xref: /linux/tools/lib/bpf/libbpf.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
86 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
87 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
88 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
89 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
90 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
91 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
92 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
93 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
94 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
95 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
96 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
97 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
98 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
99 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
100 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
101 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
102 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
103 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
104 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
105 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
106 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
107 	[BPF_LIRC_MODE2]		= "lirc_mode2",
108 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
109 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
110 	[BPF_TRACE_FENTRY]		= "trace_fentry",
111 	[BPF_TRACE_FEXIT]		= "trace_fexit",
112 	[BPF_MODIFY_RETURN]		= "modify_return",
113 	[BPF_LSM_MAC]			= "lsm_mac",
114 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
115 	[BPF_SK_LOOKUP]			= "sk_lookup",
116 	[BPF_TRACE_ITER]		= "trace_iter",
117 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
118 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
119 	[BPF_XDP]			= "xdp",
120 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
121 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
122 	[BPF_PERF_EVENT]		= "perf_event",
123 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
124 	[BPF_STRUCT_OPS]		= "struct_ops",
125 	[BPF_NETFILTER]			= "netfilter",
126 	[BPF_TCX_INGRESS]		= "tcx_ingress",
127 	[BPF_TCX_EGRESS]		= "tcx_egress",
128 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
129 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
130 	[BPF_NETKIT_PEER]		= "netkit_peer",
131 };
132 
133 static const char * const link_type_name[] = {
134 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
135 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
136 	[BPF_LINK_TYPE_TRACING]			= "tracing",
137 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
138 	[BPF_LINK_TYPE_ITER]			= "iter",
139 	[BPF_LINK_TYPE_NETNS]			= "netns",
140 	[BPF_LINK_TYPE_XDP]			= "xdp",
141 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
142 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
143 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
144 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
145 	[BPF_LINK_TYPE_TCX]			= "tcx",
146 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
147 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
148 };
149 
150 static const char * const map_type_name[] = {
151 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
152 	[BPF_MAP_TYPE_HASH]			= "hash",
153 	[BPF_MAP_TYPE_ARRAY]			= "array",
154 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
155 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
156 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
157 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
158 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
159 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
160 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
161 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
162 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
163 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
164 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
165 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
166 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
167 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
168 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
169 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
170 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
171 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
172 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
173 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
174 	[BPF_MAP_TYPE_QUEUE]			= "queue",
175 	[BPF_MAP_TYPE_STACK]			= "stack",
176 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
177 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
178 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
179 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
180 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
181 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
182 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
183 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
184 };
185 
186 static const char * const prog_type_name[] = {
187 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
188 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
189 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
190 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
191 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
192 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
193 	[BPF_PROG_TYPE_XDP]			= "xdp",
194 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
195 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
196 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
197 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
198 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
199 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
200 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
201 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
202 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
203 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
204 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
205 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
206 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
207 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
208 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
209 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
210 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
211 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
212 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
213 	[BPF_PROG_TYPE_TRACING]			= "tracing",
214 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
215 	[BPF_PROG_TYPE_EXT]			= "ext",
216 	[BPF_PROG_TYPE_LSM]			= "lsm",
217 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
218 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
219 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
220 };
221 
222 static int __base_pr(enum libbpf_print_level level, const char *format,
223 		     va_list args)
224 {
225 	if (level == LIBBPF_DEBUG)
226 		return 0;
227 
228 	return vfprintf(stderr, format, args);
229 }
230 
231 static libbpf_print_fn_t __libbpf_pr = __base_pr;
232 
233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
234 {
235 	libbpf_print_fn_t old_print_fn;
236 
237 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
238 
239 	return old_print_fn;
240 }
241 
242 __printf(2, 3)
243 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
244 {
245 	va_list args;
246 	int old_errno;
247 	libbpf_print_fn_t print_fn;
248 
249 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
250 	if (!print_fn)
251 		return;
252 
253 	old_errno = errno;
254 
255 	va_start(args, format);
256 	__libbpf_pr(level, format, args);
257 	va_end(args);
258 
259 	errno = old_errno;
260 }
261 
262 static void pr_perm_msg(int err)
263 {
264 	struct rlimit limit;
265 	char buf[100];
266 
267 	if (err != -EPERM || geteuid() != 0)
268 		return;
269 
270 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
271 	if (err)
272 		return;
273 
274 	if (limit.rlim_cur == RLIM_INFINITY)
275 		return;
276 
277 	if (limit.rlim_cur < 1024)
278 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
279 	else if (limit.rlim_cur < 1024*1024)
280 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
281 	else
282 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
283 
284 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
285 		buf);
286 }
287 
288 #define STRERR_BUFSIZE  128
289 
290 /* Copied from tools/perf/util/util.h */
291 #ifndef zfree
292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
293 #endif
294 
295 #ifndef zclose
296 # define zclose(fd) ({			\
297 	int ___err = 0;			\
298 	if ((fd) >= 0)			\
299 		___err = close((fd));	\
300 	fd = -1;			\
301 	___err; })
302 #endif
303 
304 static inline __u64 ptr_to_u64(const void *ptr)
305 {
306 	return (__u64) (unsigned long) ptr;
307 }
308 
309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
310 {
311 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
312 	return 0;
313 }
314 
315 __u32 libbpf_major_version(void)
316 {
317 	return LIBBPF_MAJOR_VERSION;
318 }
319 
320 __u32 libbpf_minor_version(void)
321 {
322 	return LIBBPF_MINOR_VERSION;
323 }
324 
325 const char *libbpf_version_string(void)
326 {
327 #define __S(X) #X
328 #define _S(X) __S(X)
329 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
330 #undef _S
331 #undef __S
332 }
333 
334 enum reloc_type {
335 	RELO_LD64,
336 	RELO_CALL,
337 	RELO_DATA,
338 	RELO_EXTERN_LD64,
339 	RELO_EXTERN_CALL,
340 	RELO_SUBPROG_ADDR,
341 	RELO_CORE,
342 };
343 
344 struct reloc_desc {
345 	enum reloc_type type;
346 	int insn_idx;
347 	union {
348 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
349 		struct {
350 			int map_idx;
351 			int sym_off;
352 			int ext_idx;
353 		};
354 	};
355 };
356 
357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
358 enum sec_def_flags {
359 	SEC_NONE = 0,
360 	/* expected_attach_type is optional, if kernel doesn't support that */
361 	SEC_EXP_ATTACH_OPT = 1,
362 	/* legacy, only used by libbpf_get_type_names() and
363 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
364 	 * This used to be associated with cgroup (and few other) BPF programs
365 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
366 	 * meaningless nowadays, though.
