1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 }; 136 137 static const char * const link_type_name[] = { 138 [BPF_LINK_TYPE_UNSPEC] = "unspec", 139 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 140 [BPF_LINK_TYPE_TRACING] = "tracing", 141 [BPF_LINK_TYPE_CGROUP] = "cgroup", 142 [BPF_LINK_TYPE_ITER] = "iter", 143 [BPF_LINK_TYPE_NETNS] = "netns", 144 [BPF_LINK_TYPE_XDP] = "xdp", 145 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 146 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 147 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 148 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 149 [BPF_LINK_TYPE_TCX] = "tcx", 150 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 151 [BPF_LINK_TYPE_NETKIT] = "netkit", 152 }; 153 154 static const char * const map_type_name[] = { 155 [BPF_MAP_TYPE_UNSPEC] = "unspec", 156 [BPF_MAP_TYPE_HASH] = "hash", 157 [BPF_MAP_TYPE_ARRAY] = "array", 158 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 159 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 160 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 161 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 162 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 163 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 164 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 165 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 166 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 167 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 168 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 169 [BPF_MAP_TYPE_DEVMAP] = "devmap", 170 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 171 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 172 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 173 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 174 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 175 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 176 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 177 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 178 [BPF_MAP_TYPE_QUEUE] = "queue", 179 [BPF_MAP_TYPE_STACK] = "stack", 180 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 181 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 182 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 183 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 184 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 185 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 186 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 187 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 188 [BPF_MAP_TYPE_ARENA] = "arena", 189 }; 190 191 static const char * const prog_type_name[] = { 192 [BPF_PROG_TYPE_UNSPEC] = "unspec", 193 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 194 [BPF_PROG_TYPE_KPROBE] = "kprobe", 195 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 196 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 197 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 198 [BPF_PROG_TYPE_XDP] = "xdp", 199 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 200 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 201 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 202 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 203 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 204 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 205 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 206 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 207 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 208 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 209 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 210 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 211 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 212 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 213 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 214 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 215 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 216 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 217 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 218 [BPF_PROG_TYPE_TRACING] = "tracing", 219 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 220 [BPF_PROG_TYPE_EXT] = "ext", 221 [BPF_PROG_TYPE_LSM] = "lsm", 222 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 223 [BPF_PROG_TYPE_SYSCALL] = "syscall", 224 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 225 }; 226 227 static int __base_pr(enum libbpf_print_level level, const char *format, 228 va_list args) 229 { 230 if (level == LIBBPF_DEBUG) 231 return 0; 232 233 return vfprintf(stderr, format, args); 234 } 235 236 static libbpf_print_fn_t __libbpf_pr = __base_pr; 237 238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 239 { 240 libbpf_print_fn_t old_print_fn; 241 242 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 243 244 return old_print_fn; 245 } 246 247 __printf(2, 3) 248 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 249 { 250 va_list args; 251 int old_errno; 252 libbpf_print_fn_t print_fn; 253 254 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 255 if (!print_fn) 256 return; 257 258 old_errno = errno; 259 260 va_start(args, format); 261 __libbpf_pr(level, format, args); 262 va_end(args); 263 264 errno = old_errno; 265 } 266 267 static void pr_perm_msg(int err) 268 { 269 struct rlimit limit; 270 char buf[100]; 271 272 if (err != -EPERM || geteuid() != 0) 273 return; 274 275 err = getrlimit(RLIMIT_MEMLOCK, &limit); 276 if (err) 277 return; 278 279 if (limit.rlim_cur == RLIM_INFINITY) 280 return; 281 282 if (limit.rlim_cur < 1024) 283 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 284 else if (limit.rlim_cur < 1024*1024) 285 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 286 else 287 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 288 289 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 290 buf); 291 } 292 293 #define STRERR_BUFSIZE 128 294 295 /* Copied from tools/perf/util/util.h */ 296 #ifndef zfree 297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 298 #endif 299 300 #ifndef zclose 301 # define zclose(fd) ({ \ 302 int ___err = 0; \ 303 if ((fd) >= 0) \ 304 ___err = close((fd)); \ 305 fd = -1; \ 306 ___err; }) 307 #endif 308 309 static inline __u64 ptr_to_u64(const void *ptr) 310 { 311 return (__u64) (unsigned long) ptr; 312 } 313 314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 315 { 316 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 317 return 0; 318 } 319 320 __u32 libbpf_major_version(void) 321 { 322 return LIBBPF_MAJOR_VERSION; 323 } 324 325 __u32 libbpf_minor_version(void) 326 { 327 return LIBBPF_MINOR_VERSION; 328 } 329 330 const char *libbpf_version_string(void) 331 { 332 #define __S(X) #X 333 #define _S(X) __S(X) 334 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 335 #undef _S 336 #undef __S 337 } 338 339 enum reloc_type { 340 RELO_LD64, 341 RELO_CALL, 342 RELO_DATA, 343 RELO_EXTERN_LD64, 344 RELO_EXTERN_CALL, 345 RELO_SUBPROG_ADDR, 346 RELO_CORE, 347 }; 348 349 struct reloc_desc { 350 enum reloc_type type; 351 int insn_idx; 352 union { 353 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 354 struct { 355 int map_idx; 356 int sym_off; 357 int ext_idx; 358 }; 359 }; 360 }; 361 362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 363 enum sec_def_flags { 364 SEC_NONE = 0, 365 /* expected_attach_type is optional, if kernel doesn't support that */ 366 SEC_EXP_ATTACH_OPT = 1, 367 /* legacy, only used by libbpf_get_type_names() and 368 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 369 * This used to be associated with cgroup (and few other) BPF programs 370 * that were attachable through BPF_PROG_ATTACH command. Pretty 371 * meaningless nowadays, though. 372 */ 373 SEC_ATTACHABLE = 2, 374 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 375 /* attachment target is specified through BTF ID in either kernel or 376 * other BPF program's BTF object 377 */ 378 SEC_ATTACH_BTF = 4, 379 /* BPF program type allows sleeping/blocking in kernel */ 380 SEC_SLEEPABLE = 8, 381 /* BPF program support non-linear XDP buffer */ 382 SEC_XDP_FRAGS = 16, 383 /* Setup proper attach type for usdt probes. */ 384 SEC_USDT = 32, 385 }; 386 387 struct bpf_sec_def { 388 char *sec; 389 enum bpf_prog_type prog_type; 390 enum bpf_attach_type expected_attach_type; 391 long cookie; 392 int handler_id; 393 394 libbpf_prog_setup_fn_t prog_setup_fn; 395 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 396 libbpf_prog_attach_fn_t prog_attach_fn; 397 }; 398 399 /* 400 * bpf_prog should be a better name but it has been used in 401 * linux/filter.h. 402 */ 403 struct bpf_program { 404 char *name; 405 char *sec_name; 406 size_t sec_idx; 407 const struct bpf_sec_def *sec_def; 408 /* this program's instruction offset (in number of instructions) 409 * within its containing ELF section 410 */ 411 size_t sec_insn_off; 412 /* number of original instructions in ELF section belonging to this 413 * program, not taking into account subprogram instructions possible 414 * appended later during relocation 415 */ 416 size_t sec_insn_cnt; 417 /* Offset (in number of instructions) of the start of instruction 418 * belonging to this BPF program within its containing main BPF 419 * program. For the entry-point (main) BPF program, this is always 420 * zero. For a sub-program, this gets reset before each of main BPF 421 * programs are processed and relocated and is used to determined 422 * whether sub-program was already appended to the main program, and 423 * if yes, at which instruction offset. 424 */ 425 size_t sub_insn_off; 426 427 /* instructions that belong to BPF program; insns[0] is located at 428 * sec_insn_off instruction within its ELF section in ELF file, so 429 * when mapping ELF file instruction index to the local instruction, 430 * one needs to subtract sec_insn_off; and vice versa. 431 */ 432 struct bpf_insn *insns; 433 /* actual number of instruction in this BPF program's image; for 434 * entry-point BPF programs this includes the size of main program 435 * itself plus all the used sub-programs, appended at the end 436 */ 437 size_t insns_cnt; 438 439 struct reloc_desc *reloc_desc; 440 int nr_reloc; 441 442 /* BPF verifier log settings */ 443 char *log_buf; 444 size_t log_size; 445 __u32 log_level; 446 447 struct bpf_object *obj; 448 449 int fd; 450 bool autoload; 451 bool autoattach; 452 bool sym_global; 453 bool mark_btf_static; 454 enum bpf_prog_type type; 455 enum bpf_attach_type expected_attach_type; 456 int exception_cb_idx; 457 458 int prog_ifindex; 459 __u32 attach_btf_obj_fd; 460 __u32 attach_btf_id; 461 __u32 attach_prog_fd; 462 463 void *func_info; 464 __u32 func_info_rec_size; 465 __u32 func_info_cnt; 466 467 void *line_info; 468 __u32 line_info_rec_size; 469 __u32 line_info_cnt; 470 __u32 prog_flags; 471 }; 472 473 struct bpf_struct_ops { 474 const char *tname; 475 const struct btf_type *type; 476 struct bpf_program **progs; 477 __u32 *kern_func_off; 478 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 479 void *data; 480 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 481 * btf_vmlinux's format. 482 * struct bpf_struct_ops_tcp_congestion_ops { 483 * [... some other kernel fields ...] 484 * struct tcp_congestion_ops data; 485 * } 486 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 487 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 488 * from "data". 489 */ 490 void *kern_vdata; 491 __u32 type_id; 492 }; 493 494 #define DATA_SEC ".data" 495 #define BSS_SEC ".bss" 496 #define RODATA_SEC ".rodata" 497 #define KCONFIG_SEC ".kconfig" 498 #define KSYMS_SEC ".ksyms" 499 #define STRUCT_OPS_SEC ".struct_ops" 500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 501 #define ARENA_SEC ".addr_space.1" 502 503 enum libbpf_map_type { 504 LIBBPF_MAP_UNSPEC, 505 LIBBPF_MAP_DATA, 506 LIBBPF_MAP_BSS, 507 LIBBPF_MAP_RODATA, 508 LIBBPF_MAP_KCONFIG, 509 }; 510 511 struct bpf_map_def { 512 unsigned int type; 513 unsigned int key_size; 514 unsigned int value_size; 515 unsigned int max_entries; 516 unsigned int map_flags; 517 }; 518 519 struct bpf_map { 520 struct bpf_object *obj; 521 char *name; 522 /* real_name is defined for special internal maps (.rodata*, 523 * .data*, .bss, .kconfig) and preserves their original ELF section 524 * name. This is important to be able to find corresponding BTF 525 * DATASEC information. 526 */ 527 char *real_name; 528 int fd; 529 int sec_idx; 530 size_t sec_offset; 531 int map_ifindex; 532 int inner_map_fd; 533 struct bpf_map_def def; 534 __u32 numa_node; 535 __u32 btf_var_idx; 536 int mod_btf_fd; 537 __u32 btf_key_type_id; 538 __u32 btf_value_type_id; 539 __u32 btf_vmlinux_value_type_id; 540 enum libbpf_map_type libbpf_type; 541 void *mmaped; 542 struct bpf_struct_ops *st_ops; 543 struct bpf_map *inner_map; 544 void **init_slots; 545 int init_slots_sz; 546 char *pin_path; 547 bool pinned; 548 bool reused; 549 bool autocreate; 550 __u64 map_extra; 551 }; 552 553 enum extern_type { 554 EXT_UNKNOWN, 555 EXT_KCFG, 556 EXT_KSYM, 557 }; 558 559 enum kcfg_type { 560 KCFG_UNKNOWN, 561 KCFG_CHAR, 562 KCFG_BOOL, 563 KCFG_INT, 564 KCFG_TRISTATE, 565 KCFG_CHAR_ARR, 566 }; 567 568 struct extern_desc { 569 enum extern_type type; 570 int sym_idx; 571 int btf_id; 572 int sec_btf_id; 573 const char *name; 574 char *essent_name; 575 bool is_set; 576 bool is_weak; 577 union { 578 struct { 579 enum kcfg_type type; 580 int sz; 581 int align; 582 int data_off; 583 bool is_signed; 584 } kcfg; 585 struct { 586 unsigned long long addr; 587 588 /* target btf_id of the corresponding kernel var. */ 589 int kernel_btf_obj_fd; 590 int kernel_btf_id; 591 592 /* local btf_id of the ksym extern's type. */ 593 __u32 type_id; 594 /* BTF fd index to be patched in for insn->off, this is 595 * 0 for vmlinux BTF, index in obj->fd_array for module 596 * BTF 597 */ 598 __s16 btf_fd_idx; 599 } ksym; 600 }; 601 }; 602 603 struct module_btf { 604 struct btf *btf; 605 char *name; 606 __u32 id; 607 int fd; 608 int fd_array_idx; 609 }; 610 611 enum sec_type { 612 SEC_UNUSED = 0, 613 SEC_RELO, 614 SEC_BSS, 615 SEC_DATA, 616 SEC_RODATA, 617 SEC_ST_OPS, 618 }; 619 620 struct elf_sec_desc { 621 enum sec_type sec_type; 622 Elf64_Shdr *shdr; 623 Elf_Data *data; 624 }; 625 626 struct elf_state { 627 int fd; 628 const void *obj_buf; 629 size_t obj_buf_sz; 630 Elf *elf; 631 Elf64_Ehdr *ehdr; 632 Elf_Data *symbols; 633 Elf_Data *arena_data; 634 size_t shstrndx; /* section index for section name strings */ 635 size_t strtabidx; 636 struct elf_sec_desc *secs; 637 size_t sec_cnt; 638 int btf_maps_shndx; 639 __u32 btf_maps_sec_btf_id; 640 int text_shndx; 641 int symbols_shndx; 642 bool has_st_ops; 643 int arena_data_shndx; 644 }; 645 646 struct usdt_manager; 647 648 struct bpf_object { 649 char name[BPF_OBJ_NAME_LEN]; 650 char license[64]; 651 __u32 kern_version; 652 653 struct bpf_program *programs; 654 size_t nr_programs; 655 struct bpf_map *maps; 656 size_t nr_maps; 657 size_t maps_cap; 658 659 char *kconfig; 660 struct extern_desc *externs; 661 int nr_extern; 662 int kconfig_map_idx; 663 664 bool loaded; 665 bool has_subcalls; 666 bool has_rodata; 667 668 struct bpf_gen *gen_loader; 669 670 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 671 struct elf_state efile; 672 673 struct btf *btf; 674 struct btf_ext *btf_ext; 675 676 /* Parse and load BTF vmlinux if any of the programs in the object need 677 * it at load time. 678 */ 679 struct btf *btf_vmlinux; 680 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 681 * override for vmlinux BTF. 682 */ 683 char *btf_custom_path; 684 /* vmlinux BTF override for CO-RE relocations */ 685 struct btf *btf_vmlinux_override; 686 /* Lazily initialized kernel module BTFs */ 687 struct module_btf *btf_modules; 688 bool btf_modules_loaded; 689 size_t btf_module_cnt; 690 size_t btf_module_cap; 691 692 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 693 char *log_buf; 694 size_t log_size; 695 __u32 log_level; 696 697 int *fd_array; 698 size_t fd_array_cap; 699 size_t fd_array_cnt; 700 701 struct usdt_manager *usdt_man; 702 703 struct bpf_map *arena_map; 704 void *arena_data; 705 size_t arena_data_sz; 706 707 struct kern_feature_cache *feat_cache; 708 char *token_path; 709 int token_fd; 710 711 char path[]; 712 }; 713 714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 723 724 void bpf_program__unload(struct bpf_program *prog) 725 { 726 if (!prog) 727 return; 728 729 zclose(prog->fd); 730 731 zfree(&prog->func_info); 732 zfree(&prog->line_info); 733 } 734 735 static void bpf_program__exit(struct bpf_program *prog) 736 { 737 if (!prog) 738 return; 739 740 bpf_program__unload(prog); 741 zfree(&prog->name); 742 zfree(&prog->sec_name); 743 zfree(&prog->insns); 744 zfree(&prog->reloc_desc); 745 746 prog->nr_reloc = 0; 747 prog->insns_cnt = 0; 748 prog->sec_idx = -1; 749 } 750 751 static bool insn_is_subprog_call(const struct bpf_insn *insn) 752 { 753 return BPF_CLASS(insn->code) == BPF_JMP && 754 BPF_OP(insn->code) == BPF_CALL && 755 BPF_SRC(insn->code) == BPF_K && 756 insn->src_reg == BPF_PSEUDO_CALL && 757 insn->dst_reg == 0 && 758 insn->off == 0; 759 } 760 761 static bool is_call_insn(const struct bpf_insn *insn) 762 { 763 return insn->code == (BPF_JMP | BPF_CALL); 764 } 765 766 static bool insn_is_pseudo_func(struct bpf_insn *insn) 767 { 768 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 769 } 770 771 static int 772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 773 const char *name, size_t sec_idx, const char *sec_name, 774 size_t sec_off, void *insn_data, size_t insn_data_sz) 775 { 776 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 777 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 778 sec_name, name, sec_off, insn_data_sz); 779 return -EINVAL; 780 } 781 782 memset(prog, 0, sizeof(*prog)); 783 prog->obj = obj; 784 785 prog->sec_idx = sec_idx; 786 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 787 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 788 /* insns_cnt can later be increased by appending used subprograms */ 789 prog->insns_cnt = prog->sec_insn_cnt; 790 791 prog->type = BPF_PROG_TYPE_UNSPEC; 792 prog->fd = -1; 793 prog->exception_cb_idx = -1; 794 795 /* libbpf's convention for SEC("?abc...") is that it's just like 796 * SEC("abc...") but the corresponding bpf_program starts out with 797 * autoload set to false. 798 */ 799 if (sec_name[0] == '?') { 800 prog->autoload = false; 801 /* from now on forget there was ? in section name */ 802 sec_name++; 803 } else { 804 prog->autoload = true; 805 } 806 807 prog->autoattach = true; 808 809 /* inherit object's log_level */ 810 prog->log_level = obj->log_level; 811 812 prog->sec_name = strdup(sec_name); 813 if (!prog->sec_name) 814 goto errout; 815 816 prog->name = strdup(name); 817 if (!prog->name) 818 goto errout; 819 820 prog->insns = malloc(insn_data_sz); 821 if (!prog->insns) 822 goto errout; 823 memcpy(prog->insns, insn_data, insn_data_sz); 824 825 return 0; 826 errout: 827 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 828 bpf_program__exit(prog); 829 return -ENOMEM; 830 } 831 832 static int 833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 834 const char *sec_name, int sec_idx) 835 { 836 Elf_Data *symbols = obj->efile.symbols; 837 struct bpf_program *prog, *progs; 838 void *data = sec_data->d_buf; 839 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 840 int nr_progs, err, i; 841 const char *name; 842 Elf64_Sym *sym; 843 844 progs = obj->programs; 845 nr_progs = obj->nr_programs; 846 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 847 848 for (i = 0; i < nr_syms; i++) { 849 sym = elf_sym_by_idx(obj, i); 850 851 if (sym->st_shndx != sec_idx) 852 continue; 853 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 854 continue; 855 856 prog_sz = sym->st_size; 857 sec_off = sym->st_value; 858 859 name = elf_sym_str(obj, sym->st_name); 860 if (!name) { 861 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 862 sec_name, sec_off); 863 return -LIBBPF_ERRNO__FORMAT; 864 } 865 866 if (sec_off + prog_sz > sec_sz) { 867 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 868 sec_name, sec_off); 869 return -LIBBPF_ERRNO__FORMAT; 870 } 871 872 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 873 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 874 return -ENOTSUP; 875 } 876 877 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 878 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 879 880 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 881 if (!progs) { 882 /* 883 * In this case the original obj->programs 884 * is still valid, so don't need special treat for 885 * bpf_close_object(). 886 */ 887 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 888 sec_name, name); 889 return -ENOMEM; 890 } 891 obj->programs = progs; 892 893 prog = &progs[nr_progs]; 894 895 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 896 sec_off, data + sec_off, prog_sz); 897 if (err) 898 return err; 899 900 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 901 prog->sym_global = true; 902 903 /* if function is a global/weak symbol, but has restricted 904 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 905 * as static to enable more permissive BPF verification mode 906 * with more outside context available to BPF verifier 907 */ 908 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 909 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 910 prog->mark_btf_static = true; 911 912 nr_progs++; 913 obj->nr_programs = nr_progs; 914 } 915 916 return 0; 917 } 918 919 static const struct btf_member * 920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (btf_member_bit_offset(t, i) == bit_offset) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 static const struct btf_member * 934 find_member_by_name(const struct btf *btf, const struct btf_type *t, 935 const char *name) 936 { 937 struct btf_member *m; 938 int i; 939 940 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 941 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 942 return m; 943 } 944 945 return NULL; 946 } 947 948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 949 __u16 kind, struct btf **res_btf, 950 struct module_btf **res_mod_btf); 951 952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 954 const char *name, __u32 kind); 955 956 static int 957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 958 struct module_btf **mod_btf, 959 const struct btf_type **type, __u32 *type_id, 960 const struct btf_type **vtype, __u32 *vtype_id, 961 const struct btf_member **data_member) 962 { 963 const struct btf_type *kern_type, *kern_vtype; 964 const struct btf_member *kern_data_member; 965 struct btf *btf; 966 __s32 kern_vtype_id, kern_type_id; 967 char tname[256]; 968 __u32 i; 969 970 snprintf(tname, sizeof(tname), "%.*s", 971 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 972 973 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 974 &btf, mod_btf); 975 if (kern_type_id < 0) { 976 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 977 tname); 978 return kern_type_id; 979 } 980 kern_type = btf__type_by_id(btf, kern_type_id); 981 982 /* Find the corresponding "map_value" type that will be used 983 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 984 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 985 * btf_vmlinux. 986 */ 987 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 988 tname, BTF_KIND_STRUCT); 989 if (kern_vtype_id < 0) { 990 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 991 STRUCT_OPS_VALUE_PREFIX, tname); 992 return kern_vtype_id; 993 } 994 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 995 996 /* Find "struct tcp_congestion_ops" from 997 * struct bpf_struct_ops_tcp_congestion_ops { 998 * [ ... ] 999 * struct tcp_congestion_ops data; 1000 * } 1001 */ 1002 kern_data_member = btf_members(kern_vtype); 1003 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1004 if (kern_data_member->type == kern_type_id) 1005 break; 1006 } 1007 if (i == btf_vlen(kern_vtype)) { 1008 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1009 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1010 return -EINVAL; 1011 } 1012 1013 *type = kern_type; 1014 *type_id = kern_type_id; 1015 *vtype = kern_vtype; 1016 *vtype_id = kern_vtype_id; 1017 *data_member = kern_data_member; 1018 1019 return 0; 1020 } 1021 1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1023 { 1024 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1025 } 1026 1027 static bool is_valid_st_ops_program(struct bpf_object *obj, 1028 const struct bpf_program *prog) 1029 { 1030 int i; 1031 1032 for (i = 0; i < obj->nr_programs; i++) { 1033 if (&obj->programs[i] == prog) 1034 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1035 } 1036 1037 return false; 1038 } 1039 1040 /* For each struct_ops program P, referenced from some struct_ops map M, 1041 * enable P.autoload if there are Ms for which M.autocreate is true, 1042 * disable P.autoload if for all Ms M.autocreate is false. 1043 * Don't change P.autoload for programs that are not referenced from any maps. 1044 */ 1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1046 { 1047 struct bpf_program *prog, *slot_prog; 1048 struct bpf_map *map; 1049 int i, j, k, vlen; 1050 1051 for (i = 0; i < obj->nr_programs; ++i) { 1052 int should_load = false; 1053 int use_cnt = 0; 1054 1055 prog = &obj->programs[i]; 1056 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1057 continue; 1058 1059 for (j = 0; j < obj->nr_maps; ++j) { 1060 map = &obj->maps[j]; 1061 if (!bpf_map__is_struct_ops(map)) 1062 continue; 1063 1064 vlen = btf_vlen(map->st_ops->type); 1065 for (k = 0; k < vlen; ++k) { 1066 slot_prog = map->st_ops->progs[k]; 1067 if (prog != slot_prog) 1068 continue; 1069 1070 use_cnt++; 1071 if (map->autocreate) 1072 should_load = true; 1073 } 1074 } 1075 if (use_cnt) 1076 prog->autoload = should_load; 1077 } 1078 1079 return 0; 1080 } 1081 1082 /* Init the map's fields that depend on kern_btf */ 1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1084 { 1085 const struct btf_member *member, *kern_member, *kern_data_member; 1086 const struct btf_type *type, *kern_type, *kern_vtype; 1087 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1088 struct bpf_object *obj = map->obj; 1089 const struct btf *btf = obj->btf; 1090 struct bpf_struct_ops *st_ops; 1091 const struct btf *kern_btf; 1092 struct module_btf *mod_btf; 1093 void *data, *kern_data; 1094 const char *tname; 1095 int err; 1096 1097 st_ops = map->st_ops; 1098 type = st_ops->type; 1099 tname = st_ops->tname; 1100 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1101 &kern_type, &kern_type_id, 1102 &kern_vtype, &kern_vtype_id, 1103 &kern_data_member); 1104 if (err) 1105 return err; 1106 1107 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1108 1109 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1110 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1111 1112 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1113 map->def.value_size = kern_vtype->size; 1114 map->btf_vmlinux_value_type_id = kern_vtype_id; 1115 1116 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1117 if (!st_ops->kern_vdata) 1118 return -ENOMEM; 1119 1120 data = st_ops->data; 1121 kern_data_off = kern_data_member->offset / 8; 1122 kern_data = st_ops->kern_vdata + kern_data_off; 1123 1124 member = btf_members(type); 1125 for (i = 0; i < btf_vlen(type); i++, member++) { 1126 const struct btf_type *mtype, *kern_mtype; 1127 __u32 mtype_id, kern_mtype_id; 1128 void *mdata, *kern_mdata; 1129 __s64 msize, kern_msize; 1130 __u32 moff, kern_moff; 1131 __u32 kern_member_idx; 1132 const char *mname; 1133 1134 mname = btf__name_by_offset(btf, member->name_off); 1135 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1136 if (!kern_member) { 1137 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1138 map->name, mname); 1139 return -ENOTSUP; 1140 } 1141 1142 kern_member_idx = kern_member - btf_members(kern_type); 1143 if (btf_member_bitfield_size(type, i) || 1144 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1145 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1146 map->name, mname); 1147 return -ENOTSUP; 1148 } 1149 1150 moff = member->offset / 8; 1151 kern_moff = kern_member->offset / 8; 1152 1153 mdata = data + moff; 1154 kern_mdata = kern_data + kern_moff; 1155 1156 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1157 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1158 &kern_mtype_id); 1159 if (BTF_INFO_KIND(mtype->info) != 1160 BTF_INFO_KIND(kern_mtype->info)) { 1161 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1162 map->name, mname, BTF_INFO_KIND(mtype->info), 1163 BTF_INFO_KIND(kern_mtype->info)); 1164 return -ENOTSUP; 1165 } 1166 1167 if (btf_is_ptr(mtype)) { 1168 struct bpf_program *prog; 1169 1170 /* Update the value from the shadow type */ 1171 prog = *(void **)mdata; 1172 st_ops->progs[i] = prog; 1173 if (!prog) 1174 continue; 1175 if (!is_valid_st_ops_program(obj, prog)) { 1176 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1177 map->name, mname); 1178 return -ENOTSUP; 1179 } 1180 1181 kern_mtype = skip_mods_and_typedefs(kern_btf, 1182 kern_mtype->type, 1183 &kern_mtype_id); 1184 1185 /* mtype->type must be a func_proto which was 1186 * guaranteed in bpf_object__collect_st_ops_relos(), 1187 * so only check kern_mtype for func_proto here. 1188 */ 1189 if (!btf_is_func_proto(kern_mtype)) { 1190 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1191 map->name, mname); 1192 return -ENOTSUP; 1193 } 1194 1195 if (mod_btf) 1196 prog->attach_btf_obj_fd = mod_btf->fd; 1197 1198 /* if we haven't yet processed this BPF program, record proper 1199 * attach_btf_id and member_idx 1200 */ 1201 if (!prog->attach_btf_id) { 1202 prog->attach_btf_id = kern_type_id; 1203 prog->expected_attach_type = kern_member_idx; 1204 } 1205 1206 /* struct_ops BPF prog can be re-used between multiple 1207 * .struct_ops & .struct_ops.link as long as it's the 1208 * same struct_ops struct definition and the same 1209 * function pointer field 1210 */ 1211 if (prog->attach_btf_id != kern_type_id) { 1212 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1213 map->name, mname, prog->name, prog->sec_name, prog->type, 1214 prog->attach_btf_id, kern_type_id); 1215 return -EINVAL; 1216 } 1217 if (prog->expected_attach_type != kern_member_idx) { 1218 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1219 map->name, mname, prog->name, prog->sec_name, prog->type, 1220 prog->expected_attach_type, kern_member_idx); 1221 return -EINVAL; 1222 } 1223 1224 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1225 1226 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1227 map->name, mname, prog->name, moff, 1228 kern_moff); 1229 1230 continue; 1231 } 1232 1233 msize = btf__resolve_size(btf, mtype_id); 1234 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1235 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1236 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1237 map->name, mname, (ssize_t)msize, 1238 (ssize_t)kern_msize); 1239 return -ENOTSUP; 1240 } 1241 1242 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1243 map->name, mname, (unsigned int)msize, 1244 moff, kern_moff); 1245 memcpy(kern_mdata, mdata, msize); 1246 } 1247 1248 return 0; 1249 } 1250 1251 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1252 { 1253 struct bpf_map *map; 1254 size_t i; 1255 int err; 1256 1257 for (i = 0; i < obj->nr_maps; i++) { 1258 map = &obj->maps[i]; 1259 1260 if (!bpf_map__is_struct_ops(map)) 1261 continue; 1262 1263 if (!map->autocreate) 1264 continue; 1265 1266 err = bpf_map__init_kern_struct_ops(map); 1267 if (err) 1268 return err; 1269 } 1270 1271 return 0; 1272 } 1273 1274 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1275 int shndx, Elf_Data *data) 1276 { 1277 const struct btf_type *type, *datasec; 1278 const struct btf_var_secinfo *vsi; 1279 struct bpf_struct_ops *st_ops; 1280 const char *tname, *var_name; 1281 __s32 type_id, datasec_id; 1282 const struct btf *btf; 1283 struct bpf_map *map; 1284 __u32 i; 1285 1286 if (shndx == -1) 1287 return 0; 1288 1289 btf = obj->btf; 1290 datasec_id = btf__find_by_name_kind(btf, sec_name, 1291 BTF_KIND_DATASEC); 1292 if (datasec_id < 0) { 1293 pr_warn("struct_ops init: DATASEC %s not found\n", 1294 sec_name); 1295 return -EINVAL; 1296 } 1297 1298 datasec = btf__type_by_id(btf, datasec_id); 1299 vsi = btf_var_secinfos(datasec); 1300 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1301 type = btf__type_by_id(obj->btf, vsi->type); 1302 var_name = btf__name_by_offset(obj->btf, type->name_off); 1303 1304 type_id = btf__resolve_type(obj->btf, vsi->type); 1305 if (type_id < 0) { 1306 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1307 vsi->type, sec_name); 1308 return -EINVAL; 1309 } 1310 1311 type = btf__type_by_id(obj->btf, type_id); 1312 tname = btf__name_by_offset(obj->btf, type->name_off); 1313 if (!tname[0]) { 1314 pr_warn("struct_ops init: anonymous type is not supported\n"); 1315 return -ENOTSUP; 1316 } 1317 if (!btf_is_struct(type)) { 1318 pr_warn("struct_ops init: %s is not a struct\n", tname); 1319 return -EINVAL; 1320 } 1321 1322 map = bpf_object__add_map(obj); 1323 if (IS_ERR(map)) 1324 return PTR_ERR(map); 1325 1326 map->sec_idx = shndx; 1327 map->sec_offset = vsi->offset; 1328 map->name = strdup(var_name); 1329 if (!map->name) 1330 return -ENOMEM; 1331 map->btf_value_type_id = type_id; 1332 1333 /* Follow same convention as for programs autoload: 1334 * SEC("?.struct_ops") means map is not created by default. 1335 */ 1336 if (sec_name[0] == '?') { 1337 map->autocreate = false; 1338 /* from now on forget there was ? in section name */ 1339 sec_name++; 1340 } 1341 1342 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1343 map->def.key_size = sizeof(int); 1344 map->def.value_size = type->size; 1345 map->def.max_entries = 1; 1346 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1347 1348 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1349 if (!map->st_ops) 1350 return -ENOMEM; 1351 st_ops = map->st_ops; 1352 st_ops->data = malloc(type->size); 1353 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1354 st_ops->kern_func_off = malloc(btf_vlen(type) * 1355 sizeof(*st_ops->kern_func_off)); 1356 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1357 return -ENOMEM; 1358 1359 if (vsi->offset + type->size > data->d_size) { 1360 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1361 var_name, sec_name); 1362 return -EINVAL; 1363 } 1364 1365 memcpy(st_ops->data, 1366 data->d_buf + vsi->offset, 1367 type->size); 1368 st_ops->tname = tname; 1369 st_ops->type = type; 1370 st_ops->type_id = type_id; 1371 1372 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1373 tname, type_id, var_name, vsi->offset); 1374 } 1375 1376 return 0; 1377 } 1378 1379 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1380 { 1381 const char *sec_name; 1382 int sec_idx, err; 1383 1384 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1385 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1386 1387 if (desc->sec_type != SEC_ST_OPS) 1388 continue; 1389 1390 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1391 if (!sec_name) 1392 return -LIBBPF_ERRNO__FORMAT; 1393 1394 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1395 if (err) 1396 return err; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static struct bpf_object *bpf_object__new(const char *path, 1403 const void *obj_buf, 1404 size_t obj_buf_sz, 1405 const char *obj_name) 1406 { 1407 struct bpf_object *obj; 1408 char *end; 1409 1410 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1411 if (!obj) { 1412 pr_warn("alloc memory failed for %s\n", path); 1413 return ERR_PTR(-ENOMEM); 1414 } 1415 1416 strcpy(obj->path, path); 1417 if (obj_name) { 1418 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1419 } else { 1420 /* Using basename() GNU version which doesn't modify arg. */ 1421 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1422 end = strchr(obj->name, '.'); 1423 if (end) 1424 *end = 0; 1425 } 1426 1427 obj->efile.fd = -1; 1428 /* 1429 * Caller of this function should also call 1430 * bpf_object__elf_finish() after data collection to return 1431 * obj_buf to user. If not, we should duplicate the buffer to 1432 * avoid user freeing them before elf finish. 1433 */ 1434 obj->efile.obj_buf = obj_buf; 1435 obj->efile.obj_buf_sz = obj_buf_sz; 1436 obj->efile.btf_maps_shndx = -1; 1437 obj->kconfig_map_idx = -1; 1438 1439 obj->kern_version = get_kernel_version(); 1440 obj->loaded = false; 1441 1442 return obj; 1443 } 1444 1445 static void bpf_object__elf_finish(struct bpf_object *obj) 1446 { 1447 if (!obj->efile.elf) 1448 return; 1449 1450 elf_end(obj->efile.elf); 1451 obj->efile.elf = NULL; 1452 obj->efile.symbols = NULL; 1453 obj->efile.arena_data = NULL; 1454 1455 zfree(&obj->efile.secs); 1456 obj->efile.sec_cnt = 0; 1457 zclose(obj->efile.fd); 1458 obj->efile.obj_buf = NULL; 1459 obj->efile.obj_buf_sz = 0; 1460 } 1461 1462 static int bpf_object__elf_init(struct bpf_object *obj) 1463 { 1464 Elf64_Ehdr *ehdr; 1465 int err = 0; 1466 Elf *elf; 1467 1468 if (obj->efile.elf) { 1469 pr_warn("elf: init internal error\n"); 1470 return -LIBBPF_ERRNO__LIBELF; 1471 } 1472 1473 if (obj->efile.obj_buf_sz > 0) { 1474 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1475 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1476 } else { 1477 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1478 if (obj->efile.fd < 0) { 1479 char errmsg[STRERR_BUFSIZE], *cp; 1480 1481 err = -errno; 1482 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1483 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1484 return err; 1485 } 1486 1487 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1488 } 1489 1490 if (!elf) { 1491 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1492 err = -LIBBPF_ERRNO__LIBELF; 1493 goto errout; 1494 } 1495 1496 obj->efile.elf = elf; 1497 1498 if (elf_kind(elf) != ELF_K_ELF) { 1499 err = -LIBBPF_ERRNO__FORMAT; 1500 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1501 goto errout; 1502 } 1503 1504 if (gelf_getclass(elf) != ELFCLASS64) { 1505 err = -LIBBPF_ERRNO__FORMAT; 1506 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1507 goto errout; 1508 } 1509 1510 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1511 if (!obj->efile.ehdr) { 1512 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1513 err = -LIBBPF_ERRNO__FORMAT; 1514 goto errout; 1515 } 1516 1517 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1518 pr_warn("elf: failed to get section names section index for %s: %s\n", 1519 obj->path, elf_errmsg(-1)); 1520 err = -LIBBPF_ERRNO__FORMAT; 1521 goto errout; 1522 } 1523 1524 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1525 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1526 pr_warn("elf: failed to get section names strings from %s: %s\n", 1527 obj->path, elf_errmsg(-1)); 1528 err = -LIBBPF_ERRNO__FORMAT; 1529 goto errout; 1530 } 1531 1532 /* Old LLVM set e_machine to EM_NONE */ 1533 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1534 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1535 err = -LIBBPF_ERRNO__FORMAT; 1536 goto errout; 1537 } 1538 1539 return 0; 1540 errout: 1541 bpf_object__elf_finish(obj); 1542 return err; 1543 } 1544 1545 static int bpf_object__check_endianness(struct bpf_object *obj) 1546 { 1547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1548 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1549 return 0; 1550 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1551 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1552 return 0; 1553 #else 1554 # error "Unrecognized __BYTE_ORDER__" 1555 #endif 1556 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1557 return -LIBBPF_ERRNO__ENDIAN; 1558 } 1559 1560 static int 1561 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1562 { 1563 if (!data) { 1564 pr_warn("invalid license section in %s\n", obj->path); 1565 return -LIBBPF_ERRNO__FORMAT; 1566 } 1567 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1568 * go over allowed ELF data section buffer 1569 */ 1570 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1571 pr_debug("license of %s is %s\n", obj->path, obj->license); 1572 return 0; 1573 } 1574 1575 static int 1576 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1577 { 1578 __u32 kver; 1579 1580 if (!data || size != sizeof(kver)) { 1581 pr_warn("invalid kver section in %s\n", obj->path); 1582 return -LIBBPF_ERRNO__FORMAT; 1583 } 1584 memcpy(&kver, data, sizeof(kver)); 1585 obj->kern_version = kver; 1586 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1587 return 0; 1588 } 1589 1590 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1591 { 1592 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1593 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1594 return true; 1595 return false; 1596 } 1597 1598 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1599 { 1600 Elf_Data *data; 1601 Elf_Scn *scn; 1602 1603 if (!name) 1604 return -EINVAL; 1605 1606 scn = elf_sec_by_name(obj, name); 1607 data = elf_sec_data(obj, scn); 1608 if (data) { 1609 *size = data->d_size; 1610 return 0; /* found it */ 1611 } 1612 1613 return -ENOENT; 1614 } 1615 1616 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1617 { 1618 Elf_Data *symbols = obj->efile.symbols; 1619 const char *sname; 1620 size_t si; 1621 1622 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1623 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1624 1625 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1626 continue; 1627 1628 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1629 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1630 continue; 1631 1632 sname = elf_sym_str(obj, sym->st_name); 1633 if (!sname) { 1634 pr_warn("failed to get sym name string for var %s\n", name); 1635 return ERR_PTR(-EIO); 1636 } 1637 if (strcmp(name, sname) == 0) 1638 return sym; 1639 } 1640 1641 return ERR_PTR(-ENOENT); 1642 } 1643 1644 /* Some versions of Android don't provide memfd_create() in their libc 1645 * implementation, so avoid complications and just go straight to Linux 1646 * syscall. 1647 */ 1648 static int sys_memfd_create(const char *name, unsigned flags) 1649 { 1650 return syscall(__NR_memfd_create, name, flags); 1651 } 1652 1653 #ifndef MFD_CLOEXEC 1654 #define MFD_CLOEXEC 0x0001U 1655 #endif 1656 1657 static int create_placeholder_fd(void) 1658 { 1659 int fd; 1660 1661 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1662 if (fd < 0) 1663 return -errno; 1664 return fd; 1665 } 1666 1667 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1668 { 1669 struct bpf_map *map; 1670 int err; 1671 1672 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1673 sizeof(*obj->maps), obj->nr_maps + 1); 1674 if (err) 1675 return ERR_PTR(err); 1676 1677 map = &obj->maps[obj->nr_maps++]; 1678 map->obj = obj; 1679 /* Preallocate map FD without actually creating BPF map just yet. 1680 * These map FD "placeholders" will be reused later without changing 1681 * FD value when map is actually created in the kernel. 1682 * 1683 * This is useful to be able to perform BPF program relocations 1684 * without having to create BPF maps before that step. This allows us 1685 * to finalize and load BTF very late in BPF object's loading phase, 1686 * right before BPF maps have to be created and BPF programs have to 1687 * be loaded. By having these map FD placeholders we can perform all 1688 * the sanitizations, relocations, and any other adjustments before we 1689 * start creating actual BPF kernel objects (BTF, maps, progs). 1690 */ 1691 map->fd = create_placeholder_fd(); 1692 if (map->fd < 0) 1693 return ERR_PTR(map->fd); 1694 map->inner_map_fd = -1; 1695 map->autocreate = true; 1696 1697 return map; 1698 } 1699 1700 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1701 { 1702 const long page_sz = sysconf(_SC_PAGE_SIZE); 1703 size_t map_sz; 1704 1705 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1706 map_sz = roundup(map_sz, page_sz); 1707 return map_sz; 1708 } 1709 1710 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1711 { 1712 const long page_sz = sysconf(_SC_PAGE_SIZE); 1713 1714 switch (map->def.type) { 1715 case BPF_MAP_TYPE_ARRAY: 1716 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1717 case BPF_MAP_TYPE_ARENA: 1718 return page_sz * map->def.max_entries; 1719 default: 1720 return 0; /* not supported */ 1721 } 1722 } 1723 1724 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1725 { 1726 void *mmaped; 1727 1728 if (!map->mmaped) 1729 return -EINVAL; 1730 1731 if (old_sz == new_sz) 1732 return 0; 1733 1734 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1735 if (mmaped == MAP_FAILED) 1736 return -errno; 1737 1738 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1739 munmap(map->mmaped, old_sz); 1740 map->mmaped = mmaped; 1741 return 0; 1742 } 1743 1744 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1745 { 1746 char map_name[BPF_OBJ_NAME_LEN], *p; 1747 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1748 1749 /* This is one of the more confusing parts of libbpf for various 1750 * reasons, some of which are historical. The original idea for naming 1751 * internal names was to include as much of BPF object name prefix as 1752 * possible, so that it can be distinguished from similar internal 1753 * maps of a different BPF object. 1754 * As an example, let's say we have bpf_object named 'my_object_name' 1755 * and internal map corresponding to '.rodata' ELF section. The final 1756 * map name advertised to user and to the kernel will be 1757 * 'my_objec.rodata', taking first 8 characters of object name and 1758 * entire 7 characters of '.rodata'. 1759 * Somewhat confusingly, if internal map ELF section name is shorter 1760 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1761 * for the suffix, even though we only have 4 actual characters, and 1762 * resulting map will be called 'my_objec.bss', not even using all 15 1763 * characters allowed by the kernel. Oh well, at least the truncated 1764 * object name is somewhat consistent in this case. But if the map 1765 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1766 * (8 chars) and thus will be left with only first 7 characters of the 1767 * object name ('my_obje'). Happy guessing, user, that the final map 1768 * name will be "my_obje.kconfig". 1769 * Now, with libbpf starting to support arbitrarily named .rodata.* 1770 * and .data.* data sections, it's possible that ELF section name is 1771 * longer than allowed 15 chars, so we now need to be careful to take 1772 * only up to 15 first characters of ELF name, taking no BPF object 1773 * name characters at all. So '.rodata.abracadabra' will result in 1774 * '.rodata.abracad' kernel and user-visible name. 1775 * We need to keep this convoluted logic intact for .data, .bss and 1776 * .rodata maps, but for new custom .data.custom and .rodata.custom 1777 * maps we use their ELF names as is, not prepending bpf_object name 1778 * in front. We still need to truncate them to 15 characters for the 1779 * kernel. Full name can be recovered for such maps by using DATASEC 1780 * BTF type associated with such map's value type, though. 1781 */ 1782 if (sfx_len >= BPF_OBJ_NAME_LEN) 1783 sfx_len = BPF_OBJ_NAME_LEN - 1; 1784 1785 /* if there are two or more dots in map name, it's a custom dot map */ 1786 if (strchr(real_name + 1, '.') != NULL) 1787 pfx_len = 0; 1788 else 1789 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1790 1791 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1792 sfx_len, real_name); 1793 1794 /* sanitise map name to characters allowed by kernel */ 1795 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1796 if (!isalnum(*p) && *p != '_' && *p != '.') 1797 *p = '_'; 1798 1799 return strdup(map_name); 1800 } 1801 1802 static int 1803 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1804 1805 /* Internal BPF map is mmap()'able only if at least one of corresponding 1806 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1807 * variable and it's not marked as __hidden (which turns it into, effectively, 1808 * a STATIC variable). 