1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define MAX_EVENT_NAME_LEN 64 64 65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 66 67 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 78 static int map_set_def_max_entries(struct bpf_map *map); 79 80 static const char * const attach_type_name[] = { 81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 86 [BPF_CGROUP_DEVICE] = "cgroup_device", 87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 113 [BPF_LIRC_MODE2] = "lirc_mode2", 114 [BPF_FLOW_DISSECTOR] = "flow_dissector", 115 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 116 [BPF_TRACE_FENTRY] = "trace_fentry", 117 [BPF_TRACE_FEXIT] = "trace_fexit", 118 [BPF_MODIFY_RETURN] = "modify_return", 119 [BPF_LSM_MAC] = "lsm_mac", 120 [BPF_LSM_CGROUP] = "lsm_cgroup", 121 [BPF_SK_LOOKUP] = "sk_lookup", 122 [BPF_TRACE_ITER] = "trace_iter", 123 [BPF_XDP_DEVMAP] = "xdp_devmap", 124 [BPF_XDP_CPUMAP] = "xdp_cpumap", 125 [BPF_XDP] = "xdp", 126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 128 [BPF_PERF_EVENT] = "perf_event", 129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 130 [BPF_STRUCT_OPS] = "struct_ops", 131 [BPF_NETFILTER] = "netfilter", 132 [BPF_TCX_INGRESS] = "tcx_ingress", 133 [BPF_TCX_EGRESS] = "tcx_egress", 134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 135 [BPF_NETKIT_PRIMARY] = "netkit_primary", 136 [BPF_NETKIT_PEER] = "netkit_peer", 137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 139 }; 140 141 static const char * const link_type_name[] = { 142 [BPF_LINK_TYPE_UNSPEC] = "unspec", 143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 144 [BPF_LINK_TYPE_TRACING] = "tracing", 145 [BPF_LINK_TYPE_CGROUP] = "cgroup", 146 [BPF_LINK_TYPE_ITER] = "iter", 147 [BPF_LINK_TYPE_NETNS] = "netns", 148 [BPF_LINK_TYPE_XDP] = "xdp", 149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 152 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 153 [BPF_LINK_TYPE_TCX] = "tcx", 154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 155 [BPF_LINK_TYPE_NETKIT] = "netkit", 156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 157 }; 158 159 static const char * const map_type_name[] = { 160 [BPF_MAP_TYPE_UNSPEC] = "unspec", 161 [BPF_MAP_TYPE_HASH] = "hash", 162 [BPF_MAP_TYPE_ARRAY] = "array", 163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 174 [BPF_MAP_TYPE_DEVMAP] = "devmap", 175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 177 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 178 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 183 [BPF_MAP_TYPE_QUEUE] = "queue", 184 [BPF_MAP_TYPE_STACK] = "stack", 185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 193 [BPF_MAP_TYPE_ARENA] = "arena", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 #define STRERR_BUFSIZE 128 322 323 /* Copied from tools/perf/util/util.h */ 324 #ifndef zfree 325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 326 #endif 327 328 #ifndef zclose 329 # define zclose(fd) ({ \ 330 int ___err = 0; \ 331 if ((fd) >= 0) \ 332 ___err = close((fd)); \ 333 fd = -1; \ 334 ___err; }) 335 #endif 336 337 static inline __u64 ptr_to_u64(const void *ptr) 338 { 339 return (__u64) (unsigned long) ptr; 340 } 341 342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 343 { 344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 345 return 0; 346 } 347 348 __u32 libbpf_major_version(void) 349 { 350 return LIBBPF_MAJOR_VERSION; 351 } 352 353 __u32 libbpf_minor_version(void) 354 { 355 return LIBBPF_MINOR_VERSION; 356 } 357 358 const char *libbpf_version_string(void) 359 { 360 #define __S(X) #X 361 #define _S(X) __S(X) 362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 363 #undef _S 364 #undef __S 365 } 366 367 enum reloc_type { 368 RELO_LD64, 369 RELO_CALL, 370 RELO_DATA, 371 RELO_EXTERN_LD64, 372 RELO_EXTERN_CALL, 373 RELO_SUBPROG_ADDR, 374 RELO_CORE, 375 }; 376 377 struct reloc_desc { 378 enum reloc_type type; 379 int insn_idx; 380 union { 381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 382 struct { 383 int map_idx; 384 int sym_off; 385 int ext_idx; 386 }; 387 }; 388 }; 389 390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 391 enum sec_def_flags { 392 SEC_NONE = 0, 393 /* expected_attach_type is optional, if kernel doesn't support that */ 394 SEC_EXP_ATTACH_OPT = 1, 395 /* legacy, only used by libbpf_get_type_names() and 396 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 397 * This used to be associated with cgroup (and few other) BPF programs 398 * that were attachable through BPF_PROG_ATTACH command. Pretty 399 * meaningless nowadays, though. 400 */ 401 SEC_ATTACHABLE = 2, 402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 403 /* attachment target is specified through BTF ID in either kernel or 404 * other BPF program's BTF object 405 */ 406 SEC_ATTACH_BTF = 4, 407 /* BPF program type allows sleeping/blocking in kernel */ 408 SEC_SLEEPABLE = 8, 409 /* BPF program support non-linear XDP buffer */ 410 SEC_XDP_FRAGS = 16, 411 /* Setup proper attach type for usdt probes. */ 412 SEC_USDT = 32, 413 }; 414 415 struct bpf_sec_def { 416 char *sec; 417 enum bpf_prog_type prog_type; 418 enum bpf_attach_type expected_attach_type; 419 long cookie; 420 int handler_id; 421 422 libbpf_prog_setup_fn_t prog_setup_fn; 423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 424 libbpf_prog_attach_fn_t prog_attach_fn; 425 }; 426 427 /* 428 * bpf_prog should be a better name but it has been used in 429 * linux/filter.h. 430 */ 431 struct bpf_program { 432 char *name; 433 char *sec_name; 434 size_t sec_idx; 435 const struct bpf_sec_def *sec_def; 436 /* this program's instruction offset (in number of instructions) 437 * within its containing ELF section 438 */ 439 size_t sec_insn_off; 440 /* number of original instructions in ELF section belonging to this 441 * program, not taking into account subprogram instructions possible 442 * appended later during relocation 443 */ 444 size_t sec_insn_cnt; 445 /* Offset (in number of instructions) of the start of instruction 446 * belonging to this BPF program within its containing main BPF 447 * program. For the entry-point (main) BPF program, this is always 448 * zero. For a sub-program, this gets reset before each of main BPF 449 * programs are processed and relocated and is used to determined 450 * whether sub-program was already appended to the main program, and 451 * if yes, at which instruction offset. 452 */ 453 size_t sub_insn_off; 454 455 /* instructions that belong to BPF program; insns[0] is located at 456 * sec_insn_off instruction within its ELF section in ELF file, so 457 * when mapping ELF file instruction index to the local instruction, 458 * one needs to subtract sec_insn_off; and vice versa. 459 */ 460 struct bpf_insn *insns; 461 /* actual number of instruction in this BPF program's image; for 462 * entry-point BPF programs this includes the size of main program 463 * itself plus all the used sub-programs, appended at the end 464 */ 465 size_t insns_cnt; 466 467 struct reloc_desc *reloc_desc; 468 int nr_reloc; 469 470 /* BPF verifier log settings */ 471 char *log_buf; 472 size_t log_size; 473 __u32 log_level; 474 475 struct bpf_object *obj; 476 477 int fd; 478 bool autoload; 479 bool autoattach; 480 bool sym_global; 481 bool mark_btf_static; 482 enum bpf_prog_type type; 483 enum bpf_attach_type expected_attach_type; 484 int exception_cb_idx; 485 486 int prog_ifindex; 487 __u32 attach_btf_obj_fd; 488 __u32 attach_btf_id; 489 __u32 attach_prog_fd; 490 491 void *func_info; 492 __u32 func_info_rec_size; 493 __u32 func_info_cnt; 494 495 void *line_info; 496 __u32 line_info_rec_size; 497 __u32 line_info_cnt; 498 __u32 prog_flags; 499 }; 500 501 struct bpf_struct_ops { 502 struct bpf_program **progs; 503 __u32 *kern_func_off; 504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 505 void *data; 506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 507 * btf_vmlinux's format. 508 * struct bpf_struct_ops_tcp_congestion_ops { 509 * [... some other kernel fields ...] 510 * struct tcp_congestion_ops data; 511 * } 512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 514 * from "data". 515 */ 516 void *kern_vdata; 517 __u32 type_id; 518 }; 519 520 #define DATA_SEC ".data" 521 #define BSS_SEC ".bss" 522 #define RODATA_SEC ".rodata" 523 #define KCONFIG_SEC ".kconfig" 524 #define KSYMS_SEC ".ksyms" 525 #define STRUCT_OPS_SEC ".struct_ops" 526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 527 #define ARENA_SEC ".addr_space.1" 528 529 enum libbpf_map_type { 530 LIBBPF_MAP_UNSPEC, 531 LIBBPF_MAP_DATA, 532 LIBBPF_MAP_BSS, 533 LIBBPF_MAP_RODATA, 534 LIBBPF_MAP_KCONFIG, 535 }; 536 537 struct bpf_map_def { 538 unsigned int type; 539 unsigned int key_size; 540 unsigned int value_size; 541 unsigned int max_entries; 542 unsigned int map_flags; 543 }; 544 545 struct bpf_map { 546 struct bpf_object *obj; 547 char *name; 548 /* real_name is defined for special internal maps (.rodata*, 549 * .data*, .bss, .kconfig) and preserves their original ELF section 550 * name. This is important to be able to find corresponding BTF 551 * DATASEC information. 552 */ 553 char *real_name; 554 int fd; 555 int sec_idx; 556 size_t sec_offset; 557 int map_ifindex; 558 int inner_map_fd; 559 struct bpf_map_def def; 560 __u32 numa_node; 561 __u32 btf_var_idx; 562 int mod_btf_fd; 563 __u32 btf_key_type_id; 564 __u32 btf_value_type_id; 565 __u32 btf_vmlinux_value_type_id; 566 enum libbpf_map_type libbpf_type; 567 void *mmaped; 568 struct bpf_struct_ops *st_ops; 569 struct bpf_map *inner_map; 570 void **init_slots; 571 int init_slots_sz; 572 char *pin_path; 573 bool pinned; 574 bool reused; 575 bool autocreate; 576 bool autoattach; 577 __u64 map_extra; 578 }; 579 580 enum extern_type { 581 EXT_UNKNOWN, 582 EXT_KCFG, 583 EXT_KSYM, 584 }; 585 586 enum kcfg_type { 587 KCFG_UNKNOWN, 588 KCFG_CHAR, 589 KCFG_BOOL, 590 KCFG_INT, 591 KCFG_TRISTATE, 592 KCFG_CHAR_ARR, 593 }; 594 595 struct extern_desc { 596 enum extern_type type; 597 int sym_idx; 598 int btf_id; 599 int sec_btf_id; 600 char *name; 601 char *essent_name; 602 bool is_set; 603 bool is_weak; 604 union { 605 struct { 606 enum kcfg_type type; 607 int sz; 608 int align; 609 int data_off; 610 bool is_signed; 611 } kcfg; 612 struct { 613 unsigned long long addr; 614 615 /* target btf_id of the corresponding kernel var. */ 616 int kernel_btf_obj_fd; 617 int kernel_btf_id; 618 619 /* local btf_id of the ksym extern's type. */ 620 __u32 type_id; 621 /* BTF fd index to be patched in for insn->off, this is 622 * 0 for vmlinux BTF, index in obj->fd_array for module 623 * BTF 624 */ 625 __s16 btf_fd_idx; 626 } ksym; 627 }; 628 }; 629 630 struct module_btf { 631 struct btf *btf; 632 char *name; 633 __u32 id; 634 int fd; 635 int fd_array_idx; 636 }; 637 638 enum sec_type { 639 SEC_UNUSED = 0, 640 SEC_RELO, 641 SEC_BSS, 642 SEC_DATA, 643 SEC_RODATA, 644 SEC_ST_OPS, 645 }; 646 647 struct elf_sec_desc { 648 enum sec_type sec_type; 649 Elf64_Shdr *shdr; 650 Elf_Data *data; 651 }; 652 653 struct elf_state { 654 int fd; 655 const void *obj_buf; 656 size_t obj_buf_sz; 657 Elf *elf; 658 Elf64_Ehdr *ehdr; 659 Elf_Data *symbols; 660 Elf_Data *arena_data; 661 size_t shstrndx; /* section index for section name strings */ 662 size_t strtabidx; 663 struct elf_sec_desc *secs; 664 size_t sec_cnt; 665 int btf_maps_shndx; 666 __u32 btf_maps_sec_btf_id; 667 int text_shndx; 668 int symbols_shndx; 669 bool has_st_ops; 670 int arena_data_shndx; 671 }; 672 673 struct usdt_manager; 674 675 enum bpf_object_state { 676 OBJ_OPEN, 677 OBJ_PREPARED, 678 OBJ_LOADED, 679 }; 680 681 struct bpf_object { 682 char name[BPF_OBJ_NAME_LEN]; 683 char license[64]; 684 __u32 kern_version; 685 686 enum bpf_object_state state; 687 struct bpf_program *programs; 688 size_t nr_programs; 689 struct bpf_map *maps; 690 size_t nr_maps; 691 size_t maps_cap; 692 693 char *kconfig; 694 struct extern_desc *externs; 695 int nr_extern; 696 int kconfig_map_idx; 697 698 bool has_subcalls; 699 bool has_rodata; 700 701 struct bpf_gen *gen_loader; 702 703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 704 struct elf_state efile; 705 706 unsigned char byteorder; 707 708 struct btf *btf; 709 struct btf_ext *btf_ext; 710 711 /* Parse and load BTF vmlinux if any of the programs in the object need 712 * it at load time. 713 */ 714 struct btf *btf_vmlinux; 715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 716 * override for vmlinux BTF. 717 */ 718 char *btf_custom_path; 719 /* vmlinux BTF override for CO-RE relocations */ 720 struct btf *btf_vmlinux_override; 721 /* Lazily initialized kernel module BTFs */ 722 struct module_btf *btf_modules; 723 bool btf_modules_loaded; 724 size_t btf_module_cnt; 725 size_t btf_module_cap; 726 727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 728 char *log_buf; 729 size_t log_size; 730 __u32 log_level; 731 732 int *fd_array; 733 size_t fd_array_cap; 734 size_t fd_array_cnt; 735 736 struct usdt_manager *usdt_man; 737 738 int arena_map_idx; 739 void *arena_data; 740 size_t arena_data_sz; 741 742 struct kern_feature_cache *feat_cache; 743 char *token_path; 744 int token_fd; 745 746 char path[]; 747 }; 748 749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 758 759 void bpf_program__unload(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 zclose(prog->fd); 765 766 zfree(&prog->func_info); 767 zfree(&prog->line_info); 768 } 769 770 static void bpf_program__exit(struct bpf_program *prog) 771 { 772 if (!prog) 773 return; 774 775 bpf_program__unload(prog); 776 zfree(&prog->name); 777 zfree(&prog->sec_name); 778 zfree(&prog->insns); 779 zfree(&prog->reloc_desc); 780 781 prog->nr_reloc = 0; 782 prog->insns_cnt = 0; 783 prog->sec_idx = -1; 784 } 785 786 static bool insn_is_subprog_call(const struct bpf_insn *insn) 787 { 788 return BPF_CLASS(insn->code) == BPF_JMP && 789 BPF_OP(insn->code) == BPF_CALL && 790 BPF_SRC(insn->code) == BPF_K && 791 insn->src_reg == BPF_PSEUDO_CALL && 792 insn->dst_reg == 0 && 793 insn->off == 0; 794 } 795 796 static bool is_call_insn(const struct bpf_insn *insn) 797 { 798 return insn->code == (BPF_JMP | BPF_CALL); 799 } 800 801 static bool insn_is_pseudo_func(struct bpf_insn *insn) 802 { 803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 804 } 805 806 static int 807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 808 const char *name, size_t sec_idx, const char *sec_name, 809 size_t sec_off, void *insn_data, size_t insn_data_sz) 810 { 811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 813 sec_name, name, sec_off, insn_data_sz); 814 return -EINVAL; 815 } 816 817 memset(prog, 0, sizeof(*prog)); 818 prog->obj = obj; 819 820 prog->sec_idx = sec_idx; 821 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 823 /* insns_cnt can later be increased by appending used subprograms */ 824 prog->insns_cnt = prog->sec_insn_cnt; 825 826 prog->type = BPF_PROG_TYPE_UNSPEC; 827 prog->fd = -1; 828 prog->exception_cb_idx = -1; 829 830 /* libbpf's convention for SEC("?abc...") is that it's just like 831 * SEC("abc...") but the corresponding bpf_program starts out with 832 * autoload set to false. 833 */ 834 if (sec_name[0] == '?') { 835 prog->autoload = false; 836 /* from now on forget there was ? in section name */ 837 sec_name++; 838 } else { 839 prog->autoload = true; 840 } 841 842 prog->autoattach = true; 843 844 /* inherit object's log_level */ 845 prog->log_level = obj->log_level; 846 847 prog->sec_name = strdup(sec_name); 848 if (!prog->sec_name) 849 goto errout; 850 851 prog->name = strdup(name); 852 if (!prog->name) 853 goto errout; 854 855 prog->insns = malloc(insn_data_sz); 856 if (!prog->insns) 857 goto errout; 858 memcpy(prog->insns, insn_data, insn_data_sz); 859 860 return 0; 861 errout: 862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 863 bpf_program__exit(prog); 864 return -ENOMEM; 865 } 866 867 static int 868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 869 const char *sec_name, int sec_idx) 870 { 871 Elf_Data *symbols = obj->efile.symbols; 872 struct bpf_program *prog, *progs; 873 void *data = sec_data->d_buf; 874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 875 int nr_progs, err, i; 876 const char *name; 877 Elf64_Sym *sym; 878 879 progs = obj->programs; 880 nr_progs = obj->nr_programs; 881 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 882 883 for (i = 0; i < nr_syms; i++) { 884 sym = elf_sym_by_idx(obj, i); 885 886 if (sym->st_shndx != sec_idx) 887 continue; 888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 889 continue; 890 891 prog_sz = sym->st_size; 892 sec_off = sym->st_value; 893 894 name = elf_sym_str(obj, sym->st_name); 895 if (!name) { 896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 897 sec_name, sec_off); 898 return -LIBBPF_ERRNO__FORMAT; 899 } 900 901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 903 sec_name, sec_off); 904 return -LIBBPF_ERRNO__FORMAT; 905 } 906 907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 909 return -ENOTSUP; 910 } 911 912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 914 915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 916 if (!progs) { 917 /* 918 * In this case the original obj->programs 919 * is still valid, so don't need special treat for 920 * bpf_close_object(). 921 */ 922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 923 sec_name, name); 924 return -ENOMEM; 925 } 926 obj->programs = progs; 927 928 prog = &progs[nr_progs]; 929 930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 931 sec_off, data + sec_off, prog_sz); 932 if (err) 933 return err; 934 935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 936 prog->sym_global = true; 937 938 /* if function is a global/weak symbol, but has restricted 939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 940 * as static to enable more permissive BPF verification mode 941 * with more outside context available to BPF verifier 942 */ 943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 945 prog->mark_btf_static = true; 946 947 nr_progs++; 948 obj->nr_programs = nr_progs; 949 } 950 951 return 0; 952 } 953 954 static void bpf_object_bswap_progs(struct bpf_object *obj) 955 { 956 struct bpf_program *prog = obj->programs; 957 struct bpf_insn *insn; 958 int p, i; 959 960 for (p = 0; p < obj->nr_programs; p++, prog++) { 961 insn = prog->insns; 962 for (i = 0; i < prog->insns_cnt; i++, insn++) 963 bpf_insn_bswap(insn); 964 } 965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 966 } 967 968 static const struct btf_member * 969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 970 { 971 struct btf_member *m; 972 int i; 973 974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 975 if (btf_member_bit_offset(t, i) == bit_offset) 976 return m; 977 } 978 979 return NULL; 980 } 981 982 static const struct btf_member * 983 find_member_by_name(const struct btf *btf, const struct btf_type *t, 984 const char *name) 985 { 986 struct btf_member *m; 987 int i; 988 989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 991 return m; 992 } 993 994 return NULL; 995 } 996 997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 998 __u16 kind, struct btf **res_btf, 999 struct module_btf **res_mod_btf); 1000 1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1003 const char *name, __u32 kind); 1004 1005 static int 1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1007 struct module_btf **mod_btf, 1008 const struct btf_type **type, __u32 *type_id, 1009 const struct btf_type **vtype, __u32 *vtype_id, 1010 const struct btf_member **data_member) 1011 { 1012 const struct btf_type *kern_type, *kern_vtype; 1013 const struct btf_member *kern_data_member; 1014 struct btf *btf = NULL; 1015 __s32 kern_vtype_id, kern_type_id; 1016 char tname[256]; 1017 __u32 i; 1018 1019 snprintf(tname, sizeof(tname), "%.*s", 1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1021 1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1023 &btf, mod_btf); 1024 if (kern_type_id < 0) { 1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1026 tname); 1027 return kern_type_id; 1028 } 1029 kern_type = btf__type_by_id(btf, kern_type_id); 1030 1031 /* Find the corresponding "map_value" type that will be used 1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1034 * btf_vmlinux. 1035 */ 1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1037 tname, BTF_KIND_STRUCT); 1038 if (kern_vtype_id < 0) { 1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1040 STRUCT_OPS_VALUE_PREFIX, tname); 1041 return kern_vtype_id; 1042 } 1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1044 1045 /* Find "struct tcp_congestion_ops" from 1046 * struct bpf_struct_ops_tcp_congestion_ops { 1047 * [ ... ] 1048 * struct tcp_congestion_ops data; 1049 * } 1050 */ 1051 kern_data_member = btf_members(kern_vtype); 1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1053 if (kern_data_member->type == kern_type_id) 1054 break; 1055 } 1056 if (i == btf_vlen(kern_vtype)) { 1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1058 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1059 return -EINVAL; 1060 } 1061 1062 *type = kern_type; 1063 *type_id = kern_type_id; 1064 *vtype = kern_vtype; 1065 *vtype_id = kern_vtype_id; 1066 *data_member = kern_data_member; 1067 1068 return 0; 1069 } 1070 1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1072 { 1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1074 } 1075 1076 static bool is_valid_st_ops_program(struct bpf_object *obj, 1077 const struct bpf_program *prog) 1078 { 1079 int i; 1080 1081 for (i = 0; i < obj->nr_programs; i++) { 1082 if (&obj->programs[i] == prog) 1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1084 } 1085 1086 return false; 1087 } 1088 1089 /* For each struct_ops program P, referenced from some struct_ops map M, 1090 * enable P.autoload if there are Ms for which M.autocreate is true, 1091 * disable P.autoload if for all Ms M.autocreate is false. 1092 * Don't change P.autoload for programs that are not referenced from any maps. 1093 */ 1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1095 { 1096 struct bpf_program *prog, *slot_prog; 1097 struct bpf_map *map; 1098 int i, j, k, vlen; 1099 1100 for (i = 0; i < obj->nr_programs; ++i) { 1101 int should_load = false; 1102 int use_cnt = 0; 1103 1104 prog = &obj->programs[i]; 1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1106 continue; 1107 1108 for (j = 0; j < obj->nr_maps; ++j) { 1109 const struct btf_type *type; 1110 1111 map = &obj->maps[j]; 1112 if (!bpf_map__is_struct_ops(map)) 1113 continue; 1114 1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1116 vlen = btf_vlen(type); 1117 for (k = 0; k < vlen; ++k) { 1118 slot_prog = map->st_ops->progs[k]; 1119 if (prog != slot_prog) 1120 continue; 1121 1122 use_cnt++; 1123 if (map->autocreate) 1124 should_load = true; 1125 } 1126 } 1127 if (use_cnt) 1128 prog->autoload = should_load; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* Init the map's fields that depend on kern_btf */ 1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1136 { 1137 const struct btf_member *member, *kern_member, *kern_data_member; 1138 const struct btf_type *type, *kern_type, *kern_vtype; 1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1140 struct bpf_object *obj = map->obj; 1141 const struct btf *btf = obj->btf; 1142 struct bpf_struct_ops *st_ops; 1143 const struct btf *kern_btf; 1144 struct module_btf *mod_btf = NULL; 1145 void *data, *kern_data; 1146 const char *tname; 1147 int err; 1148 1149 st_ops = map->st_ops; 1150 type = btf__type_by_id(btf, st_ops->type_id); 1151 tname = btf__name_by_offset(btf, type->name_off); 1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1153 &kern_type, &kern_type_id, 1154 &kern_vtype, &kern_vtype_id, 1155 &kern_data_member); 1156 if (err) 1157 return err; 1158 1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1160 1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1163 1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1165 map->def.value_size = kern_vtype->size; 1166 map->btf_vmlinux_value_type_id = kern_vtype_id; 1167 1168 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1169 if (!st_ops->kern_vdata) 1170 return -ENOMEM; 1171 1172 data = st_ops->data; 1173 kern_data_off = kern_data_member->offset / 8; 1174 kern_data = st_ops->kern_vdata + kern_data_off; 1175 1176 member = btf_members(type); 1177 for (i = 0; i < btf_vlen(type); i++, member++) { 1178 const struct btf_type *mtype, *kern_mtype; 1179 __u32 mtype_id, kern_mtype_id; 1180 void *mdata, *kern_mdata; 1181 struct bpf_program *prog; 1182 __s64 msize, kern_msize; 1183 __u32 moff, kern_moff; 1184 __u32 kern_member_idx; 1185 const char *mname; 1186 1187 mname = btf__name_by_offset(btf, member->name_off); 1188 moff = member->offset / 8; 1189 mdata = data + moff; 1190 msize = btf__resolve_size(btf, member->type); 1191 if (msize < 0) { 1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1193 map->name, mname); 1194 return msize; 1195 } 1196 1197 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1198 if (!kern_member) { 1199 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1201 map->name, mname); 1202 return -ENOTSUP; 1203 } 1204 1205 if (st_ops->progs[i]) { 1206 /* If we had declaratively set struct_ops callback, we need to 1207 * force its autoload to false, because it doesn't have 1208 * a chance of succeeding from POV of the current struct_ops map. 1209 * If this program is still referenced somewhere else, though, 1210 * then bpf_object_adjust_struct_ops_autoload() will update its 1211 * autoload accordingly. 1212 */ 1213 st_ops->progs[i]->autoload = false; 1214 st_ops->progs[i] = NULL; 1215 } 1216 1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1219 map->name, mname); 1220 continue; 1221 } 1222 1223 kern_member_idx = kern_member - btf_members(kern_type); 1224 if (btf_member_bitfield_size(type, i) || 1225 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1227 map->name, mname); 1228 return -ENOTSUP; 1229 } 1230 1231 kern_moff = kern_member->offset / 8; 1232 kern_mdata = kern_data + kern_moff; 1233 1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1236 &kern_mtype_id); 1237 if (BTF_INFO_KIND(mtype->info) != 1238 BTF_INFO_KIND(kern_mtype->info)) { 1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1240 map->name, mname, BTF_INFO_KIND(mtype->info), 1241 BTF_INFO_KIND(kern_mtype->info)); 1242 return -ENOTSUP; 1243 } 1244 1245 if (btf_is_ptr(mtype)) { 1246 prog = *(void **)mdata; 1247 /* just like for !kern_member case above, reset declaratively 1248 * set (at compile time) program's autload to false, 1249 * if user replaced it with another program or NULL 1250 */ 1251 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1252 st_ops->progs[i]->autoload = false; 1253 1254 /* Update the value from the shadow type */ 1255 st_ops->progs[i] = prog; 1256 if (!prog) 1257 continue; 1258 1259 if (!is_valid_st_ops_program(obj, prog)) { 1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1261 map->name, mname); 1262 return -ENOTSUP; 1263 } 1264 1265 kern_mtype = skip_mods_and_typedefs(kern_btf, 1266 kern_mtype->type, 1267 &kern_mtype_id); 1268 1269 /* mtype->type must be a func_proto which was 1270 * guaranteed in bpf_object__collect_st_ops_relos(), 1271 * so only check kern_mtype for func_proto here. 1272 */ 1273 if (!btf_is_func_proto(kern_mtype)) { 1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1275 map->name, mname); 1276 return -ENOTSUP; 1277 } 1278 1279 if (mod_btf) 1280 prog->attach_btf_obj_fd = mod_btf->fd; 1281 1282 /* if we haven't yet processed this BPF program, record proper 1283 * attach_btf_id and member_idx 1284 */ 1285 if (!prog->attach_btf_id) { 1286 prog->attach_btf_id = kern_type_id; 1287 prog->expected_attach_type = kern_member_idx; 1288 } 1289 1290 /* struct_ops BPF prog can be re-used between multiple 1291 * .struct_ops & .struct_ops.link as long as it's the 1292 * same struct_ops struct definition and the same 1293 * function pointer field 1294 */ 1295 if (prog->attach_btf_id != kern_type_id) { 1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1297 map->name, mname, prog->name, prog->sec_name, prog->type, 1298 prog->attach_btf_id, kern_type_id); 1299 return -EINVAL; 1300 } 1301 if (prog->expected_attach_type != kern_member_idx) { 1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1303 map->name, mname, prog->name, prog->sec_name, prog->type, 1304 prog->expected_attach_type, kern_member_idx); 1305 return -EINVAL; 1306 } 1307 1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1309 1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1311 map->name, mname, prog->name, moff, 1312 kern_moff); 1313 1314 continue; 1315 } 1316 1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1318 if (kern_msize < 0 || msize != kern_msize) { 1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1320 map->name, mname, (ssize_t)msize, 1321 (ssize_t)kern_msize); 1322 return -ENOTSUP; 1323 } 1324 1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1326 map->name, mname, (unsigned int)msize, 1327 moff, kern_moff); 1328 memcpy(kern_mdata, mdata, msize); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1335 { 1336 struct bpf_map *map; 1337 size_t i; 1338 int err; 1339 1340 for (i = 0; i < obj->nr_maps; i++) { 1341 map = &obj->maps[i]; 1342 1343 if (!bpf_map__is_struct_ops(map)) 1344 continue; 1345 1346 if (!map->autocreate) 1347 continue; 1348 1349 err = bpf_map__init_kern_struct_ops(map); 1350 if (err) 1351 return err; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1358 int shndx, Elf_Data *data) 1359 { 1360 const struct btf_type *type, *datasec; 1361 const struct btf_var_secinfo *vsi; 1362 struct bpf_struct_ops *st_ops; 1363 const char *tname, *var_name; 1364 __s32 type_id, datasec_id; 1365 const struct btf *btf; 1366 struct bpf_map *map; 1367 __u32 i; 1368 1369 if (shndx == -1) 1370 return 0; 1371 1372 btf = obj->btf; 1373 datasec_id = btf__find_by_name_kind(btf, sec_name, 1374 BTF_KIND_DATASEC); 1375 if (datasec_id < 0) { 1376 pr_warn("struct_ops init: DATASEC %s not found\n", 1377 sec_name); 1378 return -EINVAL; 1379 } 1380 1381 datasec = btf__type_by_id(btf, datasec_id); 1382 vsi = btf_var_secinfos(datasec); 1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1384 type = btf__type_by_id(obj->btf, vsi->type); 1385 var_name = btf__name_by_offset(obj->btf, type->name_off); 1386 1387 type_id = btf__resolve_type(obj->btf, vsi->type); 1388 if (type_id < 0) { 1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1390 vsi->type, sec_name); 1391 return -EINVAL; 1392 } 1393 1394 type = btf__type_by_id(obj->btf, type_id); 1395 tname = btf__name_by_offset(obj->btf, type->name_off); 1396 if (!tname[0]) { 1397 pr_warn("struct_ops init: anonymous type is not supported\n"); 1398 return -ENOTSUP; 1399 } 1400 if (!btf_is_struct(type)) { 1401 pr_warn("struct_ops init: %s is not a struct\n", tname); 1402 return -EINVAL; 1403 } 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->sec_idx = shndx; 1410 map->sec_offset = vsi->offset; 1411 map->name = strdup(var_name); 1412 if (!map->name) 1413 return -ENOMEM; 1414 map->btf_value_type_id = type_id; 1415 1416 /* Follow same convention as for programs autoload: 1417 * SEC("?.struct_ops") means map is not created by default. 1418 */ 1419 if (sec_name[0] == '?') { 1420 map->autocreate = false; 1421 /* from now on forget there was ? in section name */ 1422 sec_name++; 1423 } 1424 1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1426 map->def.key_size = sizeof(int); 1427 map->def.value_size = type->size; 1428 map->def.max_entries = 1; 1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1430 map->autoattach = true; 1431 1432 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1433 if (!map->st_ops) 1434 return -ENOMEM; 1435 st_ops = map->st_ops; 1436 st_ops->data = malloc(type->size); 1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1438 st_ops->kern_func_off = malloc(btf_vlen(type) * 1439 sizeof(*st_ops->kern_func_off)); 1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1441 return -ENOMEM; 1442 1443 if (vsi->offset + type->size > data->d_size) { 1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1445 var_name, sec_name); 1446 return -EINVAL; 1447 } 1448 1449 memcpy(st_ops->data, 1450 data->d_buf + vsi->offset, 1451 type->size); 1452 st_ops->type_id = type_id; 1453 1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1455 tname, type_id, var_name, vsi->offset); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1462 { 1463 const char *sec_name; 1464 int sec_idx, err; 1465 1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1468 1469 if (desc->sec_type != SEC_ST_OPS) 1470 continue; 1471 1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1473 if (!sec_name) 1474 return -LIBBPF_ERRNO__FORMAT; 1475 1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1477 if (err) 1478 return err; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static struct bpf_object *bpf_object__new(const char *path, 1485 const void *obj_buf, 1486 size_t obj_buf_sz, 1487 const char *obj_name) 1488 { 1489 struct bpf_object *obj; 1490 char *end; 1491 1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1493 if (!obj) { 1494 pr_warn("alloc memory failed for %s\n", path); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 strcpy(obj->path, path); 1499 if (obj_name) { 1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1501 } else { 1502 /* Using basename() GNU version which doesn't modify arg. */ 1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1504 end = strchr(obj->name, '.'); 1505 if (end) 1506 *end = 0; 1507 } 1508 1509 obj->efile.fd = -1; 1510 /* 1511 * Caller of this function should also call 1512 * bpf_object__elf_finish() after data collection to return 1513 * obj_buf to user. If not, we should duplicate the buffer to 1514 * avoid user freeing them before elf finish. 1515 */ 1516 obj->efile.obj_buf = obj_buf; 1517 obj->efile.obj_buf_sz = obj_buf_sz; 1518 obj->efile.btf_maps_shndx = -1; 1519 obj->kconfig_map_idx = -1; 1520 obj->arena_map_idx = -1; 1521 1522 obj->kern_version = get_kernel_version(); 1523 obj->state = OBJ_OPEN; 1524 1525 return obj; 1526 } 1527 1528 static void bpf_object__elf_finish(struct bpf_object *obj) 1529 { 1530 if (!obj->efile.elf) 1531 return; 1532 1533 elf_end(obj->efile.elf); 1534 obj->efile.elf = NULL; 1535 obj->efile.ehdr = NULL; 1536 obj->efile.symbols = NULL; 1537 obj->efile.arena_data = NULL; 1538 1539 zfree(&obj->efile.secs); 1540 obj->efile.sec_cnt = 0; 1541 zclose(obj->efile.fd); 1542 obj->efile.obj_buf = NULL; 1543 obj->efile.obj_buf_sz = 0; 1544 } 1545 1546 static int bpf_object__elf_init(struct bpf_object *obj) 1547 { 1548 Elf64_Ehdr *ehdr; 1549 int err = 0; 1550 Elf *elf; 1551 1552 if (obj->efile.elf) { 1553 pr_warn("elf: init internal error\n"); 1554 return -LIBBPF_ERRNO__LIBELF; 1555 } 1556 1557 if (obj->efile.obj_buf_sz > 0) { 1558 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1559 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1560 } else { 1561 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1562 if (obj->efile.fd < 0) { 1563 err = -errno; 1564 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1565 return err; 1566 } 1567 1568 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1569 } 1570 1571 if (!elf) { 1572 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1573 err = -LIBBPF_ERRNO__LIBELF; 1574 goto errout; 1575 } 1576 1577 obj->efile.elf = elf; 1578 1579 if (elf_kind(elf) != ELF_K_ELF) { 1580 err = -LIBBPF_ERRNO__FORMAT; 1581 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1582 goto errout; 1583 } 1584 1585 if (gelf_getclass(elf) != ELFCLASS64) { 1586 err = -LIBBPF_ERRNO__FORMAT; 1587 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1588 goto errout; 1589 } 1590 1591 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1592 if (!obj->efile.ehdr) { 1593 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1594 err = -LIBBPF_ERRNO__FORMAT; 1595 goto errout; 1596 } 1597 1598 /* Validate ELF object endianness... */ 1599 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1600 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1601 err = -LIBBPF_ERRNO__ENDIAN; 1602 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1603 goto errout; 1604 } 1605 /* and save after bpf_object_open() frees ELF data */ 1606 obj->byteorder = ehdr->e_ident[EI_DATA]; 1607 1608 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1609 pr_warn("elf: failed to get section names section index for %s: %s\n", 1610 obj->path, elf_errmsg(-1)); 1611 err = -LIBBPF_ERRNO__FORMAT; 1612 goto errout; 1613 } 1614 1615 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1616 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1617 pr_warn("elf: failed to get section names strings from %s: %s\n", 1618 obj->path, elf_errmsg(-1)); 1619 err = -LIBBPF_ERRNO__FORMAT; 1620 goto errout; 1621 } 1622 1623 /* Old LLVM set e_machine to EM_NONE */ 1624 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1625 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1626 err = -LIBBPF_ERRNO__FORMAT; 1627 goto errout; 1628 } 1629 1630 return 0; 1631 errout: 1632 bpf_object__elf_finish(obj); 1633 return err; 1634 } 1635 1636 static bool is_native_endianness(struct bpf_object *obj) 1637 { 1638 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1639 return obj->byteorder == ELFDATA2LSB; 1640 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1641 return obj->byteorder == ELFDATA2MSB; 1642 #else 1643 # error "Unrecognized __BYTE_ORDER__" 1644 #endif 1645 } 1646 1647 static int 1648 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1649 { 1650 if (!data) { 1651 pr_warn("invalid license section in %s\n", obj->path); 1652 return -LIBBPF_ERRNO__FORMAT; 1653 } 1654 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1655 * go over allowed ELF data section buffer 1656 */ 1657 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1658 pr_debug("license of %s is %s\n", obj->path, obj->license); 1659 return 0; 1660 } 1661 1662 static int 1663 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1664 { 1665 __u32 kver; 1666 1667 if (!data || size != sizeof(kver)) { 1668 pr_warn("invalid kver section in %s\n", obj->path); 1669 return -LIBBPF_ERRNO__FORMAT; 1670 } 1671 memcpy(&kver, data, sizeof(kver)); 1672 obj->kern_version = kver; 1673 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1674 return 0; 1675 } 1676 1677 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1678 { 1679 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1680 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1681 return true; 1682 return false; 1683 } 1684 1685 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1686 { 1687 Elf_Data *data; 1688 Elf_Scn *scn; 1689 1690 if (!name) 1691 return -EINVAL; 1692 1693 scn = elf_sec_by_name(obj, name); 1694 data = elf_sec_data(obj, scn); 1695 if (data) { 1696 *size = data->d_size; 1697 return 0; /* found it */ 1698 } 1699 1700 return -ENOENT; 1701 } 1702 1703 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1704 { 1705 Elf_Data *symbols = obj->efile.symbols; 1706 const char *sname; 1707 size_t si; 1708 1709 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1710 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1711 1712 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1713 continue; 1714 1715 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1716 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1717 continue; 1718 1719 sname = elf_sym_str(obj, sym->st_name); 1720 if (!sname) { 1721 pr_warn("failed to get sym name string for var %s\n", name); 1722 return ERR_PTR(-EIO); 1723 } 1724 if (strcmp(name, sname) == 0) 1725 return sym; 1726 } 1727 1728 return ERR_PTR(-ENOENT); 1729 } 1730 1731 #ifndef MFD_CLOEXEC 1732 #define MFD_CLOEXEC 0x0001U 1733 #endif 1734 #ifndef MFD_NOEXEC_SEAL 1735 #define MFD_NOEXEC_SEAL 0x0008U 1736 #endif 1737 1738 static int create_placeholder_fd(void) 1739 { 1740 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1741 const char *name = "libbpf-placeholder-fd"; 1742 int fd; 1743 1744 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1745 if (fd >= 0) 1746 return fd; 1747 else if (errno != EINVAL) 1748 return -errno; 1749 1750 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1751 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1752 if (fd < 0) 1753 return -errno; 1754 return fd; 1755 } 1756 1757 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1758 { 1759 struct bpf_map *map; 1760 int err; 1761 1762 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1763 sizeof(*obj->maps), obj->nr_maps + 1); 1764 if (err) 1765 return ERR_PTR(err); 1766 1767 map = &obj->maps[obj->nr_maps++]; 1768 map->obj = obj; 1769 /* Preallocate map FD without actually creating BPF map just yet. 1770 * These map FD "placeholders" will be reused later without changing 1771 * FD value when map is actually created in the kernel. 1772 * 1773 * This is useful to be able to perform BPF program relocations 1774 * without having to create BPF maps before that step. This allows us 1775 * to finalize and load BTF very late in BPF object's loading phase, 1776 * right before BPF maps have to be created and BPF programs have to 1777 * be loaded. By having these map FD placeholders we can perform all 1778 * the sanitizations, relocations, and any other adjustments before we 1779 * start creating actual BPF kernel objects (BTF, maps, progs). 1780 */ 1781 map->fd = create_placeholder_fd(); 1782 if (map->fd < 0) 1783 return ERR_PTR(map->fd); 1784 map->inner_map_fd = -1; 1785 map->autocreate = true; 1786 1787 return map; 1788 } 1789 1790 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1791 { 1792 const long page_sz = sysconf(_SC_PAGE_SIZE); 1793 size_t map_sz; 1794 1795 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1796 map_sz = roundup(map_sz, page_sz); 1797 return map_sz; 1798 } 1799 1800 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1801 { 1802 const long page_sz = sysconf(_SC_PAGE_SIZE); 1803 1804 switch (map->def.type) { 1805 case BPF_MAP_TYPE_ARRAY: 1806 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1807 case BPF_MAP_TYPE_ARENA: 1808 return page_sz * map->def.max_entries; 1809 default: 1810 return 0; /* not supported */ 1811 } 1812 } 1813 1814 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1815 { 1816 void *mmaped; 1817 1818 if (!map->mmaped) 1819 return -EINVAL; 1820 1821 if (old_sz == new_sz) 1822 return 0; 1823 1824 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1825 if (mmaped == MAP_FAILED) 1826 return -errno; 1827 1828 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1829 munmap(map->mmaped, old_sz); 1830 map->mmaped = mmaped; 1831 return 0; 1832 } 1833 1834 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1835 { 1836 char map_name[BPF_OBJ_NAME_LEN], *p; 1837 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1838 1839 /* This is one of the more confusing parts of libbpf for various 1840 * reasons, some of which are historical. The original idea for naming 1841 * internal names was to include as much of BPF object name prefix as 1842 * possible, so that it can be distinguished from similar internal 1843 * maps of a different BPF object. 1844 * As an example, let's say we have bpf_object named 'my_object_name' 1845 * and internal map corresponding to '.rodata' ELF section. The final 1846 * map name advertised to user and to the kernel will be 1847 * 'my_objec.rodata', taking first 8 characters of object name and 1848 * entire 7 characters of '.rodata'. 1849 * Somewhat confusingly, if internal map ELF section name is shorter 1850 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1851 * for the suffix, even though we only have 4 actual characters, and 1852 * resulting map will be called 'my_objec.bss', not even using all 15 1853 * characters allowed by the kernel. Oh well, at least the truncated 1854 * object name is somewhat consistent in this case. But if the map 1855 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1856 * (8 chars) and thus will be left with only first 7 characters of the 1857 * object name ('my_obje'). Happy guessing, user, that the final map 1858 * name will be "my_obje.kconfig". 1859 * Now, with libbpf starting to support arbitrarily named .rodata.* 1860 * and .data.* data sections, it's possible that ELF section name is 1861 * longer than allowed 15 chars, so we now need to be careful to take 1862 * only up to 15 first characters of ELF name, taking no BPF object 1863 * name characters at all. So '.rodata.abracadabra' will result in 1864 * '.rodata.abracad' kernel and user-visible name. 1865 * We need to keep this convoluted logic intact for .data, .bss and 1866 * .rodata maps, but for new custom .data.custom and .rodata.custom 1867 * maps we use their ELF names as is, not prepending bpf_object name 1868 * in front. We still need to truncate them to 15 characters for the 1869 * kernel. Full name can be recovered for such maps by using DATASEC 1870 * BTF type associated with such map's value type, though. 1871 */ 1872 if (sfx_len >= BPF_OBJ_NAME_LEN) 1873 sfx_len = BPF_OBJ_NAME_LEN - 1; 1874 1875 /* if there are two or more dots in map name, it's a custom dot map */ 1876 if (strchr(real_name + 1, '.') != NULL) 1877 pfx_len = 0; 1878 else 1879 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1880 1881 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1882 sfx_len, real_name); 1883 1884 /* sanities map name to characters allowed by kernel */ 1885 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1886 if (!isalnum(*p) && *p != '_' && *p != '.') 1887 *p = '_'; 1888 1889 return strdup(map_name); 1890 } 1891 1892 static int 1893 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1894 1895 /* Internal BPF map is mmap()'able only if at least one of corresponding 1896 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1897 * variable and it's not marked as __hidden (which turns it into, effectively, 1898 * a STATIC variable). 