367 	 */
368 	SEC_ATTACHABLE = 2,
369 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
370 	/* attachment target is specified through BTF ID in either kernel or
371 	 * other BPF program's BTF object
372 	 */
373 	SEC_ATTACH_BTF = 4,
374 	/* BPF program type allows sleeping/blocking in kernel */
375 	SEC_SLEEPABLE = 8,
376 	/* BPF program support non-linear XDP buffer */
377 	SEC_XDP_FRAGS = 16,
378 	/* Setup proper attach type for usdt probes. */
379 	SEC_USDT = 32,
380 };
381 
382 struct bpf_sec_def {
383 	char *sec;
384 	enum bpf_prog_type prog_type;
385 	enum bpf_attach_type expected_attach_type;
386 	long cookie;
387 	int handler_id;
388 
389 	libbpf_prog_setup_fn_t prog_setup_fn;
390 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
391 	libbpf_prog_attach_fn_t prog_attach_fn;
392 };
393 
394 /*
395  * bpf_prog should be a better name but it has been used in
396  * linux/filter.h.
397  */
398 struct bpf_program {
399 	char *name;
400 	char *sec_name;
401 	size_t sec_idx;
402 	const struct bpf_sec_def *sec_def;
403 	/* this program's instruction offset (in number of instructions)
404 	 * within its containing ELF section
405 	 */
406 	size_t sec_insn_off;
407 	/* number of original instructions in ELF section belonging to this
408 	 * program, not taking into account subprogram instructions possible
409 	 * appended later during relocation
410 	 */
411 	size_t sec_insn_cnt;
412 	/* Offset (in number of instructions) of the start of instruction
413 	 * belonging to this BPF program  within its containing main BPF
414 	 * program. For the entry-point (main) BPF program, this is always
415 	 * zero. For a sub-program, this gets reset before each of main BPF
416 	 * programs are processed and relocated and is used to determined
417 	 * whether sub-program was already appended to the main program, and
418 	 * if yes, at which instruction offset.
419 	 */
420 	size_t sub_insn_off;
421 
422 	/* instructions that belong to BPF program; insns[0] is located at
423 	 * sec_insn_off instruction within its ELF section in ELF file, so
424 	 * when mapping ELF file instruction index to the local instruction,
425 	 * one needs to subtract sec_insn_off; and vice versa.
426 	 */
427 	struct bpf_insn *insns;
428 	/* actual number of instruction in this BPF program's image; for
429 	 * entry-point BPF programs this includes the size of main program
430 	 * itself plus all the used sub-programs, appended at the end
431 	 */
432 	size_t insns_cnt;
433 
434 	struct reloc_desc *reloc_desc;
435 	int nr_reloc;
436 
437 	/* BPF verifier log settings */
438 	char *log_buf;
439 	size_t log_size;
440 	__u32 log_level;
441 
442 	struct bpf_object *obj;
443 
444 	int fd;
445 	bool autoload;
446 	bool autoattach;
447 	bool sym_global;
448 	bool mark_btf_static;
449 	enum bpf_prog_type type;
450 	enum bpf_attach_type expected_attach_type;
451 	int exception_cb_idx;
452 
453 	int prog_ifindex;
454 	__u32 attach_btf_obj_fd;
455 	__u32 attach_btf_id;
456 	__u32 attach_prog_fd;
457 
458 	void *func_info;
459 	__u32 func_info_rec_size;
460 	__u32 func_info_cnt;
461 
462 	void *line_info;
463 	__u32 line_info_rec_size;
464 	__u32 line_info_cnt;
465 	__u32 prog_flags;
466 };
467 
468 struct bpf_struct_ops {
469 	const char *tname;
470 	const struct btf_type *type;
471 	struct bpf_program **progs;
472 	__u32 *kern_func_off;
473 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
474 	void *data;
475 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
476 	 *      btf_vmlinux's format.
477 	 * struct bpf_struct_ops_tcp_congestion_ops {
478 	 *	[... some other kernel fields ...]
479 	 *	struct tcp_congestion_ops data;
480 	 * }
481 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
482 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
483 	 * from "data".
484 	 */
485 	void *kern_vdata;
486 	__u32 type_id;
487 };
488 
489 #define DATA_SEC ".data"
490 #define BSS_SEC ".bss"
491 #define RODATA_SEC ".rodata"
492 #define KCONFIG_SEC ".kconfig"
493 #define KSYMS_SEC ".ksyms"
494 #define STRUCT_OPS_SEC ".struct_ops"
495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
496 
497 enum libbpf_map_type {
498 	LIBBPF_MAP_UNSPEC,
499 	LIBBPF_MAP_DATA,
500 	LIBBPF_MAP_BSS,
501 	LIBBPF_MAP_RODATA,
502 	LIBBPF_MAP_KCONFIG,
503 };
504 
505 struct bpf_map_def {
506 	unsigned int type;
507 	unsigned int key_size;
508 	unsigned int value_size;
509 	unsigned int max_entries;
510 	unsigned int map_flags;
511 };
512 
513 struct bpf_map {
514 	struct bpf_object *obj;
515 	char *name;
516 	/* real_name is defined for special internal maps (.rodata*,
517 	 * .data*, .bss, .kconfig) and preserves their original ELF section
518 	 * name. This is important to be able to find corresponding BTF
519 	 * DATASEC information.