1809 */ 1810 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1811 { 1812 const struct btf_type *t, *vt; 1813 struct btf_var_secinfo *vsi; 1814 int i, n; 1815 1816 if (!map->btf_value_type_id) 1817 return false; 1818 1819 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1820 if (!btf_is_datasec(t)) 1821 return false; 1822 1823 vsi = btf_var_secinfos(t); 1824 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1825 vt = btf__type_by_id(obj->btf, vsi->type); 1826 if (!btf_is_var(vt)) 1827 continue; 1828 1829 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1830 return true; 1831 } 1832 1833 return false; 1834 } 1835 1836 static int 1837 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1838 const char *real_name, int sec_idx, void *data, size_t data_sz) 1839 { 1840 struct bpf_map_def *def; 1841 struct bpf_map *map; 1842 size_t mmap_sz; 1843 int err; 1844 1845 map = bpf_object__add_map(obj); 1846 if (IS_ERR(map)) 1847 return PTR_ERR(map); 1848 1849 map->libbpf_type = type; 1850 map->sec_idx = sec_idx; 1851 map->sec_offset = 0; 1852 map->real_name = strdup(real_name); 1853 map->name = internal_map_name(obj, real_name); 1854 if (!map->real_name || !map->name) { 1855 zfree(&map->real_name); 1856 zfree(&map->name); 1857 return -ENOMEM; 1858 } 1859 1860 def = &map->def; 1861 def->type = BPF_MAP_TYPE_ARRAY; 1862 def->key_size = sizeof(int); 1863 def->value_size = data_sz; 1864 def->max_entries = 1; 1865 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1866 ? BPF_F_RDONLY_PROG : 0; 1867 1868 /* failures are fine because of maps like .rodata.str1.1 */ 1869 (void) map_fill_btf_type_info(obj, map); 1870 1871 if (map_is_mmapable(obj, map)) 1872 def->map_flags |= BPF_F_MMAPABLE; 1873 1874 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1875 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1876 1877 mmap_sz = bpf_map_mmap_sz(map); 1878 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1879 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1880 if (map->mmaped == MAP_FAILED) { 1881 err = -errno; 1882 map->mmaped = NULL; 1883 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1884 map->name, err); 1885 zfree(&map->real_name); 1886 zfree(&map->name); 1887 return err; 1888 } 1889 1890 if (data) 1891 memcpy(map->mmaped, data, data_sz); 1892 1893 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1894 return 0; 1895 } 1896 1897 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1898 { 1899 struct elf_sec_desc *sec_desc; 1900 const char *sec_name; 1901 int err = 0, sec_idx; 1902 1903 /* 1904 * Populate obj->maps with libbpf internal maps. 1905 */ 1906 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1907 sec_desc = &obj->efile.secs[sec_idx]; 1908 1909 /* Skip recognized sections with size 0. */ 1910 if (!sec_desc->data || sec_desc->data->d_size == 0) 1911 continue; 1912 1913 switch (sec_desc->sec_type) { 1914 case SEC_DATA: 1915 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1916 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1917 sec_name, sec_idx, 1918 sec_desc->data->d_buf, 1919 sec_desc->data->d_size); 1920 break; 1921 case SEC_RODATA: 1922 obj->has_rodata = true; 1923 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1924 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1925 sec_name, sec_idx, 1926 sec_desc->data->d_buf, 1927 sec_desc->data->d_size); 1928 break; 1929 case SEC_BSS: 1930 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1931 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1932 sec_name, sec_idx, 1933 NULL, 1934 sec_desc->data->d_size); 1935 break; 1936 default: 1937 /* skip */ 1938 break; 1939 } 1940 if (err) 1941 return err; 1942 } 1943 return 0; 1944 } 1945 1946 1947 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1948 const void *name) 1949 { 1950 int i; 1951 1952 for (i = 0; i < obj->nr_extern; i++) { 1953 if (strcmp(obj->externs[i].name, name) == 0) 1954 return &obj->externs[i]; 1955 } 1956 return NULL; 1957 } 1958 1959 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1960 char value) 1961 { 1962 switch (ext->kcfg.type) { 1963 case KCFG_BOOL: 1964 if (value == 'm') { 1965 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1966 ext->name, value); 1967 return -EINVAL; 1968 } 1969 *(bool *)ext_val = value == 'y' ? true : false; 1970 break; 1971 case KCFG_TRISTATE: 1972 if (value == 'y') 1973 *(enum libbpf_tristate *)ext_val = TRI_YES; 1974 else if (value == 'm') 1975 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1976 else /* value == 'n' */ 1977 *(enum libbpf_tristate *)ext_val = TRI_NO; 1978 break; 1979 case KCFG_CHAR: 1980 *(char *)ext_val = value; 1981 break; 1982 case KCFG_UNKNOWN: 1983 case KCFG_INT: 1984 case KCFG_CHAR_ARR: 1985 default: 1986 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1987 ext->name, value); 1988 return -EINVAL; 1989 } 1990 ext->is_set = true; 1991 return 0; 1992 } 1993 1994 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1995 const char *value) 1996 { 1997 size_t len; 1998 1999 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2000 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2001 ext->name, value); 2002 return -EINVAL; 2003 } 2004 2005 len = strlen(value); 2006 if (value[len - 1] != '"') { 2007 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2008 ext->name, value); 2009 return -EINVAL; 2010 } 2011 2012 /* strip quotes */ 2013 len -= 2; 2014 if (len >= ext->kcfg.sz) { 2015 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2016 ext->name, value, len, ext->kcfg.sz - 1); 2017 len = ext->kcfg.sz - 1; 2018 } 2019 memcpy(ext_val, value + 1, len); 2020 ext_val[len] = '\0'; 2021 ext->is_set = true; 2022 return 0; 2023 } 2024 2025 static int parse_u64(const char *value, __u64 *res) 2026 { 2027 char *value_end; 2028 int err; 2029 2030 errno = 0; 2031 *res = strtoull(value, &value_end, 0); 2032 if (errno) { 2033 err = -errno; 2034 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2035 return err; 2036 } 2037 if (*value_end) { 2038 pr_warn("failed to parse '%s' as integer completely\n", value); 2039 return -EINVAL; 2040 } 2041 return 0; 2042 } 2043 2044 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2045 { 2046 int bit_sz = ext->kcfg.sz * 8; 2047 2048 if (ext->kcfg.sz == 8) 2049 return true; 2050 2051 /* Validate that value stored in u64 fits in integer of `ext->sz` 2052 * bytes size without any loss of information. If the target integer 2053 * is signed, we rely on the following limits of integer type of 2054 * Y bits and subsequent transformation: 2055 * 2056 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2057 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2058 * 0 <= X + 2^(Y-1) < 2^Y 2059 * 2060 * For unsigned target integer, check that all the (64 - Y) bits are 2061 * zero. 2062 */ 2063 if (ext->kcfg.is_signed) 2064 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2065 else 2066 return (v >> bit_sz) == 0; 2067 } 2068 2069 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2070 __u64 value) 2071 { 2072 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2073 ext->kcfg.type != KCFG_BOOL) { 2074 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2075 ext->name, (unsigned long long)value); 2076 return -EINVAL; 2077 } 2078 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2079 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2080 ext->name, (unsigned long long)value); 2081 return -EINVAL; 2082 2083 } 2084 if (!is_kcfg_value_in_range(ext, value)) { 2085 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2086 ext->name, (unsigned long long)value, ext->kcfg.sz); 2087 return -ERANGE; 2088 } 2089 switch (ext->kcfg.sz) { 2090 case 1: 2091 *(__u8 *)ext_val = value; 2092 break; 2093 case 2: 2094 *(__u16 *)ext_val = value; 2095 break; 2096 case 4: 2097 *(__u32 *)ext_val = value; 2098 break; 2099 case 8: 2100 *(__u64 *)ext_val = value; 2101 break; 2102 default: 2103 return -EINVAL; 2104 } 2105 ext->is_set = true; 2106 return 0; 2107 } 2108 2109 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2110 char *buf, void *data) 2111 { 2112 struct extern_desc *ext; 2113 char *sep, *value; 2114 int len, err = 0; 2115 void *ext_val; 2116 __u64 num; 2117 2118 if (!str_has_pfx(buf, "CONFIG_")) 2119 return 0; 2120 2121 sep = strchr(buf, '='); 2122 if (!sep) { 2123 pr_warn("failed to parse '%s': no separator\n", buf); 2124 return -EINVAL; 2125 } 2126 2127 /* Trim ending '\n' */ 2128 len = strlen(buf); 2129 if (buf[len - 1] == '\n') 2130 buf[len - 1] = '\0'; 2131 /* Split on '=' and ensure that a value is present. */ 2132 *sep = '\0'; 2133 if (!sep[1]) { 2134 *sep = '='; 2135 pr_warn("failed to parse '%s': no value\n", buf); 2136 return -EINVAL; 2137 } 2138 2139 ext = find_extern_by_name(obj, buf); 2140 if (!ext || ext->is_set) 2141 return 0; 2142 2143 ext_val = data + ext->kcfg.data_off; 2144 value = sep + 1; 2145 2146 switch (*value) { 2147 case 'y': case 'n': case 'm': 2148 err = set_kcfg_value_tri(ext, ext_val, *value); 2149 break; 2150 case '"': 2151 err = set_kcfg_value_str(ext, ext_val, value); 2152 break; 2153 default: 2154 /* assume integer */ 2155 err = parse_u64(value, &num); 2156 if (err) { 2157 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2158 return err; 2159 } 2160 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2161 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2162 return -EINVAL; 2163 } 2164 err = set_kcfg_value_num(ext, ext_val, num); 2165 break; 2166 } 2167 if (err) 2168 return err; 2169 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2170 return 0; 2171 } 2172 2173 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2174 { 2175 char buf[PATH_MAX]; 2176 struct utsname uts; 2177 int len, err = 0; 2178 gzFile file; 2179 2180 uname(&uts); 2181 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2182 if (len < 0) 2183 return -EINVAL; 2184 else if (len >= PATH_MAX) 2185 return -ENAMETOOLONG; 2186 2187 /* gzopen also accepts uncompressed files. */ 2188 file = gzopen(buf, "re"); 2189 if (!file) 2190 file = gzopen("/proc/config.gz", "re"); 2191 2192 if (!file) { 2193 pr_warn("failed to open system Kconfig\n"); 2194 return -ENOENT; 2195 } 2196 2197 while (gzgets(file, buf, sizeof(buf))) { 2198 err = bpf_object__process_kconfig_line(obj, buf, data); 2199 if (err) { 2200 pr_warn("error parsing system Kconfig line '%s': %d\n", 2201 buf, err); 2202 goto out; 2203 } 2204 } 2205 2206 out: 2207 gzclose(file); 2208 return err; 2209 } 2210 2211 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2212 const char *config, void *data) 2213 { 2214 char buf[PATH_MAX]; 2215 int err = 0; 2216 FILE *file; 2217 2218 file = fmemopen((void *)config, strlen(config), "r"); 2219 if (!file) { 2220 err = -errno; 2221 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2222 return err; 2223 } 2224 2225 while (fgets(buf, sizeof(buf), file)) { 2226 err = bpf_object__process_kconfig_line(obj, buf, data); 2227 if (err) { 2228 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2229 buf, err); 2230 break; 2231 } 2232 } 2233 2234 fclose(file); 2235 return err; 2236 } 2237 2238 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2239 { 2240 struct extern_desc *last_ext = NULL, *ext; 2241 size_t map_sz; 2242 int i, err; 2243 2244 for (i = 0; i < obj->nr_extern; i++) { 2245 ext = &obj->externs[i]; 2246 if (ext->type == EXT_KCFG) 2247 last_ext = ext; 2248 } 2249 2250 if (!last_ext) 2251 return 0; 2252 2253 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2254 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2255 ".kconfig", obj->efile.symbols_shndx, 2256 NULL, map_sz); 2257 if (err) 2258 return err; 2259 2260 obj->kconfig_map_idx = obj->nr_maps - 1; 2261 2262 return 0; 2263 } 2264 2265 const struct btf_type * 2266 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2267 { 2268 const struct btf_type *t = btf__type_by_id(btf, id); 2269 2270 if (res_id) 2271 *res_id = id; 2272 2273 while (btf_is_mod(t) || btf_is_typedef(t)) { 2274 if (res_id) 2275 *res_id = t->type; 2276 t = btf__type_by_id(btf, t->type); 2277 } 2278 2279 return t; 2280 } 2281 2282 static const struct btf_type * 2283 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2284 { 2285 const struct btf_type *t; 2286 2287 t = skip_mods_and_typedefs(btf, id, NULL); 2288 if (!btf_is_ptr(t)) 2289 return NULL; 2290 2291 t = skip_mods_and_typedefs(btf, t->type, res_id); 2292 2293 return btf_is_func_proto(t) ? t : NULL; 2294 } 2295 2296 static const char *__btf_kind_str(__u16 kind) 2297 { 2298 switch (kind) { 2299 case BTF_KIND_UNKN: return "void"; 2300 case BTF_KIND_INT: return "int"; 2301 case BTF_KIND_PTR: return "ptr"; 2302 case BTF_KIND_ARRAY: return "array"; 2303 case BTF_KIND_STRUCT: return "struct"; 2304 case BTF_KIND_UNION: return "union"; 2305 case BTF_KIND_ENUM: return "enum"; 2306 case BTF_KIND_FWD: return "fwd"; 2307 case BTF_KIND_TYPEDEF: return "typedef"; 2308 case BTF_KIND_VOLATILE: return "volatile"; 2309 case BTF_KIND_CONST: return "const"; 2310 case BTF_KIND_RESTRICT: return "restrict"; 2311 case BTF_KIND_FUNC: return "func"; 2312 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2313 case BTF_KIND_VAR: return "var"; 2314 case BTF_KIND_DATASEC: return "datasec"; 2315 case BTF_KIND_FLOAT: return "float"; 2316 case BTF_KIND_DECL_TAG: return "decl_tag"; 2317 case BTF_KIND_TYPE_TAG: return "type_tag"; 2318 case BTF_KIND_ENUM64: return "enum64"; 2319 default: return "unknown"; 2320 } 2321 } 2322 2323 const char *btf_kind_str(const struct btf_type *t) 2324 { 2325 return __btf_kind_str(btf_kind(t)); 2326 } 2327 2328 /* 2329 * Fetch integer attribute of BTF map definition. Such attributes are 2330 * represented using a pointer to an array, in which dimensionality of array 2331 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2332 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2333 * type definition, while using only sizeof(void *) space in ELF data section. 2334 */ 2335 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2336 const struct btf_member *m, __u32 *res) 2337 { 2338 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2339 const char *name = btf__name_by_offset(btf, m->name_off); 2340 const struct btf_array *arr_info; 2341 const struct btf_type *arr_t; 2342 2343 if (!btf_is_ptr(t)) { 2344 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2345 map_name, name, btf_kind_str(t)); 2346 return false; 2347 } 2348 2349 arr_t = btf__type_by_id(btf, t->type); 2350 if (!arr_t) { 2351 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2352 map_name, name, t->type); 2353 return false; 2354 } 2355 if (!btf_is_array(arr_t)) { 2356 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2357 map_name, name, btf_kind_str(arr_t)); 2358 return false; 2359 } 2360 arr_info = btf_array(arr_t); 2361 *res = arr_info->nelems; 2362 return true; 2363 } 2364 2365 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2366 const struct btf_member *m, __u64 *res) 2367 { 2368 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2369 const char *name = btf__name_by_offset(btf, m->name_off); 2370 2371 if (btf_is_ptr(t)) { 2372 __u32 res32; 2373 bool ret; 2374 2375 ret = get_map_field_int(map_name, btf, m, &res32); 2376 if (ret) 2377 *res = (__u64)res32; 2378 return ret; 2379 } 2380 2381 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2382 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2383 map_name, name, btf_kind_str(t)); 2384 return false; 2385 } 2386 2387 if (btf_vlen(t) != 1) { 2388 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2389 map_name, name); 2390 return false; 2391 } 2392 2393 if (btf_is_enum(t)) { 2394 const struct btf_enum *e = btf_enum(t); 2395 2396 *res = e->val; 2397 } else { 2398 const struct btf_enum64 *e = btf_enum64(t); 2399 2400 *res = btf_enum64_value(e); 2401 } 2402 return true; 2403 } 2404 2405 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2406 { 2407 int len; 2408 2409 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2410 if (len < 0) 2411 return -EINVAL; 2412 if (len >= buf_sz) 2413 return -ENAMETOOLONG; 2414 2415 return 0; 2416 } 2417 2418 static int build_map_pin_path(struct bpf_map *map, const char *path) 2419 { 2420 char buf[PATH_MAX]; 2421 int err; 2422 2423 if (!path) 2424 path = BPF_FS_DEFAULT_PATH; 2425 2426 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2427 if (err) 2428 return err; 2429 2430 return bpf_map__set_pin_path(map, buf); 2431 } 2432 2433 /* should match definition in bpf_helpers.h */ 2434 enum libbpf_pin_type { 2435 LIBBPF_PIN_NONE, 2436 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2437 LIBBPF_PIN_BY_NAME, 2438 }; 2439 2440 int parse_btf_map_def(const char *map_name, struct btf *btf, 2441 const struct btf_type *def_t, bool strict, 2442 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2443 { 2444 const struct btf_type *t; 2445 const struct btf_member *m; 2446 bool is_inner = inner_def == NULL; 2447 int vlen, i; 2448 2449 vlen = btf_vlen(def_t); 2450 m = btf_members(def_t); 2451 for (i = 0; i < vlen; i++, m++) { 2452 const char *name = btf__name_by_offset(btf, m->name_off); 2453 2454 if (!name) { 2455 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2456 return -EINVAL; 2457 } 2458 if (strcmp(name, "type") == 0) { 2459 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2460 return -EINVAL; 2461 map_def->parts |= MAP_DEF_MAP_TYPE; 2462 } else if (strcmp(name, "max_entries") == 0) { 2463 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2464 return -EINVAL; 2465 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2466 } else if (strcmp(name, "map_flags") == 0) { 2467 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2468 return -EINVAL; 2469 map_def->parts |= MAP_DEF_MAP_FLAGS; 2470 } else if (strcmp(name, "numa_node") == 0) { 2471 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2472 return -EINVAL; 2473 map_def->parts |= MAP_DEF_NUMA_NODE; 2474 } else if (strcmp(name, "key_size") == 0) { 2475 __u32 sz; 2476 2477 if (!get_map_field_int(map_name, btf, m, &sz)) 2478 return -EINVAL; 2479 if (map_def->key_size && map_def->key_size != sz) { 2480 pr_warn("map '%s': conflicting key size %u != %u.\n", 2481 map_name, map_def->key_size, sz); 2482 return -EINVAL; 2483 } 2484 map_def->key_size = sz; 2485 map_def->parts |= MAP_DEF_KEY_SIZE; 2486 } else if (strcmp(name, "key") == 0) { 2487 __s64 sz; 2488 2489 t = btf__type_by_id(btf, m->type); 2490 if (!t) { 2491 pr_warn("map '%s': key type [%d] not found.\n", 2492 map_name, m->type); 2493 return -EINVAL; 2494 } 2495 if (!btf_is_ptr(t)) { 2496 pr_warn("map '%s': key spec is not PTR: %s.\n", 2497 map_name, btf_kind_str(t)); 2498 return -EINVAL; 2499 } 2500 sz = btf__resolve_size(btf, t->type); 2501 if (sz < 0) { 2502 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2503 map_name, t->type, (ssize_t)sz); 2504 return sz; 2505 } 2506 if (map_def->key_size && map_def->key_size != sz) { 2507 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2508 map_name, map_def->key_size, (ssize_t)sz); 2509 return -EINVAL; 2510 } 2511 map_def->key_size = sz; 2512 map_def->key_type_id = t->type; 2513 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2514 } else if (strcmp(name, "value_size") == 0) { 2515 __u32 sz; 2516 2517 if (!get_map_field_int(map_name, btf, m, &sz)) 2518 return -EINVAL; 2519 if (map_def->value_size && map_def->value_size != sz) { 2520 pr_warn("map '%s': conflicting value size %u != %u.\n", 2521 map_name, map_def->value_size, sz); 2522 return -EINVAL; 2523 } 2524 map_def->value_size = sz; 2525 map_def->parts |= MAP_DEF_VALUE_SIZE; 2526 } else if (strcmp(name, "value") == 0) { 2527 __s64 sz; 2528 2529 t = btf__type_by_id(btf, m->type); 2530 if (!t) { 2531 pr_warn("map '%s': value type [%d] not found.\n", 2532 map_name, m->type); 2533 return -EINVAL; 2534 } 2535 if (!btf_is_ptr(t)) { 2536 pr_warn("map '%s': value spec is not PTR: %s.\n", 2537 map_name, btf_kind_str(t)); 2538 return -EINVAL; 2539 } 2540 sz = btf__resolve_size(btf, t->type); 2541 if (sz < 0) { 2542 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2543 map_name, t->type, (ssize_t)sz); 2544 return sz; 2545 } 2546 if (map_def->value_size && map_def->value_size != sz) { 2547 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2548 map_name, map_def->value_size, (ssize_t)sz); 2549 return -EINVAL; 2550 } 2551 map_def->value_size = sz; 2552 map_def->value_type_id = t->type; 2553 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2554 } 2555 else if (strcmp(name, "values") == 0) { 2556 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2557 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2558 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2559 char inner_map_name[128]; 2560 int err; 2561 2562 if (is_inner) { 2563 pr_warn("map '%s': multi-level inner maps not supported.\n", 2564 map_name); 2565 return -ENOTSUP; 2566 } 2567 if (i != vlen - 1) { 2568 pr_warn("map '%s': '%s' member should be last.\n", 2569 map_name, name); 2570 return -EINVAL; 2571 } 2572 if (!is_map_in_map && !is_prog_array) { 2573 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2574 map_name); 2575 return -ENOTSUP; 2576 } 2577 if (map_def->value_size && map_def->value_size != 4) { 2578 pr_warn("map '%s': conflicting value size %u != 4.\n", 2579 map_name, map_def->value_size); 2580 return -EINVAL; 2581 } 2582 map_def->value_size = 4; 2583 t = btf__type_by_id(btf, m->type); 2584 if (!t) { 2585 pr_warn("map '%s': %s type [%d] not found.\n", 2586 map_name, desc, m->type); 2587 return -EINVAL; 2588 } 2589 if (!btf_is_array(t) || btf_array(t)->nelems) { 2590 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2591 map_name, desc); 2592 return -EINVAL; 2593 } 2594 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2595 if (!btf_is_ptr(t)) { 2596 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2597 map_name, desc, btf_kind_str(t)); 2598 return -EINVAL; 2599 } 2600 t = skip_mods_and_typedefs(btf, t->type, NULL); 2601 if (is_prog_array) { 2602 if (!btf_is_func_proto(t)) { 2603 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2604 map_name, btf_kind_str(t)); 2605 return -EINVAL; 2606 } 2607 continue; 2608 } 2609 if (!btf_is_struct(t)) { 2610 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2611 map_name, btf_kind_str(t)); 2612 return -EINVAL; 2613 } 2614 2615 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2616 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2617 if (err) 2618 return err; 2619 2620 map_def->parts |= MAP_DEF_INNER_MAP; 2621 } else if (strcmp(name, "pinning") == 0) { 2622 __u32 val; 2623 2624 if (is_inner) { 2625 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2626 return -EINVAL; 2627 } 2628 if (!get_map_field_int(map_name, btf, m, &val)) 2629 return -EINVAL; 2630 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2631 pr_warn("map '%s': invalid pinning value %u.\n", 2632 map_name, val); 2633 return -EINVAL; 2634 } 2635 map_def->pinning = val; 2636 map_def->parts |= MAP_DEF_PINNING; 2637 } else if (strcmp(name, "map_extra") == 0) { 2638 __u64 map_extra; 2639 2640 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2641 return -EINVAL; 2642 map_def->map_extra = map_extra; 2643 map_def->parts |= MAP_DEF_MAP_EXTRA; 2644 } else { 2645 if (strict) { 2646 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2647 return -ENOTSUP; 2648 } 2649 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2650 } 2651 } 2652 2653 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2654 pr_warn("map '%s': map type isn't specified.\n", map_name); 2655 return -EINVAL; 2656 } 2657 2658 return 0; 2659 } 2660 2661 static size_t adjust_ringbuf_sz(size_t sz) 2662 { 2663 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2664 __u32 mul; 2665 2666 /* if user forgot to set any size, make sure they see error */ 2667 if (sz == 0) 2668 return 0; 2669 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2670 * a power-of-2 multiple of kernel's page size. If user diligently 2671 * satisified these conditions, pass the size through. 2672 */ 2673 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2674 return sz; 2675 2676 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2677 * user-set size to satisfy both user size request and kernel 2678 * requirements and substitute correct max_entries for map creation. 2679 */ 2680 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2681 if (mul * page_sz > sz) 2682 return mul * page_sz; 2683 } 2684 2685 /* if it's impossible to satisfy the conditions (i.e., user size is 2686 * very close to UINT_MAX but is not a power-of-2 multiple of 2687 * page_size) then just return original size and let kernel reject it 2688 */ 2689 return sz; 2690 } 2691 2692 static bool map_is_ringbuf(const struct bpf_map *map) 2693 { 2694 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2695 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2696 } 2697 2698 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2699 { 2700 map->def.type = def->map_type; 2701 map->def.key_size = def->key_size; 2702 map->def.value_size = def->value_size; 2703 map->def.max_entries = def->max_entries; 2704 map->def.map_flags = def->map_flags; 2705 map->map_extra = def->map_extra; 2706 2707 map->numa_node = def->numa_node; 2708 map->btf_key_type_id = def->key_type_id; 2709 map->btf_value_type_id = def->value_type_id; 2710 2711 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2712 if (map_is_ringbuf(map)) 2713 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2714 2715 if (def->parts & MAP_DEF_MAP_TYPE) 2716 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2717 2718 if (def->parts & MAP_DEF_KEY_TYPE) 2719 pr_debug("map '%s': found key [%u], sz = %u.\n", 2720 map->name, def->key_type_id, def->key_size); 2721 else if (def->parts & MAP_DEF_KEY_SIZE) 2722 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2723 2724 if (def->parts & MAP_DEF_VALUE_TYPE) 2725 pr_debug("map '%s': found value [%u], sz = %u.\n", 2726 map->name, def->value_type_id, def->value_size); 2727 else if (def->parts & MAP_DEF_VALUE_SIZE) 2728 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2729 2730 if (def->parts & MAP_DEF_MAX_ENTRIES) 2731 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2732 if (def->parts & MAP_DEF_MAP_FLAGS) 2733 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2734 if (def->parts & MAP_DEF_MAP_EXTRA) 2735 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2736 (unsigned long long)def->map_extra); 2737 if (def->parts & MAP_DEF_PINNING) 2738 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2739 if (def->parts & MAP_DEF_NUMA_NODE) 2740 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2741 2742 if (def->parts & MAP_DEF_INNER_MAP) 2743 pr_debug("map '%s': found inner map definition.\n", map->name); 2744 } 2745 2746 static const char *btf_var_linkage_str(__u32 linkage) 2747 { 2748 switch (linkage) { 2749 case BTF_VAR_STATIC: return "static"; 2750 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2751 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2752 default: return "unknown"; 2753 } 2754 } 2755 2756 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2757 const struct btf_type *sec, 2758 int var_idx, int sec_idx, 2759 const Elf_Data *data, bool strict, 2760 const char *pin_root_path) 2761 { 2762 struct btf_map_def map_def = {}, inner_def = {}; 2763 const struct btf_type *var, *def; 2764 const struct btf_var_secinfo *vi; 2765 const struct btf_var *var_extra; 2766 const char *map_name; 2767 struct bpf_map *map; 2768 int err; 2769 2770 vi = btf_var_secinfos(sec) + var_idx; 2771 var = btf__type_by_id(obj->btf, vi->type); 2772 var_extra = btf_var(var); 2773 map_name = btf__name_by_offset(obj->btf, var->name_off); 2774 2775 if (map_name == NULL || map_name[0] == '\0') { 2776 pr_warn("map #%d: empty name.\n", var_idx); 2777 return -EINVAL; 2778 } 2779 if ((__u64)vi->offset + vi->size > data->d_size) { 2780 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2781 return -EINVAL; 2782 } 2783 if (!btf_is_var(var)) { 2784 pr_warn("map '%s': unexpected var kind %s.\n", 2785 map_name, btf_kind_str(var)); 2786 return -EINVAL; 2787 } 2788 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2789 pr_warn("map '%s': unsupported map linkage %s.\n", 2790 map_name, btf_var_linkage_str(var_extra->linkage)); 2791 return -EOPNOTSUPP; 2792 } 2793 2794 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2795 if (!btf_is_struct(def)) { 2796 pr_warn("map '%s': unexpected def kind %s.\n", 2797 map_name, btf_kind_str(var)); 2798 return -EINVAL; 2799 } 2800 if (def->size > vi->size) { 2801 pr_warn("map '%s': invalid def size.\n", map_name); 2802 return -EINVAL; 2803 } 2804 2805 map = bpf_object__add_map(obj); 2806 if (IS_ERR(map)) 2807 return PTR_ERR(map); 2808 map->name = strdup(map_name); 2809 if (!map->name) { 2810 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2811 return -ENOMEM; 2812 } 2813 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2814 map->def.type = BPF_MAP_TYPE_UNSPEC; 2815 map->sec_idx = sec_idx; 2816 map->sec_offset = vi->offset; 2817 map->btf_var_idx = var_idx; 2818 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2819 map_name, map->sec_idx, map->sec_offset); 2820 2821 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2822 if (err) 2823 return err; 2824 2825 fill_map_from_def(map, &map_def); 2826 2827 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2828 err = build_map_pin_path(map, pin_root_path); 2829 if (err) { 2830 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2831 return err; 2832 } 2833 } 2834 2835 if (map_def.parts & MAP_DEF_INNER_MAP) { 2836 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2837 if (!map->inner_map) 2838 return -ENOMEM; 2839 map->inner_map->fd = create_placeholder_fd(); 2840 if (map->inner_map->fd < 0) 2841 return map->inner_map->fd; 2842 map->inner_map->sec_idx = sec_idx; 2843 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2844 if (!map->inner_map->name) 2845 return -ENOMEM; 2846 sprintf(map->inner_map->name, "%s.inner", map_name); 2847 2848 fill_map_from_def(map->inner_map, &inner_def); 2849 } 2850 2851 err = map_fill_btf_type_info(obj, map); 2852 if (err) 2853 return err; 2854 2855 return 0; 2856 } 2857 2858 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2859 const char *sec_name, int sec_idx, 2860 void *data, size_t data_sz) 2861 { 2862 const long page_sz = sysconf(_SC_PAGE_SIZE); 2863 size_t mmap_sz; 2864 2865 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2866 if (roundup(data_sz, page_sz) > mmap_sz) { 2867 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2868 sec_name, mmap_sz, data_sz); 2869 return -E2BIG; 2870 } 2871 2872 obj->arena_data = malloc(data_sz); 2873 if (!obj->arena_data) 2874 return -ENOMEM; 2875 memcpy(obj->arena_data, data, data_sz); 2876 obj->arena_data_sz = data_sz; 2877 2878 /* make bpf_map__init_value() work for ARENA maps */ 2879 map->mmaped = obj->arena_data; 2880 2881 return 0; 2882 } 2883 2884 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2885 const char *pin_root_path) 2886 { 2887 const struct btf_type *sec = NULL; 2888 int nr_types, i, vlen, err; 2889 const struct btf_type *t; 2890 const char *name; 2891 Elf_Data *data; 2892 Elf_Scn *scn; 2893 2894 if (obj->efile.btf_maps_shndx < 0) 2895 return 0; 2896 2897 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2898 data = elf_sec_data(obj, scn); 2899 if (!scn || !data) { 2900 pr_warn("elf: failed to get %s map definitions for %s\n", 2901 MAPS_ELF_SEC, obj->path); 2902 return -EINVAL; 2903 } 2904 2905 nr_types = btf__type_cnt(obj->btf); 2906 for (i = 1; i < nr_types; i++) { 2907 t = btf__type_by_id(obj->btf, i); 2908 if (!btf_is_datasec(t)) 2909 continue; 2910 name = btf__name_by_offset(obj->btf, t->name_off); 2911 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2912 sec = t; 2913 obj->efile.btf_maps_sec_btf_id = i; 2914 break; 2915 } 2916 } 2917 2918 if (!sec) { 2919 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2920 return -ENOENT; 2921 } 2922 2923 vlen = btf_vlen(sec); 2924 for (i = 0; i < vlen; i++) { 2925 err = bpf_object__init_user_btf_map(obj, sec, i, 2926 obj->efile.btf_maps_shndx, 2927 data, strict, 2928 pin_root_path); 2929 if (err) 2930 return err; 2931 } 2932 2933 for (i = 0; i < obj->nr_maps; i++) { 2934 struct bpf_map *map = &obj->maps[i]; 2935 2936 if (map->def.type != BPF_MAP_TYPE_ARENA) 2937 continue; 2938 2939 if (obj->arena_map) { 2940 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 2941 map->name, obj->arena_map->name); 2942 return -EINVAL; 2943 } 2944 obj->arena_map = map; 2945 2946 if (obj->efile.arena_data) { 2947 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 2948 obj->efile.arena_data->d_buf, 2949 obj->efile.arena_data->d_size); 2950 if (err) 2951 return err; 2952 } 2953 } 2954 if (obj->efile.arena_data && !obj->arena_map) { 2955 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 2956 ARENA_SEC); 2957 return -ENOENT; 2958 } 2959 2960 return 0; 2961 } 2962 2963 static int bpf_object__init_maps(struct bpf_object *obj, 2964 const struct bpf_object_open_opts *opts) 2965 { 2966 const char *pin_root_path; 2967 bool strict; 2968 int err = 0; 2969 2970 strict = !OPTS_GET(opts, relaxed_maps, false); 2971 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2972 2973 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2974 err = err ?: bpf_object__init_global_data_maps(obj); 2975 err = err ?: bpf_object__init_kconfig_map(obj); 2976 err = err ?: bpf_object_init_struct_ops(obj); 2977 2978 return err; 2979 } 2980 2981 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2982 { 2983 Elf64_Shdr *sh; 2984 2985 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2986 if (!sh) 2987 return false; 2988 2989 return sh->sh_flags & SHF_EXECINSTR; 2990 } 2991 2992 static bool starts_with_qmark(const char *s) 2993 { 2994 return s && s[0] == '?'; 2995 } 2996 2997 static bool btf_needs_sanitization(struct bpf_object *obj) 2998 { 2999 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3000 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3001 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3002 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3003 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3004 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3005 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3006 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3007 3008 return !has_func || !has_datasec || !has_func_global || !has_float || 3009 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3010 } 3011 3012 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3013 { 3014 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3015 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3016 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3017 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3018 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3019 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3020 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3021 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3022 int enum64_placeholder_id = 0; 3023 struct btf_type *t; 3024 int i, j, vlen; 3025 3026 for (i = 1; i < btf__type_cnt(btf); i++) { 3027 t = (struct btf_type *)btf__type_by_id(btf, i); 3028 3029 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3030 /* replace VAR/DECL_TAG with INT */ 3031 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3032 /* 3033 * using size = 1 is the safest choice, 4 will be too 3034 * big and cause kernel BTF validation failure if 3035 * original variable took less than 4 bytes 3036 */ 3037 t->size = 1; 3038 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3039 } else if (!has_datasec && btf_is_datasec(t)) { 3040 /* replace DATASEC with STRUCT */ 3041 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3042 struct btf_member *m = btf_members(t); 3043 struct btf_type *vt; 3044 char *name; 3045 3046 name = (char *)btf__name_by_offset(btf, t->name_off); 3047 while (*name) { 3048 if (*name == '.' || *name == '?') 3049 *name = '_'; 3050 name++; 3051 } 3052 3053 vlen = btf_vlen(t); 3054 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3055 for (j = 0; j < vlen; j++, v++, m++) { 3056 /* order of field assignments is important */ 3057 m->offset = v->offset * 8; 3058 m->type = v->type; 3059 /* preserve variable name as member name */ 3060 vt = (void *)btf__type_by_id(btf, v->type); 3061 m->name_off = vt->name_off; 3062 } 3063 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3064 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3065 /* replace '?' prefix with '_' for DATASEC names */ 3066 char *name; 3067 3068 name = (char *)btf__name_by_offset(btf, t->name_off); 3069 if (name[0] == '?') 3070 name[0] = '_'; 3071 } else if (!has_func && btf_is_func_proto(t)) { 3072 /* replace FUNC_PROTO with ENUM */ 3073 vlen = btf_vlen(t); 3074 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3075 t->size = sizeof(__u32); /* kernel enforced */ 3076 } else if (!has_func && btf_is_func(t)) { 3077 /* replace FUNC with TYPEDEF */ 3078 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3079 } else if (!has_func_global && btf_is_func(t)) { 3080 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3081 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3082 } else if (!has_float && btf_is_float(t)) { 3083 /* replace FLOAT with an equally-sized empty STRUCT; 3084 * since C compilers do not accept e.g. "float" as a 3085 * valid struct name, make it anonymous 3086 */ 3087 t->name_off = 0; 3088 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3089 } else if (!has_type_tag && btf_is_type_tag(t)) { 3090 /* replace TYPE_TAG with a CONST */ 3091 t->name_off = 0; 3092 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3093 } else if (!has_enum64 && btf_is_enum(t)) { 3094 /* clear the kflag */ 3095 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3096 } else if (!has_enum64 && btf_is_enum64(t)) { 3097 /* replace ENUM64 with a union */ 3098 struct btf_member *m; 3099 3100 if (enum64_placeholder_id == 0) { 3101 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3102 if (enum64_placeholder_id < 0) 3103 return enum64_placeholder_id; 3104 3105 t = (struct btf_type *)btf__type_by_id(btf, i); 3106 } 3107 3108 m = btf_members(t); 3109 vlen = btf_vlen(t); 3110 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3111 for (j = 0; j < vlen; j++, m++) { 3112 m->type = enum64_placeholder_id; 3113 m->offset = 0; 3114 } 3115 } 3116 } 3117 3118 return 0; 3119 } 3120 3121 static bool libbpf_needs_btf(const struct bpf_object *obj) 3122 { 3123 return obj->efile.btf_maps_shndx >= 0 || 3124 obj->efile.has_st_ops || 3125 obj->nr_extern > 0; 3126 } 3127 3128 static bool kernel_needs_btf(const struct bpf_object *obj) 3129 { 3130 return obj->efile.has_st_ops; 3131 } 3132 3133 static int bpf_object__init_btf(struct bpf_object *obj, 3134 Elf_Data *btf_data, 3135 Elf_Data *btf_ext_data) 3136 { 3137 int err = -ENOENT; 3138 3139 if (btf_data) { 3140 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3141 err = libbpf_get_error(obj->btf); 3142 if (err) { 3143 obj->btf = NULL; 3144 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3145 goto out; 3146 } 3147 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3148 btf__set_pointer_size(obj->btf, 8); 3149 } 3150 if (btf_ext_data) { 3151 struct btf_ext_info *ext_segs[3]; 3152 int seg_num, sec_num; 3153 3154 if (!obj->btf) { 3155 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3156 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3157 goto out; 3158 } 3159 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3160 err = libbpf_get_error(obj->btf_ext); 3161 if (err) { 3162 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3163 BTF_EXT_ELF_SEC, err); 3164 obj->btf_ext = NULL; 3165 goto out; 3166 } 3167 3168 /* setup .BTF.ext to ELF section mapping */ 3169 ext_segs[0] = &obj->btf_ext->func_info; 3170 ext_segs[1] = &obj->btf_ext->line_info; 3171 ext_segs[2] = &obj->btf_ext->core_relo_info; 3172 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3173 struct btf_ext_info *seg = ext_segs[seg_num]; 3174 const struct btf_ext_info_sec *sec; 3175 const char *sec_name; 3176 Elf_Scn *scn; 3177 3178 if (seg->sec_cnt == 0) 3179 continue; 3180 3181 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3182 if (!seg->sec_idxs) { 3183 err = -ENOMEM; 3184 goto out; 3185 } 3186 3187 sec_num = 0; 3188 for_each_btf_ext_sec(seg, sec) { 3189 /* preventively increment index to avoid doing 3190 * this before every continue below 3191 */ 3192 sec_num++; 3193 3194 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3195 if (str_is_empty(sec_name)) 3196 continue; 3197 scn = elf_sec_by_name(obj, sec_name); 3198 if (!scn) 3199 continue; 3200 3201 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3202 } 3203 } 3204 } 3205 out: 3206 if (err && libbpf_needs_btf(obj)) { 3207 pr_warn("BTF is required, but is missing or corrupted.\n"); 3208 return err; 3209 } 3210 return 0; 3211 } 3212 3213 static int compare_vsi_off(const void *_a, const void *_b) 3214 { 3215 const struct btf_var_secinfo *a = _a; 3216 const struct btf_var_secinfo *b = _b; 3217 3218 return a->offset - b->offset; 3219 } 3220 3221 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3222 struct btf_type *t) 3223 { 3224 __u32 size = 0, i, vars = btf_vlen(t); 3225 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3226 struct btf_var_secinfo *vsi; 3227 bool fixup_offsets = false; 3228 int err; 3229 3230 if (!sec_name) { 3231 pr_debug("No name found in string section for DATASEC kind.\n"); 3232 return -ENOENT; 3233 } 3234 3235 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3236 * variable offsets set at the previous step. Further, not every 3237 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3238 * all fixups altogether for such sections and go straight to sorting 3239 * VARs within their DATASEC. 3240 */ 3241 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3242 goto sort_vars; 3243 3244 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3245 * fix this up. But BPF static linker already fixes this up and fills 3246 * all the sizes and offsets during static linking. So this step has 3247 * to be optional. But the STV_HIDDEN handling is non-optional for any 3248 * non-extern DATASEC, so the variable fixup loop below handles both 3249 * functions at the same time, paying the cost of BTF VAR <-> ELF 3250 * symbol matching just once. 3251 */ 3252 if (t->size == 0) { 3253 err = find_elf_sec_sz(obj, sec_name, &size); 3254 if (err || !size) { 3255 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3256 sec_name, size, err); 3257 return -ENOENT; 3258 } 3259 3260 t->size = size; 3261 fixup_offsets = true; 3262 } 3263 3264 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3265 const struct btf_type *t_var; 3266 struct btf_var *var; 3267 const char *var_name; 3268 Elf64_Sym *sym; 3269 3270 t_var = btf__type_by_id(btf, vsi->type); 3271 if (!t_var || !btf_is_var(t_var)) { 3272 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3273 return -EINVAL; 3274 } 3275 3276 var = btf_var(t_var); 3277 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3278 continue; 3279 3280 var_name = btf__name_by_offset(btf, t_var->name_off); 3281 if (!var_name) { 3282 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3283 sec_name, i); 3284 return -ENOENT; 3285 } 3286 3287 sym = find_elf_var_sym(obj, var_name); 3288 if (IS_ERR(sym)) { 3289 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3290 sec_name, var_name); 3291 return -ENOENT; 3292 } 3293 3294 if (fixup_offsets) 3295 vsi->offset = sym->st_value; 3296 3297 /* if variable is a global/weak symbol, but has restricted 3298 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3299 * as static. This follows similar logic for functions (BPF 3300 * subprogs) and influences libbpf's further decisions about 3301 * whether to make global data BPF array maps as 3302 * BPF_F_MMAPABLE. 3303 */ 3304 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3305 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3306 var->linkage = BTF_VAR_STATIC; 3307 } 3308 3309 sort_vars: 3310 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3311 return 0; 3312 } 3313 3314 static int bpf_object_fixup_btf(struct bpf_object *obj) 3315 { 3316 int i, n, err = 0; 3317 3318 if (!obj->btf) 3319 return 0; 3320 3321 n = btf__type_cnt(obj->btf); 3322 for (i = 1; i < n; i++) { 3323 struct btf_type *t = btf_type_by_id(obj->btf, i); 3324 3325 /* Loader needs to fix up some of the things compiler 3326 * couldn't get its hands on while emitting BTF. This 3327 * is section size and global variable offset. We use 3328 * the info from the ELF itself for this purpose. 3329 */ 3330 if (btf_is_datasec(t)) { 3331 err = btf_fixup_datasec(obj, obj->btf, t); 3332 if (err) 3333 return err; 3334 } 3335 } 3336 3337 return 0; 3338 } 3339 3340 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3341 { 3342 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3343 prog->type == BPF_PROG_TYPE_LSM) 3344 return true; 3345 3346 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3347 * also need vmlinux BTF 3348 */ 3349 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3350 return true; 3351 3352 return false; 3353 } 3354 3355 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3356 { 3357 return bpf_map__is_struct_ops(map); 3358 } 3359 3360 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3361 { 3362 struct bpf_program *prog; 3363 struct bpf_map *map; 3364 int i; 3365 3366 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3367 * is not specified 3368 */ 3369 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3370 return true; 3371 3372 /* Support for typed ksyms needs kernel BTF */ 3373 for (i = 0; i < obj->nr_extern; i++) { 3374 const struct extern_desc *ext; 3375 3376 ext = &obj->externs[i]; 3377 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3378 return true; 3379 } 3380 3381 bpf_object__for_each_program(prog, obj) { 3382 if (!prog->autoload) 3383 continue; 3384 if (prog_needs_vmlinux_btf(prog)) 3385 return true; 3386 } 3387 3388 bpf_object__for_each_map(map, obj) { 3389 if (map_needs_vmlinux_btf(map)) 3390 return true; 3391 } 3392 3393 return false; 3394 } 3395 3396 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3397 { 3398 int err; 3399 3400 /* btf_vmlinux could be loaded earlier */ 3401 if (obj->btf_vmlinux || obj->gen_loader) 3402 return 0; 3403 3404 if (!force && !obj_needs_vmlinux_btf(obj)) 3405 return 0; 3406 3407 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3408 err = libbpf_get_error(obj->btf_vmlinux); 3409 if (err) { 3410 pr_warn("Error loading vmlinux BTF: %d\n", err); 3411 obj->btf_vmlinux = NULL; 3412 return err; 3413 } 3414 return 0; 3415 } 3416 3417 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3418 { 3419 struct btf *kern_btf = obj->btf; 3420 bool btf_mandatory, sanitize; 3421 int i, err = 0; 3422 3423 if (!obj->btf) 3424 return 0; 3425 3426 if (!kernel_supports(obj, FEAT_BTF)) { 3427 if (kernel_needs_btf(obj)) { 3428 err = -EOPNOTSUPP; 3429 goto report; 3430 } 3431 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3432 return 0; 3433 } 3434 3435 /* Even though some subprogs are global/weak, user might prefer more 3436 * permissive BPF verification process that BPF verifier performs for 3437 * static functions, taking into account more context from the caller 3438 * functions. In such case, they need to mark such subprogs with 3439 * __attribute__((visibility("hidden"))) and libbpf will adjust 3440 * corresponding FUNC BTF type to be marked as static and trigger more 3441 * involved BPF verification process. 3442 */ 3443 for (i = 0; i < obj->nr_programs; i++) { 3444 struct bpf_program *prog = &obj->programs[i]; 3445 struct btf_type *t; 3446 const char *name; 3447 int j, n; 3448 3449 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3450 continue; 3451 3452 n = btf__type_cnt(obj->btf); 3453 for (j = 1; j < n; j++) { 3454 t = btf_type_by_id(obj->btf, j); 3455 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3456 continue; 3457 3458 name = btf__str_by_offset(obj->btf, t->name_off); 3459 if (strcmp(name, prog->name) != 0) 3460 continue; 3461 3462 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3463 break; 3464 } 3465 } 3466 3467 sanitize = btf_needs_sanitization(obj); 3468 if (sanitize) { 3469 const void *raw_data; 3470 __u32 sz; 3471 3472 /* clone BTF to sanitize a copy and leave the original intact */ 3473 raw_data = btf__raw_data(obj->btf, &sz); 3474 kern_btf = btf__new(raw_data, sz); 3475 err = libbpf_get_error(kern_btf); 3476 if (err) 3477 return err; 3478 3479 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3480 btf__set_pointer_size(obj->btf, 8); 3481 err = bpf_object__sanitize_btf(obj, kern_btf); 3482 if (err) 3483 return err; 3484 } 3485 3486 if (obj->gen_loader) { 3487 __u32 raw_size = 0; 3488 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3489 3490 if (!raw_data) 3491 return -ENOMEM; 3492 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3493 /* Pretend to have valid FD to pass various fd >= 0 checks. 3494 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3495 */ 3496 btf__set_fd(kern_btf, 0); 3497 } else { 3498 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3499 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3500 obj->log_level ? 1 : 0, obj->token_fd); 3501 } 3502 if (sanitize) { 3503 if (!err) { 3504 /* move fd to libbpf's BTF */ 3505 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3506 btf__set_fd(kern_btf, -1); 3507 } 3508 btf__free(kern_btf); 3509 } 3510 report: 3511 if (err) { 3512 btf_mandatory = kernel_needs_btf(obj); 3513 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3514 btf_mandatory ? "BTF is mandatory, can't proceed." 