1899 */ 1900 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1901 { 1902 const struct btf_type *t, *vt; 1903 struct btf_var_secinfo *vsi; 1904 int i, n; 1905 1906 if (!map->btf_value_type_id) 1907 return false; 1908 1909 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1910 if (!btf_is_datasec(t)) 1911 return false; 1912 1913 vsi = btf_var_secinfos(t); 1914 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1915 vt = btf__type_by_id(obj->btf, vsi->type); 1916 if (!btf_is_var(vt)) 1917 continue; 1918 1919 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1920 return true; 1921 } 1922 1923 return false; 1924 } 1925 1926 static int 1927 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1928 const char *real_name, int sec_idx, void *data, size_t data_sz) 1929 { 1930 struct bpf_map_def *def; 1931 struct bpf_map *map; 1932 size_t mmap_sz; 1933 int err; 1934 1935 map = bpf_object__add_map(obj); 1936 if (IS_ERR(map)) 1937 return PTR_ERR(map); 1938 1939 map->libbpf_type = type; 1940 map->sec_idx = sec_idx; 1941 map->sec_offset = 0; 1942 map->real_name = strdup(real_name); 1943 map->name = internal_map_name(obj, real_name); 1944 if (!map->real_name || !map->name) { 1945 zfree(&map->real_name); 1946 zfree(&map->name); 1947 return -ENOMEM; 1948 } 1949 1950 def = &map->def; 1951 def->type = BPF_MAP_TYPE_ARRAY; 1952 def->key_size = sizeof(int); 1953 def->value_size = data_sz; 1954 def->max_entries = 1; 1955 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1956 ? BPF_F_RDONLY_PROG : 0; 1957 1958 /* failures are fine because of maps like .rodata.str1.1 */ 1959 (void) map_fill_btf_type_info(obj, map); 1960 1961 if (map_is_mmapable(obj, map)) 1962 def->map_flags |= BPF_F_MMAPABLE; 1963 1964 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1965 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1966 1967 mmap_sz = bpf_map_mmap_sz(map); 1968 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1969 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1970 if (map->mmaped == MAP_FAILED) { 1971 err = -errno; 1972 map->mmaped = NULL; 1973 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1974 zfree(&map->real_name); 1975 zfree(&map->name); 1976 return err; 1977 } 1978 1979 if (data) 1980 memcpy(map->mmaped, data, data_sz); 1981 1982 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1983 return 0; 1984 } 1985 1986 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1987 { 1988 struct elf_sec_desc *sec_desc; 1989 const char *sec_name; 1990 int err = 0, sec_idx; 1991 1992 /* 1993 * Populate obj->maps with libbpf internal maps. 1994 */ 1995 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1996 sec_desc = &obj->efile.secs[sec_idx]; 1997 1998 /* Skip recognized sections with size 0. */ 1999 if (!sec_desc->data || sec_desc->data->d_size == 0) 2000 continue; 2001 2002 switch (sec_desc->sec_type) { 2003 case SEC_DATA: 2004 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2005 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2006 sec_name, sec_idx, 2007 sec_desc->data->d_buf, 2008 sec_desc->data->d_size); 2009 break; 2010 case SEC_RODATA: 2011 obj->has_rodata = true; 2012 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2013 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2014 sec_name, sec_idx, 2015 sec_desc->data->d_buf, 2016 sec_desc->data->d_size); 2017 break; 2018 case SEC_BSS: 2019 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2020 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2021 sec_name, sec_idx, 2022 NULL, 2023 sec_desc->data->d_size); 2024 break; 2025 default: 2026 /* skip */ 2027 break; 2028 } 2029 if (err) 2030 return err; 2031 } 2032 return 0; 2033 } 2034 2035 2036 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2037 const void *name) 2038 { 2039 int i; 2040 2041 for (i = 0; i < obj->nr_extern; i++) { 2042 if (strcmp(obj->externs[i].name, name) == 0) 2043 return &obj->externs[i]; 2044 } 2045 return NULL; 2046 } 2047 2048 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2049 const void *name, int len) 2050 { 2051 const char *ext_name; 2052 int i; 2053 2054 for (i = 0; i < obj->nr_extern; i++) { 2055 ext_name = obj->externs[i].name; 2056 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2057 return &obj->externs[i]; 2058 } 2059 return NULL; 2060 } 2061 2062 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2063 char value) 2064 { 2065 switch (ext->kcfg.type) { 2066 case KCFG_BOOL: 2067 if (value == 'm') { 2068 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2069 ext->name, value); 2070 return -EINVAL; 2071 } 2072 *(bool *)ext_val = value == 'y' ? true : false; 2073 break; 2074 case KCFG_TRISTATE: 2075 if (value == 'y') 2076 *(enum libbpf_tristate *)ext_val = TRI_YES; 2077 else if (value == 'm') 2078 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2079 else /* value == 'n' */ 2080 *(enum libbpf_tristate *)ext_val = TRI_NO; 2081 break; 2082 case KCFG_CHAR: 2083 *(char *)ext_val = value; 2084 break; 2085 case KCFG_UNKNOWN: 2086 case KCFG_INT: 2087 case KCFG_CHAR_ARR: 2088 default: 2089 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2090 ext->name, value); 2091 return -EINVAL; 2092 } 2093 ext->is_set = true; 2094 return 0; 2095 } 2096 2097 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2098 const char *value) 2099 { 2100 size_t len; 2101 2102 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2103 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2104 ext->name, value); 2105 return -EINVAL; 2106 } 2107 2108 len = strlen(value); 2109 if (len < 2 || value[len - 1] != '"') { 2110 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2111 ext->name, value); 2112 return -EINVAL; 2113 } 2114 2115 /* strip quotes */ 2116 len -= 2; 2117 if (len >= ext->kcfg.sz) { 2118 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2119 ext->name, value, len, ext->kcfg.sz - 1); 2120 len = ext->kcfg.sz - 1; 2121 } 2122 memcpy(ext_val, value + 1, len); 2123 ext_val[len] = '\0'; 2124 ext->is_set = true; 2125 return 0; 2126 } 2127 2128 static int parse_u64(const char *value, __u64 *res) 2129 { 2130 char *value_end; 2131 int err; 2132 2133 errno = 0; 2134 *res = strtoull(value, &value_end, 0); 2135 if (errno) { 2136 err = -errno; 2137 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2138 return err; 2139 } 2140 if (*value_end) { 2141 pr_warn("failed to parse '%s' as integer completely\n", value); 2142 return -EINVAL; 2143 } 2144 return 0; 2145 } 2146 2147 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2148 { 2149 int bit_sz = ext->kcfg.sz * 8; 2150 2151 if (ext->kcfg.sz == 8) 2152 return true; 2153 2154 /* Validate that value stored in u64 fits in integer of `ext->sz` 2155 * bytes size without any loss of information. If the target integer 2156 * is signed, we rely on the following limits of integer type of 2157 * Y bits and subsequent transformation: 2158 * 2159 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2160 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2161 * 0 <= X + 2^(Y-1) < 2^Y 2162 * 2163 * For unsigned target integer, check that all the (64 - Y) bits are 2164 * zero. 2165 */ 2166 if (ext->kcfg.is_signed) 2167 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2168 else 2169 return (v >> bit_sz) == 0; 2170 } 2171 2172 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2173 __u64 value) 2174 { 2175 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2176 ext->kcfg.type != KCFG_BOOL) { 2177 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2178 ext->name, (unsigned long long)value); 2179 return -EINVAL; 2180 } 2181 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2182 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2183 ext->name, (unsigned long long)value); 2184 return -EINVAL; 2185 2186 } 2187 if (!is_kcfg_value_in_range(ext, value)) { 2188 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2189 ext->name, (unsigned long long)value, ext->kcfg.sz); 2190 return -ERANGE; 2191 } 2192 switch (ext->kcfg.sz) { 2193 case 1: 2194 *(__u8 *)ext_val = value; 2195 break; 2196 case 2: 2197 *(__u16 *)ext_val = value; 2198 break; 2199 case 4: 2200 *(__u32 *)ext_val = value; 2201 break; 2202 case 8: 2203 *(__u64 *)ext_val = value; 2204 break; 2205 default: 2206 return -EINVAL; 2207 } 2208 ext->is_set = true; 2209 return 0; 2210 } 2211 2212 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2213 char *buf, void *data) 2214 { 2215 struct extern_desc *ext; 2216 char *sep, *value; 2217 int len, err = 0; 2218 void *ext_val; 2219 __u64 num; 2220 2221 if (!str_has_pfx(buf, "CONFIG_")) 2222 return 0; 2223 2224 sep = strchr(buf, '='); 2225 if (!sep) { 2226 pr_warn("failed to parse '%s': no separator\n", buf); 2227 return -EINVAL; 2228 } 2229 2230 /* Trim ending '\n' */ 2231 len = strlen(buf); 2232 if (buf[len - 1] == '\n') 2233 buf[len - 1] = '\0'; 2234 /* Split on '=' and ensure that a value is present. */ 2235 *sep = '\0'; 2236 if (!sep[1]) { 2237 *sep = '='; 2238 pr_warn("failed to parse '%s': no value\n", buf); 2239 return -EINVAL; 2240 } 2241 2242 ext = find_extern_by_name(obj, buf); 2243 if (!ext || ext->is_set) 2244 return 0; 2245 2246 ext_val = data + ext->kcfg.data_off; 2247 value = sep + 1; 2248 2249 switch (*value) { 2250 case 'y': case 'n': case 'm': 2251 err = set_kcfg_value_tri(ext, ext_val, *value); 2252 break; 2253 case '"': 2254 err = set_kcfg_value_str(ext, ext_val, value); 2255 break; 2256 default: 2257 /* assume integer */ 2258 err = parse_u64(value, &num); 2259 if (err) { 2260 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2261 return err; 2262 } 2263 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2264 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2265 return -EINVAL; 2266 } 2267 err = set_kcfg_value_num(ext, ext_val, num); 2268 break; 2269 } 2270 if (err) 2271 return err; 2272 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2273 return 0; 2274 } 2275 2276 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2277 { 2278 char buf[PATH_MAX]; 2279 struct utsname uts; 2280 int len, err = 0; 2281 gzFile file; 2282 2283 uname(&uts); 2284 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2285 if (len < 0) 2286 return -EINVAL; 2287 else if (len >= PATH_MAX) 2288 return -ENAMETOOLONG; 2289 2290 /* gzopen also accepts uncompressed files. */ 2291 file = gzopen(buf, "re"); 2292 if (!file) 2293 file = gzopen("/proc/config.gz", "re"); 2294 2295 if (!file) { 2296 pr_warn("failed to open system Kconfig\n"); 2297 return -ENOENT; 2298 } 2299 2300 while (gzgets(file, buf, sizeof(buf))) { 2301 err = bpf_object__process_kconfig_line(obj, buf, data); 2302 if (err) { 2303 pr_warn("error parsing system Kconfig line '%s': %s\n", 2304 buf, errstr(err)); 2305 goto out; 2306 } 2307 } 2308 2309 out: 2310 gzclose(file); 2311 return err; 2312 } 2313 2314 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2315 const char *config, void *data) 2316 { 2317 char buf[PATH_MAX]; 2318 int err = 0; 2319 FILE *file; 2320 2321 file = fmemopen((void *)config, strlen(config), "r"); 2322 if (!file) { 2323 err = -errno; 2324 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2325 return err; 2326 } 2327 2328 while (fgets(buf, sizeof(buf), file)) { 2329 err = bpf_object__process_kconfig_line(obj, buf, data); 2330 if (err) { 2331 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2332 buf, errstr(err)); 2333 break; 2334 } 2335 } 2336 2337 fclose(file); 2338 return err; 2339 } 2340 2341 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2342 { 2343 struct extern_desc *last_ext = NULL, *ext; 2344 size_t map_sz; 2345 int i, err; 2346 2347 for (i = 0; i < obj->nr_extern; i++) { 2348 ext = &obj->externs[i]; 2349 if (ext->type == EXT_KCFG) 2350 last_ext = ext; 2351 } 2352 2353 if (!last_ext) 2354 return 0; 2355 2356 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2358 ".kconfig", obj->efile.symbols_shndx, 2359 NULL, map_sz); 2360 if (err) 2361 return err; 2362 2363 obj->kconfig_map_idx = obj->nr_maps - 1; 2364 2365 return 0; 2366 } 2367 2368 const struct btf_type * 2369 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2370 { 2371 const struct btf_type *t = btf__type_by_id(btf, id); 2372 2373 if (res_id) 2374 *res_id = id; 2375 2376 while (btf_is_mod(t) || btf_is_typedef(t)) { 2377 if (res_id) 2378 *res_id = t->type; 2379 t = btf__type_by_id(btf, t->type); 2380 } 2381 2382 return t; 2383 } 2384 2385 static const struct btf_type * 2386 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2387 { 2388 const struct btf_type *t; 2389 2390 t = skip_mods_and_typedefs(btf, id, NULL); 2391 if (!btf_is_ptr(t)) 2392 return NULL; 2393 2394 t = skip_mods_and_typedefs(btf, t->type, res_id); 2395 2396 return btf_is_func_proto(t) ? t : NULL; 2397 } 2398 2399 static const char *__btf_kind_str(__u16 kind) 2400 { 2401 switch (kind) { 2402 case BTF_KIND_UNKN: return "void"; 2403 case BTF_KIND_INT: return "int"; 2404 case BTF_KIND_PTR: return "ptr"; 2405 case BTF_KIND_ARRAY: return "array"; 2406 case BTF_KIND_STRUCT: return "struct"; 2407 case BTF_KIND_UNION: return "union"; 2408 case BTF_KIND_ENUM: return "enum"; 2409 case BTF_KIND_FWD: return "fwd"; 2410 case BTF_KIND_TYPEDEF: return "typedef"; 2411 case BTF_KIND_VOLATILE: return "volatile"; 2412 case BTF_KIND_CONST: return "const"; 2413 case BTF_KIND_RESTRICT: return "restrict"; 2414 case BTF_KIND_FUNC: return "func"; 2415 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2416 case BTF_KIND_VAR: return "var"; 2417 case BTF_KIND_DATASEC: return "datasec"; 2418 case BTF_KIND_FLOAT: return "float"; 2419 case BTF_KIND_DECL_TAG: return "decl_tag"; 2420 case BTF_KIND_TYPE_TAG: return "type_tag"; 2421 case BTF_KIND_ENUM64: return "enum64"; 2422 default: return "unknown"; 2423 } 2424 } 2425 2426 const char *btf_kind_str(const struct btf_type *t) 2427 { 2428 return __btf_kind_str(btf_kind(t)); 2429 } 2430 2431 /* 2432 * Fetch integer attribute of BTF map definition. Such attributes are 2433 * represented using a pointer to an array, in which dimensionality of array 2434 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2435 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2436 * type definition, while using only sizeof(void *) space in ELF data section. 2437 */ 2438 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2439 const struct btf_member *m, __u32 *res) 2440 { 2441 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2442 const char *name = btf__name_by_offset(btf, m->name_off); 2443 const struct btf_array *arr_info; 2444 const struct btf_type *arr_t; 2445 2446 if (!btf_is_ptr(t)) { 2447 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2448 map_name, name, btf_kind_str(t)); 2449 return false; 2450 } 2451 2452 arr_t = btf__type_by_id(btf, t->type); 2453 if (!arr_t) { 2454 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2455 map_name, name, t->type); 2456 return false; 2457 } 2458 if (!btf_is_array(arr_t)) { 2459 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2460 map_name, name, btf_kind_str(arr_t)); 2461 return false; 2462 } 2463 arr_info = btf_array(arr_t); 2464 *res = arr_info->nelems; 2465 return true; 2466 } 2467 2468 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2469 const struct btf_member *m, __u64 *res) 2470 { 2471 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2472 const char *name = btf__name_by_offset(btf, m->name_off); 2473 2474 if (btf_is_ptr(t)) { 2475 __u32 res32; 2476 bool ret; 2477 2478 ret = get_map_field_int(map_name, btf, m, &res32); 2479 if (ret) 2480 *res = (__u64)res32; 2481 return ret; 2482 } 2483 2484 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2485 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2486 map_name, name, btf_kind_str(t)); 2487 return false; 2488 } 2489 2490 if (btf_vlen(t) != 1) { 2491 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2492 map_name, name); 2493 return false; 2494 } 2495 2496 if (btf_is_enum(t)) { 2497 const struct btf_enum *e = btf_enum(t); 2498 2499 *res = e->val; 2500 } else { 2501 const struct btf_enum64 *e = btf_enum64(t); 2502 2503 *res = btf_enum64_value(e); 2504 } 2505 return true; 2506 } 2507 2508 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2509 { 2510 int len; 2511 2512 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2513 if (len < 0) 2514 return -EINVAL; 2515 if (len >= buf_sz) 2516 return -ENAMETOOLONG; 2517 2518 return 0; 2519 } 2520 2521 static int build_map_pin_path(struct bpf_map *map, const char *path) 2522 { 2523 char buf[PATH_MAX]; 2524 int err; 2525 2526 if (!path) 2527 path = BPF_FS_DEFAULT_PATH; 2528 2529 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2530 if (err) 2531 return err; 2532 2533 return bpf_map__set_pin_path(map, buf); 2534 } 2535 2536 /* should match definition in bpf_helpers.h */ 2537 enum libbpf_pin_type { 2538 LIBBPF_PIN_NONE, 2539 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2540 LIBBPF_PIN_BY_NAME, 2541 }; 2542 2543 int parse_btf_map_def(const char *map_name, struct btf *btf, 2544 const struct btf_type *def_t, bool strict, 2545 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2546 { 2547 const struct btf_type *t; 2548 const struct btf_member *m; 2549 bool is_inner = inner_def == NULL; 2550 int vlen, i; 2551 2552 vlen = btf_vlen(def_t); 2553 m = btf_members(def_t); 2554 for (i = 0; i < vlen; i++, m++) { 2555 const char *name = btf__name_by_offset(btf, m->name_off); 2556 2557 if (!name) { 2558 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2559 return -EINVAL; 2560 } 2561 if (strcmp(name, "type") == 0) { 2562 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2563 return -EINVAL; 2564 map_def->parts |= MAP_DEF_MAP_TYPE; 2565 } else if (strcmp(name, "max_entries") == 0) { 2566 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2567 return -EINVAL; 2568 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2569 } else if (strcmp(name, "map_flags") == 0) { 2570 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2571 return -EINVAL; 2572 map_def->parts |= MAP_DEF_MAP_FLAGS; 2573 } else if (strcmp(name, "numa_node") == 0) { 2574 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2575 return -EINVAL; 2576 map_def->parts |= MAP_DEF_NUMA_NODE; 2577 } else if (strcmp(name, "key_size") == 0) { 2578 __u32 sz; 2579 2580 if (!get_map_field_int(map_name, btf, m, &sz)) 2581 return -EINVAL; 2582 if (map_def->key_size && map_def->key_size != sz) { 2583 pr_warn("map '%s': conflicting key size %u != %u.\n", 2584 map_name, map_def->key_size, sz); 2585 return -EINVAL; 2586 } 2587 map_def->key_size = sz; 2588 map_def->parts |= MAP_DEF_KEY_SIZE; 2589 } else if (strcmp(name, "key") == 0) { 2590 __s64 sz; 2591 2592 t = btf__type_by_id(btf, m->type); 2593 if (!t) { 2594 pr_warn("map '%s': key type [%d] not found.\n", 2595 map_name, m->type); 2596 return -EINVAL; 2597 } 2598 if (!btf_is_ptr(t)) { 2599 pr_warn("map '%s': key spec is not PTR: %s.\n", 2600 map_name, btf_kind_str(t)); 2601 return -EINVAL; 2602 } 2603 sz = btf__resolve_size(btf, t->type); 2604 if (sz < 0) { 2605 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2606 map_name, t->type, (ssize_t)sz); 2607 return sz; 2608 } 2609 if (map_def->key_size && map_def->key_size != sz) { 2610 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2611 map_name, map_def->key_size, (ssize_t)sz); 2612 return -EINVAL; 2613 } 2614 map_def->key_size = sz; 2615 map_def->key_type_id = t->type; 2616 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2617 } else if (strcmp(name, "value_size") == 0) { 2618 __u32 sz; 2619 2620 if (!get_map_field_int(map_name, btf, m, &sz)) 2621 return -EINVAL; 2622 if (map_def->value_size && map_def->value_size != sz) { 2623 pr_warn("map '%s': conflicting value size %u != %u.\n", 2624 map_name, map_def->value_size, sz); 2625 return -EINVAL; 2626 } 2627 map_def->value_size = sz; 2628 map_def->parts |= MAP_DEF_VALUE_SIZE; 2629 } else if (strcmp(name, "value") == 0) { 2630 __s64 sz; 2631 2632 t = btf__type_by_id(btf, m->type); 2633 if (!t) { 2634 pr_warn("map '%s': value type [%d] not found.\n", 2635 map_name, m->type); 2636 return -EINVAL; 2637 } 2638 if (!btf_is_ptr(t)) { 2639 pr_warn("map '%s': value spec is not PTR: %s.\n", 2640 map_name, btf_kind_str(t)); 2641 return -EINVAL; 2642 } 2643 sz = btf__resolve_size(btf, t->type); 2644 if (sz < 0) { 2645 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2646 map_name, t->type, (ssize_t)sz); 2647 return sz; 2648 } 2649 if (map_def->value_size && map_def->value_size != sz) { 2650 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2651 map_name, map_def->value_size, (ssize_t)sz); 2652 return -EINVAL; 2653 } 2654 map_def->value_size = sz; 2655 map_def->value_type_id = t->type; 2656 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2657 } 2658 else if (strcmp(name, "values") == 0) { 2659 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2660 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2661 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2662 char inner_map_name[128]; 2663 int err; 2664 2665 if (is_inner) { 2666 pr_warn("map '%s': multi-level inner maps not supported.\n", 2667 map_name); 2668 return -ENOTSUP; 2669 } 2670 if (i != vlen - 1) { 2671 pr_warn("map '%s': '%s' member should be last.\n", 2672 map_name, name); 2673 return -EINVAL; 2674 } 2675 if (!is_map_in_map && !is_prog_array) { 2676 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2677 map_name); 2678 return -ENOTSUP; 2679 } 2680 if (map_def->value_size && map_def->value_size != 4) { 2681 pr_warn("map '%s': conflicting value size %u != 4.\n", 2682 map_name, map_def->value_size); 2683 return -EINVAL; 2684 } 2685 map_def->value_size = 4; 2686 t = btf__type_by_id(btf, m->type); 2687 if (!t) { 2688 pr_warn("map '%s': %s type [%d] not found.\n", 2689 map_name, desc, m->type); 2690 return -EINVAL; 2691 } 2692 if (!btf_is_array(t) || btf_array(t)->nelems) { 2693 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2694 map_name, desc); 2695 return -EINVAL; 2696 } 2697 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2698 if (!btf_is_ptr(t)) { 2699 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2700 map_name, desc, btf_kind_str(t)); 2701 return -EINVAL; 2702 } 2703 t = skip_mods_and_typedefs(btf, t->type, NULL); 2704 if (is_prog_array) { 2705 if (!btf_is_func_proto(t)) { 2706 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2707 map_name, btf_kind_str(t)); 2708 return -EINVAL; 2709 } 2710 continue; 2711 } 2712 if (!btf_is_struct(t)) { 2713 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2714 map_name, btf_kind_str(t)); 2715 return -EINVAL; 2716 } 2717 2718 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2719 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2720 if (err) 2721 return err; 2722 2723 map_def->parts |= MAP_DEF_INNER_MAP; 2724 } else if (strcmp(name, "pinning") == 0) { 2725 __u32 val; 2726 2727 if (is_inner) { 2728 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2729 return -EINVAL; 2730 } 2731 if (!get_map_field_int(map_name, btf, m, &val)) 2732 return -EINVAL; 2733 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2734 pr_warn("map '%s': invalid pinning value %u.\n", 2735 map_name, val); 2736 return -EINVAL; 2737 } 2738 map_def->pinning = val; 2739 map_def->parts |= MAP_DEF_PINNING; 2740 } else if (strcmp(name, "map_extra") == 0) { 2741 __u64 map_extra; 2742 2743 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2744 return -EINVAL; 2745 map_def->map_extra = map_extra; 2746 map_def->parts |= MAP_DEF_MAP_EXTRA; 2747 } else { 2748 if (strict) { 2749 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2750 return -ENOTSUP; 2751 } 2752 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2753 } 2754 } 2755 2756 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2757 pr_warn("map '%s': map type isn't specified.\n", map_name); 2758 return -EINVAL; 2759 } 2760 2761 return 0; 2762 } 2763 2764 static size_t adjust_ringbuf_sz(size_t sz) 2765 { 2766 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2767 __u32 mul; 2768 2769 /* if user forgot to set any size, make sure they see error */ 2770 if (sz == 0) 2771 return 0; 2772 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2773 * a power-of-2 multiple of kernel's page size. If user diligently 2774 * satisified these conditions, pass the size through. 2775 */ 2776 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2777 return sz; 2778 2779 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2780 * user-set size to satisfy both user size request and kernel 2781 * requirements and substitute correct max_entries for map creation. 2782 */ 2783 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2784 if (mul * page_sz > sz) 2785 return mul * page_sz; 2786 } 2787 2788 /* if it's impossible to satisfy the conditions (i.e., user size is 2789 * very close to UINT_MAX but is not a power-of-2 multiple of 2790 * page_size) then just return original size and let kernel reject it 2791 */ 2792 return sz; 2793 } 2794 2795 static bool map_is_ringbuf(const struct bpf_map *map) 2796 { 2797 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2798 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2799 } 2800 2801 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2802 { 2803 map->def.type = def->map_type; 2804 map->def.key_size = def->key_size; 2805 map->def.value_size = def->value_size; 2806 map->def.max_entries = def->max_entries; 2807 map->def.map_flags = def->map_flags; 2808 map->map_extra = def->map_extra; 2809 2810 map->numa_node = def->numa_node; 2811 map->btf_key_type_id = def->key_type_id; 2812 map->btf_value_type_id = def->value_type_id; 2813 2814 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2815 if (map_is_ringbuf(map)) 2816 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2817 2818 if (def->parts & MAP_DEF_MAP_TYPE) 2819 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2820 2821 if (def->parts & MAP_DEF_KEY_TYPE) 2822 pr_debug("map '%s': found key [%u], sz = %u.\n", 2823 map->name, def->key_type_id, def->key_size); 2824 else if (def->parts & MAP_DEF_KEY_SIZE) 2825 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2826 2827 if (def->parts & MAP_DEF_VALUE_TYPE) 2828 pr_debug("map '%s': found value [%u], sz = %u.\n", 2829 map->name, def->value_type_id, def->value_size); 2830 else if (def->parts & MAP_DEF_VALUE_SIZE) 2831 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2832 2833 if (def->parts & MAP_DEF_MAX_ENTRIES) 2834 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2835 if (def->parts & MAP_DEF_MAP_FLAGS) 2836 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2837 if (def->parts & MAP_DEF_MAP_EXTRA) 2838 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2839 (unsigned long long)def->map_extra); 2840 if (def->parts & MAP_DEF_PINNING) 2841 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2842 if (def->parts & MAP_DEF_NUMA_NODE) 2843 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2844 2845 if (def->parts & MAP_DEF_INNER_MAP) 2846 pr_debug("map '%s': found inner map definition.\n", map->name); 2847 } 2848 2849 static const char *btf_var_linkage_str(__u32 linkage) 2850 { 2851 switch (linkage) { 2852 case BTF_VAR_STATIC: return "static"; 2853 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2854 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2855 default: return "unknown"; 2856 } 2857 } 2858 2859 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2860 const struct btf_type *sec, 2861 int var_idx, int sec_idx, 2862 const Elf_Data *data, bool strict, 2863 const char *pin_root_path) 2864 { 2865 struct btf_map_def map_def = {}, inner_def = {}; 2866 const struct btf_type *var, *def; 2867 const struct btf_var_secinfo *vi; 2868 const struct btf_var *var_extra; 2869 const char *map_name; 2870 struct bpf_map *map; 2871 int err; 2872 2873 vi = btf_var_secinfos(sec) + var_idx; 2874 var = btf__type_by_id(obj->btf, vi->type); 2875 var_extra = btf_var(var); 2876 map_name = btf__name_by_offset(obj->btf, var->name_off); 2877 2878 if (map_name == NULL || map_name[0] == '\0') { 2879 pr_warn("map #%d: empty name.\n", var_idx); 2880 return -EINVAL; 2881 } 2882 if ((__u64)vi->offset + vi->size > data->d_size) { 2883 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2884 return -EINVAL; 2885 } 2886 if (!btf_is_var(var)) { 2887 pr_warn("map '%s': unexpected var kind %s.\n", 2888 map_name, btf_kind_str(var)); 2889 return -EINVAL; 2890 } 2891 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2892 pr_warn("map '%s': unsupported map linkage %s.\n", 2893 map_name, btf_var_linkage_str(var_extra->linkage)); 2894 return -EOPNOTSUPP; 2895 } 2896 2897 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2898 if (!btf_is_struct(def)) { 2899 pr_warn("map '%s': unexpected def kind %s.\n", 2900 map_name, btf_kind_str(var)); 2901 return -EINVAL; 2902 } 2903 if (def->size > vi->size) { 2904 pr_warn("map '%s': invalid def size.\n", map_name); 2905 return -EINVAL; 2906 } 2907 2908 map = bpf_object__add_map(obj); 2909 if (IS_ERR(map)) 2910 return PTR_ERR(map); 2911 map->name = strdup(map_name); 2912 if (!map->name) { 2913 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2914 return -ENOMEM; 2915 } 2916 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2917 map->def.type = BPF_MAP_TYPE_UNSPEC; 2918 map->sec_idx = sec_idx; 2919 map->sec_offset = vi->offset; 2920 map->btf_var_idx = var_idx; 2921 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2922 map_name, map->sec_idx, map->sec_offset); 2923 2924 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2925 if (err) 2926 return err; 2927 2928 fill_map_from_def(map, &map_def); 2929 2930 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2931 err = build_map_pin_path(map, pin_root_path); 2932 if (err) { 2933 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2934 return err; 2935 } 2936 } 2937 2938 if (map_def.parts & MAP_DEF_INNER_MAP) { 2939 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2940 if (!map->inner_map) 2941 return -ENOMEM; 2942 map->inner_map->fd = create_placeholder_fd(); 2943 if (map->inner_map->fd < 0) 2944 return map->inner_map->fd; 2945 map->inner_map->sec_idx = sec_idx; 2946 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2947 if (!map->inner_map->name) 2948 return -ENOMEM; 2949 sprintf(map->inner_map->name, "%s.inner", map_name); 2950 2951 fill_map_from_def(map->inner_map, &inner_def); 2952 } 2953 2954 err = map_fill_btf_type_info(obj, map); 2955 if (err) 2956 return err; 2957 2958 return 0; 2959 } 2960 2961 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2962 const char *sec_name, int sec_idx, 2963 void *data, size_t data_sz) 2964 { 2965 const long page_sz = sysconf(_SC_PAGE_SIZE); 2966 size_t mmap_sz; 2967 2968 mmap_sz = bpf_map_mmap_sz(map); 2969 if (roundup(data_sz, page_sz) > mmap_sz) { 2970 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2971 sec_name, mmap_sz, data_sz); 2972 return -E2BIG; 2973 } 2974 2975 obj->arena_data = malloc(data_sz); 2976 if (!obj->arena_data) 2977 return -ENOMEM; 2978 memcpy(obj->arena_data, data, data_sz); 2979 obj->arena_data_sz = data_sz; 2980 2981 /* make bpf_map__init_value() work for ARENA maps */ 2982 map->mmaped = obj->arena_data; 2983 2984 return 0; 2985 } 2986 2987 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2988 const char *pin_root_path) 2989 { 2990 const struct btf_type *sec = NULL; 2991 int nr_types, i, vlen, err; 2992 const struct btf_type *t; 2993 const char *name; 2994 Elf_Data *data; 2995 Elf_Scn *scn; 2996 2997 if (obj->efile.btf_maps_shndx < 0) 2998 return 0; 2999 3000 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3001 data = elf_sec_data(obj, scn); 3002 if (!scn || !data) { 3003 pr_warn("elf: failed to get %s map definitions for %s\n", 3004 MAPS_ELF_SEC, obj->path); 3005 return -EINVAL; 3006 } 3007 3008 nr_types = btf__type_cnt(obj->btf); 3009 for (i = 1; i < nr_types; i++) { 3010 t = btf__type_by_id(obj->btf, i); 3011 if (!btf_is_datasec(t)) 3012 continue; 3013 name = btf__name_by_offset(obj->btf, t->name_off); 3014 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3015 sec = t; 3016 obj->efile.btf_maps_sec_btf_id = i; 3017 break; 3018 } 3019 } 3020 3021 if (!sec) { 3022 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3023 return -ENOENT; 3024 } 3025 3026 vlen = btf_vlen(sec); 3027 for (i = 0; i < vlen; i++) { 3028 err = bpf_object__init_user_btf_map(obj, sec, i, 3029 obj->efile.btf_maps_shndx, 3030 data, strict, 3031 pin_root_path); 3032 if (err) 3033 return err; 3034 } 3035 3036 for (i = 0; i < obj->nr_maps; i++) { 3037 struct bpf_map *map = &obj->maps[i]; 3038 3039 if (map->def.type != BPF_MAP_TYPE_ARENA) 3040 continue; 3041 3042 if (obj->arena_map_idx >= 0) { 3043 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3044 map->name, obj->maps[obj->arena_map_idx].name); 3045 return -EINVAL; 3046 } 3047 obj->arena_map_idx = i; 3048 3049 if (obj->efile.arena_data) { 3050 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3051 obj->efile.arena_data->d_buf, 3052 obj->efile.arena_data->d_size); 3053 if (err) 3054 return err; 3055 } 3056 } 3057 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3058 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3059 ARENA_SEC); 3060 return -ENOENT; 3061 } 3062 3063 return 0; 3064 } 3065 3066 static int bpf_object__init_maps(struct bpf_object *obj, 3067 const struct bpf_object_open_opts *opts) 3068 { 3069 const char *pin_root_path; 3070 bool strict; 3071 int err = 0; 3072 3073 strict = !OPTS_GET(opts, relaxed_maps, false); 3074 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3075 3076 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3077 err = err ?: bpf_object__init_global_data_maps(obj); 3078 err = err ?: bpf_object__init_kconfig_map(obj); 3079 err = err ?: bpf_object_init_struct_ops(obj); 3080 3081 return err; 3082 } 3083 3084 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3085 { 3086 Elf64_Shdr *sh; 3087 3088 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3089 if (!sh) 3090 return false; 3091 3092 return sh->sh_flags & SHF_EXECINSTR; 3093 } 3094 3095 static bool starts_with_qmark(const char *s) 3096 { 3097 return s && s[0] == '?'; 3098 } 3099 3100 static bool btf_needs_sanitization(struct bpf_object *obj) 3101 { 3102 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3103 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3104 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3105 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3106 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3107 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3108 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3109 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3110 3111 return !has_func || !has_datasec || !has_func_global || !has_float || 3112 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3113 } 3114 3115 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3116 { 3117 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3118 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3119 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3120 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3121 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3122 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3123 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3124 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3125 int enum64_placeholder_id = 0; 3126 struct btf_type *t; 3127 int i, j, vlen; 3128 3129 for (i = 1; i < btf__type_cnt(btf); i++) { 3130 t = (struct btf_type *)btf__type_by_id(btf, i); 3131 3132 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3133 /* replace VAR/DECL_TAG with INT */ 3134 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3135 /* 3136 * using size = 1 is the safest choice, 4 will be too 3137 * big and cause kernel BTF validation failure if 3138 * original variable took less than 4 bytes 3139 */ 3140 t->size = 1; 3141 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3142 } else if (!has_datasec && btf_is_datasec(t)) { 3143 /* replace DATASEC with STRUCT */ 3144 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3145 struct btf_member *m = btf_members(t); 3146 struct btf_type *vt; 3147 char *name; 3148 3149 name = (char *)btf__name_by_offset(btf, t->name_off); 3150 while (*name) { 3151 if (*name == '.' || *name == '?') 3152 *name = '_'; 3153 name++; 3154 } 3155 3156 vlen = btf_vlen(t); 3157 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3158 for (j = 0; j < vlen; j++, v++, m++) { 3159 /* order of field assignments is important */ 3160 m->offset = v->offset * 8; 3161 m->type = v->type; 3162 /* preserve variable name as member name */ 3163 vt = (void *)btf__type_by_id(btf, v->type); 3164 m->name_off = vt->name_off; 3165 } 3166 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3167 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3168 /* replace '?' prefix with '_' for DATASEC names */ 3169 char *name; 3170 3171 name = (char *)btf__name_by_offset(btf, t->name_off); 3172 if (name[0] == '?') 3173 name[0] = '_'; 3174 } else if (!has_func && btf_is_func_proto(t)) { 3175 /* replace FUNC_PROTO with ENUM */ 3176 vlen = btf_vlen(t); 3177 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3178 t->size = sizeof(__u32); /* kernel enforced */ 3179 } else if (!has_func && btf_is_func(t)) { 3180 /* replace FUNC with TYPEDEF */ 3181 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3182 } else if (!has_func_global && btf_is_func(t)) { 3183 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3184 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3185 } else if (!has_float && btf_is_float(t)) { 3186 /* replace FLOAT with an equally-sized empty STRUCT; 3187 * since C compilers do not accept e.g. "float" as a 3188 * valid struct name, make it anonymous 3189 */ 3190 t->name_off = 0; 3191 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3192 } else if (!has_type_tag && btf_is_type_tag(t)) { 3193 /* replace TYPE_TAG with a CONST */ 3194 t->name_off = 0; 3195 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3196 } else if (!has_enum64 && btf_is_enum(t)) { 3197 /* clear the kflag */ 3198 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3199 } else if (!has_enum64 && btf_is_enum64(t)) { 3200 /* replace ENUM64 with a union */ 3201 struct btf_member *m; 3202 3203 if (enum64_placeholder_id == 0) { 3204 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3205 if (enum64_placeholder_id < 0) 3206 return enum64_placeholder_id; 3207 3208 t = (struct btf_type *)btf__type_by_id(btf, i); 3209 } 3210 3211 m = btf_members(t); 3212 vlen = btf_vlen(t); 3213 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3214 for (j = 0; j < vlen; j++, m++) { 3215 m->type = enum64_placeholder_id; 3216 m->offset = 0; 3217 } 3218 } 3219 } 3220 3221 return 0; 3222 } 3223 3224 static bool libbpf_needs_btf(const struct bpf_object *obj) 3225 { 3226 return obj->efile.btf_maps_shndx >= 0 || 3227 obj->efile.has_st_ops || 3228 obj->nr_extern > 0; 3229 } 3230 3231 static bool kernel_needs_btf(const struct bpf_object *obj) 3232 { 3233 return obj->efile.has_st_ops; 3234 } 3235 3236 static int bpf_object__init_btf(struct bpf_object *obj, 3237 Elf_Data *btf_data, 3238 Elf_Data *btf_ext_data) 3239 { 3240 int err = -ENOENT; 3241 3242 if (btf_data) { 3243 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3244 err = libbpf_get_error(obj->btf); 3245 if (err) { 3246 obj->btf = NULL; 3247 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3248 goto out; 3249 } 3250 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3251 btf__set_pointer_size(obj->btf, 8); 3252 } 3253 if (btf_ext_data) { 3254 struct btf_ext_info *ext_segs[3]; 3255 int seg_num, sec_num; 3256 3257 if (!obj->btf) { 3258 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3259 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3260 goto out; 3261 } 3262 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3263 err = libbpf_get_error(obj->btf_ext); 3264 if (err) { 3265 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3266 BTF_EXT_ELF_SEC, errstr(err)); 3267 obj->btf_ext = NULL; 3268 goto out; 3269 } 3270 3271 /* setup .BTF.ext to ELF section mapping */ 3272 ext_segs[0] = &obj->btf_ext->func_info; 3273 ext_segs[1] = &obj->btf_ext->line_info; 3274 ext_segs[2] = &obj->btf_ext->core_relo_info; 3275 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3276 struct btf_ext_info *seg = ext_segs[seg_num]; 3277 const struct btf_ext_info_sec *sec; 3278 const char *sec_name; 3279 Elf_Scn *scn; 3280 3281 if (seg->sec_cnt == 0) 3282 continue; 3283 3284 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3285 if (!seg->sec_idxs) { 3286 err = -ENOMEM; 3287 goto out; 3288 } 3289 3290 sec_num = 0; 3291 for_each_btf_ext_sec(seg, sec) { 3292 /* preventively increment index to avoid doing 3293 * this before every continue below 3294 */ 3295 sec_num++; 3296 3297 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3298 if (str_is_empty(sec_name)) 3299 continue; 3300 scn = elf_sec_by_name(obj, sec_name); 3301 if (!scn) 3302 continue; 3303 3304 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3305 } 3306 } 3307 } 3308 out: 3309 if (err && libbpf_needs_btf(obj)) { 3310 pr_warn("BTF is required, but is missing or corrupted.\n"); 3311 return err; 3312 } 3313 return 0; 3314 } 3315 3316 static int compare_vsi_off(const void *_a, const void *_b) 3317 { 3318 const struct btf_var_secinfo *a = _a; 3319 const struct btf_var_secinfo *b = _b; 3320 3321 return a->offset - b->offset; 3322 } 3323 3324 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3325 struct btf_type *t) 3326 { 3327 __u32 size = 0, i, vars = btf_vlen(t); 3328 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3329 struct btf_var_secinfo *vsi; 3330 bool fixup_offsets = false; 3331 int err; 3332 3333 if (!sec_name) { 3334 pr_debug("No name found in string section for DATASEC kind.\n"); 3335 return -ENOENT; 3336 } 3337 3338 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3339 * variable offsets set at the previous step. Further, not every 3340 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3341 * all fixups altogether for such sections and go straight to sorting 3342 * VARs within their DATASEC. 3343 */ 3344 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3345 goto sort_vars; 3346 3347 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3348 * fix this up. But BPF static linker already fixes this up and fills 3349 * all the sizes and offsets during static linking. So this step has 3350 * to be optional. But the STV_HIDDEN handling is non-optional for any 3351 * non-extern DATASEC, so the variable fixup loop below handles both 3352 * functions at the same time, paying the cost of BTF VAR <-> ELF 3353 * symbol matching just once. 3354 */ 3355 if (t->size == 0) { 3356 err = find_elf_sec_sz(obj, sec_name, &size); 3357 if (err || !size) { 3358 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3359 sec_name, size, errstr(err)); 3360 return -ENOENT; 3361 } 3362 3363 t->size = size; 3364 fixup_offsets = true; 3365 } 3366 3367 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3368 const struct btf_type *t_var; 3369 struct btf_var *var; 3370 const char *var_name; 3371 Elf64_Sym *sym; 3372 3373 t_var = btf__type_by_id(btf, vsi->type); 3374 if (!t_var || !btf_is_var(t_var)) { 3375 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3376 return -EINVAL; 3377 } 3378 3379 var = btf_var(t_var); 3380 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3381 continue; 3382 3383 var_name = btf__name_by_offset(btf, t_var->name_off); 3384 if (!var_name) { 3385 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3386 sec_name, i); 3387 return -ENOENT; 3388 } 3389 3390 sym = find_elf_var_sym(obj, var_name); 3391 if (IS_ERR(sym)) { 3392 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3393 sec_name, var_name); 3394 return -ENOENT; 3395 } 3396 3397 if (fixup_offsets) 3398 vsi->offset = sym->st_value; 3399 3400 /* if variable is a global/weak symbol, but has restricted 3401 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3402 * as static. This follows similar logic for functions (BPF 3403 * subprogs) and influences libbpf's further decisions about 3404 * whether to make global data BPF array maps as 3405 * BPF_F_MMAPABLE. 3406 */ 3407 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3408 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3409 var->linkage = BTF_VAR_STATIC; 3410 } 3411 3412 sort_vars: 3413 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3414 return 0; 3415 } 3416 3417 static int bpf_object_fixup_btf(struct bpf_object *obj) 3418 { 3419 int i, n, err = 0; 3420 3421 if (!obj->btf) 3422 return 0; 3423 3424 n = btf__type_cnt(obj->btf); 3425 for (i = 1; i < n; i++) { 3426 struct btf_type *t = btf_type_by_id(obj->btf, i); 3427 3428 /* Loader needs to fix up some of the things compiler 3429 * couldn't get its hands on while emitting BTF. This 3430 * is section size and global variable offset. We use 3431 * the info from the ELF itself for this purpose. 3432 */ 3433 if (btf_is_datasec(t)) { 3434 err = btf_fixup_datasec(obj, obj->btf, t); 3435 if (err) 3436 return err; 3437 } 3438 } 3439 3440 return 0; 3441 } 3442 3443 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3444 { 3445 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3446 prog->type == BPF_PROG_TYPE_LSM) 3447 return true; 3448 3449 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3450 * also need vmlinux BTF 3451 */ 3452 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3453 return true; 3454 3455 return false; 3456 } 3457 3458 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3459 { 3460 return bpf_map__is_struct_ops(map); 3461 } 3462 3463 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3464 { 3465 struct bpf_program *prog; 3466 struct bpf_map *map; 3467 int i; 3468 3469 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3470 * is not specified 3471 */ 3472 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3473 return true; 3474 3475 /* Support for typed ksyms needs kernel BTF */ 3476 for (i = 0; i < obj->nr_extern; i++) { 3477 const struct extern_desc *ext; 3478 3479 ext = &obj->externs[i]; 3480 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3481 return true; 3482 } 3483 3484 bpf_object__for_each_program(prog, obj) { 3485 if (!prog->autoload) 3486 continue; 3487 if (prog_needs_vmlinux_btf(prog)) 3488 return true; 3489 } 3490 3491 bpf_object__for_each_map(map, obj) { 3492 if (map_needs_vmlinux_btf(map)) 3493 return true; 3494 } 3495 3496 return false; 3497 } 3498 3499 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3500 { 3501 int err; 3502 3503 /* btf_vmlinux could be loaded earlier */ 3504 if (obj->btf_vmlinux || obj->gen_loader) 3505 return 0; 3506 3507 if (!force && !obj_needs_vmlinux_btf(obj)) 3508 return 0; 3509 3510 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3511 err = libbpf_get_error(obj->btf_vmlinux); 3512 if (err) { 3513 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3514 obj->btf_vmlinux = NULL; 3515 return err; 3516 } 3517 return 0; 3518 } 3519 3520 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3521 { 3522 struct btf *kern_btf = obj->btf; 3523 bool btf_mandatory, sanitize; 3524 int i, err = 0; 3525 3526 if (!obj->btf) 3527 return 0; 3528 3529 if (!kernel_supports(obj, FEAT_BTF)) { 3530 if (kernel_needs_btf(obj)) { 3531 err = -EOPNOTSUPP; 3532 goto report; 3533 } 3534 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3535 return 0; 3536 } 3537 3538 /* Even though some subprogs are global/weak, user might prefer more 3539 * permissive BPF verification process that BPF verifier performs for 3540 * static functions, taking into account more context from the caller 3541 * functions. In such case, they need to mark such subprogs with 3542 * __attribute__((visibility("hidden"))) and libbpf will adjust 3543 * corresponding FUNC BTF type to be marked as static and trigger more 3544 * involved BPF verification process. 3545 */ 3546 for (i = 0; i < obj->nr_programs; i++) { 3547 struct bpf_program *prog = &obj->programs[i]; 3548 struct btf_type *t; 3549 const char *name; 3550 int j, n; 3551 3552 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3553 continue; 3554 3555 n = btf__type_cnt(obj->btf); 3556 for (j = 1; j < n; j++) { 3557 t = btf_type_by_id(obj->btf, j); 3558 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3559 continue; 3560 3561 name = btf__str_by_offset(obj->btf, t->name_off); 3562 if (strcmp(name, prog->name) != 0) 3563 continue; 3564 3565 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3566 break; 3567 } 3568 } 3569 3570 sanitize = btf_needs_sanitization(obj); 3571 if (sanitize) { 3572 const void *raw_data; 3573 __u32 sz; 3574 3575 /* clone BTF to sanitize a copy and leave the original intact */ 3576 raw_data = btf__raw_data(obj->btf, &sz); 3577 kern_btf = btf__new(raw_data, sz); 3578 err = libbpf_get_error(kern_btf); 3579 if (err) 3580 return err; 3581 3582 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3583 btf__set_pointer_size(obj->btf, 8); 3584 err = bpf_object__sanitize_btf(obj, kern_btf); 3585 if (err) 3586 return err; 3587 } 3588 3589 if (obj->gen_loader) { 3590 __u32 raw_size = 0; 3591 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3592 3593 if (!raw_data) 3594 return -ENOMEM; 3595 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3596 /* Pretend to have valid FD to pass various fd >= 0 checks. 3597 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3598 */ 3599 btf__set_fd(kern_btf, 0); 3600 } else { 3601 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3602 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3603 obj->log_level ? 1 : 0, obj->token_fd); 3604 } 3605 if (sanitize) { 3606 if (!err) { 3607 /* move fd to libbpf's BTF */ 3608 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3609 btf__set_fd(kern_btf, -1); 3610 } 3611 btf__free(kern_btf); 3612 } 3613 report: 3614 if (err) { 3615 btf_mandatory = kernel_needs_btf(obj); 3616 if (btf_mandatory) { 3617 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3618 errstr(err)); 3619 } else { 3620 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3621 errstr(err)); 3622 err = 0; 3623 } 3624 } 3625 return err; 3626 } 3627 3628 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3629 { 3630 const char *name; 3631 3632 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3633 if (!name) { 3634 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3635 off, obj->path, elf_errmsg(-1)); 3636 return NULL; 3637 } 3638 3639 return name; 3640 } 3641 3642 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3643 { 3644 const char *name; 3645 3646 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3647 if (!name) { 3648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3649 off, obj->path, elf_errmsg(-1)); 3650 return NULL; 3651 } 3652 3653 return name; 3654 } 3655 3656 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3657 { 3658 Elf_Scn *scn; 3659 3660 scn = elf_getscn(obj->efile.elf, idx); 3661 if (!scn) { 3662 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3663 idx, obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 return scn; 3667 } 3668 3669 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3670 { 3671 Elf_Scn *scn = NULL; 3672 Elf *elf = obj->efile.elf; 3673 const char *sec_name; 3674 3675 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3676 sec_name = elf_sec_name(obj, scn); 3677 if (!sec_name) 3678 return NULL; 3679 3680 if (strcmp(sec_name, name) != 0) 3681 continue; 3682 3683 return scn; 3684 } 3685 return NULL; 3686 } 3687 3688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3689 { 3690 Elf64_Shdr *shdr; 3691 3692 if (!scn) 3693 return NULL; 3694 3695 shdr = elf64_getshdr(scn); 3696 if (!shdr) { 3697 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3698 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3699 return NULL; 3700 } 3701 3702 return shdr; 3703 } 3704 3705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3706 { 3707 const char *name; 3708 Elf64_Shdr *sh; 3709 3710 if (!scn) 3711 return NULL; 3712 3713 sh = elf_sec_hdr(obj, scn); 3714 if (!sh) 3715 return NULL; 3716 3717 name = elf_sec_str(obj, sh->sh_name); 3718 if (!name) { 3719 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3720 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3721 return NULL; 3722 } 3723 3724 return name; 3725 } 3726 3727 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3728 { 3729 Elf_Data *data; 3730 3731 if (!scn) 3732 return NULL; 3733 3734 data = elf_getdata(scn, 0); 3735 if (!data) { 3736 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3737 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3738 obj->path, elf_errmsg(-1)); 3739 return NULL; 3740 } 3741 3742 return data; 3743 } 3744 3745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3746 { 3747 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3748 return NULL; 3749 3750 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3751 } 3752 3753 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3754 { 3755 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3756 return NULL; 3757 3758 return (Elf64_Rel *)data->d_buf + idx; 3759 } 3760 3761 static bool is_sec_name_dwarf(const char *name) 3762 { 3763 /* approximation, but the actual list is too long */ 3764 return str_has_pfx(name, ".debug_"); 3765 } 3766 3767 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3768 { 3769 /* no special handling of .strtab */ 3770 if (hdr->sh_type == SHT_STRTAB) 3771 return true; 3772 3773 /* ignore .llvm_addrsig section as well */ 3774 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3775 return true; 3776 3777 /* no subprograms will lead to an empty .text section, ignore it */ 3778 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3779 strcmp(name, ".text") == 0) 3780 return true; 3781 3782 /* DWARF sections */ 3783 if (is_sec_name_dwarf(name)) 3784 return true; 3785 3786 if (str_has_pfx(name, ".rel")) { 3787 name += sizeof(".rel") - 1; 3788 /* DWARF section relocations */ 3789 if (is_sec_name_dwarf(name)) 3790 return true; 3791 3792 /* .BTF and .BTF.ext don't need relocations */ 3793 if (strcmp(name, BTF_ELF_SEC) == 0 || 3794 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3795 return true; 3796 } 3797 3798 return false; 3799 } 3800 3801 static int cmp_progs(const void *_a, const void *_b) 3802 { 3803 const struct bpf_program *a = _a; 3804 const struct bpf_program *b = _b; 3805 3806 if (a->sec_idx != b->sec_idx) 3807 return a->sec_idx < b->sec_idx ? -1 : 1; 3808 3809 /* sec_insn_off can't be the same within the section */ 3810 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3811 } 3812 3813 static int bpf_object__elf_collect(struct bpf_object *obj) 3814 { 3815 struct elf_sec_desc *sec_desc; 3816 Elf *elf = obj->efile.elf; 3817 Elf_Data *btf_ext_data = NULL; 3818 Elf_Data *btf_data = NULL; 3819 int idx = 0, err = 0; 3820 const char *name; 3821 Elf_Data *data; 3822 Elf_Scn *scn; 3823 Elf64_Shdr *sh; 3824 3825 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3826 * section. Since section count retrieved by elf_getshdrnum() does 3827 * include sec #0, it is already the necessary size of an array to keep 3828 * all the sections. 