1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 __u32 libbpf_major_version(void) 172 { 173 return LIBBPF_MAJOR_VERSION; 174 } 175 176 __u32 libbpf_minor_version(void) 177 { 178 return LIBBPF_MINOR_VERSION; 179 } 180 181 const char *libbpf_version_string(void) 182 { 183 #define __S(X) #X 184 #define _S(X) __S(X) 185 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 186 #undef _S 187 #undef __S 188 } 189 190 enum reloc_type { 191 RELO_LD64, 192 RELO_CALL, 193 RELO_DATA, 194 RELO_EXTERN_VAR, 195 RELO_EXTERN_FUNC, 196 RELO_SUBPROG_ADDR, 197 RELO_CORE, 198 }; 199 200 struct reloc_desc { 201 enum reloc_type type; 202 int insn_idx; 203 union { 204 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 205 struct { 206 int map_idx; 207 int sym_off; 208 }; 209 }; 210 }; 211 212 struct bpf_sec_def; 213 214 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 215 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie); 216 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 217 218 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 219 enum sec_def_flags { 220 SEC_NONE = 0, 221 /* expected_attach_type is optional, if kernel doesn't support that */ 222 SEC_EXP_ATTACH_OPT = 1, 223 /* legacy, only used by libbpf_get_type_names() and 224 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 225 * This used to be associated with cgroup (and few other) BPF programs 226 * that were attachable through BPF_PROG_ATTACH command. Pretty 227 * meaningless nowadays, though. 228 */ 229 SEC_ATTACHABLE = 2, 230 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 231 /* attachment target is specified through BTF ID in either kernel or 232 * other BPF program's BTF object */ 233 SEC_ATTACH_BTF = 4, 234 /* BPF program type allows sleeping/blocking in kernel */ 235 SEC_SLEEPABLE = 8, 236 /* allow non-strict prefix matching */ 237 SEC_SLOPPY_PFX = 16, 238 /* BPF program support non-linear XDP buffer */ 239 SEC_XDP_FRAGS = 32, 240 }; 241 242 struct bpf_sec_def { 243 const char *sec; 244 enum bpf_prog_type prog_type; 245 enum bpf_attach_type expected_attach_type; 246 long cookie; 247 248 init_fn_t init_fn; 249 preload_fn_t preload_fn; 250 attach_fn_t attach_fn; 251 }; 252 253 /* 254 * bpf_prog should be a better name but it has been used in 255 * linux/filter.h. 256 */ 257 struct bpf_program { 258 const struct bpf_sec_def *sec_def; 259 char *sec_name; 260 size_t sec_idx; 261 /* this program's instruction offset (in number of instructions) 262 * within its containing ELF section 263 */ 264 size_t sec_insn_off; 265 /* number of original instructions in ELF section belonging to this 266 * program, not taking into account subprogram instructions possible 267 * appended later during relocation 268 */ 269 size_t sec_insn_cnt; 270 /* Offset (in number of instructions) of the start of instruction 271 * belonging to this BPF program within its containing main BPF 272 * program. For the entry-point (main) BPF program, this is always 273 * zero. For a sub-program, this gets reset before each of main BPF 274 * programs are processed and relocated and is used to determined 275 * whether sub-program was already appended to the main program, and 276 * if yes, at which instruction offset. 277 */ 278 size_t sub_insn_off; 279 280 char *name; 281 /* name with / replaced by _; makes recursive pinning 282 * in bpf_object__pin_programs easier 283 */ 284 char *pin_name; 285 286 /* instructions that belong to BPF program; insns[0] is located at 287 * sec_insn_off instruction within its ELF section in ELF file, so 288 * when mapping ELF file instruction index to the local instruction, 289 * one needs to subtract sec_insn_off; and vice versa. 290 */ 291 struct bpf_insn *insns; 292 /* actual number of instruction in this BPF program's image; for 293 * entry-point BPF programs this includes the size of main program 294 * itself plus all the used sub-programs, appended at the end 295 */ 296 size_t insns_cnt; 297 298 struct reloc_desc *reloc_desc; 299 int nr_reloc; 300 301 /* BPF verifier log settings */ 302 char *log_buf; 303 size_t log_size; 304 __u32 log_level; 305 306 struct { 307 int nr; 308 int *fds; 309 } instances; 310 bpf_program_prep_t preprocessor; 311 312 struct bpf_object *obj; 313 void *priv; 314 bpf_program_clear_priv_t clear_priv; 315 316 bool load; 317 bool mark_btf_static; 318 enum bpf_prog_type type; 319 enum bpf_attach_type expected_attach_type; 320 int prog_ifindex; 321 __u32 attach_btf_obj_fd; 322 __u32 attach_btf_id; 323 __u32 attach_prog_fd; 324 void *func_info; 325 __u32 func_info_rec_size; 326 __u32 func_info_cnt; 327 328 void *line_info; 329 __u32 line_info_rec_size; 330 __u32 line_info_cnt; 331 __u32 prog_flags; 332 }; 333 334 struct bpf_struct_ops { 335 const char *tname; 336 const struct btf_type *type; 337 struct bpf_program **progs; 338 __u32 *kern_func_off; 339 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 340 void *data; 341 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 342 * btf_vmlinux's format. 343 * struct bpf_struct_ops_tcp_congestion_ops { 344 * [... some other kernel fields ...] 345 * struct tcp_congestion_ops data; 346 * } 347 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 348 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 349 * from "data". 350 */ 351 void *kern_vdata; 352 __u32 type_id; 353 }; 354 355 #define DATA_SEC ".data" 356 #define BSS_SEC ".bss" 357 #define RODATA_SEC ".rodata" 358 #define KCONFIG_SEC ".kconfig" 359 #define KSYMS_SEC ".ksyms" 360 #define STRUCT_OPS_SEC ".struct_ops" 361 362 enum libbpf_map_type { 363 LIBBPF_MAP_UNSPEC, 364 LIBBPF_MAP_DATA, 365 LIBBPF_MAP_BSS, 366 LIBBPF_MAP_RODATA, 367 LIBBPF_MAP_KCONFIG, 368 }; 369 370 struct bpf_map { 371 char *name; 372 /* real_name is defined for special internal maps (.rodata*, 373 * .data*, .bss, .kconfig) and preserves their original ELF section 374 * name. This is important to be be able to find corresponding BTF 375 * DATASEC information. 376 */ 377 char *real_name; 378 int fd; 379 int sec_idx; 380 size_t sec_offset; 381 int map_ifindex; 382 int inner_map_fd; 383 struct bpf_map_def def; 384 __u32 numa_node; 385 __u32 btf_var_idx; 386 __u32 btf_key_type_id; 387 __u32 btf_value_type_id; 388 __u32 btf_vmlinux_value_type_id; 389 void *priv; 390 bpf_map_clear_priv_t clear_priv; 391 enum libbpf_map_type libbpf_type; 392 void *mmaped; 393 struct bpf_struct_ops *st_ops; 394 struct bpf_map *inner_map; 395 void **init_slots; 396 int init_slots_sz; 397 char *pin_path; 398 bool pinned; 399 bool reused; 400 bool skipped; 401 __u64 map_extra; 402 }; 403 404 enum extern_type { 405 EXT_UNKNOWN, 406 EXT_KCFG, 407 EXT_KSYM, 408 }; 409 410 enum kcfg_type { 411 KCFG_UNKNOWN, 412 KCFG_CHAR, 413 KCFG_BOOL, 414 KCFG_INT, 415 KCFG_TRISTATE, 416 KCFG_CHAR_ARR, 417 }; 418 419 struct extern_desc { 420 enum extern_type type; 421 int sym_idx; 422 int btf_id; 423 int sec_btf_id; 424 const char *name; 425 bool is_set; 426 bool is_weak; 427 union { 428 struct { 429 enum kcfg_type type; 430 int sz; 431 int align; 432 int data_off; 433 bool is_signed; 434 } kcfg; 435 struct { 436 unsigned long long addr; 437 438 /* target btf_id of the corresponding kernel var. */ 439 int kernel_btf_obj_fd; 440 int kernel_btf_id; 441 442 /* local btf_id of the ksym extern's type. */ 443 __u32 type_id; 444 /* BTF fd index to be patched in for insn->off, this is 445 * 0 for vmlinux BTF, index in obj->fd_array for module 446 * BTF 447 */ 448 __s16 btf_fd_idx; 449 } ksym; 450 }; 451 }; 452 453 static LIST_HEAD(bpf_objects_list); 454 455 struct module_btf { 456 struct btf *btf; 457 char *name; 458 __u32 id; 459 int fd; 460 int fd_array_idx; 461 }; 462 463 enum sec_type { 464 SEC_UNUSED = 0, 465 SEC_RELO, 466 SEC_BSS, 467 SEC_DATA, 468 SEC_RODATA, 469 }; 470 471 struct elf_sec_desc { 472 enum sec_type sec_type; 473 Elf64_Shdr *shdr; 474 Elf_Data *data; 475 }; 476 477 struct elf_state { 478 int fd; 479 const void *obj_buf; 480 size_t obj_buf_sz; 481 Elf *elf; 482 Elf64_Ehdr *ehdr; 483 Elf_Data *symbols; 484 Elf_Data *st_ops_data; 485 size_t shstrndx; /* section index for section name strings */ 486 size_t strtabidx; 487 struct elf_sec_desc *secs; 488 int sec_cnt; 489 int maps_shndx; 490 int btf_maps_shndx; 491 __u32 btf_maps_sec_btf_id; 492 int text_shndx; 493 int symbols_shndx; 494 int st_ops_shndx; 495 }; 496 497 struct bpf_object { 498 char name[BPF_OBJ_NAME_LEN]; 499 char license[64]; 500 __u32 kern_version; 501 502 struct bpf_program *programs; 503 size_t nr_programs; 504 struct bpf_map *maps; 505 size_t nr_maps; 506 size_t maps_cap; 507 508 char *kconfig; 509 struct extern_desc *externs; 510 int nr_extern; 511 int kconfig_map_idx; 512 513 bool loaded; 514 bool has_subcalls; 515 bool has_rodata; 516 517 struct bpf_gen *gen_loader; 518 519 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 520 struct elf_state efile; 521 /* 522 * All loaded bpf_object are linked in a list, which is 523 * hidden to caller. bpf_objects__<func> handlers deal with 524 * all objects. 525 */ 526 struct list_head list; 527 528 struct btf *btf; 529 struct btf_ext *btf_ext; 530 531 /* Parse and load BTF vmlinux if any of the programs in the object need 532 * it at load time. 533 */ 534 struct btf *btf_vmlinux; 535 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 536 * override for vmlinux BTF. 537 */ 538 char *btf_custom_path; 539 /* vmlinux BTF override for CO-RE relocations */ 540 struct btf *btf_vmlinux_override; 541 /* Lazily initialized kernel module BTFs */ 542 struct module_btf *btf_modules; 543 bool btf_modules_loaded; 544 size_t btf_module_cnt; 545 size_t btf_module_cap; 546 547 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 548 char *log_buf; 549 size_t log_size; 550 __u32 log_level; 551 552 void *priv; 553 bpf_object_clear_priv_t clear_priv; 554 555 int *fd_array; 556 size_t fd_array_cap; 557 size_t fd_array_cnt; 558 559 char path[]; 560 }; 561 562 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 563 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 564 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 565 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 566 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 567 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 568 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 569 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 570 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 571 572 void bpf_program__unload(struct bpf_program *prog) 573 { 574 int i; 575 576 if (!prog) 577 return; 578 579 /* 580 * If the object is opened but the program was never loaded, 581 * it is possible that prog->instances.nr == -1. 582 */ 583 if (prog->instances.nr > 0) { 584 for (i = 0; i < prog->instances.nr; i++) 585 zclose(prog->instances.fds[i]); 586 } else if (prog->instances.nr != -1) { 587 pr_warn("Internal error: instances.nr is %d\n", 588 prog->instances.nr); 589 } 590 591 prog->instances.nr = -1; 592 zfree(&prog->instances.fds); 593 594 zfree(&prog->func_info); 595 zfree(&prog->line_info); 596 } 597 598 static void bpf_program__exit(struct bpf_program *prog) 599 { 600 if (!prog) 601 return; 602 603 if (prog->clear_priv) 604 prog->clear_priv(prog, prog->priv); 605 606 prog->priv = NULL; 607 prog->clear_priv = NULL; 608 609 bpf_program__unload(prog); 610 zfree(&prog->name); 611 zfree(&prog->sec_name); 612 zfree(&prog->pin_name); 613 zfree(&prog->insns); 614 zfree(&prog->reloc_desc); 615 616 prog->nr_reloc = 0; 617 prog->insns_cnt = 0; 618 prog->sec_idx = -1; 619 } 620 621 static char *__bpf_program__pin_name(struct bpf_program *prog) 622 { 623 char *name, *p; 624 625 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 626 name = strdup(prog->name); 627 else 628 name = strdup(prog->sec_name); 629 630 if (!name) 631 return NULL; 632 633 p = name; 634 635 while ((p = strchr(p, '/'))) 636 *p = '_'; 637 638 return name; 639 } 640 641 static bool insn_is_subprog_call(const struct bpf_insn *insn) 642 { 643 return BPF_CLASS(insn->code) == BPF_JMP && 644 BPF_OP(insn->code) == BPF_CALL && 645 BPF_SRC(insn->code) == BPF_K && 646 insn->src_reg == BPF_PSEUDO_CALL && 647 insn->dst_reg == 0 && 648 insn->off == 0; 649 } 650 651 static bool is_call_insn(const struct bpf_insn *insn) 652 { 653 return insn->code == (BPF_JMP | BPF_CALL); 654 } 655 656 static bool insn_is_pseudo_func(struct bpf_insn *insn) 657 { 658 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 659 } 660 661 static int 662 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 663 const char *name, size_t sec_idx, const char *sec_name, 664 size_t sec_off, void *insn_data, size_t insn_data_sz) 665 { 666 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 667 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 668 sec_name, name, sec_off, insn_data_sz); 669 return -EINVAL; 670 } 671 672 memset(prog, 0, sizeof(*prog)); 673 prog->obj = obj; 674 675 prog->sec_idx = sec_idx; 676 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 677 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 678 /* insns_cnt can later be increased by appending used subprograms */ 679 prog->insns_cnt = prog->sec_insn_cnt; 680 681 prog->type = BPF_PROG_TYPE_UNSPEC; 682 prog->load = true; 683 684 prog->instances.fds = NULL; 685 prog->instances.nr = -1; 686 687 /* inherit object's log_level */ 688 prog->log_level = obj->log_level; 689 690 prog->sec_name = strdup(sec_name); 691 if (!prog->sec_name) 692 goto errout; 693 694 prog->name = strdup(name); 695 if (!prog->name) 696 goto errout; 697 698 prog->pin_name = __bpf_program__pin_name(prog); 699 if (!prog->pin_name) 700 goto errout; 701 702 prog->insns = malloc(insn_data_sz); 703 if (!prog->insns) 704 goto errout; 705 memcpy(prog->insns, insn_data, insn_data_sz); 706 707 return 0; 708 errout: 709 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 710 bpf_program__exit(prog); 711 return -ENOMEM; 712 } 713 714 static int 715 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 716 const char *sec_name, int sec_idx) 717 { 718 Elf_Data *symbols = obj->efile.symbols; 719 struct bpf_program *prog, *progs; 720 void *data = sec_data->d_buf; 721 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 722 int nr_progs, err, i; 723 const char *name; 724 Elf64_Sym *sym; 725 726 progs = obj->programs; 727 nr_progs = obj->nr_programs; 728 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 729 sec_off = 0; 730 731 for (i = 0; i < nr_syms; i++) { 732 sym = elf_sym_by_idx(obj, i); 733 734 if (sym->st_shndx != sec_idx) 735 continue; 736 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 737 continue; 738 739 prog_sz = sym->st_size; 740 sec_off = sym->st_value; 741 742 name = elf_sym_str(obj, sym->st_name); 743 if (!name) { 744 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 745 sec_name, sec_off); 746 return -LIBBPF_ERRNO__FORMAT; 747 } 748 749 if (sec_off + prog_sz > sec_sz) { 750 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 751 sec_name, sec_off); 752 return -LIBBPF_ERRNO__FORMAT; 753 } 754 755 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 756 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 757 return -ENOTSUP; 758 } 759 760 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 761 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 762 763 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 764 if (!progs) { 765 /* 766 * In this case the original obj->programs 767 * is still valid, so don't need special treat for 768 * bpf_close_object(). 769 */ 770 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 771 sec_name, name); 772 return -ENOMEM; 773 } 774 obj->programs = progs; 775 776 prog = &progs[nr_progs]; 777 778 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 779 sec_off, data + sec_off, prog_sz); 780 if (err) 781 return err; 782 783 /* if function is a global/weak symbol, but has restricted 784 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 785 * as static to enable more permissive BPF verification mode 786 * with more outside context available to BPF verifier 787 */ 788 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 789 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 790 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 791 prog->mark_btf_static = true; 792 793 nr_progs++; 794 obj->nr_programs = nr_progs; 795 } 796 797 return 0; 798 } 799 800 __u32 get_kernel_version(void) 801 { 802 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 803 * but Ubuntu provides /proc/version_signature file, as described at 804 * https://ubuntu.com/kernel, with an example contents below, which we 805 * can use to get a proper LINUX_VERSION_CODE. 806 * 807 * Ubuntu 5.4.0-12.15-generic 5.4.8 808 * 809 * In the above, 5.4.8 is what kernel is actually expecting, while 810 * uname() call will return 5.4.0 in info.release. 811 */ 812 const char *ubuntu_kver_file = "/proc/version_signature"; 813 __u32 major, minor, patch; 814 struct utsname info; 815 816 if (access(ubuntu_kver_file, R_OK) == 0) { 817 FILE *f; 818 819 f = fopen(ubuntu_kver_file, "r"); 820 if (f) { 821 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 822 fclose(f); 823 return KERNEL_VERSION(major, minor, patch); 824 } 825 fclose(f); 826 } 827 /* something went wrong, fall back to uname() approach */ 828 } 829 830 uname(&info); 831 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 832 return 0; 833 return KERNEL_VERSION(major, minor, patch); 834 } 835 836 static const struct btf_member * 837 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 838 { 839 struct btf_member *m; 840 int i; 841 842 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 843 if (btf_member_bit_offset(t, i) == bit_offset) 844 return m; 845 } 846 847 return NULL; 848 } 849 850 static const struct btf_member * 851 find_member_by_name(const struct btf *btf, const struct btf_type *t, 852 const char *name) 853 { 854 struct btf_member *m; 855 int i; 856 857 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 858 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 859 return m; 860 } 861 862 return NULL; 863 } 864 865 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 866 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 867 const char *name, __u32 kind); 868 869 static int 870 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 871 const struct btf_type **type, __u32 *type_id, 872 const struct btf_type **vtype, __u32 *vtype_id, 873 const struct btf_member **data_member) 874 { 875 const struct btf_type *kern_type, *kern_vtype; 876 const struct btf_member *kern_data_member; 877 __s32 kern_vtype_id, kern_type_id; 878 __u32 i; 879 880 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 881 if (kern_type_id < 0) { 882 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 883 tname); 884 return kern_type_id; 885 } 886 kern_type = btf__type_by_id(btf, kern_type_id); 887 888 /* Find the corresponding "map_value" type that will be used 889 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 890 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 891 * btf_vmlinux. 892 */ 893 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 894 tname, BTF_KIND_STRUCT); 895 if (kern_vtype_id < 0) { 896 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 897 STRUCT_OPS_VALUE_PREFIX, tname); 898 return kern_vtype_id; 899 } 900 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 901 902 /* Find "struct tcp_congestion_ops" from 903 * struct bpf_struct_ops_tcp_congestion_ops { 904 * [ ... ] 905 * struct tcp_congestion_ops data; 906 * } 907 */ 908 kern_data_member = btf_members(kern_vtype); 909 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 910 if (kern_data_member->type == kern_type_id) 911 break; 912 } 913 if (i == btf_vlen(kern_vtype)) { 914 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 915 tname, STRUCT_OPS_VALUE_PREFIX, tname); 916 return -EINVAL; 917 } 918 919 *type = kern_type; 920 *type_id = kern_type_id; 921 *vtype = kern_vtype; 922 *vtype_id = kern_vtype_id; 923 *data_member = kern_data_member; 924 925 return 0; 926 } 927 928 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 929 { 930 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 931 } 932 933 /* Init the map's fields that depend on kern_btf */ 934 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 935 const struct btf *btf, 936 const struct btf *kern_btf) 937 { 938 const struct btf_member *member, *kern_member, *kern_data_member; 939 const struct btf_type *type, *kern_type, *kern_vtype; 940 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 941 struct bpf_struct_ops *st_ops; 942 void *data, *kern_data; 943 const char *tname; 944 int err; 945 946 st_ops = map->st_ops; 947 type = st_ops->type; 948 tname = st_ops->tname; 949 err = find_struct_ops_kern_types(kern_btf, tname, 950 &kern_type, &kern_type_id, 951 &kern_vtype, &kern_vtype_id, 952 &kern_data_member); 953 if (err) 954 return err; 955 956 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 957 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 958 959 map->def.value_size = kern_vtype->size; 960 map->btf_vmlinux_value_type_id = kern_vtype_id; 961 962 st_ops->kern_vdata = calloc(1, kern_vtype->size); 963 if (!st_ops->kern_vdata) 964 return -ENOMEM; 965 966 data = st_ops->data; 967 kern_data_off = kern_data_member->offset / 8; 968 kern_data = st_ops->kern_vdata + kern_data_off; 969 970 member = btf_members(type); 971 for (i = 0; i < btf_vlen(type); i++, member++) { 972 const struct btf_type *mtype, *kern_mtype; 973 __u32 mtype_id, kern_mtype_id; 974 void *mdata, *kern_mdata; 975 __s64 msize, kern_msize; 976 __u32 moff, kern_moff; 977 __u32 kern_member_idx; 978 const char *mname; 979 980 mname = btf__name_by_offset(btf, member->name_off); 981 kern_member = find_member_by_name(kern_btf, kern_type, mname); 982 if (!kern_member) { 983 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 984 map->name, mname); 985 return -ENOTSUP; 986 } 987 988 kern_member_idx = kern_member - btf_members(kern_type); 989 if (btf_member_bitfield_size(type, i) || 990 btf_member_bitfield_size(kern_type, kern_member_idx)) { 991 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 992 map->name, mname); 993 return -ENOTSUP; 994 } 995 996 moff = member->offset / 8; 997 kern_moff = kern_member->offset / 8; 998 999 mdata = data + moff; 1000 kern_mdata = kern_data + kern_moff; 1001 1002 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1003 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1004 &kern_mtype_id); 1005 if (BTF_INFO_KIND(mtype->info) != 1006 BTF_INFO_KIND(kern_mtype->info)) { 1007 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1008 map->name, mname, BTF_INFO_KIND(mtype->info), 1009 BTF_INFO_KIND(kern_mtype->info)); 1010 return -ENOTSUP; 1011 } 1012 1013 if (btf_is_ptr(mtype)) { 1014 struct bpf_program *prog; 1015 1016 prog = st_ops->progs[i]; 1017 if (!prog) 1018 continue; 1019 1020 kern_mtype = skip_mods_and_typedefs(kern_btf, 1021 kern_mtype->type, 1022 &kern_mtype_id); 1023 1024 /* mtype->type must be a func_proto which was 1025 * guaranteed in bpf_object__collect_st_ops_relos(), 1026 * so only check kern_mtype for func_proto here. 1027 */ 1028 if (!btf_is_func_proto(kern_mtype)) { 1029 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1030 map->name, mname); 1031 return -ENOTSUP; 1032 } 1033 1034 prog->attach_btf_id = kern_type_id; 1035 prog->expected_attach_type = kern_member_idx; 1036 1037 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1038 1039 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1040 map->name, mname, prog->name, moff, 1041 kern_moff); 1042 1043 continue; 1044 } 1045 1046 msize = btf__resolve_size(btf, mtype_id); 1047 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1048 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1049 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1050 map->name, mname, (ssize_t)msize, 1051 (ssize_t)kern_msize); 1052 return -ENOTSUP; 1053 } 1054 1055 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1056 map->name, mname, (unsigned int)msize, 1057 moff, kern_moff); 1058 memcpy(kern_mdata, mdata, msize); 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1065 { 1066 struct bpf_map *map; 1067 size_t i; 1068 int err; 1069 1070 for (i = 0; i < obj->nr_maps; i++) { 1071 map = &obj->maps[i]; 1072 1073 if (!bpf_map__is_struct_ops(map)) 1074 continue; 1075 1076 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1077 obj->btf_vmlinux); 1078 if (err) 1079 return err; 1080 } 1081 1082 return 0; 1083 } 1084 1085 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1086 { 1087 const struct btf_type *type, *datasec; 1088 const struct btf_var_secinfo *vsi; 1089 struct bpf_struct_ops *st_ops; 1090 const char *tname, *var_name; 1091 __s32 type_id, datasec_id; 1092 const struct btf *btf; 1093 struct bpf_map *map; 1094 __u32 i; 1095 1096 if (obj->efile.st_ops_shndx == -1) 1097 return 0; 1098 1099 btf = obj->btf; 1100 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1101 BTF_KIND_DATASEC); 1102 if (datasec_id < 0) { 1103 pr_warn("struct_ops init: DATASEC %s not found\n", 1104 STRUCT_OPS_SEC); 1105 return -EINVAL; 1106 } 1107 1108 datasec = btf__type_by_id(btf, datasec_id); 1109 vsi = btf_var_secinfos(datasec); 1110 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1111 type = btf__type_by_id(obj->btf, vsi->type); 1112 var_name = btf__name_by_offset(obj->btf, type->name_off); 1113 1114 type_id = btf__resolve_type(obj->btf, vsi->type); 1115 if (type_id < 0) { 1116 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1117 vsi->type, STRUCT_OPS_SEC); 1118 return -EINVAL; 1119 } 1120 1121 type = btf__type_by_id(obj->btf, type_id); 1122 tname = btf__name_by_offset(obj->btf, type->name_off); 1123 if (!tname[0]) { 1124 pr_warn("struct_ops init: anonymous type is not supported\n"); 1125 return -ENOTSUP; 1126 } 1127 if (!btf_is_struct(type)) { 1128 pr_warn("struct_ops init: %s is not a struct\n", tname); 1129 return -EINVAL; 1130 } 1131 1132 map = bpf_object__add_map(obj); 1133 if (IS_ERR(map)) 1134 return PTR_ERR(map); 1135 1136 map->sec_idx = obj->efile.st_ops_shndx; 1137 map->sec_offset = vsi->offset; 1138 map->name = strdup(var_name); 1139 if (!map->name) 1140 return -ENOMEM; 1141 1142 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1143 map->def.key_size = sizeof(int); 1144 map->def.value_size = type->size; 1145 map->def.max_entries = 1; 1146 1147 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1148 if (!map->st_ops) 1149 return -ENOMEM; 1150 st_ops = map->st_ops; 1151 st_ops->data = malloc(type->size); 1152 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1153 st_ops->kern_func_off = malloc(btf_vlen(type) * 1154 sizeof(*st_ops->kern_func_off)); 1155 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1156 return -ENOMEM; 1157 1158 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1159 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1160 var_name, STRUCT_OPS_SEC); 1161 return -EINVAL; 1162 } 1163 1164 memcpy(st_ops->data, 1165 obj->efile.st_ops_data->d_buf + vsi->offset, 1166 type->size); 1167 st_ops->tname = tname; 1168 st_ops->type = type; 1169 st_ops->type_id = type_id; 1170 1171 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1172 tname, type_id, var_name, vsi->offset); 1173 } 1174 1175 return 0; 1176 } 1177 1178 static struct bpf_object *bpf_object__new(const char *path, 1179 const void *obj_buf, 1180 size_t obj_buf_sz, 1181 const char *obj_name) 1182 { 1183 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1184 struct bpf_object *obj; 1185 char *end; 1186 1187 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1188 if (!obj) { 1189 pr_warn("alloc memory failed for %s\n", path); 1190 return ERR_PTR(-ENOMEM); 1191 } 1192 1193 strcpy(obj->path, path); 1194 if (obj_name) { 1195 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1196 } else { 1197 /* Using basename() GNU version which doesn't modify arg. */ 1198 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1199 end = strchr(obj->name, '.'); 1200 if (end) 1201 *end = 0; 1202 } 1203 1204 obj->efile.fd = -1; 1205 /* 1206 * Caller of this function should also call 1207 * bpf_object__elf_finish() after data collection to return 1208 * obj_buf to user. If not, we should duplicate the buffer to 1209 * avoid user freeing them before elf finish. 1210 */ 1211 obj->efile.obj_buf = obj_buf; 1212 obj->efile.obj_buf_sz = obj_buf_sz; 1213 obj->efile.maps_shndx = -1; 1214 obj->efile.btf_maps_shndx = -1; 1215 obj->efile.st_ops_shndx = -1; 1216 obj->kconfig_map_idx = -1; 1217 1218 obj->kern_version = get_kernel_version(); 1219 obj->loaded = false; 1220 1221 INIT_LIST_HEAD(&obj->list); 1222 if (!strict) 1223 list_add(&obj->list, &bpf_objects_list); 1224 return obj; 1225 } 1226 1227 static void bpf_object__elf_finish(struct bpf_object *obj) 1228 { 1229 if (!obj->efile.elf) 1230 return; 1231 1232 if (obj->efile.elf) { 1233 elf_end(obj->efile.elf); 1234 obj->efile.elf = NULL; 1235 } 1236 obj->efile.symbols = NULL; 1237 obj->efile.st_ops_data = NULL; 1238 1239 zfree(&obj->efile.secs); 1240 obj->efile.sec_cnt = 0; 1241 zclose(obj->efile.fd); 1242 obj->efile.obj_buf = NULL; 1243 obj->efile.obj_buf_sz = 0; 1244 } 1245 1246 static int bpf_object__elf_init(struct bpf_object *obj) 1247 { 1248 Elf64_Ehdr *ehdr; 1249 int err = 0; 1250 Elf *elf; 1251 1252 if (obj->efile.elf) { 1253 pr_warn("elf: init internal error\n"); 1254 return -LIBBPF_ERRNO__LIBELF; 1255 } 1256 1257 if (obj->efile.obj_buf_sz > 0) { 1258 /* 1259 * obj_buf should have been validated by 1260 * bpf_object__open_buffer(). 1261 */ 1262 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1263 } else { 1264 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1265 if (obj->efile.fd < 0) { 1266 char errmsg[STRERR_BUFSIZE], *cp; 1267 1268 err = -errno; 1269 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1270 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1271 return err; 1272 } 1273 1274 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1275 } 1276 1277 if (!elf) { 1278 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1279 err = -LIBBPF_ERRNO__LIBELF; 1280 goto errout; 1281 } 1282 1283 obj->efile.elf = elf; 1284 1285 if (elf_kind(elf) != ELF_K_ELF) { 1286 err = -LIBBPF_ERRNO__FORMAT; 1287 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1288 goto errout; 1289 } 1290 1291 if (gelf_getclass(elf) != ELFCLASS64) { 1292 err = -LIBBPF_ERRNO__FORMAT; 1293 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1294 goto errout; 1295 } 1296 1297 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1298 if (!obj->efile.ehdr) { 1299 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1300 err = -LIBBPF_ERRNO__FORMAT; 1301 goto errout; 1302 } 1303 1304 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1305 pr_warn("elf: failed to get section names section index for %s: %s\n", 1306 obj->path, elf_errmsg(-1)); 1307 err = -LIBBPF_ERRNO__FORMAT; 1308 goto errout; 1309 } 1310 1311 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1312 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1313 pr_warn("elf: failed to get section names strings from %s: %s\n", 1314 obj->path, elf_errmsg(-1)); 1315 err = -LIBBPF_ERRNO__FORMAT; 1316 goto errout; 1317 } 1318 1319 /* Old LLVM set e_machine to EM_NONE */ 1320 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1321 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1322 err = -LIBBPF_ERRNO__FORMAT; 1323 goto errout; 1324 } 1325 1326 return 0; 1327 errout: 1328 bpf_object__elf_finish(obj); 1329 return err; 1330 } 1331 1332 static int bpf_object__check_endianness(struct bpf_object *obj) 1333 { 1334 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1335 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1336 return 0; 1337 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1338 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1339 return 0; 1340 #else 1341 # error "Unrecognized __BYTE_ORDER__" 1342 #endif 1343 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1344 return -LIBBPF_ERRNO__ENDIAN; 1345 } 1346 1347 static int 1348 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1349 { 1350 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1351 * go over allowed ELF data section buffer 1352 */ 1353 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1354 pr_debug("license of %s is %s\n", obj->path, obj->license); 1355 return 0; 1356 } 1357 1358 static int 1359 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1360 { 1361 __u32 kver; 1362 1363 if (size != sizeof(kver)) { 1364 pr_warn("invalid kver section in %s\n", obj->path); 1365 return -LIBBPF_ERRNO__FORMAT; 1366 } 1367 memcpy(&kver, data, sizeof(kver)); 1368 obj->kern_version = kver; 1369 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1370 return 0; 1371 } 1372 1373 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1374 { 1375 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1376 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1377 return true; 1378 return false; 1379 } 1380 1381 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1382 { 1383 int ret = -ENOENT; 1384 Elf_Data *data; 1385 Elf_Scn *scn; 1386 1387 *size = 0; 1388 if (!name) 1389 return -EINVAL; 1390 1391 scn = elf_sec_by_name(obj, name); 1392 data = elf_sec_data(obj, scn); 1393 if (data) { 1394 ret = 0; /* found it */ 1395 *size = data->d_size; 1396 } 1397 1398 return *size ? 0 : ret; 1399 } 1400 1401 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1402 { 1403 Elf_Data *symbols = obj->efile.symbols; 1404 const char *sname; 1405 size_t si; 1406 1407 if (!name || !off) 1408 return -EINVAL; 1409 1410 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1411 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1412 1413 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1414 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1415 continue; 1416 1417 sname = elf_sym_str(obj, sym->st_name); 1418 if (!sname) { 1419 pr_warn("failed to get sym name string for var %s\n", name); 1420 return -EIO; 1421 } 1422 if (strcmp(name, sname) == 0) { 1423 *off = sym->st_value; 1424 return 0; 1425 } 1426 } 1427 1428 return -ENOENT; 1429 } 1430 1431 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1432 { 1433 struct bpf_map *new_maps; 1434 size_t new_cap; 1435 int i; 1436 1437 if (obj->nr_maps < obj->maps_cap) 1438 return &obj->maps[obj->nr_maps++]; 1439 1440 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1441 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1442 if (!new_maps) { 1443 pr_warn("alloc maps for object failed\n"); 1444 return ERR_PTR(-ENOMEM); 1445 } 1446 1447 obj->maps_cap = new_cap; 1448 obj->maps = new_maps; 1449 1450 /* zero out new maps */ 1451 memset(obj->maps + obj->nr_maps, 0, 1452 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1453 /* 1454 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1455 * when failure (zclose won't close negative fd)). 1456 */ 1457 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1458 obj->maps[i].fd = -1; 1459 obj->maps[i].inner_map_fd = -1; 1460 } 1461 1462 return &obj->maps[obj->nr_maps++]; 1463 } 1464 1465 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1466 { 1467 long page_sz = sysconf(_SC_PAGE_SIZE); 1468 size_t map_sz; 1469 1470 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1471 map_sz = roundup(map_sz, page_sz); 1472 return map_sz; 1473 } 1474 1475 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1476 { 1477 char map_name[BPF_OBJ_NAME_LEN], *p; 1478 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1479 1480 /* This is one of the more confusing parts of libbpf for various 1481 * reasons, some of which are historical. The original idea for naming 1482 * internal names was to include as much of BPF object name prefix as 1483 * possible, so that it can be distinguished from similar internal 1484 * maps of a different BPF object. 1485 * As an example, let's say we have bpf_object named 'my_object_name' 1486 * and internal map corresponding to '.rodata' ELF section. The final 1487 * map name advertised to user and to the kernel will be 1488 * 'my_objec.rodata', taking first 8 characters of object name and 1489 * entire 7 characters of '.rodata'. 1490 * Somewhat confusingly, if internal map ELF section name is shorter 1491 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1492 * for the suffix, even though we only have 4 actual characters, and 1493 * resulting map will be called 'my_objec.bss', not even using all 15 1494 * characters allowed by the kernel. Oh well, at least the truncated 1495 * object name is somewhat consistent in this case. But if the map 1496 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1497 * (8 chars) and thus will be left with only first 7 characters of the 1498 * object name ('my_obje'). Happy guessing, user, that the final map 1499 * name will be "my_obje.kconfig". 1500 * Now, with libbpf starting to support arbitrarily named .rodata.* 1501 * and .data.* data sections, it's possible that ELF section name is 1502 * longer than allowed 15 chars, so we now need to be careful to take 1503 * only up to 15 first characters of ELF name, taking no BPF object 1504 * name characters at all. So '.rodata.abracadabra' will result in 1505 * '.rodata.abracad' kernel and user-visible name. 1506 * We need to keep this convoluted logic intact for .data, .bss and 1507 * .rodata maps, but for new custom .data.custom and .rodata.custom 1508 * maps we use their ELF names as is, not prepending bpf_object name 1509 * in front. We still need to truncate them to 15 characters for the 1510 * kernel. Full name can be recovered for such maps by using DATASEC 1511 * BTF type associated with such map's value type, though. 1512 */ 1513 if (sfx_len >= BPF_OBJ_NAME_LEN) 1514 sfx_len = BPF_OBJ_NAME_LEN - 1; 1515 1516 /* if there are two or more dots in map name, it's a custom dot map */ 1517 if (strchr(real_name + 1, '.') != NULL) 1518 pfx_len = 0; 1519 else 1520 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1521 1522 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1523 sfx_len, real_name); 1524 1525 /* sanitise map name to characters allowed by kernel */ 1526 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1527 if (!isalnum(*p) && *p != '_' && *p != '.') 