3515 : "BTF is optional, ignoring."); 3516 if (!btf_mandatory) 3517 err = 0; 3518 } 3519 return err; 3520 } 3521 3522 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3523 { 3524 const char *name; 3525 3526 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3527 if (!name) { 3528 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3529 off, obj->path, elf_errmsg(-1)); 3530 return NULL; 3531 } 3532 3533 return name; 3534 } 3535 3536 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3537 { 3538 const char *name; 3539 3540 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3541 if (!name) { 3542 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3543 off, obj->path, elf_errmsg(-1)); 3544 return NULL; 3545 } 3546 3547 return name; 3548 } 3549 3550 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3551 { 3552 Elf_Scn *scn; 3553 3554 scn = elf_getscn(obj->efile.elf, idx); 3555 if (!scn) { 3556 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3557 idx, obj->path, elf_errmsg(-1)); 3558 return NULL; 3559 } 3560 return scn; 3561 } 3562 3563 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3564 { 3565 Elf_Scn *scn = NULL; 3566 Elf *elf = obj->efile.elf; 3567 const char *sec_name; 3568 3569 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3570 sec_name = elf_sec_name(obj, scn); 3571 if (!sec_name) 3572 return NULL; 3573 3574 if (strcmp(sec_name, name) != 0) 3575 continue; 3576 3577 return scn; 3578 } 3579 return NULL; 3580 } 3581 3582 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3583 { 3584 Elf64_Shdr *shdr; 3585 3586 if (!scn) 3587 return NULL; 3588 3589 shdr = elf64_getshdr(scn); 3590 if (!shdr) { 3591 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3592 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3593 return NULL; 3594 } 3595 3596 return shdr; 3597 } 3598 3599 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3600 { 3601 const char *name; 3602 Elf64_Shdr *sh; 3603 3604 if (!scn) 3605 return NULL; 3606 3607 sh = elf_sec_hdr(obj, scn); 3608 if (!sh) 3609 return NULL; 3610 3611 name = elf_sec_str(obj, sh->sh_name); 3612 if (!name) { 3613 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3614 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3615 return NULL; 3616 } 3617 3618 return name; 3619 } 3620 3621 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3622 { 3623 Elf_Data *data; 3624 3625 if (!scn) 3626 return NULL; 3627 3628 data = elf_getdata(scn, 0); 3629 if (!data) { 3630 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3631 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3632 obj->path, elf_errmsg(-1)); 3633 return NULL; 3634 } 3635 3636 return data; 3637 } 3638 3639 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3640 { 3641 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3642 return NULL; 3643 3644 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3645 } 3646 3647 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3648 { 3649 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3650 return NULL; 3651 3652 return (Elf64_Rel *)data->d_buf + idx; 3653 } 3654 3655 static bool is_sec_name_dwarf(const char *name) 3656 { 3657 /* approximation, but the actual list is too long */ 3658 return str_has_pfx(name, ".debug_"); 3659 } 3660 3661 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3662 { 3663 /* no special handling of .strtab */ 3664 if (hdr->sh_type == SHT_STRTAB) 3665 return true; 3666 3667 /* ignore .llvm_addrsig section as well */ 3668 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3669 return true; 3670 3671 /* no subprograms will lead to an empty .text section, ignore it */ 3672 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3673 strcmp(name, ".text") == 0) 3674 return true; 3675 3676 /* DWARF sections */ 3677 if (is_sec_name_dwarf(name)) 3678 return true; 3679 3680 if (str_has_pfx(name, ".rel")) { 3681 name += sizeof(".rel") - 1; 3682 /* DWARF section relocations */ 3683 if (is_sec_name_dwarf(name)) 3684 return true; 3685 3686 /* .BTF and .BTF.ext don't need relocations */ 3687 if (strcmp(name, BTF_ELF_SEC) == 0 || 3688 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3689 return true; 3690 } 3691 3692 return false; 3693 } 3694 3695 static int cmp_progs(const void *_a, const void *_b) 3696 { 3697 const struct bpf_program *a = _a; 3698 const struct bpf_program *b = _b; 3699 3700 if (a->sec_idx != b->sec_idx) 3701 return a->sec_idx < b->sec_idx ? -1 : 1; 3702 3703 /* sec_insn_off can't be the same within the section */ 3704 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3705 } 3706 3707 static int bpf_object__elf_collect(struct bpf_object *obj) 3708 { 3709 struct elf_sec_desc *sec_desc; 3710 Elf *elf = obj->efile.elf; 3711 Elf_Data *btf_ext_data = NULL; 3712 Elf_Data *btf_data = NULL; 3713 int idx = 0, err = 0; 3714 const char *name; 3715 Elf_Data *data; 3716 Elf_Scn *scn; 3717 Elf64_Shdr *sh; 3718 3719 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3720 * section. Since section count retrieved by elf_getshdrnum() does 3721 * include sec #0, it is already the necessary size of an array to keep 3722 * all the sections. 3723 */ 3724 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3725 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3726 obj->path, elf_errmsg(-1)); 3727 return -LIBBPF_ERRNO__FORMAT; 3728 } 3729 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3730 if (!obj->efile.secs) 3731 return -ENOMEM; 3732 3733 /* a bunch of ELF parsing functionality depends on processing symbols, 3734 * so do the first pass and find the symbol table 3735 */ 3736 scn = NULL; 3737 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3738 sh = elf_sec_hdr(obj, scn); 3739 if (!sh) 3740 return -LIBBPF_ERRNO__FORMAT; 3741 3742 if (sh->sh_type == SHT_SYMTAB) { 3743 if (obj->efile.symbols) { 3744 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3745 return -LIBBPF_ERRNO__FORMAT; 3746 } 3747 3748 data = elf_sec_data(obj, scn); 3749 if (!data) 3750 return -LIBBPF_ERRNO__FORMAT; 3751 3752 idx = elf_ndxscn(scn); 3753 3754 obj->efile.symbols = data; 3755 obj->efile.symbols_shndx = idx; 3756 obj->efile.strtabidx = sh->sh_link; 3757 } 3758 } 3759 3760 if (!obj->efile.symbols) { 3761 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3762 obj->path); 3763 return -ENOENT; 3764 } 3765 3766 scn = NULL; 3767 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3768 idx = elf_ndxscn(scn); 3769 sec_desc = &obj->efile.secs[idx]; 3770 3771 sh = elf_sec_hdr(obj, scn); 3772 if (!sh) 3773 return -LIBBPF_ERRNO__FORMAT; 3774 3775 name = elf_sec_str(obj, sh->sh_name); 3776 if (!name) 3777 return -LIBBPF_ERRNO__FORMAT; 3778 3779 if (ignore_elf_section(sh, name)) 3780 continue; 3781 3782 data = elf_sec_data(obj, scn); 3783 if (!data) 3784 return -LIBBPF_ERRNO__FORMAT; 3785 3786 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3787 idx, name, (unsigned long)data->d_size, 3788 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3789 (int)sh->sh_type); 3790 3791 if (strcmp(name, "license") == 0) { 3792 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3793 if (err) 3794 return err; 3795 } else if (strcmp(name, "version") == 0) { 3796 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3797 if (err) 3798 return err; 3799 } else if (strcmp(name, "maps") == 0) { 3800 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3801 return -ENOTSUP; 3802 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3803 obj->efile.btf_maps_shndx = idx; 3804 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3805 if (sh->sh_type != SHT_PROGBITS) 3806 return -LIBBPF_ERRNO__FORMAT; 3807 btf_data = data; 3808 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3809 if (sh->sh_type != SHT_PROGBITS) 3810 return -LIBBPF_ERRNO__FORMAT; 3811 btf_ext_data = data; 3812 } else if (sh->sh_type == SHT_SYMTAB) { 3813 /* already processed during the first pass above */ 3814 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3815 if (sh->sh_flags & SHF_EXECINSTR) { 3816 if (strcmp(name, ".text") == 0) 3817 obj->efile.text_shndx = idx; 3818 err = bpf_object__add_programs(obj, data, name, idx); 3819 if (err) 3820 return err; 3821 } else if (strcmp(name, DATA_SEC) == 0 || 3822 str_has_pfx(name, DATA_SEC ".")) { 3823 sec_desc->sec_type = SEC_DATA; 3824 sec_desc->shdr = sh; 3825 sec_desc->data = data; 3826 } else if (strcmp(name, RODATA_SEC) == 0 || 3827 str_has_pfx(name, RODATA_SEC ".")) { 3828 sec_desc->sec_type = SEC_RODATA; 3829 sec_desc->shdr = sh; 3830 sec_desc->data = data; 3831 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3832 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3833 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3834 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3835 sec_desc->sec_type = SEC_ST_OPS; 3836 sec_desc->shdr = sh; 3837 sec_desc->data = data; 3838 obj->efile.has_st_ops = true; 3839 } else if (strcmp(name, ARENA_SEC) == 0) { 3840 obj->efile.arena_data = data; 3841 obj->efile.arena_data_shndx = idx; 3842 } else { 3843 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3844 idx, name); 3845 } 3846 } else if (sh->sh_type == SHT_REL) { 3847 int targ_sec_idx = sh->sh_info; /* points to other section */ 3848 3849 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3850 targ_sec_idx >= obj->efile.sec_cnt) 3851 return -LIBBPF_ERRNO__FORMAT; 3852 3853 /* Only do relo for section with exec instructions */ 3854 if (!section_have_execinstr(obj, targ_sec_idx) && 3855 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3856 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3857 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3858 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3859 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3860 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3861 idx, name, targ_sec_idx, 3862 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3863 continue; 3864 } 3865 3866 sec_desc->sec_type = SEC_RELO; 3867 sec_desc->shdr = sh; 3868 sec_desc->data = data; 3869 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3870 str_has_pfx(name, BSS_SEC "."))) { 3871 sec_desc->sec_type = SEC_BSS; 3872 sec_desc->shdr = sh; 3873 sec_desc->data = data; 3874 } else { 3875 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3876 (size_t)sh->sh_size); 3877 } 3878 } 3879 3880 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3881 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3882 return -LIBBPF_ERRNO__FORMAT; 3883 } 3884 3885 /* sort BPF programs by section name and in-section instruction offset 3886 * for faster search 3887 */ 3888 if (obj->nr_programs) 3889 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3890 3891 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3892 } 3893 3894 static bool sym_is_extern(const Elf64_Sym *sym) 3895 { 3896 int bind = ELF64_ST_BIND(sym->st_info); 3897 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3898 return sym->st_shndx == SHN_UNDEF && 3899 (bind == STB_GLOBAL || bind == STB_WEAK) && 3900 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3901 } 3902 3903 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3904 { 3905 int bind = ELF64_ST_BIND(sym->st_info); 3906 int type = ELF64_ST_TYPE(sym->st_info); 3907 3908 /* in .text section */ 3909 if (sym->st_shndx != text_shndx) 3910 return false; 3911 3912 /* local function */ 3913 if (bind == STB_LOCAL && type == STT_SECTION) 3914 return true; 3915 3916 /* global function */ 3917 return bind == STB_GLOBAL && type == STT_FUNC; 3918 } 3919 3920 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3921 { 3922 const struct btf_type *t; 3923 const char *tname; 3924 int i, n; 3925 3926 if (!btf) 3927 return -ESRCH; 3928 3929 n = btf__type_cnt(btf); 3930 for (i = 1; i < n; i++) { 3931 t = btf__type_by_id(btf, i); 3932 3933 if (!btf_is_var(t) && !btf_is_func(t)) 3934 continue; 3935 3936 tname = btf__name_by_offset(btf, t->name_off); 3937 if (strcmp(tname, ext_name)) 3938 continue; 3939 3940 if (btf_is_var(t) && 3941 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3942 return -EINVAL; 3943 3944 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3945 return -EINVAL; 3946 3947 return i; 3948 } 3949 3950 return -ENOENT; 3951 } 3952 3953 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3954 const struct btf_var_secinfo *vs; 3955 const struct btf_type *t; 3956 int i, j, n; 3957 3958 if (!btf) 3959 return -ESRCH; 3960 3961 n = btf__type_cnt(btf); 3962 for (i = 1; i < n; i++) { 3963 t = btf__type_by_id(btf, i); 3964 3965 if (!btf_is_datasec(t)) 3966 continue; 3967 3968 vs = btf_var_secinfos(t); 3969 for (j = 0; j < btf_vlen(t); j++, vs++) { 3970 if (vs->type == ext_btf_id) 3971 return i; 3972 } 3973 } 3974 3975 return -ENOENT; 3976 } 3977 3978 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3979 bool *is_signed) 3980 { 3981 const struct btf_type *t; 3982 const char *name; 3983 3984 t = skip_mods_and_typedefs(btf, id, NULL); 3985 name = btf__name_by_offset(btf, t->name_off); 3986 3987 if (is_signed) 3988 *is_signed = false; 3989 switch (btf_kind(t)) { 3990 case BTF_KIND_INT: { 3991 int enc = btf_int_encoding(t); 3992 3993 if (enc & BTF_INT_BOOL) 3994 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3995 if (is_signed) 3996 *is_signed = enc & BTF_INT_SIGNED; 3997 if (t->size == 1) 3998 return KCFG_CHAR; 3999 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4000 return KCFG_UNKNOWN; 4001 return KCFG_INT; 4002 } 4003 case BTF_KIND_ENUM: 4004 if (t->size != 4) 4005 return KCFG_UNKNOWN; 4006 if (strcmp(name, "libbpf_tristate")) 4007 return KCFG_UNKNOWN; 4008 return KCFG_TRISTATE; 4009 case BTF_KIND_ENUM64: 4010 if (strcmp(name, "libbpf_tristate")) 4011 return KCFG_UNKNOWN; 4012 return KCFG_TRISTATE; 4013 case BTF_KIND_ARRAY: 4014 if (btf_array(t)->nelems == 0) 4015 return KCFG_UNKNOWN; 4016 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4017 return KCFG_UNKNOWN; 4018 return KCFG_CHAR_ARR; 4019 default: 4020 return KCFG_UNKNOWN; 4021 } 4022 } 4023 4024 static int cmp_externs(const void *_a, const void *_b) 4025 { 4026 const struct extern_desc *a = _a; 4027 const struct extern_desc *b = _b; 4028 4029 if (a->type != b->type) 4030 return a->type < b->type ? -1 : 1; 4031 4032 if (a->type == EXT_KCFG) { 4033 /* descending order by alignment requirements */ 4034 if (a->kcfg.align != b->kcfg.align) 4035 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4036 /* ascending order by size, within same alignment class */ 4037 if (a->kcfg.sz != b->kcfg.sz) 4038 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4039 } 4040 4041 /* resolve ties by name */ 4042 return strcmp(a->name, b->name); 4043 } 4044 4045 static int find_int_btf_id(const struct btf *btf) 4046 { 4047 const struct btf_type *t; 4048 int i, n; 4049 4050 n = btf__type_cnt(btf); 4051 for (i = 1; i < n; i++) { 4052 t = btf__type_by_id(btf, i); 4053 4054 if (btf_is_int(t) && btf_int_bits(t) == 32) 4055 return i; 4056 } 4057 4058 return 0; 4059 } 4060 4061 static int add_dummy_ksym_var(struct btf *btf) 4062 { 4063 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4064 const struct btf_var_secinfo *vs; 4065 const struct btf_type *sec; 4066 4067 if (!btf) 4068 return 0; 4069 4070 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4071 BTF_KIND_DATASEC); 4072 if (sec_btf_id < 0) 4073 return 0; 4074 4075 sec = btf__type_by_id(btf, sec_btf_id); 4076 vs = btf_var_secinfos(sec); 4077 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4078 const struct btf_type *vt; 4079 4080 vt = btf__type_by_id(btf, vs->type); 4081 if (btf_is_func(vt)) 4082 break; 4083 } 4084 4085 /* No func in ksyms sec. No need to add dummy var. */ 4086 if (i == btf_vlen(sec)) 4087 return 0; 4088 4089 int_btf_id = find_int_btf_id(btf); 4090 dummy_var_btf_id = btf__add_var(btf, 4091 "dummy_ksym", 4092 BTF_VAR_GLOBAL_ALLOCATED, 4093 int_btf_id); 4094 if (dummy_var_btf_id < 0) 4095 pr_warn("cannot create a dummy_ksym var\n"); 4096 4097 return dummy_var_btf_id; 4098 } 4099 4100 static int bpf_object__collect_externs(struct bpf_object *obj) 4101 { 4102 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4103 const struct btf_type *t; 4104 struct extern_desc *ext; 4105 int i, n, off, dummy_var_btf_id; 4106 const char *ext_name, *sec_name; 4107 size_t ext_essent_len; 4108 Elf_Scn *scn; 4109 Elf64_Shdr *sh; 4110 4111 if (!obj->efile.symbols) 4112 return 0; 4113 4114 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4115 sh = elf_sec_hdr(obj, scn); 4116 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4117 return -LIBBPF_ERRNO__FORMAT; 4118 4119 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4120 if (dummy_var_btf_id < 0) 4121 return dummy_var_btf_id; 4122 4123 n = sh->sh_size / sh->sh_entsize; 4124 pr_debug("looking for externs among %d symbols...\n", n); 4125 4126 for (i = 0; i < n; i++) { 4127 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4128 4129 if (!sym) 4130 return -LIBBPF_ERRNO__FORMAT; 4131 if (!sym_is_extern(sym)) 4132 continue; 4133 ext_name = elf_sym_str(obj, sym->st_name); 4134 if (!ext_name || !ext_name[0]) 4135 continue; 4136 4137 ext = obj->externs; 4138 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4139 if (!ext) 4140 return -ENOMEM; 4141 obj->externs = ext; 4142 ext = &ext[obj->nr_extern]; 4143 memset(ext, 0, sizeof(*ext)); 4144 obj->nr_extern++; 4145 4146 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4147 if (ext->btf_id <= 0) { 4148 pr_warn("failed to find BTF for extern '%s': %d\n", 4149 ext_name, ext->btf_id); 4150 return ext->btf_id; 4151 } 4152 t = btf__type_by_id(obj->btf, ext->btf_id); 4153 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4154 ext->sym_idx = i; 4155 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4156 4157 ext_essent_len = bpf_core_essential_name_len(ext->name); 4158 ext->essent_name = NULL; 4159 if (ext_essent_len != strlen(ext->name)) { 4160 ext->essent_name = strndup(ext->name, ext_essent_len); 4161 if (!ext->essent_name) 4162 return -ENOMEM; 4163 } 4164 4165 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4166 if (ext->sec_btf_id <= 0) { 4167 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4168 ext_name, ext->btf_id, ext->sec_btf_id); 4169 return ext->sec_btf_id; 4170 } 4171 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4172 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4173 4174 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4175 if (btf_is_func(t)) { 4176 pr_warn("extern function %s is unsupported under %s section\n", 4177 ext->name, KCONFIG_SEC); 4178 return -ENOTSUP; 4179 } 4180 kcfg_sec = sec; 4181 ext->type = EXT_KCFG; 4182 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4183 if (ext->kcfg.sz <= 0) { 4184 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4185 ext_name, ext->kcfg.sz); 4186 return ext->kcfg.sz; 4187 } 4188 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4189 if (ext->kcfg.align <= 0) { 4190 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4191 ext_name, ext->kcfg.align); 4192 return -EINVAL; 4193 } 4194 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4195 &ext->kcfg.is_signed); 4196 if (ext->kcfg.type == KCFG_UNKNOWN) { 4197 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4198 return -ENOTSUP; 4199 } 4200 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4201 ksym_sec = sec; 4202 ext->type = EXT_KSYM; 4203 skip_mods_and_typedefs(obj->btf, t->type, 4204 &ext->ksym.type_id); 4205 } else { 4206 pr_warn("unrecognized extern section '%s'\n", sec_name); 4207 return -ENOTSUP; 4208 } 4209 } 4210 pr_debug("collected %d externs total\n", obj->nr_extern); 4211 4212 if (!obj->nr_extern) 4213 return 0; 4214 4215 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4216 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4217 4218 /* for .ksyms section, we need to turn all externs into allocated 4219 * variables in BTF to pass kernel verification; we do this by 4220 * pretending that each extern is a 8-byte variable 4221 */ 4222 if (ksym_sec) { 4223 /* find existing 4-byte integer type in BTF to use for fake 4224 * extern variables in DATASEC 4225 */ 4226 int int_btf_id = find_int_btf_id(obj->btf); 4227 /* For extern function, a dummy_var added earlier 4228 * will be used to replace the vs->type and 4229 * its name string will be used to refill 4230 * the missing param's name. 4231 */ 4232 const struct btf_type *dummy_var; 4233 4234 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4235 for (i = 0; i < obj->nr_extern; i++) { 4236 ext = &obj->externs[i]; 4237 if (ext->type != EXT_KSYM) 4238 continue; 4239 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4240 i, ext->sym_idx, ext->name); 4241 } 4242 4243 sec = ksym_sec; 4244 n = btf_vlen(sec); 4245 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4246 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4247 struct btf_type *vt; 4248 4249 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4250 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4251 ext = find_extern_by_name(obj, ext_name); 4252 if (!ext) { 4253 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4254 btf_kind_str(vt), ext_name); 4255 return -ESRCH; 4256 } 4257 if (btf_is_func(vt)) { 4258 const struct btf_type *func_proto; 4259 struct btf_param *param; 4260 int j; 4261 4262 func_proto = btf__type_by_id(obj->btf, 4263 vt->type); 4264 param = btf_params(func_proto); 4265 /* Reuse the dummy_var string if the 4266 * func proto does not have param name. 4267 */ 4268 for (j = 0; j < btf_vlen(func_proto); j++) 4269 if (param[j].type && !param[j].name_off) 4270 param[j].name_off = 4271 dummy_var->name_off; 4272 vs->type = dummy_var_btf_id; 4273 vt->info &= ~0xffff; 4274 vt->info |= BTF_FUNC_GLOBAL; 4275 } else { 4276 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4277 vt->type = int_btf_id; 4278 } 4279 vs->offset = off; 4280 vs->size = sizeof(int); 4281 } 4282 sec->size = off; 4283 } 4284 4285 if (kcfg_sec) { 4286 sec = kcfg_sec; 4287 /* for kcfg externs calculate their offsets within a .kconfig map */ 4288 off = 0; 4289 for (i = 0; i < obj->nr_extern; i++) { 4290 ext = &obj->externs[i]; 4291 if (ext->type != EXT_KCFG) 4292 continue; 4293 4294 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4295 off = ext->kcfg.data_off + ext->kcfg.sz; 4296 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4297 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4298 } 4299 sec->size = off; 4300 n = btf_vlen(sec); 4301 for (i = 0; i < n; i++) { 4302 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4303 4304 t = btf__type_by_id(obj->btf, vs->type); 4305 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4306 ext = find_extern_by_name(obj, ext_name); 4307 if (!ext) { 4308 pr_warn("failed to find extern definition for BTF var '%s'\n", 4309 ext_name); 4310 return -ESRCH; 4311 } 4312 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4313 vs->offset = ext->kcfg.data_off; 4314 } 4315 } 4316 return 0; 4317 } 4318 4319 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4320 { 4321 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4322 } 4323 4324 struct bpf_program * 4325 bpf_object__find_program_by_name(const struct bpf_object *obj, 4326 const char *name) 4327 { 4328 struct bpf_program *prog; 4329 4330 bpf_object__for_each_program(prog, obj) { 4331 if (prog_is_subprog(obj, prog)) 4332 continue; 4333 if (!strcmp(prog->name, name)) 4334 return prog; 4335 } 4336 return errno = ENOENT, NULL; 4337 } 4338 4339 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4340 int shndx) 4341 { 4342 switch (obj->efile.secs[shndx].sec_type) { 4343 case SEC_BSS: 4344 case SEC_DATA: 4345 case SEC_RODATA: 4346 return true; 4347 default: 4348 return false; 4349 } 4350 } 4351 4352 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4353 int shndx) 4354 { 4355 return shndx == obj->efile.btf_maps_shndx; 4356 } 4357 4358 static enum libbpf_map_type 4359 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4360 { 4361 if (shndx == obj->efile.symbols_shndx) 4362 return LIBBPF_MAP_KCONFIG; 4363 4364 switch (obj->efile.secs[shndx].sec_type) { 4365 case SEC_BSS: 4366 return LIBBPF_MAP_BSS; 4367 case SEC_DATA: 4368 return LIBBPF_MAP_DATA; 4369 case SEC_RODATA: 4370 return LIBBPF_MAP_RODATA; 4371 default: 4372 return LIBBPF_MAP_UNSPEC; 4373 } 4374 } 4375 4376 static int bpf_program__record_reloc(struct bpf_program *prog, 4377 struct reloc_desc *reloc_desc, 4378 __u32 insn_idx, const char *sym_name, 4379 const Elf64_Sym *sym, const Elf64_Rel *rel) 4380 { 4381 struct bpf_insn *insn = &prog->insns[insn_idx]; 4382 size_t map_idx, nr_maps = prog->obj->nr_maps; 4383 struct bpf_object *obj = prog->obj; 4384 __u32 shdr_idx = sym->st_shndx; 4385 enum libbpf_map_type type; 4386 const char *sym_sec_name; 4387 struct bpf_map *map; 4388 4389 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4390 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4391 prog->name, sym_name, insn_idx, insn->code); 4392 return -LIBBPF_ERRNO__RELOC; 4393 } 4394 4395 if (sym_is_extern(sym)) { 4396 int sym_idx = ELF64_R_SYM(rel->r_info); 4397 int i, n = obj->nr_extern; 4398 struct extern_desc *ext; 4399 4400 for (i = 0; i < n; i++) { 4401 ext = &obj->externs[i]; 4402 if (ext->sym_idx == sym_idx) 4403 break; 4404 } 4405 if (i >= n) { 4406 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4407 prog->name, sym_name, sym_idx); 4408 return -LIBBPF_ERRNO__RELOC; 4409 } 4410 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4411 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4412 if (insn->code == (BPF_JMP | BPF_CALL)) 4413 reloc_desc->type = RELO_EXTERN_CALL; 4414 else 4415 reloc_desc->type = RELO_EXTERN_LD64; 4416 reloc_desc->insn_idx = insn_idx; 4417 reloc_desc->ext_idx = i; 4418 return 0; 4419 } 4420 4421 /* sub-program call relocation */ 4422 if (is_call_insn(insn)) { 4423 if (insn->src_reg != BPF_PSEUDO_CALL) { 4424 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4425 return -LIBBPF_ERRNO__RELOC; 4426 } 4427 /* text_shndx can be 0, if no default "main" program exists */ 4428 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4429 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4430 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4431 prog->name, sym_name, sym_sec_name); 4432 return -LIBBPF_ERRNO__RELOC; 4433 } 4434 if (sym->st_value % BPF_INSN_SZ) { 4435 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4436 prog->name, sym_name, (size_t)sym->st_value); 4437 return -LIBBPF_ERRNO__RELOC; 4438 } 4439 reloc_desc->type = RELO_CALL; 4440 reloc_desc->insn_idx = insn_idx; 4441 reloc_desc->sym_off = sym->st_value; 4442 return 0; 4443 } 4444 4445 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4446 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4447 prog->name, sym_name, shdr_idx); 4448 return -LIBBPF_ERRNO__RELOC; 4449 } 4450 4451 /* loading subprog addresses */ 4452 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4453 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4454 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4455 */ 4456 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4457 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4458 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4459 return -LIBBPF_ERRNO__RELOC; 4460 } 4461 4462 reloc_desc->type = RELO_SUBPROG_ADDR; 4463 reloc_desc->insn_idx = insn_idx; 4464 reloc_desc->sym_off = sym->st_value; 4465 return 0; 4466 } 4467 4468 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4469 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4470 4471 /* arena data relocation */ 4472 if (shdr_idx == obj->efile.arena_data_shndx) { 4473 reloc_desc->type = RELO_DATA; 4474 reloc_desc->insn_idx = insn_idx; 4475 reloc_desc->map_idx = obj->arena_map - obj->maps; 4476 reloc_desc->sym_off = sym->st_value; 4477 return 0; 4478 } 4479 4480 /* generic map reference relocation */ 4481 if (type == LIBBPF_MAP_UNSPEC) { 4482 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4483 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4484 prog->name, sym_name, sym_sec_name); 4485 return -LIBBPF_ERRNO__RELOC; 4486 } 4487 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4488 map = &obj->maps[map_idx]; 4489 if (map->libbpf_type != type || 4490 map->sec_idx != sym->st_shndx || 4491 map->sec_offset != sym->st_value) 4492 continue; 4493 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4494 prog->name, map_idx, map->name, map->sec_idx, 4495 map->sec_offset, insn_idx); 4496 break; 4497 } 4498 if (map_idx >= nr_maps) { 4499 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4500 prog->name, sym_sec_name, (size_t)sym->st_value); 4501 return -LIBBPF_ERRNO__RELOC; 4502 } 4503 reloc_desc->type = RELO_LD64; 4504 reloc_desc->insn_idx = insn_idx; 4505 reloc_desc->map_idx = map_idx; 4506 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4507 return 0; 4508 } 4509 4510 /* global data map relocation */ 4511 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4512 pr_warn("prog '%s': bad data relo against section '%s'\n", 4513 prog->name, sym_sec_name); 4514 return -LIBBPF_ERRNO__RELOC; 4515 } 4516 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4517 map = &obj->maps[map_idx]; 4518 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4519 continue; 4520 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4521 prog->name, map_idx, map->name, map->sec_idx, 4522 map->sec_offset, insn_idx); 4523 break; 4524 } 4525 if (map_idx >= nr_maps) { 4526 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4527 prog->name, sym_sec_name); 4528 return -LIBBPF_ERRNO__RELOC; 4529 } 4530 4531 reloc_desc->type = RELO_DATA; 4532 reloc_desc->insn_idx = insn_idx; 4533 reloc_desc->map_idx = map_idx; 4534 reloc_desc->sym_off = sym->st_value; 4535 return 0; 4536 } 4537 4538 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4539 { 4540 return insn_idx >= prog->sec_insn_off && 4541 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4542 } 4543 4544 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4545 size_t sec_idx, size_t insn_idx) 4546 { 4547 int l = 0, r = obj->nr_programs - 1, m; 4548 struct bpf_program *prog; 4549 4550 if (!obj->nr_programs) 4551 return NULL; 4552 4553 while (l < r) { 4554 m = l + (r - l + 1) / 2; 4555 prog = &obj->programs[m]; 4556 4557 if (prog->sec_idx < sec_idx || 4558 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4559 l = m; 4560 else 4561 r = m - 1; 4562 } 4563 /* matching program could be at index l, but it still might be the 4564 * wrong one, so we need to double check conditions for the last time 4565 */ 4566 prog = &obj->programs[l]; 4567 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4568 return prog; 4569 return NULL; 4570 } 4571 4572 static int 4573 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4574 { 4575 const char *relo_sec_name, *sec_name; 4576 size_t sec_idx = shdr->sh_info, sym_idx; 4577 struct bpf_program *prog; 4578 struct reloc_desc *relos; 4579 int err, i, nrels; 4580 const char *sym_name; 4581 __u32 insn_idx; 4582 Elf_Scn *scn; 4583 Elf_Data *scn_data; 4584 Elf64_Sym *sym; 4585 Elf64_Rel *rel; 4586 4587 if (sec_idx >= obj->efile.sec_cnt) 4588 return -EINVAL; 4589 4590 scn = elf_sec_by_idx(obj, sec_idx); 4591 scn_data = elf_sec_data(obj, scn); 4592 if (!scn_data) 4593 return -LIBBPF_ERRNO__FORMAT; 4594 4595 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4596 sec_name = elf_sec_name(obj, scn); 4597 if (!relo_sec_name || !sec_name) 4598 return -EINVAL; 4599 4600 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4601 relo_sec_name, sec_idx, sec_name); 4602 nrels = shdr->sh_size / shdr->sh_entsize; 4603 4604 for (i = 0; i < nrels; i++) { 4605 rel = elf_rel_by_idx(data, i); 4606 if (!rel) { 4607 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4608 return -LIBBPF_ERRNO__FORMAT; 4609 } 4610 4611 sym_idx = ELF64_R_SYM(rel->r_info); 4612 sym = elf_sym_by_idx(obj, sym_idx); 4613 if (!sym) { 4614 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4615 relo_sec_name, sym_idx, i); 4616 return -LIBBPF_ERRNO__FORMAT; 4617 } 4618 4619 if (sym->st_shndx >= obj->efile.sec_cnt) { 4620 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4621 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4622 return -LIBBPF_ERRNO__FORMAT; 4623 } 4624 4625 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4626 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4627 relo_sec_name, (size_t)rel->r_offset, i); 4628 return -LIBBPF_ERRNO__FORMAT; 4629 } 4630 4631 insn_idx = rel->r_offset / BPF_INSN_SZ; 4632 /* relocations against static functions are recorded as 4633 * relocations against the section that contains a function; 4634 * in such case, symbol will be STT_SECTION and sym.st_name 4635 * will point to empty string (0), so fetch section name 4636 * instead 4637 */ 4638 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4639 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4640 else 4641 sym_name = elf_sym_str(obj, sym->st_name); 4642 sym_name = sym_name ?: "<?"; 4643 4644 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4645 relo_sec_name, i, insn_idx, sym_name); 4646 4647 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4648 if (!prog) { 4649 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4650 relo_sec_name, i, sec_name, insn_idx); 4651 continue; 4652 } 4653 4654 relos = libbpf_reallocarray(prog->reloc_desc, 4655 prog->nr_reloc + 1, sizeof(*relos)); 4656 if (!relos) 4657 return -ENOMEM; 4658 prog->reloc_desc = relos; 4659 4660 /* adjust insn_idx to local BPF program frame of reference */ 4661 insn_idx -= prog->sec_insn_off; 4662 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4663 insn_idx, sym_name, sym, rel); 4664 if (err) 4665 return err; 4666 4667 prog->nr_reloc++; 4668 } 4669 return 0; 4670 } 4671 4672 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4673 { 4674 int id; 4675 4676 if (!obj->btf) 4677 return -ENOENT; 4678 4679 /* if it's BTF-defined map, we don't need to search for type IDs. 4680 * For struct_ops map, it does not need btf_key_type_id and 4681 * btf_value_type_id. 4682 */ 4683 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4684 return 0; 4685 4686 /* 4687 * LLVM annotates global data differently in BTF, that is, 4688 * only as '.data', '.bss' or '.rodata'. 4689 */ 4690 if (!bpf_map__is_internal(map)) 4691 return -ENOENT; 4692 4693 id = btf__find_by_name(obj->btf, map->real_name); 4694 if (id < 0) 4695 return id; 4696 4697 map->btf_key_type_id = 0; 4698 map->btf_value_type_id = id; 4699 return 0; 4700 } 4701 4702 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4703 { 4704 char file[PATH_MAX], buff[4096]; 4705 FILE *fp; 4706 __u32 val; 4707 int err; 4708 4709 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4710 memset(info, 0, sizeof(*info)); 4711 4712 fp = fopen(file, "re"); 4713 if (!fp) { 4714 err = -errno; 4715 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4716 err); 4717 return err; 4718 } 4719 4720 while (fgets(buff, sizeof(buff), fp)) { 4721 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4722 info->type = val; 4723 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4724 info->key_size = val; 4725 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4726 info->value_size = val; 4727 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4728 info->max_entries = val; 4729 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4730 info->map_flags = val; 4731 } 4732 4733 fclose(fp); 4734 4735 return 0; 4736 } 4737 4738 bool bpf_map__autocreate(const struct bpf_map *map) 4739 { 4740 return map->autocreate; 4741 } 4742 4743 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4744 { 4745 if (map->obj->loaded) 4746 return libbpf_err(-EBUSY); 4747 4748 map->autocreate = autocreate; 4749 return 0; 4750 } 4751 4752 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4753 { 4754 struct bpf_map_info info; 4755 __u32 len = sizeof(info), name_len; 4756 int new_fd, err; 4757 char *new_name; 4758 4759 memset(&info, 0, len); 4760 err = bpf_map_get_info_by_fd(fd, &info, &len); 4761 if (err && errno == EINVAL) 4762 err = bpf_get_map_info_from_fdinfo(fd, &info); 4763 if (err) 4764 return libbpf_err(err); 4765 4766 name_len = strlen(info.name); 4767 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4768 new_name = strdup(map->name); 4769 else 4770 new_name = strdup(info.name); 4771 4772 if (!new_name) 4773 return libbpf_err(-errno); 4774 4775 /* 4776 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4777 * This is similar to what we do in ensure_good_fd(), but without 4778 * closing original FD. 4779 */ 4780 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4781 if (new_fd < 0) { 4782 err = -errno; 4783 goto err_free_new_name; 4784 } 4785 4786 err = reuse_fd(map->fd, new_fd); 4787 if (err) 4788 goto err_free_new_name; 4789 4790 free(map->name); 4791 4792 map->name = new_name; 4793 map->def.type = info.type; 4794 map->def.key_size = info.key_size; 4795 map->def.value_size = info.value_size; 4796 map->def.max_entries = info.max_entries; 4797 map->def.map_flags = info.map_flags; 4798 map->btf_key_type_id = info.btf_key_type_id; 4799 map->btf_value_type_id = info.btf_value_type_id; 4800 map->reused = true; 4801 map->map_extra = info.map_extra; 4802 4803 return 0; 4804 4805 err_free_new_name: 4806 free(new_name); 4807 return libbpf_err(err); 4808 } 4809 4810 __u32 bpf_map__max_entries(const struct bpf_map *map) 4811 { 4812 return map->def.max_entries; 4813 } 4814 4815 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4816 { 4817 if (!bpf_map_type__is_map_in_map(map->def.type)) 4818 return errno = EINVAL, NULL; 4819 4820 return map->inner_map; 4821 } 4822 4823 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4824 { 4825 if (map->obj->loaded) 4826 return libbpf_err(-EBUSY); 4827 4828 map->def.max_entries = max_entries; 4829 4830 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4831 if (map_is_ringbuf(map)) 4832 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4833 4834 return 0; 4835 } 4836 4837 static int bpf_object_prepare_token(struct bpf_object *obj) 4838 { 4839 const char *bpffs_path; 4840 int bpffs_fd = -1, token_fd, err; 4841 bool mandatory; 4842 enum libbpf_print_level level; 4843 4844 /* token is explicitly prevented */ 4845 if (obj->token_path && obj->token_path[0] == '\0') { 4846 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4847 return 0; 4848 } 4849 4850 mandatory = obj->token_path != NULL; 4851 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4852 4853 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4854 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4855 if (bpffs_fd < 0) { 4856 err = -errno; 4857 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4858 obj->name, err, bpffs_path, 4859 mandatory ? "" : ", skipping optional step..."); 4860 return mandatory ? err : 0; 4861 } 4862 4863 token_fd = bpf_token_create(bpffs_fd, 0); 4864 close(bpffs_fd); 4865 if (token_fd < 0) { 4866 if (!mandatory && token_fd == -ENOENT) { 4867 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4868 obj->name, bpffs_path); 4869 return 0; 4870 } 4871 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4872 obj->name, token_fd, bpffs_path, 4873 mandatory ? "" : ", skipping optional step..."); 4874 return mandatory ? token_fd : 0; 4875 } 4876 4877 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4878 if (!obj->feat_cache) { 4879 close(token_fd); 4880 return -ENOMEM; 4881 } 4882 4883 obj->token_fd = token_fd; 4884 obj->feat_cache->token_fd = token_fd; 4885 4886 return 0; 4887 } 4888 4889 static int 4890 bpf_object__probe_loading(struct bpf_object *obj) 4891 { 4892 char *cp, errmsg[STRERR_BUFSIZE]; 4893 struct bpf_insn insns[] = { 4894 BPF_MOV64_IMM(BPF_REG_0, 0), 4895 BPF_EXIT_INSN(), 4896 }; 4897 int ret, insn_cnt = ARRAY_SIZE(insns); 4898 LIBBPF_OPTS(bpf_prog_load_opts, opts, 4899 .token_fd = obj->token_fd, 4900 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 4901 ); 4902 4903 if (obj->gen_loader) 4904 return 0; 4905 4906 ret = bump_rlimit_memlock(); 4907 if (ret) 4908 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4909 4910 /* make sure basic loading works */ 4911 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 4912 if (ret < 0) 4913 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 4914 if (ret < 0) { 4915 ret = errno; 4916 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4917 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4918 "program. Make sure your kernel supports BPF " 4919 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4920 "set to big enough value.\n", __func__, cp, ret); 4921 return -ret; 4922 } 4923 close(ret); 4924 4925 return 0; 4926 } 4927 4928 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4929 { 4930 if (obj->gen_loader) 4931 /* To generate loader program assume the latest kernel 4932 * to avoid doing extra prog_load, map_create syscalls. 4933 */ 4934 return true; 4935 4936 if (obj->token_fd) 4937 return feat_supported(obj->feat_cache, feat_id); 4938 4939 return feat_supported(NULL, feat_id); 4940 } 4941 4942 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4943 { 4944 struct bpf_map_info map_info; 4945 char msg[STRERR_BUFSIZE]; 4946 __u32 map_info_len = sizeof(map_info); 4947 int err; 4948 4949 memset(&map_info, 0, map_info_len); 4950 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4951 if (err && errno == EINVAL) 4952 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4953 if (err) { 4954 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4955 libbpf_strerror_r(errno, msg, sizeof(msg))); 4956 return false; 4957 } 4958 4959 return (map_info.type == map->def.type && 4960 map_info.key_size == map->def.key_size && 4961 map_info.value_size == map->def.value_size && 4962 map_info.max_entries == map->def.max_entries && 4963 map_info.map_flags == map->def.map_flags && 4964 map_info.map_extra == map->map_extra); 4965 } 4966 4967 static int 4968 bpf_object__reuse_map(struct bpf_map *map) 4969 { 4970 char *cp, errmsg[STRERR_BUFSIZE]; 4971 int err, pin_fd; 4972 4973 pin_fd = bpf_obj_get(map->pin_path); 4974 if (pin_fd < 0) { 4975 err = -errno; 4976 if (err == -ENOENT) { 4977 pr_debug("found no pinned map to reuse at '%s'\n", 4978 map->pin_path); 4979 return 0; 4980 } 4981 4982 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4983 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4984 map->pin_path, cp); 4985 return err; 4986 } 4987 4988 if (!map_is_reuse_compat(map, pin_fd)) { 4989 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4990 map->pin_path); 4991 close(pin_fd); 4992 return -EINVAL; 4993 } 4994 4995 err = bpf_map__reuse_fd(map, pin_fd); 4996 close(pin_fd); 4997 if (err) 4998 return err; 4999 5000 map->pinned = true; 5001 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5002 5003 return 0; 5004 } 5005 5006 static int 5007 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5008 { 5009 enum libbpf_map_type map_type = map->libbpf_type; 5010 char *cp, errmsg[STRERR_BUFSIZE]; 5011 int err, zero = 0; 5012 5013 if (obj->gen_loader) { 5014 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5015 map->mmaped, map->def.value_size); 5016 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5017 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5018 return 0; 5019 } 5020 5021 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5022 if (err) { 5023 err = -errno; 5024 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5025 pr_warn("Error setting initial map(%s) contents: %s\n", 5026 map->name, cp); 5027 return err; 5028 } 5029 5030 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5031 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5032 err = bpf_map_freeze(map->fd); 5033 if (err) { 5034 err = -errno; 5035 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5036 pr_warn("Error freezing map(%s) as read-only: %s\n", 5037 map->name, cp); 5038 return err; 5039 } 5040 } 5041 return 0; 5042 } 5043 5044 static void bpf_map__destroy(struct bpf_map *map); 5045 5046 static bool map_is_created(const struct bpf_map *map) 5047 { 5048 return map->obj->loaded || map->reused; 5049 } 5050 5051 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5052 { 5053 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5054 struct bpf_map_def *def = &map->def; 5055 const char *map_name = NULL; 5056 int err = 0, map_fd; 5057 5058 if (kernel_supports(obj, FEAT_PROG_NAME)) 5059 map_name = map->name; 5060 create_attr.map_ifindex = map->map_ifindex; 5061 create_attr.map_flags = def->map_flags; 5062 create_attr.numa_node = map->numa_node; 5063 create_attr.map_extra = map->map_extra; 5064 create_attr.token_fd = obj->token_fd; 5065 if (obj->token_fd) 5066 create_attr.map_flags |= BPF_F_TOKEN_FD; 5067 5068 if (bpf_map__is_struct_ops(map)) { 5069 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5070 if (map->mod_btf_fd >= 0) { 5071 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5072 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5073 } 5074 } 5075 5076 if (obj->btf && btf__fd(obj->btf) >= 0) { 5077 create_attr.btf_fd = btf__fd(obj->btf); 5078 create_attr.btf_key_type_id = map->btf_key_type_id; 5079 create_attr.btf_value_type_id = map->btf_value_type_id; 5080 } 5081 5082 if (bpf_map_type__is_map_in_map(def->type)) { 5083 if (map->inner_map) { 5084 err = map_set_def_max_entries(map->inner_map); 5085 if (err) 5086 return err; 5087 err = bpf_object__create_map(obj, map->inner_map, true); 5088 if (err) { 5089 pr_warn("map '%s': failed to create inner map: %d\n", 5090 map->name, err); 5091 return err; 5092 } 5093 map->inner_map_fd = map->inner_map->fd; 5094 } 5095 if (map->inner_map_fd >= 0) 5096 create_attr.inner_map_fd = map->inner_map_fd; 5097 } 5098 5099 switch (def->type) { 5100 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5101 case BPF_MAP_TYPE_CGROUP_ARRAY: 5102 case BPF_MAP_TYPE_STACK_TRACE: 5103 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5104 case BPF_MAP_TYPE_HASH_OF_MAPS: 5105 case BPF_MAP_TYPE_DEVMAP: 5106 case BPF_MAP_TYPE_DEVMAP_HASH: 5107 case BPF_MAP_TYPE_CPUMAP: 5108 case BPF_MAP_TYPE_XSKMAP: 5109 case BPF_MAP_TYPE_SOCKMAP: 5110 case BPF_MAP_TYPE_SOCKHASH: 5111 case BPF_MAP_TYPE_QUEUE: 5112 case BPF_MAP_TYPE_STACK: 5113 case BPF_MAP_TYPE_ARENA: 5114 create_attr.btf_fd = 0; 5115 create_attr.btf_key_type_id = 0; 5116 create_attr.btf_value_type_id = 0; 5117 map->btf_key_type_id = 0; 5118 map->btf_value_type_id = 0; 5119 break; 5120 case BPF_MAP_TYPE_STRUCT_OPS: 5121 create_attr.btf_value_type_id = 0; 5122 break; 5123 default: 5124 break; 5125 } 5126 5127 if (obj->gen_loader) { 5128 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5129 def->key_size, def->value_size, def->max_entries, 5130 &create_attr, is_inner ? -1 : map - obj->maps); 5131 /* We keep pretenting we have valid FD to pass various fd >= 0 5132 * checks by just keeping original placeholder FDs in place. 5133 * See bpf_object__add_map() comment. 5134 * This placeholder fd will not be used with any syscall and 5135 * will be reset to -1 eventually. 5136 */ 5137 map_fd = map->fd; 5138 } else { 5139 map_fd = bpf_map_create(def->type, map_name, 5140 def->key_size, def->value_size, 5141 def->max_entries, &create_attr); 5142 } 5143 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5144 char *cp, errmsg[STRERR_BUFSIZE]; 5145 5146 err = -errno; 5147 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5148 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5149 map->name, cp, err); 5150 create_attr.btf_fd = 0; 5151 create_attr.btf_key_type_id = 0; 5152 create_attr.btf_value_type_id = 0; 5153 map->btf_key_type_id = 0; 5154 map->btf_value_type_id = 0; 5155 map_fd = bpf_map_create(def->type, map_name, 5156 def->key_size, def->value_size, 5157 def->max_entries, &create_attr); 5158 } 5159 5160 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5161 if (obj->gen_loader) 5162 map->inner_map->fd = -1; 5163 bpf_map__destroy(map->inner_map); 5164 zfree(&map->inner_map); 5165 } 5166 5167 if (map_fd < 0) 5168 return map_fd; 5169 5170 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5171 if (map->fd == map_fd) 5172 return 0; 5173 5174 /* Keep placeholder FD value but now point it to the BPF map object. 5175 * This way everything that relied on this map's FD (e.g., relocated 5176 * ldimm64 instructions) will stay valid and won't need adjustments. 5177 * map->fd stays valid but now point to what map_fd points to. 5178 */ 5179 return reuse_fd(map->fd, map_fd); 5180 } 5181 5182 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5183 { 5184 const struct bpf_map *targ_map; 5185 unsigned int i; 5186 int fd, err = 0; 5187 5188 for (i = 0; i < map->init_slots_sz; i++) { 5189 if (!map->init_slots[i]) 5190 continue; 5191 5192 targ_map = map->init_slots[i]; 5193 fd = targ_map->fd; 5194 5195 if (obj->gen_loader) { 5196 bpf_gen__populate_outer_map(obj->gen_loader, 5197 map - obj->maps, i, 5198 targ_map - obj->maps); 5199 } else { 5200 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5201 } 5202 if (err) { 5203 err = -errno; 5204 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5205 map->name, i, targ_map->name, fd, err); 5206 return err; 5207 } 5208 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5209 map->name, i, targ_map->name, fd); 5210 } 5211 5212 zfree(&map->init_slots); 5213 map->init_slots_sz = 0; 5214 5215 return 0; 5216 } 5217 5218 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5219 { 5220 const struct bpf_program *targ_prog; 5221 unsigned int i; 5222 int fd, err; 5223 5224 if (obj->gen_loader) 5225 return -ENOTSUP; 5226 5227 for (i = 0; i < map->init_slots_sz; i++) { 5228 if (!map->init_slots[i]) 5229 continue; 5230 5231 targ_prog = map->init_slots[i]; 5232 fd = bpf_program__fd(targ_prog); 5233 5234 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5235 if (err) { 5236 err = -errno; 5237 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5238 map->name, i, targ_prog->name, fd, err); 5239 return err; 5240 } 5241 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5242 map->name, i, targ_prog->name, fd); 5243 } 5244 5245 zfree(&map->init_slots); 5246 map->init_slots_sz = 0; 5247 5248 return 0; 5249 } 5250 5251 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5252 { 5253 struct bpf_map *map; 5254 int i, err; 5255 5256 for (i = 0; i < obj->nr_maps; i++) { 5257 map = &obj->maps[i]; 5258 5259 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5260 continue; 5261 5262 err = init_prog_array_slots(obj, map); 5263 if (err < 0) 5264 return err; 5265 } 5266 return 0; 5267 } 5268 5269 static int map_set_def_max_entries(struct bpf_map *map) 5270 { 5271 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5272 int nr_cpus; 5273 5274 nr_cpus = libbpf_num_possible_cpus(); 5275 if (nr_cpus < 0) { 5276 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5277 map->name, nr_cpus); 5278 return nr_cpus; 5279 } 5280 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5281 map->def.max_entries = nr_cpus; 5282 } 5283 5284 return 0; 5285 } 5286 5287 static int 5288 bpf_object__create_maps(struct bpf_object *obj) 5289 { 5290 struct bpf_map *map; 5291 char *cp, errmsg[STRERR_BUFSIZE]; 5292 unsigned int i, j; 5293 int err; 5294 bool retried; 5295 5296 for (i = 0; i < obj->nr_maps; i++) { 5297 map = &obj->maps[i]; 5298 5299 /* To support old kernels, we skip creating global data maps 5300 * (.rodata, .data, .kconfig, etc); later on, during program 5301 * loading, if we detect that at least one of the to-be-loaded 5302 * programs is referencing any global data map, we'll error 5303 * out with program name and relocation index logged. 