3829 */ 3830 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3831 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3832 obj->path, elf_errmsg(-1)); 3833 return -LIBBPF_ERRNO__FORMAT; 3834 } 3835 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3836 if (!obj->efile.secs) 3837 return -ENOMEM; 3838 3839 /* a bunch of ELF parsing functionality depends on processing symbols, 3840 * so do the first pass and find the symbol table 3841 */ 3842 scn = NULL; 3843 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3844 sh = elf_sec_hdr(obj, scn); 3845 if (!sh) 3846 return -LIBBPF_ERRNO__FORMAT; 3847 3848 if (sh->sh_type == SHT_SYMTAB) { 3849 if (obj->efile.symbols) { 3850 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3851 return -LIBBPF_ERRNO__FORMAT; 3852 } 3853 3854 data = elf_sec_data(obj, scn); 3855 if (!data) 3856 return -LIBBPF_ERRNO__FORMAT; 3857 3858 idx = elf_ndxscn(scn); 3859 3860 obj->efile.symbols = data; 3861 obj->efile.symbols_shndx = idx; 3862 obj->efile.strtabidx = sh->sh_link; 3863 } 3864 } 3865 3866 if (!obj->efile.symbols) { 3867 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3868 obj->path); 3869 return -ENOENT; 3870 } 3871 3872 scn = NULL; 3873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3874 idx = elf_ndxscn(scn); 3875 sec_desc = &obj->efile.secs[idx]; 3876 3877 sh = elf_sec_hdr(obj, scn); 3878 if (!sh) 3879 return -LIBBPF_ERRNO__FORMAT; 3880 3881 name = elf_sec_str(obj, sh->sh_name); 3882 if (!name) 3883 return -LIBBPF_ERRNO__FORMAT; 3884 3885 if (ignore_elf_section(sh, name)) 3886 continue; 3887 3888 data = elf_sec_data(obj, scn); 3889 if (!data) 3890 return -LIBBPF_ERRNO__FORMAT; 3891 3892 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3893 idx, name, (unsigned long)data->d_size, 3894 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3895 (int)sh->sh_type); 3896 3897 if (strcmp(name, "license") == 0) { 3898 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3899 if (err) 3900 return err; 3901 } else if (strcmp(name, "version") == 0) { 3902 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3903 if (err) 3904 return err; 3905 } else if (strcmp(name, "maps") == 0) { 3906 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3907 return -ENOTSUP; 3908 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3909 obj->efile.btf_maps_shndx = idx; 3910 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3911 if (sh->sh_type != SHT_PROGBITS) 3912 return -LIBBPF_ERRNO__FORMAT; 3913 btf_data = data; 3914 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3915 if (sh->sh_type != SHT_PROGBITS) 3916 return -LIBBPF_ERRNO__FORMAT; 3917 btf_ext_data = data; 3918 } else if (sh->sh_type == SHT_SYMTAB) { 3919 /* already processed during the first pass above */ 3920 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3921 if (sh->sh_flags & SHF_EXECINSTR) { 3922 if (strcmp(name, ".text") == 0) 3923 obj->efile.text_shndx = idx; 3924 err = bpf_object__add_programs(obj, data, name, idx); 3925 if (err) 3926 return err; 3927 } else if (strcmp(name, DATA_SEC) == 0 || 3928 str_has_pfx(name, DATA_SEC ".")) { 3929 sec_desc->sec_type = SEC_DATA; 3930 sec_desc->shdr = sh; 3931 sec_desc->data = data; 3932 } else if (strcmp(name, RODATA_SEC) == 0 || 3933 str_has_pfx(name, RODATA_SEC ".")) { 3934 sec_desc->sec_type = SEC_RODATA; 3935 sec_desc->shdr = sh; 3936 sec_desc->data = data; 3937 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3938 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3940 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3941 sec_desc->sec_type = SEC_ST_OPS; 3942 sec_desc->shdr = sh; 3943 sec_desc->data = data; 3944 obj->efile.has_st_ops = true; 3945 } else if (strcmp(name, ARENA_SEC) == 0) { 3946 obj->efile.arena_data = data; 3947 obj->efile.arena_data_shndx = idx; 3948 } else { 3949 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3950 idx, name); 3951 } 3952 } else if (sh->sh_type == SHT_REL) { 3953 int targ_sec_idx = sh->sh_info; /* points to other section */ 3954 3955 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3956 targ_sec_idx >= obj->efile.sec_cnt) 3957 return -LIBBPF_ERRNO__FORMAT; 3958 3959 /* Only do relo for section with exec instructions */ 3960 if (!section_have_execinstr(obj, targ_sec_idx) && 3961 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3962 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3964 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3965 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3966 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3967 idx, name, targ_sec_idx, 3968 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3969 continue; 3970 } 3971 3972 sec_desc->sec_type = SEC_RELO; 3973 sec_desc->shdr = sh; 3974 sec_desc->data = data; 3975 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3976 str_has_pfx(name, BSS_SEC "."))) { 3977 sec_desc->sec_type = SEC_BSS; 3978 sec_desc->shdr = sh; 3979 sec_desc->data = data; 3980 } else { 3981 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3982 (size_t)sh->sh_size); 3983 } 3984 } 3985 3986 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3987 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3988 return -LIBBPF_ERRNO__FORMAT; 3989 } 3990 3991 /* change BPF program insns to native endianness for introspection */ 3992 if (!is_native_endianness(obj)) 3993 bpf_object_bswap_progs(obj); 3994 3995 /* sort BPF programs by section name and in-section instruction offset 3996 * for faster search 3997 */ 3998 if (obj->nr_programs) 3999 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4000 4001 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4002 } 4003 4004 static bool sym_is_extern(const Elf64_Sym *sym) 4005 { 4006 int bind = ELF64_ST_BIND(sym->st_info); 4007 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4008 return sym->st_shndx == SHN_UNDEF && 4009 (bind == STB_GLOBAL || bind == STB_WEAK) && 4010 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4011 } 4012 4013 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4014 { 4015 int bind = ELF64_ST_BIND(sym->st_info); 4016 int type = ELF64_ST_TYPE(sym->st_info); 4017 4018 /* in .text section */ 4019 if (sym->st_shndx != text_shndx) 4020 return false; 4021 4022 /* local function */ 4023 if (bind == STB_LOCAL && type == STT_SECTION) 4024 return true; 4025 4026 /* global function */ 4027 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4028 } 4029 4030 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4031 { 4032 const struct btf_type *t; 4033 const char *tname; 4034 int i, n; 4035 4036 if (!btf) 4037 return -ESRCH; 4038 4039 n = btf__type_cnt(btf); 4040 for (i = 1; i < n; i++) { 4041 t = btf__type_by_id(btf, i); 4042 4043 if (!btf_is_var(t) && !btf_is_func(t)) 4044 continue; 4045 4046 tname = btf__name_by_offset(btf, t->name_off); 4047 if (strcmp(tname, ext_name)) 4048 continue; 4049 4050 if (btf_is_var(t) && 4051 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4052 return -EINVAL; 4053 4054 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4055 return -EINVAL; 4056 4057 return i; 4058 } 4059 4060 return -ENOENT; 4061 } 4062 4063 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4064 const struct btf_var_secinfo *vs; 4065 const struct btf_type *t; 4066 int i, j, n; 4067 4068 if (!btf) 4069 return -ESRCH; 4070 4071 n = btf__type_cnt(btf); 4072 for (i = 1; i < n; i++) { 4073 t = btf__type_by_id(btf, i); 4074 4075 if (!btf_is_datasec(t)) 4076 continue; 4077 4078 vs = btf_var_secinfos(t); 4079 for (j = 0; j < btf_vlen(t); j++, vs++) { 4080 if (vs->type == ext_btf_id) 4081 return i; 4082 } 4083 } 4084 4085 return -ENOENT; 4086 } 4087 4088 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4089 bool *is_signed) 4090 { 4091 const struct btf_type *t; 4092 const char *name; 4093 4094 t = skip_mods_and_typedefs(btf, id, NULL); 4095 name = btf__name_by_offset(btf, t->name_off); 4096 4097 if (is_signed) 4098 *is_signed = false; 4099 switch (btf_kind(t)) { 4100 case BTF_KIND_INT: { 4101 int enc = btf_int_encoding(t); 4102 4103 if (enc & BTF_INT_BOOL) 4104 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4105 if (is_signed) 4106 *is_signed = enc & BTF_INT_SIGNED; 4107 if (t->size == 1) 4108 return KCFG_CHAR; 4109 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4110 return KCFG_UNKNOWN; 4111 return KCFG_INT; 4112 } 4113 case BTF_KIND_ENUM: 4114 if (t->size != 4) 4115 return KCFG_UNKNOWN; 4116 if (strcmp(name, "libbpf_tristate")) 4117 return KCFG_UNKNOWN; 4118 return KCFG_TRISTATE; 4119 case BTF_KIND_ENUM64: 4120 if (strcmp(name, "libbpf_tristate")) 4121 return KCFG_UNKNOWN; 4122 return KCFG_TRISTATE; 4123 case BTF_KIND_ARRAY: 4124 if (btf_array(t)->nelems == 0) 4125 return KCFG_UNKNOWN; 4126 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4127 return KCFG_UNKNOWN; 4128 return KCFG_CHAR_ARR; 4129 default: 4130 return KCFG_UNKNOWN; 4131 } 4132 } 4133 4134 static int cmp_externs(const void *_a, const void *_b) 4135 { 4136 const struct extern_desc *a = _a; 4137 const struct extern_desc *b = _b; 4138 4139 if (a->type != b->type) 4140 return a->type < b->type ? -1 : 1; 4141 4142 if (a->type == EXT_KCFG) { 4143 /* descending order by alignment requirements */ 4144 if (a->kcfg.align != b->kcfg.align) 4145 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4146 /* ascending order by size, within same alignment class */ 4147 if (a->kcfg.sz != b->kcfg.sz) 4148 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4149 } 4150 4151 /* resolve ties by name */ 4152 return strcmp(a->name, b->name); 4153 } 4154 4155 static int find_int_btf_id(const struct btf *btf) 4156 { 4157 const struct btf_type *t; 4158 int i, n; 4159 4160 n = btf__type_cnt(btf); 4161 for (i = 1; i < n; i++) { 4162 t = btf__type_by_id(btf, i); 4163 4164 if (btf_is_int(t) && btf_int_bits(t) == 32) 4165 return i; 4166 } 4167 4168 return 0; 4169 } 4170 4171 static int add_dummy_ksym_var(struct btf *btf) 4172 { 4173 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4174 const struct btf_var_secinfo *vs; 4175 const struct btf_type *sec; 4176 4177 if (!btf) 4178 return 0; 4179 4180 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4181 BTF_KIND_DATASEC); 4182 if (sec_btf_id < 0) 4183 return 0; 4184 4185 sec = btf__type_by_id(btf, sec_btf_id); 4186 vs = btf_var_secinfos(sec); 4187 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4188 const struct btf_type *vt; 4189 4190 vt = btf__type_by_id(btf, vs->type); 4191 if (btf_is_func(vt)) 4192 break; 4193 } 4194 4195 /* No func in ksyms sec. No need to add dummy var. */ 4196 if (i == btf_vlen(sec)) 4197 return 0; 4198 4199 int_btf_id = find_int_btf_id(btf); 4200 dummy_var_btf_id = btf__add_var(btf, 4201 "dummy_ksym", 4202 BTF_VAR_GLOBAL_ALLOCATED, 4203 int_btf_id); 4204 if (dummy_var_btf_id < 0) 4205 pr_warn("cannot create a dummy_ksym var\n"); 4206 4207 return dummy_var_btf_id; 4208 } 4209 4210 static int bpf_object__collect_externs(struct bpf_object *obj) 4211 { 4212 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4213 const struct btf_type *t; 4214 struct extern_desc *ext; 4215 int i, n, off, dummy_var_btf_id; 4216 const char *ext_name, *sec_name; 4217 size_t ext_essent_len; 4218 Elf_Scn *scn; 4219 Elf64_Shdr *sh; 4220 4221 if (!obj->efile.symbols) 4222 return 0; 4223 4224 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4225 sh = elf_sec_hdr(obj, scn); 4226 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4227 return -LIBBPF_ERRNO__FORMAT; 4228 4229 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4230 if (dummy_var_btf_id < 0) 4231 return dummy_var_btf_id; 4232 4233 n = sh->sh_size / sh->sh_entsize; 4234 pr_debug("looking for externs among %d symbols...\n", n); 4235 4236 for (i = 0; i < n; i++) { 4237 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4238 4239 if (!sym) 4240 return -LIBBPF_ERRNO__FORMAT; 4241 if (!sym_is_extern(sym)) 4242 continue; 4243 ext_name = elf_sym_str(obj, sym->st_name); 4244 if (!ext_name || !ext_name[0]) 4245 continue; 4246 4247 ext = obj->externs; 4248 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4249 if (!ext) 4250 return -ENOMEM; 4251 obj->externs = ext; 4252 ext = &ext[obj->nr_extern]; 4253 memset(ext, 0, sizeof(*ext)); 4254 obj->nr_extern++; 4255 4256 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4257 if (ext->btf_id <= 0) { 4258 pr_warn("failed to find BTF for extern '%s': %d\n", 4259 ext_name, ext->btf_id); 4260 return ext->btf_id; 4261 } 4262 t = btf__type_by_id(obj->btf, ext->btf_id); 4263 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4264 if (!ext->name) 4265 return -ENOMEM; 4266 ext->sym_idx = i; 4267 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4268 4269 ext_essent_len = bpf_core_essential_name_len(ext->name); 4270 ext->essent_name = NULL; 4271 if (ext_essent_len != strlen(ext->name)) { 4272 ext->essent_name = strndup(ext->name, ext_essent_len); 4273 if (!ext->essent_name) 4274 return -ENOMEM; 4275 } 4276 4277 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4278 if (ext->sec_btf_id <= 0) { 4279 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4280 ext_name, ext->btf_id, ext->sec_btf_id); 4281 return ext->sec_btf_id; 4282 } 4283 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4284 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4285 4286 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4287 if (btf_is_func(t)) { 4288 pr_warn("extern function %s is unsupported under %s section\n", 4289 ext->name, KCONFIG_SEC); 4290 return -ENOTSUP; 4291 } 4292 kcfg_sec = sec; 4293 ext->type = EXT_KCFG; 4294 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4295 if (ext->kcfg.sz <= 0) { 4296 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4297 ext_name, ext->kcfg.sz); 4298 return ext->kcfg.sz; 4299 } 4300 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4301 if (ext->kcfg.align <= 0) { 4302 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4303 ext_name, ext->kcfg.align); 4304 return -EINVAL; 4305 } 4306 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4307 &ext->kcfg.is_signed); 4308 if (ext->kcfg.type == KCFG_UNKNOWN) { 4309 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4310 return -ENOTSUP; 4311 } 4312 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4313 ksym_sec = sec; 4314 ext->type = EXT_KSYM; 4315 skip_mods_and_typedefs(obj->btf, t->type, 4316 &ext->ksym.type_id); 4317 } else { 4318 pr_warn("unrecognized extern section '%s'\n", sec_name); 4319 return -ENOTSUP; 4320 } 4321 } 4322 pr_debug("collected %d externs total\n", obj->nr_extern); 4323 4324 if (!obj->nr_extern) 4325 return 0; 4326 4327 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4328 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4329 4330 /* for .ksyms section, we need to turn all externs into allocated 4331 * variables in BTF to pass kernel verification; we do this by 4332 * pretending that each extern is a 8-byte variable 4333 */ 4334 if (ksym_sec) { 4335 /* find existing 4-byte integer type in BTF to use for fake 4336 * extern variables in DATASEC 4337 */ 4338 int int_btf_id = find_int_btf_id(obj->btf); 4339 /* For extern function, a dummy_var added earlier 4340 * will be used to replace the vs->type and 4341 * its name string will be used to refill 4342 * the missing param's name. 4343 */ 4344 const struct btf_type *dummy_var; 4345 4346 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4347 for (i = 0; i < obj->nr_extern; i++) { 4348 ext = &obj->externs[i]; 4349 if (ext->type != EXT_KSYM) 4350 continue; 4351 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4352 i, ext->sym_idx, ext->name); 4353 } 4354 4355 sec = ksym_sec; 4356 n = btf_vlen(sec); 4357 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4358 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4359 struct btf_type *vt; 4360 4361 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4362 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4363 ext = find_extern_by_name(obj, ext_name); 4364 if (!ext) { 4365 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4366 btf_kind_str(vt), ext_name); 4367 return -ESRCH; 4368 } 4369 if (btf_is_func(vt)) { 4370 const struct btf_type *func_proto; 4371 struct btf_param *param; 4372 int j; 4373 4374 func_proto = btf__type_by_id(obj->btf, 4375 vt->type); 4376 param = btf_params(func_proto); 4377 /* Reuse the dummy_var string if the 4378 * func proto does not have param name. 4379 */ 4380 for (j = 0; j < btf_vlen(func_proto); j++) 4381 if (param[j].type && !param[j].name_off) 4382 param[j].name_off = 4383 dummy_var->name_off; 4384 vs->type = dummy_var_btf_id; 4385 vt->info &= ~0xffff; 4386 vt->info |= BTF_FUNC_GLOBAL; 4387 } else { 4388 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4389 vt->type = int_btf_id; 4390 } 4391 vs->offset = off; 4392 vs->size = sizeof(int); 4393 } 4394 sec->size = off; 4395 } 4396 4397 if (kcfg_sec) { 4398 sec = kcfg_sec; 4399 /* for kcfg externs calculate their offsets within a .kconfig map */ 4400 off = 0; 4401 for (i = 0; i < obj->nr_extern; i++) { 4402 ext = &obj->externs[i]; 4403 if (ext->type != EXT_KCFG) 4404 continue; 4405 4406 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4407 off = ext->kcfg.data_off + ext->kcfg.sz; 4408 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4409 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4410 } 4411 sec->size = off; 4412 n = btf_vlen(sec); 4413 for (i = 0; i < n; i++) { 4414 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4415 4416 t = btf__type_by_id(obj->btf, vs->type); 4417 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4418 ext = find_extern_by_name(obj, ext_name); 4419 if (!ext) { 4420 pr_warn("failed to find extern definition for BTF var '%s'\n", 4421 ext_name); 4422 return -ESRCH; 4423 } 4424 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4425 vs->offset = ext->kcfg.data_off; 4426 } 4427 } 4428 return 0; 4429 } 4430 4431 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4432 { 4433 return prog->sec_idx == obj->efile.text_shndx; 4434 } 4435 4436 struct bpf_program * 4437 bpf_object__find_program_by_name(const struct bpf_object *obj, 4438 const char *name) 4439 { 4440 struct bpf_program *prog; 4441 4442 bpf_object__for_each_program(prog, obj) { 4443 if (prog_is_subprog(obj, prog)) 4444 continue; 4445 if (!strcmp(prog->name, name)) 4446 return prog; 4447 } 4448 return errno = ENOENT, NULL; 4449 } 4450 4451 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4452 int shndx) 4453 { 4454 switch (obj->efile.secs[shndx].sec_type) { 4455 case SEC_BSS: 4456 case SEC_DATA: 4457 case SEC_RODATA: 4458 return true; 4459 default: 4460 return false; 4461 } 4462 } 4463 4464 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4465 int shndx) 4466 { 4467 return shndx == obj->efile.btf_maps_shndx; 4468 } 4469 4470 static enum libbpf_map_type 4471 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4472 { 4473 if (shndx == obj->efile.symbols_shndx) 4474 return LIBBPF_MAP_KCONFIG; 4475 4476 switch (obj->efile.secs[shndx].sec_type) { 4477 case SEC_BSS: 4478 return LIBBPF_MAP_BSS; 4479 case SEC_DATA: 4480 return LIBBPF_MAP_DATA; 4481 case SEC_RODATA: 4482 return LIBBPF_MAP_RODATA; 4483 default: 4484 return LIBBPF_MAP_UNSPEC; 4485 } 4486 } 4487 4488 static int bpf_program__record_reloc(struct bpf_program *prog, 4489 struct reloc_desc *reloc_desc, 4490 __u32 insn_idx, const char *sym_name, 4491 const Elf64_Sym *sym, const Elf64_Rel *rel) 4492 { 4493 struct bpf_insn *insn = &prog->insns[insn_idx]; 4494 size_t map_idx, nr_maps = prog->obj->nr_maps; 4495 struct bpf_object *obj = prog->obj; 4496 __u32 shdr_idx = sym->st_shndx; 4497 enum libbpf_map_type type; 4498 const char *sym_sec_name; 4499 struct bpf_map *map; 4500 4501 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4502 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4503 prog->name, sym_name, insn_idx, insn->code); 4504 return -LIBBPF_ERRNO__RELOC; 4505 } 4506 4507 if (sym_is_extern(sym)) { 4508 int sym_idx = ELF64_R_SYM(rel->r_info); 4509 int i, n = obj->nr_extern; 4510 struct extern_desc *ext; 4511 4512 for (i = 0; i < n; i++) { 4513 ext = &obj->externs[i]; 4514 if (ext->sym_idx == sym_idx) 4515 break; 4516 } 4517 if (i >= n) { 4518 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4519 prog->name, sym_name, sym_idx); 4520 return -LIBBPF_ERRNO__RELOC; 4521 } 4522 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4523 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4524 if (insn->code == (BPF_JMP | BPF_CALL)) 4525 reloc_desc->type = RELO_EXTERN_CALL; 4526 else 4527 reloc_desc->type = RELO_EXTERN_LD64; 4528 reloc_desc->insn_idx = insn_idx; 4529 reloc_desc->ext_idx = i; 4530 return 0; 4531 } 4532 4533 /* sub-program call relocation */ 4534 if (is_call_insn(insn)) { 4535 if (insn->src_reg != BPF_PSEUDO_CALL) { 4536 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4537 return -LIBBPF_ERRNO__RELOC; 4538 } 4539 /* text_shndx can be 0, if no default "main" program exists */ 4540 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4541 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4542 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4543 prog->name, sym_name, sym_sec_name); 4544 return -LIBBPF_ERRNO__RELOC; 4545 } 4546 if (sym->st_value % BPF_INSN_SZ) { 4547 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4548 prog->name, sym_name, (size_t)sym->st_value); 4549 return -LIBBPF_ERRNO__RELOC; 4550 } 4551 reloc_desc->type = RELO_CALL; 4552 reloc_desc->insn_idx = insn_idx; 4553 reloc_desc->sym_off = sym->st_value; 4554 return 0; 4555 } 4556 4557 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4558 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4559 prog->name, sym_name, shdr_idx); 4560 return -LIBBPF_ERRNO__RELOC; 4561 } 4562 4563 /* loading subprog addresses */ 4564 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4565 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4566 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4567 */ 4568 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4569 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4570 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4571 return -LIBBPF_ERRNO__RELOC; 4572 } 4573 4574 reloc_desc->type = RELO_SUBPROG_ADDR; 4575 reloc_desc->insn_idx = insn_idx; 4576 reloc_desc->sym_off = sym->st_value; 4577 return 0; 4578 } 4579 4580 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4581 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4582 4583 /* arena data relocation */ 4584 if (shdr_idx == obj->efile.arena_data_shndx) { 4585 if (obj->arena_map_idx < 0) { 4586 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n", 4587 prog->name, insn_idx); 4588 return -LIBBPF_ERRNO__RELOC; 4589 } 4590 reloc_desc->type = RELO_DATA; 4591 reloc_desc->insn_idx = insn_idx; 4592 reloc_desc->map_idx = obj->arena_map_idx; 4593 reloc_desc->sym_off = sym->st_value; 4594 4595 map = &obj->maps[obj->arena_map_idx]; 4596 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4597 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4598 map->sec_offset, insn_idx); 4599 return 0; 4600 } 4601 4602 /* generic map reference relocation */ 4603 if (type == LIBBPF_MAP_UNSPEC) { 4604 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4605 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4606 prog->name, sym_name, sym_sec_name); 4607 return -LIBBPF_ERRNO__RELOC; 4608 } 4609 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4610 map = &obj->maps[map_idx]; 4611 if (map->libbpf_type != type || 4612 map->sec_idx != sym->st_shndx || 4613 map->sec_offset != sym->st_value) 4614 continue; 4615 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4616 prog->name, map_idx, map->name, map->sec_idx, 4617 map->sec_offset, insn_idx); 4618 break; 4619 } 4620 if (map_idx >= nr_maps) { 4621 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4622 prog->name, sym_sec_name, (size_t)sym->st_value); 4623 return -LIBBPF_ERRNO__RELOC; 4624 } 4625 reloc_desc->type = RELO_LD64; 4626 reloc_desc->insn_idx = insn_idx; 4627 reloc_desc->map_idx = map_idx; 4628 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4629 return 0; 4630 } 4631 4632 /* global data map relocation */ 4633 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4634 pr_warn("prog '%s': bad data relo against section '%s'\n", 4635 prog->name, sym_sec_name); 4636 return -LIBBPF_ERRNO__RELOC; 4637 } 4638 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4639 map = &obj->maps[map_idx]; 4640 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4641 continue; 4642 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4643 prog->name, map_idx, map->name, map->sec_idx, 4644 map->sec_offset, insn_idx); 4645 break; 4646 } 4647 if (map_idx >= nr_maps) { 4648 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4649 prog->name, sym_sec_name); 4650 return -LIBBPF_ERRNO__RELOC; 4651 } 4652 4653 reloc_desc->type = RELO_DATA; 4654 reloc_desc->insn_idx = insn_idx; 4655 reloc_desc->map_idx = map_idx; 4656 reloc_desc->sym_off = sym->st_value; 4657 return 0; 4658 } 4659 4660 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4661 { 4662 return insn_idx >= prog->sec_insn_off && 4663 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4664 } 4665 4666 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4667 size_t sec_idx, size_t insn_idx) 4668 { 4669 int l = 0, r = obj->nr_programs - 1, m; 4670 struct bpf_program *prog; 4671 4672 if (!obj->nr_programs) 4673 return NULL; 4674 4675 while (l < r) { 4676 m = l + (r - l + 1) / 2; 4677 prog = &obj->programs[m]; 4678 4679 if (prog->sec_idx < sec_idx || 4680 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4681 l = m; 4682 else 4683 r = m - 1; 4684 } 4685 /* matching program could be at index l, but it still might be the 4686 * wrong one, so we need to double check conditions for the last time 4687 */ 4688 prog = &obj->programs[l]; 4689 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4690 return prog; 4691 return NULL; 4692 } 4693 4694 static int 4695 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4696 { 4697 const char *relo_sec_name, *sec_name; 4698 size_t sec_idx = shdr->sh_info, sym_idx; 4699 struct bpf_program *prog; 4700 struct reloc_desc *relos; 4701 int err, i, nrels; 4702 const char *sym_name; 4703 __u32 insn_idx; 4704 Elf_Scn *scn; 4705 Elf_Data *scn_data; 4706 Elf64_Sym *sym; 4707 Elf64_Rel *rel; 4708 4709 if (sec_idx >= obj->efile.sec_cnt) 4710 return -EINVAL; 4711 4712 scn = elf_sec_by_idx(obj, sec_idx); 4713 scn_data = elf_sec_data(obj, scn); 4714 if (!scn_data) 4715 return -LIBBPF_ERRNO__FORMAT; 4716 4717 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4718 sec_name = elf_sec_name(obj, scn); 4719 if (!relo_sec_name || !sec_name) 4720 return -EINVAL; 4721 4722 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4723 relo_sec_name, sec_idx, sec_name); 4724 nrels = shdr->sh_size / shdr->sh_entsize; 4725 4726 for (i = 0; i < nrels; i++) { 4727 rel = elf_rel_by_idx(data, i); 4728 if (!rel) { 4729 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4730 return -LIBBPF_ERRNO__FORMAT; 4731 } 4732 4733 sym_idx = ELF64_R_SYM(rel->r_info); 4734 sym = elf_sym_by_idx(obj, sym_idx); 4735 if (!sym) { 4736 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4737 relo_sec_name, sym_idx, i); 4738 return -LIBBPF_ERRNO__FORMAT; 4739 } 4740 4741 if (sym->st_shndx >= obj->efile.sec_cnt) { 4742 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4743 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4744 return -LIBBPF_ERRNO__FORMAT; 4745 } 4746 4747 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4748 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4749 relo_sec_name, (size_t)rel->r_offset, i); 4750 return -LIBBPF_ERRNO__FORMAT; 4751 } 4752 4753 insn_idx = rel->r_offset / BPF_INSN_SZ; 4754 /* relocations against static functions are recorded as 4755 * relocations against the section that contains a function; 4756 * in such case, symbol will be STT_SECTION and sym.st_name 4757 * will point to empty string (0), so fetch section name 4758 * instead 4759 */ 4760 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4761 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4762 else 4763 sym_name = elf_sym_str(obj, sym->st_name); 4764 sym_name = sym_name ?: "<?"; 4765 4766 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4767 relo_sec_name, i, insn_idx, sym_name); 4768 4769 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4770 if (!prog) { 4771 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4772 relo_sec_name, i, sec_name, insn_idx); 4773 continue; 4774 } 4775 4776 relos = libbpf_reallocarray(prog->reloc_desc, 4777 prog->nr_reloc + 1, sizeof(*relos)); 4778 if (!relos) 4779 return -ENOMEM; 4780 prog->reloc_desc = relos; 4781 4782 /* adjust insn_idx to local BPF program frame of reference */ 4783 insn_idx -= prog->sec_insn_off; 4784 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4785 insn_idx, sym_name, sym, rel); 4786 if (err) 4787 return err; 4788 4789 prog->nr_reloc++; 4790 } 4791 return 0; 4792 } 4793 4794 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4795 { 4796 int id; 4797 4798 if (!obj->btf) 4799 return -ENOENT; 4800 4801 /* if it's BTF-defined map, we don't need to search for type IDs. 4802 * For struct_ops map, it does not need btf_key_type_id and 4803 * btf_value_type_id. 4804 */ 4805 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4806 return 0; 4807 4808 /* 4809 * LLVM annotates global data differently in BTF, that is, 4810 * only as '.data', '.bss' or '.rodata'. 4811 */ 4812 if (!bpf_map__is_internal(map)) 4813 return -ENOENT; 4814 4815 id = btf__find_by_name(obj->btf, map->real_name); 4816 if (id < 0) 4817 return id; 4818 4819 map->btf_key_type_id = 0; 4820 map->btf_value_type_id = id; 4821 return 0; 4822 } 4823 4824 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4825 { 4826 char file[PATH_MAX], buff[4096]; 4827 FILE *fp; 4828 __u32 val; 4829 int err; 4830 4831 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4832 memset(info, 0, sizeof(*info)); 4833 4834 fp = fopen(file, "re"); 4835 if (!fp) { 4836 err = -errno; 4837 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4838 errstr(err)); 4839 return err; 4840 } 4841 4842 while (fgets(buff, sizeof(buff), fp)) { 4843 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4844 info->type = val; 4845 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4846 info->key_size = val; 4847 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4848 info->value_size = val; 4849 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4850 info->max_entries = val; 4851 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4852 info->map_flags = val; 4853 } 4854 4855 fclose(fp); 4856 4857 return 0; 4858 } 4859 4860 static bool map_is_created(const struct bpf_map *map) 4861 { 4862 return map->obj->state >= OBJ_PREPARED || map->reused; 4863 } 4864 4865 bool bpf_map__autocreate(const struct bpf_map *map) 4866 { 4867 return map->autocreate; 4868 } 4869 4870 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4871 { 4872 if (map_is_created(map)) 4873 return libbpf_err(-EBUSY); 4874 4875 map->autocreate = autocreate; 4876 return 0; 4877 } 4878 4879 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4880 { 4881 if (!bpf_map__is_struct_ops(map)) 4882 return libbpf_err(-EINVAL); 4883 4884 map->autoattach = autoattach; 4885 return 0; 4886 } 4887 4888 bool bpf_map__autoattach(const struct bpf_map *map) 4889 { 4890 return map->autoattach; 4891 } 4892 4893 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4894 { 4895 struct bpf_map_info info; 4896 __u32 len = sizeof(info), name_len; 4897 int new_fd, err; 4898 char *new_name; 4899 4900 memset(&info, 0, len); 4901 err = bpf_map_get_info_by_fd(fd, &info, &len); 4902 if (err && errno == EINVAL) 4903 err = bpf_get_map_info_from_fdinfo(fd, &info); 4904 if (err) 4905 return libbpf_err(err); 4906 4907 name_len = strlen(info.name); 4908 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4909 new_name = strdup(map->name); 4910 else 4911 new_name = strdup(info.name); 4912 4913 if (!new_name) 4914 return libbpf_err(-errno); 4915 4916 /* 4917 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4918 * This is similar to what we do in ensure_good_fd(), but without 4919 * closing original FD. 4920 */ 4921 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4922 if (new_fd < 0) { 4923 err = -errno; 4924 goto err_free_new_name; 4925 } 4926 4927 err = reuse_fd(map->fd, new_fd); 4928 if (err) 4929 goto err_free_new_name; 4930 4931 free(map->name); 4932 4933 map->name = new_name; 4934 map->def.type = info.type; 4935 map->def.key_size = info.key_size; 4936 map->def.value_size = info.value_size; 4937 map->def.max_entries = info.max_entries; 4938 map->def.map_flags = info.map_flags; 4939 map->btf_key_type_id = info.btf_key_type_id; 4940 map->btf_value_type_id = info.btf_value_type_id; 4941 map->reused = true; 4942 map->map_extra = info.map_extra; 4943 4944 return 0; 4945 4946 err_free_new_name: 4947 free(new_name); 4948 return libbpf_err(err); 4949 } 4950 4951 __u32 bpf_map__max_entries(const struct bpf_map *map) 4952 { 4953 return map->def.max_entries; 4954 } 4955 4956 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4957 { 4958 if (!bpf_map_type__is_map_in_map(map->def.type)) 4959 return errno = EINVAL, NULL; 4960 4961 return map->inner_map; 4962 } 4963 4964 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4965 { 4966 if (map_is_created(map)) 4967 return libbpf_err(-EBUSY); 4968 4969 map->def.max_entries = max_entries; 4970 4971 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4972 if (map_is_ringbuf(map)) 4973 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4974 4975 return 0; 4976 } 4977 4978 static int bpf_object_prepare_token(struct bpf_object *obj) 4979 { 4980 const char *bpffs_path; 4981 int bpffs_fd = -1, token_fd, err; 4982 bool mandatory; 4983 enum libbpf_print_level level; 4984 4985 /* token is explicitly prevented */ 4986 if (obj->token_path && obj->token_path[0] == '\0') { 4987 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4988 return 0; 4989 } 4990 4991 mandatory = obj->token_path != NULL; 4992 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4993 4994 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4995 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4996 if (bpffs_fd < 0) { 4997 err = -errno; 4998 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4999 obj->name, errstr(err), bpffs_path, 5000 mandatory ? "" : ", skipping optional step..."); 5001 return mandatory ? err : 0; 5002 } 5003 5004 token_fd = bpf_token_create(bpffs_fd, 0); 5005 close(bpffs_fd); 5006 if (token_fd < 0) { 5007 if (!mandatory && token_fd == -ENOENT) { 5008 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5009 obj->name, bpffs_path); 5010 return 0; 5011 } 5012 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5013 obj->name, token_fd, bpffs_path, 5014 mandatory ? "" : ", skipping optional step..."); 5015 return mandatory ? token_fd : 0; 5016 } 5017 5018 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5019 if (!obj->feat_cache) { 5020 close(token_fd); 5021 return -ENOMEM; 5022 } 5023 5024 obj->token_fd = token_fd; 5025 obj->feat_cache->token_fd = token_fd; 5026 5027 return 0; 5028 } 5029 5030 static int 5031 bpf_object__probe_loading(struct bpf_object *obj) 5032 { 5033 struct bpf_insn insns[] = { 5034 BPF_MOV64_IMM(BPF_REG_0, 0), 5035 BPF_EXIT_INSN(), 5036 }; 5037 int ret, insn_cnt = ARRAY_SIZE(insns); 5038 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5039 .token_fd = obj->token_fd, 5040 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5041 ); 5042 5043 if (obj->gen_loader) 5044 return 0; 5045 5046 ret = bump_rlimit_memlock(); 5047 if (ret) 5048 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5049 errstr(ret)); 5050 5051 /* make sure basic loading works */ 5052 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5053 if (ret < 0) 5054 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5055 if (ret < 0) { 5056 ret = errno; 5057 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5058 __func__, errstr(ret)); 5059 return -ret; 5060 } 5061 close(ret); 5062 5063 return 0; 5064 } 5065 5066 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5067 { 5068 if (obj->gen_loader) 5069 /* To generate loader program assume the latest kernel 5070 * to avoid doing extra prog_load, map_create syscalls. 5071 */ 5072 return true; 5073 5074 if (obj->token_fd) 5075 return feat_supported(obj->feat_cache, feat_id); 5076 5077 return feat_supported(NULL, feat_id); 5078 } 5079 5080 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5081 { 5082 struct bpf_map_info map_info; 5083 __u32 map_info_len = sizeof(map_info); 5084 int err; 5085 5086 memset(&map_info, 0, map_info_len); 5087 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5088 if (err && errno == EINVAL) 5089 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5090 if (err) { 5091 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5092 errstr(err)); 5093 return false; 5094 } 5095 5096 return (map_info.type == map->def.type && 5097 map_info.key_size == map->def.key_size && 5098 map_info.value_size == map->def.value_size && 5099 map_info.max_entries == map->def.max_entries && 5100 map_info.map_flags == map->def.map_flags && 5101 map_info.map_extra == map->map_extra); 5102 } 5103 5104 static int 5105 bpf_object__reuse_map(struct bpf_map *map) 5106 { 5107 int err, pin_fd; 5108 5109 pin_fd = bpf_obj_get(map->pin_path); 5110 if (pin_fd < 0) { 5111 err = -errno; 5112 if (err == -ENOENT) { 5113 pr_debug("found no pinned map to reuse at '%s'\n", 5114 map->pin_path); 5115 return 0; 5116 } 5117 5118 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5119 map->pin_path, errstr(err)); 5120 return err; 5121 } 5122 5123 if (!map_is_reuse_compat(map, pin_fd)) { 5124 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5125 map->pin_path); 5126 close(pin_fd); 5127 return -EINVAL; 5128 } 5129 5130 err = bpf_map__reuse_fd(map, pin_fd); 5131 close(pin_fd); 5132 if (err) 5133 return err; 5134 5135 map->pinned = true; 5136 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5137 5138 return 0; 5139 } 5140 5141 static int 5142 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5143 { 5144 enum libbpf_map_type map_type = map->libbpf_type; 5145 int err, zero = 0; 5146 size_t mmap_sz; 5147 5148 if (obj->gen_loader) { 5149 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5150 map->mmaped, map->def.value_size); 5151 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5152 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5153 return 0; 5154 } 5155 5156 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5157 if (err) { 5158 err = -errno; 5159 pr_warn("map '%s': failed to set initial contents: %s\n", 5160 bpf_map__name(map), errstr(err)); 5161 return err; 5162 } 5163 5164 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5165 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5166 err = bpf_map_freeze(map->fd); 5167 if (err) { 5168 err = -errno; 5169 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5170 bpf_map__name(map), errstr(err)); 5171 return err; 5172 } 5173 } 5174 5175 /* Remap anonymous mmap()-ed "map initialization image" as 5176 * a BPF map-backed mmap()-ed memory, but preserving the same 5177 * memory address. This will cause kernel to change process' 5178 * page table to point to a different piece of kernel memory, 5179 * but from userspace point of view memory address (and its 5180 * contents, being identical at this point) will stay the 5181 * same. This mapping will be released by bpf_object__close() 5182 * as per normal clean up procedure. 5183 */ 5184 mmap_sz = bpf_map_mmap_sz(map); 5185 if (map->def.map_flags & BPF_F_MMAPABLE) { 5186 void *mmaped; 5187 int prot; 5188 5189 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5190 prot = PROT_READ; 5191 else 5192 prot = PROT_READ | PROT_WRITE; 5193 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5194 if (mmaped == MAP_FAILED) { 5195 err = -errno; 5196 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5197 bpf_map__name(map), errstr(err)); 5198 return err; 5199 } 5200 map->mmaped = mmaped; 5201 } else if (map->mmaped) { 5202 munmap(map->mmaped, mmap_sz); 5203 map->mmaped = NULL; 5204 } 5205 5206 return 0; 5207 } 5208 5209 static void bpf_map__destroy(struct bpf_map *map); 5210 5211 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5212 { 5213 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5214 struct bpf_map_def *def = &map->def; 5215 const char *map_name = NULL; 5216 int err = 0, map_fd; 5217 5218 if (kernel_supports(obj, FEAT_PROG_NAME)) 5219 map_name = map->name; 5220 create_attr.map_ifindex = map->map_ifindex; 5221 create_attr.map_flags = def->map_flags; 5222 create_attr.numa_node = map->numa_node; 5223 create_attr.map_extra = map->map_extra; 5224 create_attr.token_fd = obj->token_fd; 5225 if (obj->token_fd) 5226 create_attr.map_flags |= BPF_F_TOKEN_FD; 5227 5228 if (bpf_map__is_struct_ops(map)) { 5229 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5230 if (map->mod_btf_fd >= 0) { 5231 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5232 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5233 } 5234 } 5235 5236 if (obj->btf && btf__fd(obj->btf) >= 0) { 5237 create_attr.btf_fd = btf__fd(obj->btf); 5238 create_attr.btf_key_type_id = map->btf_key_type_id; 5239 create_attr.btf_value_type_id = map->btf_value_type_id; 5240 } 5241 5242 if (bpf_map_type__is_map_in_map(def->type)) { 5243 if (map->inner_map) { 5244 err = map_set_def_max_entries(map->inner_map); 5245 if (err) 5246 return err; 5247 err = bpf_object__create_map(obj, map->inner_map, true); 5248 if (err) { 5249 pr_warn("map '%s': failed to create inner map: %s\n", 5250 map->name, errstr(err)); 5251 return err; 5252 } 5253 map->inner_map_fd = map->inner_map->fd; 5254 } 5255 if (map->inner_map_fd >= 0) 5256 create_attr.inner_map_fd = map->inner_map_fd; 5257 } 5258 5259 switch (def->type) { 5260 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5261 case BPF_MAP_TYPE_CGROUP_ARRAY: 5262 case BPF_MAP_TYPE_STACK_TRACE: 5263 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5264 case BPF_MAP_TYPE_HASH_OF_MAPS: 5265 case BPF_MAP_TYPE_DEVMAP: 5266 case BPF_MAP_TYPE_DEVMAP_HASH: 5267 case BPF_MAP_TYPE_CPUMAP: 5268 case BPF_MAP_TYPE_XSKMAP: 5269 case BPF_MAP_TYPE_SOCKMAP: 5270 case BPF_MAP_TYPE_SOCKHASH: 5271 case BPF_MAP_TYPE_QUEUE: 5272 case BPF_MAP_TYPE_STACK: 5273 case BPF_MAP_TYPE_ARENA: 5274 create_attr.btf_fd = 0; 5275 create_attr.btf_key_type_id = 0; 5276 create_attr.btf_value_type_id = 0; 5277 map->btf_key_type_id = 0; 5278 map->btf_value_type_id = 0; 5279 break; 5280 case BPF_MAP_TYPE_STRUCT_OPS: 5281 create_attr.btf_value_type_id = 0; 5282 break; 5283 default: 5284 break; 5285 } 5286 5287 if (obj->gen_loader) { 5288 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5289 def->key_size, def->value_size, def->max_entries, 5290 &create_attr, is_inner ? -1 : map - obj->maps); 5291 /* We keep pretenting we have valid FD to pass various fd >= 0 5292 * checks by just keeping original placeholder FDs in place. 5293 * See bpf_object__add_map() comment. 5294 * This placeholder fd will not be used with any syscall and 5295 * will be reset to -1 eventually. 5296 */ 5297 map_fd = map->fd; 5298 } else { 5299 map_fd = bpf_map_create(def->type, map_name, 5300 def->key_size, def->value_size, 5301 def->max_entries, &create_attr); 5302 } 5303 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5304 err = -errno; 5305 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5306 map->name, errstr(err)); 5307 create_attr.btf_fd = 0; 5308 create_attr.btf_key_type_id = 0; 5309 create_attr.btf_value_type_id = 0; 5310 map->btf_key_type_id = 0; 5311 map->btf_value_type_id = 0; 5312 map_fd = bpf_map_create(def->type, map_name, 5313 def->key_size, def->value_size, 5314 def->max_entries, &create_attr); 5315 } 5316 5317 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5318 if (obj->gen_loader) 5319 map->inner_map->fd = -1; 5320 bpf_map__destroy(map->inner_map); 5321 zfree(&map->inner_map); 5322 } 5323 5324 if (map_fd < 0) 5325 return map_fd; 5326 5327 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5328 if (map->fd == map_fd) 5329 return 0; 5330 5331 /* Keep placeholder FD value but now point it to the BPF map object. 5332 * This way everything that relied on this map's FD (e.g., relocated 5333 * ldimm64 instructions) will stay valid and won't need adjustments. 5334 * map->fd stays valid but now point to what map_fd points to. 5335 */ 5336 return reuse_fd(map->fd, map_fd); 5337 } 5338 5339 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5340 { 5341 const struct bpf_map *targ_map; 5342 unsigned int i; 5343 int fd, err = 0; 5344 5345 for (i = 0; i < map->init_slots_sz; i++) { 5346 if (!map->init_slots[i]) 5347 continue; 5348 5349 targ_map = map->init_slots[i]; 5350 fd = targ_map->fd; 5351 5352 if (obj->gen_loader) { 5353 bpf_gen__populate_outer_map(obj->gen_loader, 5354 map - obj->maps, i, 5355 targ_map - obj->maps); 5356 } else { 5357 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5358 } 5359 if (err) { 5360 err = -errno; 5361 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5362 map->name, i, targ_map->name, fd, errstr(err)); 5363 return err; 5364 } 5365 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5366 map->name, i, targ_map->name, fd); 5367 } 5368 5369 zfree(&map->init_slots); 5370 map->init_slots_sz = 0; 5371 5372 return 0; 5373 } 5374 5375 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5376 { 5377 const struct bpf_program *targ_prog; 5378 unsigned int i; 5379 int fd, err; 5380 5381 if (obj->gen_loader) 5382 return -ENOTSUP; 5383 5384 for (i = 0; i < map->init_slots_sz; i++) { 5385 if (!map->init_slots[i]) 5386 continue; 5387 5388 targ_prog = map->init_slots[i]; 5389 fd = bpf_program__fd(targ_prog); 5390 5391 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5392 if (err) { 5393 err = -errno; 5394 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5395 map->name, i, targ_prog->name, fd, errstr(err)); 5396 return err; 5397 } 5398 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5399 map->name, i, targ_prog->name, fd); 5400 } 5401 5402 zfree(&map->init_slots); 5403 map->init_slots_sz = 0; 5404 5405 return 0; 5406 } 5407 5408 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5409 { 5410 struct bpf_map *map; 5411 int i, err; 5412 5413 for (i = 0; i < obj->nr_maps; i++) { 5414 map = &obj->maps[i]; 5415 5416 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5417 continue; 5418 5419 err = init_prog_array_slots(obj, map); 5420 if (err < 0) 5421 return err; 5422 } 5423 return 0; 5424 } 5425 5426 static int map_set_def_max_entries(struct bpf_map *map) 5427 { 5428 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5429 int nr_cpus; 5430 5431 nr_cpus = libbpf_num_possible_cpus(); 5432 if (nr_cpus < 0) { 5433 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5434 map->name, nr_cpus); 5435 return nr_cpus; 5436 } 5437 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5438 map->def.max_entries = nr_cpus; 5439 } 5440 5441 return 0; 5442 } 5443 5444 static int 5445 bpf_object__create_maps(struct bpf_object *obj) 5446 { 5447 struct bpf_map *map; 5448 unsigned int i, j; 5449 int err; 5450 bool retried; 5451 5452 for (i = 0; i < obj->nr_maps; i++) { 5453 map = &obj->maps[i]; 5454 5455 /* To support old kernels, we skip creating global data maps 5456 * (.rodata, .data, .kconfig, etc); later on, during program 5457 * loading, if we detect that at least one of the to-be-loaded 5458 * programs is referencing any global data map, we'll error 5459 * out with program name and relocation index logged. 5460 * This approach allows to accommodate Clang emitting 5461 * unnecessary .rodata.str1.1 sections for string literals, 5462 * but also it allows to have CO-RE applications that use 5463 * global variables in some of BPF programs, but not others. 5464 * If those global variable-using programs are not loaded at 5465 * runtime due to bpf_program__set_autoload(prog, false), 5466 * bpf_object loading will succeed just fine even on old 5467 * kernels. 