1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static const char * const attach_type_name[] = { 76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 81 [BPF_CGROUP_DEVICE] = "cgroup_device", 82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 91 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 92 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 93 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 94 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 95 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 96 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 97 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 98 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 99 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 100 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 101 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 102 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 103 [BPF_LIRC_MODE2] = "lirc_mode2", 104 [BPF_FLOW_DISSECTOR] = "flow_dissector", 105 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 106 [BPF_TRACE_FENTRY] = "trace_fentry", 107 [BPF_TRACE_FEXIT] = "trace_fexit", 108 [BPF_MODIFY_RETURN] = "modify_return", 109 [BPF_LSM_MAC] = "lsm_mac", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const map_type_name[] = { 122 [BPF_MAP_TYPE_UNSPEC] = "unspec", 123 [BPF_MAP_TYPE_HASH] = "hash", 124 [BPF_MAP_TYPE_ARRAY] = "array", 125 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 126 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 127 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 128 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 129 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 130 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 131 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 132 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 133 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 134 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 135 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 136 [BPF_MAP_TYPE_DEVMAP] = "devmap", 137 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 138 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 139 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 140 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 141 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 142 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 143 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 144 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 145 [BPF_MAP_TYPE_QUEUE] = "queue", 146 [BPF_MAP_TYPE_STACK] = "stack", 147 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 148 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 149 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 150 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 151 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 152 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 153 }; 154 155 static const char * const prog_type_name[] = { 156 [BPF_PROG_TYPE_UNSPEC] = "unspec", 157 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 158 [BPF_PROG_TYPE_KPROBE] = "kprobe", 159 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 160 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 161 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 162 [BPF_PROG_TYPE_XDP] = "xdp", 163 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 164 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 165 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 166 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 167 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 168 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 169 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 170 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 171 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 172 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 173 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 174 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 175 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 176 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 177 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 178 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 179 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 180 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 181 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 182 [BPF_PROG_TYPE_TRACING] = "tracing", 183 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 184 [BPF_PROG_TYPE_EXT] = "ext", 185 [BPF_PROG_TYPE_LSM] = "lsm", 186 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 187 [BPF_PROG_TYPE_SYSCALL] = "syscall", 188 }; 189 190 static int __base_pr(enum libbpf_print_level level, const char *format, 191 va_list args) 192 { 193 if (level == LIBBPF_DEBUG) 194 return 0; 195 196 return vfprintf(stderr, format, args); 197 } 198 199 static libbpf_print_fn_t __libbpf_pr = __base_pr; 200 201 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 202 { 203 libbpf_print_fn_t old_print_fn = __libbpf_pr; 204 205 __libbpf_pr = fn; 206 return old_print_fn; 207 } 208 209 __printf(2, 3) 210 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 211 { 212 va_list args; 213 214 if (!__libbpf_pr) 215 return; 216 217 va_start(args, format); 218 __libbpf_pr(level, format, args); 219 va_end(args); 220 } 221 222 static void pr_perm_msg(int err) 223 { 224 struct rlimit limit; 225 char buf[100]; 226 227 if (err != -EPERM || geteuid() != 0) 228 return; 229 230 err = getrlimit(RLIMIT_MEMLOCK, &limit); 231 if (err) 232 return; 233 234 if (limit.rlim_cur == RLIM_INFINITY) 235 return; 236 237 if (limit.rlim_cur < 1024) 238 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 239 else if (limit.rlim_cur < 1024*1024) 240 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 241 else 242 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 243 244 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 245 buf); 246 } 247 248 #define STRERR_BUFSIZE 128 249 250 /* Copied from tools/perf/util/util.h */ 251 #ifndef zfree 252 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 253 #endif 254 255 #ifndef zclose 256 # define zclose(fd) ({ \ 257 int ___err = 0; \ 258 if ((fd) >= 0) \ 259 ___err = close((fd)); \ 260 fd = -1; \ 261 ___err; }) 262 #endif 263 264 static inline __u64 ptr_to_u64(const void *ptr) 265 { 266 return (__u64) (unsigned long) ptr; 267 } 268 269 /* this goes away in libbpf 1.0 */ 270 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 271 272 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 273 { 274 libbpf_mode = mode; 275 return 0; 276 } 277 278 __u32 libbpf_major_version(void) 279 { 280 return LIBBPF_MAJOR_VERSION; 281 } 282 283 __u32 libbpf_minor_version(void) 284 { 285 return LIBBPF_MINOR_VERSION; 286 } 287 288 const char *libbpf_version_string(void) 289 { 290 #define __S(X) #X 291 #define _S(X) __S(X) 292 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 293 #undef _S 294 #undef __S 295 } 296 297 enum reloc_type { 298 RELO_LD64, 299 RELO_CALL, 300 RELO_DATA, 301 RELO_EXTERN_VAR, 302 RELO_EXTERN_FUNC, 303 RELO_SUBPROG_ADDR, 304 RELO_CORE, 305 }; 306 307 struct reloc_desc { 308 enum reloc_type type; 309 int insn_idx; 310 union { 311 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 312 struct { 313 int map_idx; 314 int sym_off; 315 }; 316 }; 317 }; 318 319 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 320 enum sec_def_flags { 321 SEC_NONE = 0, 322 /* expected_attach_type is optional, if kernel doesn't support that */ 323 SEC_EXP_ATTACH_OPT = 1, 324 /* legacy, only used by libbpf_get_type_names() and 325 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 326 * This used to be associated with cgroup (and few other) BPF programs 327 * that were attachable through BPF_PROG_ATTACH command. Pretty 328 * meaningless nowadays, though. 329 */ 330 SEC_ATTACHABLE = 2, 331 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 332 /* attachment target is specified through BTF ID in either kernel or 333 * other BPF program's BTF object */ 334 SEC_ATTACH_BTF = 4, 335 /* BPF program type allows sleeping/blocking in kernel */ 336 SEC_SLEEPABLE = 8, 337 /* allow non-strict prefix matching */ 338 SEC_SLOPPY_PFX = 16, 339 /* BPF program support non-linear XDP buffer */ 340 SEC_XDP_FRAGS = 32, 341 /* deprecated sec definitions not supposed to be used */ 342 SEC_DEPRECATED = 64, 343 }; 344 345 struct bpf_sec_def { 346 char *sec; 347 enum bpf_prog_type prog_type; 348 enum bpf_attach_type expected_attach_type; 349 long cookie; 350 int handler_id; 351 352 libbpf_prog_setup_fn_t prog_setup_fn; 353 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 354 libbpf_prog_attach_fn_t prog_attach_fn; 355 }; 356 357 /* 358 * bpf_prog should be a better name but it has been used in 359 * linux/filter.h. 360 */ 361 struct bpf_program { 362 const struct bpf_sec_def *sec_def; 363 char *sec_name; 364 size_t sec_idx; 365 /* this program's instruction offset (in number of instructions) 366 * within its containing ELF section 367 */ 368 size_t sec_insn_off; 369 /* number of original instructions in ELF section belonging to this 370 * program, not taking into account subprogram instructions possible 371 * appended later during relocation 372 */ 373 size_t sec_insn_cnt; 374 /* Offset (in number of instructions) of the start of instruction 375 * belonging to this BPF program within its containing main BPF 376 * program. For the entry-point (main) BPF program, this is always 377 * zero. For a sub-program, this gets reset before each of main BPF 378 * programs are processed and relocated and is used to determined 379 * whether sub-program was already appended to the main program, and 380 * if yes, at which instruction offset. 381 */ 382 size_t sub_insn_off; 383 384 char *name; 385 /* name with / replaced by _; makes recursive pinning 386 * in bpf_object__pin_programs easier 387 */ 388 char *pin_name; 389 390 /* instructions that belong to BPF program; insns[0] is located at 391 * sec_insn_off instruction within its ELF section in ELF file, so 392 * when mapping ELF file instruction index to the local instruction, 393 * one needs to subtract sec_insn_off; and vice versa. 394 */ 395 struct bpf_insn *insns; 396 /* actual number of instruction in this BPF program's image; for 397 * entry-point BPF programs this includes the size of main program 398 * itself plus all the used sub-programs, appended at the end 399 */ 400 size_t insns_cnt; 401 402 struct reloc_desc *reloc_desc; 403 int nr_reloc; 404 405 /* BPF verifier log settings */ 406 char *log_buf; 407 size_t log_size; 408 __u32 log_level; 409 410 struct { 411 int nr; 412 int *fds; 413 } instances; 414 bpf_program_prep_t preprocessor; 415 416 struct bpf_object *obj; 417 void *priv; 418 bpf_program_clear_priv_t clear_priv; 419 420 bool autoload; 421 bool mark_btf_static; 422 enum bpf_prog_type type; 423 enum bpf_attach_type expected_attach_type; 424 int prog_ifindex; 425 __u32 attach_btf_obj_fd; 426 __u32 attach_btf_id; 427 __u32 attach_prog_fd; 428 void *func_info; 429 __u32 func_info_rec_size; 430 __u32 func_info_cnt; 431 432 void *line_info; 433 __u32 line_info_rec_size; 434 __u32 line_info_cnt; 435 __u32 prog_flags; 436 }; 437 438 struct bpf_struct_ops { 439 const char *tname; 440 const struct btf_type *type; 441 struct bpf_program **progs; 442 __u32 *kern_func_off; 443 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 444 void *data; 445 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 446 * btf_vmlinux's format. 447 * struct bpf_struct_ops_tcp_congestion_ops { 448 * [... some other kernel fields ...] 449 * struct tcp_congestion_ops data; 450 * } 451 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 452 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 453 * from "data". 454 */ 455 void *kern_vdata; 456 __u32 type_id; 457 }; 458 459 #define DATA_SEC ".data" 460 #define BSS_SEC ".bss" 461 #define RODATA_SEC ".rodata" 462 #define KCONFIG_SEC ".kconfig" 463 #define KSYMS_SEC ".ksyms" 464 #define STRUCT_OPS_SEC ".struct_ops" 465 466 enum libbpf_map_type { 467 LIBBPF_MAP_UNSPEC, 468 LIBBPF_MAP_DATA, 469 LIBBPF_MAP_BSS, 470 LIBBPF_MAP_RODATA, 471 LIBBPF_MAP_KCONFIG, 472 }; 473 474 struct bpf_map { 475 struct bpf_object *obj; 476 char *name; 477 /* real_name is defined for special internal maps (.rodata*, 478 * .data*, .bss, .kconfig) and preserves their original ELF section 479 * name. This is important to be be able to find corresponding BTF 480 * DATASEC information. 481 */ 482 char *real_name; 483 int fd; 484 int sec_idx; 485 size_t sec_offset; 486 int map_ifindex; 487 int inner_map_fd; 488 struct bpf_map_def def; 489 __u32 numa_node; 490 __u32 btf_var_idx; 491 __u32 btf_key_type_id; 492 __u32 btf_value_type_id; 493 __u32 btf_vmlinux_value_type_id; 494 void *priv; 495 bpf_map_clear_priv_t clear_priv; 496 enum libbpf_map_type libbpf_type; 497 void *mmaped; 498 struct bpf_struct_ops *st_ops; 499 struct bpf_map *inner_map; 500 void **init_slots; 501 int init_slots_sz; 502 char *pin_path; 503 bool pinned; 504 bool reused; 505 bool autocreate; 506 __u64 map_extra; 507 }; 508 509 enum extern_type { 510 EXT_UNKNOWN, 511 EXT_KCFG, 512 EXT_KSYM, 513 }; 514 515 enum kcfg_type { 516 KCFG_UNKNOWN, 517 KCFG_CHAR, 518 KCFG_BOOL, 519 KCFG_INT, 520 KCFG_TRISTATE, 521 KCFG_CHAR_ARR, 522 }; 523 524 struct extern_desc { 525 enum extern_type type; 526 int sym_idx; 527 int btf_id; 528 int sec_btf_id; 529 const char *name; 530 bool is_set; 531 bool is_weak; 532 union { 533 struct { 534 enum kcfg_type type; 535 int sz; 536 int align; 537 int data_off; 538 bool is_signed; 539 } kcfg; 540 struct { 541 unsigned long long addr; 542 543 /* target btf_id of the corresponding kernel var. */ 544 int kernel_btf_obj_fd; 545 int kernel_btf_id; 546 547 /* local btf_id of the ksym extern's type. */ 548 __u32 type_id; 549 /* BTF fd index to be patched in for insn->off, this is 550 * 0 for vmlinux BTF, index in obj->fd_array for module 551 * BTF 552 */ 553 __s16 btf_fd_idx; 554 } ksym; 555 }; 556 }; 557 558 static LIST_HEAD(bpf_objects_list); 559 560 struct module_btf { 561 struct btf *btf; 562 char *name; 563 __u32 id; 564 int fd; 565 int fd_array_idx; 566 }; 567 568 enum sec_type { 569 SEC_UNUSED = 0, 570 SEC_RELO, 571 SEC_BSS, 572 SEC_DATA, 573 SEC_RODATA, 574 }; 575 576 struct elf_sec_desc { 577 enum sec_type sec_type; 578 Elf64_Shdr *shdr; 579 Elf_Data *data; 580 }; 581 582 struct elf_state { 583 int fd; 584 const void *obj_buf; 585 size_t obj_buf_sz; 586 Elf *elf; 587 Elf64_Ehdr *ehdr; 588 Elf_Data *symbols; 589 Elf_Data *st_ops_data; 590 size_t shstrndx; /* section index for section name strings */ 591 size_t strtabidx; 592 struct elf_sec_desc *secs; 593 int sec_cnt; 594 int maps_shndx; 595 int btf_maps_shndx; 596 __u32 btf_maps_sec_btf_id; 597 int text_shndx; 598 int symbols_shndx; 599 int st_ops_shndx; 600 }; 601 602 struct usdt_manager; 603 604 struct bpf_object { 605 char name[BPF_OBJ_NAME_LEN]; 606 char license[64]; 607 __u32 kern_version; 608 609 struct bpf_program *programs; 610 size_t nr_programs; 611 struct bpf_map *maps; 612 size_t nr_maps; 613 size_t maps_cap; 614 615 char *kconfig; 616 struct extern_desc *externs; 617 int nr_extern; 618 int kconfig_map_idx; 619 620 bool loaded; 621 bool has_subcalls; 622 bool has_rodata; 623 624 struct bpf_gen *gen_loader; 625 626 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 627 struct elf_state efile; 628 /* 629 * All loaded bpf_object are linked in a list, which is 630 * hidden to caller. bpf_objects__<func> handlers deal with 631 * all objects. 632 */ 633 struct list_head list; 634 635 struct btf *btf; 636 struct btf_ext *btf_ext; 637 638 /* Parse and load BTF vmlinux if any of the programs in the object need 639 * it at load time. 640 */ 641 struct btf *btf_vmlinux; 642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 643 * override for vmlinux BTF. 644 */ 645 char *btf_custom_path; 646 /* vmlinux BTF override for CO-RE relocations */ 647 struct btf *btf_vmlinux_override; 648 /* Lazily initialized kernel module BTFs */ 649 struct module_btf *btf_modules; 650 bool btf_modules_loaded; 651 size_t btf_module_cnt; 652 size_t btf_module_cap; 653 654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 655 char *log_buf; 656 size_t log_size; 657 __u32 log_level; 658 659 void *priv; 660 bpf_object_clear_priv_t clear_priv; 661 662 int *fd_array; 663 size_t fd_array_cap; 664 size_t fd_array_cnt; 665 666 struct usdt_manager *usdt_man; 667 668 char path[]; 669 }; 670 671 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 672 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 673 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 674 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 675 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 676 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 677 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 678 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 679 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 680 681 void bpf_program__unload(struct bpf_program *prog) 682 { 683 int i; 684 685 if (!prog) 686 return; 687 688 /* 689 * If the object is opened but the program was never loaded, 690 * it is possible that prog->instances.nr == -1. 691 */ 692 if (prog->instances.nr > 0) { 693 for (i = 0; i < prog->instances.nr; i++) 694 zclose(prog->instances.fds[i]); 695 } else if (prog->instances.nr != -1) { 696 pr_warn("Internal error: instances.nr is %d\n", 697 prog->instances.nr); 698 } 699 700 prog->instances.nr = -1; 701 zfree(&prog->instances.fds); 702 703 zfree(&prog->func_info); 704 zfree(&prog->line_info); 705 } 706 707 static void bpf_program__exit(struct bpf_program *prog) 708 { 709 if (!prog) 710 return; 711 712 if (prog->clear_priv) 713 prog->clear_priv(prog, prog->priv); 714 715 prog->priv = NULL; 716 prog->clear_priv = NULL; 717 718 bpf_program__unload(prog); 719 zfree(&prog->name); 720 zfree(&prog->sec_name); 721 zfree(&prog->pin_name); 722 zfree(&prog->insns); 723 zfree(&prog->reloc_desc); 724 725 prog->nr_reloc = 0; 726 prog->insns_cnt = 0; 727 prog->sec_idx = -1; 728 } 729 730 static char *__bpf_program__pin_name(struct bpf_program *prog) 731 { 732 char *name, *p; 733 734 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 735 name = strdup(prog->name); 736 else 737 name = strdup(prog->sec_name); 738 739 if (!name) 740 return NULL; 741 742 p = name; 743 744 while ((p = strchr(p, '/'))) 745 *p = '_'; 746 747 return name; 748 } 749 750 static bool insn_is_subprog_call(const struct bpf_insn *insn) 751 { 752 return BPF_CLASS(insn->code) == BPF_JMP && 753 BPF_OP(insn->code) == BPF_CALL && 754 BPF_SRC(insn->code) == BPF_K && 755 insn->src_reg == BPF_PSEUDO_CALL && 756 insn->dst_reg == 0 && 757 insn->off == 0; 758 } 759 760 static bool is_call_insn(const struct bpf_insn *insn) 761 { 762 return insn->code == (BPF_JMP | BPF_CALL); 763 } 764 765 static bool insn_is_pseudo_func(struct bpf_insn *insn) 766 { 767 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 768 } 769 770 static int 771 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 772 const char *name, size_t sec_idx, const char *sec_name, 773 size_t sec_off, void *insn_data, size_t insn_data_sz) 774 { 775 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 776 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 777 sec_name, name, sec_off, insn_data_sz); 778 return -EINVAL; 779 } 780 781 memset(prog, 0, sizeof(*prog)); 782 prog->obj = obj; 783 784 prog->sec_idx = sec_idx; 785 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 786 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 787 /* insns_cnt can later be increased by appending used subprograms */ 788 prog->insns_cnt = prog->sec_insn_cnt; 789 790 prog->type = BPF_PROG_TYPE_UNSPEC; 791 792 /* libbpf's convention for SEC("?abc...") is that it's just like 793 * SEC("abc...") but the corresponding bpf_program starts out with 794 * autoload set to false. 795 */ 796 if (sec_name[0] == '?') { 797 prog->autoload = false; 798 /* from now on forget there was ? in section name */ 799 sec_name++; 800 } else { 801 prog->autoload = true; 802 } 803 804 prog->instances.fds = NULL; 805 prog->instances.nr = -1; 806 807 /* inherit object's log_level */ 808 prog->log_level = obj->log_level; 809 810 prog->sec_name = strdup(sec_name); 811 if (!prog->sec_name) 812 goto errout; 813 814 prog->name = strdup(name); 815 if (!prog->name) 816 goto errout; 817 818 prog->pin_name = __bpf_program__pin_name(prog); 819 if (!prog->pin_name) 820 goto errout; 821 822 prog->insns = malloc(insn_data_sz); 823 if (!prog->insns) 824 goto errout; 825 memcpy(prog->insns, insn_data, insn_data_sz); 826 827 return 0; 828 errout: 829 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 830 bpf_program__exit(prog); 831 return -ENOMEM; 832 } 833 834 static int 835 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 836 const char *sec_name, int sec_idx) 837 { 838 Elf_Data *symbols = obj->efile.symbols; 839 struct bpf_program *prog, *progs; 840 void *data = sec_data->d_buf; 841 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 842 int nr_progs, err, i; 843 const char *name; 844 Elf64_Sym *sym; 845 846 progs = obj->programs; 847 nr_progs = obj->nr_programs; 848 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 849 sec_off = 0; 850 851 for (i = 0; i < nr_syms; i++) { 852 sym = elf_sym_by_idx(obj, i); 853 854 if (sym->st_shndx != sec_idx) 855 continue; 856 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 857 continue; 858 859 prog_sz = sym->st_size; 860 sec_off = sym->st_value; 861 862 name = elf_sym_str(obj, sym->st_name); 863 if (!name) { 864 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 865 sec_name, sec_off); 866 return -LIBBPF_ERRNO__FORMAT; 867 } 868 869 if (sec_off + prog_sz > sec_sz) { 870 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 871 sec_name, sec_off); 872 return -LIBBPF_ERRNO__FORMAT; 873 } 874 875 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 876 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 877 return -ENOTSUP; 878 } 879 880 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 881 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 882 883 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 884 if (!progs) { 885 /* 886 * In this case the original obj->programs 887 * is still valid, so don't need special treat for 888 * bpf_close_object(). 889 */ 890 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 891 sec_name, name); 892 return -ENOMEM; 893 } 894 obj->programs = progs; 895 896 prog = &progs[nr_progs]; 897 898 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 899 sec_off, data + sec_off, prog_sz); 900 if (err) 901 return err; 902 903 /* if function is a global/weak symbol, but has restricted 904 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 905 * as static to enable more permissive BPF verification mode 906 * with more outside context available to BPF verifier 907 */ 908 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 909 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 910 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 911 prog->mark_btf_static = true; 912 913 nr_progs++; 914 obj->nr_programs = nr_progs; 915 } 916 917 return 0; 918 } 919 920 __u32 get_kernel_version(void) 921 { 922 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 923 * but Ubuntu provides /proc/version_signature file, as described at 924 * https://ubuntu.com/kernel, with an example contents below, which we 925 * can use to get a proper LINUX_VERSION_CODE. 926 * 927 * Ubuntu 5.4.0-12.15-generic 5.4.8 928 * 929 * In the above, 5.4.8 is what kernel is actually expecting, while 930 * uname() call will return 5.4.0 in info.release. 931 */ 932 const char *ubuntu_kver_file = "/proc/version_signature"; 933 __u32 major, minor, patch; 934 struct utsname info; 935 936 if (access(ubuntu_kver_file, R_OK) == 0) { 937 FILE *f; 938 939 f = fopen(ubuntu_kver_file, "r"); 940 if (f) { 941 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 942 fclose(f); 943 return KERNEL_VERSION(major, minor, patch); 944 } 945 fclose(f); 946 } 947 /* something went wrong, fall back to uname() approach */ 948 } 949 950 uname(&info); 951 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 952 return 0; 953 return KERNEL_VERSION(major, minor, patch); 954 } 955 956 static const struct btf_member * 957 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 958 { 959 struct btf_member *m; 960 int i; 961 962 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 963 if (btf_member_bit_offset(t, i) == bit_offset) 964 return m; 965 } 966 967 return NULL; 968 } 969 970 static const struct btf_member * 971 find_member_by_name(const struct btf *btf, const struct btf_type *t, 972 const char *name) 973 { 974 struct btf_member *m; 975 int i; 976 977 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 978 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 979 return m; 980 } 981 982 return NULL; 983 } 984 985 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 986 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 987 const char *name, __u32 kind); 988 989 static int 990 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 991 const struct btf_type **type, __u32 *type_id, 992 const struct btf_type **vtype, __u32 *vtype_id, 993 const struct btf_member **data_member) 994 { 995 const struct btf_type *kern_type, *kern_vtype; 996 const struct btf_member *kern_data_member; 997 __s32 kern_vtype_id, kern_type_id; 998 __u32 i; 999 1000 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 1001 if (kern_type_id < 0) { 1002 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1003 tname); 1004 return kern_type_id; 1005 } 1006 kern_type = btf__type_by_id(btf, kern_type_id); 1007 1008 /* Find the corresponding "map_value" type that will be used 1009 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1010 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1011 * btf_vmlinux. 1012 */ 1013 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1014 tname, BTF_KIND_STRUCT); 1015 if (kern_vtype_id < 0) { 1016 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1017 STRUCT_OPS_VALUE_PREFIX, tname); 1018 return kern_vtype_id; 1019 } 1020 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1021 1022 /* Find "struct tcp_congestion_ops" from 1023 * struct bpf_struct_ops_tcp_congestion_ops { 1024 * [ ... ] 1025 * struct tcp_congestion_ops data; 1026 * } 1027 */ 1028 kern_data_member = btf_members(kern_vtype); 1029 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1030 if (kern_data_member->type == kern_type_id) 1031 break; 1032 } 1033 if (i == btf_vlen(kern_vtype)) { 1034 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1035 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1036 return -EINVAL; 1037 } 1038 1039 *type = kern_type; 1040 *type_id = kern_type_id; 1041 *vtype = kern_vtype; 1042 *vtype_id = kern_vtype_id; 1043 *data_member = kern_data_member; 1044 1045 return 0; 1046 } 1047 1048 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1049 { 1050 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1051 } 1052 1053 /* Init the map's fields that depend on kern_btf */ 1054 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1055 const struct btf *btf, 1056 const struct btf *kern_btf) 1057 { 1058 const struct btf_member *member, *kern_member, *kern_data_member; 1059 const struct btf_type *type, *kern_type, *kern_vtype; 1060 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1061 struct bpf_struct_ops *st_ops; 1062 void *data, *kern_data; 1063 const char *tname; 1064 int err; 1065 1066 st_ops = map->st_ops; 1067 type = st_ops->type; 1068 tname = st_ops->tname; 1069 err = find_struct_ops_kern_types(kern_btf, tname, 1070 &kern_type, &kern_type_id, 1071 &kern_vtype, &kern_vtype_id, 1072 &kern_data_member); 1073 if (err) 1074 return err; 1075 1076 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1077 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1078 1079 map->def.value_size = kern_vtype->size; 1080 map->btf_vmlinux_value_type_id = kern_vtype_id; 1081 1082 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1083 if (!st_ops->kern_vdata) 1084 return -ENOMEM; 1085 1086 data = st_ops->data; 1087 kern_data_off = kern_data_member->offset / 8; 1088 kern_data = st_ops->kern_vdata + kern_data_off; 1089 1090 member = btf_members(type); 1091 for (i = 0; i < btf_vlen(type); i++, member++) { 1092 const struct btf_type *mtype, *kern_mtype; 1093 __u32 mtype_id, kern_mtype_id; 1094 void *mdata, *kern_mdata; 1095 __s64 msize, kern_msize; 1096 __u32 moff, kern_moff; 1097 __u32 kern_member_idx; 1098 const char *mname; 1099 1100 mname = btf__name_by_offset(btf, member->name_off); 1101 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1102 if (!kern_member) { 1103 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1104 map->name, mname); 1105 return -ENOTSUP; 1106 } 1107 1108 kern_member_idx = kern_member - btf_members(kern_type); 1109 if (btf_member_bitfield_size(type, i) || 1110 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1111 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1112 map->name, mname); 1113 return -ENOTSUP; 1114 } 1115 1116 moff = member->offset / 8; 1117 kern_moff = kern_member->offset / 8; 1118 1119 mdata = data + moff; 1120 kern_mdata = kern_data + kern_moff; 1121 1122 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1123 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1124 &kern_mtype_id); 1125 if (BTF_INFO_KIND(mtype->info) != 1126 BTF_INFO_KIND(kern_mtype->info)) { 1127 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1128 map->name, mname, BTF_INFO_KIND(mtype->info), 1129 BTF_INFO_KIND(kern_mtype->info)); 1130 return -ENOTSUP; 1131 } 1132 1133 if (btf_is_ptr(mtype)) { 1134 struct bpf_program *prog; 1135 1136 prog = st_ops->progs[i]; 1137 if (!prog) 1138 continue; 1139 1140 kern_mtype = skip_mods_and_typedefs(kern_btf, 1141 kern_mtype->type, 1142 &kern_mtype_id); 1143 1144 /* mtype->type must be a func_proto which was 1145 * guaranteed in bpf_object__collect_st_ops_relos(), 1146 * so only check kern_mtype for func_proto here. 1147 */ 1148 if (!btf_is_func_proto(kern_mtype)) { 1149 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1150 map->name, mname); 1151 return -ENOTSUP; 1152 } 1153 1154 prog->attach_btf_id = kern_type_id; 1155 prog->expected_attach_type = kern_member_idx; 1156 1157 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1158 1159 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1160 map->name, mname, prog->name, moff, 1161 kern_moff); 1162 1163 continue; 1164 } 1165 1166 msize = btf__resolve_size(btf, mtype_id); 1167 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1168 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1169 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1170 map->name, mname, (ssize_t)msize, 1171 (ssize_t)kern_msize); 1172 return -ENOTSUP; 1173 } 1174 1175 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1176 map->name, mname, (unsigned int)msize, 1177 moff, kern_moff); 1178 memcpy(kern_mdata, mdata, msize); 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1185 { 1186 struct bpf_map *map; 1187 size_t i; 1188 int err; 1189 1190 for (i = 0; i < obj->nr_maps; i++) { 1191 map = &obj->maps[i]; 1192 1193 if (!bpf_map__is_struct_ops(map)) 1194 continue; 1195 1196 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1197 obj->btf_vmlinux); 1198 if (err) 1199 return err; 1200 } 1201 1202 return 0; 1203 } 1204 1205 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1206 { 1207 const struct btf_type *type, *datasec; 1208 const struct btf_var_secinfo *vsi; 1209 struct bpf_struct_ops *st_ops; 1210 const char *tname, *var_name; 1211 __s32 type_id, datasec_id; 1212 const struct btf *btf; 1213 struct bpf_map *map; 1214 __u32 i; 1215 1216 if (obj->efile.st_ops_shndx == -1) 1217 return 0; 1218 1219 btf = obj->btf; 1220 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1221 BTF_KIND_DATASEC); 1222 if (datasec_id < 0) { 1223 pr_warn("struct_ops init: DATASEC %s not found\n", 1224 STRUCT_OPS_SEC); 1225 return -EINVAL; 1226 } 1227 1228 datasec = btf__type_by_id(btf, datasec_id); 1229 vsi = btf_var_secinfos(datasec); 1230 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1231 type = btf__type_by_id(obj->btf, vsi->type); 1232 var_name = btf__name_by_offset(obj->btf, type->name_off); 1233 1234 type_id = btf__resolve_type(obj->btf, vsi->type); 1235 if (type_id < 0) { 1236 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1237 vsi->type, STRUCT_OPS_SEC); 1238 return -EINVAL; 1239 } 1240 1241 type = btf__type_by_id(obj->btf, type_id); 1242 tname = btf__name_by_offset(obj->btf, type->name_off); 1243 if (!tname[0]) { 1244 pr_warn("struct_ops init: anonymous type is not supported\n"); 1245 return -ENOTSUP; 1246 } 1247 if (!btf_is_struct(type)) { 1248 pr_warn("struct_ops init: %s is not a struct\n", tname); 1249 return -EINVAL; 1250 } 1251 1252 map = bpf_object__add_map(obj); 1253 if (IS_ERR(map)) 1254 return PTR_ERR(map); 1255 1256 map->sec_idx = obj->efile.st_ops_shndx; 1257 map->sec_offset = vsi->offset; 1258 map->name = strdup(var_name); 1259 if (!map->name) 1260 return -ENOMEM; 1261 1262 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1263 map->def.key_size = sizeof(int); 1264 map->def.value_size = type->size; 1265 map->def.max_entries = 1; 1266 1267 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1268 if (!map->st_ops) 1269 return -ENOMEM; 1270 st_ops = map->st_ops; 1271 st_ops->data = malloc(type->size); 1272 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1273 st_ops->kern_func_off = malloc(btf_vlen(type) * 1274 sizeof(*st_ops->kern_func_off)); 1275 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1276 return -ENOMEM; 1277 1278 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1279 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1280 var_name, STRUCT_OPS_SEC); 1281 return -EINVAL; 1282 } 1283 1284 memcpy(st_ops->data, 1285 obj->efile.st_ops_data->d_buf + vsi->offset, 1286 type->size); 1287 st_ops->tname = tname; 1288 st_ops->type = type; 1289 st_ops->type_id = type_id; 1290 1291 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1292 tname, type_id, var_name, vsi->offset); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static struct bpf_object *bpf_object__new(const char *path, 1299 const void *obj_buf, 1300 size_t obj_buf_sz, 1301 const char *obj_name) 1302 { 1303 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1304 struct bpf_object *obj; 1305 char *end; 1306 1307 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1308 if (!obj) { 1309 pr_warn("alloc memory failed for %s\n", path); 1310 return ERR_PTR(-ENOMEM); 1311 } 1312 1313 strcpy(obj->path, path); 1314 if (obj_name) { 1315 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1316 } else { 1317 /* Using basename() GNU version which doesn't modify arg. */ 1318 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1319 end = strchr(obj->name, '.'); 1320 if (end) 1321 *end = 0; 1322 } 1323 1324 obj->efile.fd = -1; 1325 /* 1326 * Caller of this function should also call 1327 * bpf_object__elf_finish() after data collection to return 1328 * obj_buf to user. If not, we should duplicate the buffer to 1329 * avoid user freeing them before elf finish. 1330 */ 1331 obj->efile.obj_buf = obj_buf; 1332 obj->efile.obj_buf_sz = obj_buf_sz; 1333 obj->efile.maps_shndx = -1; 1334 obj->efile.btf_maps_shndx = -1; 1335 obj->efile.st_ops_shndx = -1; 1336 obj->kconfig_map_idx = -1; 1337 1338 obj->kern_version = get_kernel_version(); 1339 obj->loaded = false; 1340 1341 INIT_LIST_HEAD(&obj->list); 1342 if (!strict) 1343 list_add(&obj->list, &bpf_objects_list); 1344 return obj; 1345 } 1346 1347 static void bpf_object__elf_finish(struct bpf_object *obj) 1348 { 1349 if (!obj->efile.elf) 1350 return; 1351 1352 elf_end(obj->efile.elf); 1353 obj->efile.elf = NULL; 1354 obj->efile.symbols = NULL; 1355 obj->efile.st_ops_data = NULL; 1356 1357 zfree(&obj->efile.secs); 1358 obj->efile.sec_cnt = 0; 1359 zclose(obj->efile.fd); 1360 obj->efile.obj_buf = NULL; 1361 obj->efile.obj_buf_sz = 0; 1362 } 1363 1364 static int bpf_object__elf_init(struct bpf_object *obj) 1365 { 1366 Elf64_Ehdr *ehdr; 1367 int err = 0; 1368 Elf *elf; 1369 1370 if (obj->efile.elf) { 1371 pr_warn("elf: init internal error\n"); 1372 return -LIBBPF_ERRNO__LIBELF; 1373 } 1374 1375 if (obj->efile.obj_buf_sz > 0) { 1376 /* 1377 * obj_buf should have been validated by 1378 * bpf_object__open_buffer(). 1379 */ 1380 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1381 } else { 1382 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1383 if (obj->efile.fd < 0) { 1384 char errmsg[STRERR_BUFSIZE], *cp; 1385 1386 err = -errno; 1387 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1388 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1389 return err; 1390 } 1391 1392 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1393 } 1394 1395 if (!elf) { 1396 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1397 err = -LIBBPF_ERRNO__LIBELF; 1398 goto errout; 1399 } 1400 1401 obj->efile.elf = elf; 1402 1403 if (elf_kind(elf) != ELF_K_ELF) { 1404 err = -LIBBPF_ERRNO__FORMAT; 1405 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1406 goto errout; 1407 } 1408 1409 if (gelf_getclass(elf) != ELFCLASS64) { 1410 err = -LIBBPF_ERRNO__FORMAT; 1411 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1412 goto errout; 1413 } 1414 1415 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1416 if (!obj->efile.ehdr) { 1417 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1418 err = -LIBBPF_ERRNO__FORMAT; 1419 goto errout; 1420 } 1421 1422 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1423 pr_warn("elf: failed to get section names section index for %s: %s\n", 1424 obj->path, elf_errmsg(-1)); 1425 err = -LIBBPF_ERRNO__FORMAT; 1426 goto errout; 1427 } 1428 1429 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1430 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1431 pr_warn("elf: failed to get section names strings from %s: %s\n", 1432 obj->path, elf_errmsg(-1)); 1433 err = -LIBBPF_ERRNO__FORMAT; 1434 goto errout; 1435 } 1436 1437 /* Old LLVM set e_machine to EM_NONE */ 1438 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1439 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1440 err = -LIBBPF_ERRNO__FORMAT; 1441 goto errout; 1442 } 1443 1444 return 0; 1445 errout: 1446 bpf_object__elf_finish(obj); 1447 return err; 1448 } 1449 1450 static int bpf_object__check_endianness(struct bpf_object *obj) 1451 { 1452 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1453 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1454 return 0; 1455 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1456 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1457 return 0; 1458 #else 1459 # error "Unrecognized __BYTE_ORDER__" 1460 #endif 1461 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1462 return -LIBBPF_ERRNO__ENDIAN; 1463 } 1464 1465 static int 1466 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1467 { 1468 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1469 * go over allowed ELF data section buffer 1470 */ 1471 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1472 pr_debug("license of %s is %s\n", obj->path, obj->license); 1473 return 0; 1474 } 1475 1476 static int 1477 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1478 { 1479 __u32 kver; 1480 1481 if (size != sizeof(kver)) { 1482 pr_warn("invalid kver section in %s\n", obj->path); 1483 return -LIBBPF_ERRNO__FORMAT; 1484 } 1485 memcpy(&kver, data, sizeof(kver)); 1486 obj->kern_version = kver; 1487 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1488 return 0; 1489 } 1490 1491 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1492 { 1493 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1494 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1495 return true; 1496 return false; 1497 } 1498 1499 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1500 { 1501 Elf_Data *data; 1502 Elf_Scn *scn; 1503 1504 if (!name) 1505 return -EINVAL; 1506 1507 scn = elf_sec_by_name(obj, name); 1508 data = elf_sec_data(obj, scn); 1509 if (data) { 1510 *size = data->d_size; 1511 return 0; /* found it */ 1512 } 1513 1514 return -ENOENT; 1515 } 1516 1517 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1518 { 1519 Elf_Data *symbols = obj->efile.symbols; 1520 const char *sname; 1521 size_t si; 1522 1523 if (!name || !off) 1524 return -EINVAL; 1525 1526 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1527 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1528 1529 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1530 continue; 1531 1532 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1533 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1534 continue; 1535 1536 sname = elf_sym_str(obj, sym->st_name); 1537 if (!sname) { 1538 pr_warn("failed to get sym name string for var %s\n", name); 1539 return -EIO; 1540 } 1541 if (strcmp(name, sname) == 0) { 1542 *off = sym->st_value; 1543 return 0; 1544 } 1545 } 1546 1547 return -ENOENT; 1548 } 1549 1550 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1551 { 1552 struct bpf_map *map; 1553 int err; 1554 1555 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1556 sizeof(*obj->maps), obj->nr_maps + 1); 1557 if (err) 1558 return ERR_PTR(err); 1559 1560 map = &obj->maps[obj->nr_maps++]; 1561 map->obj = obj; 1562 map->fd = -1; 1563 map->inner_map_fd = -1; 1564 map->autocreate = true; 1565 1566 return map; 1567 } 1568 1569 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1570 { 1571 long page_sz = sysconf(_SC_PAGE_SIZE); 1572 size_t map_sz; 1573 1574 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1575 map_sz = roundup(map_sz, page_sz); 1576 return map_sz; 1577 } 1578 1579 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1580 { 1581 char map_name[BPF_OBJ_NAME_LEN], *p; 1582 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1583 1584 /* This is one of the more confusing parts of libbpf for various 1585 * reasons, some of which are historical. The original idea for naming 1586 * internal names was to include as much of BPF object name prefix as 1587 * possible, so that it can be distinguished from similar internal 1588 * maps of a different BPF object. 1589 * As an example, let's say we have bpf_object named 'my_object_name' 1590 * and internal map corresponding to '.rodata' ELF section. The final 1591 * map name advertised to user and to the kernel will be 1592 * 'my_objec.rodata', taking first 8 characters of object name and 1593 * entire 7 characters of '.rodata'. 1594 * Somewhat confusingly, if internal map ELF section name is shorter 1595 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1596 * for the suffix, even though we only have 4 actual characters, and 1597 * resulting map will be called 'my_objec.bss', not even using all 15 1598 * characters allowed by the kernel. Oh well, at least the truncated 1599 * object name is somewhat consistent in this case. But if the map 1600 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1601 * (8 chars) and thus will be left with only first 7 characters of the 1602 * object name ('my_obje'). Happy guessing, user, that the final map 1603 * name will be "my_obje.kconfig". 1604 * Now, with libbpf starting to support arbitrarily named .rodata.* 1605 * and .data.* data sections, it's possible that ELF section name is 1606 * longer than allowed 15 chars, so we now need to be careful to take 1607 * only up to 15 first characters of ELF name, taking no BPF object 1608 * name characters at all. So '.rodata.abracadabra' will result in 1609 * '.rodata.abracad' kernel and user-visible name. 1610 * We need to keep this convoluted logic intact for .data, .bss and 1611 * .rodata maps, but for new custom .data.custom and .rodata.custom 1612 * maps we use their ELF names as is, not prepending bpf_object name 1613 * in front. We still need to truncate them to 15 characters for the 1614 * kernel. Full name can be recovered for such maps by using DATASEC 1615 * BTF type associated with such map's value type, though. 1616 */ 1617 if (sfx_len >= BPF_OBJ_NAME_LEN) 1618 sfx_len = BPF_OBJ_NAME_LEN - 1; 1619 1620 /* if there are two or more dots in map name, it's a custom dot map */ 1621 if (strchr(real_name + 1, '.') != NULL) 1622 pfx_len = 0; 1623 else 1624 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1625 1626 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1627 sfx_len, real_name); 1628 1629 /* sanitise map name to characters allowed by kernel */ 1630 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1631 if (!isalnum(*p) && *p != '_' && *p != '.') 