5304 * This approach allows to accommodate Clang emitting 5305 * unnecessary .rodata.str1.1 sections for string literals, 5306 * but also it allows to have CO-RE applications that use 5307 * global variables in some of BPF programs, but not others. 5308 * If those global variable-using programs are not loaded at 5309 * runtime due to bpf_program__set_autoload(prog, false), 5310 * bpf_object loading will succeed just fine even on old 5311 * kernels. 5312 */ 5313 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5314 map->autocreate = false; 5315 5316 if (!map->autocreate) { 5317 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5318 continue; 5319 } 5320 5321 err = map_set_def_max_entries(map); 5322 if (err) 5323 goto err_out; 5324 5325 retried = false; 5326 retry: 5327 if (map->pin_path) { 5328 err = bpf_object__reuse_map(map); 5329 if (err) { 5330 pr_warn("map '%s': error reusing pinned map\n", 5331 map->name); 5332 goto err_out; 5333 } 5334 if (retried && map->fd < 0) { 5335 pr_warn("map '%s': cannot find pinned map\n", 5336 map->name); 5337 err = -ENOENT; 5338 goto err_out; 5339 } 5340 } 5341 5342 if (map->reused) { 5343 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5344 map->name, map->fd); 5345 } else { 5346 err = bpf_object__create_map(obj, map, false); 5347 if (err) 5348 goto err_out; 5349 5350 pr_debug("map '%s': created successfully, fd=%d\n", 5351 map->name, map->fd); 5352 5353 if (bpf_map__is_internal(map)) { 5354 err = bpf_object__populate_internal_map(obj, map); 5355 if (err < 0) 5356 goto err_out; 5357 } 5358 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5359 map->mmaped = mmap((void *)(long)map->map_extra, 5360 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5361 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5362 map->fd, 0); 5363 if (map->mmaped == MAP_FAILED) { 5364 err = -errno; 5365 map->mmaped = NULL; 5366 pr_warn("map '%s': failed to mmap arena: %d\n", 5367 map->name, err); 5368 return err; 5369 } 5370 if (obj->arena_data) { 5371 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5372 zfree(&obj->arena_data); 5373 } 5374 } 5375 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5376 err = init_map_in_map_slots(obj, map); 5377 if (err < 0) 5378 goto err_out; 5379 } 5380 } 5381 5382 if (map->pin_path && !map->pinned) { 5383 err = bpf_map__pin(map, NULL); 5384 if (err) { 5385 if (!retried && err == -EEXIST) { 5386 retried = true; 5387 goto retry; 5388 } 5389 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5390 map->name, map->pin_path, err); 5391 goto err_out; 5392 } 5393 } 5394 } 5395 5396 return 0; 5397 5398 err_out: 5399 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5400 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5401 pr_perm_msg(err); 5402 for (j = 0; j < i; j++) 5403 zclose(obj->maps[j].fd); 5404 return err; 5405 } 5406 5407 static bool bpf_core_is_flavor_sep(const char *s) 5408 { 5409 /* check X___Y name pattern, where X and Y are not underscores */ 5410 return s[0] != '_' && /* X */ 5411 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5412 s[4] != '_'; /* Y */ 5413 } 5414 5415 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5416 * before last triple underscore. Struct name part after last triple 5417 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5418 */ 5419 size_t bpf_core_essential_name_len(const char *name) 5420 { 5421 size_t n = strlen(name); 5422 int i; 5423 5424 for (i = n - 5; i >= 0; i--) { 5425 if (bpf_core_is_flavor_sep(name + i)) 5426 return i + 1; 5427 } 5428 return n; 5429 } 5430 5431 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5432 { 5433 if (!cands) 5434 return; 5435 5436 free(cands->cands); 5437 free(cands); 5438 } 5439 5440 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5441 size_t local_essent_len, 5442 const struct btf *targ_btf, 5443 const char *targ_btf_name, 5444 int targ_start_id, 5445 struct bpf_core_cand_list *cands) 5446 { 5447 struct bpf_core_cand *new_cands, *cand; 5448 const struct btf_type *t, *local_t; 5449 const char *targ_name, *local_name; 5450 size_t targ_essent_len; 5451 int n, i; 5452 5453 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5454 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5455 5456 n = btf__type_cnt(targ_btf); 5457 for (i = targ_start_id; i < n; i++) { 5458 t = btf__type_by_id(targ_btf, i); 5459 if (!btf_kind_core_compat(t, local_t)) 5460 continue; 5461 5462 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5463 if (str_is_empty(targ_name)) 5464 continue; 5465 5466 targ_essent_len = bpf_core_essential_name_len(targ_name); 5467 if (targ_essent_len != local_essent_len) 5468 continue; 5469 5470 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5471 continue; 5472 5473 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5474 local_cand->id, btf_kind_str(local_t), 5475 local_name, i, btf_kind_str(t), targ_name, 5476 targ_btf_name); 5477 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5478 sizeof(*cands->cands)); 5479 if (!new_cands) 5480 return -ENOMEM; 5481 5482 cand = &new_cands[cands->len]; 5483 cand->btf = targ_btf; 5484 cand->id = i; 5485 5486 cands->cands = new_cands; 5487 cands->len++; 5488 } 5489 return 0; 5490 } 5491 5492 static int load_module_btfs(struct bpf_object *obj) 5493 { 5494 struct bpf_btf_info info; 5495 struct module_btf *mod_btf; 5496 struct btf *btf; 5497 char name[64]; 5498 __u32 id = 0, len; 5499 int err, fd; 5500 5501 if (obj->btf_modules_loaded) 5502 return 0; 5503 5504 if (obj->gen_loader) 5505 return 0; 5506 5507 /* don't do this again, even if we find no module BTFs */ 5508 obj->btf_modules_loaded = true; 5509 5510 /* kernel too old to support module BTFs */ 5511 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5512 return 0; 5513 5514 while (true) { 5515 err = bpf_btf_get_next_id(id, &id); 5516 if (err && errno == ENOENT) 5517 return 0; 5518 if (err && errno == EPERM) { 5519 pr_debug("skipping module BTFs loading, missing privileges\n"); 5520 return 0; 5521 } 5522 if (err) { 5523 err = -errno; 5524 pr_warn("failed to iterate BTF objects: %d\n", err); 5525 return err; 5526 } 5527 5528 fd = bpf_btf_get_fd_by_id(id); 5529 if (fd < 0) { 5530 if (errno == ENOENT) 5531 continue; /* expected race: BTF was unloaded */ 5532 err = -errno; 5533 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5534 return err; 5535 } 5536 5537 len = sizeof(info); 5538 memset(&info, 0, sizeof(info)); 5539 info.name = ptr_to_u64(name); 5540 info.name_len = sizeof(name); 5541 5542 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5543 if (err) { 5544 err = -errno; 5545 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5546 goto err_out; 5547 } 5548 5549 /* ignore non-module BTFs */ 5550 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5551 close(fd); 5552 continue; 5553 } 5554 5555 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5556 err = libbpf_get_error(btf); 5557 if (err) { 5558 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5559 name, id, err); 5560 goto err_out; 5561 } 5562 5563 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5564 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5565 if (err) 5566 goto err_out; 5567 5568 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5569 5570 mod_btf->btf = btf; 5571 mod_btf->id = id; 5572 mod_btf->fd = fd; 5573 mod_btf->name = strdup(name); 5574 if (!mod_btf->name) { 5575 err = -ENOMEM; 5576 goto err_out; 5577 } 5578 continue; 5579 5580 err_out: 5581 close(fd); 5582 return err; 5583 } 5584 5585 return 0; 5586 } 5587 5588 static struct bpf_core_cand_list * 5589 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5590 { 5591 struct bpf_core_cand local_cand = {}; 5592 struct bpf_core_cand_list *cands; 5593 const struct btf *main_btf; 5594 const struct btf_type *local_t; 5595 const char *local_name; 5596 size_t local_essent_len; 5597 int err, i; 5598 5599 local_cand.btf = local_btf; 5600 local_cand.id = local_type_id; 5601 local_t = btf__type_by_id(local_btf, local_type_id); 5602 if (!local_t) 5603 return ERR_PTR(-EINVAL); 5604 5605 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5606 if (str_is_empty(local_name)) 5607 return ERR_PTR(-EINVAL); 5608 local_essent_len = bpf_core_essential_name_len(local_name); 5609 5610 cands = calloc(1, sizeof(*cands)); 5611 if (!cands) 5612 return ERR_PTR(-ENOMEM); 5613 5614 /* Attempt to find target candidates in vmlinux BTF first */ 5615 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5616 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5617 if (err) 5618 goto err_out; 5619 5620 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5621 if (cands->len) 5622 return cands; 5623 5624 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5625 if (obj->btf_vmlinux_override) 5626 return cands; 5627 5628 /* now look through module BTFs, trying to still find candidates */ 5629 err = load_module_btfs(obj); 5630 if (err) 5631 goto err_out; 5632 5633 for (i = 0; i < obj->btf_module_cnt; i++) { 5634 err = bpf_core_add_cands(&local_cand, local_essent_len, 5635 obj->btf_modules[i].btf, 5636 obj->btf_modules[i].name, 5637 btf__type_cnt(obj->btf_vmlinux), 5638 cands); 5639 if (err) 5640 goto err_out; 5641 } 5642 5643 return cands; 5644 err_out: 5645 bpf_core_free_cands(cands); 5646 return ERR_PTR(err); 5647 } 5648 5649 /* Check local and target types for compatibility. This check is used for 5650 * type-based CO-RE relocations and follow slightly different rules than 5651 * field-based relocations. This function assumes that root types were already 5652 * checked for name match. Beyond that initial root-level name check, names 5653 * are completely ignored. Compatibility rules are as follows: 5654 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5655 * kind should match for local and target types (i.e., STRUCT is not 5656 * compatible with UNION); 5657 * - for ENUMs, the size is ignored; 5658 * - for INT, size and signedness are ignored; 5659 * - for ARRAY, dimensionality is ignored, element types are checked for 5660 * compatibility recursively; 5661 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5662 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5663 * - FUNC_PROTOs are compatible if they have compatible signature: same 5664 * number of input args and compatible return and argument types. 5665 * These rules are not set in stone and probably will be adjusted as we get 5666 * more experience with using BPF CO-RE relocations. 5667 */ 5668 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5669 const struct btf *targ_btf, __u32 targ_id) 5670 { 5671 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5672 } 5673 5674 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5675 const struct btf *targ_btf, __u32 targ_id) 5676 { 5677 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5678 } 5679 5680 static size_t bpf_core_hash_fn(const long key, void *ctx) 5681 { 5682 return key; 5683 } 5684 5685 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5686 { 5687 return k1 == k2; 5688 } 5689 5690 static int record_relo_core(struct bpf_program *prog, 5691 const struct bpf_core_relo *core_relo, int insn_idx) 5692 { 5693 struct reloc_desc *relos, *relo; 5694 5695 relos = libbpf_reallocarray(prog->reloc_desc, 5696 prog->nr_reloc + 1, sizeof(*relos)); 5697 if (!relos) 5698 return -ENOMEM; 5699 relo = &relos[prog->nr_reloc]; 5700 relo->type = RELO_CORE; 5701 relo->insn_idx = insn_idx; 5702 relo->core_relo = core_relo; 5703 prog->reloc_desc = relos; 5704 prog->nr_reloc++; 5705 return 0; 5706 } 5707 5708 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5709 { 5710 struct reloc_desc *relo; 5711 int i; 5712 5713 for (i = 0; i < prog->nr_reloc; i++) { 5714 relo = &prog->reloc_desc[i]; 5715 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5716 continue; 5717 5718 return relo->core_relo; 5719 } 5720 5721 return NULL; 5722 } 5723 5724 static int bpf_core_resolve_relo(struct bpf_program *prog, 5725 const struct bpf_core_relo *relo, 5726 int relo_idx, 5727 const struct btf *local_btf, 5728 struct hashmap *cand_cache, 5729 struct bpf_core_relo_res *targ_res) 5730 { 5731 struct bpf_core_spec specs_scratch[3] = {}; 5732 struct bpf_core_cand_list *cands = NULL; 5733 const char *prog_name = prog->name; 5734 const struct btf_type *local_type; 5735 const char *local_name; 5736 __u32 local_id = relo->type_id; 5737 int err; 5738 5739 local_type = btf__type_by_id(local_btf, local_id); 5740 if (!local_type) 5741 return -EINVAL; 5742 5743 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5744 if (!local_name) 5745 return -EINVAL; 5746 5747 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5748 !hashmap__find(cand_cache, local_id, &cands)) { 5749 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5750 if (IS_ERR(cands)) { 5751 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5752 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5753 local_name, PTR_ERR(cands)); 5754 return PTR_ERR(cands); 5755 } 5756 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5757 if (err) { 5758 bpf_core_free_cands(cands); 5759 return err; 5760 } 5761 } 5762 5763 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5764 targ_res); 5765 } 5766 5767 static int 5768 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5769 { 5770 const struct btf_ext_info_sec *sec; 5771 struct bpf_core_relo_res targ_res; 5772 const struct bpf_core_relo *rec; 5773 const struct btf_ext_info *seg; 5774 struct hashmap_entry *entry; 5775 struct hashmap *cand_cache = NULL; 5776 struct bpf_program *prog; 5777 struct bpf_insn *insn; 5778 const char *sec_name; 5779 int i, err = 0, insn_idx, sec_idx, sec_num; 5780 5781 if (obj->btf_ext->core_relo_info.len == 0) 5782 return 0; 5783 5784 if (targ_btf_path) { 5785 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5786 err = libbpf_get_error(obj->btf_vmlinux_override); 5787 if (err) { 5788 pr_warn("failed to parse target BTF: %d\n", err); 5789 return err; 5790 } 5791 } 5792 5793 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5794 if (IS_ERR(cand_cache)) { 5795 err = PTR_ERR(cand_cache); 5796 goto out; 5797 } 5798 5799 seg = &obj->btf_ext->core_relo_info; 5800 sec_num = 0; 5801 for_each_btf_ext_sec(seg, sec) { 5802 sec_idx = seg->sec_idxs[sec_num]; 5803 sec_num++; 5804 5805 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5806 if (str_is_empty(sec_name)) { 5807 err = -EINVAL; 5808 goto out; 5809 } 5810 5811 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5812 5813 for_each_btf_ext_rec(seg, sec, i, rec) { 5814 if (rec->insn_off % BPF_INSN_SZ) 5815 return -EINVAL; 5816 insn_idx = rec->insn_off / BPF_INSN_SZ; 5817 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5818 if (!prog) { 5819 /* When __weak subprog is "overridden" by another instance 5820 * of the subprog from a different object file, linker still 5821 * appends all the .BTF.ext info that used to belong to that 5822 * eliminated subprogram. 5823 * This is similar to what x86-64 linker does for relocations. 5824 * So just ignore such relocations just like we ignore 5825 * subprog instructions when discovering subprograms. 5826 */ 5827 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5828 sec_name, i, insn_idx); 5829 continue; 5830 } 5831 /* no need to apply CO-RE relocation if the program is 5832 * not going to be loaded 5833 */ 5834 if (!prog->autoload) 5835 continue; 5836 5837 /* adjust insn_idx from section frame of reference to the local 5838 * program's frame of reference; (sub-)program code is not yet 5839 * relocated, so it's enough to just subtract in-section offset 5840 */ 5841 insn_idx = insn_idx - prog->sec_insn_off; 5842 if (insn_idx >= prog->insns_cnt) 5843 return -EINVAL; 5844 insn = &prog->insns[insn_idx]; 5845 5846 err = record_relo_core(prog, rec, insn_idx); 5847 if (err) { 5848 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5849 prog->name, i, err); 5850 goto out; 5851 } 5852 5853 if (prog->obj->gen_loader) 5854 continue; 5855 5856 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5857 if (err) { 5858 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5859 prog->name, i, err); 5860 goto out; 5861 } 5862 5863 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5864 if (err) { 5865 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5866 prog->name, i, insn_idx, err); 5867 goto out; 5868 } 5869 } 5870 } 5871 5872 out: 5873 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5874 btf__free(obj->btf_vmlinux_override); 5875 obj->btf_vmlinux_override = NULL; 5876 5877 if (!IS_ERR_OR_NULL(cand_cache)) { 5878 hashmap__for_each_entry(cand_cache, entry, i) { 5879 bpf_core_free_cands(entry->pvalue); 5880 } 5881 hashmap__free(cand_cache); 5882 } 5883 return err; 5884 } 5885 5886 /* base map load ldimm64 special constant, used also for log fixup logic */ 5887 #define POISON_LDIMM64_MAP_BASE 2001000000 5888 #define POISON_LDIMM64_MAP_PFX "200100" 5889 5890 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5891 int insn_idx, struct bpf_insn *insn, 5892 int map_idx, const struct bpf_map *map) 5893 { 5894 int i; 5895 5896 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5897 prog->name, relo_idx, insn_idx, map_idx, map->name); 5898 5899 /* we turn single ldimm64 into two identical invalid calls */ 5900 for (i = 0; i < 2; i++) { 5901 insn->code = BPF_JMP | BPF_CALL; 5902 insn->dst_reg = 0; 5903 insn->src_reg = 0; 5904 insn->off = 0; 5905 /* if this instruction is reachable (not a dead code), 5906 * verifier will complain with something like: 5907 * invalid func unknown#2001000123 5908 * where lower 123 is map index into obj->maps[] array 5909 */ 5910 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5911 5912 insn++; 5913 } 5914 } 5915 5916 /* unresolved kfunc call special constant, used also for log fixup logic */ 5917 #define POISON_CALL_KFUNC_BASE 2002000000 5918 #define POISON_CALL_KFUNC_PFX "2002" 5919 5920 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5921 int insn_idx, struct bpf_insn *insn, 5922 int ext_idx, const struct extern_desc *ext) 5923 { 5924 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5925 prog->name, relo_idx, insn_idx, ext->name); 5926 5927 /* we turn kfunc call into invalid helper call with identifiable constant */ 5928 insn->code = BPF_JMP | BPF_CALL; 5929 insn->dst_reg = 0; 5930 insn->src_reg = 0; 5931 insn->off = 0; 5932 /* if this instruction is reachable (not a dead code), 5933 * verifier will complain with something like: 5934 * invalid func unknown#2001000123 5935 * where lower 123 is extern index into obj->externs[] array 5936 */ 5937 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5938 } 5939 5940 /* Relocate data references within program code: 5941 * - map references; 5942 * - global variable references; 5943 * - extern references. 5944 */ 5945 static int 5946 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5947 { 5948 int i; 5949 5950 for (i = 0; i < prog->nr_reloc; i++) { 5951 struct reloc_desc *relo = &prog->reloc_desc[i]; 5952 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5953 const struct bpf_map *map; 5954 struct extern_desc *ext; 5955 5956 switch (relo->type) { 5957 case RELO_LD64: 5958 map = &obj->maps[relo->map_idx]; 5959 if (obj->gen_loader) { 5960 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5961 insn[0].imm = relo->map_idx; 5962 } else if (map->autocreate) { 5963 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5964 insn[0].imm = map->fd; 5965 } else { 5966 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5967 relo->map_idx, map); 5968 } 5969 break; 5970 case RELO_DATA: 5971 map = &obj->maps[relo->map_idx]; 5972 insn[1].imm = insn[0].imm + relo->sym_off; 5973 if (obj->gen_loader) { 5974 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5975 insn[0].imm = relo->map_idx; 5976 } else if (map->autocreate) { 5977 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5978 insn[0].imm = map->fd; 5979 } else { 5980 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5981 relo->map_idx, map); 5982 } 5983 break; 5984 case RELO_EXTERN_LD64: 5985 ext = &obj->externs[relo->ext_idx]; 5986 if (ext->type == EXT_KCFG) { 5987 if (obj->gen_loader) { 5988 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5989 insn[0].imm = obj->kconfig_map_idx; 5990 } else { 5991 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5992 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5993 } 5994 insn[1].imm = ext->kcfg.data_off; 5995 } else /* EXT_KSYM */ { 5996 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5997 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5998 insn[0].imm = ext->ksym.kernel_btf_id; 5999 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6000 } else { /* typeless ksyms or unresolved typed ksyms */ 6001 insn[0].imm = (__u32)ext->ksym.addr; 6002 insn[1].imm = ext->ksym.addr >> 32; 6003 } 6004 } 6005 break; 6006 case RELO_EXTERN_CALL: 6007 ext = &obj->externs[relo->ext_idx]; 6008 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6009 if (ext->is_set) { 6010 insn[0].imm = ext->ksym.kernel_btf_id; 6011 insn[0].off = ext->ksym.btf_fd_idx; 6012 } else { /* unresolved weak kfunc call */ 6013 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6014 relo->ext_idx, ext); 6015 } 6016 break; 6017 case RELO_SUBPROG_ADDR: 6018 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6019 pr_warn("prog '%s': relo #%d: bad insn\n", 6020 prog->name, i); 6021 return -EINVAL; 6022 } 6023 /* handled already */ 6024 break; 6025 case RELO_CALL: 6026 /* handled already */ 6027 break; 6028 case RELO_CORE: 6029 /* will be handled by bpf_program_record_relos() */ 6030 break; 6031 default: 6032 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6033 prog->name, i, relo->type); 6034 return -EINVAL; 6035 } 6036 } 6037 6038 return 0; 6039 } 6040 6041 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6042 const struct bpf_program *prog, 6043 const struct btf_ext_info *ext_info, 6044 void **prog_info, __u32 *prog_rec_cnt, 6045 __u32 *prog_rec_sz) 6046 { 6047 void *copy_start = NULL, *copy_end = NULL; 6048 void *rec, *rec_end, *new_prog_info; 6049 const struct btf_ext_info_sec *sec; 6050 size_t old_sz, new_sz; 6051 int i, sec_num, sec_idx, off_adj; 6052 6053 sec_num = 0; 6054 for_each_btf_ext_sec(ext_info, sec) { 6055 sec_idx = ext_info->sec_idxs[sec_num]; 6056 sec_num++; 6057 if (prog->sec_idx != sec_idx) 6058 continue; 6059 6060 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6061 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6062 6063 if (insn_off < prog->sec_insn_off) 6064 continue; 6065 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6066 break; 6067 6068 if (!copy_start) 6069 copy_start = rec; 6070 copy_end = rec + ext_info->rec_size; 6071 } 6072 6073 if (!copy_start) 6074 return -ENOENT; 6075 6076 /* append func/line info of a given (sub-)program to the main 6077 * program func/line info 6078 */ 6079 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6080 new_sz = old_sz + (copy_end - copy_start); 6081 new_prog_info = realloc(*prog_info, new_sz); 6082 if (!new_prog_info) 6083 return -ENOMEM; 6084 *prog_info = new_prog_info; 6085 *prog_rec_cnt = new_sz / ext_info->rec_size; 6086 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6087 6088 /* Kernel instruction offsets are in units of 8-byte 6089 * instructions, while .BTF.ext instruction offsets generated 6090 * by Clang are in units of bytes. So convert Clang offsets 6091 * into kernel offsets and adjust offset according to program 6092 * relocated position. 6093 */ 6094 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6095 rec = new_prog_info + old_sz; 6096 rec_end = new_prog_info + new_sz; 6097 for (; rec < rec_end; rec += ext_info->rec_size) { 6098 __u32 *insn_off = rec; 6099 6100 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6101 } 6102 *prog_rec_sz = ext_info->rec_size; 6103 return 0; 6104 } 6105 6106 return -ENOENT; 6107 } 6108 6109 static int 6110 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6111 struct bpf_program *main_prog, 6112 const struct bpf_program *prog) 6113 { 6114 int err; 6115 6116 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6117 * support func/line info 6118 */ 6119 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6120 return 0; 6121 6122 /* only attempt func info relocation if main program's func_info 6123 * relocation was successful 6124 */ 6125 if (main_prog != prog && !main_prog->func_info) 6126 goto line_info; 6127 6128 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6129 &main_prog->func_info, 6130 &main_prog->func_info_cnt, 6131 &main_prog->func_info_rec_size); 6132 if (err) { 6133 if (err != -ENOENT) { 6134 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6135 prog->name, err); 6136 return err; 6137 } 6138 if (main_prog->func_info) { 6139 /* 6140 * Some info has already been found but has problem 6141 * in the last btf_ext reloc. Must have to error out. 6142 */ 6143 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6144 return err; 6145 } 6146 /* Have problem loading the very first info. Ignore the rest. */ 6147 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6148 prog->name); 6149 } 6150 6151 line_info: 6152 /* don't relocate line info if main program's relocation failed */ 6153 if (main_prog != prog && !main_prog->line_info) 6154 return 0; 6155 6156 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6157 &main_prog->line_info, 6158 &main_prog->line_info_cnt, 6159 &main_prog->line_info_rec_size); 6160 if (err) { 6161 if (err != -ENOENT) { 6162 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6163 prog->name, err); 6164 return err; 6165 } 6166 if (main_prog->line_info) { 6167 /* 6168 * Some info has already been found but has problem 6169 * in the last btf_ext reloc. Must have to error out. 6170 */ 6171 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6172 return err; 6173 } 6174 /* Have problem loading the very first info. Ignore the rest. */ 6175 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6176 prog->name); 6177 } 6178 return 0; 6179 } 6180 6181 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6182 { 6183 size_t insn_idx = *(const size_t *)key; 6184 const struct reloc_desc *relo = elem; 6185 6186 if (insn_idx == relo->insn_idx) 6187 return 0; 6188 return insn_idx < relo->insn_idx ? -1 : 1; 6189 } 6190 6191 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6192 { 6193 if (!prog->nr_reloc) 6194 return NULL; 6195 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6196 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6197 } 6198 6199 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6200 { 6201 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6202 struct reloc_desc *relos; 6203 int i; 6204 6205 if (main_prog == subprog) 6206 return 0; 6207 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6208 /* if new count is zero, reallocarray can return a valid NULL result; 6209 * in this case the previous pointer will be freed, so we *have to* 6210 * reassign old pointer to the new value (even if it's NULL) 6211 */ 6212 if (!relos && new_cnt) 6213 return -ENOMEM; 6214 if (subprog->nr_reloc) 6215 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6216 sizeof(*relos) * subprog->nr_reloc); 6217 6218 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6219 relos[i].insn_idx += subprog->sub_insn_off; 6220 /* After insn_idx adjustment the 'relos' array is still sorted 6221 * by insn_idx and doesn't break bsearch. 6222 */ 6223 main_prog->reloc_desc = relos; 6224 main_prog->nr_reloc = new_cnt; 6225 return 0; 6226 } 6227 6228 static int 6229 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6230 struct bpf_program *subprog) 6231 { 6232 struct bpf_insn *insns; 6233 size_t new_cnt; 6234 int err; 6235 6236 subprog->sub_insn_off = main_prog->insns_cnt; 6237 6238 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6239 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6240 if (!insns) { 6241 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6242 return -ENOMEM; 6243 } 6244 main_prog->insns = insns; 6245 main_prog->insns_cnt = new_cnt; 6246 6247 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6248 subprog->insns_cnt * sizeof(*insns)); 6249 6250 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6251 main_prog->name, subprog->insns_cnt, subprog->name); 6252 6253 /* The subprog insns are now appended. Append its relos too. */ 6254 err = append_subprog_relos(main_prog, subprog); 6255 if (err) 6256 return err; 6257 return 0; 6258 } 6259 6260 static int 6261 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6262 struct bpf_program *prog) 6263 { 6264 size_t sub_insn_idx, insn_idx; 6265 struct bpf_program *subprog; 6266 struct reloc_desc *relo; 6267 struct bpf_insn *insn; 6268 int err; 6269 6270 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6271 if (err) 6272 return err; 6273 6274 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6275 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6276 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6277 continue; 6278 6279 relo = find_prog_insn_relo(prog, insn_idx); 6280 if (relo && relo->type == RELO_EXTERN_CALL) 6281 /* kfunc relocations will be handled later 6282 * in bpf_object__relocate_data() 6283 */ 6284 continue; 6285 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6286 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6287 prog->name, insn_idx, relo->type); 6288 return -LIBBPF_ERRNO__RELOC; 6289 } 6290 if (relo) { 6291 /* sub-program instruction index is a combination of 6292 * an offset of a symbol pointed to by relocation and 6293 * call instruction's imm field; for global functions, 6294 * call always has imm = -1, but for static functions 6295 * relocation is against STT_SECTION and insn->imm 6296 * points to a start of a static function 6297 * 6298 * for subprog addr relocation, the relo->sym_off + insn->imm is 6299 * the byte offset in the corresponding section. 6300 */ 6301 if (relo->type == RELO_CALL) 6302 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6303 else 6304 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6305 } else if (insn_is_pseudo_func(insn)) { 6306 /* 6307 * RELO_SUBPROG_ADDR relo is always emitted even if both 6308 * functions are in the same section, so it shouldn't reach here. 6309 */ 6310 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6311 prog->name, insn_idx); 6312 return -LIBBPF_ERRNO__RELOC; 6313 } else { 6314 /* if subprogram call is to a static function within 6315 * the same ELF section, there won't be any relocation 6316 * emitted, but it also means there is no additional 6317 * offset necessary, insns->imm is relative to 6318 * instruction's original position within the section 6319 */ 6320 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6321 } 6322 6323 /* we enforce that sub-programs should be in .text section */ 6324 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6325 if (!subprog) { 6326 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6327 prog->name); 6328 return -LIBBPF_ERRNO__RELOC; 6329 } 6330 6331 /* if it's the first call instruction calling into this 6332 * subprogram (meaning this subprog hasn't been processed 6333 * yet) within the context of current main program: 6334 * - append it at the end of main program's instructions blog; 6335 * - process is recursively, while current program is put on hold; 6336 * - if that subprogram calls some other not yet processes 6337 * subprogram, same thing will happen recursively until 6338 * there are no more unprocesses subprograms left to append 6339 * and relocate. 6340 */ 6341 if (subprog->sub_insn_off == 0) { 6342 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6343 if (err) 6344 return err; 6345 err = bpf_object__reloc_code(obj, main_prog, subprog); 6346 if (err) 6347 return err; 6348 } 6349 6350 /* main_prog->insns memory could have been re-allocated, so 6351 * calculate pointer again 6352 */ 6353 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6354 /* calculate correct instruction position within current main 6355 * prog; each main prog can have a different set of 6356 * subprograms appended (potentially in different order as 6357 * well), so position of any subprog can be different for 6358 * different main programs 6359 */ 6360 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6361 6362 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6363 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6364 } 6365 6366 return 0; 6367 } 6368 6369 /* 6370 * Relocate sub-program calls. 6371 * 6372 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6373 * main prog) is processed separately. For each subprog (non-entry functions, 6374 * that can be called from either entry progs or other subprogs) gets their 6375 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6376 * hasn't been yet appended and relocated within current main prog. Once its 6377 * relocated, sub_insn_off will point at the position within current main prog 6378 * where given subprog was appended. This will further be used to relocate all 6379 * the call instructions jumping into this subprog. 6380 * 6381 * We start with main program and process all call instructions. If the call 6382 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6383 * is zero), subprog instructions are appended at the end of main program's 6384 * instruction array. Then main program is "put on hold" while we recursively 6385 * process newly appended subprogram. If that subprogram calls into another 6386 * subprogram that hasn't been appended, new subprogram is appended again to 6387 * the *main* prog's instructions (subprog's instructions are always left 6388 * untouched, as they need to be in unmodified state for subsequent main progs 6389 * and subprog instructions are always sent only as part of a main prog) and 6390 * the process continues recursively. Once all the subprogs called from a main 6391 * prog or any of its subprogs are appended (and relocated), all their 6392 * positions within finalized instructions array are known, so it's easy to 6393 * rewrite call instructions with correct relative offsets, corresponding to 6394 * desired target subprog. 6395 * 6396 * Its important to realize that some subprogs might not be called from some 6397 * main prog and any of its called/used subprogs. Those will keep their 6398 * subprog->sub_insn_off as zero at all times and won't be appended to current 6399 * main prog and won't be relocated within the context of current main prog. 6400 * They might still be used from other main progs later. 6401 * 6402 * Visually this process can be shown as below. Suppose we have two main 6403 * programs mainA and mainB and BPF object contains three subprogs: subA, 6404 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6405 * subC both call subB: 6406 * 6407 * +--------+ +-------+ 6408 * | v v | 6409 * +--+---+ +--+-+-+ +---+--+ 6410 * | subA | | subB | | subC | 6411 * +--+---+ +------+ +---+--+ 6412 * ^ ^ 6413 * | | 6414 * +---+-------+ +------+----+ 6415 * | mainA | | mainB | 6416 * +-----------+ +-----------+ 6417 * 6418 * We'll start relocating mainA, will find subA, append it and start 6419 * processing sub A recursively: 6420 * 6421 * +-----------+------+ 6422 * | mainA | subA | 6423 * +-----------+------+ 6424 * 6425 * At this point we notice that subB is used from subA, so we append it and 6426 * relocate (there are no further subcalls from subB): 6427 * 6428 * +-----------+------+------+ 6429 * | mainA | subA | subB | 6430 * +-----------+------+------+ 6431 * 6432 * At this point, we relocate subA calls, then go one level up and finish with 6433 * relocatin mainA calls. mainA is done. 6434 * 6435 * For mainB process is similar but results in different order. We start with 6436 * mainB and skip subA and subB, as mainB never calls them (at least 6437 * directly), but we see subC is needed, so we append and start processing it: 6438 * 6439 * +-----------+------+ 6440 * | mainB | subC | 6441 * +-----------+------+ 6442 * Now we see subC needs subB, so we go back to it, append and relocate it: 6443 * 6444 * +-----------+------+------+ 6445 * | mainB | subC | subB | 6446 * +-----------+------+------+ 6447 * 6448 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6449 */ 6450 static int 6451 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6452 { 6453 struct bpf_program *subprog; 6454 int i, err; 6455 6456 /* mark all subprogs as not relocated (yet) within the context of 6457 * current main program 6458 */ 6459 for (i = 0; i < obj->nr_programs; i++) { 6460 subprog = &obj->programs[i]; 6461 if (!prog_is_subprog(obj, subprog)) 6462 continue; 6463 6464 subprog->sub_insn_off = 0; 6465 } 6466 6467 err = bpf_object__reloc_code(obj, prog, prog); 6468 if (err) 6469 return err; 6470 6471 return 0; 6472 } 6473 6474 static void 6475 bpf_object__free_relocs(struct bpf_object *obj) 6476 { 6477 struct bpf_program *prog; 6478 int i; 6479 6480 /* free up relocation descriptors */ 6481 for (i = 0; i < obj->nr_programs; i++) { 6482 prog = &obj->programs[i]; 6483 zfree(&prog->reloc_desc); 6484 prog->nr_reloc = 0; 6485 } 6486 } 6487 6488 static int cmp_relocs(const void *_a, const void *_b) 6489 { 6490 const struct reloc_desc *a = _a; 6491 const struct reloc_desc *b = _b; 6492 6493 if (a->insn_idx != b->insn_idx) 6494 return a->insn_idx < b->insn_idx ? -1 : 1; 6495 6496 /* no two relocations should have the same insn_idx, but ... */ 6497 if (a->type != b->type) 6498 return a->type < b->type ? -1 : 1; 6499 6500 return 0; 6501 } 6502 6503 static void bpf_object__sort_relos(struct bpf_object *obj) 6504 { 6505 int i; 6506 6507 for (i = 0; i < obj->nr_programs; i++) { 6508 struct bpf_program *p = &obj->programs[i]; 6509 6510 if (!p->nr_reloc) 6511 continue; 6512 6513 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6514 } 6515 } 6516 6517 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6518 { 6519 const char *str = "exception_callback:"; 6520 size_t pfx_len = strlen(str); 6521 int i, j, n; 6522 6523 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6524 return 0; 6525 6526 n = btf__type_cnt(obj->btf); 6527 for (i = 1; i < n; i++) { 6528 const char *name; 6529 struct btf_type *t; 6530 6531 t = btf_type_by_id(obj->btf, i); 6532 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6533 continue; 6534 6535 name = btf__str_by_offset(obj->btf, t->name_off); 6536 if (strncmp(name, str, pfx_len) != 0) 6537 continue; 6538 6539 t = btf_type_by_id(obj->btf, t->type); 6540 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6541 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6542 prog->name); 6543 return -EINVAL; 6544 } 6545 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6546 continue; 6547 /* Multiple callbacks are specified for the same prog, 6548 * the verifier will eventually return an error for this 6549 * case, hence simply skip appending a subprog. 6550 */ 6551 if (prog->exception_cb_idx >= 0) { 6552 prog->exception_cb_idx = -1; 6553 break; 6554 } 6555 6556 name += pfx_len; 6557 if (str_is_empty(name)) { 6558 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6559 prog->name); 6560 return -EINVAL; 6561 } 6562 6563 for (j = 0; j < obj->nr_programs; j++) { 6564 struct bpf_program *subprog = &obj->programs[j]; 6565 6566 if (!prog_is_subprog(obj, subprog)) 6567 continue; 6568 if (strcmp(name, subprog->name) != 0) 6569 continue; 6570 /* Enforce non-hidden, as from verifier point of 6571 * view it expects global functions, whereas the 6572 * mark_btf_static fixes up linkage as static. 6573 */ 6574 if (!subprog->sym_global || subprog->mark_btf_static) { 6575 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6576 prog->name, subprog->name); 6577 return -EINVAL; 6578 } 6579 /* Let's see if we already saw a static exception callback with the same name */ 6580 if (prog->exception_cb_idx >= 0) { 6581 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6582 prog->name, subprog->name); 6583 return -EINVAL; 6584 } 6585 prog->exception_cb_idx = j; 6586 break; 6587 } 6588 6589 if (prog->exception_cb_idx >= 0) 6590 continue; 6591 6592 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6593 return -ENOENT; 6594 } 6595 6596 return 0; 6597 } 6598 6599 static struct { 6600 enum bpf_prog_type prog_type; 6601 const char *ctx_name; 6602 } global_ctx_map[] = { 6603 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6604 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6605 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6606 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6607 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6608 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6609 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6610 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6611 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6612 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6613 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6614 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6615 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6616 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6617 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6618 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6619 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6620 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6621 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6622 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6623 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6624 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6625 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6626 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6627 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6628 /* all other program types don't have "named" context structs */ 6629 }; 6630 6631 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6632 * for below __builtin_types_compatible_p() checks; 6633 * with this approach we don't need any extra arch-specific #ifdef guards 6634 */ 6635 struct pt_regs; 6636 struct user_pt_regs; 6637 struct user_regs_struct; 6638 6639 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6640 const char *subprog_name, int arg_idx, 6641 int arg_type_id, const char *ctx_name) 6642 { 6643 const struct btf_type *t; 6644 const char *tname; 6645 6646 /* check if existing parameter already matches verifier expectations */ 6647 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6648 if (!btf_is_ptr(t)) 6649 goto out_warn; 6650 6651 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6652 * and perf_event programs, so check this case early on and forget 6653 * about it for subsequent checks 6654 */ 6655 while (btf_is_mod(t)) 6656 t = btf__type_by_id(btf, t->type); 6657 if (btf_is_typedef(t) && 6658 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6659 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6660 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6661 return false; /* canonical type for kprobe/perf_event */ 6662 } 6663 6664 /* now we can ignore typedefs moving forward */ 6665 t = skip_mods_and_typedefs(btf, t->type, NULL); 6666 6667 /* if it's `void *`, definitely fix up BTF info */ 6668 if (btf_is_void(t)) 6669 return true; 6670 6671 /* if it's already proper canonical type, no need to fix up */ 6672 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6673 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6674 return false; 6675 6676 /* special cases */ 6677 switch (prog->type) { 6678 case BPF_PROG_TYPE_KPROBE: 6679 /* `struct pt_regs *` is expected, but we need to fix up */ 6680 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6681 return true; 6682 break; 6683 case BPF_PROG_TYPE_PERF_EVENT: 6684 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6685 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6686 return true; 6687 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6688 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6689 return true; 6690 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6691 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6692 return true; 6693 break; 6694 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6695 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6696 /* allow u64* as ctx */ 6697 if (btf_is_int(t) && t->size == 8) 6698 return true; 6699 break; 6700 default: 6701 break; 6702 } 6703 6704 out_warn: 6705 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6706 prog->name, subprog_name, arg_idx, ctx_name); 6707 return false; 6708 } 6709 6710 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6711 { 6712 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6713 int i, err, arg_cnt, fn_name_off, linkage; 6714 struct btf_type *fn_t, *fn_proto_t, *t; 6715 struct btf_param *p; 6716 6717 /* caller already validated FUNC -> FUNC_PROTO validity */ 6718 fn_t = btf_type_by_id(btf, orig_fn_id); 6719 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6720 6721 /* Note that each btf__add_xxx() operation invalidates 6722 * all btf_type and string pointers, so we need to be 6723 * very careful when cloning BTF types. BTF type 6724 * pointers have to be always refetched. And to avoid 6725 * problems with invalidated string pointers, we 6726 * add empty strings initially, then just fix up 6727 * name_off offsets in place. Offsets are stable for 6728 * existing strings, so that works out. 6729 */ 6730 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6731 linkage = btf_func_linkage(fn_t); 6732 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6733 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6734 arg_cnt = btf_vlen(fn_proto_t); 6735 6736 /* clone FUNC_PROTO and its params */ 6737 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6738 if (fn_proto_id < 0) 6739 return -EINVAL; 6740 6741 for (i = 0; i < arg_cnt; i++) { 6742 int name_off; 6743 6744 /* copy original parameter data */ 6745 t = btf_type_by_id(btf, orig_proto_id); 6746 p = &btf_params(t)[i]; 6747 name_off = p->name_off; 6748 6749 err = btf__add_func_param(btf, "", p->type); 6750 if (err) 6751 return err; 6752 6753 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6754 p = &btf_params(fn_proto_t)[i]; 6755 p->name_off = name_off; /* use remembered str offset */ 6756 } 6757 6758 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6759 * entry program's name as a placeholder, which we replace immediately 6760 * with original name_off 6761 */ 6762 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6763 if (fn_id < 0) 6764 return -EINVAL; 6765 6766 fn_t = btf_type_by_id(btf, fn_id); 6767 fn_t->name_off = fn_name_off; /* reuse original string */ 6768 6769 return fn_id; 6770 } 6771 6772 /* Check if main program or global subprog's function prototype has `arg:ctx` 6773 * argument tags, and, if necessary, substitute correct type to match what BPF 6774 * verifier would expect, taking into account specific program type. This 6775 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6776 * have a native support for it in the verifier, making user's life much 6777 * easier. 