5468 */ 5469 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5470 map->autocreate = false; 5471 5472 if (!map->autocreate) { 5473 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5474 continue; 5475 } 5476 5477 err = map_set_def_max_entries(map); 5478 if (err) 5479 goto err_out; 5480 5481 retried = false; 5482 retry: 5483 if (map->pin_path) { 5484 err = bpf_object__reuse_map(map); 5485 if (err) { 5486 pr_warn("map '%s': error reusing pinned map\n", 5487 map->name); 5488 goto err_out; 5489 } 5490 if (retried && map->fd < 0) { 5491 pr_warn("map '%s': cannot find pinned map\n", 5492 map->name); 5493 err = -ENOENT; 5494 goto err_out; 5495 } 5496 } 5497 5498 if (map->reused) { 5499 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5500 map->name, map->fd); 5501 } else { 5502 err = bpf_object__create_map(obj, map, false); 5503 if (err) 5504 goto err_out; 5505 5506 pr_debug("map '%s': created successfully, fd=%d\n", 5507 map->name, map->fd); 5508 5509 if (bpf_map__is_internal(map)) { 5510 err = bpf_object__populate_internal_map(obj, map); 5511 if (err < 0) 5512 goto err_out; 5513 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5514 map->mmaped = mmap((void *)(long)map->map_extra, 5515 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5516 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5517 map->fd, 0); 5518 if (map->mmaped == MAP_FAILED) { 5519 err = -errno; 5520 map->mmaped = NULL; 5521 pr_warn("map '%s': failed to mmap arena: %s\n", 5522 map->name, errstr(err)); 5523 return err; 5524 } 5525 if (obj->arena_data) { 5526 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5527 zfree(&obj->arena_data); 5528 } 5529 } 5530 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5531 err = init_map_in_map_slots(obj, map); 5532 if (err < 0) 5533 goto err_out; 5534 } 5535 } 5536 5537 if (map->pin_path && !map->pinned) { 5538 err = bpf_map__pin(map, NULL); 5539 if (err) { 5540 if (!retried && err == -EEXIST) { 5541 retried = true; 5542 goto retry; 5543 } 5544 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5545 map->name, map->pin_path, errstr(err)); 5546 goto err_out; 5547 } 5548 } 5549 } 5550 5551 return 0; 5552 5553 err_out: 5554 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5555 pr_perm_msg(err); 5556 for (j = 0; j < i; j++) 5557 zclose(obj->maps[j].fd); 5558 return err; 5559 } 5560 5561 static bool bpf_core_is_flavor_sep(const char *s) 5562 { 5563 /* check X___Y name pattern, where X and Y are not underscores */ 5564 return s[0] != '_' && /* X */ 5565 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5566 s[4] != '_'; /* Y */ 5567 } 5568 5569 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5570 * before last triple underscore. Struct name part after last triple 5571 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5572 */ 5573 size_t bpf_core_essential_name_len(const char *name) 5574 { 5575 size_t n = strlen(name); 5576 int i; 5577 5578 for (i = n - 5; i >= 0; i--) { 5579 if (bpf_core_is_flavor_sep(name + i)) 5580 return i + 1; 5581 } 5582 return n; 5583 } 5584 5585 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5586 { 5587 if (!cands) 5588 return; 5589 5590 free(cands->cands); 5591 free(cands); 5592 } 5593 5594 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5595 size_t local_essent_len, 5596 const struct btf *targ_btf, 5597 const char *targ_btf_name, 5598 int targ_start_id, 5599 struct bpf_core_cand_list *cands) 5600 { 5601 struct bpf_core_cand *new_cands, *cand; 5602 const struct btf_type *t, *local_t; 5603 const char *targ_name, *local_name; 5604 size_t targ_essent_len; 5605 int n, i; 5606 5607 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5608 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5609 5610 n = btf__type_cnt(targ_btf); 5611 for (i = targ_start_id; i < n; i++) { 5612 t = btf__type_by_id(targ_btf, i); 5613 if (!btf_kind_core_compat(t, local_t)) 5614 continue; 5615 5616 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5617 if (str_is_empty(targ_name)) 5618 continue; 5619 5620 targ_essent_len = bpf_core_essential_name_len(targ_name); 5621 if (targ_essent_len != local_essent_len) 5622 continue; 5623 5624 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5625 continue; 5626 5627 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5628 local_cand->id, btf_kind_str(local_t), 5629 local_name, i, btf_kind_str(t), targ_name, 5630 targ_btf_name); 5631 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5632 sizeof(*cands->cands)); 5633 if (!new_cands) 5634 return -ENOMEM; 5635 5636 cand = &new_cands[cands->len]; 5637 cand->btf = targ_btf; 5638 cand->id = i; 5639 5640 cands->cands = new_cands; 5641 cands->len++; 5642 } 5643 return 0; 5644 } 5645 5646 static int load_module_btfs(struct bpf_object *obj) 5647 { 5648 struct bpf_btf_info info; 5649 struct module_btf *mod_btf; 5650 struct btf *btf; 5651 char name[64]; 5652 __u32 id = 0, len; 5653 int err, fd; 5654 5655 if (obj->btf_modules_loaded) 5656 return 0; 5657 5658 if (obj->gen_loader) 5659 return 0; 5660 5661 /* don't do this again, even if we find no module BTFs */ 5662 obj->btf_modules_loaded = true; 5663 5664 /* kernel too old to support module BTFs */ 5665 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5666 return 0; 5667 5668 while (true) { 5669 err = bpf_btf_get_next_id(id, &id); 5670 if (err && errno == ENOENT) 5671 return 0; 5672 if (err && errno == EPERM) { 5673 pr_debug("skipping module BTFs loading, missing privileges\n"); 5674 return 0; 5675 } 5676 if (err) { 5677 err = -errno; 5678 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5679 return err; 5680 } 5681 5682 fd = bpf_btf_get_fd_by_id(id); 5683 if (fd < 0) { 5684 if (errno == ENOENT) 5685 continue; /* expected race: BTF was unloaded */ 5686 err = -errno; 5687 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5688 return err; 5689 } 5690 5691 len = sizeof(info); 5692 memset(&info, 0, sizeof(info)); 5693 info.name = ptr_to_u64(name); 5694 info.name_len = sizeof(name); 5695 5696 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5697 if (err) { 5698 err = -errno; 5699 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5700 goto err_out; 5701 } 5702 5703 /* ignore non-module BTFs */ 5704 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5705 close(fd); 5706 continue; 5707 } 5708 5709 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5710 err = libbpf_get_error(btf); 5711 if (err) { 5712 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5713 name, id, errstr(err)); 5714 goto err_out; 5715 } 5716 5717 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5718 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5719 if (err) 5720 goto err_out; 5721 5722 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5723 5724 mod_btf->btf = btf; 5725 mod_btf->id = id; 5726 mod_btf->fd = fd; 5727 mod_btf->name = strdup(name); 5728 if (!mod_btf->name) { 5729 err = -ENOMEM; 5730 goto err_out; 5731 } 5732 continue; 5733 5734 err_out: 5735 close(fd); 5736 return err; 5737 } 5738 5739 return 0; 5740 } 5741 5742 static struct bpf_core_cand_list * 5743 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5744 { 5745 struct bpf_core_cand local_cand = {}; 5746 struct bpf_core_cand_list *cands; 5747 const struct btf *main_btf; 5748 const struct btf_type *local_t; 5749 const char *local_name; 5750 size_t local_essent_len; 5751 int err, i; 5752 5753 local_cand.btf = local_btf; 5754 local_cand.id = local_type_id; 5755 local_t = btf__type_by_id(local_btf, local_type_id); 5756 if (!local_t) 5757 return ERR_PTR(-EINVAL); 5758 5759 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5760 if (str_is_empty(local_name)) 5761 return ERR_PTR(-EINVAL); 5762 local_essent_len = bpf_core_essential_name_len(local_name); 5763 5764 cands = calloc(1, sizeof(*cands)); 5765 if (!cands) 5766 return ERR_PTR(-ENOMEM); 5767 5768 /* Attempt to find target candidates in vmlinux BTF first */ 5769 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5770 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5771 if (err) 5772 goto err_out; 5773 5774 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5775 if (cands->len) 5776 return cands; 5777 5778 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5779 if (obj->btf_vmlinux_override) 5780 return cands; 5781 5782 /* now look through module BTFs, trying to still find candidates */ 5783 err = load_module_btfs(obj); 5784 if (err) 5785 goto err_out; 5786 5787 for (i = 0; i < obj->btf_module_cnt; i++) { 5788 err = bpf_core_add_cands(&local_cand, local_essent_len, 5789 obj->btf_modules[i].btf, 5790 obj->btf_modules[i].name, 5791 btf__type_cnt(obj->btf_vmlinux), 5792 cands); 5793 if (err) 5794 goto err_out; 5795 } 5796 5797 return cands; 5798 err_out: 5799 bpf_core_free_cands(cands); 5800 return ERR_PTR(err); 5801 } 5802 5803 /* Check local and target types for compatibility. This check is used for 5804 * type-based CO-RE relocations and follow slightly different rules than 5805 * field-based relocations. This function assumes that root types were already 5806 * checked for name match. Beyond that initial root-level name check, names 5807 * are completely ignored. Compatibility rules are as follows: 5808 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5809 * kind should match for local and target types (i.e., STRUCT is not 5810 * compatible with UNION); 5811 * - for ENUMs, the size is ignored; 5812 * - for INT, size and signedness are ignored; 5813 * - for ARRAY, dimensionality is ignored, element types are checked for 5814 * compatibility recursively; 5815 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5816 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5817 * - FUNC_PROTOs are compatible if they have compatible signature: same 5818 * number of input args and compatible return and argument types. 5819 * These rules are not set in stone and probably will be adjusted as we get 5820 * more experience with using BPF CO-RE relocations. 5821 */ 5822 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5823 const struct btf *targ_btf, __u32 targ_id) 5824 { 5825 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5826 } 5827 5828 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5829 const struct btf *targ_btf, __u32 targ_id) 5830 { 5831 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5832 } 5833 5834 static size_t bpf_core_hash_fn(const long key, void *ctx) 5835 { 5836 return key; 5837 } 5838 5839 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5840 { 5841 return k1 == k2; 5842 } 5843 5844 static int record_relo_core(struct bpf_program *prog, 5845 const struct bpf_core_relo *core_relo, int insn_idx) 5846 { 5847 struct reloc_desc *relos, *relo; 5848 5849 relos = libbpf_reallocarray(prog->reloc_desc, 5850 prog->nr_reloc + 1, sizeof(*relos)); 5851 if (!relos) 5852 return -ENOMEM; 5853 relo = &relos[prog->nr_reloc]; 5854 relo->type = RELO_CORE; 5855 relo->insn_idx = insn_idx; 5856 relo->core_relo = core_relo; 5857 prog->reloc_desc = relos; 5858 prog->nr_reloc++; 5859 return 0; 5860 } 5861 5862 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5863 { 5864 struct reloc_desc *relo; 5865 int i; 5866 5867 for (i = 0; i < prog->nr_reloc; i++) { 5868 relo = &prog->reloc_desc[i]; 5869 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5870 continue; 5871 5872 return relo->core_relo; 5873 } 5874 5875 return NULL; 5876 } 5877 5878 static int bpf_core_resolve_relo(struct bpf_program *prog, 5879 const struct bpf_core_relo *relo, 5880 int relo_idx, 5881 const struct btf *local_btf, 5882 struct hashmap *cand_cache, 5883 struct bpf_core_relo_res *targ_res) 5884 { 5885 struct bpf_core_spec specs_scratch[3] = {}; 5886 struct bpf_core_cand_list *cands = NULL; 5887 const char *prog_name = prog->name; 5888 const struct btf_type *local_type; 5889 const char *local_name; 5890 __u32 local_id = relo->type_id; 5891 int err; 5892 5893 local_type = btf__type_by_id(local_btf, local_id); 5894 if (!local_type) 5895 return -EINVAL; 5896 5897 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5898 if (!local_name) 5899 return -EINVAL; 5900 5901 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5902 !hashmap__find(cand_cache, local_id, &cands)) { 5903 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5904 if (IS_ERR(cands)) { 5905 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5906 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5907 local_name, PTR_ERR(cands)); 5908 return PTR_ERR(cands); 5909 } 5910 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5911 if (err) { 5912 bpf_core_free_cands(cands); 5913 return err; 5914 } 5915 } 5916 5917 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5918 targ_res); 5919 } 5920 5921 static int 5922 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5923 { 5924 const struct btf_ext_info_sec *sec; 5925 struct bpf_core_relo_res targ_res; 5926 const struct bpf_core_relo *rec; 5927 const struct btf_ext_info *seg; 5928 struct hashmap_entry *entry; 5929 struct hashmap *cand_cache = NULL; 5930 struct bpf_program *prog; 5931 struct bpf_insn *insn; 5932 const char *sec_name; 5933 int i, err = 0, insn_idx, sec_idx, sec_num; 5934 5935 if (obj->btf_ext->core_relo_info.len == 0) 5936 return 0; 5937 5938 if (targ_btf_path) { 5939 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5940 err = libbpf_get_error(obj->btf_vmlinux_override); 5941 if (err) { 5942 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5943 return err; 5944 } 5945 } 5946 5947 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5948 if (IS_ERR(cand_cache)) { 5949 err = PTR_ERR(cand_cache); 5950 goto out; 5951 } 5952 5953 seg = &obj->btf_ext->core_relo_info; 5954 sec_num = 0; 5955 for_each_btf_ext_sec(seg, sec) { 5956 sec_idx = seg->sec_idxs[sec_num]; 5957 sec_num++; 5958 5959 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5960 if (str_is_empty(sec_name)) { 5961 err = -EINVAL; 5962 goto out; 5963 } 5964 5965 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5966 5967 for_each_btf_ext_rec(seg, sec, i, rec) { 5968 if (rec->insn_off % BPF_INSN_SZ) 5969 return -EINVAL; 5970 insn_idx = rec->insn_off / BPF_INSN_SZ; 5971 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5972 if (!prog) { 5973 /* When __weak subprog is "overridden" by another instance 5974 * of the subprog from a different object file, linker still 5975 * appends all the .BTF.ext info that used to belong to that 5976 * eliminated subprogram. 5977 * This is similar to what x86-64 linker does for relocations. 5978 * So just ignore such relocations just like we ignore 5979 * subprog instructions when discovering subprograms. 5980 */ 5981 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5982 sec_name, i, insn_idx); 5983 continue; 5984 } 5985 /* no need to apply CO-RE relocation if the program is 5986 * not going to be loaded 5987 */ 5988 if (!prog->autoload) 5989 continue; 5990 5991 /* adjust insn_idx from section frame of reference to the local 5992 * program's frame of reference; (sub-)program code is not yet 5993 * relocated, so it's enough to just subtract in-section offset 5994 */ 5995 insn_idx = insn_idx - prog->sec_insn_off; 5996 if (insn_idx >= prog->insns_cnt) 5997 return -EINVAL; 5998 insn = &prog->insns[insn_idx]; 5999 6000 err = record_relo_core(prog, rec, insn_idx); 6001 if (err) { 6002 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 6003 prog->name, i, errstr(err)); 6004 goto out; 6005 } 6006 6007 if (prog->obj->gen_loader) 6008 continue; 6009 6010 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6011 if (err) { 6012 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6013 prog->name, i, errstr(err)); 6014 goto out; 6015 } 6016 6017 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6018 if (err) { 6019 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6020 prog->name, i, insn_idx, errstr(err)); 6021 goto out; 6022 } 6023 } 6024 } 6025 6026 out: 6027 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6028 btf__free(obj->btf_vmlinux_override); 6029 obj->btf_vmlinux_override = NULL; 6030 6031 if (!IS_ERR_OR_NULL(cand_cache)) { 6032 hashmap__for_each_entry(cand_cache, entry, i) { 6033 bpf_core_free_cands(entry->pvalue); 6034 } 6035 hashmap__free(cand_cache); 6036 } 6037 return err; 6038 } 6039 6040 /* base map load ldimm64 special constant, used also for log fixup logic */ 6041 #define POISON_LDIMM64_MAP_BASE 2001000000 6042 #define POISON_LDIMM64_MAP_PFX "200100" 6043 6044 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6045 int insn_idx, struct bpf_insn *insn, 6046 int map_idx, const struct bpf_map *map) 6047 { 6048 int i; 6049 6050 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6051 prog->name, relo_idx, insn_idx, map_idx, map->name); 6052 6053 /* we turn single ldimm64 into two identical invalid calls */ 6054 for (i = 0; i < 2; i++) { 6055 insn->code = BPF_JMP | BPF_CALL; 6056 insn->dst_reg = 0; 6057 insn->src_reg = 0; 6058 insn->off = 0; 6059 /* if this instruction is reachable (not a dead code), 6060 * verifier will complain with something like: 6061 * invalid func unknown#2001000123 6062 * where lower 123 is map index into obj->maps[] array 6063 */ 6064 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6065 6066 insn++; 6067 } 6068 } 6069 6070 /* unresolved kfunc call special constant, used also for log fixup logic */ 6071 #define POISON_CALL_KFUNC_BASE 2002000000 6072 #define POISON_CALL_KFUNC_PFX "2002" 6073 6074 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6075 int insn_idx, struct bpf_insn *insn, 6076 int ext_idx, const struct extern_desc *ext) 6077 { 6078 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6079 prog->name, relo_idx, insn_idx, ext->name); 6080 6081 /* we turn kfunc call into invalid helper call with identifiable constant */ 6082 insn->code = BPF_JMP | BPF_CALL; 6083 insn->dst_reg = 0; 6084 insn->src_reg = 0; 6085 insn->off = 0; 6086 /* if this instruction is reachable (not a dead code), 6087 * verifier will complain with something like: 6088 * invalid func unknown#2001000123 6089 * where lower 123 is extern index into obj->externs[] array 6090 */ 6091 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6092 } 6093 6094 /* Relocate data references within program code: 6095 * - map references; 6096 * - global variable references; 6097 * - extern references. 6098 */ 6099 static int 6100 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6101 { 6102 int i; 6103 6104 for (i = 0; i < prog->nr_reloc; i++) { 6105 struct reloc_desc *relo = &prog->reloc_desc[i]; 6106 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6107 const struct bpf_map *map; 6108 struct extern_desc *ext; 6109 6110 switch (relo->type) { 6111 case RELO_LD64: 6112 map = &obj->maps[relo->map_idx]; 6113 if (obj->gen_loader) { 6114 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6115 insn[0].imm = relo->map_idx; 6116 } else if (map->autocreate) { 6117 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6118 insn[0].imm = map->fd; 6119 } else { 6120 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6121 relo->map_idx, map); 6122 } 6123 break; 6124 case RELO_DATA: 6125 map = &obj->maps[relo->map_idx]; 6126 insn[1].imm = insn[0].imm + relo->sym_off; 6127 if (obj->gen_loader) { 6128 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6129 insn[0].imm = relo->map_idx; 6130 } else if (map->autocreate) { 6131 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6132 insn[0].imm = map->fd; 6133 } else { 6134 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6135 relo->map_idx, map); 6136 } 6137 break; 6138 case RELO_EXTERN_LD64: 6139 ext = &obj->externs[relo->ext_idx]; 6140 if (ext->type == EXT_KCFG) { 6141 if (obj->gen_loader) { 6142 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6143 insn[0].imm = obj->kconfig_map_idx; 6144 } else { 6145 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6146 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6147 } 6148 insn[1].imm = ext->kcfg.data_off; 6149 } else /* EXT_KSYM */ { 6150 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6151 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6152 insn[0].imm = ext->ksym.kernel_btf_id; 6153 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6154 } else { /* typeless ksyms or unresolved typed ksyms */ 6155 insn[0].imm = (__u32)ext->ksym.addr; 6156 insn[1].imm = ext->ksym.addr >> 32; 6157 } 6158 } 6159 break; 6160 case RELO_EXTERN_CALL: 6161 ext = &obj->externs[relo->ext_idx]; 6162 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6163 if (ext->is_set) { 6164 insn[0].imm = ext->ksym.kernel_btf_id; 6165 insn[0].off = ext->ksym.btf_fd_idx; 6166 } else { /* unresolved weak kfunc call */ 6167 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6168 relo->ext_idx, ext); 6169 } 6170 break; 6171 case RELO_SUBPROG_ADDR: 6172 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6173 pr_warn("prog '%s': relo #%d: bad insn\n", 6174 prog->name, i); 6175 return -EINVAL; 6176 } 6177 /* handled already */ 6178 break; 6179 case RELO_CALL: 6180 /* handled already */ 6181 break; 6182 case RELO_CORE: 6183 /* will be handled by bpf_program_record_relos() */ 6184 break; 6185 default: 6186 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6187 prog->name, i, relo->type); 6188 return -EINVAL; 6189 } 6190 } 6191 6192 return 0; 6193 } 6194 6195 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6196 const struct bpf_program *prog, 6197 const struct btf_ext_info *ext_info, 6198 void **prog_info, __u32 *prog_rec_cnt, 6199 __u32 *prog_rec_sz) 6200 { 6201 void *copy_start = NULL, *copy_end = NULL; 6202 void *rec, *rec_end, *new_prog_info; 6203 const struct btf_ext_info_sec *sec; 6204 size_t old_sz, new_sz; 6205 int i, sec_num, sec_idx, off_adj; 6206 6207 sec_num = 0; 6208 for_each_btf_ext_sec(ext_info, sec) { 6209 sec_idx = ext_info->sec_idxs[sec_num]; 6210 sec_num++; 6211 if (prog->sec_idx != sec_idx) 6212 continue; 6213 6214 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6215 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6216 6217 if (insn_off < prog->sec_insn_off) 6218 continue; 6219 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6220 break; 6221 6222 if (!copy_start) 6223 copy_start = rec; 6224 copy_end = rec + ext_info->rec_size; 6225 } 6226 6227 if (!copy_start) 6228 return -ENOENT; 6229 6230 /* append func/line info of a given (sub-)program to the main 6231 * program func/line info 6232 */ 6233 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6234 new_sz = old_sz + (copy_end - copy_start); 6235 new_prog_info = realloc(*prog_info, new_sz); 6236 if (!new_prog_info) 6237 return -ENOMEM; 6238 *prog_info = new_prog_info; 6239 *prog_rec_cnt = new_sz / ext_info->rec_size; 6240 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6241 6242 /* Kernel instruction offsets are in units of 8-byte 6243 * instructions, while .BTF.ext instruction offsets generated 6244 * by Clang are in units of bytes. So convert Clang offsets 6245 * into kernel offsets and adjust offset according to program 6246 * relocated position. 6247 */ 6248 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6249 rec = new_prog_info + old_sz; 6250 rec_end = new_prog_info + new_sz; 6251 for (; rec < rec_end; rec += ext_info->rec_size) { 6252 __u32 *insn_off = rec; 6253 6254 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6255 } 6256 *prog_rec_sz = ext_info->rec_size; 6257 return 0; 6258 } 6259 6260 return -ENOENT; 6261 } 6262 6263 static int 6264 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6265 struct bpf_program *main_prog, 6266 const struct bpf_program *prog) 6267 { 6268 int err; 6269 6270 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6271 * support func/line info 6272 */ 6273 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6274 return 0; 6275 6276 /* only attempt func info relocation if main program's func_info 6277 * relocation was successful 6278 */ 6279 if (main_prog != prog && !main_prog->func_info) 6280 goto line_info; 6281 6282 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6283 &main_prog->func_info, 6284 &main_prog->func_info_cnt, 6285 &main_prog->func_info_rec_size); 6286 if (err) { 6287 if (err != -ENOENT) { 6288 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6289 prog->name, errstr(err)); 6290 return err; 6291 } 6292 if (main_prog->func_info) { 6293 /* 6294 * Some info has already been found but has problem 6295 * in the last btf_ext reloc. Must have to error out. 6296 */ 6297 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6298 return err; 6299 } 6300 /* Have problem loading the very first info. Ignore the rest. */ 6301 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6302 prog->name); 6303 } 6304 6305 line_info: 6306 /* don't relocate line info if main program's relocation failed */ 6307 if (main_prog != prog && !main_prog->line_info) 6308 return 0; 6309 6310 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6311 &main_prog->line_info, 6312 &main_prog->line_info_cnt, 6313 &main_prog->line_info_rec_size); 6314 if (err) { 6315 if (err != -ENOENT) { 6316 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6317 prog->name, errstr(err)); 6318 return err; 6319 } 6320 if (main_prog->line_info) { 6321 /* 6322 * Some info has already been found but has problem 6323 * in the last btf_ext reloc. Must have to error out. 6324 */ 6325 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6326 return err; 6327 } 6328 /* Have problem loading the very first info. Ignore the rest. */ 6329 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6330 prog->name); 6331 } 6332 return 0; 6333 } 6334 6335 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6336 { 6337 size_t insn_idx = *(const size_t *)key; 6338 const struct reloc_desc *relo = elem; 6339 6340 if (insn_idx == relo->insn_idx) 6341 return 0; 6342 return insn_idx < relo->insn_idx ? -1 : 1; 6343 } 6344 6345 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6346 { 6347 if (!prog->nr_reloc) 6348 return NULL; 6349 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6350 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6351 } 6352 6353 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6354 { 6355 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6356 struct reloc_desc *relos; 6357 int i; 6358 6359 if (main_prog == subprog) 6360 return 0; 6361 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6362 /* if new count is zero, reallocarray can return a valid NULL result; 6363 * in this case the previous pointer will be freed, so we *have to* 6364 * reassign old pointer to the new value (even if it's NULL) 6365 */ 6366 if (!relos && new_cnt) 6367 return -ENOMEM; 6368 if (subprog->nr_reloc) 6369 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6370 sizeof(*relos) * subprog->nr_reloc); 6371 6372 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6373 relos[i].insn_idx += subprog->sub_insn_off; 6374 /* After insn_idx adjustment the 'relos' array is still sorted 6375 * by insn_idx and doesn't break bsearch. 6376 */ 6377 main_prog->reloc_desc = relos; 6378 main_prog->nr_reloc = new_cnt; 6379 return 0; 6380 } 6381 6382 static int 6383 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6384 struct bpf_program *subprog) 6385 { 6386 struct bpf_insn *insns; 6387 size_t new_cnt; 6388 int err; 6389 6390 subprog->sub_insn_off = main_prog->insns_cnt; 6391 6392 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6393 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6394 if (!insns) { 6395 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6396 return -ENOMEM; 6397 } 6398 main_prog->insns = insns; 6399 main_prog->insns_cnt = new_cnt; 6400 6401 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6402 subprog->insns_cnt * sizeof(*insns)); 6403 6404 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6405 main_prog->name, subprog->insns_cnt, subprog->name); 6406 6407 /* The subprog insns are now appended. Append its relos too. */ 6408 err = append_subprog_relos(main_prog, subprog); 6409 if (err) 6410 return err; 6411 return 0; 6412 } 6413 6414 static int 6415 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6416 struct bpf_program *prog) 6417 { 6418 size_t sub_insn_idx, insn_idx; 6419 struct bpf_program *subprog; 6420 struct reloc_desc *relo; 6421 struct bpf_insn *insn; 6422 int err; 6423 6424 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6425 if (err) 6426 return err; 6427 6428 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6429 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6430 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6431 continue; 6432 6433 relo = find_prog_insn_relo(prog, insn_idx); 6434 if (relo && relo->type == RELO_EXTERN_CALL) 6435 /* kfunc relocations will be handled later 6436 * in bpf_object__relocate_data() 6437 */ 6438 continue; 6439 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6440 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6441 prog->name, insn_idx, relo->type); 6442 return -LIBBPF_ERRNO__RELOC; 6443 } 6444 if (relo) { 6445 /* sub-program instruction index is a combination of 6446 * an offset of a symbol pointed to by relocation and 6447 * call instruction's imm field; for global functions, 6448 * call always has imm = -1, but for static functions 6449 * relocation is against STT_SECTION and insn->imm 6450 * points to a start of a static function 6451 * 6452 * for subprog addr relocation, the relo->sym_off + insn->imm is 6453 * the byte offset in the corresponding section. 6454 */ 6455 if (relo->type == RELO_CALL) 6456 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6457 else 6458 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6459 } else if (insn_is_pseudo_func(insn)) { 6460 /* 6461 * RELO_SUBPROG_ADDR relo is always emitted even if both 6462 * functions are in the same section, so it shouldn't reach here. 6463 */ 6464 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6465 prog->name, insn_idx); 6466 return -LIBBPF_ERRNO__RELOC; 6467 } else { 6468 /* if subprogram call is to a static function within 6469 * the same ELF section, there won't be any relocation 6470 * emitted, but it also means there is no additional 6471 * offset necessary, insns->imm is relative to 6472 * instruction's original position within the section 6473 */ 6474 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6475 } 6476 6477 /* we enforce that sub-programs should be in .text section */ 6478 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6479 if (!subprog) { 6480 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6481 prog->name); 6482 return -LIBBPF_ERRNO__RELOC; 6483 } 6484 6485 /* if it's the first call instruction calling into this 6486 * subprogram (meaning this subprog hasn't been processed 6487 * yet) within the context of current main program: 6488 * - append it at the end of main program's instructions blog; 6489 * - process is recursively, while current program is put on hold; 6490 * - if that subprogram calls some other not yet processes 6491 * subprogram, same thing will happen recursively until 6492 * there are no more unprocesses subprograms left to append 6493 * and relocate. 6494 */ 6495 if (subprog->sub_insn_off == 0) { 6496 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6497 if (err) 6498 return err; 6499 err = bpf_object__reloc_code(obj, main_prog, subprog); 6500 if (err) 6501 return err; 6502 } 6503 6504 /* main_prog->insns memory could have been re-allocated, so 6505 * calculate pointer again 6506 */ 6507 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6508 /* calculate correct instruction position within current main 6509 * prog; each main prog can have a different set of 6510 * subprograms appended (potentially in different order as 6511 * well), so position of any subprog can be different for 6512 * different main programs 6513 */ 6514 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6515 6516 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6517 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6518 } 6519 6520 return 0; 6521 } 6522 6523 /* 6524 * Relocate sub-program calls. 6525 * 6526 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6527 * main prog) is processed separately. For each subprog (non-entry functions, 6528 * that can be called from either entry progs or other subprogs) gets their 6529 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6530 * hasn't been yet appended and relocated within current main prog. Once its 6531 * relocated, sub_insn_off will point at the position within current main prog 6532 * where given subprog was appended. This will further be used to relocate all 6533 * the call instructions jumping into this subprog. 6534 * 6535 * We start with main program and process all call instructions. If the call 6536 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6537 * is zero), subprog instructions are appended at the end of main program's 6538 * instruction array. Then main program is "put on hold" while we recursively 6539 * process newly appended subprogram. If that subprogram calls into another 6540 * subprogram that hasn't been appended, new subprogram is appended again to 6541 * the *main* prog's instructions (subprog's instructions are always left 6542 * untouched, as they need to be in unmodified state for subsequent main progs 6543 * and subprog instructions are always sent only as part of a main prog) and 6544 * the process continues recursively. Once all the subprogs called from a main 6545 * prog or any of its subprogs are appended (and relocated), all their 6546 * positions within finalized instructions array are known, so it's easy to 6547 * rewrite call instructions with correct relative offsets, corresponding to 6548 * desired target subprog. 6549 * 6550 * Its important to realize that some subprogs might not be called from some 6551 * main prog and any of its called/used subprogs. Those will keep their 6552 * subprog->sub_insn_off as zero at all times and won't be appended to current 6553 * main prog and won't be relocated within the context of current main prog. 6554 * They might still be used from other main progs later. 6555 * 6556 * Visually this process can be shown as below. Suppose we have two main 6557 * programs mainA and mainB and BPF object contains three subprogs: subA, 6558 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6559 * subC both call subB: 6560 * 6561 * +--------+ +-------+ 6562 * | v v | 6563 * +--+---+ +--+-+-+ +---+--+ 6564 * | subA | | subB | | subC | 6565 * +--+---+ +------+ +---+--+ 6566 * ^ ^ 6567 * | | 6568 * +---+-------+ +------+----+ 6569 * | mainA | | mainB | 6570 * +-----------+ +-----------+ 6571 * 6572 * We'll start relocating mainA, will find subA, append it and start 6573 * processing sub A recursively: 6574 * 6575 * +-----------+------+ 6576 * | mainA | subA | 6577 * +-----------+------+ 6578 * 6579 * At this point we notice that subB is used from subA, so we append it and 6580 * relocate (there are no further subcalls from subB): 6581 * 6582 * +-----------+------+------+ 6583 * | mainA | subA | subB | 6584 * +-----------+------+------+ 6585 * 6586 * At this point, we relocate subA calls, then go one level up and finish with 6587 * relocatin mainA calls. mainA is done. 6588 * 6589 * For mainB process is similar but results in different order. We start with 6590 * mainB and skip subA and subB, as mainB never calls them (at least 6591 * directly), but we see subC is needed, so we append and start processing it: 6592 * 6593 * +-----------+------+ 6594 * | mainB | subC | 6595 * +-----------+------+ 6596 * Now we see subC needs subB, so we go back to it, append and relocate it: 6597 * 6598 * +-----------+------+------+ 6599 * | mainB | subC | subB | 6600 * +-----------+------+------+ 6601 * 6602 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6603 */ 6604 static int 6605 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6606 { 6607 struct bpf_program *subprog; 6608 int i, err; 6609 6610 /* mark all subprogs as not relocated (yet) within the context of 6611 * current main program 6612 */ 6613 for (i = 0; i < obj->nr_programs; i++) { 6614 subprog = &obj->programs[i]; 6615 if (!prog_is_subprog(obj, subprog)) 6616 continue; 6617 6618 subprog->sub_insn_off = 0; 6619 } 6620 6621 err = bpf_object__reloc_code(obj, prog, prog); 6622 if (err) 6623 return err; 6624 6625 return 0; 6626 } 6627 6628 static void 6629 bpf_object__free_relocs(struct bpf_object *obj) 6630 { 6631 struct bpf_program *prog; 6632 int i; 6633 6634 /* free up relocation descriptors */ 6635 for (i = 0; i < obj->nr_programs; i++) { 6636 prog = &obj->programs[i]; 6637 zfree(&prog->reloc_desc); 6638 prog->nr_reloc = 0; 6639 } 6640 } 6641 6642 static int cmp_relocs(const void *_a, const void *_b) 6643 { 6644 const struct reloc_desc *a = _a; 6645 const struct reloc_desc *b = _b; 6646 6647 if (a->insn_idx != b->insn_idx) 6648 return a->insn_idx < b->insn_idx ? -1 : 1; 6649 6650 /* no two relocations should have the same insn_idx, but ... */ 6651 if (a->type != b->type) 6652 return a->type < b->type ? -1 : 1; 6653 6654 return 0; 6655 } 6656 6657 static void bpf_object__sort_relos(struct bpf_object *obj) 6658 { 6659 int i; 6660 6661 for (i = 0; i < obj->nr_programs; i++) { 6662 struct bpf_program *p = &obj->programs[i]; 6663 6664 if (!p->nr_reloc) 6665 continue; 6666 6667 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6668 } 6669 } 6670 6671 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6672 { 6673 const char *str = "exception_callback:"; 6674 size_t pfx_len = strlen(str); 6675 int i, j, n; 6676 6677 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6678 return 0; 6679 6680 n = btf__type_cnt(obj->btf); 6681 for (i = 1; i < n; i++) { 6682 const char *name; 6683 struct btf_type *t; 6684 6685 t = btf_type_by_id(obj->btf, i); 6686 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6687 continue; 6688 6689 name = btf__str_by_offset(obj->btf, t->name_off); 6690 if (strncmp(name, str, pfx_len) != 0) 6691 continue; 6692 6693 t = btf_type_by_id(obj->btf, t->type); 6694 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6695 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6696 prog->name); 6697 return -EINVAL; 6698 } 6699 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6700 continue; 6701 /* Multiple callbacks are specified for the same prog, 6702 * the verifier will eventually return an error for this 6703 * case, hence simply skip appending a subprog. 6704 */ 6705 if (prog->exception_cb_idx >= 0) { 6706 prog->exception_cb_idx = -1; 6707 break; 6708 } 6709 6710 name += pfx_len; 6711 if (str_is_empty(name)) { 6712 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6713 prog->name); 6714 return -EINVAL; 6715 } 6716 6717 for (j = 0; j < obj->nr_programs; j++) { 6718 struct bpf_program *subprog = &obj->programs[j]; 6719 6720 if (!prog_is_subprog(obj, subprog)) 6721 continue; 6722 if (strcmp(name, subprog->name) != 0) 6723 continue; 6724 /* Enforce non-hidden, as from verifier point of 6725 * view it expects global functions, whereas the 6726 * mark_btf_static fixes up linkage as static. 6727 */ 6728 if (!subprog->sym_global || subprog->mark_btf_static) { 6729 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6730 prog->name, subprog->name); 6731 return -EINVAL; 6732 } 6733 /* Let's see if we already saw a static exception callback with the same name */ 6734 if (prog->exception_cb_idx >= 0) { 6735 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6736 prog->name, subprog->name); 6737 return -EINVAL; 6738 } 6739 prog->exception_cb_idx = j; 6740 break; 6741 } 6742 6743 if (prog->exception_cb_idx >= 0) 6744 continue; 6745 6746 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6747 return -ENOENT; 6748 } 6749 6750 return 0; 6751 } 6752 6753 static struct { 6754 enum bpf_prog_type prog_type; 6755 const char *ctx_name; 6756 } global_ctx_map[] = { 6757 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6758 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6759 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6760 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6761 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6762 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6763 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6764 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6765 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6766 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6767 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6768 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6769 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6770 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6771 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6772 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6773 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6774 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6775 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6776 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6777 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6778 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6779 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6780 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6781 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6782 /* all other program types don't have "named" context structs */ 6783 }; 6784 6785 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6786 * for below __builtin_types_compatible_p() checks; 6787 * with this approach we don't need any extra arch-specific #ifdef guards 6788 */ 6789 struct pt_regs; 6790 struct user_pt_regs; 6791 struct user_regs_struct; 6792 6793 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6794 const char *subprog_name, int arg_idx, 6795 int arg_type_id, const char *ctx_name) 6796 { 6797 const struct btf_type *t; 6798 const char *tname; 6799 6800 /* check if existing parameter already matches verifier expectations */ 6801 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6802 if (!btf_is_ptr(t)) 6803 goto out_warn; 6804 6805 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6806 * and perf_event programs, so check this case early on and forget 6807 * about it for subsequent checks 6808 */ 6809 while (btf_is_mod(t)) 6810 t = btf__type_by_id(btf, t->type); 6811 if (btf_is_typedef(t) && 6812 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6813 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6814 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6815 return false; /* canonical type for kprobe/perf_event */ 6816 } 6817 6818 /* now we can ignore typedefs moving forward */ 6819 t = skip_mods_and_typedefs(btf, t->type, NULL); 6820 6821 /* if it's `void *`, definitely fix up BTF info */ 6822 if (btf_is_void(t)) 6823 return true; 6824 6825 /* if it's already proper canonical type, no need to fix up */ 6826 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6827 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6828 return false; 6829 6830 /* special cases */ 6831 switch (prog->type) { 6832 case BPF_PROG_TYPE_KPROBE: 6833 /* `struct pt_regs *` is expected, but we need to fix up */ 6834 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6835 return true; 6836 break; 6837 case BPF_PROG_TYPE_PERF_EVENT: 6838 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6839 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6840 return true; 6841 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6842 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6843 return true; 6844 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6845 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6846 return true; 6847 break; 6848 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6849 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6850 /* allow u64* as ctx */ 6851 if (btf_is_int(t) && t->size == 8) 6852 return true; 6853 break; 6854 default: 6855 break; 6856 } 6857 6858 out_warn: 6859 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6860 prog->name, subprog_name, arg_idx, ctx_name); 6861 return false; 6862 } 6863 6864 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6865 { 6866 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6867 int i, err, arg_cnt, fn_name_off, linkage; 6868 struct btf_type *fn_t, *fn_proto_t, *t; 6869 struct btf_param *p; 6870 6871 /* caller already validated FUNC -> FUNC_PROTO validity */ 6872 fn_t = btf_type_by_id(btf, orig_fn_id); 6873 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6874 6875 /* Note that each btf__add_xxx() operation invalidates 6876 * all btf_type and string pointers, so we need to be 6877 * very careful when cloning BTF types. BTF type 6878 * pointers have to be always refetched. And to avoid 6879 * problems with invalidated string pointers, we 6880 * add empty strings initially, then just fix up 6881 * name_off offsets in place. Offsets are stable for 6882 * existing strings, so that works out. 6883 */ 6884 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6885 linkage = btf_func_linkage(fn_t); 6886 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6887 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6888 arg_cnt = btf_vlen(fn_proto_t); 6889 6890 /* clone FUNC_PROTO and its params */ 6891 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6892 if (fn_proto_id < 0) 6893 return -EINVAL; 6894 6895 for (i = 0; i < arg_cnt; i++) { 6896 int name_off; 6897 6898 /* copy original parameter data */ 6899 t = btf_type_by_id(btf, orig_proto_id); 6900 p = &btf_params(t)[i]; 6901 name_off = p->name_off; 6902 6903 err = btf__add_func_param(btf, "", p->type); 6904 if (err) 6905 return err; 6906 6907 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6908 p = &btf_params(fn_proto_t)[i]; 6909 p->name_off = name_off; /* use remembered str offset */ 6910 } 6911 6912 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6913 * entry program's name as a placeholder, which we replace immediately 6914 * with original name_off 6915 */ 6916 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6917 if (fn_id < 0) 6918 return -EINVAL; 6919 6920 fn_t = btf_type_by_id(btf, fn_id); 6921 fn_t->name_off = fn_name_off; /* reuse original string */ 6922 6923 return fn_id; 6924 } 6925 6926 /* Check if main program or global subprog's function prototype has `arg:ctx` 6927 * argument tags, and, if necessary, substitute correct type to match what BPF 6928 * verifier would expect, taking into account specific program type. This 6929 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6930 * have a native support for it in the verifier, making user's life much 6931 * easier. 6932 */ 6933 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6934 { 6935 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6936 struct bpf_func_info_min *func_rec; 6937 struct btf_type *fn_t, *fn_proto_t; 6938 struct btf *btf = obj->btf; 6939 const struct btf_type *t; 6940 struct btf_param *p; 6941 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6942 int i, n, arg_idx, arg_cnt, err, rec_idx; 6943 int *orig_ids; 6944 6945 /* no .BTF.ext, no problem */ 6946 if (!obj->btf_ext || !prog->func_info) 6947 return 0; 6948 6949 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6950 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6951 return 0; 6952 6953 /* some BPF program types just don't have named context structs, so 6954 * this fallback mechanism doesn't work for them 6955 */ 6956 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6957 if (global_ctx_map[i].prog_type != prog->type) 6958 continue; 6959 ctx_name = global_ctx_map[i].ctx_name; 6960 break; 6961 } 6962 if (!ctx_name) 6963 return 0; 6964 6965 /* remember original func BTF IDs to detect if we already cloned them */ 6966 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6967 if (!orig_ids) 6968 return -ENOMEM; 6969 for (i = 0; i < prog->func_info_cnt; i++) { 6970 func_rec = prog->func_info + prog->func_info_rec_size * i; 6971 orig_ids[i] = func_rec->type_id; 6972 } 6973 6974 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6975 * of our subprogs; if yes and subprog is global and needs adjustment, 6976 * clone and adjust FUNC -> FUNC_PROTO combo 6977 */ 6978 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6979 /* only DECL_TAG with "arg:ctx" value are interesting */ 6980 t = btf__type_by_id(btf, i); 6981 if (!btf_is_decl_tag(t)) 6982 continue; 6983 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6984 continue; 6985 6986 /* only global funcs need adjustment, if at all */ 6987 orig_fn_id = t->type; 6988 fn_t = btf_type_by_id(btf, orig_fn_id); 6989 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6990 continue; 6991 6992 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6993 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6994 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6995 continue; 6996 6997 /* find corresponding func_info record */ 6998 func_rec = NULL; 6999 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 7000 if (orig_ids[rec_idx] == t->type) { 7001 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 7002 break; 7003 } 7004 } 7005 /* current main program doesn't call into this subprog */ 7006 if (!func_rec) 7007 continue; 7008 7009 /* some more sanity checking of DECL_TAG */ 7010 arg_cnt = btf_vlen(fn_proto_t); 7011 arg_idx = btf_decl_tag(t)->component_idx; 7012 if (arg_idx < 0 || arg_idx >= arg_cnt) 7013 continue; 7014 7015 /* check if we should fix up argument type */ 7016 p = &btf_params(fn_proto_t)[arg_idx]; 7017 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7018 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7019 continue; 7020 7021 /* clone fn/fn_proto, unless we already did it for another arg */ 7022 if (func_rec->type_id == orig_fn_id) { 7023 int fn_id; 7024 7025 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7026 if (fn_id < 0) { 7027 err = fn_id; 7028 goto err_out; 7029 } 7030 7031 /* point func_info record to a cloned FUNC type */ 7032 func_rec->type_id = fn_id; 7033 } 7034 7035 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7036 * we do it just once per main BPF program, as all global 7037 * funcs share the same program type, so need only PTR -> 7038 * STRUCT type chain 7039 */ 7040 if (ptr_id == 0) { 7041 struct_id = btf__add_struct(btf, ctx_name, 0); 7042 ptr_id = btf__add_ptr(btf, struct_id); 7043 if (ptr_id < 0 || struct_id < 0) { 7044 err = -EINVAL; 7045 goto err_out; 7046 } 7047 } 7048 7049 /* for completeness, clone DECL_TAG and point it to cloned param */ 7050 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7051 if (tag_id < 0) { 7052 err = -EINVAL; 7053 goto err_out; 7054 } 7055 7056 /* all the BTF manipulations invalidated pointers, refetch them */ 7057 fn_t = btf_type_by_id(btf, func_rec->type_id); 7058 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7059 7060 /* fix up type ID pointed to by param */ 7061 p = &btf_params(fn_proto_t)[arg_idx]; 7062 p->type = ptr_id; 7063 } 7064 7065 free(orig_ids); 7066 return 0; 7067 err_out: 7068 free(orig_ids); 7069 return err; 7070 } 7071 7072 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7073 { 7074 struct bpf_program *prog; 7075 size_t i, j; 7076 int err; 7077 7078 if (obj->btf_ext) { 7079 err = bpf_object__relocate_core(obj, targ_btf_path); 7080 if (err) { 7081 pr_warn("failed to perform CO-RE relocations: %s\n", 7082 errstr(err)); 7083 return err; 7084 } 7085 bpf_object__sort_relos(obj); 7086 } 7087 7088 /* Before relocating calls pre-process relocations and mark 7089 * few ld_imm64 instructions that points to subprogs. 7090 * Otherwise bpf_object__reloc_code() later would have to consider 7091 * all ld_imm64 insns as relocation candidates. That would 7092 * reduce relocation speed, since amount of find_prog_insn_relo() 7093 * would increase and most of them will fail to find a relo. 7094 */ 7095 for (i = 0; i < obj->nr_programs; i++) { 7096 prog = &obj->programs[i]; 7097 for (j = 0; j < prog->nr_reloc; j++) { 7098 struct reloc_desc *relo = &prog->reloc_desc[j]; 7099 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7100 7101 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7102 if (relo->type == RELO_SUBPROG_ADDR) 7103 insn[0].src_reg = BPF_PSEUDO_FUNC; 7104 } 7105 } 7106 7107 /* relocate subprogram calls and append used subprograms to main 7108 * programs; each copy of subprogram code needs to be relocated 7109 * differently for each main program, because its code location might 7110 * have changed. 7111 * Append subprog relos to main programs to allow data relos to be 7112 * processed after text is completely relocated. 