1528 *p = '_'; 1529 1530 return strdup(map_name); 1531 } 1532 1533 static int 1534 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1535 const char *real_name, int sec_idx, void *data, size_t data_sz) 1536 { 1537 struct bpf_map_def *def; 1538 struct bpf_map *map; 1539 int err; 1540 1541 map = bpf_object__add_map(obj); 1542 if (IS_ERR(map)) 1543 return PTR_ERR(map); 1544 1545 map->libbpf_type = type; 1546 map->sec_idx = sec_idx; 1547 map->sec_offset = 0; 1548 map->real_name = strdup(real_name); 1549 map->name = internal_map_name(obj, real_name); 1550 if (!map->real_name || !map->name) { 1551 zfree(&map->real_name); 1552 zfree(&map->name); 1553 return -ENOMEM; 1554 } 1555 1556 def = &map->def; 1557 def->type = BPF_MAP_TYPE_ARRAY; 1558 def->key_size = sizeof(int); 1559 def->value_size = data_sz; 1560 def->max_entries = 1; 1561 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1562 ? BPF_F_RDONLY_PROG : 0; 1563 def->map_flags |= BPF_F_MMAPABLE; 1564 1565 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1566 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1567 1568 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1569 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1570 if (map->mmaped == MAP_FAILED) { 1571 err = -errno; 1572 map->mmaped = NULL; 1573 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1574 map->name, err); 1575 zfree(&map->real_name); 1576 zfree(&map->name); 1577 return err; 1578 } 1579 1580 if (data) 1581 memcpy(map->mmaped, data, data_sz); 1582 1583 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1584 return 0; 1585 } 1586 1587 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1588 { 1589 struct elf_sec_desc *sec_desc; 1590 const char *sec_name; 1591 int err = 0, sec_idx; 1592 1593 /* 1594 * Populate obj->maps with libbpf internal maps. 1595 */ 1596 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1597 sec_desc = &obj->efile.secs[sec_idx]; 1598 1599 switch (sec_desc->sec_type) { 1600 case SEC_DATA: 1601 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1602 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1603 sec_name, sec_idx, 1604 sec_desc->data->d_buf, 1605 sec_desc->data->d_size); 1606 break; 1607 case SEC_RODATA: 1608 obj->has_rodata = true; 1609 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1610 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1611 sec_name, sec_idx, 1612 sec_desc->data->d_buf, 1613 sec_desc->data->d_size); 1614 break; 1615 case SEC_BSS: 1616 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1617 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1618 sec_name, sec_idx, 1619 NULL, 1620 sec_desc->data->d_size); 1621 break; 1622 default: 1623 /* skip */ 1624 break; 1625 } 1626 if (err) 1627 return err; 1628 } 1629 return 0; 1630 } 1631 1632 1633 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1634 const void *name) 1635 { 1636 int i; 1637 1638 for (i = 0; i < obj->nr_extern; i++) { 1639 if (strcmp(obj->externs[i].name, name) == 0) 1640 return &obj->externs[i]; 1641 } 1642 return NULL; 1643 } 1644 1645 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1646 char value) 1647 { 1648 switch (ext->kcfg.type) { 1649 case KCFG_BOOL: 1650 if (value == 'm') { 1651 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1652 ext->name, value); 1653 return -EINVAL; 1654 } 1655 *(bool *)ext_val = value == 'y' ? true : false; 1656 break; 1657 case KCFG_TRISTATE: 1658 if (value == 'y') 1659 *(enum libbpf_tristate *)ext_val = TRI_YES; 1660 else if (value == 'm') 1661 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1662 else /* value == 'n' */ 1663 *(enum libbpf_tristate *)ext_val = TRI_NO; 1664 break; 1665 case KCFG_CHAR: 1666 *(char *)ext_val = value; 1667 break; 1668 case KCFG_UNKNOWN: 1669 case KCFG_INT: 1670 case KCFG_CHAR_ARR: 1671 default: 1672 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1673 ext->name, value); 1674 return -EINVAL; 1675 } 1676 ext->is_set = true; 1677 return 0; 1678 } 1679 1680 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1681 const char *value) 1682 { 1683 size_t len; 1684 1685 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1686 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1687 return -EINVAL; 1688 } 1689 1690 len = strlen(value); 1691 if (value[len - 1] != '"') { 1692 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1693 ext->name, value); 1694 return -EINVAL; 1695 } 1696 1697 /* strip quotes */ 1698 len -= 2; 1699 if (len >= ext->kcfg.sz) { 1700 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1701 ext->name, value, len, ext->kcfg.sz - 1); 1702 len = ext->kcfg.sz - 1; 1703 } 1704 memcpy(ext_val, value + 1, len); 1705 ext_val[len] = '\0'; 1706 ext->is_set = true; 1707 return 0; 1708 } 1709 1710 static int parse_u64(const char *value, __u64 *res) 1711 { 1712 char *value_end; 1713 int err; 1714 1715 errno = 0; 1716 *res = strtoull(value, &value_end, 0); 1717 if (errno) { 1718 err = -errno; 1719 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1720 return err; 1721 } 1722 if (*value_end) { 1723 pr_warn("failed to parse '%s' as integer completely\n", value); 1724 return -EINVAL; 1725 } 1726 return 0; 1727 } 1728 1729 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1730 { 1731 int bit_sz = ext->kcfg.sz * 8; 1732 1733 if (ext->kcfg.sz == 8) 1734 return true; 1735 1736 /* Validate that value stored in u64 fits in integer of `ext->sz` 1737 * bytes size without any loss of information. If the target integer 1738 * is signed, we rely on the following limits of integer type of 1739 * Y bits and subsequent transformation: 1740 * 1741 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1742 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1743 * 0 <= X + 2^(Y-1) < 2^Y 1744 * 1745 * For unsigned target integer, check that all the (64 - Y) bits are 1746 * zero. 1747 */ 1748 if (ext->kcfg.is_signed) 1749 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1750 else 1751 return (v >> bit_sz) == 0; 1752 } 1753 1754 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1755 __u64 value) 1756 { 1757 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1758 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1759 ext->name, (unsigned long long)value); 1760 return -EINVAL; 1761 } 1762 if (!is_kcfg_value_in_range(ext, value)) { 1763 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1764 ext->name, (unsigned long long)value, ext->kcfg.sz); 1765 return -ERANGE; 1766 } 1767 switch (ext->kcfg.sz) { 1768 case 1: *(__u8 *)ext_val = value; break; 1769 case 2: *(__u16 *)ext_val = value; break; 1770 case 4: *(__u32 *)ext_val = value; break; 1771 case 8: *(__u64 *)ext_val = value; break; 1772 default: 1773 return -EINVAL; 1774 } 1775 ext->is_set = true; 1776 return 0; 1777 } 1778 1779 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1780 char *buf, void *data) 1781 { 1782 struct extern_desc *ext; 1783 char *sep, *value; 1784 int len, err = 0; 1785 void *ext_val; 1786 __u64 num; 1787 1788 if (!str_has_pfx(buf, "CONFIG_")) 1789 return 0; 1790 1791 sep = strchr(buf, '='); 1792 if (!sep) { 1793 pr_warn("failed to parse '%s': no separator\n", buf); 1794 return -EINVAL; 1795 } 1796 1797 /* Trim ending '\n' */ 1798 len = strlen(buf); 1799 if (buf[len - 1] == '\n') 1800 buf[len - 1] = '\0'; 1801 /* Split on '=' and ensure that a value is present. */ 1802 *sep = '\0'; 1803 if (!sep[1]) { 1804 *sep = '='; 1805 pr_warn("failed to parse '%s': no value\n", buf); 1806 return -EINVAL; 1807 } 1808 1809 ext = find_extern_by_name(obj, buf); 1810 if (!ext || ext->is_set) 1811 return 0; 1812 1813 ext_val = data + ext->kcfg.data_off; 1814 value = sep + 1; 1815 1816 switch (*value) { 1817 case 'y': case 'n': case 'm': 1818 err = set_kcfg_value_tri(ext, ext_val, *value); 1819 break; 1820 case '"': 1821 err = set_kcfg_value_str(ext, ext_val, value); 1822 break; 1823 default: 1824 /* assume integer */ 1825 err = parse_u64(value, &num); 1826 if (err) { 1827 pr_warn("extern (kcfg) %s=%s should be integer\n", 1828 ext->name, value); 1829 return err; 1830 } 1831 err = set_kcfg_value_num(ext, ext_val, num); 1832 break; 1833 } 1834 if (err) 1835 return err; 1836 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1837 return 0; 1838 } 1839 1840 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1841 { 1842 char buf[PATH_MAX]; 1843 struct utsname uts; 1844 int len, err = 0; 1845 gzFile file; 1846 1847 uname(&uts); 1848 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1849 if (len < 0) 1850 return -EINVAL; 1851 else if (len >= PATH_MAX) 1852 return -ENAMETOOLONG; 1853 1854 /* gzopen also accepts uncompressed files. */ 1855 file = gzopen(buf, "r"); 1856 if (!file) 1857 file = gzopen("/proc/config.gz", "r"); 1858 1859 if (!file) { 1860 pr_warn("failed to open system Kconfig\n"); 1861 return -ENOENT; 1862 } 1863 1864 while (gzgets(file, buf, sizeof(buf))) { 1865 err = bpf_object__process_kconfig_line(obj, buf, data); 1866 if (err) { 1867 pr_warn("error parsing system Kconfig line '%s': %d\n", 1868 buf, err); 1869 goto out; 1870 } 1871 } 1872 1873 out: 1874 gzclose(file); 1875 return err; 1876 } 1877 1878 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1879 const char *config, void *data) 1880 { 1881 char buf[PATH_MAX]; 1882 int err = 0; 1883 FILE *file; 1884 1885 file = fmemopen((void *)config, strlen(config), "r"); 1886 if (!file) { 1887 err = -errno; 1888 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1889 return err; 1890 } 1891 1892 while (fgets(buf, sizeof(buf), file)) { 1893 err = bpf_object__process_kconfig_line(obj, buf, data); 1894 if (err) { 1895 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1896 buf, err); 1897 break; 1898 } 1899 } 1900 1901 fclose(file); 1902 return err; 1903 } 1904 1905 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1906 { 1907 struct extern_desc *last_ext = NULL, *ext; 1908 size_t map_sz; 1909 int i, err; 1910 1911 for (i = 0; i < obj->nr_extern; i++) { 1912 ext = &obj->externs[i]; 1913 if (ext->type == EXT_KCFG) 1914 last_ext = ext; 1915 } 1916 1917 if (!last_ext) 1918 return 0; 1919 1920 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1921 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1922 ".kconfig", obj->efile.symbols_shndx, 1923 NULL, map_sz); 1924 if (err) 1925 return err; 1926 1927 obj->kconfig_map_idx = obj->nr_maps - 1; 1928 1929 return 0; 1930 } 1931 1932 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1933 { 1934 Elf_Data *symbols = obj->efile.symbols; 1935 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1936 Elf_Data *data = NULL; 1937 Elf_Scn *scn; 1938 1939 if (obj->efile.maps_shndx < 0) 1940 return 0; 1941 1942 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1943 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1944 return -EOPNOTSUPP; 1945 } 1946 1947 if (!symbols) 1948 return -EINVAL; 1949 1950 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1951 data = elf_sec_data(obj, scn); 1952 if (!scn || !data) { 1953 pr_warn("elf: failed to get legacy map definitions for %s\n", 1954 obj->path); 1955 return -EINVAL; 1956 } 1957 1958 /* 1959 * Count number of maps. Each map has a name. 1960 * Array of maps is not supported: only the first element is 1961 * considered. 1962 * 1963 * TODO: Detect array of map and report error. 1964 */ 1965 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1966 for (i = 0; i < nr_syms; i++) { 1967 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1968 1969 if (sym->st_shndx != obj->efile.maps_shndx) 1970 continue; 1971 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1972 continue; 1973 nr_maps++; 1974 } 1975 /* Assume equally sized map definitions */ 1976 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1977 nr_maps, data->d_size, obj->path); 1978 1979 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1980 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1981 obj->path); 1982 return -EINVAL; 1983 } 1984 map_def_sz = data->d_size / nr_maps; 1985 1986 /* Fill obj->maps using data in "maps" section. */ 1987 for (i = 0; i < nr_syms; i++) { 1988 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1989 const char *map_name; 1990 struct bpf_map_def *def; 1991 struct bpf_map *map; 1992 1993 if (sym->st_shndx != obj->efile.maps_shndx) 1994 continue; 1995 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1996 continue; 1997 1998 map = bpf_object__add_map(obj); 1999 if (IS_ERR(map)) 2000 return PTR_ERR(map); 2001 2002 map_name = elf_sym_str(obj, sym->st_name); 2003 if (!map_name) { 2004 pr_warn("failed to get map #%d name sym string for obj %s\n", 2005 i, obj->path); 2006 return -LIBBPF_ERRNO__FORMAT; 2007 } 2008 2009 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2010 2011 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2012 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2013 return -ENOTSUP; 2014 } 2015 2016 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2017 map->sec_idx = sym->st_shndx; 2018 map->sec_offset = sym->st_value; 2019 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2020 map_name, map->sec_idx, map->sec_offset); 2021 if (sym->st_value + map_def_sz > data->d_size) { 2022 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2023 obj->path, map_name); 2024 return -EINVAL; 2025 } 2026 2027 map->name = strdup(map_name); 2028 if (!map->name) { 2029 pr_warn("map '%s': failed to alloc map name\n", map_name); 2030 return -ENOMEM; 2031 } 2032 pr_debug("map %d is \"%s\"\n", i, map->name); 2033 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2034 /* 2035 * If the definition of the map in the object file fits in 2036 * bpf_map_def, copy it. Any extra fields in our version 2037 * of bpf_map_def will default to zero as a result of the 2038 * calloc above. 2039 */ 2040 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2041 memcpy(&map->def, def, map_def_sz); 2042 } else { 2043 /* 2044 * Here the map structure being read is bigger than what 2045 * we expect, truncate if the excess bits are all zero. 2046 * If they are not zero, reject this map as 2047 * incompatible. 2048 */ 2049 char *b; 2050 2051 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2052 b < ((char *)def) + map_def_sz; b++) { 2053 if (*b != 0) { 2054 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2055 obj->path, map_name); 2056 if (strict) 2057 return -EINVAL; 2058 } 2059 } 2060 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2061 } 2062 } 2063 return 0; 2064 } 2065 2066 const struct btf_type * 2067 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2068 { 2069 const struct btf_type *t = btf__type_by_id(btf, id); 2070 2071 if (res_id) 2072 *res_id = id; 2073 2074 while (btf_is_mod(t) || btf_is_typedef(t)) { 2075 if (res_id) 2076 *res_id = t->type; 2077 t = btf__type_by_id(btf, t->type); 2078 } 2079 2080 return t; 2081 } 2082 2083 static const struct btf_type * 2084 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2085 { 2086 const struct btf_type *t; 2087 2088 t = skip_mods_and_typedefs(btf, id, NULL); 2089 if (!btf_is_ptr(t)) 2090 return NULL; 2091 2092 t = skip_mods_and_typedefs(btf, t->type, res_id); 2093 2094 return btf_is_func_proto(t) ? t : NULL; 2095 } 2096 2097 static const char *__btf_kind_str(__u16 kind) 2098 { 2099 switch (kind) { 2100 case BTF_KIND_UNKN: return "void"; 2101 case BTF_KIND_INT: return "int"; 2102 case BTF_KIND_PTR: return "ptr"; 2103 case BTF_KIND_ARRAY: return "array"; 2104 case BTF_KIND_STRUCT: return "struct"; 2105 case BTF_KIND_UNION: return "union"; 2106 case BTF_KIND_ENUM: return "enum"; 2107 case BTF_KIND_FWD: return "fwd"; 2108 case BTF_KIND_TYPEDEF: return "typedef"; 2109 case BTF_KIND_VOLATILE: return "volatile"; 2110 case BTF_KIND_CONST: return "const"; 2111 case BTF_KIND_RESTRICT: return "restrict"; 2112 case BTF_KIND_FUNC: return "func"; 2113 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2114 case BTF_KIND_VAR: return "var"; 2115 case BTF_KIND_DATASEC: return "datasec"; 2116 case BTF_KIND_FLOAT: return "float"; 2117 case BTF_KIND_DECL_TAG: return "decl_tag"; 2118 case BTF_KIND_TYPE_TAG: return "type_tag"; 2119 default: return "unknown"; 2120 } 2121 } 2122 2123 const char *btf_kind_str(const struct btf_type *t) 2124 { 2125 return __btf_kind_str(btf_kind(t)); 2126 } 2127 2128 /* 2129 * Fetch integer attribute of BTF map definition. Such attributes are 2130 * represented using a pointer to an array, in which dimensionality of array 2131 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2132 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2133 * type definition, while using only sizeof(void *) space in ELF data section. 2134 */ 2135 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2136 const struct btf_member *m, __u32 *res) 2137 { 2138 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2139 const char *name = btf__name_by_offset(btf, m->name_off); 2140 const struct btf_array *arr_info; 2141 const struct btf_type *arr_t; 2142 2143 if (!btf_is_ptr(t)) { 2144 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2145 map_name, name, btf_kind_str(t)); 2146 return false; 2147 } 2148 2149 arr_t = btf__type_by_id(btf, t->type); 2150 if (!arr_t) { 2151 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2152 map_name, name, t->type); 2153 return false; 2154 } 2155 if (!btf_is_array(arr_t)) { 2156 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2157 map_name, name, btf_kind_str(arr_t)); 2158 return false; 2159 } 2160 arr_info = btf_array(arr_t); 2161 *res = arr_info->nelems; 2162 return true; 2163 } 2164 2165 static int build_map_pin_path(struct bpf_map *map, const char *path) 2166 { 2167 char buf[PATH_MAX]; 2168 int len; 2169 2170 if (!path) 2171 path = "/sys/fs/bpf"; 2172 2173 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2174 if (len < 0) 2175 return -EINVAL; 2176 else if (len >= PATH_MAX) 2177 return -ENAMETOOLONG; 2178 2179 return bpf_map__set_pin_path(map, buf); 2180 } 2181 2182 int parse_btf_map_def(const char *map_name, struct btf *btf, 2183 const struct btf_type *def_t, bool strict, 2184 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2185 { 2186 const struct btf_type *t; 2187 const struct btf_member *m; 2188 bool is_inner = inner_def == NULL; 2189 int vlen, i; 2190 2191 vlen = btf_vlen(def_t); 2192 m = btf_members(def_t); 2193 for (i = 0; i < vlen; i++, m++) { 2194 const char *name = btf__name_by_offset(btf, m->name_off); 2195 2196 if (!name) { 2197 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2198 return -EINVAL; 2199 } 2200 if (strcmp(name, "type") == 0) { 2201 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2202 return -EINVAL; 2203 map_def->parts |= MAP_DEF_MAP_TYPE; 2204 } else if (strcmp(name, "max_entries") == 0) { 2205 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2206 return -EINVAL; 2207 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2208 } else if (strcmp(name, "map_flags") == 0) { 2209 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2210 return -EINVAL; 2211 map_def->parts |= MAP_DEF_MAP_FLAGS; 2212 } else if (strcmp(name, "numa_node") == 0) { 2213 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2214 return -EINVAL; 2215 map_def->parts |= MAP_DEF_NUMA_NODE; 2216 } else if (strcmp(name, "key_size") == 0) { 2217 __u32 sz; 2218 2219 if (!get_map_field_int(map_name, btf, m, &sz)) 2220 return -EINVAL; 2221 if (map_def->key_size && map_def->key_size != sz) { 2222 pr_warn("map '%s': conflicting key size %u != %u.\n", 2223 map_name, map_def->key_size, sz); 2224 return -EINVAL; 2225 } 2226 map_def->key_size = sz; 2227 map_def->parts |= MAP_DEF_KEY_SIZE; 2228 } else if (strcmp(name, "key") == 0) { 2229 __s64 sz; 2230 2231 t = btf__type_by_id(btf, m->type); 2232 if (!t) { 2233 pr_warn("map '%s': key type [%d] not found.\n", 2234 map_name, m->type); 2235 return -EINVAL; 2236 } 2237 if (!btf_is_ptr(t)) { 2238 pr_warn("map '%s': key spec is not PTR: %s.\n", 2239 map_name, btf_kind_str(t)); 2240 return -EINVAL; 2241 } 2242 sz = btf__resolve_size(btf, t->type); 2243 if (sz < 0) { 2244 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2245 map_name, t->type, (ssize_t)sz); 2246 return sz; 2247 } 2248 if (map_def->key_size && map_def->key_size != sz) { 2249 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2250 map_name, map_def->key_size, (ssize_t)sz); 2251 return -EINVAL; 2252 } 2253 map_def->key_size = sz; 2254 map_def->key_type_id = t->type; 2255 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2256 } else if (strcmp(name, "value_size") == 0) { 2257 __u32 sz; 2258 2259 if (!get_map_field_int(map_name, btf, m, &sz)) 2260 return -EINVAL; 2261 if (map_def->value_size && map_def->value_size != sz) { 2262 pr_warn("map '%s': conflicting value size %u != %u.\n", 2263 map_name, map_def->value_size, sz); 2264 return -EINVAL; 2265 } 2266 map_def->value_size = sz; 2267 map_def->parts |= MAP_DEF_VALUE_SIZE; 2268 } else if (strcmp(name, "value") == 0) { 2269 __s64 sz; 2270 2271 t = btf__type_by_id(btf, m->type); 2272 if (!t) { 2273 pr_warn("map '%s': value type [%d] not found.\n", 2274 map_name, m->type); 2275 return -EINVAL; 2276 } 2277 if (!btf_is_ptr(t)) { 2278 pr_warn("map '%s': value spec is not PTR: %s.\n", 2279 map_name, btf_kind_str(t)); 2280 return -EINVAL; 2281 } 2282 sz = btf__resolve_size(btf, t->type); 2283 if (sz < 0) { 2284 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2285 map_name, t->type, (ssize_t)sz); 2286 return sz; 2287 } 2288 if (map_def->value_size && map_def->value_size != sz) { 2289 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2290 map_name, map_def->value_size, (ssize_t)sz); 2291 return -EINVAL; 2292 } 2293 map_def->value_size = sz; 2294 map_def->value_type_id = t->type; 2295 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2296 } 2297 else if (strcmp(name, "values") == 0) { 2298 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2299 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2300 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2301 char inner_map_name[128]; 2302 int err; 2303 2304 if (is_inner) { 2305 pr_warn("map '%s': multi-level inner maps not supported.\n", 2306 map_name); 2307 return -ENOTSUP; 2308 } 2309 if (i != vlen - 1) { 2310 pr_warn("map '%s': '%s' member should be last.\n", 2311 map_name, name); 2312 return -EINVAL; 2313 } 2314 if (!is_map_in_map && !is_prog_array) { 2315 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2316 map_name); 2317 return -ENOTSUP; 2318 } 2319 if (map_def->value_size && map_def->value_size != 4) { 2320 pr_warn("map '%s': conflicting value size %u != 4.\n", 2321 map_name, map_def->value_size); 2322 return -EINVAL; 2323 } 2324 map_def->value_size = 4; 2325 t = btf__type_by_id(btf, m->type); 2326 if (!t) { 2327 pr_warn("map '%s': %s type [%d] not found.\n", 2328 map_name, desc, m->type); 2329 return -EINVAL; 2330 } 2331 if (!btf_is_array(t) || btf_array(t)->nelems) { 2332 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2333 map_name, desc); 2334 return -EINVAL; 2335 } 2336 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2337 if (!btf_is_ptr(t)) { 2338 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2339 map_name, desc, btf_kind_str(t)); 2340 return -EINVAL; 2341 } 2342 t = skip_mods_and_typedefs(btf, t->type, NULL); 2343 if (is_prog_array) { 2344 if (!btf_is_func_proto(t)) { 2345 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2346 map_name, btf_kind_str(t)); 2347 return -EINVAL; 2348 } 2349 continue; 2350 } 2351 if (!btf_is_struct(t)) { 2352 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2353 map_name, btf_kind_str(t)); 2354 return -EINVAL; 2355 } 2356 2357 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2358 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2359 if (err) 2360 return err; 2361 2362 map_def->parts |= MAP_DEF_INNER_MAP; 2363 } else if (strcmp(name, "pinning") == 0) { 2364 __u32 val; 2365 2366 if (is_inner) { 2367 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2368 return -EINVAL; 2369 } 2370 if (!get_map_field_int(map_name, btf, m, &val)) 2371 return -EINVAL; 2372 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2373 pr_warn("map '%s': invalid pinning value %u.\n", 2374 map_name, val); 2375 return -EINVAL; 2376 } 2377 map_def->pinning = val; 2378 map_def->parts |= MAP_DEF_PINNING; 2379 } else if (strcmp(name, "map_extra") == 0) { 2380 __u32 map_extra; 2381 2382 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2383 return -EINVAL; 2384 map_def->map_extra = map_extra; 2385 map_def->parts |= MAP_DEF_MAP_EXTRA; 2386 } else { 2387 if (strict) { 2388 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2389 return -ENOTSUP; 2390 } 2391 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2392 } 2393 } 2394 2395 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2396 pr_warn("map '%s': map type isn't specified.\n", map_name); 2397 return -EINVAL; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2404 { 2405 map->def.type = def->map_type; 2406 map->def.key_size = def->key_size; 2407 map->def.value_size = def->value_size; 2408 map->def.max_entries = def->max_entries; 2409 map->def.map_flags = def->map_flags; 2410 map->map_extra = def->map_extra; 2411 2412 map->numa_node = def->numa_node; 2413 map->btf_key_type_id = def->key_type_id; 2414 map->btf_value_type_id = def->value_type_id; 2415 2416 if (def->parts & MAP_DEF_MAP_TYPE) 2417 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2418 2419 if (def->parts & MAP_DEF_KEY_TYPE) 2420 pr_debug("map '%s': found key [%u], sz = %u.\n", 2421 map->name, def->key_type_id, def->key_size); 2422 else if (def->parts & MAP_DEF_KEY_SIZE) 2423 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2424 2425 if (def->parts & MAP_DEF_VALUE_TYPE) 2426 pr_debug("map '%s': found value [%u], sz = %u.\n", 2427 map->name, def->value_type_id, def->value_size); 2428 else if (def->parts & MAP_DEF_VALUE_SIZE) 2429 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2430 2431 if (def->parts & MAP_DEF_MAX_ENTRIES) 2432 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2433 if (def->parts & MAP_DEF_MAP_FLAGS) 2434 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2435 if (def->parts & MAP_DEF_MAP_EXTRA) 2436 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2437 (unsigned long long)def->map_extra); 2438 if (def->parts & MAP_DEF_PINNING) 2439 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2440 if (def->parts & MAP_DEF_NUMA_NODE) 2441 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2442 2443 if (def->parts & MAP_DEF_INNER_MAP) 2444 pr_debug("map '%s': found inner map definition.\n", map->name); 2445 } 2446 2447 static const char *btf_var_linkage_str(__u32 linkage) 2448 { 2449 switch (linkage) { 2450 case BTF_VAR_STATIC: return "static"; 2451 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2452 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2453 default: return "unknown"; 2454 } 2455 } 2456 2457 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2458 const struct btf_type *sec, 2459 int var_idx, int sec_idx, 2460 const Elf_Data *data, bool strict, 2461 const char *pin_root_path) 2462 { 2463 struct btf_map_def map_def = {}, inner_def = {}; 2464 const struct btf_type *var, *def; 2465 const struct btf_var_secinfo *vi; 2466 const struct btf_var *var_extra; 2467 const char *map_name; 2468 struct bpf_map *map; 2469 int err; 2470 2471 vi = btf_var_secinfos(sec) + var_idx; 2472 var = btf__type_by_id(obj->btf, vi->type); 2473 var_extra = btf_var(var); 2474 map_name = btf__name_by_offset(obj->btf, var->name_off); 2475 2476 if (map_name == NULL || map_name[0] == '\0') { 2477 pr_warn("map #%d: empty name.\n", var_idx); 2478 return -EINVAL; 2479 } 2480 if ((__u64)vi->offset + vi->size > data->d_size) { 2481 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2482 return -EINVAL; 2483 } 2484 if (!btf_is_var(var)) { 2485 pr_warn("map '%s': unexpected var kind %s.\n", 2486 map_name, btf_kind_str(var)); 2487 return -EINVAL; 2488 } 2489 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2490 pr_warn("map '%s': unsupported map linkage %s.\n", 2491 map_name, btf_var_linkage_str(var_extra->linkage)); 2492 return -EOPNOTSUPP; 2493 } 2494 2495 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2496 if (!btf_is_struct(def)) { 2497 pr_warn("map '%s': unexpected def kind %s.\n", 2498 map_name, btf_kind_str(var)); 2499 return -EINVAL; 2500 } 2501 if (def->size > vi->size) { 2502 pr_warn("map '%s': invalid def size.\n", map_name); 2503 return -EINVAL; 2504 } 2505 2506 map = bpf_object__add_map(obj); 2507 if (IS_ERR(map)) 2508 return PTR_ERR(map); 2509 map->name = strdup(map_name); 2510 if (!map->name) { 2511 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2512 return -ENOMEM; 2513 } 2514 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2515 map->def.type = BPF_MAP_TYPE_UNSPEC; 2516 map->sec_idx = sec_idx; 2517 map->sec_offset = vi->offset; 2518 map->btf_var_idx = var_idx; 2519 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2520 map_name, map->sec_idx, map->sec_offset); 2521 2522 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2523 if (err) 2524 return err; 2525 2526 fill_map_from_def(map, &map_def); 2527 2528 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2529 err = build_map_pin_path(map, pin_root_path); 2530 if (err) { 2531 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2532 return err; 2533 } 2534 } 2535 2536 if (map_def.parts & MAP_DEF_INNER_MAP) { 2537 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2538 if (!map->inner_map) 2539 return -ENOMEM; 2540 map->inner_map->fd = -1; 2541 map->inner_map->sec_idx = sec_idx; 2542 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2543 if (!map->inner_map->name) 2544 return -ENOMEM; 2545 sprintf(map->inner_map->name, "%s.inner", map_name); 2546 2547 fill_map_from_def(map->inner_map, &inner_def); 2548 } 2549 2550 return 0; 2551 } 2552 2553 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2554 const char *pin_root_path) 2555 { 2556 const struct btf_type *sec = NULL; 2557 int nr_types, i, vlen, err; 2558 const struct btf_type *t; 2559 const char *name; 2560 Elf_Data *data; 2561 Elf_Scn *scn; 2562 2563 if (obj->efile.btf_maps_shndx < 0) 2564 return 0; 2565 2566 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2567 data = elf_sec_data(obj, scn); 2568 if (!scn || !data) { 2569 pr_warn("elf: failed to get %s map definitions for %s\n", 2570 MAPS_ELF_SEC, obj->path); 2571 return -EINVAL; 2572 } 2573 2574 nr_types = btf__type_cnt(obj->btf); 2575 for (i = 1; i < nr_types; i++) { 2576 t = btf__type_by_id(obj->btf, i); 2577 if (!btf_is_datasec(t)) 2578 continue; 2579 name = btf__name_by_offset(obj->btf, t->name_off); 2580 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2581 sec = t; 2582 obj->efile.btf_maps_sec_btf_id = i; 2583 break; 2584 } 2585 } 2586 2587 if (!sec) { 2588 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2589 return -ENOENT; 2590 } 2591 2592 vlen = btf_vlen(sec); 2593 for (i = 0; i < vlen; i++) { 2594 err = bpf_object__init_user_btf_map(obj, sec, i, 2595 obj->efile.btf_maps_shndx, 2596 data, strict, 2597 pin_root_path); 2598 if (err) 2599 return err; 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int bpf_object__init_maps(struct bpf_object *obj, 2606 const struct bpf_object_open_opts *opts) 2607 { 2608 const char *pin_root_path; 2609 bool strict; 2610 int err; 2611 2612 strict = !OPTS_GET(opts, relaxed_maps, false); 2613 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2614 2615 err = bpf_object__init_user_maps(obj, strict); 2616 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2617 err = err ?: bpf_object__init_global_data_maps(obj); 2618 err = err ?: bpf_object__init_kconfig_map(obj); 2619 err = err ?: bpf_object__init_struct_ops_maps(obj); 2620 2621 return err; 2622 } 2623 2624 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2625 { 2626 Elf64_Shdr *sh; 2627 2628 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2629 if (!sh) 2630 return false; 2631 2632 return sh->sh_flags & SHF_EXECINSTR; 2633 } 2634 2635 static bool btf_needs_sanitization(struct bpf_object *obj) 2636 { 2637 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2638 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2639 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2640 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2641 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2642 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2643 2644 return !has_func || !has_datasec || !has_func_global || !has_float || 2645 !has_decl_tag || !has_type_tag; 2646 } 2647 2648 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2649 { 2650 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2651 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2652 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2653 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2654 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2655 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2656 struct btf_type *t; 2657 int i, j, vlen; 2658 2659 for (i = 1; i < btf__type_cnt(btf); i++) { 2660 t = (struct btf_type *)btf__type_by_id(btf, i); 2661 2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2663 /* replace VAR/DECL_TAG with INT */ 2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2665 /* 2666 * using size = 1 is the safest choice, 4 will be too 2667 * big and cause kernel BTF validation failure if 2668 * original variable took less than 4 bytes 2669 */ 2670 t->size = 1; 2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2672 } else if (!has_datasec && btf_is_datasec(t)) { 2673 /* replace DATASEC with STRUCT */ 2674 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2675 struct btf_member *m = btf_members(t); 2676 struct btf_type *vt; 2677 char *name; 2678 2679 name = (char *)btf__name_by_offset(btf, t->name_off); 2680 while (*name) { 2681 if (*name == '.') 2682 *name = '_'; 2683 name++; 2684 } 2685 2686 vlen = btf_vlen(t); 2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2688 for (j = 0; j < vlen; j++, v++, m++) { 2689 /* order of field assignments is important */ 2690 m->offset = v->offset * 8; 2691 m->type = v->type; 2692 /* preserve variable name as member name */ 2693 vt = (void *)btf__type_by_id(btf, v->type); 2694 m->name_off = vt->name_off; 2695 } 2696 } else if (!has_func && btf_is_func_proto(t)) { 2697 /* replace FUNC_PROTO with ENUM */ 2698 vlen = btf_vlen(t); 2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2700 t->size = sizeof(__u32); /* kernel enforced */ 2701 } else if (!has_func && btf_is_func(t)) { 2702 /* replace FUNC with TYPEDEF */ 2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2704 } else if (!has_func_global && btf_is_func(t)) { 2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2707 } else if (!has_float && btf_is_float(t)) { 2708 /* replace FLOAT with an equally-sized empty STRUCT; 2709 * since C compilers do not accept e.g. "float" as a 2710 * valid struct name, make it anonymous 2711 */ 2712 t->name_off = 0; 2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2714 } else if (!has_type_tag && btf_is_type_tag(t)) { 2715 /* replace TYPE_TAG with a CONST */ 2716 t->name_off = 0; 2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2718 } 2719 } 2720 } 2721 2722 static bool libbpf_needs_btf(const struct bpf_object *obj) 2723 { 2724 return obj->efile.btf_maps_shndx >= 0 || 2725 obj->efile.st_ops_shndx >= 0 || 2726 obj->nr_extern > 0; 2727 } 2728 2729 static bool kernel_needs_btf(const struct bpf_object *obj) 2730 { 2731 return obj->efile.st_ops_shndx >= 0; 2732 } 2733 2734 static int bpf_object__init_btf(struct bpf_object *obj, 2735 Elf_Data *btf_data, 2736 Elf_Data *btf_ext_data) 2737 { 2738 int err = -ENOENT; 2739 2740 if (btf_data) { 2741 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2742 err = libbpf_get_error(obj->btf); 2743 if (err) { 2744 obj->btf = NULL; 2745 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2746 goto out; 2747 } 2748 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2749 btf__set_pointer_size(obj->btf, 8); 2750 } 2751 if (btf_ext_data) { 2752 if (!obj->btf) { 2753 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2754 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2755 goto out; 2756 } 2757 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2758 err = libbpf_get_error(obj->btf_ext); 2759 if (err) { 2760 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2761 BTF_EXT_ELF_SEC, err); 2762 obj->btf_ext = NULL; 2763 goto out; 2764 } 2765 } 2766 out: 2767 if (err && libbpf_needs_btf(obj)) { 2768 pr_warn("BTF is required, but is missing or corrupted.\n"); 2769 return err; 2770 } 2771 return 0; 2772 } 2773 2774 static int compare_vsi_off(const void *_a, const void *_b) 2775 { 2776 const struct btf_var_secinfo *a = _a; 2777 const struct btf_var_secinfo *b = _b; 2778 2779 return a->offset - b->offset; 2780 } 2781 2782 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2783 struct btf_type *t) 2784 { 2785 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2786 const char *name = btf__name_by_offset(btf, t->name_off); 2787 const struct btf_type *t_var; 2788 struct btf_var_secinfo *vsi; 2789 const struct btf_var *var; 2790 int ret; 2791 2792 if (!name) { 2793 pr_debug("No name found in string section for DATASEC kind.\n"); 2794 return -ENOENT; 2795 } 2796 2797 /* .extern datasec size and var offsets were set correctly during 2798 * extern collection step, so just skip straight to sorting variables 2799 */ 2800 if (t->size) 2801 goto sort_vars; 2802 2803 ret = find_elf_sec_sz(obj, name, &size); 2804 if (ret || !size || (t->size && t->size != size)) { 2805 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2806 return -ENOENT; 2807 } 2808 2809 t->size = size; 2810 2811 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2812 t_var = btf__type_by_id(btf, vsi->type); 2813 if (!t_var || !btf_is_var(t_var)) { 2814 pr_debug("Non-VAR type seen in section %s\n", name); 2815 return -EINVAL; 2816 } 2817 2818 var = btf_var(t_var); 2819 if (var->linkage == BTF_VAR_STATIC) 2820 continue; 2821 2822 name = btf__name_by_offset(btf, t_var->name_off); 2823 if (!name) { 2824 pr_debug("No name found in string section for VAR kind\n"); 2825 return -ENOENT; 2826 } 2827 2828 ret = find_elf_var_offset(obj, name, &off); 2829 if (ret) { 2830 pr_debug("No offset found in symbol table for VAR %s\n", 2831 name); 2832 return -ENOENT; 2833 } 2834 2835 vsi->offset = off; 2836 } 2837 2838 sort_vars: 2839 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2840 return 0; 2841 } 2842 2843 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2844 { 2845 int err = 0; 2846 __u32 i, n = btf__type_cnt(btf); 2847 2848 for (i = 1; i < n; i++) { 2849 struct btf_type *t = btf_type_by_id(btf, i); 2850 2851 /* Loader needs to fix up some of the things compiler 2852 * couldn't get its hands on while emitting BTF. This 2853 * is section size and global variable offset. We use 2854 * the info from the ELF itself for this purpose. 2855 */ 2856 if (btf_is_datasec(t)) { 2857 err = btf_fixup_datasec(obj, btf, t); 2858 if (err) 2859 break; 2860 } 2861 } 2862 2863 return libbpf_err(err); 2864 } 2865 2866 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2867 { 2868 return btf_finalize_data(obj, btf); 2869 } 2870 2871 static int bpf_object__finalize_btf(struct bpf_object *obj) 2872 { 2873 int err; 2874 2875 if (!obj->btf) 2876 return 0; 2877 2878 err = btf_finalize_data(obj, obj->btf); 2879 if (err) { 2880 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2881 return err; 2882 } 2883 2884 return 0; 2885 } 2886 2887 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2888 { 2889 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2890 prog->type == BPF_PROG_TYPE_LSM) 2891 return true; 2892 2893 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2894 * also need vmlinux BTF 2895 */ 2896 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2897 return true; 2898 2899 return false; 2900 } 2901 2902 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2903 { 2904 struct bpf_program *prog; 2905 int i; 2906 2907 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2908 * is not specified 2909 */ 2910 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2911 return true; 2912 2913 /* Support for typed ksyms needs kernel BTF */ 2914 for (i = 0; i < obj->nr_extern; i++) { 2915 const struct extern_desc *ext; 2916 2917 ext = &obj->externs[i]; 2918 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2919 return true; 2920 } 2921 2922 bpf_object__for_each_program(prog, obj) { 2923 if (!prog->load) 2924 continue; 2925 if (prog_needs_vmlinux_btf(prog)) 2926 return true; 2927 } 2928 2929 return false; 2930 } 2931 2932 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2933 { 2934 int err; 2935 2936 /* btf_vmlinux could be loaded earlier */ 2937 if (obj->btf_vmlinux || obj->gen_loader) 2938 return 0; 2939 2940 if (!force && !obj_needs_vmlinux_btf(obj)) 2941 return 0; 2942 2943 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2944 err = libbpf_get_error(obj->btf_vmlinux); 2945 if (err) { 2946 pr_warn("Error loading vmlinux BTF: %d\n", err); 2947 obj->btf_vmlinux = NULL; 2948 return err; 2949 } 2950 return 0; 2951 } 2952 2953 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2954 { 2955 struct btf *kern_btf = obj->btf; 2956 bool btf_mandatory, sanitize; 2957 int i, err = 0; 2958 2959 if (!obj->btf) 2960 return 0; 2961 2962 if (!kernel_supports(obj, FEAT_BTF)) { 2963 if (kernel_needs_btf(obj)) { 2964 err = -EOPNOTSUPP; 2965 goto report; 2966 } 2967 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2968 return 0; 2969 } 2970 2971 /* Even though some subprogs are global/weak, user might prefer more 2972 * permissive BPF verification process that BPF verifier performs for 2973 * static functions, taking into account more context from the caller 2974 * functions. In such case, they need to mark such subprogs with 2975 * __attribute__((visibility("hidden"))) and libbpf will adjust 2976 * corresponding FUNC BTF type to be marked as static and trigger more 2977 * involved BPF verification process. 2978 */ 2979 for (i = 0; i < obj->nr_programs; i++) { 2980 struct bpf_program *prog = &obj->programs[i]; 2981 struct btf_type *t; 2982 const char *name; 2983 int j, n; 2984 2985 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2986 continue; 2987 2988 n = btf__type_cnt(obj->btf); 2989 for (j = 1; j < n; j++) { 2990 t = btf_type_by_id(obj->btf, j); 2991 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2992 continue; 2993 2994 name = btf__str_by_offset(obj->btf, t->name_off); 2995 if (strcmp(name, prog->name) != 0) 2996 continue; 2997 2998 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2999 break; 3000 } 3001 } 3002 3003 sanitize = btf_needs_sanitization(obj); 3004 if (sanitize) { 3005 const void *raw_data; 3006 __u32 sz; 3007 3008 /* clone BTF to sanitize a copy and leave the original intact */ 3009 raw_data = btf__raw_data(obj->btf, &sz); 3010 kern_btf = btf__new(raw_data, sz); 3011 err = libbpf_get_error(kern_btf); 3012 if (err) 3013 return err; 3014 3015 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3016 btf__set_pointer_size(obj->btf, 8); 3017 bpf_object__sanitize_btf(obj, kern_btf); 3018 } 3019 3020 if (obj->gen_loader) { 3021 __u32 raw_size = 0; 3022 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3023 3024 if (!raw_data) 3025 return -ENOMEM; 3026 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3027 /* Pretend to have valid FD to pass various fd >= 0 checks. 3028 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3029 */ 3030 btf__set_fd(kern_btf, 0); 3031 } else { 3032 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3033 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3034 obj->log_level ? 1 : 0); 3035 } 3036 if (sanitize) { 3037 if (!err) { 3038 /* move fd to libbpf's BTF */ 3039 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3040 btf__set_fd(kern_btf, -1); 3041 } 3042 btf__free(kern_btf); 3043 } 3044 report: 3045 if (err) { 3046 btf_mandatory = kernel_needs_btf(obj); 3047 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3048 btf_mandatory ? "BTF is mandatory, can't proceed." 