->parts |= MAP_DEF_INNER_MAP; 2294 } else if (strcmp(name, "pinning") == 0) { 2295 __u32 val; 2296 2297 if (is_inner) { 2298 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2299 return -EINVAL; 2300 } 2301 if (!get_map_field_int(map_name, btf, m, &val)) 2302 return -EINVAL; 2303 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2304 pr_warn("map '%s': invalid pinning value %u.\n", 2305 map_name, val); 2306 return -EINVAL; 2307 } 2308 map_def->pinning = val; 2309 map_def->parts |= MAP_DEF_PINNING; 2310 } else if (strcmp(name, "map_extra") == 0) { 2311 __u32 map_extra; 2312 2313 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2314 return -EINVAL; 2315 map_def->map_extra = map_extra; 2316 map_def->parts |= MAP_DEF_MAP_EXTRA; 2317 } else { 2318 if (strict) { 2319 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2320 return -ENOTSUP; 2321 } 2322 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2323 } 2324 } 2325 2326 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2327 pr_warn("map '%s': map type isn't specified.\n", map_name); 2328 return -EINVAL; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static size_t adjust_ringbuf_sz(size_t sz) 2335 { 2336 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2337 __u32 mul; 2338 2339 /* if user forgot to set any size, make sure they see error */ 2340 if (sz == 0) 2341 return 0; 2342 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2343 * a power-of-2 multiple of kernel's page size. If user diligently 2344 * satisified these conditions, pass the size through. 2345 */ 2346 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2347 return sz; 2348 2349 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2350 * user-set size to satisfy both user size request and kernel 2351 * requirements and substitute correct max_entries for map creation. 2352 */ 2353 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2354 if (mul * page_sz > sz) 2355 return mul * page_sz; 2356 } 2357 2358 /* if it's impossible to satisfy the conditions (i.e., user size is 2359 * very close to UINT_MAX but is not a power-of-2 multiple of 2360 * page_size) then just return original size and let kernel reject it 2361 */ 2362 return sz; 2363 } 2364 2365 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2366 { 2367 map->def.type = def->map_type; 2368 map->def.key_size = def->key_size; 2369 map->def.value_size = def->value_size; 2370 map->def.max_entries = def->max_entries; 2371 map->def.map_flags = def->map_flags; 2372 map->map_extra = def->map_extra; 2373 2374 map->numa_node = def->numa_node; 2375 map->btf_key_type_id = def->key_type_id; 2376 map->btf_value_type_id = def->value_type_id; 2377 2378 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2379 if (map->def.type == BPF_MAP_TYPE_RINGBUF) 2380 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2381 2382 if (def->parts & MAP_DEF_MAP_TYPE) 2383 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2384 2385 if (def->parts & MAP_DEF_KEY_TYPE) 2386 pr_debug("map '%s': found key [%u], sz = %u.\n", 2387 map->name, def->key_type_id, def->key_size); 2388 else if (def->parts & MAP_DEF_KEY_SIZE) 2389 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2390 2391 if (def->parts & MAP_DEF_VALUE_TYPE) 2392 pr_debug("map '%s': found value [%u], sz = %u.\n", 2393 map->name, def->value_type_id, def->value_size); 2394 else if (def->parts & MAP_DEF_VALUE_SIZE) 2395 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2396 2397 if (def->parts & MAP_DEF_MAX_ENTRIES) 2398 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2399 if (def->parts & MAP_DEF_MAP_FLAGS) 2400 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2401 if (def->parts & MAP_DEF_MAP_EXTRA) 2402 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2403 (unsigned long long)def->map_extra); 2404 if (def->parts & MAP_DEF_PINNING) 2405 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2406 if (def->parts & MAP_DEF_NUMA_NODE) 2407 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2408 2409 if (def->parts & MAP_DEF_INNER_MAP) 2410 pr_debug("map '%s': found inner map definition.\n", map->name); 2411 } 2412 2413 static const char *btf_var_linkage_str(__u32 linkage) 2414 { 2415 switch (linkage) { 2416 case BTF_VAR_STATIC: return "static"; 2417 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2418 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2419 default: return "unknown"; 2420 } 2421 } 2422 2423 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2424 const struct btf_type *sec, 2425 int var_idx, int sec_idx, 2426 const Elf_Data *data, bool strict, 2427 const char *pin_root_path) 2428 { 2429 struct btf_map_def map_def = {}, inner_def = {}; 2430 const struct btf_type *var, *def; 2431 const struct btf_var_secinfo *vi; 2432 const struct btf_var *var_extra; 2433 const char *map_name; 2434 struct bpf_map *map; 2435 int err; 2436 2437 vi = btf_var_secinfos(sec) + var_idx; 2438 var = btf__type_by_id(obj->btf, vi->type); 2439 var_extra = btf_var(var); 2440 map_name = btf__name_by_offset(obj->btf, var->name_off); 2441 2442 if (map_name == NULL || map_name[0] == '\0') { 2443 pr_warn("map #%d: empty name.\n", var_idx); 2444 return -EINVAL; 2445 } 2446 if ((__u64)vi->offset + vi->size > data->d_size) { 2447 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2448 return -EINVAL; 2449 } 2450 if (!btf_is_var(var)) { 2451 pr_warn("map '%s': unexpected var kind %s.\n", 2452 map_name, btf_kind_str(var)); 2453 return -EINVAL; 2454 } 2455 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2456 pr_warn("map '%s': unsupported map linkage %s.\n", 2457 map_name, btf_var_linkage_str(var_extra->linkage)); 2458 return -EOPNOTSUPP; 2459 } 2460 2461 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2462 if (!btf_is_struct(def)) { 2463 pr_warn("map '%s': unexpected def kind %s.\n", 2464 map_name, btf_kind_str(var)); 2465 return -EINVAL; 2466 } 2467 if (def->size > vi->size) { 2468 pr_warn("map '%s': invalid def size.\n", map_name); 2469 return -EINVAL; 2470 } 2471 2472 map = bpf_object__add_map(obj); 2473 if (IS_ERR(map)) 2474 return PTR_ERR(map); 2475 map->name = strdup(map_name); 2476 if (!map->name) { 2477 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2478 return -ENOMEM; 2479 } 2480 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2481 map->def.type = BPF_MAP_TYPE_UNSPEC; 2482 map->sec_idx = sec_idx; 2483 map->sec_offset = vi->offset; 2484 map->btf_var_idx = var_idx; 2485 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2486 map_name, map->sec_idx, map->sec_offset); 2487 2488 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2489 if (err) 2490 return err; 2491 2492 fill_map_from_def(map, &map_def); 2493 2494 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2495 err = build_map_pin_path(map, pin_root_path); 2496 if (err) { 2497 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2498 return err; 2499 } 2500 } 2501 2502 if (map_def.parts & MAP_DEF_INNER_MAP) { 2503 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2504 if (!map->inner_map) 2505 return -ENOMEM; 2506 map->inner_map->fd = -1; 2507 map->inner_map->sec_idx = sec_idx; 2508 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2509 if (!map->inner_map->name) 2510 return -ENOMEM; 2511 sprintf(map->inner_map->name, "%s.inner", map_name); 2512 2513 fill_map_from_def(map->inner_map, &inner_def); 2514 } 2515 2516 err = bpf_map_find_btf_info(obj, map); 2517 if (err) 2518 return err; 2519 2520 return 0; 2521 } 2522 2523 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2524 const char *pin_root_path) 2525 { 2526 const struct btf_type *sec = NULL; 2527 int nr_types, i, vlen, err; 2528 const struct btf_type *t; 2529 const char *name; 2530 Elf_Data *data; 2531 Elf_Scn *scn; 2532 2533 if (obj->efile.btf_maps_shndx < 0) 2534 return 0; 2535 2536 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2537 data = elf_sec_data(obj, scn); 2538 if (!scn || !data) { 2539 pr_warn("elf: failed to get %s map definitions for %s\n", 2540 MAPS_ELF_SEC, obj->path); 2541 return -EINVAL; 2542 } 2543 2544 nr_types = btf__type_cnt(obj->btf); 2545 for (i = 1; i < nr_types; i++) { 2546 t = btf__type_by_id(obj->btf, i); 2547 if (!btf_is_datasec(t)) 2548 continue; 2549 name = btf__name_by_offset(obj->btf, t->name_off); 2550 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2551 sec = t; 2552 obj->efile.btf_maps_sec_btf_id = i; 2553 break; 2554 } 2555 } 2556 2557 if (!sec) { 2558 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2559 return -ENOENT; 2560 } 2561 2562 vlen = btf_vlen(sec); 2563 for (i = 0; i < vlen; i++) { 2564 err = bpf_object__init_user_btf_map(obj, sec, i, 2565 obj->efile.btf_maps_shndx, 2566 data, strict, 2567 pin_root_path); 2568 if (err) 2569 return err; 2570 } 2571 2572 return 0; 2573 } 2574 2575 static int bpf_object__init_maps(struct bpf_object *obj, 2576 const struct bpf_object_open_opts *opts) 2577 { 2578 const char *pin_root_path; 2579 bool strict; 2580 int err = 0; 2581 2582 strict = !OPTS_GET(opts, relaxed_maps, false); 2583 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2584 2585 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2586 err = err ?: bpf_object__init_global_data_maps(obj); 2587 err = err ?: bpf_object__init_kconfig_map(obj); 2588 err = err ?: bpf_object__init_struct_ops_maps(obj); 2589 2590 return err; 2591 } 2592 2593 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2594 { 2595 Elf64_Shdr *sh; 2596 2597 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2598 if (!sh) 2599 return false; 2600 2601 return sh->sh_flags & SHF_EXECINSTR; 2602 } 2603 2604 static bool btf_needs_sanitization(struct bpf_object *obj) 2605 { 2606 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2607 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2608 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2609 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2610 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2611 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2612 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2613 2614 return !has_func || !has_datasec || !has_func_global || !has_float || 2615 !has_decl_tag || !has_type_tag || !has_enum64; 2616 } 2617 2618 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2619 { 2620 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2621 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2622 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2623 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2624 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2625 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2626 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2627 int enum64_placeholder_id = 0; 2628 struct btf_type *t; 2629 int i, j, vlen; 2630 2631 for (i = 1; i < btf__type_cnt(btf); i++) { 2632 t = (struct btf_type *)btf__type_by_id(btf, i); 2633 2634 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2635 /* replace VAR/DECL_TAG with INT */ 2636 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2637 /* 2638 * using size = 1 is the safest choice, 4 will be too 2639 * big and cause kernel BTF validation failure if 2640 * original variable took less than 4 bytes 2641 */ 2642 t->size = 1; 2643 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2644 } else if (!has_datasec && btf_is_datasec(t)) { 2645 /* replace DATASEC with STRUCT */ 2646 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2647 struct btf_member *m = btf_members(t); 2648 struct btf_type *vt; 2649 char *name; 2650 2651 name = (char *)btf__name_by_offset(btf, t->name_off); 2652 while (*name) { 2653 if (*name == '.') 2654 *name = '_'; 2655 name++; 2656 } 2657 2658 vlen = btf_vlen(t); 2659 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2660 for (j = 0; j < vlen; j++, v++, m++) { 2661 /* order of field assignments is important */ 2662 m->offset = v->offset * 8; 2663 m->type = v->type; 2664 /* preserve variable name as member name */ 2665 vt = (void *)btf__type_by_id(btf, v->type); 2666 m->name_off = vt->name_off; 2667 } 2668 } else if (!has_func && btf_is_func_proto(t)) { 2669 /* replace FUNC_PROTO with ENUM */ 2670 vlen = btf_vlen(t); 2671 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2672 t->size = sizeof(__u32); /* kernel enforced */ 2673 } else if (!has_func && btf_is_func(t)) { 2674 /* replace FUNC with TYPEDEF */ 2675 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2676 } else if (!has_func_global && btf_is_func(t)) { 2677 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2678 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2679 } else if (!has_float && btf_is_float(t)) { 2680 /* replace FLOAT with an equally-sized empty STRUCT; 2681 * since C compilers do not accept e.g. "float" as a 2682 * valid struct name, make it anonymous 2683 */ 2684 t->name_off = 0; 2685 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2686 } else if (!has_type_tag && btf_is_type_tag(t)) { 2687 /* replace TYPE_TAG with a CONST */ 2688 t->name_off = 0; 2689 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2690 } else if (!has_enum64 && btf_is_enum(t)) { 2691 /* clear the kflag */ 2692 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2693 } else if (!has_enum64 && btf_is_enum64(t)) { 2694 /* replace ENUM64 with a union */ 2695 struct btf_member *m; 2696 2697 if (enum64_placeholder_id == 0) { 2698 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2699 if (enum64_placeholder_id < 0) 2700 return enum64_placeholder_id; 2701 2702 t = (struct btf_type *)btf__type_by_id(btf, i); 2703 } 2704 2705 m = btf_members(t); 2706 vlen = btf_vlen(t); 2707 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2708 for (j = 0; j < vlen; j++, m++) { 2709 m->type = enum64_placeholder_id; 2710 m->offset = 0; 2711 } 2712 } 2713 } 2714 2715 return 0; 2716 } 2717 2718 static bool libbpf_needs_btf(const struct bpf_object *obj) 2719 { 2720 return obj->efile.btf_maps_shndx >= 0 || 2721 obj->efile.st_ops_shndx >= 0 || 2722 obj->nr_extern > 0; 2723 } 2724 2725 static bool kernel_needs_btf(const struct bpf_object *obj) 2726 { 2727 return obj->efile.st_ops_shndx >= 0; 2728 } 2729 2730 static int bpf_object__init_btf(struct bpf_object *obj, 2731 Elf_Data *btf_data, 2732 Elf_Data *btf_ext_data) 2733 { 2734 int err = -ENOENT; 2735 2736 if (btf_data) { 2737 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2738 err = libbpf_get_error(obj->btf); 2739 if (err) { 2740 obj->btf = NULL; 2741 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2742 goto out; 2743 } 2744 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2745 btf__set_pointer_size(obj->btf, 8); 2746 } 2747 if (btf_ext_data) { 2748 struct btf_ext_info *ext_segs[3]; 2749 int seg_num, sec_num; 2750 2751 if (!obj->btf) { 2752 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2753 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2754 goto out; 2755 } 2756 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2757 err = libbpf_get_error(obj->btf_ext); 2758 if (err) { 2759 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2760 BTF_EXT_ELF_SEC, err); 2761 obj->btf_ext = NULL; 2762 goto out; 2763 } 2764 2765 /* setup .BTF.ext to ELF section mapping */ 2766 ext_segs[0] = &obj->btf_ext->func_info; 2767 ext_segs[1] = &obj->btf_ext->line_info; 2768 ext_segs[2] = &obj->btf_ext->core_relo_info; 2769 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2770 struct btf_ext_info *seg = ext_segs[seg_num]; 2771 const struct btf_ext_info_sec *sec; 2772 const char *sec_name; 2773 Elf_Scn *scn; 2774 2775 if (seg->sec_cnt == 0) 2776 continue; 2777 2778 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2779 if (!seg->sec_idxs) { 2780 err = -ENOMEM; 2781 goto out; 2782 } 2783 2784 sec_num = 0; 2785 for_each_btf_ext_sec(seg, sec) { 2786 /* preventively increment index to avoid doing 2787 * this before every continue below 2788 */ 2789 sec_num++; 2790 2791 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2792 if (str_is_empty(sec_name)) 2793 continue; 2794 scn = elf_sec_by_name(obj, sec_name); 2795 if (!scn) 2796 continue; 2797 2798 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2799 } 2800 } 2801 } 2802 out: 2803 if (err && libbpf_needs_btf(obj)) { 2804 pr_warn("BTF is required, but is missing or corrupted.\n"); 2805 return err; 2806 } 2807 return 0; 2808 } 2809 2810 static int compare_vsi_off(const void *_a, const void *_b) 2811 { 2812 const struct btf_var_secinfo *a = _a; 2813 const struct btf_var_secinfo *b = _b; 2814 2815 return a->offset - b->offset; 2816 } 2817 2818 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2819 struct btf_type *t) 2820 { 2821 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2822 const char *name = btf__name_by_offset(btf, t->name_off); 2823 const struct btf_type *t_var; 2824 struct btf_var_secinfo *vsi; 2825 const struct btf_var *var; 2826 int ret; 2827 2828 if (!name) { 2829 pr_debug("No name found in string section for DATASEC kind.\n"); 2830 return -ENOENT; 2831 } 2832 2833 /* .extern datasec size and var offsets were set correctly during 2834 * extern collection step, so just skip straight to sorting variables 2835 */ 2836 if (t->size) 2837 goto sort_vars; 2838 2839 ret = find_elf_sec_sz(obj, name, &size); 2840 if (ret || !size) { 2841 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2842 return -ENOENT; 2843 } 2844 2845 t->size = size; 2846 2847 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2848 t_var = btf__type_by_id(btf, vsi->type); 2849 if (!t_var || !btf_is_var(t_var)) { 2850 pr_debug("Non-VAR type seen in section %s\n", name); 2851 return -EINVAL; 2852 } 2853 2854 var = btf_var(t_var); 2855 if (var->linkage == BTF_VAR_STATIC) 2856 continue; 2857 2858 name = btf__name_by_offset(btf, t_var->name_off); 2859 if (!name) { 2860 pr_debug("No name found in string section for VAR kind\n"); 2861 return -ENOENT; 2862 } 2863 2864 ret = find_elf_var_offset(obj, name, &off); 2865 if (ret) { 2866 pr_debug("No offset found in symbol table for VAR %s\n", 2867 name); 2868 return -ENOENT; 2869 } 2870 2871 vsi->offset = off; 2872 } 2873 2874 sort_vars: 2875 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2876 return 0; 2877 } 2878 2879 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2880 { 2881 int err = 0; 2882 __u32 i, n = btf__type_cnt(btf); 2883 2884 for (i = 1; i < n; i++) { 2885 struct btf_type *t = btf_type_by_id(btf, i); 2886 2887 /* Loader needs to fix up some of the things compiler 2888 * couldn't get its hands on while emitting BTF. This 2889 * is section size and global variable offset. We use 2890 * the info from the ELF itself for this purpose. 2891 */ 2892 if (btf_is_datasec(t)) { 2893 err = btf_fixup_datasec(obj, btf, t); 2894 if (err) 2895 break; 2896 } 2897 } 2898 2899 return libbpf_err(err); 2900 } 2901 2902 static int bpf_object__finalize_btf(struct bpf_object *obj) 2903 { 2904 int err; 2905 2906 if (!obj->btf) 2907 return 0; 2908 2909 err = btf_finalize_data(obj, obj->btf); 2910 if (err) { 2911 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2912 return err; 2913 } 2914 2915 return 0; 2916 } 2917 2918 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2919 { 2920 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2921 prog->type == BPF_PROG_TYPE_LSM) 2922 return true; 2923 2924 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2925 * also need vmlinux BTF 2926 */ 2927 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2928 return true; 2929 2930 return false; 2931 } 2932 2933 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2934 { 2935 struct bpf_program *prog; 2936 int i; 2937 2938 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2939 * is not specified 2940 */ 2941 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2942 return true; 2943 2944 /* Support for typed ksyms needs kernel BTF */ 2945 for (i = 0; i < obj->nr_extern; i++) { 2946 const struct extern_desc *ext; 2947 2948 ext = &obj->externs[i]; 2949 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2950 return true; 2951 } 2952 2953 bpf_object__for_each_program(prog, obj) { 2954 if (!prog->autoload) 2955 continue; 2956 if (prog_needs_vmlinux_btf(prog)) 2957 return true; 2958 } 2959 2960 return false; 2961 } 2962 2963 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2964 { 2965 int err; 2966 2967 /* btf_vmlinux could be loaded earlier */ 2968 if (obj->btf_vmlinux || obj->gen_loader) 2969 return 0; 2970 2971 if (!force && !obj_needs_vmlinux_btf(obj)) 2972 return 0; 2973 2974 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2975 err = libbpf_get_error(obj->btf_vmlinux); 2976 if (err) { 2977 pr_warn("Error loading vmlinux BTF: %d\n", err); 2978 obj->btf_vmlinux = NULL; 2979 return err; 2980 } 2981 return 0; 2982 } 2983 2984 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2985 { 2986 struct btf *kern_btf = obj->btf; 2987 bool btf_mandatory, sanitize; 2988 int i, err = 0; 2989 2990 if (!obj->btf) 2991 return 0; 2992 2993 if (!kernel_supports(obj, FEAT_BTF)) { 2994 if (kernel_needs_btf(obj)) { 2995 err = -EOPNOTSUPP; 2996 goto report; 2997 } 2998 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2999 return 0; 3000 } 3001 3002 /* Even though some subprogs are global/weak, user might prefer more 3003 * permissive BPF verification process that BPF verifier performs for 3004 * static functions, taking into account more context from the caller 3005 * functions. In such case, they need to mark such subprogs with 3006 * __attribute__((visibility("hidden"))) and libbpf will adjust 3007 * corresponding FUNC BTF type to be marked as static and trigger more 3008 * involved BPF verification process. 3009 */ 3010 for (i = 0; i < obj->nr_programs; i++) { 3011 struct bpf_program *prog = &obj->programs[i]; 3012 struct btf_type *t; 3013 const char *name; 3014 int j, n; 3015 3016 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3017 continue; 3018 3019 n = btf__type_cnt(obj->btf); 3020 for (j = 1; j < n; j++) { 3021 t = btf_type_by_id(obj->btf, j); 3022 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3023 continue; 3024 3025 name = btf__str_by_offset(obj->btf, t->name_off); 3026 if (strcmp(name, prog->name) != 0) 3027 continue; 3028 3029 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3030 break; 3031 } 3032 } 3033 3034 sanitize = btf_needs_sanitization(obj); 3035 if (sanitize) { 3036 const void *raw_data; 3037 __u32 sz; 3038 3039 /* clone BTF to sanitize a copy and leave the original intact */ 3040 raw_data = btf__raw_data(obj->btf, &sz); 3041 kern_btf = btf__new(raw_data, sz); 3042 err = libbpf_get_error(kern_btf); 3043 if (err) 3044 return err; 3045 3046 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3047 btf__set_pointer_size(obj->btf, 8); 3048 err = bpf_object__sanitize_btf(obj, kern_btf); 3049 if (err) 3050 return err; 3051 } 3052 3053 if (obj->gen_loader) { 3054 __u32 raw_size = 0; 3055 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3056 3057 if (!raw_data) 3058 return -ENOMEM; 3059 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3060 /* Pretend to have valid FD to pass various fd >= 0 checks. 3061 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3062 */ 3063 btf__set_fd(kern_btf, 0); 3064 } else { 3065 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3066 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3067 obj->log_level ? 1 : 0); 3068 } 3069 if (sanitize) { 3070 if (!err) { 3071 /* move fd to libbpf's BTF */ 3072 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3073 btf__set_fd(kern_btf, -1); 3074 } 3075 btf__free(kern_btf); 3076 } 3077 report: 3078 if (err) { 3079 btf_mandatory = kernel_needs_btf(obj); 3080 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3081 btf_mandatory ? "BTF is mandatory, can't proceed." 3082 : "BTF is optional, ignoring."); 3083 if (!btf_mandatory) 3084 err = 0; 3085 } 3086 return err; 3087 } 3088 3089 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3090 { 3091 const char *name; 3092 3093 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3094 if (!name) { 3095 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3096 off, obj->path, elf_errmsg(-1)); 3097 return NULL; 3098 } 3099 3100 return name; 3101 } 3102 3103 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3104 { 3105 const char *name; 3106 3107 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3108 if (!name) { 3109 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3110 off, obj->path, elf_errmsg(-1)); 3111 return NULL; 3112 } 3113 3114 return name; 3115 } 3116 3117 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3118 { 3119 Elf_Scn *scn; 3120 3121 scn = elf_getscn(obj->efile.elf, idx); 3122 if (!scn) { 3123 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3124 idx, obj->path, elf_errmsg(-1)); 3125 return NULL; 3126 } 3127 return scn; 3128 } 3129 3130 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3131 { 3132 Elf_Scn *scn = NULL; 3133 Elf *elf = obj->efile.elf; 3134 const char *sec_name; 3135 3136 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3137 sec_name = elf_sec_name(obj, scn); 3138 if (!sec_name) 3139 return NULL; 3140 3141 if (strcmp(sec_name, name) != 0) 3142 continue; 3143 3144 return scn; 3145 } 3146 return NULL; 3147 } 3148 3149 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3150 { 3151 Elf64_Shdr *shdr; 3152 3153 if (!scn) 3154 return NULL; 3155 3156 shdr = elf64_getshdr(scn); 3157 if (!shdr) { 3158 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3159 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3160 return NULL; 3161 } 3162 3163 return shdr; 3164 } 3165 3166 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3167 { 3168 const char *name; 3169 Elf64_Shdr *sh; 3170 3171 if (!scn) 3172 return NULL; 3173 3174 sh = elf_sec_hdr(obj, scn); 3175 if (!sh) 3176 return NULL; 3177 3178 name = elf_sec_str(obj, sh->sh_name); 3179 if (!name) { 3180 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3181 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3182 return NULL; 3183 } 3184 3185 return name; 3186 } 3187 3188 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3189 { 3190 Elf_Data *data; 3191 3192 if (!scn) 3193 return NULL; 3194 3195 data = elf_getdata(scn, 0); 3196 if (!data) { 3197 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3198 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3199 obj->path, elf_errmsg(-1)); 3200 return NULL; 3201 } 3202 3203 return data; 3204 } 3205 3206 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3207 { 3208 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3209 return NULL; 3210 3211 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3212 } 3213 3214 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3215 { 3216 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3217 return NULL; 3218 3219 return (Elf64_Rel *)data->d_buf + idx; 3220 } 3221 3222 static bool is_sec_name_dwarf(const char *name) 3223 { 3224 /* approximation, but the actual list is too long */ 3225 return str_has_pfx(name, ".debug_"); 3226 } 3227 3228 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3229 { 3230 /* no special handling of .strtab */ 3231 if (hdr->sh_type == SHT_STRTAB) 3232 return true; 3233 3234 /* ignore .llvm_addrsig section as well */ 3235 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3236 return true; 3237 3238 /* no subprograms will lead to an empty .text section, ignore it */ 3239 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3240 strcmp(name, ".text") == 0) 3241 return true; 3242 3243 /* DWARF sections */ 3244 if (is_sec_name_dwarf(name)) 3245 return true; 3246 3247 if (str_has_pfx(name, ".rel")) { 3248 name += sizeof(".rel") - 1; 3249 /* DWARF section relocations */ 3250 if (is_sec_name_dwarf(name)) 3251 return true; 3252 3253 /* .BTF and .BTF.ext don't need relocations */ 3254 if (strcmp(name, BTF_ELF_SEC) == 0 || 3255 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3256 return true; 3257 } 3258 3259 return false; 3260 } 3261 3262 static int cmp_progs(const void *_a, const void *_b) 3263 { 3264 const struct bpf_program *a = _a; 3265 const struct bpf_program *b = _b; 3266 3267 if (a->sec_idx != b->sec_idx) 3268 return a->sec_idx < b->sec_idx ? -1 : 1; 3269 3270 /* sec_insn_off can't be the same within the section */ 3271 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3272 } 3273 3274 static int bpf_object__elf_collect(struct bpf_object *obj) 3275 { 3276 struct elf_sec_desc *sec_desc; 3277 Elf *elf = obj->efile.elf; 3278 Elf_Data *btf_ext_data = NULL; 3279 Elf_Data *btf_data = NULL; 3280 int idx = 0, err = 0; 3281 const char *name; 3282 Elf_Data *data; 3283 Elf_Scn *scn; 3284 Elf64_Shdr *sh; 3285 3286 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3287 * section. e_shnum does include sec #0, so e_shnum is the necessary 3288 * size of an array to keep all the sections. 3289 */ 3290 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3291 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3292 if (!obj->efile.secs) 3293 return -ENOMEM; 3294 3295 /* a bunch of ELF parsing functionality depends on processing symbols, 3296 * so do the first pass and find the symbol table 3297 */ 3298 scn = NULL; 3299 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3300 sh = elf_sec_hdr(obj, scn); 3301 if (!sh) 3302 return -LIBBPF_ERRNO__FORMAT; 3303 3304 if (sh->sh_type == SHT_SYMTAB) { 3305 if (obj->efile.symbols) { 3306 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3307 return -LIBBPF_ERRNO__FORMAT; 3308 } 3309 3310 data = elf_sec_data(obj, scn); 3311 if (!data) 3312 return -LIBBPF_ERRNO__FORMAT; 3313 3314 idx = elf_ndxscn(scn); 3315 3316 obj->efile.symbols = data; 3317 obj->efile.symbols_shndx = idx; 3318 obj->efile.strtabidx = sh->sh_link; 3319 } 3320 } 3321 3322 if (!obj->efile.symbols) { 3323 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3324 obj->path); 3325 return -ENOENT; 3326 } 3327 3328 scn = NULL; 3329 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3330 idx = elf_ndxscn(scn); 3331 sec_desc = &obj->efile.secs[idx]; 3332 3333 sh = elf_sec_hdr(obj, scn); 3334 if (!sh) 3335 return -LIBBPF_ERRNO__FORMAT; 3336 3337 name = elf_sec_str(obj, sh->sh_name); 3338 if (!name) 3339 return -LIBBPF_ERRNO__FORMAT; 3340 3341 if (ignore_elf_section(sh, name)) 3342 continue; 3343 3344 data = elf_sec_data(obj, scn); 3345 if (!data) 3346 return -LIBBPF_ERRNO__FORMAT; 3347 3348 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3349 idx, name, (unsigned long)data->d_size, 3350 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3351 (int)sh->sh_type); 3352 3353 if (strcmp(name, "license") == 0) { 3354 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3355 if (err) 3356 return err; 3357 } else if (strcmp(name, "version") == 0) { 3358 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3359 if (err) 3360 return err; 3361 } else if (strcmp(name, "maps") == 0) { 3362 obj->efile.maps_shndx = idx; 3363 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3364 obj->efile.btf_maps_shndx = idx; 3365 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3366 if (sh->sh_type != SHT_PROGBITS) 3367 return -LIBBPF_ERRNO__FORMAT; 3368 btf_data = data; 3369 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3370 if (sh->sh_type != SHT_PROGBITS) 3371 return -LIBBPF_ERRNO__FORMAT; 3372 btf_ext_data = data; 3373 } else if (sh->sh_type == SHT_SYMTAB) { 3374 /* already processed during the first pass above */ 3375 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3376 if (sh->sh_flags & SHF_EXECINSTR) { 3377 if (strcmp(name, ".text") == 0) 3378 obj->efile.text_shndx = idx; 3379 err = bpf_object__add_programs(obj, data, name, idx); 3380 if (err) 3381 return err; 3382 } else if (strcmp(name, DATA_SEC) == 0 || 3383 str_has_pfx(name, DATA_SEC ".")) { 3384 sec_desc->sec_type = SEC_DATA; 3385 sec_desc->shdr = sh; 3386 sec_desc->data = data; 3387 } else if (strcmp(name, RODATA_SEC) == 0 || 3388 str_has_pfx(name, RODATA_SEC ".")) { 3389 sec_desc->sec_type = SEC_RODATA; 3390 sec_desc->shdr = sh; 3391 sec_desc->data = data; 3392 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3393 obj->efile.st_ops_data = data; 3394 obj->efile.st_ops_shndx = idx; 3395 } else { 3396 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3397 idx, name); 3398 } 3399 } else if (sh->sh_type == SHT_REL) { 3400 int targ_sec_idx = sh->sh_info; /* points to other section */ 3401 3402 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3403 targ_sec_idx >= obj->efile.sec_cnt) 3404 return -LIBBPF_ERRNO__FORMAT; 3405 3406 /* Only do relo for section with exec instructions */ 3407 if (!section_have_execinstr(obj, targ_sec_idx) && 3408 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3409 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3410 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3411 idx, name, targ_sec_idx, 3412 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3413 continue; 3414 } 3415 3416 sec_desc->sec_type = SEC_RELO; 3417 sec_desc->shdr = sh; 3418 sec_desc->data = data; 3419 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3420 sec_desc->sec_type = SEC_BSS; 3421 sec_desc->shdr = sh; 3422 sec_desc->data = data; 3423 } else { 3424 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3425 (size_t)sh->sh_size); 3426 } 3427 } 3428 3429 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3430 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3431 return -LIBBPF_ERRNO__FORMAT; 3432 } 3433 3434 /* sort BPF programs by section name and in-section instruction offset 3435 * for faster search */ 3436 if (obj->nr_programs) 3437 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3438 3439 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3440 } 3441 3442 static bool sym_is_extern(const Elf64_Sym *sym) 3443 { 3444 int bind = ELF64_ST_BIND(sym->st_info); 3445 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3446 return sym->st_shndx == SHN_UNDEF && 3447 (bind == STB_GLOBAL || bind == STB_WEAK) && 3448 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3449 } 3450 3451 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3452 { 3453 int bind = ELF64_ST_BIND(sym->st_info); 3454 int type = ELF64_ST_TYPE(sym->st_info); 3455 3456 /* in .text section */ 3457 if (sym->st_shndx != text_shndx) 3458 return false; 3459 3460 /* local function */ 3461 if (bind == STB_LOCAL && type == STT_SECTION) 3462 return true; 3463 3464 /* global function */ 3465 return bind == STB_GLOBAL && type == STT_FUNC; 3466 } 3467 3468 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3469 { 3470 const struct btf_type *t; 3471 const char *tname; 3472 int i, n; 3473 3474 if (!btf) 3475 return -ESRCH; 3476 3477 n = btf__type_cnt(btf); 3478 for (i = 1; i < n; i++) { 3479 t = btf__type_by_id(btf, i); 3480 3481 if (!btf_is_var(t) && !btf_is_func(t)) 3482 continue; 3483 3484 tname = btf__name_by_offset(btf, t->name_off); 3485 if (strcmp(tname, ext_name)) 3486 continue; 3487 3488 if (btf_is_var(t) && 3489 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3490 return -EINVAL; 3491 3492 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3493 return -EINVAL; 3494 3495 return i; 3496 } 3497 3498 return -ENOENT; 3499 } 3500 3501 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3502 const struct btf_var_secinfo *vs; 3503 const struct btf_type *t; 3504 int i, j, n; 3505 3506 if (!btf) 3507 return -ESRCH; 3508 3509 n = btf__type_cnt(btf); 3510 for (i = 1; i < n; i++) { 3511 t = btf__type_by_id(btf, i); 3512 3513 if (!btf_is_datasec(t)) 3514 continue; 3515 3516 vs = btf_var_secinfos(t); 3517 for (j = 0; j < btf_vlen(t); j++, vs++) { 3518 if (vs->type == ext_btf_id) 3519 return i; 3520 } 3521 } 3522 3523 return -ENOENT; 3524 } 3525 3526 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3527 bool *is_signed) 3528 { 3529 const struct btf_type *t; 3530 const char *name; 3531 3532 t = skip_mods_and_typedefs(btf, id, NULL); 3533 name = btf__name_by_offset(btf, t->name_off); 3534 3535 if (is_signed) 3536 *is_signed = false; 3537 switch (btf_kind(t)) { 3538 case BTF_KIND_INT: { 3539 int enc = btf_int_encoding(t); 3540 3541 if (enc & BTF_INT_BOOL) 3542 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3543 if (is_signed) 3544 *is_signed = enc & BTF_INT_SIGNED; 3545 if (t->size == 1) 3546 return KCFG_CHAR; 3547 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3548 return KCFG_UNKNOWN; 3549 return KCFG_INT; 3550 } 3551 case BTF_KIND_ENUM: 3552 if (t->size != 4) 3553 return KCFG_UNKNOWN; 3554 if (strcmp(name, "libbpf_tristate")) 3555 return KCFG_UNKNOWN; 3556 return KCFG_TRISTATE; 3557 case BTF_KIND_ENUM64: 3558 if (strcmp(name, "libbpf_tristate")) 3559 return KCFG_UNKNOWN; 3560 return KCFG_TRISTATE; 3561 case BTF_KIND_ARRAY: 3562 if (btf_array(t)->nelems == 0) 3563 return KCFG_UNKNOWN; 3564 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3565 return KCFG_UNKNOWN; 3566 return KCFG_CHAR_ARR; 3567 default: 3568 return KCFG_UNKNOWN; 3569 } 3570 } 3571 3572 static int cmp_externs(const void *_a, const void *_b) 3573 { 3574 const struct extern_desc *a = _a; 3575 const struct extern_desc *b = _b; 3576 3577 if (a->type != b->type) 3578 return a->type < b->type ? -1 : 1; 3579 3580 if (a->type == EXT_KCFG) { 3581 /* descending order by alignment requirements */ 3582 if (a->kcfg.align != b->kcfg.align) 3583 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3584 /* ascending order by size, within same alignment class */ 3585 if (a->kcfg.sz != b->kcfg.sz) 3586 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3587 } 3588 3589 /* resolve ties by name */ 3590 return strcmp(a->name, b->name); 3591 } 3592 3593 static int find_int_btf_id(const struct btf *btf) 3594 { 3595 const struct btf_type *t; 3596 int i, n; 3597 3598 n = btf__type_cnt(btf); 3599 for (i = 1; i < n; i++) { 3600 t = btf__type_by_id(btf, i); 3601 3602 if (btf_is_int(t) && btf_int_bits(t) == 32) 3603 return i; 3604 } 3605 3606 return 0; 3607 } 3608 3609 static int add_dummy_ksym_var(struct btf *btf) 3610 { 3611 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3612 const struct btf_var_secinfo *vs; 3613 const struct btf_type *sec; 3614 3615 if (!btf) 3616 return 0; 3617 3618 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3619 BTF_KIND_DATASEC); 3620 if (sec_btf_id < 0) 3621 return 0; 3622 3623 sec = btf__type_by_id(btf, sec_btf_id); 3624 vs = btf_var_secinfos(sec); 3625 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3626 const struct btf_type *vt; 3627 3628 vt = btf__type_by_id(btf, vs->type); 3629 if (btf_is_func(vt)) 3630 break; 3631 } 3632 3633 /* No func in ksyms sec. No need to add dummy var. */ 3634 if (i == btf_vlen(sec)) 3635 return 0; 3636 3637 int_btf_id = find_int_btf_id(btf); 3638 dummy_var_btf_id = btf__add_var(btf, 3639 "dummy_ksym", 3640 BTF_VAR_GLOBAL_ALLOCATED, 3641 int_btf_id); 3642 if (dummy_var_btf_id < 0) 3643 pr_warn("cannot create a dummy_ksym var\n"); 3644 3645 return dummy_var_btf_id; 3646 } 3647 3648 static int bpf_object__collect_externs(struct bpf_object *obj) 3649 { 3650 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3651 const struct btf_type *t; 3652 struct extern_desc *ext; 3653 int i, n, off, dummy_var_btf_id; 3654 const char *ext_name, *sec_name; 3655 Elf_Scn *scn; 3656 Elf64_Shdr *sh; 3657 3658 if (!obj->efile.symbols) 3659 return 0; 3660 3661 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3662 sh = elf_sec_hdr(obj, scn); 3663 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3664 return -LIBBPF_ERRNO__FORMAT; 3665 3666 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3667 if (dummy_var_btf_id < 0) 3668 return dummy_var_btf_id; 3669 3670 n = sh->sh_size / sh->sh_entsize; 3671 pr_debug("looking for externs among %d symbols...