7113 */ 7114 for (i = 0; i < obj->nr_programs; i++) { 7115 prog = &obj->programs[i]; 7116 /* sub-program's sub-calls are relocated within the context of 7117 * its main program only 7118 */ 7119 if (prog_is_subprog(obj, prog)) 7120 continue; 7121 if (!prog->autoload) 7122 continue; 7123 7124 err = bpf_object__relocate_calls(obj, prog); 7125 if (err) { 7126 pr_warn("prog '%s': failed to relocate calls: %s\n", 7127 prog->name, errstr(err)); 7128 return err; 7129 } 7130 7131 err = bpf_prog_assign_exc_cb(obj, prog); 7132 if (err) 7133 return err; 7134 /* Now, also append exception callback if it has not been done already. */ 7135 if (prog->exception_cb_idx >= 0) { 7136 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7137 7138 /* Calling exception callback directly is disallowed, which the 7139 * verifier will reject later. In case it was processed already, 7140 * we can skip this step, otherwise for all other valid cases we 7141 * have to append exception callback now. 7142 */ 7143 if (subprog->sub_insn_off == 0) { 7144 err = bpf_object__append_subprog_code(obj, prog, subprog); 7145 if (err) 7146 return err; 7147 err = bpf_object__reloc_code(obj, prog, subprog); 7148 if (err) 7149 return err; 7150 } 7151 } 7152 } 7153 for (i = 0; i < obj->nr_programs; i++) { 7154 prog = &obj->programs[i]; 7155 if (prog_is_subprog(obj, prog)) 7156 continue; 7157 if (!prog->autoload) 7158 continue; 7159 7160 /* Process data relos for main programs */ 7161 err = bpf_object__relocate_data(obj, prog); 7162 if (err) { 7163 pr_warn("prog '%s': failed to relocate data references: %s\n", 7164 prog->name, errstr(err)); 7165 return err; 7166 } 7167 7168 /* Fix up .BTF.ext information, if necessary */ 7169 err = bpf_program_fixup_func_info(obj, prog); 7170 if (err) { 7171 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7172 prog->name, errstr(err)); 7173 return err; 7174 } 7175 } 7176 7177 return 0; 7178 } 7179 7180 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7181 Elf64_Shdr *shdr, Elf_Data *data); 7182 7183 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7184 Elf64_Shdr *shdr, Elf_Data *data) 7185 { 7186 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7187 int i, j, nrels, new_sz; 7188 const struct btf_var_secinfo *vi = NULL; 7189 const struct btf_type *sec, *var, *def; 7190 struct bpf_map *map = NULL, *targ_map = NULL; 7191 struct bpf_program *targ_prog = NULL; 7192 bool is_prog_array, is_map_in_map; 7193 const struct btf_member *member; 7194 const char *name, *mname, *type; 7195 unsigned int moff; 7196 Elf64_Sym *sym; 7197 Elf64_Rel *rel; 7198 void *tmp; 7199 7200 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7201 return -EINVAL; 7202 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7203 if (!sec) 7204 return -EINVAL; 7205 7206 nrels = shdr->sh_size / shdr->sh_entsize; 7207 for (i = 0; i < nrels; i++) { 7208 rel = elf_rel_by_idx(data, i); 7209 if (!rel) { 7210 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7211 return -LIBBPF_ERRNO__FORMAT; 7212 } 7213 7214 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7215 if (!sym) { 7216 pr_warn(".maps relo #%d: symbol %zx not found\n", 7217 i, (size_t)ELF64_R_SYM(rel->r_info)); 7218 return -LIBBPF_ERRNO__FORMAT; 7219 } 7220 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7221 7222 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7223 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7224 (size_t)rel->r_offset, sym->st_name, name); 7225 7226 for (j = 0; j < obj->nr_maps; j++) { 7227 map = &obj->maps[j]; 7228 if (map->sec_idx != obj->efile.btf_maps_shndx) 7229 continue; 7230 7231 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7232 if (vi->offset <= rel->r_offset && 7233 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7234 break; 7235 } 7236 if (j == obj->nr_maps) { 7237 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7238 i, name, (size_t)rel->r_offset); 7239 return -EINVAL; 7240 } 7241 7242 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7243 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7244 type = is_map_in_map ? "map" : "prog"; 7245 if (is_map_in_map) { 7246 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7247 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7248 i, name); 7249 return -LIBBPF_ERRNO__RELOC; 7250 } 7251 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7252 map->def.key_size != sizeof(int)) { 7253 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7254 i, map->name, sizeof(int)); 7255 return -EINVAL; 7256 } 7257 targ_map = bpf_object__find_map_by_name(obj, name); 7258 if (!targ_map) { 7259 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7260 i, name); 7261 return -ESRCH; 7262 } 7263 } else if (is_prog_array) { 7264 targ_prog = bpf_object__find_program_by_name(obj, name); 7265 if (!targ_prog) { 7266 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7267 i, name); 7268 return -ESRCH; 7269 } 7270 if (targ_prog->sec_idx != sym->st_shndx || 7271 targ_prog->sec_insn_off * 8 != sym->st_value || 7272 prog_is_subprog(obj, targ_prog)) { 7273 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7274 i, name); 7275 return -LIBBPF_ERRNO__RELOC; 7276 } 7277 } else { 7278 return -EINVAL; 7279 } 7280 7281 var = btf__type_by_id(obj->btf, vi->type); 7282 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7283 if (btf_vlen(def) == 0) 7284 return -EINVAL; 7285 member = btf_members(def) + btf_vlen(def) - 1; 7286 mname = btf__name_by_offset(obj->btf, member->name_off); 7287 if (strcmp(mname, "values")) 7288 return -EINVAL; 7289 7290 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7291 if (rel->r_offset - vi->offset < moff) 7292 return -EINVAL; 7293 7294 moff = rel->r_offset - vi->offset - moff; 7295 /* here we use BPF pointer size, which is always 64 bit, as we 7296 * are parsing ELF that was built for BPF target 7297 */ 7298 if (moff % bpf_ptr_sz) 7299 return -EINVAL; 7300 moff /= bpf_ptr_sz; 7301 if (moff >= map->init_slots_sz) { 7302 new_sz = moff + 1; 7303 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7304 if (!tmp) 7305 return -ENOMEM; 7306 map->init_slots = tmp; 7307 memset(map->init_slots + map->init_slots_sz, 0, 7308 (new_sz - map->init_slots_sz) * host_ptr_sz); 7309 map->init_slots_sz = new_sz; 7310 } 7311 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7312 7313 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7314 i, map->name, moff, type, name); 7315 } 7316 7317 return 0; 7318 } 7319 7320 static int bpf_object__collect_relos(struct bpf_object *obj) 7321 { 7322 int i, err; 7323 7324 for (i = 0; i < obj->efile.sec_cnt; i++) { 7325 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7326 Elf64_Shdr *shdr; 7327 Elf_Data *data; 7328 int idx; 7329 7330 if (sec_desc->sec_type != SEC_RELO) 7331 continue; 7332 7333 shdr = sec_desc->shdr; 7334 data = sec_desc->data; 7335 idx = shdr->sh_info; 7336 7337 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7338 pr_warn("internal error at %d\n", __LINE__); 7339 return -LIBBPF_ERRNO__INTERNAL; 7340 } 7341 7342 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7343 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7344 else if (idx == obj->efile.btf_maps_shndx) 7345 err = bpf_object__collect_map_relos(obj, shdr, data); 7346 else 7347 err = bpf_object__collect_prog_relos(obj, shdr, data); 7348 if (err) 7349 return err; 7350 } 7351 7352 bpf_object__sort_relos(obj); 7353 return 0; 7354 } 7355 7356 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7357 { 7358 if (BPF_CLASS(insn->code) == BPF_JMP && 7359 BPF_OP(insn->code) == BPF_CALL && 7360 BPF_SRC(insn->code) == BPF_K && 7361 insn->src_reg == 0 && 7362 insn->dst_reg == 0) { 7363 *func_id = insn->imm; 7364 return true; 7365 } 7366 return false; 7367 } 7368 7369 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7370 { 7371 struct bpf_insn *insn = prog->insns; 7372 enum bpf_func_id func_id; 7373 int i; 7374 7375 if (obj->gen_loader) 7376 return 0; 7377 7378 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7379 if (!insn_is_helper_call(insn, &func_id)) 7380 continue; 7381 7382 /* on kernels that don't yet support 7383 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7384 * to bpf_probe_read() which works well for old kernels 7385 */ 7386 switch (func_id) { 7387 case BPF_FUNC_probe_read_kernel: 7388 case BPF_FUNC_probe_read_user: 7389 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7390 insn->imm = BPF_FUNC_probe_read; 7391 break; 7392 case BPF_FUNC_probe_read_kernel_str: 7393 case BPF_FUNC_probe_read_user_str: 7394 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7395 insn->imm = BPF_FUNC_probe_read_str; 7396 break; 7397 default: 7398 break; 7399 } 7400 } 7401 return 0; 7402 } 7403 7404 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7405 int *btf_obj_fd, int *btf_type_id); 7406 7407 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7408 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7409 struct bpf_prog_load_opts *opts, long cookie) 7410 { 7411 enum sec_def_flags def = cookie; 7412 7413 /* old kernels might not support specifying expected_attach_type */ 7414 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7415 opts->expected_attach_type = 0; 7416 7417 if (def & SEC_SLEEPABLE) 7418 opts->prog_flags |= BPF_F_SLEEPABLE; 7419 7420 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7421 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7422 7423 /* special check for usdt to use uprobe_multi link */ 7424 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7425 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7426 * in prog, and expected_attach_type we set in kernel is from opts, so we 7427 * update both. 7428 */ 7429 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7430 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7431 } 7432 7433 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7434 int btf_obj_fd = 0, btf_type_id = 0, err; 7435 const char *attach_name; 7436 7437 attach_name = strchr(prog->sec_name, '/'); 7438 if (!attach_name) { 7439 /* if BPF program is annotated with just SEC("fentry") 7440 * (or similar) without declaratively specifying 7441 * target, then it is expected that target will be 7442 * specified with bpf_program__set_attach_target() at 7443 * runtime before BPF object load step. If not, then 7444 * there is nothing to load into the kernel as BPF 7445 * verifier won't be able to validate BPF program 7446 * correctness anyways. 7447 */ 7448 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7449 prog->name); 7450 return -EINVAL; 7451 } 7452 attach_name++; /* skip over / */ 7453 7454 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7455 if (err) 7456 return err; 7457 7458 /* cache resolved BTF FD and BTF type ID in the prog */ 7459 prog->attach_btf_obj_fd = btf_obj_fd; 7460 prog->attach_btf_id = btf_type_id; 7461 7462 /* but by now libbpf common logic is not utilizing 7463 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7464 * this callback is called after opts were populated by 7465 * libbpf, so this callback has to update opts explicitly here 7466 */ 7467 opts->attach_btf_obj_fd = btf_obj_fd; 7468 opts->attach_btf_id = btf_type_id; 7469 } 7470 return 0; 7471 } 7472 7473 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7474 7475 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7476 struct bpf_insn *insns, int insns_cnt, 7477 const char *license, __u32 kern_version, int *prog_fd) 7478 { 7479 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7480 const char *prog_name = NULL; 7481 size_t log_buf_size = 0; 7482 char *log_buf = NULL, *tmp; 7483 bool own_log_buf = true; 7484 __u32 log_level = prog->log_level; 7485 int ret, err; 7486 7487 /* Be more helpful by rejecting programs that can't be validated early 7488 * with more meaningful and actionable error message. 7489 */ 7490 switch (prog->type) { 7491 case BPF_PROG_TYPE_UNSPEC: 7492 /* 7493 * The program type must be set. Most likely we couldn't find a proper 7494 * section definition at load time, and thus we didn't infer the type. 7495 */ 7496 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7497 prog->name, prog->sec_name); 7498 return -EINVAL; 7499 case BPF_PROG_TYPE_STRUCT_OPS: 7500 if (prog->attach_btf_id == 0) { 7501 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7502 prog->name); 7503 return -EINVAL; 7504 } 7505 break; 7506 default: 7507 break; 7508 } 7509 7510 if (!insns || !insns_cnt) 7511 return -EINVAL; 7512 7513 if (kernel_supports(obj, FEAT_PROG_NAME)) 7514 prog_name = prog->name; 7515 load_attr.attach_prog_fd = prog->attach_prog_fd; 7516 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7517 load_attr.attach_btf_id = prog->attach_btf_id; 7518 load_attr.kern_version = kern_version; 7519 load_attr.prog_ifindex = prog->prog_ifindex; 7520 load_attr.expected_attach_type = prog->expected_attach_type; 7521 7522 /* specify func_info/line_info only if kernel supports them */ 7523 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7524 load_attr.prog_btf_fd = btf__fd(obj->btf); 7525 load_attr.func_info = prog->func_info; 7526 load_attr.func_info_rec_size = prog->func_info_rec_size; 7527 load_attr.func_info_cnt = prog->func_info_cnt; 7528 load_attr.line_info = prog->line_info; 7529 load_attr.line_info_rec_size = prog->line_info_rec_size; 7530 load_attr.line_info_cnt = prog->line_info_cnt; 7531 } 7532 load_attr.log_level = log_level; 7533 load_attr.prog_flags = prog->prog_flags; 7534 load_attr.fd_array = obj->fd_array; 7535 7536 load_attr.token_fd = obj->token_fd; 7537 if (obj->token_fd) 7538 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7539 7540 /* adjust load_attr if sec_def provides custom preload callback */ 7541 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7542 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7543 if (err < 0) { 7544 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7545 prog->name, errstr(err)); 7546 return err; 7547 } 7548 insns = prog->insns; 7549 insns_cnt = prog->insns_cnt; 7550 } 7551 7552 if (obj->gen_loader) { 7553 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7554 license, insns, insns_cnt, &load_attr, 7555 prog - obj->programs); 7556 *prog_fd = -1; 7557 return 0; 7558 } 7559 7560 retry_load: 7561 /* if log_level is zero, we don't request logs initially even if 7562 * custom log_buf is specified; if the program load fails, then we'll 7563 * bump log_level to 1 and use either custom log_buf or we'll allocate 7564 * our own and retry the load to get details on what failed 7565 */ 7566 if (log_level) { 7567 if (prog->log_buf) { 7568 log_buf = prog->log_buf; 7569 log_buf_size = prog->log_size; 7570 own_log_buf = false; 7571 } else if (obj->log_buf) { 7572 log_buf = obj->log_buf; 7573 log_buf_size = obj->log_size; 7574 own_log_buf = false; 7575 } else { 7576 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7577 tmp = realloc(log_buf, log_buf_size); 7578 if (!tmp) { 7579 ret = -ENOMEM; 7580 goto out; 7581 } 7582 log_buf = tmp; 7583 log_buf[0] = '\0'; 7584 own_log_buf = true; 7585 } 7586 } 7587 7588 load_attr.log_buf = log_buf; 7589 load_attr.log_size = log_buf_size; 7590 load_attr.log_level = log_level; 7591 7592 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7593 if (ret >= 0) { 7594 if (log_level && own_log_buf) { 7595 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7596 prog->name, log_buf); 7597 } 7598 7599 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7600 struct bpf_map *map; 7601 int i; 7602 7603 for (i = 0; i < obj->nr_maps; i++) { 7604 map = &prog->obj->maps[i]; 7605 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7606 continue; 7607 7608 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7609 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7610 prog->name, map->real_name, errstr(errno)); 7611 /* Don't fail hard if can't bind rodata. */ 7612 } 7613 } 7614 } 7615 7616 *prog_fd = ret; 7617 ret = 0; 7618 goto out; 7619 } 7620 7621 if (log_level == 0) { 7622 log_level = 1; 7623 goto retry_load; 7624 } 7625 /* On ENOSPC, increase log buffer size and retry, unless custom 7626 * log_buf is specified. 7627 * Be careful to not overflow u32, though. Kernel's log buf size limit 7628 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7629 * multiply by 2 unless we are sure we'll fit within 32 bits. 7630 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7631 */ 7632 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7633 goto retry_load; 7634 7635 ret = -errno; 7636 7637 /* post-process verifier log to improve error descriptions */ 7638 fixup_verifier_log(prog, log_buf, log_buf_size); 7639 7640 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7641 pr_perm_msg(ret); 7642 7643 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7644 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7645 prog->name, log_buf); 7646 } 7647 7648 out: 7649 if (own_log_buf) 7650 free(log_buf); 7651 return ret; 7652 } 7653 7654 static char *find_prev_line(char *buf, char *cur) 7655 { 7656 char *p; 7657 7658 if (cur == buf) /* end of a log buf */ 7659 return NULL; 7660 7661 p = cur - 1; 7662 while (p - 1 >= buf && *(p - 1) != '\n') 7663 p--; 7664 7665 return p; 7666 } 7667 7668 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7669 char *orig, size_t orig_sz, const char *patch) 7670 { 7671 /* size of the remaining log content to the right from the to-be-replaced part */ 7672 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7673 size_t patch_sz = strlen(patch); 7674 7675 if (patch_sz != orig_sz) { 7676 /* If patch line(s) are longer than original piece of verifier log, 7677 * shift log contents by (patch_sz - orig_sz) bytes to the right 7678 * starting from after to-be-replaced part of the log. 7679 * 7680 * If patch line(s) are shorter than original piece of verifier log, 7681 * shift log contents by (orig_sz - patch_sz) bytes to the left 7682 * starting from after to-be-replaced part of the log 7683 * 7684 * We need to be careful about not overflowing available 7685 * buf_sz capacity. If that's the case, we'll truncate the end 7686 * of the original log, as necessary. 7687 */ 7688 if (patch_sz > orig_sz) { 7689 if (orig + patch_sz >= buf + buf_sz) { 7690 /* patch is big enough to cover remaining space completely */ 7691 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7692 rem_sz = 0; 7693 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7694 /* patch causes part of remaining log to be truncated */ 7695 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7696 } 7697 } 7698 /* shift remaining log to the right by calculated amount */ 7699 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7700 } 7701 7702 memcpy(orig, patch, patch_sz); 7703 } 7704 7705 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7706 char *buf, size_t buf_sz, size_t log_sz, 7707 char *line1, char *line2, char *line3) 7708 { 7709 /* Expected log for failed and not properly guarded CO-RE relocation: 7710 * line1 -> 123: (85) call unknown#195896080 7711 * line2 -> invalid func unknown#195896080 7712 * line3 -> <anything else or end of buffer> 7713 * 7714 * "123" is the index of the instruction that was poisoned. We extract 7715 * instruction index to find corresponding CO-RE relocation and 7716 * replace this part of the log with more relevant information about 7717 * failed CO-RE relocation. 7718 */ 7719 const struct bpf_core_relo *relo; 7720 struct bpf_core_spec spec; 7721 char patch[512], spec_buf[256]; 7722 int insn_idx, err, spec_len; 7723 7724 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7725 return; 7726 7727 relo = find_relo_core(prog, insn_idx); 7728 if (!relo) 7729 return; 7730 7731 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7732 if (err) 7733 return; 7734 7735 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7736 snprintf(patch, sizeof(patch), 7737 "%d: <invalid CO-RE relocation>\n" 7738 "failed to resolve CO-RE relocation %s%s\n", 7739 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7740 7741 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7742 } 7743 7744 static void fixup_log_missing_map_load(struct bpf_program *prog, 7745 char *buf, size_t buf_sz, size_t log_sz, 7746 char *line1, char *line2, char *line3) 7747 { 7748 /* Expected log for failed and not properly guarded map reference: 7749 * line1 -> 123: (85) call unknown#2001000345 7750 * line2 -> invalid func unknown#2001000345 7751 * line3 -> <anything else or end of buffer> 7752 * 7753 * "123" is the index of the instruction that was poisoned. 7754 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7755 */ 7756 struct bpf_object *obj = prog->obj; 7757 const struct bpf_map *map; 7758 int insn_idx, map_idx; 7759 char patch[128]; 7760 7761 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7762 return; 7763 7764 map_idx -= POISON_LDIMM64_MAP_BASE; 7765 if (map_idx < 0 || map_idx >= obj->nr_maps) 7766 return; 7767 map = &obj->maps[map_idx]; 7768 7769 snprintf(patch, sizeof(patch), 7770 "%d: <invalid BPF map reference>\n" 7771 "BPF map '%s' is referenced but wasn't created\n", 7772 insn_idx, map->name); 7773 7774 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7775 } 7776 7777 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7778 char *buf, size_t buf_sz, size_t log_sz, 7779 char *line1, char *line2, char *line3) 7780 { 7781 /* Expected log for failed and not properly guarded kfunc call: 7782 * line1 -> 123: (85) call unknown#2002000345 7783 * line2 -> invalid func unknown#2002000345 7784 * line3 -> <anything else or end of buffer> 7785 * 7786 * "123" is the index of the instruction that was poisoned. 7787 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7788 */ 7789 struct bpf_object *obj = prog->obj; 7790 const struct extern_desc *ext; 7791 int insn_idx, ext_idx; 7792 char patch[128]; 7793 7794 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7795 return; 7796 7797 ext_idx -= POISON_CALL_KFUNC_BASE; 7798 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7799 return; 7800 ext = &obj->externs[ext_idx]; 7801 7802 snprintf(patch, sizeof(patch), 7803 "%d: <invalid kfunc call>\n" 7804 "kfunc '%s' is referenced but wasn't resolved\n", 7805 insn_idx, ext->name); 7806 7807 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7808 } 7809 7810 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7811 { 7812 /* look for familiar error patterns in last N lines of the log */ 7813 const size_t max_last_line_cnt = 10; 7814 char *prev_line, *cur_line, *next_line; 7815 size_t log_sz; 7816 int i; 7817 7818 if (!buf) 7819 return; 7820 7821 log_sz = strlen(buf) + 1; 7822 next_line = buf + log_sz - 1; 7823 7824 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7825 cur_line = find_prev_line(buf, next_line); 7826 if (!cur_line) 7827 return; 7828 7829 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7830 prev_line = find_prev_line(buf, cur_line); 7831 if (!prev_line) 7832 continue; 7833 7834 /* failed CO-RE relocation case */ 7835 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7836 prev_line, cur_line, next_line); 7837 return; 7838 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7839 prev_line = find_prev_line(buf, cur_line); 7840 if (!prev_line) 7841 continue; 7842 7843 /* reference to uncreated BPF map */ 7844 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7845 prev_line, cur_line, next_line); 7846 return; 7847 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7848 prev_line = find_prev_line(buf, cur_line); 7849 if (!prev_line) 7850 continue; 7851 7852 /* reference to unresolved kfunc */ 7853 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7854 prev_line, cur_line, next_line); 7855 return; 7856 } 7857 } 7858 } 7859 7860 static int bpf_program_record_relos(struct bpf_program *prog) 7861 { 7862 struct bpf_object *obj = prog->obj; 7863 int i; 7864 7865 for (i = 0; i < prog->nr_reloc; i++) { 7866 struct reloc_desc *relo = &prog->reloc_desc[i]; 7867 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7868 int kind; 7869 7870 switch (relo->type) { 7871 case RELO_EXTERN_LD64: 7872 if (ext->type != EXT_KSYM) 7873 continue; 7874 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7875 BTF_KIND_VAR : BTF_KIND_FUNC; 7876 bpf_gen__record_extern(obj->gen_loader, ext->name, 7877 ext->is_weak, !ext->ksym.type_id, 7878 true, kind, relo->insn_idx); 7879 break; 7880 case RELO_EXTERN_CALL: 7881 bpf_gen__record_extern(obj->gen_loader, ext->name, 7882 ext->is_weak, false, false, BTF_KIND_FUNC, 7883 relo->insn_idx); 7884 break; 7885 case RELO_CORE: { 7886 struct bpf_core_relo cr = { 7887 .insn_off = relo->insn_idx * 8, 7888 .type_id = relo->core_relo->type_id, 7889 .access_str_off = relo->core_relo->access_str_off, 7890 .kind = relo->core_relo->kind, 7891 }; 7892 7893 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7894 break; 7895 } 7896 default: 7897 continue; 7898 } 7899 } 7900 return 0; 7901 } 7902 7903 static int 7904 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7905 { 7906 struct bpf_program *prog; 7907 size_t i; 7908 int err; 7909 7910 for (i = 0; i < obj->nr_programs; i++) { 7911 prog = &obj->programs[i]; 7912 if (prog_is_subprog(obj, prog)) 7913 continue; 7914 if (!prog->autoload) { 7915 pr_debug("prog '%s': skipped loading\n", prog->name); 7916 continue; 7917 } 7918 prog->log_level |= log_level; 7919 7920 if (obj->gen_loader) 7921 bpf_program_record_relos(prog); 7922 7923 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7924 obj->license, obj->kern_version, &prog->fd); 7925 if (err) { 7926 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7927 return err; 7928 } 7929 } 7930 7931 bpf_object__free_relocs(obj); 7932 return 0; 7933 } 7934 7935 static int bpf_object_prepare_progs(struct bpf_object *obj) 7936 { 7937 struct bpf_program *prog; 7938 size_t i; 7939 int err; 7940 7941 for (i = 0; i < obj->nr_programs; i++) { 7942 prog = &obj->programs[i]; 7943 err = bpf_object__sanitize_prog(obj, prog); 7944 if (err) 7945 return err; 7946 } 7947 return 0; 7948 } 7949 7950 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7951 7952 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7953 { 7954 struct bpf_program *prog; 7955 int err; 7956 7957 bpf_object__for_each_program(prog, obj) { 7958 prog->sec_def = find_sec_def(prog->sec_name); 7959 if (!prog->sec_def) { 7960 /* couldn't guess, but user might manually specify */ 7961 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7962 prog->name, prog->sec_name); 7963 continue; 7964 } 7965 7966 prog->type = prog->sec_def->prog_type; 7967 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7968 7969 /* sec_def can have custom callback which should be called 7970 * after bpf_program is initialized to adjust its properties 7971 */ 7972 if (prog->sec_def->prog_setup_fn) { 7973 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7974 if (err < 0) { 7975 pr_warn("prog '%s': failed to initialize: %s\n", 7976 prog->name, errstr(err)); 7977 return err; 7978 } 7979 } 7980 } 7981 7982 return 0; 7983 } 7984 7985 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7986 const char *obj_name, 7987 const struct bpf_object_open_opts *opts) 7988 { 7989 const char *kconfig, *btf_tmp_path, *token_path; 7990 struct bpf_object *obj; 7991 int err; 7992 char *log_buf; 7993 size_t log_size; 7994 __u32 log_level; 7995 7996 if (obj_buf && !obj_name) 7997 return ERR_PTR(-EINVAL); 7998 7999 if (elf_version(EV_CURRENT) == EV_NONE) { 8000 pr_warn("failed to init libelf for %s\n", 8001 path ? : "(mem buf)"); 8002 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 8003 } 8004 8005 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8006 return ERR_PTR(-EINVAL); 8007 8008 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8009 if (obj_buf) { 8010 path = obj_name; 8011 pr_debug("loading object '%s' from buffer\n", obj_name); 8012 } else { 8013 pr_debug("loading object from %s\n", path); 8014 } 8015 8016 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8017 log_size = OPTS_GET(opts, kernel_log_size, 0); 8018 log_level = OPTS_GET(opts, kernel_log_level, 0); 8019 if (log_size > UINT_MAX) 8020 return ERR_PTR(-EINVAL); 8021 if (log_size && !log_buf) 8022 return ERR_PTR(-EINVAL); 8023 8024 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8025 /* if user didn't specify bpf_token_path explicitly, check if 8026 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8027 * option 8028 */ 8029 if (!token_path) 8030 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8031 if (token_path && strlen(token_path) >= PATH_MAX) 8032 return ERR_PTR(-ENAMETOOLONG); 8033 8034 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8035 if (IS_ERR(obj)) 8036 return obj; 8037 8038 obj->log_buf = log_buf; 8039 obj->log_size = log_size; 8040 obj->log_level = log_level; 8041 8042 if (token_path) { 8043 obj->token_path = strdup(token_path); 8044 if (!obj->token_path) { 8045 err = -ENOMEM; 8046 goto out; 8047 } 8048 } 8049 8050 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8051 if (btf_tmp_path) { 8052 if (strlen(btf_tmp_path) >= PATH_MAX) { 8053 err = -ENAMETOOLONG; 8054 goto out; 8055 } 8056 obj->btf_custom_path = strdup(btf_tmp_path); 8057 if (!obj->btf_custom_path) { 8058 err = -ENOMEM; 8059 goto out; 8060 } 8061 } 8062 8063 kconfig = OPTS_GET(opts, kconfig, NULL); 8064 if (kconfig) { 8065 obj->kconfig = strdup(kconfig); 8066 if (!obj->kconfig) { 8067 err = -ENOMEM; 8068 goto out; 8069 } 8070 } 8071 8072 err = bpf_object__elf_init(obj); 8073 err = err ? : bpf_object__elf_collect(obj); 8074 err = err ? : bpf_object__collect_externs(obj); 8075 err = err ? : bpf_object_fixup_btf(obj); 8076 err = err ? : bpf_object__init_maps(obj, opts); 8077 err = err ? : bpf_object_init_progs(obj, opts); 8078 err = err ? : bpf_object__collect_relos(obj); 8079 if (err) 8080 goto out; 8081 8082 bpf_object__elf_finish(obj); 8083 8084 return obj; 8085 out: 8086 bpf_object__close(obj); 8087 return ERR_PTR(err); 8088 } 8089 8090 struct bpf_object * 8091 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8092 { 8093 if (!path) 8094 return libbpf_err_ptr(-EINVAL); 8095 8096 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8097 } 8098 8099 struct bpf_object *bpf_object__open(const char *path) 8100 { 8101 return bpf_object__open_file(path, NULL); 8102 } 8103 8104 struct bpf_object * 8105 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8106 const struct bpf_object_open_opts *opts) 8107 { 8108 char tmp_name[64]; 8109 8110 if (!obj_buf || obj_buf_sz == 0) 8111 return libbpf_err_ptr(-EINVAL); 8112 8113 /* create a (quite useless) default "name" for this memory buffer object */ 8114 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8115 8116 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8117 } 8118 8119 static int bpf_object_unload(struct bpf_object *obj) 8120 { 8121 size_t i; 8122 8123 if (!obj) 8124 return libbpf_err(-EINVAL); 8125 8126 for (i = 0; i < obj->nr_maps; i++) { 8127 zclose(obj->maps[i].fd); 8128 if (obj->maps[i].st_ops) 8129 zfree(&obj->maps[i].st_ops->kern_vdata); 8130 } 8131 8132 for (i = 0; i < obj->nr_programs; i++) 8133 bpf_program__unload(&obj->programs[i]); 8134 8135 return 0; 8136 } 8137 8138 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8139 { 8140 struct bpf_map *m; 8141 8142 bpf_object__for_each_map(m, obj) { 8143 if (!bpf_map__is_internal(m)) 8144 continue; 8145 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8146 m->def.map_flags &= ~BPF_F_MMAPABLE; 8147 } 8148 8149 return 0; 8150 } 8151 8152 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8153 const char *sym_name, void *ctx); 8154 8155 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8156 { 8157 char sym_type, sym_name[500]; 8158 unsigned long long sym_addr; 8159 int ret, err = 0; 8160 FILE *f; 8161 8162 f = fopen("/proc/kallsyms", "re"); 8163 if (!f) { 8164 err = -errno; 8165 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8166 return err; 8167 } 8168 8169 while (true) { 8170 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8171 &sym_addr, &sym_type, sym_name); 8172 if (ret == EOF && feof(f)) 8173 break; 8174 if (ret != 3) { 8175 pr_warn("failed to read kallsyms entry: %d\n", ret); 8176 err = -EINVAL; 8177 break; 8178 } 8179 8180 err = cb(sym_addr, sym_type, sym_name, ctx); 8181 if (err) 8182 break; 8183 } 8184 8185 fclose(f); 8186 return err; 8187 } 8188 8189 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8190 const char *sym_name, void *ctx) 8191 { 8192 struct bpf_object *obj = ctx; 8193 const struct btf_type *t; 8194 struct extern_desc *ext; 8195 char *res; 8196 8197 res = strstr(sym_name, ".llvm."); 8198 if (sym_type == 'd' && res) 8199 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8200 else 8201 ext = find_extern_by_name(obj, sym_name); 8202 if (!ext || ext->type != EXT_KSYM) 8203 return 0; 8204 8205 t = btf__type_by_id(obj->btf, ext->btf_id); 8206 if (!btf_is_var(t)) 8207 return 0; 8208 8209 if (ext->is_set && ext->ksym.addr != sym_addr) { 8210 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8211 sym_name, ext->ksym.addr, sym_addr); 8212 return -EINVAL; 8213 } 8214 if (!ext->is_set) { 8215 ext->is_set = true; 8216 ext->ksym.addr = sym_addr; 8217 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8218 } 8219 return 0; 8220 } 8221 8222 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8223 { 8224 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8225 } 8226 8227 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8228 __u16 kind, struct btf **res_btf, 8229 struct module_btf **res_mod_btf) 8230 { 8231 struct module_btf *mod_btf; 8232 struct btf *btf; 8233 int i, id, err; 8234 8235 btf = obj->btf_vmlinux; 8236 mod_btf = NULL; 8237 id = btf__find_by_name_kind(btf, ksym_name, kind); 8238 8239 if (id == -ENOENT) { 8240 err = load_module_btfs(obj); 8241 if (err) 8242 return err; 8243 8244 for (i = 0; i < obj->btf_module_cnt; i++) { 8245 /* we assume module_btf's BTF FD is always >0 */ 8246 mod_btf = &obj->btf_modules[i]; 8247 btf = mod_btf->btf; 8248 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8249 if (id != -ENOENT) 8250 break; 8251 } 8252 } 8253 if (id <= 0) 8254 return -ESRCH; 8255 8256 *res_btf = btf; 8257 *res_mod_btf = mod_btf; 8258 return id; 8259 } 8260 8261 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8262 struct extern_desc *ext) 8263 { 8264 const struct btf_type *targ_var, *targ_type; 8265 __u32 targ_type_id, local_type_id; 8266 struct module_btf *mod_btf = NULL; 8267 const char *targ_var_name; 8268 struct btf *btf = NULL; 8269 int id, err; 8270 8271 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8272 if (id < 0) { 8273 if (id == -ESRCH && ext->is_weak) 8274 return 0; 8275 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8276 ext->name); 8277 return id; 8278 } 8279 8280 /* find local type_id */ 8281 local_type_id = ext->ksym.type_id; 8282 8283 /* find target type_id */ 8284 targ_var = btf__type_by_id(btf, id); 8285 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8286 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8287 8288 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8289 btf, targ_type_id); 8290 if (err <= 0) { 8291 const struct btf_type *local_type; 8292 const char *targ_name, *local_name; 8293 8294 local_type = btf__type_by_id(obj->btf, local_type_id); 8295 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8296 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8297 8298 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8299 ext->name, local_type_id, 8300 btf_kind_str(local_type), local_name, targ_type_id, 8301 btf_kind_str(targ_type), targ_name); 8302 return -EINVAL; 8303 } 8304 8305 ext->is_set = true; 8306 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8307 ext->ksym.kernel_btf_id = id; 8308 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8309 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8310 8311 return 0; 8312 } 8313 8314 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8315 struct extern_desc *ext) 8316 { 8317 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8318 struct module_btf *mod_btf = NULL; 8319 const struct btf_type *kern_func; 8320 struct btf *kern_btf = NULL; 8321 int ret; 8322 8323 local_func_proto_id = ext->ksym.type_id; 8324 8325 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8326 &mod_btf); 8327 if (kfunc_id < 0) { 8328 if (kfunc_id == -ESRCH && ext->is_weak) 8329 return 0; 8330 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8331 ext->name); 8332 return kfunc_id; 8333 } 8334 8335 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8336 kfunc_proto_id = kern_func->type; 8337 8338 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8339 kern_btf, kfunc_proto_id); 8340 if (ret <= 0) { 8341 if (ext->is_weak) 8342 return 0; 8343 8344 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8345 ext->name, local_func_proto_id, 8346 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8347 return -EINVAL; 8348 } 8349 8350 /* set index for module BTF fd in fd_array, if unset */ 8351 if (mod_btf && !mod_btf->fd_array_idx) { 8352 /* insn->off is s16 */ 8353 if (obj->fd_array_cnt == INT16_MAX) { 8354 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8355 ext->name, mod_btf->fd_array_idx); 8356 return -E2BIG; 8357 } 8358 /* Cannot use index 0 for module BTF fd */ 8359 if (!obj->fd_array_cnt) 8360 obj->fd_array_cnt = 1; 8361 8362 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8363 obj->fd_array_cnt + 1); 8364 if (ret) 8365 return ret; 8366 mod_btf->fd_array_idx = obj->fd_array_cnt; 8367 /* we assume module BTF FD is always >0 */ 8368 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8369 } 8370 8371 ext->is_set = true; 8372 ext->ksym.kernel_btf_id = kfunc_id; 8373 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8374 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8375 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8376 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8377 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8378 */ 8379 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8380 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8381 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8382 8383 return 0; 8384 } 8385 8386 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8387 { 8388 const struct btf_type *t; 8389 struct extern_desc *ext; 8390 int i, err; 8391 8392 for (i = 0; i < obj->nr_extern; i++) { 8393 ext = &obj->externs[i]; 8394 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8395 continue; 8396 8397 if (obj->gen_loader) { 8398 ext->is_set = true; 8399 ext->ksym.kernel_btf_obj_fd = 0; 8400 ext->ksym.kernel_btf_id = 0; 8401 continue; 8402 } 8403 t = btf__type_by_id(obj->btf, ext->btf_id); 8404 if (btf_is_var(t)) 8405 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8406 else 8407 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8408 if (err) 8409 return err; 8410 } 8411 return 0; 8412 } 8413 8414 static int bpf_object__resolve_externs(struct bpf_object *obj, 8415 const char *extra_kconfig) 8416 { 8417 bool need_config = false, need_kallsyms = false; 8418 bool need_vmlinux_btf = false; 8419 struct extern_desc *ext; 8420 void *kcfg_data = NULL; 8421 int err, i; 8422 8423 if (obj->nr_extern == 0) 8424 return 0; 8425 8426 if (obj->kconfig_map_idx >= 0) 8427 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8428 8429 for (i = 0; i < obj->nr_extern; i++) { 8430 ext = &obj->externs[i]; 8431 8432 if (ext->type == EXT_KSYM) { 8433 if (ext->ksym.type_id) 8434 need_vmlinux_btf = true; 8435 else 8436 need_kallsyms = true; 8437 continue; 8438 } else if (ext->type == EXT_KCFG) { 8439 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8440 __u64 value = 0; 8441 8442 /* Kconfig externs need actual /proc/config.gz */ 8443 if (str_has_pfx(ext->name, "CONFIG_")) { 8444 need_config = true; 8445 continue; 8446 } 8447 8448 /* Virtual kcfg externs are customly handled by libbpf */ 8449 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8450 value = get_kernel_version(); 8451 if (!value) { 8452 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8453 return -EINVAL; 8454 } 8455 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8456 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8457 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8458 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8459 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8460 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8461 * __kconfig externs, where LINUX_ ones are virtual and filled out 8462 * customly by libbpf (their values don't come from Kconfig). 8463 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8464 * __weak, it defaults to zero value, just like for CONFIG_xxx 8465 * externs. 8466 */ 8467 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8468 return -EINVAL; 8469 } 8470 8471 err = set_kcfg_value_num(ext, ext_ptr, value); 8472 if (err) 8473 return err; 8474 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8475 ext->name, (long long)value); 8476 } else { 8477 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8478 return -EINVAL; 8479 } 8480 } 8481 if (need_config && extra_kconfig) { 8482 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8483 if (err) 8484 return -EINVAL; 8485 need_config = false; 8486 for (i = 0; i < obj->nr_extern; i++) { 8487 ext = &obj->externs[i]; 8488 if (ext->type == EXT_KCFG && !ext->is_set) { 8489 need_config = true; 8490 break; 8491 } 8492 } 8493 } 8494 if (need_config) { 8495 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8496 if (err) 8497 return -EINVAL; 8498 } 8499 if (need_kallsyms) { 8500 err = bpf_object__read_kallsyms_file(obj); 8501 if (err) 8502 return -EINVAL; 8503 } 8504 if (need_vmlinux_btf) { 8505 err = bpf_object__resolve_ksyms_btf_id(obj); 8506 if (err) 8507 return -EINVAL; 8508 } 8509 for (i = 0; i < obj->nr_extern; i++) { 8510 ext = &obj->externs[i]; 8511 8512 if (!ext->is_set && !ext->is_weak) { 8513 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8514 return -ESRCH; 8515 } else if (!ext->is_set) { 8516 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8517 ext->name); 8518 } 8519 } 8520 8521 return 0; 8522 } 8523 8524 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8525 { 8526 const struct btf_type *type; 8527 struct bpf_struct_ops *st_ops; 8528 __u32 i; 8529 8530 st_ops = map->st_ops; 8531 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8532 for (i = 0; i < btf_vlen(type); i++) { 8533 struct bpf_program *prog = st_ops->progs[i]; 8534 void *kern_data; 8535 int prog_fd; 8536 8537 if (!prog) 8538 continue; 8539 8540 prog_fd = bpf_program__fd(prog); 8541 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8542 *(unsigned long *)kern_data = prog_fd; 8543 } 8544 } 8545 8546 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8547 { 8548 struct bpf_map *map; 8549 int i; 8550 8551 for (i = 0; i < obj->nr_maps; i++) { 8552 map = &obj->maps[i]; 8553 8554 if (!bpf_map__is_struct_ops(map)) 8555 continue; 8556 8557 if (!map->autocreate) 8558 continue; 8559 8560 bpf_map_prepare_vdata(map); 8561 } 8562 8563 return 0; 8564 } 8565 8566 static void bpf_object_unpin(struct bpf_object *obj) 8567 { 8568 int i; 8569 8570 /* unpin any maps that were auto-pinned during load */ 8571 for (i = 0; i < obj->nr_maps; i++) 8572 if (obj->maps[i].pinned && !obj->maps[i].reused) 8573 bpf_map__unpin(&obj->maps[i], NULL); 8574 } 8575 8576 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8577 { 8578 int i; 8579 8580 /* clean up fd_array */ 8581 zfree(&obj->fd_array); 8582 8583 /* clean up module BTFs */ 8584 for (i = 0; i < obj->btf_module_cnt; i++) { 8585 close(obj->btf_modules[i].fd); 8586 btf__free(obj->btf_modules[i].btf); 8587 free(obj->btf_modules[i].name); 8588 } 8589 obj->btf_module_cnt = 0; 8590 zfree(&obj->btf_modules); 8591 8592 /* clean up vmlinux BTF */ 8593 btf__free(obj->btf_vmlinux); 8594 obj->btf_vmlinux = NULL; 8595 } 8596 8597 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8598 { 8599 int err; 8600 8601 if (obj->state >= OBJ_PREPARED) { 8602 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8603 return -EINVAL; 8604 } 8605 8606 err = bpf_object_prepare_token(obj); 8607 err = err ? : bpf_object__probe_loading(obj); 8608 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8609 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8610 err = err ? : bpf_object__sanitize_maps(obj); 8611 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8612 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8613 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8614 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8615 err = err ? : bpf_object__create_maps(obj); 8616 err = err ? : bpf_object_prepare_progs(obj); 8617 8618 if (err) { 8619 bpf_object_unpin(obj); 8620 bpf_object_unload(obj); 8621 obj->state = OBJ_LOADED; 8622 return err; 8623 } 8624 8625 obj->state = OBJ_PREPARED; 8626 return 0; 8627 } 8628 8629 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8630 { 8631 int err; 8632 8633 if (!obj) 8634 return libbpf_err(-EINVAL); 8635 8636 if (obj->state >= OBJ_LOADED) { 8637 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8638 return libbpf_err(-EINVAL); 8639 } 8640 8641 /* Disallow kernel loading programs of non-native endianness but 8642 * permit cross-endian creation of "light skeleton". 8643 */ 8644 if (obj->gen_loader) { 8645 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8646 } else if (!is_native_endianness(obj)) { 8647 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8648 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8649 } 8650 8651 if (obj->state < OBJ_PREPARED) { 8652 err = bpf_object_prepare(obj, target_btf_path); 8653 if (err) 8654 return libbpf_err(err); 8655 } 8656 err = bpf_object__load_progs(obj, extra_log_level); 8657 err = err ? : bpf_object_init_prog_arrays(obj); 8658 err = err ? : bpf_object_prepare_struct_ops(obj); 8659 8660 if (obj->gen_loader) { 8661 /* reset FDs */ 8662 if (obj->btf) 8663 btf__set_fd(obj->btf, -1); 8664 if (!err) 8665 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8666 } 8667 8668 bpf_object_post_load_cleanup(obj); 8669 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8670 8671 if (err) { 8672 bpf_object_unpin(obj); 8673 bpf_object_unload(obj); 8674 pr_warn("failed to load object '%s'\n", obj->path); 8675 return libbpf_err(err); 8676 } 8677 8678 return 0; 8679 } 8680 8681 int bpf_object__prepare(struct bpf_object *obj) 8682 { 8683 return libbpf_err(bpf_object_prepare(obj, NULL)); 8684 } 8685 8686 int bpf_object__load(struct bpf_object *obj) 8687 { 8688 return bpf_object_load(obj, 0, NULL); 8689 } 8690 8691 static int make_parent_dir(const char *path) 8692 { 8693 char *dname, *dir; 8694 int err = 0; 8695 8696 dname = strdup(path); 8697 if (dname == NULL) 8698 return -ENOMEM; 8699 8700 dir = dirname(dname); 8701 if (mkdir(dir, 0700) && errno != EEXIST) 8702 err = -errno; 8703 8704 free(dname); 8705 if (err) { 8706 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8707 } 8708 return err; 8709 } 8710 8711 static int check_path(const char *path) 8712 { 8713 struct statfs st_fs; 8714 char *dname, *dir; 8715 int err = 0; 8716 8717 if (path == NULL) 8718 return -EINVAL; 8719 8720 dname = strdup(path); 8721 if (dname == NULL) 8722 return -ENOMEM; 8723 8724 dir = dirname(dname); 8725 if (statfs(dir, &st_fs)) { 8726 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8727 err = -errno; 8728 } 8729 free(dname); 8730 8731 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8732 pr_warn("specified path %s is not on BPF FS\n", path); 8733 err = -EINVAL; 8734 } 8735 8736 return err; 8737 } 8738 8739 int bpf_program__pin(struct bpf_program *prog, const char *path) 8740 { 8741 int err; 8742 8743 if (prog->fd < 0) { 8744 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8745 return libbpf_err(-EINVAL); 8746 } 8747 8748 err = make_parent_dir(path); 8749 if (err) 8750 return libbpf_err(err); 8751 8752 err = check_path(path); 8753 if (err) 8754 return libbpf_err(err); 8755 8756 if (bpf_obj_pin(prog->fd, path)) { 8757 err = -errno; 8758 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8759 return libbpf_err(err); 8760 } 8761 8762 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8763 return 0; 8764 } 8765 8766 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8767 { 8768 int err; 8769 8770 if (prog->fd < 0) { 8771 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8772 return libbpf_err(-EINVAL); 8773 } 8774 8775 err = check_path(path); 8776 if (err) 8777 return libbpf_err(err); 8778 8779 err = unlink(path); 8780 if (err) 8781 return libbpf_err(-errno); 8782 8783 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8784 return 0; 8785 } 8786 8787 int bpf_map__pin(struct bpf_map *map, const char *path) 8788 { 8789 int err; 8790 8791 if (map == NULL) { 8792 pr_warn("invalid map pointer\n"); 8793 return libbpf_err(-EINVAL); 8794 } 8795 8796 if (map->fd < 0) { 8797 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8798 return libbpf_err(-EINVAL); 8799 } 8800 8801 if (map->pin_path) { 8802 if (path && strcmp(path, map->pin_path)) { 8803 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8804 bpf_map__name(map), map->pin_path, path); 8805 return libbpf_err(-EINVAL); 8806 } else if (map->pinned) { 8807 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8808 bpf_map__name(map), map->pin_path); 8809 return 0; 8810 } 8811 } else { 8812 if (!path) { 8813 pr_warn("missing a path to pin map '%s' at\n", 8814 bpf_map__name(map)); 8815 return libbpf_err(-EINVAL); 8816 } else if (map->pinned) { 8817 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8818 return libbpf_err(-EEXIST); 8819 } 8820 8821 map->pin_path = strdup(path); 8822 if (!map->pin_path) { 8823 err = -errno; 8824 goto out_err; 8825 } 8826 } 8827 8828 err = make_parent_dir(map->pin_path); 8829 if (err) 8830 return libbpf_err(err); 8831 8832 err = check_path(map->pin_path); 8833 if (err) 8834 return libbpf_err(err); 8835 8836 if (bpf_obj_pin(map->fd, map->pin_path)) { 8837 err = -errno; 8838 goto out_err; 8839 } 8840 8841 map->pinned = true; 8842 pr_debug("pinned map '%s'\n", map->pin_path); 8843 8844 return 0; 8845 8846 out_err: 8847 pr_warn("failed to pin map: %s\n", errstr(err)); 8848 return libbpf_err(err); 8849 } 8850 8851 int bpf_map__unpin(struct bpf_map *map, const char *path) 8852 { 8853 int err; 8854 8855 if (map == NULL) { 8856 pr_warn("invalid map pointer\n"); 8857 return libbpf_err(-EINVAL); 8858 } 8859 8860 if (map->pin_path) { 8861 if (path && strcmp(path, map->pin_path)) { 8862 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8863 bpf_map__name(map), map->pin_path, path); 8864 return libbpf_err(-EINVAL); 8865 } 8866 path = map->pin_path; 8867 } else if (!path) { 8868 pr_warn("no path to unpin map '%s' from\n", 8869 bpf_map__name(map)); 8870 return libbpf_err(-EINVAL); 8871 } 8872 8873 err = check_path(path); 8874 if (err) 8875 return libbpf_err(err); 8876 8877 err = unlink(path); 8878 if (err != 0) 8879 return libbpf_err(-errno); 8880 8881 map->pinned = false; 8882 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8883 8884 return 0; 8885 } 8886 8887 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8888 { 8889 char *new = NULL; 8890 8891 if (path) { 8892 new = strdup(path); 8893 if (!new) 8894 return libbpf_err(-errno); 8895 } 8896 8897 free(map->pin_path); 8898 map->pin_path = new; 8899 return 0; 8900 } 8901 8902 __alias(bpf_map__pin_path) 8903 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8904 8905 const char *bpf_map__pin_path(const struct bpf_map *map) 8906 { 8907 return map->pin_path; 8908 } 8909 8910 bool bpf_map__is_pinned(const struct bpf_map *map) 8911 { 8912 return map->pinned; 8913 } 8914 8915 static void sanitize_pin_path(char *s) 8916 { 8917 /* bpffs disallows periods in path names */ 8918 while (*s) { 8919 if (*s == '.') 