1632 *p = '_'; 1633 1634 return strdup(map_name); 1635 } 1636 1637 static int 1638 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1639 1640 static int 1641 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1642 const char *real_name, int sec_idx, void *data, size_t data_sz) 1643 { 1644 struct bpf_map_def *def; 1645 struct bpf_map *map; 1646 int err; 1647 1648 map = bpf_object__add_map(obj); 1649 if (IS_ERR(map)) 1650 return PTR_ERR(map); 1651 1652 map->libbpf_type = type; 1653 map->sec_idx = sec_idx; 1654 map->sec_offset = 0; 1655 map->real_name = strdup(real_name); 1656 map->name = internal_map_name(obj, real_name); 1657 if (!map->real_name || !map->name) { 1658 zfree(&map->real_name); 1659 zfree(&map->name); 1660 return -ENOMEM; 1661 } 1662 1663 def = &map->def; 1664 def->type = BPF_MAP_TYPE_ARRAY; 1665 def->key_size = sizeof(int); 1666 def->value_size = data_sz; 1667 def->max_entries = 1; 1668 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1669 ? BPF_F_RDONLY_PROG : 0; 1670 def->map_flags |= BPF_F_MMAPABLE; 1671 1672 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1673 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1674 1675 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1676 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1677 if (map->mmaped == MAP_FAILED) { 1678 err = -errno; 1679 map->mmaped = NULL; 1680 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1681 map->name, err); 1682 zfree(&map->real_name); 1683 zfree(&map->name); 1684 return err; 1685 } 1686 1687 /* failures are fine because of maps like .rodata.str1.1 */ 1688 (void) bpf_map_find_btf_info(obj, map); 1689 1690 if (data) 1691 memcpy(map->mmaped, data, data_sz); 1692 1693 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1694 return 0; 1695 } 1696 1697 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1698 { 1699 struct elf_sec_desc *sec_desc; 1700 const char *sec_name; 1701 int err = 0, sec_idx; 1702 1703 /* 1704 * Populate obj->maps with libbpf internal maps. 1705 */ 1706 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1707 sec_desc = &obj->efile.secs[sec_idx]; 1708 1709 switch (sec_desc->sec_type) { 1710 case SEC_DATA: 1711 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1712 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1713 sec_name, sec_idx, 1714 sec_desc->data->d_buf, 1715 sec_desc->data->d_size); 1716 break; 1717 case SEC_RODATA: 1718 obj->has_rodata = true; 1719 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1720 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1721 sec_name, sec_idx, 1722 sec_desc->data->d_buf, 1723 sec_desc->data->d_size); 1724 break; 1725 case SEC_BSS: 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1728 sec_name, sec_idx, 1729 NULL, 1730 sec_desc->data->d_size); 1731 break; 1732 default: 1733 /* skip */ 1734 break; 1735 } 1736 if (err) 1737 return err; 1738 } 1739 return 0; 1740 } 1741 1742 1743 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1744 const void *name) 1745 { 1746 int i; 1747 1748 for (i = 0; i < obj->nr_extern; i++) { 1749 if (strcmp(obj->externs[i].name, name) == 0) 1750 return &obj->externs[i]; 1751 } 1752 return NULL; 1753 } 1754 1755 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1756 char value) 1757 { 1758 switch (ext->kcfg.type) { 1759 case KCFG_BOOL: 1760 if (value == 'm') { 1761 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1762 ext->name, value); 1763 return -EINVAL; 1764 } 1765 *(bool *)ext_val = value == 'y' ? true : false; 1766 break; 1767 case KCFG_TRISTATE: 1768 if (value == 'y') 1769 *(enum libbpf_tristate *)ext_val = TRI_YES; 1770 else if (value == 'm') 1771 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1772 else /* value == 'n' */ 1773 *(enum libbpf_tristate *)ext_val = TRI_NO; 1774 break; 1775 case KCFG_CHAR: 1776 *(char *)ext_val = value; 1777 break; 1778 case KCFG_UNKNOWN: 1779 case KCFG_INT: 1780 case KCFG_CHAR_ARR: 1781 default: 1782 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1783 ext->name, value); 1784 return -EINVAL; 1785 } 1786 ext->is_set = true; 1787 return 0; 1788 } 1789 1790 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1791 const char *value) 1792 { 1793 size_t len; 1794 1795 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1796 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1797 return -EINVAL; 1798 } 1799 1800 len = strlen(value); 1801 if (value[len - 1] != '"') { 1802 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1803 ext->name, value); 1804 return -EINVAL; 1805 } 1806 1807 /* strip quotes */ 1808 len -= 2; 1809 if (len >= ext->kcfg.sz) { 1810 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1811 ext->name, value, len, ext->kcfg.sz - 1); 1812 len = ext->kcfg.sz - 1; 1813 } 1814 memcpy(ext_val, value + 1, len); 1815 ext_val[len] = '\0'; 1816 ext->is_set = true; 1817 return 0; 1818 } 1819 1820 static int parse_u64(const char *value, __u64 *res) 1821 { 1822 char *value_end; 1823 int err; 1824 1825 errno = 0; 1826 *res = strtoull(value, &value_end, 0); 1827 if (errno) { 1828 err = -errno; 1829 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1830 return err; 1831 } 1832 if (*value_end) { 1833 pr_warn("failed to parse '%s' as integer completely\n", value); 1834 return -EINVAL; 1835 } 1836 return 0; 1837 } 1838 1839 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1840 { 1841 int bit_sz = ext->kcfg.sz * 8; 1842 1843 if (ext->kcfg.sz == 8) 1844 return true; 1845 1846 /* Validate that value stored in u64 fits in integer of `ext->sz` 1847 * bytes size without any loss of information. If the target integer 1848 * is signed, we rely on the following limits of integer type of 1849 * Y bits and subsequent transformation: 1850 * 1851 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1852 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1853 * 0 <= X + 2^(Y-1) < 2^Y 1854 * 1855 * For unsigned target integer, check that all the (64 - Y) bits are 1856 * zero. 1857 */ 1858 if (ext->kcfg.is_signed) 1859 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1860 else 1861 return (v >> bit_sz) == 0; 1862 } 1863 1864 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1865 __u64 value) 1866 { 1867 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1868 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1869 ext->name, (unsigned long long)value); 1870 return -EINVAL; 1871 } 1872 if (!is_kcfg_value_in_range(ext, value)) { 1873 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1874 ext->name, (unsigned long long)value, ext->kcfg.sz); 1875 return -ERANGE; 1876 } 1877 switch (ext->kcfg.sz) { 1878 case 1: *(__u8 *)ext_val = value; break; 1879 case 2: *(__u16 *)ext_val = value; break; 1880 case 4: *(__u32 *)ext_val = value; break; 1881 case 8: *(__u64 *)ext_val = value; break; 1882 default: 1883 return -EINVAL; 1884 } 1885 ext->is_set = true; 1886 return 0; 1887 } 1888 1889 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1890 char *buf, void *data) 1891 { 1892 struct extern_desc *ext; 1893 char *sep, *value; 1894 int len, err = 0; 1895 void *ext_val; 1896 __u64 num; 1897 1898 if (!str_has_pfx(buf, "CONFIG_")) 1899 return 0; 1900 1901 sep = strchr(buf, '='); 1902 if (!sep) { 1903 pr_warn("failed to parse '%s': no separator\n", buf); 1904 return -EINVAL; 1905 } 1906 1907 /* Trim ending '\n' */ 1908 len = strlen(buf); 1909 if (buf[len - 1] == '\n') 1910 buf[len - 1] = '\0'; 1911 /* Split on '=' and ensure that a value is present. */ 1912 *sep = '\0'; 1913 if (!sep[1]) { 1914 *sep = '='; 1915 pr_warn("failed to parse '%s': no value\n", buf); 1916 return -EINVAL; 1917 } 1918 1919 ext = find_extern_by_name(obj, buf); 1920 if (!ext || ext->is_set) 1921 return 0; 1922 1923 ext_val = data + ext->kcfg.data_off; 1924 value = sep + 1; 1925 1926 switch (*value) { 1927 case 'y': case 'n': case 'm': 1928 err = set_kcfg_value_tri(ext, ext_val, *value); 1929 break; 1930 case '"': 1931 err = set_kcfg_value_str(ext, ext_val, value); 1932 break; 1933 default: 1934 /* assume integer */ 1935 err = parse_u64(value, &num); 1936 if (err) { 1937 pr_warn("extern (kcfg) %s=%s should be integer\n", 1938 ext->name, value); 1939 return err; 1940 } 1941 err = set_kcfg_value_num(ext, ext_val, num); 1942 break; 1943 } 1944 if (err) 1945 return err; 1946 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1947 return 0; 1948 } 1949 1950 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1951 { 1952 char buf[PATH_MAX]; 1953 struct utsname uts; 1954 int len, err = 0; 1955 gzFile file; 1956 1957 uname(&uts); 1958 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1959 if (len < 0) 1960 return -EINVAL; 1961 else if (len >= PATH_MAX) 1962 return -ENAMETOOLONG; 1963 1964 /* gzopen also accepts uncompressed files. */ 1965 file = gzopen(buf, "r"); 1966 if (!file) 1967 file = gzopen("/proc/config.gz", "r"); 1968 1969 if (!file) { 1970 pr_warn("failed to open system Kconfig\n"); 1971 return -ENOENT; 1972 } 1973 1974 while (gzgets(file, buf, sizeof(buf))) { 1975 err = bpf_object__process_kconfig_line(obj, buf, data); 1976 if (err) { 1977 pr_warn("error parsing system Kconfig line '%s': %d\n", 1978 buf, err); 1979 goto out; 1980 } 1981 } 1982 1983 out: 1984 gzclose(file); 1985 return err; 1986 } 1987 1988 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1989 const char *config, void *data) 1990 { 1991 char buf[PATH_MAX]; 1992 int err = 0; 1993 FILE *file; 1994 1995 file = fmemopen((void *)config, strlen(config), "r"); 1996 if (!file) { 1997 err = -errno; 1998 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1999 return err; 2000 } 2001 2002 while (fgets(buf, sizeof(buf), file)) { 2003 err = bpf_object__process_kconfig_line(obj, buf, data); 2004 if (err) { 2005 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2006 buf, err); 2007 break; 2008 } 2009 } 2010 2011 fclose(file); 2012 return err; 2013 } 2014 2015 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2016 { 2017 struct extern_desc *last_ext = NULL, *ext; 2018 size_t map_sz; 2019 int i, err; 2020 2021 for (i = 0; i < obj->nr_extern; i++) { 2022 ext = &obj->externs[i]; 2023 if (ext->type == EXT_KCFG) 2024 last_ext = ext; 2025 } 2026 2027 if (!last_ext) 2028 return 0; 2029 2030 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2031 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2032 ".kconfig", obj->efile.symbols_shndx, 2033 NULL, map_sz); 2034 if (err) 2035 return err; 2036 2037 obj->kconfig_map_idx = obj->nr_maps - 1; 2038 2039 return 0; 2040 } 2041 2042 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 2043 { 2044 Elf_Data *symbols = obj->efile.symbols; 2045 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 2046 Elf_Data *data = NULL; 2047 Elf_Scn *scn; 2048 2049 if (obj->efile.maps_shndx < 0) 2050 return 0; 2051 2052 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 2053 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 2054 return -EOPNOTSUPP; 2055 } 2056 2057 if (!symbols) 2058 return -EINVAL; 2059 2060 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 2061 data = elf_sec_data(obj, scn); 2062 if (!scn || !data) { 2063 pr_warn("elf: failed to get legacy map definitions for %s\n", 2064 obj->path); 2065 return -EINVAL; 2066 } 2067 2068 /* 2069 * Count number of maps. Each map has a name. 2070 * Array of maps is not supported: only the first element is 2071 * considered. 2072 * 2073 * TODO: Detect array of map and report error. 2074 */ 2075 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 2076 for (i = 0; i < nr_syms; i++) { 2077 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 2078 2079 if (sym->st_shndx != obj->efile.maps_shndx) 2080 continue; 2081 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 2082 continue; 2083 nr_maps++; 2084 } 2085 /* Assume equally sized map definitions */ 2086 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 2087 nr_maps, data->d_size, obj->path); 2088 2089 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 2090 pr_warn("elf: unable to determine legacy map definition size in %s\n", 2091 obj->path); 2092 return -EINVAL; 2093 } 2094 map_def_sz = data->d_size / nr_maps; 2095 2096 /* Fill obj->maps using data in "maps" section. */ 2097 for (i = 0; i < nr_syms; i++) { 2098 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 2099 const char *map_name; 2100 struct bpf_map_def *def; 2101 struct bpf_map *map; 2102 2103 if (sym->st_shndx != obj->efile.maps_shndx) 2104 continue; 2105 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 2106 continue; 2107 2108 map = bpf_object__add_map(obj); 2109 if (IS_ERR(map)) 2110 return PTR_ERR(map); 2111 2112 map_name = elf_sym_str(obj, sym->st_name); 2113 if (!map_name) { 2114 pr_warn("failed to get map #%d name sym string for obj %s\n", 2115 i, obj->path); 2116 return -LIBBPF_ERRNO__FORMAT; 2117 } 2118 2119 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2120 2121 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2122 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2123 return -ENOTSUP; 2124 } 2125 2126 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2127 map->sec_idx = sym->st_shndx; 2128 map->sec_offset = sym->st_value; 2129 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2130 map_name, map->sec_idx, map->sec_offset); 2131 if (sym->st_value + map_def_sz > data->d_size) { 2132 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2133 obj->path, map_name); 2134 return -EINVAL; 2135 } 2136 2137 map->name = strdup(map_name); 2138 if (!map->name) { 2139 pr_warn("map '%s': failed to alloc map name\n", map_name); 2140 return -ENOMEM; 2141 } 2142 pr_debug("map %d is \"%s\"\n", i, map->name); 2143 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2144 /* 2145 * If the definition of the map in the object file fits in 2146 * bpf_map_def, copy it. Any extra fields in our version 2147 * of bpf_map_def will default to zero as a result of the 2148 * calloc above. 2149 */ 2150 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2151 memcpy(&map->def, def, map_def_sz); 2152 } else { 2153 /* 2154 * Here the map structure being read is bigger than what 2155 * we expect, truncate if the excess bits are all zero. 2156 * If they are not zero, reject this map as 2157 * incompatible. 2158 */ 2159 char *b; 2160 2161 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2162 b < ((char *)def) + map_def_sz; b++) { 2163 if (*b != 0) { 2164 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2165 obj->path, map_name); 2166 if (strict) 2167 return -EINVAL; 2168 } 2169 } 2170 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2171 } 2172 2173 /* btf info may not exist but fill it in if it does exist */ 2174 (void) bpf_map_find_btf_info(obj, map); 2175 } 2176 return 0; 2177 } 2178 2179 const struct btf_type * 2180 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2181 { 2182 const struct btf_type *t = btf__type_by_id(btf, id); 2183 2184 if (res_id) 2185 *res_id = id; 2186 2187 while (btf_is_mod(t) || btf_is_typedef(t)) { 2188 if (res_id) 2189 *res_id = t->type; 2190 t = btf__type_by_id(btf, t->type); 2191 } 2192 2193 return t; 2194 } 2195 2196 static const struct btf_type * 2197 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2198 { 2199 const struct btf_type *t; 2200 2201 t = skip_mods_and_typedefs(btf, id, NULL); 2202 if (!btf_is_ptr(t)) 2203 return NULL; 2204 2205 t = skip_mods_and_typedefs(btf, t->type, res_id); 2206 2207 return btf_is_func_proto(t) ? t : NULL; 2208 } 2209 2210 static const char *__btf_kind_str(__u16 kind) 2211 { 2212 switch (kind) { 2213 case BTF_KIND_UNKN: return "void"; 2214 case BTF_KIND_INT: return "int"; 2215 case BTF_KIND_PTR: return "ptr"; 2216 case BTF_KIND_ARRAY: return "array"; 2217 case BTF_KIND_STRUCT: return "struct"; 2218 case BTF_KIND_UNION: return "union"; 2219 case BTF_KIND_ENUM: return "enum"; 2220 case BTF_KIND_FWD: return "fwd"; 2221 case BTF_KIND_TYPEDEF: return "typedef"; 2222 case BTF_KIND_VOLATILE: return "volatile"; 2223 case BTF_KIND_CONST: return "const"; 2224 case BTF_KIND_RESTRICT: return "restrict"; 2225 case BTF_KIND_FUNC: return "func"; 2226 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2227 case BTF_KIND_VAR: return "var"; 2228 case BTF_KIND_DATASEC: return "datasec"; 2229 case BTF_KIND_FLOAT: return "float"; 2230 case BTF_KIND_DECL_TAG: return "decl_tag"; 2231 case BTF_KIND_TYPE_TAG: return "type_tag"; 2232 default: return "unknown"; 2233 } 2234 } 2235 2236 const char *btf_kind_str(const struct btf_type *t) 2237 { 2238 return __btf_kind_str(btf_kind(t)); 2239 } 2240 2241 /* 2242 * Fetch integer attribute of BTF map definition. Such attributes are 2243 * represented using a pointer to an array, in which dimensionality of array 2244 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2245 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2246 * type definition, while using only sizeof(void *) space in ELF data section. 2247 */ 2248 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2249 const struct btf_member *m, __u32 *res) 2250 { 2251 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2252 const char *name = btf__name_by_offset(btf, m->name_off); 2253 const struct btf_array *arr_info; 2254 const struct btf_type *arr_t; 2255 2256 if (!btf_is_ptr(t)) { 2257 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2258 map_name, name, btf_kind_str(t)); 2259 return false; 2260 } 2261 2262 arr_t = btf__type_by_id(btf, t->type); 2263 if (!arr_t) { 2264 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2265 map_name, name, t->type); 2266 return false; 2267 } 2268 if (!btf_is_array(arr_t)) { 2269 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2270 map_name, name, btf_kind_str(arr_t)); 2271 return false; 2272 } 2273 arr_info = btf_array(arr_t); 2274 *res = arr_info->nelems; 2275 return true; 2276 } 2277 2278 static int build_map_pin_path(struct bpf_map *map, const char *path) 2279 { 2280 char buf[PATH_MAX]; 2281 int len; 2282 2283 if (!path) 2284 path = "/sys/fs/bpf"; 2285 2286 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2287 if (len < 0) 2288 return -EINVAL; 2289 else if (len >= PATH_MAX) 2290 return -ENAMETOOLONG; 2291 2292 return bpf_map__set_pin_path(map, buf); 2293 } 2294 2295 int parse_btf_map_def(const char *map_name, struct btf *btf, 2296 const struct btf_type *def_t, bool strict, 2297 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2298 { 2299 const struct btf_type *t; 2300 const struct btf_member *m; 2301 bool is_inner = inner_def == NULL; 2302 int vlen, i; 2303 2304 vlen = btf_vlen(def_t); 2305 m = btf_members(def_t); 2306 for (i = 0; i < vlen; i++, m++) { 2307 const char *name = btf__name_by_offset(btf, m->name_off); 2308 2309 if (!name) { 2310 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2311 return -EINVAL; 2312 } 2313 if (strcmp(name, "type") == 0) { 2314 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2315 return -EINVAL; 2316 map_def->parts |= MAP_DEF_MAP_TYPE; 2317 } else if (strcmp(name, "max_entries") == 0) { 2318 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2319 return -EINVAL; 2320 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2321 } else if (strcmp(name, "map_flags") == 0) { 2322 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2323 return -EINVAL; 2324 map_def->parts |= MAP_DEF_MAP_FLAGS; 2325 } else if (strcmp(name, "numa_node") == 0) { 2326 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2327 return -EINVAL; 2328 map_def->parts |= MAP_DEF_NUMA_NODE; 2329 } else if (strcmp(name, "key_size") == 0) { 2330 __u32 sz; 2331 2332 if (!get_map_field_int(map_name, btf, m, &sz)) 2333 return -EINVAL; 2334 if (map_def->key_size && map_def->key_size != sz) { 2335 pr_warn("map '%s': conflicting key size %u != %u.\n", 2336 map_name, map_def->key_size, sz); 2337 return -EINVAL; 2338 } 2339 map_def->key_size = sz; 2340 map_def->parts |= MAP_DEF_KEY_SIZE; 2341 } else if (strcmp(name, "key") == 0) { 2342 __s64 sz; 2343 2344 t = btf__type_by_id(btf, m->type); 2345 if (!t) { 2346 pr_warn("map '%s': key type [%d] not found.\n", 2347 map_name, m->type); 2348 return -EINVAL; 2349 } 2350 if (!btf_is_ptr(t)) { 2351 pr_warn("map '%s': key spec is not PTR: %s.\n", 2352 map_name, btf_kind_str(t)); 2353 return -EINVAL; 2354 } 2355 sz = btf__resolve_size(btf, t->type); 2356 if (sz < 0) { 2357 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2358 map_name, t->type, (ssize_t)sz); 2359 return sz; 2360 } 2361 if (map_def->key_size && map_def->key_size != sz) { 2362 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2363 map_name, map_def->key_size, (ssize_t)sz); 2364 return -EINVAL; 2365 } 2366 map_def->key_size = sz; 2367 map_def->key_type_id = t->type; 2368 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2369 } else if (strcmp(name, "value_size") == 0) { 2370 __u32 sz; 2371 2372 if (!get_map_field_int(map_name, btf, m, &sz)) 2373 return -EINVAL; 2374 if (map_def->value_size && map_def->value_size != sz) { 2375 pr_warn("map '%s': conflicting value size %u != %u.\n", 2376 map_name, map_def->value_size, sz); 2377 return -EINVAL; 2378 } 2379 map_def->value_size = sz; 2380 map_def->parts |= MAP_DEF_VALUE_SIZE; 2381 } else if (strcmp(name, "value") == 0) { 2382 __s64 sz; 2383 2384 t = btf__type_by_id(btf, m->type); 2385 if (!t) { 2386 pr_warn("map '%s': value type [%d] not found.\n", 2387 map_name, m->type); 2388 return -EINVAL; 2389 } 2390 if (!btf_is_ptr(t)) { 2391 pr_warn("map '%s': value spec is not PTR: %s.\n", 2392 map_name, btf_kind_str(t)); 2393 return -EINVAL; 2394 } 2395 sz = btf__resolve_size(btf, t->type); 2396 if (sz < 0) { 2397 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2398 map_name, t->type, (ssize_t)sz); 2399 return sz; 2400 } 2401 if (map_def->value_size && map_def->value_size != sz) { 2402 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2403 map_name, map_def->value_size, (ssize_t)sz); 2404 return -EINVAL; 2405 } 2406 map_def->value_size = sz; 2407 map_def->value_type_id = t->type; 2408 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2409 } 2410 else if (strcmp(name, "values") == 0) { 2411 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2412 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2413 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2414 char inner_map_name[128]; 2415 int err; 2416 2417 if (is_inner) { 2418 pr_warn("map '%s': multi-level inner maps not supported.\n", 2419 map_name); 2420 return -ENOTSUP; 2421 } 2422 if (i != vlen - 1) { 2423 pr_warn("map '%s': '%s' member should be last.\n", 2424 map_name, name); 2425 return -EINVAL; 2426 } 2427 if (!is_map_in_map && !is_prog_array) { 2428 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2429 map_name); 2430 return -ENOTSUP; 2431 } 2432 if (map_def->value_size && map_def->value_size != 4) { 2433 pr_warn("map '%s': conflicting value size %u != 4.\n", 2434 map_name, map_def->value_size); 2435 return -EINVAL; 2436 } 2437 map_def->value_size = 4; 2438 t = btf__type_by_id(btf, m->type); 2439 if (!t) { 2440 pr_warn("map '%s': %s type [%d] not found.\n", 2441 map_name, desc, m->type); 2442 return -EINVAL; 2443 } 2444 if (!btf_is_array(t) || btf_array(t)->nelems) { 2445 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2446 map_name, desc); 2447 return -EINVAL; 2448 } 2449 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2450 if (!btf_is_ptr(t)) { 2451 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2452 map_name, desc, btf_kind_str(t)); 2453 return -EINVAL; 2454 } 2455 t = skip_mods_and_typedefs(btf, t->type, NULL); 2456 if (is_prog_array) { 2457 if (!btf_is_func_proto(t)) { 2458 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2459 map_name, btf_kind_str(t)); 2460 return -EINVAL; 2461 } 2462 continue; 2463 } 2464 if (!btf_is_struct(t)) { 2465 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2466 map_name, btf_kind_str(t)); 2467 return -EINVAL; 2468 } 2469 2470 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2471 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2472 if (err) 2473 return err; 2474 2475 map_def->parts |= MAP_DEF_INNER_MAP; 2476 } else if (strcmp(name, "pinning") == 0) { 2477 __u32 val; 2478 2479 if (is_inner) { 2480 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2481 return -EINVAL; 2482 } 2483 if (!get_map_field_int(map_name, btf, m, &val)) 2484 return -EINVAL; 2485 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2486 pr_warn("map '%s': invalid pinning value %u.\n", 2487 map_name, val); 2488 return -EINVAL; 2489 } 2490 map_def->pinning = val; 2491 map_def->parts |= MAP_DEF_PINNING; 2492 } else if (strcmp(name, "map_extra") == 0) { 2493 __u32 map_extra; 2494 2495 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2496 return -EINVAL; 2497 map_def->map_extra = map_extra; 2498 map_def->parts |= MAP_DEF_MAP_EXTRA; 2499 } else { 2500 if (strict) { 2501 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2502 return -ENOTSUP; 2503 } 2504 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2505 } 2506 } 2507 2508 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2509 pr_warn("map '%s': map type isn't specified.\n", map_name); 2510 return -EINVAL; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2517 { 2518 map->def.type = def->map_type; 2519 map->def.key_size = def->key_size; 2520 map->def.value_size = def->value_size; 2521 map->def.max_entries = def->max_entries; 2522 map->def.map_flags = def->map_flags; 2523 map->map_extra = def->map_extra; 2524 2525 map->numa_node = def->numa_node; 2526 map->btf_key_type_id = def->key_type_id; 2527 map->btf_value_type_id = def->value_type_id; 2528 2529 if (def->parts & MAP_DEF_MAP_TYPE) 2530 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2531 2532 if (def->parts & MAP_DEF_KEY_TYPE) 2533 pr_debug("map '%s': found key [%u], sz = %u.\n", 2534 map->name, def->key_type_id, def->key_size); 2535 else if (def->parts & MAP_DEF_KEY_SIZE) 2536 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2537 2538 if (def->parts & MAP_DEF_VALUE_TYPE) 2539 pr_debug("map '%s': found value [%u], sz = %u.\n", 2540 map->name, def->value_type_id, def->value_size); 2541 else if (def->parts & MAP_DEF_VALUE_SIZE) 2542 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2543 2544 if (def->parts & MAP_DEF_MAX_ENTRIES) 2545 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2546 if (def->parts & MAP_DEF_MAP_FLAGS) 2547 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2548 if (def->parts & MAP_DEF_MAP_EXTRA) 2549 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2550 (unsigned long long)def->map_extra); 2551 if (def->parts & MAP_DEF_PINNING) 2552 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2553 if (def->parts & MAP_DEF_NUMA_NODE) 2554 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2555 2556 if (def->parts & MAP_DEF_INNER_MAP) 2557 pr_debug("map '%s': found inner map definition.\n", map->name); 2558 } 2559 2560 static const char *btf_var_linkage_str(__u32 linkage) 2561 { 2562 switch (linkage) { 2563 case BTF_VAR_STATIC: return "static"; 2564 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2565 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2566 default: return "unknown"; 2567 } 2568 } 2569 2570 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2571 const struct btf_type *sec, 2572 int var_idx, int sec_idx, 2573 const Elf_Data *data, bool strict, 2574 const char *pin_root_path) 2575 { 2576 struct btf_map_def map_def = {}, inner_def = {}; 2577 const struct btf_type *var, *def; 2578 const struct btf_var_secinfo *vi; 2579 const struct btf_var *var_extra; 2580 const char *map_name; 2581 struct bpf_map *map; 2582 int err; 2583 2584 vi = btf_var_secinfos(sec) + var_idx; 2585 var = btf__type_by_id(obj->btf, vi->type); 2586 var_extra = btf_var(var); 2587 map_name = btf__name_by_offset(obj->btf, var->name_off); 2588 2589 if (map_name == NULL || map_name[0] == '\0') { 2590 pr_warn("map #%d: empty name.\n", var_idx); 2591 return -EINVAL; 2592 } 2593 if ((__u64)vi->offset + vi->size > data->d_size) { 2594 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2595 return -EINVAL; 2596 } 2597 if (!btf_is_var(var)) { 2598 pr_warn("map '%s': unexpected var kind %s.\n", 2599 map_name, btf_kind_str(var)); 2600 return -EINVAL; 2601 } 2602 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2603 pr_warn("map '%s': unsupported map linkage %s.\n", 2604 map_name, btf_var_linkage_str(var_extra->linkage)); 2605 return -EOPNOTSUPP; 2606 } 2607 2608 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2609 if (!btf_is_struct(def)) { 2610 pr_warn("map '%s': unexpected def kind %s.\n", 2611 map_name, btf_kind_str(var)); 2612 return -EINVAL; 2613 } 2614 if (def->size > vi->size) { 2615 pr_warn("map '%s': invalid def size.\n", map_name); 2616 return -EINVAL; 2617 } 2618 2619 map = bpf_object__add_map(obj); 2620 if (IS_ERR(map)) 2621 return PTR_ERR(map); 2622 map->name = strdup(map_name); 2623 if (!map->name) { 2624 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2625 return -ENOMEM; 2626 } 2627 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2628 map->def.type = BPF_MAP_TYPE_UNSPEC; 2629 map->sec_idx = sec_idx; 2630 map->sec_offset = vi->offset; 2631 map->btf_var_idx = var_idx; 2632 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2633 map_name, map->sec_idx, map->sec_offset); 2634 2635 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2636 if (err) 2637 return err; 2638 2639 fill_map_from_def(map, &map_def); 2640 2641 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2642 err = build_map_pin_path(map, pin_root_path); 2643 if (err) { 2644 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2645 return err; 2646 } 2647 } 2648 2649 if (map_def.parts & MAP_DEF_INNER_MAP) { 2650 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2651 if (!map->inner_map) 2652 return -ENOMEM; 2653 map->inner_map->fd = -1; 2654 map->inner_map->sec_idx = sec_idx; 2655 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2656 if (!map->inner_map->name) 2657 return -ENOMEM; 2658 sprintf(map->inner_map->name, "%s.inner", map_name); 2659 2660 fill_map_from_def(map->inner_map, &inner_def); 2661 } 2662 2663 err = bpf_map_find_btf_info(obj, map); 2664 if (err) 2665 return err; 2666 2667 return 0; 2668 } 2669 2670 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2671 const char *pin_root_path) 2672 { 2673 const struct btf_type *sec = NULL; 2674 int nr_types, i, vlen, err; 2675 const struct btf_type *t; 2676 const char *name; 2677 Elf_Data *data; 2678 Elf_Scn *scn; 2679 2680 if (obj->efile.btf_maps_shndx < 0) 2681 return 0; 2682 2683 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2684 data = elf_sec_data(obj, scn); 2685 if (!scn || !data) { 2686 pr_warn("elf: failed to get %s map definitions for %s\n", 2687 MAPS_ELF_SEC, obj->path); 2688 return -EINVAL; 2689 } 2690 2691 nr_types = btf__type_cnt(obj->btf); 2692 for (i = 1; i < nr_types; i++) { 2693 t = btf__type_by_id(obj->btf, i); 2694 if (!btf_is_datasec(t)) 2695 continue; 2696 name = btf__name_by_offset(obj->btf, t->name_off); 2697 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2698 sec = t; 2699 obj->efile.btf_maps_sec_btf_id = i; 2700 break; 2701 } 2702 } 2703 2704 if (!sec) { 2705 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2706 return -ENOENT; 2707 } 2708 2709 vlen = btf_vlen(sec); 2710 for (i = 0; i < vlen; i++) { 2711 err = bpf_object__init_user_btf_map(obj, sec, i, 2712 obj->efile.btf_maps_shndx, 2713 data, strict, 2714 pin_root_path); 2715 if (err) 2716 return err; 2717 } 2718 2719 return 0; 2720 } 2721 2722 static int bpf_object__init_maps(struct bpf_object *obj, 2723 const struct bpf_object_open_opts *opts) 2724 { 2725 const char *pin_root_path; 2726 bool strict; 2727 int err; 2728 2729 strict = !OPTS_GET(opts, relaxed_maps, false); 2730 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2731 2732 err = bpf_object__init_user_maps(obj, strict); 2733 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2734 err = err ?: bpf_object__init_global_data_maps(obj); 2735 err = err ?: bpf_object__init_kconfig_map(obj); 2736 err = err ?: bpf_object__init_struct_ops_maps(obj); 2737 2738 return err; 2739 } 2740 2741 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2742 { 2743 Elf64_Shdr *sh; 2744 2745 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2746 if (!sh) 2747 return false; 2748 2749 return sh->sh_flags & SHF_EXECINSTR; 2750 } 2751 2752 static bool btf_needs_sanitization(struct bpf_object *obj) 2753 { 2754 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2755 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2756 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2757 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2758 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2759 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2760 2761 return !has_func || !has_datasec || !has_func_global || !has_float || 2762 !has_decl_tag || !has_type_tag; 2763 } 2764 2765 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2766 { 2767 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2768 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2769 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2770 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2771 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2772 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2773 struct btf_type *t; 2774 int i, j, vlen; 2775 2776 for (i = 1; i < btf__type_cnt(btf); i++) { 2777 t = (struct btf_type *)btf__type_by_id(btf, i); 2778 2779 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2780 /* replace VAR/DECL_TAG with INT */ 2781 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2782 /* 2783 * using size = 1 is the safest choice, 4 will be too 2784 * big and cause kernel BTF validation failure if 2785 * original variable took less than 4 bytes 2786 */ 2787 t->size = 1; 2788 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2789 } else if (!has_datasec && btf_is_datasec(t)) { 2790 /* replace DATASEC with STRUCT */ 2791 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2792 struct btf_member *m = btf_members(t); 2793 struct btf_type *vt; 2794 char *name; 2795 2796 name = (char *)btf__name_by_offset(btf, t->name_off); 2797 while (*name) { 2798 if (*name == '.') 2799 *name = '_'; 2800 name++; 2801 } 2802 2803 vlen = btf_vlen(t); 2804 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2805 for (j = 0; j < vlen; j++, v++, m++) { 2806 /* order of field assignments is important */ 2807 m->offset = v->offset * 8; 2808 m->type = v->type; 2809 /* preserve variable name as member name */ 2810 vt = (void *)btf__type_by_id(btf, v->type); 2811 m->name_off = vt->name_off; 2812 } 2813 } else if (!has_func && btf_is_func_proto(t)) { 2814 /* replace FUNC_PROTO with ENUM */ 2815 vlen = btf_vlen(t); 2816 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2817 t->size = sizeof(__u32); /* kernel enforced */ 2818 } else if (!has_func && btf_is_func(t)) { 2819 /* replace FUNC with TYPEDEF */ 2820 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2821 } else if (!has_func_global && btf_is_func(t)) { 2822 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2823 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2824 } else if (!has_float && btf_is_float(t)) { 2825 /* replace FLOAT with an equally-sized empty STRUCT; 2826 * since C compilers do not accept e.g. "float" as a 2827 * valid struct name, make it anonymous 2828 */ 2829 t->name_off = 0; 2830 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2831 } else if (!has_type_tag && btf_is_type_tag(t)) { 2832 /* replace TYPE_TAG with a CONST */ 2833 t->name_off = 0; 2834 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2835 } 2836 } 2837 } 2838 2839 static bool libbpf_needs_btf(const struct bpf_object *obj) 2840 { 2841 return obj->efile.btf_maps_shndx >= 0 || 2842 obj->efile.st_ops_shndx >= 0 || 2843 obj->nr_extern > 0; 2844 } 2845 2846 static bool kernel_needs_btf(const struct bpf_object *obj) 2847 { 2848 return obj->efile.st_ops_shndx >= 0; 2849 } 2850 2851 static int bpf_object__init_btf(struct bpf_object *obj, 2852 Elf_Data *btf_data, 2853 Elf_Data *btf_ext_data) 2854 { 2855 int err = -ENOENT; 2856 2857 if (btf_data) { 2858 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2859 err = libbpf_get_error(obj->btf); 2860 if (err) { 2861 obj->btf = NULL; 2862 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2863 goto out; 2864 } 2865 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2866 btf__set_pointer_size(obj->btf, 8); 2867 } 2868 if (btf_ext_data) { 2869 struct btf_ext_info *ext_segs[3]; 2870 int seg_num, sec_num; 2871 2872 if (!obj->btf) { 2873 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2874 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2875 goto out; 2876 } 2877 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2878 err = libbpf_get_error(obj->btf_ext); 2879 if (err) { 2880 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2881 BTF_EXT_ELF_SEC, err); 2882 obj->btf_ext = NULL; 2883 goto out; 2884 } 2885 2886 /* setup .BTF.ext to ELF section mapping */ 2887 ext_segs[0] = &obj->btf_ext->func_info; 2888 ext_segs[1] = &obj->btf_ext->line_info; 2889 ext_segs[2] = &obj->btf_ext->core_relo_info; 2890 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2891 struct btf_ext_info *seg = ext_segs[seg_num]; 2892 const struct btf_ext_info_sec *sec; 2893 const char *sec_name; 2894 Elf_Scn *scn; 2895 2896 if (seg->sec_cnt == 0) 2897 continue; 2898 2899 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2900 if (!seg->sec_idxs) { 2901 err = -ENOMEM; 2902 goto out; 2903 } 2904 2905 sec_num = 0; 2906 for_each_btf_ext_sec(seg, sec) { 2907 /* preventively increment index to avoid doing 2908 * this before every continue below 2909 */ 2910 sec_num++; 2911 2912 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2913 if (str_is_empty(sec_name)) 2914 continue; 2915 scn = elf_sec_by_name(obj, sec_name); 2916 if (!scn) 2917 continue; 2918 2919 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2920 } 2921 } 2922 } 2923 out: 2924 if (err && libbpf_needs_btf(obj)) { 2925 pr_warn("BTF is required, but is missing or corrupted.\n"); 2926 return err; 2927 } 2928 return 0; 2929 } 2930 2931 static int compare_vsi_off(const void *_a, const void *_b) 2932 { 2933 const struct btf_var_secinfo *a = _a; 2934 const struct btf_var_secinfo *b = _b; 2935 2936 return a->offset - b->offset; 2937 } 2938 2939 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2940 struct btf_type *t) 2941 { 2942 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2943 const char *name = btf__name_by_offset(btf, t->name_off); 2944 const struct btf_type *t_var; 2945 struct btf_var_secinfo *vsi; 2946 const struct btf_var *var; 2947 int ret; 2948 2949 if (!name) { 2950 pr_debug("No name found in string section for DATASEC kind.\n"); 2951 return -ENOENT; 2952 } 2953 2954 /* .extern datasec size and var offsets were set correctly during 2955 * extern collection step, so just skip straight to sorting variables 2956 */ 2957 if (t->size) 2958 goto sort_vars; 2959 2960 ret = find_elf_sec_sz(obj, name, &size); 2961 if (ret || !size) { 2962 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2963 return -ENOENT; 2964 } 2965 2966 t->size = size; 2967 2968 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2969 t_var = btf__type_by_id(btf, vsi->type); 2970 if (!t_var || !btf_is_var(t_var)) { 2971 pr_debug("Non-VAR type seen in section %s\n", name); 2972 return -EINVAL; 2973 } 2974 2975 var = btf_var(t_var); 2976 if (var->linkage == BTF_VAR_STATIC) 2977 continue; 2978 2979 name = btf__name_by_offset(btf, t_var->name_off); 2980 if (!name) { 2981 pr_debug("No name found in string section for VAR kind\n"); 2982 return -ENOENT; 2983 } 2984 2985 ret = find_elf_var_offset(obj, name, &off); 2986 if (ret) { 2987 pr_debug("No offset found in symbol table for VAR %s\n", 2988 name); 2989 return -ENOENT; 2990 } 2991 2992 vsi->offset = off; 2993 } 2994 2995 sort_vars: 2996 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2997 return 0; 2998 } 2999 3000 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 3001 { 3002 int err = 0; 3003 __u32 i, n = btf__type_cnt(btf); 3004 3005 for (i = 1; i < n; i++) { 3006 struct btf_type *t = btf_type_by_id(btf, i); 3007 3008 /* Loader needs to fix up some of the things compiler 3009 * couldn't get its hands on while emitting BTF. This 3010 * is section size and global variable offset. We use 3011 * the info from the ELF itself for this purpose. 3012 */ 3013 if (btf_is_datasec(t)) { 3014 err = btf_fixup_datasec(obj, btf, t); 3015 if (err) 3016 break; 3017 } 3018 } 3019 3020 return libbpf_err(err); 3021 } 3022 3023 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 3024 { 3025 return btf_finalize_data(obj, btf); 3026 } 3027 3028 static int bpf_object__finalize_btf(struct bpf_object *obj) 3029 { 3030 int err; 3031 3032 if (!obj->btf) 3033 return 0; 3034 3035 err = btf_finalize_data(obj, obj->btf); 3036 if (err) { 3037 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 3038 return err; 3039 } 3040 3041 return 0; 3042 } 3043 3044 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3045 { 3046 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3047 prog->type == BPF_PROG_TYPE_LSM) 3048 return true; 3049 3050 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3051 * also need vmlinux BTF 3052 */ 3053 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3054 return true; 3055 3056 return false; 3057 } 3058 3059 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3060 { 3061 struct bpf_program *prog; 3062 int i; 3063 3064 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3065 * is not specified 3066 */ 3067 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3068 return true; 3069 3070 /* Support for typed ksyms needs kernel BTF */ 3071 for (i = 0; i < obj->nr_extern; i++) { 3072 const struct extern_desc *ext; 3073 3074 ext = &obj->externs[i]; 3075 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3076 return true; 3077 } 3078 3079 bpf_object__for_each_program(prog, obj) { 3080 if (!prog->autoload) 3081 continue; 3082 if (prog_needs_vmlinux_btf(prog)) 3083 return true; 3084 } 3085 3086 return false; 3087 } 3088 3089 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3090 { 3091 int err; 3092 3093 /* btf_vmlinux could be loaded earlier */ 3094 if (obj->btf_vmlinux || obj->gen_loader) 3095 return 0; 3096 3097 if (!force && !obj_needs_vmlinux_btf(obj)) 3098 return 0; 3099 3100 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3101 err = libbpf_get_error(obj->btf_vmlinux); 3102 if (err) { 3103 pr_warn("Error loading vmlinux BTF: %d\n", err); 3104 obj->btf_vmlinux = NULL; 3105 return err; 3106 } 3107 return 0; 3108 } 3109 3110 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3111 { 3112 struct btf *kern_btf = obj->btf; 3113 bool btf_mandatory, sanitize; 3114 int i, err = 0; 3115 3116 if (!obj->btf) 3117 return 0; 3118 3119 if (!kernel_supports(obj, FEAT_BTF)) { 3120 if (kernel_needs_btf(obj)) { 3121 err = -EOPNOTSUPP; 3122 goto report; 3123 } 3124 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3125 return 0; 3126 } 3127 3128 /* Even though some subprogs are global/weak, user might prefer more 3129 * permissive BPF verification process that BPF verifier performs for 3130 * static functions, taking into account more context from the caller 3131 * functions. In such case, they need to mark such subprogs with 3132 * __attribute__((visibility("hidden"))) and libbpf will adjust 3133 * corresponding FUNC BTF type to be marked as static and trigger more 3134 * involved BPF verification process. 3135 */ 3136 for (i = 0; i < obj->nr_programs; i++) { 3137 struct bpf_program *prog = &obj->programs[i]; 3138 struct btf_type *t; 3139 const char *name; 3140 int j, n; 3141 3142 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3143 continue; 3144 3145 n = btf__type_cnt(obj->btf); 3146 for (j = 1; j < n; j++) { 3147 t = btf_type_by_id(obj->btf, j); 3148 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3149 continue; 3150 3151 name = btf__str_by_offset(obj->btf, t->name_off); 3152 if (strcmp(name, prog->name) != 0) 3153 continue; 3154 3155 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3156 break; 3157 } 3158 } 3159 3160 sanitize = btf_needs_sanitization(obj); 3161 if (sanitize) { 3162 const void *raw_data; 3163 __u32 sz; 3164 3165 /* clone BTF to sanitize a copy and leave the original intact */ 3166 raw_data = btf__raw_data(obj->btf, &sz); 3167 kern_btf = btf__new(raw_data, sz); 3168 err = libbpf_get_error(kern_btf); 3169 if (err) 3170 return err; 3171 3172 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3173 btf__set_pointer_size(obj->btf, 8); 3174 bpf_object__sanitize_btf(obj, kern_btf); 3175 } 3176 3177 if (obj->gen_loader) { 3178 __u32 raw_size = 0; 3179 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3180 3181 if (!raw_data) 3182 return -ENOMEM; 3183 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3184 /* Pretend to have valid FD to pass various fd >= 0 checks. 3185 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3186 */ 3187 btf__set_fd(kern_btf, 0); 3188 } else { 3189 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3190 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3191 obj->log_level ? 1 : 0); 3192 } 3193 if (sanitize) { 3194 if (!err) { 3195 /* move fd to libbpf's BTF */ 3196 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3197 btf__set_fd(kern_btf, -1); 3198 } 3199 btf__free(kern_btf); 3200 } 3201 report: 3202 if (err) { 3203 btf_mandatory = kernel_needs_btf(obj); 3204 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3205 btf_mandatory ? "BTF is mandatory, can't proceed." 3206 : "BTF is optional, ignoring."); 3207 if (!btf_mandatory) 3208 err = 0; 3209 } 3210 return err; 3211 } 3212 3213 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3214 { 3215 const char *name; 3216 3217 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3218 if (!name) { 3219 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3220 off, obj->path, elf_errmsg(-1)); 3221 return NULL; 3222 } 3223 3224 return name; 3225 } 3226 3227 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3228 { 3229 const char *name; 3230 3231 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3232 if (!name) { 3233 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3234 off, obj->path, elf_errmsg(-1)); 3235 return NULL; 3236 } 3237 3238 return name; 3239 } 3240 3241 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3242 { 3243 Elf_Scn *scn; 3244 3245 scn = elf_getscn(obj->efile.elf, idx); 3246 if (!scn) { 3247 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3248 idx, obj->path, elf_errmsg(-1)); 3249 return NULL; 3250 } 3251 return scn; 3252 } 3253 3254 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3255 { 3256 Elf_Scn *scn = NULL; 3257 Elf *elf = obj->efile.elf; 3258 const char *sec_name; 3259 3260 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3261 sec_name = elf_sec_name(obj, scn); 3262 if (!sec_name) 3263 return NULL; 3264 3265 if (strcmp(sec_name, name) != 0) 3266 continue; 3267 3268 return scn; 3269 } 3270 return NULL; 3271 } 3272 3273 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3274 { 3275 Elf64_Shdr *shdr; 3276 3277 if (!scn) 3278 return NULL; 3279 3280 shdr = elf64_getshdr(scn); 3281 if (!shdr) { 3282 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3283 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3284 return NULL; 3285 } 3286 3287 return shdr; 3288 } 3289 3290 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3291 { 3292 const char *name; 3293 Elf64_Shdr *sh; 3294 3295 if (!scn) 3296 return NULL; 3297 3298 sh = elf_sec_hdr(obj, scn); 3299 if (!sh) 3300 return NULL; 3301 3302 name = elf_sec_str(obj, sh->sh_name); 3303 if (!name) { 3304 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3305 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3306 return NULL; 3307 } 3308 3309 return name; 3310 } 3311 3312 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3313 { 3314 Elf_Data *data; 3315 3316 if (!scn) 3317 return NULL; 3318 3319 data = elf_getdata(scn, 0); 3320 if (!data) { 3321 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3322 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3323 obj->path, elf_errmsg(-1)); 3324 return NULL; 3325 } 3326 3327 return data; 3328 } 3329 3330 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3331 { 3332 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3333 return NULL; 3334 3335 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3336 } 3337 3338 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3339 { 3340 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3341 return NULL; 3342 3343 return (Elf64_Rel *)data->d_buf + idx; 3344 } 3345 3346 static bool is_sec_name_dwarf(const char *name) 3347 { 3348 /* approximation, but the actual list is too long */ 3349 return str_has_pfx(name, ".debug_"); 3350 } 3351 3352 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3353 { 3354 /* no special handling of .strtab */ 3355 if (hdr->sh_type == SHT_STRTAB) 3356 return true; 3357 3358 /* ignore .llvm_addrsig section as well */ 3359 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3360 return true; 3361 3362 /* no subprograms will lead to an empty .text section, ignore it */ 3363 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3364 strcmp(name, ".text") == 0) 3365 return true; 3366 3367 /* DWARF sections */ 3368 if (is_sec_name_dwarf(name)) 3369 return true; 3370 3371 if (str_has_pfx(name, ".rel")) { 3372 name += sizeof(".rel") - 1; 3373 /* DWARF section relocations */ 3374 if (is_sec_name_dwarf(name)) 3375 return true; 3376 3377 /* .BTF and .BTF.ext don't need relocations */ 3378 if (strcmp(name, BTF_ELF_SEC) == 0 || 3379 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3380 return true; 3381 } 3382 3383 return false; 3384 } 3385 3386 static int cmp_progs(const void *_a, const void *_b) 3387 { 3388 const struct bpf_program *a = _a; 3389 const struct bpf_program *b = _b; 3390 3391 if (a->sec_idx != b->sec_idx) 3392 return a->sec_idx < b->sec_idx ? -1 : 1; 3393 3394 /* sec_insn_off can't be the same within the section */ 3395 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3396 } 3397 3398 static int bpf_object__elf_collect(struct bpf_object *obj) 3399 { 3400 struct elf_sec_desc *sec_desc; 3401 Elf *elf = obj->efile.elf; 3402 Elf_Data *btf_ext_data = NULL; 3403 Elf_Data *btf_data = NULL; 3404 int idx = 0, err = 0; 3405 const char *name; 3406 Elf_Data *data; 3407 Elf_Scn *scn; 3408 Elf64_Shdr *sh; 3409 3410 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3411 * section. e_shnum does include sec #0, so e_shnum is the necessary 3412 * size of an array to keep all the sections. 