520 	 */
521 	char *real_name;
522 	int fd;
523 	int sec_idx;
524 	size_t sec_offset;
525 	int map_ifindex;
526 	int inner_map_fd;
527 	struct bpf_map_def def;
528 	__u32 numa_node;
529 	__u32 btf_var_idx;
530 	__u32 btf_key_type_id;
531 	__u32 btf_value_type_id;
532 	__u32 btf_vmlinux_value_type_id;
533 	enum libbpf_map_type libbpf_type;
534 	void *mmaped;
535 	struct bpf_struct_ops *st_ops;
536 	struct bpf_map *inner_map;
537 	void **init_slots;
538 	int init_slots_sz;
539 	char *pin_path;
540 	bool pinned;
541 	bool reused;
542 	bool autocreate;
543 	__u64 map_extra;
544 };
545 
546 enum extern_type {
547 	EXT_UNKNOWN,
548 	EXT_KCFG,
549 	EXT_KSYM,
550 };
551 
552 enum kcfg_type {
553 	KCFG_UNKNOWN,
554 	KCFG_CHAR,
555 	KCFG_BOOL,
556 	KCFG_INT,
557 	KCFG_TRISTATE,
558 	KCFG_CHAR_ARR,
559 };
560 
561 struct extern_desc {
562 	enum extern_type type;
563 	int sym_idx;
564 	int btf_id;
565 	int sec_btf_id;
566 	const char *name;
567 	char *essent_name;
568 	bool is_set;
569 	bool is_weak;
570 	union {
571 		struct {
572 			enum kcfg_type type;
573 			int sz;
574 			int align;
575 			int data_off;
576 			bool is_signed;
577 		} kcfg;
578 		struct {
579 			unsigned long long addr;
580 
581 			/* target btf_id of the corresponding kernel var. */
582 			int kernel_btf_obj_fd;
583 			int kernel_btf_id;
584 
585 			/* local btf_id of the ksym extern's type. */
586 			__u32 type_id;
587 			/* BTF fd index to be patched in for insn->off, this is
588 			 * 0 for vmlinux BTF, index in obj->fd_array for module
589 			 * BTF
590 			 */
591 			__s16 btf_fd_idx;
592 		} ksym;
593 	};
594 };
595 
596 struct module_btf {
597 	struct btf *btf;
598 	char *name;
599 	__u32 id;
600 	int fd;
601 	int fd_array_idx;
602 };
603 
604 enum sec_type {
605 	SEC_UNUSED = 0,
606 	SEC_RELO,
607 	SEC_BSS,
608 	SEC_DATA,
609 	SEC_RODATA,
610 };
611 
612 struct elf_sec_desc {
613 	enum sec_type sec_type;
614 	Elf64_Shdr *shdr;
615 	Elf_Data *data;
616 };
617 
618 struct elf_state {
619 	int fd;
620 	const void *obj_buf;
621 	size_t obj_buf_sz;
622 	Elf *elf;
623 	Elf64_Ehdr *ehdr;
624 	Elf_Data *symbols;
625 	Elf_Data *st_ops_data;
626 	Elf_Data *st_ops_link_data;
627 	size_t shstrndx; /* section index for section name strings */
628 	size_t strtabidx;
629 	struct elf_sec_desc *secs;
630 	size_t sec_cnt;
631 	int btf_maps_shndx;
632 	__u32 btf_maps_sec_btf_id;
633 	int text_shndx;
634 	int symbols_shndx;
635 	int st_ops_shndx;
636 	int st_ops_link_shndx;
637 };
638 
639 struct usdt_manager;
640 
641 struct bpf_object {
642 	char name[BPF_OBJ_NAME_LEN];
643 	char license[64];
644 	__u32 kern_version;
645 
646 	struct bpf_program *programs;
647 	size_t nr_programs;
648 	struct bpf_map *maps;
649 	size_t nr_maps;
650 	size_t maps_cap;
651 
652 	char *kconfig;
653 	struct extern_desc *externs;
654 	int nr_extern;
655 	int kconfig_map_idx;
656 
657 	bool loaded;
658 	bool has_subcalls;
659 	bool has_rodata;
660 
661 	struct bpf_gen *gen_loader;
662 
663 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
664 	struct elf_state efile;
665 
666 	struct btf *btf;
667 	struct btf_ext *btf_ext;
668 
669 	/* Parse and load BTF vmlinux if any of the programs in the object need
670 	 * it at load time.
671 	 */
672 	struct btf *btf_vmlinux;
673 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
674 	 * override for vmlinux BTF.
675 	 */
676 	char *btf_custom_path;
677 	/* vmlinux BTF override for CO-RE relocations */
678 	struct btf *btf_vmlinux_override;
679 	/* Lazily initialized kernel module BTFs */
680 	struct module_btf *btf_modules;
681 	bool btf_modules_loaded;
682 	size_t btf_module_cnt;
683 	size_t btf_module_cap;
684 
685 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
686 	char *log_buf;
687 	size_t log_size;
688 	__u32 log_level;
689 
690 	int *fd_array;
691 	size_t fd_array_cap;
692 	size_t fd_array_cnt;
693 
694 	struct usdt_manager *usdt_man;
695 
696 	char path[];
697 };
698 
699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
708 
709 void bpf_program__unload(struct bpf_program *prog)
710 {
711 	if (!prog)
712 		return;
713 
714 	zclose(prog->fd);
715 
716 	zfree(&prog->func_info);
717 	zfree(&prog->line_info);
718 }
719 
720 static void bpf_program__exit(struct bpf_program *prog)
721 {
722 	if (!prog)
723 		return;
724 
725 	bpf_program__unload(prog);
726 	zfree(&prog->name);
727 	zfree(&prog->sec_name);
728 	zfree(&prog->insns);
729 	zfree(&prog->reloc_desc);
730 
731 	prog->nr_reloc = 0;
732 	prog->insns_cnt = 0;
733 	prog->sec_idx = -1;
734 }
735 
736 static bool insn_is_subprog_call(const struct bpf_insn *insn)
737 {
738 	return BPF_CLASS(insn->code) == BPF_JMP &&
739 	       BPF_OP(insn->code) == BPF_CALL &&
740 	       BPF_SRC(insn->code) == BPF_K &&
741 	       insn->src_reg == BPF_PSEUDO_CALL &&
742 	       insn->dst_reg == 0 &&
743 	       insn->off == 0;
744 }
745 
746 static bool is_call_insn(const struct bpf_insn *insn)
747 {
748 	return insn->code == (BPF_JMP | BPF_CALL);
749 }
750 
751 static bool insn_is_pseudo_func(struct bpf_insn *insn)
752 {
753 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
754 }
755 
756 static int
757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
758 		      const char *name, size_t sec_idx, const char *sec_name,
759 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
760 {
761 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
762 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
763 			sec_name, name, sec_off, insn_data_sz);
764 		return -EINVAL;
765 	}
766 
767 	memset(prog, 0, sizeof(*prog));
768 	prog->obj = obj;
769 
770 	prog->sec_idx = sec_idx;
771 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
772 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
773 	/* insns_cnt can later be increased by appending used subprograms */
774 	prog->insns_cnt = prog->sec_insn_cnt;
775 
776 	prog->type = BPF_PROG_TYPE_UNSPEC;
777 	prog->fd = -1;
778 	prog->exception_cb_idx = -1;
779 
780 	/* libbpf's convention for SEC("?abc...") is that it's just like
781 	 * SEC("abc...") but the corresponding bpf_program starts out with
782 	 * autoload set to false.