3049 : "BTF is optional, ignoring."); 3050 if (!btf_mandatory) 3051 err = 0; 3052 } 3053 return err; 3054 } 3055 3056 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3057 { 3058 const char *name; 3059 3060 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3061 if (!name) { 3062 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3063 off, obj->path, elf_errmsg(-1)); 3064 return NULL; 3065 } 3066 3067 return name; 3068 } 3069 3070 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3071 { 3072 const char *name; 3073 3074 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3075 if (!name) { 3076 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3077 off, obj->path, elf_errmsg(-1)); 3078 return NULL; 3079 } 3080 3081 return name; 3082 } 3083 3084 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3085 { 3086 Elf_Scn *scn; 3087 3088 scn = elf_getscn(obj->efile.elf, idx); 3089 if (!scn) { 3090 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3091 idx, obj->path, elf_errmsg(-1)); 3092 return NULL; 3093 } 3094 return scn; 3095 } 3096 3097 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3098 { 3099 Elf_Scn *scn = NULL; 3100 Elf *elf = obj->efile.elf; 3101 const char *sec_name; 3102 3103 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3104 sec_name = elf_sec_name(obj, scn); 3105 if (!sec_name) 3106 return NULL; 3107 3108 if (strcmp(sec_name, name) != 0) 3109 continue; 3110 3111 return scn; 3112 } 3113 return NULL; 3114 } 3115 3116 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3117 { 3118 Elf64_Shdr *shdr; 3119 3120 if (!scn) 3121 return NULL; 3122 3123 shdr = elf64_getshdr(scn); 3124 if (!shdr) { 3125 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3126 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3127 return NULL; 3128 } 3129 3130 return shdr; 3131 } 3132 3133 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3134 { 3135 const char *name; 3136 Elf64_Shdr *sh; 3137 3138 if (!scn) 3139 return NULL; 3140 3141 sh = elf_sec_hdr(obj, scn); 3142 if (!sh) 3143 return NULL; 3144 3145 name = elf_sec_str(obj, sh->sh_name); 3146 if (!name) { 3147 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3148 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3149 return NULL; 3150 } 3151 3152 return name; 3153 } 3154 3155 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3156 { 3157 Elf_Data *data; 3158 3159 if (!scn) 3160 return NULL; 3161 3162 data = elf_getdata(scn, 0); 3163 if (!data) { 3164 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3165 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3166 obj->path, elf_errmsg(-1)); 3167 return NULL; 3168 } 3169 3170 return data; 3171 } 3172 3173 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3174 { 3175 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3176 return NULL; 3177 3178 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3179 } 3180 3181 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3182 { 3183 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3184 return NULL; 3185 3186 return (Elf64_Rel *)data->d_buf + idx; 3187 } 3188 3189 static bool is_sec_name_dwarf(const char *name) 3190 { 3191 /* approximation, but the actual list is too long */ 3192 return str_has_pfx(name, ".debug_"); 3193 } 3194 3195 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3196 { 3197 /* no special handling of .strtab */ 3198 if (hdr->sh_type == SHT_STRTAB) 3199 return true; 3200 3201 /* ignore .llvm_addrsig section as well */ 3202 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3203 return true; 3204 3205 /* no subprograms will lead to an empty .text section, ignore it */ 3206 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3207 strcmp(name, ".text") == 0) 3208 return true; 3209 3210 /* DWARF sections */ 3211 if (is_sec_name_dwarf(name)) 3212 return true; 3213 3214 if (str_has_pfx(name, ".rel")) { 3215 name += sizeof(".rel") - 1; 3216 /* DWARF section relocations */ 3217 if (is_sec_name_dwarf(name)) 3218 return true; 3219 3220 /* .BTF and .BTF.ext don't need relocations */ 3221 if (strcmp(name, BTF_ELF_SEC) == 0 || 3222 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 static int cmp_progs(const void *_a, const void *_b) 3230 { 3231 const struct bpf_program *a = _a; 3232 const struct bpf_program *b = _b; 3233 3234 if (a->sec_idx != b->sec_idx) 3235 return a->sec_idx < b->sec_idx ? -1 : 1; 3236 3237 /* sec_insn_off can't be the same within the section */ 3238 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3239 } 3240 3241 static int bpf_object__elf_collect(struct bpf_object *obj) 3242 { 3243 struct elf_sec_desc *sec_desc; 3244 Elf *elf = obj->efile.elf; 3245 Elf_Data *btf_ext_data = NULL; 3246 Elf_Data *btf_data = NULL; 3247 int idx = 0, err = 0; 3248 const char *name; 3249 Elf_Data *data; 3250 Elf_Scn *scn; 3251 Elf64_Shdr *sh; 3252 3253 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3254 * section. e_shnum does include sec #0, so e_shnum is the necessary 3255 * size of an array to keep all the sections. 3256 */ 3257 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3258 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3259 if (!obj->efile.secs) 3260 return -ENOMEM; 3261 3262 /* a bunch of ELF parsing functionality depends on processing symbols, 3263 * so do the first pass and find the symbol table 3264 */ 3265 scn = NULL; 3266 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3267 sh = elf_sec_hdr(obj, scn); 3268 if (!sh) 3269 return -LIBBPF_ERRNO__FORMAT; 3270 3271 if (sh->sh_type == SHT_SYMTAB) { 3272 if (obj->efile.symbols) { 3273 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3274 return -LIBBPF_ERRNO__FORMAT; 3275 } 3276 3277 data = elf_sec_data(obj, scn); 3278 if (!data) 3279 return -LIBBPF_ERRNO__FORMAT; 3280 3281 idx = elf_ndxscn(scn); 3282 3283 obj->efile.symbols = data; 3284 obj->efile.symbols_shndx = idx; 3285 obj->efile.strtabidx = sh->sh_link; 3286 } 3287 } 3288 3289 if (!obj->efile.symbols) { 3290 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3291 obj->path); 3292 return -ENOENT; 3293 } 3294 3295 scn = NULL; 3296 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3297 idx = elf_ndxscn(scn); 3298 sec_desc = &obj->efile.secs[idx]; 3299 3300 sh = elf_sec_hdr(obj, scn); 3301 if (!sh) 3302 return -LIBBPF_ERRNO__FORMAT; 3303 3304 name = elf_sec_str(obj, sh->sh_name); 3305 if (!name) 3306 return -LIBBPF_ERRNO__FORMAT; 3307 3308 if (ignore_elf_section(sh, name)) 3309 continue; 3310 3311 data = elf_sec_data(obj, scn); 3312 if (!data) 3313 return -LIBBPF_ERRNO__FORMAT; 3314 3315 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3316 idx, name, (unsigned long)data->d_size, 3317 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3318 (int)sh->sh_type); 3319 3320 if (strcmp(name, "license") == 0) { 3321 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3322 if (err) 3323 return err; 3324 } else if (strcmp(name, "version") == 0) { 3325 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3326 if (err) 3327 return err; 3328 } else if (strcmp(name, "maps") == 0) { 3329 obj->efile.maps_shndx = idx; 3330 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3331 obj->efile.btf_maps_shndx = idx; 3332 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3333 if (sh->sh_type != SHT_PROGBITS) 3334 return -LIBBPF_ERRNO__FORMAT; 3335 btf_data = data; 3336 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3337 if (sh->sh_type != SHT_PROGBITS) 3338 return -LIBBPF_ERRNO__FORMAT; 3339 btf_ext_data = data; 3340 } else if (sh->sh_type == SHT_SYMTAB) { 3341 /* already processed during the first pass above */ 3342 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3343 if (sh->sh_flags & SHF_EXECINSTR) { 3344 if (strcmp(name, ".text") == 0) 3345 obj->efile.text_shndx = idx; 3346 err = bpf_object__add_programs(obj, data, name, idx); 3347 if (err) 3348 return err; 3349 } else if (strcmp(name, DATA_SEC) == 0 || 3350 str_has_pfx(name, DATA_SEC ".")) { 3351 sec_desc->sec_type = SEC_DATA; 3352 sec_desc->shdr = sh; 3353 sec_desc->data = data; 3354 } else if (strcmp(name, RODATA_SEC) == 0 || 3355 str_has_pfx(name, RODATA_SEC ".")) { 3356 sec_desc->sec_type = SEC_RODATA; 3357 sec_desc->shdr = sh; 3358 sec_desc->data = data; 3359 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3360 obj->efile.st_ops_data = data; 3361 obj->efile.st_ops_shndx = idx; 3362 } else { 3363 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3364 idx, name); 3365 } 3366 } else if (sh->sh_type == SHT_REL) { 3367 int targ_sec_idx = sh->sh_info; /* points to other section */ 3368 3369 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3370 targ_sec_idx >= obj->efile.sec_cnt) 3371 return -LIBBPF_ERRNO__FORMAT; 3372 3373 /* Only do relo for section with exec instructions */ 3374 if (!section_have_execinstr(obj, targ_sec_idx) && 3375 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3376 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3377 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3378 idx, name, targ_sec_idx, 3379 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3380 continue; 3381 } 3382 3383 sec_desc->sec_type = SEC_RELO; 3384 sec_desc->shdr = sh; 3385 sec_desc->data = data; 3386 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3387 sec_desc->sec_type = SEC_BSS; 3388 sec_desc->shdr = sh; 3389 sec_desc->data = data; 3390 } else { 3391 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3392 (size_t)sh->sh_size); 3393 } 3394 } 3395 3396 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3397 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3398 return -LIBBPF_ERRNO__FORMAT; 3399 } 3400 3401 /* sort BPF programs by section name and in-section instruction offset 3402 * for faster search */ 3403 if (obj->nr_programs) 3404 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3405 3406 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3407 } 3408 3409 static bool sym_is_extern(const Elf64_Sym *sym) 3410 { 3411 int bind = ELF64_ST_BIND(sym->st_info); 3412 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3413 return sym->st_shndx == SHN_UNDEF && 3414 (bind == STB_GLOBAL || bind == STB_WEAK) && 3415 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3416 } 3417 3418 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3419 { 3420 int bind = ELF64_ST_BIND(sym->st_info); 3421 int type = ELF64_ST_TYPE(sym->st_info); 3422 3423 /* in .text section */ 3424 if (sym->st_shndx != text_shndx) 3425 return false; 3426 3427 /* local function */ 3428 if (bind == STB_LOCAL && type == STT_SECTION) 3429 return true; 3430 3431 /* global function */ 3432 return bind == STB_GLOBAL && type == STT_FUNC; 3433 } 3434 3435 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3436 { 3437 const struct btf_type *t; 3438 const char *tname; 3439 int i, n; 3440 3441 if (!btf) 3442 return -ESRCH; 3443 3444 n = btf__type_cnt(btf); 3445 for (i = 1; i < n; i++) { 3446 t = btf__type_by_id(btf, i); 3447 3448 if (!btf_is_var(t) && !btf_is_func(t)) 3449 continue; 3450 3451 tname = btf__name_by_offset(btf, t->name_off); 3452 if (strcmp(tname, ext_name)) 3453 continue; 3454 3455 if (btf_is_var(t) && 3456 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3457 return -EINVAL; 3458 3459 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3460 return -EINVAL; 3461 3462 return i; 3463 } 3464 3465 return -ENOENT; 3466 } 3467 3468 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3469 const struct btf_var_secinfo *vs; 3470 const struct btf_type *t; 3471 int i, j, n; 3472 3473 if (!btf) 3474 return -ESRCH; 3475 3476 n = btf__type_cnt(btf); 3477 for (i = 1; i < n; i++) { 3478 t = btf__type_by_id(btf, i); 3479 3480 if (!btf_is_datasec(t)) 3481 continue; 3482 3483 vs = btf_var_secinfos(t); 3484 for (j = 0; j < btf_vlen(t); j++, vs++) { 3485 if (vs->type == ext_btf_id) 3486 return i; 3487 } 3488 } 3489 3490 return -ENOENT; 3491 } 3492 3493 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3494 bool *is_signed) 3495 { 3496 const struct btf_type *t; 3497 const char *name; 3498 3499 t = skip_mods_and_typedefs(btf, id, NULL); 3500 name = btf__name_by_offset(btf, t->name_off); 3501 3502 if (is_signed) 3503 *is_signed = false; 3504 switch (btf_kind(t)) { 3505 case BTF_KIND_INT: { 3506 int enc = btf_int_encoding(t); 3507 3508 if (enc & BTF_INT_BOOL) 3509 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3510 if (is_signed) 3511 *is_signed = enc & BTF_INT_SIGNED; 3512 if (t->size == 1) 3513 return KCFG_CHAR; 3514 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3515 return KCFG_UNKNOWN; 3516 return KCFG_INT; 3517 } 3518 case BTF_KIND_ENUM: 3519 if (t->size != 4) 3520 return KCFG_UNKNOWN; 3521 if (strcmp(name, "libbpf_tristate")) 3522 return KCFG_UNKNOWN; 3523 return KCFG_TRISTATE; 3524 case BTF_KIND_ARRAY: 3525 if (btf_array(t)->nelems == 0) 3526 return KCFG_UNKNOWN; 3527 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3528 return KCFG_UNKNOWN; 3529 return KCFG_CHAR_ARR; 3530 default: 3531 return KCFG_UNKNOWN; 3532 } 3533 } 3534 3535 static int cmp_externs(const void *_a, const void *_b) 3536 { 3537 const struct extern_desc *a = _a; 3538 const struct extern_desc *b = _b; 3539 3540 if (a->type != b->type) 3541 return a->type < b->type ? -1 : 1; 3542 3543 if (a->type == EXT_KCFG) { 3544 /* descending order by alignment requirements */ 3545 if (a->kcfg.align != b->kcfg.align) 3546 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3547 /* ascending order by size, within same alignment class */ 3548 if (a->kcfg.sz != b->kcfg.sz) 3549 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3550 } 3551 3552 /* resolve ties by name */ 3553 return strcmp(a->name, b->name); 3554 } 3555 3556 static int find_int_btf_id(const struct btf *btf) 3557 { 3558 const struct btf_type *t; 3559 int i, n; 3560 3561 n = btf__type_cnt(btf); 3562 for (i = 1; i < n; i++) { 3563 t = btf__type_by_id(btf, i); 3564 3565 if (btf_is_int(t) && btf_int_bits(t) == 32) 3566 return i; 3567 } 3568 3569 return 0; 3570 } 3571 3572 static int add_dummy_ksym_var(struct btf *btf) 3573 { 3574 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3575 const struct btf_var_secinfo *vs; 3576 const struct btf_type *sec; 3577 3578 if (!btf) 3579 return 0; 3580 3581 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3582 BTF_KIND_DATASEC); 3583 if (sec_btf_id < 0) 3584 return 0; 3585 3586 sec = btf__type_by_id(btf, sec_btf_id); 3587 vs = btf_var_secinfos(sec); 3588 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3589 const struct btf_type *vt; 3590 3591 vt = btf__type_by_id(btf, vs->type); 3592 if (btf_is_func(vt)) 3593 break; 3594 } 3595 3596 /* No func in ksyms sec. No need to add dummy var. */ 3597 if (i == btf_vlen(sec)) 3598 return 0; 3599 3600 int_btf_id = find_int_btf_id(btf); 3601 dummy_var_btf_id = btf__add_var(btf, 3602 "dummy_ksym", 3603 BTF_VAR_GLOBAL_ALLOCATED, 3604 int_btf_id); 3605 if (dummy_var_btf_id < 0) 3606 pr_warn("cannot create a dummy_ksym var\n"); 3607 3608 return dummy_var_btf_id; 3609 } 3610 3611 static int bpf_object__collect_externs(struct bpf_object *obj) 3612 { 3613 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3614 const struct btf_type *t; 3615 struct extern_desc *ext; 3616 int i, n, off, dummy_var_btf_id; 3617 const char *ext_name, *sec_name; 3618 Elf_Scn *scn; 3619 Elf64_Shdr *sh; 3620 3621 if (!obj->efile.symbols) 3622 return 0; 3623 3624 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3625 sh = elf_sec_hdr(obj, scn); 3626 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3627 return -LIBBPF_ERRNO__FORMAT; 3628 3629 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3630 if (dummy_var_btf_id < 0) 3631 return dummy_var_btf_id; 3632 3633 n = sh->sh_size / sh->sh_entsize; 3634 pr_debug("looking for externs among %d symbols...\n", n); 3635 3636 for (i = 0; i < n; i++) { 3637 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3638 3639 if (!sym) 3640 return -LIBBPF_ERRNO__FORMAT; 3641 if (!sym_is_extern(sym)) 3642 continue; 3643 ext_name = elf_sym_str(obj, sym->st_name); 3644 if (!ext_name || !ext_name[0]) 3645 continue; 3646 3647 ext = obj->externs; 3648 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3649 if (!ext) 3650 return -ENOMEM; 3651 obj->externs = ext; 3652 ext = &ext[obj->nr_extern]; 3653 memset(ext, 0, sizeof(*ext)); 3654 obj->nr_extern++; 3655 3656 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3657 if (ext->btf_id <= 0) { 3658 pr_warn("failed to find BTF for extern '%s': %d\n", 3659 ext_name, ext->btf_id); 3660 return ext->btf_id; 3661 } 3662 t = btf__type_by_id(obj->btf, ext->btf_id); 3663 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3664 ext->sym_idx = i; 3665 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3666 3667 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3668 if (ext->sec_btf_id <= 0) { 3669 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3670 ext_name, ext->btf_id, ext->sec_btf_id); 3671 return ext->sec_btf_id; 3672 } 3673 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3674 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3675 3676 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3677 if (btf_is_func(t)) { 3678 pr_warn("extern function %s is unsupported under %s section\n", 3679 ext->name, KCONFIG_SEC); 3680 return -ENOTSUP; 3681 } 3682 kcfg_sec = sec; 3683 ext->type = EXT_KCFG; 3684 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3685 if (ext->kcfg.sz <= 0) { 3686 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3687 ext_name, ext->kcfg.sz); 3688 return ext->kcfg.sz; 3689 } 3690 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3691 if (ext->kcfg.align <= 0) { 3692 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3693 ext_name, ext->kcfg.align); 3694 return -EINVAL; 3695 } 3696 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3697 &ext->kcfg.is_signed); 3698 if (ext->kcfg.type == KCFG_UNKNOWN) { 3699 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3700 return -ENOTSUP; 3701 } 3702 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3703 ksym_sec = sec; 3704 ext->type = EXT_KSYM; 3705 skip_mods_and_typedefs(obj->btf, t->type, 3706 &ext->ksym.type_id); 3707 } else { 3708 pr_warn("unrecognized extern section '%s'\n", sec_name); 3709 return -ENOTSUP; 3710 } 3711 } 3712 pr_debug("collected %d externs total\n", obj->nr_extern); 3713 3714 if (!obj->nr_extern) 3715 return 0; 3716 3717 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3718 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3719 3720 /* for .ksyms section, we need to turn all externs into allocated 3721 * variables in BTF to pass kernel verification; we do this by 3722 * pretending that each extern is a 8-byte variable 3723 */ 3724 if (ksym_sec) { 3725 /* find existing 4-byte integer type in BTF to use for fake 3726 * extern variables in DATASEC 3727 */ 3728 int int_btf_id = find_int_btf_id(obj->btf); 3729 /* For extern function, a dummy_var added earlier 3730 * will be used to replace the vs->type and 3731 * its name string will be used to refill 3732 * the missing param's name. 3733 */ 3734 const struct btf_type *dummy_var; 3735 3736 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3737 for (i = 0; i < obj->nr_extern; i++) { 3738 ext = &obj->externs[i]; 3739 if (ext->type != EXT_KSYM) 3740 continue; 3741 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3742 i, ext->sym_idx, ext->name); 3743 } 3744 3745 sec = ksym_sec; 3746 n = btf_vlen(sec); 3747 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3748 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3749 struct btf_type *vt; 3750 3751 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3752 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3753 ext = find_extern_by_name(obj, ext_name); 3754 if (!ext) { 3755 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3756 btf_kind_str(vt), ext_name); 3757 return -ESRCH; 3758 } 3759 if (btf_is_func(vt)) { 3760 const struct btf_type *func_proto; 3761 struct btf_param *param; 3762 int j; 3763 3764 func_proto = btf__type_by_id(obj->btf, 3765 vt->type); 3766 param = btf_params(func_proto); 3767 /* Reuse the dummy_var string if the 3768 * func proto does not have param name. 3769 */ 3770 for (j = 0; j < btf_vlen(func_proto); j++) 3771 if (param[j].type && !param[j].name_off) 3772 param[j].name_off = 3773 dummy_var->name_off; 3774 vs->type = dummy_var_btf_id; 3775 vt->info &= ~0xffff; 3776 vt->info |= BTF_FUNC_GLOBAL; 3777 } else { 3778 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3779 vt->type = int_btf_id; 3780 } 3781 vs->offset = off; 3782 vs->size = sizeof(int); 3783 } 3784 sec->size = off; 3785 } 3786 3787 if (kcfg_sec) { 3788 sec = kcfg_sec; 3789 /* for kcfg externs calculate their offsets within a .kconfig map */ 3790 off = 0; 3791 for (i = 0; i < obj->nr_extern; i++) { 3792 ext = &obj->externs[i]; 3793 if (ext->type != EXT_KCFG) 3794 continue; 3795 3796 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3797 off = ext->kcfg.data_off + ext->kcfg.sz; 3798 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3799 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3800 } 3801 sec->size = off; 3802 n = btf_vlen(sec); 3803 for (i = 0; i < n; i++) { 3804 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3805 3806 t = btf__type_by_id(obj->btf, vs->type); 3807 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3808 ext = find_extern_by_name(obj, ext_name); 3809 if (!ext) { 3810 pr_warn("failed to find extern definition for BTF var '%s'\n", 3811 ext_name); 3812 return -ESRCH; 3813 } 3814 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3815 vs->offset = ext->kcfg.data_off; 3816 } 3817 } 3818 return 0; 3819 } 3820 3821 struct bpf_program * 3822 bpf_object__find_program_by_title(const struct bpf_object *obj, 3823 const char *title) 3824 { 3825 struct bpf_program *pos; 3826 3827 bpf_object__for_each_program(pos, obj) { 3828 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3829 return pos; 3830 } 3831 return errno = ENOENT, NULL; 3832 } 3833 3834 static bool prog_is_subprog(const struct bpf_object *obj, 3835 const struct bpf_program *prog) 3836 { 3837 /* For legacy reasons, libbpf supports an entry-point BPF programs 3838 * without SEC() attribute, i.e., those in the .text section. But if 3839 * there are 2 or more such programs in the .text section, they all 3840 * must be subprograms called from entry-point BPF programs in 3841 * designated SEC()'tions, otherwise there is no way to distinguish 3842 * which of those programs should be loaded vs which are a subprogram. 3843 * Similarly, if there is a function/program in .text and at least one 3844 * other BPF program with custom SEC() attribute, then we just assume 3845 * .text programs are subprograms (even if they are not called from 3846 * other programs), because libbpf never explicitly supported mixing 3847 * SEC()-designated BPF programs and .text entry-point BPF programs. 3848 */ 3849 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3850 } 3851 3852 struct bpf_program * 3853 bpf_object__find_program_by_name(const struct bpf_object *obj, 3854 const char *name) 3855 { 3856 struct bpf_program *prog; 3857 3858 bpf_object__for_each_program(prog, obj) { 3859 if (prog_is_subprog(obj, prog)) 3860 continue; 3861 if (!strcmp(prog->name, name)) 3862 return prog; 3863 } 3864 return errno = ENOENT, NULL; 3865 } 3866 3867 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3868 int shndx) 3869 { 3870 switch (obj->efile.secs[shndx].sec_type) { 3871 case SEC_BSS: 3872 case SEC_DATA: 3873 case SEC_RODATA: 3874 return true; 3875 default: 3876 return false; 3877 } 3878 } 3879 3880 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3881 int shndx) 3882 { 3883 return shndx == obj->efile.maps_shndx || 3884 shndx == obj->efile.btf_maps_shndx; 3885 } 3886 3887 static enum libbpf_map_type 3888 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3889 { 3890 if (shndx == obj->efile.symbols_shndx) 3891 return LIBBPF_MAP_KCONFIG; 3892 3893 switch (obj->efile.secs[shndx].sec_type) { 3894 case SEC_BSS: 3895 return LIBBPF_MAP_BSS; 3896 case SEC_DATA: 3897 return LIBBPF_MAP_DATA; 3898 case SEC_RODATA: 3899 return LIBBPF_MAP_RODATA; 3900 default: 3901 return LIBBPF_MAP_UNSPEC; 3902 } 3903 } 3904 3905 static int bpf_program__record_reloc(struct bpf_program *prog, 3906 struct reloc_desc *reloc_desc, 3907 __u32 insn_idx, const char *sym_name, 3908 const Elf64_Sym *sym, const Elf64_Rel *rel) 3909 { 3910 struct bpf_insn *insn = &prog->insns[insn_idx]; 3911 size_t map_idx, nr_maps = prog->obj->nr_maps; 3912 struct bpf_object *obj = prog->obj; 3913 __u32 shdr_idx = sym->st_shndx; 3914 enum libbpf_map_type type; 3915 const char *sym_sec_name; 3916 struct bpf_map *map; 3917 3918 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3919 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3920 prog->name, sym_name, insn_idx, insn->code); 3921 return -LIBBPF_ERRNO__RELOC; 3922 } 3923 3924 if (sym_is_extern(sym)) { 3925 int sym_idx = ELF64_R_SYM(rel->r_info); 3926 int i, n = obj->nr_extern; 3927 struct extern_desc *ext; 3928 3929 for (i = 0; i < n; i++) { 3930 ext = &obj->externs[i]; 3931 if (ext->sym_idx == sym_idx) 3932 break; 3933 } 3934 if (i >= n) { 3935 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3936 prog->name, sym_name, sym_idx); 3937 return -LIBBPF_ERRNO__RELOC; 3938 } 3939 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3940 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3941 if (insn->code == (BPF_JMP | BPF_CALL)) 3942 reloc_desc->type = RELO_EXTERN_FUNC; 3943 else 3944 reloc_desc->type = RELO_EXTERN_VAR; 3945 reloc_desc->insn_idx = insn_idx; 3946 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3947 return 0; 3948 } 3949 3950 /* sub-program call relocation */ 3951 if (is_call_insn(insn)) { 3952 if (insn->src_reg != BPF_PSEUDO_CALL) { 3953 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3954 return -LIBBPF_ERRNO__RELOC; 3955 } 3956 /* text_shndx can be 0, if no default "main" program exists */ 3957 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3958 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3959 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3960 prog->name, sym_name, sym_sec_name); 3961 return -LIBBPF_ERRNO__RELOC; 3962 } 3963 if (sym->st_value % BPF_INSN_SZ) { 3964 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3965 prog->name, sym_name, (size_t)sym->st_value); 3966 return -LIBBPF_ERRNO__RELOC; 3967 } 3968 reloc_desc->type = RELO_CALL; 3969 reloc_desc->insn_idx = insn_idx; 3970 reloc_desc->sym_off = sym->st_value; 3971 return 0; 3972 } 3973 3974 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3975 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3976 prog->name, sym_name, shdr_idx); 3977 return -LIBBPF_ERRNO__RELOC; 3978 } 3979 3980 /* loading subprog addresses */ 3981 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3982 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3983 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3984 */ 3985 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3986 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3987 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3988 return -LIBBPF_ERRNO__RELOC; 3989 } 3990 3991 reloc_desc->type = RELO_SUBPROG_ADDR; 3992 reloc_desc->insn_idx = insn_idx; 3993 reloc_desc->sym_off = sym->st_value; 3994 return 0; 3995 } 3996 3997 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3998 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3999 4000 /* generic map reference relocation */ 4001 if (type == LIBBPF_MAP_UNSPEC) { 4002 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4003 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4004 prog->name, sym_name, sym_sec_name); 4005 return -LIBBPF_ERRNO__RELOC; 4006 } 4007 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4008 map = &obj->maps[map_idx]; 4009 if (map->libbpf_type != type || 4010 map->sec_idx != sym->st_shndx || 4011 map->sec_offset != sym->st_value) 4012 continue; 4013 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4014 prog->name, map_idx, map->name, map->sec_idx, 4015 map->sec_offset, insn_idx); 4016 break; 4017 } 4018 if (map_idx >= nr_maps) { 4019 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4020 prog->name, sym_sec_name, (size_t)sym->st_value); 4021 return -LIBBPF_ERRNO__RELOC; 4022 } 4023 reloc_desc->type = RELO_LD64; 4024 reloc_desc->insn_idx = insn_idx; 4025 reloc_desc->map_idx = map_idx; 4026 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4027 return 0; 4028 } 4029 4030 /* global data map relocation */ 4031 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4032 pr_warn("prog '%s': bad data relo against section '%s'\n", 4033 prog->name, sym_sec_name); 4034 return -LIBBPF_ERRNO__RELOC; 4035 } 4036 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4037 map = &obj->maps[map_idx]; 4038 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4039 continue; 4040 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4041 prog->name, map_idx, map->name, map->sec_idx, 4042 map->sec_offset, insn_idx); 4043 break; 4044 } 4045 if (map_idx >= nr_maps) { 4046 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4047 prog->name, sym_sec_name); 4048 return -LIBBPF_ERRNO__RELOC; 4049 } 4050 4051 reloc_desc->type = RELO_DATA; 4052 reloc_desc->insn_idx = insn_idx; 4053 reloc_desc->map_idx = map_idx; 4054 reloc_desc->sym_off = sym->st_value; 4055 return 0; 4056 } 4057 4058 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4059 { 4060 return insn_idx >= prog->sec_insn_off && 4061 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4062 } 4063 4064 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4065 size_t sec_idx, size_t insn_idx) 4066 { 4067 int l = 0, r = obj->nr_programs - 1, m; 4068 struct bpf_program *prog; 4069 4070 while (l < r) { 4071 m = l + (r - l + 1) / 2; 4072 prog = &obj->programs[m]; 4073 4074 if (prog->sec_idx < sec_idx || 4075 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4076 l = m; 4077 else 4078 r = m - 1; 4079 } 4080 /* matching program could be at index l, but it still might be the 4081 * wrong one, so we need to double check conditions for the last time 4082 */ 4083 prog = &obj->programs[l]; 4084 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4085 return prog; 4086 return NULL; 4087 } 4088 4089 static int 4090 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4091 { 4092 const char *relo_sec_name, *sec_name; 4093 size_t sec_idx = shdr->sh_info, sym_idx; 4094 struct bpf_program *prog; 4095 struct reloc_desc *relos; 4096 int err, i, nrels; 4097 const char *sym_name; 4098 __u32 insn_idx; 4099 Elf_Scn *scn; 4100 Elf_Data *scn_data; 4101 Elf64_Sym *sym; 4102 Elf64_Rel *rel; 4103 4104 if (sec_idx >= obj->efile.sec_cnt) 4105 return -EINVAL; 4106 4107 scn = elf_sec_by_idx(obj, sec_idx); 4108 scn_data = elf_sec_data(obj, scn); 4109 4110 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4111 sec_name = elf_sec_name(obj, scn); 4112 if (!relo_sec_name || !sec_name) 4113 return -EINVAL; 4114 4115 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4116 relo_sec_name, sec_idx, sec_name); 4117 nrels = shdr->sh_size / shdr->sh_entsize; 4118 4119 for (i = 0; i < nrels; i++) { 4120 rel = elf_rel_by_idx(data, i); 4121 if (!rel) { 4122 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4123 return -LIBBPF_ERRNO__FORMAT; 4124 } 4125 4126 sym_idx = ELF64_R_SYM(rel->r_info); 4127 sym = elf_sym_by_idx(obj, sym_idx); 4128 if (!sym) { 4129 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4130 relo_sec_name, sym_idx, i); 4131 return -LIBBPF_ERRNO__FORMAT; 4132 } 4133 4134 if (sym->st_shndx >= obj->efile.sec_cnt) { 4135 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4136 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4137 return -LIBBPF_ERRNO__FORMAT; 4138 } 4139 4140 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4141 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4142 relo_sec_name, (size_t)rel->r_offset, i); 4143 return -LIBBPF_ERRNO__FORMAT; 4144 } 4145 4146 insn_idx = rel->r_offset / BPF_INSN_SZ; 4147 /* relocations against static functions are recorded as 4148 * relocations against the section that contains a function; 4149 * in such case, symbol will be STT_SECTION and sym.st_name 4150 * will point to empty string (0), so fetch section name 4151 * instead 4152 */ 4153 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4154 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4155 else 4156 sym_name = elf_sym_str(obj, sym->st_name); 4157 sym_name = sym_name ?: "<?"; 4158 4159 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4160 relo_sec_name, i, insn_idx, sym_name); 4161 4162 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4163 if (!prog) { 4164 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4165 relo_sec_name, i, sec_name, insn_idx); 4166 continue; 4167 } 4168 4169 relos = libbpf_reallocarray(prog->reloc_desc, 4170 prog->nr_reloc + 1, sizeof(*relos)); 4171 if (!relos) 4172 return -ENOMEM; 4173 prog->reloc_desc = relos; 4174 4175 /* adjust insn_idx to local BPF program frame of reference */ 4176 insn_idx -= prog->sec_insn_off; 4177 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4178 insn_idx, sym_name, sym, rel); 4179 if (err) 4180 return err; 4181 4182 prog->nr_reloc++; 4183 } 4184 return 0; 4185 } 4186 4187 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4188 { 4189 struct bpf_map_def *def = &map->def; 4190 __u32 key_type_id = 0, value_type_id = 0; 4191 int ret; 4192 4193 /* if it's BTF-defined map, we don't need to search for type IDs. 4194 * For struct_ops map, it does not need btf_key_type_id and 4195 * btf_value_type_id. 4196 */ 4197 if (map->sec_idx == obj->efile.btf_maps_shndx || 4198 bpf_map__is_struct_ops(map)) 4199 return 0; 4200 4201 if (!bpf_map__is_internal(map)) { 4202 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4203 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4204 def->value_size, &key_type_id, 4205 &value_type_id); 4206 } else { 4207 /* 4208 * LLVM annotates global data differently in BTF, that is, 4209 * only as '.data', '.bss' or '.rodata'. 4210 */ 4211 ret = btf__find_by_name(obj->btf, map->real_name); 4212 } 4213 if (ret < 0) 4214 return ret; 4215 4216 map->btf_key_type_id = key_type_id; 4217 map->btf_value_type_id = bpf_map__is_internal(map) ? 4218 ret : value_type_id; 4219 return 0; 4220 } 4221 4222 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4223 { 4224 char file[PATH_MAX], buff[4096]; 4225 FILE *fp; 4226 __u32 val; 4227 int err; 4228 4229 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4230 memset(info, 0, sizeof(*info)); 4231 4232 fp = fopen(file, "r"); 4233 if (!fp) { 4234 err = -errno; 4235 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4236 err); 4237 return err; 4238 } 4239 4240 while (fgets(buff, sizeof(buff), fp)) { 4241 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4242 info->type = val; 4243 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4244 info->key_size = val; 4245 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4246 info->value_size = val; 4247 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4248 info->max_entries = val; 4249 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4250 info->map_flags = val; 4251 } 4252 4253 fclose(fp); 4254 4255 return 0; 4256 } 4257 4258 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4259 { 4260 struct bpf_map_info info = {}; 4261 __u32 len = sizeof(info); 4262 int new_fd, err; 4263 char *new_name; 4264 4265 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4266 if (err && errno == EINVAL) 4267 err = bpf_get_map_info_from_fdinfo(fd, &info); 4268 if (err) 4269 return libbpf_err(err); 4270 4271 new_name = strdup(info.name); 4272 if (!new_name) 4273 return libbpf_err(-errno); 4274 4275 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4276 if (new_fd < 0) { 4277 err = -errno; 4278 goto err_free_new_name; 4279 } 4280 4281 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4282 if (new_fd < 0) { 4283 err = -errno; 4284 goto err_close_new_fd; 4285 } 4286 4287 err = zclose(map->fd); 4288 if (err) { 4289 err = -errno; 4290 goto err_close_new_fd; 4291 } 4292 free(map->name); 4293 4294 map->fd = new_fd; 4295 map->name = new_name; 4296 map->def.type = info.type; 4297 map->def.key_size = info.key_size; 4298 map->def.value_size = info.value_size; 4299 map->def.max_entries = info.max_entries; 4300 map->def.map_flags = info.map_flags; 4301 map->btf_key_type_id = info.btf_key_type_id; 4302 map->btf_value_type_id = info.btf_value_type_id; 4303 map->reused = true; 4304 map->map_extra = info.map_extra; 4305 4306 return 0; 4307 4308 err_close_new_fd: 4309 close(new_fd); 4310 err_free_new_name: 4311 free(new_name); 4312 return libbpf_err(err); 4313 } 4314 4315 __u32 bpf_map__max_entries(const struct bpf_map *map) 4316 { 4317 return map->def.max_entries; 4318 } 4319 4320 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4321 { 4322 if (!bpf_map_type__is_map_in_map(map->def.type)) 4323 return errno = EINVAL, NULL; 4324 4325 return map->inner_map; 4326 } 4327 4328 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4329 { 4330 if (map->fd >= 0) 4331 return libbpf_err(-EBUSY); 4332 map->def.max_entries = max_entries; 4333 return 0; 4334 } 4335 4336 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4337 { 4338 if (!map || !max_entries) 4339 return libbpf_err(-EINVAL); 4340 4341 return bpf_map__set_max_entries(map, max_entries); 4342 } 4343 4344 static int 4345 bpf_object__probe_loading(struct bpf_object *obj) 4346 { 4347 char *cp, errmsg[STRERR_BUFSIZE]; 4348 struct bpf_insn insns[] = { 4349 BPF_MOV64_IMM(BPF_REG_0, 0), 4350 BPF_EXIT_INSN(), 4351 }; 4352 int ret, insn_cnt = ARRAY_SIZE(insns); 4353 4354 if (obj->gen_loader) 4355 return 0; 4356 4357 ret = bump_rlimit_memlock(); 4358 if (ret) 4359 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4360 4361 /* make sure basic loading works */ 4362 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4363 if (ret < 0) 4364 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4365 if (ret < 0) { 4366 ret = errno; 4367 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4368 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4369 "program. Make sure your kernel supports BPF " 4370 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4371 "set to big enough value.