3413 */ 3414 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3415 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3416 if (!obj->efile.secs) 3417 return -ENOMEM; 3418 3419 /* a bunch of ELF parsing functionality depends on processing symbols, 3420 * so do the first pass and find the symbol table 3421 */ 3422 scn = NULL; 3423 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3424 sh = elf_sec_hdr(obj, scn); 3425 if (!sh) 3426 return -LIBBPF_ERRNO__FORMAT; 3427 3428 if (sh->sh_type == SHT_SYMTAB) { 3429 if (obj->efile.symbols) { 3430 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3431 return -LIBBPF_ERRNO__FORMAT; 3432 } 3433 3434 data = elf_sec_data(obj, scn); 3435 if (!data) 3436 return -LIBBPF_ERRNO__FORMAT; 3437 3438 idx = elf_ndxscn(scn); 3439 3440 obj->efile.symbols = data; 3441 obj->efile.symbols_shndx = idx; 3442 obj->efile.strtabidx = sh->sh_link; 3443 } 3444 } 3445 3446 if (!obj->efile.symbols) { 3447 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3448 obj->path); 3449 return -ENOENT; 3450 } 3451 3452 scn = NULL; 3453 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3454 idx = elf_ndxscn(scn); 3455 sec_desc = &obj->efile.secs[idx]; 3456 3457 sh = elf_sec_hdr(obj, scn); 3458 if (!sh) 3459 return -LIBBPF_ERRNO__FORMAT; 3460 3461 name = elf_sec_str(obj, sh->sh_name); 3462 if (!name) 3463 return -LIBBPF_ERRNO__FORMAT; 3464 3465 if (ignore_elf_section(sh, name)) 3466 continue; 3467 3468 data = elf_sec_data(obj, scn); 3469 if (!data) 3470 return -LIBBPF_ERRNO__FORMAT; 3471 3472 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3473 idx, name, (unsigned long)data->d_size, 3474 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3475 (int)sh->sh_type); 3476 3477 if (strcmp(name, "license") == 0) { 3478 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3479 if (err) 3480 return err; 3481 } else if (strcmp(name, "version") == 0) { 3482 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3483 if (err) 3484 return err; 3485 } else if (strcmp(name, "maps") == 0) { 3486 obj->efile.maps_shndx = idx; 3487 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3488 obj->efile.btf_maps_shndx = idx; 3489 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3490 if (sh->sh_type != SHT_PROGBITS) 3491 return -LIBBPF_ERRNO__FORMAT; 3492 btf_data = data; 3493 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3494 if (sh->sh_type != SHT_PROGBITS) 3495 return -LIBBPF_ERRNO__FORMAT; 3496 btf_ext_data = data; 3497 } else if (sh->sh_type == SHT_SYMTAB) { 3498 /* already processed during the first pass above */ 3499 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3500 if (sh->sh_flags & SHF_EXECINSTR) { 3501 if (strcmp(name, ".text") == 0) 3502 obj->efile.text_shndx = idx; 3503 err = bpf_object__add_programs(obj, data, name, idx); 3504 if (err) 3505 return err; 3506 } else if (strcmp(name, DATA_SEC) == 0 || 3507 str_has_pfx(name, DATA_SEC ".")) { 3508 sec_desc->sec_type = SEC_DATA; 3509 sec_desc->shdr = sh; 3510 sec_desc->data = data; 3511 } else if (strcmp(name, RODATA_SEC) == 0 || 3512 str_has_pfx(name, RODATA_SEC ".")) { 3513 sec_desc->sec_type = SEC_RODATA; 3514 sec_desc->shdr = sh; 3515 sec_desc->data = data; 3516 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3517 obj->efile.st_ops_data = data; 3518 obj->efile.st_ops_shndx = idx; 3519 } else { 3520 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3521 idx, name); 3522 } 3523 } else if (sh->sh_type == SHT_REL) { 3524 int targ_sec_idx = sh->sh_info; /* points to other section */ 3525 3526 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3527 targ_sec_idx >= obj->efile.sec_cnt) 3528 return -LIBBPF_ERRNO__FORMAT; 3529 3530 /* Only do relo for section with exec instructions */ 3531 if (!section_have_execinstr(obj, targ_sec_idx) && 3532 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3533 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3534 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3535 idx, name, targ_sec_idx, 3536 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3537 continue; 3538 } 3539 3540 sec_desc->sec_type = SEC_RELO; 3541 sec_desc->shdr = sh; 3542 sec_desc->data = data; 3543 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3544 sec_desc->sec_type = SEC_BSS; 3545 sec_desc->shdr = sh; 3546 sec_desc->data = data; 3547 } else { 3548 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3549 (size_t)sh->sh_size); 3550 } 3551 } 3552 3553 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3554 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3555 return -LIBBPF_ERRNO__FORMAT; 3556 } 3557 3558 /* sort BPF programs by section name and in-section instruction offset 3559 * for faster search */ 3560 if (obj->nr_programs) 3561 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3562 3563 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3564 } 3565 3566 static bool sym_is_extern(const Elf64_Sym *sym) 3567 { 3568 int bind = ELF64_ST_BIND(sym->st_info); 3569 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3570 return sym->st_shndx == SHN_UNDEF && 3571 (bind == STB_GLOBAL || bind == STB_WEAK) && 3572 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3573 } 3574 3575 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3576 { 3577 int bind = ELF64_ST_BIND(sym->st_info); 3578 int type = ELF64_ST_TYPE(sym->st_info); 3579 3580 /* in .text section */ 3581 if (sym->st_shndx != text_shndx) 3582 return false; 3583 3584 /* local function */ 3585 if (bind == STB_LOCAL && type == STT_SECTION) 3586 return true; 3587 3588 /* global function */ 3589 return bind == STB_GLOBAL && type == STT_FUNC; 3590 } 3591 3592 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3593 { 3594 const struct btf_type *t; 3595 const char *tname; 3596 int i, n; 3597 3598 if (!btf) 3599 return -ESRCH; 3600 3601 n = btf__type_cnt(btf); 3602 for (i = 1; i < n; i++) { 3603 t = btf__type_by_id(btf, i); 3604 3605 if (!btf_is_var(t) && !btf_is_func(t)) 3606 continue; 3607 3608 tname = btf__name_by_offset(btf, t->name_off); 3609 if (strcmp(tname, ext_name)) 3610 continue; 3611 3612 if (btf_is_var(t) && 3613 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3614 return -EINVAL; 3615 3616 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3617 return -EINVAL; 3618 3619 return i; 3620 } 3621 3622 return -ENOENT; 3623 } 3624 3625 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3626 const struct btf_var_secinfo *vs; 3627 const struct btf_type *t; 3628 int i, j, n; 3629 3630 if (!btf) 3631 return -ESRCH; 3632 3633 n = btf__type_cnt(btf); 3634 for (i = 1; i < n; i++) { 3635 t = btf__type_by_id(btf, i); 3636 3637 if (!btf_is_datasec(t)) 3638 continue; 3639 3640 vs = btf_var_secinfos(t); 3641 for (j = 0; j < btf_vlen(t); j++, vs++) { 3642 if (vs->type == ext_btf_id) 3643 return i; 3644 } 3645 } 3646 3647 return -ENOENT; 3648 } 3649 3650 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3651 bool *is_signed) 3652 { 3653 const struct btf_type *t; 3654 const char *name; 3655 3656 t = skip_mods_and_typedefs(btf, id, NULL); 3657 name = btf__name_by_offset(btf, t->name_off); 3658 3659 if (is_signed) 3660 *is_signed = false; 3661 switch (btf_kind(t)) { 3662 case BTF_KIND_INT: { 3663 int enc = btf_int_encoding(t); 3664 3665 if (enc & BTF_INT_BOOL) 3666 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3667 if (is_signed) 3668 *is_signed = enc & BTF_INT_SIGNED; 3669 if (t->size == 1) 3670 return KCFG_CHAR; 3671 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3672 return KCFG_UNKNOWN; 3673 return KCFG_INT; 3674 } 3675 case BTF_KIND_ENUM: 3676 if (t->size != 4) 3677 return KCFG_UNKNOWN; 3678 if (strcmp(name, "libbpf_tristate")) 3679 return KCFG_UNKNOWN; 3680 return KCFG_TRISTATE; 3681 case BTF_KIND_ARRAY: 3682 if (btf_array(t)->nelems == 0) 3683 return KCFG_UNKNOWN; 3684 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3685 return KCFG_UNKNOWN; 3686 return KCFG_CHAR_ARR; 3687 default: 3688 return KCFG_UNKNOWN; 3689 } 3690 } 3691 3692 static int cmp_externs(const void *_a, const void *_b) 3693 { 3694 const struct extern_desc *a = _a; 3695 const struct extern_desc *b = _b; 3696 3697 if (a->type != b->type) 3698 return a->type < b->type ? -1 : 1; 3699 3700 if (a->type == EXT_KCFG) { 3701 /* descending order by alignment requirements */ 3702 if (a->kcfg.align != b->kcfg.align) 3703 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3704 /* ascending order by size, within same alignment class */ 3705 if (a->kcfg.sz != b->kcfg.sz) 3706 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3707 } 3708 3709 /* resolve ties by name */ 3710 return strcmp(a->name, b->name); 3711 } 3712 3713 static int find_int_btf_id(const struct btf *btf) 3714 { 3715 const struct btf_type *t; 3716 int i, n; 3717 3718 n = btf__type_cnt(btf); 3719 for (i = 1; i < n; i++) { 3720 t = btf__type_by_id(btf, i); 3721 3722 if (btf_is_int(t) && btf_int_bits(t) == 32) 3723 return i; 3724 } 3725 3726 return 0; 3727 } 3728 3729 static int add_dummy_ksym_var(struct btf *btf) 3730 { 3731 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3732 const struct btf_var_secinfo *vs; 3733 const struct btf_type *sec; 3734 3735 if (!btf) 3736 return 0; 3737 3738 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3739 BTF_KIND_DATASEC); 3740 if (sec_btf_id < 0) 3741 return 0; 3742 3743 sec = btf__type_by_id(btf, sec_btf_id); 3744 vs = btf_var_secinfos(sec); 3745 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3746 const struct btf_type *vt; 3747 3748 vt = btf__type_by_id(btf, vs->type); 3749 if (btf_is_func(vt)) 3750 break; 3751 } 3752 3753 /* No func in ksyms sec. No need to add dummy var. */ 3754 if (i == btf_vlen(sec)) 3755 return 0; 3756 3757 int_btf_id = find_int_btf_id(btf); 3758 dummy_var_btf_id = btf__add_var(btf, 3759 "dummy_ksym", 3760 BTF_VAR_GLOBAL_ALLOCATED, 3761 int_btf_id); 3762 if (dummy_var_btf_id < 0) 3763 pr_warn("cannot create a dummy_ksym var\n"); 3764 3765 return dummy_var_btf_id; 3766 } 3767 3768 static int bpf_object__collect_externs(struct bpf_object *obj) 3769 { 3770 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3771 const struct btf_type *t; 3772 struct extern_desc *ext; 3773 int i, n, off, dummy_var_btf_id; 3774 const char *ext_name, *sec_name; 3775 Elf_Scn *scn; 3776 Elf64_Shdr *sh; 3777 3778 if (!obj->efile.symbols) 3779 return 0; 3780 3781 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3782 sh = elf_sec_hdr(obj, scn); 3783 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3784 return -LIBBPF_ERRNO__FORMAT; 3785 3786 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3787 if (dummy_var_btf_id < 0) 3788 return dummy_var_btf_id; 3789 3790 n = sh->sh_size / sh->sh_entsize; 3791 pr_debug("looking for externs among %d symbols...\n", n); 3792 3793 for (i = 0; i < n; i++) { 3794 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3795 3796 if (!sym) 3797 return -LIBBPF_ERRNO__FORMAT; 3798 if (!sym_is_extern(sym)) 3799 continue; 3800 ext_name = elf_sym_str(obj, sym->st_name); 3801 if (!ext_name || !ext_name[0]) 3802 continue; 3803 3804 ext = obj->externs; 3805 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3806 if (!ext) 3807 return -ENOMEM; 3808 obj->externs = ext; 3809 ext = &ext[obj->nr_extern]; 3810 memset(ext, 0, sizeof(*ext)); 3811 obj->nr_extern++; 3812 3813 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3814 if (ext->btf_id <= 0) { 3815 pr_warn("failed to find BTF for extern '%s': %d\n", 3816 ext_name, ext->btf_id); 3817 return ext->btf_id; 3818 } 3819 t = btf__type_by_id(obj->btf, ext->btf_id); 3820 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3821 ext->sym_idx = i; 3822 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3823 3824 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3825 if (ext->sec_btf_id <= 0) { 3826 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3827 ext_name, ext->btf_id, ext->sec_btf_id); 3828 return ext->sec_btf_id; 3829 } 3830 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3831 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3832 3833 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3834 if (btf_is_func(t)) { 3835 pr_warn("extern function %s is unsupported under %s section\n", 3836 ext->name, KCONFIG_SEC); 3837 return -ENOTSUP; 3838 } 3839 kcfg_sec = sec; 3840 ext->type = EXT_KCFG; 3841 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3842 if (ext->kcfg.sz <= 0) { 3843 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3844 ext_name, ext->kcfg.sz); 3845 return ext->kcfg.sz; 3846 } 3847 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3848 if (ext->kcfg.align <= 0) { 3849 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3850 ext_name, ext->kcfg.align); 3851 return -EINVAL; 3852 } 3853 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3854 &ext->kcfg.is_signed); 3855 if (ext->kcfg.type == KCFG_UNKNOWN) { 3856 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3857 return -ENOTSUP; 3858 } 3859 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3860 ksym_sec = sec; 3861 ext->type = EXT_KSYM; 3862 skip_mods_and_typedefs(obj->btf, t->type, 3863 &ext->ksym.type_id); 3864 } else { 3865 pr_warn("unrecognized extern section '%s'\n", sec_name); 3866 return -ENOTSUP; 3867 } 3868 } 3869 pr_debug("collected %d externs total\n", obj->nr_extern); 3870 3871 if (!obj->nr_extern) 3872 return 0; 3873 3874 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3875 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3876 3877 /* for .ksyms section, we need to turn all externs into allocated 3878 * variables in BTF to pass kernel verification; we do this by 3879 * pretending that each extern is a 8-byte variable 3880 */ 3881 if (ksym_sec) { 3882 /* find existing 4-byte integer type in BTF to use for fake 3883 * extern variables in DATASEC 3884 */ 3885 int int_btf_id = find_int_btf_id(obj->btf); 3886 /* For extern function, a dummy_var added earlier 3887 * will be used to replace the vs->type and 3888 * its name string will be used to refill 3889 * the missing param's name. 3890 */ 3891 const struct btf_type *dummy_var; 3892 3893 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3894 for (i = 0; i < obj->nr_extern; i++) { 3895 ext = &obj->externs[i]; 3896 if (ext->type != EXT_KSYM) 3897 continue; 3898 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3899 i, ext->sym_idx, ext->name); 3900 } 3901 3902 sec = ksym_sec; 3903 n = btf_vlen(sec); 3904 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3905 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3906 struct btf_type *vt; 3907 3908 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3909 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3910 ext = find_extern_by_name(obj, ext_name); 3911 if (!ext) { 3912 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3913 btf_kind_str(vt), ext_name); 3914 return -ESRCH; 3915 } 3916 if (btf_is_func(vt)) { 3917 const struct btf_type *func_proto; 3918 struct btf_param *param; 3919 int j; 3920 3921 func_proto = btf__type_by_id(obj->btf, 3922 vt->type); 3923 param = btf_params(func_proto); 3924 /* Reuse the dummy_var string if the 3925 * func proto does not have param name. 3926 */ 3927 for (j = 0; j < btf_vlen(func_proto); j++) 3928 if (param[j].type && !param[j].name_off) 3929 param[j].name_off = 3930 dummy_var->name_off; 3931 vs->type = dummy_var_btf_id; 3932 vt->info &= ~0xffff; 3933 vt->info |= BTF_FUNC_GLOBAL; 3934 } else { 3935 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3936 vt->type = int_btf_id; 3937 } 3938 vs->offset = off; 3939 vs->size = sizeof(int); 3940 } 3941 sec->size = off; 3942 } 3943 3944 if (kcfg_sec) { 3945 sec = kcfg_sec; 3946 /* for kcfg externs calculate their offsets within a .kconfig map */ 3947 off = 0; 3948 for (i = 0; i < obj->nr_extern; i++) { 3949 ext = &obj->externs[i]; 3950 if (ext->type != EXT_KCFG) 3951 continue; 3952 3953 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3954 off = ext->kcfg.data_off + ext->kcfg.sz; 3955 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3956 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3957 } 3958 sec->size = off; 3959 n = btf_vlen(sec); 3960 for (i = 0; i < n; i++) { 3961 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3962 3963 t = btf__type_by_id(obj->btf, vs->type); 3964 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3965 ext = find_extern_by_name(obj, ext_name); 3966 if (!ext) { 3967 pr_warn("failed to find extern definition for BTF var '%s'\n", 3968 ext_name); 3969 return -ESRCH; 3970 } 3971 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3972 vs->offset = ext->kcfg.data_off; 3973 } 3974 } 3975 return 0; 3976 } 3977 3978 struct bpf_program * 3979 bpf_object__find_program_by_title(const struct bpf_object *obj, 3980 const char *title) 3981 { 3982 struct bpf_program *pos; 3983 3984 bpf_object__for_each_program(pos, obj) { 3985 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3986 return pos; 3987 } 3988 return errno = ENOENT, NULL; 3989 } 3990 3991 static bool prog_is_subprog(const struct bpf_object *obj, 3992 const struct bpf_program *prog) 3993 { 3994 /* For legacy reasons, libbpf supports an entry-point BPF programs 3995 * without SEC() attribute, i.e., those in the .text section. But if 3996 * there are 2 or more such programs in the .text section, they all 3997 * must be subprograms called from entry-point BPF programs in 3998 * designated SEC()'tions, otherwise there is no way to distinguish 3999 * which of those programs should be loaded vs which are a subprogram. 4000 * Similarly, if there is a function/program in .text and at least one 4001 * other BPF program with custom SEC() attribute, then we just assume 4002 * .text programs are subprograms (even if they are not called from 4003 * other programs), because libbpf never explicitly supported mixing 4004 * SEC()-designated BPF programs and .text entry-point BPF programs. 4005 * 4006 * In libbpf 1.0 strict mode, we always consider .text 4007 * programs to be subprograms. 4008 */ 4009 4010 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 4011 return prog->sec_idx == obj->efile.text_shndx; 4012 4013 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4014 } 4015 4016 struct bpf_program * 4017 bpf_object__find_program_by_name(const struct bpf_object *obj, 4018 const char *name) 4019 { 4020 struct bpf_program *prog; 4021 4022 bpf_object__for_each_program(prog, obj) { 4023 if (prog_is_subprog(obj, prog)) 4024 continue; 4025 if (!strcmp(prog->name, name)) 4026 return prog; 4027 } 4028 return errno = ENOENT, NULL; 4029 } 4030 4031 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4032 int shndx) 4033 { 4034 switch (obj->efile.secs[shndx].sec_type) { 4035 case SEC_BSS: 4036 case SEC_DATA: 4037 case SEC_RODATA: 4038 return true; 4039 default: 4040 return false; 4041 } 4042 } 4043 4044 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4045 int shndx) 4046 { 4047 return shndx == obj->efile.maps_shndx || 4048 shndx == obj->efile.btf_maps_shndx; 4049 } 4050 4051 static enum libbpf_map_type 4052 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4053 { 4054 if (shndx == obj->efile.symbols_shndx) 4055 return LIBBPF_MAP_KCONFIG; 4056 4057 switch (obj->efile.secs[shndx].sec_type) { 4058 case SEC_BSS: 4059 return LIBBPF_MAP_BSS; 4060 case SEC_DATA: 4061 return LIBBPF_MAP_DATA; 4062 case SEC_RODATA: 4063 return LIBBPF_MAP_RODATA; 4064 default: 4065 return LIBBPF_MAP_UNSPEC; 4066 } 4067 } 4068 4069 static int bpf_program__record_reloc(struct bpf_program *prog, 4070 struct reloc_desc *reloc_desc, 4071 __u32 insn_idx, const char *sym_name, 4072 const Elf64_Sym *sym, const Elf64_Rel *rel) 4073 { 4074 struct bpf_insn *insn = &prog->insns[insn_idx]; 4075 size_t map_idx, nr_maps = prog->obj->nr_maps; 4076 struct bpf_object *obj = prog->obj; 4077 __u32 shdr_idx = sym->st_shndx; 4078 enum libbpf_map_type type; 4079 const char *sym_sec_name; 4080 struct bpf_map *map; 4081 4082 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4083 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4084 prog->name, sym_name, insn_idx, insn->code); 4085 return -LIBBPF_ERRNO__RELOC; 4086 } 4087 4088 if (sym_is_extern(sym)) { 4089 int sym_idx = ELF64_R_SYM(rel->r_info); 4090 int i, n = obj->nr_extern; 4091 struct extern_desc *ext; 4092 4093 for (i = 0; i < n; i++) { 4094 ext = &obj->externs[i]; 4095 if (ext->sym_idx == sym_idx) 4096 break; 4097 } 4098 if (i >= n) { 4099 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4100 prog->name, sym_name, sym_idx); 4101 return -LIBBPF_ERRNO__RELOC; 4102 } 4103 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4104 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4105 if (insn->code == (BPF_JMP | BPF_CALL)) 4106 reloc_desc->type = RELO_EXTERN_FUNC; 4107 else 4108 reloc_desc->type = RELO_EXTERN_VAR; 4109 reloc_desc->insn_idx = insn_idx; 4110 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4111 return 0; 4112 } 4113 4114 /* sub-program call relocation */ 4115 if (is_call_insn(insn)) { 4116 if (insn->src_reg != BPF_PSEUDO_CALL) { 4117 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4118 return -LIBBPF_ERRNO__RELOC; 4119 } 4120 /* text_shndx can be 0, if no default "main" program exists */ 4121 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4122 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4123 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4124 prog->name, sym_name, sym_sec_name); 4125 return -LIBBPF_ERRNO__RELOC; 4126 } 4127 if (sym->st_value % BPF_INSN_SZ) { 4128 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4129 prog->name, sym_name, (size_t)sym->st_value); 4130 return -LIBBPF_ERRNO__RELOC; 4131 } 4132 reloc_desc->type = RELO_CALL; 4133 reloc_desc->insn_idx = insn_idx; 4134 reloc_desc->sym_off = sym->st_value; 4135 return 0; 4136 } 4137 4138 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4139 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4140 prog->name, sym_name, shdr_idx); 4141 return -LIBBPF_ERRNO__RELOC; 4142 } 4143 4144 /* loading subprog addresses */ 4145 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4146 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4147 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4148 */ 4149 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4150 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4151 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4152 return -LIBBPF_ERRNO__RELOC; 4153 } 4154 4155 reloc_desc->type = RELO_SUBPROG_ADDR; 4156 reloc_desc->insn_idx = insn_idx; 4157 reloc_desc->sym_off = sym->st_value; 4158 return 0; 4159 } 4160 4161 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4162 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4163 4164 /* generic map reference relocation */ 4165 if (type == LIBBPF_MAP_UNSPEC) { 4166 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4167 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4168 prog->name, sym_name, sym_sec_name); 4169 return -LIBBPF_ERRNO__RELOC; 4170 } 4171 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4172 map = &obj->maps[map_idx]; 4173 if (map->libbpf_type != type || 4174 map->sec_idx != sym->st_shndx || 4175 map->sec_offset != sym->st_value) 4176 continue; 4177 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4178 prog->name, map_idx, map->name, map->sec_idx, 4179 map->sec_offset, insn_idx); 4180 break; 4181 } 4182 if (map_idx >= nr_maps) { 4183 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4184 prog->name, sym_sec_name, (size_t)sym->st_value); 4185 return -LIBBPF_ERRNO__RELOC; 4186 } 4187 reloc_desc->type = RELO_LD64; 4188 reloc_desc->insn_idx = insn_idx; 4189 reloc_desc->map_idx = map_idx; 4190 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4191 return 0; 4192 } 4193 4194 /* global data map relocation */ 4195 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4196 pr_warn("prog '%s': bad data relo against section '%s'\n", 4197 prog->name, sym_sec_name); 4198 return -LIBBPF_ERRNO__RELOC; 4199 } 4200 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4201 map = &obj->maps[map_idx]; 4202 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4203 continue; 4204 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4205 prog->name, map_idx, map->name, map->sec_idx, 4206 map->sec_offset, insn_idx); 4207 break; 4208 } 4209 if (map_idx >= nr_maps) { 4210 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4211 prog->name, sym_sec_name); 4212 return -LIBBPF_ERRNO__RELOC; 4213 } 4214 4215 reloc_desc->type = RELO_DATA; 4216 reloc_desc->insn_idx = insn_idx; 4217 reloc_desc->map_idx = map_idx; 4218 reloc_desc->sym_off = sym->st_value; 4219 return 0; 4220 } 4221 4222 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4223 { 4224 return insn_idx >= prog->sec_insn_off && 4225 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4226 } 4227 4228 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4229 size_t sec_idx, size_t insn_idx) 4230 { 4231 int l = 0, r = obj->nr_programs - 1, m; 4232 struct bpf_program *prog; 4233 4234 while (l < r) { 4235 m = l + (r - l + 1) / 2; 4236 prog = &obj->programs[m]; 4237 4238 if (prog->sec_idx < sec_idx || 4239 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4240 l = m; 4241 else 4242 r = m - 1; 4243 } 4244 /* matching program could be at index l, but it still might be the 4245 * wrong one, so we need to double check conditions for the last time 4246 */ 4247 prog = &obj->programs[l]; 4248 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4249 return prog; 4250 return NULL; 4251 } 4252 4253 static int 4254 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4255 { 4256 const char *relo_sec_name, *sec_name; 4257 size_t sec_idx = shdr->sh_info, sym_idx; 4258 struct bpf_program *prog; 4259 struct reloc_desc *relos; 4260 int err, i, nrels; 4261 const char *sym_name; 4262 __u32 insn_idx; 4263 Elf_Scn *scn; 4264 Elf_Data *scn_data; 4265 Elf64_Sym *sym; 4266 Elf64_Rel *rel; 4267 4268 if (sec_idx >= obj->efile.sec_cnt) 4269 return -EINVAL; 4270 4271 scn = elf_sec_by_idx(obj, sec_idx); 4272 scn_data = elf_sec_data(obj, scn); 4273 4274 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4275 sec_name = elf_sec_name(obj, scn); 4276 if (!relo_sec_name || !sec_name) 4277 return -EINVAL; 4278 4279 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4280 relo_sec_name, sec_idx, sec_name); 4281 nrels = shdr->sh_size / shdr->sh_entsize; 4282 4283 for (i = 0; i < nrels; i++) { 4284 rel = elf_rel_by_idx(data, i); 4285 if (!rel) { 4286 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4287 return -LIBBPF_ERRNO__FORMAT; 4288 } 4289 4290 sym_idx = ELF64_R_SYM(rel->r_info); 4291 sym = elf_sym_by_idx(obj, sym_idx); 4292 if (!sym) { 4293 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4294 relo_sec_name, sym_idx, i); 4295 return -LIBBPF_ERRNO__FORMAT; 4296 } 4297 4298 if (sym->st_shndx >= obj->efile.sec_cnt) { 4299 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4300 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4301 return -LIBBPF_ERRNO__FORMAT; 4302 } 4303 4304 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4305 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4306 relo_sec_name, (size_t)rel->r_offset, i); 4307 return -LIBBPF_ERRNO__FORMAT; 4308 } 4309 4310 insn_idx = rel->r_offset / BPF_INSN_SZ; 4311 /* relocations against static functions are recorded as 4312 * relocations against the section that contains a function; 4313 * in such case, symbol will be STT_SECTION and sym.st_name 4314 * will point to empty string (0), so fetch section name 4315 * instead 4316 */ 4317 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4318 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4319 else 4320 sym_name = elf_sym_str(obj, sym->st_name); 4321 sym_name = sym_name ?: "<?"; 4322 4323 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4324 relo_sec_name, i, insn_idx, sym_name); 4325 4326 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4327 if (!prog) { 4328 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4329 relo_sec_name, i, sec_name, insn_idx); 4330 continue; 4331 } 4332 4333 relos = libbpf_reallocarray(prog->reloc_desc, 4334 prog->nr_reloc + 1, sizeof(*relos)); 4335 if (!relos) 4336 return -ENOMEM; 4337 prog->reloc_desc = relos; 4338 4339 /* adjust insn_idx to local BPF program frame of reference */ 4340 insn_idx -= prog->sec_insn_off; 4341 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4342 insn_idx, sym_name, sym, rel); 4343 if (err) 4344 return err; 4345 4346 prog->nr_reloc++; 4347 } 4348 return 0; 4349 } 4350 4351 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4352 { 4353 struct bpf_map_def *def = &map->def; 4354 __u32 key_type_id = 0, value_type_id = 0; 4355 int ret; 4356 4357 if (!obj->btf) 4358 return -ENOENT; 4359 4360 /* if it's BTF-defined map, we don't need to search for type IDs. 4361 * For struct_ops map, it does not need btf_key_type_id and 4362 * btf_value_type_id. 4363 */ 4364 if (map->sec_idx == obj->efile.btf_maps_shndx || 4365 bpf_map__is_struct_ops(map)) 4366 return 0; 4367 4368 if (!bpf_map__is_internal(map)) { 4369 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4370 #pragma GCC diagnostic push 4371 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4372 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4373 def->value_size, &key_type_id, 4374 &value_type_id); 4375 #pragma GCC diagnostic pop 4376 } else { 4377 /* 4378 * LLVM annotates global data differently in BTF, that is, 4379 * only as '.data', '.bss' or '.rodata'. 4380 */ 4381 ret = btf__find_by_name(obj->btf, map->real_name); 4382 } 4383 if (ret < 0) 4384 return ret; 4385 4386 map->btf_key_type_id = key_type_id; 4387 map->btf_value_type_id = bpf_map__is_internal(map) ? 4388 ret : value_type_id; 4389 return 0; 4390 } 4391 4392 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4393 { 4394 char file[PATH_MAX], buff[4096]; 4395 FILE *fp; 4396 __u32 val; 4397 int err; 4398 4399 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4400 memset(info, 0, sizeof(*info)); 4401 4402 fp = fopen(file, "r"); 4403 if (!fp) { 4404 err = -errno; 4405 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4406 err); 4407 return err; 4408 } 4409 4410 while (fgets(buff, sizeof(buff), fp)) { 4411 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4412 info->type = val; 4413 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4414 info->key_size = val; 4415 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4416 info->value_size = val; 4417 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4418 info->max_entries = val; 4419 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4420 info->map_flags = val; 4421 } 4422 4423 fclose(fp); 4424 4425 return 0; 4426 } 4427 4428 bool bpf_map__autocreate(const struct bpf_map *map) 4429 { 4430 return map->autocreate; 4431 } 4432 4433 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4434 { 4435 if (map->obj->loaded) 4436 return libbpf_err(-EBUSY); 4437 4438 map->autocreate = autocreate; 4439 return 0; 4440 } 4441 4442 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4443 { 4444 struct bpf_map_info info = {}; 4445 __u32 len = sizeof(info); 4446 int new_fd, err; 4447 char *new_name; 4448 4449 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4450 if (err && errno == EINVAL) 4451 err = bpf_get_map_info_from_fdinfo(fd, &info); 4452 if (err) 4453 return libbpf_err(err); 4454 4455 new_name = strdup(info.name); 4456 if (!new_name) 4457 return libbpf_err(-errno); 4458 4459 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4460 if (new_fd < 0) { 4461 err = -errno; 4462 goto err_free_new_name; 4463 } 4464 4465 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4466 if (new_fd < 0) { 4467 err = -errno; 4468 goto err_close_new_fd; 4469 } 4470 4471 err = zclose(map->fd); 4472 if (err) { 4473 err = -errno; 4474 goto err_close_new_fd; 4475 } 4476 free(map->name); 4477 4478 map->fd = new_fd; 4479 map->name = new_name; 4480 map->def.type = info.type; 4481 map->def.key_size = info.key_size; 4482 map->def.value_size = info.value_size; 4483 map->def.max_entries = info.max_entries; 4484 map->def.map_flags = info.map_flags; 4485 map->btf_key_type_id = info.btf_key_type_id; 4486 map->btf_value_type_id = info.btf_value_type_id; 4487 map->reused = true; 4488 map->map_extra = info.map_extra; 4489 4490 return 0; 4491 4492 err_close_new_fd: 4493 close(new_fd); 4494 err_free_new_name: 4495 free(new_name); 4496 return libbpf_err(err); 4497 } 4498 4499 __u32 bpf_map__max_entries(const struct bpf_map *map) 4500 { 4501 return map->def.max_entries; 4502 } 4503 4504 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4505 { 4506 if (!bpf_map_type__is_map_in_map(map->def.type)) 4507 return errno = EINVAL, NULL; 4508 4509 return map->inner_map; 4510 } 4511 4512 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4513 { 4514 if (map->fd >= 0) 4515 return libbpf_err(-EBUSY); 4516 map->def.max_entries = max_entries; 4517 return 0; 4518 } 4519 4520 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4521 { 4522 if (!map || !max_entries) 4523 return libbpf_err(-EINVAL); 4524 4525 return bpf_map__set_max_entries(map, max_entries); 4526 } 4527 4528 static int 4529 bpf_object__probe_loading(struct bpf_object *obj) 4530 { 4531 char *cp, errmsg[STRERR_BUFSIZE]; 4532 struct bpf_insn insns[] = { 4533 BPF_MOV64_IMM(BPF_REG_0, 0), 4534 BPF_EXIT_INSN(), 4535 }; 4536 int ret, insn_cnt = ARRAY_SIZE(insns); 4537 4538 if (obj->gen_loader) 4539 return 0; 4540 4541 ret = bump_rlimit_memlock(); 4542 if (ret) 4543 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4544 4545 /* make sure basic loading works */ 4546 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4547 if (ret < 0) 4548 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4549 if (ret < 0) { 4550 ret = errno; 4551 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4552 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4553 "program. Make sure your kernel supports BPF " 4554 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4555 "set to big enough value.\n", __func__, cp, ret); 4556 return -ret; 4557 } 4558 close(ret); 4559 4560 return 0; 4561 } 4562 4563 static int probe_fd(int fd) 4564 { 4565 if (fd >= 0) 4566 close(fd); 4567 return fd >= 0; 4568 } 4569 4570 static int probe_kern_prog_name(void) 4571 { 4572 struct bpf_insn insns[] = { 4573 BPF_MOV64_IMM(BPF_REG_0, 0), 4574 BPF_EXIT_INSN(), 4575 }; 4576 int ret, insn_cnt = ARRAY_SIZE(insns); 4577 4578 /* make sure loading with name works */ 4579 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4580 return probe_fd(ret); 4581 } 4582 4583 static int probe_kern_global_data(void) 4584 { 4585 char *cp, errmsg[STRERR_BUFSIZE]; 4586 struct bpf_insn insns[] = { 4587 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4588 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4589 BPF_MOV64_IMM(BPF_REG_0, 0), 4590 BPF_EXIT_INSN(), 4591 }; 4592 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4593 4594 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4595 if (map < 0) { 4596 ret = -errno; 4597 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4598 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4599 __func__, cp, -ret); 4600 return ret; 4601 } 4602 4603 insns[0].imm = map; 4604 4605 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4606 close(map); 4607 return probe_fd(ret); 4608 } 4609 4610 static int probe_kern_btf(void) 4611 { 4612 static const char strs[] = "\0int"; 4613 __u32 types[] = { 4614 /* int */ 4615 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4616 }; 4617 4618 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4619 strs, sizeof(strs))); 4620 } 4621 4622 static int probe_kern_btf_func(void) 4623 { 4624 static const char strs[] = "\0int\0x\0a"; 4625 /* void x(int a) {} */ 4626 __u32 types[] = { 4627 /* int */ 4628 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4629 /* FUNC_PROTO */ /* [2] */ 4630 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4631 BTF_PARAM_ENC(7, 1), 4632 /* FUNC x */ /* [3] */ 4633 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4634 }; 4635 4636 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4637 strs, sizeof(strs))); 4638 } 4639 4640 static int probe_kern_btf_func_global(void) 4641 { 4642 static const char strs[] = "\0int\0x\0a"; 4643 /* static void x(int a) {} */ 4644 __u32 types[] = { 4645 /* int */ 4646 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4647 /* FUNC_PROTO */ /* [2] */ 4648 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4649 BTF_PARAM_ENC(7, 1), 4650 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4651 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4652 }; 4653 4654 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4655 strs, sizeof(strs))); 4656 } 4657 4658 static int probe_kern_btf_datasec(void) 4659 { 4660 static const char strs[] = "\0x\0.data"; 4661 /* static int a; */ 4662 __u32 types[] = { 4663 /* int */ 4664 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4665 /* VAR x */ /* [2] */ 4666 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4667 BTF_VAR_STATIC, 4668 /* DATASEC val */ /* [3] */ 4669 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4670 BTF_VAR_SECINFO_ENC(2, 0, 4), 4671 }; 4672 4673 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4674 strs, sizeof(strs))); 4675 } 4676 4677 static int probe_kern_btf_float(void) 4678 { 4679 static const char strs[] = "\0float"; 4680 __u32 types[] = { 4681 /* float */ 4682 BTF_TYPE_FLOAT_ENC(1, 4), 4683 }; 4684 4685 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4686 strs, sizeof(strs))); 4687 } 4688 4689 static int probe_kern_btf_decl_tag(void) 4690 { 4691 static const char strs[] = "\0tag"; 4692 __u32 types[] = { 4693 /* int */ 4694 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4695 /* VAR x */ /* [2] */ 4696 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4697 BTF_VAR_STATIC, 4698 /* attr */ 4699 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4700 }; 4701 4702 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4703 strs, sizeof(strs))); 4704 } 4705 4706 static int probe_kern_btf_type_tag(void) 4707 { 4708 static const char strs[] = "\0tag"; 4709 __u32 types[] = { 4710 /* int */ 4711 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4712 /* attr */ 4713 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4714 /* ptr */ 4715 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4716 }; 4717 4718 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4719 strs, sizeof(strs))); 4720 } 4721 4722 static int probe_kern_array_mmap(void) 4723 { 4724 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4725 int fd; 4726 4727 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4728 return probe_fd(fd); 4729 } 4730 4731 static int probe_kern_exp_attach_type(void) 4732 { 4733 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4734 struct bpf_insn insns[] = { 4735 BPF_MOV64_IMM(BPF_REG_0, 0), 4736 BPF_EXIT_INSN(), 4737 }; 4738 int fd, insn_cnt = ARRAY_SIZE(insns); 4739 4740 /* use any valid combination of program type and (optional) 4741 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4742 * to see if kernel supports expected_attach_type field for 4743 * BPF_PROG_LOAD command 4744 */ 4745 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4746 return probe_fd(fd); 4747 } 4748 4749 static int probe_kern_probe_read_kernel(void) 4750 { 4751 struct bpf_insn insns[] = { 4752 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4753 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4754 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4755 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4756 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4757 BPF_EXIT_INSN(), 4758 }; 4759 int fd, insn_cnt = ARRAY_SIZE(insns); 4760 4761 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4762 return probe_fd(fd); 4763 } 4764 4765 static int probe_prog_bind_map(void) 4766 { 4767 char *cp, errmsg[STRERR_BUFSIZE]; 4768 struct bpf_insn insns[] = { 4769 BPF_MOV64_IMM(BPF_REG_0, 0), 4770 BPF_EXIT_INSN(), 4771 }; 4772 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4773 4774 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4775 if (map < 0) { 4776 ret = -errno; 4777 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4778 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4779 __func__, cp, -ret); 4780 return ret; 4781 } 4782 4783 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4784 if (prog < 0) { 4785 close(map); 4786 return 0; 4787 } 4788 4789 ret = bpf_prog_bind_map(prog, map, NULL); 4790 4791 close(map); 4792 close(prog); 4793 4794 return ret >= 0; 4795 } 4796 4797 static int probe_module_btf(void) 4798 { 4799 static const char strs[] = "\0int"; 4800 __u32 types[] = { 4801 /* int */ 4802 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4803 }; 4804 struct bpf_btf_info info; 4805 __u32 len = sizeof(info); 4806 char name[16]; 4807 int fd, err; 4808 4809 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4810 if (fd < 0) 4811 return 0; /* BTF not supported at all */ 4812 4813 memset(&info, 0, sizeof(info)); 4814 info.name = ptr_to_u64(name); 4815 info.name_len = sizeof(name); 4816 4817 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4818 * kernel's module BTF support coincides with support for 4819 * name/name_len fields in struct bpf_btf_info. 4820 */ 4821 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4822 close(fd); 4823 return !err; 4824 } 4825 4826 static int probe_perf_link(void) 4827 { 4828 struct bpf_insn insns[] = { 4829 BPF_MOV64_IMM(BPF_REG_0, 0), 4830 BPF_EXIT_INSN(), 4831 }; 4832 int prog_fd, link_fd, err; 4833 4834 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4835 insns, ARRAY_SIZE(insns), NULL); 4836 if (prog_fd < 0) 4837 return -errno; 4838 4839 /* use invalid perf_event FD to get EBADF, if link is supported; 4840 * otherwise EINVAL should be returned 4841 */ 4842 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4843 err = -errno; /* close() can clobber errno */ 4844 4845 if (link_fd >= 0) 4846 close(link_fd); 4847 close(prog_fd); 4848 4849 return link_fd < 0 && err == -EBADF; 4850 } 4851 4852 static int probe_kern_bpf_cookie(void) 4853 { 4854 struct bpf_insn insns[] = { 4855 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4856 BPF_EXIT_INSN(), 4857 }; 4858 int ret, insn_cnt = ARRAY_SIZE(insns); 4859 4860 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4861 return probe_fd(ret); 4862 } 4863 4864 enum kern_feature_result { 4865 FEAT_UNKNOWN = 0, 4866 FEAT_SUPPORTED = 1, 4867 FEAT_MISSING = 2, 4868 }; 4869 4870 typedef int (*feature_probe_fn)(void); 4871 4872 static struct kern_feature_desc { 4873 const char *desc; 4874 feature_probe_fn probe; 4875 enum kern_feature_result res; 4876 } feature_probes[__FEAT_CNT] = { 4877 [FEAT_PROG_NAME] = { 4878 "BPF program name", probe_kern_prog_name, 4879 }, 4880 [FEAT_GLOBAL_DATA] = { 4881 "global variables", probe_kern_global_data, 4882 }, 4883 [FEAT_BTF] = { 4884 "minimal BTF", probe_kern_btf, 4885 }, 4886 [FEAT_BTF_FUNC] = { 4887 "BTF functions", probe_kern_btf_func, 4888 }, 4889 [FEAT_BTF_GLOBAL_FUNC] = { 4890 "BTF global function", probe_kern_btf_func_global, 4891 }, 4892 [FEAT_BTF_DATASEC] = { 4893 "BTF data section and variable", probe_kern_btf_datasec, 4894 }, 4895 [FEAT_ARRAY_MMAP] = { 4896 "ARRAY map mmap()", probe_kern_array_mmap, 4897 }, 4898 [FEAT_EXP_ATTACH_TYPE] = { 4899 "BPF_PROG_LOAD expected_attach_type attribute", 4900 probe_kern_exp_attach_type, 4901 }, 4902 [FEAT_PROBE_READ_KERN] = { 4903 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4904 }, 4905 [FEAT_PROG_BIND_MAP] = { 4906 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4907 }, 4908 [FEAT_MODULE_BTF] = { 4909 "module BTF support", probe_module_btf, 4910 }, 4911 [FEAT_BTF_FLOAT] = { 4912 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4913 }, 4914 [FEAT_PERF_LINK] = { 4915 "BPF perf link support", probe_perf_link, 4916 }, 4917 [FEAT_BTF_DECL_TAG] = { 4918 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4919 }, 4920 [FEAT_BTF_TYPE_TAG] = { 4921 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4922 }, 4923 [FEAT_MEMCG_ACCOUNT] = { 4924 "memcg-based memory accounting", probe_memcg_account, 4925 }, 4926 [FEAT_BPF_COOKIE] = { 4927 "BPF cookie support", probe_kern_bpf_cookie, 4928 }, 4929 }; 4930 4931 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4932 { 4933 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4934 int ret; 4935 4936 if (obj && obj->gen_loader) 4937 /* To generate loader program assume the latest kernel 4938 * to avoid doing extra prog_load, map_create syscalls. 4939 */ 4940 return true; 4941 4942 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4943 ret = feat->probe(); 4944 if (ret > 0) { 4945 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4946 } else if (ret == 0) { 4947 WRITE_ONCE(feat->res, FEAT_MISSING); 4948 } else { 4949 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4950 WRITE_ONCE(feat->res, FEAT_MISSING); 4951 } 4952 } 4953 4954 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4955 } 4956 4957 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4958 { 4959 struct bpf_map_info map_info = {}; 4960 char msg[STRERR_BUFSIZE]; 4961 __u32 map_info_len; 4962 int err; 4963 4964 map_info_len = sizeof(map_info); 4965 4966 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4967 if (err && errno == EINVAL) 4968 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4969 if (err) { 4970 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4971 libbpf_strerror_r(errno, msg, sizeof(msg))); 4972 return false; 4973 } 4974 4975 return (map_info.type == map->def.type && 4976 map_info.key_size == map->def.key_size && 4977 map_info.value_size == map->def.value_size && 4978 map_info.max_entries == map->def.max_entries && 4979 map_info.map_flags == map->def.map_flags && 4980 map_info.map_extra == map->map_extra); 4981 } 4982 4983 static int 4984 bpf_object__reuse_map(struct bpf_map *map) 4985 { 4986 char *cp, errmsg[STRERR_BUFSIZE]; 4987 int err, pin_fd; 4988 4989 pin_fd = bpf_obj_get(map->pin_path); 4990 if (pin_fd < 0) { 4991 err = -errno; 4992 if (err == -ENOENT) { 4993 pr_debug("found no pinned map to reuse at '%s'\n", 4994 map->pin_path); 4995 return 0; 4996 } 4997 4998 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4999 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5000 map->pin_path, cp); 5001 return err; 5002 } 5003 5004 if (!map_is_reuse_compat(map, pin_fd)) { 5005 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5006 map->pin_path); 5007 close(pin_fd); 5008 return -EINVAL; 5009 } 5010 5011 err = bpf_map__reuse_fd(map, pin_fd); 5012 close(pin_fd); 5013 if (err) { 5014 return err; 5015 } 5016 map->pinned = true; 5017 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5018 5019 return 0; 5020 } 5021 5022 static int 5023 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5024 { 5025 enum libbpf_map_type map_type = map->libbpf_type; 5026 char *cp, errmsg[STRERR_BUFSIZE]; 5027 int err, zero = 0; 5028 5029 if (obj->gen_loader) { 5030 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5031 map->mmaped, map->def.value_size); 5032 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5033 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5034 return 0; 5035 } 5036 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5037 if (err) { 5038 err = -errno; 5039 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5040 pr_warn("Error setting initial map(%s) contents: %s\n", 5041 map->name, cp); 5042 return err; 5043 } 5044 5045 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5046 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5047 err = bpf_map_freeze(map->fd); 5048 if (err) { 5049 err = -errno; 5050 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5051 pr_warn("Error freezing map(%s) as read-only: %s\n", 5052 map->name, cp); 5053 return err; 5054 } 5055 } 5056 return 0; 5057 } 5058 5059 static void bpf_map__destroy(struct bpf_map *map); 5060 5061 static bool is_pow_of_2(size_t x) 5062 { 5063 return x && (x & (x - 1)); 5064 } 5065 5066 static size_t adjust_ringbuf_sz(size_t sz) 5067 { 5068 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 5069 __u32 mul; 5070 5071 /* if user forgot to set any size, make sure they see error */ 5072 if (sz == 0) 5073 return 0; 5074 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 5075 * a power-of-2 multiple of kernel's page size. If user diligently 5076 * satisified these conditions, pass the size through. 