783 	 */
784 	if (sec_name[0] == '?') {
785 		prog->autoload = false;
786 		/* from now on forget there was ? in section name */
787 		sec_name++;
788 	} else {
789 		prog->autoload = true;
790 	}
791 
792 	prog->autoattach = true;
793 
794 	/* inherit object's log_level */
795 	prog->log_level = obj->log_level;
796 
797 	prog->sec_name = strdup(sec_name);
798 	if (!prog->sec_name)
799 		goto errout;
800 
801 	prog->name = strdup(name);
802 	if (!prog->name)
803 		goto errout;
804 
805 	prog->insns = malloc(insn_data_sz);
806 	if (!prog->insns)
807 		goto errout;
808 	memcpy(prog->insns, insn_data, insn_data_sz);
809 
810 	return 0;
811 errout:
812 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
813 	bpf_program__exit(prog);
814 	return -ENOMEM;
815 }
816 
817 static int
818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
819 			 const char *sec_name, int sec_idx)
820 {
821 	Elf_Data *symbols = obj->efile.symbols;
822 	struct bpf_program *prog, *progs;
823 	void *data = sec_data->d_buf;
824 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
825 	int nr_progs, err, i;
826 	const char *name;
827 	Elf64_Sym *sym;
828 
829 	progs = obj->programs;
830 	nr_progs = obj->nr_programs;
831 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
832 
833 	for (i = 0; i < nr_syms; i++) {
834 		sym = elf_sym_by_idx(obj, i);
835 
836 		if (sym->st_shndx != sec_idx)
837 			continue;
838 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
839 			continue;
840 
841 		prog_sz = sym->st_size;
842 		sec_off = sym->st_value;
843 
844 		name = elf_sym_str(obj, sym->st_name);
845 		if (!name) {
846 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
847 				sec_name, sec_off);
848 			return -LIBBPF_ERRNO__FORMAT;
849 		}
850 
851 		if (sec_off + prog_sz > sec_sz) {
852 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
853 				sec_name, sec_off);
854 			return -LIBBPF_ERRNO__FORMAT;
855 		}
856 
857 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
858 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
859 			return -ENOTSUP;
860 		}
861 
862 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
863 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
864 
865 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
866 		if (!progs) {
867 			/*
868 			 * In this case the original obj->programs
869 			 * is still valid, so don't need special treat for
870 			 * bpf_close_object().
871 			 */
872 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
873 				sec_name, name);
874 			return -ENOMEM;
875 		}
876 		obj->programs = progs;
877 
878 		prog = &progs[nr_progs];
879 
880 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
881 					    sec_off, data + sec_off, prog_sz);
882 		if (err)
883 			return err;
884 
885 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
886 			prog->sym_global = true;
887 
888 		/* if function is a global/weak symbol, but has restricted
889 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
890 		 * as static to enable more permissive BPF verification mode
891 		 * with more outside context available to BPF verifier
892 		 */
893 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
894 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
895 			prog->mark_btf_static = true;
896 
897 		nr_progs++;
898 		obj->nr_programs = nr_progs;
899 	}
900 
901 	return 0;
902 }
903 
904 static const struct btf_member *
905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
906 {
907 	struct btf_member *m;
908 	int i;
909 
910 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
911 		if (btf_member_bit_offset(t, i) == bit_offset)
912 			return m;
913 	}
914 
915 	return NULL;
916 }
917 
918 static const struct btf_member *
919 find_member_by_name(const struct btf *btf, const struct btf_type *t,
920 		    const char *name)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
935 				   const char *name, __u32 kind);
936 
937 static int
938 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
939 			   const struct btf_type **type, __u32 *type_id,
940 			   const struct btf_type **vtype, __u32 *vtype_id,
941 			   const struct btf_member **data_member)
942 {
943 	const struct btf_type *kern_type, *kern_vtype;
944 	const struct btf_member *kern_data_member;
945 	__s32 kern_vtype_id, kern_type_id;
946 	__u32 i;
947 
948 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
949 	if (kern_type_id < 0) {
950 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
951 			tname);
952 		return kern_type_id;
953 	}
954 	kern_type = btf__type_by_id(btf, kern_type_id);
955 
956 	/* Find the corresponding "map_value" type that will be used
957 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
958 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
959 	 * btf_vmlinux.
960 	 */
961 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
962 						tname, BTF_KIND_STRUCT);
963 	if (kern_vtype_id < 0) {
964 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
965 			STRUCT_OPS_VALUE_PREFIX, tname);
966 		return kern_vtype_id;
967 	}
968 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
969 
970 	/* Find "struct tcp_congestion_ops" from
971 	 * struct bpf_struct_ops_tcp_congestion_ops {
972 	 *	[ ... ]
973 	 *	struct tcp_congestion_ops data;
974 	 * }
975 	 */
976 	kern_data_member = btf_members(kern_vtype);
977 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
978 		if (kern_data_member->type == kern_type_id)
979 			break;
980 	}
981 	if (i == btf_vlen(kern_vtype)) {
982 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
983 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
984 		return -EINVAL;
985 	}
986 
987 	*type = kern_type;
988 	*type_id = kern_type_id;
989 	*vtype = kern_vtype;
990 	*vtype_id = kern_vtype_id;
991 	*data_member = kern_data_member;
992 
993 	return 0;
994 }
995 
996 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
997 {
998 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
999 }
1000 
1001 /* Init the map's fields that depend on kern_btf */
1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1003 					 const struct btf *btf,
1004 					 const struct btf *kern_btf)
1005 {
1006 	const struct btf_member *member, *kern_member, *kern_data_member;
1007 	const struct btf_type *type, *kern_type, *kern_vtype;
1008 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1009 	struct bpf_struct_ops *st_ops;
1010 	void *data, *kern_data;
1011 	const char *tname;
1012 	int err;
1013 
1014 	st_ops = map->st_ops;
1015 	type = st_ops->type;
1016 	tname = st_ops->tname;
1017 	err = find_struct_ops_kern_types(kern_btf, tname,
1018 					 &kern_type, &kern_type_id,
1019 					 &kern_vtype, &kern_vtype_id,
1020 					 &kern_data_member);
1021 	if (err)
1022 		return err;
1023 
1024 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1025 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1026 
1027 	map->def.value_size = kern_vtype->size;
1028 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1029 
1030 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1031 	if (!st_ops->kern_vdata)
1032 		return -ENOMEM;
1033 
1034 	data = st_ops->data;
1035 	kern_data_off = kern_data_member->offset / 8;
1036 	kern_data = st_ops->kern_vdata + kern_data_off;
1037 
1038 	member = btf_members(type);
1039 	for (i = 0; i < btf_vlen(type); i++, member++) {
1040 		const struct btf_type *mtype, *kern_mtype;
1041 		__u32 mtype_id, kern_mtype_id;
1042 		void *mdata, *kern_mdata;
1043 		__s64 msize, kern_msize;
1044 		__u32 moff, kern_moff;
1045 		__u32 kern_member_idx;
1046 		const char *mname;
1047 
1048 		mname = btf__name_by_offset(btf, member->name_off);
1049 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1050 		if (!kern_member) {
1051 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1052 				map->name, mname);
1053 			return -ENOTSUP;
1054 		}
1055 
1056 		kern_member_idx = kern_member - btf_members(kern_type);
1057 		if (btf_member_bitfield_size(type, i) ||
1058 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1059 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1060 				map->name, mname);
1061 			return -ENOTSUP;
1062 		}
1063 
1064 		moff = member->offset / 8;
1065 		kern_moff = kern_member->offset / 8;
1066 
1067 		mdata = data + moff;
1068 		kern_mdata = kern_data + kern_moff;
1069 
1070 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1071 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1072 						    &kern_mtype_id);
1073 		if (BTF_INFO_KIND(mtype->info) !=
1074 		    BTF_INFO_KIND(kern_mtype->info)) {
1075 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1076 				map->name, mname, BTF_INFO_KIND(mtype->info),
1077 				BTF_INFO_KIND(kern_mtype->info));
1078 			return -ENOTSUP;
1079 		}
1080 
1081 		if (btf_is_ptr(mtype)) {
1082 			struct bpf_program *prog;
1083 
1084 			prog = st_ops->progs[i];
1085 			if (!prog)
1086 				continue;
1087 
1088 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1089 							    kern_mtype->type,
1090 							    &kern_mtype_id);
1091 
1092 			/* mtype->type must be a func_proto which was
1093 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1094 			 * so only check kern_mtype for func_proto here.