\n", __func__, cp, ret); 4372 return -ret; 4373 } 4374 close(ret); 4375 4376 return 0; 4377 } 4378 4379 static int probe_fd(int fd) 4380 { 4381 if (fd >= 0) 4382 close(fd); 4383 return fd >= 0; 4384 } 4385 4386 static int probe_kern_prog_name(void) 4387 { 4388 struct bpf_insn insns[] = { 4389 BPF_MOV64_IMM(BPF_REG_0, 0), 4390 BPF_EXIT_INSN(), 4391 }; 4392 int ret, insn_cnt = ARRAY_SIZE(insns); 4393 4394 /* make sure loading with name works */ 4395 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4396 return probe_fd(ret); 4397 } 4398 4399 static int probe_kern_global_data(void) 4400 { 4401 char *cp, errmsg[STRERR_BUFSIZE]; 4402 struct bpf_insn insns[] = { 4403 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4404 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4405 BPF_MOV64_IMM(BPF_REG_0, 0), 4406 BPF_EXIT_INSN(), 4407 }; 4408 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4409 4410 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4411 if (map < 0) { 4412 ret = -errno; 4413 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4414 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4415 __func__, cp, -ret); 4416 return ret; 4417 } 4418 4419 insns[0].imm = map; 4420 4421 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4422 close(map); 4423 return probe_fd(ret); 4424 } 4425 4426 static int probe_kern_btf(void) 4427 { 4428 static const char strs[] = "\0int"; 4429 __u32 types[] = { 4430 /* int */ 4431 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4432 }; 4433 4434 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4435 strs, sizeof(strs))); 4436 } 4437 4438 static int probe_kern_btf_func(void) 4439 { 4440 static const char strs[] = "\0int\0x\0a"; 4441 /* void x(int a) {} */ 4442 __u32 types[] = { 4443 /* int */ 4444 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4445 /* FUNC_PROTO */ /* [2] */ 4446 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4447 BTF_PARAM_ENC(7, 1), 4448 /* FUNC x */ /* [3] */ 4449 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4450 }; 4451 4452 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4453 strs, sizeof(strs))); 4454 } 4455 4456 static int probe_kern_btf_func_global(void) 4457 { 4458 static const char strs[] = "\0int\0x\0a"; 4459 /* static void x(int a) {} */ 4460 __u32 types[] = { 4461 /* int */ 4462 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4463 /* FUNC_PROTO */ /* [2] */ 4464 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4465 BTF_PARAM_ENC(7, 1), 4466 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4467 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4468 }; 4469 4470 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4471 strs, sizeof(strs))); 4472 } 4473 4474 static int probe_kern_btf_datasec(void) 4475 { 4476 static const char strs[] = "\0x\0.data"; 4477 /* static int a; */ 4478 __u32 types[] = { 4479 /* int */ 4480 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4481 /* VAR x */ /* [2] */ 4482 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4483 BTF_VAR_STATIC, 4484 /* DATASEC val */ /* [3] */ 4485 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4486 BTF_VAR_SECINFO_ENC(2, 0, 4), 4487 }; 4488 4489 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4490 strs, sizeof(strs))); 4491 } 4492 4493 static int probe_kern_btf_float(void) 4494 { 4495 static const char strs[] = "\0float"; 4496 __u32 types[] = { 4497 /* float */ 4498 BTF_TYPE_FLOAT_ENC(1, 4), 4499 }; 4500 4501 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4502 strs, sizeof(strs))); 4503 } 4504 4505 static int probe_kern_btf_decl_tag(void) 4506 { 4507 static const char strs[] = "\0tag"; 4508 __u32 types[] = { 4509 /* int */ 4510 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4511 /* VAR x */ /* [2] */ 4512 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4513 BTF_VAR_STATIC, 4514 /* attr */ 4515 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4516 }; 4517 4518 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4519 strs, sizeof(strs))); 4520 } 4521 4522 static int probe_kern_btf_type_tag(void) 4523 { 4524 static const char strs[] = "\0tag"; 4525 __u32 types[] = { 4526 /* int */ 4527 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4528 /* attr */ 4529 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4530 /* ptr */ 4531 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4532 }; 4533 4534 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4535 strs, sizeof(strs))); 4536 } 4537 4538 static int probe_kern_array_mmap(void) 4539 { 4540 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4541 int fd; 4542 4543 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4544 return probe_fd(fd); 4545 } 4546 4547 static int probe_kern_exp_attach_type(void) 4548 { 4549 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4550 struct bpf_insn insns[] = { 4551 BPF_MOV64_IMM(BPF_REG_0, 0), 4552 BPF_EXIT_INSN(), 4553 }; 4554 int fd, insn_cnt = ARRAY_SIZE(insns); 4555 4556 /* use any valid combination of program type and (optional) 4557 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4558 * to see if kernel supports expected_attach_type field for 4559 * BPF_PROG_LOAD command 4560 */ 4561 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4562 return probe_fd(fd); 4563 } 4564 4565 static int probe_kern_probe_read_kernel(void) 4566 { 4567 struct bpf_insn insns[] = { 4568 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4569 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4570 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4571 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4572 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4573 BPF_EXIT_INSN(), 4574 }; 4575 int fd, insn_cnt = ARRAY_SIZE(insns); 4576 4577 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4578 return probe_fd(fd); 4579 } 4580 4581 static int probe_prog_bind_map(void) 4582 { 4583 char *cp, errmsg[STRERR_BUFSIZE]; 4584 struct bpf_insn insns[] = { 4585 BPF_MOV64_IMM(BPF_REG_0, 0), 4586 BPF_EXIT_INSN(), 4587 }; 4588 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4589 4590 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4591 if (map < 0) { 4592 ret = -errno; 4593 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4594 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4595 __func__, cp, -ret); 4596 return ret; 4597 } 4598 4599 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4600 if (prog < 0) { 4601 close(map); 4602 return 0; 4603 } 4604 4605 ret = bpf_prog_bind_map(prog, map, NULL); 4606 4607 close(map); 4608 close(prog); 4609 4610 return ret >= 0; 4611 } 4612 4613 static int probe_module_btf(void) 4614 { 4615 static const char strs[] = "\0int"; 4616 __u32 types[] = { 4617 /* int */ 4618 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4619 }; 4620 struct bpf_btf_info info; 4621 __u32 len = sizeof(info); 4622 char name[16]; 4623 int fd, err; 4624 4625 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4626 if (fd < 0) 4627 return 0; /* BTF not supported at all */ 4628 4629 memset(&info, 0, sizeof(info)); 4630 info.name = ptr_to_u64(name); 4631 info.name_len = sizeof(name); 4632 4633 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4634 * kernel's module BTF support coincides with support for 4635 * name/name_len fields in struct bpf_btf_info. 4636 */ 4637 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4638 close(fd); 4639 return !err; 4640 } 4641 4642 static int probe_perf_link(void) 4643 { 4644 struct bpf_insn insns[] = { 4645 BPF_MOV64_IMM(BPF_REG_0, 0), 4646 BPF_EXIT_INSN(), 4647 }; 4648 int prog_fd, link_fd, err; 4649 4650 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4651 insns, ARRAY_SIZE(insns), NULL); 4652 if (prog_fd < 0) 4653 return -errno; 4654 4655 /* use invalid perf_event FD to get EBADF, if link is supported; 4656 * otherwise EINVAL should be returned 4657 */ 4658 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4659 err = -errno; /* close() can clobber errno */ 4660 4661 if (link_fd >= 0) 4662 close(link_fd); 4663 close(prog_fd); 4664 4665 return link_fd < 0 && err == -EBADF; 4666 } 4667 4668 enum kern_feature_result { 4669 FEAT_UNKNOWN = 0, 4670 FEAT_SUPPORTED = 1, 4671 FEAT_MISSING = 2, 4672 }; 4673 4674 typedef int (*feature_probe_fn)(void); 4675 4676 static struct kern_feature_desc { 4677 const char *desc; 4678 feature_probe_fn probe; 4679 enum kern_feature_result res; 4680 } feature_probes[__FEAT_CNT] = { 4681 [FEAT_PROG_NAME] = { 4682 "BPF program name", probe_kern_prog_name, 4683 }, 4684 [FEAT_GLOBAL_DATA] = { 4685 "global variables", probe_kern_global_data, 4686 }, 4687 [FEAT_BTF] = { 4688 "minimal BTF", probe_kern_btf, 4689 }, 4690 [FEAT_BTF_FUNC] = { 4691 "BTF functions", probe_kern_btf_func, 4692 }, 4693 [FEAT_BTF_GLOBAL_FUNC] = { 4694 "BTF global function", probe_kern_btf_func_global, 4695 }, 4696 [FEAT_BTF_DATASEC] = { 4697 "BTF data section and variable", probe_kern_btf_datasec, 4698 }, 4699 [FEAT_ARRAY_MMAP] = { 4700 "ARRAY map mmap()", probe_kern_array_mmap, 4701 }, 4702 [FEAT_EXP_ATTACH_TYPE] = { 4703 "BPF_PROG_LOAD expected_attach_type attribute", 4704 probe_kern_exp_attach_type, 4705 }, 4706 [FEAT_PROBE_READ_KERN] = { 4707 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4708 }, 4709 [FEAT_PROG_BIND_MAP] = { 4710 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4711 }, 4712 [FEAT_MODULE_BTF] = { 4713 "module BTF support", probe_module_btf, 4714 }, 4715 [FEAT_BTF_FLOAT] = { 4716 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4717 }, 4718 [FEAT_PERF_LINK] = { 4719 "BPF perf link support", probe_perf_link, 4720 }, 4721 [FEAT_BTF_DECL_TAG] = { 4722 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4723 }, 4724 [FEAT_BTF_TYPE_TAG] = { 4725 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4726 }, 4727 [FEAT_MEMCG_ACCOUNT] = { 4728 "memcg-based memory accounting", probe_memcg_account, 4729 }, 4730 }; 4731 4732 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4733 { 4734 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4735 int ret; 4736 4737 if (obj && obj->gen_loader) 4738 /* To generate loader program assume the latest kernel 4739 * to avoid doing extra prog_load, map_create syscalls. 4740 */ 4741 return true; 4742 4743 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4744 ret = feat->probe(); 4745 if (ret > 0) { 4746 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4747 } else if (ret == 0) { 4748 WRITE_ONCE(feat->res, FEAT_MISSING); 4749 } else { 4750 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4751 WRITE_ONCE(feat->res, FEAT_MISSING); 4752 } 4753 } 4754 4755 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4756 } 4757 4758 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4759 { 4760 struct bpf_map_info map_info = {}; 4761 char msg[STRERR_BUFSIZE]; 4762 __u32 map_info_len; 4763 int err; 4764 4765 map_info_len = sizeof(map_info); 4766 4767 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4768 if (err && errno == EINVAL) 4769 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4770 if (err) { 4771 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4772 libbpf_strerror_r(errno, msg, sizeof(msg))); 4773 return false; 4774 } 4775 4776 return (map_info.type == map->def.type && 4777 map_info.key_size == map->def.key_size && 4778 map_info.value_size == map->def.value_size && 4779 map_info.max_entries == map->def.max_entries && 4780 map_info.map_flags == map->def.map_flags && 4781 map_info.map_extra == map->map_extra); 4782 } 4783 4784 static int 4785 bpf_object__reuse_map(struct bpf_map *map) 4786 { 4787 char *cp, errmsg[STRERR_BUFSIZE]; 4788 int err, pin_fd; 4789 4790 pin_fd = bpf_obj_get(map->pin_path); 4791 if (pin_fd < 0) { 4792 err = -errno; 4793 if (err == -ENOENT) { 4794 pr_debug("found no pinned map to reuse at '%s'\n", 4795 map->pin_path); 4796 return 0; 4797 } 4798 4799 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4800 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4801 map->pin_path, cp); 4802 return err; 4803 } 4804 4805 if (!map_is_reuse_compat(map, pin_fd)) { 4806 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4807 map->pin_path); 4808 close(pin_fd); 4809 return -EINVAL; 4810 } 4811 4812 err = bpf_map__reuse_fd(map, pin_fd); 4813 if (err) { 4814 close(pin_fd); 4815 return err; 4816 } 4817 map->pinned = true; 4818 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4819 4820 return 0; 4821 } 4822 4823 static int 4824 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4825 { 4826 enum libbpf_map_type map_type = map->libbpf_type; 4827 char *cp, errmsg[STRERR_BUFSIZE]; 4828 int err, zero = 0; 4829 4830 if (obj->gen_loader) { 4831 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4832 map->mmaped, map->def.value_size); 4833 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4834 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4835 return 0; 4836 } 4837 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4838 if (err) { 4839 err = -errno; 4840 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4841 pr_warn("Error setting initial map(%s) contents: %s\n", 4842 map->name, cp); 4843 return err; 4844 } 4845 4846 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4847 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4848 err = bpf_map_freeze(map->fd); 4849 if (err) { 4850 err = -errno; 4851 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4852 pr_warn("Error freezing map(%s) as read-only: %s\n", 4853 map->name, cp); 4854 return err; 4855 } 4856 } 4857 return 0; 4858 } 4859 4860 static void bpf_map__destroy(struct bpf_map *map); 4861 4862 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4863 { 4864 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4865 struct bpf_map_def *def = &map->def; 4866 const char *map_name = NULL; 4867 __u32 max_entries; 4868 int err = 0; 4869 4870 if (kernel_supports(obj, FEAT_PROG_NAME)) 4871 map_name = map->name; 4872 create_attr.map_ifindex = map->map_ifindex; 4873 create_attr.map_flags = def->map_flags; 4874 create_attr.numa_node = map->numa_node; 4875 create_attr.map_extra = map->map_extra; 4876 4877 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4878 int nr_cpus; 4879 4880 nr_cpus = libbpf_num_possible_cpus(); 4881 if (nr_cpus < 0) { 4882 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4883 map->name, nr_cpus); 4884 return nr_cpus; 4885 } 4886 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4887 max_entries = nr_cpus; 4888 } else { 4889 max_entries = def->max_entries; 4890 } 4891 4892 if (bpf_map__is_struct_ops(map)) 4893 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4894 4895 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4896 create_attr.btf_fd = btf__fd(obj->btf); 4897 create_attr.btf_key_type_id = map->btf_key_type_id; 4898 create_attr.btf_value_type_id = map->btf_value_type_id; 4899 } 4900 4901 if (bpf_map_type__is_map_in_map(def->type)) { 4902 if (map->inner_map) { 4903 err = bpf_object__create_map(obj, map->inner_map, true); 4904 if (err) { 4905 pr_warn("map '%s': failed to create inner map: %d\n", 4906 map->name, err); 4907 return err; 4908 } 4909 map->inner_map_fd = bpf_map__fd(map->inner_map); 4910 } 4911 if (map->inner_map_fd >= 0) 4912 create_attr.inner_map_fd = map->inner_map_fd; 4913 } 4914 4915 switch (def->type) { 4916 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4917 case BPF_MAP_TYPE_CGROUP_ARRAY: 4918 case BPF_MAP_TYPE_STACK_TRACE: 4919 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4920 case BPF_MAP_TYPE_HASH_OF_MAPS: 4921 case BPF_MAP_TYPE_DEVMAP: 4922 case BPF_MAP_TYPE_DEVMAP_HASH: 4923 case BPF_MAP_TYPE_CPUMAP: 4924 case BPF_MAP_TYPE_XSKMAP: 4925 case BPF_MAP_TYPE_SOCKMAP: 4926 case BPF_MAP_TYPE_SOCKHASH: 4927 case BPF_MAP_TYPE_QUEUE: 4928 case BPF_MAP_TYPE_STACK: 4929 case BPF_MAP_TYPE_RINGBUF: 4930 create_attr.btf_fd = 0; 4931 create_attr.btf_key_type_id = 0; 4932 create_attr.btf_value_type_id = 0; 4933 map->btf_key_type_id = 0; 4934 map->btf_value_type_id = 0; 4935 default: 4936 break; 4937 } 4938 4939 if (obj->gen_loader) { 4940 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4941 def->key_size, def->value_size, max_entries, 4942 &create_attr, is_inner ? -1 : map - obj->maps); 4943 /* Pretend to have valid FD to pass various fd >= 0 checks. 4944 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4945 */ 4946 map->fd = 0; 4947 } else { 4948 map->fd = bpf_map_create(def->type, map_name, 4949 def->key_size, def->value_size, 4950 max_entries, &create_attr); 4951 } 4952 if (map->fd < 0 && (create_attr.btf_key_type_id || 4953 create_attr.btf_value_type_id)) { 4954 char *cp, errmsg[STRERR_BUFSIZE]; 4955 4956 err = -errno; 4957 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4958 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4959 map->name, cp, err); 4960 create_attr.btf_fd = 0; 4961 create_attr.btf_key_type_id = 0; 4962 create_attr.btf_value_type_id = 0; 4963 map->btf_key_type_id = 0; 4964 map->btf_value_type_id = 0; 4965 map->fd = bpf_map_create(def->type, map_name, 4966 def->key_size, def->value_size, 4967 max_entries, &create_attr); 4968 } 4969 4970 err = map->fd < 0 ? -errno : 0; 4971 4972 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4973 if (obj->gen_loader) 4974 map->inner_map->fd = -1; 4975 bpf_map__destroy(map->inner_map); 4976 zfree(&map->inner_map); 4977 } 4978 4979 return err; 4980 } 4981 4982 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4983 { 4984 const struct bpf_map *targ_map; 4985 unsigned int i; 4986 int fd, err = 0; 4987 4988 for (i = 0; i < map->init_slots_sz; i++) { 4989 if (!map->init_slots[i]) 4990 continue; 4991 4992 targ_map = map->init_slots[i]; 4993 fd = bpf_map__fd(targ_map); 4994 4995 if (obj->gen_loader) { 4996 bpf_gen__populate_outer_map(obj->gen_loader, 4997 map - obj->maps, i, 4998 targ_map - obj->maps); 4999 } else { 5000 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5001 } 5002 if (err) { 5003 err = -errno; 5004 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5005 map->name, i, targ_map->name, fd, err); 5006 return err; 5007 } 5008 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5009 map->name, i, targ_map->name, fd); 5010 } 5011 5012 zfree(&map->init_slots); 5013 map->init_slots_sz = 0; 5014 5015 return 0; 5016 } 5017 5018 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5019 { 5020 const struct bpf_program *targ_prog; 5021 unsigned int i; 5022 int fd, err; 5023 5024 if (obj->gen_loader) 5025 return -ENOTSUP; 5026 5027 for (i = 0; i < map->init_slots_sz; i++) { 5028 if (!map->init_slots[i]) 5029 continue; 5030 5031 targ_prog = map->init_slots[i]; 5032 fd = bpf_program__fd(targ_prog); 5033 5034 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5035 if (err) { 5036 err = -errno; 5037 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5038 map->name, i, targ_prog->name, fd, err); 5039 return err; 5040 } 5041 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5042 map->name, i, targ_prog->name, fd); 5043 } 5044 5045 zfree(&map->init_slots); 5046 map->init_slots_sz = 0; 5047 5048 return 0; 5049 } 5050 5051 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5052 { 5053 struct bpf_map *map; 5054 int i, err; 5055 5056 for (i = 0; i < obj->nr_maps; i++) { 5057 map = &obj->maps[i]; 5058 5059 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5060 continue; 5061 5062 err = init_prog_array_slots(obj, map); 5063 if (err < 0) { 5064 zclose(map->fd); 5065 return err; 5066 } 5067 } 5068 return 0; 5069 } 5070 5071 static int 5072 bpf_object__create_maps(struct bpf_object *obj) 5073 { 5074 struct bpf_map *map; 5075 char *cp, errmsg[STRERR_BUFSIZE]; 5076 unsigned int i, j; 5077 int err; 5078 bool retried; 5079 5080 for (i = 0; i < obj->nr_maps; i++) { 5081 map = &obj->maps[i]; 5082 5083 /* To support old kernels, we skip creating global data maps 5084 * (.rodata, .data, .kconfig, etc); later on, during program 5085 * loading, if we detect that at least one of the to-be-loaded 5086 * programs is referencing any global data map, we'll error 5087 * out with program name and relocation index logged. 5088 * This approach allows to accommodate Clang emitting 5089 * unnecessary .rodata.str1.1 sections for string literals, 5090 * but also it allows to have CO-RE applications that use 5091 * global variables in some of BPF programs, but not others. 5092 * If those global variable-using programs are not loaded at 5093 * runtime due to bpf_program__set_autoload(prog, false), 5094 * bpf_object loading will succeed just fine even on old 5095 * kernels. 5096 */ 5097 if (bpf_map__is_internal(map) && 5098 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5099 map->skipped = true; 5100 continue; 5101 } 5102 5103 retried = false; 5104 retry: 5105 if (map->pin_path) { 5106 err = bpf_object__reuse_map(map); 5107 if (err) { 5108 pr_warn("map '%s': error reusing pinned map\n", 5109 map->name); 5110 goto err_out; 5111 } 5112 if (retried && map->fd < 0) { 5113 pr_warn("map '%s': cannot find pinned map\n", 5114 map->name); 5115 err = -ENOENT; 5116 goto err_out; 5117 } 5118 } 5119 5120 if (map->fd >= 0) { 5121 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5122 map->name, map->fd); 5123 } else { 5124 err = bpf_object__create_map(obj, map, false); 5125 if (err) 5126 goto err_out; 5127 5128 pr_debug("map '%s': created successfully, fd=%d\n", 5129 map->name, map->fd); 5130 5131 if (bpf_map__is_internal(map)) { 5132 err = bpf_object__populate_internal_map(obj, map); 5133 if (err < 0) { 5134 zclose(map->fd); 5135 goto err_out; 5136 } 5137 } 5138 5139 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5140 err = init_map_in_map_slots(obj, map); 5141 if (err < 0) { 5142 zclose(map->fd); 5143 goto err_out; 5144 } 5145 } 5146 } 5147 5148 if (map->pin_path && !map->pinned) { 5149 err = bpf_map__pin(map, NULL); 5150 if (err) { 5151 zclose(map->fd); 5152 if (!retried && err == -EEXIST) { 5153 retried = true; 5154 goto retry; 5155 } 5156 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5157 map->name, map->pin_path, err); 5158 goto err_out; 5159 } 5160 } 5161 } 5162 5163 return 0; 5164 5165 err_out: 5166 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5167 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5168 pr_perm_msg(err); 5169 for (j = 0; j < i; j++) 5170 zclose(obj->maps[j].fd); 5171 return err; 5172 } 5173 5174 static bool bpf_core_is_flavor_sep(const char *s) 5175 { 5176 /* check X___Y name pattern, where X and Y are not underscores */ 5177 return s[0] != '_' && /* X */ 5178 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5179 s[4] != '_'; /* Y */ 5180 } 5181 5182 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5183 * before last triple underscore. Struct name part after last triple 5184 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5185 */ 5186 size_t bpf_core_essential_name_len(const char *name) 5187 { 5188 size_t n = strlen(name); 5189 int i; 5190 5191 for (i = n - 5; i >= 0; i--) { 5192 if (bpf_core_is_flavor_sep(name + i)) 5193 return i + 1; 5194 } 5195 return n; 5196 } 5197 5198 static void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5199 { 5200 free(cands->cands); 5201 free(cands); 5202 } 5203 5204 static int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5205 size_t local_essent_len, 5206 const struct btf *targ_btf, 5207 const char *targ_btf_name, 5208 int targ_start_id, 5209 struct bpf_core_cand_list *cands) 5210 { 5211 struct bpf_core_cand *new_cands, *cand; 5212 const struct btf_type *t, *local_t; 5213 const char *targ_name, *local_name; 5214 size_t targ_essent_len; 5215 int n, i; 5216 5217 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5218 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5219 5220 n = btf__type_cnt(targ_btf); 5221 for (i = targ_start_id; i < n; i++) { 5222 t = btf__type_by_id(targ_btf, i); 5223 if (btf_kind(t) != btf_kind(local_t)) 5224 continue; 5225 5226 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5227 if (str_is_empty(targ_name)) 5228 continue; 5229 5230 targ_essent_len = bpf_core_essential_name_len(targ_name); 5231 if (targ_essent_len != local_essent_len) 5232 continue; 5233 5234 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5235 continue; 5236 5237 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5238 local_cand->id, btf_kind_str(local_t), 5239 local_name, i, btf_kind_str(t), targ_name, 5240 targ_btf_name); 5241 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5242 sizeof(*cands->cands)); 5243 if (!new_cands) 5244 return -ENOMEM; 5245 5246 cand = &new_cands[cands->len]; 5247 cand->btf = targ_btf; 5248 cand->id = i; 5249 5250 cands->cands = new_cands; 5251 cands->len++; 5252 } 5253 return 0; 5254 } 5255 5256 static int load_module_btfs(struct bpf_object *obj) 5257 { 5258 struct bpf_btf_info info; 5259 struct module_btf *mod_btf; 5260 struct btf *btf; 5261 char name[64]; 5262 __u32 id = 0, len; 5263 int err, fd; 5264 5265 if (obj->btf_modules_loaded) 5266 return 0; 5267 5268 if (obj->gen_loader) 5269 return 0; 5270 5271 /* don't do this again, even if we find no module BTFs */ 5272 obj->btf_modules_loaded = true; 5273 5274 /* kernel too old to support module BTFs */ 5275 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5276 return 0; 5277 5278 while (true) { 5279 err = bpf_btf_get_next_id(id, &id); 5280 if (err && errno == ENOENT) 5281 return 0; 5282 if (err) { 5283 err = -errno; 5284 pr_warn("failed to iterate BTF objects: %d\n", err); 5285 return err; 5286 } 5287 5288 fd = bpf_btf_get_fd_by_id(id); 5289 if (fd < 0) { 5290 if (errno == ENOENT) 5291 continue; /* expected race: BTF was unloaded */ 5292 err = -errno; 5293 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5294 return err; 5295 } 5296 5297 len = sizeof(info); 5298 memset(&info, 0, sizeof(info)); 5299 info.name = ptr_to_u64(name); 5300 info.name_len = sizeof(name); 5301 5302 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5303 if (err) { 5304 err = -errno; 5305 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5306 goto err_out; 5307 } 5308 5309 /* ignore non-module BTFs */ 5310 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5311 close(fd); 5312 continue; 5313 } 5314 5315 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5316 err = libbpf_get_error(btf); 5317 if (err) { 5318 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5319 name, id, err); 5320 goto err_out; 5321 } 5322 5323 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5324 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5325 if (err) 5326 goto err_out; 5327 5328 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5329 5330 mod_btf->btf = btf; 5331 mod_btf->id = id; 5332 mod_btf->fd = fd; 5333 mod_btf->name = strdup(name); 5334 if (!mod_btf->name) { 5335 err = -ENOMEM; 5336 goto err_out; 5337 } 5338 continue; 5339 5340 err_out: 5341 close(fd); 5342 return err; 5343 } 5344 5345 return 0; 5346 } 5347 5348 static struct bpf_core_cand_list * 5349 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5350 { 5351 struct bpf_core_cand local_cand = {}; 5352 struct bpf_core_cand_list *cands; 5353 const struct btf *main_btf; 5354 const struct btf_type *local_t; 5355 const char *local_name; 5356 size_t local_essent_len; 5357 int err, i; 5358 5359 local_cand.btf = local_btf; 5360 local_cand.id = local_type_id; 5361 local_t = btf__type_by_id(local_btf, local_type_id); 5362 if (!local_t) 5363 return ERR_PTR(-EINVAL); 5364 5365 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5366 if (str_is_empty(local_name)) 5367 return ERR_PTR(-EINVAL); 5368 local_essent_len = bpf_core_essential_name_len(local_name); 5369 5370 cands = calloc(1, sizeof(*cands)); 5371 if (!cands) 5372 return ERR_PTR(-ENOMEM); 5373 5374 /* Attempt to find target candidates in vmlinux BTF first */ 5375 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5376 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5377 if (err) 5378 goto err_out; 5379 5380 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5381 if (cands->len) 5382 return cands; 5383 5384 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5385 if (obj->btf_vmlinux_override) 5386 return cands; 5387 5388 /* now look through module BTFs, trying to still find candidates */ 5389 err = load_module_btfs(obj); 5390 if (err) 5391 goto err_out; 5392 5393 for (i = 0; i < obj->btf_module_cnt; i++) { 5394 err = bpf_core_add_cands(&local_cand, local_essent_len, 5395 obj->btf_modules[i].btf, 5396 obj->btf_modules[i].name, 5397 btf__type_cnt(obj->btf_vmlinux), 5398 cands); 5399 if (err) 5400 goto err_out; 5401 } 5402 5403 return cands; 5404 err_out: 5405 bpf_core_free_cands(cands); 5406 return ERR_PTR(err); 5407 } 5408 5409 /* Check local and target types for compatibility. This check is used for 5410 * type-based CO-RE relocations and follow slightly different rules than 5411 * field-based relocations. This function assumes that root types were already 5412 * checked for name match. Beyond that initial root-level name check, names 5413 * are completely ignored. Compatibility rules are as follows: 5414 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5415 * kind should match for local and target types (i.e., STRUCT is not 5416 * compatible with UNION); 5417 * - for ENUMs, the size is ignored; 5418 * - for INT, size and signedness are ignored; 5419 * - for ARRAY, dimensionality is ignored, element types are checked for 5420 * compatibility recursively; 5421 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5422 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5423 * - FUNC_PROTOs are compatible if they have compatible signature: same 5424 * number of input args and compatible return and argument types. 5425 * These rules are not set in stone and probably will be adjusted as we get 5426 * more experience with using BPF CO-RE relocations. 5427 */ 5428 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5429 const struct btf *targ_btf, __u32 targ_id) 5430 { 5431 const struct btf_type *local_type, *targ_type; 5432 int depth = 32; /* max recursion depth */ 5433 5434 /* caller made sure that names match (ignoring flavor suffix) */ 5435 local_type = btf__type_by_id(local_btf, local_id); 5436 targ_type = btf__type_by_id(targ_btf, targ_id); 5437 if (btf_kind(local_type) != btf_kind(targ_type)) 5438 return 0; 5439 5440 recur: 5441 depth--; 5442 if (depth < 0) 5443 return -EINVAL; 5444 5445 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5446 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5447 if (!local_type || !targ_type) 5448 return -EINVAL; 5449 5450 if (btf_kind(local_type) != btf_kind(targ_type)) 5451 return 0; 5452 5453 switch (btf_kind(local_type)) { 5454 case BTF_KIND_UNKN: 5455 case BTF_KIND_STRUCT: 5456 case BTF_KIND_UNION: 5457 case BTF_KIND_ENUM: 5458 case BTF_KIND_FWD: 5459 return 1; 5460 case BTF_KIND_INT: 5461 /* just reject deprecated bitfield-like integers; all other 5462 * integers are by default compatible between each other 5463 */ 5464 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5465 case BTF_KIND_PTR: 5466 local_id = local_type->type; 5467 targ_id = targ_type->type; 5468 goto recur; 5469 case BTF_KIND_ARRAY: 5470 local_id = btf_array(local_type)->type; 5471 targ_id = btf_array(targ_type)->type; 5472 goto recur; 5473 case BTF_KIND_FUNC_PROTO: { 5474 struct btf_param *local_p = btf_params(local_type); 5475 struct btf_param *targ_p = btf_params(targ_type); 5476 __u16 local_vlen = btf_vlen(local_type); 5477 __u16 targ_vlen = btf_vlen(targ_type); 5478 int i, err; 5479 5480 if (local_vlen != targ_vlen) 5481 return 0; 5482 5483 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5484 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5485 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5486 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5487 if (err <= 0) 5488 return err; 5489 } 5490 5491 /* tail recurse for return type check */ 5492 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5493 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5494 goto recur; 5495 } 5496 default: 5497 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5498 btf_kind_str(local_type), local_id, targ_id); 5499 return 0; 5500 } 5501 } 5502 5503 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5504 { 5505 return (size_t)key; 5506 } 5507 5508 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5509 { 5510 return k1 == k2; 5511 } 5512 5513 static void *u32_as_hash_key(__u32 x) 5514 { 5515 return (void *)(uintptr_t)x; 5516 } 5517 5518 static int record_relo_core(struct bpf_program *prog, 5519 const struct bpf_core_relo *core_relo, int insn_idx) 5520 { 5521 struct reloc_desc *relos, *relo; 5522 5523 relos = libbpf_reallocarray(prog->reloc_desc, 5524 prog->nr_reloc + 1, sizeof(*relos)); 5525 if (!relos) 5526 return -ENOMEM; 5527 relo = &relos[prog->nr_reloc]; 5528 relo->type = RELO_CORE; 5529 relo->insn_idx = insn_idx; 5530 relo->core_relo = core_relo; 5531 prog->reloc_desc = relos; 5532 prog->nr_reloc++; 5533 return 0; 5534 } 5535 5536 static int bpf_core_apply_relo(struct bpf_program *prog, 5537 const struct bpf_core_relo *relo, 5538 int relo_idx, 5539 const struct btf *local_btf, 5540 struct hashmap *cand_cache) 5541 { 5542 struct bpf_core_spec specs_scratch[3] = {}; 5543 const void *type_key = u32_as_hash_key(relo->type_id); 5544 struct bpf_core_cand_list *cands = NULL; 5545 const char *prog_name = prog->name; 5546 const struct btf_type *local_type; 5547 const char *local_name; 5548 __u32 local_id = relo->type_id; 5549 struct bpf_insn *insn; 5550 int insn_idx, err; 5551 5552 if (relo->insn_off % BPF_INSN_SZ) 5553 return -EINVAL; 5554 insn_idx = relo->insn_off / BPF_INSN_SZ; 5555 /* adjust insn_idx from section frame of reference to the local 5556 * program's frame of reference; (sub-)program code is not yet 5557 * relocated, so it's enough to just subtract in-section offset 5558 */ 5559 insn_idx = insn_idx - prog->sec_insn_off; 5560 if (insn_idx >= prog->insns_cnt) 5561 return -EINVAL; 5562 insn = &prog->insns[insn_idx]; 5563 5564 local_type = btf__type_by_id(local_btf, local_id); 5565 if (!local_type) 5566 return -EINVAL; 5567 5568 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5569 if (!local_name) 5570 return -EINVAL; 5571 5572 if (prog->obj->gen_loader) { 5573 const char *spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5574 5575 pr_debug("record_relo_core: prog %td insn[%d] %s %s %s final insn_idx %d\n", 5576 prog - prog->obj->programs, relo->insn_off / 8, 5577 btf_kind_str(local_type), local_name, spec_str, insn_idx); 5578 return record_relo_core(prog, relo, insn_idx); 5579 } 5580 5581 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5582 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5583 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5584 if (IS_ERR(cands)) { 5585 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5586 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5587 local_name, PTR_ERR(cands)); 5588 return PTR_ERR(cands); 5589 } 5590 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5591 if (err) { 5592 bpf_core_free_cands(cands); 5593 return err; 5594 } 5595 } 5596 5597 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, 5598 relo_idx, local_btf, cands, specs_scratch); 5599 } 5600 5601 static int 5602 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5603 { 5604 const struct btf_ext_info_sec *sec; 5605 const struct bpf_core_relo *rec; 5606 const struct btf_ext_info *seg; 5607 struct hashmap_entry *entry; 5608 struct hashmap *cand_cache = NULL; 5609 struct bpf_program *prog; 5610 const char *sec_name; 5611 int i, err = 0, insn_idx, sec_idx; 5612 5613 if (obj->btf_ext->core_relo_info.len == 0) 5614 return 0; 5615 5616 if (targ_btf_path) { 5617 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5618 err = libbpf_get_error(obj->btf_vmlinux_override); 5619 if (err) { 5620 pr_warn("failed to parse target BTF: %d\n", err); 5621 return err; 5622 } 5623 } 5624 5625 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5626 if (IS_ERR(cand_cache)) { 5627 err = PTR_ERR(cand_cache); 5628 goto out; 5629 } 5630 5631 seg = &obj->btf_ext->core_relo_info; 5632 for_each_btf_ext_sec(seg, sec) { 5633 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5634 if (str_is_empty(sec_name)) { 5635 err = -EINVAL; 5636 goto out; 5637 } 5638 /* bpf_object's ELF is gone by now so it's not easy to find 5639 * section index by section name, but we can find *any* 5640 * bpf_program within desired section name and use it's 5641 * prog->sec_idx to do a proper search by section index and 5642 * instruction offset 5643 */ 5644 prog = NULL; 5645 for (i = 0; i < obj->nr_programs; i++) { 5646 prog = &obj->programs[i]; 5647 if (strcmp(prog->sec_name, sec_name) == 0) 5648 break; 5649 } 5650 if (!prog) { 5651 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5652 return -ENOENT; 5653 } 5654 sec_idx = prog->sec_idx; 5655 5656 pr_debug("sec '%s': found %d CO-RE relocations\n", 5657 sec_name, sec->num_info); 5658 5659 for_each_btf_ext_rec(seg, sec, i, rec) { 5660 insn_idx = rec->insn_off / BPF_INSN_SZ; 5661 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5662 if (!prog) { 5663 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5664 sec_name, insn_idx, i); 5665 err = -EINVAL; 5666 goto out; 5667 } 5668 /* no need to apply CO-RE relocation if the program is 5669 * not going to be loaded 5670 */ 5671 if (!prog->load) 5672 continue; 5673 5674 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 5675 if (err) { 5676 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5677 prog->name, i, err); 5678 goto out; 5679 } 5680 } 5681 } 5682 5683 out: 5684 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5685 btf__free(obj->btf_vmlinux_override); 5686 obj->btf_vmlinux_override = NULL; 5687 5688 if (!IS_ERR_OR_NULL(cand_cache)) { 5689 hashmap__for_each_entry(cand_cache, entry, i) { 5690 bpf_core_free_cands(entry->value); 5691 } 5692 hashmap__free(cand_cache); 5693 } 5694 return err; 5695 } 5696 5697 /* Relocate data references within program code: 5698 * - map references; 5699 * - global variable references; 5700 * - extern references. 5701 */ 5702 static int 5703 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5704 { 5705 int i; 5706 5707 for (i = 0; i < prog->nr_reloc; i++) { 5708 struct reloc_desc *relo = &prog->reloc_desc[i]; 5709 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5710 struct extern_desc *ext; 5711 5712 switch (relo->type) { 5713 case RELO_LD64: 5714 if (obj->gen_loader) { 5715 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5716 insn[0].imm = relo->map_idx; 5717 } else { 5718 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5719 insn[0].imm = obj->maps[relo->map_idx].fd; 5720 } 5721 break; 5722 case RELO_DATA: 5723 insn[1].imm = insn[0].imm + relo->sym_off; 5724 if (obj->gen_loader) { 5725 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5726 insn[0].imm = relo->map_idx; 5727 } else { 5728 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5729 5730 if (map->skipped) { 5731 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5732 prog->name, i); 5733 return -ENOTSUP; 5734 } 5735 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5736 insn[0].imm = obj->maps[relo->map_idx].fd; 5737 } 5738 break; 5739 case RELO_EXTERN_VAR: 5740 ext = &obj->externs[relo->sym_off]; 5741 if (ext->type == EXT_KCFG) { 5742 if (obj->gen_loader) { 5743 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5744 insn[0].imm = obj->kconfig_map_idx; 5745 } else { 5746 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5747 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5748 } 5749 insn[1].imm = ext->kcfg.data_off; 5750 } else /* EXT_KSYM */ { 5751 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5752 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5753 insn[0].imm = ext->ksym.kernel_btf_id; 5754 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5755 } else { /* typeless ksyms or unresolved typed ksyms */ 5756 insn[0].imm = (__u32)ext->ksym.addr; 5757 insn[1].imm = ext->ksym.addr >> 32; 5758 } 5759 } 5760 break; 5761 case RELO_EXTERN_FUNC: 5762 ext = &obj->externs[relo->sym_off]; 5763 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5764 if (ext->is_set) { 5765 insn[0].imm = ext->ksym.kernel_btf_id; 5766 insn[0].off = ext->ksym.btf_fd_idx; 5767 } else { /* unresolved weak kfunc */ 5768 insn[0].imm = 0; 5769 insn[0].off = 0; 5770 } 5771 break; 5772 case RELO_SUBPROG_ADDR: 5773 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5774 pr_warn("prog '%s': relo #%d: bad insn\n", 5775 prog->name, i); 5776 return -EINVAL; 5777 } 5778 /* handled already */ 5779 break; 5780 case RELO_CALL: 5781 /* handled already */ 5782 break; 5783 case RELO_CORE: 5784 /* will be handled by bpf_program_record_relos() */ 5785 break; 5786 default: 5787 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5788 prog->name, i, relo->type); 5789 return -EINVAL; 5790 } 5791 } 5792 5793 return 0; 5794 } 5795 5796 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5797 const struct bpf_program *prog, 5798 const struct btf_ext_info *ext_info, 5799 void **prog_info, __u32 *prog_rec_cnt, 5800 __u32 *prog_rec_sz) 5801 { 5802 void *copy_start = NULL, *copy_end = NULL; 5803 void *rec, *rec_end, *new_prog_info; 5804 const struct btf_ext_info_sec *sec; 5805 size_t old_sz, new_sz; 5806 const char *sec_name; 5807 int i, off_adj; 5808 5809 for_each_btf_ext_sec(ext_info, sec) { 5810 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5811 if (!sec_name) 5812 return -EINVAL; 5813 if (strcmp(sec_name, prog->sec_name) != 0) 5814 continue; 5815 5816 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5817 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5818 5819 if (insn_off < prog->sec_insn_off) 5820 continue; 5821 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5822 break; 5823 5824 if (!copy_start) 5825 copy_start = rec; 5826 copy_end = rec + ext_info->rec_size; 5827 } 5828 5829 if (!copy_start) 5830 return -ENOENT; 5831 5832 /* append func/line info of a given (sub-)program to the main 5833 * program func/line info 5834 */ 5835 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5836 new_sz = old_sz + (copy_end - copy_start); 5837 new_prog_info = realloc(*prog_info, new_sz); 5838 if (!new_prog_info) 5839 return -ENOMEM; 5840 *prog_info = new_prog_info; 5841 *prog_rec_cnt = new_sz / ext_info->rec_size; 5842 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5843 5844 /* Kernel instruction offsets are in units of 8-byte 5845 * instructions, while .BTF.ext instruction offsets generated 5846 * by Clang are in units of bytes. So convert Clang offsets 5847 * into kernel offsets and adjust offset according to program 5848 * relocated position. 5849 */ 5850 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5851 rec = new_prog_info + old_sz; 5852 rec_end = new_prog_info + new_sz; 5853 for (; rec < rec_end; rec += ext_info->rec_size) { 5854 __u32 *insn_off = rec; 5855 5856 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5857 } 5858 *prog_rec_sz = ext_info->rec_size; 5859 return 0; 5860 } 5861 5862 return -ENOENT; 5863 } 5864 5865 static int 5866 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5867 struct bpf_program *main_prog, 5868 const struct bpf_program *prog) 5869 { 5870 int err; 5871 5872 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5873 * supprot func/line info 5874 */ 5875 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5876 return 0; 5877 5878 /* only attempt func info relocation if main program's func_info 5879 * relocation was successful 5880 */ 5881 if (main_prog != prog && !main_prog->func_info) 5882 goto line_info; 5883 5884 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5885 &main_prog->func_info, 5886 &main_prog->func_info_cnt, 5887 &main_prog->func_info_rec_size); 5888 if (err) { 5889 if (err != -ENOENT) { 5890 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5891 prog->name, err); 5892 return err; 5893 } 5894 if (main_prog->func_info) { 5895 /* 5896 * Some info has already been found but has problem 5897 * in the last btf_ext reloc. Must have to error out. 5898 */ 5899 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5900 return err; 5901 } 5902 /* Have problem loading the very first info. Ignore the rest. */ 5903 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5904 prog->name); 5905 } 5906 5907 line_info: 5908 /* don't relocate line info if main program's relocation failed */ 5909 if (main_prog != prog && !main_prog->line_info) 5910 return 0; 5911 5912 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5913 &main_prog->line_info, 5914 &main_prog->line_info_cnt, 5915 &main_prog->line_info_rec_size); 5916 if (err) { 5917 if (err != -ENOENT) { 5918 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5919 prog->name, err); 5920 return err; 5921 } 5922 if (main_prog->line_info) { 5923 /* 5924 * Some info has already been found but has problem 5925 * in the last btf_ext reloc. Must have to error out. 5926 */ 5927 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5928 return err; 5929 } 5930 /* Have problem loading the very first info. Ignore the rest. */ 5931 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5932 prog->name); 5933 } 5934 return 0; 5935 } 5936 5937 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5938 { 5939 size_t insn_idx = *(const size_t *)key; 5940 const struct reloc_desc *relo = elem; 5941 5942 if (insn_idx == relo->insn_idx) 5943 return 0; 5944 return insn_idx < relo->insn_idx ? -1 : 1; 5945 } 5946 5947 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5948 { 5949 if (!prog->nr_reloc) 5950 return NULL; 5951 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5952 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5953 } 5954 5955 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5956 { 5957 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5958 struct reloc_desc *relos; 5959 int i; 5960 5961 if (main_prog == subprog) 5962 return 0; 5963 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5964 if (!relos) 5965 return -ENOMEM; 5966 if (subprog->nr_reloc) 5967 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5968 sizeof(*relos) * subprog->nr_reloc); 5969 5970 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5971 relos[i].insn_idx += subprog->sub_insn_off; 5972 /* After insn_idx adjustment the 'relos' array is still sorted 5973 * by insn_idx and doesn't break bsearch. 