5077 */ 5078 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 5079 return sz; 5080 5081 /* Otherwise find closest (page_sz * power_of_2) product bigger than 5082 * user-set size to satisfy both user size request and kernel 5083 * requirements and substitute correct max_entries for map creation. 5084 */ 5085 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 5086 if (mul * page_sz > sz) 5087 return mul * page_sz; 5088 } 5089 5090 /* if it's impossible to satisfy the conditions (i.e., user size is 5091 * very close to UINT_MAX but is not a power-of-2 multiple of 5092 * page_size) then just return original size and let kernel reject it 5093 */ 5094 return sz; 5095 } 5096 5097 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5098 { 5099 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5100 struct bpf_map_def *def = &map->def; 5101 const char *map_name = NULL; 5102 int err = 0; 5103 5104 if (kernel_supports(obj, FEAT_PROG_NAME)) 5105 map_name = map->name; 5106 create_attr.map_ifindex = map->map_ifindex; 5107 create_attr.map_flags = def->map_flags; 5108 create_attr.numa_node = map->numa_node; 5109 create_attr.map_extra = map->map_extra; 5110 5111 if (bpf_map__is_struct_ops(map)) 5112 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5113 5114 if (obj->btf && btf__fd(obj->btf) >= 0) { 5115 create_attr.btf_fd = btf__fd(obj->btf); 5116 create_attr.btf_key_type_id = map->btf_key_type_id; 5117 create_attr.btf_value_type_id = map->btf_value_type_id; 5118 } 5119 5120 if (bpf_map_type__is_map_in_map(def->type)) { 5121 if (map->inner_map) { 5122 err = bpf_object__create_map(obj, map->inner_map, true); 5123 if (err) { 5124 pr_warn("map '%s': failed to create inner map: %d\n", 5125 map->name, err); 5126 return err; 5127 } 5128 map->inner_map_fd = bpf_map__fd(map->inner_map); 5129 } 5130 if (map->inner_map_fd >= 0) 5131 create_attr.inner_map_fd = map->inner_map_fd; 5132 } 5133 5134 switch (def->type) { 5135 case BPF_MAP_TYPE_RINGBUF: 5136 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5137 /* fallthrough */ 5138 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5139 case BPF_MAP_TYPE_CGROUP_ARRAY: 5140 case BPF_MAP_TYPE_STACK_TRACE: 5141 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5142 case BPF_MAP_TYPE_HASH_OF_MAPS: 5143 case BPF_MAP_TYPE_DEVMAP: 5144 case BPF_MAP_TYPE_DEVMAP_HASH: 5145 case BPF_MAP_TYPE_CPUMAP: 5146 case BPF_MAP_TYPE_XSKMAP: 5147 case BPF_MAP_TYPE_SOCKMAP: 5148 case BPF_MAP_TYPE_SOCKHASH: 5149 case BPF_MAP_TYPE_QUEUE: 5150 case BPF_MAP_TYPE_STACK: 5151 create_attr.btf_fd = 0; 5152 create_attr.btf_key_type_id = 0; 5153 create_attr.btf_value_type_id = 0; 5154 map->btf_key_type_id = 0; 5155 map->btf_value_type_id = 0; 5156 default: 5157 break; 5158 } 5159 5160 if (obj->gen_loader) { 5161 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5162 def->key_size, def->value_size, def->max_entries, 5163 &create_attr, is_inner ? -1 : map - obj->maps); 5164 /* Pretend to have valid FD to pass various fd >= 0 checks. 5165 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5166 */ 5167 map->fd = 0; 5168 } else { 5169 map->fd = bpf_map_create(def->type, map_name, 5170 def->key_size, def->value_size, 5171 def->max_entries, &create_attr); 5172 } 5173 if (map->fd < 0 && (create_attr.btf_key_type_id || 5174 create_attr.btf_value_type_id)) { 5175 char *cp, errmsg[STRERR_BUFSIZE]; 5176 5177 err = -errno; 5178 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5179 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5180 map->name, cp, err); 5181 create_attr.btf_fd = 0; 5182 create_attr.btf_key_type_id = 0; 5183 create_attr.btf_value_type_id = 0; 5184 map->btf_key_type_id = 0; 5185 map->btf_value_type_id = 0; 5186 map->fd = bpf_map_create(def->type, map_name, 5187 def->key_size, def->value_size, 5188 def->max_entries, &create_attr); 5189 } 5190 5191 err = map->fd < 0 ? -errno : 0; 5192 5193 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5194 if (obj->gen_loader) 5195 map->inner_map->fd = -1; 5196 bpf_map__destroy(map->inner_map); 5197 zfree(&map->inner_map); 5198 } 5199 5200 return err; 5201 } 5202 5203 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5204 { 5205 const struct bpf_map *targ_map; 5206 unsigned int i; 5207 int fd, err = 0; 5208 5209 for (i = 0; i < map->init_slots_sz; i++) { 5210 if (!map->init_slots[i]) 5211 continue; 5212 5213 targ_map = map->init_slots[i]; 5214 fd = bpf_map__fd(targ_map); 5215 5216 if (obj->gen_loader) { 5217 bpf_gen__populate_outer_map(obj->gen_loader, 5218 map - obj->maps, i, 5219 targ_map - obj->maps); 5220 } else { 5221 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5222 } 5223 if (err) { 5224 err = -errno; 5225 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5226 map->name, i, targ_map->name, fd, err); 5227 return err; 5228 } 5229 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5230 map->name, i, targ_map->name, fd); 5231 } 5232 5233 zfree(&map->init_slots); 5234 map->init_slots_sz = 0; 5235 5236 return 0; 5237 } 5238 5239 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5240 { 5241 const struct bpf_program *targ_prog; 5242 unsigned int i; 5243 int fd, err; 5244 5245 if (obj->gen_loader) 5246 return -ENOTSUP; 5247 5248 for (i = 0; i < map->init_slots_sz; i++) { 5249 if (!map->init_slots[i]) 5250 continue; 5251 5252 targ_prog = map->init_slots[i]; 5253 fd = bpf_program__fd(targ_prog); 5254 5255 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5256 if (err) { 5257 err = -errno; 5258 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5259 map->name, i, targ_prog->name, fd, err); 5260 return err; 5261 } 5262 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5263 map->name, i, targ_prog->name, fd); 5264 } 5265 5266 zfree(&map->init_slots); 5267 map->init_slots_sz = 0; 5268 5269 return 0; 5270 } 5271 5272 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5273 { 5274 struct bpf_map *map; 5275 int i, err; 5276 5277 for (i = 0; i < obj->nr_maps; i++) { 5278 map = &obj->maps[i]; 5279 5280 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5281 continue; 5282 5283 err = init_prog_array_slots(obj, map); 5284 if (err < 0) { 5285 zclose(map->fd); 5286 return err; 5287 } 5288 } 5289 return 0; 5290 } 5291 5292 static int map_set_def_max_entries(struct bpf_map *map) 5293 { 5294 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5295 int nr_cpus; 5296 5297 nr_cpus = libbpf_num_possible_cpus(); 5298 if (nr_cpus < 0) { 5299 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5300 map->name, nr_cpus); 5301 return nr_cpus; 5302 } 5303 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5304 map->def.max_entries = nr_cpus; 5305 } 5306 5307 return 0; 5308 } 5309 5310 static int 5311 bpf_object__create_maps(struct bpf_object *obj) 5312 { 5313 struct bpf_map *map; 5314 char *cp, errmsg[STRERR_BUFSIZE]; 5315 unsigned int i, j; 5316 int err; 5317 bool retried; 5318 5319 for (i = 0; i < obj->nr_maps; i++) { 5320 map = &obj->maps[i]; 5321 5322 /* To support old kernels, we skip creating global data maps 5323 * (.rodata, .data, .kconfig, etc); later on, during program 5324 * loading, if we detect that at least one of the to-be-loaded 5325 * programs is referencing any global data map, we'll error 5326 * out with program name and relocation index logged. 5327 * This approach allows to accommodate Clang emitting 5328 * unnecessary .rodata.str1.1 sections for string literals, 5329 * but also it allows to have CO-RE applications that use 5330 * global variables in some of BPF programs, but not others. 5331 * If those global variable-using programs are not loaded at 5332 * runtime due to bpf_program__set_autoload(prog, false), 5333 * bpf_object loading will succeed just fine even on old 5334 * kernels. 5335 */ 5336 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5337 map->autocreate = false; 5338 5339 if (!map->autocreate) { 5340 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5341 continue; 5342 } 5343 5344 err = map_set_def_max_entries(map); 5345 if (err) 5346 goto err_out; 5347 5348 retried = false; 5349 retry: 5350 if (map->pin_path) { 5351 err = bpf_object__reuse_map(map); 5352 if (err) { 5353 pr_warn("map '%s': error reusing pinned map\n", 5354 map->name); 5355 goto err_out; 5356 } 5357 if (retried && map->fd < 0) { 5358 pr_warn("map '%s': cannot find pinned map\n", 5359 map->name); 5360 err = -ENOENT; 5361 goto err_out; 5362 } 5363 } 5364 5365 if (map->fd >= 0) { 5366 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5367 map->name, map->fd); 5368 } else { 5369 err = bpf_object__create_map(obj, map, false); 5370 if (err) 5371 goto err_out; 5372 5373 pr_debug("map '%s': created successfully, fd=%d\n", 5374 map->name, map->fd); 5375 5376 if (bpf_map__is_internal(map)) { 5377 err = bpf_object__populate_internal_map(obj, map); 5378 if (err < 0) { 5379 zclose(map->fd); 5380 goto err_out; 5381 } 5382 } 5383 5384 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5385 err = init_map_in_map_slots(obj, map); 5386 if (err < 0) { 5387 zclose(map->fd); 5388 goto err_out; 5389 } 5390 } 5391 } 5392 5393 if (map->pin_path && !map->pinned) { 5394 err = bpf_map__pin(map, NULL); 5395 if (err) { 5396 zclose(map->fd); 5397 if (!retried && err == -EEXIST) { 5398 retried = true; 5399 goto retry; 5400 } 5401 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5402 map->name, map->pin_path, err); 5403 goto err_out; 5404 } 5405 } 5406 } 5407 5408 return 0; 5409 5410 err_out: 5411 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5412 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5413 pr_perm_msg(err); 5414 for (j = 0; j < i; j++) 5415 zclose(obj->maps[j].fd); 5416 return err; 5417 } 5418 5419 static bool bpf_core_is_flavor_sep(const char *s) 5420 { 5421 /* check X___Y name pattern, where X and Y are not underscores */ 5422 return s[0] != '_' && /* X */ 5423 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5424 s[4] != '_'; /* Y */ 5425 } 5426 5427 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5428 * before last triple underscore. Struct name part after last triple 5429 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5430 */ 5431 size_t bpf_core_essential_name_len(const char *name) 5432 { 5433 size_t n = strlen(name); 5434 int i; 5435 5436 for (i = n - 5; i >= 0; i--) { 5437 if (bpf_core_is_flavor_sep(name + i)) 5438 return i + 1; 5439 } 5440 return n; 5441 } 5442 5443 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5444 { 5445 if (!cands) 5446 return; 5447 5448 free(cands->cands); 5449 free(cands); 5450 } 5451 5452 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5453 size_t local_essent_len, 5454 const struct btf *targ_btf, 5455 const char *targ_btf_name, 5456 int targ_start_id, 5457 struct bpf_core_cand_list *cands) 5458 { 5459 struct bpf_core_cand *new_cands, *cand; 5460 const struct btf_type *t, *local_t; 5461 const char *targ_name, *local_name; 5462 size_t targ_essent_len; 5463 int n, i; 5464 5465 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5466 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5467 5468 n = btf__type_cnt(targ_btf); 5469 for (i = targ_start_id; i < n; i++) { 5470 t = btf__type_by_id(targ_btf, i); 5471 if (btf_kind(t) != btf_kind(local_t)) 5472 continue; 5473 5474 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5475 if (str_is_empty(targ_name)) 5476 continue; 5477 5478 targ_essent_len = bpf_core_essential_name_len(targ_name); 5479 if (targ_essent_len != local_essent_len) 5480 continue; 5481 5482 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5483 continue; 5484 5485 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5486 local_cand->id, btf_kind_str(local_t), 5487 local_name, i, btf_kind_str(t), targ_name, 5488 targ_btf_name); 5489 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5490 sizeof(*cands->cands)); 5491 if (!new_cands) 5492 return -ENOMEM; 5493 5494 cand = &new_cands[cands->len]; 5495 cand->btf = targ_btf; 5496 cand->id = i; 5497 5498 cands->cands = new_cands; 5499 cands->len++; 5500 } 5501 return 0; 5502 } 5503 5504 static int load_module_btfs(struct bpf_object *obj) 5505 { 5506 struct bpf_btf_info info; 5507 struct module_btf *mod_btf; 5508 struct btf *btf; 5509 char name[64]; 5510 __u32 id = 0, len; 5511 int err, fd; 5512 5513 if (obj->btf_modules_loaded) 5514 return 0; 5515 5516 if (obj->gen_loader) 5517 return 0; 5518 5519 /* don't do this again, even if we find no module BTFs */ 5520 obj->btf_modules_loaded = true; 5521 5522 /* kernel too old to support module BTFs */ 5523 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5524 return 0; 5525 5526 while (true) { 5527 err = bpf_btf_get_next_id(id, &id); 5528 if (err && errno == ENOENT) 5529 return 0; 5530 if (err) { 5531 err = -errno; 5532 pr_warn("failed to iterate BTF objects: %d\n", err); 5533 return err; 5534 } 5535 5536 fd = bpf_btf_get_fd_by_id(id); 5537 if (fd < 0) { 5538 if (errno == ENOENT) 5539 continue; /* expected race: BTF was unloaded */ 5540 err = -errno; 5541 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5542 return err; 5543 } 5544 5545 len = sizeof(info); 5546 memset(&info, 0, sizeof(info)); 5547 info.name = ptr_to_u64(name); 5548 info.name_len = sizeof(name); 5549 5550 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5551 if (err) { 5552 err = -errno; 5553 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5554 goto err_out; 5555 } 5556 5557 /* ignore non-module BTFs */ 5558 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5559 close(fd); 5560 continue; 5561 } 5562 5563 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5564 err = libbpf_get_error(btf); 5565 if (err) { 5566 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5567 name, id, err); 5568 goto err_out; 5569 } 5570 5571 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5572 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5573 if (err) 5574 goto err_out; 5575 5576 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5577 5578 mod_btf->btf = btf; 5579 mod_btf->id = id; 5580 mod_btf->fd = fd; 5581 mod_btf->name = strdup(name); 5582 if (!mod_btf->name) { 5583 err = -ENOMEM; 5584 goto err_out; 5585 } 5586 continue; 5587 5588 err_out: 5589 close(fd); 5590 return err; 5591 } 5592 5593 return 0; 5594 } 5595 5596 static struct bpf_core_cand_list * 5597 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5598 { 5599 struct bpf_core_cand local_cand = {}; 5600 struct bpf_core_cand_list *cands; 5601 const struct btf *main_btf; 5602 const struct btf_type *local_t; 5603 const char *local_name; 5604 size_t local_essent_len; 5605 int err, i; 5606 5607 local_cand.btf = local_btf; 5608 local_cand.id = local_type_id; 5609 local_t = btf__type_by_id(local_btf, local_type_id); 5610 if (!local_t) 5611 return ERR_PTR(-EINVAL); 5612 5613 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5614 if (str_is_empty(local_name)) 5615 return ERR_PTR(-EINVAL); 5616 local_essent_len = bpf_core_essential_name_len(local_name); 5617 5618 cands = calloc(1, sizeof(*cands)); 5619 if (!cands) 5620 return ERR_PTR(-ENOMEM); 5621 5622 /* Attempt to find target candidates in vmlinux BTF first */ 5623 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5624 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5625 if (err) 5626 goto err_out; 5627 5628 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5629 if (cands->len) 5630 return cands; 5631 5632 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5633 if (obj->btf_vmlinux_override) 5634 return cands; 5635 5636 /* now look through module BTFs, trying to still find candidates */ 5637 err = load_module_btfs(obj); 5638 if (err) 5639 goto err_out; 5640 5641 for (i = 0; i < obj->btf_module_cnt; i++) { 5642 err = bpf_core_add_cands(&local_cand, local_essent_len, 5643 obj->btf_modules[i].btf, 5644 obj->btf_modules[i].name, 5645 btf__type_cnt(obj->btf_vmlinux), 5646 cands); 5647 if (err) 5648 goto err_out; 5649 } 5650 5651 return cands; 5652 err_out: 5653 bpf_core_free_cands(cands); 5654 return ERR_PTR(err); 5655 } 5656 5657 /* Check local and target types for compatibility. This check is used for 5658 * type-based CO-RE relocations and follow slightly different rules than 5659 * field-based relocations. This function assumes that root types were already 5660 * checked for name match. Beyond that initial root-level name check, names 5661 * are completely ignored. Compatibility rules are as follows: 5662 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5663 * kind should match for local and target types (i.e., STRUCT is not 5664 * compatible with UNION); 5665 * - for ENUMs, the size is ignored; 5666 * - for INT, size and signedness are ignored; 5667 * - for ARRAY, dimensionality is ignored, element types are checked for 5668 * compatibility recursively; 5669 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5670 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5671 * - FUNC_PROTOs are compatible if they have compatible signature: same 5672 * number of input args and compatible return and argument types. 5673 * These rules are not set in stone and probably will be adjusted as we get 5674 * more experience with using BPF CO-RE relocations. 5675 */ 5676 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5677 const struct btf *targ_btf, __u32 targ_id) 5678 { 5679 const struct btf_type *local_type, *targ_type; 5680 int depth = 32; /* max recursion depth */ 5681 5682 /* caller made sure that names match (ignoring flavor suffix) */ 5683 local_type = btf__type_by_id(local_btf, local_id); 5684 targ_type = btf__type_by_id(targ_btf, targ_id); 5685 if (btf_kind(local_type) != btf_kind(targ_type)) 5686 return 0; 5687 5688 recur: 5689 depth--; 5690 if (depth < 0) 5691 return -EINVAL; 5692 5693 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5694 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5695 if (!local_type || !targ_type) 5696 return -EINVAL; 5697 5698 if (btf_kind(local_type) != btf_kind(targ_type)) 5699 return 0; 5700 5701 switch (btf_kind(local_type)) { 5702 case BTF_KIND_UNKN: 5703 case BTF_KIND_STRUCT: 5704 case BTF_KIND_UNION: 5705 case BTF_KIND_ENUM: 5706 case BTF_KIND_FWD: 5707 return 1; 5708 case BTF_KIND_INT: 5709 /* just reject deprecated bitfield-like integers; all other 5710 * integers are by default compatible between each other 5711 */ 5712 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5713 case BTF_KIND_PTR: 5714 local_id = local_type->type; 5715 targ_id = targ_type->type; 5716 goto recur; 5717 case BTF_KIND_ARRAY: 5718 local_id = btf_array(local_type)->type; 5719 targ_id = btf_array(targ_type)->type; 5720 goto recur; 5721 case BTF_KIND_FUNC_PROTO: { 5722 struct btf_param *local_p = btf_params(local_type); 5723 struct btf_param *targ_p = btf_params(targ_type); 5724 __u16 local_vlen = btf_vlen(local_type); 5725 __u16 targ_vlen = btf_vlen(targ_type); 5726 int i, err; 5727 5728 if (local_vlen != targ_vlen) 5729 return 0; 5730 5731 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5732 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5733 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5734 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5735 if (err <= 0) 5736 return err; 5737 } 5738 5739 /* tail recurse for return type check */ 5740 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5741 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5742 goto recur; 5743 } 5744 default: 5745 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5746 btf_kind_str(local_type), local_id, targ_id); 5747 return 0; 5748 } 5749 } 5750 5751 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5752 { 5753 return (size_t)key; 5754 } 5755 5756 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5757 { 5758 return k1 == k2; 5759 } 5760 5761 static void *u32_as_hash_key(__u32 x) 5762 { 5763 return (void *)(uintptr_t)x; 5764 } 5765 5766 static int record_relo_core(struct bpf_program *prog, 5767 const struct bpf_core_relo *core_relo, int insn_idx) 5768 { 5769 struct reloc_desc *relos, *relo; 5770 5771 relos = libbpf_reallocarray(prog->reloc_desc, 5772 prog->nr_reloc + 1, sizeof(*relos)); 5773 if (!relos) 5774 return -ENOMEM; 5775 relo = &relos[prog->nr_reloc]; 5776 relo->type = RELO_CORE; 5777 relo->insn_idx = insn_idx; 5778 relo->core_relo = core_relo; 5779 prog->reloc_desc = relos; 5780 prog->nr_reloc++; 5781 return 0; 5782 } 5783 5784 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5785 { 5786 struct reloc_desc *relo; 5787 int i; 5788 5789 for (i = 0; i < prog->nr_reloc; i++) { 5790 relo = &prog->reloc_desc[i]; 5791 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5792 continue; 5793 5794 return relo->core_relo; 5795 } 5796 5797 return NULL; 5798 } 5799 5800 static int bpf_core_resolve_relo(struct bpf_program *prog, 5801 const struct bpf_core_relo *relo, 5802 int relo_idx, 5803 const struct btf *local_btf, 5804 struct hashmap *cand_cache, 5805 struct bpf_core_relo_res *targ_res) 5806 { 5807 struct bpf_core_spec specs_scratch[3] = {}; 5808 const void *type_key = u32_as_hash_key(relo->type_id); 5809 struct bpf_core_cand_list *cands = NULL; 5810 const char *prog_name = prog->name; 5811 const struct btf_type *local_type; 5812 const char *local_name; 5813 __u32 local_id = relo->type_id; 5814 int err; 5815 5816 local_type = btf__type_by_id(local_btf, local_id); 5817 if (!local_type) 5818 return -EINVAL; 5819 5820 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5821 if (!local_name) 5822 return -EINVAL; 5823 5824 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5825 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5826 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5827 if (IS_ERR(cands)) { 5828 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5829 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5830 local_name, PTR_ERR(cands)); 5831 return PTR_ERR(cands); 5832 } 5833 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5834 if (err) { 5835 bpf_core_free_cands(cands); 5836 return err; 5837 } 5838 } 5839 5840 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5841 targ_res); 5842 } 5843 5844 static int 5845 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5846 { 5847 const struct btf_ext_info_sec *sec; 5848 struct bpf_core_relo_res targ_res; 5849 const struct bpf_core_relo *rec; 5850 const struct btf_ext_info *seg; 5851 struct hashmap_entry *entry; 5852 struct hashmap *cand_cache = NULL; 5853 struct bpf_program *prog; 5854 struct bpf_insn *insn; 5855 const char *sec_name; 5856 int i, err = 0, insn_idx, sec_idx, sec_num; 5857 5858 if (obj->btf_ext->core_relo_info.len == 0) 5859 return 0; 5860 5861 if (targ_btf_path) { 5862 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5863 err = libbpf_get_error(obj->btf_vmlinux_override); 5864 if (err) { 5865 pr_warn("failed to parse target BTF: %d\n", err); 5866 return err; 5867 } 5868 } 5869 5870 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5871 if (IS_ERR(cand_cache)) { 5872 err = PTR_ERR(cand_cache); 5873 goto out; 5874 } 5875 5876 seg = &obj->btf_ext->core_relo_info; 5877 sec_num = 0; 5878 for_each_btf_ext_sec(seg, sec) { 5879 sec_idx = seg->sec_idxs[sec_num]; 5880 sec_num++; 5881 5882 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5883 if (str_is_empty(sec_name)) { 5884 err = -EINVAL; 5885 goto out; 5886 } 5887 5888 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5889 5890 for_each_btf_ext_rec(seg, sec, i, rec) { 5891 if (rec->insn_off % BPF_INSN_SZ) 5892 return -EINVAL; 5893 insn_idx = rec->insn_off / BPF_INSN_SZ; 5894 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5895 if (!prog) { 5896 /* When __weak subprog is "overridden" by another instance 5897 * of the subprog from a different object file, linker still 5898 * appends all the .BTF.ext info that used to belong to that 5899 * eliminated subprogram. 5900 * This is similar to what x86-64 linker does for relocations. 5901 * So just ignore such relocations just like we ignore 5902 * subprog instructions when discovering subprograms. 5903 */ 5904 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5905 sec_name, i, insn_idx); 5906 continue; 5907 } 5908 /* no need to apply CO-RE relocation if the program is 5909 * not going to be loaded 5910 */ 5911 if (!prog->autoload) 5912 continue; 5913 5914 /* adjust insn_idx from section frame of reference to the local 5915 * program's frame of reference; (sub-)program code is not yet 5916 * relocated, so it's enough to just subtract in-section offset 5917 */ 5918 insn_idx = insn_idx - prog->sec_insn_off; 5919 if (insn_idx >= prog->insns_cnt) 5920 return -EINVAL; 5921 insn = &prog->insns[insn_idx]; 5922 5923 err = record_relo_core(prog, rec, insn_idx); 5924 if (err) { 5925 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5926 prog->name, i, err); 5927 goto out; 5928 } 5929 5930 if (prog->obj->gen_loader) 5931 continue; 5932 5933 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5934 if (err) { 5935 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5936 prog->name, i, err); 5937 goto out; 5938 } 5939 5940 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5941 if (err) { 5942 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5943 prog->name, i, insn_idx, err); 5944 goto out; 5945 } 5946 } 5947 } 5948 5949 out: 5950 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5951 btf__free(obj->btf_vmlinux_override); 5952 obj->btf_vmlinux_override = NULL; 5953 5954 if (!IS_ERR_OR_NULL(cand_cache)) { 5955 hashmap__for_each_entry(cand_cache, entry, i) { 5956 bpf_core_free_cands(entry->value); 5957 } 5958 hashmap__free(cand_cache); 5959 } 5960 return err; 5961 } 5962 5963 /* base map load ldimm64 special constant, used also for log fixup logic */ 5964 #define MAP_LDIMM64_POISON_BASE 2001000000 5965 #define MAP_LDIMM64_POISON_PFX "200100" 5966 5967 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5968 int insn_idx, struct bpf_insn *insn, 5969 int map_idx, const struct bpf_map *map) 5970 { 5971 int i; 5972 5973 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5974 prog->name, relo_idx, insn_idx, map_idx, map->name); 5975 5976 /* we turn single ldimm64 into two identical invalid calls */ 5977 for (i = 0; i < 2; i++) { 5978 insn->code = BPF_JMP | BPF_CALL; 5979 insn->dst_reg = 0; 5980 insn->src_reg = 0; 5981 insn->off = 0; 5982 /* if this instruction is reachable (not a dead code), 5983 * verifier will complain with something like: 5984 * invalid func unknown#2001000123 5985 * where lower 123 is map index into obj->maps[] array 5986 */ 5987 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5988 5989 insn++; 5990 } 5991 } 5992 5993 /* Relocate data references within program code: 5994 * - map references; 5995 * - global variable references; 5996 * - extern references. 5997 */ 5998 static int 5999 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6000 { 6001 int i; 6002 6003 for (i = 0; i < prog->nr_reloc; i++) { 6004 struct reloc_desc *relo = &prog->reloc_desc[i]; 6005 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6006 const struct bpf_map *map; 6007 struct extern_desc *ext; 6008 6009 switch (relo->type) { 6010 case RELO_LD64: 6011 map = &obj->maps[relo->map_idx]; 6012 if (obj->gen_loader) { 6013 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6014 insn[0].imm = relo->map_idx; 6015 } else if (map->autocreate) { 6016 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6017 insn[0].imm = map->fd; 6018 } else { 6019 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6020 relo->map_idx, map); 6021 } 6022 break; 6023 case RELO_DATA: 6024 map = &obj->maps[relo->map_idx]; 6025 insn[1].imm = insn[0].imm + relo->sym_off; 6026 if (obj->gen_loader) { 6027 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6028 insn[0].imm = relo->map_idx; 6029 } else if (map->autocreate) { 6030 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6031 insn[0].imm = map->fd; 6032 } else { 6033 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6034 relo->map_idx, map); 6035 } 6036 break; 6037 case RELO_EXTERN_VAR: 6038 ext = &obj->externs[relo->sym_off]; 6039 if (ext->type == EXT_KCFG) { 6040 if (obj->gen_loader) { 6041 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6042 insn[0].imm = obj->kconfig_map_idx; 6043 } else { 6044 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6045 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6046 } 6047 insn[1].imm = ext->kcfg.data_off; 6048 } else /* EXT_KSYM */ { 6049 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6050 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6051 insn[0].imm = ext->ksym.kernel_btf_id; 6052 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6053 } else { /* typeless ksyms or unresolved typed ksyms */ 6054 insn[0].imm = (__u32)ext->ksym.addr; 6055 insn[1].imm = ext->ksym.addr >> 32; 6056 } 6057 } 6058 break; 6059 case RELO_EXTERN_FUNC: 6060 ext = &obj->externs[relo->sym_off]; 6061 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6062 if (ext->is_set) { 6063 insn[0].imm = ext->ksym.kernel_btf_id; 6064 insn[0].off = ext->ksym.btf_fd_idx; 6065 } else { /* unresolved weak kfunc */ 6066 insn[0].imm = 0; 6067 insn[0].off = 0; 6068 } 6069 break; 6070 case RELO_SUBPROG_ADDR: 6071 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6072 pr_warn("prog '%s': relo #%d: bad insn\n", 6073 prog->name, i); 6074 return -EINVAL; 6075 } 6076 /* handled already */ 6077 break; 6078 case RELO_CALL: 6079 /* handled already */ 6080 break; 6081 case RELO_CORE: 6082 /* will be handled by bpf_program_record_relos() */ 6083 break; 6084 default: 6085 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6086 prog->name, i, relo->type); 6087 return -EINVAL; 6088 } 6089 } 6090 6091 return 0; 6092 } 6093 6094 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6095 const struct bpf_program *prog, 6096 const struct btf_ext_info *ext_info, 6097 void **prog_info, __u32 *prog_rec_cnt, 6098 __u32 *prog_rec_sz) 6099 { 6100 void *copy_start = NULL, *copy_end = NULL; 6101 void *rec, *rec_end, *new_prog_info; 6102 const struct btf_ext_info_sec *sec; 6103 size_t old_sz, new_sz; 6104 int i, sec_num, sec_idx, off_adj; 6105 6106 sec_num = 0; 6107 for_each_btf_ext_sec(ext_info, sec) { 6108 sec_idx = ext_info->sec_idxs[sec_num]; 6109 sec_num++; 6110 if (prog->sec_idx != sec_idx) 6111 continue; 6112 6113 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6114 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6115 6116 if (insn_off < prog->sec_insn_off) 6117 continue; 6118 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6119 break; 6120 6121 if (!copy_start) 6122 copy_start = rec; 6123 copy_end = rec + ext_info->rec_size; 6124 } 6125 6126 if (!copy_start) 6127 return -ENOENT; 6128 6129 /* append func/line info of a given (sub-)program to the main 6130 * program func/line info 6131 */ 6132 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6133 new_sz = old_sz + (copy_end - copy_start); 6134 new_prog_info = realloc(*prog_info, new_sz); 6135 if (!new_prog_info) 6136 return -ENOMEM; 6137 *prog_info = new_prog_info; 6138 *prog_rec_cnt = new_sz / ext_info->rec_size; 6139 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6140 6141 /* Kernel instruction offsets are in units of 8-byte 6142 * instructions, while .BTF.ext instruction offsets generated 6143 * by Clang are in units of bytes. So convert Clang offsets 6144 * into kernel offsets and adjust offset according to program 6145 * relocated position. 6146 */ 6147 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6148 rec = new_prog_info + old_sz; 6149 rec_end = new_prog_info + new_sz; 6150 for (; rec < rec_end; rec += ext_info->rec_size) { 6151 __u32 *insn_off = rec; 6152 6153 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6154 } 6155 *prog_rec_sz = ext_info->rec_size; 6156 return 0; 6157 } 6158 6159 return -ENOENT; 6160 } 6161 6162 static int 6163 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6164 struct bpf_program *main_prog, 6165 const struct bpf_program *prog) 6166 { 6167 int err; 6168 6169 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6170 * supprot func/line info 6171 */ 6172 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6173 return 0; 6174 6175 /* only attempt func info relocation if main program's func_info 6176 * relocation was successful 6177 */ 6178 if (main_prog != prog && !main_prog->func_info) 6179 goto line_info; 6180 6181 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6182 &main_prog->func_info, 6183 &main_prog->func_info_cnt, 6184 &main_prog->func_info_rec_size); 6185 if (err) { 6186 if (err != -ENOENT) { 6187 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6188 prog->name, err); 6189 return err; 6190 } 6191 if (main_prog->func_info) { 6192 /* 6193 * Some info has already been found but has problem 6194 * in the last btf_ext reloc. Must have to error out. 6195 */ 6196 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6197 return err; 6198 } 6199 /* Have problem loading the very first info. Ignore the rest. */ 6200 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6201 prog->name); 6202 } 6203 6204 line_info: 6205 /* don't relocate line info if main program's relocation failed */ 6206 if (main_prog != prog && !main_prog->line_info) 6207 return 0; 6208 6209 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6210 &main_prog->line_info, 6211 &main_prog->line_info_cnt, 6212 &main_prog->line_info_rec_size); 6213 if (err) { 6214 if (err != -ENOENT) { 6215 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6216 prog->name, err); 6217 return err; 6218 } 6219 if (main_prog->line_info) { 6220 /* 6221 * Some info has already been found but has problem 6222 * in the last btf_ext reloc. Must have to error out. 6223 */ 6224 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6225 return err; 6226 } 6227 /* Have problem loading the very first info. Ignore the rest. */ 6228 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6229 prog->name); 6230 } 6231 return 0; 6232 } 6233 6234 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6235 { 6236 size_t insn_idx = *(const size_t *)key; 6237 const struct reloc_desc *relo = elem; 6238 6239 if (insn_idx == relo->insn_idx) 6240 return 0; 6241 return insn_idx < relo->insn_idx ? -1 : 1; 6242 } 6243 6244 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6245 { 6246 if (!prog->nr_reloc) 6247 return NULL; 6248 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6249 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6250 } 6251 6252 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6253 { 6254 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6255 struct reloc_desc *relos; 6256 int i; 6257 6258 if (main_prog == subprog) 6259 return 0; 6260 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6261 if (!relos) 6262 return -ENOMEM; 6263 if (subprog->nr_reloc) 6264 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6265 sizeof(*relos) * subprog->nr_reloc); 6266 6267 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6268 relos[i].insn_idx += subprog->sub_insn_off; 6269 /* After insn_idx adjustment the 'relos' array is still sorted 6270 * by insn_idx and doesn't break bsearch. 6271 */ 6272 main_prog->reloc_desc = relos; 6273 main_prog->nr_reloc = new_cnt; 6274 return 0; 6275 } 6276 6277 static int 6278 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6279 struct bpf_program *prog) 6280 { 6281 size_t sub_insn_idx, insn_idx, new_cnt; 6282 struct bpf_program *subprog; 6283 struct bpf_insn *insns, *insn; 6284 struct reloc_desc *relo; 6285 int err; 6286 6287 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6288 if (err) 6289 return err; 6290 6291 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6292 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6293 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6294 continue; 6295 6296 relo = find_prog_insn_relo(prog, insn_idx); 6297 if (relo && relo->type == RELO_EXTERN_FUNC) 6298 /* kfunc relocations will be handled later 6299 * in bpf_object__relocate_data() 6300 */ 6301 continue; 6302 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6303 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6304 prog->name, insn_idx, relo->type); 6305 return -LIBBPF_ERRNO__RELOC; 6306 } 6307 if (relo) { 6308 /* sub-program instruction index is a combination of 6309 * an offset of a symbol pointed to by relocation and 6310 * call instruction's imm field; for global functions, 6311 * call always has imm = -1, but for static functions 6312 * relocation is against STT_SECTION and insn->imm 6313 * points to a start of a static function 6314 * 6315 * for subprog addr relocation, the relo->sym_off + insn->imm is 6316 * the byte offset in the corresponding section. 6317 */ 6318 if (relo->type == RELO_CALL) 6319 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6320 else 6321 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6322 } else if (insn_is_pseudo_func(insn)) { 6323 /* 6324 * RELO_SUBPROG_ADDR relo is always emitted even if both 6325 * functions are in the same section, so it shouldn't reach here. 6326 */ 6327 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6328 prog->name, insn_idx); 6329 return -LIBBPF_ERRNO__RELOC; 6330 } else { 6331 /* if subprogram call is to a static function within 6332 * the same ELF section, there won't be any relocation 6333 * emitted, but it also means there is no additional 6334 * offset necessary, insns->imm is relative to 6335 * instruction's original position within the section 6336 */ 6337 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6338 } 6339 6340 /* we enforce that sub-programs should be in .text section */ 6341 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6342 if (!subprog) { 6343 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6344 prog->name); 6345 return -LIBBPF_ERRNO__RELOC; 6346 } 6347 6348 /* if it's the first call instruction calling into this 6349 * subprogram (meaning this subprog hasn't been processed 6350 * yet) within the context of current main program: 6351 * - append it at the end of main program's instructions blog; 6352 * - process is recursively, while current program is put on hold; 6353 * - if that subprogram calls some other not yet processes 6354 * subprogram, same thing will happen recursively until 6355 * there are no more unprocesses subprograms left to append 6356 * and relocate. 6357 */ 6358 if (subprog->sub_insn_off == 0) { 6359 subprog->sub_insn_off = main_prog->insns_cnt; 6360 6361 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6362 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6363 if (!insns) { 6364 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6365 return -ENOMEM; 6366 } 6367 main_prog->insns = insns; 6368 main_prog->insns_cnt = new_cnt; 6369 6370 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6371 subprog->insns_cnt * sizeof(*insns)); 6372 6373 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6374 main_prog->name, subprog->insns_cnt, subprog->name); 6375 6376 /* The subprog insns are now appended. Append its relos too. */ 6377 err = append_subprog_relos(main_prog, subprog); 6378 if (err) 6379 return err; 6380 err = bpf_object__reloc_code(obj, main_prog, subprog); 6381 if (err) 6382 return err; 6383 } 6384 6385 /* main_prog->insns memory could have been re-allocated, so 6386 * calculate pointer again 6387 */ 6388 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6389 /* calculate correct instruction position within current main 6390 * prog; each main prog can have a different set of 6391 * subprograms appended (potentially in different order as 6392 * well), so position of any subprog can be different for 6393 * different main programs */ 6394 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6395 6396 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6397 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6398 } 6399 6400 return 0; 6401 } 6402 6403 /* 6404 * Relocate sub-program calls. 6405 * 6406 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6407 * main prog) is processed separately. For each subprog (non-entry functions, 6408 * that can be called from either entry progs or other subprogs) gets their 6409 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6410 * hasn't been yet appended and relocated within current main prog. Once its 6411 * relocated, sub_insn_off will point at the position within current main prog 6412 * where given subprog was appended. This will further be used to relocate all 6413 * the call instructions jumping into this subprog. 6414 * 6415 * We start with main program and process all call instructions. If the call 6416 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6417 * is zero), subprog instructions are appended at the end of main program's 6418 * instruction array. Then main program is "put on hold" while we recursively 6419 * process newly appended subprogram. If that subprogram calls into another 6420 * subprogram that hasn't been appended, new subprogram is appended again to 6421 * the *main* prog's instructions (subprog's instructions are always left 6422 * untouched, as they need to be in unmodified state for subsequent main progs 6423 * and subprog instructions are always sent only as part of a main prog) and 6424 * the process continues recursively. Once all the subprogs called from a main 6425 * prog or any of its subprogs are appended (and relocated), all their 6426 * positions within finalized instructions array are known, so it's easy to 6427 * rewrite call instructions with correct relative offsets, corresponding to 6428 * desired target subprog. 6429 * 6430 * Its important to realize that some subprogs might not be called from some 6431 * main prog and any of its called/used subprogs. Those will keep their 6432 * subprog->sub_insn_off as zero at all times and won't be appended to current 6433 * main prog and won't be relocated within the context of current main prog. 6434 * They might still be used from other main progs later. 6435 * 6436 * Visually this process can be shown as below. Suppose we have two main 6437 * programs mainA and mainB and BPF object contains three subprogs: subA, 6438 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6439 * subC both call subB: 6440 * 6441 * +--------+ +-------+ 6442 * | v v | 6443 * +--+---+ +--+-+-+ +---+--+ 6444 * | subA | | subB | | subC | 6445 * +--+---+ +------+ +---+--+ 6446 * ^ ^ 6447 * | | 6448 * +---+-------+ +------+----+ 6449 * | mainA | | mainB | 6450 * +-----------+ +-----------+ 6451 * 6452 * We'll start relocating mainA, will find subA, append it and start 6453 * processing sub A recursively: 6454 * 6455 * +-----------+------+ 6456 * | mainA | subA | 6457 * +-----------+------+ 6458 * 6459 * At this point we notice that subB is used from subA, so we append it and 6460 * relocate (there are no further subcalls from subB): 6461 * 6462 * +-----------+------+------+ 6463 * | mainA | subA | subB | 6464 * +-----------+------+------+ 6465 * 6466 * At this point, we relocate subA calls, then go one level up and finish with 6467 * relocatin mainA calls. mainA is done. 6468 * 6469 * For mainB process is similar but results in different order. We start with 6470 * mainB and skip subA and subB, as mainB never calls them (at least 6471 * directly), but we see subC is needed, so we append and start processing it: 6472 * 6473 * +-----------+------+ 6474 * | mainB | subC | 6475 * +-----------+------+ 6476 * Now we see subC needs subB, so we go back to it, append and relocate it: 6477 * 6478 * +-----------+------+------+ 6479 * | mainB | subC | subB | 6480 * +-----------+------+------+ 6481 * 6482 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6483 */ 6484 static int 6485 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6486 { 6487 struct bpf_program *subprog; 6488 int i, err; 6489 6490 /* mark all subprogs as not relocated (yet) within the context of 6491 * current main program 6492 */ 6493 for (i = 0; i < obj->nr_programs; i++) { 6494 subprog = &obj->programs[i]; 6495 if (!prog_is_subprog(obj, subprog)) 6496 continue; 6497 6498 subprog->sub_insn_off = 0; 6499 } 6500 6501 err = bpf_object__reloc_code(obj, prog, prog); 6502 if (err) 6503 return err; 6504 6505 return 0; 6506 } 6507 6508 static void 6509 bpf_object__free_relocs(struct bpf_object *obj) 6510 { 6511 struct bpf_program *prog; 6512 int i; 6513 6514 /* free up relocation descriptors */ 6515 for (i = 0; i < obj->nr_programs; i++) { 6516 prog = &obj->programs[i]; 6517 zfree(&prog->reloc_desc); 6518 prog->nr_reloc = 0; 6519 } 6520 } 6521 6522 static int cmp_relocs(const void *_a, const void *_b) 6523 { 6524 const struct reloc_desc *a = _a; 6525 const struct reloc_desc *b = _b; 6526 6527 if (a->insn_idx != b->insn_idx) 6528 return a->insn_idx < b->insn_idx ? -1 : 1; 6529 6530 /* no two relocations should have the same insn_idx, but ... */ 6531 if (a->type != b->type) 6532 return a->type < b->type ? -1 : 1; 6533 6534 return 0; 6535 } 6536 6537 static void bpf_object__sort_relos(struct bpf_object *obj) 6538 { 6539 int i; 6540 6541 for (i = 0; i < obj->nr_programs; i++) { 6542 struct bpf_program *p = &obj->programs[i]; 6543 6544 if (!p->nr_reloc) 6545 continue; 6546 6547 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6548 } 6549 } 6550 6551 static int 6552 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6553 { 6554 struct bpf_program *prog; 6555 size_t i, j; 6556 int err; 6557 6558 if (obj->btf_ext) { 6559 err = bpf_object__relocate_core(obj, targ_btf_path); 6560 if (err) { 6561 pr_warn("failed to perform CO-RE relocations: %d\n", 6562 err); 6563 return err; 6564 } 6565 bpf_object__sort_relos(obj); 6566 } 6567 6568 /* Before relocating calls pre-process relocations and mark 6569 * few ld_imm64 instructions that points to subprogs. 6570 * Otherwise bpf_object__reloc_code() later would have to consider 6571 * all ld_imm64 insns as relocation candidates. That would 6572 * reduce relocation speed, since amount of find_prog_insn_relo() 6573 * would increase and most of them will fail to find a relo. 6574 */ 6575 for (i = 0; i < obj->nr_programs; i++) { 6576 prog = &obj->programs[i]; 6577 for (j = 0; j < prog->nr_reloc; j++) { 6578 struct reloc_desc *relo = &prog->reloc_desc[j]; 6579 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6580 6581 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6582 if (relo->type == RELO_SUBPROG_ADDR) 6583 insn[0].src_reg = BPF_PSEUDO_FUNC; 6584 } 6585 } 6586 6587 /* relocate subprogram calls and append used subprograms to main 6588 * programs; each copy of subprogram code needs to be relocated 6589 * differently for each main program, because its code location might 6590 * have changed. 6591 * Append subprog relos to main programs to allow data relos to be 6592 * processed after text is completely relocated. 