8920 *s = '_'; 8921 s++; 8922 } 8923 } 8924 8925 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8926 { 8927 struct bpf_map *map; 8928 int err; 8929 8930 if (!obj) 8931 return libbpf_err(-ENOENT); 8932 8933 if (obj->state < OBJ_PREPARED) { 8934 pr_warn("object not yet loaded; load it first\n"); 8935 return libbpf_err(-ENOENT); 8936 } 8937 8938 bpf_object__for_each_map(map, obj) { 8939 char *pin_path = NULL; 8940 char buf[PATH_MAX]; 8941 8942 if (!map->autocreate) 8943 continue; 8944 8945 if (path) { 8946 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8947 if (err) 8948 goto err_unpin_maps; 8949 sanitize_pin_path(buf); 8950 pin_path = buf; 8951 } else if (!map->pin_path) { 8952 continue; 8953 } 8954 8955 err = bpf_map__pin(map, pin_path); 8956 if (err) 8957 goto err_unpin_maps; 8958 } 8959 8960 return 0; 8961 8962 err_unpin_maps: 8963 while ((map = bpf_object__prev_map(obj, map))) { 8964 if (!map->pin_path) 8965 continue; 8966 8967 bpf_map__unpin(map, NULL); 8968 } 8969 8970 return libbpf_err(err); 8971 } 8972 8973 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8974 { 8975 struct bpf_map *map; 8976 int err; 8977 8978 if (!obj) 8979 return libbpf_err(-ENOENT); 8980 8981 bpf_object__for_each_map(map, obj) { 8982 char *pin_path = NULL; 8983 char buf[PATH_MAX]; 8984 8985 if (path) { 8986 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8987 if (err) 8988 return libbpf_err(err); 8989 sanitize_pin_path(buf); 8990 pin_path = buf; 8991 } else if (!map->pin_path) { 8992 continue; 8993 } 8994 8995 err = bpf_map__unpin(map, pin_path); 8996 if (err) 8997 return libbpf_err(err); 8998 } 8999 9000 return 0; 9001 } 9002 9003 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 9004 { 9005 struct bpf_program *prog; 9006 char buf[PATH_MAX]; 9007 int err; 9008 9009 if (!obj) 9010 return libbpf_err(-ENOENT); 9011 9012 if (obj->state < OBJ_LOADED) { 9013 pr_warn("object not yet loaded; load it first\n"); 9014 return libbpf_err(-ENOENT); 9015 } 9016 9017 bpf_object__for_each_program(prog, obj) { 9018 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9019 if (err) 9020 goto err_unpin_programs; 9021 9022 err = bpf_program__pin(prog, buf); 9023 if (err) 9024 goto err_unpin_programs; 9025 } 9026 9027 return 0; 9028 9029 err_unpin_programs: 9030 while ((prog = bpf_object__prev_program(obj, prog))) { 9031 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9032 continue; 9033 9034 bpf_program__unpin(prog, buf); 9035 } 9036 9037 return libbpf_err(err); 9038 } 9039 9040 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9041 { 9042 struct bpf_program *prog; 9043 int err; 9044 9045 if (!obj) 9046 return libbpf_err(-ENOENT); 9047 9048 bpf_object__for_each_program(prog, obj) { 9049 char buf[PATH_MAX]; 9050 9051 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9052 if (err) 9053 return libbpf_err(err); 9054 9055 err = bpf_program__unpin(prog, buf); 9056 if (err) 9057 return libbpf_err(err); 9058 } 9059 9060 return 0; 9061 } 9062 9063 int bpf_object__pin(struct bpf_object *obj, const char *path) 9064 { 9065 int err; 9066 9067 err = bpf_object__pin_maps(obj, path); 9068 if (err) 9069 return libbpf_err(err); 9070 9071 err = bpf_object__pin_programs(obj, path); 9072 if (err) { 9073 bpf_object__unpin_maps(obj, path); 9074 return libbpf_err(err); 9075 } 9076 9077 return 0; 9078 } 9079 9080 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9081 { 9082 int err; 9083 9084 err = bpf_object__unpin_programs(obj, path); 9085 if (err) 9086 return libbpf_err(err); 9087 9088 err = bpf_object__unpin_maps(obj, path); 9089 if (err) 9090 return libbpf_err(err); 9091 9092 return 0; 9093 } 9094 9095 static void bpf_map__destroy(struct bpf_map *map) 9096 { 9097 if (map->inner_map) { 9098 bpf_map__destroy(map->inner_map); 9099 zfree(&map->inner_map); 9100 } 9101 9102 zfree(&map->init_slots); 9103 map->init_slots_sz = 0; 9104 9105 if (map->mmaped && map->mmaped != map->obj->arena_data) 9106 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9107 map->mmaped = NULL; 9108 9109 if (map->st_ops) { 9110 zfree(&map->st_ops->data); 9111 zfree(&map->st_ops->progs); 9112 zfree(&map->st_ops->kern_func_off); 9113 zfree(&map->st_ops); 9114 } 9115 9116 zfree(&map->name); 9117 zfree(&map->real_name); 9118 zfree(&map->pin_path); 9119 9120 if (map->fd >= 0) 9121 zclose(map->fd); 9122 } 9123 9124 void bpf_object__close(struct bpf_object *obj) 9125 { 9126 size_t i; 9127 9128 if (IS_ERR_OR_NULL(obj)) 9129 return; 9130 9131 /* 9132 * if user called bpf_object__prepare() without ever getting to 9133 * bpf_object__load(), we need to clean up stuff that is normally 9134 * cleaned up at the end of loading step 9135 */ 9136 bpf_object_post_load_cleanup(obj); 9137 9138 usdt_manager_free(obj->usdt_man); 9139 obj->usdt_man = NULL; 9140 9141 bpf_gen__free(obj->gen_loader); 9142 bpf_object__elf_finish(obj); 9143 bpf_object_unload(obj); 9144 btf__free(obj->btf); 9145 btf__free(obj->btf_vmlinux); 9146 btf_ext__free(obj->btf_ext); 9147 9148 for (i = 0; i < obj->nr_maps; i++) 9149 bpf_map__destroy(&obj->maps[i]); 9150 9151 zfree(&obj->btf_custom_path); 9152 zfree(&obj->kconfig); 9153 9154 for (i = 0; i < obj->nr_extern; i++) { 9155 zfree(&obj->externs[i].name); 9156 zfree(&obj->externs[i].essent_name); 9157 } 9158 9159 zfree(&obj->externs); 9160 obj->nr_extern = 0; 9161 9162 zfree(&obj->maps); 9163 obj->nr_maps = 0; 9164 9165 if (obj->programs && obj->nr_programs) { 9166 for (i = 0; i < obj->nr_programs; i++) 9167 bpf_program__exit(&obj->programs[i]); 9168 } 9169 zfree(&obj->programs); 9170 9171 zfree(&obj->feat_cache); 9172 zfree(&obj->token_path); 9173 if (obj->token_fd > 0) 9174 close(obj->token_fd); 9175 9176 zfree(&obj->arena_data); 9177 9178 free(obj); 9179 } 9180 9181 const char *bpf_object__name(const struct bpf_object *obj) 9182 { 9183 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9184 } 9185 9186 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9187 { 9188 return obj ? obj->kern_version : 0; 9189 } 9190 9191 int bpf_object__token_fd(const struct bpf_object *obj) 9192 { 9193 return obj->token_fd ?: -1; 9194 } 9195 9196 struct btf *bpf_object__btf(const struct bpf_object *obj) 9197 { 9198 return obj ? obj->btf : NULL; 9199 } 9200 9201 int bpf_object__btf_fd(const struct bpf_object *obj) 9202 { 9203 return obj->btf ? btf__fd(obj->btf) : -1; 9204 } 9205 9206 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9207 { 9208 if (obj->state >= OBJ_LOADED) 9209 return libbpf_err(-EINVAL); 9210 9211 obj->kern_version = kern_version; 9212 9213 return 0; 9214 } 9215 9216 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9217 { 9218 struct bpf_gen *gen; 9219 9220 if (!opts) 9221 return libbpf_err(-EFAULT); 9222 if (!OPTS_VALID(opts, gen_loader_opts)) 9223 return libbpf_err(-EINVAL); 9224 gen = calloc(1, sizeof(*gen)); 9225 if (!gen) 9226 return libbpf_err(-ENOMEM); 9227 gen->opts = opts; 9228 gen->swapped_endian = !is_native_endianness(obj); 9229 obj->gen_loader = gen; 9230 return 0; 9231 } 9232 9233 static struct bpf_program * 9234 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9235 bool forward) 9236 { 9237 size_t nr_programs = obj->nr_programs; 9238 ssize_t idx; 9239 9240 if (!nr_programs) 9241 return NULL; 9242 9243 if (!p) 9244 /* Iter from the beginning */ 9245 return forward ? &obj->programs[0] : 9246 &obj->programs[nr_programs - 1]; 9247 9248 if (p->obj != obj) { 9249 pr_warn("error: program handler doesn't match object\n"); 9250 return errno = EINVAL, NULL; 9251 } 9252 9253 idx = (p - obj->programs) + (forward ? 1 : -1); 9254 if (idx >= obj->nr_programs || idx < 0) 9255 return NULL; 9256 return &obj->programs[idx]; 9257 } 9258 9259 struct bpf_program * 9260 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9261 { 9262 struct bpf_program *prog = prev; 9263 9264 do { 9265 prog = __bpf_program__iter(prog, obj, true); 9266 } while (prog && prog_is_subprog(obj, prog)); 9267 9268 return prog; 9269 } 9270 9271 struct bpf_program * 9272 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9273 { 9274 struct bpf_program *prog = next; 9275 9276 do { 9277 prog = __bpf_program__iter(prog, obj, false); 9278 } while (prog && prog_is_subprog(obj, prog)); 9279 9280 return prog; 9281 } 9282 9283 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9284 { 9285 prog->prog_ifindex = ifindex; 9286 } 9287 9288 const char *bpf_program__name(const struct bpf_program *prog) 9289 { 9290 return prog->name; 9291 } 9292 9293 const char *bpf_program__section_name(const struct bpf_program *prog) 9294 { 9295 return prog->sec_name; 9296 } 9297 9298 bool bpf_program__autoload(const struct bpf_program *prog) 9299 { 9300 return prog->autoload; 9301 } 9302 9303 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9304 { 9305 if (prog->obj->state >= OBJ_LOADED) 9306 return libbpf_err(-EINVAL); 9307 9308 prog->autoload = autoload; 9309 return 0; 9310 } 9311 9312 bool bpf_program__autoattach(const struct bpf_program *prog) 9313 { 9314 return prog->autoattach; 9315 } 9316 9317 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9318 { 9319 prog->autoattach = autoattach; 9320 } 9321 9322 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9323 { 9324 return prog->insns; 9325 } 9326 9327 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9328 { 9329 return prog->insns_cnt; 9330 } 9331 9332 int bpf_program__set_insns(struct bpf_program *prog, 9333 struct bpf_insn *new_insns, size_t new_insn_cnt) 9334 { 9335 struct bpf_insn *insns; 9336 9337 if (prog->obj->state >= OBJ_LOADED) 9338 return libbpf_err(-EBUSY); 9339 9340 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9341 /* NULL is a valid return from reallocarray if the new count is zero */ 9342 if (!insns && new_insn_cnt) { 9343 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9344 return libbpf_err(-ENOMEM); 9345 } 9346 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9347 9348 prog->insns = insns; 9349 prog->insns_cnt = new_insn_cnt; 9350 return 0; 9351 } 9352 9353 int bpf_program__fd(const struct bpf_program *prog) 9354 { 9355 if (!prog) 9356 return libbpf_err(-EINVAL); 9357 9358 if (prog->fd < 0) 9359 return libbpf_err(-ENOENT); 9360 9361 return prog->fd; 9362 } 9363 9364 __alias(bpf_program__type) 9365 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9366 9367 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9368 { 9369 return prog->type; 9370 } 9371 9372 static size_t custom_sec_def_cnt; 9373 static struct bpf_sec_def *custom_sec_defs; 9374 static struct bpf_sec_def custom_fallback_def; 9375 static bool has_custom_fallback_def; 9376 static int last_custom_sec_def_handler_id; 9377 9378 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9379 { 9380 if (prog->obj->state >= OBJ_LOADED) 9381 return libbpf_err(-EBUSY); 9382 9383 /* if type is not changed, do nothing */ 9384 if (prog->type == type) 9385 return 0; 9386 9387 prog->type = type; 9388 9389 /* If a program type was changed, we need to reset associated SEC() 9390 * handler, as it will be invalid now. The only exception is a generic 9391 * fallback handler, which by definition is program type-agnostic and 9392 * is a catch-all custom handler, optionally set by the application, 9393 * so should be able to handle any type of BPF program. 9394 */ 9395 if (prog->sec_def != &custom_fallback_def) 9396 prog->sec_def = NULL; 9397 return 0; 9398 } 9399 9400 __alias(bpf_program__expected_attach_type) 9401 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9402 9403 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9404 { 9405 return prog->expected_attach_type; 9406 } 9407 9408 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9409 enum bpf_attach_type type) 9410 { 9411 if (prog->obj->state >= OBJ_LOADED) 9412 return libbpf_err(-EBUSY); 9413 9414 prog->expected_attach_type = type; 9415 return 0; 9416 } 9417 9418 __u32 bpf_program__flags(const struct bpf_program *prog) 9419 { 9420 return prog->prog_flags; 9421 } 9422 9423 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9424 { 9425 if (prog->obj->state >= OBJ_LOADED) 9426 return libbpf_err(-EBUSY); 9427 9428 prog->prog_flags = flags; 9429 return 0; 9430 } 9431 9432 __u32 bpf_program__log_level(const struct bpf_program *prog) 9433 { 9434 return prog->log_level; 9435 } 9436 9437 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9438 { 9439 if (prog->obj->state >= OBJ_LOADED) 9440 return libbpf_err(-EBUSY); 9441 9442 prog->log_level = log_level; 9443 return 0; 9444 } 9445 9446 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9447 { 9448 *log_size = prog->log_size; 9449 return prog->log_buf; 9450 } 9451 9452 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9453 { 9454 if (log_size && !log_buf) 9455 return libbpf_err(-EINVAL); 9456 if (prog->log_size > UINT_MAX) 9457 return libbpf_err(-EINVAL); 9458 if (prog->obj->state >= OBJ_LOADED) 9459 return libbpf_err(-EBUSY); 9460 9461 prog->log_buf = log_buf; 9462 prog->log_size = log_size; 9463 return 0; 9464 } 9465 9466 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9467 { 9468 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9469 return libbpf_err_ptr(-EOPNOTSUPP); 9470 return prog->func_info; 9471 } 9472 9473 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9474 { 9475 return prog->func_info_cnt; 9476 } 9477 9478 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9479 { 9480 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9481 return libbpf_err_ptr(-EOPNOTSUPP); 9482 return prog->line_info; 9483 } 9484 9485 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9486 { 9487 return prog->line_info_cnt; 9488 } 9489 9490 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9491 .sec = (char *)sec_pfx, \ 9492 .prog_type = BPF_PROG_TYPE_##ptype, \ 9493 .expected_attach_type = atype, \ 9494 .cookie = (long)(flags), \ 9495 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9496 __VA_ARGS__ \ 9497 } 9498 9499 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9500 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9501 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9502 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9503 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9504 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9505 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9506 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9507 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9508 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9509 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9510 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9511 9512 static const struct bpf_sec_def section_defs[] = { 9513 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9514 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9515 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9516 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9517 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9518 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9519 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9520 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9521 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9522 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9523 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9524 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9525 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9526 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9527 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9528 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9529 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9530 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9531 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9532 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9533 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9534 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9535 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9536 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9537 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9538 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9539 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9540 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9541 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9542 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9543 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9544 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9545 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9546 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9547 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9548 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9549 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9550 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9551 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9552 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9553 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9554 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9555 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9556 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9557 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9558 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9559 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9560 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9561 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9562 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9563 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9564 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9565 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9566 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9567 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9568 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9569 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9570 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9571 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9572 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9573 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9574 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9575 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9576 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9577 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9578 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9579 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9580 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9581 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9582 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9583 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9584 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9585 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9586 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9587 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9588 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9589 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9590 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9591 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9592 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9593 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9594 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9595 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9596 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9597 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9598 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9599 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9600 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9601 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9602 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9603 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9604 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9605 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9606 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9607 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9608 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9609 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9610 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9611 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9612 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9613 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9614 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9615 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9616 }; 9617 9618 int libbpf_register_prog_handler(const char *sec, 9619 enum bpf_prog_type prog_type, 9620 enum bpf_attach_type exp_attach_type, 9621 const struct libbpf_prog_handler_opts *opts) 9622 { 9623 struct bpf_sec_def *sec_def; 9624 9625 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9626 return libbpf_err(-EINVAL); 9627 9628 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9629 return libbpf_err(-E2BIG); 9630 9631 if (sec) { 9632 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9633 sizeof(*sec_def)); 9634 if (!sec_def) 9635 return libbpf_err(-ENOMEM); 9636 9637 custom_sec_defs = sec_def; 9638 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9639 } else { 9640 if (has_custom_fallback_def) 9641 return libbpf_err(-EBUSY); 9642 9643 sec_def = &custom_fallback_def; 9644 } 9645 9646 sec_def->sec = sec ? strdup(sec) : NULL; 9647 if (sec && !sec_def->sec) 9648 return libbpf_err(-ENOMEM); 9649 9650 sec_def->prog_type = prog_type; 9651 sec_def->expected_attach_type = exp_attach_type; 9652 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9653 9654 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9655 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9656 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9657 9658 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9659 9660 if (sec) 9661 custom_sec_def_cnt++; 9662 else 9663 has_custom_fallback_def = true; 9664 9665 return sec_def->handler_id; 9666 } 9667 9668 int libbpf_unregister_prog_handler(int handler_id) 9669 { 9670 struct bpf_sec_def *sec_defs; 9671 int i; 9672 9673 if (handler_id <= 0) 9674 return libbpf_err(-EINVAL); 9675 9676 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9677 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9678 has_custom_fallback_def = false; 9679 return 0; 9680 } 9681 9682 for (i = 0; i < custom_sec_def_cnt; i++) { 9683 if (custom_sec_defs[i].handler_id == handler_id) 9684 break; 9685 } 9686 9687 if (i == custom_sec_def_cnt) 9688 return libbpf_err(-ENOENT); 9689 9690 free(custom_sec_defs[i].sec); 9691 for (i = i + 1; i < custom_sec_def_cnt; i++) 9692 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9693 custom_sec_def_cnt--; 9694 9695 /* try to shrink the array, but it's ok if we couldn't */ 9696 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9697 /* if new count is zero, reallocarray can return a valid NULL result; 9698 * in this case the previous pointer will be freed, so we *have to* 9699 * reassign old pointer to the new value (even if it's NULL) 9700 */ 9701 if (sec_defs || custom_sec_def_cnt == 0) 9702 custom_sec_defs = sec_defs; 9703 9704 return 0; 9705 } 9706 9707 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9708 { 9709 size_t len = strlen(sec_def->sec); 9710 9711 /* "type/" always has to have proper SEC("type/extras") form */ 9712 if (sec_def->sec[len - 1] == '/') { 9713 if (str_has_pfx(sec_name, sec_def->sec)) 9714 return true; 9715 return false; 9716 } 9717 9718 /* "type+" means it can be either exact SEC("type") or 9719 * well-formed SEC("type/extras") with proper '/' separator 9720 */ 9721 if (sec_def->sec[len - 1] == '+') { 9722 len--; 9723 /* not even a prefix */ 9724 if (strncmp(sec_name, sec_def->sec, len) != 0) 9725 return false; 9726 /* exact match or has '/' separator */ 9727 if (sec_name[len] == '\0' || sec_name[len] == '/') 9728 return true; 9729 return false; 9730 } 9731 9732 return strcmp(sec_name, sec_def->sec) == 0; 9733 } 9734 9735 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9736 { 9737 const struct bpf_sec_def *sec_def; 9738 int i, n; 9739 9740 n = custom_sec_def_cnt; 9741 for (i = 0; i < n; i++) { 9742 sec_def = &custom_sec_defs[i]; 9743 if (sec_def_matches(sec_def, sec_name)) 9744 return sec_def; 9745 } 9746 9747 n = ARRAY_SIZE(section_defs); 9748 for (i = 0; i < n; i++) { 9749 sec_def = §ion_defs[i]; 9750 if (sec_def_matches(sec_def, sec_name)) 9751 return sec_def; 9752 } 9753 9754 if (has_custom_fallback_def) 9755 return &custom_fallback_def; 9756 9757 return NULL; 9758 } 9759 9760 #define MAX_TYPE_NAME_SIZE 32 9761 9762 static char *libbpf_get_type_names(bool attach_type) 9763 { 9764 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9765 char *buf; 9766 9767 buf = malloc(len); 9768 if (!buf) 9769 return NULL; 9770 9771 buf[0] = '\0'; 9772 /* Forge string buf with all available names */ 9773 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9774 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9775 9776 if (attach_type) { 9777 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9778 continue; 9779 9780 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9781 continue; 9782 } 9783 9784 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9785 free(buf); 9786 return NULL; 9787 } 9788 strcat(buf, " "); 9789 strcat(buf, section_defs[i].sec); 9790 } 9791 9792 return buf; 9793 } 9794 9795 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9796 enum bpf_attach_type *expected_attach_type) 9797 { 9798 const struct bpf_sec_def *sec_def; 9799 char *type_names; 9800 9801 if (!name) 9802 return libbpf_err(-EINVAL); 9803 9804 sec_def = find_sec_def(name); 9805 if (sec_def) { 9806 *prog_type = sec_def->prog_type; 9807 *expected_attach_type = sec_def->expected_attach_type; 9808 return 0; 9809 } 9810 9811 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9812 type_names = libbpf_get_type_names(false); 9813 if (type_names != NULL) { 9814 pr_debug("supported section(type) names are:%s\n", type_names); 9815 free(type_names); 9816 } 9817 9818 return libbpf_err(-ESRCH); 9819 } 9820 9821 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9822 { 9823 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9824 return NULL; 9825 9826 return attach_type_name[t]; 9827 } 9828 9829 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9830 { 9831 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9832 return NULL; 9833 9834 return link_type_name[t]; 9835 } 9836 9837 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9838 { 9839 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9840 return NULL; 9841 9842 return map_type_name[t]; 9843 } 9844 9845 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9846 { 9847 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9848 return NULL; 9849 9850 return prog_type_name[t]; 9851 } 9852 9853 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9854 int sec_idx, 9855 size_t offset) 9856 { 9857 struct bpf_map *map; 9858 size_t i; 9859 9860 for (i = 0; i < obj->nr_maps; i++) { 9861 map = &obj->maps[i]; 9862 if (!bpf_map__is_struct_ops(map)) 9863 continue; 9864 if (map->sec_idx == sec_idx && 9865 map->sec_offset <= offset && 9866 offset - map->sec_offset < map->def.value_size) 9867 return map; 9868 } 9869 9870 return NULL; 9871 } 9872 9873 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9874 * st_ops->data for shadow type. 9875 */ 9876 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9877 Elf64_Shdr *shdr, Elf_Data *data) 9878 { 9879 const struct btf_type *type; 9880 const struct btf_member *member; 9881 struct bpf_struct_ops *st_ops; 9882 struct bpf_program *prog; 9883 unsigned int shdr_idx; 9884 const struct btf *btf; 9885 struct bpf_map *map; 9886 unsigned int moff, insn_idx; 9887 const char *name; 9888 __u32 member_idx; 9889 Elf64_Sym *sym; 9890 Elf64_Rel *rel; 9891 int i, nrels; 9892 9893 btf = obj->btf; 9894 nrels = shdr->sh_size / shdr->sh_entsize; 9895 for (i = 0; i < nrels; i++) { 9896 rel = elf_rel_by_idx(data, i); 9897 if (!rel) { 9898 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9899 return -LIBBPF_ERRNO__FORMAT; 9900 } 9901 9902 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9903 if (!sym) { 9904 pr_warn("struct_ops reloc: symbol %zx not found\n", 9905 (size_t)ELF64_R_SYM(rel->r_info)); 9906 return -LIBBPF_ERRNO__FORMAT; 9907 } 9908 9909 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9910 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9911 if (!map) { 9912 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9913 (size_t)rel->r_offset); 9914 return -EINVAL; 9915 } 9916 9917 moff = rel->r_offset - map->sec_offset; 9918 shdr_idx = sym->st_shndx; 9919 st_ops = map->st_ops; 9920 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9921 map->name, 9922 (long long)(rel->r_info >> 32), 9923 (long long)sym->st_value, 9924 shdr_idx, (size_t)rel->r_offset, 9925 map->sec_offset, sym->st_name, name); 9926 9927 if (shdr_idx >= SHN_LORESERVE) { 9928 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9929 map->name, (size_t)rel->r_offset, shdr_idx); 9930 return -LIBBPF_ERRNO__RELOC; 9931 } 9932 if (sym->st_value % BPF_INSN_SZ) { 9933 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9934 map->name, (unsigned long long)sym->st_value); 9935 return -LIBBPF_ERRNO__FORMAT; 9936 } 9937 insn_idx = sym->st_value / BPF_INSN_SZ; 9938 9939 type = btf__type_by_id(btf, st_ops->type_id); 9940 member = find_member_by_offset(type, moff * 8); 9941 if (!member) { 9942 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9943 map->name, moff); 9944 return -EINVAL; 9945 } 9946 member_idx = member - btf_members(type); 9947 name = btf__name_by_offset(btf, member->name_off); 9948 9949 if (!resolve_func_ptr(btf, member->type, NULL)) { 9950 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9951 map->name, name); 9952 return -EINVAL; 9953 } 9954 9955 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9956 if (!prog) { 9957 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9958 map->name, shdr_idx, name); 9959 return -EINVAL; 9960 } 9961 9962 /* prevent the use of BPF prog with invalid type */ 9963 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9964 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9965 map->name, prog->name); 9966 return -EINVAL; 9967 } 9968 9969 st_ops->progs[member_idx] = prog; 9970 9971 /* st_ops->data will be exposed to users, being returned by 9972 * bpf_map__initial_value() as a pointer to the shadow 9973 * type. All function pointers in the original struct type 9974 * should be converted to a pointer to struct bpf_program 9975 * in the shadow type. 9976 */ 9977 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9978 } 9979 9980 return 0; 9981 } 9982 9983 #define BTF_TRACE_PREFIX "btf_trace_" 9984 #define BTF_LSM_PREFIX "bpf_lsm_" 9985 #define BTF_ITER_PREFIX "bpf_iter_" 9986 #define BTF_MAX_NAME_SIZE 128 9987 9988 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9989 const char **prefix, int *kind) 9990 { 9991 switch (attach_type) { 9992 case BPF_TRACE_RAW_TP: 9993 *prefix = BTF_TRACE_PREFIX; 9994 *kind = BTF_KIND_TYPEDEF; 9995 break; 9996 case BPF_LSM_MAC: 9997 case BPF_LSM_CGROUP: 9998 *prefix = BTF_LSM_PREFIX; 9999 *kind = BTF_KIND_FUNC; 10000 break; 10001 case BPF_TRACE_ITER: 10002 *prefix = BTF_ITER_PREFIX; 10003 *kind = BTF_KIND_FUNC; 10004 break; 10005 default: 10006 *prefix = ""; 10007 *kind = BTF_KIND_FUNC; 10008 } 10009 } 10010 10011 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10012 const char *name, __u32 kind) 10013 { 10014 char btf_type_name[BTF_MAX_NAME_SIZE]; 10015 int ret; 10016 10017 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10018 "%s%s", prefix, name); 10019 /* snprintf returns the number of characters written excluding the 10020 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10021 * indicates truncation. 10022 */ 10023 if (ret < 0 || ret >= sizeof(btf_type_name)) 10024 return -ENAMETOOLONG; 10025 return btf__find_by_name_kind(btf, btf_type_name, kind); 10026 } 10027 10028 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10029 enum bpf_attach_type attach_type) 10030 { 10031 const char *prefix; 10032 int kind; 10033 10034 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10035 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10036 } 10037 10038 int libbpf_find_vmlinux_btf_id(const char *name, 10039 enum bpf_attach_type attach_type) 10040 { 10041 struct btf *btf; 10042 int err; 10043 10044 btf = btf__load_vmlinux_btf(); 10045 err = libbpf_get_error(btf); 10046 if (err) { 10047 pr_warn("vmlinux BTF is not found\n"); 10048 return libbpf_err(err); 10049 } 10050 10051 err = find_attach_btf_id(btf, name, attach_type); 10052 if (err <= 0) 10053 pr_warn("%s is not found in vmlinux BTF\n", name); 10054 10055 btf__free(btf); 10056 return libbpf_err(err); 10057 } 10058 10059 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10060 { 10061 struct bpf_prog_info info; 10062 __u32 info_len = sizeof(info); 10063 struct btf *btf; 10064 int err; 10065 10066 memset(&info, 0, info_len); 10067 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10068 if (err) { 10069 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10070 attach_prog_fd, errstr(err)); 10071 return err; 10072 } 10073 10074 err = -EINVAL; 10075 if (!info.btf_id) { 10076 pr_warn("The target program doesn't have BTF\n"); 10077 goto out; 10078 } 10079 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10080 err = libbpf_get_error(btf); 10081 if (err) { 10082 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10083 goto out; 10084 } 10085 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10086 btf__free(btf); 10087 if (err <= 0) { 10088 pr_warn("%s is not found in prog's BTF\n", name); 10089 goto out; 10090 } 10091 out: 10092 return err; 10093 } 10094 10095 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10096 enum bpf_attach_type attach_type, 10097 int *btf_obj_fd, int *btf_type_id) 10098 { 10099 int ret, i, mod_len = 0; 10100 const char *fn_name, *mod_name = NULL; 10101 10102 fn_name = strchr(attach_name, ':'); 10103 if (fn_name) { 10104 mod_name = attach_name; 10105 mod_len = fn_name - mod_name; 10106 fn_name++; 10107 } 10108 10109 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10110 ret = find_attach_btf_id(obj->btf_vmlinux, 10111 mod_name ? fn_name : attach_name, 10112 attach_type); 10113 if (ret > 0) { 10114 *btf_obj_fd = 0; /* vmlinux BTF */ 10115 *btf_type_id = ret; 10116 return 0; 10117 } 10118 if (ret != -ENOENT) 10119 return ret; 10120 } 10121 10122 ret = load_module_btfs(obj); 10123 if (ret) 10124 return ret; 10125 10126 for (i = 0; i < obj->btf_module_cnt; i++) { 10127 const struct module_btf *mod = &obj->btf_modules[i]; 10128 10129 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10130 continue; 10131 10132 ret = find_attach_btf_id(mod->btf, 10133 mod_name ? fn_name : attach_name, 10134 attach_type); 10135 if (ret > 0) { 10136 *btf_obj_fd = mod->fd; 10137 *btf_type_id = ret; 10138 return 0; 10139 } 10140 if (ret == -ENOENT) 10141 continue; 10142 10143 return ret; 10144 } 10145 10146 return -ESRCH; 10147 } 10148 10149 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10150 int *btf_obj_fd, int *btf_type_id) 10151 { 10152 enum bpf_attach_type attach_type = prog->expected_attach_type; 10153 __u32 attach_prog_fd = prog->attach_prog_fd; 10154 int err = 0; 10155 10156 /* BPF program's BTF ID */ 10157 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10158 if (!attach_prog_fd) { 10159 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10160 return -EINVAL; 10161 } 10162 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10163 if (err < 0) { 10164 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10165 prog->name, attach_prog_fd, attach_name, errstr(err)); 10166 return err; 10167 } 10168 *btf_obj_fd = 0; 10169 *btf_type_id = err; 10170 return 0; 10171 } 10172 10173 /* kernel/module BTF ID */ 10174 if (prog->obj->gen_loader) { 10175 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10176 *btf_obj_fd = 0; 10177 *btf_type_id = 1; 10178 } else { 10179 err = find_kernel_btf_id(prog->obj, attach_name, 10180 attach_type, btf_obj_fd, 10181 btf_type_id); 10182 } 10183 if (err) { 10184 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10185 prog->name, attach_name, errstr(err)); 10186 return err; 10187 } 10188 return 0; 10189 } 10190 10191 int libbpf_attach_type_by_name(const char *name, 10192 enum bpf_attach_type *attach_type) 10193 { 10194 char *type_names; 10195 const struct bpf_sec_def *sec_def; 10196 10197 if (!name) 10198 return libbpf_err(-EINVAL); 10199 10200 sec_def = find_sec_def(name); 10201 if (!sec_def) { 10202 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10203 type_names = libbpf_get_type_names(true); 10204 if (type_names != NULL) { 10205 pr_debug("attachable section(type) names are:%s\n", type_names); 10206 free(type_names); 10207 } 10208 10209 return libbpf_err(-EINVAL); 10210 } 10211 10212 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10213 return libbpf_err(-EINVAL); 10214 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10215 return libbpf_err(-EINVAL); 10216 10217 *attach_type = sec_def->expected_attach_type; 10218 return 0; 10219 } 10220 10221 int bpf_map__fd(const struct bpf_map *map) 10222 { 10223 if (!map) 10224 return libbpf_err(-EINVAL); 10225 if (!map_is_created(map)) 10226 return -1; 10227 return map->fd; 10228 } 10229 10230 static bool map_uses_real_name(const struct bpf_map *map) 10231 { 10232 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10233 * their user-visible name differs from kernel-visible name. Users see 10234 * such map's corresponding ELF section name as a map name. 10235 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10236 * maps to know which name has to be returned to the user. 10237 */ 10238 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10239 return true; 10240 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10241 return true; 10242 return false; 10243 } 10244 10245 const char *bpf_map__name(const struct bpf_map *map) 10246 { 10247 if (!map) 10248 return NULL; 10249 10250 if (map_uses_real_name(map)) 10251 return map->real_name; 10252 10253 return map->name; 10254 } 10255 10256 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10257 { 10258 return map->def.type; 10259 } 10260 10261 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10262 { 10263 if (map_is_created(map)) 10264 return libbpf_err(-EBUSY); 10265 map->def.type = type; 10266 return 0; 10267 } 10268 10269 __u32 bpf_map__map_flags(const struct bpf_map *map) 10270 { 10271 return map->def.map_flags; 10272 } 10273 10274 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10275 { 10276 if (map_is_created(map)) 10277 return libbpf_err(-EBUSY); 10278 map->def.map_flags = flags; 10279 return 0; 10280 } 10281 10282 __u64 bpf_map__map_extra(const struct bpf_map *map) 10283 { 10284 return map->map_extra; 10285 } 10286 10287 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10288 { 10289 if (map_is_created(map)) 10290 return libbpf_err(-EBUSY); 10291 map->map_extra = map_extra; 10292 return 0; 10293 } 10294 10295 __u32 bpf_map__numa_node(const struct bpf_map *map) 10296 { 10297 return map->numa_node; 10298 } 10299 10300 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10301 { 10302 if (map_is_created(map)) 10303 return libbpf_err(-EBUSY); 10304 map->numa_node = numa_node; 10305 return 0; 10306 } 10307 10308 __u32 bpf_map__key_size(const struct bpf_map *map) 10309 { 10310 return map->def.key_size; 10311 } 10312 10313 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10314 { 10315 if (map_is_created(map)) 10316 return libbpf_err(-EBUSY); 10317 map->def.key_size = size; 10318 return 0; 10319 } 10320 10321 __u32 bpf_map__value_size(const struct bpf_map *map) 10322 { 10323 return map->def.value_size; 10324 } 10325 10326 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10327 { 10328 struct btf *btf; 10329 struct btf_type *datasec_type, *var_type; 10330 struct btf_var_secinfo *var; 10331 const struct btf_type *array_type; 10332 const struct btf_array *array; 10333 int vlen, element_sz, new_array_id; 10334 __u32 nr_elements; 10335 10336 /* check btf existence */ 10337 btf = bpf_object__btf(map->obj); 10338 if (!btf) 10339 return -ENOENT; 10340 10341 /* verify map is datasec */ 10342 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10343 if (!btf_is_datasec(datasec_type)) { 10344 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10345 bpf_map__name(map)); 10346 return -EINVAL; 10347 } 10348 10349 /* verify datasec has at least one var */ 10350 vlen = btf_vlen(datasec_type); 10351 if (vlen == 0) { 10352 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10353 bpf_map__name(map)); 10354 return -EINVAL; 10355 } 10356 10357 /* verify last var in the datasec is an array */ 10358 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10359 var_type = btf_type_by_id(btf, var->type); 10360 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10361 if (!btf_is_array(array_type)) { 10362 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10363 bpf_map__name(map)); 10364 return -EINVAL; 10365 } 10366 10367 /* verify request size aligns with array */ 10368 array = btf_array(array_type); 10369 element_sz = btf__resolve_size(btf, array->type); 10370 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10371 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10372 bpf_map__name(map), element_sz, size); 10373 return -EINVAL; 10374 } 10375 10376 /* create a new array based on the existing array, but with new length */ 10377 nr_elements = (size - var->offset) / element_sz; 10378 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10379 if (new_array_id < 0) 10380 return new_array_id; 10381 10382 /* adding a new btf type invalidates existing pointers to btf objects, 10383 * so refresh pointers before proceeding 10384 */ 10385 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10386 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10387 var_type = btf_type_by_id(btf, var->type); 10388 10389 /* finally update btf info */ 10390 datasec_type->size = size; 10391 var->size = size - var->offset; 10392 var_type->type = new_array_id; 10393 10394 return 0; 10395 } 10396 10397 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10398 { 10399 if (map_is_created(map)) 10400 return libbpf_err(-EBUSY); 10401 10402 if (map->mmaped) { 10403 size_t mmap_old_sz, mmap_new_sz; 10404 int err; 10405 10406 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10407 return libbpf_err(-EOPNOTSUPP); 10408 10409 mmap_old_sz = bpf_map_mmap_sz(map); 10410 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10411 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10412 if (err) { 10413 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10414 bpf_map__name(map), errstr(err)); 10415 return libbpf_err(err); 10416 } 10417 err = map_btf_datasec_resize(map, size); 10418 if (err && err != -ENOENT) { 10419 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10420 bpf_map__name(map), errstr(err)); 10421 map->btf_value_type_id = 0; 10422 map->btf_key_type_id = 0; 10423 } 10424 } 10425 10426 map->def.value_size = size; 10427 return 0; 10428 } 10429 10430 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10431 { 10432 return map ? map->btf_key_type_id : 0; 10433 } 10434 10435 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10436 { 10437 return map ? map->btf_value_type_id : 0; 10438 } 10439 10440 int bpf_map__set_initial_value(struct bpf_map *map, 10441 const void *data, size_t size) 10442 { 10443 size_t actual_sz; 10444 10445 if (map_is_created(map)) 10446 return libbpf_err(-EBUSY); 10447 10448 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10449 return libbpf_err(-EINVAL); 10450 10451 if (map->def.type == BPF_MAP_TYPE_ARENA) 10452 actual_sz = map->obj->arena_data_sz; 10453 else 10454 actual_sz = map->def.value_size; 10455 if (size != actual_sz) 10456 return libbpf_err(-EINVAL); 10457 10458 memcpy(map->mmaped, data, size); 10459 return 0; 10460 } 10461 10462 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10463 { 10464 if (bpf_map__is_struct_ops(map)) { 10465 if (psize) 10466 *psize = map->def.value_size; 10467 return map->st_ops->data; 10468 } 10469 10470 if (!map->mmaped) 10471 return NULL; 10472 10473 if (map->def.type == BPF_MAP_TYPE_ARENA) 10474 *psize = map->obj->arena_data_sz; 10475 else 10476 *psize = map->def.value_size; 10477 10478 return map->mmaped; 10479 } 10480 10481 bool bpf_map__is_internal(const struct bpf_map *map) 10482 { 10483 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10484 } 10485 10486 __u32 bpf_map__ifindex(const struct bpf_map *map) 10487 { 10488 return map->map_ifindex; 10489 } 10490 10491 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10492 { 10493 if (map_is_created(map)) 10494 return libbpf_err(-EBUSY); 10495 map->map_ifindex = ifindex; 10496 return 0; 10497 } 10498 10499 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10500 { 10501 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10502 pr_warn("error: unsupported map type\n"); 10503 return libbpf_err(-EINVAL); 10504 } 10505 if (map->inner_map_fd != -1) { 10506 pr_warn("error: inner_map_fd already specified\n"); 10507 return libbpf_err(-EINVAL); 10508 } 10509 if (map->inner_map) { 10510 bpf_map__destroy(map->inner_map); 10511 zfree(&map->inner_map); 10512 } 10513 map->inner_map_fd = fd; 10514 return 0; 10515 } 10516 10517 static struct bpf_map * 10518 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10519 { 10520 ssize_t idx; 10521 struct bpf_map *s, *e; 10522 10523 if (!obj || !obj->maps) 10524 return errno = EINVAL, NULL; 10525 10526 s = obj->maps; 10527 e = obj->maps + obj->nr_maps; 10528 10529 if ((m < s) || (m >= e)) { 10530 pr_warn("error in %s: map handler doesn't belong to object\n", 10531 __func__); 10532 return errno = EINVAL, NULL; 10533 } 10534 10535 idx = (m - obj->maps) + i; 10536 if (idx >= obj->nr_maps || idx < 0) 10537 return NULL; 10538 return &obj->maps[idx]; 10539 } 10540 10541 struct bpf_map * 10542 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10543 { 10544 if (prev == NULL && obj != NULL) 10545 return obj->maps; 10546 10547 return __bpf_map__iter(prev, obj, 1); 10548 } 10549 10550 struct bpf_map * 10551 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10552 { 10553 if (next == NULL && obj != NULL) { 10554 if (!obj->nr_maps) 10555 return NULL; 10556 return obj->maps + obj->nr_maps - 1; 10557 } 10558 10559 return __bpf_map__iter(next, obj, -1); 10560 } 10561 10562 struct bpf_map * 10563 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10564 { 10565 struct bpf_map *pos; 10566 10567 bpf_object__for_each_map(pos, obj) { 10568 /* if it's a special internal map name (which always starts 10569 * with dot) then check if that special name matches the 10570 * real map name (ELF section name) 10571 */ 10572 if (name[0] == '.') { 10573 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10574 return pos; 10575 continue; 10576 } 10577 /* otherwise map name has to be an exact match */ 10578 if (map_uses_real_name(pos)) { 10579 if (strcmp(pos->real_name, name) == 0) 10580 return pos; 10581 continue; 10582 } 10583 if (strcmp(pos->name, name) == 0) 10584 return pos; 10585 } 10586 return errno = ENOENT, NULL; 10587 } 10588 10589 int 10590 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10591 { 10592 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10593 } 10594 10595 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10596 size_t value_sz, bool check_value_sz) 10597 { 10598 if (!map_is_created(map)) /* map is not yet created */ 10599 return -ENOENT; 10600 10601 if (map->def.key_size != key_sz) { 10602 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10603 map->name, key_sz, map->def.key_size); 10604 return -EINVAL; 10605 } 10606 10607 if (map->fd < 0) { 10608 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10609 return -EINVAL; 10610 } 10611 10612 if (!check_value_sz) 10613 return 0; 10614 10615 switch (map->def.type) { 10616 case BPF_MAP_TYPE_PERCPU_ARRAY: 10617 case BPF_MAP_TYPE_PERCPU_HASH: 10618 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10619 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10620 int num_cpu = libbpf_num_possible_cpus(); 10621 size_t elem_sz = roundup(map->def.value_size, 8); 10622 10623 if (value_sz != num_cpu * elem_sz) { 10624 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10625 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10626 return -EINVAL; 10627 } 10628 break; 10629 } 10630 default: 10631 if (map->def.value_size != value_sz) { 10632 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10633 map->name, value_sz, map->def.value_size); 10634 return -EINVAL; 10635 } 10636 break; 10637 } 10638 return 0; 10639 } 10640 10641 int bpf_map__lookup_elem(const struct bpf_map *map, 10642 const void *key, size_t key_sz, 10643 void *value, size_t value_sz, __u64 flags) 10644 { 10645 int err; 10646 10647 err = validate_map_op(map, key_sz, value_sz, true); 10648 if (err) 10649 return libbpf_err(err); 10650 10651 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10652 } 10653 10654 int bpf_map__update_elem(const struct bpf_map *map, 10655 const void *key, size_t key_sz, 10656 const void *value, size_t value_sz, __u64 flags) 10657 { 10658 int err; 10659 10660 err = validate_map_op(map, key_sz, value_sz, true); 10661 if (err) 10662 return libbpf_err(err); 10663 10664 return bpf_map_update_elem(map->fd, key, value, flags); 10665 } 10666 10667 int bpf_map__delete_elem(const struct bpf_map *map, 10668 const void *key, size_t key_sz, __u64 flags) 10669 { 10670 int err; 10671 10672 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10673 if (err) 10674 return libbpf_err(err); 10675 10676 return bpf_map_delete_elem_flags(map->fd, key, flags); 10677 } 10678 10679 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10680 const void *key, size_t key_sz, 10681 void *value, size_t value_sz, __u64 flags) 10682 { 10683 int err; 10684 10685 err = validate_map_op(map, key_sz, value_sz, true); 10686 if (err) 10687 return libbpf_err(err); 10688 10689 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10690 } 10691 10692 int bpf_map__get_next_key(const struct bpf_map *map, 10693 const void *cur_key, void *next_key, size_t key_sz) 10694 { 10695 int err; 10696 10697 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10698 if (err) 10699 return libbpf_err(err); 10700 10701 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10702 } 10703 10704 long libbpf_get_error(const void *ptr) 10705 { 10706 if (!IS_ERR_OR_NULL(ptr)) 10707 return 0; 10708 10709 if (IS_ERR(ptr)) 10710 errno = -PTR_ERR(ptr); 10711 10712 /* If ptr == NULL, then errno should be already set by the failing 10713 * API, because libbpf never returns NULL on success and it now always 10714 * sets errno on error. So no extra errno handling for ptr == NULL 10715 * case. 10716 */ 10717 return -errno; 10718 } 10719 10720 /* Replace link's underlying BPF program with the new one */ 10721 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10722 { 10723 int ret; 10724 int prog_fd = bpf_program__fd(prog); 10725 10726 if (prog_fd < 0) { 10727 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10728 prog->name); 10729 return libbpf_err(-EINVAL); 10730 } 10731 10732 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10733 return libbpf_err_errno(ret); 10734 } 10735 10736 /* Release "ownership" of underlying BPF resource (typically, BPF program 10737 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10738 * link, when destructed through bpf_link__destroy() call won't attempt to 10739 * detach/unregisted that BPF resource. This is useful in situations where, 10740 * say, attached BPF program has to outlive userspace program that attached it 10741 * in the system. Depending on type of BPF program, though, there might be 10742 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10743 * exit of userspace program doesn't trigger automatic detachment and clean up 10744 * inside the kernel. 