5974 */ 5975 main_prog->reloc_desc = relos; 5976 main_prog->nr_reloc = new_cnt; 5977 return 0; 5978 } 5979 5980 static int 5981 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5982 struct bpf_program *prog) 5983 { 5984 size_t sub_insn_idx, insn_idx, new_cnt; 5985 struct bpf_program *subprog; 5986 struct bpf_insn *insns, *insn; 5987 struct reloc_desc *relo; 5988 int err; 5989 5990 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5991 if (err) 5992 return err; 5993 5994 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5995 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5996 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 5997 continue; 5998 5999 relo = find_prog_insn_relo(prog, insn_idx); 6000 if (relo && relo->type == RELO_EXTERN_FUNC) 6001 /* kfunc relocations will be handled later 6002 * in bpf_object__relocate_data() 6003 */ 6004 continue; 6005 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6006 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6007 prog->name, insn_idx, relo->type); 6008 return -LIBBPF_ERRNO__RELOC; 6009 } 6010 if (relo) { 6011 /* sub-program instruction index is a combination of 6012 * an offset of a symbol pointed to by relocation and 6013 * call instruction's imm field; for global functions, 6014 * call always has imm = -1, but for static functions 6015 * relocation is against STT_SECTION and insn->imm 6016 * points to a start of a static function 6017 * 6018 * for subprog addr relocation, the relo->sym_off + insn->imm is 6019 * the byte offset in the corresponding section. 6020 */ 6021 if (relo->type == RELO_CALL) 6022 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6023 else 6024 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6025 } else if (insn_is_pseudo_func(insn)) { 6026 /* 6027 * RELO_SUBPROG_ADDR relo is always emitted even if both 6028 * functions are in the same section, so it shouldn't reach here. 6029 */ 6030 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6031 prog->name, insn_idx); 6032 return -LIBBPF_ERRNO__RELOC; 6033 } else { 6034 /* if subprogram call is to a static function within 6035 * the same ELF section, there won't be any relocation 6036 * emitted, but it also means there is no additional 6037 * offset necessary, insns->imm is relative to 6038 * instruction's original position within the section 6039 */ 6040 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6041 } 6042 6043 /* we enforce that sub-programs should be in .text section */ 6044 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6045 if (!subprog) { 6046 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6047 prog->name); 6048 return -LIBBPF_ERRNO__RELOC; 6049 } 6050 6051 /* if it's the first call instruction calling into this 6052 * subprogram (meaning this subprog hasn't been processed 6053 * yet) within the context of current main program: 6054 * - append it at the end of main program's instructions blog; 6055 * - process is recursively, while current program is put on hold; 6056 * - if that subprogram calls some other not yet processes 6057 * subprogram, same thing will happen recursively until 6058 * there are no more unprocesses subprograms left to append 6059 * and relocate. 6060 */ 6061 if (subprog->sub_insn_off == 0) { 6062 subprog->sub_insn_off = main_prog->insns_cnt; 6063 6064 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6065 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6066 if (!insns) { 6067 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6068 return -ENOMEM; 6069 } 6070 main_prog->insns = insns; 6071 main_prog->insns_cnt = new_cnt; 6072 6073 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6074 subprog->insns_cnt * sizeof(*insns)); 6075 6076 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6077 main_prog->name, subprog->insns_cnt, subprog->name); 6078 6079 /* The subprog insns are now appended. Append its relos too. */ 6080 err = append_subprog_relos(main_prog, subprog); 6081 if (err) 6082 return err; 6083 err = bpf_object__reloc_code(obj, main_prog, subprog); 6084 if (err) 6085 return err; 6086 } 6087 6088 /* main_prog->insns memory could have been re-allocated, so 6089 * calculate pointer again 6090 */ 6091 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6092 /* calculate correct instruction position within current main 6093 * prog; each main prog can have a different set of 6094 * subprograms appended (potentially in different order as 6095 * well), so position of any subprog can be different for 6096 * different main programs */ 6097 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6098 6099 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6100 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6101 } 6102 6103 return 0; 6104 } 6105 6106 /* 6107 * Relocate sub-program calls. 6108 * 6109 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6110 * main prog) is processed separately. For each subprog (non-entry functions, 6111 * that can be called from either entry progs or other subprogs) gets their 6112 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6113 * hasn't been yet appended and relocated within current main prog. Once its 6114 * relocated, sub_insn_off will point at the position within current main prog 6115 * where given subprog was appended. This will further be used to relocate all 6116 * the call instructions jumping into this subprog. 6117 * 6118 * We start with main program and process all call instructions. If the call 6119 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6120 * is zero), subprog instructions are appended at the end of main program's 6121 * instruction array. Then main program is "put on hold" while we recursively 6122 * process newly appended subprogram. If that subprogram calls into another 6123 * subprogram that hasn't been appended, new subprogram is appended again to 6124 * the *main* prog's instructions (subprog's instructions are always left 6125 * untouched, as they need to be in unmodified state for subsequent main progs 6126 * and subprog instructions are always sent only as part of a main prog) and 6127 * the process continues recursively. Once all the subprogs called from a main 6128 * prog or any of its subprogs are appended (and relocated), all their 6129 * positions within finalized instructions array are known, so it's easy to 6130 * rewrite call instructions with correct relative offsets, corresponding to 6131 * desired target subprog. 6132 * 6133 * Its important to realize that some subprogs might not be called from some 6134 * main prog and any of its called/used subprogs. Those will keep their 6135 * subprog->sub_insn_off as zero at all times and won't be appended to current 6136 * main prog and won't be relocated within the context of current main prog. 6137 * They might still be used from other main progs later. 6138 * 6139 * Visually this process can be shown as below. Suppose we have two main 6140 * programs mainA and mainB and BPF object contains three subprogs: subA, 6141 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6142 * subC both call subB: 6143 * 6144 * +--------+ +-------+ 6145 * | v v | 6146 * +--+---+ +--+-+-+ +---+--+ 6147 * | subA | | subB | | subC | 6148 * +--+---+ +------+ +---+--+ 6149 * ^ ^ 6150 * | | 6151 * +---+-------+ +------+----+ 6152 * | mainA | | mainB | 6153 * +-----------+ +-----------+ 6154 * 6155 * We'll start relocating mainA, will find subA, append it and start 6156 * processing sub A recursively: 6157 * 6158 * +-----------+------+ 6159 * | mainA | subA | 6160 * +-----------+------+ 6161 * 6162 * At this point we notice that subB is used from subA, so we append it and 6163 * relocate (there are no further subcalls from subB): 6164 * 6165 * +-----------+------+------+ 6166 * | mainA | subA | subB | 6167 * +-----------+------+------+ 6168 * 6169 * At this point, we relocate subA calls, then go one level up and finish with 6170 * relocatin mainA calls. mainA is done. 6171 * 6172 * For mainB process is similar but results in different order. We start with 6173 * mainB and skip subA and subB, as mainB never calls them (at least 6174 * directly), but we see subC is needed, so we append and start processing it: 6175 * 6176 * +-----------+------+ 6177 * | mainB | subC | 6178 * +-----------+------+ 6179 * Now we see subC needs subB, so we go back to it, append and relocate it: 6180 * 6181 * +-----------+------+------+ 6182 * | mainB | subC | subB | 6183 * +-----------+------+------+ 6184 * 6185 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6186 */ 6187 static int 6188 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6189 { 6190 struct bpf_program *subprog; 6191 int i, err; 6192 6193 /* mark all subprogs as not relocated (yet) within the context of 6194 * current main program 6195 */ 6196 for (i = 0; i < obj->nr_programs; i++) { 6197 subprog = &obj->programs[i]; 6198 if (!prog_is_subprog(obj, subprog)) 6199 continue; 6200 6201 subprog->sub_insn_off = 0; 6202 } 6203 6204 err = bpf_object__reloc_code(obj, prog, prog); 6205 if (err) 6206 return err; 6207 6208 6209 return 0; 6210 } 6211 6212 static void 6213 bpf_object__free_relocs(struct bpf_object *obj) 6214 { 6215 struct bpf_program *prog; 6216 int i; 6217 6218 /* free up relocation descriptors */ 6219 for (i = 0; i < obj->nr_programs; i++) { 6220 prog = &obj->programs[i]; 6221 zfree(&prog->reloc_desc); 6222 prog->nr_reloc = 0; 6223 } 6224 } 6225 6226 static int cmp_relocs(const void *_a, const void *_b) 6227 { 6228 const struct reloc_desc *a = _a; 6229 const struct reloc_desc *b = _b; 6230 6231 if (a->insn_idx != b->insn_idx) 6232 return a->insn_idx < b->insn_idx ? -1 : 1; 6233 6234 /* no two relocations should have the same insn_idx, but ... */ 6235 if (a->type != b->type) 6236 return a->type < b->type ? -1 : 1; 6237 6238 return 0; 6239 } 6240 6241 static void bpf_object__sort_relos(struct bpf_object *obj) 6242 { 6243 int i; 6244 6245 for (i = 0; i < obj->nr_programs; i++) { 6246 struct bpf_program *p = &obj->programs[i]; 6247 6248 if (!p->nr_reloc) 6249 continue; 6250 6251 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6252 } 6253 } 6254 6255 static int 6256 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6257 { 6258 struct bpf_program *prog; 6259 size_t i, j; 6260 int err; 6261 6262 if (obj->btf_ext) { 6263 err = bpf_object__relocate_core(obj, targ_btf_path); 6264 if (err) { 6265 pr_warn("failed to perform CO-RE relocations: %d\n", 6266 err); 6267 return err; 6268 } 6269 if (obj->gen_loader) 6270 bpf_object__sort_relos(obj); 6271 } 6272 6273 /* Before relocating calls pre-process relocations and mark 6274 * few ld_imm64 instructions that points to subprogs. 6275 * Otherwise bpf_object__reloc_code() later would have to consider 6276 * all ld_imm64 insns as relocation candidates. That would 6277 * reduce relocation speed, since amount of find_prog_insn_relo() 6278 * would increase and most of them will fail to find a relo. 6279 */ 6280 for (i = 0; i < obj->nr_programs; i++) { 6281 prog = &obj->programs[i]; 6282 for (j = 0; j < prog->nr_reloc; j++) { 6283 struct reloc_desc *relo = &prog->reloc_desc[j]; 6284 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6285 6286 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6287 if (relo->type == RELO_SUBPROG_ADDR) 6288 insn[0].src_reg = BPF_PSEUDO_FUNC; 6289 } 6290 } 6291 6292 /* relocate subprogram calls and append used subprograms to main 6293 * programs; each copy of subprogram code needs to be relocated 6294 * differently for each main program, because its code location might 6295 * have changed. 6296 * Append subprog relos to main programs to allow data relos to be 6297 * processed after text is completely relocated. 6298 */ 6299 for (i = 0; i < obj->nr_programs; i++) { 6300 prog = &obj->programs[i]; 6301 /* sub-program's sub-calls are relocated within the context of 6302 * its main program only 6303 */ 6304 if (prog_is_subprog(obj, prog)) 6305 continue; 6306 if (!prog->load) 6307 continue; 6308 6309 err = bpf_object__relocate_calls(obj, prog); 6310 if (err) { 6311 pr_warn("prog '%s': failed to relocate calls: %d\n", 6312 prog->name, err); 6313 return err; 6314 } 6315 } 6316 /* Process data relos for main programs */ 6317 for (i = 0; i < obj->nr_programs; i++) { 6318 prog = &obj->programs[i]; 6319 if (prog_is_subprog(obj, prog)) 6320 continue; 6321 if (!prog->load) 6322 continue; 6323 err = bpf_object__relocate_data(obj, prog); 6324 if (err) { 6325 pr_warn("prog '%s': failed to relocate data references: %d\n", 6326 prog->name, err); 6327 return err; 6328 } 6329 } 6330 if (!obj->gen_loader) 6331 bpf_object__free_relocs(obj); 6332 return 0; 6333 } 6334 6335 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6336 Elf64_Shdr *shdr, Elf_Data *data); 6337 6338 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6339 Elf64_Shdr *shdr, Elf_Data *data) 6340 { 6341 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6342 int i, j, nrels, new_sz; 6343 const struct btf_var_secinfo *vi = NULL; 6344 const struct btf_type *sec, *var, *def; 6345 struct bpf_map *map = NULL, *targ_map = NULL; 6346 struct bpf_program *targ_prog = NULL; 6347 bool is_prog_array, is_map_in_map; 6348 const struct btf_member *member; 6349 const char *name, *mname, *type; 6350 unsigned int moff; 6351 Elf64_Sym *sym; 6352 Elf64_Rel *rel; 6353 void *tmp; 6354 6355 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6356 return -EINVAL; 6357 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6358 if (!sec) 6359 return -EINVAL; 6360 6361 nrels = shdr->sh_size / shdr->sh_entsize; 6362 for (i = 0; i < nrels; i++) { 6363 rel = elf_rel_by_idx(data, i); 6364 if (!rel) { 6365 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6366 return -LIBBPF_ERRNO__FORMAT; 6367 } 6368 6369 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6370 if (!sym) { 6371 pr_warn(".maps relo #%d: symbol %zx not found\n", 6372 i, (size_t)ELF64_R_SYM(rel->r_info)); 6373 return -LIBBPF_ERRNO__FORMAT; 6374 } 6375 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6376 6377 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6378 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6379 (size_t)rel->r_offset, sym->st_name, name); 6380 6381 for (j = 0; j < obj->nr_maps; j++) { 6382 map = &obj->maps[j]; 6383 if (map->sec_idx != obj->efile.btf_maps_shndx) 6384 continue; 6385 6386 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6387 if (vi->offset <= rel->r_offset && 6388 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6389 break; 6390 } 6391 if (j == obj->nr_maps) { 6392 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6393 i, name, (size_t)rel->r_offset); 6394 return -EINVAL; 6395 } 6396 6397 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6398 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6399 type = is_map_in_map ? "map" : "prog"; 6400 if (is_map_in_map) { 6401 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6402 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6403 i, name); 6404 return -LIBBPF_ERRNO__RELOC; 6405 } 6406 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6407 map->def.key_size != sizeof(int)) { 6408 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6409 i, map->name, sizeof(int)); 6410 return -EINVAL; 6411 } 6412 targ_map = bpf_object__find_map_by_name(obj, name); 6413 if (!targ_map) { 6414 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6415 i, name); 6416 return -ESRCH; 6417 } 6418 } else if (is_prog_array) { 6419 targ_prog = bpf_object__find_program_by_name(obj, name); 6420 if (!targ_prog) { 6421 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6422 i, name); 6423 return -ESRCH; 6424 } 6425 if (targ_prog->sec_idx != sym->st_shndx || 6426 targ_prog->sec_insn_off * 8 != sym->st_value || 6427 prog_is_subprog(obj, targ_prog)) { 6428 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6429 i, name); 6430 return -LIBBPF_ERRNO__RELOC; 6431 } 6432 } else { 6433 return -EINVAL; 6434 } 6435 6436 var = btf__type_by_id(obj->btf, vi->type); 6437 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6438 if (btf_vlen(def) == 0) 6439 return -EINVAL; 6440 member = btf_members(def) + btf_vlen(def) - 1; 6441 mname = btf__name_by_offset(obj->btf, member->name_off); 6442 if (strcmp(mname, "values")) 6443 return -EINVAL; 6444 6445 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6446 if (rel->r_offset - vi->offset < moff) 6447 return -EINVAL; 6448 6449 moff = rel->r_offset - vi->offset - moff; 6450 /* here we use BPF pointer size, which is always 64 bit, as we 6451 * are parsing ELF that was built for BPF target 6452 */ 6453 if (moff % bpf_ptr_sz) 6454 return -EINVAL; 6455 moff /= bpf_ptr_sz; 6456 if (moff >= map->init_slots_sz) { 6457 new_sz = moff + 1; 6458 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6459 if (!tmp) 6460 return -ENOMEM; 6461 map->init_slots = tmp; 6462 memset(map->init_slots + map->init_slots_sz, 0, 6463 (new_sz - map->init_slots_sz) * host_ptr_sz); 6464 map->init_slots_sz = new_sz; 6465 } 6466 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6467 6468 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6469 i, map->name, moff, type, name); 6470 } 6471 6472 return 0; 6473 } 6474 6475 static int bpf_object__collect_relos(struct bpf_object *obj) 6476 { 6477 int i, err; 6478 6479 for (i = 0; i < obj->efile.sec_cnt; i++) { 6480 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6481 Elf64_Shdr *shdr; 6482 Elf_Data *data; 6483 int idx; 6484 6485 if (sec_desc->sec_type != SEC_RELO) 6486 continue; 6487 6488 shdr = sec_desc->shdr; 6489 data = sec_desc->data; 6490 idx = shdr->sh_info; 6491 6492 if (shdr->sh_type != SHT_REL) { 6493 pr_warn("internal error at %d\n", __LINE__); 6494 return -LIBBPF_ERRNO__INTERNAL; 6495 } 6496 6497 if (idx == obj->efile.st_ops_shndx) 6498 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6499 else if (idx == obj->efile.btf_maps_shndx) 6500 err = bpf_object__collect_map_relos(obj, shdr, data); 6501 else 6502 err = bpf_object__collect_prog_relos(obj, shdr, data); 6503 if (err) 6504 return err; 6505 } 6506 6507 bpf_object__sort_relos(obj); 6508 return 0; 6509 } 6510 6511 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6512 { 6513 if (BPF_CLASS(insn->code) == BPF_JMP && 6514 BPF_OP(insn->code) == BPF_CALL && 6515 BPF_SRC(insn->code) == BPF_K && 6516 insn->src_reg == 0 && 6517 insn->dst_reg == 0) { 6518 *func_id = insn->imm; 6519 return true; 6520 } 6521 return false; 6522 } 6523 6524 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6525 { 6526 struct bpf_insn *insn = prog->insns; 6527 enum bpf_func_id func_id; 6528 int i; 6529 6530 if (obj->gen_loader) 6531 return 0; 6532 6533 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6534 if (!insn_is_helper_call(insn, &func_id)) 6535 continue; 6536 6537 /* on kernels that don't yet support 6538 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6539 * to bpf_probe_read() which works well for old kernels 6540 */ 6541 switch (func_id) { 6542 case BPF_FUNC_probe_read_kernel: 6543 case BPF_FUNC_probe_read_user: 6544 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6545 insn->imm = BPF_FUNC_probe_read; 6546 break; 6547 case BPF_FUNC_probe_read_kernel_str: 6548 case BPF_FUNC_probe_read_user_str: 6549 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6550 insn->imm = BPF_FUNC_probe_read_str; 6551 break; 6552 default: 6553 break; 6554 } 6555 } 6556 return 0; 6557 } 6558 6559 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6560 int *btf_obj_fd, int *btf_type_id); 6561 6562 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6563 static int libbpf_preload_prog(struct bpf_program *prog, 6564 struct bpf_prog_load_opts *opts, long cookie) 6565 { 6566 enum sec_def_flags def = cookie; 6567 6568 /* old kernels might not support specifying expected_attach_type */ 6569 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6570 opts->expected_attach_type = 0; 6571 6572 if (def & SEC_SLEEPABLE) 6573 opts->prog_flags |= BPF_F_SLEEPABLE; 6574 6575 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6576 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6577 6578 if ((prog->type == BPF_PROG_TYPE_TRACING || 6579 prog->type == BPF_PROG_TYPE_LSM || 6580 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6581 int btf_obj_fd = 0, btf_type_id = 0, err; 6582 const char *attach_name; 6583 6584 attach_name = strchr(prog->sec_name, '/') + 1; 6585 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6586 if (err) 6587 return err; 6588 6589 /* cache resolved BTF FD and BTF type ID in the prog */ 6590 prog->attach_btf_obj_fd = btf_obj_fd; 6591 prog->attach_btf_id = btf_type_id; 6592 6593 /* but by now libbpf common logic is not utilizing 6594 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6595 * this callback is called after opts were populated by 6596 * libbpf, so this callback has to update opts explicitly here 6597 */ 6598 opts->attach_btf_obj_fd = btf_obj_fd; 6599 opts->attach_btf_id = btf_type_id; 6600 } 6601 return 0; 6602 } 6603 6604 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6605 struct bpf_insn *insns, int insns_cnt, 6606 const char *license, __u32 kern_version, 6607 int *prog_fd) 6608 { 6609 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6610 const char *prog_name = NULL; 6611 char *cp, errmsg[STRERR_BUFSIZE]; 6612 size_t log_buf_size = 0; 6613 char *log_buf = NULL, *tmp; 6614 int btf_fd, ret, err; 6615 bool own_log_buf = true; 6616 __u32 log_level = prog->log_level; 6617 6618 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6619 /* 6620 * The program type must be set. Most likely we couldn't find a proper 6621 * section definition at load time, and thus we didn't infer the type. 6622 */ 6623 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6624 prog->name, prog->sec_name); 6625 return -EINVAL; 6626 } 6627 6628 if (!insns || !insns_cnt) 6629 return -EINVAL; 6630 6631 load_attr.expected_attach_type = prog->expected_attach_type; 6632 if (kernel_supports(obj, FEAT_PROG_NAME)) 6633 prog_name = prog->name; 6634 load_attr.attach_prog_fd = prog->attach_prog_fd; 6635 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6636 load_attr.attach_btf_id = prog->attach_btf_id; 6637 load_attr.kern_version = kern_version; 6638 load_attr.prog_ifindex = prog->prog_ifindex; 6639 6640 /* specify func_info/line_info only if kernel supports them */ 6641 btf_fd = bpf_object__btf_fd(obj); 6642 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6643 load_attr.prog_btf_fd = btf_fd; 6644 load_attr.func_info = prog->func_info; 6645 load_attr.func_info_rec_size = prog->func_info_rec_size; 6646 load_attr.func_info_cnt = prog->func_info_cnt; 6647 load_attr.line_info = prog->line_info; 6648 load_attr.line_info_rec_size = prog->line_info_rec_size; 6649 load_attr.line_info_cnt = prog->line_info_cnt; 6650 } 6651 load_attr.log_level = log_level; 6652 load_attr.prog_flags = prog->prog_flags; 6653 load_attr.fd_array = obj->fd_array; 6654 6655 /* adjust load_attr if sec_def provides custom preload callback */ 6656 if (prog->sec_def && prog->sec_def->preload_fn) { 6657 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6658 if (err < 0) { 6659 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6660 prog->name, err); 6661 return err; 6662 } 6663 } 6664 6665 if (obj->gen_loader) { 6666 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6667 license, insns, insns_cnt, &load_attr, 6668 prog - obj->programs); 6669 *prog_fd = -1; 6670 return 0; 6671 } 6672 6673 retry_load: 6674 /* if log_level is zero, we don't request logs initiallly even if 6675 * custom log_buf is specified; if the program load fails, then we'll 6676 * bump log_level to 1 and use either custom log_buf or we'll allocate 6677 * our own and retry the load to get details on what failed 6678 */ 6679 if (log_level) { 6680 if (prog->log_buf) { 6681 log_buf = prog->log_buf; 6682 log_buf_size = prog->log_size; 6683 own_log_buf = false; 6684 } else if (obj->log_buf) { 6685 log_buf = obj->log_buf; 6686 log_buf_size = obj->log_size; 6687 own_log_buf = false; 6688 } else { 6689 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6690 tmp = realloc(log_buf, log_buf_size); 6691 if (!tmp) { 6692 ret = -ENOMEM; 6693 goto out; 6694 } 6695 log_buf = tmp; 6696 log_buf[0] = '\0'; 6697 own_log_buf = true; 6698 } 6699 } 6700 6701 load_attr.log_buf = log_buf; 6702 load_attr.log_size = log_buf_size; 6703 load_attr.log_level = log_level; 6704 6705 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6706 if (ret >= 0) { 6707 if (log_level && own_log_buf) { 6708 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6709 prog->name, log_buf); 6710 } 6711 6712 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6713 struct bpf_map *map; 6714 int i; 6715 6716 for (i = 0; i < obj->nr_maps; i++) { 6717 map = &prog->obj->maps[i]; 6718 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6719 continue; 6720 6721 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6722 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6723 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6724 prog->name, map->real_name, cp); 6725 /* Don't fail hard if can't bind rodata. */ 6726 } 6727 } 6728 } 6729 6730 *prog_fd = ret; 6731 ret = 0; 6732 goto out; 6733 } 6734 6735 if (log_level == 0) { 6736 log_level = 1; 6737 goto retry_load; 6738 } 6739 /* On ENOSPC, increase log buffer size and retry, unless custom 6740 * log_buf is specified. 6741 * Be careful to not overflow u32, though. Kernel's log buf size limit 6742 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6743 * multiply by 2 unless we are sure we'll fit within 32 bits. 6744 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6745 */ 6746 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6747 goto retry_load; 6748 6749 ret = -errno; 6750 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6751 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6752 pr_perm_msg(ret); 6753 6754 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6755 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6756 prog->name, log_buf); 6757 } 6758 if (insns_cnt >= BPF_MAXINSNS) { 6759 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6760 prog->name, insns_cnt, BPF_MAXINSNS); 6761 } 6762 6763 out: 6764 if (own_log_buf) 6765 free(log_buf); 6766 return ret; 6767 } 6768 6769 static int bpf_program_record_relos(struct bpf_program *prog) 6770 { 6771 struct bpf_object *obj = prog->obj; 6772 int i; 6773 6774 for (i = 0; i < prog->nr_reloc; i++) { 6775 struct reloc_desc *relo = &prog->reloc_desc[i]; 6776 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6777 6778 switch (relo->type) { 6779 case RELO_EXTERN_VAR: 6780 if (ext->type != EXT_KSYM) 6781 continue; 6782 bpf_gen__record_extern(obj->gen_loader, ext->name, 6783 ext->is_weak, !ext->ksym.type_id, 6784 BTF_KIND_VAR, relo->insn_idx); 6785 break; 6786 case RELO_EXTERN_FUNC: 6787 bpf_gen__record_extern(obj->gen_loader, ext->name, 6788 ext->is_weak, false, BTF_KIND_FUNC, 6789 relo->insn_idx); 6790 break; 6791 case RELO_CORE: { 6792 struct bpf_core_relo cr = { 6793 .insn_off = relo->insn_idx * 8, 6794 .type_id = relo->core_relo->type_id, 6795 .access_str_off = relo->core_relo->access_str_off, 6796 .kind = relo->core_relo->kind, 6797 }; 6798 6799 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6800 break; 6801 } 6802 default: 6803 continue; 6804 } 6805 } 6806 return 0; 6807 } 6808 6809 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6810 const char *license, __u32 kern_ver) 6811 { 6812 int err = 0, fd, i; 6813 6814 if (obj->loaded) { 6815 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6816 return libbpf_err(-EINVAL); 6817 } 6818 6819 if (prog->instances.nr < 0 || !prog->instances.fds) { 6820 if (prog->preprocessor) { 6821 pr_warn("Internal error: can't load program '%s'\n", 6822 prog->name); 6823 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6824 } 6825 6826 prog->instances.fds = malloc(sizeof(int)); 6827 if (!prog->instances.fds) { 6828 pr_warn("Not enough memory for BPF fds\n"); 6829 return libbpf_err(-ENOMEM); 6830 } 6831 prog->instances.nr = 1; 6832 prog->instances.fds[0] = -1; 6833 } 6834 6835 if (!prog->preprocessor) { 6836 if (prog->instances.nr != 1) { 6837 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6838 prog->name, prog->instances.nr); 6839 } 6840 if (obj->gen_loader) 6841 bpf_program_record_relos(prog); 6842 err = bpf_object_load_prog_instance(obj, prog, 6843 prog->insns, prog->insns_cnt, 6844 license, kern_ver, &fd); 6845 if (!err) 6846 prog->instances.fds[0] = fd; 6847 goto out; 6848 } 6849 6850 for (i = 0; i < prog->instances.nr; i++) { 6851 struct bpf_prog_prep_result result; 6852 bpf_program_prep_t preprocessor = prog->preprocessor; 6853 6854 memset(&result, 0, sizeof(result)); 6855 err = preprocessor(prog, i, prog->insns, 6856 prog->insns_cnt, &result); 6857 if (err) { 6858 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6859 i, prog->name); 6860 goto out; 6861 } 6862 6863 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6864 pr_debug("Skip loading the %dth instance of program '%s'\n", 6865 i, prog->name); 6866 prog->instances.fds[i] = -1; 6867 if (result.pfd) 6868 *result.pfd = -1; 6869 continue; 6870 } 6871 6872 err = bpf_object_load_prog_instance(obj, prog, 6873 result.new_insn_ptr, result.new_insn_cnt, 6874 license, kern_ver, &fd); 6875 if (err) { 6876 pr_warn("Loading the %dth instance of program '%s' failed\n", 6877 i, prog->name); 6878 goto out; 6879 } 6880 6881 if (result.pfd) 6882 *result.pfd = fd; 6883 prog->instances.fds[i] = fd; 6884 } 6885 out: 6886 if (err) 6887 pr_warn("failed to load program '%s'\n", prog->name); 6888 return libbpf_err(err); 6889 } 6890 6891 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6892 { 6893 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6894 } 6895 6896 static int 6897 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6898 { 6899 struct bpf_program *prog; 6900 size_t i; 6901 int err; 6902 6903 for (i = 0; i < obj->nr_programs; i++) { 6904 prog = &obj->programs[i]; 6905 err = bpf_object__sanitize_prog(obj, prog); 6906 if (err) 6907 return err; 6908 } 6909 6910 for (i = 0; i < obj->nr_programs; i++) { 6911 prog = &obj->programs[i]; 6912 if (prog_is_subprog(obj, prog)) 6913 continue; 6914 if (!prog->load) { 6915 pr_debug("prog '%s': skipped loading\n", prog->name); 6916 continue; 6917 } 6918 prog->log_level |= log_level; 6919 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6920 if (err) 6921 return err; 6922 } 6923 if (obj->gen_loader) 6924 bpf_object__free_relocs(obj); 6925 return 0; 6926 } 6927 6928 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6929 6930 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6931 { 6932 struct bpf_program *prog; 6933 int err; 6934 6935 bpf_object__for_each_program(prog, obj) { 6936 prog->sec_def = find_sec_def(prog->sec_name); 6937 if (!prog->sec_def) { 6938 /* couldn't guess, but user might manually specify */ 6939 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6940 prog->name, prog->sec_name); 6941 continue; 6942 } 6943 6944 bpf_program__set_type(prog, prog->sec_def->prog_type); 6945 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6946 6947 #pragma GCC diagnostic push 6948 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6949 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6950 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6951 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6952 #pragma GCC diagnostic pop 6953 6954 /* sec_def can have custom callback which should be called 6955 * after bpf_program is initialized to adjust its properties 6956 */ 6957 if (prog->sec_def->init_fn) { 6958 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6959 if (err < 0) { 6960 pr_warn("prog '%s': failed to initialize: %d\n", 6961 prog->name, err); 6962 return err; 6963 } 6964 } 6965 } 6966 6967 return 0; 6968 } 6969 6970 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6971 const struct bpf_object_open_opts *opts) 6972 { 6973 const char *obj_name, *kconfig, *btf_tmp_path; 6974 struct bpf_object *obj; 6975 char tmp_name[64]; 6976 int err; 6977 char *log_buf; 6978 size_t log_size; 6979 __u32 log_level; 6980 6981 if (elf_version(EV_CURRENT) == EV_NONE) { 6982 pr_warn("failed to init libelf for %s\n", 6983 path ? : "(mem buf)"); 6984 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6985 } 6986 6987 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6988 return ERR_PTR(-EINVAL); 6989 6990 obj_name = OPTS_GET(opts, object_name, NULL); 6991 if (obj_buf) { 6992 if (!obj_name) { 6993 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6994 (unsigned long)obj_buf, 6995 (unsigned long)obj_buf_sz); 6996 obj_name = tmp_name; 6997 } 6998 path = obj_name; 6999 pr_debug("loading object '%s' from buffer\n", obj_name); 7000 } 7001 7002 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7003 log_size = OPTS_GET(opts, kernel_log_size, 0); 7004 log_level = OPTS_GET(opts, kernel_log_level, 0); 7005 if (log_size > UINT_MAX) 7006 return ERR_PTR(-EINVAL); 7007 if (log_size && !log_buf) 7008 return ERR_PTR(-EINVAL); 7009 7010 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7011 if (IS_ERR(obj)) 7012 return obj; 7013 7014 obj->log_buf = log_buf; 7015 obj->log_size = log_size; 7016 obj->log_level = log_level; 7017 7018 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7019 if (btf_tmp_path) { 7020 if (strlen(btf_tmp_path) >= PATH_MAX) { 7021 err = -ENAMETOOLONG; 7022 goto out; 7023 } 7024 obj->btf_custom_path = strdup(btf_tmp_path); 7025 if (!obj->btf_custom_path) { 7026 err = -ENOMEM; 7027 goto out; 7028 } 7029 } 7030 7031 kconfig = OPTS_GET(opts, kconfig, NULL); 7032 if (kconfig) { 7033 obj->kconfig = strdup(kconfig); 7034 if (!obj->kconfig) { 7035 err = -ENOMEM; 7036 goto out; 7037 } 7038 } 7039 7040 err = bpf_object__elf_init(obj); 7041 err = err ? : bpf_object__check_endianness(obj); 7042 err = err ? : bpf_object__elf_collect(obj); 7043 err = err ? : bpf_object__collect_externs(obj); 7044 err = err ? : bpf_object__finalize_btf(obj); 7045 err = err ? : bpf_object__init_maps(obj, opts); 7046 err = err ? : bpf_object_init_progs(obj, opts); 7047 err = err ? : bpf_object__collect_relos(obj); 7048 if (err) 7049 goto out; 7050 7051 bpf_object__elf_finish(obj); 7052 7053 return obj; 7054 out: 7055 bpf_object__close(obj); 7056 return ERR_PTR(err); 7057 } 7058 7059 static struct bpf_object * 7060 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7061 { 7062 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7063 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7064 ); 7065 7066 /* param validation */ 7067 if (!attr->file) 7068 return NULL; 7069 7070 pr_debug("loading %s\n", attr->file); 7071 return bpf_object_open(attr->file, NULL, 0, &opts); 7072 } 7073 7074 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7075 { 7076 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7077 } 7078 7079 struct bpf_object *bpf_object__open(const char *path) 7080 { 7081 struct bpf_object_open_attr attr = { 7082 .file = path, 7083 .prog_type = BPF_PROG_TYPE_UNSPEC, 7084 }; 7085 7086 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7087 } 7088 7089 struct bpf_object * 7090 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7091 { 7092 if (!path) 7093 return libbpf_err_ptr(-EINVAL); 7094 7095 pr_debug("loading %s\n", path); 7096 7097 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7098 } 7099 7100 struct bpf_object * 7101 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7102 const struct bpf_object_open_opts *opts) 7103 { 7104 if (!obj_buf || obj_buf_sz == 0) 7105 return libbpf_err_ptr(-EINVAL); 7106 7107 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7108 } 7109 7110 struct bpf_object * 7111 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7112 const char *name) 7113 { 7114 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7115 .object_name = name, 7116 /* wrong default, but backwards-compatible */ 7117 .relaxed_maps = true, 7118 ); 7119 7120 /* returning NULL is wrong, but backwards-compatible */ 7121 if (!obj_buf || obj_buf_sz == 0) 7122 return errno = EINVAL, NULL; 7123 7124 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7125 } 7126 7127 static int bpf_object_unload(struct bpf_object *obj) 7128 { 7129 size_t i; 7130 7131 if (!obj) 7132 return libbpf_err(-EINVAL); 7133 7134 for (i = 0; i < obj->nr_maps; i++) { 7135 zclose(obj->maps[i].fd); 7136 if (obj->maps[i].st_ops) 7137 zfree(&obj->maps[i].st_ops->kern_vdata); 7138 } 7139 7140 for (i = 0; i < obj->nr_programs; i++) 7141 bpf_program__unload(&obj->programs[i]); 7142 7143 return 0; 7144 } 7145 7146 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7147 7148 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7149 { 7150 struct bpf_map *m; 7151 7152 bpf_object__for_each_map(m, obj) { 7153 if (!bpf_map__is_internal(m)) 7154 continue; 7155 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7156 m->def.map_flags ^= BPF_F_MMAPABLE; 7157 } 7158 7159 return 0; 7160 } 7161 7162 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7163 { 7164 char sym_type, sym_name[500]; 7165 unsigned long long sym_addr; 7166 const struct btf_type *t; 7167 struct extern_desc *ext; 7168 int ret, err = 0; 7169 FILE *f; 7170 7171 f = fopen("/proc/kallsyms", "r"); 7172 if (!f) { 7173 err = -errno; 7174 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7175 return err; 7176 } 7177 7178 while (true) { 7179 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7180 &sym_addr, &sym_type, sym_name); 7181 if (ret == EOF && feof(f)) 7182 break; 7183 if (ret != 3) { 7184 pr_warn("failed to read kallsyms entry: %d\n", ret); 7185 err = -EINVAL; 7186 goto out; 7187 } 7188 7189 ext = find_extern_by_name(obj, sym_name); 7190 if (!ext || ext->type != EXT_KSYM) 7191 continue; 7192 7193 t = btf__type_by_id(obj->btf, ext->btf_id); 7194 if (!btf_is_var(t)) 7195 continue; 7196 7197 if (ext->is_set && ext->ksym.addr != sym_addr) { 7198 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7199 sym_name, ext->ksym.addr, sym_addr); 7200 err = -EINVAL; 7201 goto out; 7202 } 7203 if (!ext->is_set) { 7204 ext->is_set = true; 7205 ext->ksym.addr = sym_addr; 7206 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7207 } 7208 } 7209 7210 out: 7211 fclose(f); 7212 return err; 7213 } 7214 7215 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7216 __u16 kind, struct btf **res_btf, 7217 struct module_btf **res_mod_btf) 7218 { 7219 struct module_btf *mod_btf; 7220 struct btf *btf; 7221 int i, id, err; 7222 7223 btf = obj->btf_vmlinux; 7224 mod_btf = NULL; 7225 id = btf__find_by_name_kind(btf, ksym_name, kind); 7226 7227 if (id == -ENOENT) { 7228 err = load_module_btfs(obj); 7229 if (err) 7230 return err; 7231 7232 for (i = 0; i < obj->btf_module_cnt; i++) { 7233 /* we assume module_btf's BTF FD is always >0 */ 7234 mod_btf = &obj->btf_modules[i]; 7235 btf = mod_btf->btf; 7236 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7237 if (id != -ENOENT) 7238 break; 7239 } 7240 } 7241 if (id <= 0) 7242 return -ESRCH; 7243 7244 *res_btf = btf; 7245 *res_mod_btf = mod_btf; 7246 return id; 7247 } 7248 7249 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7250 struct extern_desc *ext) 7251 { 7252 const struct btf_type *targ_var, *targ_type; 7253 __u32 targ_type_id, local_type_id; 7254 struct module_btf *mod_btf = NULL; 7255 const char *targ_var_name; 7256 struct btf *btf = NULL; 7257 int id, err; 7258 7259 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7260 if (id < 0) { 7261 if (id == -ESRCH && ext->is_weak) 7262 return 0; 7263 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7264 ext->name); 7265 return id; 7266 } 7267 7268 /* find local type_id */ 7269 local_type_id = ext->ksym.type_id; 7270 7271 /* find target type_id */ 7272 targ_var = btf__type_by_id(btf, id); 7273 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7274 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7275 7276 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7277 btf, targ_type_id); 7278 if (err <= 0) { 7279 const struct btf_type *local_type; 7280 const char *targ_name, *local_name; 7281 7282 local_type = btf__type_by_id(obj->btf, local_type_id); 7283 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7284 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7285 7286 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7287 ext->name, local_type_id, 7288 btf_kind_str(local_type), local_name, targ_type_id, 7289 btf_kind_str(targ_type), targ_name); 7290 return -EINVAL; 7291 } 7292 7293 ext->is_set = true; 7294 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7295 ext->ksym.kernel_btf_id = id; 7296 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7297 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7298 7299 return 0; 7300 } 7301 7302 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7303 struct extern_desc *ext) 7304 { 7305 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7306 struct module_btf *mod_btf = NULL; 7307 const struct btf_type *kern_func; 7308 struct btf *kern_btf = NULL; 7309 int ret; 7310 7311 local_func_proto_id = ext->ksym.type_id; 7312 7313 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7314 if (kfunc_id < 0) { 7315 if (kfunc_id == -ESRCH && ext->is_weak) 7316 return 0; 7317 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7318 ext->name); 7319 return kfunc_id; 7320 } 7321 7322 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7323 kfunc_proto_id = kern_func->type; 7324 7325 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7326 kern_btf, kfunc_proto_id); 7327 if (ret <= 0) { 7328 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7329 ext->name, local_func_proto_id, kfunc_proto_id); 7330 return -EINVAL; 7331 } 7332 7333 /* set index for module BTF fd in fd_array, if unset */ 7334 if (mod_btf && !mod_btf->fd_array_idx) { 7335 /* insn->off is s16 */ 7336 if (obj->fd_array_cnt == INT16_MAX) { 7337 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7338 ext->name, mod_btf->fd_array_idx); 7339 return -E2BIG; 7340 } 7341 /* Cannot use index 0 for module BTF fd */ 7342 if (!obj->fd_array_cnt) 7343 obj->fd_array_cnt = 1; 7344 7345 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7346 obj->fd_array_cnt + 1); 7347 if (ret) 7348 return ret; 7349 mod_btf->fd_array_idx = obj->fd_array_cnt; 7350 /* we assume module BTF FD is always >0 */ 7351 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7352 } 7353 7354 ext->is_set = true; 7355 ext->ksym.kernel_btf_id = kfunc_id; 7356 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7357 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7358 ext->name, kfunc_id); 7359 7360 return 0; 7361 } 7362 7363 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7364 { 7365 const struct btf_type *t; 7366 struct extern_desc *ext; 7367 int i, err; 7368 7369 for (i = 0; i < obj->nr_extern; i++) { 7370 ext = &obj->externs[i]; 7371 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7372 continue; 7373 7374 if (obj->gen_loader) { 7375 ext->is_set = true; 7376 ext->ksym.kernel_btf_obj_fd = 0; 7377 ext->ksym.kernel_btf_id = 0; 7378 continue; 7379 } 7380 t = btf__type_by_id(obj->btf, ext->btf_id); 7381 if (btf_is_var(t)) 7382 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7383 else 7384 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7385 if (err) 7386 return err; 7387 } 7388 return 0; 7389 } 7390 7391 static int bpf_object__resolve_externs(struct bpf_object *obj, 7392 const char *extra_kconfig) 7393 { 7394 bool need_config = false, need_kallsyms = false; 7395 bool need_vmlinux_btf = false; 7396 struct extern_desc *ext; 7397 void *kcfg_data = NULL; 7398 int err, i; 7399 7400 if (obj->nr_extern == 0) 7401 return 0; 7402 7403 if (obj->kconfig_map_idx >= 0) 7404 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7405 7406 for (i = 0; i < obj->nr_extern; i++) { 7407 ext = &obj->externs[i]; 7408 7409 if (ext->type == EXT_KCFG && 7410 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7411 void *ext_val = kcfg_data + ext->kcfg.data_off; 7412 __u32 kver = get_kernel_version(); 7413 7414 if (!kver) { 7415 pr_warn("failed to get kernel version\n"); 7416 return -EINVAL; 7417 } 7418 err = set_kcfg_value_num(ext, ext_val, kver); 7419 if (err) 7420 return err; 7421 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7422 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7423 need_config = true; 7424 } else if (ext->type == EXT_KSYM) { 7425 if (ext->ksym.type_id) 7426 need_vmlinux_btf = true; 7427 else 7428 need_kallsyms = true; 7429 } else { 7430 pr_warn("unrecognized extern '%s'\n", ext->name); 7431 return -EINVAL; 7432 } 7433 } 7434 if (need_config && extra_kconfig) { 7435 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7436 if (err) 7437 return -EINVAL; 7438 need_config = false; 7439 for (i = 0; i < obj->nr_extern; i++) { 7440 ext = &obj->externs[i]; 7441 if (ext->type == EXT_KCFG && !ext->is_set) { 7442 need_config = true; 7443 break; 7444 } 7445 } 7446 } 7447 if (need_config) { 7448 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7449 if (err) 7450 return -EINVAL; 7451 } 7452 if (need_kallsyms) { 7453 err = bpf_object__read_kallsyms_file(obj); 7454 if (err) 7455 return -EINVAL; 7456 } 7457 if (need_vmlinux_btf) { 7458 err = bpf_object__resolve_ksyms_btf_id(obj); 7459 if (err) 7460 return -EINVAL; 7461 } 7462 for (i = 0; i < obj->nr_extern; i++) { 7463 ext = &obj->externs[i]; 7464 7465 if (!ext->is_set && !ext->is_weak) { 7466 pr_warn("extern %s (strong) not resolved\n", ext->name); 7467 return -ESRCH; 7468 } else if (!ext->is_set) { 7469 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7470 ext->name); 7471 } 7472 } 7473 7474 return 0; 7475 } 7476 7477 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7478 { 7479 int err, i; 7480 7481 if (!obj) 7482 return libbpf_err(-EINVAL); 7483 7484 if (obj->loaded) { 7485 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7486 return libbpf_err(-EINVAL); 7487 } 7488 7489 if (obj->gen_loader) 7490 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7491 7492 err = bpf_object__probe_loading(obj); 7493 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7494 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7495 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7496 err = err ? : bpf_object__sanitize_maps(obj); 7497 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7498 err = err ? : bpf_object__create_maps(obj); 7499 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7500 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7501 err = err ? : bpf_object_init_prog_arrays(obj); 7502 7503 if (obj->gen_loader) { 7504 /* reset FDs */ 7505 if (obj->btf) 7506 btf__set_fd(obj->btf, -1); 7507 for (i = 0; i < obj->nr_maps; i++) 7508 obj->maps[i].fd = -1; 7509 if (!err) 7510 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7511 } 7512 7513 /* clean up fd_array */ 7514 zfree(&obj->fd_array); 7515 7516 /* clean up module BTFs */ 7517 for (i = 0; i < obj->btf_module_cnt; i++) { 7518 close(obj->btf_modules[i].fd); 7519 btf__free(obj->btf_modules[i].btf); 7520 free(obj->btf_modules[i].name); 7521 } 7522 free(obj->btf_modules); 7523 7524 /* clean up vmlinux BTF */ 7525 btf__free(obj->btf_vmlinux); 7526 obj->btf_vmlinux = NULL; 7527 7528 obj->loaded = true; /* doesn't matter if successfully or not */ 7529 7530 if (err) 7531 goto out; 7532 7533 return 0; 7534 out: 7535 /* unpin any maps that were auto-pinned during load */ 7536 for (i = 0; i < obj->nr_maps; i++) 7537 if (obj->maps[i].pinned && !obj->maps[i].reused) 7538 bpf_map__unpin(&obj->maps[i], NULL); 7539 7540 bpf_object_unload(obj); 7541 pr_warn("failed to load object '%s'\n", obj->path); 7542 return libbpf_err(err); 7543 } 7544 7545 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7546 { 7547 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7548 } 7549 7550 int bpf_object__load(struct bpf_object *obj) 7551 { 7552 return bpf_object_load(obj, 0, NULL); 7553 } 7554 7555 static int make_parent_dir(const char *path) 7556 { 7557 char *cp, errmsg[STRERR_BUFSIZE]; 7558 char *dname, *dir; 7559 int err = 0; 7560 7561 dname = strdup(path); 7562 if (dname == NULL) 7563 return -ENOMEM; 7564 7565 dir = dirname(dname); 7566 if (mkdir(dir, 0700) && errno != EEXIST) 7567 err = -errno; 7568 7569 free(dname); 7570 if (err) { 7571 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7572 pr_warn("failed to mkdir %s: %s\n", path, cp); 7573 } 7574 return err; 7575 } 7576 7577 static int check_path(const char *path) 7578 { 7579 char *cp, errmsg[STRERR_BUFSIZE]; 7580 struct statfs st_fs; 7581 char *dname, *dir; 7582 int err = 0; 7583 7584 if (path == NULL) 7585 return -EINVAL; 7586 7587 dname = strdup(path); 7588 if (dname == NULL) 7589 return -ENOMEM; 7590 7591 dir = dirname(dname); 7592 if (statfs(dir, &st_fs)) { 7593 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7594 pr_warn("failed to statfs %s: %s\n", dir, cp); 7595 err = -errno; 7596 } 7597 free(dname); 7598 7599 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7600 pr_warn("specified path %s is not on BPF FS\n", path); 7601 err = -EINVAL; 7602 } 7603 7604 return err; 7605 } 7606 7607 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7608 { 7609 char *cp, errmsg[STRERR_BUFSIZE]; 7610 int err; 7611 7612 err = make_parent_dir(path); 7613 if (err) 7614 return libbpf_err(err); 7615 7616 err = check_path(path); 7617 if (err) 7618 return libbpf_err(err); 7619 7620 if (prog == NULL) { 7621 pr_warn("invalid program pointer\n"); 7622 return libbpf_err(-EINVAL); 7623 } 7624 7625 if (instance < 0 || instance >= prog->instances.nr) { 7626 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7627 instance, prog->name, prog->instances.nr); 7628 return libbpf_err(-EINVAL); 7629 } 7630 7631 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7632 err = -errno; 7633 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7634 pr_warn("failed to pin program: %s\n", cp); 7635 return libbpf_err(err); 7636 } 7637 pr_debug("pinned program '%s'\n", path); 7638 7639 return 0; 7640 } 7641 7642 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7643 { 7644 int err; 7645 7646 err = check_path(path); 7647 if (err) 7648 return libbpf_err(err); 7649 7650 if (prog == NULL) { 7651 pr_warn("invalid program pointer\n"); 7652 return libbpf_err(-EINVAL); 7653 } 7654 7655 if (instance < 0 || instance >= prog->instances.nr) { 7656 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7657 instance, prog->name, prog->instances.nr); 7658 return libbpf_err(-EINVAL); 7659 } 7660 7661 err = unlink(path); 7662 if (err != 0) 7663 return libbpf_err(-errno); 7664 7665 pr_debug("unpinned program '%s'\n", path); 7666 7667 return 0; 7668 } 7669 7670 __attribute__((alias("bpf_program_pin_instance"))) 7671 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7672 7673 __attribute__((alias("bpf_program_unpin_instance"))) 7674 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7675 7676 int bpf_program__pin(struct bpf_program *prog, const char *path) 7677 { 7678 int i, err; 7679 7680 err = make_parent_dir(path); 7681 if (err) 7682 return libbpf_err(err); 7683 7684 err = check_path(path); 7685 if (err) 7686 return libbpf_err(err); 7687 7688 if (prog == NULL) { 7689 pr_warn("invalid program pointer\n"); 7690 return libbpf_err(-EINVAL); 7691 } 7692 7693 if (prog->instances.nr <= 0) { 7694 pr_warn("no instances of prog %s to pin\n", prog->name); 7695 return libbpf_err(-EINVAL); 7696 } 7697 7698 if (prog->instances.nr == 1) { 7699 /* don't create subdirs when pinning single instance */ 7700 return bpf_program_pin_instance(prog, path, 0); 7701 } 7702 7703 for (i = 0; i < prog->instances.nr; i++) { 7704 char buf[PATH_MAX]; 7705 int len; 7706 7707 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7708 if (len < 0) { 7709 err = -EINVAL; 7710 goto err_unpin; 7711 } else if (len >= PATH_MAX) { 7712 err = -ENAMETOOLONG; 7713 goto err_unpin; 7714 } 7715 7716 err = bpf_program_pin_instance(prog, buf, i); 7717 if (err) 7718 goto err_unpin; 7719 } 7720 7721 return 0; 7722 7723 err_unpin: 7724 for (i = i - 1; i >= 0; i--) { 7725 char buf[PATH_MAX]; 7726 int len; 7727 7728 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7729 if (len < 0) 7730 continue; 7731 else if (len >= PATH_MAX) 7732 continue; 7733 7734 bpf_program_unpin_instance(prog, buf, i); 7735 } 7736 7737 rmdir(path); 7738 7739 return libbpf_err(err); 7740 } 7741 7742 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7743 { 7744 int i, err; 7745 7746 err = check_path(path); 7747 if (err) 7748 return libbpf_err(err); 7749 7750 if (prog == NULL) { 7751 pr_warn("invalid program pointer\n"); 7752 return libbpf_err(-EINVAL); 7753 } 7754 7755 if (prog->instances.nr <= 0) { 7756 pr_warn("no instances of prog %s to pin\n", prog->name); 7757 return libbpf_err(-EINVAL); 7758 } 7759 7760 if (prog->instances.nr == 1) { 7761 /* don't create subdirs when pinning single instance */ 7762 return bpf_program_unpin_instance(prog, path, 0); 7763 } 7764 7765 for (i = 0; i < prog->instances.nr; i++) { 7766 char buf[PATH_MAX]; 7767 int len; 7768 7769 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7770 if (len < 0) 7771 return libbpf_err(-EINVAL); 7772 else if (len >= PATH_MAX) 7773 return libbpf_err(-ENAMETOOLONG); 7774 7775 err = bpf_program_unpin_instance(prog, buf, i); 7776 if (err) 7777 return err; 7778 } 7779 7780 err = rmdir(path); 7781 if (err) 7782 return libbpf_err(-errno); 7783 7784 return 0; 7785 } 7786 7787 int bpf_map__pin(struct bpf_map *map, const char *path) 7788 { 7789 char *cp, errmsg[STRERR_BUFSIZE]; 7790 int err; 7791 7792 if (map == NULL) { 7793 pr_warn("invalid map pointer\n"); 7794 return libbpf_err(-EINVAL); 7795 } 7796 7797 if (map->pin_path) { 7798 if (path && strcmp(path, map->pin_path)) { 7799 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7800 bpf_map__name(map), map->pin_path, path); 7801 return libbpf_err(-EINVAL); 7802 } else if (map->pinned) { 7803 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7804 bpf_map__name(map), map->pin_path); 7805 return 0; 7806 } 7807 } else { 7808 if (!path) { 7809 pr_warn("missing a path to pin map '%s' at\n", 7810 bpf_map__name(map)); 7811 return libbpf_err(-EINVAL); 7812 } else if (map->pinned) { 7813 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7814 return libbpf_err(-EEXIST); 7815 } 7816 7817 map->pin_path = strdup(path); 7818 if (!map->pin_path) { 7819 err = -errno; 7820 goto out_err; 7821 } 7822 } 7823 7824 err = make_parent_dir(map->pin_path); 7825 if (err) 7826 return libbpf_err(err); 7827 7828 err = check_path(map->pin_path); 7829 if (err) 7830 return libbpf_err(err); 7831 7832 if (bpf_obj_pin(map->fd, map->pin_path)) { 7833 err = -errno; 7834 goto out_err; 7835 } 7836 7837 map->pinned = true; 7838 pr_debug("pinned map '%s'\n", map->pin_path); 7839 7840 return 0; 7841 7842 out_err: 7843 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7844 pr_warn("failed to pin map: %s\n", cp); 7845 return libbpf_err(err); 7846 } 7847 7848 int bpf_map__unpin(struct bpf_map *map, const char *path) 7849 { 7850 int err; 7851 7852 if (map == NULL) { 7853 pr_warn("invalid map pointer\n"); 7854 return libbpf_err(-EINVAL); 7855 } 7856 7857 if (map->pin_path) { 7858 if (path && strcmp(path, map->pin_path)) { 7859 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7860 bpf_map__name(map), map->pin_path, path); 7861 return libbpf_err(-EINVAL); 7862 } 7863 path = map->pin_path; 7864 } else if (!path) { 7865 pr_warn("no path to unpin map '%s' from\n", 7866 bpf_map__name(map)); 7867 return libbpf_err(-EINVAL); 7868 } 7869 7870 err = check_path(path); 7871 if (err) 7872 return libbpf_err(err); 7873 7874 err = unlink(path); 7875 if (err != 0) 7876 return libbpf_err(-errno); 7877 7878 map->pinned = false; 7879 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7880 7881 return 0; 7882 } 7883 7884 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7885 { 7886 char *new = NULL; 7887 7888 if (path) { 7889 new = strdup(path); 7890 if (!new) 7891 return libbpf_err(-errno); 7892 } 7893 7894 free(map->pin_path); 7895 map->pin_path = new; 7896 return 0; 7897 } 7898 7899 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7900 { 7901 return map->pin_path; 7902 } 7903 7904 const char *bpf_map__pin_path(const struct bpf_map *map) 7905 { 7906 return map->pin_path; 7907 } 7908 7909 bool bpf_map__is_pinned(const struct bpf_map *map) 7910 { 7911 return map->pinned; 7912 } 7913 7914 static void sanitize_pin_path(char *s) 7915 { 7916 /* bpffs disallows periods in path names */ 7917 while (*s) { 7918 if (*s == '.') 7919 *s = '_'; 7920 s++; 7921 } 7922 } 7923 7924 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7925 { 7926 struct bpf_map *map; 7927 int err; 7928 7929 if (!obj) 7930 return libbpf_err(-ENOENT); 7931 7932 if (!obj->loaded) { 7933 pr_warn("object not yet loaded; load it first\n"); 7934 return libbpf_err(-ENOENT); 7935 } 7936 7937 bpf_object__for_each_map(map, obj) { 7938 char *pin_path = NULL; 7939 char buf[PATH_MAX]; 7940 7941 if (map->skipped) 7942 continue; 7943 7944 if (path) { 7945 int len; 7946 7947 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7948 bpf_map__name(map)); 7949 if (len < 0) { 7950 err = -EINVAL; 7951 goto err_unpin_maps; 7952 } else if (len >= PATH_MAX) { 7953 err = -ENAMETOOLONG; 7954 goto err_unpin_maps; 7955 } 7956 sanitize_pin_path(buf); 7957 pin_path = buf; 7958 } else if (!map->pin_path) { 7959 continue; 7960 } 7961 7962 err = bpf_map__pin(map, pin_path); 7963 if (err) 7964 goto err_unpin_maps; 7965 } 7966 7967 return 0; 7968 7969 err_unpin_maps: 7970 while ((map = bpf_object__prev_map(obj, map))) { 7971 if (!map->pin_path) 7972 continue; 7973 7974 bpf_map__unpin(map, NULL); 7975 } 7976 7977 return libbpf_err(err); 7978 } 7979 7980 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7981 { 7982 struct bpf_map *map; 7983 int err; 7984 7985 if (!obj) 7986 return libbpf_err(-ENOENT); 7987 7988 bpf_object__for_each_map(map, obj) { 7989 char *pin_path = NULL; 7990 char buf[PATH_MAX]; 7991 7992 if (path) { 7993 int len; 7994 7995 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7996 bpf_map__name(map)); 7997 if (len < 0) 7998 return libbpf_err(-EINVAL); 7999 else if (len >= PATH_MAX) 8000 return libbpf_err(-ENAMETOOLONG); 8001 sanitize_pin_path(buf); 8002 pin_path = buf; 8003 } else if (!map->pin_path) { 8004 continue; 8005 } 8006 8007 err = bpf_map__unpin(map, pin_path); 8008 if (err) 8009 return libbpf_err(err); 8010 } 8011 8012 return 0; 8013 } 8014 8015 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8016 { 8017 struct bpf_program *prog; 8018 int err; 8019 8020 if (!obj) 8021 return libbpf_err(-ENOENT); 8022 8023 if (!obj->loaded) { 8024 pr_warn("object not yet loaded; load it first\n"); 8025 return libbpf_err(-ENOENT); 8026 } 8027 8028 bpf_object__for_each_program(prog, obj) { 8029 char buf[PATH_MAX]; 8030 int len; 8031 8032 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8033 prog->pin_name); 8034 if (len < 0) { 8035 err = -EINVAL; 8036 goto err_unpin_programs; 8037 } else if (len >= PATH_MAX) { 8038 err = -ENAMETOOLONG; 8039 goto err_unpin_programs; 8040 } 8041 8042 err = bpf_program__pin(prog, buf); 8043 if (err) 8044 goto err_unpin_programs; 8045 } 8046 8047 return 0; 8048 8049 err_unpin_programs: 8050 while ((prog = bpf_object__prev_program(obj, prog))) { 8051 char buf[PATH_MAX]; 8052 int len; 8053 8054 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8055 prog->pin_name); 8056 if (len < 0) 8057 continue; 8058 else if (len >= PATH_MAX) 8059 continue; 8060 8061 bpf_program__unpin(prog, buf); 8062 } 8063 8064 return libbpf_err(err); 8065 } 8066 8067 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8068 { 8069 struct bpf_program *prog; 8070 int err; 8071 8072 if (!obj) 8073 return libbpf_err(-ENOENT); 8074 8075 bpf_object__for_each_program(prog, obj) { 8076 char buf[PATH_MAX]; 8077 int len; 8078 8079 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8080 prog->pin_name); 8081 if (len < 0) 8082 return libbpf_err(-EINVAL); 8083 else if (len >= PATH_MAX) 8084 return libbpf_err(-ENAMETOOLONG); 8085 8086 err = bpf_program__unpin(prog, buf); 8087 if (err) 8088 return libbpf_err(err); 8089 } 8090 8091 return 0; 8092 } 8093 8094 int bpf_object__pin(struct bpf_object *obj, const char *path) 8095 { 8096 int err; 8097 8098 err = bpf_object__pin_maps(obj, path); 8099 if (err) 8100 return libbpf_err(err); 8101 8102 err = bpf_object__pin_programs(obj, path); 8103 if (err) { 8104 bpf_object__unpin_maps(obj, path); 8105 return libbpf_err(err); 8106 } 8107 8108 return 0; 8109 } 8110 8111 static void bpf_map__destroy(struct bpf_map *map) 8112 { 8113 if (map->clear_priv) 8114 map->clear_priv(map, map->priv); 8115 map->priv = NULL; 8116 map->clear_priv = NULL; 8117 8118 if (map->inner_map) { 8119 bpf_map__destroy(map->inner_map); 8120 zfree(&map->inner_map); 8121 } 8122 8123 zfree(&map->init_slots); 8124 map->init_slots_sz = 0; 8125 8126 if (map->mmaped) { 8127 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8128 map->mmaped = NULL; 8129 } 8130 8131 if (map->st_ops) { 8132 zfree(&map->st_ops->data); 8133 zfree(&map->st_ops->progs); 8134 zfree(&map->st_ops->kern_func_off); 8135 zfree(&map->st_ops); 8136 } 8137 8138 zfree(&map->name); 8139 zfree(&map->real_name); 8140 zfree(&map->pin_path); 8141 8142 if (map->fd >= 0) 8143 zclose(map->fd); 8144 } 8145 8146 void bpf_object__close(struct bpf_object *obj) 8147 { 8148 size_t i; 8149 8150 if (IS_ERR_OR_NULL(obj)) 8151 return; 8152 8153 if (obj->clear_priv) 8154 obj->clear_priv(obj, obj->priv); 8155 8156 bpf_gen__free(obj->gen_loader); 8157 bpf_object__elf_finish(obj); 8158 bpf_object_unload(obj); 8159 btf__free(obj->btf); 8160 btf_ext__free(obj->btf_ext); 8161 8162 for (i = 0; i < obj->nr_maps; i++) 8163 bpf_map__destroy(&obj->maps[i]); 8164 8165 zfree(&obj->btf_custom_path); 8166 zfree(&obj->kconfig); 8167 zfree(&obj->externs); 8168 obj->nr_extern = 0; 8169 8170 zfree(&obj->maps); 8171 obj->nr_maps = 0; 8172 8173 if (obj->programs && obj->nr_programs) { 8174 for (i = 0; i < obj->nr_programs; i++) 8175 bpf_program__exit(&obj->programs[i]); 8176 } 8177 zfree(&obj->programs); 8178 8179 list_del(&obj->list); 8180 free(obj); 8181 } 8182 8183 struct bpf_object * 8184 bpf_object__next(struct bpf_object *prev) 8185 { 8186 struct bpf_object *next; 8187 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8188 8189 if (strict) 8190 return NULL; 8191 8192 if (!prev) 8193 next = list_first_entry(&bpf_objects_list, 8194 struct bpf_object, 8195 list); 8196 else 8197 next = list_next_entry(prev, list); 8198 8199 /* Empty list is noticed here so don't need checking on entry. */ 8200 if (&next->list == &bpf_objects_list) 8201 return NULL; 8202 8203 return next; 8204 } 8205 8206 const char *bpf_object__name(const struct bpf_object *obj) 8207 { 8208 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8209 } 8210 8211 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8212 { 8213 return obj ? obj->kern_version : 0; 8214 } 8215 8216 struct btf *bpf_object__btf(const struct bpf_object *obj) 8217 { 8218 return obj ? obj->btf : NULL; 8219 } 8220 8221 int bpf_object__btf_fd(const struct bpf_object *obj) 8222 { 8223 return obj->btf ? btf__fd(obj->btf) : -1; 8224 } 8225 8226 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8227 { 8228 if (obj->loaded) 8229 return libbpf_err(-EINVAL); 8230 8231 obj->kern_version = kern_version; 8232 8233 return 0; 8234 } 8235 8236 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8237 bpf_object_clear_priv_t clear_priv) 8238 { 8239 if (obj->priv && obj->clear_priv) 8240 obj->clear_priv(obj, obj->priv); 8241 8242 obj->priv = priv; 8243 obj->clear_priv = clear_priv; 8244 return 0; 8245 } 8246 8247 void *bpf_object__priv(const struct bpf_object *obj) 8248 { 8249 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8250 } 8251 8252 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8253 { 8254 struct bpf_gen *gen; 8255 8256 if (!opts) 8257 return -EFAULT; 8258 if (!OPTS_VALID(opts, gen_loader_opts)) 8259 return -EINVAL; 8260 gen = calloc(sizeof(*gen), 1); 8261 if (!gen) 8262 return -ENOMEM; 8263 gen->opts = opts; 8264 obj->gen_loader = gen; 8265 return 0; 8266 } 8267 8268 static struct bpf_program * 8269 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8270 bool forward) 8271 { 8272 size_t nr_programs = obj->nr_programs; 8273 ssize_t idx; 8274 8275 if (!nr_programs) 8276 return NULL; 8277 8278 if (!p) 8279 /* Iter from the beginning */ 8280 return forward ? &obj->programs[0] : 8281 &obj->programs[nr_programs - 1]; 8282 8283 if (p->obj != obj) { 8284 pr_warn("error: program handler doesn't match object\n"); 8285 return errno = EINVAL, NULL; 8286 } 8287 8288 idx = (p - obj->programs) + (forward ? 1 : -1); 8289 if (idx >= obj->nr_programs || idx < 0) 8290 return NULL; 8291 return &obj->programs[idx]; 8292 } 8293 8294 struct bpf_program * 8295 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8296 { 8297 return bpf_object__next_program(obj, prev); 8298 } 8299 8300 struct bpf_program * 8301 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8302 { 8303 struct bpf_program *prog = prev; 8304 8305 do { 8306 prog = __bpf_program__iter(prog, obj, true); 8307 } while (prog && prog_is_subprog(obj, prog)); 8308 8309 return prog; 8310 } 8311 8312 struct bpf_program * 8313 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8314 { 8315 return bpf_object__prev_program(obj, next); 8316 } 8317 8318 struct bpf_program * 8319 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8320 { 8321 struct bpf_program *prog = next; 8322 8323 do { 8324 prog = __bpf_program__iter(prog, obj, false); 8325 } while (prog && prog_is_subprog(obj, prog)); 8326 8327 return prog; 8328 } 8329 8330 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8331 bpf_program_clear_priv_t clear_priv) 8332 { 8333 if (prog->priv && prog->clear_priv) 8334 prog->clear_priv(prog, prog->priv); 8335 8336 prog->priv = priv; 8337 prog->clear_priv = clear_priv; 8338 return 0; 8339 } 8340 8341 void *bpf_program__priv(const struct bpf_program *prog) 8342 { 8343 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8344 } 8345 8346 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8347 { 8348 prog->prog_ifindex = ifindex; 8349 } 8350 8351 const char *bpf_program__name(const struct bpf_program *prog) 8352 { 8353 return prog->name; 8354 } 8355 8356 const char *bpf_program__section_name(const struct bpf_program *prog) 8357 { 8358 return prog->sec_name; 8359 } 8360 8361 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8362 { 8363 const char *title; 8364 8365 title = prog->sec_name; 8366 if (needs_copy) { 8367 title = strdup(title); 8368 if (!title) { 8369 pr_warn("failed to strdup program title\n"); 8370 return libbpf_err_ptr(-ENOMEM); 8371 } 8372 } 8373 8374 return title; 8375 } 8376 8377 bool bpf_program__autoload(const struct bpf_program *prog) 8378 { 8379 return prog->load; 8380 } 8381 8382 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8383 { 8384 if (prog->obj->loaded) 8385 return libbpf_err(-EINVAL); 8386 8387 prog->load = autoload; 8388 return 0; 8389 } 8390 8391 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8392 8393 int bpf_program__fd(const struct bpf_program *prog) 8394 { 8395 return bpf_program_nth_fd(prog, 0); 8396 } 8397 8398 size_t bpf_program__size(const struct bpf_program *prog) 8399 { 8400 return prog->insns_cnt * BPF_INSN_SZ; 8401 } 8402 8403 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8404 { 8405 return prog->insns; 8406 } 8407 8408 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8409 { 8410 return prog->insns_cnt; 8411 } 8412 8413 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8414 bpf_program_prep_t prep) 8415 { 8416 int *instances_fds; 8417 8418 if (nr_instances <= 0 || !prep) 8419 return libbpf_err(-EINVAL); 8420 8421 if (prog->instances.nr > 0 || prog->instances.fds) { 8422 pr_warn("Can't set pre-processor after loading\n"); 8423 return libbpf_err(-EINVAL); 8424 } 8425 8426 instances_fds = malloc(sizeof(int) * nr_instances); 8427 if (!instances_fds) { 8428 pr_warn("alloc memory failed for fds\n"); 8429 return libbpf_err(-ENOMEM); 8430 } 8431 8432 /* fill all fd with -1 */ 8433 memset(instances_fds, -1, sizeof(int) * nr_instances); 8434 8435 prog->instances.nr = nr_instances; 8436 prog->instances.fds = instances_fds; 8437 prog->preprocessor = prep; 8438 return 0; 8439 } 8440 8441 __attribute__((alias("bpf_program_nth_fd"))) 8442 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8443 8444 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8445 { 8446 int fd; 8447 8448 if (!prog) 8449 return libbpf_err(-EINVAL); 8450 8451 if (n >= prog->instances.nr || n < 0) { 8452 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8453 n, prog->name, prog->instances.nr); 8454 return libbpf_err(-EINVAL); 8455 } 8456 8457 fd = prog->instances.fds[n]; 8458 if (fd < 0) { 8459 pr_warn("%dth instance of program '%s' is invalid\n", 8460 n, prog->name); 8461 return libbpf_err(-ENOENT); 8462 } 8463 8464 return fd; 8465 } 8466 8467 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8468 { 8469 return prog->type; 8470 } 8471 8472 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8473 { 8474 prog->type = type; 8475 } 8476 8477 static bool bpf_program__is_type(const struct bpf_program *prog, 8478 enum bpf_prog_type type) 8479 { 8480 return prog ? (prog->type == type) : false; 8481 } 8482 8483 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8484 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8485 { \ 8486 if (!prog) \ 8487 return libbpf_err(-EINVAL); \ 8488 bpf_program__set_type(prog, TYPE); \ 8489 return 0; \ 8490 } \ 8491 \ 8492 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8493 { \ 8494 return bpf_program__is_type(prog, TYPE); \ 8495 } \ 8496 8497 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8498 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8499 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8500 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8501 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8502 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8503 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8504 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8505 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8506 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8507 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8508 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8509 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8510 8511 enum bpf_attach_type 8512 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8513 { 8514 return prog->expected_attach_type; 8515 } 8516 8517 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8518 enum bpf_attach_type type) 8519 { 8520 prog->expected_attach_type = type; 8521 } 8522 8523 __u32 bpf_program__flags(const struct bpf_program *prog) 8524 { 8525 return prog->prog_flags; 8526 } 8527 8528 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8529 { 8530 if (prog->obj->loaded) 8531 return libbpf_err(-EBUSY); 8532 8533 prog->prog_flags = flags; 8534 return 0; 8535 } 8536 8537 __u32 bpf_program__log_level(const struct bpf_program *prog) 8538 { 8539 return prog->log_level; 8540 } 8541 8542 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8543 { 8544 if (prog->obj->loaded) 8545 return libbpf_err(-EBUSY); 8546 8547 prog->log_level = log_level; 8548 return 0; 8549 } 8550 8551 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8552 { 8553 *log_size = prog->log_size; 8554 return prog->log_buf; 8555 } 8556 8557 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8558 { 8559 if (log_size && !log_buf) 8560 return -EINVAL; 8561 if (prog->log_size > UINT_MAX) 8562 return -EINVAL; 8563 if (prog->obj->loaded) 8564 return -EBUSY; 8565 8566 prog->log_buf = log_buf; 8567 prog->log_size = log_size; 8568 return 0; 8569 } 8570 8571 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8572 .sec = sec_pfx, \ 8573 .prog_type = BPF_PROG_TYPE_##ptype, \ 8574 .expected_attach_type = atype, \ 8575 .cookie = (long)(flags), \ 8576 .preload_fn = libbpf_preload_prog, \ 8577 __VA_ARGS__ \ 8578 } 8579 8580 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8581 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8582 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8583 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8584 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8585 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8586 8587 static const struct bpf_sec_def section_defs[] = { 8588 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8589 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8590 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8591 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8592 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8593 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8594 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8595 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8596 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX), 8597 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8598 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8599 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8600 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8601 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8602 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8603 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8604 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8605 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8606 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8607 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8608 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8609 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8610 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8611 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8612 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8613 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8614 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8615 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8616 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8617 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8618 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8619 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8620 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8621 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8622 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8623 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8624 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8625 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8626 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8627 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8628 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8629 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8630 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8631 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8632 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8633 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8634 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8635 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8636 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8637 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8638 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8639 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8640 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8641 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8642 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8643 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8644 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8645 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8646 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8647 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8648 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8649 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8650 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8651 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8652 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8653 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8654 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8655 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8656 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8657 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8658 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8659 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8660 }; 8661 8662 #define MAX_TYPE_NAME_SIZE 32 8663 8664 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8665 { 8666 const struct bpf_sec_def *sec_def; 8667 enum sec_def_flags sec_flags; 8668 int i, n = ARRAY_SIZE(section_defs), len; 8669 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8670 8671 for (i = 0; i < n; i++) { 8672 sec_def = §ion_defs[i]; 8673 sec_flags = sec_def->cookie; 8674 len = strlen(sec_def->sec); 8675 8676 /* "type/" always has to have proper SEC("type/extras") form */ 8677 if (sec_def->sec[len - 1] == '/') { 8678 if (str_has_pfx(sec_name, sec_def->sec)) 8679 return sec_def; 8680 continue; 8681 } 8682 8683 /* "type+" means it can be either exact SEC("type") or 8684 * well-formed SEC("type/extras") with proper '/' separator 8685 */ 8686 if (sec_def->sec[len - 1] == '+') { 8687 len--; 8688 /* not even a prefix */ 8689 if (strncmp(sec_name, sec_def->sec, len) != 0) 8690 continue; 8691 /* exact match or has '/' separator */ 8692 if (sec_name[len] == '\0' || sec_name[len] == '/') 8693 return sec_def; 8694 continue; 8695 } 8696 8697 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8698 * matches, unless strict section name mode 8699 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8700 * match has to be exact. 8701 */ 8702 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8703 if (str_has_pfx(sec_name, sec_def->sec)) 8704 return sec_def; 8705 continue; 8706 } 8707 8708 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8709 * SEC("syscall")) are exact matches in both modes. 8710 */ 8711 if (strcmp(sec_name, sec_def->sec) == 0) 8712 return sec_def; 8713 } 8714 return NULL; 8715 } 8716 8717 static char *libbpf_get_type_names(bool attach_type) 8718 { 8719 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8720 char *buf; 8721 8722 buf = malloc(len); 8723 if (!buf) 8724 return NULL; 8725 8726 buf[0] = '\0'; 8727 /* Forge string buf with all available names */ 8728 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8729 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8730 8731 if (attach_type) { 8732 if (sec_def->preload_fn != libbpf_preload_prog) 8733 continue; 8734 8735 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8736 continue; 8737 } 8738 8739 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8740 free(buf); 8741 return NULL; 8742 } 8743 strcat(buf, " "); 8744 strcat(buf, section_defs[i].sec); 8745 } 8746 8747 return buf; 8748 } 8749 8750 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8751 enum bpf_attach_type *expected_attach_type) 8752 { 8753 const struct bpf_sec_def *sec_def; 8754 char *type_names; 8755 8756 if (!name) 8757 return libbpf_err(-EINVAL); 8758 8759 sec_def = find_sec_def(name); 8760 if (sec_def) { 8761 *prog_type = sec_def->prog_type; 8762 *expected_attach_type = sec_def->expected_attach_type; 8763 return 0; 8764 } 8765 8766 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8767 type_names = libbpf_get_type_names(false); 8768 if (type_names != NULL) { 8769 pr_debug("supported section(type) names are:%s\n", type_names); 8770 free(type_names); 8771 } 8772 8773 return libbpf_err(-ESRCH); 8774 } 8775 8776 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8777 size_t offset) 8778 { 8779 struct bpf_map *map; 8780 size_t i; 8781 8782 for (i = 0; i < obj->nr_maps; i++) { 8783 map = &obj->maps[i]; 8784 if (!bpf_map__is_struct_ops(map)) 8785 continue; 8786 if (map->sec_offset <= offset && 8787 offset - map->sec_offset < map->def.value_size) 8788 return map; 8789 } 8790 8791 return NULL; 8792 } 8793 8794 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8795 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8796 Elf64_Shdr *shdr, Elf_Data *data) 8797 { 8798 const struct btf_member *member; 8799 struct bpf_struct_ops *st_ops; 8800 struct bpf_program *prog; 8801 unsigned int shdr_idx; 8802 const struct btf *btf; 8803 struct bpf_map *map; 8804 unsigned int moff, insn_idx; 8805 const char *name; 8806 __u32 member_idx; 8807 Elf64_Sym *sym; 8808 Elf64_Rel *rel; 8809 int i, nrels; 8810 8811 btf = obj->btf; 8812 nrels = shdr->sh_size / shdr->sh_entsize; 8813 for (i = 0; i < nrels; i++) { 8814 rel = elf_rel_by_idx(data, i); 8815 if (!rel) { 8816 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8817 return -LIBBPF_ERRNO__FORMAT; 8818 } 8819 8820 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8821 if (!sym) { 8822 pr_warn("struct_ops reloc: symbol %zx not found\n", 8823 (size_t)ELF64_R_SYM(rel->r_info)); 8824 return -LIBBPF_ERRNO__FORMAT; 8825 } 8826 8827 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8828 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8829 if (!map) { 8830 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8831 (size_t)rel->r_offset); 8832 return -EINVAL; 8833 } 8834 8835 moff = rel->r_offset - map->sec_offset; 8836 shdr_idx = sym->st_shndx; 8837 st_ops = map->st_ops; 8838 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8839 map->name, 8840 (long long)(rel->r_info >> 32), 8841 (long long)sym->st_value, 8842 shdr_idx, (size_t)rel->r_offset, 8843 map->sec_offset, sym->st_name, name); 8844 8845 if (shdr_idx >= SHN_LORESERVE) { 8846 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8847 map->name, (size_t)rel->r_offset, shdr_idx); 8848 return -LIBBPF_ERRNO__RELOC; 8849 } 8850 if (sym->st_value % BPF_INSN_SZ) { 8851 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8852 map->name, (unsigned long long)sym->st_value); 8853 return -LIBBPF_ERRNO__FORMAT; 8854 } 8855 insn_idx = sym->st_value / BPF_INSN_SZ; 8856 8857 member = find_member_by_offset(st_ops->type, moff * 8); 8858 if (!member) { 8859 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8860 map->name, moff); 8861 return -EINVAL; 8862 } 8863 member_idx = member - btf_members(st_ops->type); 8864 name = btf__name_by_offset(btf, member->name_off); 8865 8866 if (!resolve_func_ptr(btf, member->type, NULL)) { 8867 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8868 map->name, name); 8869 return -EINVAL; 8870 } 8871 8872 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8873 if (!prog) { 8874 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8875 map->name, shdr_idx, name); 8876 return -EINVAL; 8877 } 8878 8879 /* prevent the use of BPF prog with invalid type */ 8880 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8881 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8882 map->name, prog->name); 8883 return -EINVAL; 8884 } 8885 8886 /* if we haven't yet processed this BPF program, record proper 8887 * attach_btf_id and member_idx 8888 */ 8889 if (!prog->attach_btf_id) { 8890 prog->attach_btf_id = st_ops->type_id; 8891 prog->expected_attach_type = member_idx; 8892 } 8893 8894 /* struct_ops BPF prog can be re-used between multiple 8895 * .struct_ops as long as it's the same struct_ops struct 8896 * definition and the same function pointer field 8897 */ 8898 if (prog->attach_btf_id != st_ops->type_id || 8899 prog->expected_attach_type != member_idx) { 8900 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8901 map->name, prog->name, prog->sec_name, prog->type, 8902 prog->attach_btf_id, prog->expected_attach_type, name); 8903 return -EINVAL; 8904 } 8905 8906 st_ops->progs[member_idx] = prog; 8907 } 8908 8909 return 0; 8910 } 8911 8912 #define BTF_TRACE_PREFIX "btf_trace_" 8913 #define BTF_LSM_PREFIX "bpf_lsm_" 8914 #define BTF_ITER_PREFIX "bpf_iter_" 8915 #define BTF_MAX_NAME_SIZE 128 8916 8917 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8918 const char **prefix, int *kind) 8919 { 8920 switch (attach_type) { 8921 case BPF_TRACE_RAW_TP: 8922 *prefix = BTF_TRACE_PREFIX; 8923 *kind = BTF_KIND_TYPEDEF; 8924 break; 8925 case BPF_LSM_MAC: 8926 *prefix = BTF_LSM_PREFIX; 8927 *kind = BTF_KIND_FUNC; 8928 break; 8929 case BPF_TRACE_ITER: 8930 *prefix = BTF_ITER_PREFIX; 8931 *kind = BTF_KIND_FUNC; 8932 break; 8933 default: 8934 *prefix = ""; 8935 *kind = BTF_KIND_FUNC; 8936 } 8937 } 8938 8939 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8940 const char *name, __u32 kind) 8941 { 8942 char btf_type_name[BTF_MAX_NAME_SIZE]; 8943 int ret; 8944 8945 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8946 "%s%s", prefix, name); 8947 /* snprintf returns the number of characters written excluding the 8948 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8949 * indicates truncation. 