6593 */ 6594 for (i = 0; i < obj->nr_programs; i++) { 6595 prog = &obj->programs[i]; 6596 /* sub-program's sub-calls are relocated within the context of 6597 * its main program only 6598 */ 6599 if (prog_is_subprog(obj, prog)) 6600 continue; 6601 if (!prog->autoload) 6602 continue; 6603 6604 err = bpf_object__relocate_calls(obj, prog); 6605 if (err) { 6606 pr_warn("prog '%s': failed to relocate calls: %d\n", 6607 prog->name, err); 6608 return err; 6609 } 6610 } 6611 /* Process data relos for main programs */ 6612 for (i = 0; i < obj->nr_programs; i++) { 6613 prog = &obj->programs[i]; 6614 if (prog_is_subprog(obj, prog)) 6615 continue; 6616 if (!prog->autoload) 6617 continue; 6618 err = bpf_object__relocate_data(obj, prog); 6619 if (err) { 6620 pr_warn("prog '%s': failed to relocate data references: %d\n", 6621 prog->name, err); 6622 return err; 6623 } 6624 } 6625 6626 return 0; 6627 } 6628 6629 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6630 Elf64_Shdr *shdr, Elf_Data *data); 6631 6632 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6633 Elf64_Shdr *shdr, Elf_Data *data) 6634 { 6635 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6636 int i, j, nrels, new_sz; 6637 const struct btf_var_secinfo *vi = NULL; 6638 const struct btf_type *sec, *var, *def; 6639 struct bpf_map *map = NULL, *targ_map = NULL; 6640 struct bpf_program *targ_prog = NULL; 6641 bool is_prog_array, is_map_in_map; 6642 const struct btf_member *member; 6643 const char *name, *mname, *type; 6644 unsigned int moff; 6645 Elf64_Sym *sym; 6646 Elf64_Rel *rel; 6647 void *tmp; 6648 6649 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6650 return -EINVAL; 6651 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6652 if (!sec) 6653 return -EINVAL; 6654 6655 nrels = shdr->sh_size / shdr->sh_entsize; 6656 for (i = 0; i < nrels; i++) { 6657 rel = elf_rel_by_idx(data, i); 6658 if (!rel) { 6659 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6660 return -LIBBPF_ERRNO__FORMAT; 6661 } 6662 6663 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6664 if (!sym) { 6665 pr_warn(".maps relo #%d: symbol %zx not found\n", 6666 i, (size_t)ELF64_R_SYM(rel->r_info)); 6667 return -LIBBPF_ERRNO__FORMAT; 6668 } 6669 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6670 6671 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6672 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6673 (size_t)rel->r_offset, sym->st_name, name); 6674 6675 for (j = 0; j < obj->nr_maps; j++) { 6676 map = &obj->maps[j]; 6677 if (map->sec_idx != obj->efile.btf_maps_shndx) 6678 continue; 6679 6680 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6681 if (vi->offset <= rel->r_offset && 6682 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6683 break; 6684 } 6685 if (j == obj->nr_maps) { 6686 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6687 i, name, (size_t)rel->r_offset); 6688 return -EINVAL; 6689 } 6690 6691 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6692 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6693 type = is_map_in_map ? "map" : "prog"; 6694 if (is_map_in_map) { 6695 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6696 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6697 i, name); 6698 return -LIBBPF_ERRNO__RELOC; 6699 } 6700 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6701 map->def.key_size != sizeof(int)) { 6702 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6703 i, map->name, sizeof(int)); 6704 return -EINVAL; 6705 } 6706 targ_map = bpf_object__find_map_by_name(obj, name); 6707 if (!targ_map) { 6708 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6709 i, name); 6710 return -ESRCH; 6711 } 6712 } else if (is_prog_array) { 6713 targ_prog = bpf_object__find_program_by_name(obj, name); 6714 if (!targ_prog) { 6715 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6716 i, name); 6717 return -ESRCH; 6718 } 6719 if (targ_prog->sec_idx != sym->st_shndx || 6720 targ_prog->sec_insn_off * 8 != sym->st_value || 6721 prog_is_subprog(obj, targ_prog)) { 6722 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6723 i, name); 6724 return -LIBBPF_ERRNO__RELOC; 6725 } 6726 } else { 6727 return -EINVAL; 6728 } 6729 6730 var = btf__type_by_id(obj->btf, vi->type); 6731 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6732 if (btf_vlen(def) == 0) 6733 return -EINVAL; 6734 member = btf_members(def) + btf_vlen(def) - 1; 6735 mname = btf__name_by_offset(obj->btf, member->name_off); 6736 if (strcmp(mname, "values")) 6737 return -EINVAL; 6738 6739 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6740 if (rel->r_offset - vi->offset < moff) 6741 return -EINVAL; 6742 6743 moff = rel->r_offset - vi->offset - moff; 6744 /* here we use BPF pointer size, which is always 64 bit, as we 6745 * are parsing ELF that was built for BPF target 6746 */ 6747 if (moff % bpf_ptr_sz) 6748 return -EINVAL; 6749 moff /= bpf_ptr_sz; 6750 if (moff >= map->init_slots_sz) { 6751 new_sz = moff + 1; 6752 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6753 if (!tmp) 6754 return -ENOMEM; 6755 map->init_slots = tmp; 6756 memset(map->init_slots + map->init_slots_sz, 0, 6757 (new_sz - map->init_slots_sz) * host_ptr_sz); 6758 map->init_slots_sz = new_sz; 6759 } 6760 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6761 6762 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6763 i, map->name, moff, type, name); 6764 } 6765 6766 return 0; 6767 } 6768 6769 static int bpf_object__collect_relos(struct bpf_object *obj) 6770 { 6771 int i, err; 6772 6773 for (i = 0; i < obj->efile.sec_cnt; i++) { 6774 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6775 Elf64_Shdr *shdr; 6776 Elf_Data *data; 6777 int idx; 6778 6779 if (sec_desc->sec_type != SEC_RELO) 6780 continue; 6781 6782 shdr = sec_desc->shdr; 6783 data = sec_desc->data; 6784 idx = shdr->sh_info; 6785 6786 if (shdr->sh_type != SHT_REL) { 6787 pr_warn("internal error at %d\n", __LINE__); 6788 return -LIBBPF_ERRNO__INTERNAL; 6789 } 6790 6791 if (idx == obj->efile.st_ops_shndx) 6792 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6793 else if (idx == obj->efile.btf_maps_shndx) 6794 err = bpf_object__collect_map_relos(obj, shdr, data); 6795 else 6796 err = bpf_object__collect_prog_relos(obj, shdr, data); 6797 if (err) 6798 return err; 6799 } 6800 6801 bpf_object__sort_relos(obj); 6802 return 0; 6803 } 6804 6805 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6806 { 6807 if (BPF_CLASS(insn->code) == BPF_JMP && 6808 BPF_OP(insn->code) == BPF_CALL && 6809 BPF_SRC(insn->code) == BPF_K && 6810 insn->src_reg == 0 && 6811 insn->dst_reg == 0) { 6812 *func_id = insn->imm; 6813 return true; 6814 } 6815 return false; 6816 } 6817 6818 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6819 { 6820 struct bpf_insn *insn = prog->insns; 6821 enum bpf_func_id func_id; 6822 int i; 6823 6824 if (obj->gen_loader) 6825 return 0; 6826 6827 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6828 if (!insn_is_helper_call(insn, &func_id)) 6829 continue; 6830 6831 /* on kernels that don't yet support 6832 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6833 * to bpf_probe_read() which works well for old kernels 6834 */ 6835 switch (func_id) { 6836 case BPF_FUNC_probe_read_kernel: 6837 case BPF_FUNC_probe_read_user: 6838 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6839 insn->imm = BPF_FUNC_probe_read; 6840 break; 6841 case BPF_FUNC_probe_read_kernel_str: 6842 case BPF_FUNC_probe_read_user_str: 6843 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6844 insn->imm = BPF_FUNC_probe_read_str; 6845 break; 6846 default: 6847 break; 6848 } 6849 } 6850 return 0; 6851 } 6852 6853 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6854 int *btf_obj_fd, int *btf_type_id); 6855 6856 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6857 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6858 struct bpf_prog_load_opts *opts, long cookie) 6859 { 6860 enum sec_def_flags def = cookie; 6861 6862 /* old kernels might not support specifying expected_attach_type */ 6863 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6864 opts->expected_attach_type = 0; 6865 6866 if (def & SEC_SLEEPABLE) 6867 opts->prog_flags |= BPF_F_SLEEPABLE; 6868 6869 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6870 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6871 6872 if (def & SEC_DEPRECATED) { 6873 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6874 prog->sec_name); 6875 } 6876 6877 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6878 int btf_obj_fd = 0, btf_type_id = 0, err; 6879 const char *attach_name; 6880 6881 attach_name = strchr(prog->sec_name, '/'); 6882 if (!attach_name) { 6883 /* if BPF program is annotated with just SEC("fentry") 6884 * (or similar) without declaratively specifying 6885 * target, then it is expected that target will be 6886 * specified with bpf_program__set_attach_target() at 6887 * runtime before BPF object load step. If not, then 6888 * there is nothing to load into the kernel as BPF 6889 * verifier won't be able to validate BPF program 6890 * correctness anyways. 6891 */ 6892 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6893 prog->name); 6894 return -EINVAL; 6895 } 6896 attach_name++; /* skip over / */ 6897 6898 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6899 if (err) 6900 return err; 6901 6902 /* cache resolved BTF FD and BTF type ID in the prog */ 6903 prog->attach_btf_obj_fd = btf_obj_fd; 6904 prog->attach_btf_id = btf_type_id; 6905 6906 /* but by now libbpf common logic is not utilizing 6907 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6908 * this callback is called after opts were populated by 6909 * libbpf, so this callback has to update opts explicitly here 6910 */ 6911 opts->attach_btf_obj_fd = btf_obj_fd; 6912 opts->attach_btf_id = btf_type_id; 6913 } 6914 return 0; 6915 } 6916 6917 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6918 6919 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6920 struct bpf_insn *insns, int insns_cnt, 6921 const char *license, __u32 kern_version, 6922 int *prog_fd) 6923 { 6924 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6925 const char *prog_name = NULL; 6926 char *cp, errmsg[STRERR_BUFSIZE]; 6927 size_t log_buf_size = 0; 6928 char *log_buf = NULL, *tmp; 6929 int btf_fd, ret, err; 6930 bool own_log_buf = true; 6931 __u32 log_level = prog->log_level; 6932 6933 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6934 /* 6935 * The program type must be set. Most likely we couldn't find a proper 6936 * section definition at load time, and thus we didn't infer the type. 6937 */ 6938 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6939 prog->name, prog->sec_name); 6940 return -EINVAL; 6941 } 6942 6943 if (!insns || !insns_cnt) 6944 return -EINVAL; 6945 6946 load_attr.expected_attach_type = prog->expected_attach_type; 6947 if (kernel_supports(obj, FEAT_PROG_NAME)) 6948 prog_name = prog->name; 6949 load_attr.attach_prog_fd = prog->attach_prog_fd; 6950 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6951 load_attr.attach_btf_id = prog->attach_btf_id; 6952 load_attr.kern_version = kern_version; 6953 load_attr.prog_ifindex = prog->prog_ifindex; 6954 6955 /* specify func_info/line_info only if kernel supports them */ 6956 btf_fd = bpf_object__btf_fd(obj); 6957 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6958 load_attr.prog_btf_fd = btf_fd; 6959 load_attr.func_info = prog->func_info; 6960 load_attr.func_info_rec_size = prog->func_info_rec_size; 6961 load_attr.func_info_cnt = prog->func_info_cnt; 6962 load_attr.line_info = prog->line_info; 6963 load_attr.line_info_rec_size = prog->line_info_rec_size; 6964 load_attr.line_info_cnt = prog->line_info_cnt; 6965 } 6966 load_attr.log_level = log_level; 6967 load_attr.prog_flags = prog->prog_flags; 6968 load_attr.fd_array = obj->fd_array; 6969 6970 /* adjust load_attr if sec_def provides custom preload callback */ 6971 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6972 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6973 if (err < 0) { 6974 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6975 prog->name, err); 6976 return err; 6977 } 6978 insns = prog->insns; 6979 insns_cnt = prog->insns_cnt; 6980 } 6981 6982 if (obj->gen_loader) { 6983 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6984 license, insns, insns_cnt, &load_attr, 6985 prog - obj->programs); 6986 *prog_fd = -1; 6987 return 0; 6988 } 6989 6990 retry_load: 6991 /* if log_level is zero, we don't request logs initially even if 6992 * custom log_buf is specified; if the program load fails, then we'll 6993 * bump log_level to 1 and use either custom log_buf or we'll allocate 6994 * our own and retry the load to get details on what failed 6995 */ 6996 if (log_level) { 6997 if (prog->log_buf) { 6998 log_buf = prog->log_buf; 6999 log_buf_size = prog->log_size; 7000 own_log_buf = false; 7001 } else if (obj->log_buf) { 7002 log_buf = obj->log_buf; 7003 log_buf_size = obj->log_size; 7004 own_log_buf = false; 7005 } else { 7006 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7007 tmp = realloc(log_buf, log_buf_size); 7008 if (!tmp) { 7009 ret = -ENOMEM; 7010 goto out; 7011 } 7012 log_buf = tmp; 7013 log_buf[0] = '\0'; 7014 own_log_buf = true; 7015 } 7016 } 7017 7018 load_attr.log_buf = log_buf; 7019 load_attr.log_size = log_buf_size; 7020 load_attr.log_level = log_level; 7021 7022 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7023 if (ret >= 0) { 7024 if (log_level && own_log_buf) { 7025 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7026 prog->name, log_buf); 7027 } 7028 7029 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7030 struct bpf_map *map; 7031 int i; 7032 7033 for (i = 0; i < obj->nr_maps; i++) { 7034 map = &prog->obj->maps[i]; 7035 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7036 continue; 7037 7038 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7039 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7040 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7041 prog->name, map->real_name, cp); 7042 /* Don't fail hard if can't bind rodata. */ 7043 } 7044 } 7045 } 7046 7047 *prog_fd = ret; 7048 ret = 0; 7049 goto out; 7050 } 7051 7052 if (log_level == 0) { 7053 log_level = 1; 7054 goto retry_load; 7055 } 7056 /* On ENOSPC, increase log buffer size and retry, unless custom 7057 * log_buf is specified. 7058 * Be careful to not overflow u32, though. Kernel's log buf size limit 7059 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7060 * multiply by 2 unless we are sure we'll fit within 32 bits. 7061 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7062 */ 7063 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7064 goto retry_load; 7065 7066 ret = -errno; 7067 7068 /* post-process verifier log to improve error descriptions */ 7069 fixup_verifier_log(prog, log_buf, log_buf_size); 7070 7071 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7072 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7073 pr_perm_msg(ret); 7074 7075 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7076 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7077 prog->name, log_buf); 7078 } 7079 7080 out: 7081 if (own_log_buf) 7082 free(log_buf); 7083 return ret; 7084 } 7085 7086 static char *find_prev_line(char *buf, char *cur) 7087 { 7088 char *p; 7089 7090 if (cur == buf) /* end of a log buf */ 7091 return NULL; 7092 7093 p = cur - 1; 7094 while (p - 1 >= buf && *(p - 1) != '\n') 7095 p--; 7096 7097 return p; 7098 } 7099 7100 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7101 char *orig, size_t orig_sz, const char *patch) 7102 { 7103 /* size of the remaining log content to the right from the to-be-replaced part */ 7104 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7105 size_t patch_sz = strlen(patch); 7106 7107 if (patch_sz != orig_sz) { 7108 /* If patch line(s) are longer than original piece of verifier log, 7109 * shift log contents by (patch_sz - orig_sz) bytes to the right 7110 * starting from after to-be-replaced part of the log. 7111 * 7112 * If patch line(s) are shorter than original piece of verifier log, 7113 * shift log contents by (orig_sz - patch_sz) bytes to the left 7114 * starting from after to-be-replaced part of the log 7115 * 7116 * We need to be careful about not overflowing available 7117 * buf_sz capacity. If that's the case, we'll truncate the end 7118 * of the original log, as necessary. 7119 */ 7120 if (patch_sz > orig_sz) { 7121 if (orig + patch_sz >= buf + buf_sz) { 7122 /* patch is big enough to cover remaining space completely */ 7123 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7124 rem_sz = 0; 7125 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7126 /* patch causes part of remaining log to be truncated */ 7127 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7128 } 7129 } 7130 /* shift remaining log to the right by calculated amount */ 7131 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7132 } 7133 7134 memcpy(orig, patch, patch_sz); 7135 } 7136 7137 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7138 char *buf, size_t buf_sz, size_t log_sz, 7139 char *line1, char *line2, char *line3) 7140 { 7141 /* Expected log for failed and not properly guarded CO-RE relocation: 7142 * line1 -> 123: (85) call unknown#195896080 7143 * line2 -> invalid func unknown#195896080 7144 * line3 -> <anything else or end of buffer> 7145 * 7146 * "123" is the index of the instruction that was poisoned. We extract 7147 * instruction index to find corresponding CO-RE relocation and 7148 * replace this part of the log with more relevant information about 7149 * failed CO-RE relocation. 7150 */ 7151 const struct bpf_core_relo *relo; 7152 struct bpf_core_spec spec; 7153 char patch[512], spec_buf[256]; 7154 int insn_idx, err, spec_len; 7155 7156 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7157 return; 7158 7159 relo = find_relo_core(prog, insn_idx); 7160 if (!relo) 7161 return; 7162 7163 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7164 if (err) 7165 return; 7166 7167 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7168 snprintf(patch, sizeof(patch), 7169 "%d: <invalid CO-RE relocation>\n" 7170 "failed to resolve CO-RE relocation %s%s\n", 7171 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7172 7173 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7174 } 7175 7176 static void fixup_log_missing_map_load(struct bpf_program *prog, 7177 char *buf, size_t buf_sz, size_t log_sz, 7178 char *line1, char *line2, char *line3) 7179 { 7180 /* Expected log for failed and not properly guarded CO-RE relocation: 7181 * line1 -> 123: (85) call unknown#2001000345 7182 * line2 -> invalid func unknown#2001000345 7183 * line3 -> <anything else or end of buffer> 7184 * 7185 * "123" is the index of the instruction that was poisoned. 7186 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7187 */ 7188 struct bpf_object *obj = prog->obj; 7189 const struct bpf_map *map; 7190 int insn_idx, map_idx; 7191 char patch[128]; 7192 7193 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7194 return; 7195 7196 map_idx -= MAP_LDIMM64_POISON_BASE; 7197 if (map_idx < 0 || map_idx >= obj->nr_maps) 7198 return; 7199 map = &obj->maps[map_idx]; 7200 7201 snprintf(patch, sizeof(patch), 7202 "%d: <invalid BPF map reference>\n" 7203 "BPF map '%s' is referenced but wasn't created\n", 7204 insn_idx, map->name); 7205 7206 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7207 } 7208 7209 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7210 { 7211 /* look for familiar error patterns in last N lines of the log */ 7212 const size_t max_last_line_cnt = 10; 7213 char *prev_line, *cur_line, *next_line; 7214 size_t log_sz; 7215 int i; 7216 7217 if (!buf) 7218 return; 7219 7220 log_sz = strlen(buf) + 1; 7221 next_line = buf + log_sz - 1; 7222 7223 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7224 cur_line = find_prev_line(buf, next_line); 7225 if (!cur_line) 7226 return; 7227 7228 /* failed CO-RE relocation case */ 7229 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7230 prev_line = find_prev_line(buf, cur_line); 7231 if (!prev_line) 7232 continue; 7233 7234 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7235 prev_line, cur_line, next_line); 7236 return; 7237 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7238 prev_line = find_prev_line(buf, cur_line); 7239 if (!prev_line) 7240 continue; 7241 7242 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7243 prev_line, cur_line, next_line); 7244 return; 7245 } 7246 } 7247 } 7248 7249 static int bpf_program_record_relos(struct bpf_program *prog) 7250 { 7251 struct bpf_object *obj = prog->obj; 7252 int i; 7253 7254 for (i = 0; i < prog->nr_reloc; i++) { 7255 struct reloc_desc *relo = &prog->reloc_desc[i]; 7256 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7257 7258 switch (relo->type) { 7259 case RELO_EXTERN_VAR: 7260 if (ext->type != EXT_KSYM) 7261 continue; 7262 bpf_gen__record_extern(obj->gen_loader, ext->name, 7263 ext->is_weak, !ext->ksym.type_id, 7264 BTF_KIND_VAR, relo->insn_idx); 7265 break; 7266 case RELO_EXTERN_FUNC: 7267 bpf_gen__record_extern(obj->gen_loader, ext->name, 7268 ext->is_weak, false, BTF_KIND_FUNC, 7269 relo->insn_idx); 7270 break; 7271 case RELO_CORE: { 7272 struct bpf_core_relo cr = { 7273 .insn_off = relo->insn_idx * 8, 7274 .type_id = relo->core_relo->type_id, 7275 .access_str_off = relo->core_relo->access_str_off, 7276 .kind = relo->core_relo->kind, 7277 }; 7278 7279 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7280 break; 7281 } 7282 default: 7283 continue; 7284 } 7285 } 7286 return 0; 7287 } 7288 7289 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7290 const char *license, __u32 kern_ver) 7291 { 7292 int err = 0, fd, i; 7293 7294 if (obj->loaded) { 7295 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7296 return libbpf_err(-EINVAL); 7297 } 7298 7299 if (prog->instances.nr < 0 || !prog->instances.fds) { 7300 if (prog->preprocessor) { 7301 pr_warn("Internal error: can't load program '%s'\n", 7302 prog->name); 7303 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 7304 } 7305 7306 prog->instances.fds = malloc(sizeof(int)); 7307 if (!prog->instances.fds) { 7308 pr_warn("Not enough memory for BPF fds\n"); 7309 return libbpf_err(-ENOMEM); 7310 } 7311 prog->instances.nr = 1; 7312 prog->instances.fds[0] = -1; 7313 } 7314 7315 if (!prog->preprocessor) { 7316 if (prog->instances.nr != 1) { 7317 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7318 prog->name, prog->instances.nr); 7319 } 7320 if (obj->gen_loader) 7321 bpf_program_record_relos(prog); 7322 err = bpf_object_load_prog_instance(obj, prog, 7323 prog->insns, prog->insns_cnt, 7324 license, kern_ver, &fd); 7325 if (!err) 7326 prog->instances.fds[0] = fd; 7327 goto out; 7328 } 7329 7330 for (i = 0; i < prog->instances.nr; i++) { 7331 struct bpf_prog_prep_result result; 7332 bpf_program_prep_t preprocessor = prog->preprocessor; 7333 7334 memset(&result, 0, sizeof(result)); 7335 err = preprocessor(prog, i, prog->insns, 7336 prog->insns_cnt, &result); 7337 if (err) { 7338 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7339 i, prog->name); 7340 goto out; 7341 } 7342 7343 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7344 pr_debug("Skip loading the %dth instance of program '%s'\n", 7345 i, prog->name); 7346 prog->instances.fds[i] = -1; 7347 if (result.pfd) 7348 *result.pfd = -1; 7349 continue; 7350 } 7351 7352 err = bpf_object_load_prog_instance(obj, prog, 7353 result.new_insn_ptr, result.new_insn_cnt, 7354 license, kern_ver, &fd); 7355 if (err) { 7356 pr_warn("Loading the %dth instance of program '%s' failed\n", 7357 i, prog->name); 7358 goto out; 7359 } 7360 7361 if (result.pfd) 7362 *result.pfd = fd; 7363 prog->instances.fds[i] = fd; 7364 } 7365 out: 7366 if (err) 7367 pr_warn("failed to load program '%s'\n", prog->name); 7368 return libbpf_err(err); 7369 } 7370 7371 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 7372 { 7373 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 7374 } 7375 7376 static int 7377 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7378 { 7379 struct bpf_program *prog; 7380 size_t i; 7381 int err; 7382 7383 for (i = 0; i < obj->nr_programs; i++) { 7384 prog = &obj->programs[i]; 7385 err = bpf_object__sanitize_prog(obj, prog); 7386 if (err) 7387 return err; 7388 } 7389 7390 for (i = 0; i < obj->nr_programs; i++) { 7391 prog = &obj->programs[i]; 7392 if (prog_is_subprog(obj, prog)) 7393 continue; 7394 if (!prog->autoload) { 7395 pr_debug("prog '%s': skipped loading\n", prog->name); 7396 continue; 7397 } 7398 prog->log_level |= log_level; 7399 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 7400 if (err) 7401 return err; 7402 } 7403 7404 bpf_object__free_relocs(obj); 7405 return 0; 7406 } 7407 7408 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7409 7410 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7411 { 7412 struct bpf_program *prog; 7413 int err; 7414 7415 bpf_object__for_each_program(prog, obj) { 7416 prog->sec_def = find_sec_def(prog->sec_name); 7417 if (!prog->sec_def) { 7418 /* couldn't guess, but user might manually specify */ 7419 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7420 prog->name, prog->sec_name); 7421 continue; 7422 } 7423 7424 prog->type = prog->sec_def->prog_type; 7425 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7426 7427 #pragma GCC diagnostic push 7428 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 7429 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7430 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7431 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7432 #pragma GCC diagnostic pop 7433 7434 /* sec_def can have custom callback which should be called 7435 * after bpf_program is initialized to adjust its properties 7436 */ 7437 if (prog->sec_def->prog_setup_fn) { 7438 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7439 if (err < 0) { 7440 pr_warn("prog '%s': failed to initialize: %d\n", 7441 prog->name, err); 7442 return err; 7443 } 7444 } 7445 } 7446 7447 return 0; 7448 } 7449 7450 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7451 const struct bpf_object_open_opts *opts) 7452 { 7453 const char *obj_name, *kconfig, *btf_tmp_path; 7454 struct bpf_object *obj; 7455 char tmp_name[64]; 7456 int err; 7457 char *log_buf; 7458 size_t log_size; 7459 __u32 log_level; 7460 7461 if (elf_version(EV_CURRENT) == EV_NONE) { 7462 pr_warn("failed to init libelf for %s\n", 7463 path ? : "(mem buf)"); 7464 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7465 } 7466 7467 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7468 return ERR_PTR(-EINVAL); 7469 7470 obj_name = OPTS_GET(opts, object_name, NULL); 7471 if (obj_buf) { 7472 if (!obj_name) { 7473 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7474 (unsigned long)obj_buf, 7475 (unsigned long)obj_buf_sz); 7476 obj_name = tmp_name; 7477 } 7478 path = obj_name; 7479 pr_debug("loading object '%s' from buffer\n", obj_name); 7480 } 7481 7482 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7483 log_size = OPTS_GET(opts, kernel_log_size, 0); 7484 log_level = OPTS_GET(opts, kernel_log_level, 0); 7485 if (log_size > UINT_MAX) 7486 return ERR_PTR(-EINVAL); 7487 if (log_size && !log_buf) 7488 return ERR_PTR(-EINVAL); 7489 7490 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7491 if (IS_ERR(obj)) 7492 return obj; 7493 7494 obj->log_buf = log_buf; 7495 obj->log_size = log_size; 7496 obj->log_level = log_level; 7497 7498 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7499 if (btf_tmp_path) { 7500 if (strlen(btf_tmp_path) >= PATH_MAX) { 7501 err = -ENAMETOOLONG; 7502 goto out; 7503 } 7504 obj->btf_custom_path = strdup(btf_tmp_path); 7505 if (!obj->btf_custom_path) { 7506 err = -ENOMEM; 7507 goto out; 7508 } 7509 } 7510 7511 kconfig = OPTS_GET(opts, kconfig, NULL); 7512 if (kconfig) { 7513 obj->kconfig = strdup(kconfig); 7514 if (!obj->kconfig) { 7515 err = -ENOMEM; 7516 goto out; 7517 } 7518 } 7519 7520 err = bpf_object__elf_init(obj); 7521 err = err ? : bpf_object__check_endianness(obj); 7522 err = err ? : bpf_object__elf_collect(obj); 7523 err = err ? : bpf_object__collect_externs(obj); 7524 err = err ? : bpf_object__finalize_btf(obj); 7525 err = err ? : bpf_object__init_maps(obj, opts); 7526 err = err ? : bpf_object_init_progs(obj, opts); 7527 err = err ? : bpf_object__collect_relos(obj); 7528 if (err) 7529 goto out; 7530 7531 bpf_object__elf_finish(obj); 7532 7533 return obj; 7534 out: 7535 bpf_object__close(obj); 7536 return ERR_PTR(err); 7537 } 7538 7539 static struct bpf_object * 7540 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7541 { 7542 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7543 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7544 ); 7545 7546 /* param validation */ 7547 if (!attr->file) 7548 return NULL; 7549 7550 pr_debug("loading %s\n", attr->file); 7551 return bpf_object_open(attr->file, NULL, 0, &opts); 7552 } 7553 7554 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7555 { 7556 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7557 } 7558 7559 struct bpf_object *bpf_object__open(const char *path) 7560 { 7561 struct bpf_object_open_attr attr = { 7562 .file = path, 7563 .prog_type = BPF_PROG_TYPE_UNSPEC, 7564 }; 7565 7566 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7567 } 7568 7569 struct bpf_object * 7570 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7571 { 7572 if (!path) 7573 return libbpf_err_ptr(-EINVAL); 7574 7575 pr_debug("loading %s\n", path); 7576 7577 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7578 } 7579 7580 struct bpf_object * 7581 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7582 const struct bpf_object_open_opts *opts) 7583 { 7584 if (!obj_buf || obj_buf_sz == 0) 7585 return libbpf_err_ptr(-EINVAL); 7586 7587 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7588 } 7589 7590 struct bpf_object * 7591 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7592 const char *name) 7593 { 7594 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7595 .object_name = name, 7596 /* wrong default, but backwards-compatible */ 7597 .relaxed_maps = true, 7598 ); 7599 7600 /* returning NULL is wrong, but backwards-compatible */ 7601 if (!obj_buf || obj_buf_sz == 0) 7602 return errno = EINVAL, NULL; 7603 7604 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7605 } 7606 7607 static int bpf_object_unload(struct bpf_object *obj) 7608 { 7609 size_t i; 7610 7611 if (!obj) 7612 return libbpf_err(-EINVAL); 7613 7614 for (i = 0; i < obj->nr_maps; i++) { 7615 zclose(obj->maps[i].fd); 7616 if (obj->maps[i].st_ops) 7617 zfree(&obj->maps[i].st_ops->kern_vdata); 7618 } 7619 7620 for (i = 0; i < obj->nr_programs; i++) 7621 bpf_program__unload(&obj->programs[i]); 7622 7623 return 0; 7624 } 7625 7626 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7627 7628 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7629 { 7630 struct bpf_map *m; 7631 7632 bpf_object__for_each_map(m, obj) { 7633 if (!bpf_map__is_internal(m)) 7634 continue; 7635 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7636 m->def.map_flags ^= BPF_F_MMAPABLE; 7637 } 7638 7639 return 0; 7640 } 7641 7642 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7643 { 7644 char sym_type, sym_name[500]; 7645 unsigned long long sym_addr; 7646 int ret, err = 0; 7647 FILE *f; 7648 7649 f = fopen("/proc/kallsyms", "r"); 7650 if (!f) { 7651 err = -errno; 7652 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7653 return err; 7654 } 7655 7656 while (true) { 7657 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7658 &sym_addr, &sym_type, sym_name); 7659 if (ret == EOF && feof(f)) 7660 break; 7661 if (ret != 3) { 7662 pr_warn("failed to read kallsyms entry: %d\n", ret); 7663 err = -EINVAL; 7664 break; 7665 } 7666 7667 err = cb(sym_addr, sym_type, sym_name, ctx); 7668 if (err) 7669 break; 7670 } 7671 7672 fclose(f); 7673 return err; 7674 } 7675 7676 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7677 const char *sym_name, void *ctx) 7678 { 7679 struct bpf_object *obj = ctx; 7680 const struct btf_type *t; 7681 struct extern_desc *ext; 7682 7683 ext = find_extern_by_name(obj, sym_name); 7684 if (!ext || ext->type != EXT_KSYM) 7685 return 0; 7686 7687 t = btf__type_by_id(obj->btf, ext->btf_id); 7688 if (!btf_is_var(t)) 7689 return 0; 7690 7691 if (ext->is_set && ext->ksym.addr != sym_addr) { 7692 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7693 sym_name, ext->ksym.addr, sym_addr); 7694 return -EINVAL; 7695 } 7696 if (!ext->is_set) { 7697 ext->is_set = true; 7698 ext->ksym.addr = sym_addr; 7699 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7700 } 7701 return 0; 7702 } 7703 7704 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7705 { 7706 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7707 } 7708 7709 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7710 __u16 kind, struct btf **res_btf, 7711 struct module_btf **res_mod_btf) 7712 { 7713 struct module_btf *mod_btf; 7714 struct btf *btf; 7715 int i, id, err; 7716 7717 btf = obj->btf_vmlinux; 7718 mod_btf = NULL; 7719 id = btf__find_by_name_kind(btf, ksym_name, kind); 7720 7721 if (id == -ENOENT) { 7722 err = load_module_btfs(obj); 7723 if (err) 7724 return err; 7725 7726 for (i = 0; i < obj->btf_module_cnt; i++) { 7727 /* we assume module_btf's BTF FD is always >0 */ 7728 mod_btf = &obj->btf_modules[i]; 7729 btf = mod_btf->btf; 7730 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7731 if (id != -ENOENT) 7732 break; 7733 } 7734 } 7735 if (id <= 0) 7736 return -ESRCH; 7737 7738 *res_btf = btf; 7739 *res_mod_btf = mod_btf; 7740 return id; 7741 } 7742 7743 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7744 struct extern_desc *ext) 7745 { 7746 const struct btf_type *targ_var, *targ_type; 7747 __u32 targ_type_id, local_type_id; 7748 struct module_btf *mod_btf = NULL; 7749 const char *targ_var_name; 7750 struct btf *btf = NULL; 7751 int id, err; 7752 7753 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7754 if (id < 0) { 7755 if (id == -ESRCH && ext->is_weak) 7756 return 0; 7757 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7758 ext->name); 7759 return id; 7760 } 7761 7762 /* find local type_id */ 7763 local_type_id = ext->ksym.type_id; 7764 7765 /* find target type_id */ 7766 targ_var = btf__type_by_id(btf, id); 7767 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7768 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7769 7770 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7771 btf, targ_type_id); 7772 if (err <= 0) { 7773 const struct btf_type *local_type; 7774 const char *targ_name, *local_name; 7775 7776 local_type = btf__type_by_id(obj->btf, local_type_id); 7777 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7778 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7779 7780 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7781 ext->name, local_type_id, 7782 btf_kind_str(local_type), local_name, targ_type_id, 7783 btf_kind_str(targ_type), targ_name); 7784 return -EINVAL; 7785 } 7786 7787 ext->is_set = true; 7788 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7789 ext->ksym.kernel_btf_id = id; 7790 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7791 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7792 7793 return 0; 7794 } 7795 7796 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7797 struct extern_desc *ext) 7798 { 7799 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7800 struct module_btf *mod_btf = NULL; 7801 const struct btf_type *kern_func; 7802 struct btf *kern_btf = NULL; 7803 int ret; 7804 7805 local_func_proto_id = ext->ksym.type_id; 7806 7807 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7808 if (kfunc_id < 0) { 7809 if (kfunc_id == -ESRCH && ext->is_weak) 7810 return 0; 7811 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7812 ext->name); 7813 return kfunc_id; 7814 } 7815 7816 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7817 kfunc_proto_id = kern_func->type; 7818 7819 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7820 kern_btf, kfunc_proto_id); 7821 if (ret <= 0) { 7822 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7823 ext->name, local_func_proto_id, kfunc_proto_id); 7824 return -EINVAL; 7825 } 7826 7827 /* set index for module BTF fd in fd_array, if unset */ 7828 if (mod_btf && !mod_btf->fd_array_idx) { 7829 /* insn->off is s16 */ 7830 if (obj->fd_array_cnt == INT16_MAX) { 7831 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7832 ext->name, mod_btf->fd_array_idx); 7833 return -E2BIG; 7834 } 7835 /* Cannot use index 0 for module BTF fd */ 7836 if (!obj->fd_array_cnt) 7837 obj->fd_array_cnt = 1; 7838 7839 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7840 obj->fd_array_cnt + 1); 7841 if (ret) 7842 return ret; 7843 mod_btf->fd_array_idx = obj->fd_array_cnt; 7844 /* we assume module BTF FD is always >0 */ 7845 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7846 } 7847 7848 ext->is_set = true; 7849 ext->ksym.kernel_btf_id = kfunc_id; 7850 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7851 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7852 ext->name, kfunc_id); 7853 7854 return 0; 7855 } 7856 7857 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7858 { 7859 const struct btf_type *t; 7860 struct extern_desc *ext; 7861 int i, err; 7862 7863 for (i = 0; i < obj->nr_extern; i++) { 7864 ext = &obj->externs[i]; 7865 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7866 continue; 7867 7868 if (obj->gen_loader) { 7869 ext->is_set = true; 7870 ext->ksym.kernel_btf_obj_fd = 0; 7871 ext->ksym.kernel_btf_id = 0; 7872 continue; 7873 } 7874 t = btf__type_by_id(obj->btf, ext->btf_id); 7875 if (btf_is_var(t)) 7876 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7877 else 7878 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7879 if (err) 7880 return err; 7881 } 7882 return 0; 7883 } 7884 7885 static int bpf_object__resolve_externs(struct bpf_object *obj, 7886 const char *extra_kconfig) 7887 { 7888 bool need_config = false, need_kallsyms = false; 7889 bool need_vmlinux_btf = false; 7890 struct extern_desc *ext; 7891 void *kcfg_data = NULL; 7892 int err, i; 7893 7894 if (obj->nr_extern == 0) 7895 return 0; 7896 7897 if (obj->kconfig_map_idx >= 0) 7898 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7899 7900 for (i = 0; i < obj->nr_extern; i++) { 7901 ext = &obj->externs[i]; 7902 7903 if (ext->type == EXT_KCFG && 7904 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7905 void *ext_val = kcfg_data + ext->kcfg.data_off; 7906 __u32 kver = get_kernel_version(); 7907 7908 if (!kver) { 7909 pr_warn("failed to get kernel version\n"); 7910 return -EINVAL; 7911 } 7912 err = set_kcfg_value_num(ext, ext_val, kver); 7913 if (err) 7914 return err; 7915 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7916 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7917 need_config = true; 7918 } else if (ext->type == EXT_KSYM) { 7919 if (ext->ksym.type_id) 7920 need_vmlinux_btf = true; 7921 else 7922 need_kallsyms = true; 7923 } else { 7924 pr_warn("unrecognized extern '%s'\n", ext->name); 7925 return -EINVAL; 7926 } 7927 } 7928 if (need_config && extra_kconfig) { 7929 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7930 if (err) 7931 return -EINVAL; 7932 need_config = false; 7933 for (i = 0; i < obj->nr_extern; i++) { 7934 ext = &obj->externs[i]; 7935 if (ext->type == EXT_KCFG && !ext->is_set) { 7936 need_config = true; 7937 break; 7938 } 7939 } 7940 } 7941 if (need_config) { 7942 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7943 if (err) 7944 return -EINVAL; 7945 } 7946 if (need_kallsyms) { 7947 err = bpf_object__read_kallsyms_file(obj); 7948 if (err) 7949 return -EINVAL; 7950 } 7951 if (need_vmlinux_btf) { 7952 err = bpf_object__resolve_ksyms_btf_id(obj); 7953 if (err) 7954 return -EINVAL; 7955 } 7956 for (i = 0; i < obj->nr_extern; i++) { 7957 ext = &obj->externs[i]; 7958 7959 if (!ext->is_set && !ext->is_weak) { 7960 pr_warn("extern %s (strong) not resolved\n", ext->name); 7961 return -ESRCH; 7962 } else if (!ext->is_set) { 7963 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7964 ext->name); 7965 } 7966 } 7967 7968 return 0; 7969 } 7970 7971 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7972 { 7973 int err, i; 7974 7975 if (!obj) 7976 return libbpf_err(-EINVAL); 7977 7978 if (obj->loaded) { 7979 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7980 return libbpf_err(-EINVAL); 7981 } 7982 7983 if (obj->gen_loader) 7984 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7985 7986 err = bpf_object__probe_loading(obj); 7987 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7988 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7989 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7990 err = err ? : bpf_object__sanitize_maps(obj); 7991 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7992 err = err ? : bpf_object__create_maps(obj); 7993 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7994 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7995 err = err ? : bpf_object_init_prog_arrays(obj); 7996 7997 if (obj->gen_loader) { 7998 /* reset FDs */ 7999 if (obj->btf) 8000 btf__set_fd(obj->btf, -1); 8001 for (i = 0; i < obj->nr_maps; i++) 8002 obj->maps[i].fd = -1; 8003 if (!err) 8004 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8005 } 8006 8007 /* clean up fd_array */ 8008 zfree(&obj->fd_array); 8009 8010 /* clean up module BTFs */ 8011 for (i = 0; i < obj->btf_module_cnt; i++) { 8012 close(obj->btf_modules[i].fd); 8013 btf__free(obj->btf_modules[i].btf); 8014 free(obj->btf_modules[i].name); 8015 } 8016 free(obj->btf_modules); 8017 8018 /* clean up vmlinux BTF */ 8019 btf__free(obj->btf_vmlinux); 8020 obj->btf_vmlinux = NULL; 8021 8022 obj->loaded = true; /* doesn't matter if successfully or not */ 8023 8024 if (err) 8025 goto out; 8026 8027 return 0; 8028 out: 8029 /* unpin any maps that were auto-pinned during load */ 8030 for (i = 0; i < obj->nr_maps; i++) 8031 if (obj->maps[i].pinned && !obj->maps[i].reused) 8032 bpf_map__unpin(&obj->maps[i], NULL); 8033 8034 bpf_object_unload(obj); 8035 pr_warn("failed to load object '%s'\n", obj->path); 8036 return libbpf_err(err); 8037 } 8038 8039 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 8040 { 8041 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 8042 } 8043 8044 int bpf_object__load(struct bpf_object *obj) 8045 { 8046 return bpf_object_load(obj, 0, NULL); 8047 } 8048 8049 static int make_parent_dir(const char *path) 8050 { 8051 char *cp, errmsg[STRERR_BUFSIZE]; 8052 char *dname, *dir; 8053 int err = 0; 8054 8055 dname = strdup(path); 8056 if (dname == NULL) 8057 return -ENOMEM; 8058 8059 dir = dirname(dname); 8060 if (mkdir(dir, 0700) && errno != EEXIST) 8061 err = -errno; 8062 8063 free(dname); 8064 if (err) { 8065 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8066 pr_warn("failed to mkdir %s: %s\n", path, cp); 8067 } 8068 return err; 8069 } 8070 8071 static int check_path(const char *path) 8072 { 8073 char *cp, errmsg[STRERR_BUFSIZE]; 8074 struct statfs st_fs; 8075 char *dname, *dir; 8076 int err = 0; 8077 8078 if (path == NULL) 8079 return -EINVAL; 8080 8081 dname = strdup(path); 8082 if (dname == NULL) 8083 return -ENOMEM; 8084 8085 dir = dirname(dname); 8086 if (statfs(dir, &st_fs)) { 8087 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8088 pr_warn("failed to statfs %s: %s\n", dir, cp); 8089 err = -errno; 8090 } 8091 free(dname); 8092 8093 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8094 pr_warn("specified path %s is not on BPF FS\n", path); 8095 err = -EINVAL; 8096 } 8097 8098 return err; 8099 } 8100 8101 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 8102 { 8103 char *cp, errmsg[STRERR_BUFSIZE]; 8104 int err; 8105 8106 err = make_parent_dir(path); 8107 if (err) 8108 return libbpf_err(err); 8109 8110 err = check_path(path); 8111 if (err) 8112 return libbpf_err(err); 8113 8114 if (prog == NULL) { 8115 pr_warn("invalid program pointer\n"); 8116 return libbpf_err(-EINVAL); 8117 } 8118 8119 if (instance < 0 || instance >= prog->instances.nr) { 8120 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8121 instance, prog->name, prog->instances.nr); 8122 return libbpf_err(-EINVAL); 8123 } 8124 8125 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 8126 err = -errno; 8127 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8128 pr_warn("failed to pin program: %s\n", cp); 8129 return libbpf_err(err); 8130 } 8131 pr_debug("pinned program '%s'\n", path); 8132 8133 return 0; 8134 } 8135 8136 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 8137 { 8138 int err; 8139 8140 err = check_path(path); 8141 if (err) 8142 return libbpf_err(err); 8143 8144 if (prog == NULL) { 8145 pr_warn("invalid program pointer\n"); 8146 return libbpf_err(-EINVAL); 8147 } 8148 8149 if (instance < 0 || instance >= prog->instances.nr) { 8150 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8151 instance, prog->name, prog->instances.nr); 8152 return libbpf_err(-EINVAL); 8153 } 8154 8155 err = unlink(path); 8156 if (err != 0) 8157 return libbpf_err(-errno); 8158 8159 pr_debug("unpinned program '%s'\n", path); 8160 8161 return 0; 8162 } 8163 8164 __attribute__((alias("bpf_program_pin_instance"))) 8165 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 8166 8167 __attribute__((alias("bpf_program_unpin_instance"))) 8168 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 8169 8170 int bpf_program__pin(struct bpf_program *prog, const char *path) 8171 { 8172 int i, err; 8173 8174 err = make_parent_dir(path); 8175 if (err) 8176 return libbpf_err(err); 8177 8178 err = check_path(path); 8179 if (err) 8180 return libbpf_err(err); 8181 8182 if (prog == NULL) { 8183 pr_warn("invalid program pointer\n"); 8184 return libbpf_err(-EINVAL); 8185 } 8186 8187 if (prog->instances.nr <= 0) { 8188 pr_warn("no instances of prog %s to pin\n", prog->name); 8189 return libbpf_err(-EINVAL); 8190 } 8191 8192 if (prog->instances.nr == 1) { 8193 /* don't create subdirs when pinning single instance */ 8194 return bpf_program_pin_instance(prog, path, 0); 8195 } 8196 8197 for (i = 0; i < prog->instances.nr; i++) { 8198 char buf[PATH_MAX]; 8199 int len; 8200 8201 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8202 if (len < 0) { 8203 err = -EINVAL; 8204 goto err_unpin; 8205 } else if (len >= PATH_MAX) { 8206 err = -ENAMETOOLONG; 8207 goto err_unpin; 8208 } 8209 8210 err = bpf_program_pin_instance(prog, buf, i); 8211 if (err) 8212 goto err_unpin; 8213 } 8214 8215 return 0; 8216 8217 err_unpin: 8218 for (i = i - 1; i >= 0; i--) { 8219 char buf[PATH_MAX]; 8220 int len; 8221 8222 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8223 if (len < 0) 8224 continue; 8225 else if (len >= PATH_MAX) 8226 continue; 8227 8228 bpf_program_unpin_instance(prog, buf, i); 8229 } 8230 8231 rmdir(path); 8232 8233 return libbpf_err(err); 8234 } 8235 8236 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8237 { 8238 int i, err; 8239 8240 err = check_path(path); 8241 if (err) 8242 return libbpf_err(err); 8243 8244 if (prog == NULL) { 8245 pr_warn("invalid program pointer\n"); 8246 return libbpf_err(-EINVAL); 8247 } 8248 8249 if (prog->instances.nr <= 0) { 8250 pr_warn("no instances of prog %s to pin\n", prog->name); 8251 return libbpf_err(-EINVAL); 8252 } 8253 8254 if (prog->instances.nr == 1) { 8255 /* don't create subdirs when pinning single instance */ 8256 return bpf_program_unpin_instance(prog, path, 0); 8257 } 8258 8259 for (i = 0; i < prog->instances.nr; i++) { 8260 char buf[PATH_MAX]; 8261 int len; 8262 8263 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8264 if (len < 0) 8265 return libbpf_err(-EINVAL); 8266 else if (len >= PATH_MAX) 8267 return libbpf_err(-ENAMETOOLONG); 8268 8269 err = bpf_program_unpin_instance(prog, buf, i); 8270 if (err) 8271 return err; 8272 } 8273 8274 err = rmdir(path); 8275 if (err) 8276 return libbpf_err(-errno); 8277 8278 return 0; 8279 } 8280 8281 int bpf_map__pin(struct bpf_map *map, const char *path) 8282 { 8283 char *cp, errmsg[STRERR_BUFSIZE]; 8284 int err; 8285 8286 if (map == NULL) { 8287 pr_warn("invalid map pointer\n"); 8288 return libbpf_err(-EINVAL); 8289 } 8290 8291 if (map->pin_path) { 8292 if (path && strcmp(path, map->pin_path)) { 8293 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8294 bpf_map__name(map), map->pin_path, path); 8295 return libbpf_err(-EINVAL); 8296 } else if (map->pinned) { 8297 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8298 bpf_map__name(map), map->pin_path); 8299 return 0; 8300 } 8301 } else { 8302 if (!path) { 8303 pr_warn("missing a path to pin map '%s' at\n", 8304 bpf_map__name(map)); 8305 return libbpf_err(-EINVAL); 8306 } else if (map->pinned) { 8307 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8308 return libbpf_err(-EEXIST); 8309 } 8310 8311 map->pin_path = strdup(path); 8312 if (!map->pin_path) { 8313 err = -errno; 8314 goto out_err; 8315 } 8316 } 8317 8318 err = make_parent_dir(map->pin_path); 8319 if (err) 8320 return libbpf_err(err); 8321 8322 err = check_path(map->pin_path); 8323 if (err) 8324 return libbpf_err(err); 8325 8326 if (bpf_obj_pin(map->fd, map->pin_path)) { 8327 err = -errno; 8328 goto out_err; 8329 } 8330 8331 map->pinned = true; 8332 pr_debug("pinned map '%s'\n", map->pin_path); 8333 8334 return 0; 8335 8336 out_err: 8337 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8338 pr_warn("failed to pin map: %s\n", cp); 8339 return libbpf_err(err); 8340 } 8341 8342 int bpf_map__unpin(struct bpf_map *map, const char *path) 8343 { 8344 int err; 8345 8346 if (map == NULL) { 8347 pr_warn("invalid map pointer\n"); 8348 return libbpf_err(-EINVAL); 8349 } 8350 8351 if (map->pin_path) { 8352 if (path && strcmp(path, map->pin_path)) { 8353 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8354 bpf_map__name(map), map->pin_path, path); 8355 return libbpf_err(-EINVAL); 8356 } 8357 path = map->pin_path; 8358 } else if (!path) { 8359 pr_warn("no path to unpin map '%s' from\n", 8360 bpf_map__name(map)); 8361 return libbpf_err(-EINVAL); 8362 } 8363 8364 err = check_path(path); 8365 if (err) 8366 return libbpf_err(err); 8367 8368 err = unlink(path); 8369 if (err != 0) 8370 return libbpf_err(-errno); 8371 8372 map->pinned = false; 8373 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8374 8375 return 0; 8376 } 8377 8378 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8379 { 8380 char *new = NULL; 8381 8382 if (path) { 8383 new = strdup(path); 8384 if (!new) 8385 return libbpf_err(-errno); 8386 } 8387 8388 free(map->pin_path); 8389 map->pin_path = new; 8390 return 0; 8391 } 8392 8393 __alias(bpf_map__pin_path) 8394 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8395 8396 const char *bpf_map__pin_path(const struct bpf_map *map) 8397 { 8398 return map->pin_path; 8399 } 8400 8401 bool bpf_map__is_pinned(const struct bpf_map *map) 8402 { 8403 return map->pinned; 8404 } 8405 8406 static void sanitize_pin_path(char *s) 8407 { 8408 /* bpffs disallows periods in path names */ 8409 while (*s) { 8410 if (*s == '.') 