1095 			 */
1096 			if (!btf_is_func_proto(kern_mtype)) {
1097 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1098 					map->name, mname);
1099 				return -ENOTSUP;
1100 			}
1101 
1102 			prog->attach_btf_id = kern_type_id;
1103 			prog->expected_attach_type = kern_member_idx;
1104 
1105 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1106 
1107 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1108 				 map->name, mname, prog->name, moff,
1109 				 kern_moff);
1110 
1111 			continue;
1112 		}
1113 
1114 		msize = btf__resolve_size(btf, mtype_id);
1115 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1116 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1117 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1118 				map->name, mname, (ssize_t)msize,
1119 				(ssize_t)kern_msize);
1120 			return -ENOTSUP;
1121 		}
1122 
1123 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1124 			 map->name, mname, (unsigned int)msize,
1125 			 moff, kern_moff);
1126 		memcpy(kern_mdata, mdata, msize);
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1133 {
1134 	struct bpf_map *map;
1135 	size_t i;
1136 	int err;
1137 
1138 	for (i = 0; i < obj->nr_maps; i++) {
1139 		map = &obj->maps[i];
1140 
1141 		if (!bpf_map__is_struct_ops(map))
1142 			continue;
1143 
1144 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1145 						    obj->btf_vmlinux);
1146 		if (err)
1147 			return err;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1154 				int shndx, Elf_Data *data, __u32 map_flags)
1155 {
1156 	const struct btf_type *type, *datasec;
1157 	const struct btf_var_secinfo *vsi;
1158 	struct bpf_struct_ops *st_ops;
1159 	const char *tname, *var_name;
1160 	__s32 type_id, datasec_id;
1161 	const struct btf *btf;
1162 	struct bpf_map *map;
1163 	__u32 i;
1164 
1165 	if (shndx == -1)
1166 		return 0;
1167 
1168 	btf = obj->btf;
1169 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1170 					    BTF_KIND_DATASEC);
1171 	if (datasec_id < 0) {
1172 		pr_warn("struct_ops init: DATASEC %s not found\n",
1173 			sec_name);
1174 		return -EINVAL;
1175 	}
1176 
1177 	datasec = btf__type_by_id(btf, datasec_id);
1178 	vsi = btf_var_secinfos(datasec);
1179 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1180 		type = btf__type_by_id(obj->btf, vsi->type);
1181 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1182 
1183 		type_id = btf__resolve_type(obj->btf, vsi->type);
1184 		if (type_id < 0) {
1185 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1186 				vsi->type, sec_name);
1187 			return -EINVAL;
1188 		}
1189 
1190 		type = btf__type_by_id(obj->btf, type_id);
1191 		tname = btf__name_by_offset(obj->btf, type->name_off);
1192 		if (!tname[0]) {
1193 			pr_warn("struct_ops init: anonymous type is not supported\n");
1194 			return -ENOTSUP;
1195 		}
1196 		if (!btf_is_struct(type)) {
1197 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1198 			return -EINVAL;
1199 		}
1200 
1201 		map = bpf_object__add_map(obj);
1202 		if (IS_ERR(map))
1203 			return PTR_ERR(map);
1204 
1205 		map->sec_idx = shndx;
1206 		map->sec_offset = vsi->offset;
1207 		map->name = strdup(var_name);
1208 		if (!map->name)
1209 			return -ENOMEM;
1210 
1211 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1212 		map->def.key_size = sizeof(int);
1213 		map->def.value_size = type->size;
1214 		map->def.max_entries = 1;
1215 		map->def.map_flags = map_flags;
1216 
1217 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1218 		if (!map->st_ops)
1219 			return -ENOMEM;
1220 		st_ops = map->st_ops;
1221 		st_ops->data = malloc(type->size);
1222 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1223 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1224 					       sizeof(*st_ops->kern_func_off));
1225 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1226 			return -ENOMEM;
1227 
1228 		if (vsi->offset + type->size > data->d_size) {
1229 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1230 				var_name, sec_name);
1231 			return -EINVAL;
1232 		}
1233 
1234 		memcpy(st_ops->data,
1235 		       data->d_buf + vsi->offset,
1236 		       type->size);
1237 		st_ops->tname = tname;
1238 		st_ops->type = type;
1239 		st_ops->type_id = type_id;
1240 
1241 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1242 			 tname, type_id, var_name, vsi->offset);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1249 {
1250 	int err;
1251 
1252 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1253 				   obj->efile.st_ops_data, 0);
1254 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1255 					  obj->efile.st_ops_link_shndx,
1256 					  obj->efile.st_ops_link_data,
1257 					  BPF_F_LINK);
1258 	return err;
1259 }
1260 
1261 static struct bpf_object *bpf_object__new(const char *path,
1262 					  const void *obj_buf,
1263 					  size_t obj_buf_sz,
1264 					  const char *obj_name)
1265 {
1266 	struct bpf_object *obj;
1267 	char *end;
1268 
1269 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1270 	if (!obj) {
1271 		pr_warn("alloc memory failed for %s\n", path);
1272 		return ERR_PTR(-ENOMEM);
1273 	}
1274 
1275 	strcpy(obj->path, path);
1276 	if (obj_name) {
1277 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1278 	} else {
1279 		/* Using basename() GNU version which doesn't modify arg. */
1280 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1281 		end = strchr(obj->name, '.');
1282 		if (end)
1283 			*end = 0;
1284 	}
1285 
1286 	obj->efile.fd = -1;
1287 	/*
1288 	 * Caller of this function should also call
1289 	 * bpf_object__elf_finish() after data collection to return
1290 	 * obj_buf to user. If not, we should duplicate the buffer to
1291 	 * avoid user freeing them before elf finish.