8950 */ 8951 if (ret < 0 || ret >= sizeof(btf_type_name)) 8952 return -ENAMETOOLONG; 8953 return btf__find_by_name_kind(btf, btf_type_name, kind); 8954 } 8955 8956 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8957 enum bpf_attach_type attach_type) 8958 { 8959 const char *prefix; 8960 int kind; 8961 8962 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8963 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8964 } 8965 8966 int libbpf_find_vmlinux_btf_id(const char *name, 8967 enum bpf_attach_type attach_type) 8968 { 8969 struct btf *btf; 8970 int err; 8971 8972 btf = btf__load_vmlinux_btf(); 8973 err = libbpf_get_error(btf); 8974 if (err) { 8975 pr_warn("vmlinux BTF is not found\n"); 8976 return libbpf_err(err); 8977 } 8978 8979 err = find_attach_btf_id(btf, name, attach_type); 8980 if (err <= 0) 8981 pr_warn("%s is not found in vmlinux BTF\n", name); 8982 8983 btf__free(btf); 8984 return libbpf_err(err); 8985 } 8986 8987 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8988 { 8989 struct bpf_prog_info info = {}; 8990 __u32 info_len = sizeof(info); 8991 struct btf *btf; 8992 int err; 8993 8994 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8995 if (err) { 8996 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8997 attach_prog_fd, err); 8998 return err; 8999 } 9000 9001 err = -EINVAL; 9002 if (!info.btf_id) { 9003 pr_warn("The target program doesn't have BTF\n"); 9004 goto out; 9005 } 9006 btf = btf__load_from_kernel_by_id(info.btf_id); 9007 err = libbpf_get_error(btf); 9008 if (err) { 9009 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9010 goto out; 9011 } 9012 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9013 btf__free(btf); 9014 if (err <= 0) { 9015 pr_warn("%s is not found in prog's BTF\n", name); 9016 goto out; 9017 } 9018 out: 9019 return err; 9020 } 9021 9022 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9023 enum bpf_attach_type attach_type, 9024 int *btf_obj_fd, int *btf_type_id) 9025 { 9026 int ret, i; 9027 9028 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9029 if (ret > 0) { 9030 *btf_obj_fd = 0; /* vmlinux BTF */ 9031 *btf_type_id = ret; 9032 return 0; 9033 } 9034 if (ret != -ENOENT) 9035 return ret; 9036 9037 ret = load_module_btfs(obj); 9038 if (ret) 9039 return ret; 9040 9041 for (i = 0; i < obj->btf_module_cnt; i++) { 9042 const struct module_btf *mod = &obj->btf_modules[i]; 9043 9044 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9045 if (ret > 0) { 9046 *btf_obj_fd = mod->fd; 9047 *btf_type_id = ret; 9048 return 0; 9049 } 9050 if (ret == -ENOENT) 9051 continue; 9052 9053 return ret; 9054 } 9055 9056 return -ESRCH; 9057 } 9058 9059 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9060 int *btf_obj_fd, int *btf_type_id) 9061 { 9062 enum bpf_attach_type attach_type = prog->expected_attach_type; 9063 __u32 attach_prog_fd = prog->attach_prog_fd; 9064 int err = 0; 9065 9066 /* BPF program's BTF ID */ 9067 if (attach_prog_fd) { 9068 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9069 if (err < 0) { 9070 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9071 attach_prog_fd, attach_name, err); 9072 return err; 9073 } 9074 *btf_obj_fd = 0; 9075 *btf_type_id = err; 9076 return 0; 9077 } 9078 9079 /* kernel/module BTF ID */ 9080 if (prog->obj->gen_loader) { 9081 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9082 *btf_obj_fd = 0; 9083 *btf_type_id = 1; 9084 } else { 9085 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9086 } 9087 if (err) { 9088 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9089 return err; 9090 } 9091 return 0; 9092 } 9093 9094 int libbpf_attach_type_by_name(const char *name, 9095 enum bpf_attach_type *attach_type) 9096 { 9097 char *type_names; 9098 const struct bpf_sec_def *sec_def; 9099 9100 if (!name) 9101 return libbpf_err(-EINVAL); 9102 9103 sec_def = find_sec_def(name); 9104 if (!sec_def) { 9105 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9106 type_names = libbpf_get_type_names(true); 9107 if (type_names != NULL) { 9108 pr_debug("attachable section(type) names are:%s\n", type_names); 9109 free(type_names); 9110 } 9111 9112 return libbpf_err(-EINVAL); 9113 } 9114 9115 if (sec_def->preload_fn != libbpf_preload_prog) 9116 return libbpf_err(-EINVAL); 9117 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9118 return libbpf_err(-EINVAL); 9119 9120 *attach_type = sec_def->expected_attach_type; 9121 return 0; 9122 } 9123 9124 int bpf_map__fd(const struct bpf_map *map) 9125 { 9126 return map ? map->fd : libbpf_err(-EINVAL); 9127 } 9128 9129 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9130 { 9131 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9132 } 9133 9134 static bool map_uses_real_name(const struct bpf_map *map) 9135 { 9136 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9137 * their user-visible name differs from kernel-visible name. Users see 9138 * such map's corresponding ELF section name as a map name. 9139 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9140 * maps to know which name has to be returned to the user. 9141 */ 9142 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9143 return true; 9144 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9145 return true; 9146 return false; 9147 } 9148 9149 const char *bpf_map__name(const struct bpf_map *map) 9150 { 9151 if (!map) 9152 return NULL; 9153 9154 if (map_uses_real_name(map)) 9155 return map->real_name; 9156 9157 return map->name; 9158 } 9159 9160 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9161 { 9162 return map->def.type; 9163 } 9164 9165 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9166 { 9167 if (map->fd >= 0) 9168 return libbpf_err(-EBUSY); 9169 map->def.type = type; 9170 return 0; 9171 } 9172 9173 __u32 bpf_map__map_flags(const struct bpf_map *map) 9174 { 9175 return map->def.map_flags; 9176 } 9177 9178 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9179 { 9180 if (map->fd >= 0) 9181 return libbpf_err(-EBUSY); 9182 map->def.map_flags = flags; 9183 return 0; 9184 } 9185 9186 __u64 bpf_map__map_extra(const struct bpf_map *map) 9187 { 9188 return map->map_extra; 9189 } 9190 9191 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9192 { 9193 if (map->fd >= 0) 9194 return libbpf_err(-EBUSY); 9195 map->map_extra = map_extra; 9196 return 0; 9197 } 9198 9199 __u32 bpf_map__numa_node(const struct bpf_map *map) 9200 { 9201 return map->numa_node; 9202 } 9203 9204 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9205 { 9206 if (map->fd >= 0) 9207 return libbpf_err(-EBUSY); 9208 map->numa_node = numa_node; 9209 return 0; 9210 } 9211 9212 __u32 bpf_map__key_size(const struct bpf_map *map) 9213 { 9214 return map->def.key_size; 9215 } 9216 9217 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9218 { 9219 if (map->fd >= 0) 9220 return libbpf_err(-EBUSY); 9221 map->def.key_size = size; 9222 return 0; 9223 } 9224 9225 __u32 bpf_map__value_size(const struct bpf_map *map) 9226 { 9227 return map->def.value_size; 9228 } 9229 9230 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9231 { 9232 if (map->fd >= 0) 9233 return libbpf_err(-EBUSY); 9234 map->def.value_size = size; 9235 return 0; 9236 } 9237 9238 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9239 { 9240 return map ? map->btf_key_type_id : 0; 9241 } 9242 9243 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9244 { 9245 return map ? map->btf_value_type_id : 0; 9246 } 9247 9248 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9249 bpf_map_clear_priv_t clear_priv) 9250 { 9251 if (!map) 9252 return libbpf_err(-EINVAL); 9253 9254 if (map->priv) { 9255 if (map->clear_priv) 9256 map->clear_priv(map, map->priv); 9257 } 9258 9259 map->priv = priv; 9260 map->clear_priv = clear_priv; 9261 return 0; 9262 } 9263 9264 void *bpf_map__priv(const struct bpf_map *map) 9265 { 9266 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9267 } 9268 9269 int bpf_map__set_initial_value(struct bpf_map *map, 9270 const void *data, size_t size) 9271 { 9272 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9273 size != map->def.value_size || map->fd >= 0) 9274 return libbpf_err(-EINVAL); 9275 9276 memcpy(map->mmaped, data, size); 9277 return 0; 9278 } 9279 9280 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9281 { 9282 if (!map->mmaped) 9283 return NULL; 9284 *psize = map->def.value_size; 9285 return map->mmaped; 9286 } 9287 9288 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9289 { 9290 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9291 } 9292 9293 bool bpf_map__is_internal(const struct bpf_map *map) 9294 { 9295 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9296 } 9297 9298 __u32 bpf_map__ifindex(const struct bpf_map *map) 9299 { 9300 return map->map_ifindex; 9301 } 9302 9303 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9304 { 9305 if (map->fd >= 0) 9306 return libbpf_err(-EBUSY); 9307 map->map_ifindex = ifindex; 9308 return 0; 9309 } 9310 9311 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9312 { 9313 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9314 pr_warn("error: unsupported map type\n"); 9315 return libbpf_err(-EINVAL); 9316 } 9317 if (map->inner_map_fd != -1) { 9318 pr_warn("error: inner_map_fd already specified\n"); 9319 return libbpf_err(-EINVAL); 9320 } 9321 if (map->inner_map) { 9322 bpf_map__destroy(map->inner_map); 9323 zfree(&map->inner_map); 9324 } 9325 map->inner_map_fd = fd; 9326 return 0; 9327 } 9328 9329 static struct bpf_map * 9330 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9331 { 9332 ssize_t idx; 9333 struct bpf_map *s, *e; 9334 9335 if (!obj || !obj->maps) 9336 return errno = EINVAL, NULL; 9337 9338 s = obj->maps; 9339 e = obj->maps + obj->nr_maps; 9340 9341 if ((m < s) || (m >= e)) { 9342 pr_warn("error in %s: map handler doesn't belong to object\n", 9343 __func__); 9344 return errno = EINVAL, NULL; 9345 } 9346 9347 idx = (m - obj->maps) + i; 9348 if (idx >= obj->nr_maps || idx < 0) 9349 return NULL; 9350 return &obj->maps[idx]; 9351 } 9352 9353 struct bpf_map * 9354 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9355 { 9356 return bpf_object__next_map(obj, prev); 9357 } 9358 9359 struct bpf_map * 9360 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9361 { 9362 if (prev == NULL) 9363 return obj->maps; 9364 9365 return __bpf_map__iter(prev, obj, 1); 9366 } 9367 9368 struct bpf_map * 9369 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9370 { 9371 return bpf_object__prev_map(obj, next); 9372 } 9373 9374 struct bpf_map * 9375 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9376 { 9377 if (next == NULL) { 9378 if (!obj->nr_maps) 9379 return NULL; 9380 return obj->maps + obj->nr_maps - 1; 9381 } 9382 9383 return __bpf_map__iter(next, obj, -1); 9384 } 9385 9386 struct bpf_map * 9387 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9388 { 9389 struct bpf_map *pos; 9390 9391 bpf_object__for_each_map(pos, obj) { 9392 /* if it's a special internal map name (which always starts 9393 * with dot) then check if that special name matches the 9394 * real map name (ELF section name) 9395 */ 9396 if (name[0] == '.') { 9397 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9398 return pos; 9399 continue; 9400 } 9401 /* otherwise map name has to be an exact match */ 9402 if (map_uses_real_name(pos)) { 9403 if (strcmp(pos->real_name, name) == 0) 9404 return pos; 9405 continue; 9406 } 9407 if (strcmp(pos->name, name) == 0) 9408 return pos; 9409 } 9410 return errno = ENOENT, NULL; 9411 } 9412 9413 int 9414 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9415 { 9416 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9417 } 9418 9419 struct bpf_map * 9420 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9421 { 9422 return libbpf_err_ptr(-ENOTSUP); 9423 } 9424 9425 long libbpf_get_error(const void *ptr) 9426 { 9427 if (!IS_ERR_OR_NULL(ptr)) 9428 return 0; 9429 9430 if (IS_ERR(ptr)) 9431 errno = -PTR_ERR(ptr); 9432 9433 /* If ptr == NULL, then errno should be already set by the failing 9434 * API, because libbpf never returns NULL on success and it now always 9435 * sets errno on error. So no extra errno handling for ptr == NULL 9436 * case. 9437 */ 9438 return -errno; 9439 } 9440 9441 __attribute__((alias("bpf_prog_load_xattr2"))) 9442 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9443 struct bpf_object **pobj, int *prog_fd); 9444 9445 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9446 struct bpf_object **pobj, int *prog_fd) 9447 { 9448 struct bpf_object_open_attr open_attr = {}; 9449 struct bpf_program *prog, *first_prog = NULL; 9450 struct bpf_object *obj; 9451 struct bpf_map *map; 9452 int err; 9453 9454 if (!attr) 9455 return libbpf_err(-EINVAL); 9456 if (!attr->file) 9457 return libbpf_err(-EINVAL); 9458 9459 open_attr.file = attr->file; 9460 open_attr.prog_type = attr->prog_type; 9461 9462 obj = bpf_object__open_xattr(&open_attr); 9463 err = libbpf_get_error(obj); 9464 if (err) 9465 return libbpf_err(-ENOENT); 9466 9467 bpf_object__for_each_program(prog, obj) { 9468 enum bpf_attach_type attach_type = attr->expected_attach_type; 9469 /* 9470 * to preserve backwards compatibility, bpf_prog_load treats 9471 * attr->prog_type, if specified, as an override to whatever 9472 * bpf_object__open guessed 9473 */ 9474 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9475 bpf_program__set_type(prog, attr->prog_type); 9476 bpf_program__set_expected_attach_type(prog, 9477 attach_type); 9478 } 9479 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9480 /* 9481 * we haven't guessed from section name and user 9482 * didn't provide a fallback type, too bad... 9483 */ 9484 bpf_object__close(obj); 9485 return libbpf_err(-EINVAL); 9486 } 9487 9488 prog->prog_ifindex = attr->ifindex; 9489 prog->log_level = attr->log_level; 9490 prog->prog_flags |= attr->prog_flags; 9491 if (!first_prog) 9492 first_prog = prog; 9493 } 9494 9495 bpf_object__for_each_map(map, obj) { 9496 if (!bpf_map__is_offload_neutral(map)) 9497 map->map_ifindex = attr->ifindex; 9498 } 9499 9500 if (!first_prog) { 9501 pr_warn("object file doesn't contain bpf program\n"); 9502 bpf_object__close(obj); 9503 return libbpf_err(-ENOENT); 9504 } 9505 9506 err = bpf_object__load(obj); 9507 if (err) { 9508 bpf_object__close(obj); 9509 return libbpf_err(err); 9510 } 9511 9512 *pobj = obj; 9513 *prog_fd = bpf_program__fd(first_prog); 9514 return 0; 9515 } 9516 9517 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9518 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9519 struct bpf_object **pobj, int *prog_fd) 9520 { 9521 struct bpf_prog_load_attr attr; 9522 9523 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9524 attr.file = file; 9525 attr.prog_type = type; 9526 attr.expected_attach_type = 0; 9527 9528 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9529 } 9530 9531 struct bpf_link { 9532 int (*detach)(struct bpf_link *link); 9533 void (*dealloc)(struct bpf_link *link); 9534 char *pin_path; /* NULL, if not pinned */ 9535 int fd; /* hook FD, -1 if not applicable */ 9536 bool disconnected; 9537 }; 9538 9539 /* Replace link's underlying BPF program with the new one */ 9540 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9541 { 9542 int ret; 9543 9544 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9545 return libbpf_err_errno(ret); 9546 } 9547 9548 /* Release "ownership" of underlying BPF resource (typically, BPF program 9549 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9550 * link, when destructed through bpf_link__destroy() call won't attempt to 9551 * detach/unregisted that BPF resource. This is useful in situations where, 9552 * say, attached BPF program has to outlive userspace program that attached it 9553 * in the system. Depending on type of BPF program, though, there might be 9554 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9555 * exit of userspace program doesn't trigger automatic detachment and clean up 9556 * inside the kernel. 9557 */ 9558 void bpf_link__disconnect(struct bpf_link *link) 9559 { 9560 link->disconnected = true; 9561 } 9562 9563 int bpf_link__destroy(struct bpf_link *link) 9564 { 9565 int err = 0; 9566 9567 if (IS_ERR_OR_NULL(link)) 9568 return 0; 9569 9570 if (!link->disconnected && link->detach) 9571 err = link->detach(link); 9572 if (link->pin_path) 9573 free(link->pin_path); 9574 if (link->dealloc) 9575 link->dealloc(link); 9576 else 9577 free(link); 9578 9579 return libbpf_err(err); 9580 } 9581 9582 int bpf_link__fd(const struct bpf_link *link) 9583 { 9584 return link->fd; 9585 } 9586 9587 const char *bpf_link__pin_path(const struct bpf_link *link) 9588 { 9589 return link->pin_path; 9590 } 9591 9592 static int bpf_link__detach_fd(struct bpf_link *link) 9593 { 9594 return libbpf_err_errno(close(link->fd)); 9595 } 9596 9597 struct bpf_link *bpf_link__open(const char *path) 9598 { 9599 struct bpf_link *link; 9600 int fd; 9601 9602 fd = bpf_obj_get(path); 9603 if (fd < 0) { 9604 fd = -errno; 9605 pr_warn("failed to open link at %s: %d\n", path, fd); 9606 return libbpf_err_ptr(fd); 9607 } 9608 9609 link = calloc(1, sizeof(*link)); 9610 if (!link) { 9611 close(fd); 9612 return libbpf_err_ptr(-ENOMEM); 9613 } 9614 link->detach = &bpf_link__detach_fd; 9615 link->fd = fd; 9616 9617 link->pin_path = strdup(path); 9618 if (!link->pin_path) { 9619 bpf_link__destroy(link); 9620 return libbpf_err_ptr(-ENOMEM); 9621 } 9622 9623 return link; 9624 } 9625 9626 int bpf_link__detach(struct bpf_link *link) 9627 { 9628 return bpf_link_detach(link->fd) ? -errno : 0; 9629 } 9630 9631 int bpf_link__pin(struct bpf_link *link, const char *path) 9632 { 9633 int err; 9634 9635 if (link->pin_path) 9636 return libbpf_err(-EBUSY); 9637 err = make_parent_dir(path); 9638 if (err) 9639 return libbpf_err(err); 9640 err = check_path(path); 9641 if (err) 9642 return libbpf_err(err); 9643 9644 link->pin_path = strdup(path); 9645 if (!link->pin_path) 9646 return libbpf_err(-ENOMEM); 9647 9648 if (bpf_obj_pin(link->fd, link->pin_path)) { 9649 err = -errno; 9650 zfree(&link->pin_path); 9651 return libbpf_err(err); 9652 } 9653 9654 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9655 return 0; 9656 } 9657 9658 int bpf_link__unpin(struct bpf_link *link) 9659 { 9660 int err; 9661 9662 if (!link->pin_path) 9663 return libbpf_err(-EINVAL); 9664 9665 err = unlink(link->pin_path); 9666 if (err != 0) 9667 return -errno; 9668 9669 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9670 zfree(&link->pin_path); 9671 return 0; 9672 } 9673 9674 struct bpf_link_perf { 9675 struct bpf_link link; 9676 int perf_event_fd; 9677 /* legacy kprobe support: keep track of probe identifier and type */ 9678 char *legacy_probe_name; 9679 bool legacy_is_kprobe; 9680 bool legacy_is_retprobe; 9681 }; 9682 9683 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9684 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9685 9686 static int bpf_link_perf_detach(struct bpf_link *link) 9687 { 9688 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9689 int err = 0; 9690 9691 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9692 err = -errno; 9693 9694 if (perf_link->perf_event_fd != link->fd) 9695 close(perf_link->perf_event_fd); 9696 close(link->fd); 9697 9698 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9699 if (perf_link->legacy_probe_name) { 9700 if (perf_link->legacy_is_kprobe) { 9701 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9702 perf_link->legacy_is_retprobe); 9703 } else { 9704 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9705 perf_link->legacy_is_retprobe); 9706 } 9707 } 9708 9709 return err; 9710 } 9711 9712 static void bpf_link_perf_dealloc(struct bpf_link *link) 9713 { 9714 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9715 9716 free(perf_link->legacy_probe_name); 9717 free(perf_link); 9718 } 9719 9720 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9721 const struct bpf_perf_event_opts *opts) 9722 { 9723 char errmsg[STRERR_BUFSIZE]; 9724 struct bpf_link_perf *link; 9725 int prog_fd, link_fd = -1, err; 9726 9727 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9728 return libbpf_err_ptr(-EINVAL); 9729 9730 if (pfd < 0) { 9731 pr_warn("prog '%s': invalid perf event FD %d\n", 9732 prog->name, pfd); 9733 return libbpf_err_ptr(-EINVAL); 9734 } 9735 prog_fd = bpf_program__fd(prog); 9736 if (prog_fd < 0) { 9737 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9738 prog->name); 9739 return libbpf_err_ptr(-EINVAL); 9740 } 9741 9742 link = calloc(1, sizeof(*link)); 9743 if (!link) 9744 return libbpf_err_ptr(-ENOMEM); 9745 link->link.detach = &bpf_link_perf_detach; 9746 link->link.dealloc = &bpf_link_perf_dealloc; 9747 link->perf_event_fd = pfd; 9748 9749 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9750 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9751 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9752 9753 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9754 if (link_fd < 0) { 9755 err = -errno; 9756 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9757 prog->name, pfd, 9758 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9759 goto err_out; 9760 } 9761 link->link.fd = link_fd; 9762 } else { 9763 if (OPTS_GET(opts, bpf_cookie, 0)) { 9764 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9765 err = -EOPNOTSUPP; 9766 goto err_out; 9767 } 9768 9769 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9770 err = -errno; 9771 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9772 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9773 if (err == -EPROTO) 9774 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9775 prog->name, pfd); 9776 goto err_out; 9777 } 9778 link->link.fd = pfd; 9779 } 9780 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9781 err = -errno; 9782 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9783 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9784 goto err_out; 9785 } 9786 9787 return &link->link; 9788 err_out: 9789 if (link_fd >= 0) 9790 close(link_fd); 9791 free(link); 9792 return libbpf_err_ptr(err); 9793 } 9794 9795 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9796 { 9797 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9798 } 9799 9800 /* 9801 * this function is expected to parse integer in the range of [0, 2^31-1] from 9802 * given file using scanf format string fmt. If actual parsed value is 9803 * negative, the result might be indistinguishable from error 9804 */ 9805 static int parse_uint_from_file(const char *file, const char *fmt) 9806 { 9807 char buf[STRERR_BUFSIZE]; 9808 int err, ret; 9809 FILE *f; 9810 9811 f = fopen(file, "r"); 9812 if (!f) { 9813 err = -errno; 9814 pr_debug("failed to open '%s': %s\n", file, 9815 libbpf_strerror_r(err, buf, sizeof(buf))); 9816 return err; 9817 } 9818 err = fscanf(f, fmt, &ret); 9819 if (err != 1) { 9820 err = err == EOF ? -EIO : -errno; 9821 pr_debug("failed to parse '%s': %s\n", file, 9822 libbpf_strerror_r(err, buf, sizeof(buf))); 9823 fclose(f); 9824 return err; 9825 } 9826 fclose(f); 9827 return ret; 9828 } 9829 9830 static int determine_kprobe_perf_type(void) 9831 { 9832 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9833 9834 return parse_uint_from_file(file, "%d\n"); 9835 } 9836 9837 static int determine_uprobe_perf_type(void) 9838 { 9839 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9840 9841 return parse_uint_from_file(file, "%d\n"); 9842 } 9843 9844 static int determine_kprobe_retprobe_bit(void) 9845 { 9846 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9847 9848 return parse_uint_from_file(file, "config:%d\n"); 9849 } 9850 9851 static int determine_uprobe_retprobe_bit(void) 9852 { 9853 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9854 9855 return parse_uint_from_file(file, "config:%d\n"); 9856 } 9857 9858 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9859 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9860 9861 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9862 uint64_t offset, int pid, size_t ref_ctr_off) 9863 { 9864 struct perf_event_attr attr = {}; 9865 char errmsg[STRERR_BUFSIZE]; 9866 int type, pfd, err; 9867 9868 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9869 return -EINVAL; 9870 9871 type = uprobe ? determine_uprobe_perf_type() 9872 : determine_kprobe_perf_type(); 9873 if (type < 0) { 9874 pr_warn("failed to determine %s perf type: %s\n", 9875 uprobe ? "uprobe" : "kprobe", 9876 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9877 return type; 9878 } 9879 if (retprobe) { 9880 int bit = uprobe ? determine_uprobe_retprobe_bit() 9881 : determine_kprobe_retprobe_bit(); 9882 9883 if (bit < 0) { 9884 pr_warn("failed to determine %s retprobe bit: %s\n", 9885 uprobe ? "uprobe" : "kprobe", 9886 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9887 return bit; 9888 } 9889 attr.config |= 1 << bit; 9890 } 9891 attr.size = sizeof(attr); 9892 attr.type = type; 9893 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9894 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9895 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9896 9897 /* pid filter is meaningful only for uprobes */ 9898 pfd = syscall(__NR_perf_event_open, &attr, 9899 pid < 0 ? -1 : pid /* pid */, 9900 pid == -1 ? 0 : -1 /* cpu */, 9901 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9902 if (pfd < 0) { 9903 err = -errno; 9904 pr_warn("%s perf_event_open() failed: %s\n", 9905 uprobe ? "uprobe" : "kprobe", 9906 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9907 return err; 9908 } 9909 return pfd; 9910 } 9911 9912 static int append_to_file(const char *file, const char *fmt, ...) 9913 { 9914 int fd, n, err = 0; 9915 va_list ap; 9916 9917 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9918 if (fd < 0) 9919 return -errno; 9920 9921 va_start(ap, fmt); 9922 n = vdprintf(fd, fmt, ap); 9923 va_end(ap); 9924 9925 if (n < 0) 9926 err = -errno; 9927 9928 close(fd); 9929 return err; 9930 } 9931 9932 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9933 const char *kfunc_name, size_t offset) 9934 { 9935 static int index = 0; 9936 9937 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9938 __sync_fetch_and_add(&index, 1)); 9939 } 9940 9941 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9942 const char *kfunc_name, size_t offset) 9943 { 9944 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9945 9946 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9947 retprobe ? 'r' : 'p', 9948 retprobe ? "kretprobes" : "kprobes", 9949 probe_name, kfunc_name, offset); 9950 } 9951 9952 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9953 { 9954 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9955 9956 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9957 } 9958 9959 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9960 { 9961 char file[256]; 9962 9963 snprintf(file, sizeof(file), 9964 "/sys/kernel/debug/tracing/events/%s/%s/id", 9965 retprobe ? "kretprobes" : "kprobes", probe_name); 9966 9967 return parse_uint_from_file(file, "%d\n"); 9968 } 9969 9970 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9971 const char *kfunc_name, size_t offset, int pid) 9972 { 9973 struct perf_event_attr attr = {}; 9974 char errmsg[STRERR_BUFSIZE]; 9975 int type, pfd, err; 9976 9977 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9978 if (err < 0) { 9979 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9980 kfunc_name, offset, 9981 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9982 return err; 9983 } 9984 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9985 if (type < 0) { 9986 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9987 kfunc_name, offset, 9988 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9989 return type; 9990 } 9991 attr.size = sizeof(attr); 9992 attr.config = type; 9993 attr.type = PERF_TYPE_TRACEPOINT; 9994 9995 pfd = syscall(__NR_perf_event_open, &attr, 9996 pid < 0 ? -1 : pid, /* pid */ 9997 pid == -1 ? 0 : -1, /* cpu */ 9998 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9999 if (pfd < 0) { 10000 err = -errno; 10001 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10002 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10003 return err; 10004 } 10005 return pfd; 10006 } 10007 10008 struct bpf_link * 10009 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10010 const char *func_name, 10011 const struct bpf_kprobe_opts *opts) 10012 { 10013 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10014 char errmsg[STRERR_BUFSIZE]; 10015 char *legacy_probe = NULL; 10016 struct bpf_link *link; 10017 size_t offset; 10018 bool retprobe, legacy; 10019 int pfd, err; 10020 10021 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10022 return libbpf_err_ptr(-EINVAL); 10023 10024 retprobe = OPTS_GET(opts, retprobe, false); 10025 offset = OPTS_GET(opts, offset, 0); 10026 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10027 10028 legacy = determine_kprobe_perf_type() < 0; 10029 if (!legacy) { 10030 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10031 func_name, offset, 10032 -1 /* pid */, 0 /* ref_ctr_off */); 10033 } else { 10034 char probe_name[256]; 10035 10036 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10037 func_name, offset); 10038 10039 legacy_probe = strdup(probe_name); 10040 if (!legacy_probe) 10041 return libbpf_err_ptr(-ENOMEM); 10042 10043 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10044 offset, -1 /* pid */); 10045 } 10046 if (pfd < 0) { 10047 err = -errno; 10048 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10049 prog->name, retprobe ? "kretprobe" : "kprobe", 10050 func_name, offset, 10051 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10052 goto err_out; 10053 } 10054 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10055 err = libbpf_get_error(link); 10056 if (err) { 10057 close(pfd); 10058 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10059 prog->name, retprobe ? "kretprobe" : "kprobe", 10060 func_name, offset, 10061 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10062 goto err_out; 10063 } 10064 if (legacy) { 10065 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10066 10067 perf_link->legacy_probe_name = legacy_probe; 10068 perf_link->legacy_is_kprobe = true; 10069 perf_link->legacy_is_retprobe = retprobe; 10070 } 10071 10072 return link; 10073 err_out: 10074 free(legacy_probe); 10075 return libbpf_err_ptr(err); 10076 } 10077 10078 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10079 bool retprobe, 10080 const char *func_name) 10081 { 10082 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10083 .retprobe = retprobe, 10084 ); 10085 10086 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10087 } 10088 10089 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 10090 { 10091 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10092 unsigned long offset = 0; 10093 struct bpf_link *link; 10094 const char *func_name; 10095 char *func; 10096 int n, err; 10097 10098 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10099 if (opts.retprobe) 10100 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10101 else 10102 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10103 10104 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10105 if (n < 1) { 10106 err = -EINVAL; 10107 pr_warn("kprobe name is invalid: %s\n", func_name); 10108 return libbpf_err_ptr(err); 10109 } 10110 if (opts.retprobe && offset != 0) { 10111 free(func); 10112 err = -EINVAL; 10113 pr_warn("kretprobes do not support offset specification\n"); 10114 return libbpf_err_ptr(err); 10115 } 10116 10117 opts.offset = offset; 10118 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10119 free(func); 10120 return link; 10121 } 10122 10123 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10124 const char *binary_path, uint64_t offset) 10125 { 10126 int i; 10127 10128 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10129 10130 /* sanitize binary_path in the probe name */ 10131 for (i = 0; buf[i]; i++) { 10132 if (!isalnum(buf[i])) 10133 buf[i] = '_'; 10134 } 10135 } 10136 10137 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10138 const char *binary_path, size_t offset) 10139 { 10140 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10141 10142 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10143 retprobe ? 'r' : 'p', 10144 retprobe ? "uretprobes" : "uprobes", 10145 probe_name, binary_path, offset); 10146 } 10147 10148 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10149 { 10150 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10151 10152 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10153 } 10154 10155 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10156 { 10157 char file[512]; 10158 10159 snprintf(file, sizeof(file), 10160 "/sys/kernel/debug/tracing/events/%s/%s/id", 10161 retprobe ? "uretprobes" : "uprobes", probe_name); 10162 10163 return parse_uint_from_file(file, "%d\n"); 10164 } 10165 10166 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10167 const char *binary_path, size_t offset, int pid) 10168 { 10169 struct perf_event_attr attr; 10170 int type, pfd, err; 10171 10172 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10173 if (err < 0) { 10174 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10175 binary_path, (size_t)offset, err); 10176 return err; 10177 } 10178 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10179 if (type < 0) { 10180 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10181 binary_path, offset, err); 10182 return type; 10183 } 10184 10185 memset(&attr, 0, sizeof(attr)); 10186 attr.size = sizeof(attr); 10187 attr.config = type; 10188 attr.type = PERF_TYPE_TRACEPOINT; 10189 10190 pfd = syscall(__NR_perf_event_open, &attr, 10191 pid < 0 ? -1 : pid, /* pid */ 10192 pid == -1 ? 