8411 *s = '_'; 8412 s++; 8413 } 8414 } 8415 8416 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8417 { 8418 struct bpf_map *map; 8419 int err; 8420 8421 if (!obj) 8422 return libbpf_err(-ENOENT); 8423 8424 if (!obj->loaded) { 8425 pr_warn("object not yet loaded; load it first\n"); 8426 return libbpf_err(-ENOENT); 8427 } 8428 8429 bpf_object__for_each_map(map, obj) { 8430 char *pin_path = NULL; 8431 char buf[PATH_MAX]; 8432 8433 if (!map->autocreate) 8434 continue; 8435 8436 if (path) { 8437 int len; 8438 8439 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8440 bpf_map__name(map)); 8441 if (len < 0) { 8442 err = -EINVAL; 8443 goto err_unpin_maps; 8444 } else if (len >= PATH_MAX) { 8445 err = -ENAMETOOLONG; 8446 goto err_unpin_maps; 8447 } 8448 sanitize_pin_path(buf); 8449 pin_path = buf; 8450 } else if (!map->pin_path) { 8451 continue; 8452 } 8453 8454 err = bpf_map__pin(map, pin_path); 8455 if (err) 8456 goto err_unpin_maps; 8457 } 8458 8459 return 0; 8460 8461 err_unpin_maps: 8462 while ((map = bpf_object__prev_map(obj, map))) { 8463 if (!map->pin_path) 8464 continue; 8465 8466 bpf_map__unpin(map, NULL); 8467 } 8468 8469 return libbpf_err(err); 8470 } 8471 8472 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8473 { 8474 struct bpf_map *map; 8475 int err; 8476 8477 if (!obj) 8478 return libbpf_err(-ENOENT); 8479 8480 bpf_object__for_each_map(map, obj) { 8481 char *pin_path = NULL; 8482 char buf[PATH_MAX]; 8483 8484 if (path) { 8485 int len; 8486 8487 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8488 bpf_map__name(map)); 8489 if (len < 0) 8490 return libbpf_err(-EINVAL); 8491 else if (len >= PATH_MAX) 8492 return libbpf_err(-ENAMETOOLONG); 8493 sanitize_pin_path(buf); 8494 pin_path = buf; 8495 } else if (!map->pin_path) { 8496 continue; 8497 } 8498 8499 err = bpf_map__unpin(map, pin_path); 8500 if (err) 8501 return libbpf_err(err); 8502 } 8503 8504 return 0; 8505 } 8506 8507 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8508 { 8509 struct bpf_program *prog; 8510 int err; 8511 8512 if (!obj) 8513 return libbpf_err(-ENOENT); 8514 8515 if (!obj->loaded) { 8516 pr_warn("object not yet loaded; load it first\n"); 8517 return libbpf_err(-ENOENT); 8518 } 8519 8520 bpf_object__for_each_program(prog, obj) { 8521 char buf[PATH_MAX]; 8522 int len; 8523 8524 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8525 prog->pin_name); 8526 if (len < 0) { 8527 err = -EINVAL; 8528 goto err_unpin_programs; 8529 } else if (len >= PATH_MAX) { 8530 err = -ENAMETOOLONG; 8531 goto err_unpin_programs; 8532 } 8533 8534 err = bpf_program__pin(prog, buf); 8535 if (err) 8536 goto err_unpin_programs; 8537 } 8538 8539 return 0; 8540 8541 err_unpin_programs: 8542 while ((prog = bpf_object__prev_program(obj, prog))) { 8543 char buf[PATH_MAX]; 8544 int len; 8545 8546 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8547 prog->pin_name); 8548 if (len < 0) 8549 continue; 8550 else if (len >= PATH_MAX) 8551 continue; 8552 8553 bpf_program__unpin(prog, buf); 8554 } 8555 8556 return libbpf_err(err); 8557 } 8558 8559 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8560 { 8561 struct bpf_program *prog; 8562 int err; 8563 8564 if (!obj) 8565 return libbpf_err(-ENOENT); 8566 8567 bpf_object__for_each_program(prog, obj) { 8568 char buf[PATH_MAX]; 8569 int len; 8570 8571 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8572 prog->pin_name); 8573 if (len < 0) 8574 return libbpf_err(-EINVAL); 8575 else if (len >= PATH_MAX) 8576 return libbpf_err(-ENAMETOOLONG); 8577 8578 err = bpf_program__unpin(prog, buf); 8579 if (err) 8580 return libbpf_err(err); 8581 } 8582 8583 return 0; 8584 } 8585 8586 int bpf_object__pin(struct bpf_object *obj, const char *path) 8587 { 8588 int err; 8589 8590 err = bpf_object__pin_maps(obj, path); 8591 if (err) 8592 return libbpf_err(err); 8593 8594 err = bpf_object__pin_programs(obj, path); 8595 if (err) { 8596 bpf_object__unpin_maps(obj, path); 8597 return libbpf_err(err); 8598 } 8599 8600 return 0; 8601 } 8602 8603 static void bpf_map__destroy(struct bpf_map *map) 8604 { 8605 if (map->clear_priv) 8606 map->clear_priv(map, map->priv); 8607 map->priv = NULL; 8608 map->clear_priv = NULL; 8609 8610 if (map->inner_map) { 8611 bpf_map__destroy(map->inner_map); 8612 zfree(&map->inner_map); 8613 } 8614 8615 zfree(&map->init_slots); 8616 map->init_slots_sz = 0; 8617 8618 if (map->mmaped) { 8619 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8620 map->mmaped = NULL; 8621 } 8622 8623 if (map->st_ops) { 8624 zfree(&map->st_ops->data); 8625 zfree(&map->st_ops->progs); 8626 zfree(&map->st_ops->kern_func_off); 8627 zfree(&map->st_ops); 8628 } 8629 8630 zfree(&map->name); 8631 zfree(&map->real_name); 8632 zfree(&map->pin_path); 8633 8634 if (map->fd >= 0) 8635 zclose(map->fd); 8636 } 8637 8638 void bpf_object__close(struct bpf_object *obj) 8639 { 8640 size_t i; 8641 8642 if (IS_ERR_OR_NULL(obj)) 8643 return; 8644 8645 if (obj->clear_priv) 8646 obj->clear_priv(obj, obj->priv); 8647 8648 usdt_manager_free(obj->usdt_man); 8649 obj->usdt_man = NULL; 8650 8651 bpf_gen__free(obj->gen_loader); 8652 bpf_object__elf_finish(obj); 8653 bpf_object_unload(obj); 8654 btf__free(obj->btf); 8655 btf_ext__free(obj->btf_ext); 8656 8657 for (i = 0; i < obj->nr_maps; i++) 8658 bpf_map__destroy(&obj->maps[i]); 8659 8660 zfree(&obj->btf_custom_path); 8661 zfree(&obj->kconfig); 8662 zfree(&obj->externs); 8663 obj->nr_extern = 0; 8664 8665 zfree(&obj->maps); 8666 obj->nr_maps = 0; 8667 8668 if (obj->programs && obj->nr_programs) { 8669 for (i = 0; i < obj->nr_programs; i++) 8670 bpf_program__exit(&obj->programs[i]); 8671 } 8672 zfree(&obj->programs); 8673 8674 list_del(&obj->list); 8675 free(obj); 8676 } 8677 8678 struct bpf_object * 8679 bpf_object__next(struct bpf_object *prev) 8680 { 8681 struct bpf_object *next; 8682 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8683 8684 if (strict) 8685 return NULL; 8686 8687 if (!prev) 8688 next = list_first_entry(&bpf_objects_list, 8689 struct bpf_object, 8690 list); 8691 else 8692 next = list_next_entry(prev, list); 8693 8694 /* Empty list is noticed here so don't need checking on entry. */ 8695 if (&next->list == &bpf_objects_list) 8696 return NULL; 8697 8698 return next; 8699 } 8700 8701 const char *bpf_object__name(const struct bpf_object *obj) 8702 { 8703 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8704 } 8705 8706 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8707 { 8708 return obj ? obj->kern_version : 0; 8709 } 8710 8711 struct btf *bpf_object__btf(const struct bpf_object *obj) 8712 { 8713 return obj ? obj->btf : NULL; 8714 } 8715 8716 int bpf_object__btf_fd(const struct bpf_object *obj) 8717 { 8718 return obj->btf ? btf__fd(obj->btf) : -1; 8719 } 8720 8721 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8722 { 8723 if (obj->loaded) 8724 return libbpf_err(-EINVAL); 8725 8726 obj->kern_version = kern_version; 8727 8728 return 0; 8729 } 8730 8731 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8732 bpf_object_clear_priv_t clear_priv) 8733 { 8734 if (obj->priv && obj->clear_priv) 8735 obj->clear_priv(obj, obj->priv); 8736 8737 obj->priv = priv; 8738 obj->clear_priv = clear_priv; 8739 return 0; 8740 } 8741 8742 void *bpf_object__priv(const struct bpf_object *obj) 8743 { 8744 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8745 } 8746 8747 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8748 { 8749 struct bpf_gen *gen; 8750 8751 if (!opts) 8752 return -EFAULT; 8753 if (!OPTS_VALID(opts, gen_loader_opts)) 8754 return -EINVAL; 8755 gen = calloc(sizeof(*gen), 1); 8756 if (!gen) 8757 return -ENOMEM; 8758 gen->opts = opts; 8759 obj->gen_loader = gen; 8760 return 0; 8761 } 8762 8763 static struct bpf_program * 8764 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8765 bool forward) 8766 { 8767 size_t nr_programs = obj->nr_programs; 8768 ssize_t idx; 8769 8770 if (!nr_programs) 8771 return NULL; 8772 8773 if (!p) 8774 /* Iter from the beginning */ 8775 return forward ? &obj->programs[0] : 8776 &obj->programs[nr_programs - 1]; 8777 8778 if (p->obj != obj) { 8779 pr_warn("error: program handler doesn't match object\n"); 8780 return errno = EINVAL, NULL; 8781 } 8782 8783 idx = (p - obj->programs) + (forward ? 1 : -1); 8784 if (idx >= obj->nr_programs || idx < 0) 8785 return NULL; 8786 return &obj->programs[idx]; 8787 } 8788 8789 struct bpf_program * 8790 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8791 { 8792 return bpf_object__next_program(obj, prev); 8793 } 8794 8795 struct bpf_program * 8796 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8797 { 8798 struct bpf_program *prog = prev; 8799 8800 do { 8801 prog = __bpf_program__iter(prog, obj, true); 8802 } while (prog && prog_is_subprog(obj, prog)); 8803 8804 return prog; 8805 } 8806 8807 struct bpf_program * 8808 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8809 { 8810 return bpf_object__prev_program(obj, next); 8811 } 8812 8813 struct bpf_program * 8814 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8815 { 8816 struct bpf_program *prog = next; 8817 8818 do { 8819 prog = __bpf_program__iter(prog, obj, false); 8820 } while (prog && prog_is_subprog(obj, prog)); 8821 8822 return prog; 8823 } 8824 8825 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8826 bpf_program_clear_priv_t clear_priv) 8827 { 8828 if (prog->priv && prog->clear_priv) 8829 prog->clear_priv(prog, prog->priv); 8830 8831 prog->priv = priv; 8832 prog->clear_priv = clear_priv; 8833 return 0; 8834 } 8835 8836 void *bpf_program__priv(const struct bpf_program *prog) 8837 { 8838 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8839 } 8840 8841 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8842 { 8843 prog->prog_ifindex = ifindex; 8844 } 8845 8846 const char *bpf_program__name(const struct bpf_program *prog) 8847 { 8848 return prog->name; 8849 } 8850 8851 const char *bpf_program__section_name(const struct bpf_program *prog) 8852 { 8853 return prog->sec_name; 8854 } 8855 8856 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8857 { 8858 const char *title; 8859 8860 title = prog->sec_name; 8861 if (needs_copy) { 8862 title = strdup(title); 8863 if (!title) { 8864 pr_warn("failed to strdup program title\n"); 8865 return libbpf_err_ptr(-ENOMEM); 8866 } 8867 } 8868 8869 return title; 8870 } 8871 8872 bool bpf_program__autoload(const struct bpf_program *prog) 8873 { 8874 return prog->autoload; 8875 } 8876 8877 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8878 { 8879 if (prog->obj->loaded) 8880 return libbpf_err(-EINVAL); 8881 8882 prog->autoload = autoload; 8883 return 0; 8884 } 8885 8886 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8887 8888 int bpf_program__fd(const struct bpf_program *prog) 8889 { 8890 return bpf_program_nth_fd(prog, 0); 8891 } 8892 8893 size_t bpf_program__size(const struct bpf_program *prog) 8894 { 8895 return prog->insns_cnt * BPF_INSN_SZ; 8896 } 8897 8898 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8899 { 8900 return prog->insns; 8901 } 8902 8903 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8904 { 8905 return prog->insns_cnt; 8906 } 8907 8908 int bpf_program__set_insns(struct bpf_program *prog, 8909 struct bpf_insn *new_insns, size_t new_insn_cnt) 8910 { 8911 struct bpf_insn *insns; 8912 8913 if (prog->obj->loaded) 8914 return -EBUSY; 8915 8916 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8917 if (!insns) { 8918 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8919 return -ENOMEM; 8920 } 8921 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8922 8923 prog->insns = insns; 8924 prog->insns_cnt = new_insn_cnt; 8925 return 0; 8926 } 8927 8928 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8929 bpf_program_prep_t prep) 8930 { 8931 int *instances_fds; 8932 8933 if (nr_instances <= 0 || !prep) 8934 return libbpf_err(-EINVAL); 8935 8936 if (prog->instances.nr > 0 || prog->instances.fds) { 8937 pr_warn("Can't set pre-processor after loading\n"); 8938 return libbpf_err(-EINVAL); 8939 } 8940 8941 instances_fds = malloc(sizeof(int) * nr_instances); 8942 if (!instances_fds) { 8943 pr_warn("alloc memory failed for fds\n"); 8944 return libbpf_err(-ENOMEM); 8945 } 8946 8947 /* fill all fd with -1 */ 8948 memset(instances_fds, -1, sizeof(int) * nr_instances); 8949 8950 prog->instances.nr = nr_instances; 8951 prog->instances.fds = instances_fds; 8952 prog->preprocessor = prep; 8953 return 0; 8954 } 8955 8956 __attribute__((alias("bpf_program_nth_fd"))) 8957 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8958 8959 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8960 { 8961 int fd; 8962 8963 if (!prog) 8964 return libbpf_err(-EINVAL); 8965 8966 if (n >= prog->instances.nr || n < 0) { 8967 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8968 n, prog->name, prog->instances.nr); 8969 return libbpf_err(-EINVAL); 8970 } 8971 8972 fd = prog->instances.fds[n]; 8973 if (fd < 0) { 8974 pr_warn("%dth instance of program '%s' is invalid\n", 8975 n, prog->name); 8976 return libbpf_err(-ENOENT); 8977 } 8978 8979 return fd; 8980 } 8981 8982 __alias(bpf_program__type) 8983 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8984 8985 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8986 { 8987 return prog->type; 8988 } 8989 8990 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8991 { 8992 if (prog->obj->loaded) 8993 return libbpf_err(-EBUSY); 8994 8995 prog->type = type; 8996 return 0; 8997 } 8998 8999 static bool bpf_program__is_type(const struct bpf_program *prog, 9000 enum bpf_prog_type type) 9001 { 9002 return prog ? (prog->type == type) : false; 9003 } 9004 9005 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 9006 int bpf_program__set_##NAME(struct bpf_program *prog) \ 9007 { \ 9008 if (!prog) \ 9009 return libbpf_err(-EINVAL); \ 9010 return bpf_program__set_type(prog, TYPE); \ 9011 } \ 9012 \ 9013 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 9014 { \ 9015 return bpf_program__is_type(prog, TYPE); \ 9016 } \ 9017 9018 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 9019 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 9020 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 9021 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 9022 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 9023 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 9024 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 9025 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 9026 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 9027 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 9028 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 9029 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 9030 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 9031 9032 __alias(bpf_program__expected_attach_type) 9033 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9034 9035 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9036 { 9037 return prog->expected_attach_type; 9038 } 9039 9040 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9041 enum bpf_attach_type type) 9042 { 9043 if (prog->obj->loaded) 9044 return libbpf_err(-EBUSY); 9045 9046 prog->expected_attach_type = type; 9047 return 0; 9048 } 9049 9050 __u32 bpf_program__flags(const struct bpf_program *prog) 9051 { 9052 return prog->prog_flags; 9053 } 9054 9055 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9056 { 9057 if (prog->obj->loaded) 9058 return libbpf_err(-EBUSY); 9059 9060 prog->prog_flags = flags; 9061 return 0; 9062 } 9063 9064 __u32 bpf_program__log_level(const struct bpf_program *prog) 9065 { 9066 return prog->log_level; 9067 } 9068 9069 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9070 { 9071 if (prog->obj->loaded) 9072 return libbpf_err(-EBUSY); 9073 9074 prog->log_level = log_level; 9075 return 0; 9076 } 9077 9078 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9079 { 9080 *log_size = prog->log_size; 9081 return prog->log_buf; 9082 } 9083 9084 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9085 { 9086 if (log_size && !log_buf) 9087 return -EINVAL; 9088 if (prog->log_size > UINT_MAX) 9089 return -EINVAL; 9090 if (prog->obj->loaded) 9091 return -EBUSY; 9092 9093 prog->log_buf = log_buf; 9094 prog->log_size = log_size; 9095 return 0; 9096 } 9097 9098 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9099 .sec = (char *)sec_pfx, \ 9100 .prog_type = BPF_PROG_TYPE_##ptype, \ 9101 .expected_attach_type = atype, \ 9102 .cookie = (long)(flags), \ 9103 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9104 __VA_ARGS__ \ 9105 } 9106 9107 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9108 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9109 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9110 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9111 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9112 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9113 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9114 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9115 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9116 9117 static const struct bpf_sec_def section_defs[] = { 9118 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 9119 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9120 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9121 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9122 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9123 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9124 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9125 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9126 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9127 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 9128 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 9129 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 9130 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9131 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9132 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9133 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9134 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9135 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9136 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9137 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9138 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9139 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9140 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9141 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9142 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9143 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9144 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9145 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9146 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9147 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9148 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9149 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9150 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9151 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9152 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9153 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9154 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9155 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9156 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9157 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9158 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9159 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 9160 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9161 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9162 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 9163 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9164 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9165 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9166 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9167 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9168 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9169 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9170 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9171 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9172 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9173 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9174 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9175 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9176 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9177 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9178 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9179 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9180 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9181 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9182 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9183 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9184 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9185 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9186 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9187 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9188 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9189 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9190 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9191 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9192 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9193 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9194 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9195 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9196 }; 9197 9198 static size_t custom_sec_def_cnt; 9199 static struct bpf_sec_def *custom_sec_defs; 9200 static struct bpf_sec_def custom_fallback_def; 9201 static bool has_custom_fallback_def; 9202 9203 static int last_custom_sec_def_handler_id; 9204 9205 int libbpf_register_prog_handler(const char *sec, 9206 enum bpf_prog_type prog_type, 9207 enum bpf_attach_type exp_attach_type, 9208 const struct libbpf_prog_handler_opts *opts) 9209 { 9210 struct bpf_sec_def *sec_def; 9211 9212 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9213 return libbpf_err(-EINVAL); 9214 9215 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9216 return libbpf_err(-E2BIG); 9217 9218 if (sec) { 9219 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9220 sizeof(*sec_def)); 9221 if (!sec_def) 9222 return libbpf_err(-ENOMEM); 9223 9224 custom_sec_defs = sec_def; 9225 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9226 } else { 9227 if (has_custom_fallback_def) 9228 return libbpf_err(-EBUSY); 9229 9230 sec_def = &custom_fallback_def; 9231 } 9232 9233 sec_def->sec = sec ? strdup(sec) : NULL; 9234 if (sec && !sec_def->sec) 9235 return libbpf_err(-ENOMEM); 9236 9237 sec_def->prog_type = prog_type; 9238 sec_def->expected_attach_type = exp_attach_type; 9239 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9240 9241 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9242 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9243 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9244 9245 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9246 9247 if (sec) 9248 custom_sec_def_cnt++; 9249 else 9250 has_custom_fallback_def = true; 9251 9252 return sec_def->handler_id; 9253 } 9254 9255 int libbpf_unregister_prog_handler(int handler_id) 9256 { 9257 struct bpf_sec_def *sec_defs; 9258 int i; 9259 9260 if (handler_id <= 0) 9261 return libbpf_err(-EINVAL); 9262 9263 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9264 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9265 has_custom_fallback_def = false; 9266 return 0; 9267 } 9268 9269 for (i = 0; i < custom_sec_def_cnt; i++) { 9270 if (custom_sec_defs[i].handler_id == handler_id) 9271 break; 9272 } 9273 9274 if (i == custom_sec_def_cnt) 9275 return libbpf_err(-ENOENT); 9276 9277 free(custom_sec_defs[i].sec); 9278 for (i = i + 1; i < custom_sec_def_cnt; i++) 9279 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9280 custom_sec_def_cnt--; 9281 9282 /* try to shrink the array, but it's ok if we couldn't */ 9283 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9284 if (sec_defs) 9285 custom_sec_defs = sec_defs; 9286 9287 return 0; 9288 } 9289 9290 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 9291 bool allow_sloppy) 9292 { 9293 size_t len = strlen(sec_def->sec); 9294 9295 /* "type/" always has to have proper SEC("type/extras") form */ 9296 if (sec_def->sec[len - 1] == '/') { 9297 if (str_has_pfx(sec_name, sec_def->sec)) 9298 return true; 9299 return false; 9300 } 9301 9302 /* "type+" means it can be either exact SEC("type") or 9303 * well-formed SEC("type/extras") with proper '/' separator 9304 */ 9305 if (sec_def->sec[len - 1] == '+') { 9306 len--; 9307 /* not even a prefix */ 9308 if (strncmp(sec_name, sec_def->sec, len) != 0) 9309 return false; 9310 /* exact match or has '/' separator */ 9311 if (sec_name[len] == '\0' || sec_name[len] == '/') 9312 return true; 9313 return false; 9314 } 9315 9316 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 9317 * matches, unless strict section name mode 9318 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 9319 * match has to be exact. 9320 */ 9321 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 9322 return true; 9323 9324 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 9325 * SEC("syscall")) are exact matches in both modes. 9326 */ 9327 return strcmp(sec_name, sec_def->sec) == 0; 9328 } 9329 9330 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9331 { 9332 const struct bpf_sec_def *sec_def; 9333 int i, n; 9334 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 9335 9336 n = custom_sec_def_cnt; 9337 for (i = 0; i < n; i++) { 9338 sec_def = &custom_sec_defs[i]; 9339 if (sec_def_matches(sec_def, sec_name, false)) 9340 return sec_def; 9341 } 9342 9343 n = ARRAY_SIZE(section_defs); 9344 for (i = 0; i < n; i++) { 9345 sec_def = §ion_defs[i]; 9346 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 9347 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 9348 return sec_def; 9349 } 9350 9351 if (has_custom_fallback_def) 9352 return &custom_fallback_def; 9353 9354 return NULL; 9355 } 9356 9357 #define MAX_TYPE_NAME_SIZE 32 9358 9359 static char *libbpf_get_type_names(bool attach_type) 9360 { 9361 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9362 char *buf; 9363 9364 buf = malloc(len); 9365 if (!buf) 9366 return NULL; 9367 9368 buf[0] = '\0'; 9369 /* Forge string buf with all available names */ 9370 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9371 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9372 9373 if (attach_type) { 9374 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9375 continue; 9376 9377 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9378 continue; 9379 } 9380 9381 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9382 free(buf); 9383 return NULL; 9384 } 9385 strcat(buf, " "); 9386 strcat(buf, section_defs[i].sec); 9387 } 9388 9389 return buf; 9390 } 9391 9392 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9393 enum bpf_attach_type *expected_attach_type) 9394 { 9395 const struct bpf_sec_def *sec_def; 9396 char *type_names; 9397 9398 if (!name) 9399 return libbpf_err(-EINVAL); 9400 9401 sec_def = find_sec_def(name); 9402 if (sec_def) { 9403 *prog_type = sec_def->prog_type; 9404 *expected_attach_type = sec_def->expected_attach_type; 9405 return 0; 9406 } 9407 9408 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9409 type_names = libbpf_get_type_names(false); 9410 if (type_names != NULL) { 9411 pr_debug("supported section(type) names are:%s\n", type_names); 9412 free(type_names); 9413 } 9414 9415 return libbpf_err(-ESRCH); 9416 } 9417 9418 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9419 { 9420 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9421 return NULL; 9422 9423 return attach_type_name[t]; 9424 } 9425 9426 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9427 { 9428 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9429 return NULL; 9430 9431 return map_type_name[t]; 9432 } 9433 9434 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9435 { 9436 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9437 return NULL; 9438 9439 return prog_type_name[t]; 9440 } 9441 9442 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9443 size_t offset) 9444 { 9445 struct bpf_map *map; 9446 size_t i; 9447 9448 for (i = 0; i < obj->nr_maps; i++) { 9449 map = &obj->maps[i]; 9450 if (!bpf_map__is_struct_ops(map)) 9451 continue; 9452 if (map->sec_offset <= offset && 9453 offset - map->sec_offset < map->def.value_size) 9454 return map; 9455 } 9456 9457 return NULL; 9458 } 9459 9460 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9461 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9462 Elf64_Shdr *shdr, Elf_Data *data) 9463 { 9464 const struct btf_member *member; 9465 struct bpf_struct_ops *st_ops; 9466 struct bpf_program *prog; 9467 unsigned int shdr_idx; 9468 const struct btf *btf; 9469 struct bpf_map *map; 9470 unsigned int moff, insn_idx; 9471 const char *name; 9472 __u32 member_idx; 9473 Elf64_Sym *sym; 9474 Elf64_Rel *rel; 9475 int i, nrels; 9476 9477 btf = obj->btf; 9478 nrels = shdr->sh_size / shdr->sh_entsize; 9479 for (i = 0; i < nrels; i++) { 9480 rel = elf_rel_by_idx(data, i); 9481 if (!rel) { 9482 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9483 return -LIBBPF_ERRNO__FORMAT; 9484 } 9485 9486 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9487 if (!sym) { 9488 pr_warn("struct_ops reloc: symbol %zx not found\n", 9489 (size_t)ELF64_R_SYM(rel->r_info)); 9490 return -LIBBPF_ERRNO__FORMAT; 9491 } 9492 9493 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9494 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 9495 if (!map) { 9496 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9497 (size_t)rel->r_offset); 9498 return -EINVAL; 9499 } 9500 9501 moff = rel->r_offset - map->sec_offset; 9502 shdr_idx = sym->st_shndx; 9503 st_ops = map->st_ops; 9504 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9505 map->name, 9506 (long long)(rel->r_info >> 32), 9507 (long long)sym->st_value, 9508 shdr_idx, (size_t)rel->r_offset, 9509 map->sec_offset, sym->st_name, name); 9510 9511 if (shdr_idx >= SHN_LORESERVE) { 9512 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9513 map->name, (size_t)rel->r_offset, shdr_idx); 9514 return -LIBBPF_ERRNO__RELOC; 9515 } 9516 if (sym->st_value % BPF_INSN_SZ) { 9517 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9518 map->name, (unsigned long long)sym->st_value); 9519 return -LIBBPF_ERRNO__FORMAT; 9520 } 9521 insn_idx = sym->st_value / BPF_INSN_SZ; 9522 9523 member = find_member_by_offset(st_ops->type, moff * 8); 9524 if (!member) { 9525 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9526 map->name, moff); 9527 return -EINVAL; 9528 } 9529 member_idx = member - btf_members(st_ops->type); 9530 name = btf__name_by_offset(btf, member->name_off); 9531 9532 if (!resolve_func_ptr(btf, member->type, NULL)) { 9533 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9534 map->name, name); 9535 return -EINVAL; 9536 } 9537 9538 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9539 if (!prog) { 9540 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9541 map->name, shdr_idx, name); 9542 return -EINVAL; 9543 } 9544 9545 /* prevent the use of BPF prog with invalid type */ 9546 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9547 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9548 map->name, prog->name); 9549 return -EINVAL; 9550 } 9551 9552 /* if we haven't yet processed this BPF program, record proper 9553 * attach_btf_id and member_idx 9554 */ 9555 if (!prog->attach_btf_id) { 9556 prog->attach_btf_id = st_ops->type_id; 9557 prog->expected_attach_type = member_idx; 9558 } 9559 9560 /* struct_ops BPF prog can be re-used between multiple 9561 * .struct_ops as long as it's the same struct_ops struct 9562 * definition and the same function pointer field 9563 */ 9564 if (prog->attach_btf_id != st_ops->type_id || 9565 prog->expected_attach_type != member_idx) { 9566 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9567 map->name, prog->name, prog->sec_name, prog->type, 9568 prog->attach_btf_id, prog->expected_attach_type, name); 9569 return -EINVAL; 9570 } 9571 9572 st_ops->progs[member_idx] = prog; 9573 } 9574 9575 return 0; 9576 } 9577 9578 #define BTF_TRACE_PREFIX "btf_trace_" 9579 #define BTF_LSM_PREFIX "bpf_lsm_" 9580 #define BTF_ITER_PREFIX "bpf_iter_" 9581 #define BTF_MAX_NAME_SIZE 128 9582 9583 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9584 const char **prefix, int *kind) 9585 { 9586 switch (attach_type) { 9587 case BPF_TRACE_RAW_TP: 9588 *prefix = BTF_TRACE_PREFIX; 9589 *kind = BTF_KIND_TYPEDEF; 9590 break; 9591 case BPF_LSM_MAC: 9592 *prefix = BTF_LSM_PREFIX; 9593 *kind = BTF_KIND_FUNC; 9594 break; 9595 case BPF_TRACE_ITER: 9596 *prefix = BTF_ITER_PREFIX; 9597 *kind = BTF_KIND_FUNC; 9598 break; 9599 default: 9600 *prefix = ""; 9601 *kind = BTF_KIND_FUNC; 9602 } 9603 } 9604 9605 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9606 const char *name, __u32 kind) 9607 { 9608 char btf_type_name[BTF_MAX_NAME_SIZE]; 9609 int ret; 9610 9611 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9612 "%s%s", prefix, name); 9613 /* snprintf returns the number of characters written excluding the 9614 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9615 * indicates truncation. 9616 */ 9617 if (ret < 0 || ret >= sizeof(btf_type_name)) 9618 return -ENAMETOOLONG; 9619 return btf__find_by_name_kind(btf, btf_type_name, kind); 9620 } 9621 9622 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9623 enum bpf_attach_type attach_type) 9624 { 9625 const char *prefix; 9626 int kind; 9627 9628 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9629 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9630 } 9631 9632 int libbpf_find_vmlinux_btf_id(const char *name, 9633 enum bpf_attach_type attach_type) 9634 { 9635 struct btf *btf; 9636 int err; 9637 9638 btf = btf__load_vmlinux_btf(); 9639 err = libbpf_get_error(btf); 9640 if (err) { 9641 pr_warn("vmlinux BTF is not found\n"); 9642 return libbpf_err(err); 9643 } 9644 9645 err = find_attach_btf_id(btf, name, attach_type); 9646 if (err <= 0) 9647 pr_warn("%s is not found in vmlinux BTF\n", name); 9648 9649 btf__free(btf); 9650 return libbpf_err(err); 9651 } 9652 9653 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9654 { 9655 struct bpf_prog_info info = {}; 9656 __u32 info_len = sizeof(info); 9657 struct btf *btf; 9658 int err; 9659 9660 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9661 if (err) { 9662 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9663 attach_prog_fd, err); 9664 return err; 9665 } 9666 9667 err = -EINVAL; 9668 if (!info.btf_id) { 9669 pr_warn("The target program doesn't have BTF\n"); 9670 goto out; 9671 } 9672 btf = btf__load_from_kernel_by_id(info.btf_id); 9673 err = libbpf_get_error(btf); 9674 if (err) { 9675 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9676 goto out; 9677 } 9678 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9679 btf__free(btf); 9680 if (err <= 0) { 9681 pr_warn("%s is not found in prog's BTF\n", name); 9682 goto out; 9683 } 9684 out: 9685 return err; 9686 } 9687 9688 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9689 enum bpf_attach_type attach_type, 9690 int *btf_obj_fd, int *btf_type_id) 9691 { 9692 int ret, i; 9693 9694 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9695 if (ret > 0) { 9696 *btf_obj_fd = 0; /* vmlinux BTF */ 9697 *btf_type_id = ret; 9698 return 0; 9699 } 9700 if (ret != -ENOENT) 9701 return ret; 9702 9703 ret = load_module_btfs(obj); 9704 if (ret) 9705 return ret; 9706 9707 for (i = 0; i < obj->btf_module_cnt; i++) { 9708 const struct module_btf *mod = &obj->btf_modules[i]; 9709 9710 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9711 if (ret > 0) { 9712 *btf_obj_fd = mod->fd; 9713 *btf_type_id = ret; 9714 return 0; 9715 } 9716 if (ret == -ENOENT) 9717 continue; 9718 9719 return ret; 9720 } 9721 9722 return -ESRCH; 9723 } 9724 9725 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9726 int *btf_obj_fd, int *btf_type_id) 9727 { 9728 enum bpf_attach_type attach_type = prog->expected_attach_type; 9729 __u32 attach_prog_fd = prog->attach_prog_fd; 9730 int err = 0; 9731 9732 /* BPF program's BTF ID */ 9733 if (attach_prog_fd) { 9734 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9735 if (err < 0) { 9736 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9737 attach_prog_fd, attach_name, err); 9738 return err; 9739 } 9740 *btf_obj_fd = 0; 9741 *btf_type_id = err; 9742 return 0; 9743 } 9744 9745 /* kernel/module BTF ID */ 9746 if (prog->obj->gen_loader) { 9747 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9748 *btf_obj_fd = 0; 9749 *btf_type_id = 1; 9750 } else { 9751 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9752 } 9753 if (err) { 9754 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9755 return err; 9756 } 9757 return 0; 9758 } 9759 9760 int libbpf_attach_type_by_name(const char *name, 9761 enum bpf_attach_type *attach_type) 9762 { 9763 char *type_names; 9764 const struct bpf_sec_def *sec_def; 9765 9766 if (!name) 9767 return libbpf_err(-EINVAL); 9768 9769 sec_def = find_sec_def(name); 9770 if (!sec_def) { 9771 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9772 type_names = libbpf_get_type_names(true); 9773 if (type_names != NULL) { 9774 pr_debug("attachable section(type) names are:%s\n", type_names); 9775 free(type_names); 9776 } 9777 9778 return libbpf_err(-EINVAL); 9779 } 9780 9781 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9782 return libbpf_err(-EINVAL); 9783 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9784 return libbpf_err(-EINVAL); 9785 9786 *attach_type = sec_def->expected_attach_type; 9787 return 0; 9788 } 9789 9790 int bpf_map__fd(const struct bpf_map *map) 9791 { 9792 return map ? map->fd : libbpf_err(-EINVAL); 9793 } 9794 9795 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9796 { 9797 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9798 } 9799 9800 static bool map_uses_real_name(const struct bpf_map *map) 9801 { 9802 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9803 * their user-visible name differs from kernel-visible name. Users see 9804 * such map's corresponding ELF section name as a map name. 9805 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9806 * maps to know which name has to be returned to the user. 9807 */ 9808 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9809 return true; 9810 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9811 return true; 9812 return false; 9813 } 9814 9815 const char *bpf_map__name(const struct bpf_map *map) 9816 { 9817 if (!map) 9818 return NULL; 9819 9820 if (map_uses_real_name(map)) 9821 return map->real_name; 9822 9823 return map->name; 9824 } 9825 9826 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9827 { 9828 return map->def.type; 9829 } 9830 9831 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9832 { 9833 if (map->fd >= 0) 9834 return libbpf_err(-EBUSY); 9835 map->def.type = type; 9836 return 0; 9837 } 9838 9839 __u32 bpf_map__map_flags(const struct bpf_map *map) 9840 { 9841 return map->def.map_flags; 9842 } 9843 9844 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9845 { 9846 if (map->fd >= 0) 9847 return libbpf_err(-EBUSY); 9848 map->def.map_flags = flags; 9849 return 0; 9850 } 9851 9852 __u64 bpf_map__map_extra(const struct bpf_map *map) 9853 { 9854 return map->map_extra; 9855 } 9856 9857 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9858 { 9859 if (map->fd >= 0) 9860 return libbpf_err(-EBUSY); 9861 map->map_extra = map_extra; 9862 return 0; 9863 } 9864 9865 __u32 bpf_map__numa_node(const struct bpf_map *map) 9866 { 9867 return map->numa_node; 9868 } 9869 9870 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9871 { 9872 if (map->fd >= 0) 9873 return libbpf_err(-EBUSY); 9874 map->numa_node = numa_node; 9875 return 0; 9876 } 9877 9878 __u32 bpf_map__key_size(const struct bpf_map *map) 9879 { 9880 return map->def.key_size; 9881 } 9882 9883 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9884 { 9885 if (map->fd >= 0) 9886 return libbpf_err(-EBUSY); 9887 map->def.key_size = size; 9888 return 0; 9889 } 9890 9891 __u32 bpf_map__value_size(const struct bpf_map *map) 9892 { 9893 return map->def.value_size; 9894 } 9895 9896 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9897 { 9898 if (map->fd >= 0) 9899 return libbpf_err(-EBUSY); 9900 map->def.value_size = size; 9901 return 0; 9902 } 9903 9904 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9905 { 9906 return map ? map->btf_key_type_id : 0; 9907 } 9908 9909 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9910 { 9911 return map ? map->btf_value_type_id : 0; 9912 } 9913 9914 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9915 bpf_map_clear_priv_t clear_priv) 9916 { 9917 if (!map) 9918 return libbpf_err(-EINVAL); 9919 9920 if (map->priv) { 9921 if (map->clear_priv) 9922 map->clear_priv(map, map->priv); 9923 } 9924 9925 map->priv = priv; 9926 map->clear_priv = clear_priv; 9927 return 0; 9928 } 9929 9930 void *bpf_map__priv(const struct bpf_map *map) 9931 { 9932 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9933 } 9934 9935 int bpf_map__set_initial_value(struct bpf_map *map, 9936 const void *data, size_t size) 9937 { 9938 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9939 size != map->def.value_size || map->fd >= 0) 9940 return libbpf_err(-EINVAL); 9941 9942 memcpy(map->mmaped, data, size); 9943 return 0; 9944 } 9945 9946 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9947 { 9948 if (!map->mmaped) 9949 return NULL; 9950 *psize = map->def.value_size; 9951 return map->mmaped; 9952 } 9953 9954 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9955 { 9956 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9957 } 9958 9959 bool bpf_map__is_internal(const struct bpf_map *map) 9960 { 9961 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9962 } 9963 9964 __u32 bpf_map__ifindex(const struct bpf_map *map) 9965 { 9966 return map->map_ifindex; 9967 } 9968 9969 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9970 { 9971 if (map->fd >= 0) 9972 return libbpf_err(-EBUSY); 9973 map->map_ifindex = ifindex; 9974 return 0; 9975 } 9976 9977 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9978 { 9979 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9980 pr_warn("error: unsupported map type\n"); 9981 return libbpf_err(-EINVAL); 9982 } 9983 if (map->inner_map_fd != -1) { 9984 pr_warn("error: inner_map_fd already specified\n"); 9985 return libbpf_err(-EINVAL); 9986 } 9987 if (map->inner_map) { 9988 bpf_map__destroy(map->inner_map); 9989 zfree(&map->inner_map); 9990 } 9991 map->inner_map_fd = fd; 9992 return 0; 9993 } 9994 9995 static struct bpf_map * 9996 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9997 { 9998 ssize_t idx; 9999 struct bpf_map *s, *e; 10000 10001 if (!obj || !obj->maps) 10002 return errno = EINVAL, NULL; 10003 10004 s = obj->maps; 10005 e = obj->maps + obj->nr_maps; 10006 10007 if ((m < s) || (m >= e)) { 10008 pr_warn("error in %s: map handler doesn't belong to object\n", 10009 __func__); 10010 return errno = EINVAL, NULL; 10011 } 10012 10013 idx = (m - obj->maps) + i; 10014 if (idx >= obj->nr_maps || idx < 0) 10015 return NULL; 10016 return &obj->maps[idx]; 10017 } 10018 10019 struct bpf_map * 10020 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 10021 { 10022 return bpf_object__next_map(obj, prev); 10023 } 10024 10025 struct bpf_map * 10026 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10027 { 10028 if (prev == NULL) 10029 return obj->maps; 10030 10031 return __bpf_map__iter(prev, obj, 1); 10032 } 10033 10034 struct bpf_map * 10035 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 10036 { 10037 return bpf_object__prev_map(obj, next); 10038 } 10039 10040 struct bpf_map * 10041 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10042 { 10043 if (next == NULL) { 10044 if (!obj->nr_maps) 10045 return NULL; 10046 return obj->maps + obj->nr_maps - 1; 10047 } 10048 10049 return __bpf_map__iter(next, obj, -1); 10050 } 10051 10052 struct bpf_map * 10053 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10054 { 10055 struct bpf_map *pos; 10056 10057 bpf_object__for_each_map(pos, obj) { 10058 /* if it's a special internal map name (which always starts 10059 * with dot) then check if that special name matches the 10060 * real map name (ELF section name) 10061 */ 10062 if (name[0] == '.') { 10063 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10064 return pos; 10065 continue; 10066 } 10067 /* otherwise map name has to be an exact match */ 10068 if (map_uses_real_name(pos)) { 