\n", n); 3672 3673 for (i = 0; i < n; i++) { 3674 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3675 3676 if (!sym) 3677 return -LIBBPF_ERRNO__FORMAT; 3678 if (!sym_is_extern(sym)) 3679 continue; 3680 ext_name = elf_sym_str(obj, sym->st_name); 3681 if (!ext_name || !ext_name[0]) 3682 continue; 3683 3684 ext = obj->externs; 3685 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3686 if (!ext) 3687 return -ENOMEM; 3688 obj->externs = ext; 3689 ext = &ext[obj->nr_extern]; 3690 memset(ext, 0, sizeof(*ext)); 3691 obj->nr_extern++; 3692 3693 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3694 if (ext->btf_id <= 0) { 3695 pr_warn("failed to find BTF for extern '%s': %d\n", 3696 ext_name, ext->btf_id); 3697 return ext->btf_id; 3698 } 3699 t = btf__type_by_id(obj->btf, ext->btf_id); 3700 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3701 ext->sym_idx = i; 3702 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3703 3704 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3705 if (ext->sec_btf_id <= 0) { 3706 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3707 ext_name, ext->btf_id, ext->sec_btf_id); 3708 return ext->sec_btf_id; 3709 } 3710 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3711 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3712 3713 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3714 if (btf_is_func(t)) { 3715 pr_warn("extern function %s is unsupported under %s section\n", 3716 ext->name, KCONFIG_SEC); 3717 return -ENOTSUP; 3718 } 3719 kcfg_sec = sec; 3720 ext->type = EXT_KCFG; 3721 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3722 if (ext->kcfg.sz <= 0) { 3723 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3724 ext_name, ext->kcfg.sz); 3725 return ext->kcfg.sz; 3726 } 3727 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3728 if (ext->kcfg.align <= 0) { 3729 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3730 ext_name, ext->kcfg.align); 3731 return -EINVAL; 3732 } 3733 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3734 &ext->kcfg.is_signed); 3735 if (ext->kcfg.type == KCFG_UNKNOWN) { 3736 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3737 return -ENOTSUP; 3738 } 3739 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3740 ksym_sec = sec; 3741 ext->type = EXT_KSYM; 3742 skip_mods_and_typedefs(obj->btf, t->type, 3743 &ext->ksym.type_id); 3744 } else { 3745 pr_warn("unrecognized extern section '%s'\n", sec_name); 3746 return -ENOTSUP; 3747 } 3748 } 3749 pr_debug("collected %d externs total\n", obj->nr_extern); 3750 3751 if (!obj->nr_extern) 3752 return 0; 3753 3754 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3755 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3756 3757 /* for .ksyms section, we need to turn all externs into allocated 3758 * variables in BTF to pass kernel verification; we do this by 3759 * pretending that each extern is a 8-byte variable 3760 */ 3761 if (ksym_sec) { 3762 /* find existing 4-byte integer type in BTF to use for fake 3763 * extern variables in DATASEC 3764 */ 3765 int int_btf_id = find_int_btf_id(obj->btf); 3766 /* For extern function, a dummy_var added earlier 3767 * will be used to replace the vs->type and 3768 * its name string will be used to refill 3769 * the missing param's name. 3770 */ 3771 const struct btf_type *dummy_var; 3772 3773 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3774 for (i = 0; i < obj->nr_extern; i++) { 3775 ext = &obj->externs[i]; 3776 if (ext->type != EXT_KSYM) 3777 continue; 3778 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3779 i, ext->sym_idx, ext->name); 3780 } 3781 3782 sec = ksym_sec; 3783 n = btf_vlen(sec); 3784 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3785 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3786 struct btf_type *vt; 3787 3788 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3789 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3790 ext = find_extern_by_name(obj, ext_name); 3791 if (!ext) { 3792 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3793 btf_kind_str(vt), ext_name); 3794 return -ESRCH; 3795 } 3796 if (btf_is_func(vt)) { 3797 const struct btf_type *func_proto; 3798 struct btf_param *param; 3799 int j; 3800 3801 func_proto = btf__type_by_id(obj->btf, 3802 vt->type); 3803 param = btf_params(func_proto); 3804 /* Reuse the dummy_var string if the 3805 * func proto does not have param name. 3806 */ 3807 for (j = 0; j < btf_vlen(func_proto); j++) 3808 if (param[j].type && !param[j].name_off) 3809 param[j].name_off = 3810 dummy_var->name_off; 3811 vs->type = dummy_var_btf_id; 3812 vt->info &= ~0xffff; 3813 vt->info |= BTF_FUNC_GLOBAL; 3814 } else { 3815 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3816 vt->type = int_btf_id; 3817 } 3818 vs->offset = off; 3819 vs->size = sizeof(int); 3820 } 3821 sec->size = off; 3822 } 3823 3824 if (kcfg_sec) { 3825 sec = kcfg_sec; 3826 /* for kcfg externs calculate their offsets within a .kconfig map */ 3827 off = 0; 3828 for (i = 0; i < obj->nr_extern; i++) { 3829 ext = &obj->externs[i]; 3830 if (ext->type != EXT_KCFG) 3831 continue; 3832 3833 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3834 off = ext->kcfg.data_off + ext->kcfg.sz; 3835 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3836 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3837 } 3838 sec->size = off; 3839 n = btf_vlen(sec); 3840 for (i = 0; i < n; i++) { 3841 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3842 3843 t = btf__type_by_id(obj->btf, vs->type); 3844 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3845 ext = find_extern_by_name(obj, ext_name); 3846 if (!ext) { 3847 pr_warn("failed to find extern definition for BTF var '%s'\n", 3848 ext_name); 3849 return -ESRCH; 3850 } 3851 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3852 vs->offset = ext->kcfg.data_off; 3853 } 3854 } 3855 return 0; 3856 } 3857 3858 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3859 { 3860 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3861 } 3862 3863 struct bpf_program * 3864 bpf_object__find_program_by_name(const struct bpf_object *obj, 3865 const char *name) 3866 { 3867 struct bpf_program *prog; 3868 3869 bpf_object__for_each_program(prog, obj) { 3870 if (prog_is_subprog(obj, prog)) 3871 continue; 3872 if (!strcmp(prog->name, name)) 3873 return prog; 3874 } 3875 return errno = ENOENT, NULL; 3876 } 3877 3878 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3879 int shndx) 3880 { 3881 switch (obj->efile.secs[shndx].sec_type) { 3882 case SEC_BSS: 3883 case SEC_DATA: 3884 case SEC_RODATA: 3885 return true; 3886 default: 3887 return false; 3888 } 3889 } 3890 3891 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3892 int shndx) 3893 { 3894 return shndx == obj->efile.maps_shndx || 3895 shndx == obj->efile.btf_maps_shndx; 3896 } 3897 3898 static enum libbpf_map_type 3899 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3900 { 3901 if (shndx == obj->efile.symbols_shndx) 3902 return LIBBPF_MAP_KCONFIG; 3903 3904 switch (obj->efile.secs[shndx].sec_type) { 3905 case SEC_BSS: 3906 return LIBBPF_MAP_BSS; 3907 case SEC_DATA: 3908 return LIBBPF_MAP_DATA; 3909 case SEC_RODATA: 3910 return LIBBPF_MAP_RODATA; 3911 default: 3912 return LIBBPF_MAP_UNSPEC; 3913 } 3914 } 3915 3916 static int bpf_program__record_reloc(struct bpf_program *prog, 3917 struct reloc_desc *reloc_desc, 3918 __u32 insn_idx, const char *sym_name, 3919 const Elf64_Sym *sym, const Elf64_Rel *rel) 3920 { 3921 struct bpf_insn *insn = &prog->insns[insn_idx]; 3922 size_t map_idx, nr_maps = prog->obj->nr_maps; 3923 struct bpf_object *obj = prog->obj; 3924 __u32 shdr_idx = sym->st_shndx; 3925 enum libbpf_map_type type; 3926 const char *sym_sec_name; 3927 struct bpf_map *map; 3928 3929 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3930 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3931 prog->name, sym_name, insn_idx, insn->code); 3932 return -LIBBPF_ERRNO__RELOC; 3933 } 3934 3935 if (sym_is_extern(sym)) { 3936 int sym_idx = ELF64_R_SYM(rel->r_info); 3937 int i, n = obj->nr_extern; 3938 struct extern_desc *ext; 3939 3940 for (i = 0; i < n; i++) { 3941 ext = &obj->externs[i]; 3942 if (ext->sym_idx == sym_idx) 3943 break; 3944 } 3945 if (i >= n) { 3946 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3947 prog->name, sym_name, sym_idx); 3948 return -LIBBPF_ERRNO__RELOC; 3949 } 3950 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3951 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3952 if (insn->code == (BPF_JMP | BPF_CALL)) 3953 reloc_desc->type = RELO_EXTERN_FUNC; 3954 else 3955 reloc_desc->type = RELO_EXTERN_VAR; 3956 reloc_desc->insn_idx = insn_idx; 3957 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3958 return 0; 3959 } 3960 3961 /* sub-program call relocation */ 3962 if (is_call_insn(insn)) { 3963 if (insn->src_reg != BPF_PSEUDO_CALL) { 3964 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3965 return -LIBBPF_ERRNO__RELOC; 3966 } 3967 /* text_shndx can be 0, if no default "main" program exists */ 3968 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3969 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3970 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3971 prog->name, sym_name, sym_sec_name); 3972 return -LIBBPF_ERRNO__RELOC; 3973 } 3974 if (sym->st_value % BPF_INSN_SZ) { 3975 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3976 prog->name, sym_name, (size_t)sym->st_value); 3977 return -LIBBPF_ERRNO__RELOC; 3978 } 3979 reloc_desc->type = RELO_CALL; 3980 reloc_desc->insn_idx = insn_idx; 3981 reloc_desc->sym_off = sym->st_value; 3982 return 0; 3983 } 3984 3985 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3986 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3987 prog->name, sym_name, shdr_idx); 3988 return -LIBBPF_ERRNO__RELOC; 3989 } 3990 3991 /* loading subprog addresses */ 3992 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3993 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3994 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3995 */ 3996 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3997 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3998 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3999 return -LIBBPF_ERRNO__RELOC; 4000 } 4001 4002 reloc_desc->type = RELO_SUBPROG_ADDR; 4003 reloc_desc->insn_idx = insn_idx; 4004 reloc_desc->sym_off = sym->st_value; 4005 return 0; 4006 } 4007 4008 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4009 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4010 4011 /* generic map reference relocation */ 4012 if (type == LIBBPF_MAP_UNSPEC) { 4013 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4014 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4015 prog->name, sym_name, sym_sec_name); 4016 return -LIBBPF_ERRNO__RELOC; 4017 } 4018 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4019 map = &obj->maps[map_idx]; 4020 if (map->libbpf_type != type || 4021 map->sec_idx != sym->st_shndx || 4022 map->sec_offset != sym->st_value) 4023 continue; 4024 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4025 prog->name, map_idx, map->name, map->sec_idx, 4026 map->sec_offset, insn_idx); 4027 break; 4028 } 4029 if (map_idx >= nr_maps) { 4030 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4031 prog->name, sym_sec_name, (size_t)sym->st_value); 4032 return -LIBBPF_ERRNO__RELOC; 4033 } 4034 reloc_desc->type = RELO_LD64; 4035 reloc_desc->insn_idx = insn_idx; 4036 reloc_desc->map_idx = map_idx; 4037 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4038 return 0; 4039 } 4040 4041 /* global data map relocation */ 4042 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4043 pr_warn("prog '%s': bad data relo against section '%s'\n", 4044 prog->name, sym_sec_name); 4045 return -LIBBPF_ERRNO__RELOC; 4046 } 4047 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4048 map = &obj->maps[map_idx]; 4049 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4050 continue; 4051 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4052 prog->name, map_idx, map->name, map->sec_idx, 4053 map->sec_offset, insn_idx); 4054 break; 4055 } 4056 if (map_idx >= nr_maps) { 4057 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4058 prog->name, sym_sec_name); 4059 return -LIBBPF_ERRNO__RELOC; 4060 } 4061 4062 reloc_desc->type = RELO_DATA; 4063 reloc_desc->insn_idx = insn_idx; 4064 reloc_desc->map_idx = map_idx; 4065 reloc_desc->sym_off = sym->st_value; 4066 return 0; 4067 } 4068 4069 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4070 { 4071 return insn_idx >= prog->sec_insn_off && 4072 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4073 } 4074 4075 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4076 size_t sec_idx, size_t insn_idx) 4077 { 4078 int l = 0, r = obj->nr_programs - 1, m; 4079 struct bpf_program *prog; 4080 4081 while (l < r) { 4082 m = l + (r - l + 1) / 2; 4083 prog = &obj->programs[m]; 4084 4085 if (prog->sec_idx < sec_idx || 4086 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4087 l = m; 4088 else 4089 r = m - 1; 4090 } 4091 /* matching program could be at index l, but it still might be the 4092 * wrong one, so we need to double check conditions for the last time 4093 */ 4094 prog = &obj->programs[l]; 4095 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4096 return prog; 4097 return NULL; 4098 } 4099 4100 static int 4101 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4102 { 4103 const char *relo_sec_name, *sec_name; 4104 size_t sec_idx = shdr->sh_info, sym_idx; 4105 struct bpf_program *prog; 4106 struct reloc_desc *relos; 4107 int err, i, nrels; 4108 const char *sym_name; 4109 __u32 insn_idx; 4110 Elf_Scn *scn; 4111 Elf_Data *scn_data; 4112 Elf64_Sym *sym; 4113 Elf64_Rel *rel; 4114 4115 if (sec_idx >= obj->efile.sec_cnt) 4116 return -EINVAL; 4117 4118 scn = elf_sec_by_idx(obj, sec_idx); 4119 scn_data = elf_sec_data(obj, scn); 4120 4121 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4122 sec_name = elf_sec_name(obj, scn); 4123 if (!relo_sec_name || !sec_name) 4124 return -EINVAL; 4125 4126 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4127 relo_sec_name, sec_idx, sec_name); 4128 nrels = shdr->sh_size / shdr->sh_entsize; 4129 4130 for (i = 0; i < nrels; i++) { 4131 rel = elf_rel_by_idx(data, i); 4132 if (!rel) { 4133 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4134 return -LIBBPF_ERRNO__FORMAT; 4135 } 4136 4137 sym_idx = ELF64_R_SYM(rel->r_info); 4138 sym = elf_sym_by_idx(obj, sym_idx); 4139 if (!sym) { 4140 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4141 relo_sec_name, sym_idx, i); 4142 return -LIBBPF_ERRNO__FORMAT; 4143 } 4144 4145 if (sym->st_shndx >= obj->efile.sec_cnt) { 4146 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4147 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4148 return -LIBBPF_ERRNO__FORMAT; 4149 } 4150 4151 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4152 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4153 relo_sec_name, (size_t)rel->r_offset, i); 4154 return -LIBBPF_ERRNO__FORMAT; 4155 } 4156 4157 insn_idx = rel->r_offset / BPF_INSN_SZ; 4158 /* relocations against static functions are recorded as 4159 * relocations against the section that contains a function; 4160 * in such case, symbol will be STT_SECTION and sym.st_name 4161 * will point to empty string (0), so fetch section name 4162 * instead 4163 */ 4164 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4165 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4166 else 4167 sym_name = elf_sym_str(obj, sym->st_name); 4168 sym_name = sym_name ?: "<?"; 4169 4170 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4171 relo_sec_name, i, insn_idx, sym_name); 4172 4173 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4174 if (!prog) { 4175 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4176 relo_sec_name, i, sec_name, insn_idx); 4177 continue; 4178 } 4179 4180 relos = libbpf_reallocarray(prog->reloc_desc, 4181 prog->nr_reloc + 1, sizeof(*relos)); 4182 if (!relos) 4183 return -ENOMEM; 4184 prog->reloc_desc = relos; 4185 4186 /* adjust insn_idx to local BPF program frame of reference */ 4187 insn_idx -= prog->sec_insn_off; 4188 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4189 insn_idx, sym_name, sym, rel); 4190 if (err) 4191 return err; 4192 4193 prog->nr_reloc++; 4194 } 4195 return 0; 4196 } 4197 4198 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4199 { 4200 int id; 4201 4202 if (!obj->btf) 4203 return -ENOENT; 4204 4205 /* if it's BTF-defined map, we don't need to search for type IDs. 4206 * For struct_ops map, it does not need btf_key_type_id and 4207 * btf_value_type_id. 4208 */ 4209 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4210 return 0; 4211 4212 /* 4213 * LLVM annotates global data differently in BTF, that is, 4214 * only as '.data', '.bss' or '.rodata'. 4215 */ 4216 if (!bpf_map__is_internal(map)) 4217 return -ENOENT; 4218 4219 id = btf__find_by_name(obj->btf, map->real_name); 4220 if (id < 0) 4221 return id; 4222 4223 map->btf_key_type_id = 0; 4224 map->btf_value_type_id = id; 4225 return 0; 4226 } 4227 4228 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4229 { 4230 char file[PATH_MAX], buff[4096]; 4231 FILE *fp; 4232 __u32 val; 4233 int err; 4234 4235 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4236 memset(info, 0, sizeof(*info)); 4237 4238 fp = fopen(file, "r"); 4239 if (!fp) { 4240 err = -errno; 4241 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4242 err); 4243 return err; 4244 } 4245 4246 while (fgets(buff, sizeof(buff), fp)) { 4247 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4248 info->type = val; 4249 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4250 info->key_size = val; 4251 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4252 info->value_size = val; 4253 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4254 info->max_entries = val; 4255 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4256 info->map_flags = val; 4257 } 4258 4259 fclose(fp); 4260 4261 return 0; 4262 } 4263 4264 bool bpf_map__autocreate(const struct bpf_map *map) 4265 { 4266 return map->autocreate; 4267 } 4268 4269 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4270 { 4271 if (map->obj->loaded) 4272 return libbpf_err(-EBUSY); 4273 4274 map->autocreate = autocreate; 4275 return 0; 4276 } 4277 4278 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4279 { 4280 struct bpf_map_info info = {}; 4281 __u32 len = sizeof(info), name_len; 4282 int new_fd, err; 4283 char *new_name; 4284 4285 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4286 if (err && errno == EINVAL) 4287 err = bpf_get_map_info_from_fdinfo(fd, &info); 4288 if (err) 4289 return libbpf_err(err); 4290 4291 name_len = strlen(info.name); 4292 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4293 new_name = strdup(map->name); 4294 else 4295 new_name = strdup(info.name); 4296 4297 if (!new_name) 4298 return libbpf_err(-errno); 4299 4300 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4301 if (new_fd < 0) { 4302 err = -errno; 4303 goto err_free_new_name; 4304 } 4305 4306 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4307 if (new_fd < 0) { 4308 err = -errno; 4309 goto err_close_new_fd; 4310 } 4311 4312 err = zclose(map->fd); 4313 if (err) { 4314 err = -errno; 4315 goto err_close_new_fd; 4316 } 4317 free(map->name); 4318 4319 map->fd = new_fd; 4320 map->name = new_name; 4321 map->def.type = info.type; 4322 map->def.key_size = info.key_size; 4323 map->def.value_size = info.value_size; 4324 map->def.max_entries = info.max_entries; 4325 map->def.map_flags = info.map_flags; 4326 map->btf_key_type_id = info.btf_key_type_id; 4327 map->btf_value_type_id = info.btf_value_type_id; 4328 map->reused = true; 4329 map->map_extra = info.map_extra; 4330 4331 return 0; 4332 4333 err_close_new_fd: 4334 close(new_fd); 4335 err_free_new_name: 4336 free(new_name); 4337 return libbpf_err(err); 4338 } 4339 4340 __u32 bpf_map__max_entries(const struct bpf_map *map) 4341 { 4342 return map->def.max_entries; 4343 } 4344 4345 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4346 { 4347 if (!bpf_map_type__is_map_in_map(map->def.type)) 4348 return errno = EINVAL, NULL; 4349 4350 return map->inner_map; 4351 } 4352 4353 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4354 { 4355 if (map->obj->loaded) 4356 return libbpf_err(-EBUSY); 4357 4358 map->def.max_entries = max_entries; 4359 4360 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4361 if (map->def.type == BPF_MAP_TYPE_RINGBUF) 4362 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4363 4364 return 0; 4365 } 4366 4367 static int 4368 bpf_object__probe_loading(struct bpf_object *obj) 4369 { 4370 char *cp, errmsg[STRERR_BUFSIZE]; 4371 struct bpf_insn insns[] = { 4372 BPF_MOV64_IMM(BPF_REG_0, 0), 4373 BPF_EXIT_INSN(), 4374 }; 4375 int ret, insn_cnt = ARRAY_SIZE(insns); 4376 4377 if (obj->gen_loader) 4378 return 0; 4379 4380 ret = bump_rlimit_memlock(); 4381 if (ret) 4382 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4383 4384 /* make sure basic loading works */ 4385 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4386 if (ret < 0) 4387 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4388 if (ret < 0) { 4389 ret = errno; 4390 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4391 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4392 "program. Make sure your kernel supports BPF " 4393 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4394 "set to big enough value.\n", __func__, cp, ret); 4395 return -ret; 4396 } 4397 close(ret); 4398 4399 return 0; 4400 } 4401 4402 static int probe_fd(int fd) 4403 { 4404 if (fd >= 0) 4405 close(fd); 4406 return fd >= 0; 4407 } 4408 4409 static int probe_kern_prog_name(void) 4410 { 4411 struct bpf_insn insns[] = { 4412 BPF_MOV64_IMM(BPF_REG_0, 0), 4413 BPF_EXIT_INSN(), 4414 }; 4415 int ret, insn_cnt = ARRAY_SIZE(insns); 4416 4417 /* make sure loading with name works */ 4418 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4419 return probe_fd(ret); 4420 } 4421 4422 static int probe_kern_global_data(void) 4423 { 4424 char *cp, errmsg[STRERR_BUFSIZE]; 4425 struct bpf_insn insns[] = { 4426 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4427 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4428 BPF_MOV64_IMM(BPF_REG_0, 0), 4429 BPF_EXIT_INSN(), 4430 }; 4431 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4432 4433 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4434 if (map < 0) { 4435 ret = -errno; 4436 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4437 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4438 __func__, cp, -ret); 4439 return ret; 4440 } 4441 4442 insns[0].imm = map; 4443 4444 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4445 close(map); 4446 return probe_fd(ret); 4447 } 4448 4449 static int probe_kern_btf(void) 4450 { 4451 static const char strs[] = "\0int"; 4452 __u32 types[] = { 4453 /* int */ 4454 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4455 }; 4456 4457 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4458 strs, sizeof(strs))); 4459 } 4460 4461 static int probe_kern_btf_func(void) 4462 { 4463 static const char strs[] = "\0int\0x\0a"; 4464 /* void x(int a) {} */ 4465 __u32 types[] = { 4466 /* int */ 4467 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4468 /* FUNC_PROTO */ /* [2] */ 4469 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4470 BTF_PARAM_ENC(7, 1), 4471 /* FUNC x */ /* [3] */ 4472 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4473 }; 4474 4475 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4476 strs, sizeof(strs))); 4477 } 4478 4479 static int probe_kern_btf_func_global(void) 4480 { 4481 static const char strs[] = "\0int\0x\0a"; 4482 /* static void x(int a) {} */ 4483 __u32 types[] = { 4484 /* int */ 4485 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4486 /* FUNC_PROTO */ /* [2] */ 4487 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4488 BTF_PARAM_ENC(7, 1), 4489 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4490 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4491 }; 4492 4493 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4494 strs, sizeof(strs))); 4495 } 4496 4497 static int probe_kern_btf_datasec(void) 4498 { 4499 static const char strs[] = "\0x\0.data"; 4500 /* static int a; */ 4501 __u32 types[] = { 4502 /* int */ 4503 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4504 /* VAR x */ /* [2] */ 4505 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4506 BTF_VAR_STATIC, 4507 /* DATASEC val */ /* [3] */ 4508 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4509 BTF_VAR_SECINFO_ENC(2, 0, 4), 4510 }; 4511 4512 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4513 strs, sizeof(strs))); 4514 } 4515 4516 static int probe_kern_btf_float(void) 4517 { 4518 static const char strs[] = "\0float"; 4519 __u32 types[] = { 4520 /* float */ 4521 BTF_TYPE_FLOAT_ENC(1, 4), 4522 }; 4523 4524 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4525 strs, sizeof(strs))); 4526 } 4527 4528 static int probe_kern_btf_decl_tag(void) 4529 { 4530 static const char strs[] = "\0tag"; 4531 __u32 types[] = { 4532 /* int */ 4533 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4534 /* VAR x */ /* [2] */ 4535 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4536 BTF_VAR_STATIC, 4537 /* attr */ 4538 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4539 }; 4540 4541 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4542 strs, sizeof(strs))); 4543 } 4544 4545 static int probe_kern_btf_type_tag(void) 4546 { 4547 static const char strs[] = "\0tag"; 4548 __u32 types[] = { 4549 /* int */ 4550 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4551 /* attr */ 4552 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4553 /* ptr */ 4554 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4555 }; 4556 4557 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4558 strs, sizeof(strs))); 4559 } 4560 4561 static int probe_kern_array_mmap(void) 4562 { 4563 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4564 int fd; 4565 4566 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4567 return probe_fd(fd); 4568 } 4569 4570 static int probe_kern_exp_attach_type(void) 4571 { 4572 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4573 struct bpf_insn insns[] = { 4574 BPF_MOV64_IMM(BPF_REG_0, 0), 4575 BPF_EXIT_INSN(), 4576 }; 4577 int fd, insn_cnt = ARRAY_SIZE(insns); 4578 4579 /* use any valid combination of program type and (optional) 4580 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4581 * to see if kernel supports expected_attach_type field for 4582 * BPF_PROG_LOAD command 4583 */ 4584 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4585 return probe_fd(fd); 4586 } 4587 4588 static int probe_kern_probe_read_kernel(void) 4589 { 4590 struct bpf_insn insns[] = { 4591 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4592 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4593 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4594 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4595 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4596 BPF_EXIT_INSN(), 4597 }; 4598 int fd, insn_cnt = ARRAY_SIZE(insns); 4599 4600 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4601 return probe_fd(fd); 4602 } 4603 4604 static int probe_prog_bind_map(void) 4605 { 4606 char *cp, errmsg[STRERR_BUFSIZE]; 4607 struct bpf_insn insns[] = { 4608 BPF_MOV64_IMM(BPF_REG_0, 0), 4609 BPF_EXIT_INSN(), 4610 }; 4611 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4612 4613 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4614 if (map < 0) { 4615 ret = -errno; 4616 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4617 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4618 __func__, cp, -ret); 4619 return ret; 4620 } 4621 4622 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4623 if (prog < 0) { 4624 close(map); 4625 return 0; 4626 } 4627 4628 ret = bpf_prog_bind_map(prog, map, NULL); 4629 4630 close(map); 4631 close(prog); 4632 4633 return ret >= 0; 4634 } 4635 4636 static int probe_module_btf(void) 4637 { 4638 static const char strs[] = "\0int"; 4639 __u32 types[] = { 4640 /* int */ 4641 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4642 }; 4643 struct bpf_btf_info info; 4644 __u32 len = sizeof(info); 4645 char name[16]; 4646 int fd, err; 4647 4648 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4649 if (fd < 0) 4650 return 0; /* BTF not supported at all */ 4651 4652 memset(&info, 0, sizeof(info)); 4653 info.name = ptr_to_u64(name); 4654 info.name_len = sizeof(name); 4655 4656 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4657 * kernel's module BTF support coincides with support for 4658 * name/name_len fields in struct bpf_btf_info. 4659 */ 4660 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4661 close(fd); 4662 return !err; 4663 } 4664 4665 static int probe_perf_link(void) 4666 { 4667 struct bpf_insn insns[] = { 4668 BPF_MOV64_IMM(BPF_REG_0, 0), 4669 BPF_EXIT_INSN(), 4670 }; 4671 int prog_fd, link_fd, err; 4672 4673 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4674 insns, ARRAY_SIZE(insns), NULL); 4675 if (prog_fd < 0) 4676 return -errno; 4677 4678 /* use invalid perf_event FD to get EBADF, if link is supported; 4679 * otherwise EINVAL should be returned 4680 */ 4681 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4682 err = -errno; /* close() can clobber errno */ 4683 4684 if (link_fd >= 0) 4685 close(link_fd); 4686 close(prog_fd); 4687 4688 return link_fd < 0 && err == -EBADF; 4689 } 4690 4691 static int probe_kern_bpf_cookie(void) 4692 { 4693 struct bpf_insn insns[] = { 4694 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4695 BPF_EXIT_INSN(), 4696 }; 4697 int ret, insn_cnt = ARRAY_SIZE(insns); 4698 4699 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4700 return probe_fd(ret); 4701 } 4702 4703 static int probe_kern_btf_enum64(void) 4704 { 4705 static const char strs[] = "\0enum64"; 4706 __u32 types[] = { 4707 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4708 }; 4709 4710 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4711 strs, sizeof(strs))); 4712 } 4713 4714 static int probe_kern_syscall_wrapper(void); 4715 4716 enum kern_feature_result { 4717 FEAT_UNKNOWN = 0, 4718 FEAT_SUPPORTED = 1, 4719 FEAT_MISSING = 2, 4720 }; 4721 4722 typedef int (*feature_probe_fn)(void); 4723 4724 static struct kern_feature_desc { 4725 const char *desc; 4726 feature_probe_fn probe; 4727 enum kern_feature_result res; 4728 } feature_probes[__FEAT_CNT] = { 4729 [FEAT_PROG_NAME] = { 4730 "BPF program name", probe_kern_prog_name, 4731 }, 4732 [FEAT_GLOBAL_DATA] = { 4733 "global variables", probe_kern_global_data, 4734 }, 4735 [FEAT_BTF] = { 4736 "minimal BTF", probe_kern_btf, 4737 }, 4738 [FEAT_BTF_FUNC] = { 4739 "BTF functions", probe_kern_btf_func, 4740 }, 4741 [FEAT_BTF_GLOBAL_FUNC] = { 4742 "BTF global function", probe_kern_btf_func_global, 4743 }, 4744 [FEAT_BTF_DATASEC] = { 4745 "BTF data section and variable", probe_kern_btf_datasec, 4746 }, 4747 [FEAT_ARRAY_MMAP] = { 4748 "ARRAY map mmap()", probe_kern_array_mmap, 4749 }, 4750 [FEAT_EXP_ATTACH_TYPE] = { 4751 "BPF_PROG_LOAD expected_attach_type attribute", 4752 probe_kern_exp_attach_type, 4753 }, 4754 [FEAT_PROBE_READ_KERN] = { 4755 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4756 }, 4757 [FEAT_PROG_BIND_MAP] = { 4758 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4759 }, 4760 [FEAT_MODULE_BTF] = { 4761 "module BTF support", probe_module_btf, 4762 }, 4763 [FEAT_BTF_FLOAT] = { 4764 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4765 }, 4766 [FEAT_PERF_LINK] = { 4767 "BPF perf link support", probe_perf_link, 4768 }, 4769 [FEAT_BTF_DECL_TAG] = { 4770 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4771 }, 4772 [FEAT_BTF_TYPE_TAG] = { 4773 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4774 }, 4775 [FEAT_MEMCG_ACCOUNT] = { 4776 "memcg-based memory accounting", probe_memcg_account, 4777 }, 4778 [FEAT_BPF_COOKIE] = { 4779 "BPF cookie support", probe_kern_bpf_cookie, 4780 }, 4781 [FEAT_BTF_ENUM64] = { 4782 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4783 }, 4784 [FEAT_SYSCALL_WRAPPER] = { 4785 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4786 }, 4787 }; 4788 4789 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4790 { 4791 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4792 int ret; 4793 4794 if (obj && obj->gen_loader) 4795 /* To generate loader program assume the latest kernel 4796 * to avoid doing extra prog_load, map_create syscalls. 