6778 */ 6779 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6780 { 6781 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6782 struct bpf_func_info_min *func_rec; 6783 struct btf_type *fn_t, *fn_proto_t; 6784 struct btf *btf = obj->btf; 6785 const struct btf_type *t; 6786 struct btf_param *p; 6787 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6788 int i, n, arg_idx, arg_cnt, err, rec_idx; 6789 int *orig_ids; 6790 6791 /* no .BTF.ext, no problem */ 6792 if (!obj->btf_ext || !prog->func_info) 6793 return 0; 6794 6795 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6796 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6797 return 0; 6798 6799 /* some BPF program types just don't have named context structs, so 6800 * this fallback mechanism doesn't work for them 6801 */ 6802 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6803 if (global_ctx_map[i].prog_type != prog->type) 6804 continue; 6805 ctx_name = global_ctx_map[i].ctx_name; 6806 break; 6807 } 6808 if (!ctx_name) 6809 return 0; 6810 6811 /* remember original func BTF IDs to detect if we already cloned them */ 6812 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6813 if (!orig_ids) 6814 return -ENOMEM; 6815 for (i = 0; i < prog->func_info_cnt; i++) { 6816 func_rec = prog->func_info + prog->func_info_rec_size * i; 6817 orig_ids[i] = func_rec->type_id; 6818 } 6819 6820 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6821 * of our subprogs; if yes and subprog is global and needs adjustment, 6822 * clone and adjust FUNC -> FUNC_PROTO combo 6823 */ 6824 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6825 /* only DECL_TAG with "arg:ctx" value are interesting */ 6826 t = btf__type_by_id(btf, i); 6827 if (!btf_is_decl_tag(t)) 6828 continue; 6829 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6830 continue; 6831 6832 /* only global funcs need adjustment, if at all */ 6833 orig_fn_id = t->type; 6834 fn_t = btf_type_by_id(btf, orig_fn_id); 6835 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6836 continue; 6837 6838 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6839 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6840 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6841 continue; 6842 6843 /* find corresponding func_info record */ 6844 func_rec = NULL; 6845 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6846 if (orig_ids[rec_idx] == t->type) { 6847 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6848 break; 6849 } 6850 } 6851 /* current main program doesn't call into this subprog */ 6852 if (!func_rec) 6853 continue; 6854 6855 /* some more sanity checking of DECL_TAG */ 6856 arg_cnt = btf_vlen(fn_proto_t); 6857 arg_idx = btf_decl_tag(t)->component_idx; 6858 if (arg_idx < 0 || arg_idx >= arg_cnt) 6859 continue; 6860 6861 /* check if we should fix up argument type */ 6862 p = &btf_params(fn_proto_t)[arg_idx]; 6863 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6864 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6865 continue; 6866 6867 /* clone fn/fn_proto, unless we already did it for another arg */ 6868 if (func_rec->type_id == orig_fn_id) { 6869 int fn_id; 6870 6871 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6872 if (fn_id < 0) { 6873 err = fn_id; 6874 goto err_out; 6875 } 6876 6877 /* point func_info record to a cloned FUNC type */ 6878 func_rec->type_id = fn_id; 6879 } 6880 6881 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6882 * we do it just once per main BPF program, as all global 6883 * funcs share the same program type, so need only PTR -> 6884 * STRUCT type chain 6885 */ 6886 if (ptr_id == 0) { 6887 struct_id = btf__add_struct(btf, ctx_name, 0); 6888 ptr_id = btf__add_ptr(btf, struct_id); 6889 if (ptr_id < 0 || struct_id < 0) { 6890 err = -EINVAL; 6891 goto err_out; 6892 } 6893 } 6894 6895 /* for completeness, clone DECL_TAG and point it to cloned param */ 6896 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6897 if (tag_id < 0) { 6898 err = -EINVAL; 6899 goto err_out; 6900 } 6901 6902 /* all the BTF manipulations invalidated pointers, refetch them */ 6903 fn_t = btf_type_by_id(btf, func_rec->type_id); 6904 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6905 6906 /* fix up type ID pointed to by param */ 6907 p = &btf_params(fn_proto_t)[arg_idx]; 6908 p->type = ptr_id; 6909 } 6910 6911 free(orig_ids); 6912 return 0; 6913 err_out: 6914 free(orig_ids); 6915 return err; 6916 } 6917 6918 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6919 { 6920 struct bpf_program *prog; 6921 size_t i, j; 6922 int err; 6923 6924 if (obj->btf_ext) { 6925 err = bpf_object__relocate_core(obj, targ_btf_path); 6926 if (err) { 6927 pr_warn("failed to perform CO-RE relocations: %d\n", 6928 err); 6929 return err; 6930 } 6931 bpf_object__sort_relos(obj); 6932 } 6933 6934 /* Before relocating calls pre-process relocations and mark 6935 * few ld_imm64 instructions that points to subprogs. 6936 * Otherwise bpf_object__reloc_code() later would have to consider 6937 * all ld_imm64 insns as relocation candidates. That would 6938 * reduce relocation speed, since amount of find_prog_insn_relo() 6939 * would increase and most of them will fail to find a relo. 6940 */ 6941 for (i = 0; i < obj->nr_programs; i++) { 6942 prog = &obj->programs[i]; 6943 for (j = 0; j < prog->nr_reloc; j++) { 6944 struct reloc_desc *relo = &prog->reloc_desc[j]; 6945 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6946 6947 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6948 if (relo->type == RELO_SUBPROG_ADDR) 6949 insn[0].src_reg = BPF_PSEUDO_FUNC; 6950 } 6951 } 6952 6953 /* relocate subprogram calls and append used subprograms to main 6954 * programs; each copy of subprogram code needs to be relocated 6955 * differently for each main program, because its code location might 6956 * have changed. 6957 * Append subprog relos to main programs to allow data relos to be 6958 * processed after text is completely relocated. 6959 */ 6960 for (i = 0; i < obj->nr_programs; i++) { 6961 prog = &obj->programs[i]; 6962 /* sub-program's sub-calls are relocated within the context of 6963 * its main program only 6964 */ 6965 if (prog_is_subprog(obj, prog)) 6966 continue; 6967 if (!prog->autoload) 6968 continue; 6969 6970 err = bpf_object__relocate_calls(obj, prog); 6971 if (err) { 6972 pr_warn("prog '%s': failed to relocate calls: %d\n", 6973 prog->name, err); 6974 return err; 6975 } 6976 6977 err = bpf_prog_assign_exc_cb(obj, prog); 6978 if (err) 6979 return err; 6980 /* Now, also append exception callback if it has not been done already. */ 6981 if (prog->exception_cb_idx >= 0) { 6982 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6983 6984 /* Calling exception callback directly is disallowed, which the 6985 * verifier will reject later. In case it was processed already, 6986 * we can skip this step, otherwise for all other valid cases we 6987 * have to append exception callback now. 6988 */ 6989 if (subprog->sub_insn_off == 0) { 6990 err = bpf_object__append_subprog_code(obj, prog, subprog); 6991 if (err) 6992 return err; 6993 err = bpf_object__reloc_code(obj, prog, subprog); 6994 if (err) 6995 return err; 6996 } 6997 } 6998 } 6999 for (i = 0; i < obj->nr_programs; i++) { 7000 prog = &obj->programs[i]; 7001 if (prog_is_subprog(obj, prog)) 7002 continue; 7003 if (!prog->autoload) 7004 continue; 7005 7006 /* Process data relos for main programs */ 7007 err = bpf_object__relocate_data(obj, prog); 7008 if (err) { 7009 pr_warn("prog '%s': failed to relocate data references: %d\n", 7010 prog->name, err); 7011 return err; 7012 } 7013 7014 /* Fix up .BTF.ext information, if necessary */ 7015 err = bpf_program_fixup_func_info(obj, prog); 7016 if (err) { 7017 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7018 prog->name, err); 7019 return err; 7020 } 7021 } 7022 7023 return 0; 7024 } 7025 7026 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7027 Elf64_Shdr *shdr, Elf_Data *data); 7028 7029 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7030 Elf64_Shdr *shdr, Elf_Data *data) 7031 { 7032 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7033 int i, j, nrels, new_sz; 7034 const struct btf_var_secinfo *vi = NULL; 7035 const struct btf_type *sec, *var, *def; 7036 struct bpf_map *map = NULL, *targ_map = NULL; 7037 struct bpf_program *targ_prog = NULL; 7038 bool is_prog_array, is_map_in_map; 7039 const struct btf_member *member; 7040 const char *name, *mname, *type; 7041 unsigned int moff; 7042 Elf64_Sym *sym; 7043 Elf64_Rel *rel; 7044 void *tmp; 7045 7046 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7047 return -EINVAL; 7048 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7049 if (!sec) 7050 return -EINVAL; 7051 7052 nrels = shdr->sh_size / shdr->sh_entsize; 7053 for (i = 0; i < nrels; i++) { 7054 rel = elf_rel_by_idx(data, i); 7055 if (!rel) { 7056 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7057 return -LIBBPF_ERRNO__FORMAT; 7058 } 7059 7060 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7061 if (!sym) { 7062 pr_warn(".maps relo #%d: symbol %zx not found\n", 7063 i, (size_t)ELF64_R_SYM(rel->r_info)); 7064 return -LIBBPF_ERRNO__FORMAT; 7065 } 7066 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7067 7068 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7069 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7070 (size_t)rel->r_offset, sym->st_name, name); 7071 7072 for (j = 0; j < obj->nr_maps; j++) { 7073 map = &obj->maps[j]; 7074 if (map->sec_idx != obj->efile.btf_maps_shndx) 7075 continue; 7076 7077 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7078 if (vi->offset <= rel->r_offset && 7079 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7080 break; 7081 } 7082 if (j == obj->nr_maps) { 7083 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7084 i, name, (size_t)rel->r_offset); 7085 return -EINVAL; 7086 } 7087 7088 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7089 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7090 type = is_map_in_map ? "map" : "prog"; 7091 if (is_map_in_map) { 7092 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7093 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7094 i, name); 7095 return -LIBBPF_ERRNO__RELOC; 7096 } 7097 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7098 map->def.key_size != sizeof(int)) { 7099 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7100 i, map->name, sizeof(int)); 7101 return -EINVAL; 7102 } 7103 targ_map = bpf_object__find_map_by_name(obj, name); 7104 if (!targ_map) { 7105 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7106 i, name); 7107 return -ESRCH; 7108 } 7109 } else if (is_prog_array) { 7110 targ_prog = bpf_object__find_program_by_name(obj, name); 7111 if (!targ_prog) { 7112 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7113 i, name); 7114 return -ESRCH; 7115 } 7116 if (targ_prog->sec_idx != sym->st_shndx || 7117 targ_prog->sec_insn_off * 8 != sym->st_value || 7118 prog_is_subprog(obj, targ_prog)) { 7119 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7120 i, name); 7121 return -LIBBPF_ERRNO__RELOC; 7122 } 7123 } else { 7124 return -EINVAL; 7125 } 7126 7127 var = btf__type_by_id(obj->btf, vi->type); 7128 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7129 if (btf_vlen(def) == 0) 7130 return -EINVAL; 7131 member = btf_members(def) + btf_vlen(def) - 1; 7132 mname = btf__name_by_offset(obj->btf, member->name_off); 7133 if (strcmp(mname, "values")) 7134 return -EINVAL; 7135 7136 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7137 if (rel->r_offset - vi->offset < moff) 7138 return -EINVAL; 7139 7140 moff = rel->r_offset - vi->offset - moff; 7141 /* here we use BPF pointer size, which is always 64 bit, as we 7142 * are parsing ELF that was built for BPF target 7143 */ 7144 if (moff % bpf_ptr_sz) 7145 return -EINVAL; 7146 moff /= bpf_ptr_sz; 7147 if (moff >= map->init_slots_sz) { 7148 new_sz = moff + 1; 7149 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7150 if (!tmp) 7151 return -ENOMEM; 7152 map->init_slots = tmp; 7153 memset(map->init_slots + map->init_slots_sz, 0, 7154 (new_sz - map->init_slots_sz) * host_ptr_sz); 7155 map->init_slots_sz = new_sz; 7156 } 7157 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7158 7159 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7160 i, map->name, moff, type, name); 7161 } 7162 7163 return 0; 7164 } 7165 7166 static int bpf_object__collect_relos(struct bpf_object *obj) 7167 { 7168 int i, err; 7169 7170 for (i = 0; i < obj->efile.sec_cnt; i++) { 7171 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7172 Elf64_Shdr *shdr; 7173 Elf_Data *data; 7174 int idx; 7175 7176 if (sec_desc->sec_type != SEC_RELO) 7177 continue; 7178 7179 shdr = sec_desc->shdr; 7180 data = sec_desc->data; 7181 idx = shdr->sh_info; 7182 7183 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7184 pr_warn("internal error at %d\n", __LINE__); 7185 return -LIBBPF_ERRNO__INTERNAL; 7186 } 7187 7188 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7189 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7190 else if (idx == obj->efile.btf_maps_shndx) 7191 err = bpf_object__collect_map_relos(obj, shdr, data); 7192 else 7193 err = bpf_object__collect_prog_relos(obj, shdr, data); 7194 if (err) 7195 return err; 7196 } 7197 7198 bpf_object__sort_relos(obj); 7199 return 0; 7200 } 7201 7202 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7203 { 7204 if (BPF_CLASS(insn->code) == BPF_JMP && 7205 BPF_OP(insn->code) == BPF_CALL && 7206 BPF_SRC(insn->code) == BPF_K && 7207 insn->src_reg == 0 && 7208 insn->dst_reg == 0) { 7209 *func_id = insn->imm; 7210 return true; 7211 } 7212 return false; 7213 } 7214 7215 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7216 { 7217 struct bpf_insn *insn = prog->insns; 7218 enum bpf_func_id func_id; 7219 int i; 7220 7221 if (obj->gen_loader) 7222 return 0; 7223 7224 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7225 if (!insn_is_helper_call(insn, &func_id)) 7226 continue; 7227 7228 /* on kernels that don't yet support 7229 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7230 * to bpf_probe_read() which works well for old kernels 7231 */ 7232 switch (func_id) { 7233 case BPF_FUNC_probe_read_kernel: 7234 case BPF_FUNC_probe_read_user: 7235 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7236 insn->imm = BPF_FUNC_probe_read; 7237 break; 7238 case BPF_FUNC_probe_read_kernel_str: 7239 case BPF_FUNC_probe_read_user_str: 7240 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7241 insn->imm = BPF_FUNC_probe_read_str; 7242 break; 7243 default: 7244 break; 7245 } 7246 } 7247 return 0; 7248 } 7249 7250 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7251 int *btf_obj_fd, int *btf_type_id); 7252 7253 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7254 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7255 struct bpf_prog_load_opts *opts, long cookie) 7256 { 7257 enum sec_def_flags def = cookie; 7258 7259 /* old kernels might not support specifying expected_attach_type */ 7260 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7261 opts->expected_attach_type = 0; 7262 7263 if (def & SEC_SLEEPABLE) 7264 opts->prog_flags |= BPF_F_SLEEPABLE; 7265 7266 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7267 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7268 7269 /* special check for usdt to use uprobe_multi link */ 7270 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7271 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7272 7273 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7274 int btf_obj_fd = 0, btf_type_id = 0, err; 7275 const char *attach_name; 7276 7277 attach_name = strchr(prog->sec_name, '/'); 7278 if (!attach_name) { 7279 /* if BPF program is annotated with just SEC("fentry") 7280 * (or similar) without declaratively specifying 7281 * target, then it is expected that target will be 7282 * specified with bpf_program__set_attach_target() at 7283 * runtime before BPF object load step. If not, then 7284 * there is nothing to load into the kernel as BPF 7285 * verifier won't be able to validate BPF program 7286 * correctness anyways. 7287 */ 7288 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7289 prog->name); 7290 return -EINVAL; 7291 } 7292 attach_name++; /* skip over / */ 7293 7294 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7295 if (err) 7296 return err; 7297 7298 /* cache resolved BTF FD and BTF type ID in the prog */ 7299 prog->attach_btf_obj_fd = btf_obj_fd; 7300 prog->attach_btf_id = btf_type_id; 7301 7302 /* but by now libbpf common logic is not utilizing 7303 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7304 * this callback is called after opts were populated by 7305 * libbpf, so this callback has to update opts explicitly here 7306 */ 7307 opts->attach_btf_obj_fd = btf_obj_fd; 7308 opts->attach_btf_id = btf_type_id; 7309 } 7310 return 0; 7311 } 7312 7313 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7314 7315 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7316 struct bpf_insn *insns, int insns_cnt, 7317 const char *license, __u32 kern_version, int *prog_fd) 7318 { 7319 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7320 const char *prog_name = NULL; 7321 char *cp, errmsg[STRERR_BUFSIZE]; 7322 size_t log_buf_size = 0; 7323 char *log_buf = NULL, *tmp; 7324 int btf_fd, ret, err; 7325 bool own_log_buf = true; 7326 __u32 log_level = prog->log_level; 7327 7328 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7329 /* 7330 * The program type must be set. Most likely we couldn't find a proper 7331 * section definition at load time, and thus we didn't infer the type. 7332 */ 7333 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7334 prog->name, prog->sec_name); 7335 return -EINVAL; 7336 } 7337 7338 if (!insns || !insns_cnt) 7339 return -EINVAL; 7340 7341 if (kernel_supports(obj, FEAT_PROG_NAME)) 7342 prog_name = prog->name; 7343 load_attr.attach_prog_fd = prog->attach_prog_fd; 7344 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7345 load_attr.attach_btf_id = prog->attach_btf_id; 7346 load_attr.kern_version = kern_version; 7347 load_attr.prog_ifindex = prog->prog_ifindex; 7348 7349 /* specify func_info/line_info only if kernel supports them */ 7350 btf_fd = btf__fd(obj->btf); 7351 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7352 load_attr.prog_btf_fd = btf_fd; 7353 load_attr.func_info = prog->func_info; 7354 load_attr.func_info_rec_size = prog->func_info_rec_size; 7355 load_attr.func_info_cnt = prog->func_info_cnt; 7356 load_attr.line_info = prog->line_info; 7357 load_attr.line_info_rec_size = prog->line_info_rec_size; 7358 load_attr.line_info_cnt = prog->line_info_cnt; 7359 } 7360 load_attr.log_level = log_level; 7361 load_attr.prog_flags = prog->prog_flags; 7362 load_attr.fd_array = obj->fd_array; 7363 7364 load_attr.token_fd = obj->token_fd; 7365 if (obj->token_fd) 7366 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7367 7368 /* adjust load_attr if sec_def provides custom preload callback */ 7369 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7370 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7371 if (err < 0) { 7372 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7373 prog->name, err); 7374 return err; 7375 } 7376 insns = prog->insns; 7377 insns_cnt = prog->insns_cnt; 7378 } 7379 7380 /* allow prog_prepare_load_fn to change expected_attach_type */ 7381 load_attr.expected_attach_type = prog->expected_attach_type; 7382 7383 if (obj->gen_loader) { 7384 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7385 license, insns, insns_cnt, &load_attr, 7386 prog - obj->programs); 7387 *prog_fd = -1; 7388 return 0; 7389 } 7390 7391 retry_load: 7392 /* if log_level is zero, we don't request logs initially even if 7393 * custom log_buf is specified; if the program load fails, then we'll 7394 * bump log_level to 1 and use either custom log_buf or we'll allocate 7395 * our own and retry the load to get details on what failed 7396 */ 7397 if (log_level) { 7398 if (prog->log_buf) { 7399 log_buf = prog->log_buf; 7400 log_buf_size = prog->log_size; 7401 own_log_buf = false; 7402 } else if (obj->log_buf) { 7403 log_buf = obj->log_buf; 7404 log_buf_size = obj->log_size; 7405 own_log_buf = false; 7406 } else { 7407 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7408 tmp = realloc(log_buf, log_buf_size); 7409 if (!tmp) { 7410 ret = -ENOMEM; 7411 goto out; 7412 } 7413 log_buf = tmp; 7414 log_buf[0] = '\0'; 7415 own_log_buf = true; 7416 } 7417 } 7418 7419 load_attr.log_buf = log_buf; 7420 load_attr.log_size = log_buf_size; 7421 load_attr.log_level = log_level; 7422 7423 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7424 if (ret >= 0) { 7425 if (log_level && own_log_buf) { 7426 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7427 prog->name, log_buf); 7428 } 7429 7430 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7431 struct bpf_map *map; 7432 int i; 7433 7434 for (i = 0; i < obj->nr_maps; i++) { 7435 map = &prog->obj->maps[i]; 7436 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7437 continue; 7438 7439 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7440 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7441 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7442 prog->name, map->real_name, cp); 7443 /* Don't fail hard if can't bind rodata. */ 7444 } 7445 } 7446 } 7447 7448 *prog_fd = ret; 7449 ret = 0; 7450 goto out; 7451 } 7452 7453 if (log_level == 0) { 7454 log_level = 1; 7455 goto retry_load; 7456 } 7457 /* On ENOSPC, increase log buffer size and retry, unless custom 7458 * log_buf is specified. 7459 * Be careful to not overflow u32, though. Kernel's log buf size limit 7460 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7461 * multiply by 2 unless we are sure we'll fit within 32 bits. 7462 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7463 */ 7464 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7465 goto retry_load; 7466 7467 ret = -errno; 7468 7469 /* post-process verifier log to improve error descriptions */ 7470 fixup_verifier_log(prog, log_buf, log_buf_size); 7471 7472 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7473 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7474 pr_perm_msg(ret); 7475 7476 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7477 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7478 prog->name, log_buf); 7479 } 7480 7481 out: 7482 if (own_log_buf) 7483 free(log_buf); 7484 return ret; 7485 } 7486 7487 static char *find_prev_line(char *buf, char *cur) 7488 { 7489 char *p; 7490 7491 if (cur == buf) /* end of a log buf */ 7492 return NULL; 7493 7494 p = cur - 1; 7495 while (p - 1 >= buf && *(p - 1) != '\n') 7496 p--; 7497 7498 return p; 7499 } 7500 7501 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7502 char *orig, size_t orig_sz, const char *patch) 7503 { 7504 /* size of the remaining log content to the right from the to-be-replaced part */ 7505 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7506 size_t patch_sz = strlen(patch); 7507 7508 if (patch_sz != orig_sz) { 7509 /* If patch line(s) are longer than original piece of verifier log, 7510 * shift log contents by (patch_sz - orig_sz) bytes to the right 7511 * starting from after to-be-replaced part of the log. 7512 * 7513 * If patch line(s) are shorter than original piece of verifier log, 7514 * shift log contents by (orig_sz - patch_sz) bytes to the left 7515 * starting from after to-be-replaced part of the log 7516 * 7517 * We need to be careful about not overflowing available 7518 * buf_sz capacity. If that's the case, we'll truncate the end 7519 * of the original log, as necessary. 7520 */ 7521 if (patch_sz > orig_sz) { 7522 if (orig + patch_sz >= buf + buf_sz) { 7523 /* patch is big enough to cover remaining space completely */ 7524 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7525 rem_sz = 0; 7526 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7527 /* patch causes part of remaining log to be truncated */ 7528 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7529 } 7530 } 7531 /* shift remaining log to the right by calculated amount */ 7532 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7533 } 7534 7535 memcpy(orig, patch, patch_sz); 7536 } 7537 7538 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7539 char *buf, size_t buf_sz, size_t log_sz, 7540 char *line1, char *line2, char *line3) 7541 { 7542 /* Expected log for failed and not properly guarded CO-RE relocation: 7543 * line1 -> 123: (85) call unknown#195896080 7544 * line2 -> invalid func unknown#195896080 7545 * line3 -> <anything else or end of buffer> 7546 * 7547 * "123" is the index of the instruction that was poisoned. We extract 7548 * instruction index to find corresponding CO-RE relocation and 7549 * replace this part of the log with more relevant information about 7550 * failed CO-RE relocation. 7551 */ 7552 const struct bpf_core_relo *relo; 7553 struct bpf_core_spec spec; 7554 char patch[512], spec_buf[256]; 7555 int insn_idx, err, spec_len; 7556 7557 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7558 return; 7559 7560 relo = find_relo_core(prog, insn_idx); 7561 if (!relo) 7562 return; 7563 7564 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7565 if (err) 7566 return; 7567 7568 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7569 snprintf(patch, sizeof(patch), 7570 "%d: <invalid CO-RE relocation>\n" 7571 "failed to resolve CO-RE relocation %s%s\n", 7572 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7573 7574 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7575 } 7576 7577 static void fixup_log_missing_map_load(struct bpf_program *prog, 7578 char *buf, size_t buf_sz, size_t log_sz, 7579 char *line1, char *line2, char *line3) 7580 { 7581 /* Expected log for failed and not properly guarded map reference: 7582 * line1 -> 123: (85) call unknown#2001000345 7583 * line2 -> invalid func unknown#2001000345 7584 * line3 -> <anything else or end of buffer> 7585 * 7586 * "123" is the index of the instruction that was poisoned. 7587 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7588 */ 7589 struct bpf_object *obj = prog->obj; 7590 const struct bpf_map *map; 7591 int insn_idx, map_idx; 7592 char patch[128]; 7593 7594 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7595 return; 7596 7597 map_idx -= POISON_LDIMM64_MAP_BASE; 7598 if (map_idx < 0 || map_idx >= obj->nr_maps) 7599 return; 7600 map = &obj->maps[map_idx]; 7601 7602 snprintf(patch, sizeof(patch), 7603 "%d: <invalid BPF map reference>\n" 7604 "BPF map '%s' is referenced but wasn't created\n", 7605 insn_idx, map->name); 7606 7607 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7608 } 7609 7610 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7611 char *buf, size_t buf_sz, size_t log_sz, 7612 char *line1, char *line2, char *line3) 7613 { 7614 /* Expected log for failed and not properly guarded kfunc call: 7615 * line1 -> 123: (85) call unknown#2002000345 7616 * line2 -> invalid func unknown#2002000345 7617 * line3 -> <anything else or end of buffer> 7618 * 7619 * "123" is the index of the instruction that was poisoned. 7620 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7621 */ 7622 struct bpf_object *obj = prog->obj; 7623 const struct extern_desc *ext; 7624 int insn_idx, ext_idx; 7625 char patch[128]; 7626 7627 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7628 return; 7629 7630 ext_idx -= POISON_CALL_KFUNC_BASE; 7631 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7632 return; 7633 ext = &obj->externs[ext_idx]; 7634 7635 snprintf(patch, sizeof(patch), 7636 "%d: <invalid kfunc call>\n" 7637 "kfunc '%s' is referenced but wasn't resolved\n", 7638 insn_idx, ext->name); 7639 7640 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7641 } 7642 7643 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7644 { 7645 /* look for familiar error patterns in last N lines of the log */ 7646 const size_t max_last_line_cnt = 10; 7647 char *prev_line, *cur_line, *next_line; 7648 size_t log_sz; 7649 int i; 7650 7651 if (!buf) 7652 return; 7653 7654 log_sz = strlen(buf) + 1; 7655 next_line = buf + log_sz - 1; 7656 7657 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7658 cur_line = find_prev_line(buf, next_line); 7659 if (!cur_line) 7660 return; 7661 7662 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7663 prev_line = find_prev_line(buf, cur_line); 7664 if (!prev_line) 7665 continue; 7666 7667 /* failed CO-RE relocation case */ 7668 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7669 prev_line, cur_line, next_line); 7670 return; 7671 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7672 prev_line = find_prev_line(buf, cur_line); 7673 if (!prev_line) 7674 continue; 7675 7676 /* reference to uncreated BPF map */ 7677 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7678 prev_line, cur_line, next_line); 7679 return; 7680 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7681 prev_line = find_prev_line(buf, cur_line); 7682 if (!prev_line) 7683 continue; 7684 7685 /* reference to unresolved kfunc */ 7686 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7687 prev_line, cur_line, next_line); 7688 return; 7689 } 7690 } 7691 } 7692 7693 static int bpf_program_record_relos(struct bpf_program *prog) 7694 { 7695 struct bpf_object *obj = prog->obj; 7696 int i; 7697 7698 for (i = 0; i < prog->nr_reloc; i++) { 7699 struct reloc_desc *relo = &prog->reloc_desc[i]; 7700 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7701 int kind; 7702 7703 switch (relo->type) { 7704 case RELO_EXTERN_LD64: 7705 if (ext->type != EXT_KSYM) 7706 continue; 7707 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7708 BTF_KIND_VAR : BTF_KIND_FUNC; 7709 bpf_gen__record_extern(obj->gen_loader, ext->name, 7710 ext->is_weak, !ext->ksym.type_id, 7711 true, kind, relo->insn_idx); 7712 break; 7713 case RELO_EXTERN_CALL: 7714 bpf_gen__record_extern(obj->gen_loader, ext->name, 7715 ext->is_weak, false, false, BTF_KIND_FUNC, 7716 relo->insn_idx); 7717 break; 7718 case RELO_CORE: { 7719 struct bpf_core_relo cr = { 7720 .insn_off = relo->insn_idx * 8, 7721 .type_id = relo->core_relo->type_id, 7722 .access_str_off = relo->core_relo->access_str_off, 7723 .kind = relo->core_relo->kind, 7724 }; 7725 7726 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7727 break; 7728 } 7729 default: 7730 continue; 7731 } 7732 } 7733 return 0; 7734 } 7735 7736 static int 7737 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7738 { 7739 struct bpf_program *prog; 7740 size_t i; 7741 int err; 7742 7743 for (i = 0; i < obj->nr_programs; i++) { 7744 prog = &obj->programs[i]; 7745 err = bpf_object__sanitize_prog(obj, prog); 7746 if (err) 7747 return err; 7748 } 7749 7750 for (i = 0; i < obj->nr_programs; i++) { 7751 prog = &obj->programs[i]; 7752 if (prog_is_subprog(obj, prog)) 7753 continue; 7754 if (!prog->autoload) { 7755 pr_debug("prog '%s': skipped loading\n", prog->name); 7756 continue; 7757 } 7758 prog->log_level |= log_level; 7759 7760 if (obj->gen_loader) 7761 bpf_program_record_relos(prog); 7762 7763 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7764 obj->license, obj->kern_version, &prog->fd); 7765 if (err) { 7766 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7767 return err; 7768 } 7769 } 7770 7771 bpf_object__free_relocs(obj); 7772 return 0; 7773 } 7774 7775 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7776 7777 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7778 { 7779 struct bpf_program *prog; 7780 int err; 7781 7782 bpf_object__for_each_program(prog, obj) { 7783 prog->sec_def = find_sec_def(prog->sec_name); 7784 if (!prog->sec_def) { 7785 /* couldn't guess, but user might manually specify */ 7786 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7787 prog->name, prog->sec_name); 7788 continue; 7789 } 7790 7791 prog->type = prog->sec_def->prog_type; 7792 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7793 7794 /* sec_def can have custom callback which should be called 7795 * after bpf_program is initialized to adjust its properties 7796 */ 7797 if (prog->sec_def->prog_setup_fn) { 7798 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7799 if (err < 0) { 7800 pr_warn("prog '%s': failed to initialize: %d\n", 7801 prog->name, err); 7802 return err; 7803 } 7804 } 7805 } 7806 7807 return 0; 7808 } 7809 7810 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7811 const struct bpf_object_open_opts *opts) 7812 { 7813 const char *obj_name, *kconfig, *btf_tmp_path, *token_path; 7814 struct bpf_object *obj; 7815 char tmp_name[64]; 7816 int err; 7817 char *log_buf; 7818 size_t log_size; 7819 __u32 log_level; 7820 7821 if (elf_version(EV_CURRENT) == EV_NONE) { 7822 pr_warn("failed to init libelf for %s\n", 7823 path ? : "(mem buf)"); 7824 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7825 } 7826 7827 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7828 return ERR_PTR(-EINVAL); 7829 7830 obj_name = OPTS_GET(opts, object_name, NULL); 7831 if (obj_buf) { 7832 if (!obj_name) { 7833 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7834 (unsigned long)obj_buf, 7835 (unsigned long)obj_buf_sz); 7836 obj_name = tmp_name; 7837 } 7838 path = obj_name; 7839 pr_debug("loading object '%s' from buffer\n", obj_name); 7840 } 7841 7842 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7843 log_size = OPTS_GET(opts, kernel_log_size, 0); 7844 log_level = OPTS_GET(opts, kernel_log_level, 0); 7845 if (log_size > UINT_MAX) 7846 return ERR_PTR(-EINVAL); 7847 if (log_size && !log_buf) 7848 return ERR_PTR(-EINVAL); 7849 7850 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7851 /* if user didn't specify bpf_token_path explicitly, check if 7852 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7853 * option 7854 */ 7855 if (!token_path) 7856 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7857 if (token_path && strlen(token_path) >= PATH_MAX) 7858 return ERR_PTR(-ENAMETOOLONG); 7859 7860 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7861 if (IS_ERR(obj)) 7862 return obj; 7863 7864 obj->log_buf = log_buf; 7865 obj->log_size = log_size; 7866 obj->log_level = log_level; 7867 7868 if (token_path) { 7869 obj->token_path = strdup(token_path); 7870 if (!obj->token_path) { 7871 err = -ENOMEM; 7872 goto out; 7873 } 7874 } 7875 7876 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7877 if (btf_tmp_path) { 7878 if (strlen(btf_tmp_path) >= PATH_MAX) { 7879 err = -ENAMETOOLONG; 7880 goto out; 7881 } 7882 obj->btf_custom_path = strdup(btf_tmp_path); 7883 if (!obj->btf_custom_path) { 7884 err = -ENOMEM; 7885 goto out; 7886 } 7887 } 7888 7889 kconfig = OPTS_GET(opts, kconfig, NULL); 7890 if (kconfig) { 7891 obj->kconfig = strdup(kconfig); 7892 if (!obj->kconfig) { 7893 err = -ENOMEM; 7894 goto out; 7895 } 7896 } 7897 7898 err = bpf_object__elf_init(obj); 7899 err = err ? : bpf_object__check_endianness(obj); 7900 err = err ? : bpf_object__elf_collect(obj); 7901 err = err ? : bpf_object__collect_externs(obj); 7902 err = err ? : bpf_object_fixup_btf(obj); 7903 err = err ? : bpf_object__init_maps(obj, opts); 7904 err = err ? : bpf_object_init_progs(obj, opts); 7905 err = err ? : bpf_object__collect_relos(obj); 7906 if (err) 7907 goto out; 7908 7909 bpf_object__elf_finish(obj); 7910 7911 return obj; 7912 out: 7913 bpf_object__close(obj); 7914 return ERR_PTR(err); 7915 } 7916 7917 struct bpf_object * 7918 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7919 { 7920 if (!path) 7921 return libbpf_err_ptr(-EINVAL); 7922 7923 pr_debug("loading %s\n", path); 7924 7925 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7926 } 7927 7928 struct bpf_object *bpf_object__open(const char *path) 7929 { 7930 return bpf_object__open_file(path, NULL); 7931 } 7932 7933 struct bpf_object * 7934 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7935 const struct bpf_object_open_opts *opts) 7936 { 7937 if (!obj_buf || obj_buf_sz == 0) 7938 return libbpf_err_ptr(-EINVAL); 7939 7940 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7941 } 7942 7943 static int bpf_object_unload(struct bpf_object *obj) 7944 { 7945 size_t i; 7946 7947 if (!obj) 7948 return libbpf_err(-EINVAL); 7949 7950 for (i = 0; i < obj->nr_maps; i++) { 7951 zclose(obj->maps[i].fd); 7952 if (obj->maps[i].st_ops) 7953 zfree(&obj->maps[i].st_ops->kern_vdata); 7954 } 7955 7956 for (i = 0; i < obj->nr_programs; i++) 7957 bpf_program__unload(&obj->programs[i]); 7958 7959 return 0; 7960 } 7961 7962 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7963 { 7964 struct bpf_map *m; 7965 7966 bpf_object__for_each_map(m, obj) { 7967 if (!bpf_map__is_internal(m)) 7968 continue; 7969 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7970 m->def.map_flags &= ~BPF_F_MMAPABLE; 7971 } 7972 7973 return 0; 7974 } 7975 7976 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7977 { 7978 char sym_type, sym_name[500]; 7979 unsigned long long sym_addr; 7980 int ret, err = 0; 7981 FILE *f; 7982 7983 f = fopen("/proc/kallsyms", "re"); 7984 if (!f) { 7985 err = -errno; 7986 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7987 return err; 7988 } 7989 7990 while (true) { 7991 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7992 &sym_addr, &sym_type, sym_name); 7993 if (ret == EOF && feof(f)) 7994 break; 7995 if (ret != 3) { 7996 pr_warn("failed to read kallsyms entry: %d\n", ret); 7997 err = -EINVAL; 7998 break; 7999 } 8000 8001 err = cb(sym_addr, sym_type, sym_name, ctx); 8002 if (err) 8003 break; 8004 } 8005 8006 fclose(f); 8007 return err; 8008 } 8009 8010 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8011 const char *sym_name, void *ctx) 8012 { 8013 struct bpf_object *obj = ctx; 8014 const struct btf_type *t; 8015 struct extern_desc *ext; 8016 8017 ext = find_extern_by_name(obj, sym_name); 8018 if (!ext || ext->type != EXT_KSYM) 8019 return 0; 8020 8021 t = btf__type_by_id(obj->btf, ext->btf_id); 8022 if (!btf_is_var(t)) 8023 return 0; 8024 8025 if (ext->is_set && ext->ksym.addr != sym_addr) { 8026 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8027 sym_name, ext->ksym.addr, sym_addr); 8028 return -EINVAL; 8029 } 8030 if (!ext->is_set) { 8031 ext->is_set = true; 8032 ext->ksym.addr = sym_addr; 8033 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8034 } 8035 return 0; 8036 } 8037 8038 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8039 { 8040 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8041 } 8042 8043 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8044 __u16 kind, struct btf **res_btf, 8045 struct module_btf **res_mod_btf) 8046 { 8047 struct module_btf *mod_btf; 8048 struct btf *btf; 8049 int i, id, err; 8050 8051 btf = obj->btf_vmlinux; 8052 mod_btf = NULL; 8053 id = btf__find_by_name_kind(btf, ksym_name, kind); 8054 8055 if (id == -ENOENT) { 8056 err = load_module_btfs(obj); 8057 if (err) 8058 return err; 8059 8060 for (i = 0; i < obj->btf_module_cnt; i++) { 8061 /* we assume module_btf's BTF FD is always >0 */ 8062 mod_btf = &obj->btf_modules[i]; 8063 btf = mod_btf->btf; 8064 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8065 if (id != -ENOENT) 8066 break; 8067 } 8068 } 8069 if (id <= 0) 8070 return -ESRCH; 8071 8072 *res_btf = btf; 8073 *res_mod_btf = mod_btf; 8074 return id; 8075 } 8076 8077 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8078 struct extern_desc *ext) 8079 { 8080 const struct btf_type *targ_var, *targ_type; 8081 __u32 targ_type_id, local_type_id; 8082 struct module_btf *mod_btf = NULL; 8083 const char *targ_var_name; 8084 struct btf *btf = NULL; 8085 int id, err; 8086 8087 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8088 if (id < 0) { 8089 if (id == -ESRCH && ext->is_weak) 8090 return 0; 8091 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8092 ext->name); 8093 return id; 8094 } 8095 8096 /* find local type_id */ 8097 local_type_id = ext->ksym.type_id; 8098 8099 /* find target type_id */ 8100 targ_var = btf__type_by_id(btf, id); 8101 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8102 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8103 8104 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8105 btf, targ_type_id); 8106 if (err <= 0) { 8107 const struct btf_type *local_type; 8108 const char *targ_name, *local_name; 8109 8110 local_type = btf__type_by_id(obj->btf, local_type_id); 8111 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8112 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8113 8114 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8115 ext->name, local_type_id, 8116 btf_kind_str(local_type), local_name, targ_type_id, 8117 btf_kind_str(targ_type), targ_name); 8118 return -EINVAL; 8119 } 8120 8121 ext->is_set = true; 8122 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8123 ext->ksym.kernel_btf_id = id; 8124 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8125 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8126 8127 return 0; 8128 } 8129 8130 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8131 struct extern_desc *ext) 8132 { 8133 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8134 struct module_btf *mod_btf = NULL; 8135 const struct btf_type *kern_func; 8136 struct btf *kern_btf = NULL; 8137 int ret; 8138 8139 local_func_proto_id = ext->ksym.type_id; 8140 8141 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8142 &mod_btf); 8143 if (kfunc_id < 0) { 8144 if (kfunc_id == -ESRCH && ext->is_weak) 8145 return 0; 8146 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8147 ext->name); 8148 return kfunc_id; 8149 } 8150 8151 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8152 kfunc_proto_id = kern_func->type; 8153 8154 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8155 kern_btf, kfunc_proto_id); 8156 if (ret <= 0) { 8157 if (ext->is_weak) 8158 return 0; 8159 8160 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8161 ext->name, local_func_proto_id, 8162 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8163 return -EINVAL; 8164 } 8165 8166 /* set index for module BTF fd in fd_array, if unset */ 8167 if (mod_btf && !mod_btf->fd_array_idx) { 8168 /* insn->off is s16 */ 8169 if (obj->fd_array_cnt == INT16_MAX) { 8170 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8171 ext->name, mod_btf->fd_array_idx); 8172 return -E2BIG; 8173 } 8174 /* Cannot use index 0 for module BTF fd */ 8175 if (!obj->fd_array_cnt) 8176 obj->fd_array_cnt = 1; 8177 8178 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8179 obj->fd_array_cnt + 1); 8180 if (ret) 8181 return ret; 8182 mod_btf->fd_array_idx = obj->fd_array_cnt; 8183 /* we assume module BTF FD is always >0 */ 8184 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8185 } 8186 8187 ext->is_set = true; 8188 ext->ksym.kernel_btf_id = kfunc_id; 8189 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8190 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8191 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8192 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8193 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8194 */ 8195 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8196 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8197 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8198 8199 return 0; 8200 } 8201 8202 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8203 { 8204 const struct btf_type *t; 8205 struct extern_desc *ext; 8206 int i, err; 8207 8208 for (i = 0; i < obj->nr_extern; i++) { 8209 ext = &obj->externs[i]; 8210 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8211 continue; 8212 8213 if (obj->gen_loader) { 8214 ext->is_set = true; 8215 ext->ksym.kernel_btf_obj_fd = 0; 8216 ext->ksym.kernel_btf_id = 0; 8217 continue; 8218 } 8219 t = btf__type_by_id(obj->btf, ext->btf_id); 8220 if (btf_is_var(t)) 8221 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8222 else 8223 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8224 if (err) 8225 return err; 8226 } 8227 return 0; 8228 } 8229 8230 static int bpf_object__resolve_externs(struct bpf_object *obj, 8231 const char *extra_kconfig) 8232 { 8233 bool need_config = false, need_kallsyms = false; 8234 bool need_vmlinux_btf = false; 8235 struct extern_desc *ext; 8236 void *kcfg_data = NULL; 8237 int err, i; 8238 8239 if (obj->nr_extern == 0) 8240 return 0; 8241 8242 if (obj->kconfig_map_idx >= 0) 8243 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8244 8245 for (i = 0; i < obj->nr_extern; i++) { 8246 ext = &obj->externs[i]; 8247 8248 if (ext->type == EXT_KSYM) { 8249 if (ext->ksym.type_id) 8250 need_vmlinux_btf = true; 8251 else 8252 need_kallsyms = true; 8253 continue; 8254 } else if (ext->type == EXT_KCFG) { 8255 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8256 __u64 value = 0; 8257 8258 /* Kconfig externs need actual /proc/config.gz */ 8259 if (str_has_pfx(ext->name, "CONFIG_")) { 8260 need_config = true; 8261 continue; 8262 } 8263 8264 /* Virtual kcfg externs are customly handled by libbpf */ 8265 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8266 value = get_kernel_version(); 8267 if (!value) { 8268 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8269 return -EINVAL; 8270 } 8271 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8272 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8273 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8274 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8275 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8276 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8277 * __kconfig externs, where LINUX_ ones are virtual and filled out 8278 * customly by libbpf (their values don't come from Kconfig). 8279 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8280 * __weak, it defaults to zero value, just like for CONFIG_xxx 8281 * externs. 8282 */ 8283 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8284 return -EINVAL; 8285 } 8286 8287 err = set_kcfg_value_num(ext, ext_ptr, value); 8288 if (err) 8289 return err; 8290 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8291 ext->name, (long long)value); 8292 } else { 8293 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8294 return -EINVAL; 8295 } 8296 } 8297 if (need_config && extra_kconfig) { 8298 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8299 if (err) 8300 return -EINVAL; 8301 need_config = false; 8302 for (i = 0; i < obj->nr_extern; i++) { 8303 ext = &obj->externs[i]; 8304 if (ext->type == EXT_KCFG && !ext->is_set) { 8305 need_config = true; 8306 break; 8307 } 8308 } 8309 } 8310 if (need_config) { 8311 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8312 if (err) 8313 return -EINVAL; 8314 } 8315 if (need_kallsyms) { 8316 err = bpf_object__read_kallsyms_file(obj); 8317 if (err) 8318 return -EINVAL; 8319 } 8320 if (need_vmlinux_btf) { 8321 err = bpf_object__resolve_ksyms_btf_id(obj); 8322 if (err) 8323 return -EINVAL; 8324 } 8325 for (i = 0; i < obj->nr_extern; i++) { 8326 ext = &obj->externs[i]; 8327 8328 if (!ext->is_set && !ext->is_weak) { 8329 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8330 return -ESRCH; 8331 } else if (!ext->is_set) { 8332 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8333 ext->name); 8334 } 8335 } 8336 8337 return 0; 8338 } 8339 8340 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8341 { 8342 struct bpf_struct_ops *st_ops; 8343 __u32 i; 8344 8345 st_ops = map->st_ops; 8346 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8347 struct bpf_program *prog = st_ops->progs[i]; 8348 void *kern_data; 8349 int prog_fd; 8350 8351 if (!prog) 8352 continue; 8353 8354 prog_fd = bpf_program__fd(prog); 8355 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8356 *(unsigned long *)kern_data = prog_fd; 8357 } 8358 } 8359 8360 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8361 { 8362 struct bpf_map *map; 8363 int i; 8364 8365 for (i = 0; i < obj->nr_maps; i++) { 8366 map = &obj->maps[i]; 8367 8368 if (!bpf_map__is_struct_ops(map)) 8369 continue; 8370 8371 if (!map->autocreate) 8372 continue; 8373 8374 bpf_map_prepare_vdata(map); 8375 } 8376 8377 return 0; 8378 } 8379 8380 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8381 { 8382 int err, i; 8383 8384 if (!obj) 8385 return libbpf_err(-EINVAL); 8386 8387 if (obj->loaded) { 8388 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8389 return libbpf_err(-EINVAL); 8390 } 8391 8392 if (obj->gen_loader) 8393 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8394 8395 err = bpf_object_prepare_token(obj); 8396 err = err ? : bpf_object__probe_loading(obj); 8397 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8398 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8399 err = err ? : bpf_object__sanitize_maps(obj); 8400 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8401 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8402 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8403 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8404 err = err ? : bpf_object__create_maps(obj); 8405 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8406 err = err ? : bpf_object_init_prog_arrays(obj); 8407 err = err ? : bpf_object_prepare_struct_ops(obj); 8408 8409 if (obj->gen_loader) { 8410 /* reset FDs */ 8411 if (obj->btf) 8412 btf__set_fd(obj->btf, -1); 8413 if (!err) 8414 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8415 } 8416 8417 /* clean up fd_array */ 8418 zfree(&obj->fd_array); 8419 8420 /* clean up module BTFs */ 8421 for (i = 0; i < obj->btf_module_cnt; i++) { 8422 close(obj->btf_modules[i].fd); 8423 btf__free(obj->btf_modules[i].btf); 8424 free(obj->btf_modules[i].name); 8425 } 8426 free(obj->btf_modules); 8427 8428 /* clean up vmlinux BTF */ 8429 btf__free(obj->btf_vmlinux); 8430 obj->btf_vmlinux = NULL; 8431 8432 obj->loaded = true; /* doesn't matter if successfully or not */ 8433 8434 if (err) 8435 goto out; 8436 8437 return 0; 8438 out: 8439 /* unpin any maps that were auto-pinned during load */ 8440 for (i = 0; i < obj->nr_maps; i++) 8441 if (obj->maps[i].pinned && !obj->maps[i].reused) 8442 bpf_map__unpin(&obj->maps[i], NULL); 8443 8444 bpf_object_unload(obj); 8445 pr_warn("failed to load object '%s'\n", obj->path); 8446 return libbpf_err(err); 8447 } 8448 8449 int bpf_object__load(struct bpf_object *obj) 8450 { 8451 return bpf_object_load(obj, 0, NULL); 8452 } 8453 8454 static int make_parent_dir(const char *path) 8455 { 8456 char *cp, errmsg[STRERR_BUFSIZE]; 8457 char *dname, *dir; 8458 int err = 0; 8459 8460 dname = strdup(path); 8461 if (dname == NULL) 8462 return -ENOMEM; 8463 8464 dir = dirname(dname); 8465 if (mkdir(dir, 0700) && errno != EEXIST) 8466 err = -errno; 8467 8468 free(dname); 8469 if (err) { 8470 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8471 pr_warn("failed to mkdir %s: %s\n", path, cp); 8472 } 8473 return err; 8474 } 8475 8476 static int check_path(const char *path) 8477 { 8478 char *cp, errmsg[STRERR_BUFSIZE]; 8479 struct statfs st_fs; 8480 char *dname, *dir; 8481 int err = 0; 8482 8483 if (path == NULL) 8484 return -EINVAL; 8485 8486 dname = strdup(path); 8487 if (dname == NULL) 8488 return -ENOMEM; 8489 8490 dir = dirname(dname); 8491 if (statfs(dir, &st_fs)) { 8492 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8493 pr_warn("failed to statfs %s: %s\n", dir, cp); 8494 err = -errno; 8495 } 8496 free(dname); 8497 8498 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8499 pr_warn("specified path %s is not on BPF FS\n", path); 8500 err = -EINVAL; 8501 } 8502 8503 return err; 8504 } 8505 8506 int bpf_program__pin(struct bpf_program *prog, const char *path) 8507 { 8508 char *cp, errmsg[STRERR_BUFSIZE]; 8509 int err; 8510 8511 if (prog->fd < 0) { 8512 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8513 return libbpf_err(-EINVAL); 8514 } 8515 8516 err = make_parent_dir(path); 8517 if (err) 8518 return libbpf_err(err); 8519 8520 err = check_path(path); 8521 if (err) 8522 return libbpf_err(err); 8523 8524 if (bpf_obj_pin(prog->fd, path)) { 8525 err = -errno; 8526 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8527 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8528 return libbpf_err(err); 8529 } 8530 8531 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8532 return 0; 8533 } 8534 8535 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8536 { 8537 int err; 8538 8539 if (prog->fd < 0) { 8540 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8541 return libbpf_err(-EINVAL); 8542 } 8543 8544 err = check_path(path); 8545 if (err) 8546 return libbpf_err(err); 8547 8548 err = unlink(path); 8549 if (err) 8550 return libbpf_err(-errno); 8551 8552 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8553 return 0; 8554 } 8555 8556 int bpf_map__pin(struct bpf_map *map, const char *path) 8557 { 8558 char *cp, errmsg[STRERR_BUFSIZE]; 8559 int err; 8560 8561 if (map == NULL) { 8562 pr_warn("invalid map pointer\n"); 8563 return libbpf_err(-EINVAL); 8564 } 8565 8566 if (map->pin_path) { 8567 if (path && strcmp(path, map->pin_path)) { 8568 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8569 bpf_map__name(map), map->pin_path, path); 8570 return libbpf_err(-EINVAL); 8571 } else if (map->pinned) { 8572 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8573 bpf_map__name(map), map->pin_path); 8574 return 0; 8575 } 8576 } else { 8577 if (!path) { 8578 pr_warn("missing a path to pin map '%s' at\n", 8579 bpf_map__name(map)); 8580 return libbpf_err(-EINVAL); 8581 } else if (map->pinned) { 8582 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8583 return libbpf_err(-EEXIST); 8584 } 8585 8586 map->pin_path = strdup(path); 8587 if (!map->pin_path) { 8588 err = -errno; 8589 goto out_err; 8590 } 8591 } 8592 8593 err = make_parent_dir(map->pin_path); 8594 if (err) 8595 return libbpf_err(err); 8596 8597 err = check_path(map->pin_path); 8598 if (err) 8599 return libbpf_err(err); 8600 8601 if (bpf_obj_pin(map->fd, map->pin_path)) { 8602 err = -errno; 8603 goto out_err; 8604 } 8605 8606 map->pinned = true; 8607 pr_debug("pinned map '%s'\n", map->pin_path); 8608 8609 return 0; 8610 8611 out_err: 8612 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8613 pr_warn("failed to pin map: %s\n", cp); 8614 return libbpf_err(err); 8615 } 8616 8617 int bpf_map__unpin(struct bpf_map *map, const char *path) 8618 { 8619 int err; 8620 8621 if (map == NULL) { 8622 pr_warn("invalid map pointer\n"); 8623 return libbpf_err(-EINVAL); 8624 } 8625 8626 if (map->pin_path) { 8627 if (path && strcmp(path, map->pin_path)) { 8628 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8629 bpf_map__name(map), map->pin_path, path); 8630 return libbpf_err(-EINVAL); 8631 } 8632 path = map->pin_path; 8633 } else if (!path) { 8634 pr_warn("no path to unpin map '%s' from\n", 8635 bpf_map__name(map)); 8636 return libbpf_err(-EINVAL); 8637 } 8638 8639 err = check_path(path); 8640 if (err) 8641 return libbpf_err(err); 8642 8643 err = unlink(path); 8644 if (err != 0) 8645 return libbpf_err(-errno); 8646 8647 map->pinned = false; 8648 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8649 8650 return 0; 8651 } 8652 8653 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8654 { 8655 char *new = NULL; 8656 8657 if (path) { 8658 new = strdup(path); 8659 if (!new) 8660 return libbpf_err(-errno); 8661 } 8662 8663 free(map->pin_path); 8664 map->pin_path = new; 8665 return 0; 8666 } 8667 8668 __alias(bpf_map__pin_path) 8669 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8670 8671 const char *bpf_map__pin_path(const struct bpf_map *map) 8672 { 8673 return map->pin_path; 8674 } 8675 8676 bool bpf_map__is_pinned(const struct bpf_map *map) 8677 { 8678 return map->pinned; 8679 } 8680 8681 static void sanitize_pin_path(char *s) 8682 { 8683 /* bpffs disallows periods in path names */ 8684 while (*s) { 8685 if (*s == '.') 