1292 	 */
1293 	obj->efile.obj_buf = obj_buf;
1294 	obj->efile.obj_buf_sz = obj_buf_sz;
1295 	obj->efile.btf_maps_shndx = -1;
1296 	obj->efile.st_ops_shndx = -1;
1297 	obj->efile.st_ops_link_shndx = -1;
1298 	obj->kconfig_map_idx = -1;
1299 
1300 	obj->kern_version = get_kernel_version();
1301 	obj->loaded = false;
1302 
1303 	return obj;
1304 }
1305 
1306 static void bpf_object__elf_finish(struct bpf_object *obj)
1307 {
1308 	if (!obj->efile.elf)
1309 		return;
1310 
1311 	elf_end(obj->efile.elf);
1312 	obj->efile.elf = NULL;
1313 	obj->efile.symbols = NULL;
1314 	obj->efile.st_ops_data = NULL;
1315 	obj->efile.st_ops_link_data = NULL;
1316 
1317 	zfree(&obj->efile.secs);
1318 	obj->efile.sec_cnt = 0;
1319 	zclose(obj->efile.fd);
1320 	obj->efile.obj_buf = NULL;
1321 	obj->efile.obj_buf_sz = 0;
1322 }
1323 
1324 static int bpf_object__elf_init(struct bpf_object *obj)
1325 {
1326 	Elf64_Ehdr *ehdr;
1327 	int err = 0;
1328 	Elf *elf;
1329 
1330 	if (obj->efile.elf) {
1331 		pr_warn("elf: init internal error\n");
1332 		return -LIBBPF_ERRNO__LIBELF;
1333 	}
1334 
1335 	if (obj->efile.obj_buf_sz > 0) {
1336 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1337 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1338 	} else {
1339 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1340 		if (obj->efile.fd < 0) {
1341 			char errmsg[STRERR_BUFSIZE], *cp;
1342 
1343 			err = -errno;
1344 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1345 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1346 			return err;
1347 		}
1348 
1349 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1350 	}
1351 
1352 	if (!elf) {
1353 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__LIBELF;
1355 		goto errout;
1356 	}
1357 
1358 	obj->efile.elf = elf;
1359 
1360 	if (elf_kind(elf) != ELF_K_ELF) {
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1363 		goto errout;
1364 	}
1365 
1366 	if (gelf_getclass(elf) != ELFCLASS64) {
1367 		err = -LIBBPF_ERRNO__FORMAT;
1368 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1369 		goto errout;
1370 	}
1371 
1372 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1373 	if (!obj->efile.ehdr) {
1374 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1375 		err = -LIBBPF_ERRNO__FORMAT;
1376 		goto errout;
1377 	}
1378 
1379 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1380 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1381 			obj->path, elf_errmsg(-1));
1382 		err = -LIBBPF_ERRNO__FORMAT;
1383 		goto errout;
1384 	}
1385 
1386 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1387 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1388 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1389 			obj->path, elf_errmsg(-1));
1390 		err = -LIBBPF_ERRNO__FORMAT;
1391 		goto errout;
1392 	}
1393 
1394 	/* Old LLVM set e_machine to EM_NONE */
1395 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1396 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1397 		err = -LIBBPF_ERRNO__FORMAT;
1398 		goto errout;
1399 	}
1400 
1401 	return 0;
1402 errout:
1403 	bpf_object__elf_finish(obj);
1404 	return err;
1405 }
1406 
1407 static int bpf_object__check_endianness(struct bpf_object *obj)
1408 {
1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1410 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1411 		return 0;
1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1413 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1414 		return 0;
1415 #else
1416 # error "Unrecognized __BYTE_ORDER__"
1417 #endif
1418 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1419 	return -LIBBPF_ERRNO__ENDIAN;
1420 }
1421 
1422 static int
1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1424 {
1425 	if (!data) {
1426 		pr_warn("invalid license section in %s\n", obj->path);
1427 		return -LIBBPF_ERRNO__FORMAT;
1428 	}
1429 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1430 	 * go over allowed ELF data section buffer
1431 	 */
1432 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1433 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1434 	return 0;
1435 }
1436 
1437 static int
1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1439 {
1440 	__u32 kver;
1441 
1442 	if (!data || size != sizeof(kver)) {
1443 		pr_warn("invalid kver section in %s\n", obj->path);
1444 		return -LIBBPF_ERRNO__FORMAT;
1445 	}
1446 	memcpy(&kver, data, sizeof(kver));
1447 	obj->kern_version = kver;
1448 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1449 	return 0;
1450 }
1451 
1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1453 {
1454 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1455 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1456 		return true;
1457 	return false;
1458 }
1459 
1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1461 {
1462 	Elf_Data *data;
1463 	Elf_Scn *scn;
1464 
1465 	if (!name)
1466 		return -EINVAL;
1467 
1468 	scn = elf_sec_by_name(obj, name);
1469 	data = elf_sec_data(obj, scn);
1470 	if (data) {
1471 		*size = data->d_size;
1472 		return 0; /* found it */
1473 	}
1474 
1475 	return -ENOENT;
1476 }
1477 
1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1479 {
1480 	Elf_Data *symbols = obj->efile.symbols;
1481 	const char *sname;
1482 	size_t si;
1483 
1484 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1485 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1486 
1487 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1488 			continue;
1489 
1490 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1491 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1492 			continue;
1493 
1494 		sname = elf_sym_str(obj, sym->st_name);
1495 		if (!sname) {
1496 			pr_warn("failed to get sym name string for var %s\n", name);
1497 			return ERR_PTR(-EIO);
1498 		}
1499 		if (strcmp(name, sname) == 0)
1500 			return sym;
1501 	}
1502 
1503 	return ERR_PTR(-ENOENT);
1504 }
1505 
1506 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1507 {
1508 	struct bpf_map *map;
1509 	int err;
1510 
1511 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1512 				sizeof(*obj->maps), obj->nr_maps + 1);
1513 	if (err)
1514 		return ERR_PTR(err);
1515 
1516 	map = &obj->maps[obj->nr_maps++];
1517 	map->obj = obj;
1518 	map->fd = -1;
1519 	map->inner_map_fd = -1;
1520 	map->autocreate = true;
1521 
1522 	return map;
1523 }
1524 
1525 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1526 {
1527 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1528 	size_t map_sz;
1529 
1530 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1531 	map_sz = roundup(map_sz, page_sz);
1532 	return map_sz;
1533 }
1534 
1535 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1536 {
1537 	void *mmaped;
1538 
1539 	if (!map->mmaped)
1540 		return -EINVAL;
1541 
1542 	if (old_sz == new_sz)
1543 		return 0;
1544 
1545 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1546 	if (mmaped == MAP_FAILED)
1547 		return -errno;
1548 
1549 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1550 	munmap(map->mmaped, old_sz);
1551 	map->mmaped = mmaped;
1552 	return 0;
1553 }
1554 
1555 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1556 {
1557 	char map_name[BPF_OBJ_NAME_LEN], *p;
1558 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1559 
1560 	/* This is one of the more confusing parts of libbpf for various
1561 	 * reasons, some of which are historical. The original idea for naming
1562 	 * internal names was to include as much of BPF object name prefix as
1563 	 * possible, so that it can be distinguished from similar internal
1564 	 * maps of a different BPF object.