4797 */ 4798 return true; 4799 4800 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4801 ret = feat->probe(); 4802 if (ret > 0) { 4803 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4804 } else if (ret == 0) { 4805 WRITE_ONCE(feat->res, FEAT_MISSING); 4806 } else { 4807 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4808 WRITE_ONCE(feat->res, FEAT_MISSING); 4809 } 4810 } 4811 4812 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4813 } 4814 4815 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4816 { 4817 struct bpf_map_info map_info = {}; 4818 char msg[STRERR_BUFSIZE]; 4819 __u32 map_info_len; 4820 int err; 4821 4822 map_info_len = sizeof(map_info); 4823 4824 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4825 if (err && errno == EINVAL) 4826 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4827 if (err) { 4828 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4829 libbpf_strerror_r(errno, msg, sizeof(msg))); 4830 return false; 4831 } 4832 4833 return (map_info.type == map->def.type && 4834 map_info.key_size == map->def.key_size && 4835 map_info.value_size == map->def.value_size && 4836 map_info.max_entries == map->def.max_entries && 4837 map_info.map_flags == map->def.map_flags && 4838 map_info.map_extra == map->map_extra); 4839 } 4840 4841 static int 4842 bpf_object__reuse_map(struct bpf_map *map) 4843 { 4844 char *cp, errmsg[STRERR_BUFSIZE]; 4845 int err, pin_fd; 4846 4847 pin_fd = bpf_obj_get(map->pin_path); 4848 if (pin_fd < 0) { 4849 err = -errno; 4850 if (err == -ENOENT) { 4851 pr_debug("found no pinned map to reuse at '%s'\n", 4852 map->pin_path); 4853 return 0; 4854 } 4855 4856 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4857 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4858 map->pin_path, cp); 4859 return err; 4860 } 4861 4862 if (!map_is_reuse_compat(map, pin_fd)) { 4863 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4864 map->pin_path); 4865 close(pin_fd); 4866 return -EINVAL; 4867 } 4868 4869 err = bpf_map__reuse_fd(map, pin_fd); 4870 close(pin_fd); 4871 if (err) { 4872 return err; 4873 } 4874 map->pinned = true; 4875 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4876 4877 return 0; 4878 } 4879 4880 static int 4881 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4882 { 4883 enum libbpf_map_type map_type = map->libbpf_type; 4884 char *cp, errmsg[STRERR_BUFSIZE]; 4885 int err, zero = 0; 4886 4887 if (obj->gen_loader) { 4888 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4889 map->mmaped, map->def.value_size); 4890 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4891 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4892 return 0; 4893 } 4894 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4895 if (err) { 4896 err = -errno; 4897 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4898 pr_warn("Error setting initial map(%s) contents: %s\n", 4899 map->name, cp); 4900 return err; 4901 } 4902 4903 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4904 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4905 err = bpf_map_freeze(map->fd); 4906 if (err) { 4907 err = -errno; 4908 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4909 pr_warn("Error freezing map(%s) as read-only: %s\n", 4910 map->name, cp); 4911 return err; 4912 } 4913 } 4914 return 0; 4915 } 4916 4917 static void bpf_map__destroy(struct bpf_map *map); 4918 4919 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4920 { 4921 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4922 struct bpf_map_def *def = &map->def; 4923 const char *map_name = NULL; 4924 int err = 0; 4925 4926 if (kernel_supports(obj, FEAT_PROG_NAME)) 4927 map_name = map->name; 4928 create_attr.map_ifindex = map->map_ifindex; 4929 create_attr.map_flags = def->map_flags; 4930 create_attr.numa_node = map->numa_node; 4931 create_attr.map_extra = map->map_extra; 4932 4933 if (bpf_map__is_struct_ops(map)) 4934 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4935 4936 if (obj->btf && btf__fd(obj->btf) >= 0) { 4937 create_attr.btf_fd = btf__fd(obj->btf); 4938 create_attr.btf_key_type_id = map->btf_key_type_id; 4939 create_attr.btf_value_type_id = map->btf_value_type_id; 4940 } 4941 4942 if (bpf_map_type__is_map_in_map(def->type)) { 4943 if (map->inner_map) { 4944 err = bpf_object__create_map(obj, map->inner_map, true); 4945 if (err) { 4946 pr_warn("map '%s': failed to create inner map: %d\n", 4947 map->name, err); 4948 return err; 4949 } 4950 map->inner_map_fd = bpf_map__fd(map->inner_map); 4951 } 4952 if (map->inner_map_fd >= 0) 4953 create_attr.inner_map_fd = map->inner_map_fd; 4954 } 4955 4956 switch (def->type) { 4957 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4958 case BPF_MAP_TYPE_CGROUP_ARRAY: 4959 case BPF_MAP_TYPE_STACK_TRACE: 4960 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4961 case BPF_MAP_TYPE_HASH_OF_MAPS: 4962 case BPF_MAP_TYPE_DEVMAP: 4963 case BPF_MAP_TYPE_DEVMAP_HASH: 4964 case BPF_MAP_TYPE_CPUMAP: 4965 case BPF_MAP_TYPE_XSKMAP: 4966 case BPF_MAP_TYPE_SOCKMAP: 4967 case BPF_MAP_TYPE_SOCKHASH: 4968 case BPF_MAP_TYPE_QUEUE: 4969 case BPF_MAP_TYPE_STACK: 4970 create_attr.btf_fd = 0; 4971 create_attr.btf_key_type_id = 0; 4972 create_attr.btf_value_type_id = 0; 4973 map->btf_key_type_id = 0; 4974 map->btf_value_type_id = 0; 4975 default: 4976 break; 4977 } 4978 4979 if (obj->gen_loader) { 4980 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4981 def->key_size, def->value_size, def->max_entries, 4982 &create_attr, is_inner ? -1 : map - obj->maps); 4983 /* Pretend to have valid FD to pass various fd >= 0 checks. 4984 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4985 */ 4986 map->fd = 0; 4987 } else { 4988 map->fd = bpf_map_create(def->type, map_name, 4989 def->key_size, def->value_size, 4990 def->max_entries, &create_attr); 4991 } 4992 if (map->fd < 0 && (create_attr.btf_key_type_id || 4993 create_attr.btf_value_type_id)) { 4994 char *cp, errmsg[STRERR_BUFSIZE]; 4995 4996 err = -errno; 4997 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4998 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4999 map->name, cp, err); 5000 create_attr.btf_fd = 0; 5001 create_attr.btf_key_type_id = 0; 5002 create_attr.btf_value_type_id = 0; 5003 map->btf_key_type_id = 0; 5004 map->btf_value_type_id = 0; 5005 map->fd = bpf_map_create(def->type, map_name, 5006 def->key_size, def->value_size, 5007 def->max_entries, &create_attr); 5008 } 5009 5010 err = map->fd < 0 ? -errno : 0; 5011 5012 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5013 if (obj->gen_loader) 5014 map->inner_map->fd = -1; 5015 bpf_map__destroy(map->inner_map); 5016 zfree(&map->inner_map); 5017 } 5018 5019 return err; 5020 } 5021 5022 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5023 { 5024 const struct bpf_map *targ_map; 5025 unsigned int i; 5026 int fd, err = 0; 5027 5028 for (i = 0; i < map->init_slots_sz; i++) { 5029 if (!map->init_slots[i]) 5030 continue; 5031 5032 targ_map = map->init_slots[i]; 5033 fd = bpf_map__fd(targ_map); 5034 5035 if (obj->gen_loader) { 5036 bpf_gen__populate_outer_map(obj->gen_loader, 5037 map - obj->maps, i, 5038 targ_map - obj->maps); 5039 } else { 5040 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5041 } 5042 if (err) { 5043 err = -errno; 5044 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5045 map->name, i, targ_map->name, fd, err); 5046 return err; 5047 } 5048 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5049 map->name, i, targ_map->name, fd); 5050 } 5051 5052 zfree(&map->init_slots); 5053 map->init_slots_sz = 0; 5054 5055 return 0; 5056 } 5057 5058 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5059 { 5060 const struct bpf_program *targ_prog; 5061 unsigned int i; 5062 int fd, err; 5063 5064 if (obj->gen_loader) 5065 return -ENOTSUP; 5066 5067 for (i = 0; i < map->init_slots_sz; i++) { 5068 if (!map->init_slots[i]) 5069 continue; 5070 5071 targ_prog = map->init_slots[i]; 5072 fd = bpf_program__fd(targ_prog); 5073 5074 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5075 if (err) { 5076 err = -errno; 5077 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5078 map->name, i, targ_prog->name, fd, err); 5079 return err; 5080 } 5081 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5082 map->name, i, targ_prog->name, fd); 5083 } 5084 5085 zfree(&map->init_slots); 5086 map->init_slots_sz = 0; 5087 5088 return 0; 5089 } 5090 5091 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5092 { 5093 struct bpf_map *map; 5094 int i, err; 5095 5096 for (i = 0; i < obj->nr_maps; i++) { 5097 map = &obj->maps[i]; 5098 5099 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5100 continue; 5101 5102 err = init_prog_array_slots(obj, map); 5103 if (err < 0) { 5104 zclose(map->fd); 5105 return err; 5106 } 5107 } 5108 return 0; 5109 } 5110 5111 static int map_set_def_max_entries(struct bpf_map *map) 5112 { 5113 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5114 int nr_cpus; 5115 5116 nr_cpus = libbpf_num_possible_cpus(); 5117 if (nr_cpus < 0) { 5118 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5119 map->name, nr_cpus); 5120 return nr_cpus; 5121 } 5122 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5123 map->def.max_entries = nr_cpus; 5124 } 5125 5126 return 0; 5127 } 5128 5129 static int 5130 bpf_object__create_maps(struct bpf_object *obj) 5131 { 5132 struct bpf_map *map; 5133 char *cp, errmsg[STRERR_BUFSIZE]; 5134 unsigned int i, j; 5135 int err; 5136 bool retried; 5137 5138 for (i = 0; i < obj->nr_maps; i++) { 5139 map = &obj->maps[i]; 5140 5141 /* To support old kernels, we skip creating global data maps 5142 * (.rodata, .data, .kconfig, etc); later on, during program 5143 * loading, if we detect that at least one of the to-be-loaded 5144 * programs is referencing any global data map, we'll error 5145 * out with program name and relocation index logged. 5146 * This approach allows to accommodate Clang emitting 5147 * unnecessary .rodata.str1.1 sections for string literals, 5148 * but also it allows to have CO-RE applications that use 5149 * global variables in some of BPF programs, but not others. 5150 * If those global variable-using programs are not loaded at 5151 * runtime due to bpf_program__set_autoload(prog, false), 5152 * bpf_object loading will succeed just fine even on old 5153 * kernels. 5154 */ 5155 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5156 map->autocreate = false; 5157 5158 if (!map->autocreate) { 5159 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5160 continue; 5161 } 5162 5163 err = map_set_def_max_entries(map); 5164 if (err) 5165 goto err_out; 5166 5167 retried = false; 5168 retry: 5169 if (map->pin_path) { 5170 err = bpf_object__reuse_map(map); 5171 if (err) { 5172 pr_warn("map '%s': error reusing pinned map\n", 5173 map->name); 5174 goto err_out; 5175 } 5176 if (retried && map->fd < 0) { 5177 pr_warn("map '%s': cannot find pinned map\n", 5178 map->name); 5179 err = -ENOENT; 5180 goto err_out; 5181 } 5182 } 5183 5184 if (map->fd >= 0) { 5185 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5186 map->name, map->fd); 5187 } else { 5188 err = bpf_object__create_map(obj, map, false); 5189 if (err) 5190 goto err_out; 5191 5192 pr_debug("map '%s': created successfully, fd=%d\n", 5193 map->name, map->fd); 5194 5195 if (bpf_map__is_internal(map)) { 5196 err = bpf_object__populate_internal_map(obj, map); 5197 if (err < 0) { 5198 zclose(map->fd); 5199 goto err_out; 5200 } 5201 } 5202 5203 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5204 err = init_map_in_map_slots(obj, map); 5205 if (err < 0) { 5206 zclose(map->fd); 5207 goto err_out; 5208 } 5209 } 5210 } 5211 5212 if (map->pin_path && !map->pinned) { 5213 err = bpf_map__pin(map, NULL); 5214 if (err) { 5215 zclose(map->fd); 5216 if (!retried && err == -EEXIST) { 5217 retried = true; 5218 goto retry; 5219 } 5220 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5221 map->name, map->pin_path, err); 5222 goto err_out; 5223 } 5224 } 5225 } 5226 5227 return 0; 5228 5229 err_out: 5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5231 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5232 pr_perm_msg(err); 5233 for (j = 0; j < i; j++) 5234 zclose(obj->maps[j].fd); 5235 return err; 5236 } 5237 5238 static bool bpf_core_is_flavor_sep(const char *s) 5239 { 5240 /* check X___Y name pattern, where X and Y are not underscores */ 5241 return s[0] != '_' && /* X */ 5242 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5243 s[4] != '_'; /* Y */ 5244 } 5245 5246 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5247 * before last triple underscore. Struct name part after last triple 5248 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5249 */ 5250 size_t bpf_core_essential_name_len(const char *name) 5251 { 5252 size_t n = strlen(name); 5253 int i; 5254 5255 for (i = n - 5; i >= 0; i--) { 5256 if (bpf_core_is_flavor_sep(name + i)) 5257 return i + 1; 5258 } 5259 return n; 5260 } 5261 5262 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5263 { 5264 if (!cands) 5265 return; 5266 5267 free(cands->cands); 5268 free(cands); 5269 } 5270 5271 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5272 size_t local_essent_len, 5273 const struct btf *targ_btf, 5274 const char *targ_btf_name, 5275 int targ_start_id, 5276 struct bpf_core_cand_list *cands) 5277 { 5278 struct bpf_core_cand *new_cands, *cand; 5279 const struct btf_type *t, *local_t; 5280 const char *targ_name, *local_name; 5281 size_t targ_essent_len; 5282 int n, i; 5283 5284 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5285 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5286 5287 n = btf__type_cnt(targ_btf); 5288 for (i = targ_start_id; i < n; i++) { 5289 t = btf__type_by_id(targ_btf, i); 5290 if (!btf_kind_core_compat(t, local_t)) 5291 continue; 5292 5293 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5294 if (str_is_empty(targ_name)) 5295 continue; 5296 5297 targ_essent_len = bpf_core_essential_name_len(targ_name); 5298 if (targ_essent_len != local_essent_len) 5299 continue; 5300 5301 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5302 continue; 5303 5304 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5305 local_cand->id, btf_kind_str(local_t), 5306 local_name, i, btf_kind_str(t), targ_name, 5307 targ_btf_name); 5308 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5309 sizeof(*cands->cands)); 5310 if (!new_cands) 5311 return -ENOMEM; 5312 5313 cand = &new_cands[cands->len]; 5314 cand->btf = targ_btf; 5315 cand->id = i; 5316 5317 cands->cands = new_cands; 5318 cands->len++; 5319 } 5320 return 0; 5321 } 5322 5323 static int load_module_btfs(struct bpf_object *obj) 5324 { 5325 struct bpf_btf_info info; 5326 struct module_btf *mod_btf; 5327 struct btf *btf; 5328 char name[64]; 5329 __u32 id = 0, len; 5330 int err, fd; 5331 5332 if (obj->btf_modules_loaded) 5333 return 0; 5334 5335 if (obj->gen_loader) 5336 return 0; 5337 5338 /* don't do this again, even if we find no module BTFs */ 5339 obj->btf_modules_loaded = true; 5340 5341 /* kernel too old to support module BTFs */ 5342 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5343 return 0; 5344 5345 while (true) { 5346 err = bpf_btf_get_next_id(id, &id); 5347 if (err && errno == ENOENT) 5348 return 0; 5349 if (err) { 5350 err = -errno; 5351 pr_warn("failed to iterate BTF objects: %d\n", err); 5352 return err; 5353 } 5354 5355 fd = bpf_btf_get_fd_by_id(id); 5356 if (fd < 0) { 5357 if (errno == ENOENT) 5358 continue; /* expected race: BTF was unloaded */ 5359 err = -errno; 5360 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5361 return err; 5362 } 5363 5364 len = sizeof(info); 5365 memset(&info, 0, sizeof(info)); 5366 info.name = ptr_to_u64(name); 5367 info.name_len = sizeof(name); 5368 5369 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5370 if (err) { 5371 err = -errno; 5372 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5373 goto err_out; 5374 } 5375 5376 /* ignore non-module BTFs */ 5377 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5378 close(fd); 5379 continue; 5380 } 5381 5382 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5383 err = libbpf_get_error(btf); 5384 if (err) { 5385 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5386 name, id, err); 5387 goto err_out; 5388 } 5389 5390 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5391 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5392 if (err) 5393 goto err_out; 5394 5395 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5396 5397 mod_btf->btf = btf; 5398 mod_btf->id = id; 5399 mod_btf->fd = fd; 5400 mod_btf->name = strdup(name); 5401 if (!mod_btf->name) { 5402 err = -ENOMEM; 5403 goto err_out; 5404 } 5405 continue; 5406 5407 err_out: 5408 close(fd); 5409 return err; 5410 } 5411 5412 return 0; 5413 } 5414 5415 static struct bpf_core_cand_list * 5416 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5417 { 5418 struct bpf_core_cand local_cand = {}; 5419 struct bpf_core_cand_list *cands; 5420 const struct btf *main_btf; 5421 const struct btf_type *local_t; 5422 const char *local_name; 5423 size_t local_essent_len; 5424 int err, i; 5425 5426 local_cand.btf = local_btf; 5427 local_cand.id = local_type_id; 5428 local_t = btf__type_by_id(local_btf, local_type_id); 5429 if (!local_t) 5430 return ERR_PTR(-EINVAL); 5431 5432 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5433 if (str_is_empty(local_name)) 5434 return ERR_PTR(-EINVAL); 5435 local_essent_len = bpf_core_essential_name_len(local_name); 5436 5437 cands = calloc(1, sizeof(*cands)); 5438 if (!cands) 5439 return ERR_PTR(-ENOMEM); 5440 5441 /* Attempt to find target candidates in vmlinux BTF first */ 5442 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5443 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5444 if (err) 5445 goto err_out; 5446 5447 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5448 if (cands->len) 5449 return cands; 5450 5451 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5452 if (obj->btf_vmlinux_override) 5453 return cands; 5454 5455 /* now look through module BTFs, trying to still find candidates */ 5456 err = load_module_btfs(obj); 5457 if (err) 5458 goto err_out; 5459 5460 for (i = 0; i < obj->btf_module_cnt; i++) { 5461 err = bpf_core_add_cands(&local_cand, local_essent_len, 5462 obj->btf_modules[i].btf, 5463 obj->btf_modules[i].name, 5464 btf__type_cnt(obj->btf_vmlinux), 5465 cands); 5466 if (err) 5467 goto err_out; 5468 } 5469 5470 return cands; 5471 err_out: 5472 bpf_core_free_cands(cands); 5473 return ERR_PTR(err); 5474 } 5475 5476 /* Check local and target types for compatibility. This check is used for 5477 * type-based CO-RE relocations and follow slightly different rules than 5478 * field-based relocations. This function assumes that root types were already 5479 * checked for name match. Beyond that initial root-level name check, names 5480 * are completely ignored. Compatibility rules are as follows: 5481 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5482 * kind should match for local and target types (i.e., STRUCT is not 5483 * compatible with UNION); 5484 * - for ENUMs, the size is ignored; 5485 * - for INT, size and signedness are ignored; 5486 * - for ARRAY, dimensionality is ignored, element types are checked for 5487 * compatibility recursively; 5488 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5489 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5490 * - FUNC_PROTOs are compatible if they have compatible signature: same 5491 * number of input args and compatible return and argument types. 5492 * These rules are not set in stone and probably will be adjusted as we get 5493 * more experience with using BPF CO-RE relocations. 5494 */ 5495 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5496 const struct btf *targ_btf, __u32 targ_id) 5497 { 5498 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5499 } 5500 5501 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5502 const struct btf *targ_btf, __u32 targ_id) 5503 { 5504 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5505 } 5506 5507 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5508 { 5509 return (size_t)key; 5510 } 5511 5512 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5513 { 5514 return k1 == k2; 5515 } 5516 5517 static void *u32_as_hash_key(__u32 x) 5518 { 5519 return (void *)(uintptr_t)x; 5520 } 5521 5522 static int record_relo_core(struct bpf_program *prog, 5523 const struct bpf_core_relo *core_relo, int insn_idx) 5524 { 5525 struct reloc_desc *relos, *relo; 5526 5527 relos = libbpf_reallocarray(prog->reloc_desc, 5528 prog->nr_reloc + 1, sizeof(*relos)); 5529 if (!relos) 5530 return -ENOMEM; 5531 relo = &relos[prog->nr_reloc]; 5532 relo->type = RELO_CORE; 5533 relo->insn_idx = insn_idx; 5534 relo->core_relo = core_relo; 5535 prog->reloc_desc = relos; 5536 prog->nr_reloc++; 5537 return 0; 5538 } 5539 5540 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5541 { 5542 struct reloc_desc *relo; 5543 int i; 5544 5545 for (i = 0; i < prog->nr_reloc; i++) { 5546 relo = &prog->reloc_desc[i]; 5547 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5548 continue; 5549 5550 return relo->core_relo; 5551 } 5552 5553 return NULL; 5554 } 5555 5556 static int bpf_core_resolve_relo(struct bpf_program *prog, 5557 const struct bpf_core_relo *relo, 5558 int relo_idx, 5559 const struct btf *local_btf, 5560 struct hashmap *cand_cache, 5561 struct bpf_core_relo_res *targ_res) 5562 { 5563 struct bpf_core_spec specs_scratch[3] = {}; 5564 const void *type_key = u32_as_hash_key(relo->type_id); 5565 struct bpf_core_cand_list *cands = NULL; 5566 const char *prog_name = prog->name; 5567 const struct btf_type *local_type; 5568 const char *local_name; 5569 __u32 local_id = relo->type_id; 5570 int err; 5571 5572 local_type = btf__type_by_id(local_btf, local_id); 5573 if (!local_type) 5574 return -EINVAL; 5575 5576 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5577 if (!local_name) 5578 return -EINVAL; 5579 5580 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5581 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5582 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5583 if (IS_ERR(cands)) { 5584 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5585 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5586 local_name, PTR_ERR(cands)); 5587 return PTR_ERR(cands); 5588 } 5589 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5590 if (err) { 5591 bpf_core_free_cands(cands); 5592 return err; 5593 } 5594 } 5595 5596 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5597 targ_res); 5598 } 5599 5600 static int 5601 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5602 { 5603 const struct btf_ext_info_sec *sec; 5604 struct bpf_core_relo_res targ_res; 5605 const struct bpf_core_relo *rec; 5606 const struct btf_ext_info *seg; 5607 struct hashmap_entry *entry; 5608 struct hashmap *cand_cache = NULL; 5609 struct bpf_program *prog; 5610 struct bpf_insn *insn; 5611 const char *sec_name; 5612 int i, err = 0, insn_idx, sec_idx, sec_num; 5613 5614 if (obj->btf_ext->core_relo_info.len == 0) 5615 return 0; 5616 5617 if (targ_btf_path) { 5618 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5619 err = libbpf_get_error(obj->btf_vmlinux_override); 5620 if (err) { 5621 pr_warn("failed to parse target BTF: %d\n", err); 5622 return err; 5623 } 5624 } 5625 5626 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5627 if (IS_ERR(cand_cache)) { 5628 err = PTR_ERR(cand_cache); 5629 goto out; 5630 } 5631 5632 seg = &obj->btf_ext->core_relo_info; 5633 sec_num = 0; 5634 for_each_btf_ext_sec(seg, sec) { 5635 sec_idx = seg->sec_idxs[sec_num]; 5636 sec_num++; 5637 5638 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5639 if (str_is_empty(sec_name)) { 5640 err = -EINVAL; 5641 goto out; 5642 } 5643 5644 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5645 5646 for_each_btf_ext_rec(seg, sec, i, rec) { 5647 if (rec->insn_off % BPF_INSN_SZ) 5648 return -EINVAL; 5649 insn_idx = rec->insn_off / BPF_INSN_SZ; 5650 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5651 if (!prog) { 5652 /* When __weak subprog is "overridden" by another instance 5653 * of the subprog from a different object file, linker still 5654 * appends all the .BTF.ext info that used to belong to that 5655 * eliminated subprogram. 5656 * This is similar to what x86-64 linker does for relocations. 5657 * So just ignore such relocations just like we ignore 5658 * subprog instructions when discovering subprograms. 5659 */ 5660 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5661 sec_name, i, insn_idx); 5662 continue; 5663 } 5664 /* no need to apply CO-RE relocation if the program is 5665 * not going to be loaded 5666 */ 5667 if (!prog->autoload) 5668 continue; 5669 5670 /* adjust insn_idx from section frame of reference to the local 5671 * program's frame of reference; (sub-)program code is not yet 5672 * relocated, so it's enough to just subtract in-section offset 5673 */ 5674 insn_idx = insn_idx - prog->sec_insn_off; 5675 if (insn_idx >= prog->insns_cnt) 5676 return -EINVAL; 5677 insn = &prog->insns[insn_idx]; 5678 5679 err = record_relo_core(prog, rec, insn_idx); 5680 if (err) { 5681 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5682 prog->name, i, err); 5683 goto out; 5684 } 5685 5686 if (prog->obj->gen_loader) 5687 continue; 5688 5689 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5690 if (err) { 5691 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5692 prog->name, i, err); 5693 goto out; 5694 } 5695 5696 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5697 if (err) { 5698 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5699 prog->name, i, insn_idx, err); 5700 goto out; 5701 } 5702 } 5703 } 5704 5705 out: 5706 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5707 btf__free(obj->btf_vmlinux_override); 5708 obj->btf_vmlinux_override = NULL; 5709 5710 if (!IS_ERR_OR_NULL(cand_cache)) { 5711 hashmap__for_each_entry(cand_cache, entry, i) { 5712 bpf_core_free_cands(entry->value); 5713 } 5714 hashmap__free(cand_cache); 5715 } 5716 return err; 5717 } 5718 5719 /* base map load ldimm64 special constant, used also for log fixup logic */ 5720 #define MAP_LDIMM64_POISON_BASE 2001000000 5721 #define MAP_LDIMM64_POISON_PFX "200100" 5722 5723 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5724 int insn_idx, struct bpf_insn *insn, 5725 int map_idx, const struct bpf_map *map) 5726 { 5727 int i; 5728 5729 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5730 prog->name, relo_idx, insn_idx, map_idx, map->name); 5731 5732 /* we turn single ldimm64 into two identical invalid calls */ 5733 for (i = 0; i < 2; i++) { 5734 insn->code = BPF_JMP | BPF_CALL; 5735 insn->dst_reg = 0; 5736 insn->src_reg = 0; 5737 insn->off = 0; 5738 /* if this instruction is reachable (not a dead code), 5739 * verifier will complain with something like: 5740 * invalid func unknown#2001000123 5741 * where lower 123 is map index into obj->maps[] array 5742 */ 5743 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5744 5745 insn++; 5746 } 5747 } 5748 5749 /* Relocate data references within program code: 5750 * - map references; 5751 * - global variable references; 5752 * - extern references. 5753 */ 5754 static int 5755 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5756 { 5757 int i; 5758 5759 for (i = 0; i < prog->nr_reloc; i++) { 5760 struct reloc_desc *relo = &prog->reloc_desc[i]; 5761 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5762 const struct bpf_map *map; 5763 struct extern_desc *ext; 5764 5765 switch (relo->type) { 5766 case RELO_LD64: 5767 map = &obj->maps[relo->map_idx]; 5768 if (obj->gen_loader) { 5769 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5770 insn[0].imm = relo->map_idx; 5771 } else if (map->autocreate) { 5772 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5773 insn[0].imm = map->fd; 5774 } else { 5775 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5776 relo->map_idx, map); 5777 } 5778 break; 5779 case RELO_DATA: 5780 map = &obj->maps[relo->map_idx]; 5781 insn[1].imm = insn[0].imm + relo->sym_off; 5782 if (obj->gen_loader) { 5783 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5784 insn[0].imm = relo->map_idx; 5785 } else if (map->autocreate) { 5786 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5787 insn[0].imm = map->fd; 5788 } else { 5789 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5790 relo->map_idx, map); 5791 } 5792 break; 5793 case RELO_EXTERN_VAR: 5794 ext = &obj->externs[relo->sym_off]; 5795 if (ext->type == EXT_KCFG) { 5796 if (obj->gen_loader) { 5797 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5798 insn[0].imm = obj->kconfig_map_idx; 5799 } else { 5800 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5801 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5802 } 5803 insn[1].imm = ext->kcfg.data_off; 5804 } else /* EXT_KSYM */ { 5805 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5806 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5807 insn[0].imm = ext->ksym.kernel_btf_id; 5808 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5809 } else { /* typeless ksyms or unresolved typed ksyms */ 5810 insn[0].imm = (__u32)ext->ksym.addr; 5811 insn[1].imm = ext->ksym.addr >> 32; 5812 } 5813 } 5814 break; 5815 case RELO_EXTERN_FUNC: 5816 ext = &obj->externs[relo->sym_off]; 5817 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5818 if (ext->is_set) { 5819 insn[0].imm = ext->ksym.kernel_btf_id; 5820 insn[0].off = ext->ksym.btf_fd_idx; 5821 } else { /* unresolved weak kfunc */ 5822 insn[0].imm = 0; 5823 insn[0].off = 0; 5824 } 5825 break; 5826 case RELO_SUBPROG_ADDR: 5827 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5828 pr_warn("prog '%s': relo #%d: bad insn\n", 5829 prog->name, i); 5830 return -EINVAL; 5831 } 5832 /* handled already */ 5833 break; 5834 case RELO_CALL: 5835 /* handled already */ 5836 break; 5837 case RELO_CORE: 5838 /* will be handled by bpf_program_record_relos() */ 5839 break; 5840 default: 5841 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5842 prog->name, i, relo->type); 5843 return -EINVAL; 5844 } 5845 } 5846 5847 return 0; 5848 } 5849 5850 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5851 const struct bpf_program *prog, 5852 const struct btf_ext_info *ext_info, 5853 void **prog_info, __u32 *prog_rec_cnt, 5854 __u32 *prog_rec_sz) 5855 { 5856 void *copy_start = NULL, *copy_end = NULL; 5857 void *rec, *rec_end, *new_prog_info; 5858 const struct btf_ext_info_sec *sec; 5859 size_t old_sz, new_sz; 5860 int i, sec_num, sec_idx, off_adj; 5861 5862 sec_num = 0; 5863 for_each_btf_ext_sec(ext_info, sec) { 5864 sec_idx = ext_info->sec_idxs[sec_num]; 5865 sec_num++; 5866 if (prog->sec_idx != sec_idx) 5867 continue; 5868 5869 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5870 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5871 5872 if (insn_off < prog->sec_insn_off) 5873 continue; 5874 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5875 break; 5876 5877 if (!copy_start) 5878 copy_start = rec; 5879 copy_end = rec + ext_info->rec_size; 5880 } 5881 5882 if (!copy_start) 5883 return -ENOENT; 5884 5885 /* append func/line info of a given (sub-)program to the main 5886 * program func/line info 5887 */ 5888 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5889 new_sz = old_sz + (copy_end - copy_start); 5890 new_prog_info = realloc(*prog_info, new_sz); 5891 if (!new_prog_info) 5892 return -ENOMEM; 5893 *prog_info = new_prog_info; 5894 *prog_rec_cnt = new_sz / ext_info->rec_size; 5895 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5896 5897 /* Kernel instruction offsets are in units of 8-byte 5898 * instructions, while .BTF.ext instruction offsets generated 5899 * by Clang are in units of bytes. So convert Clang offsets 5900 * into kernel offsets and adjust offset according to program 5901 * relocated position. 5902 */ 5903 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5904 rec = new_prog_info + old_sz; 5905 rec_end = new_prog_info + new_sz; 5906 for (; rec < rec_end; rec += ext_info->rec_size) { 5907 __u32 *insn_off = rec; 5908 5909 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5910 } 5911 *prog_rec_sz = ext_info->rec_size; 5912 return 0; 5913 } 5914 5915 return -ENOENT; 5916 } 5917 5918 static int 5919 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5920 struct bpf_program *main_prog, 5921 const struct bpf_program *prog) 5922 { 5923 int err; 5924 5925 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5926 * supprot func/line info 5927 */ 5928 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5929 return 0; 5930 5931 /* only attempt func info relocation if main program's func_info 5932 * relocation was successful 5933 */ 5934 if (main_prog != prog && !main_prog->func_info) 5935 goto line_info; 5936 5937 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5938 &main_prog->func_info, 5939 &main_prog->func_info_cnt, 5940 &main_prog->func_info_rec_size); 5941 if (err) { 5942 if (err != -ENOENT) { 5943 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5944 prog->name, err); 5945 return err; 5946 } 5947 if (main_prog->func_info) { 5948 /* 5949 * Some info has already been found but has problem 5950 * in the last btf_ext reloc. Must have to error out. 5951 */ 5952 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5953 return err; 5954 } 5955 /* Have problem loading the very first info. Ignore the rest. */ 5956 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5957 prog->name); 5958 } 5959 5960 line_info: 5961 /* don't relocate line info if main program's relocation failed */ 5962 if (main_prog != prog && !main_prog->line_info) 5963 return 0; 5964 5965 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5966 &main_prog->line_info, 5967 &main_prog->line_info_cnt, 5968 &main_prog->line_info_rec_size); 5969 if (err) { 5970 if (err != -ENOENT) { 5971 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5972 prog->name, err); 5973 return err; 5974 } 5975 if (main_prog->line_info) { 5976 /* 5977 * Some info has already been found but has problem 5978 * in the last btf_ext reloc. Must have to error out. 5979 */ 5980 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5981 return err; 5982 } 5983 /* Have problem loading the very first info. Ignore the rest. */ 5984 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5985 prog->name); 5986 } 5987 return 0; 5988 } 5989 5990 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5991 { 5992 size_t insn_idx = *(const size_t *)key; 5993 const struct reloc_desc *relo = elem; 5994 5995 if (insn_idx == relo->insn_idx) 5996 return 0; 5997 return insn_idx < relo->insn_idx ? -1 : 1; 5998 } 5999 6000 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6001 { 6002 if (!prog->nr_reloc) 6003 return NULL; 6004 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6005 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6006 } 6007 6008 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6009 { 6010 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6011 struct reloc_desc *relos; 6012 int i; 6013 6014 if (main_prog == subprog) 6015 return 0; 6016 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6017 if (!relos) 6018 return -ENOMEM; 6019 if (subprog->nr_reloc) 6020 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6021 sizeof(*relos) * subprog->nr_reloc); 6022 6023 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6024 relos[i].insn_idx += subprog->sub_insn_off; 6025 /* After insn_idx adjustment the 'relos' array is still sorted 6026 * by insn_idx and doesn't break bsearch. 6027 */ 6028 main_prog->reloc_desc = relos; 6029 main_prog->nr_reloc = new_cnt; 6030 return 0; 6031 } 6032 6033 static int 6034 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6035 struct bpf_program *prog) 6036 { 6037 size_t sub_insn_idx, insn_idx, new_cnt; 6038 struct bpf_program *subprog; 6039 struct bpf_insn *insns, *insn; 6040 struct reloc_desc *relo; 6041 int err; 6042 6043 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6044 if (err) 6045 return err; 6046 6047 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6048 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6049 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6050 continue; 6051 6052 relo = find_prog_insn_relo(prog, insn_idx); 6053 if (relo && relo->type == RELO_EXTERN_FUNC) 6054 /* kfunc relocations will be handled later 6055 * in bpf_object__relocate_data() 6056 */ 6057 continue; 6058 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6059 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6060 prog->name, insn_idx, relo->type); 6061 return -LIBBPF_ERRNO__RELOC; 6062 } 6063 if (relo) { 6064 /* sub-program instruction index is a combination of 6065 * an offset of a symbol pointed to by relocation and 6066 * call instruction's imm field; for global functions, 6067 * call always has imm = -1, but for static functions 6068 * relocation is against STT_SECTION and insn->imm 6069 * points to a start of a static function 6070 * 6071 * for subprog addr relocation, the relo->sym_off + insn->imm is 6072 * the byte offset in the corresponding section. 