10745 */ 10746 void bpf_link__disconnect(struct bpf_link *link) 10747 { 10748 link->disconnected = true; 10749 } 10750 10751 int bpf_link__destroy(struct bpf_link *link) 10752 { 10753 int err = 0; 10754 10755 if (IS_ERR_OR_NULL(link)) 10756 return 0; 10757 10758 if (!link->disconnected && link->detach) 10759 err = link->detach(link); 10760 if (link->pin_path) 10761 free(link->pin_path); 10762 if (link->dealloc) 10763 link->dealloc(link); 10764 else 10765 free(link); 10766 10767 return libbpf_err(err); 10768 } 10769 10770 int bpf_link__fd(const struct bpf_link *link) 10771 { 10772 return link->fd; 10773 } 10774 10775 const char *bpf_link__pin_path(const struct bpf_link *link) 10776 { 10777 return link->pin_path; 10778 } 10779 10780 static int bpf_link__detach_fd(struct bpf_link *link) 10781 { 10782 return libbpf_err_errno(close(link->fd)); 10783 } 10784 10785 struct bpf_link *bpf_link__open(const char *path) 10786 { 10787 struct bpf_link *link; 10788 int fd; 10789 10790 fd = bpf_obj_get(path); 10791 if (fd < 0) { 10792 fd = -errno; 10793 pr_warn("failed to open link at %s: %d\n", path, fd); 10794 return libbpf_err_ptr(fd); 10795 } 10796 10797 link = calloc(1, sizeof(*link)); 10798 if (!link) { 10799 close(fd); 10800 return libbpf_err_ptr(-ENOMEM); 10801 } 10802 link->detach = &bpf_link__detach_fd; 10803 link->fd = fd; 10804 10805 link->pin_path = strdup(path); 10806 if (!link->pin_path) { 10807 bpf_link__destroy(link); 10808 return libbpf_err_ptr(-ENOMEM); 10809 } 10810 10811 return link; 10812 } 10813 10814 int bpf_link__detach(struct bpf_link *link) 10815 { 10816 return bpf_link_detach(link->fd) ? -errno : 0; 10817 } 10818 10819 int bpf_link__pin(struct bpf_link *link, const char *path) 10820 { 10821 int err; 10822 10823 if (link->pin_path) 10824 return libbpf_err(-EBUSY); 10825 err = make_parent_dir(path); 10826 if (err) 10827 return libbpf_err(err); 10828 err = check_path(path); 10829 if (err) 10830 return libbpf_err(err); 10831 10832 link->pin_path = strdup(path); 10833 if (!link->pin_path) 10834 return libbpf_err(-ENOMEM); 10835 10836 if (bpf_obj_pin(link->fd, link->pin_path)) { 10837 err = -errno; 10838 zfree(&link->pin_path); 10839 return libbpf_err(err); 10840 } 10841 10842 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10843 return 0; 10844 } 10845 10846 int bpf_link__unpin(struct bpf_link *link) 10847 { 10848 int err; 10849 10850 if (!link->pin_path) 10851 return libbpf_err(-EINVAL); 10852 10853 err = unlink(link->pin_path); 10854 if (err != 0) 10855 return -errno; 10856 10857 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10858 zfree(&link->pin_path); 10859 return 0; 10860 } 10861 10862 struct bpf_link_perf { 10863 struct bpf_link link; 10864 int perf_event_fd; 10865 /* legacy kprobe support: keep track of probe identifier and type */ 10866 char *legacy_probe_name; 10867 bool legacy_is_kprobe; 10868 bool legacy_is_retprobe; 10869 }; 10870 10871 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10872 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10873 10874 static int bpf_link_perf_detach(struct bpf_link *link) 10875 { 10876 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10877 int err = 0; 10878 10879 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10880 err = -errno; 10881 10882 if (perf_link->perf_event_fd != link->fd) 10883 close(perf_link->perf_event_fd); 10884 close(link->fd); 10885 10886 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10887 if (perf_link->legacy_probe_name) { 10888 if (perf_link->legacy_is_kprobe) { 10889 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10890 perf_link->legacy_is_retprobe); 10891 } else { 10892 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10893 perf_link->legacy_is_retprobe); 10894 } 10895 } 10896 10897 return err; 10898 } 10899 10900 static void bpf_link_perf_dealloc(struct bpf_link *link) 10901 { 10902 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10903 10904 free(perf_link->legacy_probe_name); 10905 free(perf_link); 10906 } 10907 10908 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10909 const struct bpf_perf_event_opts *opts) 10910 { 10911 struct bpf_link_perf *link; 10912 int prog_fd, link_fd = -1, err; 10913 bool force_ioctl_attach; 10914 10915 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10916 return libbpf_err_ptr(-EINVAL); 10917 10918 if (pfd < 0) { 10919 pr_warn("prog '%s': invalid perf event FD %d\n", 10920 prog->name, pfd); 10921 return libbpf_err_ptr(-EINVAL); 10922 } 10923 prog_fd = bpf_program__fd(prog); 10924 if (prog_fd < 0) { 10925 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10926 prog->name); 10927 return libbpf_err_ptr(-EINVAL); 10928 } 10929 10930 link = calloc(1, sizeof(*link)); 10931 if (!link) 10932 return libbpf_err_ptr(-ENOMEM); 10933 link->link.detach = &bpf_link_perf_detach; 10934 link->link.dealloc = &bpf_link_perf_dealloc; 10935 link->perf_event_fd = pfd; 10936 10937 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10938 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10939 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10940 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10941 10942 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10943 if (link_fd < 0) { 10944 err = -errno; 10945 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10946 prog->name, pfd, errstr(err)); 10947 goto err_out; 10948 } 10949 link->link.fd = link_fd; 10950 } else { 10951 if (OPTS_GET(opts, bpf_cookie, 0)) { 10952 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10953 err = -EOPNOTSUPP; 10954 goto err_out; 10955 } 10956 10957 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10958 err = -errno; 10959 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10960 prog->name, pfd, errstr(err)); 10961 if (err == -EPROTO) 10962 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10963 prog->name, pfd); 10964 goto err_out; 10965 } 10966 link->link.fd = pfd; 10967 } 10968 10969 if (!OPTS_GET(opts, dont_enable, false)) { 10970 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10971 err = -errno; 10972 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10973 prog->name, pfd, errstr(err)); 10974 goto err_out; 10975 } 10976 } 10977 10978 return &link->link; 10979 err_out: 10980 if (link_fd >= 0) 10981 close(link_fd); 10982 free(link); 10983 return libbpf_err_ptr(err); 10984 } 10985 10986 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10987 { 10988 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10989 } 10990 10991 /* 10992 * this function is expected to parse integer in the range of [0, 2^31-1] from 10993 * given file using scanf format string fmt. If actual parsed value is 10994 * negative, the result might be indistinguishable from error 10995 */ 10996 static int parse_uint_from_file(const char *file, const char *fmt) 10997 { 10998 int err, ret; 10999 FILE *f; 11000 11001 f = fopen(file, "re"); 11002 if (!f) { 11003 err = -errno; 11004 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 11005 return err; 11006 } 11007 err = fscanf(f, fmt, &ret); 11008 if (err != 1) { 11009 err = err == EOF ? -EIO : -errno; 11010 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11011 fclose(f); 11012 return err; 11013 } 11014 fclose(f); 11015 return ret; 11016 } 11017 11018 static int determine_kprobe_perf_type(void) 11019 { 11020 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11021 11022 return parse_uint_from_file(file, "%d\n"); 11023 } 11024 11025 static int determine_uprobe_perf_type(void) 11026 { 11027 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11028 11029 return parse_uint_from_file(file, "%d\n"); 11030 } 11031 11032 static int determine_kprobe_retprobe_bit(void) 11033 { 11034 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11035 11036 return parse_uint_from_file(file, "config:%d\n"); 11037 } 11038 11039 static int determine_uprobe_retprobe_bit(void) 11040 { 11041 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11042 11043 return parse_uint_from_file(file, "config:%d\n"); 11044 } 11045 11046 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11047 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11048 11049 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11050 uint64_t offset, int pid, size_t ref_ctr_off) 11051 { 11052 const size_t attr_sz = sizeof(struct perf_event_attr); 11053 struct perf_event_attr attr; 11054 int type, pfd; 11055 11056 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11057 return -EINVAL; 11058 11059 memset(&attr, 0, attr_sz); 11060 11061 type = uprobe ? determine_uprobe_perf_type() 11062 : determine_kprobe_perf_type(); 11063 if (type < 0) { 11064 pr_warn("failed to determine %s perf type: %s\n", 11065 uprobe ? "uprobe" : "kprobe", 11066 errstr(type)); 11067 return type; 11068 } 11069 if (retprobe) { 11070 int bit = uprobe ? determine_uprobe_retprobe_bit() 11071 : determine_kprobe_retprobe_bit(); 11072 11073 if (bit < 0) { 11074 pr_warn("failed to determine %s retprobe bit: %s\n", 11075 uprobe ? "uprobe" : "kprobe", 11076 errstr(bit)); 11077 return bit; 11078 } 11079 attr.config |= 1 << bit; 11080 } 11081 attr.size = attr_sz; 11082 attr.type = type; 11083 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11084 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11085 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11086 11087 /* pid filter is meaningful only for uprobes */ 11088 pfd = syscall(__NR_perf_event_open, &attr, 11089 pid < 0 ? -1 : pid /* pid */, 11090 pid == -1 ? 0 : -1 /* cpu */, 11091 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11092 return pfd >= 0 ? pfd : -errno; 11093 } 11094 11095 static int append_to_file(const char *file, const char *fmt, ...) 11096 { 11097 int fd, n, err = 0; 11098 va_list ap; 11099 char buf[1024]; 11100 11101 va_start(ap, fmt); 11102 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11103 va_end(ap); 11104 11105 if (n < 0 || n >= sizeof(buf)) 11106 return -EINVAL; 11107 11108 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11109 if (fd < 0) 11110 return -errno; 11111 11112 if (write(fd, buf, n) < 0) 11113 err = -errno; 11114 11115 close(fd); 11116 return err; 11117 } 11118 11119 #define DEBUGFS "/sys/kernel/debug/tracing" 11120 #define TRACEFS "/sys/kernel/tracing" 11121 11122 static bool use_debugfs(void) 11123 { 11124 static int has_debugfs = -1; 11125 11126 if (has_debugfs < 0) 11127 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11128 11129 return has_debugfs == 1; 11130 } 11131 11132 static const char *tracefs_path(void) 11133 { 11134 return use_debugfs() ? DEBUGFS : TRACEFS; 11135 } 11136 11137 static const char *tracefs_kprobe_events(void) 11138 { 11139 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11140 } 11141 11142 static const char *tracefs_uprobe_events(void) 11143 { 11144 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11145 } 11146 11147 static const char *tracefs_available_filter_functions(void) 11148 { 11149 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11150 : TRACEFS"/available_filter_functions"; 11151 } 11152 11153 static const char *tracefs_available_filter_functions_addrs(void) 11154 { 11155 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11156 : TRACEFS"/available_filter_functions_addrs"; 11157 } 11158 11159 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11160 const char *name, size_t offset) 11161 { 11162 static int index = 0; 11163 int i; 11164 11165 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11166 __sync_fetch_and_add(&index, 1), name, offset); 11167 11168 /* sanitize name in the probe name */ 11169 for (i = 0; buf[i]; i++) { 11170 if (!isalnum(buf[i])) 11171 buf[i] = '_'; 11172 } 11173 } 11174 11175 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11176 const char *kfunc_name, size_t offset) 11177 { 11178 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11179 retprobe ? 'r' : 'p', 11180 retprobe ? "kretprobes" : "kprobes", 11181 probe_name, kfunc_name, offset); 11182 } 11183 11184 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11185 { 11186 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11187 retprobe ? "kretprobes" : "kprobes", probe_name); 11188 } 11189 11190 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11191 { 11192 char file[256]; 11193 11194 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11195 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11196 11197 return parse_uint_from_file(file, "%d\n"); 11198 } 11199 11200 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11201 const char *kfunc_name, size_t offset, int pid) 11202 { 11203 const size_t attr_sz = sizeof(struct perf_event_attr); 11204 struct perf_event_attr attr; 11205 int type, pfd, err; 11206 11207 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11208 if (err < 0) { 11209 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11210 kfunc_name, offset, 11211 errstr(err)); 11212 return err; 11213 } 11214 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11215 if (type < 0) { 11216 err = type; 11217 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11218 kfunc_name, offset, 11219 errstr(err)); 11220 goto err_clean_legacy; 11221 } 11222 11223 memset(&attr, 0, attr_sz); 11224 attr.size = attr_sz; 11225 attr.config = type; 11226 attr.type = PERF_TYPE_TRACEPOINT; 11227 11228 pfd = syscall(__NR_perf_event_open, &attr, 11229 pid < 0 ? -1 : pid, /* pid */ 11230 pid == -1 ? 0 : -1, /* cpu */ 11231 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11232 if (pfd < 0) { 11233 err = -errno; 11234 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11235 errstr(err)); 11236 goto err_clean_legacy; 11237 } 11238 return pfd; 11239 11240 err_clean_legacy: 11241 /* Clear the newly added legacy kprobe_event */ 11242 remove_kprobe_event_legacy(probe_name, retprobe); 11243 return err; 11244 } 11245 11246 static const char *arch_specific_syscall_pfx(void) 11247 { 11248 #if defined(__x86_64__) 11249 return "x64"; 11250 #elif defined(__i386__) 11251 return "ia32"; 11252 #elif defined(__s390x__) 11253 return "s390x"; 11254 #elif defined(__s390__) 11255 return "s390"; 11256 #elif defined(__arm__) 11257 return "arm"; 11258 #elif defined(__aarch64__) 11259 return "arm64"; 11260 #elif defined(__mips__) 11261 return "mips"; 11262 #elif defined(__riscv) 11263 return "riscv"; 11264 #elif defined(__powerpc__) 11265 return "powerpc"; 11266 #elif defined(__powerpc64__) 11267 return "powerpc64"; 11268 #else 11269 return NULL; 11270 #endif 11271 } 11272 11273 int probe_kern_syscall_wrapper(int token_fd) 11274 { 11275 char syscall_name[64]; 11276 const char *ksys_pfx; 11277 11278 ksys_pfx = arch_specific_syscall_pfx(); 11279 if (!ksys_pfx) 11280 return 0; 11281 11282 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11283 11284 if (determine_kprobe_perf_type() >= 0) { 11285 int pfd; 11286 11287 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11288 if (pfd >= 0) 11289 close(pfd); 11290 11291 return pfd >= 0 ? 1 : 0; 11292 } else { /* legacy mode */ 11293 char probe_name[MAX_EVENT_NAME_LEN]; 11294 11295 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11296 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11297 return 0; 11298 11299 (void)remove_kprobe_event_legacy(probe_name, false); 11300 return 1; 11301 } 11302 } 11303 11304 struct bpf_link * 11305 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11306 const char *func_name, 11307 const struct bpf_kprobe_opts *opts) 11308 { 11309 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11310 enum probe_attach_mode attach_mode; 11311 char *legacy_probe = NULL; 11312 struct bpf_link *link; 11313 size_t offset; 11314 bool retprobe, legacy; 11315 int pfd, err; 11316 11317 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11318 return libbpf_err_ptr(-EINVAL); 11319 11320 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11321 retprobe = OPTS_GET(opts, retprobe, false); 11322 offset = OPTS_GET(opts, offset, 0); 11323 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11324 11325 legacy = determine_kprobe_perf_type() < 0; 11326 switch (attach_mode) { 11327 case PROBE_ATTACH_MODE_LEGACY: 11328 legacy = true; 11329 pe_opts.force_ioctl_attach = true; 11330 break; 11331 case PROBE_ATTACH_MODE_PERF: 11332 if (legacy) 11333 return libbpf_err_ptr(-ENOTSUP); 11334 pe_opts.force_ioctl_attach = true; 11335 break; 11336 case PROBE_ATTACH_MODE_LINK: 11337 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11338 return libbpf_err_ptr(-ENOTSUP); 11339 break; 11340 case PROBE_ATTACH_MODE_DEFAULT: 11341 break; 11342 default: 11343 return libbpf_err_ptr(-EINVAL); 11344 } 11345 11346 if (!legacy) { 11347 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11348 func_name, offset, 11349 -1 /* pid */, 0 /* ref_ctr_off */); 11350 } else { 11351 char probe_name[MAX_EVENT_NAME_LEN]; 11352 11353 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11354 func_name, offset); 11355 11356 legacy_probe = strdup(probe_name); 11357 if (!legacy_probe) 11358 return libbpf_err_ptr(-ENOMEM); 11359 11360 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11361 offset, -1 /* pid */); 11362 } 11363 if (pfd < 0) { 11364 err = -errno; 11365 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11366 prog->name, retprobe ? "kretprobe" : "kprobe", 11367 func_name, offset, 11368 errstr(err)); 11369 goto err_out; 11370 } 11371 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11372 err = libbpf_get_error(link); 11373 if (err) { 11374 close(pfd); 11375 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11376 prog->name, retprobe ? "kretprobe" : "kprobe", 11377 func_name, offset, 11378 errstr(err)); 11379 goto err_clean_legacy; 11380 } 11381 if (legacy) { 11382 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11383 11384 perf_link->legacy_probe_name = legacy_probe; 11385 perf_link->legacy_is_kprobe = true; 11386 perf_link->legacy_is_retprobe = retprobe; 11387 } 11388 11389 return link; 11390 11391 err_clean_legacy: 11392 if (legacy) 11393 remove_kprobe_event_legacy(legacy_probe, retprobe); 11394 err_out: 11395 free(legacy_probe); 11396 return libbpf_err_ptr(err); 11397 } 11398 11399 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11400 bool retprobe, 11401 const char *func_name) 11402 { 11403 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11404 .retprobe = retprobe, 11405 ); 11406 11407 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11408 } 11409 11410 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11411 const char *syscall_name, 11412 const struct bpf_ksyscall_opts *opts) 11413 { 11414 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11415 char func_name[128]; 11416 11417 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11418 return libbpf_err_ptr(-EINVAL); 11419 11420 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11421 /* arch_specific_syscall_pfx() should never return NULL here 11422 * because it is guarded by kernel_supports(). However, since 11423 * compiler does not know that we have an explicit conditional 11424 * as well. 11425 */ 11426 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11427 arch_specific_syscall_pfx() ? : "", syscall_name); 11428 } else { 11429 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11430 } 11431 11432 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11433 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11434 11435 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11436 } 11437 11438 /* Adapted from perf/util/string.c */ 11439 bool glob_match(const char *str, const char *pat) 11440 { 11441 while (*str && *pat && *pat != '*') { 11442 if (*pat == '?') { /* Matches any single character */ 11443 str++; 11444 pat++; 11445 continue; 11446 } 11447 if (*str != *pat) 11448 return false; 11449 str++; 11450 pat++; 11451 } 11452 /* Check wild card */ 11453 if (*pat == '*') { 11454 while (*pat == '*') 11455 pat++; 11456 if (!*pat) /* Tail wild card matches all */ 11457 return true; 11458 while (*str) 11459 if (glob_match(str++, pat)) 11460 return true; 11461 } 11462 return !*str && !*pat; 11463 } 11464 11465 struct kprobe_multi_resolve { 11466 const char *pattern; 11467 unsigned long *addrs; 11468 size_t cap; 11469 size_t cnt; 11470 }; 11471 11472 struct avail_kallsyms_data { 11473 char **syms; 11474 size_t cnt; 11475 struct kprobe_multi_resolve *res; 11476 }; 11477 11478 static int avail_func_cmp(const void *a, const void *b) 11479 { 11480 return strcmp(*(const char **)a, *(const char **)b); 11481 } 11482 11483 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11484 const char *sym_name, void *ctx) 11485 { 11486 struct avail_kallsyms_data *data = ctx; 11487 struct kprobe_multi_resolve *res = data->res; 11488 int err; 11489 11490 if (!glob_match(sym_name, res->pattern)) 11491 return 0; 11492 11493 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11494 /* Some versions of kernel strip out .llvm.<hash> suffix from 11495 * function names reported in available_filter_functions, but 11496 * don't do so for kallsyms. While this is clearly a kernel 11497 * bug (fixed by [0]) we try to accommodate that in libbpf to 11498 * make multi-kprobe usability a bit better: if no match is 11499 * found, we will strip .llvm. suffix and try one more time. 11500 * 11501 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11502 */ 11503 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11504 11505 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11506 return 0; 11507 11508 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11509 * coercion differences and get proper `const char **` pointer 11510 * which avail_func_cmp() expects 11511 */ 11512 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11513 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11514 return 0; 11515 } 11516 11517 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11518 if (err) 11519 return err; 11520 11521 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11522 return 0; 11523 } 11524 11525 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11526 { 11527 const char *available_functions_file = tracefs_available_filter_functions(); 11528 struct avail_kallsyms_data data; 11529 char sym_name[500]; 11530 FILE *f; 11531 int err = 0, ret, i; 11532 char **syms = NULL; 11533 size_t cap = 0, cnt = 0; 11534 11535 f = fopen(available_functions_file, "re"); 11536 if (!f) { 11537 err = -errno; 11538 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11539 return err; 11540 } 11541 11542 while (true) { 11543 char *name; 11544 11545 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11546 if (ret == EOF && feof(f)) 11547 break; 11548 11549 if (ret != 1) { 11550 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11551 err = -EINVAL; 11552 goto cleanup; 11553 } 11554 11555 if (!glob_match(sym_name, res->pattern)) 11556 continue; 11557 11558 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11559 if (err) 11560 goto cleanup; 11561 11562 name = strdup(sym_name); 11563 if (!name) { 11564 err = -errno; 11565 goto cleanup; 11566 } 11567 11568 syms[cnt++] = name; 11569 } 11570 11571 /* no entries found, bail out */ 11572 if (cnt == 0) { 11573 err = -ENOENT; 11574 goto cleanup; 11575 } 11576 11577 /* sort available functions */ 11578 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11579 11580 data.syms = syms; 11581 data.res = res; 11582 data.cnt = cnt; 11583 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11584 11585 if (res->cnt == 0) 11586 err = -ENOENT; 11587 11588 cleanup: 11589 for (i = 0; i < cnt; i++) 11590 free((char *)syms[i]); 11591 free(syms); 11592 11593 fclose(f); 11594 return err; 11595 } 11596 11597 static bool has_available_filter_functions_addrs(void) 11598 { 11599 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11600 } 11601 11602 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11603 { 11604 const char *available_path = tracefs_available_filter_functions_addrs(); 11605 char sym_name[500]; 11606 FILE *f; 11607 int ret, err = 0; 11608 unsigned long long sym_addr; 11609 11610 f = fopen(available_path, "re"); 11611 if (!f) { 11612 err = -errno; 11613 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11614 return err; 11615 } 11616 11617 while (true) { 11618 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11619 if (ret == EOF && feof(f)) 11620 break; 11621 11622 if (ret != 2) { 11623 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11624 ret); 11625 err = -EINVAL; 11626 goto cleanup; 11627 } 11628 11629 if (!glob_match(sym_name, res->pattern)) 11630 continue; 11631 11632 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11633 sizeof(*res->addrs), res->cnt + 1); 11634 if (err) 11635 goto cleanup; 11636 11637 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11638 } 11639 11640 if (res->cnt == 0) 11641 err = -ENOENT; 11642 11643 cleanup: 11644 fclose(f); 11645 return err; 11646 } 11647 11648 struct bpf_link * 11649 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11650 const char *pattern, 11651 const struct bpf_kprobe_multi_opts *opts) 11652 { 11653 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11654 struct kprobe_multi_resolve res = { 11655 .pattern = pattern, 11656 }; 11657 enum bpf_attach_type attach_type; 11658 struct bpf_link *link = NULL; 11659 const unsigned long *addrs; 11660 int err, link_fd, prog_fd; 11661 bool retprobe, session, unique_match; 11662 const __u64 *cookies; 11663 const char **syms; 11664 size_t cnt; 11665 11666 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11667 return libbpf_err_ptr(-EINVAL); 11668 11669 prog_fd = bpf_program__fd(prog); 11670 if (prog_fd < 0) { 11671 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11672 prog->name); 11673 return libbpf_err_ptr(-EINVAL); 11674 } 11675 11676 syms = OPTS_GET(opts, syms, false); 11677 addrs = OPTS_GET(opts, addrs, false); 11678 cnt = OPTS_GET(opts, cnt, false); 11679 cookies = OPTS_GET(opts, cookies, false); 11680 unique_match = OPTS_GET(opts, unique_match, false); 11681 11682 if (!pattern && !addrs && !syms) 11683 return libbpf_err_ptr(-EINVAL); 11684 if (pattern && (addrs || syms || cookies || cnt)) 11685 return libbpf_err_ptr(-EINVAL); 11686 if (!pattern && !cnt) 11687 return libbpf_err_ptr(-EINVAL); 11688 if (!pattern && unique_match) 11689 return libbpf_err_ptr(-EINVAL); 11690 if (addrs && syms) 11691 return libbpf_err_ptr(-EINVAL); 11692 11693 if (pattern) { 11694 if (has_available_filter_functions_addrs()) 11695 err = libbpf_available_kprobes_parse(&res); 11696 else 11697 err = libbpf_available_kallsyms_parse(&res); 11698 if (err) 11699 goto error; 11700 11701 if (unique_match && res.cnt != 1) { 11702 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11703 prog->name, pattern, res.cnt); 11704 err = -EINVAL; 11705 goto error; 11706 } 11707 11708 addrs = res.addrs; 11709 cnt = res.cnt; 11710 } 11711 11712 retprobe = OPTS_GET(opts, retprobe, false); 11713 session = OPTS_GET(opts, session, false); 11714 11715 if (retprobe && session) 11716 return libbpf_err_ptr(-EINVAL); 11717 11718 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11719 11720 lopts.kprobe_multi.syms = syms; 11721 lopts.kprobe_multi.addrs = addrs; 11722 lopts.kprobe_multi.cookies = cookies; 11723 lopts.kprobe_multi.cnt = cnt; 11724 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11725 11726 link = calloc(1, sizeof(*link)); 11727 if (!link) { 11728 err = -ENOMEM; 11729 goto error; 11730 } 11731 link->detach = &bpf_link__detach_fd; 11732 11733 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11734 if (link_fd < 0) { 11735 err = -errno; 11736 pr_warn("prog '%s': failed to attach: %s\n", 11737 prog->name, errstr(err)); 11738 goto error; 11739 } 11740 link->fd = link_fd; 11741 free(res.addrs); 11742 return link; 11743 11744 error: 11745 free(link); 11746 free(res.addrs); 11747 return libbpf_err_ptr(err); 11748 } 11749 11750 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11751 { 11752 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11753 unsigned long offset = 0; 11754 const char *func_name; 11755 char *func; 11756 int n; 11757 11758 *link = NULL; 11759 11760 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11761 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11762 return 0; 11763 11764 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11765 if (opts.retprobe) 11766 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11767 else 11768 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11769 11770 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11771 if (n < 1) { 11772 pr_warn("kprobe name is invalid: %s\n", func_name); 11773 return -EINVAL; 11774 } 11775 if (opts.retprobe && offset != 0) { 11776 free(func); 11777 pr_warn("kretprobes do not support offset specification\n"); 11778 return -EINVAL; 11779 } 11780 11781 opts.offset = offset; 11782 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11783 free(func); 11784 return libbpf_get_error(*link); 11785 } 11786 11787 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11788 { 11789 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11790 const char *syscall_name; 11791 11792 *link = NULL; 11793 11794 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11795 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11796 return 0; 11797 11798 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11799 if (opts.retprobe) 11800 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11801 else 11802 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11803 11804 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11805 return *link ? 0 : -errno; 11806 } 11807 11808 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11809 { 11810 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11811 const char *spec; 11812 char *pattern; 11813 int n; 11814 11815 *link = NULL; 11816 11817 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11818 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11819 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11820 return 0; 11821 11822 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11823 if (opts.retprobe) 11824 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11825 else 11826 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11827 11828 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11829 if (n < 1) { 11830 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11831 return -EINVAL; 11832 } 11833 11834 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11835 free(pattern); 11836 return libbpf_get_error(*link); 11837 } 11838 11839 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11840 struct bpf_link **link) 11841 { 11842 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11843 const char *spec; 11844 char *pattern; 11845 int n; 11846 11847 *link = NULL; 11848 11849 /* no auto-attach for SEC("kprobe.session") */ 11850 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11851 return 0; 11852 11853 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11854 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11855 if (n < 1) { 11856 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11857 return -EINVAL; 11858 } 11859 11860 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11861 free(pattern); 11862 return *link ? 0 : -errno; 11863 } 11864 11865 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11866 { 11867 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11868 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11869 int n, ret = -EINVAL; 11870 11871 *link = NULL; 11872 11873 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11874 &probe_type, &binary_path, &func_name); 11875 switch (n) { 11876 case 1: 11877 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11878 ret = 0; 11879 break; 11880 case 3: 11881 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11882 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11883 11884 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11885 ret = libbpf_get_error(*link); 11886 break; 11887 default: 11888 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11889 prog->sec_name); 11890 break; 11891 } 11892 free(probe_type); 11893 free(binary_path); 11894 free(func_name); 11895 return ret; 11896 } 11897 11898 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11899 const char *binary_path, size_t offset) 11900 { 11901 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11902 retprobe ? 'r' : 'p', 11903 retprobe ? "uretprobes" : "uprobes", 11904 probe_name, binary_path, offset); 11905 } 11906 11907 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11908 { 11909 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11910 retprobe ? "uretprobes" : "uprobes", probe_name); 11911 } 11912 11913 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11914 { 11915 char file[512]; 11916 11917 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11918 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11919 11920 return parse_uint_from_file(file, "%d\n"); 11921 } 11922 11923 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11924 const char *binary_path, size_t offset, int pid) 11925 { 11926 const size_t attr_sz = sizeof(struct perf_event_attr); 11927 struct perf_event_attr attr; 11928 int type, pfd, err; 11929 11930 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11931 if (err < 0) { 11932 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11933 binary_path, (size_t)offset, errstr(err)); 11934 return err; 11935 } 11936 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11937 if (type < 0) { 11938 err = type; 11939 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11940 binary_path, offset, errstr(err)); 11941 goto err_clean_legacy; 11942 } 11943 11944 memset(&attr, 0, attr_sz); 11945 attr.size = attr_sz; 11946 attr.config = type; 11947 attr.type = PERF_TYPE_TRACEPOINT; 11948 11949 pfd = syscall(__NR_perf_event_open, &attr, 11950 pid < 0 ? -1 : pid, /* pid */ 11951 pid == -1 ? 0 : -1, /* cpu */ 11952 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11953 if (pfd < 0) { 11954 err = -errno; 11955 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11956 goto err_clean_legacy; 11957 } 11958 return pfd; 11959 11960 err_clean_legacy: 11961 /* Clear the newly added legacy uprobe_event */ 11962 remove_uprobe_event_legacy(probe_name, retprobe); 11963 return err; 11964 } 11965 11966 /* Find offset of function name in archive specified by path. Currently 11967 * supported are .zip files that do not compress their contents, as used on 11968 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11969 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11970 * library functions. 11971 * 11972 * An overview of the APK format specifically provided here: 11973 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11974 */ 11975 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11976 const char *func_name) 11977 { 11978 struct zip_archive *archive; 11979 struct zip_entry entry; 11980 long ret; 11981 Elf *elf; 11982 11983 archive = zip_archive_open(archive_path); 11984 if (IS_ERR(archive)) { 11985 ret = PTR_ERR(archive); 11986 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11987 return ret; 11988 } 11989 11990 ret = zip_archive_find_entry(archive, file_name, &entry); 11991 if (ret) { 11992 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11993 archive_path, ret); 11994 goto out; 11995 } 11996 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11997 (unsigned long)entry.data_offset); 11998 11999 if (entry.compression) { 12000 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 12001 archive_path); 12002 ret = -LIBBPF_ERRNO__FORMAT; 12003 goto out; 12004 } 12005 12006 elf = elf_memory((void *)entry.data, entry.data_length); 12007 if (!elf) { 12008 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12009 elf_errmsg(-1)); 12010 ret = -LIBBPF_ERRNO__LIBELF; 12011 goto out; 12012 } 12013 12014 ret = elf_find_func_offset(elf, file_name, func_name); 12015 if (ret > 0) { 12016 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12017 func_name, file_name, archive_path, entry.data_offset, ret, 12018 ret + entry.data_offset); 12019 ret += entry.data_offset; 12020 } 12021 elf_end(elf); 12022 12023 out: 12024 zip_archive_close(archive); 12025 return ret; 12026 } 12027 12028 static const char *arch_specific_lib_paths(void) 12029 { 12030 /* 12031 * Based on https://packages.debian.org/sid/libc6. 12032 * 12033 * Assume that the traced program is built for the same architecture 12034 * as libbpf, which should cover the vast majority of cases. 12035 */ 12036 #if defined(__x86_64__) 12037 return "/lib/x86_64-linux-gnu"; 12038 #elif defined(__i386__) 12039 return "/lib/i386-linux-gnu"; 12040 #elif defined(__s390x__) 12041 return "/lib/s390x-linux-gnu"; 12042 #elif defined(__s390__) 12043 return "/lib/s390-linux-gnu"; 12044 #elif defined(__arm__) && defined(__SOFTFP__) 12045 return "/lib/arm-linux-gnueabi"; 12046 #elif defined(__arm__) && !defined(__SOFTFP__) 12047 return "/lib/arm-linux-gnueabihf"; 12048 #elif defined(__aarch64__) 12049 return "/lib/aarch64-linux-gnu"; 12050 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12051 return "/lib/mips64el-linux-gnuabi64"; 12052 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12053 return "/lib/mipsel-linux-gnu"; 12054 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12055 return "/lib/powerpc64le-linux-gnu"; 12056 #elif defined(__sparc__) && defined(__arch64__) 12057 return "/lib/sparc64-linux-gnu"; 12058 #elif defined(__riscv) && __riscv_xlen == 64 12059 return "/lib/riscv64-linux-gnu"; 12060 #else 12061 return NULL; 12062 #endif 12063 } 12064 12065 /* Get full path to program/shared library. */ 12066 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12067 { 12068 const char *search_paths[3] = {}; 12069 int i, perm; 12070 12071 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12072 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12073 search_paths[1] = "/usr/lib64:/usr/lib"; 12074 search_paths[2] = arch_specific_lib_paths(); 12075 perm = R_OK; 12076 } else { 12077 search_paths[0] = getenv("PATH"); 12078 search_paths[1] = "/usr/bin:/usr/sbin"; 12079 perm = R_OK | X_OK; 12080 } 12081 12082 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12083 const char *s; 12084 12085 if (!search_paths[i]) 12086 continue; 12087 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12088 char *next_path; 12089 int seg_len; 12090 12091 if (s[0] == ':') 12092 s++; 12093 next_path = strchr(s, ':'); 12094 seg_len = next_path ? next_path - s : strlen(s); 12095 if (!seg_len) 12096 continue; 12097 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12098 /* ensure it has required permissions */ 12099 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12100 continue; 12101 pr_debug("resolved '%s' to '%s'\n", file, result); 12102 return 0; 12103 } 12104 } 12105 return -ENOENT; 12106 } 12107 12108 struct bpf_link * 12109 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12110 pid_t pid, 12111 const char *path, 12112 const char *func_pattern, 12113 const struct bpf_uprobe_multi_opts *opts) 12114 { 12115 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12116 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12117 unsigned long *resolved_offsets = NULL; 12118 enum bpf_attach_type attach_type; 12119 int err = 0, link_fd, prog_fd; 12120 struct bpf_link *link = NULL; 12121 char full_path[PATH_MAX]; 12122 bool retprobe, session; 12123 const __u64 *cookies; 12124 const char **syms; 12125 size_t cnt; 12126 12127 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12128 return libbpf_err_ptr(-EINVAL); 12129 12130 prog_fd = bpf_program__fd(prog); 12131 if (prog_fd < 0) { 12132 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12133 prog->name); 12134 return libbpf_err_ptr(-EINVAL); 12135 } 12136 12137 syms = OPTS_GET(opts, syms, NULL); 12138 offsets = OPTS_GET(opts, offsets, NULL); 12139 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12140 cookies = OPTS_GET(opts, cookies, NULL); 12141 cnt = OPTS_GET(opts, cnt, 0); 12142 retprobe = OPTS_GET(opts, retprobe, false); 12143 session = OPTS_GET(opts, session, false); 12144 12145 /* 12146 * User can specify 2 mutually exclusive set of inputs: 12147 * 12148 * 1) use only path/func_pattern/pid arguments 12149 * 12150 * 2) use path/pid with allowed combinations of: 12151 * syms/offsets/ref_ctr_offsets/cookies/cnt 12152 * 12153 * - syms and offsets are mutually exclusive 12154 * - ref_ctr_offsets and cookies are optional 12155 * 12156 * Any other usage results in error. 12157 */ 12158 12159 if (!path) 12160 return libbpf_err_ptr(-EINVAL); 12161 if (!func_pattern && cnt == 0) 12162 return libbpf_err_ptr(-EINVAL); 12163 12164 if (func_pattern) { 12165 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12166 return libbpf_err_ptr(-EINVAL); 12167 } else { 12168 if (!!syms == !!offsets) 12169 return libbpf_err_ptr(-EINVAL); 12170 } 12171 12172 if (retprobe && session) 12173 return libbpf_err_ptr(-EINVAL); 12174 12175 if (func_pattern) { 12176 if (!strchr(path, '/')) { 12177 err = resolve_full_path(path, full_path, sizeof(full_path)); 12178 if (err) { 12179 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12180 prog->name, path, errstr(err)); 12181 return libbpf_err_ptr(err); 12182 } 12183 path = full_path; 12184 } 12185 12186 err = elf_resolve_pattern_offsets(path, func_pattern, 12187 &resolved_offsets, &cnt); 12188 if (err < 0) 12189 return libbpf_err_ptr(err); 12190 offsets = resolved_offsets; 12191 } else if (syms) { 12192 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12193 if (err < 0) 12194 return libbpf_err_ptr(err); 12195 offsets = resolved_offsets; 12196 } 12197 12198 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12199 12200 lopts.uprobe_multi.path = path; 12201 lopts.uprobe_multi.offsets = offsets; 12202 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12203 lopts.uprobe_multi.cookies = cookies; 12204 lopts.uprobe_multi.cnt = cnt; 12205 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12206 12207 if (pid == 0) 12208 pid = getpid(); 12209 if (pid > 0) 12210 lopts.uprobe_multi.pid = pid; 12211 12212 link = calloc(1, sizeof(*link)); 12213 if (!link) { 12214 err = -ENOMEM; 12215 goto error; 12216 } 12217 link->detach = &bpf_link__detach_fd; 12218 12219 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12220 if (link_fd < 0) { 12221 err = -errno; 12222 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12223 prog->name, errstr(err)); 12224 goto error; 12225 } 12226 link->fd = link_fd; 12227 free(resolved_offsets); 12228 return link; 12229 12230 error: 12231 free(resolved_offsets); 12232 free(link); 12233 return libbpf_err_ptr(err); 12234 } 12235 12236 LIBBPF_API struct bpf_link * 12237 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12238 const char *binary_path, size_t func_offset, 12239 const struct bpf_uprobe_opts *opts) 12240 { 12241 const char *archive_path = NULL, *archive_sep = NULL; 12242 char *legacy_probe = NULL; 12243 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12244 enum probe_attach_mode attach_mode; 12245 char full_path[PATH_MAX]; 12246 struct bpf_link *link; 12247 size_t ref_ctr_off; 12248 int pfd, err; 12249 bool retprobe, legacy; 12250 const char *func_name; 12251 12252 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12253 return libbpf_err_ptr(-EINVAL); 12254 12255 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12256 retprobe = OPTS_GET(opts, retprobe, false); 12257 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12258 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12259 12260 if (!binary_path) 12261 return libbpf_err_ptr(-EINVAL); 12262 12263 /* Check if "binary_path" refers to an archive. */ 12264 archive_sep = strstr(binary_path, "!/"); 12265 if (archive_sep) { 12266 full_path[0] = '\0'; 12267 libbpf_strlcpy(full_path, binary_path, 12268 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12269 archive_path = full_path; 12270 binary_path = archive_sep + 2; 12271 } else if (!strchr(binary_path, '/')) { 12272 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12273 if (err) { 12274 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12275 prog->name, binary_path, errstr(err)); 12276 return libbpf_err_ptr(err); 12277 } 12278 binary_path = full_path; 12279 } 12280 func_name = OPTS_GET(opts, func_name, NULL); 12281 if (func_name) { 12282 long sym_off; 12283 12284 if (archive_path) { 12285 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12286 func_name); 12287 binary_path = archive_path; 12288 } else { 12289 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12290 } 12291 if (sym_off < 0) 12292 return libbpf_err_ptr(sym_off); 12293 func_offset += sym_off; 12294 } 12295 12296 legacy = determine_uprobe_perf_type() < 0; 12297 switch (attach_mode) { 12298 case PROBE_ATTACH_MODE_LEGACY: 12299 legacy = true; 12300 pe_opts.force_ioctl_attach = true; 12301 break; 12302 case PROBE_ATTACH_MODE_PERF: 12303 if (legacy) 12304 return libbpf_err_ptr(-ENOTSUP); 12305 pe_opts.force_ioctl_attach = true; 12306 break; 12307 case PROBE_ATTACH_MODE_LINK: 12308 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12309 return libbpf_err_ptr(-ENOTSUP); 12310 break; 12311 case PROBE_ATTACH_MODE_DEFAULT: 12312 break; 12313 default: 12314 return libbpf_err_ptr(-EINVAL); 12315 } 12316 12317 if (!legacy) { 12318 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12319 func_offset, pid, ref_ctr_off); 12320 } else { 12321 char probe_name[MAX_EVENT_NAME_LEN]; 12322 12323 if (ref_ctr_off) 12324 return libbpf_err_ptr(-EINVAL); 12325 12326 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12327 strrchr(binary_path, '/') ? : binary_path, 12328 func_offset); 12329 12330 legacy_probe = strdup(probe_name); 12331 if (!legacy_probe) 12332 return libbpf_err_ptr(-ENOMEM); 12333 12334 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12335 binary_path, func_offset, pid); 12336 } 12337 if (pfd < 0) { 12338 err = -errno; 12339 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12340 prog->name, retprobe ? "uretprobe" : "uprobe", 12341 binary_path, func_offset, 12342 errstr(err)); 12343 goto err_out; 12344 } 12345 12346 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12347 err = libbpf_get_error(link); 12348 if (err) { 12349 close(pfd); 12350 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12351 prog->name, retprobe ? "uretprobe" : "uprobe", 12352 binary_path, func_offset, 12353 errstr(err)); 12354 goto err_clean_legacy; 12355 } 12356 if (legacy) { 12357 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12358 12359 perf_link->legacy_probe_name = legacy_probe; 12360 perf_link->legacy_is_kprobe = false; 12361 perf_link->legacy_is_retprobe = retprobe; 12362 } 12363 return link; 12364 12365 err_clean_legacy: 12366 if (legacy) 12367 remove_uprobe_event_legacy(legacy_probe, retprobe); 12368 err_out: 12369 free(legacy_probe); 12370 return libbpf_err_ptr(err); 12371 } 12372 12373 /* Format of u[ret]probe section definition supporting auto-attach: 12374 * u[ret]probe/binary:function[+offset] 12375 * 12376 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12377 * full binary path via bpf_program__attach_uprobe_opts. 12378 * 12379 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12380 * specified (and auto-attach is not possible) or the above format is specified for 12381 * auto-attach. 