1565 	 * As an example, let's say we have bpf_object named 'my_object_name'
1566 	 * and internal map corresponding to '.rodata' ELF section. The final
1567 	 * map name advertised to user and to the kernel will be
1568 	 * 'my_objec.rodata', taking first 8 characters of object name and
1569 	 * entire 7 characters of '.rodata'.
1570 	 * Somewhat confusingly, if internal map ELF section name is shorter
1571 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1572 	 * for the suffix, even though we only have 4 actual characters, and
1573 	 * resulting map will be called 'my_objec.bss', not even using all 15
1574 	 * characters allowed by the kernel. Oh well, at least the truncated
1575 	 * object name is somewhat consistent in this case. But if the map
1576 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1577 	 * (8 chars) and thus will be left with only first 7 characters of the
1578 	 * object name ('my_obje'). Happy guessing, user, that the final map
1579 	 * name will be "my_obje.kconfig".
1580 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1581 	 * and .data.* data sections, it's possible that ELF section name is
1582 	 * longer than allowed 15 chars, so we now need to be careful to take
1583 	 * only up to 15 first characters of ELF name, taking no BPF object
1584 	 * name characters at all. So '.rodata.abracadabra' will result in
1585 	 * '.rodata.abracad' kernel and user-visible name.
1586 	 * We need to keep this convoluted logic intact for .data, .bss and
1587 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1588 	 * maps we use their ELF names as is, not prepending bpf_object name
1589 	 * in front. We still need to truncate them to 15 characters for the
1590 	 * kernel. Full name can be recovered for such maps by using DATASEC
1591 	 * BTF type associated with such map's value type, though.
1592 	 */
1593 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1594 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1595 
1596 	/* if there are two or more dots in map name, it's a custom dot map */
1597 	if (strchr(real_name + 1, '.') != NULL)
1598 		pfx_len = 0;
1599 	else
1600 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1601 
1602 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1603 		 sfx_len, real_name);
1604 
1605 	/* sanitise map name to characters allowed by kernel */
1606 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1607 		if (!isalnum(*p) && *p != '_' && *p != '.')
1608 			*p = '_';
1609 
1610 	return strdup(map_name);
1611 }
1612 
1613 static int
1614 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1615 
1616 /* Internal BPF map is mmap()'able only if at least one of corresponding
1617  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1618  * variable and it's not marked as __hidden (which turns it into, effectively,
1619  * a STATIC variable).
1620  */
1621 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1622 {
1623 	const struct btf_type *t, *vt;
1624 	struct btf_var_secinfo *vsi;
1625 	int i, n;
1626 
1627 	if (!map->btf_value_type_id)
1628 		return false;
1629 
1630 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1631 	if (!btf_is_datasec(t))
1632 		return false;
1633 
1634 	vsi = btf_var_secinfos(t);
1635 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1636 		vt = btf__type_by_id(obj->btf, vsi->type);
1637 		if (!btf_is_var(vt))
1638 			continue;
1639 
1640 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1641 			return true;
1642 	}
1643 
1644 	return false;
1645 }
1646 
1647 static int
1648 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1649 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1650 {
1651 	struct bpf_map_def *def;
1652 	struct bpf_map *map;
1653 	size_t mmap_sz;
1654 	int err;
1655 
1656 	map = bpf_object__add_map(obj);
1657 	if (IS_ERR(map))
1658 		return PTR_ERR(map);
1659 
1660 	map->libbpf_type = type;
1661 	map->sec_idx = sec_idx;
1662 	map->sec_offset = 0;
1663 	map->real_name = strdup(real_name);
1664 	map->name = internal_map_name(obj, real_name);
1665 	if (!map->real_name || !map->name) {
1666 		zfree(&map->real_name);
1667 		zfree(&map->name);
1668 		return -ENOMEM;
1669 	}
1670 
1671 	def = &map->def;
1672 	def->type = BPF_MAP_TYPE_ARRAY;
1673 	def->key_size = sizeof(int);
1674 	def->value_size = data_sz;
1675 	def->max_entries = 1;
1676 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1677 			 ? BPF_F_RDONLY_PROG : 0;
1678 
1679 	/* failures are fine because of maps like .rodata.str1.1 */
1680 	(void) map_fill_btf_type_info(obj, map);
1681 
1682 	if (map_is_mmapable(obj, map))
1683 		def->map_flags |= BPF_F_MMAPABLE;
1684 
1685 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1686 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1687 
1688 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1689 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1690 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1691 	if (map->mmaped == MAP_FAILED) {
1692 		err = -errno;
1693 		map->mmaped = NULL;
1694 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1695 			map->name, err);
1696 		zfree(&map->real_name);
1697 		zfree(&map->name);
1698 		return err;
1699 	}
1700 
1701 	if (data)
1702 		memcpy(map->mmaped, data, data_sz);
1703 
1704 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1705 	return 0;
1706 }
1707 
1708 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1709 {
1710 	struct elf_sec_desc *sec_desc;
1711 	const char *sec_name;
1712 	int err = 0, sec_idx;
1713 
1714 	/*
1715 	 * Populate obj->maps with libbpf internal maps.