0 : -1, /* cpu */ 10193 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10194 if (pfd < 0) { 10195 err = -errno; 10196 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10197 return err; 10198 } 10199 return pfd; 10200 } 10201 10202 LIBBPF_API struct bpf_link * 10203 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10204 const char *binary_path, size_t func_offset, 10205 const struct bpf_uprobe_opts *opts) 10206 { 10207 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10208 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10209 struct bpf_link *link; 10210 size_t ref_ctr_off; 10211 int pfd, err; 10212 bool retprobe, legacy; 10213 10214 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10215 return libbpf_err_ptr(-EINVAL); 10216 10217 retprobe = OPTS_GET(opts, retprobe, false); 10218 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10219 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10220 10221 legacy = determine_uprobe_perf_type() < 0; 10222 if (!legacy) { 10223 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10224 func_offset, pid, ref_ctr_off); 10225 } else { 10226 char probe_name[512]; 10227 10228 if (ref_ctr_off) 10229 return libbpf_err_ptr(-EINVAL); 10230 10231 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10232 binary_path, func_offset); 10233 10234 legacy_probe = strdup(probe_name); 10235 if (!legacy_probe) 10236 return libbpf_err_ptr(-ENOMEM); 10237 10238 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10239 binary_path, func_offset, pid); 10240 } 10241 if (pfd < 0) { 10242 err = -errno; 10243 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10244 prog->name, retprobe ? "uretprobe" : "uprobe", 10245 binary_path, func_offset, 10246 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10247 goto err_out; 10248 } 10249 10250 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10251 err = libbpf_get_error(link); 10252 if (err) { 10253 close(pfd); 10254 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10255 prog->name, retprobe ? "uretprobe" : "uprobe", 10256 binary_path, func_offset, 10257 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10258 goto err_out; 10259 } 10260 if (legacy) { 10261 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10262 10263 perf_link->legacy_probe_name = legacy_probe; 10264 perf_link->legacy_is_kprobe = false; 10265 perf_link->legacy_is_retprobe = retprobe; 10266 } 10267 return link; 10268 err_out: 10269 free(legacy_probe); 10270 return libbpf_err_ptr(err); 10271 10272 } 10273 10274 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10275 bool retprobe, pid_t pid, 10276 const char *binary_path, 10277 size_t func_offset) 10278 { 10279 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10280 10281 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10282 } 10283 10284 static int determine_tracepoint_id(const char *tp_category, 10285 const char *tp_name) 10286 { 10287 char file[PATH_MAX]; 10288 int ret; 10289 10290 ret = snprintf(file, sizeof(file), 10291 "/sys/kernel/debug/tracing/events/%s/%s/id", 10292 tp_category, tp_name); 10293 if (ret < 0) 10294 return -errno; 10295 if (ret >= sizeof(file)) { 10296 pr_debug("tracepoint %s/%s path is too long\n", 10297 tp_category, tp_name); 10298 return -E2BIG; 10299 } 10300 return parse_uint_from_file(file, "%d\n"); 10301 } 10302 10303 static int perf_event_open_tracepoint(const char *tp_category, 10304 const char *tp_name) 10305 { 10306 struct perf_event_attr attr = {}; 10307 char errmsg[STRERR_BUFSIZE]; 10308 int tp_id, pfd, err; 10309 10310 tp_id = determine_tracepoint_id(tp_category, tp_name); 10311 if (tp_id < 0) { 10312 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10313 tp_category, tp_name, 10314 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10315 return tp_id; 10316 } 10317 10318 attr.type = PERF_TYPE_TRACEPOINT; 10319 attr.size = sizeof(attr); 10320 attr.config = tp_id; 10321 10322 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10323 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10324 if (pfd < 0) { 10325 err = -errno; 10326 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10327 tp_category, tp_name, 10328 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10329 return err; 10330 } 10331 return pfd; 10332 } 10333 10334 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10335 const char *tp_category, 10336 const char *tp_name, 10337 const struct bpf_tracepoint_opts *opts) 10338 { 10339 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10340 char errmsg[STRERR_BUFSIZE]; 10341 struct bpf_link *link; 10342 int pfd, err; 10343 10344 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10345 return libbpf_err_ptr(-EINVAL); 10346 10347 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10348 10349 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10350 if (pfd < 0) { 10351 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10352 prog->name, tp_category, tp_name, 10353 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10354 return libbpf_err_ptr(pfd); 10355 } 10356 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10357 err = libbpf_get_error(link); 10358 if (err) { 10359 close(pfd); 10360 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10361 prog->name, tp_category, tp_name, 10362 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10363 return libbpf_err_ptr(err); 10364 } 10365 return link; 10366 } 10367 10368 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10369 const char *tp_category, 10370 const char *tp_name) 10371 { 10372 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10373 } 10374 10375 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10376 { 10377 char *sec_name, *tp_cat, *tp_name; 10378 struct bpf_link *link; 10379 10380 sec_name = strdup(prog->sec_name); 10381 if (!sec_name) 10382 return libbpf_err_ptr(-ENOMEM); 10383 10384 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10385 if (str_has_pfx(prog->sec_name, "tp/")) 10386 tp_cat = sec_name + sizeof("tp/") - 1; 10387 else 10388 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10389 tp_name = strchr(tp_cat, '/'); 10390 if (!tp_name) { 10391 free(sec_name); 10392 return libbpf_err_ptr(-EINVAL); 10393 } 10394 *tp_name = '\0'; 10395 tp_name++; 10396 10397 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10398 free(sec_name); 10399 return link; 10400 } 10401 10402 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10403 const char *tp_name) 10404 { 10405 char errmsg[STRERR_BUFSIZE]; 10406 struct bpf_link *link; 10407 int prog_fd, pfd; 10408 10409 prog_fd = bpf_program__fd(prog); 10410 if (prog_fd < 0) { 10411 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10412 return libbpf_err_ptr(-EINVAL); 10413 } 10414 10415 link = calloc(1, sizeof(*link)); 10416 if (!link) 10417 return libbpf_err_ptr(-ENOMEM); 10418 link->detach = &bpf_link__detach_fd; 10419 10420 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10421 if (pfd < 0) { 10422 pfd = -errno; 10423 free(link); 10424 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10425 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10426 return libbpf_err_ptr(pfd); 10427 } 10428 link->fd = pfd; 10429 return link; 10430 } 10431 10432 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10433 { 10434 static const char *const prefixes[] = { 10435 "raw_tp/", 10436 "raw_tracepoint/", 10437 "raw_tp.w/", 10438 "raw_tracepoint.w/", 10439 }; 10440 size_t i; 10441 const char *tp_name = NULL; 10442 10443 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10444 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10445 tp_name = prog->sec_name + strlen(prefixes[i]); 10446 break; 10447 } 10448 } 10449 if (!tp_name) { 10450 pr_warn("prog '%s': invalid section name '%s'\n", 10451 prog->name, prog->sec_name); 10452 return libbpf_err_ptr(-EINVAL); 10453 } 10454 10455 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10456 } 10457 10458 /* Common logic for all BPF program types that attach to a btf_id */ 10459 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10460 { 10461 char errmsg[STRERR_BUFSIZE]; 10462 struct bpf_link *link; 10463 int prog_fd, pfd; 10464 10465 prog_fd = bpf_program__fd(prog); 10466 if (prog_fd < 0) { 10467 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10468 return libbpf_err_ptr(-EINVAL); 10469 } 10470 10471 link = calloc(1, sizeof(*link)); 10472 if (!link) 10473 return libbpf_err_ptr(-ENOMEM); 10474 link->detach = &bpf_link__detach_fd; 10475 10476 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10477 if (pfd < 0) { 10478 pfd = -errno; 10479 free(link); 10480 pr_warn("prog '%s': failed to attach: %s\n", 10481 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10482 return libbpf_err_ptr(pfd); 10483 } 10484 link->fd = pfd; 10485 return (struct bpf_link *)link; 10486 } 10487 10488 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10489 { 10490 return bpf_program__attach_btf_id(prog); 10491 } 10492 10493 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10494 { 10495 return bpf_program__attach_btf_id(prog); 10496 } 10497 10498 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10499 { 10500 return bpf_program__attach_trace(prog); 10501 } 10502 10503 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10504 { 10505 return bpf_program__attach_lsm(prog); 10506 } 10507 10508 static struct bpf_link * 10509 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10510 const char *target_name) 10511 { 10512 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10513 .target_btf_id = btf_id); 10514 enum bpf_attach_type attach_type; 10515 char errmsg[STRERR_BUFSIZE]; 10516 struct bpf_link *link; 10517 int prog_fd, link_fd; 10518 10519 prog_fd = bpf_program__fd(prog); 10520 if (prog_fd < 0) { 10521 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10522 return libbpf_err_ptr(-EINVAL); 10523 } 10524 10525 link = calloc(1, sizeof(*link)); 10526 if (!link) 10527 return libbpf_err_ptr(-ENOMEM); 10528 link->detach = &bpf_link__detach_fd; 10529 10530 attach_type = bpf_program__get_expected_attach_type(prog); 10531 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10532 if (link_fd < 0) { 10533 link_fd = -errno; 10534 free(link); 10535 pr_warn("prog '%s': failed to attach to %s: %s\n", 10536 prog->name, target_name, 10537 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10538 return libbpf_err_ptr(link_fd); 10539 } 10540 link->fd = link_fd; 10541 return link; 10542 } 10543 10544 struct bpf_link * 10545 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10546 { 10547 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10548 } 10549 10550 struct bpf_link * 10551 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10552 { 10553 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10554 } 10555 10556 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10557 { 10558 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10559 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10560 } 10561 10562 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10563 int target_fd, 10564 const char *attach_func_name) 10565 { 10566 int btf_id; 10567 10568 if (!!target_fd != !!attach_func_name) { 10569 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10570 prog->name); 10571 return libbpf_err_ptr(-EINVAL); 10572 } 10573 10574 if (prog->type != BPF_PROG_TYPE_EXT) { 10575 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10576 prog->name); 10577 return libbpf_err_ptr(-EINVAL); 10578 } 10579 10580 if (target_fd) { 10581 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10582 if (btf_id < 0) 10583 return libbpf_err_ptr(btf_id); 10584 10585 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10586 } else { 10587 /* no target, so use raw_tracepoint_open for compatibility 10588 * with old kernels 10589 */ 10590 return bpf_program__attach_trace(prog); 10591 } 10592 } 10593 10594 struct bpf_link * 10595 bpf_program__attach_iter(const struct bpf_program *prog, 10596 const struct bpf_iter_attach_opts *opts) 10597 { 10598 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10599 char errmsg[STRERR_BUFSIZE]; 10600 struct bpf_link *link; 10601 int prog_fd, link_fd; 10602 __u32 target_fd = 0; 10603 10604 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10605 return libbpf_err_ptr(-EINVAL); 10606 10607 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10608 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10609 10610 prog_fd = bpf_program__fd(prog); 10611 if (prog_fd < 0) { 10612 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10613 return libbpf_err_ptr(-EINVAL); 10614 } 10615 10616 link = calloc(1, sizeof(*link)); 10617 if (!link) 10618 return libbpf_err_ptr(-ENOMEM); 10619 link->detach = &bpf_link__detach_fd; 10620 10621 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10622 &link_create_opts); 10623 if (link_fd < 0) { 10624 link_fd = -errno; 10625 free(link); 10626 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10627 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10628 return libbpf_err_ptr(link_fd); 10629 } 10630 link->fd = link_fd; 10631 return link; 10632 } 10633 10634 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10635 { 10636 return bpf_program__attach_iter(prog, NULL); 10637 } 10638 10639 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10640 { 10641 if (!prog->sec_def || !prog->sec_def->attach_fn) 10642 return libbpf_err_ptr(-ESRCH); 10643 10644 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10645 } 10646 10647 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10648 { 10649 __u32 zero = 0; 10650 10651 if (bpf_map_delete_elem(link->fd, &zero)) 10652 return -errno; 10653 10654 return 0; 10655 } 10656 10657 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10658 { 10659 struct bpf_struct_ops *st_ops; 10660 struct bpf_link *link; 10661 __u32 i, zero = 0; 10662 int err; 10663 10664 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10665 return libbpf_err_ptr(-EINVAL); 10666 10667 link = calloc(1, sizeof(*link)); 10668 if (!link) 10669 return libbpf_err_ptr(-EINVAL); 10670 10671 st_ops = map->st_ops; 10672 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10673 struct bpf_program *prog = st_ops->progs[i]; 10674 void *kern_data; 10675 int prog_fd; 10676 10677 if (!prog) 10678 continue; 10679 10680 prog_fd = bpf_program__fd(prog); 10681 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10682 *(unsigned long *)kern_data = prog_fd; 10683 } 10684 10685 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10686 if (err) { 10687 err = -errno; 10688 free(link); 10689 return libbpf_err_ptr(err); 10690 } 10691 10692 link->detach = bpf_link__detach_struct_ops; 10693 link->fd = map->fd; 10694 10695 return link; 10696 } 10697 10698 static enum bpf_perf_event_ret 10699 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10700 void **copy_mem, size_t *copy_size, 10701 bpf_perf_event_print_t fn, void *private_data) 10702 { 10703 struct perf_event_mmap_page *header = mmap_mem; 10704 __u64 data_head = ring_buffer_read_head(header); 10705 __u64 data_tail = header->data_tail; 10706 void *base = ((__u8 *)header) + page_size; 10707 int ret = LIBBPF_PERF_EVENT_CONT; 10708 struct perf_event_header *ehdr; 10709 size_t ehdr_size; 10710 10711 while (data_head != data_tail) { 10712 ehdr = base + (data_tail & (mmap_size - 1)); 10713 ehdr_size = ehdr->size; 10714 10715 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10716 void *copy_start = ehdr; 10717 size_t len_first = base + mmap_size - copy_start; 10718 size_t len_secnd = ehdr_size - len_first; 10719 10720 if (*copy_size < ehdr_size) { 10721 free(*copy_mem); 10722 *copy_mem = malloc(ehdr_size); 10723 if (!*copy_mem) { 10724 *copy_size = 0; 10725 ret = LIBBPF_PERF_EVENT_ERROR; 10726 break; 10727 } 10728 *copy_size = ehdr_size; 10729 } 10730 10731 memcpy(*copy_mem, copy_start, len_first); 10732 memcpy(*copy_mem + len_first, base, len_secnd); 10733 ehdr = *copy_mem; 10734 } 10735 10736 ret = fn(ehdr, private_data); 10737 data_tail += ehdr_size; 10738 if (ret != LIBBPF_PERF_EVENT_CONT) 10739 break; 10740 } 10741 10742 ring_buffer_write_tail(header, data_tail); 10743 return libbpf_err(ret); 10744 } 10745 10746 __attribute__((alias("perf_event_read_simple"))) 10747 enum bpf_perf_event_ret 10748 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10749 void **copy_mem, size_t *copy_size, 10750 bpf_perf_event_print_t fn, void *private_data); 10751 10752 struct perf_buffer; 10753 10754 struct perf_buffer_params { 10755 struct perf_event_attr *attr; 10756 /* if event_cb is specified, it takes precendence */ 10757 perf_buffer_event_fn event_cb; 10758 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10759 perf_buffer_sample_fn sample_cb; 10760 perf_buffer_lost_fn lost_cb; 10761 void *ctx; 10762 int cpu_cnt; 10763 int *cpus; 10764 int *map_keys; 10765 }; 10766 10767 struct perf_cpu_buf { 10768 struct perf_buffer *pb; 10769 void *base; /* mmap()'ed memory */ 10770 void *buf; /* for reconstructing segmented data */ 10771 size_t buf_size; 10772 int fd; 10773 int cpu; 10774 int map_key; 10775 }; 10776 10777 struct perf_buffer { 10778 perf_buffer_event_fn event_cb; 10779 perf_buffer_sample_fn sample_cb; 10780 perf_buffer_lost_fn lost_cb; 10781 void *ctx; /* passed into callbacks */ 10782 10783 size_t page_size; 10784 size_t mmap_size; 10785 struct perf_cpu_buf **cpu_bufs; 10786 struct epoll_event *events; 10787 int cpu_cnt; /* number of allocated CPU buffers */ 10788 int epoll_fd; /* perf event FD */ 10789 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10790 }; 10791 10792 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10793 struct perf_cpu_buf *cpu_buf) 10794 { 10795 if (!cpu_buf) 10796 return; 10797 if (cpu_buf->base && 10798 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10799 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10800 if (cpu_buf->fd >= 0) { 10801 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10802 close(cpu_buf->fd); 10803 } 10804 free(cpu_buf->buf); 10805 free(cpu_buf); 10806 } 10807 10808 void perf_buffer__free(struct perf_buffer *pb) 10809 { 10810 int i; 10811 10812 if (IS_ERR_OR_NULL(pb)) 10813 return; 10814 if (pb->cpu_bufs) { 10815 for (i = 0; i < pb->cpu_cnt; i++) { 10816 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10817 10818 if (!cpu_buf) 10819 continue; 10820 10821 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10822 perf_buffer__free_cpu_buf(pb, cpu_buf); 10823 } 10824 free(pb->cpu_bufs); 10825 } 10826 if (pb->epoll_fd >= 0) 10827 close(pb->epoll_fd); 10828 free(pb->events); 10829 free(pb); 10830 } 10831 10832 static struct perf_cpu_buf * 10833 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10834 int cpu, int map_key) 10835 { 10836 struct perf_cpu_buf *cpu_buf; 10837 char msg[STRERR_BUFSIZE]; 10838 int err; 10839 10840 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10841 if (!cpu_buf) 10842 return ERR_PTR(-ENOMEM); 10843 10844 cpu_buf->pb = pb; 10845 cpu_buf->cpu = cpu; 10846 cpu_buf->map_key = map_key; 10847 10848 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10849 -1, PERF_FLAG_FD_CLOEXEC); 10850 if (cpu_buf->fd < 0) { 10851 err = -errno; 10852 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10853 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10854 goto error; 10855 } 10856 10857 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10858 PROT_READ | PROT_WRITE, MAP_SHARED, 10859 cpu_buf->fd, 0); 10860 if (cpu_buf->base == MAP_FAILED) { 10861 cpu_buf->base = NULL; 10862 err = -errno; 10863 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10864 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10865 goto error; 10866 } 10867 10868 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10869 err = -errno; 10870 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10871 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10872 goto error; 10873 } 10874 10875 return cpu_buf; 10876 10877 error: 10878 perf_buffer__free_cpu_buf(pb, cpu_buf); 10879 return (struct perf_cpu_buf *)ERR_PTR(err); 10880 } 10881 10882 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10883 struct perf_buffer_params *p); 10884 10885 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 10886 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 10887 perf_buffer_sample_fn sample_cb, 10888 perf_buffer_lost_fn lost_cb, 10889 void *ctx, 10890 const struct perf_buffer_opts *opts) 10891 { 10892 struct perf_buffer_params p = {}; 10893 struct perf_event_attr attr = {}; 10894 10895 if (!OPTS_VALID(opts, perf_buffer_opts)) 10896 return libbpf_err_ptr(-EINVAL); 10897 10898 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10899 attr.type = PERF_TYPE_SOFTWARE; 10900 attr.sample_type = PERF_SAMPLE_RAW; 10901 attr.sample_period = 1; 10902 attr.wakeup_events = 1; 10903 10904 p.attr = &attr; 10905 p.sample_cb = sample_cb; 10906 p.lost_cb = lost_cb; 10907 p.ctx = ctx; 10908 10909 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10910 } 10911 10912 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 10913 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 10914 const struct perf_buffer_opts *opts) 10915 { 10916 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 10917 opts ? opts->sample_cb : NULL, 10918 opts ? opts->lost_cb : NULL, 10919 opts ? opts->ctx : NULL, 10920 NULL); 10921 } 10922 10923 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 10924 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 10925 struct perf_event_attr *attr, 10926 perf_buffer_event_fn event_cb, void *ctx, 10927 const struct perf_buffer_raw_opts *opts) 10928 { 10929 struct perf_buffer_params p = {}; 10930 10931 if (page_cnt == 0 || !attr) 10932 return libbpf_err_ptr(-EINVAL); 10933 10934 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 10935 return libbpf_err_ptr(-EINVAL); 10936 10937 p.attr = attr; 10938 p.event_cb = event_cb; 10939 p.ctx = ctx; 10940 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 10941 p.cpus = OPTS_GET(opts, cpus, NULL); 10942 p.map_keys = OPTS_GET(opts, map_keys, NULL); 10943 10944 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10945 } 10946 10947 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 10948 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 10949 const struct perf_buffer_raw_opts *opts) 10950 { 10951 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 10952 .cpu_cnt = opts->cpu_cnt, 10953 .cpus = opts->cpus, 10954 .map_keys = opts->map_keys, 10955 ); 10956 10957 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 10958 opts->event_cb, opts->ctx, &inner_opts); 10959 } 10960 10961 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10962 struct perf_buffer_params *p) 10963 { 10964 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10965 struct bpf_map_info map; 10966 char msg[STRERR_BUFSIZE]; 10967 struct perf_buffer *pb; 10968 bool *online = NULL; 10969 __u32 map_info_len; 10970 int err, i, j, n; 10971 10972 if (page_cnt & (page_cnt - 1)) { 10973 pr_warn("page count should be power of two, but is %zu\n", 10974 page_cnt); 10975 return ERR_PTR(-EINVAL); 10976 } 10977 10978 /* best-effort sanity checks */ 10979 memset(&map, 0, sizeof(map)); 10980 map_info_len = sizeof(map); 10981 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10982 if (err) { 10983 err = -errno; 10984 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10985 * -EBADFD, -EFAULT, or -E2BIG on real error 10986 */ 10987 if (err != -EINVAL) { 10988 pr_warn("failed to get map info for map FD %d: %s\n", 10989 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10990 return ERR_PTR(err); 10991 } 10992 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10993 map_fd); 10994 } else { 10995 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10996 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10997 map.name); 10998 return ERR_PTR(-EINVAL); 10999 } 11000 } 11001 11002 pb = calloc(1, sizeof(*pb)); 11003 if (!pb) 11004 return ERR_PTR(-ENOMEM); 11005 11006 pb->event_cb = p->event_cb; 11007 pb->sample_cb = p->sample_cb; 11008 pb->lost_cb = p->lost_cb; 11009 pb->ctx = p->ctx; 11010 11011 pb->page_size = getpagesize(); 11012 pb->mmap_size = pb->page_size * page_cnt; 11013 pb->map_fd = map_fd; 11014 11015 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11016 if (pb->epoll_fd < 0) { 11017 err = -errno; 11018 pr_warn("failed to create epoll instance: %s\n", 11019 libbpf_strerror_r(err, msg, sizeof(msg))); 11020 goto error; 11021 } 11022 11023 if (p->cpu_cnt > 0) { 11024 pb->cpu_cnt = p->cpu_cnt; 11025 } else { 11026 pb->cpu_cnt = libbpf_num_possible_cpus(); 11027 if (pb->cpu_cnt < 0) { 11028 err = pb->cpu_cnt; 11029 goto error; 11030 } 11031 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11032 pb->cpu_cnt = map.max_entries; 11033 } 11034 11035 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11036 if (!pb->events) { 11037 err = -ENOMEM; 11038 pr_warn("failed to allocate events: out of memory\n"); 11039 goto error; 11040 } 11041 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11042 if (!pb->cpu_bufs) { 11043 err = -ENOMEM; 11044 pr_warn("failed to allocate buffers: out of memory\n"); 11045 goto error; 11046 } 11047 11048 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11049 if (err) { 11050 pr_warn("failed to get online CPU mask: %d\n", err); 11051 goto error; 11052 } 11053 11054 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11055 struct perf_cpu_buf *cpu_buf; 11056 int cpu, map_key; 11057 11058 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11059 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11060 11061 /* in case user didn't explicitly requested particular CPUs to 11062 * be attached to, skip offline/not present CPUs 11063 */ 11064 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11065 continue; 11066 11067 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11068 if (IS_ERR(cpu_buf)) { 11069 err = PTR_ERR(cpu_buf); 11070 goto error; 11071 } 11072 11073 pb->cpu_bufs[j] = cpu_buf; 11074 11075 err = bpf_map_update_elem(pb->map_fd, &map_key, 11076 &cpu_buf->fd, 0); 11077 if (err) { 11078 err = -errno; 11079 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11080 cpu, map_key, cpu_buf->fd, 11081 libbpf_strerror_r(err, msg, sizeof(msg))); 11082 goto error; 11083 } 11084 11085 pb->events[j].events = EPOLLIN; 11086 pb->events[j].data.ptr = cpu_buf; 11087 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11088 &pb->events[j]) < 0) { 11089 err = -errno; 11090 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11091 cpu, cpu_buf->fd, 11092 libbpf_strerror_r(err, msg, sizeof(msg))); 11093 goto error; 11094 } 11095 j++; 11096 } 11097 pb->cpu_cnt = j; 11098 free(online); 11099 11100 return pb; 11101 11102 error: 11103 free(online); 11104 if (pb) 11105 perf_buffer__free(pb); 11106 return ERR_PTR(err); 11107 } 11108 11109 struct perf_sample_raw { 11110 struct perf_event_header header; 11111 uint32_t size; 11112 char data[]; 11113 }; 11114 11115 struct perf_sample_lost { 11116 struct perf_event_header header; 11117 uint64_t id; 11118 uint64_t lost; 11119 uint64_t sample_id; 11120 }; 11121 11122 static enum bpf_perf_event_ret 11123 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11124 { 11125 struct perf_cpu_buf *cpu_buf = ctx; 11126 struct perf_buffer *pb = cpu_buf->pb; 11127 void *data = e; 11128 11129 /* user wants full control over parsing perf event */ 11130 if (pb->event_cb) 11131 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11132 11133 switch (e->type) { 11134 case PERF_RECORD_SAMPLE: { 11135 struct perf_sample_raw *s = data; 11136 11137 if (pb->sample_cb) 11138 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11139 break; 11140 } 11141 case PERF_RECORD_LOST: { 11142 struct perf_sample_lost *s = data; 11143 11144 if (pb->lost_cb) 11145 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11146 break; 11147 } 11148 default: 11149 pr_warn("unknown perf sample type %d\n", e->type); 11150 return LIBBPF_PERF_EVENT_ERROR; 11151 } 11152 return LIBBPF_PERF_EVENT_CONT; 11153 } 11154 11155 static int perf_buffer__process_records(struct perf_buffer *pb, 11156 struct perf_cpu_buf *cpu_buf) 11157 { 11158 enum bpf_perf_event_ret ret; 11159 11160 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11161 pb->page_size, &cpu_buf->buf, 11162 &cpu_buf->buf_size, 11163 perf_buffer__process_record, cpu_buf); 11164 if (ret != LIBBPF_PERF_EVENT_CONT) 11165 return ret; 11166 return 0; 11167 } 11168 11169 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11170 { 11171 return pb->epoll_fd; 11172 } 11173 11174 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11175 { 11176 int i, cnt, err; 11177 11178 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11179 if (cnt < 0) 11180 return -errno; 11181 11182 for (i = 0; i < cnt; i++) { 11183 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11184 11185 err = perf_buffer__process_records(pb, cpu_buf); 11186 if (err) { 11187 pr_warn("error while processing records: %d\n", err); 11188 return libbpf_err(err); 11189 } 11190 } 11191 return cnt; 11192 } 11193 11194 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11195 * manager. 11196 */ 11197 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11198 { 11199 return pb->cpu_cnt; 11200 } 11201 11202 /* 11203 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11204 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11205 * select()/poll()/epoll() Linux syscalls. 11206 */ 11207 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11208 { 11209 struct perf_cpu_buf *cpu_buf; 11210 11211 if (buf_idx >= pb->cpu_cnt) 11212 return libbpf_err(-EINVAL); 11213 11214 cpu_buf = pb->cpu_bufs[buf_idx]; 11215 if (!cpu_buf) 11216 return libbpf_err(-ENOENT); 11217 11218 return cpu_buf->fd; 11219 } 11220 11221 /* 11222 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11223 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11224 * consume, do nothing and return success. 11225 * Returns: 11226 * - 0 on success; 11227 * - <0 on failure. 11228 */ 11229 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11230 { 11231 struct perf_cpu_buf *cpu_buf; 11232 11233 if (buf_idx >= pb->cpu_cnt) 11234 return libbpf_err(-EINVAL); 11235 11236 cpu_buf = pb->cpu_bufs[buf_idx]; 11237 if (!cpu_buf) 11238 return libbpf_err(-ENOENT); 11239 11240 return perf_buffer__process_records(pb, cpu_buf); 11241 } 11242 11243 int perf_buffer__consume(struct perf_buffer *pb) 11244 { 11245 int i, err; 11246 11247 for (i = 0; i < pb->cpu_cnt; i++) { 11248 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11249 11250 if (!cpu_buf) 11251 continue; 11252 11253 err = perf_buffer__process_records(pb, cpu_buf); 11254 if (err) { 11255 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11256 return libbpf_err(err); 11257 } 11258 } 11259 return 0; 11260 } 11261 11262 struct bpf_prog_info_array_desc { 11263 int array_offset; /* e.g. offset of jited_prog_insns */ 11264 int count_offset; /* e.g. offset of jited_prog_len */ 11265 int size_offset; /* > 0: offset of rec size, 11266 * < 0: fix size of -size_offset 11267 */ 11268 }; 11269 11270 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11271 [BPF_PROG_INFO_JITED_INSNS] = { 11272 offsetof(struct bpf_prog_info, jited_prog_insns), 11273 offsetof(struct bpf_prog_info, jited_prog_len), 11274 -1, 11275 }, 11276 [BPF_PROG_INFO_XLATED_INSNS] = { 11277 offsetof(struct bpf_prog_info, xlated_prog_insns), 11278 offsetof(struct bpf_prog_info, xlated_prog_len), 11279 -1, 11280 }, 11281 [BPF_PROG_INFO_MAP_IDS] = { 11282 offsetof(struct bpf_prog_info, map_ids), 11283 offsetof(struct bpf_prog_info, nr_map_ids), 11284 -(int)sizeof(__u32), 11285 }, 11286 [BPF_PROG_INFO_JITED_KSYMS] = { 11287 offsetof(struct bpf_prog_info, jited_ksyms), 11288 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11289 -(int)sizeof(__u64), 11290 }, 11291 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11292 offsetof(struct bpf_prog_info, jited_func_lens), 11293 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11294 -(int)sizeof(__u32), 11295 }, 11296 [BPF_PROG_INFO_FUNC_INFO] = { 11297 offsetof(struct bpf_prog_info, func_info), 11298 offsetof(struct bpf_prog_info, nr_func_info), 11299 offsetof(struct bpf_prog_info, func_info_rec_size), 11300 }, 11301 [BPF_PROG_INFO_LINE_INFO] = { 11302 offsetof(struct bpf_prog_info, line_info), 11303 offsetof(struct bpf_prog_info, nr_line_info), 11304 offsetof(struct bpf_prog_info, line_info_rec_size), 11305 }, 11306 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11307 offsetof(struct bpf_prog_info, jited_line_info), 11308 offsetof(struct bpf_prog_info, nr_jited_line_info), 11309 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11310 }, 11311 [BPF_PROG_INFO_PROG_TAGS] = { 11312 offsetof(struct bpf_prog_info, prog_tags), 11313 offsetof(struct bpf_prog_info, nr_prog_tags), 11314 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11315 }, 11316 11317 }; 11318 11319 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11320 int offset) 11321 { 11322 __u32 *array = (__u32 *)info; 11323 11324 if (offset >= 0) 11325 return array[offset / sizeof(__u32)]; 11326 return -(int)offset; 11327 } 11328 11329 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11330 int offset) 11331 { 11332 __u64 *array = (__u64 *)info; 11333 11334 if (offset >= 0) 11335 return array[offset / sizeof(__u64)]; 11336 return -(int)offset; 11337 } 11338 11339 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11340 __u32 val) 11341 { 11342 __u32 *array = (__u32 *)info; 11343 11344 if (offset >= 0) 11345 array[offset / sizeof(__u32)] = val; 11346 } 11347 11348 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11349 __u64 val) 11350 { 11351 __u64 *array = (__u64 *)info; 11352 11353 if (offset >= 0) 11354 array[offset / sizeof(__u64)] = val; 11355 } 11356 11357 struct bpf_prog_info_linear * 11358 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11359 { 11360 struct bpf_prog_info_linear *info_linear; 11361 struct bpf_prog_info info = {}; 11362 __u32 info_len = sizeof(info); 11363 __u32 data_len = 0; 11364 int i, err; 11365 void *ptr; 11366 11367 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11368 return libbpf_err_ptr(-EINVAL); 11369 11370 /* step 1: get array dimensions */ 11371 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11372 if (err) { 11373 pr_debug("can't get prog info: %s", strerror(errno)); 11374 return libbpf_err_ptr(-EFAULT); 11375 } 11376 11377 /* step 2: calculate total size of all arrays */ 11378 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11379 bool include_array = (arrays & (1UL << i)) > 0; 11380 struct bpf_prog_info_array_desc *desc; 11381 __u32 count, size; 11382 11383 desc = bpf_prog_info_array_desc + i; 11384 11385 /* kernel is too old to support this field */ 11386 if (info_len < desc->array_offset + sizeof(__u32) || 11387 info_len < desc->count_offset + sizeof(__u32) || 11388 (desc->size_offset > 0 && info_len < desc->size_offset)) 11389 include_array = false; 11390 11391 if (!include_array) { 11392 arrays &= ~(1UL << i); /* clear the bit */ 11393 continue; 11394 } 11395 11396 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11397 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11398 11399 data_len += count * size; 11400 } 11401 11402 /* step 3: allocate continuous memory */ 11403 data_len = roundup(data_len, sizeof(__u64)); 11404 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11405 if (!info_linear) 11406 return libbpf_err_ptr(-ENOMEM); 11407 11408 /* step 4: fill data to info_linear->info */ 11409 info_linear->arrays = arrays; 11410 memset(&info_linear->info, 0, sizeof(info)); 11411 ptr = info_linear->data; 11412 11413 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11414 struct bpf_prog_info_array_desc *desc; 11415 __u32 count, size; 11416 11417 if ((arrays & (1UL << i)) == 0) 11418 continue; 11419 11420 desc = bpf_prog_info_array_desc + i; 11421 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11422 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11423 bpf_prog_info_set_offset_u32(&info_linear->info, 11424 desc->count_offset, count); 11425 bpf_prog_info_set_offset_u32(&info_linear->info, 11426 desc->size_offset, size); 11427 bpf_prog_info_set_offset_u64(&info_linear->info, 11428 desc->array_offset, 11429 ptr_to_u64(ptr)); 11430 ptr += count * size; 11431 } 11432 11433 /* step 5: call syscall again to get required arrays */ 11434 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11435 if (err) { 11436 pr_debug("can't get prog info: %s", strerror(errno)); 11437 free(info_linear); 11438 return libbpf_err_ptr(-EFAULT); 11439 } 11440 11441 /* step 6: verify the data */ 11442 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11443 struct bpf_prog_info_array_desc *desc; 11444 __u32 v1, v2; 11445 11446 if ((arrays & (1UL << i)) == 0) 11447 continue; 11448 11449 desc = bpf_prog_info_array_desc + i; 11450 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11451 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11452 desc->count_offset); 11453 if (v1 != v2) 11454 pr_warn("%s: mismatch in element count\n", __func__); 11455 11456 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11457 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11458 desc->size_offset); 11459 if (v1 != v2) 11460 pr_warn("%s: mismatch in rec size\n", __func__); 11461 } 11462 11463 /* step 7: update info_len and data_len */ 11464 info_linear->info_len = sizeof(struct bpf_prog_info); 11465 info_linear->data_len = data_len; 11466 11467 return info_linear; 11468 } 11469 11470 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11471 { 11472 int i; 11473 11474 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11475 struct bpf_prog_info_array_desc *desc; 11476 __u64 addr, offs; 11477 11478 if ((info_linear->arrays & (1UL << i)) == 0) 11479 continue; 11480 11481 desc = bpf_prog_info_array_desc + i; 11482 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11483 desc->array_offset); 11484 offs = addr - ptr_to_u64(info_linear->data); 11485 bpf_prog_info_set_offset_u64(&info_linear->info, 11486 desc->array_offset, offs); 11487 } 11488 } 11489 11490 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11491 { 11492 int i; 11493 11494 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11495 struct bpf_prog_info_array_desc *desc; 11496 __u64 addr, offs; 11497 11498 if ((info_linear->arrays & (1UL << i)) == 0) 11499 continue; 11500 11501 desc = bpf_prog_info_array_desc + i; 11502 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11503 desc->array_offset); 11504 addr = offs + ptr_to_u64(info_linear->data); 11505 bpf_prog_info_set_offset_u64(&info_linear->info, 11506 desc->array_offset, addr); 11507 } 11508 } 11509 11510 int bpf_program__set_attach_target(struct bpf_program *prog, 11511 int attach_prog_fd, 11512 const char *attach_func_name) 11513 { 11514 int btf_obj_fd = 0, btf_id = 0, err; 11515 11516 if (!prog || attach_prog_fd < 0) 11517 return libbpf_err(-EINVAL); 11518 11519 if (prog->obj->loaded) 11520 return libbpf_err(-EINVAL); 11521 11522 if (attach_prog_fd && !attach_func_name) { 11523 /* remember attach_prog_fd and let bpf_program__load() find 11524 * BTF ID during the program load 11525 */ 11526 prog->attach_prog_fd = attach_prog_fd; 11527 return 0; 11528 } 11529 11530 if (attach_prog_fd) { 11531 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11532 attach_prog_fd); 11533 if (btf_id < 0) 11534 return libbpf_err(btf_id); 11535 } else { 11536 if (!attach_func_name) 11537 return libbpf_err(-EINVAL); 11538 11539 /* load btf_vmlinux, if not yet */ 11540 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11541 if (err) 11542 return libbpf_err(err); 11543 err = find_kernel_btf_id(prog->obj, attach_func_name, 11544 prog->expected_attach_type, 11545 &btf_obj_fd, &btf_id); 11546 if (err) 11547 return libbpf_err(err); 11548 } 11549 11550 prog->attach_btf_id = btf_id; 11551 prog->attach_btf_obj_fd = btf_obj_fd; 11552 prog->attach_prog_fd = attach_prog_fd; 11553 return 0; 11554 } 11555 11556 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11557 { 11558 int err = 0, n, len, start, end = -1; 11559 bool *tmp; 11560 11561 *mask = NULL; 11562 *mask_sz = 0; 11563 11564 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11565 while (*s) { 11566 if (*s == ',' || *s == '\n') { 11567 s++; 11568 continue; 11569 } 11570 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11571 if (n <= 0 || n > 2) { 11572 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11573 err = -EINVAL; 11574 goto cleanup; 11575 } else if (n == 1) { 11576 end = start; 11577 } 11578 if (start < 0 || start > end) { 11579 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11580 start, end, s); 11581 err = -EINVAL; 11582 goto cleanup; 11583 } 11584 tmp = realloc(*mask, end + 1); 11585 if (!tmp) { 11586 err = -ENOMEM; 11587 goto cleanup; 11588 } 11589 *mask = tmp; 11590 memset(tmp + *mask_sz, 0, start - *mask_sz); 11591 memset(tmp + start, 1, end - start + 1); 11592 *mask_sz = end + 1; 11593 s += len; 11594 } 11595 if (!*mask_sz) { 11596 pr_warn("Empty CPU range\n"); 11597 return -EINVAL; 11598 } 11599 return 0; 11600 cleanup: 11601 free(*mask); 11602 *mask = NULL; 11603 return err; 11604 } 11605 11606 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11607 { 11608 int fd, err = 0, len; 11609 char buf[128]; 11610 11611 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11612 if (fd < 0) { 11613 err = -errno; 11614 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11615 return err; 11616 } 11617 len = read(fd, buf, sizeof(buf)); 11618 close(fd); 11619 if (len <= 0) { 11620 err = len ? -errno : -EINVAL; 11621 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11622 return err; 11623 } 11624 if (len >= sizeof(buf)) { 11625 pr_warn("CPU mask is too big in file %s\n", fcpu); 11626 return -E2BIG; 11627 } 11628 buf[len] = '\0'; 11629 11630 return parse_cpu_mask_str(buf, mask, mask_sz); 11631 } 11632 11633 int libbpf_num_possible_cpus(void) 11634 { 11635 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11636 static int cpus; 11637 int err, n, i, tmp_cpus; 11638 bool *mask; 11639 11640 tmp_cpus = READ_ONCE(cpus); 11641 if (tmp_cpus > 0) 11642 return tmp_cpus; 11643 11644 err = parse_cpu_mask_file(fcpu, &mask, &n); 11645 if (err) 11646 return libbpf_err(err); 11647 11648 tmp_cpus = 0; 11649 for (i = 0; i < n; i++) { 11650 if (mask[i]) 11651 tmp_cpus++; 11652 } 11653 free(mask); 11654 11655 WRITE_ONCE(cpus, tmp_cpus); 11656 return tmp_cpus; 11657 } 11658 11659 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11660 const struct bpf_object_open_opts *opts) 11661 { 11662 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11663 .object_name = s->name, 11664 ); 11665 struct bpf_object *obj; 11666 int i, err; 11667 11668 /* Attempt to preserve opts->object_name, unless overriden by user 11669 * explicitly. Overwriting object name for skeletons is discouraged, 11670 * as it breaks global data maps, because they contain object name 11671 * prefix as their own map name prefix. When skeleton is generated, 11672 * bpftool is making an assumption that this name will stay the same. 11673 */ 11674 if (opts) { 11675 memcpy(&skel_opts, opts, sizeof(*opts)); 11676 if (!opts->object_name) 11677 skel_opts.object_name = s->name; 11678 } 11679 11680 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11681 err = libbpf_get_error(obj); 11682 if (err) { 11683 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11684 s->name, err); 11685 return libbpf_err(err); 11686 } 11687 11688 *s->obj = obj; 11689 11690 for (i = 0; i < s->map_cnt; i++) { 11691 struct bpf_map **map = s->maps[i].map; 11692 const char *name = s->maps[i].name; 11693 void **mmaped = s->maps[i].mmaped; 11694 11695 *map = bpf_object__find_map_by_name(obj, name); 11696 if (!*map) { 11697 pr_warn("failed to find skeleton map '%s'\n", name); 11698 return libbpf_err(-ESRCH); 11699 } 11700 11701 /* externs shouldn't be pre-setup from user code */ 11702 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11703 *mmaped = (*map)->mmaped; 11704 } 11705 11706 for (i = 0; i < s->prog_cnt; i++) { 11707 struct bpf_program **prog = s->progs[i].prog; 11708 const char *name = s->progs[i].name; 11709 11710 *prog = bpf_object__find_program_by_name(obj, name); 11711 if (!*prog) { 11712 pr_warn("failed to find skeleton program '%s'\n", name); 11713 return libbpf_err(-ESRCH); 11714 } 11715 } 11716 11717 return 0; 11718 } 11719 11720 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11721 { 11722 int i, err; 11723 11724 err = bpf_object__load(*s->obj); 11725 if (err) { 11726 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11727 return libbpf_err(err); 11728 } 11729 11730 for (i = 0; i < s->map_cnt; i++) { 11731 struct bpf_map *map = *s->maps[i].map; 11732 size_t mmap_sz = bpf_map_mmap_sz(map); 11733 int prot, map_fd = bpf_map__fd(map); 11734 void **mmaped = s->maps[i].mmaped; 11735 11736 if (!mmaped) 11737 continue; 11738 11739 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11740 *mmaped = NULL; 11741 continue; 11742 } 11743 11744 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11745 prot = PROT_READ; 11746 else 11747 prot = PROT_READ | PROT_WRITE; 11748 11749 /* Remap anonymous mmap()-ed "map initialization image" as 11750 * a BPF map-backed mmap()-ed memory, but preserving the same 11751 * memory address. This will cause kernel to change process' 11752 * page table to point to a different piece of kernel memory, 11753 * but from userspace point of view memory address (and its 11754 * contents, being identical at this point) will stay the 11755 * same. This mapping will be released by bpf_object__close() 11756 * as per normal clean up procedure, so we don't need to worry 11757 * about it from skeleton's clean up perspective. 11758 */ 11759 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11760 MAP_SHARED | MAP_FIXED, map_fd, 0); 11761 if (*mmaped == MAP_FAILED) { 11762 err = -errno; 11763 *mmaped = NULL; 11764 pr_warn("failed to re-mmap() map '%s': %d\n", 11765 bpf_map__name(map), err); 11766 return libbpf_err(err); 11767 } 11768 } 11769 11770 return 0; 11771 } 11772 11773 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11774 { 11775 int i, err; 11776 11777 for (i = 0; i < s->prog_cnt; i++) { 11778 struct bpf_program *prog = *s->progs[i].prog; 11779 struct bpf_link **link = s->progs[i].link; 11780 11781 if (!prog->load) 11782 continue; 11783 11784 /* auto-attaching not supported for this program */ 11785 if (!prog->sec_def || !prog->sec_def->attach_fn) 11786 continue; 11787 11788 *link = bpf_program__attach(prog); 11789 err = libbpf_get_error(*link); 11790 if (err) { 11791 pr_warn("failed to auto-attach program '%s': %d\n", 11792 bpf_program__name(prog), err); 11793 return libbpf_err(err); 11794 } 11795 } 11796 11797 return 0; 11798 } 11799 11800 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11801 { 11802 int i; 11803 11804 for (i = 0; i < s->prog_cnt; i++) { 11805 struct bpf_link **link = s->progs[i].link; 11806 11807 bpf_link__destroy(*link); 11808 *link = NULL; 11809 } 11810 } 11811 11812 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11813 { 11814 if (!s) 11815 return; 11816 11817 if (s->progs) 11818 bpf_object__detach_skeleton(s); 11819 if (s->obj) 11820 bpf_object__close(*s->obj); 11821 free(s->maps); 11822 free(s->progs); 11823 free(s); 11824 } 11825