8686 *s = '_'; 8687 s++; 8688 } 8689 } 8690 8691 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8692 { 8693 struct bpf_map *map; 8694 int err; 8695 8696 if (!obj) 8697 return libbpf_err(-ENOENT); 8698 8699 if (!obj->loaded) { 8700 pr_warn("object not yet loaded; load it first\n"); 8701 return libbpf_err(-ENOENT); 8702 } 8703 8704 bpf_object__for_each_map(map, obj) { 8705 char *pin_path = NULL; 8706 char buf[PATH_MAX]; 8707 8708 if (!map->autocreate) 8709 continue; 8710 8711 if (path) { 8712 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8713 if (err) 8714 goto err_unpin_maps; 8715 sanitize_pin_path(buf); 8716 pin_path = buf; 8717 } else if (!map->pin_path) { 8718 continue; 8719 } 8720 8721 err = bpf_map__pin(map, pin_path); 8722 if (err) 8723 goto err_unpin_maps; 8724 } 8725 8726 return 0; 8727 8728 err_unpin_maps: 8729 while ((map = bpf_object__prev_map(obj, map))) { 8730 if (!map->pin_path) 8731 continue; 8732 8733 bpf_map__unpin(map, NULL); 8734 } 8735 8736 return libbpf_err(err); 8737 } 8738 8739 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8740 { 8741 struct bpf_map *map; 8742 int err; 8743 8744 if (!obj) 8745 return libbpf_err(-ENOENT); 8746 8747 bpf_object__for_each_map(map, obj) { 8748 char *pin_path = NULL; 8749 char buf[PATH_MAX]; 8750 8751 if (path) { 8752 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8753 if (err) 8754 return libbpf_err(err); 8755 sanitize_pin_path(buf); 8756 pin_path = buf; 8757 } else if (!map->pin_path) { 8758 continue; 8759 } 8760 8761 err = bpf_map__unpin(map, pin_path); 8762 if (err) 8763 return libbpf_err(err); 8764 } 8765 8766 return 0; 8767 } 8768 8769 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8770 { 8771 struct bpf_program *prog; 8772 char buf[PATH_MAX]; 8773 int err; 8774 8775 if (!obj) 8776 return libbpf_err(-ENOENT); 8777 8778 if (!obj->loaded) { 8779 pr_warn("object not yet loaded; load it first\n"); 8780 return libbpf_err(-ENOENT); 8781 } 8782 8783 bpf_object__for_each_program(prog, obj) { 8784 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8785 if (err) 8786 goto err_unpin_programs; 8787 8788 err = bpf_program__pin(prog, buf); 8789 if (err) 8790 goto err_unpin_programs; 8791 } 8792 8793 return 0; 8794 8795 err_unpin_programs: 8796 while ((prog = bpf_object__prev_program(obj, prog))) { 8797 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8798 continue; 8799 8800 bpf_program__unpin(prog, buf); 8801 } 8802 8803 return libbpf_err(err); 8804 } 8805 8806 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8807 { 8808 struct bpf_program *prog; 8809 int err; 8810 8811 if (!obj) 8812 return libbpf_err(-ENOENT); 8813 8814 bpf_object__for_each_program(prog, obj) { 8815 char buf[PATH_MAX]; 8816 8817 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8818 if (err) 8819 return libbpf_err(err); 8820 8821 err = bpf_program__unpin(prog, buf); 8822 if (err) 8823 return libbpf_err(err); 8824 } 8825 8826 return 0; 8827 } 8828 8829 int bpf_object__pin(struct bpf_object *obj, const char *path) 8830 { 8831 int err; 8832 8833 err = bpf_object__pin_maps(obj, path); 8834 if (err) 8835 return libbpf_err(err); 8836 8837 err = bpf_object__pin_programs(obj, path); 8838 if (err) { 8839 bpf_object__unpin_maps(obj, path); 8840 return libbpf_err(err); 8841 } 8842 8843 return 0; 8844 } 8845 8846 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8847 { 8848 int err; 8849 8850 err = bpf_object__unpin_programs(obj, path); 8851 if (err) 8852 return libbpf_err(err); 8853 8854 err = bpf_object__unpin_maps(obj, path); 8855 if (err) 8856 return libbpf_err(err); 8857 8858 return 0; 8859 } 8860 8861 static void bpf_map__destroy(struct bpf_map *map) 8862 { 8863 if (map->inner_map) { 8864 bpf_map__destroy(map->inner_map); 8865 zfree(&map->inner_map); 8866 } 8867 8868 zfree(&map->init_slots); 8869 map->init_slots_sz = 0; 8870 8871 if (map->mmaped && map->mmaped != map->obj->arena_data) 8872 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8873 map->mmaped = NULL; 8874 8875 if (map->st_ops) { 8876 zfree(&map->st_ops->data); 8877 zfree(&map->st_ops->progs); 8878 zfree(&map->st_ops->kern_func_off); 8879 zfree(&map->st_ops); 8880 } 8881 8882 zfree(&map->name); 8883 zfree(&map->real_name); 8884 zfree(&map->pin_path); 8885 8886 if (map->fd >= 0) 8887 zclose(map->fd); 8888 } 8889 8890 void bpf_object__close(struct bpf_object *obj) 8891 { 8892 size_t i; 8893 8894 if (IS_ERR_OR_NULL(obj)) 8895 return; 8896 8897 usdt_manager_free(obj->usdt_man); 8898 obj->usdt_man = NULL; 8899 8900 bpf_gen__free(obj->gen_loader); 8901 bpf_object__elf_finish(obj); 8902 bpf_object_unload(obj); 8903 btf__free(obj->btf); 8904 btf__free(obj->btf_vmlinux); 8905 btf_ext__free(obj->btf_ext); 8906 8907 for (i = 0; i < obj->nr_maps; i++) 8908 bpf_map__destroy(&obj->maps[i]); 8909 8910 zfree(&obj->btf_custom_path); 8911 zfree(&obj->kconfig); 8912 8913 for (i = 0; i < obj->nr_extern; i++) 8914 zfree(&obj->externs[i].essent_name); 8915 8916 zfree(&obj->externs); 8917 obj->nr_extern = 0; 8918 8919 zfree(&obj->maps); 8920 obj->nr_maps = 0; 8921 8922 if (obj->programs && obj->nr_programs) { 8923 for (i = 0; i < obj->nr_programs; i++) 8924 bpf_program__exit(&obj->programs[i]); 8925 } 8926 zfree(&obj->programs); 8927 8928 zfree(&obj->feat_cache); 8929 zfree(&obj->token_path); 8930 if (obj->token_fd > 0) 8931 close(obj->token_fd); 8932 8933 zfree(&obj->arena_data); 8934 8935 free(obj); 8936 } 8937 8938 const char *bpf_object__name(const struct bpf_object *obj) 8939 { 8940 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8941 } 8942 8943 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8944 { 8945 return obj ? obj->kern_version : 0; 8946 } 8947 8948 struct btf *bpf_object__btf(const struct bpf_object *obj) 8949 { 8950 return obj ? obj->btf : NULL; 8951 } 8952 8953 int bpf_object__btf_fd(const struct bpf_object *obj) 8954 { 8955 return obj->btf ? btf__fd(obj->btf) : -1; 8956 } 8957 8958 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8959 { 8960 if (obj->loaded) 8961 return libbpf_err(-EINVAL); 8962 8963 obj->kern_version = kern_version; 8964 8965 return 0; 8966 } 8967 8968 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8969 { 8970 struct bpf_gen *gen; 8971 8972 if (!opts) 8973 return -EFAULT; 8974 if (!OPTS_VALID(opts, gen_loader_opts)) 8975 return -EINVAL; 8976 gen = calloc(sizeof(*gen), 1); 8977 if (!gen) 8978 return -ENOMEM; 8979 gen->opts = opts; 8980 obj->gen_loader = gen; 8981 return 0; 8982 } 8983 8984 static struct bpf_program * 8985 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8986 bool forward) 8987 { 8988 size_t nr_programs = obj->nr_programs; 8989 ssize_t idx; 8990 8991 if (!nr_programs) 8992 return NULL; 8993 8994 if (!p) 8995 /* Iter from the beginning */ 8996 return forward ? &obj->programs[0] : 8997 &obj->programs[nr_programs - 1]; 8998 8999 if (p->obj != obj) { 9000 pr_warn("error: program handler doesn't match object\n"); 9001 return errno = EINVAL, NULL; 9002 } 9003 9004 idx = (p - obj->programs) + (forward ? 1 : -1); 9005 if (idx >= obj->nr_programs || idx < 0) 9006 return NULL; 9007 return &obj->programs[idx]; 9008 } 9009 9010 struct bpf_program * 9011 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9012 { 9013 struct bpf_program *prog = prev; 9014 9015 do { 9016 prog = __bpf_program__iter(prog, obj, true); 9017 } while (prog && prog_is_subprog(obj, prog)); 9018 9019 return prog; 9020 } 9021 9022 struct bpf_program * 9023 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9024 { 9025 struct bpf_program *prog = next; 9026 9027 do { 9028 prog = __bpf_program__iter(prog, obj, false); 9029 } while (prog && prog_is_subprog(obj, prog)); 9030 9031 return prog; 9032 } 9033 9034 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9035 { 9036 prog->prog_ifindex = ifindex; 9037 } 9038 9039 const char *bpf_program__name(const struct bpf_program *prog) 9040 { 9041 return prog->name; 9042 } 9043 9044 const char *bpf_program__section_name(const struct bpf_program *prog) 9045 { 9046 return prog->sec_name; 9047 } 9048 9049 bool bpf_program__autoload(const struct bpf_program *prog) 9050 { 9051 return prog->autoload; 9052 } 9053 9054 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9055 { 9056 if (prog->obj->loaded) 9057 return libbpf_err(-EINVAL); 9058 9059 prog->autoload = autoload; 9060 return 0; 9061 } 9062 9063 bool bpf_program__autoattach(const struct bpf_program *prog) 9064 { 9065 return prog->autoattach; 9066 } 9067 9068 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9069 { 9070 prog->autoattach = autoattach; 9071 } 9072 9073 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9074 { 9075 return prog->insns; 9076 } 9077 9078 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9079 { 9080 return prog->insns_cnt; 9081 } 9082 9083 int bpf_program__set_insns(struct bpf_program *prog, 9084 struct bpf_insn *new_insns, size_t new_insn_cnt) 9085 { 9086 struct bpf_insn *insns; 9087 9088 if (prog->obj->loaded) 9089 return -EBUSY; 9090 9091 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9092 /* NULL is a valid return from reallocarray if the new count is zero */ 9093 if (!insns && new_insn_cnt) { 9094 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9095 return -ENOMEM; 9096 } 9097 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9098 9099 prog->insns = insns; 9100 prog->insns_cnt = new_insn_cnt; 9101 return 0; 9102 } 9103 9104 int bpf_program__fd(const struct bpf_program *prog) 9105 { 9106 if (!prog) 9107 return libbpf_err(-EINVAL); 9108 9109 if (prog->fd < 0) 9110 return libbpf_err(-ENOENT); 9111 9112 return prog->fd; 9113 } 9114 9115 __alias(bpf_program__type) 9116 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9117 9118 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9119 { 9120 return prog->type; 9121 } 9122 9123 static size_t custom_sec_def_cnt; 9124 static struct bpf_sec_def *custom_sec_defs; 9125 static struct bpf_sec_def custom_fallback_def; 9126 static bool has_custom_fallback_def; 9127 static int last_custom_sec_def_handler_id; 9128 9129 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9130 { 9131 if (prog->obj->loaded) 9132 return libbpf_err(-EBUSY); 9133 9134 /* if type is not changed, do nothing */ 9135 if (prog->type == type) 9136 return 0; 9137 9138 prog->type = type; 9139 9140 /* If a program type was changed, we need to reset associated SEC() 9141 * handler, as it will be invalid now. The only exception is a generic 9142 * fallback handler, which by definition is program type-agnostic and 9143 * is a catch-all custom handler, optionally set by the application, 9144 * so should be able to handle any type of BPF program. 9145 */ 9146 if (prog->sec_def != &custom_fallback_def) 9147 prog->sec_def = NULL; 9148 return 0; 9149 } 9150 9151 __alias(bpf_program__expected_attach_type) 9152 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9153 9154 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9155 { 9156 return prog->expected_attach_type; 9157 } 9158 9159 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9160 enum bpf_attach_type type) 9161 { 9162 if (prog->obj->loaded) 9163 return libbpf_err(-EBUSY); 9164 9165 prog->expected_attach_type = type; 9166 return 0; 9167 } 9168 9169 __u32 bpf_program__flags(const struct bpf_program *prog) 9170 { 9171 return prog->prog_flags; 9172 } 9173 9174 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9175 { 9176 if (prog->obj->loaded) 9177 return libbpf_err(-EBUSY); 9178 9179 prog->prog_flags = flags; 9180 return 0; 9181 } 9182 9183 __u32 bpf_program__log_level(const struct bpf_program *prog) 9184 { 9185 return prog->log_level; 9186 } 9187 9188 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9189 { 9190 if (prog->obj->loaded) 9191 return libbpf_err(-EBUSY); 9192 9193 prog->log_level = log_level; 9194 return 0; 9195 } 9196 9197 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9198 { 9199 *log_size = prog->log_size; 9200 return prog->log_buf; 9201 } 9202 9203 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9204 { 9205 if (log_size && !log_buf) 9206 return -EINVAL; 9207 if (prog->log_size > UINT_MAX) 9208 return -EINVAL; 9209 if (prog->obj->loaded) 9210 return -EBUSY; 9211 9212 prog->log_buf = log_buf; 9213 prog->log_size = log_size; 9214 return 0; 9215 } 9216 9217 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9218 .sec = (char *)sec_pfx, \ 9219 .prog_type = BPF_PROG_TYPE_##ptype, \ 9220 .expected_attach_type = atype, \ 9221 .cookie = (long)(flags), \ 9222 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9223 __VA_ARGS__ \ 9224 } 9225 9226 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9227 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9228 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9229 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9230 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9231 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9232 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9233 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9234 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9235 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9236 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9237 9238 static const struct bpf_sec_def section_defs[] = { 9239 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9240 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9241 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9242 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9243 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9244 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9245 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9246 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9247 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9248 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9249 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9250 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9251 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9252 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9253 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9254 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9255 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9256 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9257 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9258 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9259 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9260 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9261 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9262 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9263 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9264 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9265 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9266 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9267 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9268 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9269 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9270 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9271 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9272 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9273 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9274 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9275 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9276 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9277 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9278 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9279 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9280 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9281 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9282 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9283 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9284 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9285 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9286 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9287 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9288 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9289 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9290 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9291 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9292 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9293 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9294 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9295 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9296 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9297 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9298 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9299 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9300 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9301 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9302 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9303 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9304 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9305 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9306 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9307 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9308 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9309 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9310 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9311 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9312 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9313 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9314 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9315 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9316 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9317 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9318 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9319 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9320 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9321 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9322 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9323 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9324 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9325 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9326 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9327 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9328 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9329 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9330 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9331 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9332 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9333 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9334 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9335 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9336 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9337 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9338 }; 9339 9340 int libbpf_register_prog_handler(const char *sec, 9341 enum bpf_prog_type prog_type, 9342 enum bpf_attach_type exp_attach_type, 9343 const struct libbpf_prog_handler_opts *opts) 9344 { 9345 struct bpf_sec_def *sec_def; 9346 9347 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9348 return libbpf_err(-EINVAL); 9349 9350 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9351 return libbpf_err(-E2BIG); 9352 9353 if (sec) { 9354 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9355 sizeof(*sec_def)); 9356 if (!sec_def) 9357 return libbpf_err(-ENOMEM); 9358 9359 custom_sec_defs = sec_def; 9360 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9361 } else { 9362 if (has_custom_fallback_def) 9363 return libbpf_err(-EBUSY); 9364 9365 sec_def = &custom_fallback_def; 9366 } 9367 9368 sec_def->sec = sec ? strdup(sec) : NULL; 9369 if (sec && !sec_def->sec) 9370 return libbpf_err(-ENOMEM); 9371 9372 sec_def->prog_type = prog_type; 9373 sec_def->expected_attach_type = exp_attach_type; 9374 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9375 9376 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9377 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9378 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9379 9380 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9381 9382 if (sec) 9383 custom_sec_def_cnt++; 9384 else 9385 has_custom_fallback_def = true; 9386 9387 return sec_def->handler_id; 9388 } 9389 9390 int libbpf_unregister_prog_handler(int handler_id) 9391 { 9392 struct bpf_sec_def *sec_defs; 9393 int i; 9394 9395 if (handler_id <= 0) 9396 return libbpf_err(-EINVAL); 9397 9398 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9399 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9400 has_custom_fallback_def = false; 9401 return 0; 9402 } 9403 9404 for (i = 0; i < custom_sec_def_cnt; i++) { 9405 if (custom_sec_defs[i].handler_id == handler_id) 9406 break; 9407 } 9408 9409 if (i == custom_sec_def_cnt) 9410 return libbpf_err(-ENOENT); 9411 9412 free(custom_sec_defs[i].sec); 9413 for (i = i + 1; i < custom_sec_def_cnt; i++) 9414 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9415 custom_sec_def_cnt--; 9416 9417 /* try to shrink the array, but it's ok if we couldn't */ 9418 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9419 /* if new count is zero, reallocarray can return a valid NULL result; 9420 * in this case the previous pointer will be freed, so we *have to* 9421 * reassign old pointer to the new value (even if it's NULL) 9422 */ 9423 if (sec_defs || custom_sec_def_cnt == 0) 9424 custom_sec_defs = sec_defs; 9425 9426 return 0; 9427 } 9428 9429 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9430 { 9431 size_t len = strlen(sec_def->sec); 9432 9433 /* "type/" always has to have proper SEC("type/extras") form */ 9434 if (sec_def->sec[len - 1] == '/') { 9435 if (str_has_pfx(sec_name, sec_def->sec)) 9436 return true; 9437 return false; 9438 } 9439 9440 /* "type+" means it can be either exact SEC("type") or 9441 * well-formed SEC("type/extras") with proper '/' separator 9442 */ 9443 if (sec_def->sec[len - 1] == '+') { 9444 len--; 9445 /* not even a prefix */ 9446 if (strncmp(sec_name, sec_def->sec, len) != 0) 9447 return false; 9448 /* exact match or has '/' separator */ 9449 if (sec_name[len] == '\0' || sec_name[len] == '/') 9450 return true; 9451 return false; 9452 } 9453 9454 return strcmp(sec_name, sec_def->sec) == 0; 9455 } 9456 9457 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9458 { 9459 const struct bpf_sec_def *sec_def; 9460 int i, n; 9461 9462 n = custom_sec_def_cnt; 9463 for (i = 0; i < n; i++) { 9464 sec_def = &custom_sec_defs[i]; 9465 if (sec_def_matches(sec_def, sec_name)) 9466 return sec_def; 9467 } 9468 9469 n = ARRAY_SIZE(section_defs); 9470 for (i = 0; i < n; i++) { 9471 sec_def = §ion_defs[i]; 9472 if (sec_def_matches(sec_def, sec_name)) 9473 return sec_def; 9474 } 9475 9476 if (has_custom_fallback_def) 9477 return &custom_fallback_def; 9478 9479 return NULL; 9480 } 9481 9482 #define MAX_TYPE_NAME_SIZE 32 9483 9484 static char *libbpf_get_type_names(bool attach_type) 9485 { 9486 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9487 char *buf; 9488 9489 buf = malloc(len); 9490 if (!buf) 9491 return NULL; 9492 9493 buf[0] = '\0'; 9494 /* Forge string buf with all available names */ 9495 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9496 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9497 9498 if (attach_type) { 9499 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9500 continue; 9501 9502 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9503 continue; 9504 } 9505 9506 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9507 free(buf); 9508 return NULL; 9509 } 9510 strcat(buf, " "); 9511 strcat(buf, section_defs[i].sec); 9512 } 9513 9514 return buf; 9515 } 9516 9517 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9518 enum bpf_attach_type *expected_attach_type) 9519 { 9520 const struct bpf_sec_def *sec_def; 9521 char *type_names; 9522 9523 if (!name) 9524 return libbpf_err(-EINVAL); 9525 9526 sec_def = find_sec_def(name); 9527 if (sec_def) { 9528 *prog_type = sec_def->prog_type; 9529 *expected_attach_type = sec_def->expected_attach_type; 9530 return 0; 9531 } 9532 9533 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9534 type_names = libbpf_get_type_names(false); 9535 if (type_names != NULL) { 9536 pr_debug("supported section(type) names are:%s\n", type_names); 9537 free(type_names); 9538 } 9539 9540 return libbpf_err(-ESRCH); 9541 } 9542 9543 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9544 { 9545 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9546 return NULL; 9547 9548 return attach_type_name[t]; 9549 } 9550 9551 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9552 { 9553 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9554 return NULL; 9555 9556 return link_type_name[t]; 9557 } 9558 9559 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9560 { 9561 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9562 return NULL; 9563 9564 return map_type_name[t]; 9565 } 9566 9567 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9568 { 9569 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9570 return NULL; 9571 9572 return prog_type_name[t]; 9573 } 9574 9575 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9576 int sec_idx, 9577 size_t offset) 9578 { 9579 struct bpf_map *map; 9580 size_t i; 9581 9582 for (i = 0; i < obj->nr_maps; i++) { 9583 map = &obj->maps[i]; 9584 if (!bpf_map__is_struct_ops(map)) 9585 continue; 9586 if (map->sec_idx == sec_idx && 9587 map->sec_offset <= offset && 9588 offset - map->sec_offset < map->def.value_size) 9589 return map; 9590 } 9591 9592 return NULL; 9593 } 9594 9595 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9596 * st_ops->data for shadow type. 9597 */ 9598 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9599 Elf64_Shdr *shdr, Elf_Data *data) 9600 { 9601 const struct btf_member *member; 9602 struct bpf_struct_ops *st_ops; 9603 struct bpf_program *prog; 9604 unsigned int shdr_idx; 9605 const struct btf *btf; 9606 struct bpf_map *map; 9607 unsigned int moff, insn_idx; 9608 const char *name; 9609 __u32 member_idx; 9610 Elf64_Sym *sym; 9611 Elf64_Rel *rel; 9612 int i, nrels; 9613 9614 btf = obj->btf; 9615 nrels = shdr->sh_size / shdr->sh_entsize; 9616 for (i = 0; i < nrels; i++) { 9617 rel = elf_rel_by_idx(data, i); 9618 if (!rel) { 9619 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9620 return -LIBBPF_ERRNO__FORMAT; 9621 } 9622 9623 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9624 if (!sym) { 9625 pr_warn("struct_ops reloc: symbol %zx not found\n", 9626 (size_t)ELF64_R_SYM(rel->r_info)); 9627 return -LIBBPF_ERRNO__FORMAT; 9628 } 9629 9630 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9631 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9632 if (!map) { 9633 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9634 (size_t)rel->r_offset); 9635 return -EINVAL; 9636 } 9637 9638 moff = rel->r_offset - map->sec_offset; 9639 shdr_idx = sym->st_shndx; 9640 st_ops = map->st_ops; 9641 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9642 map->name, 9643 (long long)(rel->r_info >> 32), 9644 (long long)sym->st_value, 9645 shdr_idx, (size_t)rel->r_offset, 9646 map->sec_offset, sym->st_name, name); 9647 9648 if (shdr_idx >= SHN_LORESERVE) { 9649 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9650 map->name, (size_t)rel->r_offset, shdr_idx); 9651 return -LIBBPF_ERRNO__RELOC; 9652 } 9653 if (sym->st_value % BPF_INSN_SZ) { 9654 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9655 map->name, (unsigned long long)sym->st_value); 9656 return -LIBBPF_ERRNO__FORMAT; 9657 } 9658 insn_idx = sym->st_value / BPF_INSN_SZ; 9659 9660 member = find_member_by_offset(st_ops->type, moff * 8); 9661 if (!member) { 9662 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9663 map->name, moff); 9664 return -EINVAL; 9665 } 9666 member_idx = member - btf_members(st_ops->type); 9667 name = btf__name_by_offset(btf, member->name_off); 9668 9669 if (!resolve_func_ptr(btf, member->type, NULL)) { 9670 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9671 map->name, name); 9672 return -EINVAL; 9673 } 9674 9675 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9676 if (!prog) { 9677 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9678 map->name, shdr_idx, name); 9679 return -EINVAL; 9680 } 9681 9682 /* prevent the use of BPF prog with invalid type */ 9683 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9684 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9685 map->name, prog->name); 9686 return -EINVAL; 9687 } 9688 9689 st_ops->progs[member_idx] = prog; 9690 9691 /* st_ops->data will be exposed to users, being returned by 9692 * bpf_map__initial_value() as a pointer to the shadow 9693 * type. All function pointers in the original struct type 9694 * should be converted to a pointer to struct bpf_program 9695 * in the shadow type. 9696 */ 9697 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9698 } 9699 9700 return 0; 9701 } 9702 9703 #define BTF_TRACE_PREFIX "btf_trace_" 9704 #define BTF_LSM_PREFIX "bpf_lsm_" 9705 #define BTF_ITER_PREFIX "bpf_iter_" 9706 #define BTF_MAX_NAME_SIZE 128 9707 9708 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9709 const char **prefix, int *kind) 9710 { 9711 switch (attach_type) { 9712 case BPF_TRACE_RAW_TP: 9713 *prefix = BTF_TRACE_PREFIX; 9714 *kind = BTF_KIND_TYPEDEF; 9715 break; 9716 case BPF_LSM_MAC: 9717 case BPF_LSM_CGROUP: 9718 *prefix = BTF_LSM_PREFIX; 9719 *kind = BTF_KIND_FUNC; 9720 break; 9721 case BPF_TRACE_ITER: 9722 *prefix = BTF_ITER_PREFIX; 9723 *kind = BTF_KIND_FUNC; 9724 break; 9725 default: 9726 *prefix = ""; 9727 *kind = BTF_KIND_FUNC; 9728 } 9729 } 9730 9731 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9732 const char *name, __u32 kind) 9733 { 9734 char btf_type_name[BTF_MAX_NAME_SIZE]; 9735 int ret; 9736 9737 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9738 "%s%s", prefix, name); 9739 /* snprintf returns the number of characters written excluding the 9740 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9741 * indicates truncation. 9742 */ 9743 if (ret < 0 || ret >= sizeof(btf_type_name)) 9744 return -ENAMETOOLONG; 9745 return btf__find_by_name_kind(btf, btf_type_name, kind); 9746 } 9747 9748 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9749 enum bpf_attach_type attach_type) 9750 { 9751 const char *prefix; 9752 int kind; 9753 9754 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9755 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9756 } 9757 9758 int libbpf_find_vmlinux_btf_id(const char *name, 9759 enum bpf_attach_type attach_type) 9760 { 9761 struct btf *btf; 9762 int err; 9763 9764 btf = btf__load_vmlinux_btf(); 9765 err = libbpf_get_error(btf); 9766 if (err) { 9767 pr_warn("vmlinux BTF is not found\n"); 9768 return libbpf_err(err); 9769 } 9770 9771 err = find_attach_btf_id(btf, name, attach_type); 9772 if (err <= 0) 9773 pr_warn("%s is not found in vmlinux BTF\n", name); 9774 9775 btf__free(btf); 9776 return libbpf_err(err); 9777 } 9778 9779 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9780 { 9781 struct bpf_prog_info info; 9782 __u32 info_len = sizeof(info); 9783 struct btf *btf; 9784 int err; 9785 9786 memset(&info, 0, info_len); 9787 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9788 if (err) { 9789 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9790 attach_prog_fd, err); 9791 return err; 9792 } 9793 9794 err = -EINVAL; 9795 if (!info.btf_id) { 9796 pr_warn("The target program doesn't have BTF\n"); 9797 goto out; 9798 } 9799 btf = btf__load_from_kernel_by_id(info.btf_id); 9800 err = libbpf_get_error(btf); 9801 if (err) { 9802 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9803 goto out; 9804 } 9805 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9806 btf__free(btf); 9807 if (err <= 0) { 9808 pr_warn("%s is not found in prog's BTF\n", name); 9809 goto out; 9810 } 9811 out: 9812 return err; 9813 } 9814 9815 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9816 enum bpf_attach_type attach_type, 9817 int *btf_obj_fd, int *btf_type_id) 9818 { 9819 int ret, i; 9820 9821 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9822 if (ret > 0) { 9823 *btf_obj_fd = 0; /* vmlinux BTF */ 9824 *btf_type_id = ret; 9825 return 0; 9826 } 9827 if (ret != -ENOENT) 9828 return ret; 9829 9830 ret = load_module_btfs(obj); 9831 if (ret) 9832 return ret; 9833 9834 for (i = 0; i < obj->btf_module_cnt; i++) { 9835 const struct module_btf *mod = &obj->btf_modules[i]; 9836 9837 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9838 if (ret > 0) { 9839 *btf_obj_fd = mod->fd; 9840 *btf_type_id = ret; 9841 return 0; 9842 } 9843 if (ret == -ENOENT) 9844 continue; 9845 9846 return ret; 9847 } 9848 9849 return -ESRCH; 9850 } 9851 9852 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9853 int *btf_obj_fd, int *btf_type_id) 9854 { 9855 enum bpf_attach_type attach_type = prog->expected_attach_type; 9856 __u32 attach_prog_fd = prog->attach_prog_fd; 9857 int err = 0; 9858 9859 /* BPF program's BTF ID */ 9860 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9861 if (!attach_prog_fd) { 9862 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9863 return -EINVAL; 9864 } 9865 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9866 if (err < 0) { 9867 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9868 prog->name, attach_prog_fd, attach_name, err); 9869 return err; 9870 } 9871 *btf_obj_fd = 0; 9872 *btf_type_id = err; 9873 return 0; 9874 } 9875 9876 /* kernel/module BTF ID */ 9877 if (prog->obj->gen_loader) { 9878 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9879 *btf_obj_fd = 0; 9880 *btf_type_id = 1; 9881 } else { 9882 err = find_kernel_btf_id(prog->obj, attach_name, 9883 attach_type, btf_obj_fd, 9884 btf_type_id); 9885 } 9886 if (err) { 9887 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9888 prog->name, attach_name, err); 9889 return err; 9890 } 9891 return 0; 9892 } 9893 9894 int libbpf_attach_type_by_name(const char *name, 9895 enum bpf_attach_type *attach_type) 9896 { 9897 char *type_names; 9898 const struct bpf_sec_def *sec_def; 9899 9900 if (!name) 9901 return libbpf_err(-EINVAL); 9902 9903 sec_def = find_sec_def(name); 9904 if (!sec_def) { 9905 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9906 type_names = libbpf_get_type_names(true); 9907 if (type_names != NULL) { 9908 pr_debug("attachable section(type) names are:%s\n", type_names); 9909 free(type_names); 9910 } 9911 9912 return libbpf_err(-EINVAL); 9913 } 9914 9915 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9916 return libbpf_err(-EINVAL); 9917 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9918 return libbpf_err(-EINVAL); 9919 9920 *attach_type = sec_def->expected_attach_type; 9921 return 0; 9922 } 9923 9924 int bpf_map__fd(const struct bpf_map *map) 9925 { 9926 if (!map) 9927 return libbpf_err(-EINVAL); 9928 if (!map_is_created(map)) 9929 return -1; 9930 return map->fd; 9931 } 9932 9933 static bool map_uses_real_name(const struct bpf_map *map) 9934 { 9935 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9936 * their user-visible name differs from kernel-visible name. Users see 9937 * such map's corresponding ELF section name as a map name. 9938 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9939 * maps to know which name has to be returned to the user. 9940 */ 9941 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9942 return true; 9943 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9944 return true; 9945 return false; 9946 } 9947 9948 const char *bpf_map__name(const struct bpf_map *map) 9949 { 9950 if (!map) 9951 return NULL; 9952 9953 if (map_uses_real_name(map)) 9954 return map->real_name; 9955 9956 return map->name; 9957 } 9958 9959 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9960 { 9961 return map->def.type; 9962 } 9963 9964 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9965 { 9966 if (map_is_created(map)) 9967 return libbpf_err(-EBUSY); 9968 map->def.type = type; 9969 return 0; 9970 } 9971 9972 __u32 bpf_map__map_flags(const struct bpf_map *map) 9973 { 9974 return map->def.map_flags; 9975 } 9976 9977 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9978 { 9979 if (map_is_created(map)) 9980 return libbpf_err(-EBUSY); 9981 map->def.map_flags = flags; 9982 return 0; 9983 } 9984 9985 __u64 bpf_map__map_extra(const struct bpf_map *map) 9986 { 9987 return map->map_extra; 9988 } 9989 9990 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9991 { 9992 if (map_is_created(map)) 9993 return libbpf_err(-EBUSY); 9994 map->map_extra = map_extra; 9995 return 0; 9996 } 9997 9998 __u32 bpf_map__numa_node(const struct bpf_map *map) 9999 { 10000 return map->numa_node; 10001 } 10002 10003 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10004 { 10005 if (map_is_created(map)) 10006 return libbpf_err(-EBUSY); 10007 map->numa_node = numa_node; 10008 return 0; 10009 } 10010 10011 __u32 bpf_map__key_size(const struct bpf_map *map) 10012 { 10013 return map->def.key_size; 10014 } 10015 10016 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10017 { 10018 if (map_is_created(map)) 10019 return libbpf_err(-EBUSY); 10020 map->def.key_size = size; 10021 return 0; 10022 } 10023 10024 __u32 bpf_map__value_size(const struct bpf_map *map) 10025 { 10026 return map->def.value_size; 10027 } 10028 10029 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10030 { 10031 struct btf *btf; 10032 struct btf_type *datasec_type, *var_type; 10033 struct btf_var_secinfo *var; 10034 const struct btf_type *array_type; 10035 const struct btf_array *array; 10036 int vlen, element_sz, new_array_id; 10037 __u32 nr_elements; 10038 10039 /* check btf existence */ 10040 btf = bpf_object__btf(map->obj); 10041 if (!btf) 10042 return -ENOENT; 10043 10044 /* verify map is datasec */ 10045 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10046 if (!btf_is_datasec(datasec_type)) { 10047 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10048 bpf_map__name(map)); 10049 return -EINVAL; 10050 } 10051 10052 /* verify datasec has at least one var */ 10053 vlen = btf_vlen(datasec_type); 10054 if (vlen == 0) { 10055 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10056 bpf_map__name(map)); 10057 return -EINVAL; 10058 } 10059 10060 /* verify last var in the datasec is an array */ 10061 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10062 var_type = btf_type_by_id(btf, var->type); 10063 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10064 if (!btf_is_array(array_type)) { 10065 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10066 bpf_map__name(map)); 10067 return -EINVAL; 10068 } 10069 10070 /* verify request size aligns with array */ 10071 array = btf_array(array_type); 10072 element_sz = btf__resolve_size(btf, array->type); 10073 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10074 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10075 bpf_map__name(map), element_sz, size); 10076 return -EINVAL; 10077 } 10078 10079 /* create a new array based on the existing array, but with new length */ 10080 nr_elements = (size - var->offset) / element_sz; 10081 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10082 if (new_array_id < 0) 10083 return new_array_id; 10084 10085 /* adding a new btf type invalidates existing pointers to btf objects, 10086 * so refresh pointers before proceeding 10087 */ 10088 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10089 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10090 var_type = btf_type_by_id(btf, var->type); 10091 10092 /* finally update btf info */ 10093 datasec_type->size = size; 10094 var->size = size - var->offset; 10095 var_type->type = new_array_id; 10096 10097 return 0; 10098 } 10099 10100 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10101 { 10102 if (map->obj->loaded || map->reused) 10103 return libbpf_err(-EBUSY); 10104 10105 if (map->mmaped) { 10106 size_t mmap_old_sz, mmap_new_sz; 10107 int err; 10108 10109 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10110 return -EOPNOTSUPP; 10111 10112 mmap_old_sz = bpf_map_mmap_sz(map); 10113 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10114 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10115 if (err) { 10116 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10117 bpf_map__name(map), err); 10118 return err; 10119 } 10120 err = map_btf_datasec_resize(map, size); 10121 if (err && err != -ENOENT) { 10122 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10123 bpf_map__name(map), err); 10124 map->btf_value_type_id = 0; 10125 map->btf_key_type_id = 0; 10126 } 10127 } 10128 10129 map->def.value_size = size; 10130 return 0; 10131 } 10132 10133 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10134 { 10135 return map ? map->btf_key_type_id : 0; 10136 } 10137 10138 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10139 { 10140 return map ? map->btf_value_type_id : 0; 10141 } 10142 10143 int bpf_map__set_initial_value(struct bpf_map *map, 10144 const void *data, size_t size) 10145 { 10146 size_t actual_sz; 10147 10148 if (map->obj->loaded || map->reused) 10149 return libbpf_err(-EBUSY); 10150 10151 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10152 return libbpf_err(-EINVAL); 10153 10154 if (map->def.type == BPF_MAP_TYPE_ARENA) 10155 actual_sz = map->obj->arena_data_sz; 10156 else 10157 actual_sz = map->def.value_size; 10158 if (size != actual_sz) 10159 return libbpf_err(-EINVAL); 10160 10161 memcpy(map->mmaped, data, size); 10162 return 0; 10163 } 10164 10165 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10166 { 10167 if (bpf_map__is_struct_ops(map)) { 10168 if (psize) 10169 *psize = map->def.value_size; 10170 return map->st_ops->data; 10171 } 10172 10173 if (!map->mmaped) 10174 return NULL; 10175 10176 if (map->def.type == BPF_MAP_TYPE_ARENA) 10177 *psize = map->obj->arena_data_sz; 10178 else 10179 *psize = map->def.value_size; 10180 10181 return map->mmaped; 10182 } 10183 10184 bool bpf_map__is_internal(const struct bpf_map *map) 10185 { 10186 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10187 } 10188 10189 __u32 bpf_map__ifindex(const struct bpf_map *map) 10190 { 10191 return map->map_ifindex; 10192 } 10193 10194 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10195 { 10196 if (map_is_created(map)) 10197 return libbpf_err(-EBUSY); 10198 map->map_ifindex = ifindex; 10199 return 0; 10200 } 10201 10202 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10203 { 10204 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10205 pr_warn("error: unsupported map type\n"); 10206 return libbpf_err(-EINVAL); 10207 } 10208 if (map->inner_map_fd != -1) { 10209 pr_warn("error: inner_map_fd already specified\n"); 10210 return libbpf_err(-EINVAL); 10211 } 10212 if (map->inner_map) { 10213 bpf_map__destroy(map->inner_map); 10214 zfree(&map->inner_map); 10215 } 10216 map->inner_map_fd = fd; 10217 return 0; 10218 } 10219 10220 static struct bpf_map * 10221 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10222 { 10223 ssize_t idx; 10224 struct bpf_map *s, *e; 10225 10226 if (!obj || !obj->maps) 10227 return errno = EINVAL, NULL; 10228 10229 s = obj->maps; 10230 e = obj->maps + obj->nr_maps; 10231 10232 if ((m < s) || (m >= e)) { 10233 pr_warn("error in %s: map handler doesn't belong to object\n", 10234 __func__); 10235 return errno = EINVAL, NULL; 10236 } 10237 10238 idx = (m - obj->maps) + i; 10239 if (idx >= obj->nr_maps || idx < 0) 10240 return NULL; 10241 return &obj->maps[idx]; 10242 } 10243 10244 struct bpf_map * 10245 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10246 { 10247 if (prev == NULL) 10248 return obj->maps; 10249 10250 return __bpf_map__iter(prev, obj, 1); 10251 } 10252 10253 struct bpf_map * 10254 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10255 { 10256 if (next == NULL) { 10257 if (!obj->nr_maps) 10258 return NULL; 10259 return obj->maps + obj->nr_maps - 1; 10260 } 10261 10262 return __bpf_map__iter(next, obj, -1); 10263 } 10264 10265 struct bpf_map * 10266 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10267 { 10268 struct bpf_map *pos; 10269 10270 bpf_object__for_each_map(pos, obj) { 10271 /* if it's a special internal map name (which always starts 10272 * with dot) then check if that special name matches the 10273 * real map name (ELF section name) 10274 */ 10275 if (name[0] == '.') { 10276 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10277 return pos; 10278 continue; 10279 } 10280 /* otherwise map name has to be an exact match */ 10281 if (map_uses_real_name(pos)) { 10282 if (strcmp(pos->real_name, name) == 0) 10283 return pos; 10284 continue; 10285 } 10286 if (strcmp(pos->name, name) == 0) 10287 return pos; 10288 } 10289 return errno = ENOENT, NULL; 10290 } 10291 10292 int 10293 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10294 { 10295 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10296 } 10297 10298 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10299 size_t value_sz, bool check_value_sz) 10300 { 10301 if (!map_is_created(map)) /* map is not yet created */ 10302 return -ENOENT; 10303 10304 if (map->def.key_size != key_sz) { 10305 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10306 map->name, key_sz, map->def.key_size); 10307 return -EINVAL; 10308 } 10309 10310 if (!check_value_sz) 10311 return 0; 10312 10313 switch (map->def.type) { 10314 case BPF_MAP_TYPE_PERCPU_ARRAY: 10315 case BPF_MAP_TYPE_PERCPU_HASH: 10316 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10317 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10318 int num_cpu = libbpf_num_possible_cpus(); 10319 size_t elem_sz = roundup(map->def.value_size, 8); 10320 10321 if (value_sz != num_cpu * elem_sz) { 10322 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10323 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10324 return -EINVAL; 10325 } 10326 break; 10327 } 10328 default: 10329 if (map->def.value_size != value_sz) { 10330 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10331 map->name, value_sz, map->def.value_size); 10332 return -EINVAL; 10333 } 10334 break; 10335 } 10336 return 0; 10337 } 10338 10339 int bpf_map__lookup_elem(const struct bpf_map *map, 10340 const void *key, size_t key_sz, 10341 void *value, size_t value_sz, __u64 flags) 10342 { 10343 int err; 10344 10345 err = validate_map_op(map, key_sz, value_sz, true); 10346 if (err) 10347 return libbpf_err(err); 10348 10349 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10350 } 10351 10352 int bpf_map__update_elem(const struct bpf_map *map, 10353 const void *key, size_t key_sz, 10354 const void *value, size_t value_sz, __u64 flags) 10355 { 10356 int err; 10357 10358 err = validate_map_op(map, key_sz, value_sz, true); 10359 if (err) 10360 return libbpf_err(err); 10361 10362 return bpf_map_update_elem(map->fd, key, value, flags); 10363 } 10364 10365 int bpf_map__delete_elem(const struct bpf_map *map, 10366 const void *key, size_t key_sz, __u64 flags) 10367 { 10368 int err; 10369 10370 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10371 if (err) 10372 return libbpf_err(err); 10373 10374 return bpf_map_delete_elem_flags(map->fd, key, flags); 10375 } 10376 10377 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10378 const void *key, size_t key_sz, 10379 void *value, size_t value_sz, __u64 flags) 10380 { 10381 int err; 10382 10383 err = validate_map_op(map, key_sz, value_sz, true); 10384 if (err) 10385 return libbpf_err(err); 10386 10387 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10388 } 10389 10390 int bpf_map__get_next_key(const struct bpf_map *map, 10391 const void *cur_key, void *next_key, size_t key_sz) 10392 { 10393 int err; 10394 10395 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10396 if (err) 10397 return libbpf_err(err); 10398 10399 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10400 } 10401 10402 long libbpf_get_error(const void *ptr) 10403 { 10404 if (!IS_ERR_OR_NULL(ptr)) 10405 return 0; 10406 10407 if (IS_ERR(ptr)) 10408 errno = -PTR_ERR(ptr); 10409 10410 /* If ptr == NULL, then errno should be already set by the failing 10411 * API, because libbpf never returns NULL on success and it now always 10412 * sets errno on error. So no extra errno handling for ptr == NULL 10413 * case. 10414 */ 10415 return -errno; 10416 } 10417 10418 /* Replace link's underlying BPF program with the new one */ 10419 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10420 { 10421 int ret; 10422 10423 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10424 return libbpf_err_errno(ret); 10425 } 10426 10427 /* Release "ownership" of underlying BPF resource (typically, BPF program 10428 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10429 * link, when destructed through bpf_link__destroy() call won't attempt to 10430 * detach/unregisted that BPF resource. This is useful in situations where, 10431 * say, attached BPF program has to outlive userspace program that attached it 10432 * in the system. Depending on type of BPF program, though, there might be 10433 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10434 * exit of userspace program doesn't trigger automatic detachment and clean up 10435 * inside the kernel. 