6073 */ 6074 if (relo->type == RELO_CALL) 6075 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6076 else 6077 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6078 } else if (insn_is_pseudo_func(insn)) { 6079 /* 6080 * RELO_SUBPROG_ADDR relo is always emitted even if both 6081 * functions are in the same section, so it shouldn't reach here. 6082 */ 6083 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6084 prog->name, insn_idx); 6085 return -LIBBPF_ERRNO__RELOC; 6086 } else { 6087 /* if subprogram call is to a static function within 6088 * the same ELF section, there won't be any relocation 6089 * emitted, but it also means there is no additional 6090 * offset necessary, insns->imm is relative to 6091 * instruction's original position within the section 6092 */ 6093 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6094 } 6095 6096 /* we enforce that sub-programs should be in .text section */ 6097 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6098 if (!subprog) { 6099 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6100 prog->name); 6101 return -LIBBPF_ERRNO__RELOC; 6102 } 6103 6104 /* if it's the first call instruction calling into this 6105 * subprogram (meaning this subprog hasn't been processed 6106 * yet) within the context of current main program: 6107 * - append it at the end of main program's instructions blog; 6108 * - process is recursively, while current program is put on hold; 6109 * - if that subprogram calls some other not yet processes 6110 * subprogram, same thing will happen recursively until 6111 * there are no more unprocesses subprograms left to append 6112 * and relocate. 6113 */ 6114 if (subprog->sub_insn_off == 0) { 6115 subprog->sub_insn_off = main_prog->insns_cnt; 6116 6117 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6118 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6119 if (!insns) { 6120 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6121 return -ENOMEM; 6122 } 6123 main_prog->insns = insns; 6124 main_prog->insns_cnt = new_cnt; 6125 6126 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6127 subprog->insns_cnt * sizeof(*insns)); 6128 6129 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6130 main_prog->name, subprog->insns_cnt, subprog->name); 6131 6132 /* The subprog insns are now appended. Append its relos too. */ 6133 err = append_subprog_relos(main_prog, subprog); 6134 if (err) 6135 return err; 6136 err = bpf_object__reloc_code(obj, main_prog, subprog); 6137 if (err) 6138 return err; 6139 } 6140 6141 /* main_prog->insns memory could have been re-allocated, so 6142 * calculate pointer again 6143 */ 6144 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6145 /* calculate correct instruction position within current main 6146 * prog; each main prog can have a different set of 6147 * subprograms appended (potentially in different order as 6148 * well), so position of any subprog can be different for 6149 * different main programs */ 6150 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6151 6152 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6153 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6154 } 6155 6156 return 0; 6157 } 6158 6159 /* 6160 * Relocate sub-program calls. 6161 * 6162 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6163 * main prog) is processed separately. For each subprog (non-entry functions, 6164 * that can be called from either entry progs or other subprogs) gets their 6165 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6166 * hasn't been yet appended and relocated within current main prog. Once its 6167 * relocated, sub_insn_off will point at the position within current main prog 6168 * where given subprog was appended. This will further be used to relocate all 6169 * the call instructions jumping into this subprog. 6170 * 6171 * We start with main program and process all call instructions. If the call 6172 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6173 * is zero), subprog instructions are appended at the end of main program's 6174 * instruction array. Then main program is "put on hold" while we recursively 6175 * process newly appended subprogram. If that subprogram calls into another 6176 * subprogram that hasn't been appended, new subprogram is appended again to 6177 * the *main* prog's instructions (subprog's instructions are always left 6178 * untouched, as they need to be in unmodified state for subsequent main progs 6179 * and subprog instructions are always sent only as part of a main prog) and 6180 * the process continues recursively. Once all the subprogs called from a main 6181 * prog or any of its subprogs are appended (and relocated), all their 6182 * positions within finalized instructions array are known, so it's easy to 6183 * rewrite call instructions with correct relative offsets, corresponding to 6184 * desired target subprog. 6185 * 6186 * Its important to realize that some subprogs might not be called from some 6187 * main prog and any of its called/used subprogs. Those will keep their 6188 * subprog->sub_insn_off as zero at all times and won't be appended to current 6189 * main prog and won't be relocated within the context of current main prog. 6190 * They might still be used from other main progs later. 6191 * 6192 * Visually this process can be shown as below. Suppose we have two main 6193 * programs mainA and mainB and BPF object contains three subprogs: subA, 6194 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6195 * subC both call subB: 6196 * 6197 * +--------+ +-------+ 6198 * | v v | 6199 * +--+---+ +--+-+-+ +---+--+ 6200 * | subA | | subB | | subC | 6201 * +--+---+ +------+ +---+--+ 6202 * ^ ^ 6203 * | | 6204 * +---+-------+ +------+----+ 6205 * | mainA | | mainB | 6206 * +-----------+ +-----------+ 6207 * 6208 * We'll start relocating mainA, will find subA, append it and start 6209 * processing sub A recursively: 6210 * 6211 * +-----------+------+ 6212 * | mainA | subA | 6213 * +-----------+------+ 6214 * 6215 * At this point we notice that subB is used from subA, so we append it and 6216 * relocate (there are no further subcalls from subB): 6217 * 6218 * +-----------+------+------+ 6219 * | mainA | subA | subB | 6220 * +-----------+------+------+ 6221 * 6222 * At this point, we relocate subA calls, then go one level up and finish with 6223 * relocatin mainA calls. mainA is done. 6224 * 6225 * For mainB process is similar but results in different order. We start with 6226 * mainB and skip subA and subB, as mainB never calls them (at least 6227 * directly), but we see subC is needed, so we append and start processing it: 6228 * 6229 * +-----------+------+ 6230 * | mainB | subC | 6231 * +-----------+------+ 6232 * Now we see subC needs subB, so we go back to it, append and relocate it: 6233 * 6234 * +-----------+------+------+ 6235 * | mainB | subC | subB | 6236 * +-----------+------+------+ 6237 * 6238 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6239 */ 6240 static int 6241 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6242 { 6243 struct bpf_program *subprog; 6244 int i, err; 6245 6246 /* mark all subprogs as not relocated (yet) within the context of 6247 * current main program 6248 */ 6249 for (i = 0; i < obj->nr_programs; i++) { 6250 subprog = &obj->programs[i]; 6251 if (!prog_is_subprog(obj, subprog)) 6252 continue; 6253 6254 subprog->sub_insn_off = 0; 6255 } 6256 6257 err = bpf_object__reloc_code(obj, prog, prog); 6258 if (err) 6259 return err; 6260 6261 return 0; 6262 } 6263 6264 static void 6265 bpf_object__free_relocs(struct bpf_object *obj) 6266 { 6267 struct bpf_program *prog; 6268 int i; 6269 6270 /* free up relocation descriptors */ 6271 for (i = 0; i < obj->nr_programs; i++) { 6272 prog = &obj->programs[i]; 6273 zfree(&prog->reloc_desc); 6274 prog->nr_reloc = 0; 6275 } 6276 } 6277 6278 static int cmp_relocs(const void *_a, const void *_b) 6279 { 6280 const struct reloc_desc *a = _a; 6281 const struct reloc_desc *b = _b; 6282 6283 if (a->insn_idx != b->insn_idx) 6284 return a->insn_idx < b->insn_idx ? -1 : 1; 6285 6286 /* no two relocations should have the same insn_idx, but ... */ 6287 if (a->type != b->type) 6288 return a->type < b->type ? -1 : 1; 6289 6290 return 0; 6291 } 6292 6293 static void bpf_object__sort_relos(struct bpf_object *obj) 6294 { 6295 int i; 6296 6297 for (i = 0; i < obj->nr_programs; i++) { 6298 struct bpf_program *p = &obj->programs[i]; 6299 6300 if (!p->nr_reloc) 6301 continue; 6302 6303 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6304 } 6305 } 6306 6307 static int 6308 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6309 { 6310 struct bpf_program *prog; 6311 size_t i, j; 6312 int err; 6313 6314 if (obj->btf_ext) { 6315 err = bpf_object__relocate_core(obj, targ_btf_path); 6316 if (err) { 6317 pr_warn("failed to perform CO-RE relocations: %d\n", 6318 err); 6319 return err; 6320 } 6321 bpf_object__sort_relos(obj); 6322 } 6323 6324 /* Before relocating calls pre-process relocations and mark 6325 * few ld_imm64 instructions that points to subprogs. 6326 * Otherwise bpf_object__reloc_code() later would have to consider 6327 * all ld_imm64 insns as relocation candidates. That would 6328 * reduce relocation speed, since amount of find_prog_insn_relo() 6329 * would increase and most of them will fail to find a relo. 6330 */ 6331 for (i = 0; i < obj->nr_programs; i++) { 6332 prog = &obj->programs[i]; 6333 for (j = 0; j < prog->nr_reloc; j++) { 6334 struct reloc_desc *relo = &prog->reloc_desc[j]; 6335 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6336 6337 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6338 if (relo->type == RELO_SUBPROG_ADDR) 6339 insn[0].src_reg = BPF_PSEUDO_FUNC; 6340 } 6341 } 6342 6343 /* relocate subprogram calls and append used subprograms to main 6344 * programs; each copy of subprogram code needs to be relocated 6345 * differently for each main program, because its code location might 6346 * have changed. 6347 * Append subprog relos to main programs to allow data relos to be 6348 * processed after text is completely relocated. 6349 */ 6350 for (i = 0; i < obj->nr_programs; i++) { 6351 prog = &obj->programs[i]; 6352 /* sub-program's sub-calls are relocated within the context of 6353 * its main program only 6354 */ 6355 if (prog_is_subprog(obj, prog)) 6356 continue; 6357 if (!prog->autoload) 6358 continue; 6359 6360 err = bpf_object__relocate_calls(obj, prog); 6361 if (err) { 6362 pr_warn("prog '%s': failed to relocate calls: %d\n", 6363 prog->name, err); 6364 return err; 6365 } 6366 } 6367 /* Process data relos for main programs */ 6368 for (i = 0; i < obj->nr_programs; i++) { 6369 prog = &obj->programs[i]; 6370 if (prog_is_subprog(obj, prog)) 6371 continue; 6372 if (!prog->autoload) 6373 continue; 6374 err = bpf_object__relocate_data(obj, prog); 6375 if (err) { 6376 pr_warn("prog '%s': failed to relocate data references: %d\n", 6377 prog->name, err); 6378 return err; 6379 } 6380 } 6381 6382 return 0; 6383 } 6384 6385 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6386 Elf64_Shdr *shdr, Elf_Data *data); 6387 6388 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6389 Elf64_Shdr *shdr, Elf_Data *data) 6390 { 6391 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6392 int i, j, nrels, new_sz; 6393 const struct btf_var_secinfo *vi = NULL; 6394 const struct btf_type *sec, *var, *def; 6395 struct bpf_map *map = NULL, *targ_map = NULL; 6396 struct bpf_program *targ_prog = NULL; 6397 bool is_prog_array, is_map_in_map; 6398 const struct btf_member *member; 6399 const char *name, *mname, *type; 6400 unsigned int moff; 6401 Elf64_Sym *sym; 6402 Elf64_Rel *rel; 6403 void *tmp; 6404 6405 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6406 return -EINVAL; 6407 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6408 if (!sec) 6409 return -EINVAL; 6410 6411 nrels = shdr->sh_size / shdr->sh_entsize; 6412 for (i = 0; i < nrels; i++) { 6413 rel = elf_rel_by_idx(data, i); 6414 if (!rel) { 6415 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6416 return -LIBBPF_ERRNO__FORMAT; 6417 } 6418 6419 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6420 if (!sym) { 6421 pr_warn(".maps relo #%d: symbol %zx not found\n", 6422 i, (size_t)ELF64_R_SYM(rel->r_info)); 6423 return -LIBBPF_ERRNO__FORMAT; 6424 } 6425 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6426 6427 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6428 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6429 (size_t)rel->r_offset, sym->st_name, name); 6430 6431 for (j = 0; j < obj->nr_maps; j++) { 6432 map = &obj->maps[j]; 6433 if (map->sec_idx != obj->efile.btf_maps_shndx) 6434 continue; 6435 6436 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6437 if (vi->offset <= rel->r_offset && 6438 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6439 break; 6440 } 6441 if (j == obj->nr_maps) { 6442 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6443 i, name, (size_t)rel->r_offset); 6444 return -EINVAL; 6445 } 6446 6447 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6448 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6449 type = is_map_in_map ? "map" : "prog"; 6450 if (is_map_in_map) { 6451 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6452 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6453 i, name); 6454 return -LIBBPF_ERRNO__RELOC; 6455 } 6456 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6457 map->def.key_size != sizeof(int)) { 6458 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6459 i, map->name, sizeof(int)); 6460 return -EINVAL; 6461 } 6462 targ_map = bpf_object__find_map_by_name(obj, name); 6463 if (!targ_map) { 6464 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6465 i, name); 6466 return -ESRCH; 6467 } 6468 } else if (is_prog_array) { 6469 targ_prog = bpf_object__find_program_by_name(obj, name); 6470 if (!targ_prog) { 6471 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6472 i, name); 6473 return -ESRCH; 6474 } 6475 if (targ_prog->sec_idx != sym->st_shndx || 6476 targ_prog->sec_insn_off * 8 != sym->st_value || 6477 prog_is_subprog(obj, targ_prog)) { 6478 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6479 i, name); 6480 return -LIBBPF_ERRNO__RELOC; 6481 } 6482 } else { 6483 return -EINVAL; 6484 } 6485 6486 var = btf__type_by_id(obj->btf, vi->type); 6487 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6488 if (btf_vlen(def) == 0) 6489 return -EINVAL; 6490 member = btf_members(def) + btf_vlen(def) - 1; 6491 mname = btf__name_by_offset(obj->btf, member->name_off); 6492 if (strcmp(mname, "values")) 6493 return -EINVAL; 6494 6495 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6496 if (rel->r_offset - vi->offset < moff) 6497 return -EINVAL; 6498 6499 moff = rel->r_offset - vi->offset - moff; 6500 /* here we use BPF pointer size, which is always 64 bit, as we 6501 * are parsing ELF that was built for BPF target 6502 */ 6503 if (moff % bpf_ptr_sz) 6504 return -EINVAL; 6505 moff /= bpf_ptr_sz; 6506 if (moff >= map->init_slots_sz) { 6507 new_sz = moff + 1; 6508 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6509 if (!tmp) 6510 return -ENOMEM; 6511 map->init_slots = tmp; 6512 memset(map->init_slots + map->init_slots_sz, 0, 6513 (new_sz - map->init_slots_sz) * host_ptr_sz); 6514 map->init_slots_sz = new_sz; 6515 } 6516 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6517 6518 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6519 i, map->name, moff, type, name); 6520 } 6521 6522 return 0; 6523 } 6524 6525 static int bpf_object__collect_relos(struct bpf_object *obj) 6526 { 6527 int i, err; 6528 6529 for (i = 0; i < obj->efile.sec_cnt; i++) { 6530 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6531 Elf64_Shdr *shdr; 6532 Elf_Data *data; 6533 int idx; 6534 6535 if (sec_desc->sec_type != SEC_RELO) 6536 continue; 6537 6538 shdr = sec_desc->shdr; 6539 data = sec_desc->data; 6540 idx = shdr->sh_info; 6541 6542 if (shdr->sh_type != SHT_REL) { 6543 pr_warn("internal error at %d\n", __LINE__); 6544 return -LIBBPF_ERRNO__INTERNAL; 6545 } 6546 6547 if (idx == obj->efile.st_ops_shndx) 6548 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6549 else if (idx == obj->efile.btf_maps_shndx) 6550 err = bpf_object__collect_map_relos(obj, shdr, data); 6551 else 6552 err = bpf_object__collect_prog_relos(obj, shdr, data); 6553 if (err) 6554 return err; 6555 } 6556 6557 bpf_object__sort_relos(obj); 6558 return 0; 6559 } 6560 6561 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6562 { 6563 if (BPF_CLASS(insn->code) == BPF_JMP && 6564 BPF_OP(insn->code) == BPF_CALL && 6565 BPF_SRC(insn->code) == BPF_K && 6566 insn->src_reg == 0 && 6567 insn->dst_reg == 0) { 6568 *func_id = insn->imm; 6569 return true; 6570 } 6571 return false; 6572 } 6573 6574 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6575 { 6576 struct bpf_insn *insn = prog->insns; 6577 enum bpf_func_id func_id; 6578 int i; 6579 6580 if (obj->gen_loader) 6581 return 0; 6582 6583 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6584 if (!insn_is_helper_call(insn, &func_id)) 6585 continue; 6586 6587 /* on kernels that don't yet support 6588 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6589 * to bpf_probe_read() which works well for old kernels 6590 */ 6591 switch (func_id) { 6592 case BPF_FUNC_probe_read_kernel: 6593 case BPF_FUNC_probe_read_user: 6594 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6595 insn->imm = BPF_FUNC_probe_read; 6596 break; 6597 case BPF_FUNC_probe_read_kernel_str: 6598 case BPF_FUNC_probe_read_user_str: 6599 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6600 insn->imm = BPF_FUNC_probe_read_str; 6601 break; 6602 default: 6603 break; 6604 } 6605 } 6606 return 0; 6607 } 6608 6609 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6610 int *btf_obj_fd, int *btf_type_id); 6611 6612 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6613 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6614 struct bpf_prog_load_opts *opts, long cookie) 6615 { 6616 enum sec_def_flags def = cookie; 6617 6618 /* old kernels might not support specifying expected_attach_type */ 6619 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6620 opts->expected_attach_type = 0; 6621 6622 if (def & SEC_SLEEPABLE) 6623 opts->prog_flags |= BPF_F_SLEEPABLE; 6624 6625 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6626 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6627 6628 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6629 int btf_obj_fd = 0, btf_type_id = 0, err; 6630 const char *attach_name; 6631 6632 attach_name = strchr(prog->sec_name, '/'); 6633 if (!attach_name) { 6634 /* if BPF program is annotated with just SEC("fentry") 6635 * (or similar) without declaratively specifying 6636 * target, then it is expected that target will be 6637 * specified with bpf_program__set_attach_target() at 6638 * runtime before BPF object load step. If not, then 6639 * there is nothing to load into the kernel as BPF 6640 * verifier won't be able to validate BPF program 6641 * correctness anyways. 6642 */ 6643 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6644 prog->name); 6645 return -EINVAL; 6646 } 6647 attach_name++; /* skip over / */ 6648 6649 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6650 if (err) 6651 return err; 6652 6653 /* cache resolved BTF FD and BTF type ID in the prog */ 6654 prog->attach_btf_obj_fd = btf_obj_fd; 6655 prog->attach_btf_id = btf_type_id; 6656 6657 /* but by now libbpf common logic is not utilizing 6658 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6659 * this callback is called after opts were populated by 6660 * libbpf, so this callback has to update opts explicitly here 6661 */ 6662 opts->attach_btf_obj_fd = btf_obj_fd; 6663 opts->attach_btf_id = btf_type_id; 6664 } 6665 return 0; 6666 } 6667 6668 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6669 6670 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6671 struct bpf_insn *insns, int insns_cnt, 6672 const char *license, __u32 kern_version, int *prog_fd) 6673 { 6674 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6675 const char *prog_name = NULL; 6676 char *cp, errmsg[STRERR_BUFSIZE]; 6677 size_t log_buf_size = 0; 6678 char *log_buf = NULL, *tmp; 6679 int btf_fd, ret, err; 6680 bool own_log_buf = true; 6681 __u32 log_level = prog->log_level; 6682 6683 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6684 /* 6685 * The program type must be set. Most likely we couldn't find a proper 6686 * section definition at load time, and thus we didn't infer the type. 6687 */ 6688 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6689 prog->name, prog->sec_name); 6690 return -EINVAL; 6691 } 6692 6693 if (!insns || !insns_cnt) 6694 return -EINVAL; 6695 6696 load_attr.expected_attach_type = prog->expected_attach_type; 6697 if (kernel_supports(obj, FEAT_PROG_NAME)) 6698 prog_name = prog->name; 6699 load_attr.attach_prog_fd = prog->attach_prog_fd; 6700 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6701 load_attr.attach_btf_id = prog->attach_btf_id; 6702 load_attr.kern_version = kern_version; 6703 load_attr.prog_ifindex = prog->prog_ifindex; 6704 6705 /* specify func_info/line_info only if kernel supports them */ 6706 btf_fd = bpf_object__btf_fd(obj); 6707 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6708 load_attr.prog_btf_fd = btf_fd; 6709 load_attr.func_info = prog->func_info; 6710 load_attr.func_info_rec_size = prog->func_info_rec_size; 6711 load_attr.func_info_cnt = prog->func_info_cnt; 6712 load_attr.line_info = prog->line_info; 6713 load_attr.line_info_rec_size = prog->line_info_rec_size; 6714 load_attr.line_info_cnt = prog->line_info_cnt; 6715 } 6716 load_attr.log_level = log_level; 6717 load_attr.prog_flags = prog->prog_flags; 6718 load_attr.fd_array = obj->fd_array; 6719 6720 /* adjust load_attr if sec_def provides custom preload callback */ 6721 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6722 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6723 if (err < 0) { 6724 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6725 prog->name, err); 6726 return err; 6727 } 6728 insns = prog->insns; 6729 insns_cnt = prog->insns_cnt; 6730 } 6731 6732 if (obj->gen_loader) { 6733 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6734 license, insns, insns_cnt, &load_attr, 6735 prog - obj->programs); 6736 *prog_fd = -1; 6737 return 0; 6738 } 6739 6740 retry_load: 6741 /* if log_level is zero, we don't request logs initially even if 6742 * custom log_buf is specified; if the program load fails, then we'll 6743 * bump log_level to 1 and use either custom log_buf or we'll allocate 6744 * our own and retry the load to get details on what failed 6745 */ 6746 if (log_level) { 6747 if (prog->log_buf) { 6748 log_buf = prog->log_buf; 6749 log_buf_size = prog->log_size; 6750 own_log_buf = false; 6751 } else if (obj->log_buf) { 6752 log_buf = obj->log_buf; 6753 log_buf_size = obj->log_size; 6754 own_log_buf = false; 6755 } else { 6756 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6757 tmp = realloc(log_buf, log_buf_size); 6758 if (!tmp) { 6759 ret = -ENOMEM; 6760 goto out; 6761 } 6762 log_buf = tmp; 6763 log_buf[0] = '\0'; 6764 own_log_buf = true; 6765 } 6766 } 6767 6768 load_attr.log_buf = log_buf; 6769 load_attr.log_size = log_buf_size; 6770 load_attr.log_level = log_level; 6771 6772 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6773 if (ret >= 0) { 6774 if (log_level && own_log_buf) { 6775 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6776 prog->name, log_buf); 6777 } 6778 6779 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6780 struct bpf_map *map; 6781 int i; 6782 6783 for (i = 0; i < obj->nr_maps; i++) { 6784 map = &prog->obj->maps[i]; 6785 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6786 continue; 6787 6788 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6789 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6790 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6791 prog->name, map->real_name, cp); 6792 /* Don't fail hard if can't bind rodata. */ 6793 } 6794 } 6795 } 6796 6797 *prog_fd = ret; 6798 ret = 0; 6799 goto out; 6800 } 6801 6802 if (log_level == 0) { 6803 log_level = 1; 6804 goto retry_load; 6805 } 6806 /* On ENOSPC, increase log buffer size and retry, unless custom 6807 * log_buf is specified. 6808 * Be careful to not overflow u32, though. Kernel's log buf size limit 6809 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6810 * multiply by 2 unless we are sure we'll fit within 32 bits. 6811 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6812 */ 6813 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6814 goto retry_load; 6815 6816 ret = -errno; 6817 6818 /* post-process verifier log to improve error descriptions */ 6819 fixup_verifier_log(prog, log_buf, log_buf_size); 6820 6821 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6822 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6823 pr_perm_msg(ret); 6824 6825 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6826 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6827 prog->name, log_buf); 6828 } 6829 6830 out: 6831 if (own_log_buf) 6832 free(log_buf); 6833 return ret; 6834 } 6835 6836 static char *find_prev_line(char *buf, char *cur) 6837 { 6838 char *p; 6839 6840 if (cur == buf) /* end of a log buf */ 6841 return NULL; 6842 6843 p = cur - 1; 6844 while (p - 1 >= buf && *(p - 1) != '\n') 6845 p--; 6846 6847 return p; 6848 } 6849 6850 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6851 char *orig, size_t orig_sz, const char *patch) 6852 { 6853 /* size of the remaining log content to the right from the to-be-replaced part */ 6854 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6855 size_t patch_sz = strlen(patch); 6856 6857 if (patch_sz != orig_sz) { 6858 /* If patch line(s) are longer than original piece of verifier log, 6859 * shift log contents by (patch_sz - orig_sz) bytes to the right 6860 * starting from after to-be-replaced part of the log. 6861 * 6862 * If patch line(s) are shorter than original piece of verifier log, 6863 * shift log contents by (orig_sz - patch_sz) bytes to the left 6864 * starting from after to-be-replaced part of the log 6865 * 6866 * We need to be careful about not overflowing available 6867 * buf_sz capacity. If that's the case, we'll truncate the end 6868 * of the original log, as necessary. 6869 */ 6870 if (patch_sz > orig_sz) { 6871 if (orig + patch_sz >= buf + buf_sz) { 6872 /* patch is big enough to cover remaining space completely */ 6873 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6874 rem_sz = 0; 6875 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6876 /* patch causes part of remaining log to be truncated */ 6877 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6878 } 6879 } 6880 /* shift remaining log to the right by calculated amount */ 6881 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6882 } 6883 6884 memcpy(orig, patch, patch_sz); 6885 } 6886 6887 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6888 char *buf, size_t buf_sz, size_t log_sz, 6889 char *line1, char *line2, char *line3) 6890 { 6891 /* Expected log for failed and not properly guarded CO-RE relocation: 6892 * line1 -> 123: (85) call unknown#195896080 6893 * line2 -> invalid func unknown#195896080 6894 * line3 -> <anything else or end of buffer> 6895 * 6896 * "123" is the index of the instruction that was poisoned. We extract 6897 * instruction index to find corresponding CO-RE relocation and 6898 * replace this part of the log with more relevant information about 6899 * failed CO-RE relocation. 6900 */ 6901 const struct bpf_core_relo *relo; 6902 struct bpf_core_spec spec; 6903 char patch[512], spec_buf[256]; 6904 int insn_idx, err, spec_len; 6905 6906 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6907 return; 6908 6909 relo = find_relo_core(prog, insn_idx); 6910 if (!relo) 6911 return; 6912 6913 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6914 if (err) 6915 return; 6916 6917 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6918 snprintf(patch, sizeof(patch), 6919 "%d: <invalid CO-RE relocation>\n" 6920 "failed to resolve CO-RE relocation %s%s\n", 6921 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6922 6923 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6924 } 6925 6926 static void fixup_log_missing_map_load(struct bpf_program *prog, 6927 char *buf, size_t buf_sz, size_t log_sz, 6928 char *line1, char *line2, char *line3) 6929 { 6930 /* Expected log for failed and not properly guarded CO-RE relocation: 6931 * line1 -> 123: (85) call unknown#2001000345 6932 * line2 -> invalid func unknown#2001000345 6933 * line3 -> <anything else or end of buffer> 6934 * 6935 * "123" is the index of the instruction that was poisoned. 6936 * "345" in "2001000345" are map index in obj->maps to fetch map name. 6937 */ 6938 struct bpf_object *obj = prog->obj; 6939 const struct bpf_map *map; 6940 int insn_idx, map_idx; 6941 char patch[128]; 6942 6943 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 6944 return; 6945 6946 map_idx -= MAP_LDIMM64_POISON_BASE; 6947 if (map_idx < 0 || map_idx >= obj->nr_maps) 6948 return; 6949 map = &obj->maps[map_idx]; 6950 6951 snprintf(patch, sizeof(patch), 6952 "%d: <invalid BPF map reference>\n" 6953 "BPF map '%s' is referenced but wasn't created\n", 6954 insn_idx, map->name); 6955 6956 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6957 } 6958 6959 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 6960 { 6961 /* look for familiar error patterns in last N lines of the log */ 6962 const size_t max_last_line_cnt = 10; 6963 char *prev_line, *cur_line, *next_line; 6964 size_t log_sz; 6965 int i; 6966 6967 if (!buf) 6968 return; 6969 6970 log_sz = strlen(buf) + 1; 6971 next_line = buf + log_sz - 1; 6972 6973 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 6974 cur_line = find_prev_line(buf, next_line); 6975 if (!cur_line) 6976 return; 6977 6978 /* failed CO-RE relocation case */ 6979 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 6980 prev_line = find_prev_line(buf, cur_line); 6981 if (!prev_line) 6982 continue; 6983 6984 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 6985 prev_line, cur_line, next_line); 6986 return; 6987 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 6988 prev_line = find_prev_line(buf, cur_line); 6989 if (!prev_line) 6990 continue; 6991 6992 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 6993 prev_line, cur_line, next_line); 6994 return; 6995 } 6996 } 6997 } 6998 6999 static int bpf_program_record_relos(struct bpf_program *prog) 7000 { 7001 struct bpf_object *obj = prog->obj; 7002 int i; 7003 7004 for (i = 0; i < prog->nr_reloc; i++) { 7005 struct reloc_desc *relo = &prog->reloc_desc[i]; 7006 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7007 7008 switch (relo->type) { 7009 case RELO_EXTERN_VAR: 7010 if (ext->type != EXT_KSYM) 7011 continue; 7012 bpf_gen__record_extern(obj->gen_loader, ext->name, 7013 ext->is_weak, !ext->ksym.type_id, 7014 BTF_KIND_VAR, relo->insn_idx); 7015 break; 7016 case RELO_EXTERN_FUNC: 7017 bpf_gen__record_extern(obj->gen_loader, ext->name, 7018 ext->is_weak, false, BTF_KIND_FUNC, 7019 relo->insn_idx); 7020 break; 7021 case RELO_CORE: { 7022 struct bpf_core_relo cr = { 7023 .insn_off = relo->insn_idx * 8, 7024 .type_id = relo->core_relo->type_id, 7025 .access_str_off = relo->core_relo->access_str_off, 7026 .kind = relo->core_relo->kind, 7027 }; 7028 7029 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7030 break; 7031 } 7032 default: 7033 continue; 7034 } 7035 } 7036 return 0; 7037 } 7038 7039 static int 7040 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7041 { 7042 struct bpf_program *prog; 7043 size_t i; 7044 int err; 7045 7046 for (i = 0; i < obj->nr_programs; i++) { 7047 prog = &obj->programs[i]; 7048 err = bpf_object__sanitize_prog(obj, prog); 7049 if (err) 7050 return err; 7051 } 7052 7053 for (i = 0; i < obj->nr_programs; i++) { 7054 prog = &obj->programs[i]; 7055 if (prog_is_subprog(obj, prog)) 7056 continue; 7057 if (!prog->autoload) { 7058 pr_debug("prog '%s': skipped loading\n", prog->name); 7059 continue; 7060 } 7061 prog->log_level |= log_level; 7062 7063 if (obj->gen_loader) 7064 bpf_program_record_relos(prog); 7065 7066 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7067 obj->license, obj->kern_version, &prog->fd); 7068 if (err) { 7069 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7070 return err; 7071 } 7072 } 7073 7074 bpf_object__free_relocs(obj); 7075 return 0; 7076 } 7077 7078 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7079 7080 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7081 { 7082 struct bpf_program *prog; 7083 int err; 7084 7085 bpf_object__for_each_program(prog, obj) { 7086 prog->sec_def = find_sec_def(prog->sec_name); 7087 if (!prog->sec_def) { 7088 /* couldn't guess, but user might manually specify */ 7089 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7090 prog->name, prog->sec_name); 7091 continue; 7092 } 7093 7094 prog->type = prog->sec_def->prog_type; 7095 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7096 7097 /* sec_def can have custom callback which should be called 7098 * after bpf_program is initialized to adjust its properties 7099 */ 7100 if (prog->sec_def->prog_setup_fn) { 7101 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7102 if (err < 0) { 7103 pr_warn("prog '%s': failed to initialize: %d\n", 7104 prog->name, err); 7105 return err; 7106 } 7107 } 7108 } 7109 7110 return 0; 7111 } 7112 7113 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7114 const struct bpf_object_open_opts *opts) 7115 { 7116 const char *obj_name, *kconfig, *btf_tmp_path; 7117 struct bpf_object *obj; 7118 char tmp_name[64]; 7119 int err; 7120 char *log_buf; 7121 size_t log_size; 7122 __u32 log_level; 7123 7124 if (elf_version(EV_CURRENT) == EV_NONE) { 7125 pr_warn("failed to init libelf for %s\n", 7126 path ? : "(mem buf)"); 7127 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7128 } 7129 7130 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7131 return ERR_PTR(-EINVAL); 7132 7133 obj_name = OPTS_GET(opts, object_name, NULL); 7134 if (obj_buf) { 7135 if (!obj_name) { 7136 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7137 (unsigned long)obj_buf, 7138 (unsigned long)obj_buf_sz); 7139 obj_name = tmp_name; 7140 } 7141 path = obj_name; 7142 pr_debug("loading object '%s' from buffer\n", obj_name); 7143 } 7144 7145 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7146 log_size = OPTS_GET(opts, kernel_log_size, 0); 7147 log_level = OPTS_GET(opts, kernel_log_level, 0); 7148 if (log_size > UINT_MAX) 7149 return ERR_PTR(-EINVAL); 7150 if (log_size && !log_buf) 7151 return ERR_PTR(-EINVAL); 7152 7153 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7154 if (IS_ERR(obj)) 7155 return obj; 7156 7157 obj->log_buf = log_buf; 7158 obj->log_size = log_size; 7159 obj->log_level = log_level; 7160 7161 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7162 if (btf_tmp_path) { 7163 if (strlen(btf_tmp_path) >= PATH_MAX) { 7164 err = -ENAMETOOLONG; 7165 goto out; 7166 } 7167 obj->btf_custom_path = strdup(btf_tmp_path); 7168 if (!obj->btf_custom_path) { 7169 err = -ENOMEM; 7170 goto out; 7171 } 7172 } 7173 7174 kconfig = OPTS_GET(opts, kconfig, NULL); 7175 if (kconfig) { 7176 obj->kconfig = strdup(kconfig); 7177 if (!obj->kconfig) { 7178 err = -ENOMEM; 7179 goto out; 7180 } 7181 } 7182 7183 err = bpf_object__elf_init(obj); 7184 err = err ? : bpf_object__check_endianness(obj); 7185 err = err ? : bpf_object__elf_collect(obj); 7186 err = err ? : bpf_object__collect_externs(obj); 7187 err = err ? : bpf_object__finalize_btf(obj); 7188 err = err ? : bpf_object__init_maps(obj, opts); 7189 err = err ? : bpf_object_init_progs(obj, opts); 7190 err = err ? : bpf_object__collect_relos(obj); 7191 if (err) 7192 goto out; 7193 7194 bpf_object__elf_finish(obj); 7195 7196 return obj; 7197 out: 7198 bpf_object__close(obj); 7199 return ERR_PTR(err); 7200 } 7201 7202 struct bpf_object * 7203 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7204 { 7205 if (!path) 7206 return libbpf_err_ptr(-EINVAL); 7207 7208 pr_debug("loading %s\n", path); 7209 7210 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7211 } 7212 7213 struct bpf_object *bpf_object__open(const char *path) 7214 { 7215 return bpf_object__open_file(path, NULL); 7216 } 7217 7218 struct bpf_object * 7219 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7220 const struct bpf_object_open_opts *opts) 7221 { 7222 if (!obj_buf || obj_buf_sz == 0) 7223 return libbpf_err_ptr(-EINVAL); 7224 7225 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7226 } 7227 7228 static int bpf_object_unload(struct bpf_object *obj) 7229 { 7230 size_t i; 7231 7232 if (!obj) 7233 return libbpf_err(-EINVAL); 7234 7235 for (i = 0; i < obj->nr_maps; i++) { 7236 zclose(obj->maps[i].fd); 7237 if (obj->maps[i].st_ops) 7238 zfree(&obj->maps[i].st_ops->kern_vdata); 7239 } 7240 7241 for (i = 0; i < obj->nr_programs; i++) 7242 bpf_program__unload(&obj->programs[i]); 7243 7244 return 0; 7245 } 7246 7247 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7248 7249 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7250 { 7251 struct bpf_map *m; 7252 7253 bpf_object__for_each_map(m, obj) { 7254 if (!bpf_map__is_internal(m)) 7255 continue; 7256 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7257 m->def.map_flags ^= BPF_F_MMAPABLE; 7258 } 7259 7260 return 0; 7261 } 7262 7263 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7264 { 7265 char sym_type, sym_name[500]; 7266 unsigned long long sym_addr; 7267 int ret, err = 0; 7268 FILE *f; 7269 7270 f = fopen("/proc/kallsyms", "r"); 7271 if (!f) { 7272 err = -errno; 7273 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7274 return err; 7275 } 7276 7277 while (true) { 7278 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7279 &sym_addr, &sym_type, sym_name); 7280 if (ret == EOF && feof(f)) 7281 break; 7282 if (ret != 3) { 7283 pr_warn("failed to read kallsyms entry: %d\n", ret); 7284 err = -EINVAL; 7285 break; 7286 } 7287 7288 err = cb(sym_addr, sym_type, sym_name, ctx); 7289 if (err) 7290 break; 7291 } 7292 7293 fclose(f); 7294 return err; 7295 } 7296 7297 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7298 const char *sym_name, void *ctx) 7299 { 7300 struct bpf_object *obj = ctx; 7301 const struct btf_type *t; 7302 struct extern_desc *ext; 7303 7304 ext = find_extern_by_name(obj, sym_name); 7305 if (!ext || ext->type != EXT_KSYM) 7306 return 0; 7307 7308 t = btf__type_by_id(obj->btf, ext->btf_id); 7309 if (!btf_is_var(t)) 7310 return 0; 7311 7312 if (ext->is_set && ext->ksym.addr != sym_addr) { 7313 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7314 sym_name, ext->ksym.addr, sym_addr); 7315 return -EINVAL; 7316 } 7317 if (!ext->is_set) { 7318 ext->is_set = true; 7319 ext->ksym.addr = sym_addr; 7320 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7321 } 7322 return 0; 7323 } 7324 7325 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7326 { 7327 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7328 } 7329 7330 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7331 __u16 kind, struct btf **res_btf, 7332 struct module_btf **res_mod_btf) 7333 { 7334 struct module_btf *mod_btf; 7335 struct btf *btf; 7336 int i, id, err; 7337 7338 btf = obj->btf_vmlinux; 7339 mod_btf = NULL; 7340 id = btf__find_by_name_kind(btf, ksym_name, kind); 7341 7342 if (id == -ENOENT) { 7343 err = load_module_btfs(obj); 7344 if (err) 7345 return err; 7346 7347 for (i = 0; i < obj->btf_module_cnt; i++) { 7348 /* we assume module_btf's BTF FD is always >0 */ 7349 mod_btf = &obj->btf_modules[i]; 7350 btf = mod_btf->btf; 7351 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7352 if (id != -ENOENT) 7353 break; 7354 } 7355 } 7356 if (id <= 0) 7357 return -ESRCH; 7358 7359 *res_btf = btf; 7360 *res_mod_btf = mod_btf; 7361 return id; 7362 } 7363 7364 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7365 struct extern_desc *ext) 7366 { 7367 const struct btf_type *targ_var, *targ_type; 7368 __u32 targ_type_id, local_type_id; 7369 struct module_btf *mod_btf = NULL; 7370 const char *targ_var_name; 7371 struct btf *btf = NULL; 7372 int id, err; 7373 7374 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7375 if (id < 0) { 7376 if (id == -ESRCH && ext->is_weak) 7377 return 0; 7378 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7379 ext->name); 7380 return id; 7381 } 7382 7383 /* find local type_id */ 7384 local_type_id = ext->ksym.type_id; 7385 7386 /* find target type_id */ 7387 targ_var = btf__type_by_id(btf, id); 7388 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7389 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7390 7391 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7392 btf, targ_type_id); 7393 if (err <= 0) { 7394 const struct btf_type *local_type; 7395 const char *targ_name, *local_name; 7396 7397 local_type = btf__type_by_id(obj->btf, local_type_id); 7398 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7399 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7400 7401 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7402 ext->name, local_type_id, 7403 btf_kind_str(local_type), local_name, targ_type_id, 7404 btf_kind_str(targ_type), targ_name); 7405 return -EINVAL; 7406 } 7407 7408 ext->is_set = true; 7409 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7410 ext->ksym.kernel_btf_id = id; 7411 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7412 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7413 7414 return 0; 7415 } 7416 7417 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7418 struct extern_desc *ext) 7419 { 7420 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7421 struct module_btf *mod_btf = NULL; 7422 const struct btf_type *kern_func; 7423 struct btf *kern_btf = NULL; 7424 int ret; 7425 7426 local_func_proto_id = ext->ksym.type_id; 7427 7428 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7429 if (kfunc_id < 0) { 7430 if (kfunc_id == -ESRCH && ext->is_weak) 7431 return 0; 7432 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7433 ext->name); 7434 return kfunc_id; 7435 } 7436 7437 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7438 kfunc_proto_id = kern_func->type; 7439 7440 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7441 kern_btf, kfunc_proto_id); 7442 if (ret <= 0) { 7443 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7444 ext->name, local_func_proto_id, kfunc_proto_id); 7445 return -EINVAL; 7446 } 7447 7448 /* set index for module BTF fd in fd_array, if unset */ 7449 if (mod_btf && !mod_btf->fd_array_idx) { 7450 /* insn->off is s16 */ 7451 if (obj->fd_array_cnt == INT16_MAX) { 7452 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7453 ext->name, mod_btf->fd_array_idx); 7454 return -E2BIG; 7455 } 7456 /* Cannot use index 0 for module BTF fd */ 7457 if (!obj->fd_array_cnt) 7458 obj->fd_array_cnt = 1; 7459 7460 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7461 obj->fd_array_cnt + 1); 7462 if (ret) 7463 return ret; 7464 mod_btf->fd_array_idx = obj->fd_array_cnt; 7465 /* we assume module BTF FD is always >0 */ 7466 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7467 } 7468 7469 ext->is_set = true; 7470 ext->ksym.kernel_btf_id = kfunc_id; 7471 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7472 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7473 ext->name, kfunc_id); 7474 7475 return 0; 7476 } 7477 7478 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7479 { 7480 const struct btf_type *t; 7481 struct extern_desc *ext; 7482 int i, err; 7483 7484 for (i = 0; i < obj->nr_extern; i++) { 7485 ext = &obj->externs[i]; 7486 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7487 continue; 7488 7489 if (obj->gen_loader) { 7490 ext->is_set = true; 7491 ext->ksym.kernel_btf_obj_fd = 0; 7492 ext->ksym.kernel_btf_id = 0; 7493 continue; 7494 } 7495 t = btf__type_by_id(obj->btf, ext->btf_id); 7496 if (btf_is_var(t)) 7497 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7498 else 7499 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7500 if (err) 7501 return err; 7502 } 7503 return 0; 7504 } 7505 7506 static int bpf_object__resolve_externs(struct bpf_object *obj, 7507 const char *extra_kconfig) 7508 { 7509 bool need_config = false, need_kallsyms = false; 7510 bool need_vmlinux_btf = false; 7511 struct extern_desc *ext; 7512 void *kcfg_data = NULL; 7513 int err, i; 7514 7515 if (obj->nr_extern == 0) 7516 return 0; 7517 7518 if (obj->kconfig_map_idx >= 0) 7519 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7520 7521 for (i = 0; i < obj->nr_extern; i++) { 7522 ext = &obj->externs[i]; 7523 7524 if (ext->type == EXT_KSYM) { 7525 if (ext->ksym.type_id) 7526 need_vmlinux_btf = true; 7527 else 7528 need_kallsyms = true; 7529 continue; 7530 } else if (ext->type == EXT_KCFG) { 7531 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7532 __u64 value = 0; 7533 7534 /* Kconfig externs need actual /proc/config.gz */ 7535 if (str_has_pfx(ext->name, "CONFIG_")) { 7536 need_config = true; 7537 continue; 7538 } 7539 7540 /* Virtual kcfg externs are customly handled by libbpf */ 7541 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7542 value = get_kernel_version(); 7543 if (!value) { 7544 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7545 return -EINVAL; 7546 } 7547 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7548 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7549 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7550 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7551 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7552 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7553 * __kconfig externs, where LINUX_ ones are virtual and filled out 7554 * customly by libbpf (their values don't come from Kconfig). 7555 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7556 * __weak, it defaults to zero value, just like for CONFIG_xxx 7557 * externs. 7558 */ 7559 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7560 return -EINVAL; 7561 } 7562 7563 err = set_kcfg_value_num(ext, ext_ptr, value); 7564 if (err) 7565 return err; 7566 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7567 ext->name, (long long)value); 7568 } else { 7569 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7570 return -EINVAL; 7571 } 7572 } 7573 if (need_config && extra_kconfig) { 7574 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7575 if (err) 7576 return -EINVAL; 7577 need_config = false; 7578 for (i = 0; i < obj->nr_extern; i++) { 7579 ext = &obj->externs[i]; 7580 if (ext->type == EXT_KCFG && !ext->is_set) { 7581 need_config = true; 7582 break; 7583 } 7584 } 7585 } 7586 if (need_config) { 7587 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7588 if (err) 7589 return -EINVAL; 7590 } 7591 if (need_kallsyms) { 7592 err = bpf_object__read_kallsyms_file(obj); 7593 if (err) 7594 return -EINVAL; 7595 } 7596 if (need_vmlinux_btf) { 7597 err = bpf_object__resolve_ksyms_btf_id(obj); 7598 if (err) 7599 return -EINVAL; 7600 } 7601 for (i = 0; i < obj->nr_extern; i++) { 7602 ext = &obj->externs[i]; 7603 7604 if (!ext->is_set && !ext->is_weak) { 7605 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7606 return -ESRCH; 7607 } else if (!ext->is_set) { 7608 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7609 ext->name); 7610 } 7611 } 7612 7613 return 0; 7614 } 7615 7616 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7617 { 7618 int err, i; 7619 7620 if (!obj) 7621 return libbpf_err(-EINVAL); 7622 7623 if (obj->loaded) { 7624 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7625 return libbpf_err(-EINVAL); 7626 } 7627 7628 if (obj->gen_loader) 7629 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7630 7631 err = bpf_object__probe_loading(obj); 7632 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7633 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7634 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7635 err = err ? : bpf_object__sanitize_maps(obj); 7636 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7637 err = err ? : bpf_object__create_maps(obj); 7638 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7639 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7640 err = err ? : bpf_object_init_prog_arrays(obj); 7641 7642 if (obj->gen_loader) { 7643 /* reset FDs */ 7644 if (obj->btf) 7645 btf__set_fd(obj->btf, -1); 7646 for (i = 0; i < obj->nr_maps; i++) 7647 obj->maps[i].fd = -1; 7648 if (!err) 7649 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7650 } 7651 7652 /* clean up fd_array */ 7653 zfree(&obj->fd_array); 7654 7655 /* clean up module BTFs */ 7656 for (i = 0; i < obj->btf_module_cnt; i++) { 7657 close(obj->btf_modules[i].fd); 7658 btf__free(obj->btf_modules[i].btf); 7659 free(obj->btf_modules[i].name); 7660 } 7661 free(obj->btf_modules); 7662 7663 /* clean up vmlinux BTF */ 7664 btf__free(obj->btf_vmlinux); 7665 obj->btf_vmlinux = NULL; 7666 7667 obj->loaded = true; /* doesn't matter if successfully or not */ 7668 7669 if (err) 7670 goto out; 7671 7672 return 0; 7673 out: 7674 /* unpin any maps that were auto-pinned during load */ 7675 for (i = 0; i < obj->nr_maps; i++) 7676 if (obj->maps[i].pinned && !obj->maps[i].reused) 7677 bpf_map__unpin(&obj->maps[i], NULL); 7678 7679 bpf_object_unload(obj); 7680 pr_warn("failed to load object '%s'\n", obj->path); 7681 return libbpf_err(err); 7682 } 7683 7684 int bpf_object__load(struct bpf_object *obj) 7685 { 7686 return bpf_object_load(obj, 0, NULL); 7687 } 7688 7689 static int make_parent_dir(const char *path) 7690 { 7691 char *cp, errmsg[STRERR_BUFSIZE]; 7692 char *dname, *dir; 7693 int err = 0; 7694 7695 dname = strdup(path); 7696 if (dname == NULL) 7697 return -ENOMEM; 7698 7699 dir = dirname(dname); 7700 if (mkdir(dir, 0700) && errno != EEXIST) 7701 err = -errno; 7702 7703 free(dname); 7704 if (err) { 7705 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7706 pr_warn("failed to mkdir %s: %s\n", path, cp); 7707 } 7708 return err; 7709 } 7710 7711 static int check_path(const char *path) 7712 { 7713 char *cp, errmsg[STRERR_BUFSIZE]; 7714 struct statfs st_fs; 7715 char *dname, *dir; 7716 int err = 0; 7717 7718 if (path == NULL) 7719 return -EINVAL; 7720 7721 dname = strdup(path); 7722 if (dname == NULL) 7723 return -ENOMEM; 7724 7725 dir = dirname(dname); 7726 if (statfs(dir, &st_fs)) { 7727 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7728 pr_warn("failed to statfs %s: %s\n", dir, cp); 7729 err = -errno; 7730 } 7731 free(dname); 7732 7733 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7734 pr_warn("specified path %s is not on BPF FS\n", path); 7735 err = -EINVAL; 7736 } 7737 7738 return err; 7739 } 7740 7741 int bpf_program__pin(struct bpf_program *prog, const char *path) 7742 { 7743 char *cp, errmsg[STRERR_BUFSIZE]; 7744 int err; 7745 7746 if (prog->fd < 0) { 7747 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7748 return libbpf_err(-EINVAL); 7749 } 7750 7751 err = make_parent_dir(path); 7752 if (err) 7753 return libbpf_err(err); 7754 7755 err = check_path(path); 7756 if (err) 7757 return libbpf_err(err); 7758 7759 if (bpf_obj_pin(prog->fd, path)) { 7760 err = -errno; 7761 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7762 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7763 return libbpf_err(err); 7764 } 7765 7766 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7767 return 0; 7768 } 7769 7770 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7771 { 7772 int err; 7773 7774 if (prog->fd < 0) { 7775 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7776 return libbpf_err(-EINVAL); 7777 } 7778 7779 err = check_path(path); 7780 if (err) 7781 return libbpf_err(err); 7782 7783 err = unlink(path); 7784 if (err) 7785 return libbpf_err(-errno); 7786 7787 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7788 return 0; 7789 } 7790 7791 int bpf_map__pin(struct bpf_map *map, const char *path) 7792 { 7793 char *cp, errmsg[STRERR_BUFSIZE]; 7794 int err; 7795 7796 if (map == NULL) { 7797 pr_warn("invalid map pointer\n"); 7798 return libbpf_err(-EINVAL); 7799 } 7800 7801 if (map->pin_path) { 7802 if (path && strcmp(path, map->pin_path)) { 7803 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7804 bpf_map__name(map), map->pin_path, path); 7805 return libbpf_err(-EINVAL); 7806 } else if (map->pinned) { 7807 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7808 bpf_map__name(map), map->pin_path); 7809 return 0; 7810 } 7811 } else { 7812 if (!path) { 7813 pr_warn("missing a path to pin map '%s' at\n", 7814 bpf_map__name(map)); 7815 return libbpf_err(-EINVAL); 7816 } else if (map->pinned) { 7817 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7818 return libbpf_err(-EEXIST); 7819 } 7820 7821 map->pin_path = strdup(path); 7822 if (!map->pin_path) { 7823 err = -errno; 7824 goto out_err; 7825 } 7826 } 7827 7828 err = make_parent_dir(map->pin_path); 7829 if (err) 7830 return libbpf_err(err); 7831 7832 err = check_path(map->pin_path); 7833 if (err) 7834 return libbpf_err(err); 7835 7836 if (bpf_obj_pin(map->fd, map->pin_path)) { 7837 err = -errno; 7838 goto out_err; 7839 } 7840 7841 map->pinned = true; 7842 pr_debug("pinned map '%s'\n", map->pin_path); 7843 7844 return 0; 7845 7846 out_err: 7847 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7848 pr_warn("failed to pin map: %s\n", cp); 7849 return libbpf_err(err); 7850 } 7851 7852 int bpf_map__unpin(struct bpf_map *map, const char *path) 7853 { 7854 int err; 7855 7856 if (map == NULL) { 7857 pr_warn("invalid map pointer\n"); 7858 return libbpf_err(-EINVAL); 7859 } 7860 7861 if (map->pin_path) { 7862 if (path && strcmp(path, map->pin_path)) { 7863 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7864 bpf_map__name(map), map->pin_path, path); 7865 return libbpf_err(-EINVAL); 7866 } 7867 path = map->pin_path; 7868 } else if (!path) { 7869 pr_warn("no path to unpin map '%s' from\n", 7870 bpf_map__name(map)); 7871 return libbpf_err(-EINVAL); 7872 } 7873 7874 err = check_path(path); 7875 if (err) 7876 return libbpf_err(err); 7877 7878 err = unlink(path); 7879 if (err != 0) 7880 return libbpf_err(-errno); 7881 7882 map->pinned = false; 7883 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7884 7885 return 0; 7886 } 7887 7888 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7889 { 7890 char *new = NULL; 7891 7892 if (path) { 7893 new = strdup(path); 7894 if (!new) 7895 return libbpf_err(-errno); 7896 } 7897 7898 free(map->pin_path); 7899 map->pin_path = new; 7900 return 0; 7901 } 7902 7903 __alias(bpf_map__pin_path) 7904 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7905 7906 const char *bpf_map__pin_path(const struct bpf_map *map) 7907 { 7908 return map->pin_path; 7909 } 7910 7911 bool bpf_map__is_pinned(const struct bpf_map *map) 7912 { 7913 return map->pinned; 7914 } 7915 7916 static void sanitize_pin_path(char *s) 7917 { 7918 /* bpffs disallows periods in path names */ 7919 while (*s) { 7920 if (*s == '.') 7921 *s = '_'; 7922 s++; 7923 } 7924 } 7925 7926 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7927 { 7928 struct bpf_map *map; 7929 int err; 7930 7931 if (!obj) 7932 return libbpf_err(-ENOENT); 7933 7934 if (!obj->loaded) { 7935 pr_warn("object not yet loaded; load it first\n"); 7936 return libbpf_err(-ENOENT); 7937 } 7938 7939 bpf_object__for_each_map(map, obj) { 7940 char *pin_path = NULL; 7941 char buf[PATH_MAX]; 7942 7943 if (!map->autocreate) 7944 continue; 7945 7946 if (path) { 7947 int len; 7948 7949 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7950 bpf_map__name(map)); 7951 if (len < 0) { 7952 err = -EINVAL; 7953 goto err_unpin_maps; 7954 } else if (len >= PATH_MAX) { 7955 err = -ENAMETOOLONG; 7956 goto err_unpin_maps; 7957 } 7958 sanitize_pin_path(buf); 7959 pin_path = buf; 7960 } else if (!map->pin_path) { 7961 continue; 7962 } 7963 7964 err = bpf_map__pin(map, pin_path); 7965 if (err) 7966 goto err_unpin_maps; 7967 } 7968 7969 return 0; 7970 7971 err_unpin_maps: 7972 while ((map = bpf_object__prev_map(obj, map))) { 7973 if (!map->pin_path) 7974 continue; 7975 7976 bpf_map__unpin(map, NULL); 7977 } 7978 7979 return libbpf_err(err); 7980 } 7981 7982 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7983 { 7984 struct bpf_map *map; 7985 int err; 7986 7987 if (!obj) 7988 return libbpf_err(-ENOENT); 7989 7990 bpf_object__for_each_map(map, obj) { 7991 char *pin_path = NULL; 7992 char buf[PATH_MAX]; 7993 7994 if (path) { 7995 int len; 7996 7997 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7998 bpf_map__name(map)); 7999 if (len < 0) 8000 return libbpf_err(-EINVAL); 8001 else if (len >= PATH_MAX) 8002 return libbpf_err(-ENAMETOOLONG); 8003 sanitize_pin_path(buf); 8004 pin_path = buf; 8005 } else if (!map->pin_path) { 8006 continue; 8007 } 8008 8009 err = bpf_map__unpin(map, pin_path); 8010 if (err) 8011 return libbpf_err(err); 8012 } 8013 8014 return 0; 8015 } 8016 8017 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8018 { 8019 struct bpf_program *prog; 8020 int err; 8021 8022 if (!obj) 8023 return libbpf_err(-ENOENT); 8024 8025 if (!obj->loaded) { 8026 pr_warn("object not yet loaded; load it first\n"); 8027 return libbpf_err(-ENOENT); 8028 } 8029 8030 bpf_object__for_each_program(prog, obj) { 8031 char buf[PATH_MAX]; 8032 int len; 8033 8034 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8035 if (len < 0) { 8036 err = -EINVAL; 8037 goto err_unpin_programs; 8038 } else if (len >= PATH_MAX) { 8039 err = -ENAMETOOLONG; 8040 goto err_unpin_programs; 8041 } 8042 8043 err = bpf_program__pin(prog, buf); 8044 if (err) 8045 goto err_unpin_programs; 8046 } 8047 8048 return 0; 8049 8050 err_unpin_programs: 8051 while ((prog = bpf_object__prev_program(obj, prog))) { 8052 char buf[PATH_MAX]; 8053 int len; 8054 8055 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8056 if (len < 0) 8057 continue; 8058 else if (len >= PATH_MAX) 8059 continue; 8060 8061 bpf_program__unpin(prog, buf); 8062 } 8063 8064 return libbpf_err(err); 8065 } 8066 8067 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8068 { 8069 struct bpf_program *prog; 8070 int err; 8071 8072 if (!obj) 8073 return libbpf_err(-ENOENT); 8074 8075 bpf_object__for_each_program(prog, obj) { 8076 char buf[PATH_MAX]; 8077 int len; 8078 8079 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8080 if (len < 0) 8081 return libbpf_err(-EINVAL); 8082 else if (len >= PATH_MAX) 8083 return libbpf_err(-ENAMETOOLONG); 8084 8085 err = bpf_program__unpin(prog, buf); 8086 if (err) 8087 return libbpf_err(err); 8088 } 8089 8090 return 0; 8091 } 8092 8093 int bpf_object__pin(struct bpf_object *obj, const char *path) 8094 { 8095 int err; 8096 8097 err = bpf_object__pin_maps(obj, path); 8098 if (err) 8099 return libbpf_err(err); 8100 8101 err = bpf_object__pin_programs(obj, path); 8102 if (err) { 8103 bpf_object__unpin_maps(obj, path); 8104 return libbpf_err(err); 8105 } 8106 8107 return 0; 8108 } 8109 8110 static void bpf_map__destroy(struct bpf_map *map) 8111 { 8112 if (map->inner_map) { 8113 bpf_map__destroy(map->inner_map); 8114 zfree(&map->inner_map); 8115 } 8116 8117 zfree(&map->init_slots); 8118 map->init_slots_sz = 0; 8119 8120 if (map->mmaped) { 8121 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8122 map->mmaped = NULL; 8123 } 8124 8125 if (map->st_ops) { 8126 zfree(&map->st_ops->data); 8127 zfree(&map->st_ops->progs); 8128 zfree(&map->st_ops->kern_func_off); 8129 zfree(&map->st_ops); 8130 } 8131 8132 zfree(&map->name); 8133 zfree(&map->real_name); 8134 zfree(&map->pin_path); 8135 8136 if (map->fd >= 0) 8137 zclose(map->fd); 8138 } 8139 8140 void bpf_object__close(struct bpf_object *obj) 8141 { 8142 size_t i; 8143 8144 if (IS_ERR_OR_NULL(obj)) 8145 return; 8146 8147 usdt_manager_free(obj->usdt_man); 8148 obj->usdt_man = NULL; 8149 8150 bpf_gen__free(obj->gen_loader); 8151 bpf_object__elf_finish(obj); 8152 bpf_object_unload(obj); 8153 btf__free(obj->btf); 8154 btf_ext__free(obj->btf_ext); 8155 8156 for (i = 0; i < obj->nr_maps; i++) 8157 bpf_map__destroy(&obj->maps[i]); 8158 8159 zfree(&obj->btf_custom_path); 8160 zfree(&obj->kconfig); 8161 zfree(&obj->externs); 8162 obj->nr_extern = 0; 8163 8164 zfree(&obj->maps); 8165 obj->nr_maps = 0; 8166 8167 if (obj->programs && obj->nr_programs) { 8168 for (i = 0; i < obj->nr_programs; i++) 8169 bpf_program__exit(&obj->programs[i]); 8170 } 8171 zfree(&obj->programs); 8172 8173 free(obj); 8174 } 8175 8176 const char *bpf_object__name(const struct bpf_object *obj) 8177 { 8178 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8179 } 8180 8181 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8182 { 8183 return obj ? obj->kern_version : 0; 8184 } 8185 8186 struct btf *bpf_object__btf(const struct bpf_object *obj) 8187 { 8188 return obj ? obj->btf : NULL; 8189 } 8190 8191 int bpf_object__btf_fd(const struct bpf_object *obj) 8192 { 8193 return obj->btf ? btf__fd(obj->btf) : -1; 8194 } 8195 8196 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8197 { 8198 if (obj->loaded) 8199 return libbpf_err(-EINVAL); 8200 8201 obj->kern_version = kern_version; 8202 8203 return 0; 8204 } 8205 8206 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8207 { 8208 struct bpf_gen *gen; 8209 8210 if (!opts) 8211 return -EFAULT; 8212 if (!OPTS_VALID(opts, gen_loader_opts)) 8213 return -EINVAL; 8214 gen = calloc(sizeof(*gen), 1); 8215 if (!gen) 8216 return -ENOMEM; 8217 gen->opts = opts; 8218 obj->gen_loader = gen; 8219 return 0; 8220 } 8221 8222 static struct bpf_program * 8223 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8224 bool forward) 8225 { 8226 size_t nr_programs = obj->nr_programs; 8227 ssize_t idx; 8228 8229 if (!nr_programs) 8230 return NULL; 8231 8232 if (!p) 8233 /* Iter from the beginning */ 8234 return forward ? &obj->programs[0] : 8235 &obj->programs[nr_programs - 1]; 8236 8237 if (p->obj != obj) { 8238 pr_warn("error: program handler doesn't match object\n"); 8239 return errno = EINVAL, NULL; 8240 } 8241 8242 idx = (p - obj->programs) + (forward ? 1 : -1); 8243 if (idx >= obj->nr_programs || idx < 0) 8244 return NULL; 8245 return &obj->programs[idx]; 8246 } 8247 8248 struct bpf_program * 8249 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8250 { 8251 struct bpf_program *prog = prev; 8252 8253 do { 8254 prog = __bpf_program__iter(prog, obj, true); 8255 } while (prog && prog_is_subprog(obj, prog)); 8256 8257 return prog; 8258 } 8259 8260 struct bpf_program * 8261 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8262 { 8263 struct bpf_program *prog = next; 8264 8265 do { 8266 prog = __bpf_program__iter(prog, obj, false); 8267 } while (prog && prog_is_subprog(obj, prog)); 8268 8269 return prog; 8270 } 8271 8272 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8273 { 8274 prog->prog_ifindex = ifindex; 8275 } 8276 8277 const char *bpf_program__name(const struct bpf_program *prog) 8278 { 8279 return prog->name; 8280 } 8281 8282 const char *bpf_program__section_name(const struct bpf_program *prog) 8283 { 8284 return prog->sec_name; 8285 } 8286 8287 bool bpf_program__autoload(const struct bpf_program *prog) 8288 { 8289 return prog->autoload; 8290 } 8291 8292 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8293 { 8294 if (prog->obj->loaded) 8295 return libbpf_err(-EINVAL); 8296 8297 prog->autoload = autoload; 8298 return 0; 8299 } 8300 8301 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8302 { 8303 return prog->insns; 8304 } 8305 8306 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8307 { 8308 return prog->insns_cnt; 8309 } 8310 8311 int bpf_program__set_insns(struct bpf_program *prog, 8312 struct bpf_insn *new_insns, size_t new_insn_cnt) 8313 { 8314 struct bpf_insn *insns; 8315 8316 if (prog->obj->loaded) 8317 return -EBUSY; 8318 8319 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8320 if (!insns) { 8321 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8322 return -ENOMEM; 8323 } 8324 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8325 8326 prog->insns = insns; 8327 prog->insns_cnt = new_insn_cnt; 8328 return 0; 8329 } 8330 8331 int bpf_program__fd(const struct bpf_program *prog) 8332 { 8333 if (!prog) 8334 return libbpf_err(-EINVAL); 8335 8336 if (prog->fd < 0) 8337 return libbpf_err(-ENOENT); 8338 8339 return prog->fd; 8340 } 8341 8342 __alias(bpf_program__type) 8343 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8344 8345 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8346 { 8347 return prog->type; 8348 } 8349 8350 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8351 { 8352 if (prog->obj->loaded) 8353 return libbpf_err(-EBUSY); 8354 8355 prog->type = type; 8356 return 0; 8357 } 8358 8359 __alias(bpf_program__expected_attach_type) 8360 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8361 8362 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8363 { 8364 return prog->expected_attach_type; 8365 } 8366 8367 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8368 enum bpf_attach_type type) 8369 { 8370 if (prog->obj->loaded) 8371 return libbpf_err(-EBUSY); 8372 8373 prog->expected_attach_type = type; 8374 return 0; 8375 } 8376 8377 __u32 bpf_program__flags(const struct bpf_program *prog) 8378 { 8379 return prog->prog_flags; 8380 } 8381 8382 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8383 { 8384 if (prog->obj->loaded) 8385 return libbpf_err(-EBUSY); 8386 8387 prog->prog_flags = flags; 8388 return 0; 8389 } 8390 8391 __u32 bpf_program__log_level(const struct bpf_program *prog) 8392 { 8393 return prog->log_level; 8394 } 8395 8396 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8397 { 8398 if (prog->obj->loaded) 8399 return libbpf_err(-EBUSY); 8400 8401 prog->log_level = log_level; 8402 return 0; 8403 } 8404 8405 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8406 { 8407 *log_size = prog->log_size; 8408 return prog->log_buf; 8409 } 8410 8411 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8412 { 8413 if (log_size && !log_buf) 8414 return -EINVAL; 8415 if (prog->log_size > UINT_MAX) 8416 return -EINVAL; 8417 if (prog->obj->loaded) 8418 return -EBUSY; 8419 8420 prog->log_buf = log_buf; 8421 prog->log_size = log_size; 8422 return 0; 8423 } 8424 8425 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8426 .sec = (char *)sec_pfx, \ 8427 .prog_type = BPF_PROG_TYPE_##ptype, \ 8428 .expected_attach_type = atype, \ 8429 .cookie = (long)(flags), \ 8430 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8431 __VA_ARGS__ \ 8432 } 8433 8434 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8435 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8436 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8437 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8438 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8439 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8440 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8441 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8442 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8443 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8444 8445 static const struct bpf_sec_def section_defs[] = { 8446 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8447 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8448 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8449 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8450 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8451 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8452 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8453 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8454 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8455 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8456 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8457 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8458 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8459 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8460 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8461 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8462 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8463 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8464 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8465 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8466 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8467 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8468 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8469 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8470 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8471 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8472 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8473 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8474 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8475 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8476 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8477 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8478 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8479 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8480 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8481 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8482 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8483 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8484 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8485 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8486 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8487 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8488 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8489 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8490 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8491 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8492 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8493 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8494 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8495 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8496 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8497 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8498 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8499 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8500 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8501 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8502 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8503 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8504 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8505 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8506 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8507 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8508 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8509 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8510 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8511 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8512 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8513 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8514 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8515 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8516 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8517 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8518 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8519 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8520 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8521 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8522 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8523 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8524 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8525 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8526 