10069 if (strcmp(pos->real_name, name) == 0) 10070 return pos; 10071 continue; 10072 } 10073 if (strcmp(pos->name, name) == 0) 10074 return pos; 10075 } 10076 return errno = ENOENT, NULL; 10077 } 10078 10079 int 10080 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10081 { 10082 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10083 } 10084 10085 struct bpf_map * 10086 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 10087 { 10088 return libbpf_err_ptr(-ENOTSUP); 10089 } 10090 10091 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10092 size_t value_sz, bool check_value_sz) 10093 { 10094 if (map->fd <= 0) 10095 return -ENOENT; 10096 10097 if (map->def.key_size != key_sz) { 10098 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10099 map->name, key_sz, map->def.key_size); 10100 return -EINVAL; 10101 } 10102 10103 if (!check_value_sz) 10104 return 0; 10105 10106 switch (map->def.type) { 10107 case BPF_MAP_TYPE_PERCPU_ARRAY: 10108 case BPF_MAP_TYPE_PERCPU_HASH: 10109 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10110 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10111 int num_cpu = libbpf_num_possible_cpus(); 10112 size_t elem_sz = roundup(map->def.value_size, 8); 10113 10114 if (value_sz != num_cpu * elem_sz) { 10115 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10116 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10117 return -EINVAL; 10118 } 10119 break; 10120 } 10121 default: 10122 if (map->def.value_size != value_sz) { 10123 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10124 map->name, value_sz, map->def.value_size); 10125 return -EINVAL; 10126 } 10127 break; 10128 } 10129 return 0; 10130 } 10131 10132 int bpf_map__lookup_elem(const struct bpf_map *map, 10133 const void *key, size_t key_sz, 10134 void *value, size_t value_sz, __u64 flags) 10135 { 10136 int err; 10137 10138 err = validate_map_op(map, key_sz, value_sz, true); 10139 if (err) 10140 return libbpf_err(err); 10141 10142 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10143 } 10144 10145 int bpf_map__update_elem(const struct bpf_map *map, 10146 const void *key, size_t key_sz, 10147 const void *value, size_t value_sz, __u64 flags) 10148 { 10149 int err; 10150 10151 err = validate_map_op(map, key_sz, value_sz, true); 10152 if (err) 10153 return libbpf_err(err); 10154 10155 return bpf_map_update_elem(map->fd, key, value, flags); 10156 } 10157 10158 int bpf_map__delete_elem(const struct bpf_map *map, 10159 const void *key, size_t key_sz, __u64 flags) 10160 { 10161 int err; 10162 10163 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10164 if (err) 10165 return libbpf_err(err); 10166 10167 return bpf_map_delete_elem_flags(map->fd, key, flags); 10168 } 10169 10170 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10171 const void *key, size_t key_sz, 10172 void *value, size_t value_sz, __u64 flags) 10173 { 10174 int err; 10175 10176 err = validate_map_op(map, key_sz, value_sz, true); 10177 if (err) 10178 return libbpf_err(err); 10179 10180 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10181 } 10182 10183 int bpf_map__get_next_key(const struct bpf_map *map, 10184 const void *cur_key, void *next_key, size_t key_sz) 10185 { 10186 int err; 10187 10188 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10189 if (err) 10190 return libbpf_err(err); 10191 10192 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10193 } 10194 10195 long libbpf_get_error(const void *ptr) 10196 { 10197 if (!IS_ERR_OR_NULL(ptr)) 10198 return 0; 10199 10200 if (IS_ERR(ptr)) 10201 errno = -PTR_ERR(ptr); 10202 10203 /* If ptr == NULL, then errno should be already set by the failing 10204 * API, because libbpf never returns NULL on success and it now always 10205 * sets errno on error. So no extra errno handling for ptr == NULL 10206 * case. 10207 */ 10208 return -errno; 10209 } 10210 10211 __attribute__((alias("bpf_prog_load_xattr2"))) 10212 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 10213 struct bpf_object **pobj, int *prog_fd); 10214 10215 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 10216 struct bpf_object **pobj, int *prog_fd) 10217 { 10218 struct bpf_object_open_attr open_attr = {}; 10219 struct bpf_program *prog, *first_prog = NULL; 10220 struct bpf_object *obj; 10221 struct bpf_map *map; 10222 int err; 10223 10224 if (!attr) 10225 return libbpf_err(-EINVAL); 10226 if (!attr->file) 10227 return libbpf_err(-EINVAL); 10228 10229 open_attr.file = attr->file; 10230 open_attr.prog_type = attr->prog_type; 10231 10232 obj = __bpf_object__open_xattr(&open_attr, 0); 10233 err = libbpf_get_error(obj); 10234 if (err) 10235 return libbpf_err(-ENOENT); 10236 10237 bpf_object__for_each_program(prog, obj) { 10238 enum bpf_attach_type attach_type = attr->expected_attach_type; 10239 /* 10240 * to preserve backwards compatibility, bpf_prog_load treats 10241 * attr->prog_type, if specified, as an override to whatever 10242 * bpf_object__open guessed 10243 */ 10244 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 10245 prog->type = attr->prog_type; 10246 prog->expected_attach_type = attach_type; 10247 } 10248 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 10249 /* 10250 * we haven't guessed from section name and user 10251 * didn't provide a fallback type, too bad... 10252 */ 10253 bpf_object__close(obj); 10254 return libbpf_err(-EINVAL); 10255 } 10256 10257 prog->prog_ifindex = attr->ifindex; 10258 prog->log_level = attr->log_level; 10259 prog->prog_flags |= attr->prog_flags; 10260 if (!first_prog) 10261 first_prog = prog; 10262 } 10263 10264 bpf_object__for_each_map(map, obj) { 10265 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10266 map->map_ifindex = attr->ifindex; 10267 } 10268 10269 if (!first_prog) { 10270 pr_warn("object file doesn't contain bpf program\n"); 10271 bpf_object__close(obj); 10272 return libbpf_err(-ENOENT); 10273 } 10274 10275 err = bpf_object__load(obj); 10276 if (err) { 10277 bpf_object__close(obj); 10278 return libbpf_err(err); 10279 } 10280 10281 *pobj = obj; 10282 *prog_fd = bpf_program__fd(first_prog); 10283 return 0; 10284 } 10285 10286 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 10287 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 10288 struct bpf_object **pobj, int *prog_fd) 10289 { 10290 struct bpf_prog_load_attr attr; 10291 10292 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 10293 attr.file = file; 10294 attr.prog_type = type; 10295 attr.expected_attach_type = 0; 10296 10297 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 10298 } 10299 10300 /* Replace link's underlying BPF program with the new one */ 10301 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10302 { 10303 int ret; 10304 10305 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10306 return libbpf_err_errno(ret); 10307 } 10308 10309 /* Release "ownership" of underlying BPF resource (typically, BPF program 10310 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10311 * link, when destructed through bpf_link__destroy() call won't attempt to 10312 * detach/unregisted that BPF resource. This is useful in situations where, 10313 * say, attached BPF program has to outlive userspace program that attached it 10314 * in the system. Depending on type of BPF program, though, there might be 10315 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10316 * exit of userspace program doesn't trigger automatic detachment and clean up 10317 * inside the kernel. 10318 */ 10319 void bpf_link__disconnect(struct bpf_link *link) 10320 { 10321 link->disconnected = true; 10322 } 10323 10324 int bpf_link__destroy(struct bpf_link *link) 10325 { 10326 int err = 0; 10327 10328 if (IS_ERR_OR_NULL(link)) 10329 return 0; 10330 10331 if (!link->disconnected && link->detach) 10332 err = link->detach(link); 10333 if (link->pin_path) 10334 free(link->pin_path); 10335 if (link->dealloc) 10336 link->dealloc(link); 10337 else 10338 free(link); 10339 10340 return libbpf_err(err); 10341 } 10342 10343 int bpf_link__fd(const struct bpf_link *link) 10344 { 10345 return link->fd; 10346 } 10347 10348 const char *bpf_link__pin_path(const struct bpf_link *link) 10349 { 10350 return link->pin_path; 10351 } 10352 10353 static int bpf_link__detach_fd(struct bpf_link *link) 10354 { 10355 return libbpf_err_errno(close(link->fd)); 10356 } 10357 10358 struct bpf_link *bpf_link__open(const char *path) 10359 { 10360 struct bpf_link *link; 10361 int fd; 10362 10363 fd = bpf_obj_get(path); 10364 if (fd < 0) { 10365 fd = -errno; 10366 pr_warn("failed to open link at %s: %d\n", path, fd); 10367 return libbpf_err_ptr(fd); 10368 } 10369 10370 link = calloc(1, sizeof(*link)); 10371 if (!link) { 10372 close(fd); 10373 return libbpf_err_ptr(-ENOMEM); 10374 } 10375 link->detach = &bpf_link__detach_fd; 10376 link->fd = fd; 10377 10378 link->pin_path = strdup(path); 10379 if (!link->pin_path) { 10380 bpf_link__destroy(link); 10381 return libbpf_err_ptr(-ENOMEM); 10382 } 10383 10384 return link; 10385 } 10386 10387 int bpf_link__detach(struct bpf_link *link) 10388 { 10389 return bpf_link_detach(link->fd) ? -errno : 0; 10390 } 10391 10392 int bpf_link__pin(struct bpf_link *link, const char *path) 10393 { 10394 int err; 10395 10396 if (link->pin_path) 10397 return libbpf_err(-EBUSY); 10398 err = make_parent_dir(path); 10399 if (err) 10400 return libbpf_err(err); 10401 err = check_path(path); 10402 if (err) 10403 return libbpf_err(err); 10404 10405 link->pin_path = strdup(path); 10406 if (!link->pin_path) 10407 return libbpf_err(-ENOMEM); 10408 10409 if (bpf_obj_pin(link->fd, link->pin_path)) { 10410 err = -errno; 10411 zfree(&link->pin_path); 10412 return libbpf_err(err); 10413 } 10414 10415 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10416 return 0; 10417 } 10418 10419 int bpf_link__unpin(struct bpf_link *link) 10420 { 10421 int err; 10422 10423 if (!link->pin_path) 10424 return libbpf_err(-EINVAL); 10425 10426 err = unlink(link->pin_path); 10427 if (err != 0) 10428 return -errno; 10429 10430 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10431 zfree(&link->pin_path); 10432 return 0; 10433 } 10434 10435 struct bpf_link_perf { 10436 struct bpf_link link; 10437 int perf_event_fd; 10438 /* legacy kprobe support: keep track of probe identifier and type */ 10439 char *legacy_probe_name; 10440 bool legacy_is_kprobe; 10441 bool legacy_is_retprobe; 10442 }; 10443 10444 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10445 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10446 10447 static int bpf_link_perf_detach(struct bpf_link *link) 10448 { 10449 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10450 int err = 0; 10451 10452 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10453 err = -errno; 10454 10455 if (perf_link->perf_event_fd != link->fd) 10456 close(perf_link->perf_event_fd); 10457 close(link->fd); 10458 10459 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10460 if (perf_link->legacy_probe_name) { 10461 if (perf_link->legacy_is_kprobe) { 10462 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10463 perf_link->legacy_is_retprobe); 10464 } else { 10465 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10466 perf_link->legacy_is_retprobe); 10467 } 10468 } 10469 10470 return err; 10471 } 10472 10473 static void bpf_link_perf_dealloc(struct bpf_link *link) 10474 { 10475 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10476 10477 free(perf_link->legacy_probe_name); 10478 free(perf_link); 10479 } 10480 10481 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10482 const struct bpf_perf_event_opts *opts) 10483 { 10484 char errmsg[STRERR_BUFSIZE]; 10485 struct bpf_link_perf *link; 10486 int prog_fd, link_fd = -1, err; 10487 10488 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10489 return libbpf_err_ptr(-EINVAL); 10490 10491 if (pfd < 0) { 10492 pr_warn("prog '%s': invalid perf event FD %d\n", 10493 prog->name, pfd); 10494 return libbpf_err_ptr(-EINVAL); 10495 } 10496 prog_fd = bpf_program__fd(prog); 10497 if (prog_fd < 0) { 10498 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10499 prog->name); 10500 return libbpf_err_ptr(-EINVAL); 10501 } 10502 10503 link = calloc(1, sizeof(*link)); 10504 if (!link) 10505 return libbpf_err_ptr(-ENOMEM); 10506 link->link.detach = &bpf_link_perf_detach; 10507 link->link.dealloc = &bpf_link_perf_dealloc; 10508 link->perf_event_fd = pfd; 10509 10510 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 10511 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10512 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10513 10514 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10515 if (link_fd < 0) { 10516 err = -errno; 10517 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10518 prog->name, pfd, 10519 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10520 goto err_out; 10521 } 10522 link->link.fd = link_fd; 10523 } else { 10524 if (OPTS_GET(opts, bpf_cookie, 0)) { 10525 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10526 err = -EOPNOTSUPP; 10527 goto err_out; 10528 } 10529 10530 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10531 err = -errno; 10532 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10533 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10534 if (err == -EPROTO) 10535 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10536 prog->name, pfd); 10537 goto err_out; 10538 } 10539 link->link.fd = pfd; 10540 } 10541 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10542 err = -errno; 10543 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10544 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10545 goto err_out; 10546 } 10547 10548 return &link->link; 10549 err_out: 10550 if (link_fd >= 0) 10551 close(link_fd); 10552 free(link); 10553 return libbpf_err_ptr(err); 10554 } 10555 10556 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10557 { 10558 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10559 } 10560 10561 /* 10562 * this function is expected to parse integer in the range of [0, 2^31-1] from 10563 * given file using scanf format string fmt. If actual parsed value is 10564 * negative, the result might be indistinguishable from error 10565 */ 10566 static int parse_uint_from_file(const char *file, const char *fmt) 10567 { 10568 char buf[STRERR_BUFSIZE]; 10569 int err, ret; 10570 FILE *f; 10571 10572 f = fopen(file, "r"); 10573 if (!f) { 10574 err = -errno; 10575 pr_debug("failed to open '%s': %s\n", file, 10576 libbpf_strerror_r(err, buf, sizeof(buf))); 10577 return err; 10578 } 10579 err = fscanf(f, fmt, &ret); 10580 if (err != 1) { 10581 err = err == EOF ? -EIO : -errno; 10582 pr_debug("failed to parse '%s': %s\n", file, 10583 libbpf_strerror_r(err, buf, sizeof(buf))); 10584 fclose(f); 10585 return err; 10586 } 10587 fclose(f); 10588 return ret; 10589 } 10590 10591 static int determine_kprobe_perf_type(void) 10592 { 10593 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10594 10595 return parse_uint_from_file(file, "%d\n"); 10596 } 10597 10598 static int determine_uprobe_perf_type(void) 10599 { 10600 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10601 10602 return parse_uint_from_file(file, "%d\n"); 10603 } 10604 10605 static int determine_kprobe_retprobe_bit(void) 10606 { 10607 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10608 10609 return parse_uint_from_file(file, "config:%d\n"); 10610 } 10611 10612 static int determine_uprobe_retprobe_bit(void) 10613 { 10614 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10615 10616 return parse_uint_from_file(file, "config:%d\n"); 10617 } 10618 10619 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10620 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10621 10622 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10623 uint64_t offset, int pid, size_t ref_ctr_off) 10624 { 10625 struct perf_event_attr attr = {}; 10626 char errmsg[STRERR_BUFSIZE]; 10627 int type, pfd, err; 10628 10629 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10630 return -EINVAL; 10631 10632 type = uprobe ? determine_uprobe_perf_type() 10633 : determine_kprobe_perf_type(); 10634 if (type < 0) { 10635 pr_warn("failed to determine %s perf type: %s\n", 10636 uprobe ? "uprobe" : "kprobe", 10637 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10638 return type; 10639 } 10640 if (retprobe) { 10641 int bit = uprobe ? determine_uprobe_retprobe_bit() 10642 : determine_kprobe_retprobe_bit(); 10643 10644 if (bit < 0) { 10645 pr_warn("failed to determine %s retprobe bit: %s\n", 10646 uprobe ? "uprobe" : "kprobe", 10647 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10648 return bit; 10649 } 10650 attr.config |= 1 << bit; 10651 } 10652 attr.size = sizeof(attr); 10653 attr.type = type; 10654 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10655 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10656 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10657 10658 /* pid filter is meaningful only for uprobes */ 10659 pfd = syscall(__NR_perf_event_open, &attr, 10660 pid < 0 ? -1 : pid /* pid */, 10661 pid == -1 ? 0 : -1 /* cpu */, 10662 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10663 if (pfd < 0) { 10664 err = -errno; 10665 pr_warn("%s perf_event_open() failed: %s\n", 10666 uprobe ? "uprobe" : "kprobe", 10667 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10668 return err; 10669 } 10670 return pfd; 10671 } 10672 10673 static int append_to_file(const char *file, const char *fmt, ...) 10674 { 10675 int fd, n, err = 0; 10676 va_list ap; 10677 10678 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10679 if (fd < 0) 10680 return -errno; 10681 10682 va_start(ap, fmt); 10683 n = vdprintf(fd, fmt, ap); 10684 va_end(ap); 10685 10686 if (n < 0) 10687 err = -errno; 10688 10689 close(fd); 10690 return err; 10691 } 10692 10693 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10694 const char *kfunc_name, size_t offset) 10695 { 10696 static int index = 0; 10697 10698 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10699 __sync_fetch_and_add(&index, 1)); 10700 } 10701 10702 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10703 const char *kfunc_name, size_t offset) 10704 { 10705 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10706 10707 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10708 retprobe ? 'r' : 'p', 10709 retprobe ? "kretprobes" : "kprobes", 10710 probe_name, kfunc_name, offset); 10711 } 10712 10713 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10714 { 10715 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10716 10717 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10718 } 10719 10720 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10721 { 10722 char file[256]; 10723 10724 snprintf(file, sizeof(file), 10725 "/sys/kernel/debug/tracing/events/%s/%s/id", 10726 retprobe ? "kretprobes" : "kprobes", probe_name); 10727 10728 return parse_uint_from_file(file, "%d\n"); 10729 } 10730 10731 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10732 const char *kfunc_name, size_t offset, int pid) 10733 { 10734 struct perf_event_attr attr = {}; 10735 char errmsg[STRERR_BUFSIZE]; 10736 int type, pfd, err; 10737 10738 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10739 if (err < 0) { 10740 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10741 kfunc_name, offset, 10742 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10743 return err; 10744 } 10745 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10746 if (type < 0) { 10747 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10748 kfunc_name, offset, 10749 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10750 return type; 10751 } 10752 attr.size = sizeof(attr); 10753 attr.config = type; 10754 attr.type = PERF_TYPE_TRACEPOINT; 10755 10756 pfd = syscall(__NR_perf_event_open, &attr, 10757 pid < 0 ? -1 : pid, /* pid */ 10758 pid == -1 ? 0 : -1, /* cpu */ 10759 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10760 if (pfd < 0) { 10761 err = -errno; 10762 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10763 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10764 return err; 10765 } 10766 return pfd; 10767 } 10768 10769 struct bpf_link * 10770 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10771 const char *func_name, 10772 const struct bpf_kprobe_opts *opts) 10773 { 10774 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10775 char errmsg[STRERR_BUFSIZE]; 10776 char *legacy_probe = NULL; 10777 struct bpf_link *link; 10778 size_t offset; 10779 bool retprobe, legacy; 10780 int pfd, err; 10781 10782 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10783 return libbpf_err_ptr(-EINVAL); 10784 10785 retprobe = OPTS_GET(opts, retprobe, false); 10786 offset = OPTS_GET(opts, offset, 0); 10787 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10788 10789 legacy = determine_kprobe_perf_type() < 0; 10790 if (!legacy) { 10791 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10792 func_name, offset, 10793 -1 /* pid */, 0 /* ref_ctr_off */); 10794 } else { 10795 char probe_name[256]; 10796 10797 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10798 func_name, offset); 10799 10800 legacy_probe = strdup(probe_name); 10801 if (!legacy_probe) 10802 return libbpf_err_ptr(-ENOMEM); 10803 10804 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10805 offset, -1 /* pid */); 10806 } 10807 if (pfd < 0) { 10808 err = -errno; 10809 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10810 prog->name, retprobe ? "kretprobe" : "kprobe", 10811 func_name, offset, 10812 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10813 goto err_out; 10814 } 10815 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10816 err = libbpf_get_error(link); 10817 if (err) { 10818 close(pfd); 10819 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10820 prog->name, retprobe ? "kretprobe" : "kprobe", 10821 func_name, offset, 10822 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10823 goto err_out; 10824 } 10825 if (legacy) { 10826 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10827 10828 perf_link->legacy_probe_name = legacy_probe; 10829 perf_link->legacy_is_kprobe = true; 10830 perf_link->legacy_is_retprobe = retprobe; 10831 } 10832 10833 return link; 10834 err_out: 10835 free(legacy_probe); 10836 return libbpf_err_ptr(err); 10837 } 10838 10839 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10840 bool retprobe, 10841 const char *func_name) 10842 { 10843 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10844 .retprobe = retprobe, 10845 ); 10846 10847 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10848 } 10849 10850 /* Adapted from perf/util/string.c */ 10851 static bool glob_match(const char *str, const char *pat) 10852 { 10853 while (*str && *pat && *pat != '*') { 10854 if (*pat == '?') { /* Matches any single character */ 10855 str++; 10856 pat++; 10857 continue; 10858 } 10859 if (*str != *pat) 10860 return false; 10861 str++; 10862 pat++; 10863 } 10864 /* Check wild card */ 10865 if (*pat == '*') { 10866 while (*pat == '*') 10867 pat++; 10868 if (!*pat) /* Tail wild card matches all */ 10869 return true; 10870 while (*str) 10871 if (glob_match(str++, pat)) 10872 return true; 10873 } 10874 return !*str && !*pat; 10875 } 10876 10877 struct kprobe_multi_resolve { 10878 const char *pattern; 10879 unsigned long *addrs; 10880 size_t cap; 10881 size_t cnt; 10882 }; 10883 10884 static int 10885 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10886 const char *sym_name, void *ctx) 10887 { 10888 struct kprobe_multi_resolve *res = ctx; 10889 int err; 10890 10891 if (!glob_match(sym_name, res->pattern)) 10892 return 0; 10893 10894 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10895 res->cnt + 1); 10896 if (err) 10897 return err; 10898 10899 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10900 return 0; 10901 } 10902 10903 struct bpf_link * 10904 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10905 const char *pattern, 10906 const struct bpf_kprobe_multi_opts *opts) 10907 { 10908 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10909 struct kprobe_multi_resolve res = { 10910 .pattern = pattern, 10911 }; 10912 struct bpf_link *link = NULL; 10913 char errmsg[STRERR_BUFSIZE]; 10914 const unsigned long *addrs; 10915 int err, link_fd, prog_fd; 10916 const __u64 *cookies; 10917 const char **syms; 10918 bool retprobe; 10919 size_t cnt; 10920 10921 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10922 return libbpf_err_ptr(-EINVAL); 10923 10924 syms = OPTS_GET(opts, syms, false); 10925 addrs = OPTS_GET(opts, addrs, false); 10926 cnt = OPTS_GET(opts, cnt, false); 10927 cookies = OPTS_GET(opts, cookies, false); 10928 10929 if (!pattern && !addrs && !syms) 10930 return libbpf_err_ptr(-EINVAL); 10931 if (pattern && (addrs || syms || cookies || cnt)) 10932 return libbpf_err_ptr(-EINVAL); 10933 if (!pattern && !cnt) 10934 return libbpf_err_ptr(-EINVAL); 10935 if (addrs && syms) 10936 return libbpf_err_ptr(-EINVAL); 10937 10938 if (pattern) { 10939 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10940 if (err) 10941 goto error; 10942 if (!res.cnt) { 10943 err = -ENOENT; 10944 goto error; 10945 } 10946 addrs = res.addrs; 10947 cnt = res.cnt; 10948 } 10949 10950 retprobe = OPTS_GET(opts, retprobe, false); 10951 10952 lopts.kprobe_multi.syms = syms; 10953 lopts.kprobe_multi.addrs = addrs; 10954 lopts.kprobe_multi.cookies = cookies; 10955 lopts.kprobe_multi.cnt = cnt; 10956 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10957 10958 link = calloc(1, sizeof(*link)); 10959 if (!link) { 10960 err = -ENOMEM; 10961 goto error; 10962 } 10963 link->detach = &bpf_link__detach_fd; 10964 10965 prog_fd = bpf_program__fd(prog); 10966 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10967 if (link_fd < 0) { 10968 err = -errno; 10969 pr_warn("prog '%s': failed to attach: %s\n", 10970 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10971 goto error; 10972 } 10973 link->fd = link_fd; 10974 free(res.addrs); 10975 return link; 10976 10977 error: 10978 free(link); 10979 free(res.addrs); 10980 return libbpf_err_ptr(err); 10981 } 10982 10983 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10984 { 10985 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10986 unsigned long offset = 0; 10987 const char *func_name; 10988 char *func; 10989 int n; 10990 10991 *link = NULL; 10992 10993 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10994 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10995 return 0; 10996 10997 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10998 if (opts.retprobe) 10999 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11000 else 11001 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11002 11003 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11004 if (n < 1) { 11005 pr_warn("kprobe name is invalid: %s\n", func_name); 11006 return -EINVAL; 11007 } 11008 if (opts.retprobe && offset != 0) { 11009 free(func); 11010 pr_warn("kretprobes do not support offset specification\n"); 11011 return -EINVAL; 11012 } 11013 11014 opts.offset = offset; 11015 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11016 free(func); 11017 return libbpf_get_error(*link); 11018 } 11019 11020 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11021 { 11022 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11023 const char *spec; 11024 char *pattern; 11025 int n; 11026 11027 *link = NULL; 11028 11029 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11030 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11031 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11032 return 0; 11033 11034 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11035 if (opts.retprobe) 11036 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11037 else 11038 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11039 11040 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11041 if (n < 1) { 11042 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11043 return -EINVAL; 11044 } 11045 11046 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11047 free(pattern); 11048 return libbpf_get_error(*link); 11049 } 11050 11051 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11052 const char *binary_path, uint64_t offset) 11053 { 11054 int i; 11055 11056 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11057 11058 /* sanitize binary_path in the probe name */ 11059 for (i = 0; buf[i]; i++) { 11060 if (!isalnum(buf[i])) 11061 buf[i] = '_'; 11062 } 11063 } 11064 11065 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11066 const char *binary_path, size_t offset) 11067 { 11068 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 11069 11070 return append_to_file(file, "%c:%s/%s %s:0x%zx", 11071 retprobe ? 'r' : 'p', 11072 retprobe ? "uretprobes" : "uprobes", 11073 probe_name, binary_path, offset); 11074 } 11075 11076 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11077 { 11078 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 11079 11080 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 11081 } 11082 11083 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11084 { 11085 char file[512]; 11086 11087 snprintf(file, sizeof(file), 11088 "/sys/kernel/debug/tracing/events/%s/%s/id", 11089 retprobe ? "uretprobes" : "uprobes", probe_name); 11090 11091 return parse_uint_from_file(file, "%d\n"); 11092 } 11093 11094 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11095 const char *binary_path, size_t offset, int pid) 11096 { 11097 struct perf_event_attr attr; 11098 int type, pfd, err; 11099 11100 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11101 if (err < 0) { 11102 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11103 binary_path, (size_t)offset, err); 11104 return err; 11105 } 11106 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11107 if (type < 0) { 11108 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11109 binary_path, offset, err); 11110 return type; 11111 } 11112 11113 memset(&attr, 0, sizeof(attr)); 11114 attr.size = sizeof(attr); 11115 attr.config = type; 11116 attr.type = PERF_TYPE_TRACEPOINT; 11117 11118 pfd = syscall(__NR_perf_event_open, &attr, 11119 pid < 0 ? -1 : pid, /* pid */ 11120 pid == -1 ? 0 : -1, /* cpu */ 11121 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11122 if (pfd < 0) { 11123 err = -errno; 11124 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11125 return err; 11126 } 11127 return pfd; 11128 } 11129 11130 /* uprobes deal in relative offsets; subtract the base address associated with 11131 * the mapped binary. See Documentation/trace/uprobetracer.rst for more 11132 * details. 11133 */ 11134 static long elf_find_relative_offset(const char *filename, Elf *elf, long addr) 11135 { 11136 size_t n; 11137 int i; 11138 11139 if (elf_getphdrnum(elf, &n)) { 11140 pr_warn("elf: failed to find program headers for '%s': %s\n", filename, 11141 elf_errmsg(-1)); 11142 return -ENOENT; 11143 } 11144 11145 for (i = 0; i < n; i++) { 11146 int seg_start, seg_end, seg_offset; 11147 GElf_Phdr phdr; 11148 11149 if (!gelf_getphdr(elf, i, &phdr)) { 11150 pr_warn("elf: failed to get program header %d from '%s': %s\n", i, filename, 11151 elf_errmsg(-1)); 11152 return -ENOENT; 11153 } 11154 if (phdr.p_type != PT_LOAD || !(phdr.p_flags & PF_X)) 11155 continue; 11156 11157 seg_start = phdr.p_vaddr; 11158 seg_end = seg_start + phdr.p_memsz; 11159 seg_offset = phdr.p_offset; 11160 if (addr >= seg_start && addr < seg_end) 11161 return addr - seg_start + seg_offset; 11162 } 11163 pr_warn("elf: failed to find prog header containing 0x%lx in '%s'\n", addr, filename); 11164 return -ENOENT; 11165 } 11166 11167 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 11168 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 11169 { 11170 while ((scn = elf_nextscn(elf, scn)) != NULL) { 11171 GElf_Shdr sh; 11172 11173 if (!gelf_getshdr(scn, &sh)) 11174 continue; 11175 if (sh.sh_type == sh_type) 11176 return scn; 11177 } 11178 return NULL; 11179 } 11180 11181 /* Find offset of function name in object specified by path. "name" matches 11182 * symbol name or name@@LIB for library functions. 11183 */ 11184 static long elf_find_func_offset(const char *binary_path, const char *name) 11185 { 11186 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 11187 bool is_shared_lib, is_name_qualified; 11188 char errmsg[STRERR_BUFSIZE]; 11189 long ret = -ENOENT; 11190 size_t name_len; 11191 GElf_Ehdr ehdr; 11192 Elf *elf; 11193 11194 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 11195 if (fd < 0) { 11196 ret = -errno; 11197 pr_warn("failed to open %s: %s\n", binary_path, 11198 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 11199 return ret; 11200 } 11201 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 11202 if (!elf) { 11203 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 11204 close(fd); 11205 return -LIBBPF_ERRNO__FORMAT; 11206 } 11207 if (!gelf_getehdr(elf, &ehdr)) { 11208 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 11209 ret = -LIBBPF_ERRNO__FORMAT; 11210 goto out; 11211 } 11212 /* for shared lib case, we do not need to calculate relative offset */ 11213 is_shared_lib = ehdr.e_type == ET_DYN; 11214 11215 name_len = strlen(name); 11216 /* Does name specify "@@LIB"? */ 11217 is_name_qualified = strstr(name, "@@") != NULL; 11218 11219 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 11220 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 11221 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 11222 * reported as a warning/error. 11223 */ 11224 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 11225 size_t nr_syms, strtabidx, idx; 11226 Elf_Data *symbols = NULL; 11227 Elf_Scn *scn = NULL; 11228 int last_bind = -1; 11229 const char *sname; 11230 GElf_Shdr sh; 11231 11232 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 11233 if (!scn) { 11234 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 11235 binary_path); 11236 continue; 11237 } 11238 if (!gelf_getshdr(scn, &sh)) 11239 continue; 11240 strtabidx = sh.sh_link; 11241 symbols = elf_getdata(scn, 0); 11242 if (!symbols) { 11243 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 11244 binary_path, elf_errmsg(-1)); 11245 ret = -LIBBPF_ERRNO__FORMAT; 11246 goto out; 11247 } 11248 nr_syms = symbols->d_size / sh.sh_entsize; 11249 11250 for (idx = 0; idx < nr_syms; idx++) { 11251 int curr_bind; 11252 GElf_Sym sym; 11253 11254 if (!gelf_getsym(symbols, idx, &sym)) 11255 continue; 11256 11257 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 11258 continue; 11259 11260 sname = elf_strptr(elf, strtabidx, sym.st_name); 11261 if (!sname) 11262 continue; 11263 11264 curr_bind = GELF_ST_BIND(sym.st_info); 11265 11266 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 11267 if (strncmp(sname, name, name_len) != 0) 11268 continue; 11269 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 11270 * additional characters in sname should be of the form "@@LIB". 11271 */ 11272 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 11273 continue; 11274 11275 if (ret >= 0) { 11276 /* handle multiple matches */ 11277 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 11278 /* Only accept one non-weak bind. */ 11279 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 11280 sname, name, binary_path); 11281 ret = -LIBBPF_ERRNO__FORMAT; 11282 goto out; 11283 } else if (curr_bind == STB_WEAK) { 11284 /* already have a non-weak bind, and 11285 * this is a weak bind, so ignore. 11286 */ 11287 continue; 11288 } 11289 } 11290 ret = sym.st_value; 11291 last_bind = curr_bind; 11292 } 11293 /* For binaries that are not shared libraries, we need relative offset */ 11294 if (ret > 0 && !is_shared_lib) 11295 ret = elf_find_relative_offset(binary_path, elf, ret); 11296 if (ret > 0) 11297 break; 11298 } 11299 11300 if (ret > 0) { 11301 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 11302 ret); 11303 } else { 11304 if (ret == 0) { 11305 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 11306 is_shared_lib ? "should not be 0 in a shared library" : 11307 "try using shared library path instead"); 11308 ret = -ENOENT; 11309 } else { 11310 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 11311 } 11312 } 11313 out: 11314 elf_end(elf); 11315 close(fd); 11316 return ret; 11317 } 11318 11319 static const char *arch_specific_lib_paths(void) 11320 { 11321 /* 11322 * Based on https://packages.debian.org/sid/libc6. 11323 * 11324 * Assume that the traced program is built for the same architecture 11325 * as libbpf, which should cover the vast majority of cases. 11326 */ 11327 #if defined(__x86_64__) 11328 return "/lib/x86_64-linux-gnu"; 11329 #elif defined(__i386__) 11330 return "/lib/i386-linux-gnu"; 11331 #elif defined(__s390x__) 11332 return "/lib/s390x-linux-gnu"; 11333 #elif defined(__s390__) 11334 return "/lib/s390-linux-gnu"; 11335 #elif defined(__arm__) && defined(__SOFTFP__) 11336 return "/lib/arm-linux-gnueabi"; 11337 #elif defined(__arm__) && !defined(__SOFTFP__) 11338 return "/lib/arm-linux-gnueabihf"; 11339 #elif defined(__aarch64__) 11340 return "/lib/aarch64-linux-gnu"; 11341 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11342 return "/lib/mips64el-linux-gnuabi64"; 11343 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11344 return "/lib/mipsel-linux-gnu"; 11345 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11346 return "/lib/powerpc64le-linux-gnu"; 11347 #elif defined(__sparc__) && defined(__arch64__) 11348 return "/lib/sparc64-linux-gnu"; 11349 #elif defined(__riscv) && __riscv_xlen == 64 11350 return "/lib/riscv64-linux-gnu"; 11351 #else 11352 return NULL; 11353 #endif 11354 } 11355 11356 /* Get full path to program/shared library. */ 11357 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11358 { 11359 const char *search_paths[3] = {}; 11360 int i; 11361 11362 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11363 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11364 search_paths[1] = "/usr/lib64:/usr/lib"; 11365 search_paths[2] = arch_specific_lib_paths(); 11366 } else { 11367 search_paths[0] = getenv("PATH"); 11368 search_paths[1] = "/usr/bin:/usr/sbin"; 11369 } 11370 11371 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11372 const char *s; 11373 11374 if (!search_paths[i]) 11375 continue; 11376 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11377 char *next_path; 11378 int seg_len; 11379 11380 if (s[0] == ':') 11381 s++; 11382 next_path = strchr(s, ':'); 11383 seg_len = next_path ? next_path - s : strlen(s); 11384 if (!seg_len) 11385 continue; 11386 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11387 /* ensure it is an executable file/link */ 11388 if (access(result, R_OK | X_OK) < 0) 11389 continue; 11390 pr_debug("resolved '%s' to '%s'\n", file, result); 11391 return 0; 11392 } 11393 } 11394 return -ENOENT; 11395 } 11396 11397 LIBBPF_API struct bpf_link * 11398 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11399 const char *binary_path, size_t func_offset, 11400 const struct bpf_uprobe_opts *opts) 11401 { 11402 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11403 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11404 char full_binary_path[PATH_MAX]; 11405 struct bpf_link *link; 11406 size_t ref_ctr_off; 11407 int pfd, err; 11408 bool retprobe, legacy; 11409 const char *func_name; 11410 11411 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11412 return libbpf_err_ptr(-EINVAL); 11413 11414 retprobe = OPTS_GET(opts, retprobe, false); 11415 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11416 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11417 11418 if (binary_path && !strchr(binary_path, '/')) { 11419 err = resolve_full_path(binary_path, full_binary_path, 11420 sizeof(full_binary_path)); 11421 if (err) { 11422 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11423 prog->name, binary_path, err); 11424 return libbpf_err_ptr(err); 11425 } 11426 binary_path = full_binary_path; 11427 } 11428 func_name = OPTS_GET(opts, func_name, NULL); 11429 if (func_name) { 11430 long sym_off; 11431 11432 if (!binary_path) { 11433 pr_warn("prog '%s': name-based attach requires binary_path\n", 11434 prog->name); 11435 return libbpf_err_ptr(-EINVAL); 11436 } 11437 sym_off = elf_find_func_offset(binary_path, func_name); 11438 if (sym_off < 0) 11439 return libbpf_err_ptr(sym_off); 11440 func_offset += sym_off; 11441 } 11442 11443 legacy = determine_uprobe_perf_type() < 0; 11444 if (!legacy) { 11445 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11446 func_offset, pid, ref_ctr_off); 11447 } else { 11448 char probe_name[PATH_MAX + 64]; 11449 11450 if (ref_ctr_off) 11451 return libbpf_err_ptr(-EINVAL); 11452 11453 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11454 binary_path, func_offset); 11455 11456 legacy_probe = strdup(probe_name); 11457 if (!legacy_probe) 11458 return libbpf_err_ptr(-ENOMEM); 11459 11460 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11461 binary_path, func_offset, pid); 11462 } 11463 if (pfd < 0) { 11464 err = -errno; 11465 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11466 prog->name, retprobe ? "uretprobe" : "uprobe", 11467 binary_path, func_offset, 11468 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11469 goto err_out; 11470 } 11471 11472 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11473 err = libbpf_get_error(link); 11474 if (err) { 11475 close(pfd); 11476 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11477 prog->name, retprobe ? "uretprobe" : "uprobe", 11478 binary_path, func_offset, 11479 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11480 goto err_out; 11481 } 11482 if (legacy) { 11483 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11484 11485 perf_link->legacy_probe_name = legacy_probe; 11486 perf_link->legacy_is_kprobe = false; 11487 perf_link->legacy_is_retprobe = retprobe; 11488 } 11489 return link; 11490 err_out: 11491 free(legacy_probe); 11492 return libbpf_err_ptr(err); 11493 11494 } 11495 11496 /* Format of u[ret]probe section definition supporting auto-attach: 11497 * u[ret]probe/binary:function[+offset] 11498 * 11499 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11500 * full binary path via bpf_program__attach_uprobe_opts. 11501 * 11502 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11503 * specified (and auto-attach is not possible) or the above format is specified for 11504 * auto-attach. 11505 */ 11506 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11507 { 11508 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11509 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11510 int n, ret = -EINVAL; 11511 long offset = 0; 11512 11513 *link = NULL; 11514 11515 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11516 &probe_type, &binary_path, &func_name, &offset); 11517 switch (n) { 11518 case 1: 11519 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11520 ret = 0; 11521 break; 11522 case 2: 11523 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11524 prog->name, prog->sec_name); 11525 break; 11526 case 3: 11527 case 4: 11528 opts.retprobe = strcmp(probe_type, "uretprobe") == 0; 11529 if (opts.retprobe && offset != 0) { 11530 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11531 prog->name); 11532 break; 11533 } 11534 opts.func_name = func_name; 11535 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11536 ret = libbpf_get_error(*link); 11537 break; 11538 default: 11539 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11540 prog->sec_name); 11541 break; 11542 } 11543 free(probe_type); 11544 free(binary_path); 11545 free(func_name); 11546 11547 return ret; 11548 } 11549 11550 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11551 bool retprobe, pid_t pid, 11552 const char *binary_path, 11553 size_t func_offset) 11554 { 11555 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11556 11557 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11558 } 11559 11560 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11561 pid_t pid, const char *binary_path, 11562 const char *usdt_provider, const char *usdt_name, 11563 const struct bpf_usdt_opts *opts) 11564 { 11565 char resolved_path[512]; 11566 struct bpf_object *obj = prog->obj; 11567 struct bpf_link *link; 11568 __u64 usdt_cookie; 11569 int err; 11570 11571 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11572 return libbpf_err_ptr(-EINVAL); 11573 11574 if (bpf_program__fd(prog) < 0) { 11575 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11576 prog->name); 11577 return libbpf_err_ptr(-EINVAL); 11578 } 11579 11580 if (!strchr(binary_path, '/')) { 11581 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11582 if (err) { 11583 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11584 prog->name, binary_path, err); 11585 return libbpf_err_ptr(err); 11586 } 11587 binary_path = resolved_path; 11588 } 11589 11590 /* USDT manager is instantiated lazily on first USDT attach. It will 11591 * be destroyed together with BPF object in bpf_object__close(). 