10436 */ 10437 void bpf_link__disconnect(struct bpf_link *link) 10438 { 10439 link->disconnected = true; 10440 } 10441 10442 int bpf_link__destroy(struct bpf_link *link) 10443 { 10444 int err = 0; 10445 10446 if (IS_ERR_OR_NULL(link)) 10447 return 0; 10448 10449 if (!link->disconnected && link->detach) 10450 err = link->detach(link); 10451 if (link->pin_path) 10452 free(link->pin_path); 10453 if (link->dealloc) 10454 link->dealloc(link); 10455 else 10456 free(link); 10457 10458 return libbpf_err(err); 10459 } 10460 10461 int bpf_link__fd(const struct bpf_link *link) 10462 { 10463 return link->fd; 10464 } 10465 10466 const char *bpf_link__pin_path(const struct bpf_link *link) 10467 { 10468 return link->pin_path; 10469 } 10470 10471 static int bpf_link__detach_fd(struct bpf_link *link) 10472 { 10473 return libbpf_err_errno(close(link->fd)); 10474 } 10475 10476 struct bpf_link *bpf_link__open(const char *path) 10477 { 10478 struct bpf_link *link; 10479 int fd; 10480 10481 fd = bpf_obj_get(path); 10482 if (fd < 0) { 10483 fd = -errno; 10484 pr_warn("failed to open link at %s: %d\n", path, fd); 10485 return libbpf_err_ptr(fd); 10486 } 10487 10488 link = calloc(1, sizeof(*link)); 10489 if (!link) { 10490 close(fd); 10491 return libbpf_err_ptr(-ENOMEM); 10492 } 10493 link->detach = &bpf_link__detach_fd; 10494 link->fd = fd; 10495 10496 link->pin_path = strdup(path); 10497 if (!link->pin_path) { 10498 bpf_link__destroy(link); 10499 return libbpf_err_ptr(-ENOMEM); 10500 } 10501 10502 return link; 10503 } 10504 10505 int bpf_link__detach(struct bpf_link *link) 10506 { 10507 return bpf_link_detach(link->fd) ? -errno : 0; 10508 } 10509 10510 int bpf_link__pin(struct bpf_link *link, const char *path) 10511 { 10512 int err; 10513 10514 if (link->pin_path) 10515 return libbpf_err(-EBUSY); 10516 err = make_parent_dir(path); 10517 if (err) 10518 return libbpf_err(err); 10519 err = check_path(path); 10520 if (err) 10521 return libbpf_err(err); 10522 10523 link->pin_path = strdup(path); 10524 if (!link->pin_path) 10525 return libbpf_err(-ENOMEM); 10526 10527 if (bpf_obj_pin(link->fd, link->pin_path)) { 10528 err = -errno; 10529 zfree(&link->pin_path); 10530 return libbpf_err(err); 10531 } 10532 10533 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10534 return 0; 10535 } 10536 10537 int bpf_link__unpin(struct bpf_link *link) 10538 { 10539 int err; 10540 10541 if (!link->pin_path) 10542 return libbpf_err(-EINVAL); 10543 10544 err = unlink(link->pin_path); 10545 if (err != 0) 10546 return -errno; 10547 10548 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10549 zfree(&link->pin_path); 10550 return 0; 10551 } 10552 10553 struct bpf_link_perf { 10554 struct bpf_link link; 10555 int perf_event_fd; 10556 /* legacy kprobe support: keep track of probe identifier and type */ 10557 char *legacy_probe_name; 10558 bool legacy_is_kprobe; 10559 bool legacy_is_retprobe; 10560 }; 10561 10562 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10563 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10564 10565 static int bpf_link_perf_detach(struct bpf_link *link) 10566 { 10567 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10568 int err = 0; 10569 10570 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10571 err = -errno; 10572 10573 if (perf_link->perf_event_fd != link->fd) 10574 close(perf_link->perf_event_fd); 10575 close(link->fd); 10576 10577 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10578 if (perf_link->legacy_probe_name) { 10579 if (perf_link->legacy_is_kprobe) { 10580 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10581 perf_link->legacy_is_retprobe); 10582 } else { 10583 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10584 perf_link->legacy_is_retprobe); 10585 } 10586 } 10587 10588 return err; 10589 } 10590 10591 static void bpf_link_perf_dealloc(struct bpf_link *link) 10592 { 10593 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10594 10595 free(perf_link->legacy_probe_name); 10596 free(perf_link); 10597 } 10598 10599 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10600 const struct bpf_perf_event_opts *opts) 10601 { 10602 char errmsg[STRERR_BUFSIZE]; 10603 struct bpf_link_perf *link; 10604 int prog_fd, link_fd = -1, err; 10605 bool force_ioctl_attach; 10606 10607 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10608 return libbpf_err_ptr(-EINVAL); 10609 10610 if (pfd < 0) { 10611 pr_warn("prog '%s': invalid perf event FD %d\n", 10612 prog->name, pfd); 10613 return libbpf_err_ptr(-EINVAL); 10614 } 10615 prog_fd = bpf_program__fd(prog); 10616 if (prog_fd < 0) { 10617 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10618 prog->name); 10619 return libbpf_err_ptr(-EINVAL); 10620 } 10621 10622 link = calloc(1, sizeof(*link)); 10623 if (!link) 10624 return libbpf_err_ptr(-ENOMEM); 10625 link->link.detach = &bpf_link_perf_detach; 10626 link->link.dealloc = &bpf_link_perf_dealloc; 10627 link->perf_event_fd = pfd; 10628 10629 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10630 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10631 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10632 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10633 10634 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10635 if (link_fd < 0) { 10636 err = -errno; 10637 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10638 prog->name, pfd, 10639 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10640 goto err_out; 10641 } 10642 link->link.fd = link_fd; 10643 } else { 10644 if (OPTS_GET(opts, bpf_cookie, 0)) { 10645 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10646 err = -EOPNOTSUPP; 10647 goto err_out; 10648 } 10649 10650 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10651 err = -errno; 10652 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10653 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10654 if (err == -EPROTO) 10655 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10656 prog->name, pfd); 10657 goto err_out; 10658 } 10659 link->link.fd = pfd; 10660 } 10661 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10662 err = -errno; 10663 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10664 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10665 goto err_out; 10666 } 10667 10668 return &link->link; 10669 err_out: 10670 if (link_fd >= 0) 10671 close(link_fd); 10672 free(link); 10673 return libbpf_err_ptr(err); 10674 } 10675 10676 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10677 { 10678 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10679 } 10680 10681 /* 10682 * this function is expected to parse integer in the range of [0, 2^31-1] from 10683 * given file using scanf format string fmt. If actual parsed value is 10684 * negative, the result might be indistinguishable from error 10685 */ 10686 static int parse_uint_from_file(const char *file, const char *fmt) 10687 { 10688 char buf[STRERR_BUFSIZE]; 10689 int err, ret; 10690 FILE *f; 10691 10692 f = fopen(file, "re"); 10693 if (!f) { 10694 err = -errno; 10695 pr_debug("failed to open '%s': %s\n", file, 10696 libbpf_strerror_r(err, buf, sizeof(buf))); 10697 return err; 10698 } 10699 err = fscanf(f, fmt, &ret); 10700 if (err != 1) { 10701 err = err == EOF ? -EIO : -errno; 10702 pr_debug("failed to parse '%s': %s\n", file, 10703 libbpf_strerror_r(err, buf, sizeof(buf))); 10704 fclose(f); 10705 return err; 10706 } 10707 fclose(f); 10708 return ret; 10709 } 10710 10711 static int determine_kprobe_perf_type(void) 10712 { 10713 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10714 10715 return parse_uint_from_file(file, "%d\n"); 10716 } 10717 10718 static int determine_uprobe_perf_type(void) 10719 { 10720 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10721 10722 return parse_uint_from_file(file, "%d\n"); 10723 } 10724 10725 static int determine_kprobe_retprobe_bit(void) 10726 { 10727 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10728 10729 return parse_uint_from_file(file, "config:%d\n"); 10730 } 10731 10732 static int determine_uprobe_retprobe_bit(void) 10733 { 10734 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10735 10736 return parse_uint_from_file(file, "config:%d\n"); 10737 } 10738 10739 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10740 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10741 10742 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10743 uint64_t offset, int pid, size_t ref_ctr_off) 10744 { 10745 const size_t attr_sz = sizeof(struct perf_event_attr); 10746 struct perf_event_attr attr; 10747 char errmsg[STRERR_BUFSIZE]; 10748 int type, pfd; 10749 10750 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10751 return -EINVAL; 10752 10753 memset(&attr, 0, attr_sz); 10754 10755 type = uprobe ? determine_uprobe_perf_type() 10756 : determine_kprobe_perf_type(); 10757 if (type < 0) { 10758 pr_warn("failed to determine %s perf type: %s\n", 10759 uprobe ? "uprobe" : "kprobe", 10760 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10761 return type; 10762 } 10763 if (retprobe) { 10764 int bit = uprobe ? determine_uprobe_retprobe_bit() 10765 : determine_kprobe_retprobe_bit(); 10766 10767 if (bit < 0) { 10768 pr_warn("failed to determine %s retprobe bit: %s\n", 10769 uprobe ? "uprobe" : "kprobe", 10770 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10771 return bit; 10772 } 10773 attr.config |= 1 << bit; 10774 } 10775 attr.size = attr_sz; 10776 attr.type = type; 10777 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10778 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10779 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10780 10781 /* pid filter is meaningful only for uprobes */ 10782 pfd = syscall(__NR_perf_event_open, &attr, 10783 pid < 0 ? -1 : pid /* pid */, 10784 pid == -1 ? 0 : -1 /* cpu */, 10785 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10786 return pfd >= 0 ? pfd : -errno; 10787 } 10788 10789 static int append_to_file(const char *file, const char *fmt, ...) 10790 { 10791 int fd, n, err = 0; 10792 va_list ap; 10793 char buf[1024]; 10794 10795 va_start(ap, fmt); 10796 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10797 va_end(ap); 10798 10799 if (n < 0 || n >= sizeof(buf)) 10800 return -EINVAL; 10801 10802 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10803 if (fd < 0) 10804 return -errno; 10805 10806 if (write(fd, buf, n) < 0) 10807 err = -errno; 10808 10809 close(fd); 10810 return err; 10811 } 10812 10813 #define DEBUGFS "/sys/kernel/debug/tracing" 10814 #define TRACEFS "/sys/kernel/tracing" 10815 10816 static bool use_debugfs(void) 10817 { 10818 static int has_debugfs = -1; 10819 10820 if (has_debugfs < 0) 10821 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10822 10823 return has_debugfs == 1; 10824 } 10825 10826 static const char *tracefs_path(void) 10827 { 10828 return use_debugfs() ? DEBUGFS : TRACEFS; 10829 } 10830 10831 static const char *tracefs_kprobe_events(void) 10832 { 10833 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10834 } 10835 10836 static const char *tracefs_uprobe_events(void) 10837 { 10838 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10839 } 10840 10841 static const char *tracefs_available_filter_functions(void) 10842 { 10843 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10844 : TRACEFS"/available_filter_functions"; 10845 } 10846 10847 static const char *tracefs_available_filter_functions_addrs(void) 10848 { 10849 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10850 : TRACEFS"/available_filter_functions_addrs"; 10851 } 10852 10853 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10854 const char *kfunc_name, size_t offset) 10855 { 10856 static int index = 0; 10857 int i; 10858 10859 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10860 __sync_fetch_and_add(&index, 1)); 10861 10862 /* sanitize binary_path in the probe name */ 10863 for (i = 0; buf[i]; i++) { 10864 if (!isalnum(buf[i])) 10865 buf[i] = '_'; 10866 } 10867 } 10868 10869 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10870 const char *kfunc_name, size_t offset) 10871 { 10872 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10873 retprobe ? 'r' : 'p', 10874 retprobe ? "kretprobes" : "kprobes", 10875 probe_name, kfunc_name, offset); 10876 } 10877 10878 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10879 { 10880 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10881 retprobe ? "kretprobes" : "kprobes", probe_name); 10882 } 10883 10884 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10885 { 10886 char file[256]; 10887 10888 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10889 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10890 10891 return parse_uint_from_file(file, "%d\n"); 10892 } 10893 10894 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10895 const char *kfunc_name, size_t offset, int pid) 10896 { 10897 const size_t attr_sz = sizeof(struct perf_event_attr); 10898 struct perf_event_attr attr; 10899 char errmsg[STRERR_BUFSIZE]; 10900 int type, pfd, err; 10901 10902 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10903 if (err < 0) { 10904 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10905 kfunc_name, offset, 10906 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10907 return err; 10908 } 10909 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10910 if (type < 0) { 10911 err = type; 10912 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10913 kfunc_name, offset, 10914 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10915 goto err_clean_legacy; 10916 } 10917 10918 memset(&attr, 0, attr_sz); 10919 attr.size = attr_sz; 10920 attr.config = type; 10921 attr.type = PERF_TYPE_TRACEPOINT; 10922 10923 pfd = syscall(__NR_perf_event_open, &attr, 10924 pid < 0 ? -1 : pid, /* pid */ 10925 pid == -1 ? 0 : -1, /* cpu */ 10926 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10927 if (pfd < 0) { 10928 err = -errno; 10929 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10930 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10931 goto err_clean_legacy; 10932 } 10933 return pfd; 10934 10935 err_clean_legacy: 10936 /* Clear the newly added legacy kprobe_event */ 10937 remove_kprobe_event_legacy(probe_name, retprobe); 10938 return err; 10939 } 10940 10941 static const char *arch_specific_syscall_pfx(void) 10942 { 10943 #if defined(__x86_64__) 10944 return "x64"; 10945 #elif defined(__i386__) 10946 return "ia32"; 10947 #elif defined(__s390x__) 10948 return "s390x"; 10949 #elif defined(__s390__) 10950 return "s390"; 10951 #elif defined(__arm__) 10952 return "arm"; 10953 #elif defined(__aarch64__) 10954 return "arm64"; 10955 #elif defined(__mips__) 10956 return "mips"; 10957 #elif defined(__riscv) 10958 return "riscv"; 10959 #elif defined(__powerpc__) 10960 return "powerpc"; 10961 #elif defined(__powerpc64__) 10962 return "powerpc64"; 10963 #else 10964 return NULL; 10965 #endif 10966 } 10967 10968 int probe_kern_syscall_wrapper(int token_fd) 10969 { 10970 char syscall_name[64]; 10971 const char *ksys_pfx; 10972 10973 ksys_pfx = arch_specific_syscall_pfx(); 10974 if (!ksys_pfx) 10975 return 0; 10976 10977 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10978 10979 if (determine_kprobe_perf_type() >= 0) { 10980 int pfd; 10981 10982 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10983 if (pfd >= 0) 10984 close(pfd); 10985 10986 return pfd >= 0 ? 1 : 0; 10987 } else { /* legacy mode */ 10988 char probe_name[128]; 10989 10990 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10991 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10992 return 0; 10993 10994 (void)remove_kprobe_event_legacy(probe_name, false); 10995 return 1; 10996 } 10997 } 10998 10999 struct bpf_link * 11000 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11001 const char *func_name, 11002 const struct bpf_kprobe_opts *opts) 11003 { 11004 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11005 enum probe_attach_mode attach_mode; 11006 char errmsg[STRERR_BUFSIZE]; 11007 char *legacy_probe = NULL; 11008 struct bpf_link *link; 11009 size_t offset; 11010 bool retprobe, legacy; 11011 int pfd, err; 11012 11013 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11014 return libbpf_err_ptr(-EINVAL); 11015 11016 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11017 retprobe = OPTS_GET(opts, retprobe, false); 11018 offset = OPTS_GET(opts, offset, 0); 11019 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11020 11021 legacy = determine_kprobe_perf_type() < 0; 11022 switch (attach_mode) { 11023 case PROBE_ATTACH_MODE_LEGACY: 11024 legacy = true; 11025 pe_opts.force_ioctl_attach = true; 11026 break; 11027 case PROBE_ATTACH_MODE_PERF: 11028 if (legacy) 11029 return libbpf_err_ptr(-ENOTSUP); 11030 pe_opts.force_ioctl_attach = true; 11031 break; 11032 case PROBE_ATTACH_MODE_LINK: 11033 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11034 return libbpf_err_ptr(-ENOTSUP); 11035 break; 11036 case PROBE_ATTACH_MODE_DEFAULT: 11037 break; 11038 default: 11039 return libbpf_err_ptr(-EINVAL); 11040 } 11041 11042 if (!legacy) { 11043 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11044 func_name, offset, 11045 -1 /* pid */, 0 /* ref_ctr_off */); 11046 } else { 11047 char probe_name[256]; 11048 11049 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11050 func_name, offset); 11051 11052 legacy_probe = strdup(probe_name); 11053 if (!legacy_probe) 11054 return libbpf_err_ptr(-ENOMEM); 11055 11056 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11057 offset, -1 /* pid */); 11058 } 11059 if (pfd < 0) { 11060 err = -errno; 11061 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11062 prog->name, retprobe ? "kretprobe" : "kprobe", 11063 func_name, offset, 11064 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11065 goto err_out; 11066 } 11067 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11068 err = libbpf_get_error(link); 11069 if (err) { 11070 close(pfd); 11071 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11072 prog->name, retprobe ? "kretprobe" : "kprobe", 11073 func_name, offset, 11074 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11075 goto err_clean_legacy; 11076 } 11077 if (legacy) { 11078 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11079 11080 perf_link->legacy_probe_name = legacy_probe; 11081 perf_link->legacy_is_kprobe = true; 11082 perf_link->legacy_is_retprobe = retprobe; 11083 } 11084 11085 return link; 11086 11087 err_clean_legacy: 11088 if (legacy) 11089 remove_kprobe_event_legacy(legacy_probe, retprobe); 11090 err_out: 11091 free(legacy_probe); 11092 return libbpf_err_ptr(err); 11093 } 11094 11095 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11096 bool retprobe, 11097 const char *func_name) 11098 { 11099 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11100 .retprobe = retprobe, 11101 ); 11102 11103 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11104 } 11105 11106 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11107 const char *syscall_name, 11108 const struct bpf_ksyscall_opts *opts) 11109 { 11110 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11111 char func_name[128]; 11112 11113 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11114 return libbpf_err_ptr(-EINVAL); 11115 11116 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11117 /* arch_specific_syscall_pfx() should never return NULL here 11118 * because it is guarded by kernel_supports(). However, since 11119 * compiler does not know that we have an explicit conditional 11120 * as well. 11121 */ 11122 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11123 arch_specific_syscall_pfx() ? : "", syscall_name); 11124 } else { 11125 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11126 } 11127 11128 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11129 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11130 11131 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11132 } 11133 11134 /* Adapted from perf/util/string.c */ 11135 bool glob_match(const char *str, const char *pat) 11136 { 11137 while (*str && *pat && *pat != '*') { 11138 if (*pat == '?') { /* Matches any single character */ 11139 str++; 11140 pat++; 11141 continue; 11142 } 11143 if (*str != *pat) 11144 return false; 11145 str++; 11146 pat++; 11147 } 11148 /* Check wild card */ 11149 if (*pat == '*') { 11150 while (*pat == '*') 11151 pat++; 11152 if (!*pat) /* Tail wild card matches all */ 11153 return true; 11154 while (*str) 11155 if (glob_match(str++, pat)) 11156 return true; 11157 } 11158 return !*str && !*pat; 11159 } 11160 11161 struct kprobe_multi_resolve { 11162 const char *pattern; 11163 unsigned long *addrs; 11164 size_t cap; 11165 size_t cnt; 11166 }; 11167 11168 struct avail_kallsyms_data { 11169 char **syms; 11170 size_t cnt; 11171 struct kprobe_multi_resolve *res; 11172 }; 11173 11174 static int avail_func_cmp(const void *a, const void *b) 11175 { 11176 return strcmp(*(const char **)a, *(const char **)b); 11177 } 11178 11179 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11180 const char *sym_name, void *ctx) 11181 { 11182 struct avail_kallsyms_data *data = ctx; 11183 struct kprobe_multi_resolve *res = data->res; 11184 int err; 11185 11186 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11187 return 0; 11188 11189 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11190 if (err) 11191 return err; 11192 11193 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11194 return 0; 11195 } 11196 11197 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11198 { 11199 const char *available_functions_file = tracefs_available_filter_functions(); 11200 struct avail_kallsyms_data data; 11201 char sym_name[500]; 11202 FILE *f; 11203 int err = 0, ret, i; 11204 char **syms = NULL; 11205 size_t cap = 0, cnt = 0; 11206 11207 f = fopen(available_functions_file, "re"); 11208 if (!f) { 11209 err = -errno; 11210 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11211 return err; 11212 } 11213 11214 while (true) { 11215 char *name; 11216 11217 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11218 if (ret == EOF && feof(f)) 11219 break; 11220 11221 if (ret != 1) { 11222 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11223 err = -EINVAL; 11224 goto cleanup; 11225 } 11226 11227 if (!glob_match(sym_name, res->pattern)) 11228 continue; 11229 11230 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11231 if (err) 11232 goto cleanup; 11233 11234 name = strdup(sym_name); 11235 if (!name) { 11236 err = -errno; 11237 goto cleanup; 11238 } 11239 11240 syms[cnt++] = name; 11241 } 11242 11243 /* no entries found, bail out */ 11244 if (cnt == 0) { 11245 err = -ENOENT; 11246 goto cleanup; 11247 } 11248 11249 /* sort available functions */ 11250 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11251 11252 data.syms = syms; 11253 data.res = res; 11254 data.cnt = cnt; 11255 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11256 11257 if (res->cnt == 0) 11258 err = -ENOENT; 11259 11260 cleanup: 11261 for (i = 0; i < cnt; i++) 11262 free((char *)syms[i]); 11263 free(syms); 11264 11265 fclose(f); 11266 return err; 11267 } 11268 11269 static bool has_available_filter_functions_addrs(void) 11270 { 11271 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11272 } 11273 11274 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11275 { 11276 const char *available_path = tracefs_available_filter_functions_addrs(); 11277 char sym_name[500]; 11278 FILE *f; 11279 int ret, err = 0; 11280 unsigned long long sym_addr; 11281 11282 f = fopen(available_path, "re"); 11283 if (!f) { 11284 err = -errno; 11285 pr_warn("failed to open %s: %d\n", available_path, err); 11286 return err; 11287 } 11288 11289 while (true) { 11290 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11291 if (ret == EOF && feof(f)) 11292 break; 11293 11294 if (ret != 2) { 11295 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11296 ret); 11297 err = -EINVAL; 11298 goto cleanup; 11299 } 11300 11301 if (!glob_match(sym_name, res->pattern)) 11302 continue; 11303 11304 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11305 sizeof(*res->addrs), res->cnt + 1); 11306 if (err) 11307 goto cleanup; 11308 11309 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11310 } 11311 11312 if (res->cnt == 0) 11313 err = -ENOENT; 11314 11315 cleanup: 11316 fclose(f); 11317 return err; 11318 } 11319 11320 struct bpf_link * 11321 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11322 const char *pattern, 11323 const struct bpf_kprobe_multi_opts *opts) 11324 { 11325 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11326 struct kprobe_multi_resolve res = { 11327 .pattern = pattern, 11328 }; 11329 struct bpf_link *link = NULL; 11330 char errmsg[STRERR_BUFSIZE]; 11331 const unsigned long *addrs; 11332 int err, link_fd, prog_fd; 11333 const __u64 *cookies; 11334 const char **syms; 11335 bool retprobe; 11336 size_t cnt; 11337 11338 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11339 return libbpf_err_ptr(-EINVAL); 11340 11341 syms = OPTS_GET(opts, syms, false); 11342 addrs = OPTS_GET(opts, addrs, false); 11343 cnt = OPTS_GET(opts, cnt, false); 11344 cookies = OPTS_GET(opts, cookies, false); 11345 11346 if (!pattern && !addrs && !syms) 11347 return libbpf_err_ptr(-EINVAL); 11348 if (pattern && (addrs || syms || cookies || cnt)) 11349 return libbpf_err_ptr(-EINVAL); 11350 if (!pattern && !cnt) 11351 return libbpf_err_ptr(-EINVAL); 11352 if (addrs && syms) 11353 return libbpf_err_ptr(-EINVAL); 11354 11355 if (pattern) { 11356 if (has_available_filter_functions_addrs()) 11357 err = libbpf_available_kprobes_parse(&res); 11358 else 11359 err = libbpf_available_kallsyms_parse(&res); 11360 if (err) 11361 goto error; 11362 addrs = res.addrs; 11363 cnt = res.cnt; 11364 } 11365 11366 retprobe = OPTS_GET(opts, retprobe, false); 11367 11368 lopts.kprobe_multi.syms = syms; 11369 lopts.kprobe_multi.addrs = addrs; 11370 lopts.kprobe_multi.cookies = cookies; 11371 lopts.kprobe_multi.cnt = cnt; 11372 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11373 11374 link = calloc(1, sizeof(*link)); 11375 if (!link) { 11376 err = -ENOMEM; 11377 goto error; 11378 } 11379 link->detach = &bpf_link__detach_fd; 11380 11381 prog_fd = bpf_program__fd(prog); 11382 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11383 if (link_fd < 0) { 11384 err = -errno; 11385 pr_warn("prog '%s': failed to attach: %s\n", 11386 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11387 goto error; 11388 } 11389 link->fd = link_fd; 11390 free(res.addrs); 11391 return link; 11392 11393 error: 11394 free(link); 11395 free(res.addrs); 11396 return libbpf_err_ptr(err); 11397 } 11398 11399 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11400 { 11401 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11402 unsigned long offset = 0; 11403 const char *func_name; 11404 char *func; 11405 int n; 11406 11407 *link = NULL; 11408 11409 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11410 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11411 return 0; 11412 11413 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11414 if (opts.retprobe) 11415 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11416 else 11417 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11418 11419 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11420 if (n < 1) { 11421 pr_warn("kprobe name is invalid: %s\n", func_name); 11422 return -EINVAL; 11423 } 11424 if (opts.retprobe && offset != 0) { 11425 free(func); 11426 pr_warn("kretprobes do not support offset specification\n"); 11427 return -EINVAL; 11428 } 11429 11430 opts.offset = offset; 11431 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11432 free(func); 11433 return libbpf_get_error(*link); 11434 } 11435 11436 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11437 { 11438 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11439 const char *syscall_name; 11440 11441 *link = NULL; 11442 11443 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11444 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11445 return 0; 11446 11447 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11448 if (opts.retprobe) 11449 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11450 else 11451 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11452 11453 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11454 return *link ? 0 : -errno; 11455 } 11456 11457 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11458 { 11459 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11460 const char *spec; 11461 char *pattern; 11462 int n; 11463 11464 *link = NULL; 11465 11466 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11467 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11468 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11469 return 0; 11470 11471 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11472 if (opts.retprobe) 11473 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11474 else 11475 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11476 11477 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11478 if (n < 1) { 11479 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11480 return -EINVAL; 11481 } 11482 11483 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11484 free(pattern); 11485 return libbpf_get_error(*link); 11486 } 11487 11488 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11489 { 11490 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11491 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11492 int n, ret = -EINVAL; 11493 11494 *link = NULL; 11495 11496 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11497 &probe_type, &binary_path, &func_name); 11498 switch (n) { 11499 case 1: 11500 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11501 ret = 0; 11502 break; 11503 case 3: 11504 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11505 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11506 ret = libbpf_get_error(*link); 11507 break; 11508 default: 11509 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11510 prog->sec_name); 11511 break; 11512 } 11513 free(probe_type); 11514 free(binary_path); 11515 free(func_name); 11516 return ret; 11517 } 11518 11519 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11520 const char *binary_path, uint64_t offset) 11521 { 11522 int i; 11523 11524 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11525 11526 /* sanitize binary_path in the probe name */ 11527 for (i = 0; buf[i]; i++) { 11528 if (!isalnum(buf[i])) 11529 buf[i] = '_'; 11530 } 11531 } 11532 11533 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11534 const char *binary_path, size_t offset) 11535 { 11536 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11537 retprobe ? 'r' : 'p', 11538 retprobe ? "uretprobes" : "uprobes", 11539 probe_name, binary_path, offset); 11540 } 11541 11542 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11543 { 11544 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11545 retprobe ? "uretprobes" : "uprobes", probe_name); 11546 } 11547 11548 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11549 { 11550 char file[512]; 11551 11552 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11553 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11554 11555 return parse_uint_from_file(file, "%d\n"); 11556 } 11557 11558 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11559 const char *binary_path, size_t offset, int pid) 11560 { 11561 const size_t attr_sz = sizeof(struct perf_event_attr); 11562 struct perf_event_attr attr; 11563 int type, pfd, err; 11564 11565 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11566 if (err < 0) { 11567 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11568 binary_path, (size_t)offset, err); 11569 return err; 11570 } 11571 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11572 if (type < 0) { 11573 err = type; 11574 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11575 binary_path, offset, err); 11576 goto err_clean_legacy; 11577 } 11578 11579 memset(&attr, 0, attr_sz); 11580 attr.size = attr_sz; 11581 attr.config = type; 11582 attr.type = PERF_TYPE_TRACEPOINT; 11583 11584 pfd = syscall(__NR_perf_event_open, &attr, 11585 pid < 0 ? -1 : pid, /* pid */ 11586 pid == -1 ? 0 : -1, /* cpu */ 11587 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11588 if (pfd < 0) { 11589 err = -errno; 11590 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11591 goto err_clean_legacy; 11592 } 11593 return pfd; 11594 11595 err_clean_legacy: 11596 /* Clear the newly added legacy uprobe_event */ 11597 remove_uprobe_event_legacy(probe_name, retprobe); 11598 return err; 11599 } 11600 11601 /* Find offset of function name in archive specified by path. Currently 11602 * supported are .zip files that do not compress their contents, as used on 11603 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11604 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11605 * library functions. 11606 * 11607 * An overview of the APK format specifically provided here: 11608 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11609 */ 11610 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11611 const char *func_name) 11612 { 11613 struct zip_archive *archive; 11614 struct zip_entry entry; 11615 long ret; 11616 Elf *elf; 11617 11618 archive = zip_archive_open(archive_path); 11619 if (IS_ERR(archive)) { 11620 ret = PTR_ERR(archive); 11621 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11622 return ret; 11623 } 11624 11625 ret = zip_archive_find_entry(archive, file_name, &entry); 11626 if (ret) { 11627 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11628 archive_path, ret); 11629 goto out; 11630 } 11631 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11632 (unsigned long)entry.data_offset); 11633 11634 if (entry.compression) { 11635 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11636 archive_path); 11637 ret = -LIBBPF_ERRNO__FORMAT; 11638 goto out; 11639 } 11640 11641 elf = elf_memory((void *)entry.data, entry.data_length); 11642 if (!elf) { 11643 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11644 elf_errmsg(-1)); 11645 ret = -LIBBPF_ERRNO__LIBELF; 11646 goto out; 11647 } 11648 11649 ret = elf_find_func_offset(elf, file_name, func_name); 11650 if (ret > 0) { 11651 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11652 func_name, file_name, archive_path, entry.data_offset, ret, 11653 ret + entry.data_offset); 11654 ret += entry.data_offset; 11655 } 11656 elf_end(elf); 11657 11658 out: 11659 zip_archive_close(archive); 11660 return ret; 11661 } 11662 11663 static const char *arch_specific_lib_paths(void) 11664 { 11665 /* 11666 * Based on https://packages.debian.org/sid/libc6. 11667 * 11668 * Assume that the traced program is built for the same architecture 11669 * as libbpf, which should cover the vast majority of cases. 11670 */ 11671 #if defined(__x86_64__) 11672 return "/lib/x86_64-linux-gnu"; 11673 #elif defined(__i386__) 11674 return "/lib/i386-linux-gnu"; 11675 #elif defined(__s390x__) 11676 return "/lib/s390x-linux-gnu"; 11677 #elif defined(__s390__) 11678 return "/lib/s390-linux-gnu"; 11679 #elif defined(__arm__) && defined(__SOFTFP__) 11680 return "/lib/arm-linux-gnueabi"; 11681 #elif defined(__arm__) && !defined(__SOFTFP__) 11682 return "/lib/arm-linux-gnueabihf"; 11683 #elif defined(__aarch64__) 11684 return "/lib/aarch64-linux-gnu"; 11685 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11686 return "/lib/mips64el-linux-gnuabi64"; 11687 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11688 return "/lib/mipsel-linux-gnu"; 11689 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11690 return "/lib/powerpc64le-linux-gnu"; 11691 #elif defined(__sparc__) && defined(__arch64__) 11692 return "/lib/sparc64-linux-gnu"; 11693 #elif defined(__riscv) && __riscv_xlen == 64 11694 return "/lib/riscv64-linux-gnu"; 11695 #else 11696 return NULL; 11697 #endif 11698 } 11699 11700 /* Get full path to program/shared library. */ 11701 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11702 { 11703 const char *search_paths[3] = {}; 11704 int i, perm; 11705 11706 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11707 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11708 search_paths[1] = "/usr/lib64:/usr/lib"; 11709 search_paths[2] = arch_specific_lib_paths(); 11710 perm = R_OK; 11711 } else { 11712 search_paths[0] = getenv("PATH"); 11713 search_paths[1] = "/usr/bin:/usr/sbin"; 11714 perm = R_OK | X_OK; 11715 } 11716 11717 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11718 const char *s; 11719 11720 if (!search_paths[i]) 11721 continue; 11722 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11723 char *next_path; 11724 int seg_len; 11725 11726 if (s[0] == ':') 11727 s++; 11728 next_path = strchr(s, ':'); 11729 seg_len = next_path ? next_path - s : strlen(s); 11730 if (!seg_len) 11731 continue; 11732 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11733 /* ensure it has required permissions */ 11734 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11735 continue; 11736 pr_debug("resolved '%s' to '%s'\n", file, result); 11737 return 0; 11738 } 11739 } 11740 return -ENOENT; 11741 } 11742 11743 struct bpf_link * 11744 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11745 pid_t pid, 11746 const char *path, 11747 const char *func_pattern, 11748 const struct bpf_uprobe_multi_opts *opts) 11749 { 11750 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11751 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11752 unsigned long *resolved_offsets = NULL; 11753 int err = 0, link_fd, prog_fd; 11754 struct bpf_link *link = NULL; 11755 char errmsg[STRERR_BUFSIZE]; 11756 char full_path[PATH_MAX]; 11757 const __u64 *cookies; 11758 const char **syms; 11759 size_t cnt; 11760 11761 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11762 return libbpf_err_ptr(-EINVAL); 11763 11764 syms = OPTS_GET(opts, syms, NULL); 11765 offsets = OPTS_GET(opts, offsets, NULL); 11766 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11767 cookies = OPTS_GET(opts, cookies, NULL); 11768 cnt = OPTS_GET(opts, cnt, 0); 11769 11770 /* 11771 * User can specify 2 mutually exclusive set of inputs: 11772 * 11773 * 1) use only path/func_pattern/pid arguments 11774 * 11775 * 2) use path/pid with allowed combinations of: 11776 * syms/offsets/ref_ctr_offsets/cookies/cnt 11777 * 11778 * - syms and offsets are mutually exclusive 11779 * - ref_ctr_offsets and cookies are optional 11780 * 11781 * Any other usage results in error. 11782 */ 11783 11784 if (!path) 11785 return libbpf_err_ptr(-EINVAL); 11786 if (!func_pattern && cnt == 0) 11787 return libbpf_err_ptr(-EINVAL); 11788 11789 if (func_pattern) { 11790 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11791 return libbpf_err_ptr(-EINVAL); 11792 } else { 11793 if (!!syms == !!offsets) 11794 return libbpf_err_ptr(-EINVAL); 11795 } 11796 11797 if (func_pattern) { 11798 if (!strchr(path, '/')) { 11799 err = resolve_full_path(path, full_path, sizeof(full_path)); 11800 if (err) { 11801 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11802 prog->name, path, err); 11803 return libbpf_err_ptr(err); 11804 } 11805 path = full_path; 11806 } 11807 11808 err = elf_resolve_pattern_offsets(path, func_pattern, 11809 &resolved_offsets, &cnt); 11810 if (err < 0) 11811 return libbpf_err_ptr(err); 11812 offsets = resolved_offsets; 11813 } else if (syms) { 11814 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11815 if (err < 0) 11816 return libbpf_err_ptr(err); 11817 offsets = resolved_offsets; 11818 } 11819 11820 lopts.uprobe_multi.path = path; 11821 lopts.uprobe_multi.offsets = offsets; 11822 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11823 lopts.uprobe_multi.cookies = cookies; 11824 lopts.uprobe_multi.cnt = cnt; 11825 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11826 11827 if (pid == 0) 11828 pid = getpid(); 11829 if (pid > 0) 11830 lopts.uprobe_multi.pid = pid; 11831 11832 link = calloc(1, sizeof(*link)); 11833 if (!link) { 11834 err = -ENOMEM; 11835 goto error; 11836 } 11837 link->detach = &bpf_link__detach_fd; 11838 11839 prog_fd = bpf_program__fd(prog); 11840 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11841 if (link_fd < 0) { 11842 err = -errno; 11843 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11844 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11845 goto error; 11846 } 11847 link->fd = link_fd; 11848 free(resolved_offsets); 11849 return link; 11850 11851 error: 11852 free(resolved_offsets); 11853 free(link); 11854 return libbpf_err_ptr(err); 11855 } 11856 11857 LIBBPF_API struct bpf_link * 11858 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11859 const char *binary_path, size_t func_offset, 11860 const struct bpf_uprobe_opts *opts) 11861 { 11862 const char *archive_path = NULL, *archive_sep = NULL; 11863 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11864 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11865 enum probe_attach_mode attach_mode; 11866 char full_path[PATH_MAX]; 11867 struct bpf_link *link; 11868 size_t ref_ctr_off; 11869 int pfd, err; 11870 bool retprobe, legacy; 11871 const char *func_name; 11872 11873 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11874 return libbpf_err_ptr(-EINVAL); 11875 11876 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11877 retprobe = OPTS_GET(opts, retprobe, false); 11878 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11879 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11880 11881 if (!binary_path) 11882 return libbpf_err_ptr(-EINVAL); 11883 11884 /* Check if "binary_path" refers to an archive. */ 11885 archive_sep = strstr(binary_path, "!/"); 11886 if (archive_sep) { 11887 full_path[0] = '\0'; 11888 libbpf_strlcpy(full_path, binary_path, 11889 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11890 archive_path = full_path; 11891 binary_path = archive_sep + 2; 11892 } else if (!strchr(binary_path, '/')) { 11893 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11894 if (err) { 11895 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11896 prog->name, binary_path, err); 11897 return libbpf_err_ptr(err); 11898 } 11899 binary_path = full_path; 11900 } 11901 func_name = OPTS_GET(opts, func_name, NULL); 11902 if (func_name) { 11903 long sym_off; 11904 11905 if (archive_path) { 11906 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11907 func_name); 11908 binary_path = archive_path; 11909 } else { 11910 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11911 } 11912 if (sym_off < 0) 11913 return libbpf_err_ptr(sym_off); 11914 func_offset += sym_off; 11915 } 11916 11917 legacy = determine_uprobe_perf_type() < 0; 11918 switch (attach_mode) { 11919 case PROBE_ATTACH_MODE_LEGACY: 11920 legacy = true; 11921 pe_opts.force_ioctl_attach = true; 11922 break; 11923 case PROBE_ATTACH_MODE_PERF: 11924 if (legacy) 11925 return libbpf_err_ptr(-ENOTSUP); 11926 pe_opts.force_ioctl_attach = true; 11927 break; 11928 case PROBE_ATTACH_MODE_LINK: 11929 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11930 return libbpf_err_ptr(-ENOTSUP); 11931 break; 11932 case PROBE_ATTACH_MODE_DEFAULT: 11933 break; 11934 default: 11935 return libbpf_err_ptr(-EINVAL); 11936 } 11937 11938 if (!legacy) { 11939 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11940 func_offset, pid, ref_ctr_off); 11941 } else { 11942 char probe_name[PATH_MAX + 64]; 11943 11944 if (ref_ctr_off) 11945 return libbpf_err_ptr(-EINVAL); 11946 11947 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11948 binary_path, func_offset); 11949 11950 legacy_probe = strdup(probe_name); 11951 if (!legacy_probe) 11952 return libbpf_err_ptr(-ENOMEM); 11953 11954 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11955 binary_path, func_offset, pid); 11956 } 11957 if (pfd < 0) { 11958 err = -errno; 11959 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11960 prog->name, retprobe ? "uretprobe" : "uprobe", 11961 binary_path, func_offset, 11962 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11963 goto err_out; 11964 } 11965 11966 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11967 err = libbpf_get_error(link); 11968 if (err) { 11969 close(pfd); 11970 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11971 prog->name, retprobe ? "uretprobe" : "uprobe", 11972 binary_path, func_offset, 11973 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11974 goto err_clean_legacy; 11975 } 11976 if (legacy) { 11977 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11978 11979 perf_link->legacy_probe_name = legacy_probe; 11980 perf_link->legacy_is_kprobe = false; 11981 perf_link->legacy_is_retprobe = retprobe; 11982 } 11983 return link; 11984 11985 err_clean_legacy: 11986 if (legacy) 11987 remove_uprobe_event_legacy(legacy_probe, retprobe); 11988 err_out: 11989 free(legacy_probe); 11990 return libbpf_err_ptr(err); 11991 } 11992 11993 /* Format of u[ret]probe section definition supporting auto-attach: 11994 * u[ret]probe/binary:function[+offset] 11995 * 11996 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11997 * full binary path via bpf_program__attach_uprobe_opts. 11998 * 11999 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12000 * specified (and auto-attach is not possible) or the above format is specified for 12001 * auto-attach. 