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8527 }; 8528 8529 static size_t custom_sec_def_cnt; 8530 static struct bpf_sec_def *custom_sec_defs; 8531 static struct bpf_sec_def custom_fallback_def; 8532 static bool has_custom_fallback_def; 8533 8534 static int last_custom_sec_def_handler_id; 8535 8536 int libbpf_register_prog_handler(const char *sec, 8537 enum bpf_prog_type prog_type, 8538 enum bpf_attach_type exp_attach_type, 8539 const struct libbpf_prog_handler_opts *opts) 8540 { 8541 struct bpf_sec_def *sec_def; 8542 8543 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8544 return libbpf_err(-EINVAL); 8545 8546 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8547 return libbpf_err(-E2BIG); 8548 8549 if (sec) { 8550 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8551 sizeof(*sec_def)); 8552 if (!sec_def) 8553 return libbpf_err(-ENOMEM); 8554 8555 custom_sec_defs = sec_def; 8556 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8557 } else { 8558 if (has_custom_fallback_def) 8559 return libbpf_err(-EBUSY); 8560 8561 sec_def = &custom_fallback_def; 8562 } 8563 8564 sec_def->sec = sec ? strdup(sec) : NULL; 8565 if (sec && !sec_def->sec) 8566 return libbpf_err(-ENOMEM); 8567 8568 sec_def->prog_type = prog_type; 8569 sec_def->expected_attach_type = exp_attach_type; 8570 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8571 8572 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8573 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8574 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8575 8576 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8577 8578 if (sec) 8579 custom_sec_def_cnt++; 8580 else 8581 has_custom_fallback_def = true; 8582 8583 return sec_def->handler_id; 8584 } 8585 8586 int libbpf_unregister_prog_handler(int handler_id) 8587 { 8588 struct bpf_sec_def *sec_defs; 8589 int i; 8590 8591 if (handler_id <= 0) 8592 return libbpf_err(-EINVAL); 8593 8594 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8595 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8596 has_custom_fallback_def = false; 8597 return 0; 8598 } 8599 8600 for (i = 0; i < custom_sec_def_cnt; i++) { 8601 if (custom_sec_defs[i].handler_id == handler_id) 8602 break; 8603 } 8604 8605 if (i == custom_sec_def_cnt) 8606 return libbpf_err(-ENOENT); 8607 8608 free(custom_sec_defs[i].sec); 8609 for (i = i + 1; i < custom_sec_def_cnt; i++) 8610 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8611 custom_sec_def_cnt--; 8612 8613 /* try to shrink the array, but it's ok if we couldn't */ 8614 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8615 if (sec_defs) 8616 custom_sec_defs = sec_defs; 8617 8618 return 0; 8619 } 8620 8621 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8622 { 8623 size_t len = strlen(sec_def->sec); 8624 8625 /* "type/" always has to have proper SEC("type/extras") form */ 8626 if (sec_def->sec[len - 1] == '/') { 8627 if (str_has_pfx(sec_name, sec_def->sec)) 8628 return true; 8629 return false; 8630 } 8631 8632 /* "type+" means it can be either exact SEC("type") or 8633 * well-formed SEC("type/extras") with proper '/' separator 8634 */ 8635 if (sec_def->sec[len - 1] == '+') { 8636 len--; 8637 /* not even a prefix */ 8638 if (strncmp(sec_name, sec_def->sec, len) != 0) 8639 return false; 8640 /* exact match or has '/' separator */ 8641 if (sec_name[len] == '\0' || sec_name[len] == '/') 8642 return true; 8643 return false; 8644 } 8645 8646 return strcmp(sec_name, sec_def->sec) == 0; 8647 } 8648 8649 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8650 { 8651 const struct bpf_sec_def *sec_def; 8652 int i, n; 8653 8654 n = custom_sec_def_cnt; 8655 for (i = 0; i < n; i++) { 8656 sec_def = &custom_sec_defs[i]; 8657 if (sec_def_matches(sec_def, sec_name)) 8658 return sec_def; 8659 } 8660 8661 n = ARRAY_SIZE(section_defs); 8662 for (i = 0; i < n; i++) { 8663 sec_def = §ion_defs[i]; 8664 if (sec_def_matches(sec_def, sec_name)) 8665 return sec_def; 8666 } 8667 8668 if (has_custom_fallback_def) 8669 return &custom_fallback_def; 8670 8671 return NULL; 8672 } 8673 8674 #define MAX_TYPE_NAME_SIZE 32 8675 8676 static char *libbpf_get_type_names(bool attach_type) 8677 { 8678 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8679 char *buf; 8680 8681 buf = malloc(len); 8682 if (!buf) 8683 return NULL; 8684 8685 buf[0] = '\0'; 8686 /* Forge string buf with all available names */ 8687 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8688 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8689 8690 if (attach_type) { 8691 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8692 continue; 8693 8694 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8695 continue; 8696 } 8697 8698 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8699 free(buf); 8700 return NULL; 8701 } 8702 strcat(buf, " "); 8703 strcat(buf, section_defs[i].sec); 8704 } 8705 8706 return buf; 8707 } 8708 8709 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8710 enum bpf_attach_type *expected_attach_type) 8711 { 8712 const struct bpf_sec_def *sec_def; 8713 char *type_names; 8714 8715 if (!name) 8716 return libbpf_err(-EINVAL); 8717 8718 sec_def = find_sec_def(name); 8719 if (sec_def) { 8720 *prog_type = sec_def->prog_type; 8721 *expected_attach_type = sec_def->expected_attach_type; 8722 return 0; 8723 } 8724 8725 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8726 type_names = libbpf_get_type_names(false); 8727 if (type_names != NULL) { 8728 pr_debug("supported section(type) names are:%s\n", type_names); 8729 free(type_names); 8730 } 8731 8732 return libbpf_err(-ESRCH); 8733 } 8734 8735 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8736 { 8737 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8738 return NULL; 8739 8740 return attach_type_name[t]; 8741 } 8742 8743 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8744 { 8745 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8746 return NULL; 8747 8748 return link_type_name[t]; 8749 } 8750 8751 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8752 { 8753 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8754 return NULL; 8755 8756 return map_type_name[t]; 8757 } 8758 8759 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8760 { 8761 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8762 return NULL; 8763 8764 return prog_type_name[t]; 8765 } 8766 8767 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8768 size_t offset) 8769 { 8770 struct bpf_map *map; 8771 size_t i; 8772 8773 for (i = 0; i < obj->nr_maps; i++) { 8774 map = &obj->maps[i]; 8775 if (!bpf_map__is_struct_ops(map)) 8776 continue; 8777 if (map->sec_offset <= offset && 8778 offset - map->sec_offset < map->def.value_size) 8779 return map; 8780 } 8781 8782 return NULL; 8783 } 8784 8785 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8786 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8787 Elf64_Shdr *shdr, Elf_Data *data) 8788 { 8789 const struct btf_member *member; 8790 struct bpf_struct_ops *st_ops; 8791 struct bpf_program *prog; 8792 unsigned int shdr_idx; 8793 const struct btf *btf; 8794 struct bpf_map *map; 8795 unsigned int moff, insn_idx; 8796 const char *name; 8797 __u32 member_idx; 8798 Elf64_Sym *sym; 8799 Elf64_Rel *rel; 8800 int i, nrels; 8801 8802 btf = obj->btf; 8803 nrels = shdr->sh_size / shdr->sh_entsize; 8804 for (i = 0; i < nrels; i++) { 8805 rel = elf_rel_by_idx(data, i); 8806 if (!rel) { 8807 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8808 return -LIBBPF_ERRNO__FORMAT; 8809 } 8810 8811 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8812 if (!sym) { 8813 pr_warn("struct_ops reloc: symbol %zx not found\n", 8814 (size_t)ELF64_R_SYM(rel->r_info)); 8815 return -LIBBPF_ERRNO__FORMAT; 8816 } 8817 8818 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8819 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8820 if (!map) { 8821 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8822 (size_t)rel->r_offset); 8823 return -EINVAL; 8824 } 8825 8826 moff = rel->r_offset - map->sec_offset; 8827 shdr_idx = sym->st_shndx; 8828 st_ops = map->st_ops; 8829 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8830 map->name, 8831 (long long)(rel->r_info >> 32), 8832 (long long)sym->st_value, 8833 shdr_idx, (size_t)rel->r_offset, 8834 map->sec_offset, sym->st_name, name); 8835 8836 if (shdr_idx >= SHN_LORESERVE) { 8837 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8838 map->name, (size_t)rel->r_offset, shdr_idx); 8839 return -LIBBPF_ERRNO__RELOC; 8840 } 8841 if (sym->st_value % BPF_INSN_SZ) { 8842 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8843 map->name, (unsigned long long)sym->st_value); 8844 return -LIBBPF_ERRNO__FORMAT; 8845 } 8846 insn_idx = sym->st_value / BPF_INSN_SZ; 8847 8848 member = find_member_by_offset(st_ops->type, moff * 8); 8849 if (!member) { 8850 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8851 map->name, moff); 8852 return -EINVAL; 8853 } 8854 member_idx = member - btf_members(st_ops->type); 8855 name = btf__name_by_offset(btf, member->name_off); 8856 8857 if (!resolve_func_ptr(btf, member->type, NULL)) { 8858 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8859 map->name, name); 8860 return -EINVAL; 8861 } 8862 8863 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8864 if (!prog) { 8865 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8866 map->name, shdr_idx, name); 8867 return -EINVAL; 8868 } 8869 8870 /* prevent the use of BPF prog with invalid type */ 8871 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8872 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8873 map->name, prog->name); 8874 return -EINVAL; 8875 } 8876 8877 /* if we haven't yet processed this BPF program, record proper 8878 * attach_btf_id and member_idx 8879 */ 8880 if (!prog->attach_btf_id) { 8881 prog->attach_btf_id = st_ops->type_id; 8882 prog->expected_attach_type = member_idx; 8883 } 8884 8885 /* struct_ops BPF prog can be re-used between multiple 8886 * .struct_ops as long as it's the same struct_ops struct 8887 * definition and the same function pointer field 8888 */ 8889 if (prog->attach_btf_id != st_ops->type_id || 8890 prog->expected_attach_type != member_idx) { 8891 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8892 map->name, prog->name, prog->sec_name, prog->type, 8893 prog->attach_btf_id, prog->expected_attach_type, name); 8894 return -EINVAL; 8895 } 8896 8897 st_ops->progs[member_idx] = prog; 8898 } 8899 8900 return 0; 8901 } 8902 8903 #define BTF_TRACE_PREFIX "btf_trace_" 8904 #define BTF_LSM_PREFIX "bpf_lsm_" 8905 #define BTF_ITER_PREFIX "bpf_iter_" 8906 #define BTF_MAX_NAME_SIZE 128 8907 8908 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8909 const char **prefix, int *kind) 8910 { 8911 switch (attach_type) { 8912 case BPF_TRACE_RAW_TP: 8913 *prefix = BTF_TRACE_PREFIX; 8914 *kind = BTF_KIND_TYPEDEF; 8915 break; 8916 case BPF_LSM_MAC: 8917 case BPF_LSM_CGROUP: 8918 *prefix = BTF_LSM_PREFIX; 8919 *kind = BTF_KIND_FUNC; 8920 break; 8921 case BPF_TRACE_ITER: 8922 *prefix = BTF_ITER_PREFIX; 8923 *kind = BTF_KIND_FUNC; 8924 break; 8925 default: 8926 *prefix = ""; 8927 *kind = BTF_KIND_FUNC; 8928 } 8929 } 8930 8931 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8932 const char *name, __u32 kind) 8933 { 8934 char btf_type_name[BTF_MAX_NAME_SIZE]; 8935 int ret; 8936 8937 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8938 "%s%s", prefix, name); 8939 /* snprintf returns the number of characters written excluding the 8940 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8941 * indicates truncation. 8942 */ 8943 if (ret < 0 || ret >= sizeof(btf_type_name)) 8944 return -ENAMETOOLONG; 8945 return btf__find_by_name_kind(btf, btf_type_name, kind); 8946 } 8947 8948 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8949 enum bpf_attach_type attach_type) 8950 { 8951 const char *prefix; 8952 int kind; 8953 8954 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8955 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8956 } 8957 8958 int libbpf_find_vmlinux_btf_id(const char *name, 8959 enum bpf_attach_type attach_type) 8960 { 8961 struct btf *btf; 8962 int err; 8963 8964 btf = btf__load_vmlinux_btf(); 8965 err = libbpf_get_error(btf); 8966 if (err) { 8967 pr_warn("vmlinux BTF is not found\n"); 8968 return libbpf_err(err); 8969 } 8970 8971 err = find_attach_btf_id(btf, name, attach_type); 8972 if (err <= 0) 8973 pr_warn("%s is not found in vmlinux BTF\n", name); 8974 8975 btf__free(btf); 8976 return libbpf_err(err); 8977 } 8978 8979 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8980 { 8981 struct bpf_prog_info info = {}; 8982 __u32 info_len = sizeof(info); 8983 struct btf *btf; 8984 int err; 8985 8986 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8987 if (err) { 8988 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8989 attach_prog_fd, err); 8990 return err; 8991 } 8992 8993 err = -EINVAL; 8994 if (!info.btf_id) { 8995 pr_warn("The target program doesn't have BTF\n"); 8996 goto out; 8997 } 8998 btf = btf__load_from_kernel_by_id(info.btf_id); 8999 err = libbpf_get_error(btf); 9000 if (err) { 9001 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9002 goto out; 9003 } 9004 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9005 btf__free(btf); 9006 if (err <= 0) { 9007 pr_warn("%s is not found in prog's BTF\n", name); 9008 goto out; 9009 } 9010 out: 9011 return err; 9012 } 9013 9014 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9015 enum bpf_attach_type attach_type, 9016 int *btf_obj_fd, int *btf_type_id) 9017 { 9018 int ret, i; 9019 9020 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9021 if (ret > 0) { 9022 *btf_obj_fd = 0; /* vmlinux BTF */ 9023 *btf_type_id = ret; 9024 return 0; 9025 } 9026 if (ret != -ENOENT) 9027 return ret; 9028 9029 ret = load_module_btfs(obj); 9030 if (ret) 9031 return ret; 9032 9033 for (i = 0; i < obj->btf_module_cnt; i++) { 9034 const struct module_btf *mod = &obj->btf_modules[i]; 9035 9036 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9037 if (ret > 0) { 9038 *btf_obj_fd = mod->fd; 9039 *btf_type_id = ret; 9040 return 0; 9041 } 9042 if (ret == -ENOENT) 9043 continue; 9044 9045 return ret; 9046 } 9047 9048 return -ESRCH; 9049 } 9050 9051 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9052 int *btf_obj_fd, int *btf_type_id) 9053 { 9054 enum bpf_attach_type attach_type = prog->expected_attach_type; 9055 __u32 attach_prog_fd = prog->attach_prog_fd; 9056 int err = 0; 9057 9058 /* BPF program's BTF ID */ 9059 if (attach_prog_fd) { 9060 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9061 if (err < 0) { 9062 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9063 attach_prog_fd, attach_name, err); 9064 return err; 9065 } 9066 *btf_obj_fd = 0; 9067 *btf_type_id = err; 9068 return 0; 9069 } 9070 9071 /* kernel/module BTF ID */ 9072 if (prog->obj->gen_loader) { 9073 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9074 *btf_obj_fd = 0; 9075 *btf_type_id = 1; 9076 } else { 9077 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9078 } 9079 if (err) { 9080 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9081 return err; 9082 } 9083 return 0; 9084 } 9085 9086 int libbpf_attach_type_by_name(const char *name, 9087 enum bpf_attach_type *attach_type) 9088 { 9089 char *type_names; 9090 const struct bpf_sec_def *sec_def; 9091 9092 if (!name) 9093 return libbpf_err(-EINVAL); 9094 9095 sec_def = find_sec_def(name); 9096 if (!sec_def) { 9097 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9098 type_names = libbpf_get_type_names(true); 9099 if (type_names != NULL) { 9100 pr_debug("attachable section(type) names are:%s\n", type_names); 9101 free(type_names); 9102 } 9103 9104 return libbpf_err(-EINVAL); 9105 } 9106 9107 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9108 return libbpf_err(-EINVAL); 9109 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9110 return libbpf_err(-EINVAL); 9111 9112 *attach_type = sec_def->expected_attach_type; 9113 return 0; 9114 } 9115 9116 int bpf_map__fd(const struct bpf_map *map) 9117 { 9118 return map ? map->fd : libbpf_err(-EINVAL); 9119 } 9120 9121 static bool map_uses_real_name(const struct bpf_map *map) 9122 { 9123 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9124 * their user-visible name differs from kernel-visible name. Users see 9125 * such map's corresponding ELF section name as a map name. 9126 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9127 * maps to know which name has to be returned to the user. 9128 */ 9129 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9130 return true; 9131 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9132 return true; 9133 return false; 9134 } 9135 9136 const char *bpf_map__name(const struct bpf_map *map) 9137 { 9138 if (!map) 9139 return NULL; 9140 9141 if (map_uses_real_name(map)) 9142 return map->real_name; 9143 9144 return map->name; 9145 } 9146 9147 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9148 { 9149 return map->def.type; 9150 } 9151 9152 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9153 { 9154 if (map->fd >= 0) 9155 return libbpf_err(-EBUSY); 9156 map->def.type = type; 9157 return 0; 9158 } 9159 9160 __u32 bpf_map__map_flags(const struct bpf_map *map) 9161 { 9162 return map->def.map_flags; 9163 } 9164 9165 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9166 { 9167 if (map->fd >= 0) 9168 return libbpf_err(-EBUSY); 9169 map->def.map_flags = flags; 9170 return 0; 9171 } 9172 9173 __u64 bpf_map__map_extra(const struct bpf_map *map) 9174 { 9175 return map->map_extra; 9176 } 9177 9178 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9179 { 9180 if (map->fd >= 0) 9181 return libbpf_err(-EBUSY); 9182 map->map_extra = map_extra; 9183 return 0; 9184 } 9185 9186 __u32 bpf_map__numa_node(const struct bpf_map *map) 9187 { 9188 return map->numa_node; 9189 } 9190 9191 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9192 { 9193 if (map->fd >= 0) 9194 return libbpf_err(-EBUSY); 9195 map->numa_node = numa_node; 9196 return 0; 9197 } 9198 9199 __u32 bpf_map__key_size(const struct bpf_map *map) 9200 { 9201 return map->def.key_size; 9202 } 9203 9204 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9205 { 9206 if (map->fd >= 0) 9207 return libbpf_err(-EBUSY); 9208 map->def.key_size = size; 9209 return 0; 9210 } 9211 9212 __u32 bpf_map__value_size(const struct bpf_map *map) 9213 { 9214 return map->def.value_size; 9215 } 9216 9217 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9218 { 9219 if (map->fd >= 0) 9220 return libbpf_err(-EBUSY); 9221 map->def.value_size = size; 9222 return 0; 9223 } 9224 9225 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9226 { 9227 return map ? map->btf_key_type_id : 0; 9228 } 9229 9230 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9231 { 9232 return map ? map->btf_value_type_id : 0; 9233 } 9234 9235 int bpf_map__set_initial_value(struct bpf_map *map, 9236 const void *data, size_t size) 9237 { 9238 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9239 size != map->def.value_size || map->fd >= 0) 9240 return libbpf_err(-EINVAL); 9241 9242 memcpy(map->mmaped, data, size); 9243 return 0; 9244 } 9245 9246 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9247 { 9248 if (!map->mmaped) 9249 return NULL; 9250 *psize = map->def.value_size; 9251 return map->mmaped; 9252 } 9253 9254 bool bpf_map__is_internal(const struct bpf_map *map) 9255 { 9256 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9257 } 9258 9259 __u32 bpf_map__ifindex(const struct bpf_map *map) 9260 { 9261 return map->map_ifindex; 9262 } 9263 9264 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9265 { 9266 if (map->fd >= 0) 9267 return libbpf_err(-EBUSY); 9268 map->map_ifindex = ifindex; 9269 return 0; 9270 } 9271 9272 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9273 { 9274 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9275 pr_warn("error: unsupported map type\n"); 9276 return libbpf_err(-EINVAL); 9277 } 9278 if (map->inner_map_fd != -1) { 9279 pr_warn("error: inner_map_fd already specified\n"); 9280 return libbpf_err(-EINVAL); 9281 } 9282 if (map->inner_map) { 9283 bpf_map__destroy(map->inner_map); 9284 zfree(&map->inner_map); 9285 } 9286 map->inner_map_fd = fd; 9287 return 0; 9288 } 9289 9290 static struct bpf_map * 9291 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9292 { 9293 ssize_t idx; 9294 struct bpf_map *s, *e; 9295 9296 if (!obj || !obj->maps) 9297 return errno = EINVAL, NULL; 9298 9299 s = obj->maps; 9300 e = obj->maps + obj->nr_maps; 9301 9302 if ((m < s) || (m >= e)) { 9303 pr_warn("error in %s: map handler doesn't belong to object\n", 9304 __func__); 9305 return errno = EINVAL, NULL; 9306 } 9307 9308 idx = (m - obj->maps) + i; 9309 if (idx >= obj->nr_maps || idx < 0) 9310 return NULL; 9311 return &obj->maps[idx]; 9312 } 9313 9314 struct bpf_map * 9315 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9316 { 9317 if (prev == NULL) 9318 return obj->maps; 9319 9320 return __bpf_map__iter(prev, obj, 1); 9321 } 9322 9323 struct bpf_map * 9324 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9325 { 9326 if (next == NULL) { 9327 if (!obj->nr_maps) 9328 return NULL; 9329 return obj->maps + obj->nr_maps - 1; 9330 } 9331 9332 return __bpf_map__iter(next, obj, -1); 9333 } 9334 9335 struct bpf_map * 9336 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9337 { 9338 struct bpf_map *pos; 9339 9340 bpf_object__for_each_map(pos, obj) { 9341 /* if it's a special internal map name (which always starts 9342 * with dot) then check if that special name matches the 9343 * real map name (ELF section name) 9344 */ 9345 if (name[0] == '.') { 9346 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9347 return pos; 9348 continue; 9349 } 9350 /* otherwise map name has to be an exact match */ 9351 if (map_uses_real_name(pos)) { 9352 if (strcmp(pos->real_name, name) == 0) 9353 return pos; 9354 continue; 9355 } 9356 if (strcmp(pos->name, name) == 0) 9357 return pos; 9358 } 9359 return errno = ENOENT, NULL; 9360 } 9361 9362 int 9363 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9364 { 9365 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9366 } 9367 9368 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9369 size_t value_sz, bool check_value_sz) 9370 { 9371 if (map->fd <= 0) 9372 return -ENOENT; 9373 9374 if (map->def.key_size != key_sz) { 9375 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9376 map->name, key_sz, map->def.key_size); 9377 return -EINVAL; 9378 } 9379 9380 if (!check_value_sz) 9381 return 0; 9382 9383 switch (map->def.type) { 9384 case BPF_MAP_TYPE_PERCPU_ARRAY: 9385 case BPF_MAP_TYPE_PERCPU_HASH: 9386 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9387 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9388 int num_cpu = libbpf_num_possible_cpus(); 9389 size_t elem_sz = roundup(map->def.value_size, 8); 9390 9391 if (value_sz != num_cpu * elem_sz) { 9392 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9393 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9394 return -EINVAL; 9395 } 9396 break; 9397 } 9398 default: 9399 if (map->def.value_size != value_sz) { 9400 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9401 map->name, value_sz, map->def.value_size); 9402 return -EINVAL; 9403 } 9404 break; 9405 } 9406 return 0; 9407 } 9408 9409 int bpf_map__lookup_elem(const struct bpf_map *map, 9410 const void *key, size_t key_sz, 9411 void *value, size_t value_sz, __u64 flags) 9412 { 9413 int err; 9414 9415 err = validate_map_op(map, key_sz, value_sz, true); 9416 if (err) 9417 return libbpf_err(err); 9418 9419 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9420 } 9421 9422 int bpf_map__update_elem(const struct bpf_map *map, 9423 const void *key, size_t key_sz, 9424 const void *value, size_t value_sz, __u64 flags) 9425 { 9426 int err; 9427 9428 err = validate_map_op(map, key_sz, value_sz, true); 9429 if (err) 9430 return libbpf_err(err); 9431 9432 return bpf_map_update_elem(map->fd, key, value, flags); 9433 } 9434 9435 int bpf_map__delete_elem(const struct bpf_map *map, 9436 const void *key, size_t key_sz, __u64 flags) 9437 { 9438 int err; 9439 9440 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9441 if (err) 9442 return libbpf_err(err); 9443 9444 return bpf_map_delete_elem_flags(map->fd, key, flags); 9445 } 9446 9447 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9448 const void *key, size_t key_sz, 9449 void *value, size_t value_sz, __u64 flags) 9450 { 9451 int err; 9452 9453 err = validate_map_op(map, key_sz, value_sz, true); 9454 if (err) 9455 return libbpf_err(err); 9456 9457 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9458 } 9459 9460 int bpf_map__get_next_key(const struct bpf_map *map, 9461 const void *cur_key, void *next_key, size_t key_sz) 9462 { 9463 int err; 9464 9465 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9466 if (err) 9467 return libbpf_err(err); 9468 9469 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9470 } 9471 9472 long libbpf_get_error(const void *ptr) 9473 { 9474 if (!IS_ERR_OR_NULL(ptr)) 9475 return 0; 9476 9477 if (IS_ERR(ptr)) 9478 errno = -PTR_ERR(ptr); 9479 9480 /* If ptr == NULL, then errno should be already set by the failing 9481 * API, because libbpf never returns NULL on success and it now always 9482 * sets errno on error. So no extra errno handling for ptr == NULL 9483 * case. 9484 */ 9485 return -errno; 9486 } 9487 9488 /* Replace link's underlying BPF program with the new one */ 9489 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9490 { 9491 int ret; 9492 9493 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9494 return libbpf_err_errno(ret); 9495 } 9496 9497 /* Release "ownership" of underlying BPF resource (typically, BPF program 9498 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9499 * link, when destructed through bpf_link__destroy() call won't attempt to 9500 * detach/unregisted that BPF resource. This is useful in situations where, 9501 * say, attached BPF program has to outlive userspace program that attached it 9502 * in the system. Depending on type of BPF program, though, there might be 9503 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9504 * exit of userspace program doesn't trigger automatic detachment and clean up 9505 * inside the kernel. 9506 */ 9507 void bpf_link__disconnect(struct bpf_link *link) 9508 { 9509 link->disconnected = true; 9510 } 9511 9512 int bpf_link__destroy(struct bpf_link *link) 9513 { 9514 int err = 0; 9515 9516 if (IS_ERR_OR_NULL(link)) 9517 return 0; 9518 9519 if (!link->disconnected && link->detach) 9520 err = link->detach(link); 9521 if (link->pin_path) 9522 free(link->pin_path); 9523 if (link->dealloc) 9524 link->dealloc(link); 9525 else 9526 free(link); 9527 9528 return libbpf_err(err); 9529 } 9530 9531 int bpf_link__fd(const struct bpf_link *link) 9532 { 9533 return link->fd; 9534 } 9535 9536 const char *bpf_link__pin_path(const struct bpf_link *link) 9537 { 9538 return link->pin_path; 9539 } 9540 9541 static int bpf_link__detach_fd(struct bpf_link *link) 9542 { 9543 return libbpf_err_errno(close(link->fd)); 9544 } 9545 9546 struct bpf_link *bpf_link__open(const char *path) 9547 { 9548 struct bpf_link *link; 9549 int fd; 9550 9551 fd = bpf_obj_get(path); 9552 if (fd < 0) { 9553 fd = -errno; 9554 pr_warn("failed to open link at %s: %d\n", path, fd); 9555 return libbpf_err_ptr(fd); 9556 } 9557 9558 link = calloc(1, sizeof(*link)); 9559 if (!link) { 9560 close(fd); 9561 return libbpf_err_ptr(-ENOMEM); 9562 } 9563 link->detach = &bpf_link__detach_fd; 9564 link->fd = fd; 9565 9566 link->pin_path = strdup(path); 9567 if (!link->pin_path) { 9568 bpf_link__destroy(link); 9569 return libbpf_err_ptr(-ENOMEM); 9570 } 9571 9572 return link; 9573 } 9574 9575 int bpf_link__detach(struct bpf_link *link) 9576 { 9577 return bpf_link_detach(link->fd) ? -errno : 0; 9578 } 9579 9580 int bpf_link__pin(struct bpf_link *link, const char *path) 9581 { 9582 int err; 9583 9584 if (link->pin_path) 9585 return libbpf_err(-EBUSY); 9586 err = make_parent_dir(path); 9587 if (err) 9588 return libbpf_err(err); 9589 err = check_path(path); 9590 if (err) 9591 return libbpf_err(err); 9592 9593 link->pin_path = strdup(path); 9594 if (!link->pin_path) 9595 return libbpf_err(-ENOMEM); 9596 9597 if (bpf_obj_pin(link->fd, link->pin_path)) { 9598 err = -errno; 9599 zfree(&link->pin_path); 9600 return libbpf_err(err); 9601 } 9602 9603 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9604 return 0; 9605 } 9606 9607 int bpf_link__unpin(struct bpf_link *link) 9608 { 9609 int err; 9610 9611 if (!link->pin_path) 9612 return libbpf_err(-EINVAL); 9613 9614 err = unlink(link->pin_path); 9615 if (err != 0) 9616 return -errno; 9617 9618 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9619 zfree(&link->pin_path); 9620 return 0; 9621 } 9622 9623 struct bpf_link_perf { 9624 struct bpf_link link; 9625 int perf_event_fd; 9626 /* legacy kprobe support: keep track of probe identifier and type */ 9627 char *legacy_probe_name; 9628 bool legacy_is_kprobe; 9629 bool legacy_is_retprobe; 9630 }; 9631 9632 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9633 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9634 9635 static int bpf_link_perf_detach(struct bpf_link *link) 9636 { 9637 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9638 int err = 0; 9639 9640 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9641 err = -errno; 9642 9643 if (perf_link->perf_event_fd != link->fd) 9644 close(perf_link->perf_event_fd); 9645 close(link->fd); 9646 9647 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9648 if (perf_link->legacy_probe_name) { 9649 if (perf_link->legacy_is_kprobe) { 9650 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9651 perf_link->legacy_is_retprobe); 9652 } else { 9653 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9654 perf_link->legacy_is_retprobe); 9655 } 9656 } 9657 9658 return err; 9659 } 9660 9661 static void bpf_link_perf_dealloc(struct bpf_link *link) 9662 { 9663 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9664 9665 free(perf_link->legacy_probe_name); 9666 free(perf_link); 9667 } 9668 9669 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9670 const struct bpf_perf_event_opts *opts) 9671 { 9672 char errmsg[STRERR_BUFSIZE]; 9673 struct bpf_link_perf *link; 9674 int prog_fd, link_fd = -1, err; 9675 9676 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9677 return libbpf_err_ptr(-EINVAL); 9678 9679 if (pfd < 0) { 9680 pr_warn("prog '%s': invalid perf event FD %d\n", 9681 prog->name, pfd); 9682 return libbpf_err_ptr(-EINVAL); 9683 } 9684 prog_fd = bpf_program__fd(prog); 9685 if (prog_fd < 0) { 9686 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9687 prog->name); 9688 return libbpf_err_ptr(-EINVAL); 9689 } 9690 9691 link = calloc(1, sizeof(*link)); 9692 if (!link) 9693 return libbpf_err_ptr(-ENOMEM); 9694 link->link.detach = &bpf_link_perf_detach; 9695 link->link.dealloc = &bpf_link_perf_dealloc; 9696 link->perf_event_fd = pfd; 9697 9698 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9699 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9700 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9701 9702 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9703 if (link_fd < 0) { 9704 err = -errno; 9705 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9706 prog->name, pfd, 9707 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9708 goto err_out; 9709 } 9710 link->link.fd = link_fd; 9711 } else { 9712 if (OPTS_GET(opts, bpf_cookie, 0)) { 9713 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9714 err = -EOPNOTSUPP; 9715 goto err_out; 9716 } 9717 9718 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9719 err = -errno; 9720 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9721 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9722 if (err == -EPROTO) 9723 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9724 prog->name, pfd); 9725 goto err_out; 9726 } 9727 link->link.fd = pfd; 9728 } 9729 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9730 err = -errno; 9731 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9732 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9733 goto err_out; 9734 } 9735 9736 return &link->link; 9737 err_out: 9738 if (link_fd >= 0) 9739 close(link_fd); 9740 free(link); 9741 return libbpf_err_ptr(err); 9742 } 9743 9744 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9745 { 9746 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9747 } 9748 9749 /* 9750 * this function is expected to parse integer in the range of [0, 2^31-1] from 9751 * given file using scanf format string fmt. If actual parsed value is 9752 * negative, the result might be indistinguishable from error 9753 */ 9754 static int parse_uint_from_file(const char *file, const char *fmt) 9755 { 9756 char buf[STRERR_BUFSIZE]; 9757 int err, ret; 9758 FILE *f; 9759 9760 f = fopen(file, "r"); 9761 if (!f) { 9762 err = -errno; 9763 pr_debug("failed to open '%s': %s\n", file, 9764 libbpf_strerror_r(err, buf, sizeof(buf))); 9765 return err; 9766 } 9767 err = fscanf(f, fmt, &ret); 9768 if (err != 1) { 9769 err = err == EOF ? -EIO : -errno; 9770 pr_debug("failed to parse '%s': %s\n", file, 9771 libbpf_strerror_r(err, buf, sizeof(buf))); 9772 fclose(f); 9773 return err; 9774 } 9775 fclose(f); 9776 return ret; 9777 } 9778 9779 static int determine_kprobe_perf_type(void) 9780 { 9781 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9782 9783 return parse_uint_from_file(file, "%d\n"); 9784 } 9785 9786 static int determine_uprobe_perf_type(void) 9787 { 9788 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9789 9790 return parse_uint_from_file(file, "%d\n"); 9791 } 9792 9793 static int determine_kprobe_retprobe_bit(void) 9794 { 9795 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9796 9797 return parse_uint_from_file(file, "config:%d\n"); 9798 } 9799 9800 static int determine_uprobe_retprobe_bit(void) 9801 { 9802 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9803 9804 return parse_uint_from_file(file, "config:%d\n"); 9805 } 9806 9807 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9808 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9809 9810 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9811 uint64_t offset, int pid, size_t ref_ctr_off) 9812 { 9813 struct perf_event_attr attr = {}; 9814 char errmsg[STRERR_BUFSIZE]; 9815 int type, pfd; 9816 9817 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9818 return -EINVAL; 9819 9820 type = uprobe ? determine_uprobe_perf_type() 9821 : determine_kprobe_perf_type(); 9822 if (type < 0) { 9823 pr_warn("failed to determine %s perf type: %s\n", 9824 uprobe ? "uprobe" : "kprobe", 9825 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9826 return type; 9827 } 9828 if (retprobe) { 9829 int bit = uprobe ? determine_uprobe_retprobe_bit() 9830 : determine_kprobe_retprobe_bit(); 9831 9832 if (bit < 0) { 9833 pr_warn("failed to determine %s retprobe bit: %s\n", 9834 uprobe ? "uprobe" : "kprobe", 9835 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9836 return bit; 9837 } 9838 attr.config |= 1 << bit; 9839 } 9840 attr.size = sizeof(attr); 9841 attr.type = type; 9842 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9843 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9844 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9845 9846 /* pid filter is meaningful only for uprobes */ 9847 pfd = syscall(__NR_perf_event_open, &attr, 9848 pid < 0 ? -1 : pid /* pid */, 9849 pid == -1 ? 0 : -1 /* cpu */, 9850 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9851 return pfd >= 0 ? pfd : -errno; 9852 } 9853 9854 static int append_to_file(const char *file, const char *fmt, ...) 