12382 */ 12383 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12384 { 12385 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12386 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12387 int n, c, ret = -EINVAL; 12388 long offset = 0; 12389 12390 *link = NULL; 12391 12392 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12393 &probe_type, &binary_path, &func_name); 12394 switch (n) { 12395 case 1: 12396 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12397 ret = 0; 12398 break; 12399 case 2: 12400 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12401 prog->name, prog->sec_name); 12402 break; 12403 case 3: 12404 /* check if user specifies `+offset`, if yes, this should be 12405 * the last part of the string, make sure sscanf read to EOL 12406 */ 12407 func_off = strrchr(func_name, '+'); 12408 if (func_off) { 12409 n = sscanf(func_off, "+%li%n", &offset, &c); 12410 if (n == 1 && *(func_off + c) == '\0') 12411 func_off[0] = '\0'; 12412 else 12413 offset = 0; 12414 } 12415 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12416 strcmp(probe_type, "uretprobe.s") == 0; 12417 if (opts.retprobe && offset != 0) { 12418 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12419 prog->name); 12420 break; 12421 } 12422 opts.func_name = func_name; 12423 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12424 ret = libbpf_get_error(*link); 12425 break; 12426 default: 12427 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12428 prog->sec_name); 12429 break; 12430 } 12431 free(probe_type); 12432 free(binary_path); 12433 free(func_name); 12434 12435 return ret; 12436 } 12437 12438 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12439 bool retprobe, pid_t pid, 12440 const char *binary_path, 12441 size_t func_offset) 12442 { 12443 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12444 12445 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12446 } 12447 12448 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12449 pid_t pid, const char *binary_path, 12450 const char *usdt_provider, const char *usdt_name, 12451 const struct bpf_usdt_opts *opts) 12452 { 12453 char resolved_path[512]; 12454 struct bpf_object *obj = prog->obj; 12455 struct bpf_link *link; 12456 __u64 usdt_cookie; 12457 int err; 12458 12459 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12460 return libbpf_err_ptr(-EINVAL); 12461 12462 if (bpf_program__fd(prog) < 0) { 12463 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12464 prog->name); 12465 return libbpf_err_ptr(-EINVAL); 12466 } 12467 12468 if (!binary_path) 12469 return libbpf_err_ptr(-EINVAL); 12470 12471 if (!strchr(binary_path, '/')) { 12472 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12473 if (err) { 12474 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12475 prog->name, binary_path, errstr(err)); 12476 return libbpf_err_ptr(err); 12477 } 12478 binary_path = resolved_path; 12479 } 12480 12481 /* USDT manager is instantiated lazily on first USDT attach. It will 12482 * be destroyed together with BPF object in bpf_object__close(). 12483 */ 12484 if (IS_ERR(obj->usdt_man)) 12485 return libbpf_ptr(obj->usdt_man); 12486 if (!obj->usdt_man) { 12487 obj->usdt_man = usdt_manager_new(obj); 12488 if (IS_ERR(obj->usdt_man)) 12489 return libbpf_ptr(obj->usdt_man); 12490 } 12491 12492 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12493 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12494 usdt_provider, usdt_name, usdt_cookie); 12495 err = libbpf_get_error(link); 12496 if (err) 12497 return libbpf_err_ptr(err); 12498 return link; 12499 } 12500 12501 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12502 { 12503 char *path = NULL, *provider = NULL, *name = NULL; 12504 const char *sec_name; 12505 int n, err; 12506 12507 sec_name = bpf_program__section_name(prog); 12508 if (strcmp(sec_name, "usdt") == 0) { 12509 /* no auto-attach for just SEC("usdt") */ 12510 *link = NULL; 12511 return 0; 12512 } 12513 12514 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12515 if (n != 3) { 12516 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12517 sec_name); 12518 err = -EINVAL; 12519 } else { 12520 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12521 provider, name, NULL); 12522 err = libbpf_get_error(*link); 12523 } 12524 free(path); 12525 free(provider); 12526 free(name); 12527 return err; 12528 } 12529 12530 static int determine_tracepoint_id(const char *tp_category, 12531 const char *tp_name) 12532 { 12533 char file[PATH_MAX]; 12534 int ret; 12535 12536 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12537 tracefs_path(), tp_category, tp_name); 12538 if (ret < 0) 12539 return -errno; 12540 if (ret >= sizeof(file)) { 12541 pr_debug("tracepoint %s/%s path is too long\n", 12542 tp_category, tp_name); 12543 return -E2BIG; 12544 } 12545 return parse_uint_from_file(file, "%d\n"); 12546 } 12547 12548 static int perf_event_open_tracepoint(const char *tp_category, 12549 const char *tp_name) 12550 { 12551 const size_t attr_sz = sizeof(struct perf_event_attr); 12552 struct perf_event_attr attr; 12553 int tp_id, pfd, err; 12554 12555 tp_id = determine_tracepoint_id(tp_category, tp_name); 12556 if (tp_id < 0) { 12557 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12558 tp_category, tp_name, 12559 errstr(tp_id)); 12560 return tp_id; 12561 } 12562 12563 memset(&attr, 0, attr_sz); 12564 attr.type = PERF_TYPE_TRACEPOINT; 12565 attr.size = attr_sz; 12566 attr.config = tp_id; 12567 12568 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12569 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12570 if (pfd < 0) { 12571 err = -errno; 12572 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12573 tp_category, tp_name, 12574 errstr(err)); 12575 return err; 12576 } 12577 return pfd; 12578 } 12579 12580 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12581 const char *tp_category, 12582 const char *tp_name, 12583 const struct bpf_tracepoint_opts *opts) 12584 { 12585 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12586 struct bpf_link *link; 12587 int pfd, err; 12588 12589 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12590 return libbpf_err_ptr(-EINVAL); 12591 12592 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12593 12594 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12595 if (pfd < 0) { 12596 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12597 prog->name, tp_category, tp_name, 12598 errstr(pfd)); 12599 return libbpf_err_ptr(pfd); 12600 } 12601 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12602 err = libbpf_get_error(link); 12603 if (err) { 12604 close(pfd); 12605 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12606 prog->name, tp_category, tp_name, 12607 errstr(err)); 12608 return libbpf_err_ptr(err); 12609 } 12610 return link; 12611 } 12612 12613 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12614 const char *tp_category, 12615 const char *tp_name) 12616 { 12617 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12618 } 12619 12620 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12621 { 12622 char *sec_name, *tp_cat, *tp_name; 12623 12624 *link = NULL; 12625 12626 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12627 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12628 return 0; 12629 12630 sec_name = strdup(prog->sec_name); 12631 if (!sec_name) 12632 return -ENOMEM; 12633 12634 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12635 if (str_has_pfx(prog->sec_name, "tp/")) 12636 tp_cat = sec_name + sizeof("tp/") - 1; 12637 else 12638 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12639 tp_name = strchr(tp_cat, '/'); 12640 if (!tp_name) { 12641 free(sec_name); 12642 return -EINVAL; 12643 } 12644 *tp_name = '\0'; 12645 tp_name++; 12646 12647 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12648 free(sec_name); 12649 return libbpf_get_error(*link); 12650 } 12651 12652 struct bpf_link * 12653 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12654 const char *tp_name, 12655 struct bpf_raw_tracepoint_opts *opts) 12656 { 12657 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12658 struct bpf_link *link; 12659 int prog_fd, pfd; 12660 12661 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12662 return libbpf_err_ptr(-EINVAL); 12663 12664 prog_fd = bpf_program__fd(prog); 12665 if (prog_fd < 0) { 12666 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12667 return libbpf_err_ptr(-EINVAL); 12668 } 12669 12670 link = calloc(1, sizeof(*link)); 12671 if (!link) 12672 return libbpf_err_ptr(-ENOMEM); 12673 link->detach = &bpf_link__detach_fd; 12674 12675 raw_opts.tp_name = tp_name; 12676 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12677 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12678 if (pfd < 0) { 12679 pfd = -errno; 12680 free(link); 12681 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12682 prog->name, tp_name, errstr(pfd)); 12683 return libbpf_err_ptr(pfd); 12684 } 12685 link->fd = pfd; 12686 return link; 12687 } 12688 12689 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12690 const char *tp_name) 12691 { 12692 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12693 } 12694 12695 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12696 { 12697 static const char *const prefixes[] = { 12698 "raw_tp", 12699 "raw_tracepoint", 12700 "raw_tp.w", 12701 "raw_tracepoint.w", 12702 }; 12703 size_t i; 12704 const char *tp_name = NULL; 12705 12706 *link = NULL; 12707 12708 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12709 size_t pfx_len; 12710 12711 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12712 continue; 12713 12714 pfx_len = strlen(prefixes[i]); 12715 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12716 if (prog->sec_name[pfx_len] == '\0') 12717 return 0; 12718 12719 if (prog->sec_name[pfx_len] != '/') 12720 continue; 12721 12722 tp_name = prog->sec_name + pfx_len + 1; 12723 break; 12724 } 12725 12726 if (!tp_name) { 12727 pr_warn("prog '%s': invalid section name '%s'\n", 12728 prog->name, prog->sec_name); 12729 return -EINVAL; 12730 } 12731 12732 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12733 return libbpf_get_error(*link); 12734 } 12735 12736 /* Common logic for all BPF program types that attach to a btf_id */ 12737 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12738 const struct bpf_trace_opts *opts) 12739 { 12740 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12741 struct bpf_link *link; 12742 int prog_fd, pfd; 12743 12744 if (!OPTS_VALID(opts, bpf_trace_opts)) 12745 return libbpf_err_ptr(-EINVAL); 12746 12747 prog_fd = bpf_program__fd(prog); 12748 if (prog_fd < 0) { 12749 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12750 return libbpf_err_ptr(-EINVAL); 12751 } 12752 12753 link = calloc(1, sizeof(*link)); 12754 if (!link) 12755 return libbpf_err_ptr(-ENOMEM); 12756 link->detach = &bpf_link__detach_fd; 12757 12758 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12759 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12760 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12761 if (pfd < 0) { 12762 pfd = -errno; 12763 free(link); 12764 pr_warn("prog '%s': failed to attach: %s\n", 12765 prog->name, errstr(pfd)); 12766 return libbpf_err_ptr(pfd); 12767 } 12768 link->fd = pfd; 12769 return link; 12770 } 12771 12772 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12773 { 12774 return bpf_program__attach_btf_id(prog, NULL); 12775 } 12776 12777 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12778 const struct bpf_trace_opts *opts) 12779 { 12780 return bpf_program__attach_btf_id(prog, opts); 12781 } 12782 12783 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12784 { 12785 return bpf_program__attach_btf_id(prog, NULL); 12786 } 12787 12788 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12789 { 12790 *link = bpf_program__attach_trace(prog); 12791 return libbpf_get_error(*link); 12792 } 12793 12794 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12795 { 12796 *link = bpf_program__attach_lsm(prog); 12797 return libbpf_get_error(*link); 12798 } 12799 12800 static struct bpf_link * 12801 bpf_program_attach_fd(const struct bpf_program *prog, 12802 int target_fd, const char *target_name, 12803 const struct bpf_link_create_opts *opts) 12804 { 12805 enum bpf_attach_type attach_type; 12806 struct bpf_link *link; 12807 int prog_fd, link_fd; 12808 12809 prog_fd = bpf_program__fd(prog); 12810 if (prog_fd < 0) { 12811 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12812 return libbpf_err_ptr(-EINVAL); 12813 } 12814 12815 link = calloc(1, sizeof(*link)); 12816 if (!link) 12817 return libbpf_err_ptr(-ENOMEM); 12818 link->detach = &bpf_link__detach_fd; 12819 12820 attach_type = bpf_program__expected_attach_type(prog); 12821 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12822 if (link_fd < 0) { 12823 link_fd = -errno; 12824 free(link); 12825 pr_warn("prog '%s': failed to attach to %s: %s\n", 12826 prog->name, target_name, 12827 errstr(link_fd)); 12828 return libbpf_err_ptr(link_fd); 12829 } 12830 link->fd = link_fd; 12831 return link; 12832 } 12833 12834 struct bpf_link * 12835 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12836 { 12837 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12838 } 12839 12840 struct bpf_link * 12841 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12842 { 12843 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12844 } 12845 12846 struct bpf_link * 12847 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12848 { 12849 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12850 } 12851 12852 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12853 { 12854 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12855 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12856 } 12857 12858 struct bpf_link * 12859 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd, 12860 const struct bpf_cgroup_opts *opts) 12861 { 12862 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12863 __u32 relative_id; 12864 int relative_fd; 12865 12866 if (!OPTS_VALID(opts, bpf_cgroup_opts)) 12867 return libbpf_err_ptr(-EINVAL); 12868 12869 relative_id = OPTS_GET(opts, relative_id, 0); 12870 relative_fd = OPTS_GET(opts, relative_fd, 0); 12871 12872 if (relative_fd && relative_id) { 12873 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12874 prog->name); 12875 return libbpf_err_ptr(-EINVAL); 12876 } 12877 12878 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0); 12879 link_create_opts.cgroup.relative_fd = relative_fd; 12880 link_create_opts.cgroup.relative_id = relative_id; 12881 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12882 12883 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts); 12884 } 12885 12886 struct bpf_link * 12887 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12888 const struct bpf_tcx_opts *opts) 12889 { 12890 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12891 __u32 relative_id; 12892 int relative_fd; 12893 12894 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12895 return libbpf_err_ptr(-EINVAL); 12896 12897 relative_id = OPTS_GET(opts, relative_id, 0); 12898 relative_fd = OPTS_GET(opts, relative_fd, 0); 12899 12900 /* validate we don't have unexpected combinations of non-zero fields */ 12901 if (!ifindex) { 12902 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12903 prog->name); 12904 return libbpf_err_ptr(-EINVAL); 12905 } 12906 if (relative_fd && relative_id) { 12907 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12908 prog->name); 12909 return libbpf_err_ptr(-EINVAL); 12910 } 12911 12912 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12913 link_create_opts.tcx.relative_fd = relative_fd; 12914 link_create_opts.tcx.relative_id = relative_id; 12915 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12916 12917 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12918 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12919 } 12920 12921 struct bpf_link * 12922 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12923 const struct bpf_netkit_opts *opts) 12924 { 12925 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12926 __u32 relative_id; 12927 int relative_fd; 12928 12929 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12930 return libbpf_err_ptr(-EINVAL); 12931 12932 relative_id = OPTS_GET(opts, relative_id, 0); 12933 relative_fd = OPTS_GET(opts, relative_fd, 0); 12934 12935 /* validate we don't have unexpected combinations of non-zero fields */ 12936 if (!ifindex) { 12937 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12938 prog->name); 12939 return libbpf_err_ptr(-EINVAL); 12940 } 12941 if (relative_fd && relative_id) { 12942 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12943 prog->name); 12944 return libbpf_err_ptr(-EINVAL); 12945 } 12946 12947 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12948 link_create_opts.netkit.relative_fd = relative_fd; 12949 link_create_opts.netkit.relative_id = relative_id; 12950 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12951 12952 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12953 } 12954 12955 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12956 int target_fd, 12957 const char *attach_func_name) 12958 { 12959 int btf_id; 12960 12961 if (!!target_fd != !!attach_func_name) { 12962 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12963 prog->name); 12964 return libbpf_err_ptr(-EINVAL); 12965 } 12966 12967 if (prog->type != BPF_PROG_TYPE_EXT) { 12968 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12969 prog->name); 12970 return libbpf_err_ptr(-EINVAL); 12971 } 12972 12973 if (target_fd) { 12974 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12975 12976 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 12977 if (btf_id < 0) 12978 return libbpf_err_ptr(btf_id); 12979 12980 target_opts.target_btf_id = btf_id; 12981 12982 return bpf_program_attach_fd(prog, target_fd, "freplace", 12983 &target_opts); 12984 } else { 12985 /* no target, so use raw_tracepoint_open for compatibility 12986 * with old kernels 12987 */ 12988 return bpf_program__attach_trace(prog); 12989 } 12990 } 12991 12992 struct bpf_link * 12993 bpf_program__attach_iter(const struct bpf_program *prog, 12994 const struct bpf_iter_attach_opts *opts) 12995 { 12996 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12997 struct bpf_link *link; 12998 int prog_fd, link_fd; 12999 __u32 target_fd = 0; 13000 13001 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 13002 return libbpf_err_ptr(-EINVAL); 13003 13004 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 13005 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 13006 13007 prog_fd = bpf_program__fd(prog); 13008 if (prog_fd < 0) { 13009 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13010 return libbpf_err_ptr(-EINVAL); 13011 } 13012 13013 link = calloc(1, sizeof(*link)); 13014 if (!link) 13015 return libbpf_err_ptr(-ENOMEM); 13016 link->detach = &bpf_link__detach_fd; 13017 13018 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 13019 &link_create_opts); 13020 if (link_fd < 0) { 13021 link_fd = -errno; 13022 free(link); 13023 pr_warn("prog '%s': failed to attach to iterator: %s\n", 13024 prog->name, errstr(link_fd)); 13025 return libbpf_err_ptr(link_fd); 13026 } 13027 link->fd = link_fd; 13028 return link; 13029 } 13030 13031 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13032 { 13033 *link = bpf_program__attach_iter(prog, NULL); 13034 return libbpf_get_error(*link); 13035 } 13036 13037 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13038 const struct bpf_netfilter_opts *opts) 13039 { 13040 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13041 struct bpf_link *link; 13042 int prog_fd, link_fd; 13043 13044 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13045 return libbpf_err_ptr(-EINVAL); 13046 13047 prog_fd = bpf_program__fd(prog); 13048 if (prog_fd < 0) { 13049 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13050 return libbpf_err_ptr(-EINVAL); 13051 } 13052 13053 link = calloc(1, sizeof(*link)); 13054 if (!link) 13055 return libbpf_err_ptr(-ENOMEM); 13056 13057 link->detach = &bpf_link__detach_fd; 13058 13059 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13060 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13061 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13062 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13063 13064 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13065 if (link_fd < 0) { 13066 link_fd = -errno; 13067 free(link); 13068 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13069 prog->name, errstr(link_fd)); 13070 return libbpf_err_ptr(link_fd); 13071 } 13072 link->fd = link_fd; 13073 13074 return link; 13075 } 13076 13077 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13078 { 13079 struct bpf_link *link = NULL; 13080 int err; 13081 13082 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13083 return libbpf_err_ptr(-EOPNOTSUPP); 13084 13085 if (bpf_program__fd(prog) < 0) { 13086 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13087 prog->name); 13088 return libbpf_err_ptr(-EINVAL); 13089 } 13090 13091 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13092 if (err) 13093 return libbpf_err_ptr(err); 13094 13095 /* When calling bpf_program__attach() explicitly, auto-attach support 13096 * is expected to work, so NULL returned link is considered an error. 13097 * This is different for skeleton's attach, see comment in 13098 * bpf_object__attach_skeleton(). 13099 */ 13100 if (!link) 13101 return libbpf_err_ptr(-EOPNOTSUPP); 13102 13103 return link; 13104 } 13105 13106 struct bpf_link_struct_ops { 13107 struct bpf_link link; 13108 int map_fd; 13109 }; 13110 13111 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13112 { 13113 struct bpf_link_struct_ops *st_link; 13114 __u32 zero = 0; 13115 13116 st_link = container_of(link, struct bpf_link_struct_ops, link); 13117 13118 if (st_link->map_fd < 0) 13119 /* w/o a real link */ 13120 return bpf_map_delete_elem(link->fd, &zero); 13121 13122 return close(link->fd); 13123 } 13124 13125 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13126 { 13127 struct bpf_link_struct_ops *link; 13128 __u32 zero = 0; 13129 int err, fd; 13130 13131 if (!bpf_map__is_struct_ops(map)) { 13132 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13133 return libbpf_err_ptr(-EINVAL); 13134 } 13135 13136 if (map->fd < 0) { 13137 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13138 return libbpf_err_ptr(-EINVAL); 13139 } 13140 13141 link = calloc(1, sizeof(*link)); 13142 if (!link) 13143 return libbpf_err_ptr(-EINVAL); 13144 13145 /* kern_vdata should be prepared during the loading phase. */ 13146 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13147 /* It can be EBUSY if the map has been used to create or 13148 * update a link before. We don't allow updating the value of 13149 * a struct_ops once it is set. That ensures that the value 13150 * never changed. So, it is safe to skip EBUSY. 13151 */ 13152 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13153 free(link); 13154 return libbpf_err_ptr(err); 13155 } 13156 13157 link->link.detach = bpf_link__detach_struct_ops; 13158 13159 if (!(map->def.map_flags & BPF_F_LINK)) { 13160 /* w/o a real link */ 13161 link->link.fd = map->fd; 13162 link->map_fd = -1; 13163 return &link->link; 13164 } 13165 13166 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13167 if (fd < 0) { 13168 free(link); 13169 return libbpf_err_ptr(fd); 13170 } 13171 13172 link->link.fd = fd; 13173 link->map_fd = map->fd; 13174 13175 return &link->link; 13176 } 13177 13178 /* 13179 * Swap the back struct_ops of a link with a new struct_ops map. 13180 */ 13181 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13182 { 13183 struct bpf_link_struct_ops *st_ops_link; 13184 __u32 zero = 0; 13185 int err; 13186 13187 if (!bpf_map__is_struct_ops(map)) 13188 return libbpf_err(-EINVAL); 13189 13190 if (map->fd < 0) { 13191 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13192 return libbpf_err(-EINVAL); 13193 } 13194 13195 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13196 /* Ensure the type of a link is correct */ 13197 if (st_ops_link->map_fd < 0) 13198 return libbpf_err(-EINVAL); 13199 13200 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13201 /* It can be EBUSY if the map has been used to create or 13202 * update a link before. We don't allow updating the value of 13203 * a struct_ops once it is set. That ensures that the value 13204 * never changed. So, it is safe to skip EBUSY. 13205 */ 13206 if (err && err != -EBUSY) 13207 return err; 13208 13209 err = bpf_link_update(link->fd, map->fd, NULL); 13210 if (err < 0) 13211 return err; 13212 13213 st_ops_link->map_fd = map->fd; 13214 13215 return 0; 13216 } 13217 13218 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13219 void *private_data); 13220 13221 static enum bpf_perf_event_ret 13222 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13223 void **copy_mem, size_t *copy_size, 13224 bpf_perf_event_print_t fn, void *private_data) 13225 { 13226 struct perf_event_mmap_page *header = mmap_mem; 13227 __u64 data_head = ring_buffer_read_head(header); 13228 __u64 data_tail = header->data_tail; 13229 void *base = ((__u8 *)header) + page_size; 13230 int ret = LIBBPF_PERF_EVENT_CONT; 13231 struct perf_event_header *ehdr; 13232 size_t ehdr_size; 13233 13234 while (data_head != data_tail) { 13235 ehdr = base + (data_tail & (mmap_size - 1)); 13236 ehdr_size = ehdr->size; 13237 13238 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13239 void *copy_start = ehdr; 13240 size_t len_first = base + mmap_size - copy_start; 13241 size_t len_secnd = ehdr_size - len_first; 13242 13243 if (*copy_size < ehdr_size) { 13244 free(*copy_mem); 13245 *copy_mem = malloc(ehdr_size); 13246 if (!*copy_mem) { 13247 *copy_size = 0; 13248 ret = LIBBPF_PERF_EVENT_ERROR; 13249 break; 13250 } 13251 *copy_size = ehdr_size; 13252 } 13253 13254 memcpy(*copy_mem, copy_start, len_first); 13255 memcpy(*copy_mem + len_first, base, len_secnd); 13256 ehdr = *copy_mem; 13257 } 13258 13259 ret = fn(ehdr, private_data); 13260 data_tail += ehdr_size; 13261 if (ret != LIBBPF_PERF_EVENT_CONT) 13262 break; 13263 } 13264 13265 ring_buffer_write_tail(header, data_tail); 13266 return libbpf_err(ret); 13267 } 13268 13269 struct perf_buffer; 13270 13271 struct perf_buffer_params { 13272 struct perf_event_attr *attr; 13273 /* if event_cb is specified, it takes precendence */ 13274 perf_buffer_event_fn event_cb; 13275 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13276 perf_buffer_sample_fn sample_cb; 13277 perf_buffer_lost_fn lost_cb; 13278 void *ctx; 13279 int cpu_cnt; 13280 int *cpus; 13281 int *map_keys; 13282 }; 13283 13284 struct perf_cpu_buf { 13285 struct perf_buffer *pb; 13286 void *base; /* mmap()'ed memory */ 13287 void *buf; /* for reconstructing segmented data */ 13288 size_t buf_size; 13289 int fd; 13290 int cpu; 13291 int map_key; 13292 }; 13293 13294 struct perf_buffer { 13295 perf_buffer_event_fn event_cb; 13296 perf_buffer_sample_fn sample_cb; 13297 perf_buffer_lost_fn lost_cb; 13298 void *ctx; /* passed into callbacks */ 13299 13300 size_t page_size; 13301 size_t mmap_size; 13302 struct perf_cpu_buf **cpu_bufs; 13303 struct epoll_event *events; 13304 int cpu_cnt; /* number of allocated CPU buffers */ 13305 int epoll_fd; /* perf event FD */ 13306 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13307 }; 13308 13309 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13310 struct perf_cpu_buf *cpu_buf) 13311 { 13312 if (!cpu_buf) 13313 return; 13314 if (cpu_buf->base && 13315 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13316 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13317 if (cpu_buf->fd >= 0) { 13318 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13319 close(cpu_buf->fd); 13320 } 13321 free(cpu_buf->buf); 13322 free(cpu_buf); 13323 } 13324 13325 void perf_buffer__free(struct perf_buffer *pb) 13326 { 13327 int i; 13328 13329 if (IS_ERR_OR_NULL(pb)) 13330 return; 13331 if (pb->cpu_bufs) { 13332 for (i = 0; i < pb->cpu_cnt; i++) { 13333 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13334 13335 if (!cpu_buf) 13336 continue; 13337 13338 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13339 perf_buffer__free_cpu_buf(pb, cpu_buf); 13340 } 13341 free(pb->cpu_bufs); 13342 } 13343 if (pb->epoll_fd >= 0) 13344 close(pb->epoll_fd); 13345 free(pb->events); 13346 free(pb); 13347 } 13348 13349 static struct perf_cpu_buf * 13350 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13351 int cpu, int map_key) 13352 { 13353 struct perf_cpu_buf *cpu_buf; 13354 int err; 13355 13356 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13357 if (!cpu_buf) 13358 return ERR_PTR(-ENOMEM); 13359 13360 cpu_buf->pb = pb; 13361 cpu_buf->cpu = cpu; 13362 cpu_buf->map_key = map_key; 13363 13364 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13365 -1, PERF_FLAG_FD_CLOEXEC); 13366 if (cpu_buf->fd < 0) { 13367 err = -errno; 13368 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13369 cpu, errstr(err)); 13370 goto error; 13371 } 13372 13373 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13374 PROT_READ | PROT_WRITE, MAP_SHARED, 13375 cpu_buf->fd, 0); 13376 if (cpu_buf->base == MAP_FAILED) { 13377 cpu_buf->base = NULL; 13378 err = -errno; 13379 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13380 cpu, errstr(err)); 13381 goto error; 13382 } 13383 13384 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13385 err = -errno; 13386 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13387 cpu, errstr(err)); 13388 goto error; 13389 } 13390 13391 return cpu_buf; 13392 13393 error: 13394 perf_buffer__free_cpu_buf(pb, cpu_buf); 13395 return (struct perf_cpu_buf *)ERR_PTR(err); 13396 } 13397 13398 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13399 struct perf_buffer_params *p); 13400 13401 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13402 perf_buffer_sample_fn sample_cb, 13403 perf_buffer_lost_fn lost_cb, 13404 void *ctx, 13405 const struct perf_buffer_opts *opts) 13406 { 13407 const size_t attr_sz = sizeof(struct perf_event_attr); 13408 struct perf_buffer_params p = {}; 13409 struct perf_event_attr attr; 13410 __u32 sample_period; 13411 13412 if (!OPTS_VALID(opts, perf_buffer_opts)) 13413 return libbpf_err_ptr(-EINVAL); 13414 13415 sample_period = OPTS_GET(opts, sample_period, 1); 13416 if (!sample_period) 13417 sample_period = 1; 13418 13419 memset(&attr, 0, attr_sz); 13420 attr.size = attr_sz; 13421 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13422 attr.type = PERF_TYPE_SOFTWARE; 13423 attr.sample_type = PERF_SAMPLE_RAW; 13424 attr.wakeup_events = sample_period; 13425 13426 p.attr = &attr; 13427 p.sample_cb = sample_cb; 13428 p.lost_cb = lost_cb; 13429 p.ctx = ctx; 13430 13431 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13432 } 13433 13434 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13435 struct perf_event_attr *attr, 13436 perf_buffer_event_fn event_cb, void *ctx, 13437 const struct perf_buffer_raw_opts *opts) 13438 { 13439 struct perf_buffer_params p = {}; 13440 13441 if (!attr) 13442 return libbpf_err_ptr(-EINVAL); 13443 13444 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13445 return libbpf_err_ptr(-EINVAL); 13446 13447 p.attr = attr; 13448 p.event_cb = event_cb; 13449 p.ctx = ctx; 13450 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13451 p.cpus = OPTS_GET(opts, cpus, NULL); 13452 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13453 13454 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13455 } 13456 13457 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13458 struct perf_buffer_params *p) 13459 { 13460 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13461 struct bpf_map_info map; 13462 struct perf_buffer *pb; 13463 bool *online = NULL; 13464 __u32 map_info_len; 13465 int err, i, j, n; 13466 13467 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13468 pr_warn("page count should be power of two, but is %zu\n", 13469 page_cnt); 13470 return ERR_PTR(-EINVAL); 13471 } 13472 13473 /* best-effort sanity checks */ 13474 memset(&map, 0, sizeof(map)); 13475 map_info_len = sizeof(map); 13476 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13477 if (err) { 13478 err = -errno; 13479 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13480 * -EBADFD, -EFAULT, or -E2BIG on real error 13481 */ 13482 if (err != -EINVAL) { 13483 pr_warn("failed to get map info for map FD %d: %s\n", 13484 map_fd, errstr(err)); 13485 return ERR_PTR(err); 13486 } 13487 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13488 map_fd); 13489 } else { 13490 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13491 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13492 map.name); 13493 return ERR_PTR(-EINVAL); 13494 } 13495 } 13496 13497 pb = calloc(1, sizeof(*pb)); 13498 if (!pb) 13499 return ERR_PTR(-ENOMEM); 13500 13501 pb->event_cb = p->event_cb; 13502 pb->sample_cb = p->sample_cb; 13503 pb->lost_cb = p->lost_cb; 13504 pb->ctx = p->ctx; 13505 13506 pb->page_size = getpagesize(); 13507 pb->mmap_size = pb->page_size * page_cnt; 13508 pb->map_fd = map_fd; 13509 13510 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13511 if (pb->epoll_fd < 0) { 13512 err = -errno; 13513 pr_warn("failed to create epoll instance: %s\n", 13514 errstr(err)); 13515 goto error; 13516 } 13517 13518 if (p->cpu_cnt > 0) { 13519 pb->cpu_cnt = p->cpu_cnt; 13520 } else { 13521 pb->cpu_cnt = libbpf_num_possible_cpus(); 13522 if (pb->cpu_cnt < 0) { 13523 err = pb->cpu_cnt; 13524 goto error; 13525 } 13526 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13527 pb->cpu_cnt = map.max_entries; 13528 } 13529 13530 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13531 if (!pb->events) { 13532 err = -ENOMEM; 13533 pr_warn("failed to allocate events: out of memory\n"); 13534 goto error; 13535 } 13536 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13537 if (!pb->cpu_bufs) { 13538 err = -ENOMEM; 13539 pr_warn("failed to allocate buffers: out of memory\n"); 13540 goto error; 13541 } 13542 13543 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13544 if (err) { 13545 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13546 goto error; 13547 } 13548 13549 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13550 struct perf_cpu_buf *cpu_buf; 13551 int cpu, map_key; 13552 13553 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13554 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13555 13556 /* in case user didn't explicitly requested particular CPUs to 13557 * be attached to, skip offline/not present CPUs 13558 */ 13559 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13560 continue; 13561 13562 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13563 if (IS_ERR(cpu_buf)) { 13564 err = PTR_ERR(cpu_buf); 13565 goto error; 13566 } 13567 13568 pb->cpu_bufs[j] = cpu_buf; 13569 13570 err = bpf_map_update_elem(pb->map_fd, &map_key, 13571 &cpu_buf->fd, 0); 13572 if (err) { 13573 err = -errno; 13574 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13575 cpu, map_key, cpu_buf->fd, 13576 errstr(err)); 13577 goto error; 13578 } 13579 13580 pb->events[j].events = EPOLLIN; 13581 pb->events[j].data.ptr = cpu_buf; 13582 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13583 &pb->events[j]) < 0) { 13584 err = -errno; 13585 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13586 cpu, cpu_buf->fd, 13587 errstr(err)); 13588 goto error; 13589 } 13590 j++; 13591 } 13592 pb->cpu_cnt = j; 13593 free(online); 13594 13595 return pb; 13596 13597 error: 13598 free(online); 13599 if (pb) 13600 perf_buffer__free(pb); 13601 return ERR_PTR(err); 13602 } 13603 13604 struct perf_sample_raw { 13605 struct perf_event_header header; 13606 uint32_t size; 13607 char data[]; 13608 }; 13609 13610 struct perf_sample_lost { 13611 struct perf_event_header header; 13612 uint64_t id; 13613 uint64_t lost; 13614 uint64_t sample_id; 13615 }; 13616 13617 static enum bpf_perf_event_ret 13618 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13619 { 13620 struct perf_cpu_buf *cpu_buf = ctx; 13621 struct perf_buffer *pb = cpu_buf->pb; 13622 void *data = e; 13623 13624 /* user wants full control over parsing perf event */ 13625 if (pb->event_cb) 13626 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13627 13628 switch (e->type) { 13629 case PERF_RECORD_SAMPLE: { 13630 struct perf_sample_raw *s = data; 13631 13632 if (pb->sample_cb) 13633 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13634 break; 13635 } 13636 case PERF_RECORD_LOST: { 13637 struct perf_sample_lost *s = data; 13638 13639 if (pb->lost_cb) 13640 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13641 break; 13642 } 13643 default: 13644 pr_warn("unknown perf sample type %d\n", e->type); 13645 return LIBBPF_PERF_EVENT_ERROR; 13646 } 13647 return LIBBPF_PERF_EVENT_CONT; 13648 } 13649 13650 static int perf_buffer__process_records(struct perf_buffer *pb, 13651 struct perf_cpu_buf *cpu_buf) 13652 { 13653 enum bpf_perf_event_ret ret; 13654 13655 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13656 pb->page_size, &cpu_buf->buf, 13657 &cpu_buf->buf_size, 13658 perf_buffer__process_record, cpu_buf); 13659 if (ret != LIBBPF_PERF_EVENT_CONT) 13660 return ret; 13661 return 0; 13662 } 13663 13664 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13665 { 13666 return pb->epoll_fd; 13667 } 13668 13669 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13670 { 13671 int i, cnt, err; 13672 13673 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13674 if (cnt < 0) 13675 return -errno; 13676 13677 for (i = 0; i < cnt; i++) { 13678 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13679 13680 err = perf_buffer__process_records(pb, cpu_buf); 13681 if (err) { 13682 pr_warn("error while processing records: %s\n", errstr(err)); 13683 return libbpf_err(err); 13684 } 13685 } 13686 return cnt; 13687 } 13688 13689 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13690 * manager. 13691 */ 13692 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13693 { 13694 return pb->cpu_cnt; 13695 } 13696 13697 /* 13698 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13699 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13700 * select()/poll()/epoll() Linux syscalls. 13701 */ 13702 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13703 { 13704 struct perf_cpu_buf *cpu_buf; 13705 13706 if (buf_idx >= pb->cpu_cnt) 13707 return libbpf_err(-EINVAL); 13708 13709 cpu_buf = pb->cpu_bufs[buf_idx]; 13710 if (!cpu_buf) 13711 return libbpf_err(-ENOENT); 13712 13713 return cpu_buf->fd; 13714 } 13715 13716 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13717 { 13718 struct perf_cpu_buf *cpu_buf; 13719 13720 if (buf_idx >= pb->cpu_cnt) 13721 return libbpf_err(-EINVAL); 13722 13723 cpu_buf = pb->cpu_bufs[buf_idx]; 13724 if (!cpu_buf) 13725 return libbpf_err(-ENOENT); 13726 13727 *buf = cpu_buf->base; 13728 *buf_size = pb->mmap_size; 13729 return 0; 13730 } 13731 13732 /* 13733 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13734 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13735 * consume, do nothing and return success. 13736 * Returns: 13737 * - 0 on success; 13738 * - <0 on failure. 13739 */ 13740 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13741 { 13742 struct perf_cpu_buf *cpu_buf; 13743 13744 if (buf_idx >= pb->cpu_cnt) 13745 return libbpf_err(-EINVAL); 13746 13747 cpu_buf = pb->cpu_bufs[buf_idx]; 13748 if (!cpu_buf) 13749 return libbpf_err(-ENOENT); 13750 13751 return perf_buffer__process_records(pb, cpu_buf); 13752 } 13753 13754 int perf_buffer__consume(struct perf_buffer *pb) 13755 { 13756 int i, err; 13757 13758 for (i = 0; i < pb->cpu_cnt; i++) { 13759 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13760 13761 if (!cpu_buf) 13762 continue; 13763 13764 err = perf_buffer__process_records(pb, cpu_buf); 13765 if (err) { 13766 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13767 i, errstr(err)); 13768 return libbpf_err(err); 13769 } 13770 } 13771 return 0; 13772 } 13773 13774 int bpf_program__set_attach_target(struct bpf_program *prog, 13775 int attach_prog_fd, 13776 const char *attach_func_name) 13777 { 13778 int btf_obj_fd = 0, btf_id = 0, err; 13779 13780 if (!prog || attach_prog_fd < 0) 13781 return libbpf_err(-EINVAL); 13782 13783 if (prog->obj->state >= OBJ_LOADED) 13784 return libbpf_err(-EINVAL); 13785 13786 if (attach_prog_fd && !attach_func_name) { 13787 /* remember attach_prog_fd and let bpf_program__load() find 13788 * BTF ID during the program load 13789 */ 13790 prog->attach_prog_fd = attach_prog_fd; 13791 return 0; 13792 } 13793 13794 if (attach_prog_fd) { 13795 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13796 attach_prog_fd, prog->obj->token_fd); 13797 if (btf_id < 0) 13798 return libbpf_err(btf_id); 13799 } else { 13800 if (!attach_func_name) 13801 return libbpf_err(-EINVAL); 13802 13803 /* load btf_vmlinux, if not yet */ 13804 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13805 if (err) 13806 return libbpf_err(err); 13807 err = find_kernel_btf_id(prog->obj, attach_func_name, 13808 prog->expected_attach_type, 13809 &btf_obj_fd, &btf_id); 13810 if (err) 13811 return libbpf_err(err); 13812 } 13813 13814 prog->attach_btf_id = btf_id; 13815 prog->attach_btf_obj_fd = btf_obj_fd; 13816 prog->attach_prog_fd = attach_prog_fd; 13817 return 0; 13818 } 13819 13820 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13821 { 13822 int err = 0, n, len, start, end = -1; 13823 bool *tmp; 13824 13825 *mask = NULL; 13826 *mask_sz = 0; 13827 13828 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13829 while (*s) { 13830 if (*s == ',' || *s == '\n') { 13831 s++; 13832 continue; 13833 } 13834 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13835 if (n <= 0 || n > 2) { 13836 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13837 err = -EINVAL; 13838 goto cleanup; 13839 } else if (n == 1) { 13840 end = start; 13841 } 13842 if (start < 0 || start > end) { 13843 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13844 start, end, s); 13845 err = -EINVAL; 13846 goto cleanup; 13847 } 13848 tmp = realloc(*mask, end + 1); 13849 if (!tmp) { 13850 err = -ENOMEM; 13851 goto cleanup; 13852 } 13853 *mask = tmp; 13854 memset(tmp + *mask_sz, 0, start - *mask_sz); 13855 memset(tmp + start, 1, end - start + 1); 13856 *mask_sz = end + 1; 13857 s += len; 13858 } 13859 if (!*mask_sz) { 13860 pr_warn("Empty CPU range\n"); 13861 return -EINVAL; 13862 } 13863 return 0; 13864 cleanup: 13865 free(*mask); 13866 *mask = NULL; 13867 return err; 13868 } 13869 13870 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13871 { 13872 int fd, err = 0, len; 13873 char buf[128]; 13874 13875 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13876 if (fd < 0) { 13877 err = -errno; 13878 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13879 return err; 13880 } 13881 len = read(fd, buf, sizeof(buf)); 13882 close(fd); 13883 if (len <= 0) { 13884 err = len ? -errno : -EINVAL; 13885 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13886 return err; 13887 } 13888 if (len >= sizeof(buf)) { 13889 pr_warn("CPU mask is too big in file %s\n", fcpu); 13890 return -E2BIG; 13891 } 13892 buf[len] = '\0'; 13893 13894 return parse_cpu_mask_str(buf, mask, mask_sz); 13895 } 13896 13897 int libbpf_num_possible_cpus(void) 13898 { 13899 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13900 static int cpus; 13901 int err, n, i, tmp_cpus; 13902 bool *mask; 13903 13904 tmp_cpus = READ_ONCE(cpus); 13905 if (tmp_cpus > 0) 13906 return tmp_cpus; 13907 13908 err = parse_cpu_mask_file(fcpu, &mask, &n); 13909 if (err) 13910 return libbpf_err(err); 13911 13912 tmp_cpus = 0; 13913 for (i = 0; i < n; i++) { 13914 if (mask[i]) 13915 tmp_cpus++; 13916 } 13917 free(mask); 13918 13919 WRITE_ONCE(cpus, tmp_cpus); 13920 return tmp_cpus; 13921 } 13922 13923 static int populate_skeleton_maps(const struct bpf_object *obj, 13924 struct bpf_map_skeleton *maps, 13925 size_t map_cnt, size_t map_skel_sz) 13926 { 13927 int i; 13928 13929 for (i = 0; i < map_cnt; i++) { 13930 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13931 struct bpf_map **map = map_skel->map; 13932 const char *name = map_skel->name; 13933 void **mmaped = map_skel->mmaped; 13934 13935 *map = bpf_object__find_map_by_name(obj, name); 13936 if (!*map) { 13937 pr_warn("failed to find skeleton map '%s'\n", name); 13938 return -ESRCH; 13939 } 13940 13941 /* externs shouldn't be pre-setup from user code */ 13942 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13943 *mmaped = (*map)->mmaped; 13944 } 13945 return 0; 13946 } 13947 13948 static int populate_skeleton_progs(const struct bpf_object *obj, 13949 struct bpf_prog_skeleton *progs, 13950 size_t prog_cnt, size_t prog_skel_sz) 13951 { 13952 int i; 13953 13954 for (i = 0; i < prog_cnt; i++) { 13955 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13956 struct bpf_program **prog = prog_skel->prog; 13957 const char *name = prog_skel->name; 13958 13959 *prog = bpf_object__find_program_by_name(obj, name); 13960 if (!*prog) { 13961 pr_warn("failed to find skeleton program '%s'\n", name); 13962 return -ESRCH; 13963 } 13964 } 13965 return 0; 13966 } 13967 13968 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13969 const struct bpf_object_open_opts *opts) 13970 { 13971 struct bpf_object *obj; 13972 int err; 13973 13974 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13975 if (IS_ERR(obj)) { 13976 err = PTR_ERR(obj); 13977 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13978 s->name, errstr(err)); 13979 return libbpf_err(err); 13980 } 13981 13982 *s->obj = obj; 13983 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13984 if (err) { 13985 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13986 return libbpf_err(err); 13987 } 13988 13989 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13990 if (err) { 13991 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13992 return libbpf_err(err); 13993 } 13994 13995 return 0; 13996 } 13997 13998 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13999 { 14000 int err, len, var_idx, i; 14001 const char *var_name; 14002 const struct bpf_map *map; 14003 struct btf *btf; 14004 __u32 map_type_id; 14005 const struct btf_type *map_type, *var_type; 14006 const struct bpf_var_skeleton *var_skel; 14007 struct btf_var_secinfo *var; 14008 14009 if (!s->obj) 14010 return libbpf_err(-EINVAL); 14011 14012 btf = bpf_object__btf(s->obj); 14013 if (!btf) { 14014 pr_warn("subskeletons require BTF at runtime (object %s)\n", 14015 bpf_object__name(s->obj)); 14016 return libbpf_err(-errno); 14017 } 14018 14019 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 14020 if (err) { 14021 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14022 return libbpf_err(err); 14023 } 14024 14025 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14026 if (err) { 14027 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14028 return libbpf_err(err); 14029 } 14030 14031 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 14032 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 14033 map = *var_skel->map; 14034 map_type_id = bpf_map__btf_value_type_id(map); 14035 map_type = btf__type_by_id(btf, map_type_id); 14036 14037 if (!btf_is_datasec(map_type)) { 14038 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14039 bpf_map__name(map), 14040 __btf_kind_str(btf_kind(map_type))); 14041 return libbpf_err(-EINVAL); 14042 } 14043 14044 len = btf_vlen(map_type); 14045 var = btf_var_secinfos(map_type); 14046 for (i = 0; i < len; i++, var++) { 14047 var_type = btf__type_by_id(btf, var->type); 14048 var_name = btf__name_by_offset(btf, var_type->name_off); 14049 if (strcmp(var_name, var_skel->name) == 0) { 14050 *var_skel->addr = map->mmaped + var->offset; 14051 break; 14052 } 14053 } 14054 } 14055 return 0; 14056 } 14057 14058 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14059 { 14060 if (!s) 14061 return; 14062 free(s->maps); 14063 free(s->progs); 14064 free(s->vars); 14065 free(s); 14066 } 14067 14068 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14069 { 14070 int i, err; 14071 14072 err = bpf_object__load(*s->obj); 14073 if (err) { 14074 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14075 return libbpf_err(err); 14076 } 14077 14078 for (i = 0; i < s->map_cnt; i++) { 14079 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14080 struct bpf_map *map = *map_skel->map; 14081 14082 if (!map_skel->mmaped) 14083 continue; 14084 14085 *map_skel->mmaped = map->mmaped; 14086 } 14087 14088 return 0; 14089 } 14090 14091 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14092 { 14093 int i, err; 14094 14095 for (i = 0; i < s->prog_cnt; i++) { 14096 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14097 struct bpf_program *prog = *prog_skel->prog; 14098 struct bpf_link **link = prog_skel->link; 14099 14100 if (!prog->autoload || !prog->autoattach) 14101 continue; 14102 14103 /* auto-attaching not supported for this program */ 14104 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14105 continue; 14106 14107 /* if user already set the link manually, don't attempt auto-attach */ 14108 if (*link) 14109 continue; 14110 14111 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14112 if (err) { 14113 pr_warn("prog '%s': failed to auto-attach: %s\n", 14114 bpf_program__name(prog), errstr(err)); 14115 return libbpf_err(err); 14116 } 14117 14118 /* It's possible that for some SEC() definitions auto-attach 14119 * is supported in some cases (e.g., if definition completely 14120 * specifies target information), but is not in other cases. 14121 * SEC("uprobe") is one such case. If user specified target 14122 * binary and function name, such BPF program can be 14123 * auto-attached. But if not, it shouldn't trigger skeleton's 14124 * attach to fail. It should just be skipped. 14125 * attach_fn signals such case with returning 0 (no error) and 14126 * setting link to NULL. 14127 */ 14128 } 14129 14130 14131 for (i = 0; i < s->map_cnt; i++) { 14132 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14133 struct bpf_map *map = *map_skel->map; 14134 struct bpf_link **link; 14135 14136 if (!map->autocreate || !map->autoattach) 14137 continue; 14138 14139 /* only struct_ops maps can be attached */ 14140 if (!bpf_map__is_struct_ops(map)) 14141 continue; 14142 14143 /* skeleton is created with earlier version of bpftool, notify user */ 14144 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14145 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14146 bpf_map__name(map)); 14147 continue; 14148 } 14149 14150 link = map_skel->link; 14151 if (!link) { 14152 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14153 bpf_map__name(map)); 14154 continue; 14155 } 14156 14157 if (*link) 14158 continue; 14159 14160 *link = bpf_map__attach_struct_ops(map); 14161 if (!*link) { 14162 err = -errno; 14163 pr_warn("map '%s': failed to auto-attach: %s\n", 14164 bpf_map__name(map), errstr(err)); 14165 return libbpf_err(err); 14166 } 14167 } 14168 14169 return 0; 14170 } 14171 14172 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14173 { 14174 int i; 14175 14176 for (i = 0; i < s->prog_cnt; i++) { 14177 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14178 struct bpf_link **link = prog_skel->link; 14179 14180 bpf_link__destroy(*link); 14181 *link = NULL; 14182 } 14183 14184 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14185 return; 14186 14187 for (i = 0; i < s->map_cnt; i++) { 14188 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14189 struct bpf_link **link = map_skel->link; 14190 14191 if (link) { 14192 bpf_link__destroy(*link); 14193 *link = NULL; 14194 } 14195 } 14196 } 14197 14198 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14199 { 14200 if (!s) 14201 return; 14202 14203 bpf_object__detach_skeleton(s); 14204 if (s->obj) 14205 bpf_object__close(*s->obj); 14206 free(s->maps); 14207 free(s->progs); 14208 free(s); 14209 } 14210