11592 */ 11593 if (IS_ERR(obj->usdt_man)) 11594 return libbpf_ptr(obj->usdt_man); 11595 if (!obj->usdt_man) { 11596 obj->usdt_man = usdt_manager_new(obj); 11597 if (IS_ERR(obj->usdt_man)) 11598 return libbpf_ptr(obj->usdt_man); 11599 } 11600 11601 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11602 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11603 usdt_provider, usdt_name, usdt_cookie); 11604 err = libbpf_get_error(link); 11605 if (err) 11606 return libbpf_err_ptr(err); 11607 return link; 11608 } 11609 11610 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11611 { 11612 char *path = NULL, *provider = NULL, *name = NULL; 11613 const char *sec_name; 11614 int n, err; 11615 11616 sec_name = bpf_program__section_name(prog); 11617 if (strcmp(sec_name, "usdt") == 0) { 11618 /* no auto-attach for just SEC("usdt") */ 11619 *link = NULL; 11620 return 0; 11621 } 11622 11623 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11624 if (n != 3) { 11625 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11626 sec_name); 11627 err = -EINVAL; 11628 } else { 11629 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11630 provider, name, NULL); 11631 err = libbpf_get_error(*link); 11632 } 11633 free(path); 11634 free(provider); 11635 free(name); 11636 return err; 11637 } 11638 11639 static int determine_tracepoint_id(const char *tp_category, 11640 const char *tp_name) 11641 { 11642 char file[PATH_MAX]; 11643 int ret; 11644 11645 ret = snprintf(file, sizeof(file), 11646 "/sys/kernel/debug/tracing/events/%s/%s/id", 11647 tp_category, tp_name); 11648 if (ret < 0) 11649 return -errno; 11650 if (ret >= sizeof(file)) { 11651 pr_debug("tracepoint %s/%s path is too long\n", 11652 tp_category, tp_name); 11653 return -E2BIG; 11654 } 11655 return parse_uint_from_file(file, "%d\n"); 11656 } 11657 11658 static int perf_event_open_tracepoint(const char *tp_category, 11659 const char *tp_name) 11660 { 11661 struct perf_event_attr attr = {}; 11662 char errmsg[STRERR_BUFSIZE]; 11663 int tp_id, pfd, err; 11664 11665 tp_id = determine_tracepoint_id(tp_category, tp_name); 11666 if (tp_id < 0) { 11667 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11668 tp_category, tp_name, 11669 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11670 return tp_id; 11671 } 11672 11673 attr.type = PERF_TYPE_TRACEPOINT; 11674 attr.size = sizeof(attr); 11675 attr.config = tp_id; 11676 11677 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11678 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11679 if (pfd < 0) { 11680 err = -errno; 11681 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11682 tp_category, tp_name, 11683 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11684 return err; 11685 } 11686 return pfd; 11687 } 11688 11689 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11690 const char *tp_category, 11691 const char *tp_name, 11692 const struct bpf_tracepoint_opts *opts) 11693 { 11694 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11695 char errmsg[STRERR_BUFSIZE]; 11696 struct bpf_link *link; 11697 int pfd, err; 11698 11699 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11700 return libbpf_err_ptr(-EINVAL); 11701 11702 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11703 11704 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11705 if (pfd < 0) { 11706 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11707 prog->name, tp_category, tp_name, 11708 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11709 return libbpf_err_ptr(pfd); 11710 } 11711 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11712 err = libbpf_get_error(link); 11713 if (err) { 11714 close(pfd); 11715 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11716 prog->name, tp_category, tp_name, 11717 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11718 return libbpf_err_ptr(err); 11719 } 11720 return link; 11721 } 11722 11723 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11724 const char *tp_category, 11725 const char *tp_name) 11726 { 11727 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11728 } 11729 11730 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11731 { 11732 char *sec_name, *tp_cat, *tp_name; 11733 11734 *link = NULL; 11735 11736 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11737 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11738 return 0; 11739 11740 sec_name = strdup(prog->sec_name); 11741 if (!sec_name) 11742 return -ENOMEM; 11743 11744 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11745 if (str_has_pfx(prog->sec_name, "tp/")) 11746 tp_cat = sec_name + sizeof("tp/") - 1; 11747 else 11748 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11749 tp_name = strchr(tp_cat, '/'); 11750 if (!tp_name) { 11751 free(sec_name); 11752 return -EINVAL; 11753 } 11754 *tp_name = '\0'; 11755 tp_name++; 11756 11757 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11758 free(sec_name); 11759 return libbpf_get_error(*link); 11760 } 11761 11762 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11763 const char *tp_name) 11764 { 11765 char errmsg[STRERR_BUFSIZE]; 11766 struct bpf_link *link; 11767 int prog_fd, pfd; 11768 11769 prog_fd = bpf_program__fd(prog); 11770 if (prog_fd < 0) { 11771 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11772 return libbpf_err_ptr(-EINVAL); 11773 } 11774 11775 link = calloc(1, sizeof(*link)); 11776 if (!link) 11777 return libbpf_err_ptr(-ENOMEM); 11778 link->detach = &bpf_link__detach_fd; 11779 11780 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11781 if (pfd < 0) { 11782 pfd = -errno; 11783 free(link); 11784 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11785 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11786 return libbpf_err_ptr(pfd); 11787 } 11788 link->fd = pfd; 11789 return link; 11790 } 11791 11792 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11793 { 11794 static const char *const prefixes[] = { 11795 "raw_tp", 11796 "raw_tracepoint", 11797 "raw_tp.w", 11798 "raw_tracepoint.w", 11799 }; 11800 size_t i; 11801 const char *tp_name = NULL; 11802 11803 *link = NULL; 11804 11805 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11806 size_t pfx_len; 11807 11808 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11809 continue; 11810 11811 pfx_len = strlen(prefixes[i]); 11812 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11813 if (prog->sec_name[pfx_len] == '\0') 11814 return 0; 11815 11816 if (prog->sec_name[pfx_len] != '/') 11817 continue; 11818 11819 tp_name = prog->sec_name + pfx_len + 1; 11820 break; 11821 } 11822 11823 if (!tp_name) { 11824 pr_warn("prog '%s': invalid section name '%s'\n", 11825 prog->name, prog->sec_name); 11826 return -EINVAL; 11827 } 11828 11829 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11830 return libbpf_get_error(link); 11831 } 11832 11833 /* Common logic for all BPF program types that attach to a btf_id */ 11834 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11835 const struct bpf_trace_opts *opts) 11836 { 11837 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11838 char errmsg[STRERR_BUFSIZE]; 11839 struct bpf_link *link; 11840 int prog_fd, pfd; 11841 11842 if (!OPTS_VALID(opts, bpf_trace_opts)) 11843 return libbpf_err_ptr(-EINVAL); 11844 11845 prog_fd = bpf_program__fd(prog); 11846 if (prog_fd < 0) { 11847 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11848 return libbpf_err_ptr(-EINVAL); 11849 } 11850 11851 link = calloc(1, sizeof(*link)); 11852 if (!link) 11853 return libbpf_err_ptr(-ENOMEM); 11854 link->detach = &bpf_link__detach_fd; 11855 11856 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11857 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11858 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11859 if (pfd < 0) { 11860 pfd = -errno; 11861 free(link); 11862 pr_warn("prog '%s': failed to attach: %s\n", 11863 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11864 return libbpf_err_ptr(pfd); 11865 } 11866 link->fd = pfd; 11867 return link; 11868 } 11869 11870 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11871 { 11872 return bpf_program__attach_btf_id(prog, NULL); 11873 } 11874 11875 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11876 const struct bpf_trace_opts *opts) 11877 { 11878 return bpf_program__attach_btf_id(prog, opts); 11879 } 11880 11881 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11882 { 11883 return bpf_program__attach_btf_id(prog, NULL); 11884 } 11885 11886 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11887 { 11888 *link = bpf_program__attach_trace(prog); 11889 return libbpf_get_error(*link); 11890 } 11891 11892 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11893 { 11894 *link = bpf_program__attach_lsm(prog); 11895 return libbpf_get_error(*link); 11896 } 11897 11898 static struct bpf_link * 11899 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11900 const char *target_name) 11901 { 11902 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11903 .target_btf_id = btf_id); 11904 enum bpf_attach_type attach_type; 11905 char errmsg[STRERR_BUFSIZE]; 11906 struct bpf_link *link; 11907 int prog_fd, link_fd; 11908 11909 prog_fd = bpf_program__fd(prog); 11910 if (prog_fd < 0) { 11911 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11912 return libbpf_err_ptr(-EINVAL); 11913 } 11914 11915 link = calloc(1, sizeof(*link)); 11916 if (!link) 11917 return libbpf_err_ptr(-ENOMEM); 11918 link->detach = &bpf_link__detach_fd; 11919 11920 attach_type = bpf_program__expected_attach_type(prog); 11921 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11922 if (link_fd < 0) { 11923 link_fd = -errno; 11924 free(link); 11925 pr_warn("prog '%s': failed to attach to %s: %s\n", 11926 prog->name, target_name, 11927 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11928 return libbpf_err_ptr(link_fd); 11929 } 11930 link->fd = link_fd; 11931 return link; 11932 } 11933 11934 struct bpf_link * 11935 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11936 { 11937 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11938 } 11939 11940 struct bpf_link * 11941 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11942 { 11943 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11944 } 11945 11946 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11947 { 11948 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11949 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11950 } 11951 11952 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11953 int target_fd, 11954 const char *attach_func_name) 11955 { 11956 int btf_id; 11957 11958 if (!!target_fd != !!attach_func_name) { 11959 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11960 prog->name); 11961 return libbpf_err_ptr(-EINVAL); 11962 } 11963 11964 if (prog->type != BPF_PROG_TYPE_EXT) { 11965 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11966 prog->name); 11967 return libbpf_err_ptr(-EINVAL); 11968 } 11969 11970 if (target_fd) { 11971 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11972 if (btf_id < 0) 11973 return libbpf_err_ptr(btf_id); 11974 11975 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11976 } else { 11977 /* no target, so use raw_tracepoint_open for compatibility 11978 * with old kernels 11979 */ 11980 return bpf_program__attach_trace(prog); 11981 } 11982 } 11983 11984 struct bpf_link * 11985 bpf_program__attach_iter(const struct bpf_program *prog, 11986 const struct bpf_iter_attach_opts *opts) 11987 { 11988 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11989 char errmsg[STRERR_BUFSIZE]; 11990 struct bpf_link *link; 11991 int prog_fd, link_fd; 11992 __u32 target_fd = 0; 11993 11994 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11995 return libbpf_err_ptr(-EINVAL); 11996 11997 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11998 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11999 12000 prog_fd = bpf_program__fd(prog); 12001 if (prog_fd < 0) { 12002 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12003 return libbpf_err_ptr(-EINVAL); 12004 } 12005 12006 link = calloc(1, sizeof(*link)); 12007 if (!link) 12008 return libbpf_err_ptr(-ENOMEM); 12009 link->detach = &bpf_link__detach_fd; 12010 12011 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12012 &link_create_opts); 12013 if (link_fd < 0) { 12014 link_fd = -errno; 12015 free(link); 12016 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12017 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12018 return libbpf_err_ptr(link_fd); 12019 } 12020 link->fd = link_fd; 12021 return link; 12022 } 12023 12024 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12025 { 12026 *link = bpf_program__attach_iter(prog, NULL); 12027 return libbpf_get_error(*link); 12028 } 12029 12030 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12031 { 12032 struct bpf_link *link = NULL; 12033 int err; 12034 12035 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12036 return libbpf_err_ptr(-EOPNOTSUPP); 12037 12038 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12039 if (err) 12040 return libbpf_err_ptr(err); 12041 12042 /* When calling bpf_program__attach() explicitly, auto-attach support 12043 * is expected to work, so NULL returned link is considered an error. 12044 * This is different for skeleton's attach, see comment in 12045 * bpf_object__attach_skeleton(). 12046 */ 12047 if (!link) 12048 return libbpf_err_ptr(-EOPNOTSUPP); 12049 12050 return link; 12051 } 12052 12053 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12054 { 12055 __u32 zero = 0; 12056 12057 if (bpf_map_delete_elem(link->fd, &zero)) 12058 return -errno; 12059 12060 return 0; 12061 } 12062 12063 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12064 { 12065 struct bpf_struct_ops *st_ops; 12066 struct bpf_link *link; 12067 __u32 i, zero = 0; 12068 int err; 12069 12070 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12071 return libbpf_err_ptr(-EINVAL); 12072 12073 link = calloc(1, sizeof(*link)); 12074 if (!link) 12075 return libbpf_err_ptr(-EINVAL); 12076 12077 st_ops = map->st_ops; 12078 for (i = 0; i < btf_vlen(st_ops->type); i++) { 12079 struct bpf_program *prog = st_ops->progs[i]; 12080 void *kern_data; 12081 int prog_fd; 12082 12083 if (!prog) 12084 continue; 12085 12086 prog_fd = bpf_program__fd(prog); 12087 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 12088 *(unsigned long *)kern_data = prog_fd; 12089 } 12090 12091 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 12092 if (err) { 12093 err = -errno; 12094 free(link); 12095 return libbpf_err_ptr(err); 12096 } 12097 12098 link->detach = bpf_link__detach_struct_ops; 12099 link->fd = map->fd; 12100 12101 return link; 12102 } 12103 12104 static enum bpf_perf_event_ret 12105 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12106 void **copy_mem, size_t *copy_size, 12107 bpf_perf_event_print_t fn, void *private_data) 12108 { 12109 struct perf_event_mmap_page *header = mmap_mem; 12110 __u64 data_head = ring_buffer_read_head(header); 12111 __u64 data_tail = header->data_tail; 12112 void *base = ((__u8 *)header) + page_size; 12113 int ret = LIBBPF_PERF_EVENT_CONT; 12114 struct perf_event_header *ehdr; 12115 size_t ehdr_size; 12116 12117 while (data_head != data_tail) { 12118 ehdr = base + (data_tail & (mmap_size - 1)); 12119 ehdr_size = ehdr->size; 12120 12121 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12122 void *copy_start = ehdr; 12123 size_t len_first = base + mmap_size - copy_start; 12124 size_t len_secnd = ehdr_size - len_first; 12125 12126 if (*copy_size < ehdr_size) { 12127 free(*copy_mem); 12128 *copy_mem = malloc(ehdr_size); 12129 if (!*copy_mem) { 12130 *copy_size = 0; 12131 ret = LIBBPF_PERF_EVENT_ERROR; 12132 break; 12133 } 12134 *copy_size = ehdr_size; 12135 } 12136 12137 memcpy(*copy_mem, copy_start, len_first); 12138 memcpy(*copy_mem + len_first, base, len_secnd); 12139 ehdr = *copy_mem; 12140 } 12141 12142 ret = fn(ehdr, private_data); 12143 data_tail += ehdr_size; 12144 if (ret != LIBBPF_PERF_EVENT_CONT) 12145 break; 12146 } 12147 12148 ring_buffer_write_tail(header, data_tail); 12149 return libbpf_err(ret); 12150 } 12151 12152 __attribute__((alias("perf_event_read_simple"))) 12153 enum bpf_perf_event_ret 12154 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12155 void **copy_mem, size_t *copy_size, 12156 bpf_perf_event_print_t fn, void *private_data); 12157 12158 struct perf_buffer; 12159 12160 struct perf_buffer_params { 12161 struct perf_event_attr *attr; 12162 /* if event_cb is specified, it takes precendence */ 12163 perf_buffer_event_fn event_cb; 12164 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12165 perf_buffer_sample_fn sample_cb; 12166 perf_buffer_lost_fn lost_cb; 12167 void *ctx; 12168 int cpu_cnt; 12169 int *cpus; 12170 int *map_keys; 12171 }; 12172 12173 struct perf_cpu_buf { 12174 struct perf_buffer *pb; 12175 void *base; /* mmap()'ed memory */ 12176 void *buf; /* for reconstructing segmented data */ 12177 size_t buf_size; 12178 int fd; 12179 int cpu; 12180 int map_key; 12181 }; 12182 12183 struct perf_buffer { 12184 perf_buffer_event_fn event_cb; 12185 perf_buffer_sample_fn sample_cb; 12186 perf_buffer_lost_fn lost_cb; 12187 void *ctx; /* passed into callbacks */ 12188 12189 size_t page_size; 12190 size_t mmap_size; 12191 struct perf_cpu_buf **cpu_bufs; 12192 struct epoll_event *events; 12193 int cpu_cnt; /* number of allocated CPU buffers */ 12194 int epoll_fd; /* perf event FD */ 12195 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12196 }; 12197 12198 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12199 struct perf_cpu_buf *cpu_buf) 12200 { 12201 if (!cpu_buf) 12202 return; 12203 if (cpu_buf->base && 12204 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12205 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12206 if (cpu_buf->fd >= 0) { 12207 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12208 close(cpu_buf->fd); 12209 } 12210 free(cpu_buf->buf); 12211 free(cpu_buf); 12212 } 12213 12214 void perf_buffer__free(struct perf_buffer *pb) 12215 { 12216 int i; 12217 12218 if (IS_ERR_OR_NULL(pb)) 12219 return; 12220 if (pb->cpu_bufs) { 12221 for (i = 0; i < pb->cpu_cnt; i++) { 12222 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12223 12224 if (!cpu_buf) 12225 continue; 12226 12227 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12228 perf_buffer__free_cpu_buf(pb, cpu_buf); 12229 } 12230 free(pb->cpu_bufs); 12231 } 12232 if (pb->epoll_fd >= 0) 12233 close(pb->epoll_fd); 12234 free(pb->events); 12235 free(pb); 12236 } 12237 12238 static struct perf_cpu_buf * 12239 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12240 int cpu, int map_key) 12241 { 12242 struct perf_cpu_buf *cpu_buf; 12243 char msg[STRERR_BUFSIZE]; 12244 int err; 12245 12246 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12247 if (!cpu_buf) 12248 return ERR_PTR(-ENOMEM); 12249 12250 cpu_buf->pb = pb; 12251 cpu_buf->cpu = cpu; 12252 cpu_buf->map_key = map_key; 12253 12254 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12255 -1, PERF_FLAG_FD_CLOEXEC); 12256 if (cpu_buf->fd < 0) { 12257 err = -errno; 12258 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12259 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12260 goto error; 12261 } 12262 12263 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12264 PROT_READ | PROT_WRITE, MAP_SHARED, 12265 cpu_buf->fd, 0); 12266 if (cpu_buf->base == MAP_FAILED) { 12267 cpu_buf->base = NULL; 12268 err = -errno; 12269 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12270 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12271 goto error; 12272 } 12273 12274 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12275 err = -errno; 12276 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12277 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12278 goto error; 12279 } 12280 12281 return cpu_buf; 12282 12283 error: 12284 perf_buffer__free_cpu_buf(pb, cpu_buf); 12285 return (struct perf_cpu_buf *)ERR_PTR(err); 12286 } 12287 12288 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12289 struct perf_buffer_params *p); 12290 12291 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 12292 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 12293 perf_buffer_sample_fn sample_cb, 12294 perf_buffer_lost_fn lost_cb, 12295 void *ctx, 12296 const struct perf_buffer_opts *opts) 12297 { 12298 struct perf_buffer_params p = {}; 12299 struct perf_event_attr attr = {}; 12300 12301 if (!OPTS_VALID(opts, perf_buffer_opts)) 12302 return libbpf_err_ptr(-EINVAL); 12303 12304 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12305 attr.type = PERF_TYPE_SOFTWARE; 12306 attr.sample_type = PERF_SAMPLE_RAW; 12307 attr.sample_period = 1; 12308 attr.wakeup_events = 1; 12309 12310 p.attr = &attr; 12311 p.sample_cb = sample_cb; 12312 p.lost_cb = lost_cb; 12313 p.ctx = ctx; 12314 12315 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12316 } 12317 12318 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 12319 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 12320 const struct perf_buffer_opts *opts) 12321 { 12322 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 12323 opts ? opts->sample_cb : NULL, 12324 opts ? opts->lost_cb : NULL, 12325 opts ? opts->ctx : NULL, 12326 NULL); 12327 } 12328 12329 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 12330 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 12331 struct perf_event_attr *attr, 12332 perf_buffer_event_fn event_cb, void *ctx, 12333 const struct perf_buffer_raw_opts *opts) 12334 { 12335 struct perf_buffer_params p = {}; 12336 12337 if (!attr) 12338 return libbpf_err_ptr(-EINVAL); 12339 12340 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12341 return libbpf_err_ptr(-EINVAL); 12342 12343 p.attr = attr; 12344 p.event_cb = event_cb; 12345 p.ctx = ctx; 12346 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12347 p.cpus = OPTS_GET(opts, cpus, NULL); 12348 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12349 12350 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12351 } 12352 12353 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 12354 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 12355 const struct perf_buffer_raw_opts *opts) 12356 { 12357 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 12358 .cpu_cnt = opts->cpu_cnt, 12359 .cpus = opts->cpus, 12360 .map_keys = opts->map_keys, 12361 ); 12362 12363 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 12364 opts->event_cb, opts->ctx, &inner_opts); 12365 } 12366 12367 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12368 struct perf_buffer_params *p) 12369 { 12370 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12371 struct bpf_map_info map; 12372 char msg[STRERR_BUFSIZE]; 12373 struct perf_buffer *pb; 12374 bool *online = NULL; 12375 __u32 map_info_len; 12376 int err, i, j, n; 12377 12378 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12379 pr_warn("page count should be power of two, but is %zu\n", 12380 page_cnt); 12381 return ERR_PTR(-EINVAL); 12382 } 12383 12384 /* best-effort sanity checks */ 12385 memset(&map, 0, sizeof(map)); 12386 map_info_len = sizeof(map); 12387 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 12388 if (err) { 12389 err = -errno; 12390 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12391 * -EBADFD, -EFAULT, or -E2BIG on real error 12392 */ 12393 if (err != -EINVAL) { 12394 pr_warn("failed to get map info for map FD %d: %s\n", 12395 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12396 return ERR_PTR(err); 12397 } 12398 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12399 map_fd); 12400 } else { 12401 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12402 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12403 map.name); 12404 return ERR_PTR(-EINVAL); 12405 } 12406 } 12407 12408 pb = calloc(1, sizeof(*pb)); 12409 if (!pb) 12410 return ERR_PTR(-ENOMEM); 12411 12412 pb->event_cb = p->event_cb; 12413 pb->sample_cb = p->sample_cb; 12414 pb->lost_cb = p->lost_cb; 12415 pb->ctx = p->ctx; 12416 12417 pb->page_size = getpagesize(); 12418 pb->mmap_size = pb->page_size * page_cnt; 12419 pb->map_fd = map_fd; 12420 12421 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12422 if (pb->epoll_fd < 0) { 12423 err = -errno; 12424 pr_warn("failed to create epoll instance: %s\n", 12425 libbpf_strerror_r(err, msg, sizeof(msg))); 12426 goto error; 12427 } 12428 12429 if (p->cpu_cnt > 0) { 12430 pb->cpu_cnt = p->cpu_cnt; 12431 } else { 12432 pb->cpu_cnt = libbpf_num_possible_cpus(); 12433 if (pb->cpu_cnt < 0) { 12434 err = pb->cpu_cnt; 12435 goto error; 12436 } 12437 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12438 pb->cpu_cnt = map.max_entries; 12439 } 12440 12441 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12442 if (!pb->events) { 12443 err = -ENOMEM; 12444 pr_warn("failed to allocate events: out of memory\n"); 12445 goto error; 12446 } 12447 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12448 if (!pb->cpu_bufs) { 12449 err = -ENOMEM; 12450 pr_warn("failed to allocate buffers: out of memory\n"); 12451 goto error; 12452 } 12453 12454 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12455 if (err) { 12456 pr_warn("failed to get online CPU mask: %d\n", err); 12457 goto error; 12458 } 12459 12460 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12461 struct perf_cpu_buf *cpu_buf; 12462 int cpu, map_key; 12463 12464 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12465 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12466 12467 /* in case user didn't explicitly requested particular CPUs to 12468 * be attached to, skip offline/not present CPUs 12469 */ 12470 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12471 continue; 12472 12473 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12474 if (IS_ERR(cpu_buf)) { 12475 err = PTR_ERR(cpu_buf); 12476 goto error; 12477 } 12478 12479 pb->cpu_bufs[j] = cpu_buf; 12480 12481 err = bpf_map_update_elem(pb->map_fd, &map_key, 12482 &cpu_buf->fd, 0); 12483 if (err) { 12484 err = -errno; 12485 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12486 cpu, map_key, cpu_buf->fd, 12487 libbpf_strerror_r(err, msg, sizeof(msg))); 12488 goto error; 12489 } 12490 12491 pb->events[j].events = EPOLLIN; 12492 pb->events[j].data.ptr = cpu_buf; 12493 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12494 &pb->events[j]) < 0) { 12495 err = -errno; 12496 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12497 cpu, cpu_buf->fd, 12498 libbpf_strerror_r(err, msg, sizeof(msg))); 12499 goto error; 12500 } 12501 j++; 12502 } 12503 pb->cpu_cnt = j; 12504 free(online); 12505 12506 return pb; 12507 12508 error: 12509 free(online); 12510 if (pb) 12511 perf_buffer__free(pb); 12512 return ERR_PTR(err); 12513 } 12514 12515 struct perf_sample_raw { 12516 struct perf_event_header header; 12517 uint32_t size; 12518 char data[]; 12519 }; 12520 12521 struct perf_sample_lost { 12522 struct perf_event_header header; 12523 uint64_t id; 12524 uint64_t lost; 12525 uint64_t sample_id; 12526 }; 12527 12528 static enum bpf_perf_event_ret 12529 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12530 { 12531 struct perf_cpu_buf *cpu_buf = ctx; 12532 struct perf_buffer *pb = cpu_buf->pb; 12533 void *data = e; 12534 12535 /* user wants full control over parsing perf event */ 12536 if (pb->event_cb) 12537 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12538 12539 switch (e->type) { 12540 case PERF_RECORD_SAMPLE: { 12541 struct perf_sample_raw *s = data; 12542 12543 if (pb->sample_cb) 12544 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12545 break; 12546 } 12547 case PERF_RECORD_LOST: { 12548 struct perf_sample_lost *s = data; 12549 12550 if (pb->lost_cb) 12551 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12552 break; 12553 } 12554 default: 12555 pr_warn("unknown perf sample type %d\n", e->type); 12556 return LIBBPF_PERF_EVENT_ERROR; 12557 } 12558 return LIBBPF_PERF_EVENT_CONT; 12559 } 12560 12561 static int perf_buffer__process_records(struct perf_buffer *pb, 12562 struct perf_cpu_buf *cpu_buf) 12563 { 12564 enum bpf_perf_event_ret ret; 12565 12566 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12567 pb->page_size, &cpu_buf->buf, 12568 &cpu_buf->buf_size, 12569 perf_buffer__process_record, cpu_buf); 12570 if (ret != LIBBPF_PERF_EVENT_CONT) 12571 return ret; 12572 return 0; 12573 } 12574 12575 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12576 { 12577 return pb->epoll_fd; 12578 } 12579 12580 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12581 { 12582 int i, cnt, err; 12583 12584 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12585 if (cnt < 0) 12586 return -errno; 12587 12588 for (i = 0; i < cnt; i++) { 12589 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12590 12591 err = perf_buffer__process_records(pb, cpu_buf); 12592 if (err) { 12593 pr_warn("error while processing records: %d\n", err); 12594 return libbpf_err(err); 12595 } 12596 } 12597 return cnt; 12598 } 12599 12600 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12601 * manager. 12602 */ 12603 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12604 { 12605 return pb->cpu_cnt; 12606 } 12607 12608 /* 12609 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12610 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12611 * select()/poll()/epoll() Linux syscalls. 12612 */ 12613 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12614 { 12615 struct perf_cpu_buf *cpu_buf; 12616 12617 if (buf_idx >= pb->cpu_cnt) 12618 return libbpf_err(-EINVAL); 12619 12620 cpu_buf = pb->cpu_bufs[buf_idx]; 12621 if (!cpu_buf) 12622 return libbpf_err(-ENOENT); 12623 12624 return cpu_buf->fd; 12625 } 12626 12627 /* 12628 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12629 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12630 * consume, do nothing and return success. 12631 * Returns: 12632 * - 0 on success; 12633 * - <0 on failure. 12634 */ 12635 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12636 { 12637 struct perf_cpu_buf *cpu_buf; 12638 12639 if (buf_idx >= pb->cpu_cnt) 12640 return libbpf_err(-EINVAL); 12641 12642 cpu_buf = pb->cpu_bufs[buf_idx]; 12643 if (!cpu_buf) 12644 return libbpf_err(-ENOENT); 12645 12646 return perf_buffer__process_records(pb, cpu_buf); 12647 } 12648 12649 int perf_buffer__consume(struct perf_buffer *pb) 12650 { 12651 int i, err; 12652 12653 for (i = 0; i < pb->cpu_cnt; i++) { 12654 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12655 12656 if (!cpu_buf) 12657 continue; 12658 12659 err = perf_buffer__process_records(pb, cpu_buf); 12660 if (err) { 12661 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12662 return libbpf_err(err); 12663 } 12664 } 12665 return 0; 12666 } 12667 12668 struct bpf_prog_info_array_desc { 12669 int array_offset; /* e.g. offset of jited_prog_insns */ 12670 int count_offset; /* e.g. offset of jited_prog_len */ 12671 int size_offset; /* > 0: offset of rec size, 12672 * < 0: fix size of -size_offset 12673 */ 12674 }; 12675 12676 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 12677 [BPF_PROG_INFO_JITED_INSNS] = { 12678 offsetof(struct bpf_prog_info, jited_prog_insns), 12679 offsetof(struct bpf_prog_info, jited_prog_len), 12680 -1, 12681 }, 12682 [BPF_PROG_INFO_XLATED_INSNS] = { 12683 offsetof(struct bpf_prog_info, xlated_prog_insns), 12684 offsetof(struct bpf_prog_info, xlated_prog_len), 12685 -1, 12686 }, 12687 [BPF_PROG_INFO_MAP_IDS] = { 12688 offsetof(struct bpf_prog_info, map_ids), 12689 offsetof(struct bpf_prog_info, nr_map_ids), 12690 -(int)sizeof(__u32), 12691 }, 12692 [BPF_PROG_INFO_JITED_KSYMS] = { 12693 offsetof(struct bpf_prog_info, jited_ksyms), 12694 offsetof(struct bpf_prog_info, nr_jited_ksyms), 12695 -(int)sizeof(__u64), 12696 }, 12697 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 12698 offsetof(struct bpf_prog_info, jited_func_lens), 12699 offsetof(struct bpf_prog_info, nr_jited_func_lens), 12700 -(int)sizeof(__u32), 12701 }, 12702 [BPF_PROG_INFO_FUNC_INFO] = { 12703 offsetof(struct bpf_prog_info, func_info), 12704 offsetof(struct bpf_prog_info, nr_func_info), 12705 offsetof(struct bpf_prog_info, func_info_rec_size), 12706 }, 12707 [BPF_PROG_INFO_LINE_INFO] = { 12708 offsetof(struct bpf_prog_info, line_info), 12709 offsetof(struct bpf_prog_info, nr_line_info), 12710 offsetof(struct bpf_prog_info, line_info_rec_size), 12711 }, 12712 [BPF_PROG_INFO_JITED_LINE_INFO] = { 12713 offsetof(struct bpf_prog_info, jited_line_info), 12714 offsetof(struct bpf_prog_info, nr_jited_line_info), 12715 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 12716 }, 12717 [BPF_PROG_INFO_PROG_TAGS] = { 12718 offsetof(struct bpf_prog_info, prog_tags), 12719 offsetof(struct bpf_prog_info, nr_prog_tags), 12720 -(int)sizeof(__u8) * BPF_TAG_SIZE, 12721 }, 12722 12723 }; 12724 12725 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 12726 int offset) 12727 { 12728 __u32 *array = (__u32 *)info; 12729 12730 if (offset >= 0) 12731 return array[offset / sizeof(__u32)]; 12732 return -(int)offset; 12733 } 12734 12735 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 12736 int offset) 12737 { 12738 __u64 *array = (__u64 *)info; 12739 12740 if (offset >= 0) 12741 return array[offset / sizeof(__u64)]; 12742 return -(int)offset; 12743 } 12744 12745 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 12746 __u32 val) 12747 { 12748 __u32 *array = (__u32 *)info; 12749 12750 if (offset >= 0) 12751 array[offset / sizeof(__u32)] = val; 12752 } 12753 12754 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 12755 __u64 val) 12756 { 12757 __u64 *array = (__u64 *)info; 12758 12759 if (offset >= 0) 12760 array[offset / sizeof(__u64)] = val; 12761 } 12762 12763 struct bpf_prog_info_linear * 12764 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 12765 { 12766 struct bpf_prog_info_linear *info_linear; 12767 struct bpf_prog_info info = {}; 12768 __u32 info_len = sizeof(info); 12769 __u32 data_len = 0; 12770 int i, err; 12771 void *ptr; 12772 12773 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 12774 return libbpf_err_ptr(-EINVAL); 12775 12776 /* step 1: get array dimensions */ 12777 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 12778 if (err) { 12779 pr_debug("can't get prog info: %s", strerror(errno)); 12780 return libbpf_err_ptr(-EFAULT); 12781 } 12782 12783 /* step 2: calculate total size of all arrays */ 12784 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12785 bool include_array = (arrays & (1UL << i)) > 0; 12786 struct bpf_prog_info_array_desc *desc; 12787 __u32 count, size; 12788 12789 desc = bpf_prog_info_array_desc + i; 12790 12791 /* kernel is too old to support this field */ 12792 if (info_len < desc->array_offset + sizeof(__u32) || 12793 info_len < desc->count_offset + sizeof(__u32) || 12794 (desc->size_offset > 0 && info_len < desc->size_offset)) 12795 include_array = false; 12796 12797 if (!include_array) { 12798 arrays &= ~(1UL << i); /* clear the bit */ 12799 continue; 12800 } 12801 12802 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12803 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12804 12805 data_len += count * size; 12806 } 12807 12808 /* step 3: allocate continuous memory */ 12809 data_len = roundup(data_len, sizeof(__u64)); 12810 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 12811 if (!info_linear) 12812 return libbpf_err_ptr(-ENOMEM); 12813 12814 /* step 4: fill data to info_linear->info */ 12815 info_linear->arrays = arrays; 12816 memset(&info_linear->info, 0, sizeof(info)); 12817 ptr = info_linear->data; 12818 12819 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12820 struct bpf_prog_info_array_desc *desc; 12821 __u32 count, size; 12822 12823 if ((arrays & (1UL << i)) == 0) 12824 continue; 12825 12826 desc = bpf_prog_info_array_desc + i; 12827 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12828 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12829 bpf_prog_info_set_offset_u32(&info_linear->info, 12830 desc->count_offset, count); 12831 bpf_prog_info_set_offset_u32(&info_linear->info, 12832 desc->size_offset, size); 12833 bpf_prog_info_set_offset_u64(&info_linear->info, 12834 desc->array_offset, 12835 ptr_to_u64(ptr)); 12836 ptr += count * size; 12837 } 12838 12839 /* step 5: call syscall again to get required arrays */ 12840 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 12841 if (err) { 12842 pr_debug("can't get prog info: %s", strerror(errno)); 12843 free(info_linear); 12844 return libbpf_err_ptr(-EFAULT); 12845 } 12846 12847 /* step 6: verify the data */ 12848 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12849 struct bpf_prog_info_array_desc *desc; 12850 __u32 v1, v2; 12851 12852 if ((arrays & (1UL << i)) == 0) 12853 continue; 12854 12855 desc = bpf_prog_info_array_desc + i; 12856 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12857 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12858 desc->count_offset); 12859 if (v1 != v2) 12860 pr_warn("%s: mismatch in element count\n", __func__); 12861 12862 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12863 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12864 desc->size_offset); 12865 if (v1 != v2) 12866 pr_warn("%s: mismatch in rec size\n", __func__); 12867 } 12868 12869 /* step 7: update info_len and data_len */ 12870 info_linear->info_len = sizeof(struct bpf_prog_info); 12871 info_linear->data_len = data_len; 12872 12873 return info_linear; 12874 } 12875 12876 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 12877 { 12878 int i; 12879 12880 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12881 struct bpf_prog_info_array_desc *desc; 12882 __u64 addr, offs; 12883 12884 if ((info_linear->arrays & (1UL << i)) == 0) 12885 continue; 12886 12887 desc = bpf_prog_info_array_desc + i; 12888 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 12889 desc->array_offset); 12890 offs = addr - ptr_to_u64(info_linear->data); 12891 bpf_prog_info_set_offset_u64(&info_linear->info, 12892 desc->array_offset, offs); 12893 } 12894 } 12895 12896 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 12897 { 12898 int i; 12899 12900 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12901 struct bpf_prog_info_array_desc *desc; 12902 __u64 addr, offs; 12903 12904 if ((info_linear->arrays & (1UL << i)) == 0) 12905 continue; 12906 12907 desc = bpf_prog_info_array_desc + i; 12908 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 12909 desc->array_offset); 12910 addr = offs + ptr_to_u64(info_linear->data); 12911 bpf_prog_info_set_offset_u64(&info_linear->info, 12912 desc->array_offset, addr); 12913 } 12914 } 12915 12916 int bpf_program__set_attach_target(struct bpf_program *prog, 12917 int attach_prog_fd, 12918 const char *attach_func_name) 12919 { 12920 int btf_obj_fd = 0, btf_id = 0, err; 12921 12922 if (!prog || attach_prog_fd < 0) 12923 return libbpf_err(-EINVAL); 12924 12925 if (prog->obj->loaded) 12926 return libbpf_err(-EINVAL); 12927 12928 if (attach_prog_fd && !attach_func_name) { 12929 /* remember attach_prog_fd and let bpf_program__load() find 12930 * BTF ID during the program load 12931 */ 12932 prog->attach_prog_fd = attach_prog_fd; 12933 return 0; 12934 } 12935 12936 if (attach_prog_fd) { 12937 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12938 attach_prog_fd); 12939 if (btf_id < 0) 12940 return libbpf_err(btf_id); 12941 } else { 12942 if (!attach_func_name) 12943 return libbpf_err(-EINVAL); 12944 12945 /* load btf_vmlinux, if not yet */ 12946 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12947 if (err) 12948 return libbpf_err(err); 12949 err = find_kernel_btf_id(prog->obj, attach_func_name, 12950 prog->expected_attach_type, 12951 &btf_obj_fd, &btf_id); 12952 if (err) 12953 return libbpf_err(err); 12954 } 12955 12956 prog->attach_btf_id = btf_id; 12957 prog->attach_btf_obj_fd = btf_obj_fd; 12958 prog->attach_prog_fd = attach_prog_fd; 12959 return 0; 12960 } 12961 12962 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12963 { 12964 int err = 0, n, len, start, end = -1; 12965 bool *tmp; 12966 12967 *mask = NULL; 12968 *mask_sz = 0; 12969 12970 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12971 while (*s) { 12972 if (*s == ',' || *s == '\n') { 12973 s++; 12974 continue; 12975 } 12976 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12977 if (n <= 0 || n > 2) { 12978 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12979 err = -EINVAL; 12980 goto cleanup; 12981 } else if (n == 1) { 12982 end = start; 12983 } 12984 if (start < 0 || start > end) { 12985 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12986 start, end, s); 12987 err = -EINVAL; 12988 goto cleanup; 12989 } 12990 tmp = realloc(*mask, end + 1); 12991 if (!tmp) { 12992 err = -ENOMEM; 12993 goto cleanup; 12994 } 12995 *mask = tmp; 12996 memset(tmp + *mask_sz, 0, start - *mask_sz); 12997 memset(tmp + start, 1, end - start + 1); 12998 *mask_sz = end + 1; 12999 s += len; 13000 } 13001 if (!*mask_sz) { 13002 pr_warn("Empty CPU range\n"); 13003 return -EINVAL; 13004 } 13005 return 0; 13006 cleanup: 13007 free(*mask); 13008 *mask = NULL; 13009 return err; 13010 } 13011 13012 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13013 { 13014 int fd, err = 0, len; 13015 char buf[128]; 13016 13017 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13018 if (fd < 0) { 13019 err = -errno; 13020 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13021 return err; 13022 } 13023 len = read(fd, buf, sizeof(buf)); 13024 close(fd); 13025 if (len <= 0) { 13026 err = len ? -errno : -EINVAL; 13027 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13028 return err; 13029 } 13030 if (len >= sizeof(buf)) { 13031 pr_warn("CPU mask is too big in file %s\n", fcpu); 13032 return -E2BIG; 13033 } 13034 buf[len] = '\0'; 13035 13036 return parse_cpu_mask_str(buf, mask, mask_sz); 13037 } 13038 13039 int libbpf_num_possible_cpus(void) 13040 { 13041 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13042 static int cpus; 13043 int err, n, i, tmp_cpus; 13044 bool *mask; 13045 13046 tmp_cpus = READ_ONCE(cpus); 13047 if (tmp_cpus > 0) 13048 return tmp_cpus; 13049 13050 err = parse_cpu_mask_file(fcpu, &mask, &n); 13051 if (err) 13052 return libbpf_err(err); 13053 13054 tmp_cpus = 0; 13055 for (i = 0; i < n; i++) { 13056 if (mask[i]) 13057 tmp_cpus++; 13058 } 13059 free(mask); 13060 13061 WRITE_ONCE(cpus, tmp_cpus); 13062 return tmp_cpus; 13063 } 13064 13065 static int populate_skeleton_maps(const struct bpf_object *obj, 13066 struct bpf_map_skeleton *maps, 13067 size_t map_cnt) 13068 { 13069 int i; 13070 13071 for (i = 0; i < map_cnt; i++) { 13072 struct bpf_map **map = maps[i].map; 13073 const char *name = maps[i].name; 13074 void **mmaped = maps[i].mmaped; 13075 13076 *map = bpf_object__find_map_by_name(obj, name); 13077 if (!*map) { 13078 pr_warn("failed to find skeleton map '%s'\n", name); 13079 return -ESRCH; 13080 } 13081 13082 /* externs shouldn't be pre-setup from user code */ 13083 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13084 *mmaped = (*map)->mmaped; 13085 } 13086 return 0; 13087 } 13088 13089 static int populate_skeleton_progs(const struct bpf_object *obj, 13090 struct bpf_prog_skeleton *progs, 13091 size_t prog_cnt) 13092 { 13093 int i; 13094 13095 for (i = 0; i < prog_cnt; i++) { 13096 struct bpf_program **prog = progs[i].prog; 13097 const char *name = progs[i].name; 13098 13099 *prog = bpf_object__find_program_by_name(obj, name); 13100 if (!*prog) { 13101 pr_warn("failed to find skeleton program '%s'\n", name); 13102 return -ESRCH; 13103 } 13104 } 13105 return 0; 13106 } 13107 13108 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13109 const struct bpf_object_open_opts *opts) 13110 { 13111 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13112 .object_name = s->name, 13113 ); 13114 struct bpf_object *obj; 13115 int err; 13116 13117 /* Attempt to preserve opts->object_name, unless overriden by user 13118 * explicitly. Overwriting object name for skeletons is discouraged, 13119 * as it breaks global data maps, because they contain object name 13120 * prefix as their own map name prefix. When skeleton is generated, 13121 * bpftool is making an assumption that this name will stay the same. 13122 */ 13123 if (opts) { 13124 memcpy(&skel_opts, opts, sizeof(*opts)); 13125 if (!opts->object_name) 13126 skel_opts.object_name = s->name; 13127 } 13128 13129 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13130 err = libbpf_get_error(obj); 13131 if (err) { 13132 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13133 s->name, err); 13134 return libbpf_err(err); 13135 } 13136 13137 *s->obj = obj; 13138 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13139 if (err) { 13140 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13141 return libbpf_err(err); 13142 } 13143 13144 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13145 if (err) { 13146 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13147 return libbpf_err(err); 13148 } 13149 13150 return 0; 13151 } 13152 13153 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13154 { 13155 int err, len, var_idx, i; 13156 const char *var_name; 13157 const struct bpf_map *map; 13158 struct btf *btf; 13159 __u32 map_type_id; 13160 const struct btf_type *map_type, *var_type; 13161 const struct bpf_var_skeleton *var_skel; 13162 struct btf_var_secinfo *var; 13163 13164 if (!s->obj) 13165 return libbpf_err(-EINVAL); 13166 13167 btf = bpf_object__btf(s->obj); 13168 if (!btf) { 13169 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13170 bpf_object__name(s->obj)); 13171 return libbpf_err(-errno); 13172 } 13173 13174 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13175 if (err) { 13176 pr_warn("failed to populate subskeleton maps: %d\n", err); 13177 return libbpf_err(err); 13178 } 13179 13180 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13181 if (err) { 13182 pr_warn("failed to populate subskeleton maps: %d\n", err); 13183 return libbpf_err(err); 13184 } 13185 13186 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13187 var_skel = &s->vars[var_idx]; 13188 map = *var_skel->map; 13189 map_type_id = bpf_map__btf_value_type_id(map); 13190 map_type = btf__type_by_id(btf, map_type_id); 13191 13192 if (!btf_is_datasec(map_type)) { 13193 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13194 bpf_map__name(map), 13195 __btf_kind_str(btf_kind(map_type))); 13196 return libbpf_err(-EINVAL); 13197 } 13198 13199 len = btf_vlen(map_type); 13200 var = btf_var_secinfos(map_type); 13201 for (i = 0; i < len; i++, var++) { 13202 var_type = btf__type_by_id(btf, var->type); 13203 var_name = btf__name_by_offset(btf, var_type->name_off); 13204 if (strcmp(var_name, var_skel->name) == 0) { 13205 *var_skel->addr = map->mmaped + var->offset; 13206 break; 13207 } 13208 } 13209 } 13210 return 0; 13211 } 13212 13213 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13214 { 13215 if (!s) 13216 return; 13217 free(s->maps); 13218 free(s->progs); 13219 free(s->vars); 13220 free(s); 13221 } 13222 13223 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13224 { 13225 int i, err; 13226 13227 err = bpf_object__load(*s->obj); 13228 if (err) { 13229 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13230 return libbpf_err(err); 13231 } 13232 13233 for (i = 0; i < s->map_cnt; i++) { 13234 struct bpf_map *map = *s->maps[i].map; 13235 size_t mmap_sz = bpf_map_mmap_sz(map); 13236 int prot, map_fd = bpf_map__fd(map); 13237 void **mmaped = s->maps[i].mmaped; 13238 13239 if (!mmaped) 13240 continue; 13241 13242 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13243 *mmaped = NULL; 13244 continue; 13245 } 13246 13247 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13248 prot = PROT_READ; 13249 else 13250 prot = PROT_READ | PROT_WRITE; 13251 13252 /* Remap anonymous mmap()-ed "map initialization image" as 13253 * a BPF map-backed mmap()-ed memory, but preserving the same 13254 * memory address. This will cause kernel to change process' 13255 * page table to point to a different piece of kernel memory, 13256 * but from userspace point of view memory address (and its 13257 * contents, being identical at this point) will stay the 13258 * same. This mapping will be released by bpf_object__close() 13259 * as per normal clean up procedure, so we don't need to worry 13260 * about it from skeleton's clean up perspective. 13261 */ 13262 *mmaped = mmap(map->mmaped, mmap_sz, prot, 13263 MAP_SHARED | MAP_FIXED, map_fd, 0); 13264 if (*mmaped == MAP_FAILED) { 13265 err = -errno; 13266 *mmaped = NULL; 13267 pr_warn("failed to re-mmap() map '%s': %d\n", 13268 bpf_map__name(map), err); 13269 return libbpf_err(err); 13270 } 13271 } 13272 13273 return 0; 13274 } 13275 13276 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13277 { 13278 int i, err; 13279 13280 for (i = 0; i < s->prog_cnt; i++) { 13281 struct bpf_program *prog = *s->progs[i].prog; 13282 struct bpf_link **link = s->progs[i].link; 13283 13284 if (!prog->autoload) 13285 continue; 13286 13287 /* auto-attaching not supported for this program */ 13288 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13289 continue; 13290 13291 /* if user already set the link manually, don't attempt auto-attach */ 13292 if (*link) 13293 continue; 13294 13295 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13296 if (err) { 13297 pr_warn("prog '%s': failed to auto-attach: %d\n", 13298 bpf_program__name(prog), err); 13299 return libbpf_err(err); 13300 } 13301 13302 /* It's possible that for some SEC() definitions auto-attach 13303 * is supported in some cases (e.g., if definition completely 13304 * specifies target information), but is not in other cases. 13305 * SEC("uprobe") is one such case. If user specified target 13306 * binary and function name, such BPF program can be 13307 * auto-attached. But if not, it shouldn't trigger skeleton's 13308 * attach to fail. It should just be skipped. 13309 * attach_fn signals such case with returning 0 (no error) and 13310 * setting link to NULL. 13311 */ 13312 } 13313 13314 return 0; 13315 } 13316 13317 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13318 { 13319 int i; 13320 13321 for (i = 0; i < s->prog_cnt; i++) { 13322 struct bpf_link **link = s->progs[i].link; 13323 13324 bpf_link__destroy(*link); 13325 *link = NULL; 13326 } 13327 } 13328 13329 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13330 { 13331 if (!s) 13332 return; 13333 13334 if (s->progs) 13335 bpf_object__detach_skeleton(s); 13336 if (s->obj) 13337 bpf_object__close(*s->obj); 13338 free(s->maps); 13339 free(s->progs); 13340 free(s); 13341 } 13342