9855 { 9856 int fd, n, err = 0; 9857 va_list ap; 9858 9859 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9860 if (fd < 0) 9861 return -errno; 9862 9863 va_start(ap, fmt); 9864 n = vdprintf(fd, fmt, ap); 9865 va_end(ap); 9866 9867 if (n < 0) 9868 err = -errno; 9869 9870 close(fd); 9871 return err; 9872 } 9873 9874 #define DEBUGFS "/sys/kernel/debug/tracing" 9875 #define TRACEFS "/sys/kernel/tracing" 9876 9877 static bool use_debugfs(void) 9878 { 9879 static int has_debugfs = -1; 9880 9881 if (has_debugfs < 0) 9882 has_debugfs = access(DEBUGFS, F_OK) == 0; 9883 9884 return has_debugfs == 1; 9885 } 9886 9887 static const char *tracefs_path(void) 9888 { 9889 return use_debugfs() ? DEBUGFS : TRACEFS; 9890 } 9891 9892 static const char *tracefs_kprobe_events(void) 9893 { 9894 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9895 } 9896 9897 static const char *tracefs_uprobe_events(void) 9898 { 9899 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9900 } 9901 9902 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9903 const char *kfunc_name, size_t offset) 9904 { 9905 static int index = 0; 9906 9907 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9908 __sync_fetch_and_add(&index, 1)); 9909 } 9910 9911 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9912 const char *kfunc_name, size_t offset) 9913 { 9914 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9915 retprobe ? 'r' : 'p', 9916 retprobe ? "kretprobes" : "kprobes", 9917 probe_name, kfunc_name, offset); 9918 } 9919 9920 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9921 { 9922 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 9923 retprobe ? "kretprobes" : "kprobes", probe_name); 9924 } 9925 9926 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9927 { 9928 char file[256]; 9929 9930 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 9931 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 9932 9933 return parse_uint_from_file(file, "%d\n"); 9934 } 9935 9936 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9937 const char *kfunc_name, size_t offset, int pid) 9938 { 9939 struct perf_event_attr attr = {}; 9940 char errmsg[STRERR_BUFSIZE]; 9941 int type, pfd, err; 9942 9943 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9944 if (err < 0) { 9945 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9946 kfunc_name, offset, 9947 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9948 return err; 9949 } 9950 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9951 if (type < 0) { 9952 err = type; 9953 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9954 kfunc_name, offset, 9955 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9956 goto err_clean_legacy; 9957 } 9958 attr.size = sizeof(attr); 9959 attr.config = type; 9960 attr.type = PERF_TYPE_TRACEPOINT; 9961 9962 pfd = syscall(__NR_perf_event_open, &attr, 9963 pid < 0 ? -1 : pid, /* pid */ 9964 pid == -1 ? 0 : -1, /* cpu */ 9965 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9966 if (pfd < 0) { 9967 err = -errno; 9968 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9969 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9970 goto err_clean_legacy; 9971 } 9972 return pfd; 9973 9974 err_clean_legacy: 9975 /* Clear the newly added legacy kprobe_event */ 9976 remove_kprobe_event_legacy(probe_name, retprobe); 9977 return err; 9978 } 9979 9980 static const char *arch_specific_syscall_pfx(void) 9981 { 9982 #if defined(__x86_64__) 9983 return "x64"; 9984 #elif defined(__i386__) 9985 return "ia32"; 9986 #elif defined(__s390x__) 9987 return "s390x"; 9988 #elif defined(__s390__) 9989 return "s390"; 9990 #elif defined(__arm__) 9991 return "arm"; 9992 #elif defined(__aarch64__) 9993 return "arm64"; 9994 #elif defined(__mips__) 9995 return "mips"; 9996 #elif defined(__riscv) 9997 return "riscv"; 9998 #elif defined(__powerpc__) 9999 return "powerpc"; 10000 #elif defined(__powerpc64__) 10001 return "powerpc64"; 10002 #else 10003 return NULL; 10004 #endif 10005 } 10006 10007 static int probe_kern_syscall_wrapper(void) 10008 { 10009 char syscall_name[64]; 10010 const char *ksys_pfx; 10011 10012 ksys_pfx = arch_specific_syscall_pfx(); 10013 if (!ksys_pfx) 10014 return 0; 10015 10016 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10017 10018 if (determine_kprobe_perf_type() >= 0) { 10019 int pfd; 10020 10021 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10022 if (pfd >= 0) 10023 close(pfd); 10024 10025 return pfd >= 0 ? 1 : 0; 10026 } else { /* legacy mode */ 10027 char probe_name[128]; 10028 10029 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10030 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10031 return 0; 10032 10033 (void)remove_kprobe_event_legacy(probe_name, false); 10034 return 1; 10035 } 10036 } 10037 10038 struct bpf_link * 10039 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10040 const char *func_name, 10041 const struct bpf_kprobe_opts *opts) 10042 { 10043 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10044 char errmsg[STRERR_BUFSIZE]; 10045 char *legacy_probe = NULL; 10046 struct bpf_link *link; 10047 size_t offset; 10048 bool retprobe, legacy; 10049 int pfd, err; 10050 10051 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10052 return libbpf_err_ptr(-EINVAL); 10053 10054 retprobe = OPTS_GET(opts, retprobe, false); 10055 offset = OPTS_GET(opts, offset, 0); 10056 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10057 10058 legacy = determine_kprobe_perf_type() < 0; 10059 if (!legacy) { 10060 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10061 func_name, offset, 10062 -1 /* pid */, 0 /* ref_ctr_off */); 10063 } else { 10064 char probe_name[256]; 10065 10066 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10067 func_name, offset); 10068 10069 legacy_probe = strdup(probe_name); 10070 if (!legacy_probe) 10071 return libbpf_err_ptr(-ENOMEM); 10072 10073 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10074 offset, -1 /* pid */); 10075 } 10076 if (pfd < 0) { 10077 err = -errno; 10078 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10079 prog->name, retprobe ? "kretprobe" : "kprobe", 10080 func_name, offset, 10081 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10082 goto err_out; 10083 } 10084 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10085 err = libbpf_get_error(link); 10086 if (err) { 10087 close(pfd); 10088 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10089 prog->name, retprobe ? "kretprobe" : "kprobe", 10090 func_name, offset, 10091 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10092 goto err_clean_legacy; 10093 } 10094 if (legacy) { 10095 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10096 10097 perf_link->legacy_probe_name = legacy_probe; 10098 perf_link->legacy_is_kprobe = true; 10099 perf_link->legacy_is_retprobe = retprobe; 10100 } 10101 10102 return link; 10103 10104 err_clean_legacy: 10105 if (legacy) 10106 remove_kprobe_event_legacy(legacy_probe, retprobe); 10107 err_out: 10108 free(legacy_probe); 10109 return libbpf_err_ptr(err); 10110 } 10111 10112 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10113 bool retprobe, 10114 const char *func_name) 10115 { 10116 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10117 .retprobe = retprobe, 10118 ); 10119 10120 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10121 } 10122 10123 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10124 const char *syscall_name, 10125 const struct bpf_ksyscall_opts *opts) 10126 { 10127 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10128 char func_name[128]; 10129 10130 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10131 return libbpf_err_ptr(-EINVAL); 10132 10133 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10134 /* arch_specific_syscall_pfx() should never return NULL here 10135 * because it is guarded by kernel_supports(). However, since 10136 * compiler does not know that we have an explicit conditional 10137 * as well. 10138 */ 10139 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10140 arch_specific_syscall_pfx() ? : "", syscall_name); 10141 } else { 10142 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10143 } 10144 10145 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10146 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10147 10148 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10149 } 10150 10151 /* Adapted from perf/util/string.c */ 10152 static bool glob_match(const char *str, const char *pat) 10153 { 10154 while (*str && *pat && *pat != '*') { 10155 if (*pat == '?') { /* Matches any single character */ 10156 str++; 10157 pat++; 10158 continue; 10159 } 10160 if (*str != *pat) 10161 return false; 10162 str++; 10163 pat++; 10164 } 10165 /* Check wild card */ 10166 if (*pat == '*') { 10167 while (*pat == '*') 10168 pat++; 10169 if (!*pat) /* Tail wild card matches all */ 10170 return true; 10171 while (*str) 10172 if (glob_match(str++, pat)) 10173 return true; 10174 } 10175 return !*str && !*pat; 10176 } 10177 10178 struct kprobe_multi_resolve { 10179 const char *pattern; 10180 unsigned long *addrs; 10181 size_t cap; 10182 size_t cnt; 10183 }; 10184 10185 static int 10186 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10187 const char *sym_name, void *ctx) 10188 { 10189 struct kprobe_multi_resolve *res = ctx; 10190 int err; 10191 10192 if (!glob_match(sym_name, res->pattern)) 10193 return 0; 10194 10195 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10196 res->cnt + 1); 10197 if (err) 10198 return err; 10199 10200 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10201 return 0; 10202 } 10203 10204 struct bpf_link * 10205 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10206 const char *pattern, 10207 const struct bpf_kprobe_multi_opts *opts) 10208 { 10209 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10210 struct kprobe_multi_resolve res = { 10211 .pattern = pattern, 10212 }; 10213 struct bpf_link *link = NULL; 10214 char errmsg[STRERR_BUFSIZE]; 10215 const unsigned long *addrs; 10216 int err, link_fd, prog_fd; 10217 const __u64 *cookies; 10218 const char **syms; 10219 bool retprobe; 10220 size_t cnt; 10221 10222 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10223 return libbpf_err_ptr(-EINVAL); 10224 10225 syms = OPTS_GET(opts, syms, false); 10226 addrs = OPTS_GET(opts, addrs, false); 10227 cnt = OPTS_GET(opts, cnt, false); 10228 cookies = OPTS_GET(opts, cookies, false); 10229 10230 if (!pattern && !addrs && !syms) 10231 return libbpf_err_ptr(-EINVAL); 10232 if (pattern && (addrs || syms || cookies || cnt)) 10233 return libbpf_err_ptr(-EINVAL); 10234 if (!pattern && !cnt) 10235 return libbpf_err_ptr(-EINVAL); 10236 if (addrs && syms) 10237 return libbpf_err_ptr(-EINVAL); 10238 10239 if (pattern) { 10240 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10241 if (err) 10242 goto error; 10243 if (!res.cnt) { 10244 err = -ENOENT; 10245 goto error; 10246 } 10247 addrs = res.addrs; 10248 cnt = res.cnt; 10249 } 10250 10251 retprobe = OPTS_GET(opts, retprobe, false); 10252 10253 lopts.kprobe_multi.syms = syms; 10254 lopts.kprobe_multi.addrs = addrs; 10255 lopts.kprobe_multi.cookies = cookies; 10256 lopts.kprobe_multi.cnt = cnt; 10257 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10258 10259 link = calloc(1, sizeof(*link)); 10260 if (!link) { 10261 err = -ENOMEM; 10262 goto error; 10263 } 10264 link->detach = &bpf_link__detach_fd; 10265 10266 prog_fd = bpf_program__fd(prog); 10267 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10268 if (link_fd < 0) { 10269 err = -errno; 10270 pr_warn("prog '%s': failed to attach: %s\n", 10271 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10272 goto error; 10273 } 10274 link->fd = link_fd; 10275 free(res.addrs); 10276 return link; 10277 10278 error: 10279 free(link); 10280 free(res.addrs); 10281 return libbpf_err_ptr(err); 10282 } 10283 10284 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10285 { 10286 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10287 unsigned long offset = 0; 10288 const char *func_name; 10289 char *func; 10290 int n; 10291 10292 *link = NULL; 10293 10294 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10295 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10296 return 0; 10297 10298 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10299 if (opts.retprobe) 10300 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10301 else 10302 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10303 10304 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10305 if (n < 1) { 10306 pr_warn("kprobe name is invalid: %s\n", func_name); 10307 return -EINVAL; 10308 } 10309 if (opts.retprobe && offset != 0) { 10310 free(func); 10311 pr_warn("kretprobes do not support offset specification\n"); 10312 return -EINVAL; 10313 } 10314 10315 opts.offset = offset; 10316 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10317 free(func); 10318 return libbpf_get_error(*link); 10319 } 10320 10321 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10322 { 10323 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10324 const char *syscall_name; 10325 10326 *link = NULL; 10327 10328 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10329 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10330 return 0; 10331 10332 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10333 if (opts.retprobe) 10334 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10335 else 10336 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10337 10338 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10339 return *link ? 0 : -errno; 10340 } 10341 10342 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10343 { 10344 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10345 const char *spec; 10346 char *pattern; 10347 int n; 10348 10349 *link = NULL; 10350 10351 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10352 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10353 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10354 return 0; 10355 10356 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10357 if (opts.retprobe) 10358 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10359 else 10360 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10361 10362 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10363 if (n < 1) { 10364 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10365 return -EINVAL; 10366 } 10367 10368 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10369 free(pattern); 10370 return libbpf_get_error(*link); 10371 } 10372 10373 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10374 const char *binary_path, uint64_t offset) 10375 { 10376 int i; 10377 10378 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10379 10380 /* sanitize binary_path in the probe name */ 10381 for (i = 0; buf[i]; i++) { 10382 if (!isalnum(buf[i])) 10383 buf[i] = '_'; 10384 } 10385 } 10386 10387 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10388 const char *binary_path, size_t offset) 10389 { 10390 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10391 retprobe ? 'r' : 'p', 10392 retprobe ? "uretprobes" : "uprobes", 10393 probe_name, binary_path, offset); 10394 } 10395 10396 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10397 { 10398 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10399 retprobe ? "uretprobes" : "uprobes", probe_name); 10400 } 10401 10402 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10403 { 10404 char file[512]; 10405 10406 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10407 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10408 10409 return parse_uint_from_file(file, "%d\n"); 10410 } 10411 10412 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10413 const char *binary_path, size_t offset, int pid) 10414 { 10415 struct perf_event_attr attr; 10416 int type, pfd, err; 10417 10418 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10419 if (err < 0) { 10420 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10421 binary_path, (size_t)offset, err); 10422 return err; 10423 } 10424 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10425 if (type < 0) { 10426 err = type; 10427 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10428 binary_path, offset, err); 10429 goto err_clean_legacy; 10430 } 10431 10432 memset(&attr, 0, sizeof(attr)); 10433 attr.size = sizeof(attr); 10434 attr.config = type; 10435 attr.type = PERF_TYPE_TRACEPOINT; 10436 10437 pfd = syscall(__NR_perf_event_open, &attr, 10438 pid < 0 ? -1 : pid, /* pid */ 10439 pid == -1 ? 0 : -1, /* cpu */ 10440 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10441 if (pfd < 0) { 10442 err = -errno; 10443 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10444 goto err_clean_legacy; 10445 } 10446 return pfd; 10447 10448 err_clean_legacy: 10449 /* Clear the newly added legacy uprobe_event */ 10450 remove_uprobe_event_legacy(probe_name, retprobe); 10451 return err; 10452 } 10453 10454 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10455 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10456 { 10457 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10458 GElf_Shdr sh; 10459 10460 if (!gelf_getshdr(scn, &sh)) 10461 continue; 10462 if (sh.sh_type == sh_type) 10463 return scn; 10464 } 10465 return NULL; 10466 } 10467 10468 /* Find offset of function name in object specified by path. "name" matches 10469 * symbol name or name@@LIB for library functions. 10470 */ 10471 static long elf_find_func_offset(const char *binary_path, const char *name) 10472 { 10473 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10474 bool is_shared_lib, is_name_qualified; 10475 char errmsg[STRERR_BUFSIZE]; 10476 long ret = -ENOENT; 10477 size_t name_len; 10478 GElf_Ehdr ehdr; 10479 Elf *elf; 10480 10481 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10482 if (fd < 0) { 10483 ret = -errno; 10484 pr_warn("failed to open %s: %s\n", binary_path, 10485 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10486 return ret; 10487 } 10488 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10489 if (!elf) { 10490 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10491 close(fd); 10492 return -LIBBPF_ERRNO__FORMAT; 10493 } 10494 if (!gelf_getehdr(elf, &ehdr)) { 10495 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10496 ret = -LIBBPF_ERRNO__FORMAT; 10497 goto out; 10498 } 10499 /* for shared lib case, we do not need to calculate relative offset */ 10500 is_shared_lib = ehdr.e_type == ET_DYN; 10501 10502 name_len = strlen(name); 10503 /* Does name specify "@@LIB"? */ 10504 is_name_qualified = strstr(name, "@@") != NULL; 10505 10506 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10507 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10508 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10509 * reported as a warning/error. 10510 */ 10511 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10512 size_t nr_syms, strtabidx, idx; 10513 Elf_Data *symbols = NULL; 10514 Elf_Scn *scn = NULL; 10515 int last_bind = -1; 10516 const char *sname; 10517 GElf_Shdr sh; 10518 10519 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10520 if (!scn) { 10521 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10522 binary_path); 10523 continue; 10524 } 10525 if (!gelf_getshdr(scn, &sh)) 10526 continue; 10527 strtabidx = sh.sh_link; 10528 symbols = elf_getdata(scn, 0); 10529 if (!symbols) { 10530 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10531 binary_path, elf_errmsg(-1)); 10532 ret = -LIBBPF_ERRNO__FORMAT; 10533 goto out; 10534 } 10535 nr_syms = symbols->d_size / sh.sh_entsize; 10536 10537 for (idx = 0; idx < nr_syms; idx++) { 10538 int curr_bind; 10539 GElf_Sym sym; 10540 Elf_Scn *sym_scn; 10541 GElf_Shdr sym_sh; 10542 10543 if (!gelf_getsym(symbols, idx, &sym)) 10544 continue; 10545 10546 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10547 continue; 10548 10549 sname = elf_strptr(elf, strtabidx, sym.st_name); 10550 if (!sname) 10551 continue; 10552 10553 curr_bind = GELF_ST_BIND(sym.st_info); 10554 10555 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10556 if (strncmp(sname, name, name_len) != 0) 10557 continue; 10558 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10559 * additional characters in sname should be of the form "@@LIB". 10560 */ 10561 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10562 continue; 10563 10564 if (ret >= 0) { 10565 /* handle multiple matches */ 10566 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10567 /* Only accept one non-weak bind. */ 10568 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10569 sname, name, binary_path); 10570 ret = -LIBBPF_ERRNO__FORMAT; 10571 goto out; 10572 } else if (curr_bind == STB_WEAK) { 10573 /* already have a non-weak bind, and 10574 * this is a weak bind, so ignore. 10575 */ 10576 continue; 10577 } 10578 } 10579 10580 /* Transform symbol's virtual address (absolute for 10581 * binaries and relative for shared libs) into file 10582 * offset, which is what kernel is expecting for 10583 * uprobe/uretprobe attachment. 10584 * See Documentation/trace/uprobetracer.rst for more 10585 * details. 10586 * This is done by looking up symbol's containing 10587 * section's header and using it's virtual address 10588 * (sh_addr) and corresponding file offset (sh_offset) 10589 * to transform sym.st_value (virtual address) into 10590 * desired final file offset. 10591 */ 10592 sym_scn = elf_getscn(elf, sym.st_shndx); 10593 if (!sym_scn) 10594 continue; 10595 if (!gelf_getshdr(sym_scn, &sym_sh)) 10596 continue; 10597 10598 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10599 last_bind = curr_bind; 10600 } 10601 if (ret > 0) 10602 break; 10603 } 10604 10605 if (ret > 0) { 10606 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10607 ret); 10608 } else { 10609 if (ret == 0) { 10610 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10611 is_shared_lib ? "should not be 0 in a shared library" : 10612 "try using shared library path instead"); 10613 ret = -ENOENT; 10614 } else { 10615 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10616 } 10617 } 10618 out: 10619 elf_end(elf); 10620 close(fd); 10621 return ret; 10622 } 10623 10624 static const char *arch_specific_lib_paths(void) 10625 { 10626 /* 10627 * Based on https://packages.debian.org/sid/libc6. 10628 * 10629 * Assume that the traced program is built for the same architecture 10630 * as libbpf, which should cover the vast majority of cases. 10631 */ 10632 #if defined(__x86_64__) 10633 return "/lib/x86_64-linux-gnu"; 10634 #elif defined(__i386__) 10635 return "/lib/i386-linux-gnu"; 10636 #elif defined(__s390x__) 10637 return "/lib/s390x-linux-gnu"; 10638 #elif defined(__s390__) 10639 return "/lib/s390-linux-gnu"; 10640 #elif defined(__arm__) && defined(__SOFTFP__) 10641 return "/lib/arm-linux-gnueabi"; 10642 #elif defined(__arm__) && !defined(__SOFTFP__) 10643 return "/lib/arm-linux-gnueabihf"; 10644 #elif defined(__aarch64__) 10645 return "/lib/aarch64-linux-gnu"; 10646 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10647 return "/lib/mips64el-linux-gnuabi64"; 10648 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10649 return "/lib/mipsel-linux-gnu"; 10650 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10651 return "/lib/powerpc64le-linux-gnu"; 10652 #elif defined(__sparc__) && defined(__arch64__) 10653 return "/lib/sparc64-linux-gnu"; 10654 #elif defined(__riscv) && __riscv_xlen == 64 10655 return "/lib/riscv64-linux-gnu"; 10656 #else 10657 return NULL; 10658 #endif 10659 } 10660 10661 /* Get full path to program/shared library. */ 10662 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10663 { 10664 const char *search_paths[3] = {}; 10665 int i; 10666 10667 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10668 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10669 search_paths[1] = "/usr/lib64:/usr/lib"; 10670 search_paths[2] = arch_specific_lib_paths(); 10671 } else { 10672 search_paths[0] = getenv("PATH"); 10673 search_paths[1] = "/usr/bin:/usr/sbin"; 10674 } 10675 10676 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10677 const char *s; 10678 10679 if (!search_paths[i]) 10680 continue; 10681 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10682 char *next_path; 10683 int seg_len; 10684 10685 if (s[0] == ':') 10686 s++; 10687 next_path = strchr(s, ':'); 10688 seg_len = next_path ? next_path - s : strlen(s); 10689 if (!seg_len) 10690 continue; 10691 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10692 /* ensure it is an executable file/link */ 10693 if (access(result, R_OK | X_OK) < 0) 10694 continue; 10695 pr_debug("resolved '%s' to '%s'\n", file, result); 10696 return 0; 10697 } 10698 } 10699 return -ENOENT; 10700 } 10701 10702 LIBBPF_API struct bpf_link * 10703 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10704 const char *binary_path, size_t func_offset, 10705 const struct bpf_uprobe_opts *opts) 10706 { 10707 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10708 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10709 char full_binary_path[PATH_MAX]; 10710 struct bpf_link *link; 10711 size_t ref_ctr_off; 10712 int pfd, err; 10713 bool retprobe, legacy; 10714 const char *func_name; 10715 10716 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10717 return libbpf_err_ptr(-EINVAL); 10718 10719 retprobe = OPTS_GET(opts, retprobe, false); 10720 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10721 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10722 10723 if (!binary_path) 10724 return libbpf_err_ptr(-EINVAL); 10725 10726 if (!strchr(binary_path, '/')) { 10727 err = resolve_full_path(binary_path, full_binary_path, 10728 sizeof(full_binary_path)); 10729 if (err) { 10730 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10731 prog->name, binary_path, err); 10732 return libbpf_err_ptr(err); 10733 } 10734 binary_path = full_binary_path; 10735 } 10736 func_name = OPTS_GET(opts, func_name, NULL); 10737 if (func_name) { 10738 long sym_off; 10739 10740 sym_off = elf_find_func_offset(binary_path, func_name); 10741 if (sym_off < 0) 10742 return libbpf_err_ptr(sym_off); 10743 func_offset += sym_off; 10744 } 10745 10746 legacy = determine_uprobe_perf_type() < 0; 10747 if (!legacy) { 10748 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10749 func_offset, pid, ref_ctr_off); 10750 } else { 10751 char probe_name[PATH_MAX + 64]; 10752 10753 if (ref_ctr_off) 10754 return libbpf_err_ptr(-EINVAL); 10755 10756 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10757 binary_path, func_offset); 10758 10759 legacy_probe = strdup(probe_name); 10760 if (!legacy_probe) 10761 return libbpf_err_ptr(-ENOMEM); 10762 10763 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10764 binary_path, func_offset, pid); 10765 } 10766 if (pfd < 0) { 10767 err = -errno; 10768 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10769 prog->name, retprobe ? "uretprobe" : "uprobe", 10770 binary_path, func_offset, 10771 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10772 goto err_out; 10773 } 10774 10775 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10776 err = libbpf_get_error(link); 10777 if (err) { 10778 close(pfd); 10779 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10780 prog->name, retprobe ? "uretprobe" : "uprobe", 10781 binary_path, func_offset, 10782 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10783 goto err_clean_legacy; 10784 } 10785 if (legacy) { 10786 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10787 10788 perf_link->legacy_probe_name = legacy_probe; 10789 perf_link->legacy_is_kprobe = false; 10790 perf_link->legacy_is_retprobe = retprobe; 10791 } 10792 return link; 10793 10794 err_clean_legacy: 10795 if (legacy) 10796 remove_uprobe_event_legacy(legacy_probe, retprobe); 10797 err_out: 10798 free(legacy_probe); 10799 return libbpf_err_ptr(err); 10800 } 10801 10802 /* Format of u[ret]probe section definition supporting auto-attach: 10803 * u[ret]probe/binary:function[+offset] 10804 * 10805 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10806 * full binary path via bpf_program__attach_uprobe_opts. 10807 * 10808 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10809 * specified (and auto-attach is not possible) or the above format is specified for 10810 * auto-attach. 10811 */ 10812 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10813 { 10814 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10815 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10816 int n, ret = -EINVAL; 10817 long offset = 0; 10818 10819 *link = NULL; 10820 10821 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10822 &probe_type, &binary_path, &func_name, &offset); 10823 switch (n) { 10824 case 1: 10825 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10826 ret = 0; 10827 break; 10828 case 2: 10829 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10830 prog->name, prog->sec_name); 10831 break; 10832 case 3: 10833 case 4: 10834 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10835 strcmp(probe_type, "uretprobe.s") == 0; 10836 if (opts.retprobe && offset != 0) { 10837 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10838 prog->name); 10839 break; 10840 } 10841 opts.func_name = func_name; 10842 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10843 ret = libbpf_get_error(*link); 10844 break; 10845 default: 10846 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10847 prog->sec_name); 10848 break; 10849 } 10850 free(probe_type); 10851 free(binary_path); 10852 free(func_name); 10853 10854 return ret; 10855 } 10856 10857 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10858 bool retprobe, pid_t pid, 10859 const char *binary_path, 10860 size_t func_offset) 10861 { 10862 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10863 10864 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10865 } 10866 10867 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10868 pid_t pid, const char *binary_path, 10869 const char *usdt_provider, const char *usdt_name, 10870 const struct bpf_usdt_opts *opts) 10871 { 10872 char resolved_path[512]; 10873 struct bpf_object *obj = prog->obj; 10874 struct bpf_link *link; 10875 __u64 usdt_cookie; 10876 int err; 10877 10878 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10879 return libbpf_err_ptr(-EINVAL); 10880 10881 if (bpf_program__fd(prog) < 0) { 10882 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10883 prog->name); 10884 return libbpf_err_ptr(-EINVAL); 10885 } 10886 10887 if (!binary_path) 10888 return libbpf_err_ptr(-EINVAL); 10889 10890 if (!strchr(binary_path, '/')) { 10891 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10892 if (err) { 10893 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10894 prog->name, binary_path, err); 10895 return libbpf_err_ptr(err); 10896 } 10897 binary_path = resolved_path; 10898 } 10899 10900 /* USDT manager is instantiated lazily on first USDT attach. It will 10901 * be destroyed together with BPF object in bpf_object__close(). 10902 */ 10903 if (IS_ERR(obj->usdt_man)) 10904 return libbpf_ptr(obj->usdt_man); 10905 if (!obj->usdt_man) { 10906 obj->usdt_man = usdt_manager_new(obj); 10907 if (IS_ERR(obj->usdt_man)) 10908 return libbpf_ptr(obj->usdt_man); 10909 } 10910 10911 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10912 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10913 usdt_provider, usdt_name, usdt_cookie); 10914 err = libbpf_get_error(link); 10915 if (err) 10916 return libbpf_err_ptr(err); 10917 return link; 10918 } 10919 10920 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10921 { 10922 char *path = NULL, *provider = NULL, *name = NULL; 10923 const char *sec_name; 10924 int n, err; 10925 10926 sec_name = bpf_program__section_name(prog); 10927 if (strcmp(sec_name, "usdt") == 0) { 10928 /* no auto-attach for just SEC("usdt") */ 10929 *link = NULL; 10930 return 0; 10931 } 10932 10933 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 10934 if (n != 3) { 10935 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 10936 sec_name); 10937 err = -EINVAL; 10938 } else { 10939 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 10940 provider, name, NULL); 10941 err = libbpf_get_error(*link); 10942 } 10943 free(path); 10944 free(provider); 10945 free(name); 10946 return err; 10947 } 10948 10949 static int determine_tracepoint_id(const char *tp_category, 10950 const char *tp_name) 10951 { 10952 char file[PATH_MAX]; 10953 int ret; 10954 10955 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10956 tracefs_path(), tp_category, tp_name); 10957 if (ret < 0) 10958 return -errno; 10959 if (ret >= sizeof(file)) { 10960 pr_debug("tracepoint %s/%s path is too long\n", 10961 tp_category, tp_name); 10962 return -E2BIG; 10963 } 10964 return parse_uint_from_file(file, "%d\n"); 10965 } 10966 10967 static int perf_event_open_tracepoint(const char *tp_category, 10968 const char *tp_name) 10969 { 10970 struct perf_event_attr attr = {}; 10971 char errmsg[STRERR_BUFSIZE]; 10972 int tp_id, pfd, err; 10973 10974 tp_id = determine_tracepoint_id(tp_category, tp_name); 10975 if (tp_id < 0) { 10976 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10977 tp_category, tp_name, 10978 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10979 return tp_id; 10980 } 10981 10982 attr.type = PERF_TYPE_TRACEPOINT; 10983 attr.size = sizeof(attr); 10984 attr.config = tp_id; 10985 10986 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10987 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10988 if (pfd < 0) { 10989 err = -errno; 10990 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10991 tp_category, tp_name, 10992 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10993 return err; 10994 } 10995 return pfd; 10996 } 10997 10998 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10999 const char *tp_category, 11000 const char *tp_name, 11001 const struct bpf_tracepoint_opts *opts) 11002 { 11003 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11004 char errmsg[STRERR_BUFSIZE]; 11005 struct bpf_link *link; 11006 int pfd, err; 11007 11008 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11009 return libbpf_err_ptr(-EINVAL); 11010 11011 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11012 11013 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11014 if (pfd < 0) { 11015 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11016 prog->name, tp_category, tp_name, 11017 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11018 return libbpf_err_ptr(pfd); 11019 } 11020 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11021 err = libbpf_get_error(link); 11022 if (err) { 11023 close(pfd); 11024 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11025 prog->name, tp_category, tp_name, 11026 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11027 return libbpf_err_ptr(err); 11028 } 11029 return link; 11030 } 11031 11032 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11033 const char *tp_category, 11034 const char *tp_name) 11035 { 11036 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11037 } 11038 11039 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11040 { 11041 char *sec_name, *tp_cat, *tp_name; 11042 11043 *link = NULL; 11044 11045 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11046 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11047 return 0; 11048 11049 sec_name = strdup(prog->sec_name); 11050 if (!sec_name) 11051 return -ENOMEM; 11052 11053 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11054 if (str_has_pfx(prog->sec_name, "tp/")) 11055 tp_cat = sec_name + sizeof("tp/") - 1; 11056 else 11057 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11058 tp_name = strchr(tp_cat, '/'); 11059 if (!tp_name) { 11060 free(sec_name); 11061 return -EINVAL; 11062 } 11063 *tp_name = '\0'; 11064 tp_name++; 11065 11066 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11067 free(sec_name); 11068 return libbpf_get_error(*link); 11069 } 11070 11071 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11072 const char *tp_name) 11073 { 11074 char errmsg[STRERR_BUFSIZE]; 11075 struct bpf_link *link; 11076 int prog_fd, pfd; 11077 11078 prog_fd = bpf_program__fd(prog); 11079 if (prog_fd < 0) { 11080 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11081 return libbpf_err_ptr(-EINVAL); 11082 } 11083 11084 link = calloc(1, sizeof(*link)); 11085 if (!link) 11086 return libbpf_err_ptr(-ENOMEM); 11087 link->detach = &bpf_link__detach_fd; 11088 11089 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11090 if (pfd < 0) { 11091 pfd = -errno; 11092 free(link); 11093 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11094 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11095 return libbpf_err_ptr(pfd); 