12002 */ 12003 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12004 { 12005 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12006 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12007 int n, c, ret = -EINVAL; 12008 long offset = 0; 12009 12010 *link = NULL; 12011 12012 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12013 &probe_type, &binary_path, &func_name); 12014 switch (n) { 12015 case 1: 12016 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12017 ret = 0; 12018 break; 12019 case 2: 12020 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12021 prog->name, prog->sec_name); 12022 break; 12023 case 3: 12024 /* check if user specifies `+offset`, if yes, this should be 12025 * the last part of the string, make sure sscanf read to EOL 12026 */ 12027 func_off = strrchr(func_name, '+'); 12028 if (func_off) { 12029 n = sscanf(func_off, "+%li%n", &offset, &c); 12030 if (n == 1 && *(func_off + c) == '\0') 12031 func_off[0] = '\0'; 12032 else 12033 offset = 0; 12034 } 12035 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12036 strcmp(probe_type, "uretprobe.s") == 0; 12037 if (opts.retprobe && offset != 0) { 12038 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12039 prog->name); 12040 break; 12041 } 12042 opts.func_name = func_name; 12043 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12044 ret = libbpf_get_error(*link); 12045 break; 12046 default: 12047 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12048 prog->sec_name); 12049 break; 12050 } 12051 free(probe_type); 12052 free(binary_path); 12053 free(func_name); 12054 12055 return ret; 12056 } 12057 12058 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12059 bool retprobe, pid_t pid, 12060 const char *binary_path, 12061 size_t func_offset) 12062 { 12063 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12064 12065 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12066 } 12067 12068 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12069 pid_t pid, const char *binary_path, 12070 const char *usdt_provider, const char *usdt_name, 12071 const struct bpf_usdt_opts *opts) 12072 { 12073 char resolved_path[512]; 12074 struct bpf_object *obj = prog->obj; 12075 struct bpf_link *link; 12076 __u64 usdt_cookie; 12077 int err; 12078 12079 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12080 return libbpf_err_ptr(-EINVAL); 12081 12082 if (bpf_program__fd(prog) < 0) { 12083 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 12084 prog->name); 12085 return libbpf_err_ptr(-EINVAL); 12086 } 12087 12088 if (!binary_path) 12089 return libbpf_err_ptr(-EINVAL); 12090 12091 if (!strchr(binary_path, '/')) { 12092 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12093 if (err) { 12094 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12095 prog->name, binary_path, err); 12096 return libbpf_err_ptr(err); 12097 } 12098 binary_path = resolved_path; 12099 } 12100 12101 /* USDT manager is instantiated lazily on first USDT attach. It will 12102 * be destroyed together with BPF object in bpf_object__close(). 12103 */ 12104 if (IS_ERR(obj->usdt_man)) 12105 return libbpf_ptr(obj->usdt_man); 12106 if (!obj->usdt_man) { 12107 obj->usdt_man = usdt_manager_new(obj); 12108 if (IS_ERR(obj->usdt_man)) 12109 return libbpf_ptr(obj->usdt_man); 12110 } 12111 12112 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12113 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12114 usdt_provider, usdt_name, usdt_cookie); 12115 err = libbpf_get_error(link); 12116 if (err) 12117 return libbpf_err_ptr(err); 12118 return link; 12119 } 12120 12121 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12122 { 12123 char *path = NULL, *provider = NULL, *name = NULL; 12124 const char *sec_name; 12125 int n, err; 12126 12127 sec_name = bpf_program__section_name(prog); 12128 if (strcmp(sec_name, "usdt") == 0) { 12129 /* no auto-attach for just SEC("usdt") */ 12130 *link = NULL; 12131 return 0; 12132 } 12133 12134 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12135 if (n != 3) { 12136 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12137 sec_name); 12138 err = -EINVAL; 12139 } else { 12140 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12141 provider, name, NULL); 12142 err = libbpf_get_error(*link); 12143 } 12144 free(path); 12145 free(provider); 12146 free(name); 12147 return err; 12148 } 12149 12150 static int determine_tracepoint_id(const char *tp_category, 12151 const char *tp_name) 12152 { 12153 char file[PATH_MAX]; 12154 int ret; 12155 12156 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12157 tracefs_path(), tp_category, tp_name); 12158 if (ret < 0) 12159 return -errno; 12160 if (ret >= sizeof(file)) { 12161 pr_debug("tracepoint %s/%s path is too long\n", 12162 tp_category, tp_name); 12163 return -E2BIG; 12164 } 12165 return parse_uint_from_file(file, "%d\n"); 12166 } 12167 12168 static int perf_event_open_tracepoint(const char *tp_category, 12169 const char *tp_name) 12170 { 12171 const size_t attr_sz = sizeof(struct perf_event_attr); 12172 struct perf_event_attr attr; 12173 char errmsg[STRERR_BUFSIZE]; 12174 int tp_id, pfd, err; 12175 12176 tp_id = determine_tracepoint_id(tp_category, tp_name); 12177 if (tp_id < 0) { 12178 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12179 tp_category, tp_name, 12180 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12181 return tp_id; 12182 } 12183 12184 memset(&attr, 0, attr_sz); 12185 attr.type = PERF_TYPE_TRACEPOINT; 12186 attr.size = attr_sz; 12187 attr.config = tp_id; 12188 12189 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12190 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12191 if (pfd < 0) { 12192 err = -errno; 12193 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12194 tp_category, tp_name, 12195 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12196 return err; 12197 } 12198 return pfd; 12199 } 12200 12201 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12202 const char *tp_category, 12203 const char *tp_name, 12204 const struct bpf_tracepoint_opts *opts) 12205 { 12206 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12207 char errmsg[STRERR_BUFSIZE]; 12208 struct bpf_link *link; 12209 int pfd, err; 12210 12211 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12212 return libbpf_err_ptr(-EINVAL); 12213 12214 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12215 12216 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12217 if (pfd < 0) { 12218 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12219 prog->name, tp_category, tp_name, 12220 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12221 return libbpf_err_ptr(pfd); 12222 } 12223 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12224 err = libbpf_get_error(link); 12225 if (err) { 12226 close(pfd); 12227 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12228 prog->name, tp_category, tp_name, 12229 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12230 return libbpf_err_ptr(err); 12231 } 12232 return link; 12233 } 12234 12235 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12236 const char *tp_category, 12237 const char *tp_name) 12238 { 12239 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12240 } 12241 12242 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12243 { 12244 char *sec_name, *tp_cat, *tp_name; 12245 12246 *link = NULL; 12247 12248 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12249 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12250 return 0; 12251 12252 sec_name = strdup(prog->sec_name); 12253 if (!sec_name) 12254 return -ENOMEM; 12255 12256 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12257 if (str_has_pfx(prog->sec_name, "tp/")) 12258 tp_cat = sec_name + sizeof("tp/") - 1; 12259 else 12260 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12261 tp_name = strchr(tp_cat, '/'); 12262 if (!tp_name) { 12263 free(sec_name); 12264 return -EINVAL; 12265 } 12266 *tp_name = '\0'; 12267 tp_name++; 12268 12269 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12270 free(sec_name); 12271 return libbpf_get_error(*link); 12272 } 12273 12274 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12275 const char *tp_name) 12276 { 12277 char errmsg[STRERR_BUFSIZE]; 12278 struct bpf_link *link; 12279 int prog_fd, pfd; 12280 12281 prog_fd = bpf_program__fd(prog); 12282 if (prog_fd < 0) { 12283 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12284 return libbpf_err_ptr(-EINVAL); 12285 } 12286 12287 link = calloc(1, sizeof(*link)); 12288 if (!link) 12289 return libbpf_err_ptr(-ENOMEM); 12290 link->detach = &bpf_link__detach_fd; 12291 12292 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 12293 if (pfd < 0) { 12294 pfd = -errno; 12295 free(link); 12296 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12297 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12298 return libbpf_err_ptr(pfd); 12299 } 12300 link->fd = pfd; 12301 return link; 12302 } 12303 12304 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12305 { 12306 static const char *const prefixes[] = { 12307 "raw_tp", 12308 "raw_tracepoint", 12309 "raw_tp.w", 12310 "raw_tracepoint.w", 12311 }; 12312 size_t i; 12313 const char *tp_name = NULL; 12314 12315 *link = NULL; 12316 12317 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12318 size_t pfx_len; 12319 12320 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12321 continue; 12322 12323 pfx_len = strlen(prefixes[i]); 12324 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12325 if (prog->sec_name[pfx_len] == '\0') 12326 return 0; 12327 12328 if (prog->sec_name[pfx_len] != '/') 12329 continue; 12330 12331 tp_name = prog->sec_name + pfx_len + 1; 12332 break; 12333 } 12334 12335 if (!tp_name) { 12336 pr_warn("prog '%s': invalid section name '%s'\n", 12337 prog->name, prog->sec_name); 12338 return -EINVAL; 12339 } 12340 12341 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12342 return libbpf_get_error(*link); 12343 } 12344 12345 /* Common logic for all BPF program types that attach to a btf_id */ 12346 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12347 const struct bpf_trace_opts *opts) 12348 { 12349 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12350 char errmsg[STRERR_BUFSIZE]; 12351 struct bpf_link *link; 12352 int prog_fd, pfd; 12353 12354 if (!OPTS_VALID(opts, bpf_trace_opts)) 12355 return libbpf_err_ptr(-EINVAL); 12356 12357 prog_fd = bpf_program__fd(prog); 12358 if (prog_fd < 0) { 12359 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12360 return libbpf_err_ptr(-EINVAL); 12361 } 12362 12363 link = calloc(1, sizeof(*link)); 12364 if (!link) 12365 return libbpf_err_ptr(-ENOMEM); 12366 link->detach = &bpf_link__detach_fd; 12367 12368 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12369 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12370 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12371 if (pfd < 0) { 12372 pfd = -errno; 12373 free(link); 12374 pr_warn("prog '%s': failed to attach: %s\n", 12375 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12376 return libbpf_err_ptr(pfd); 12377 } 12378 link->fd = pfd; 12379 return link; 12380 } 12381 12382 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12383 { 12384 return bpf_program__attach_btf_id(prog, NULL); 12385 } 12386 12387 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12388 const struct bpf_trace_opts *opts) 12389 { 12390 return bpf_program__attach_btf_id(prog, opts); 12391 } 12392 12393 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12394 { 12395 return bpf_program__attach_btf_id(prog, NULL); 12396 } 12397 12398 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12399 { 12400 *link = bpf_program__attach_trace(prog); 12401 return libbpf_get_error(*link); 12402 } 12403 12404 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12405 { 12406 *link = bpf_program__attach_lsm(prog); 12407 return libbpf_get_error(*link); 12408 } 12409 12410 static struct bpf_link * 12411 bpf_program_attach_fd(const struct bpf_program *prog, 12412 int target_fd, const char *target_name, 12413 const struct bpf_link_create_opts *opts) 12414 { 12415 enum bpf_attach_type attach_type; 12416 char errmsg[STRERR_BUFSIZE]; 12417 struct bpf_link *link; 12418 int prog_fd, link_fd; 12419 12420 prog_fd = bpf_program__fd(prog); 12421 if (prog_fd < 0) { 12422 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12423 return libbpf_err_ptr(-EINVAL); 12424 } 12425 12426 link = calloc(1, sizeof(*link)); 12427 if (!link) 12428 return libbpf_err_ptr(-ENOMEM); 12429 link->detach = &bpf_link__detach_fd; 12430 12431 attach_type = bpf_program__expected_attach_type(prog); 12432 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12433 if (link_fd < 0) { 12434 link_fd = -errno; 12435 free(link); 12436 pr_warn("prog '%s': failed to attach to %s: %s\n", 12437 prog->name, target_name, 12438 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12439 return libbpf_err_ptr(link_fd); 12440 } 12441 link->fd = link_fd; 12442 return link; 12443 } 12444 12445 struct bpf_link * 12446 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12447 { 12448 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12449 } 12450 12451 struct bpf_link * 12452 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12453 { 12454 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12455 } 12456 12457 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12458 { 12459 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12460 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12461 } 12462 12463 struct bpf_link * 12464 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12465 const struct bpf_tcx_opts *opts) 12466 { 12467 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12468 __u32 relative_id; 12469 int relative_fd; 12470 12471 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12472 return libbpf_err_ptr(-EINVAL); 12473 12474 relative_id = OPTS_GET(opts, relative_id, 0); 12475 relative_fd = OPTS_GET(opts, relative_fd, 0); 12476 12477 /* validate we don't have unexpected combinations of non-zero fields */ 12478 if (!ifindex) { 12479 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12480 prog->name); 12481 return libbpf_err_ptr(-EINVAL); 12482 } 12483 if (relative_fd && relative_id) { 12484 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12485 prog->name); 12486 return libbpf_err_ptr(-EINVAL); 12487 } 12488 12489 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12490 link_create_opts.tcx.relative_fd = relative_fd; 12491 link_create_opts.tcx.relative_id = relative_id; 12492 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12493 12494 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12495 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12496 } 12497 12498 struct bpf_link * 12499 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12500 const struct bpf_netkit_opts *opts) 12501 { 12502 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12503 __u32 relative_id; 12504 int relative_fd; 12505 12506 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12507 return libbpf_err_ptr(-EINVAL); 12508 12509 relative_id = OPTS_GET(opts, relative_id, 0); 12510 relative_fd = OPTS_GET(opts, relative_fd, 0); 12511 12512 /* validate we don't have unexpected combinations of non-zero fields */ 12513 if (!ifindex) { 12514 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12515 prog->name); 12516 return libbpf_err_ptr(-EINVAL); 12517 } 12518 if (relative_fd && relative_id) { 12519 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12520 prog->name); 12521 return libbpf_err_ptr(-EINVAL); 12522 } 12523 12524 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12525 link_create_opts.netkit.relative_fd = relative_fd; 12526 link_create_opts.netkit.relative_id = relative_id; 12527 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12528 12529 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12530 } 12531 12532 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12533 int target_fd, 12534 const char *attach_func_name) 12535 { 12536 int btf_id; 12537 12538 if (!!target_fd != !!attach_func_name) { 12539 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12540 prog->name); 12541 return libbpf_err_ptr(-EINVAL); 12542 } 12543 12544 if (prog->type != BPF_PROG_TYPE_EXT) { 12545 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12546 prog->name); 12547 return libbpf_err_ptr(-EINVAL); 12548 } 12549 12550 if (target_fd) { 12551 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12552 12553 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12554 if (btf_id < 0) 12555 return libbpf_err_ptr(btf_id); 12556 12557 target_opts.target_btf_id = btf_id; 12558 12559 return bpf_program_attach_fd(prog, target_fd, "freplace", 12560 &target_opts); 12561 } else { 12562 /* no target, so use raw_tracepoint_open for compatibility 12563 * with old kernels 12564 */ 12565 return bpf_program__attach_trace(prog); 12566 } 12567 } 12568 12569 struct bpf_link * 12570 bpf_program__attach_iter(const struct bpf_program *prog, 12571 const struct bpf_iter_attach_opts *opts) 12572 { 12573 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12574 char errmsg[STRERR_BUFSIZE]; 12575 struct bpf_link *link; 12576 int prog_fd, link_fd; 12577 __u32 target_fd = 0; 12578 12579 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12580 return libbpf_err_ptr(-EINVAL); 12581 12582 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12583 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12584 12585 prog_fd = bpf_program__fd(prog); 12586 if (prog_fd < 0) { 12587 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12588 return libbpf_err_ptr(-EINVAL); 12589 } 12590 12591 link = calloc(1, sizeof(*link)); 12592 if (!link) 12593 return libbpf_err_ptr(-ENOMEM); 12594 link->detach = &bpf_link__detach_fd; 12595 12596 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12597 &link_create_opts); 12598 if (link_fd < 0) { 12599 link_fd = -errno; 12600 free(link); 12601 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12602 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12603 return libbpf_err_ptr(link_fd); 12604 } 12605 link->fd = link_fd; 12606 return link; 12607 } 12608 12609 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12610 { 12611 *link = bpf_program__attach_iter(prog, NULL); 12612 return libbpf_get_error(*link); 12613 } 12614 12615 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12616 const struct bpf_netfilter_opts *opts) 12617 { 12618 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12619 struct bpf_link *link; 12620 int prog_fd, link_fd; 12621 12622 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12623 return libbpf_err_ptr(-EINVAL); 12624 12625 prog_fd = bpf_program__fd(prog); 12626 if (prog_fd < 0) { 12627 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12628 return libbpf_err_ptr(-EINVAL); 12629 } 12630 12631 link = calloc(1, sizeof(*link)); 12632 if (!link) 12633 return libbpf_err_ptr(-ENOMEM); 12634 12635 link->detach = &bpf_link__detach_fd; 12636 12637 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12638 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12639 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12640 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12641 12642 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12643 if (link_fd < 0) { 12644 char errmsg[STRERR_BUFSIZE]; 12645 12646 link_fd = -errno; 12647 free(link); 12648 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12649 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12650 return libbpf_err_ptr(link_fd); 12651 } 12652 link->fd = link_fd; 12653 12654 return link; 12655 } 12656 12657 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12658 { 12659 struct bpf_link *link = NULL; 12660 int err; 12661 12662 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12663 return libbpf_err_ptr(-EOPNOTSUPP); 12664 12665 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12666 if (err) 12667 return libbpf_err_ptr(err); 12668 12669 /* When calling bpf_program__attach() explicitly, auto-attach support 12670 * is expected to work, so NULL returned link is considered an error. 12671 * This is different for skeleton's attach, see comment in 12672 * bpf_object__attach_skeleton(). 12673 */ 12674 if (!link) 12675 return libbpf_err_ptr(-EOPNOTSUPP); 12676 12677 return link; 12678 } 12679 12680 struct bpf_link_struct_ops { 12681 struct bpf_link link; 12682 int map_fd; 12683 }; 12684 12685 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12686 { 12687 struct bpf_link_struct_ops *st_link; 12688 __u32 zero = 0; 12689 12690 st_link = container_of(link, struct bpf_link_struct_ops, link); 12691 12692 if (st_link->map_fd < 0) 12693 /* w/o a real link */ 12694 return bpf_map_delete_elem(link->fd, &zero); 12695 12696 return close(link->fd); 12697 } 12698 12699 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12700 { 12701 struct bpf_link_struct_ops *link; 12702 __u32 zero = 0; 12703 int err, fd; 12704 12705 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12706 return libbpf_err_ptr(-EINVAL); 12707 12708 link = calloc(1, sizeof(*link)); 12709 if (!link) 12710 return libbpf_err_ptr(-EINVAL); 12711 12712 /* kern_vdata should be prepared during the loading phase. */ 12713 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12714 /* It can be EBUSY if the map has been used to create or 12715 * update a link before. We don't allow updating the value of 12716 * a struct_ops once it is set. That ensures that the value 12717 * never changed. So, it is safe to skip EBUSY. 12718 */ 12719 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12720 free(link); 12721 return libbpf_err_ptr(err); 12722 } 12723 12724 link->link.detach = bpf_link__detach_struct_ops; 12725 12726 if (!(map->def.map_flags & BPF_F_LINK)) { 12727 /* w/o a real link */ 12728 link->link.fd = map->fd; 12729 link->map_fd = -1; 12730 return &link->link; 12731 } 12732 12733 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12734 if (fd < 0) { 12735 free(link); 12736 return libbpf_err_ptr(fd); 12737 } 12738 12739 link->link.fd = fd; 12740 link->map_fd = map->fd; 12741 12742 return &link->link; 12743 } 12744 12745 /* 12746 * Swap the back struct_ops of a link with a new struct_ops map. 12747 */ 12748 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12749 { 12750 struct bpf_link_struct_ops *st_ops_link; 12751 __u32 zero = 0; 12752 int err; 12753 12754 if (!bpf_map__is_struct_ops(map) || !map_is_created(map)) 12755 return -EINVAL; 12756 12757 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12758 /* Ensure the type of a link is correct */ 12759 if (st_ops_link->map_fd < 0) 12760 return -EINVAL; 12761 12762 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12763 /* It can be EBUSY if the map has been used to create or 12764 * update a link before. We don't allow updating the value of 12765 * a struct_ops once it is set. That ensures that the value 12766 * never changed. So, it is safe to skip EBUSY. 12767 */ 12768 if (err && err != -EBUSY) 12769 return err; 12770 12771 err = bpf_link_update(link->fd, map->fd, NULL); 12772 if (err < 0) 12773 return err; 12774 12775 st_ops_link->map_fd = map->fd; 12776 12777 return 0; 12778 } 12779 12780 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12781 void *private_data); 12782 12783 static enum bpf_perf_event_ret 12784 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12785 void **copy_mem, size_t *copy_size, 12786 bpf_perf_event_print_t fn, void *private_data) 12787 { 12788 struct perf_event_mmap_page *header = mmap_mem; 12789 __u64 data_head = ring_buffer_read_head(header); 12790 __u64 data_tail = header->data_tail; 12791 void *base = ((__u8 *)header) + page_size; 12792 int ret = LIBBPF_PERF_EVENT_CONT; 12793 struct perf_event_header *ehdr; 12794 size_t ehdr_size; 12795 12796 while (data_head != data_tail) { 12797 ehdr = base + (data_tail & (mmap_size - 1)); 12798 ehdr_size = ehdr->size; 12799 12800 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12801 void *copy_start = ehdr; 12802 size_t len_first = base + mmap_size - copy_start; 12803 size_t len_secnd = ehdr_size - len_first; 12804 12805 if (*copy_size < ehdr_size) { 12806 free(*copy_mem); 12807 *copy_mem = malloc(ehdr_size); 12808 if (!*copy_mem) { 12809 *copy_size = 0; 12810 ret = LIBBPF_PERF_EVENT_ERROR; 12811 break; 12812 } 12813 *copy_size = ehdr_size; 12814 } 12815 12816 memcpy(*copy_mem, copy_start, len_first); 12817 memcpy(*copy_mem + len_first, base, len_secnd); 12818 ehdr = *copy_mem; 12819 } 12820 12821 ret = fn(ehdr, private_data); 12822 data_tail += ehdr_size; 12823 if (ret != LIBBPF_PERF_EVENT_CONT) 12824 break; 12825 } 12826 12827 ring_buffer_write_tail(header, data_tail); 12828 return libbpf_err(ret); 12829 } 12830 12831 struct perf_buffer; 12832 12833 struct perf_buffer_params { 12834 struct perf_event_attr *attr; 12835 /* if event_cb is specified, it takes precendence */ 12836 perf_buffer_event_fn event_cb; 12837 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12838 perf_buffer_sample_fn sample_cb; 12839 perf_buffer_lost_fn lost_cb; 12840 void *ctx; 12841 int cpu_cnt; 12842 int *cpus; 12843 int *map_keys; 12844 }; 12845 12846 struct perf_cpu_buf { 12847 struct perf_buffer *pb; 12848 void *base; /* mmap()'ed memory */ 12849 void *buf; /* for reconstructing segmented data */ 12850 size_t buf_size; 12851 int fd; 12852 int cpu; 12853 int map_key; 12854 }; 12855 12856 struct perf_buffer { 12857 perf_buffer_event_fn event_cb; 12858 perf_buffer_sample_fn sample_cb; 12859 perf_buffer_lost_fn lost_cb; 12860 void *ctx; /* passed into callbacks */ 12861 12862 size_t page_size; 12863 size_t mmap_size; 12864 struct perf_cpu_buf **cpu_bufs; 12865 struct epoll_event *events; 12866 int cpu_cnt; /* number of allocated CPU buffers */ 12867 int epoll_fd; /* perf event FD */ 12868 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12869 }; 12870 12871 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12872 struct perf_cpu_buf *cpu_buf) 12873 { 12874 if (!cpu_buf) 12875 return; 12876 if (cpu_buf->base && 12877 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12878 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12879 if (cpu_buf->fd >= 0) { 12880 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12881 close(cpu_buf->fd); 12882 } 12883 free(cpu_buf->buf); 12884 free(cpu_buf); 12885 } 12886 12887 void perf_buffer__free(struct perf_buffer *pb) 12888 { 12889 int i; 12890 12891 if (IS_ERR_OR_NULL(pb)) 12892 return; 12893 if (pb->cpu_bufs) { 12894 for (i = 0; i < pb->cpu_cnt; i++) { 12895 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12896 12897 if (!cpu_buf) 12898 continue; 12899 12900 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12901 perf_buffer__free_cpu_buf(pb, cpu_buf); 12902 } 12903 free(pb->cpu_bufs); 12904 } 12905 if (pb->epoll_fd >= 0) 12906 close(pb->epoll_fd); 12907 free(pb->events); 12908 free(pb); 12909 } 12910 12911 static struct perf_cpu_buf * 12912 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12913 int cpu, int map_key) 12914 { 12915 struct perf_cpu_buf *cpu_buf; 12916 char msg[STRERR_BUFSIZE]; 12917 int err; 12918 12919 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12920 if (!cpu_buf) 12921 return ERR_PTR(-ENOMEM); 12922 12923 cpu_buf->pb = pb; 12924 cpu_buf->cpu = cpu; 12925 cpu_buf->map_key = map_key; 12926 12927 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12928 -1, PERF_FLAG_FD_CLOEXEC); 12929 if (cpu_buf->fd < 0) { 12930 err = -errno; 12931 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12932 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12933 goto error; 12934 } 12935 12936 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12937 PROT_READ | PROT_WRITE, MAP_SHARED, 12938 cpu_buf->fd, 0); 12939 if (cpu_buf->base == MAP_FAILED) { 12940 cpu_buf->base = NULL; 12941 err = -errno; 12942 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12943 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12944 goto error; 12945 } 12946 12947 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12948 err = -errno; 12949 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12950 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12951 goto error; 12952 } 12953 12954 return cpu_buf; 12955 12956 error: 12957 perf_buffer__free_cpu_buf(pb, cpu_buf); 12958 return (struct perf_cpu_buf *)ERR_PTR(err); 12959 } 12960 12961 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12962 struct perf_buffer_params *p); 12963 12964 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12965 perf_buffer_sample_fn sample_cb, 12966 perf_buffer_lost_fn lost_cb, 12967 void *ctx, 12968 const struct perf_buffer_opts *opts) 12969 { 12970 const size_t attr_sz = sizeof(struct perf_event_attr); 12971 struct perf_buffer_params p = {}; 12972 struct perf_event_attr attr; 12973 __u32 sample_period; 12974 12975 if (!OPTS_VALID(opts, perf_buffer_opts)) 12976 return libbpf_err_ptr(-EINVAL); 12977 12978 sample_period = OPTS_GET(opts, sample_period, 1); 12979 if (!sample_period) 12980 sample_period = 1; 12981 12982 memset(&attr, 0, attr_sz); 12983 attr.size = attr_sz; 12984 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12985 attr.type = PERF_TYPE_SOFTWARE; 12986 attr.sample_type = PERF_SAMPLE_RAW; 12987 attr.sample_period = sample_period; 12988 attr.wakeup_events = sample_period; 12989 12990 p.attr = &attr; 12991 p.sample_cb = sample_cb; 12992 p.lost_cb = lost_cb; 12993 p.ctx = ctx; 12994 12995 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12996 } 12997 12998 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12999 struct perf_event_attr *attr, 13000 perf_buffer_event_fn event_cb, void *ctx, 13001 const struct perf_buffer_raw_opts *opts) 13002 { 13003 struct perf_buffer_params p = {}; 13004 13005 if (!attr) 13006 return libbpf_err_ptr(-EINVAL); 13007 13008 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13009 return libbpf_err_ptr(-EINVAL); 13010 13011 p.attr = attr; 13012 p.event_cb = event_cb; 13013 p.ctx = ctx; 13014 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13015 p.cpus = OPTS_GET(opts, cpus, NULL); 13016 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13017 13018 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13019 } 13020 13021 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13022 struct perf_buffer_params *p) 13023 { 13024 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13025 struct bpf_map_info map; 13026 char msg[STRERR_BUFSIZE]; 13027 struct perf_buffer *pb; 13028 bool *online = NULL; 13029 __u32 map_info_len; 13030 int err, i, j, n; 13031 13032 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13033 pr_warn("page count should be power of two, but is %zu\n", 13034 page_cnt); 13035 return ERR_PTR(-EINVAL); 13036 } 13037 13038 /* best-effort sanity checks */ 13039 memset(&map, 0, sizeof(map)); 13040 map_info_len = sizeof(map); 13041 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13042 if (err) { 13043 err = -errno; 13044 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13045 * -EBADFD, -EFAULT, or -E2BIG on real error 13046 */ 13047 if (err != -EINVAL) { 13048 pr_warn("failed to get map info for map FD %d: %s\n", 13049 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13050 return ERR_PTR(err); 13051 } 13052 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13053 map_fd); 13054 } else { 13055 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13056 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13057 map.name); 13058 return ERR_PTR(-EINVAL); 13059 } 13060 } 13061 13062 pb = calloc(1, sizeof(*pb)); 13063 if (!pb) 13064 return ERR_PTR(-ENOMEM); 13065 13066 pb->event_cb = p->event_cb; 13067 pb->sample_cb = p->sample_cb; 13068 pb->lost_cb = p->lost_cb; 13069 pb->ctx = p->ctx; 13070 13071 pb->page_size = getpagesize(); 13072 pb->mmap_size = pb->page_size * page_cnt; 13073 pb->map_fd = map_fd; 13074 13075 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13076 if (pb->epoll_fd < 0) { 13077 err = -errno; 13078 pr_warn("failed to create epoll instance: %s\n", 13079 libbpf_strerror_r(err, msg, sizeof(msg))); 13080 goto error; 13081 } 13082 13083 if (p->cpu_cnt > 0) { 13084 pb->cpu_cnt = p->cpu_cnt; 13085 } else { 13086 pb->cpu_cnt = libbpf_num_possible_cpus(); 13087 if (pb->cpu_cnt < 0) { 13088 err = pb->cpu_cnt; 13089 goto error; 13090 } 13091 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13092 pb->cpu_cnt = map.max_entries; 13093 } 13094 13095 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13096 if (!pb->events) { 13097 err = -ENOMEM; 13098 pr_warn("failed to allocate events: out of memory\n"); 13099 goto error; 13100 } 13101 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13102 if (!pb->cpu_bufs) { 13103 err = -ENOMEM; 13104 pr_warn("failed to allocate buffers: out of memory\n"); 13105 goto error; 13106 } 13107 13108 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13109 if (err) { 13110 pr_warn("failed to get online CPU mask: %d\n", err); 13111 goto error; 13112 } 13113 13114 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13115 struct perf_cpu_buf *cpu_buf; 13116 int cpu, map_key; 13117 13118 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13119 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13120 13121 /* in case user didn't explicitly requested particular CPUs to 13122 * be attached to, skip offline/not present CPUs 13123 */ 13124 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13125 continue; 13126 13127 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13128 if (IS_ERR(cpu_buf)) { 13129 err = PTR_ERR(cpu_buf); 13130 goto error; 13131 } 13132 13133 pb->cpu_bufs[j] = cpu_buf; 13134 13135 err = bpf_map_update_elem(pb->map_fd, &map_key, 13136 &cpu_buf->fd, 0); 13137 if (err) { 13138 err = -errno; 13139 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13140 cpu, map_key, cpu_buf->fd, 13141 libbpf_strerror_r(err, msg, sizeof(msg))); 13142 goto error; 13143 } 13144 13145 pb->events[j].events = EPOLLIN; 13146 pb->events[j].data.ptr = cpu_buf; 13147 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13148 &pb->events[j]) < 0) { 13149 err = -errno; 13150 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13151 cpu, cpu_buf->fd, 13152 libbpf_strerror_r(err, msg, sizeof(msg))); 13153 goto error; 13154 } 13155 j++; 13156 } 13157 pb->cpu_cnt = j; 13158 free(online); 13159 13160 return pb; 13161 13162 error: 13163 free(online); 13164 if (pb) 13165 perf_buffer__free(pb); 13166 return ERR_PTR(err); 13167 } 13168 13169 struct perf_sample_raw { 13170 struct perf_event_header header; 13171 uint32_t size; 13172 char data[]; 13173 }; 13174 13175 struct perf_sample_lost { 13176 struct perf_event_header header; 13177 uint64_t id; 13178 uint64_t lost; 13179 uint64_t sample_id; 13180 }; 13181 13182 static enum bpf_perf_event_ret 13183 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13184 { 13185 struct perf_cpu_buf *cpu_buf = ctx; 13186 struct perf_buffer *pb = cpu_buf->pb; 13187 void *data = e; 13188 13189 /* user wants full control over parsing perf event */ 13190 if (pb->event_cb) 13191 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13192 13193 switch (e->type) { 13194 case PERF_RECORD_SAMPLE: { 13195 struct perf_sample_raw *s = data; 13196 13197 if (pb->sample_cb) 13198 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13199 break; 13200 } 13201 case PERF_RECORD_LOST: { 13202 struct perf_sample_lost *s = data; 13203 13204 if (pb->lost_cb) 13205 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13206 break; 13207 } 13208 default: 13209 pr_warn("unknown perf sample type %d\n", e->type); 13210 return LIBBPF_PERF_EVENT_ERROR; 13211 } 13212 return LIBBPF_PERF_EVENT_CONT; 13213 } 13214 13215 static int perf_buffer__process_records(struct perf_buffer *pb, 13216 struct perf_cpu_buf *cpu_buf) 13217 { 13218 enum bpf_perf_event_ret ret; 13219 13220 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13221 pb->page_size, &cpu_buf->buf, 13222 &cpu_buf->buf_size, 13223 perf_buffer__process_record, cpu_buf); 13224 if (ret != LIBBPF_PERF_EVENT_CONT) 13225 return ret; 13226 return 0; 13227 } 13228 13229 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13230 { 13231 return pb->epoll_fd; 13232 } 13233 13234 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13235 { 13236 int i, cnt, err; 13237 13238 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13239 if (cnt < 0) 13240 return -errno; 13241 13242 for (i = 0; i < cnt; i++) { 13243 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13244 13245 err = perf_buffer__process_records(pb, cpu_buf); 13246 if (err) { 13247 pr_warn("error while processing records: %d\n", err); 13248 return libbpf_err(err); 13249 } 13250 } 13251 return cnt; 13252 } 13253 13254 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13255 * manager. 13256 */ 13257 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13258 { 13259 return pb->cpu_cnt; 13260 } 13261 13262 /* 13263 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13264 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13265 * select()/poll()/epoll() Linux syscalls. 13266 */ 13267 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13268 { 13269 struct perf_cpu_buf *cpu_buf; 13270 13271 if (buf_idx >= pb->cpu_cnt) 13272 return libbpf_err(-EINVAL); 13273 13274 cpu_buf = pb->cpu_bufs[buf_idx]; 13275 if (!cpu_buf) 13276 return libbpf_err(-ENOENT); 13277 13278 return cpu_buf->fd; 13279 } 13280 13281 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13282 { 13283 struct perf_cpu_buf *cpu_buf; 13284 13285 if (buf_idx >= pb->cpu_cnt) 13286 return libbpf_err(-EINVAL); 13287 13288 cpu_buf = pb->cpu_bufs[buf_idx]; 13289 if (!cpu_buf) 13290 return libbpf_err(-ENOENT); 13291 13292 *buf = cpu_buf->base; 13293 *buf_size = pb->mmap_size; 13294 return 0; 13295 } 13296 13297 /* 13298 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13299 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13300 * consume, do nothing and return success. 13301 * Returns: 13302 * - 0 on success; 13303 * - <0 on failure. 13304 */ 13305 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13306 { 13307 struct perf_cpu_buf *cpu_buf; 13308 13309 if (buf_idx >= pb->cpu_cnt) 13310 return libbpf_err(-EINVAL); 13311 13312 cpu_buf = pb->cpu_bufs[buf_idx]; 13313 if (!cpu_buf) 13314 return libbpf_err(-ENOENT); 13315 13316 return perf_buffer__process_records(pb, cpu_buf); 13317 } 13318 13319 int perf_buffer__consume(struct perf_buffer *pb) 13320 { 13321 int i, err; 13322 13323 for (i = 0; i < pb->cpu_cnt; i++) { 13324 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13325 13326 if (!cpu_buf) 13327 continue; 13328 13329 err = perf_buffer__process_records(pb, cpu_buf); 13330 if (err) { 13331 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13332 return libbpf_err(err); 13333 } 13334 } 13335 return 0; 13336 } 13337 13338 int bpf_program__set_attach_target(struct bpf_program *prog, 13339 int attach_prog_fd, 13340 const char *attach_func_name) 13341 { 13342 int btf_obj_fd = 0, btf_id = 0, err; 13343 13344 if (!prog || attach_prog_fd < 0) 13345 return libbpf_err(-EINVAL); 13346 13347 if (prog->obj->loaded) 13348 return libbpf_err(-EINVAL); 13349 13350 if (attach_prog_fd && !attach_func_name) { 13351 /* remember attach_prog_fd and let bpf_program__load() find 13352 * BTF ID during the program load 13353 */ 13354 prog->attach_prog_fd = attach_prog_fd; 13355 return 0; 13356 } 13357 13358 if (attach_prog_fd) { 13359 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13360 attach_prog_fd); 13361 if (btf_id < 0) 13362 return libbpf_err(btf_id); 13363 } else { 13364 if (!attach_func_name) 13365 return libbpf_err(-EINVAL); 13366 13367 /* load btf_vmlinux, if not yet */ 13368 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13369 if (err) 13370 return libbpf_err(err); 13371 err = find_kernel_btf_id(prog->obj, attach_func_name, 13372 prog->expected_attach_type, 13373 &btf_obj_fd, &btf_id); 13374 if (err) 13375 return libbpf_err(err); 13376 } 13377 13378 prog->attach_btf_id = btf_id; 13379 prog->attach_btf_obj_fd = btf_obj_fd; 13380 prog->attach_prog_fd = attach_prog_fd; 13381 return 0; 13382 } 13383 13384 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13385 { 13386 int err = 0, n, len, start, end = -1; 13387 bool *tmp; 13388 13389 *mask = NULL; 13390 *mask_sz = 0; 13391 13392 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13393 while (*s) { 13394 if (*s == ',' || *s == '\n') { 13395 s++; 13396 continue; 13397 } 13398 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13399 if (n <= 0 || n > 2) { 13400 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13401 err = -EINVAL; 13402 goto cleanup; 13403 } else if (n == 1) { 13404 end = start; 13405 } 13406 if (start < 0 || start > end) { 13407 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13408 start, end, s); 13409 err = -EINVAL; 13410 goto cleanup; 13411 } 13412 tmp = realloc(*mask, end + 1); 13413 if (!tmp) { 13414 err = -ENOMEM; 13415 goto cleanup; 13416 } 13417 *mask = tmp; 13418 memset(tmp + *mask_sz, 0, start - *mask_sz); 13419 memset(tmp + start, 1, end - start + 1); 13420 *mask_sz = end + 1; 13421 s += len; 13422 } 13423 if (!*mask_sz) { 13424 pr_warn("Empty CPU range\n"); 13425 return -EINVAL; 13426 } 13427 return 0; 13428 cleanup: 13429 free(*mask); 13430 *mask = NULL; 13431 return err; 13432 } 13433 13434 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13435 { 13436 int fd, err = 0, len; 13437 char buf[128]; 13438 13439 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13440 if (fd < 0) { 13441 err = -errno; 13442 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13443 return err; 13444 } 13445 len = read(fd, buf, sizeof(buf)); 13446 close(fd); 13447 if (len <= 0) { 13448 err = len ? -errno : -EINVAL; 13449 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13450 return err; 13451 } 13452 if (len >= sizeof(buf)) { 13453 pr_warn("CPU mask is too big in file %s\n", fcpu); 13454 return -E2BIG; 13455 } 13456 buf[len] = '\0'; 13457 13458 return parse_cpu_mask_str(buf, mask, mask_sz); 13459 } 13460 13461 int libbpf_num_possible_cpus(void) 13462 { 13463 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13464 static int cpus; 13465 int err, n, i, tmp_cpus; 13466 bool *mask; 13467 13468 tmp_cpus = READ_ONCE(cpus); 13469 if (tmp_cpus > 0) 13470 return tmp_cpus; 13471 13472 err = parse_cpu_mask_file(fcpu, &mask, &n); 13473 if (err) 13474 return libbpf_err(err); 13475 13476 tmp_cpus = 0; 13477 for (i = 0; i < n; i++) { 13478 if (mask[i]) 13479 tmp_cpus++; 13480 } 13481 free(mask); 13482 13483 WRITE_ONCE(cpus, tmp_cpus); 13484 return tmp_cpus; 13485 } 13486 13487 static int populate_skeleton_maps(const struct bpf_object *obj, 13488 struct bpf_map_skeleton *maps, 13489 size_t map_cnt) 13490 { 13491 int i; 13492 13493 for (i = 0; i < map_cnt; i++) { 13494 struct bpf_map **map = maps[i].map; 13495 const char *name = maps[i].name; 13496 void **mmaped = maps[i].mmaped; 13497 13498 *map = bpf_object__find_map_by_name(obj, name); 13499 if (!*map) { 13500 pr_warn("failed to find skeleton map '%s'\n", name); 13501 return -ESRCH; 13502 } 13503 13504 /* externs shouldn't be pre-setup from user code */ 13505 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13506 *mmaped = (*map)->mmaped; 13507 } 13508 return 0; 13509 } 13510 13511 static int populate_skeleton_progs(const struct bpf_object *obj, 13512 struct bpf_prog_skeleton *progs, 13513 size_t prog_cnt) 13514 { 13515 int i; 13516 13517 for (i = 0; i < prog_cnt; i++) { 13518 struct bpf_program **prog = progs[i].prog; 13519 const char *name = progs[i].name; 13520 13521 *prog = bpf_object__find_program_by_name(obj, name); 13522 if (!*prog) { 13523 pr_warn("failed to find skeleton program '%s'\n", name); 13524 return -ESRCH; 13525 } 13526 } 13527 return 0; 13528 } 13529 13530 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13531 const struct bpf_object_open_opts *opts) 13532 { 13533 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13534 .object_name = s->name, 13535 ); 13536 struct bpf_object *obj; 13537 int err; 13538 13539 /* Attempt to preserve opts->object_name, unless overriden by user 13540 * explicitly. Overwriting object name for skeletons is discouraged, 13541 * as it breaks global data maps, because they contain object name 13542 * prefix as their own map name prefix. When skeleton is generated, 13543 * bpftool is making an assumption that this name will stay the same. 13544 */ 13545 if (opts) { 13546 memcpy(&skel_opts, opts, sizeof(*opts)); 13547 if (!opts->object_name) 13548 skel_opts.object_name = s->name; 13549 } 13550 13551 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13552 err = libbpf_get_error(obj); 13553 if (err) { 13554 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13555 s->name, err); 13556 return libbpf_err(err); 13557 } 13558 13559 *s->obj = obj; 13560 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13561 if (err) { 13562 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13563 return libbpf_err(err); 13564 } 13565 13566 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13567 if (err) { 13568 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13569 return libbpf_err(err); 13570 } 13571 13572 return 0; 13573 } 13574 13575 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13576 { 13577 int err, len, var_idx, i; 13578 const char *var_name; 13579 const struct bpf_map *map; 13580 struct btf *btf; 13581 __u32 map_type_id; 13582 const struct btf_type *map_type, *var_type; 13583 const struct bpf_var_skeleton *var_skel; 13584 struct btf_var_secinfo *var; 13585 13586 if (!s->obj) 13587 return libbpf_err(-EINVAL); 13588 13589 btf = bpf_object__btf(s->obj); 13590 if (!btf) { 13591 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13592 bpf_object__name(s->obj)); 13593 return libbpf_err(-errno); 13594 } 13595 13596 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13597 if (err) { 13598 pr_warn("failed to populate subskeleton maps: %d\n", err); 13599 return libbpf_err(err); 13600 } 13601 13602 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13603 if (err) { 13604 pr_warn("failed to populate subskeleton maps: %d\n", err); 13605 return libbpf_err(err); 13606 } 13607 13608 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13609 var_skel = &s->vars[var_idx]; 13610 map = *var_skel->map; 13611 map_type_id = bpf_map__btf_value_type_id(map); 13612 map_type = btf__type_by_id(btf, map_type_id); 13613 13614 if (!btf_is_datasec(map_type)) { 13615 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13616 bpf_map__name(map), 13617 __btf_kind_str(btf_kind(map_type))); 13618 return libbpf_err(-EINVAL); 13619 } 13620 13621 len = btf_vlen(map_type); 13622 var = btf_var_secinfos(map_type); 13623 for (i = 0; i < len; i++, var++) { 13624 var_type = btf__type_by_id(btf, var->type); 13625 var_name = btf__name_by_offset(btf, var_type->name_off); 13626 if (strcmp(var_name, var_skel->name) == 0) { 13627 *var_skel->addr = map->mmaped + var->offset; 13628 break; 13629 } 13630 } 13631 } 13632 return 0; 13633 } 13634 13635 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13636 { 13637 if (!s) 13638 return; 13639 free(s->maps); 13640 free(s->progs); 13641 free(s->vars); 13642 free(s); 13643 } 13644 13645 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13646 { 13647 int i, err; 13648 13649 err = bpf_object__load(*s->obj); 13650 if (err) { 13651 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13652 return libbpf_err(err); 13653 } 13654 13655 for (i = 0; i < s->map_cnt; i++) { 13656 struct bpf_map *map = *s->maps[i].map; 13657 size_t mmap_sz = bpf_map_mmap_sz(map); 13658 int prot, map_fd = map->fd; 13659 void **mmaped = s->maps[i].mmaped; 13660 13661 if (!mmaped) 13662 continue; 13663 13664 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13665 *mmaped = NULL; 13666 continue; 13667 } 13668 13669 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13670 *mmaped = map->mmaped; 13671 continue; 13672 } 13673 13674 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13675 prot = PROT_READ; 13676 else 13677 prot = PROT_READ | PROT_WRITE; 13678 13679 /* Remap anonymous mmap()-ed "map initialization image" as 13680 * a BPF map-backed mmap()-ed memory, but preserving the same 13681 * memory address. This will cause kernel to change process' 13682 * page table to point to a different piece of kernel memory, 13683 * but from userspace point of view memory address (and its 13684 * contents, being identical at this point) will stay the 13685 * same. This mapping will be released by bpf_object__close() 13686 * as per normal clean up procedure, so we don't need to worry 13687 * about it from skeleton's clean up perspective. 13688 */ 13689 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13690 if (*mmaped == MAP_FAILED) { 13691 err = -errno; 13692 *mmaped = NULL; 13693 pr_warn("failed to re-mmap() map '%s': %d\n", 13694 bpf_map__name(map), err); 13695 return libbpf_err(err); 13696 } 13697 } 13698 13699 return 0; 13700 } 13701 13702 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13703 { 13704 int i, err; 13705 13706 for (i = 0; i < s->prog_cnt; i++) { 13707 struct bpf_program *prog = *s->progs[i].prog; 13708 struct bpf_link **link = s->progs[i].link; 13709 13710 if (!prog->autoload || !prog->autoattach) 13711 continue; 13712 13713 /* auto-attaching not supported for this program */ 13714 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13715 continue; 13716 13717 /* if user already set the link manually, don't attempt auto-attach */ 13718 if (*link) 13719 continue; 13720 13721 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13722 if (err) { 13723 pr_warn("prog '%s': failed to auto-attach: %d\n", 13724 bpf_program__name(prog), err); 13725 return libbpf_err(err); 13726 } 13727 13728 /* It's possible that for some SEC() definitions auto-attach 13729 * is supported in some cases (e.g., if definition completely 13730 * specifies target information), but is not in other cases. 13731 * SEC("uprobe") is one such case. If user specified target 13732 * binary and function name, such BPF program can be 13733 * auto-attached. But if not, it shouldn't trigger skeleton's 13734 * attach to fail. It should just be skipped. 13735 * attach_fn signals such case with returning 0 (no error) and 13736 * setting link to NULL. 13737 */ 13738 } 13739 13740 return 0; 13741 } 13742 13743 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13744 { 13745 int i; 13746 13747 for (i = 0; i < s->prog_cnt; i++) { 13748 struct bpf_link **link = s->progs[i].link; 13749 13750 bpf_link__destroy(*link); 13751 *link = NULL; 13752 } 13753 } 13754 13755 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13756 { 13757 if (!s) 13758 return; 13759 13760 if (s->progs) 13761 bpf_object__detach_skeleton(s); 13762 if (s->obj) 13763 bpf_object__close(*s->obj); 13764 free(s->maps); 13765 free(s->progs); 13766 free(s); 13767 } 13768