11096 } 11097 link->fd = pfd; 11098 return link; 11099 } 11100 11101 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11102 { 11103 static const char *const prefixes[] = { 11104 "raw_tp", 11105 "raw_tracepoint", 11106 "raw_tp.w", 11107 "raw_tracepoint.w", 11108 }; 11109 size_t i; 11110 const char *tp_name = NULL; 11111 11112 *link = NULL; 11113 11114 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11115 size_t pfx_len; 11116 11117 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11118 continue; 11119 11120 pfx_len = strlen(prefixes[i]); 11121 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11122 if (prog->sec_name[pfx_len] == '\0') 11123 return 0; 11124 11125 if (prog->sec_name[pfx_len] != '/') 11126 continue; 11127 11128 tp_name = prog->sec_name + pfx_len + 1; 11129 break; 11130 } 11131 11132 if (!tp_name) { 11133 pr_warn("prog '%s': invalid section name '%s'\n", 11134 prog->name, prog->sec_name); 11135 return -EINVAL; 11136 } 11137 11138 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11139 return libbpf_get_error(link); 11140 } 11141 11142 /* Common logic for all BPF program types that attach to a btf_id */ 11143 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11144 const struct bpf_trace_opts *opts) 11145 { 11146 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11147 char errmsg[STRERR_BUFSIZE]; 11148 struct bpf_link *link; 11149 int prog_fd, pfd; 11150 11151 if (!OPTS_VALID(opts, bpf_trace_opts)) 11152 return libbpf_err_ptr(-EINVAL); 11153 11154 prog_fd = bpf_program__fd(prog); 11155 if (prog_fd < 0) { 11156 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11157 return libbpf_err_ptr(-EINVAL); 11158 } 11159 11160 link = calloc(1, sizeof(*link)); 11161 if (!link) 11162 return libbpf_err_ptr(-ENOMEM); 11163 link->detach = &bpf_link__detach_fd; 11164 11165 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11166 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11167 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11168 if (pfd < 0) { 11169 pfd = -errno; 11170 free(link); 11171 pr_warn("prog '%s': failed to attach: %s\n", 11172 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11173 return libbpf_err_ptr(pfd); 11174 } 11175 link->fd = pfd; 11176 return link; 11177 } 11178 11179 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11180 { 11181 return bpf_program__attach_btf_id(prog, NULL); 11182 } 11183 11184 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11185 const struct bpf_trace_opts *opts) 11186 { 11187 return bpf_program__attach_btf_id(prog, opts); 11188 } 11189 11190 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11191 { 11192 return bpf_program__attach_btf_id(prog, NULL); 11193 } 11194 11195 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11196 { 11197 *link = bpf_program__attach_trace(prog); 11198 return libbpf_get_error(*link); 11199 } 11200 11201 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11202 { 11203 *link = bpf_program__attach_lsm(prog); 11204 return libbpf_get_error(*link); 11205 } 11206 11207 static struct bpf_link * 11208 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11209 const char *target_name) 11210 { 11211 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11212 .target_btf_id = btf_id); 11213 enum bpf_attach_type attach_type; 11214 char errmsg[STRERR_BUFSIZE]; 11215 struct bpf_link *link; 11216 int prog_fd, link_fd; 11217 11218 prog_fd = bpf_program__fd(prog); 11219 if (prog_fd < 0) { 11220 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11221 return libbpf_err_ptr(-EINVAL); 11222 } 11223 11224 link = calloc(1, sizeof(*link)); 11225 if (!link) 11226 return libbpf_err_ptr(-ENOMEM); 11227 link->detach = &bpf_link__detach_fd; 11228 11229 attach_type = bpf_program__expected_attach_type(prog); 11230 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11231 if (link_fd < 0) { 11232 link_fd = -errno; 11233 free(link); 11234 pr_warn("prog '%s': failed to attach to %s: %s\n", 11235 prog->name, target_name, 11236 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11237 return libbpf_err_ptr(link_fd); 11238 } 11239 link->fd = link_fd; 11240 return link; 11241 } 11242 11243 struct bpf_link * 11244 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11245 { 11246 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11247 } 11248 11249 struct bpf_link * 11250 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11251 { 11252 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11253 } 11254 11255 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11256 { 11257 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11258 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11259 } 11260 11261 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11262 int target_fd, 11263 const char *attach_func_name) 11264 { 11265 int btf_id; 11266 11267 if (!!target_fd != !!attach_func_name) { 11268 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11269 prog->name); 11270 return libbpf_err_ptr(-EINVAL); 11271 } 11272 11273 if (prog->type != BPF_PROG_TYPE_EXT) { 11274 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11275 prog->name); 11276 return libbpf_err_ptr(-EINVAL); 11277 } 11278 11279 if (target_fd) { 11280 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11281 if (btf_id < 0) 11282 return libbpf_err_ptr(btf_id); 11283 11284 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11285 } else { 11286 /* no target, so use raw_tracepoint_open for compatibility 11287 * with old kernels 11288 */ 11289 return bpf_program__attach_trace(prog); 11290 } 11291 } 11292 11293 struct bpf_link * 11294 bpf_program__attach_iter(const struct bpf_program *prog, 11295 const struct bpf_iter_attach_opts *opts) 11296 { 11297 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11298 char errmsg[STRERR_BUFSIZE]; 11299 struct bpf_link *link; 11300 int prog_fd, link_fd; 11301 __u32 target_fd = 0; 11302 11303 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11304 return libbpf_err_ptr(-EINVAL); 11305 11306 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11307 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11308 11309 prog_fd = bpf_program__fd(prog); 11310 if (prog_fd < 0) { 11311 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11312 return libbpf_err_ptr(-EINVAL); 11313 } 11314 11315 link = calloc(1, sizeof(*link)); 11316 if (!link) 11317 return libbpf_err_ptr(-ENOMEM); 11318 link->detach = &bpf_link__detach_fd; 11319 11320 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11321 &link_create_opts); 11322 if (link_fd < 0) { 11323 link_fd = -errno; 11324 free(link); 11325 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11326 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11327 return libbpf_err_ptr(link_fd); 11328 } 11329 link->fd = link_fd; 11330 return link; 11331 } 11332 11333 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11334 { 11335 *link = bpf_program__attach_iter(prog, NULL); 11336 return libbpf_get_error(*link); 11337 } 11338 11339 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11340 { 11341 struct bpf_link *link = NULL; 11342 int err; 11343 11344 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11345 return libbpf_err_ptr(-EOPNOTSUPP); 11346 11347 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11348 if (err) 11349 return libbpf_err_ptr(err); 11350 11351 /* When calling bpf_program__attach() explicitly, auto-attach support 11352 * is expected to work, so NULL returned link is considered an error. 11353 * This is different for skeleton's attach, see comment in 11354 * bpf_object__attach_skeleton(). 11355 */ 11356 if (!link) 11357 return libbpf_err_ptr(-EOPNOTSUPP); 11358 11359 return link; 11360 } 11361 11362 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11363 { 11364 __u32 zero = 0; 11365 11366 if (bpf_map_delete_elem(link->fd, &zero)) 11367 return -errno; 11368 11369 return 0; 11370 } 11371 11372 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11373 { 11374 struct bpf_struct_ops *st_ops; 11375 struct bpf_link *link; 11376 __u32 i, zero = 0; 11377 int err; 11378 11379 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11380 return libbpf_err_ptr(-EINVAL); 11381 11382 link = calloc(1, sizeof(*link)); 11383 if (!link) 11384 return libbpf_err_ptr(-EINVAL); 11385 11386 st_ops = map->st_ops; 11387 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11388 struct bpf_program *prog = st_ops->progs[i]; 11389 void *kern_data; 11390 int prog_fd; 11391 11392 if (!prog) 11393 continue; 11394 11395 prog_fd = bpf_program__fd(prog); 11396 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11397 *(unsigned long *)kern_data = prog_fd; 11398 } 11399 11400 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11401 if (err) { 11402 err = -errno; 11403 free(link); 11404 return libbpf_err_ptr(err); 11405 } 11406 11407 link->detach = bpf_link__detach_struct_ops; 11408 link->fd = map->fd; 11409 11410 return link; 11411 } 11412 11413 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11414 void *private_data); 11415 11416 static enum bpf_perf_event_ret 11417 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11418 void **copy_mem, size_t *copy_size, 11419 bpf_perf_event_print_t fn, void *private_data) 11420 { 11421 struct perf_event_mmap_page *header = mmap_mem; 11422 __u64 data_head = ring_buffer_read_head(header); 11423 __u64 data_tail = header->data_tail; 11424 void *base = ((__u8 *)header) + page_size; 11425 int ret = LIBBPF_PERF_EVENT_CONT; 11426 struct perf_event_header *ehdr; 11427 size_t ehdr_size; 11428 11429 while (data_head != data_tail) { 11430 ehdr = base + (data_tail & (mmap_size - 1)); 11431 ehdr_size = ehdr->size; 11432 11433 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11434 void *copy_start = ehdr; 11435 size_t len_first = base + mmap_size - copy_start; 11436 size_t len_secnd = ehdr_size - len_first; 11437 11438 if (*copy_size < ehdr_size) { 11439 free(*copy_mem); 11440 *copy_mem = malloc(ehdr_size); 11441 if (!*copy_mem) { 11442 *copy_size = 0; 11443 ret = LIBBPF_PERF_EVENT_ERROR; 11444 break; 11445 } 11446 *copy_size = ehdr_size; 11447 } 11448 11449 memcpy(*copy_mem, copy_start, len_first); 11450 memcpy(*copy_mem + len_first, base, len_secnd); 11451 ehdr = *copy_mem; 11452 } 11453 11454 ret = fn(ehdr, private_data); 11455 data_tail += ehdr_size; 11456 if (ret != LIBBPF_PERF_EVENT_CONT) 11457 break; 11458 } 11459 11460 ring_buffer_write_tail(header, data_tail); 11461 return libbpf_err(ret); 11462 } 11463 11464 struct perf_buffer; 11465 11466 struct perf_buffer_params { 11467 struct perf_event_attr *attr; 11468 /* if event_cb is specified, it takes precendence */ 11469 perf_buffer_event_fn event_cb; 11470 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11471 perf_buffer_sample_fn sample_cb; 11472 perf_buffer_lost_fn lost_cb; 11473 void *ctx; 11474 int cpu_cnt; 11475 int *cpus; 11476 int *map_keys; 11477 }; 11478 11479 struct perf_cpu_buf { 11480 struct perf_buffer *pb; 11481 void *base; /* mmap()'ed memory */ 11482 void *buf; /* for reconstructing segmented data */ 11483 size_t buf_size; 11484 int fd; 11485 int cpu; 11486 int map_key; 11487 }; 11488 11489 struct perf_buffer { 11490 perf_buffer_event_fn event_cb; 11491 perf_buffer_sample_fn sample_cb; 11492 perf_buffer_lost_fn lost_cb; 11493 void *ctx; /* passed into callbacks */ 11494 11495 size_t page_size; 11496 size_t mmap_size; 11497 struct perf_cpu_buf **cpu_bufs; 11498 struct epoll_event *events; 11499 int cpu_cnt; /* number of allocated CPU buffers */ 11500 int epoll_fd; /* perf event FD */ 11501 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11502 }; 11503 11504 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11505 struct perf_cpu_buf *cpu_buf) 11506 { 11507 if (!cpu_buf) 11508 return; 11509 if (cpu_buf->base && 11510 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11511 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11512 if (cpu_buf->fd >= 0) { 11513 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11514 close(cpu_buf->fd); 11515 } 11516 free(cpu_buf->buf); 11517 free(cpu_buf); 11518 } 11519 11520 void perf_buffer__free(struct perf_buffer *pb) 11521 { 11522 int i; 11523 11524 if (IS_ERR_OR_NULL(pb)) 11525 return; 11526 if (pb->cpu_bufs) { 11527 for (i = 0; i < pb->cpu_cnt; i++) { 11528 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11529 11530 if (!cpu_buf) 11531 continue; 11532 11533 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11534 perf_buffer__free_cpu_buf(pb, cpu_buf); 11535 } 11536 free(pb->cpu_bufs); 11537 } 11538 if (pb->epoll_fd >= 0) 11539 close(pb->epoll_fd); 11540 free(pb->events); 11541 free(pb); 11542 } 11543 11544 static struct perf_cpu_buf * 11545 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11546 int cpu, int map_key) 11547 { 11548 struct perf_cpu_buf *cpu_buf; 11549 char msg[STRERR_BUFSIZE]; 11550 int err; 11551 11552 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11553 if (!cpu_buf) 11554 return ERR_PTR(-ENOMEM); 11555 11556 cpu_buf->pb = pb; 11557 cpu_buf->cpu = cpu; 11558 cpu_buf->map_key = map_key; 11559 11560 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11561 -1, PERF_FLAG_FD_CLOEXEC); 11562 if (cpu_buf->fd < 0) { 11563 err = -errno; 11564 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11565 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11566 goto error; 11567 } 11568 11569 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11570 PROT_READ | PROT_WRITE, MAP_SHARED, 11571 cpu_buf->fd, 0); 11572 if (cpu_buf->base == MAP_FAILED) { 11573 cpu_buf->base = NULL; 11574 err = -errno; 11575 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11576 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11577 goto error; 11578 } 11579 11580 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11581 err = -errno; 11582 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11583 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11584 goto error; 11585 } 11586 11587 return cpu_buf; 11588 11589 error: 11590 perf_buffer__free_cpu_buf(pb, cpu_buf); 11591 return (struct perf_cpu_buf *)ERR_PTR(err); 11592 } 11593 11594 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11595 struct perf_buffer_params *p); 11596 11597 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11598 perf_buffer_sample_fn sample_cb, 11599 perf_buffer_lost_fn lost_cb, 11600 void *ctx, 11601 const struct perf_buffer_opts *opts) 11602 { 11603 struct perf_buffer_params p = {}; 11604 struct perf_event_attr attr = {}; 11605 11606 if (!OPTS_VALID(opts, perf_buffer_opts)) 11607 return libbpf_err_ptr(-EINVAL); 11608 11609 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11610 attr.type = PERF_TYPE_SOFTWARE; 11611 attr.sample_type = PERF_SAMPLE_RAW; 11612 attr.sample_period = 1; 11613 attr.wakeup_events = 1; 11614 11615 p.attr = &attr; 11616 p.sample_cb = sample_cb; 11617 p.lost_cb = lost_cb; 11618 p.ctx = ctx; 11619 11620 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11621 } 11622 11623 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11624 struct perf_event_attr *attr, 11625 perf_buffer_event_fn event_cb, void *ctx, 11626 const struct perf_buffer_raw_opts *opts) 11627 { 11628 struct perf_buffer_params p = {}; 11629 11630 if (!attr) 11631 return libbpf_err_ptr(-EINVAL); 11632 11633 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11634 return libbpf_err_ptr(-EINVAL); 11635 11636 p.attr = attr; 11637 p.event_cb = event_cb; 11638 p.ctx = ctx; 11639 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11640 p.cpus = OPTS_GET(opts, cpus, NULL); 11641 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11642 11643 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11644 } 11645 11646 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11647 struct perf_buffer_params *p) 11648 { 11649 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11650 struct bpf_map_info map; 11651 char msg[STRERR_BUFSIZE]; 11652 struct perf_buffer *pb; 11653 bool *online = NULL; 11654 __u32 map_info_len; 11655 int err, i, j, n; 11656 11657 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11658 pr_warn("page count should be power of two, but is %zu\n", 11659 page_cnt); 11660 return ERR_PTR(-EINVAL); 11661 } 11662 11663 /* best-effort sanity checks */ 11664 memset(&map, 0, sizeof(map)); 11665 map_info_len = sizeof(map); 11666 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11667 if (err) { 11668 err = -errno; 11669 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11670 * -EBADFD, -EFAULT, or -E2BIG on real error 11671 */ 11672 if (err != -EINVAL) { 11673 pr_warn("failed to get map info for map FD %d: %s\n", 11674 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11675 return ERR_PTR(err); 11676 } 11677 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11678 map_fd); 11679 } else { 11680 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11681 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11682 map.name); 11683 return ERR_PTR(-EINVAL); 11684 } 11685 } 11686 11687 pb = calloc(1, sizeof(*pb)); 11688 if (!pb) 11689 return ERR_PTR(-ENOMEM); 11690 11691 pb->event_cb = p->event_cb; 11692 pb->sample_cb = p->sample_cb; 11693 pb->lost_cb = p->lost_cb; 11694 pb->ctx = p->ctx; 11695 11696 pb->page_size = getpagesize(); 11697 pb->mmap_size = pb->page_size * page_cnt; 11698 pb->map_fd = map_fd; 11699 11700 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11701 if (pb->epoll_fd < 0) { 11702 err = -errno; 11703 pr_warn("failed to create epoll instance: %s\n", 11704 libbpf_strerror_r(err, msg, sizeof(msg))); 11705 goto error; 11706 } 11707 11708 if (p->cpu_cnt > 0) { 11709 pb->cpu_cnt = p->cpu_cnt; 11710 } else { 11711 pb->cpu_cnt = libbpf_num_possible_cpus(); 11712 if (pb->cpu_cnt < 0) { 11713 err = pb->cpu_cnt; 11714 goto error; 11715 } 11716 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11717 pb->cpu_cnt = map.max_entries; 11718 } 11719 11720 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11721 if (!pb->events) { 11722 err = -ENOMEM; 11723 pr_warn("failed to allocate events: out of memory\n"); 11724 goto error; 11725 } 11726 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11727 if (!pb->cpu_bufs) { 11728 err = -ENOMEM; 11729 pr_warn("failed to allocate buffers: out of memory\n"); 11730 goto error; 11731 } 11732 11733 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11734 if (err) { 11735 pr_warn("failed to get online CPU mask: %d\n", err); 11736 goto error; 11737 } 11738 11739 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11740 struct perf_cpu_buf *cpu_buf; 11741 int cpu, map_key; 11742 11743 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11744 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11745 11746 /* in case user didn't explicitly requested particular CPUs to 11747 * be attached to, skip offline/not present CPUs 11748 */ 11749 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11750 continue; 11751 11752 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11753 if (IS_ERR(cpu_buf)) { 11754 err = PTR_ERR(cpu_buf); 11755 goto error; 11756 } 11757 11758 pb->cpu_bufs[j] = cpu_buf; 11759 11760 err = bpf_map_update_elem(pb->map_fd, &map_key, 11761 &cpu_buf->fd, 0); 11762 if (err) { 11763 err = -errno; 11764 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11765 cpu, map_key, cpu_buf->fd, 11766 libbpf_strerror_r(err, msg, sizeof(msg))); 11767 goto error; 11768 } 11769 11770 pb->events[j].events = EPOLLIN; 11771 pb->events[j].data.ptr = cpu_buf; 11772 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11773 &pb->events[j]) < 0) { 11774 err = -errno; 11775 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11776 cpu, cpu_buf->fd, 11777 libbpf_strerror_r(err, msg, sizeof(msg))); 11778 goto error; 11779 } 11780 j++; 11781 } 11782 pb->cpu_cnt = j; 11783 free(online); 11784 11785 return pb; 11786 11787 error: 11788 free(online); 11789 if (pb) 11790 perf_buffer__free(pb); 11791 return ERR_PTR(err); 11792 } 11793 11794 struct perf_sample_raw { 11795 struct perf_event_header header; 11796 uint32_t size; 11797 char data[]; 11798 }; 11799 11800 struct perf_sample_lost { 11801 struct perf_event_header header; 11802 uint64_t id; 11803 uint64_t lost; 11804 uint64_t sample_id; 11805 }; 11806 11807 static enum bpf_perf_event_ret 11808 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11809 { 11810 struct perf_cpu_buf *cpu_buf = ctx; 11811 struct perf_buffer *pb = cpu_buf->pb; 11812 void *data = e; 11813 11814 /* user wants full control over parsing perf event */ 11815 if (pb->event_cb) 11816 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11817 11818 switch (e->type) { 11819 case PERF_RECORD_SAMPLE: { 11820 struct perf_sample_raw *s = data; 11821 11822 if (pb->sample_cb) 11823 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11824 break; 11825 } 11826 case PERF_RECORD_LOST: { 11827 struct perf_sample_lost *s = data; 11828 11829 if (pb->lost_cb) 11830 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11831 break; 11832 } 11833 default: 11834 pr_warn("unknown perf sample type %d\n", e->type); 11835 return LIBBPF_PERF_EVENT_ERROR; 11836 } 11837 return LIBBPF_PERF_EVENT_CONT; 11838 } 11839 11840 static int perf_buffer__process_records(struct perf_buffer *pb, 11841 struct perf_cpu_buf *cpu_buf) 11842 { 11843 enum bpf_perf_event_ret ret; 11844 11845 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11846 pb->page_size, &cpu_buf->buf, 11847 &cpu_buf->buf_size, 11848 perf_buffer__process_record, cpu_buf); 11849 if (ret != LIBBPF_PERF_EVENT_CONT) 11850 return ret; 11851 return 0; 11852 } 11853 11854 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11855 { 11856 return pb->epoll_fd; 11857 } 11858 11859 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11860 { 11861 int i, cnt, err; 11862 11863 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11864 if (cnt < 0) 11865 return -errno; 11866 11867 for (i = 0; i < cnt; i++) { 11868 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11869 11870 err = perf_buffer__process_records(pb, cpu_buf); 11871 if (err) { 11872 pr_warn("error while processing records: %d\n", err); 11873 return libbpf_err(err); 11874 } 11875 } 11876 return cnt; 11877 } 11878 11879 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11880 * manager. 11881 */ 11882 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11883 { 11884 return pb->cpu_cnt; 11885 } 11886 11887 /* 11888 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11889 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11890 * select()/poll()/epoll() Linux syscalls. 11891 */ 11892 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11893 { 11894 struct perf_cpu_buf *cpu_buf; 11895 11896 if (buf_idx >= pb->cpu_cnt) 11897 return libbpf_err(-EINVAL); 11898 11899 cpu_buf = pb->cpu_bufs[buf_idx]; 11900 if (!cpu_buf) 11901 return libbpf_err(-ENOENT); 11902 11903 return cpu_buf->fd; 11904 } 11905 11906 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 11907 { 11908 struct perf_cpu_buf *cpu_buf; 11909 11910 if (buf_idx >= pb->cpu_cnt) 11911 return libbpf_err(-EINVAL); 11912 11913 cpu_buf = pb->cpu_bufs[buf_idx]; 11914 if (!cpu_buf) 11915 return libbpf_err(-ENOENT); 11916 11917 *buf = cpu_buf->base; 11918 *buf_size = pb->mmap_size; 11919 return 0; 11920 } 11921 11922 /* 11923 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11924 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11925 * consume, do nothing and return success. 11926 * Returns: 11927 * - 0 on success; 11928 * - <0 on failure. 11929 */ 11930 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11931 { 11932 struct perf_cpu_buf *cpu_buf; 11933 11934 if (buf_idx >= pb->cpu_cnt) 11935 return libbpf_err(-EINVAL); 11936 11937 cpu_buf = pb->cpu_bufs[buf_idx]; 11938 if (!cpu_buf) 11939 return libbpf_err(-ENOENT); 11940 11941 return perf_buffer__process_records(pb, cpu_buf); 11942 } 11943 11944 int perf_buffer__consume(struct perf_buffer *pb) 11945 { 11946 int i, err; 11947 11948 for (i = 0; i < pb->cpu_cnt; i++) { 11949 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11950 11951 if (!cpu_buf) 11952 continue; 11953 11954 err = perf_buffer__process_records(pb, cpu_buf); 11955 if (err) { 11956 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11957 return libbpf_err(err); 11958 } 11959 } 11960 return 0; 11961 } 11962 11963 int bpf_program__set_attach_target(struct bpf_program *prog, 11964 int attach_prog_fd, 11965 const char *attach_func_name) 11966 { 11967 int btf_obj_fd = 0, btf_id = 0, err; 11968 11969 if (!prog || attach_prog_fd < 0) 11970 return libbpf_err(-EINVAL); 11971 11972 if (prog->obj->loaded) 11973 return libbpf_err(-EINVAL); 11974 11975 if (attach_prog_fd && !attach_func_name) { 11976 /* remember attach_prog_fd and let bpf_program__load() find 11977 * BTF ID during the program load 11978 */ 11979 prog->attach_prog_fd = attach_prog_fd; 11980 return 0; 11981 } 11982 11983 if (attach_prog_fd) { 11984 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11985 attach_prog_fd); 11986 if (btf_id < 0) 11987 return libbpf_err(btf_id); 11988 } else { 11989 if (!attach_func_name) 11990 return libbpf_err(-EINVAL); 11991 11992 /* load btf_vmlinux, if not yet */ 11993 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11994 if (err) 11995 return libbpf_err(err); 11996 err = find_kernel_btf_id(prog->obj, attach_func_name, 11997 prog->expected_attach_type, 11998 &btf_obj_fd, &btf_id); 11999 if (err) 12000 return libbpf_err(err); 12001 } 12002 12003 prog->attach_btf_id = btf_id; 12004 prog->attach_btf_obj_fd = btf_obj_fd; 12005 prog->attach_prog_fd = attach_prog_fd; 12006 return 0; 12007 } 12008 12009 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12010 { 12011 int err = 0, n, len, start, end = -1; 12012 bool *tmp; 12013 12014 *mask = NULL; 12015 *mask_sz = 0; 12016 12017 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12018 while (*s) { 12019 if (*s == ',' || *s == '\n') { 12020 s++; 12021 continue; 12022 } 12023 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12024 if (n <= 0 || n > 2) { 12025 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12026 err = -EINVAL; 12027 goto cleanup; 12028 } else if (n == 1) { 12029 end = start; 12030 } 12031 if (start < 0 || start > end) { 12032 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12033 start, end, s); 12034 err = -EINVAL; 12035 goto cleanup; 12036 } 12037 tmp = realloc(*mask, end + 1); 12038 if (!tmp) { 12039 err = -ENOMEM; 12040 goto cleanup; 12041 } 12042 *mask = tmp; 12043 memset(tmp + *mask_sz, 0, start - *mask_sz); 12044 memset(tmp + start, 1, end - start + 1); 12045 *mask_sz = end + 1; 12046 s += len; 12047 } 12048 if (!*mask_sz) { 12049 pr_warn("Empty CPU range\n"); 12050 return -EINVAL; 12051 } 12052 return 0; 12053 cleanup: 12054 free(*mask); 12055 *mask = NULL; 12056 return err; 12057 } 12058 12059 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12060 { 12061 int fd, err = 0, len; 12062 char buf[128]; 12063 12064 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12065 if (fd < 0) { 12066 err = -errno; 12067 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12068 return err; 12069 } 12070 len = read(fd, buf, sizeof(buf)); 12071 close(fd); 12072 if (len <= 0) { 12073 err = len ? -errno : -EINVAL; 12074 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12075 return err; 12076 } 12077 if (len >= sizeof(buf)) { 12078 pr_warn("CPU mask is too big in file %s\n", fcpu); 12079 return -E2BIG; 12080 } 12081 buf[len] = '\0'; 12082 12083 return parse_cpu_mask_str(buf, mask, mask_sz); 12084 } 12085 12086 int libbpf_num_possible_cpus(void) 12087 { 12088 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12089 static int cpus; 12090 int err, n, i, tmp_cpus; 12091 bool *mask; 12092 12093 tmp_cpus = READ_ONCE(cpus); 12094 if (tmp_cpus > 0) 12095 return tmp_cpus; 12096 12097 err = parse_cpu_mask_file(fcpu, &mask, &n); 12098 if (err) 12099 return libbpf_err(err); 12100 12101 tmp_cpus = 0; 12102 for (i = 0; i < n; i++) { 12103 if (mask[i]) 12104 tmp_cpus++; 12105 } 12106 free(mask); 12107 12108 WRITE_ONCE(cpus, tmp_cpus); 12109 return tmp_cpus; 12110 } 12111 12112 static int populate_skeleton_maps(const struct bpf_object *obj, 12113 struct bpf_map_skeleton *maps, 12114 size_t map_cnt) 12115 { 12116 int i; 12117 12118 for (i = 0; i < map_cnt; i++) { 12119 struct bpf_map **map = maps[i].map; 12120 const char *name = maps[i].name; 12121 void **mmaped = maps[i].mmaped; 12122 12123 *map = bpf_object__find_map_by_name(obj, name); 12124 if (!*map) { 12125 pr_warn("failed to find skeleton map '%s'\n", name); 12126 return -ESRCH; 12127 } 12128 12129 /* externs shouldn't be pre-setup from user code */ 12130 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12131 *mmaped = (*map)->mmaped; 12132 } 12133 return 0; 12134 } 12135 12136 static int populate_skeleton_progs(const struct bpf_object *obj, 12137 struct bpf_prog_skeleton *progs, 12138 size_t prog_cnt) 12139 { 12140 int i; 12141 12142 for (i = 0; i < prog_cnt; i++) { 12143 struct bpf_program **prog = progs[i].prog; 12144 const char *name = progs[i].name; 12145 12146 *prog = bpf_object__find_program_by_name(obj, name); 12147 if (!*prog) { 12148 pr_warn("failed to find skeleton program '%s'\n", name); 12149 return -ESRCH; 12150 } 12151 } 12152 return 0; 12153 } 12154 12155 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12156 const struct bpf_object_open_opts *opts) 12157 { 12158 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12159 .object_name = s->name, 12160 ); 12161 struct bpf_object *obj; 12162 int err; 12163 12164 /* Attempt to preserve opts->object_name, unless overriden by user 12165 * explicitly. Overwriting object name for skeletons is discouraged, 12166 * as it breaks global data maps, because they contain object name 12167 * prefix as their own map name prefix. When skeleton is generated, 12168 * bpftool is making an assumption that this name will stay the same. 12169 */ 12170 if (opts) { 12171 memcpy(&skel_opts, opts, sizeof(*opts)); 12172 if (!opts->object_name) 12173 skel_opts.object_name = s->name; 12174 } 12175 12176 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12177 err = libbpf_get_error(obj); 12178 if (err) { 12179 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12180 s->name, err); 12181 return libbpf_err(err); 12182 } 12183 12184 *s->obj = obj; 12185 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12186 if (err) { 12187 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12188 return libbpf_err(err); 12189 } 12190 12191 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12192 if (err) { 12193 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12194 return libbpf_err(err); 12195 } 12196 12197 return 0; 12198 } 12199 12200 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12201 { 12202 int err, len, var_idx, i; 12203 const char *var_name; 12204 const struct bpf_map *map; 12205 struct btf *btf; 12206 __u32 map_type_id; 12207 const struct btf_type *map_type, *var_type; 12208 const struct bpf_var_skeleton *var_skel; 12209 struct btf_var_secinfo *var; 12210 12211 if (!s->obj) 12212 return libbpf_err(-EINVAL); 12213 12214 btf = bpf_object__btf(s->obj); 12215 if (!btf) { 12216 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12217 bpf_object__name(s->obj)); 12218 return libbpf_err(-errno); 12219 } 12220 12221 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12222 if (err) { 12223 pr_warn("failed to populate subskeleton maps: %d\n", err); 12224 return libbpf_err(err); 12225 } 12226 12227 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12228 if (err) { 12229 pr_warn("failed to populate subskeleton maps: %d\n", err); 12230 return libbpf_err(err); 12231 } 12232 12233 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12234 var_skel = &s->vars[var_idx]; 12235 map = *var_skel->map; 12236 map_type_id = bpf_map__btf_value_type_id(map); 12237 map_type = btf__type_by_id(btf, map_type_id); 12238 12239 if (!btf_is_datasec(map_type)) { 12240 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12241 bpf_map__name(map), 12242 __btf_kind_str(btf_kind(map_type))); 12243 return libbpf_err(-EINVAL); 12244 } 12245 12246 len = btf_vlen(map_type); 12247 var = btf_var_secinfos(map_type); 12248 for (i = 0; i < len; i++, var++) { 12249 var_type = btf__type_by_id(btf, var->type); 12250 var_name = btf__name_by_offset(btf, var_type->name_off); 12251 if (strcmp(var_name, var_skel->name) == 0) { 12252 *var_skel->addr = map->mmaped + var->offset; 12253 break; 12254 } 12255 } 12256 } 12257 return 0; 12258 } 12259 12260 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12261 { 12262 if (!s) 12263 return; 12264 free(s->maps); 12265 free(s->progs); 12266 free(s->vars); 12267 free(s); 12268 } 12269 12270 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12271 { 12272 int i, err; 12273 12274 err = bpf_object__load(*s->obj); 12275 if (err) { 12276 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12277 return libbpf_err(err); 12278 } 12279 12280 for (i = 0; i < s->map_cnt; i++) { 12281 struct bpf_map *map = *s->maps[i].map; 12282 size_t mmap_sz = bpf_map_mmap_sz(map); 12283 int prot, map_fd = bpf_map__fd(map); 12284 void **mmaped = s->maps[i].mmaped; 12285 12286 if (!mmaped) 12287 continue; 12288 12289 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12290 *mmaped = NULL; 12291 continue; 12292 } 12293 12294 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12295 prot = PROT_READ; 12296 else 12297 prot = PROT_READ | PROT_WRITE; 12298 12299 /* Remap anonymous mmap()-ed "map initialization image" as 12300 * a BPF map-backed mmap()-ed memory, but preserving the same 12301 * memory address. This will cause kernel to change process' 12302 * page table to point to a different piece of kernel memory, 12303 * but from userspace point of view memory address (and its 12304 * contents, being identical at this point) will stay the 12305 * same. This mapping will be released by bpf_object__close() 12306 * as per normal clean up procedure, so we don't need to worry 12307 * about it from skeleton's clean up perspective. 12308 */ 12309 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12310 MAP_SHARED | MAP_FIXED, map_fd, 0); 12311 if (*mmaped == MAP_FAILED) { 12312 err = -errno; 12313 *mmaped = NULL; 12314 pr_warn("failed to re-mmap() map '%s': %d\n", 12315 bpf_map__name(map), err); 12316 return libbpf_err(err); 12317 } 12318 } 12319 12320 return 0; 12321 } 12322 12323 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12324 { 12325 int i, err; 12326 12327 for (i = 0; i < s->prog_cnt; i++) { 12328 struct bpf_program *prog = *s->progs[i].prog; 12329 struct bpf_link **link = s->progs[i].link; 12330 12331 if (!prog->autoload) 12332 continue; 12333 12334 /* auto-attaching not supported for this program */ 12335 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12336 continue; 12337 12338 /* if user already set the link manually, don't attempt auto-attach */ 12339 if (*link) 12340 continue; 12341 12342 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12343 if (err) { 12344 pr_warn("prog '%s': failed to auto-attach: %d\n", 12345 bpf_program__name(prog), err); 12346 return libbpf_err(err); 12347 } 12348 12349 /* It's possible that for some SEC() definitions auto-attach 12350 * is supported in some cases (e.g., if definition completely 12351 * specifies target information), but is not in other cases. 12352 * SEC("uprobe") is one such case. If user specified target 12353 * binary and function name, such BPF program can be 12354 * auto-attached. But if not, it shouldn't trigger skeleton's 12355 * attach to fail. It should just be skipped. 12356 * attach_fn signals such case with returning 0 (no error) and 12357 * setting link to NULL. 12358 */ 12359 } 12360 12361 return 0; 12362 } 12363 12364 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12365 { 12366 int i; 12367 12368 for (i = 0; i < s->prog_cnt; i++) { 12369 struct bpf_link **link = s->progs[i].link; 12370 12371 bpf_link__destroy(*link); 12372 *link = NULL; 12373 } 12374 } 12375 12376 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12377 { 12378 if (!s) 12379 return; 12380 12381 if (s->progs) 12382 bpf_object__detach_skeleton(s); 12383 if (s->obj) 12384 bpf_object__close(*s->obj); 12385 free(s->maps); 12386 free(s->progs); 12387 free(s); 12388 } 12389