1716 	 */
1717 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1718 		sec_desc = &obj->efile.secs[sec_idx];
1719 
1720 		/* Skip recognized sections with size 0. */
1721 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1722 			continue;
1723 
1724 		switch (sec_desc->sec_type) {
1725 		case SEC_DATA:
1726 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1727 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1728 							    sec_name, sec_idx,
1729 							    sec_desc->data->d_buf,
1730 							    sec_desc->data->d_size);
1731 			break;
1732 		case SEC_RODATA:
1733 			obj->has_rodata = true;
1734 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1735 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1736 							    sec_name, sec_idx,
1737 							    sec_desc->data->d_buf,
1738 							    sec_desc->data->d_size);
1739 			break;
1740 		case SEC_BSS:
1741 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1742 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1743 							    sec_name, sec_idx,
1744 							    NULL,
1745 							    sec_desc->data->d_size);
1746 			break;
1747 		default:
1748 			/* skip */
1749 			break;
1750 		}
1751 		if (err)
1752 			return err;
1753 	}
1754 	return 0;
1755 }
1756 
1757 
1758 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1759 					       const void *name)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < obj->nr_extern; i++) {
1764 		if (strcmp(obj->externs[i].name, name) == 0)
1765 			return &obj->externs[i];
1766 	}
1767 	return NULL;
1768 }
1769 
1770 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1771 			      char value)
1772 {
1773 	switch (ext->kcfg.type) {
1774 	case KCFG_BOOL:
1775 		if (value == 'm') {
1776 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1777 				ext->name, value);
1778 			return -EINVAL;
1779 		}
1780 		*(bool *)ext_val = value == 'y' ? true : false;
1781 		break;
1782 	case KCFG_TRISTATE:
1783 		if (value == 'y')
1784 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1785 		else if (value == 'm')
1786 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1787 		else /* value == 'n' */
1788 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1789 		break;
1790 	case KCFG_CHAR:
1791 		*(char *)ext_val = value;
1792 		break;
1793 	case KCFG_UNKNOWN:
1794 	case KCFG_INT:
1795 	case KCFG_CHAR_ARR:
1796 	default:
1797 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1798 			ext->name, value);
1799 		return -EINVAL;
1800 	}
1801 	ext->is_set = true;
1802 	return 0;
1803 }
1804 
1805 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1806 			      const char *value)
1807 {
1808 	size_t len;
1809 
1810 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1811 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1812 			ext->name, value);
1813 		return -EINVAL;
1814 	}
1815 
1816 	len = strlen(value);
1817 	if (value[len - 1] != '"') {
1818 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1819 			ext->name, value);
1820 		return -EINVAL;
1821 	}
1822 
1823 	/* strip quotes */
1824 	len -= 2;
1825 	if (len >= ext->kcfg.sz) {
1826 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1827 			ext->name, value, len, ext->kcfg.sz - 1);
1828 		len = ext->kcfg.sz - 1;
1829 	}
1830 	memcpy(ext_val, value + 1, len);
1831 	ext_val[len] = '\0';
1832 	ext->is_set = true;
1833 	return 0;
1834 }
1835 
1836 static int parse_u64(const char *value, __u64 *res)
1837 {
1838 	char *value_end;
1839 	int err;
1840 
1841 	errno = 0;
1842 	*res = strtoull(value, &value_end, 0);
1843 	if (errno) {
1844 		err = -errno;
1845 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1846 		return err;
1847 	}
1848 	if (*value_end) {
1849 		pr_warn("failed to parse '%s' as integer completely\n", value);
1850 		return -EINVAL;
1851 	}
1852 	return 0;
1853 }
1854 
1855 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1856 {
1857 	int bit_sz = ext->kcfg.sz * 8;
1858 
1859 	if (ext->kcfg.sz == 8)
1860 		return true;
1861 
1862 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1863 	 * bytes size without any loss of information. If the target integer
1864 	 * is signed, we rely on the following limits of integer type of
1865 	 * Y bits and subsequent transformation:
1866 	 *
1867 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1868 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1869 	 *            0 <= X + 2^(Y-1) <  2^Y
1870 	 *
1871 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1872 	 *  zero.
1873 	 */
1874 	if (ext->kcfg.is_signed)
1875 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1876 	else
1877 		return (v >> bit_sz) == 0;
1878 }
1879 
1880 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1881 			      __u64 value)
1882 {
1883 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1884 	    ext->kcfg.type != KCFG_BOOL) {
1885 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1886 			ext->name, (unsigned long long)value);
1887 		return -EINVAL;
1888 	}
1889 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1890 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1891 			ext->name, (unsigned long long)value);
1892 		return -EINVAL;
1893 
1894 	}
1895 	if (!is_kcfg_value_in_range(ext, value)) {
1896 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1897 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1898 		return -ERANGE;
1899 	}
1900 	switch (ext->kcfg.sz) {
1901 	case 1:
1902 		*(__u8 *)ext_val = value;
1903 		break;
1904 	case 2:
1905 		*(__u16 *)ext_val = value;
1906 		break;
1907 	case 4:
1908 		*(__u32 *)ext_val = value;
1909 		break;
1910 	case 8:
1911 		*(__u64 *)ext_val = value;
1912 		break;
1913 	default:
1914 		return -EINVAL;
1915 	}
1916 	ext->is_set = true;
1917 	return 0;
1918 }
1919 
1920 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1921 					    char *buf, void *data)
1922 {
1923 	struct extern_desc *ext;
1924 	char *sep, *value;
1925 	int len, err = 0;
1926 	void *ext_val;
1927 	__u64 num;
1928 
1929 	if (!str_has_pfx(buf, "CONFIG_"))
1930 		return 0;
1931 
1932 	sep = strchr(buf, '=');
1933 	if (!sep) {
1934 		pr_warn("failed to parse '%s': no separator\n", buf);
1935 		return -EINVAL;
1936 	}
1937 
1938 	/* Trim ending '\n' */
1939 	len = strlen(buf);
1940 	if (buf[len - 1] == '\n')
1941 		buf[len - 1] = '\0';
1942 	/* Split on '=' and ensure that a value is present. */
1943 	*sep = '\0';
1944 	if (!sep[1]) {
1945 		*sep = '=';
1946 		pr_warn("failed to parse '%s': no value\n", buf);
1947 		return -EINVAL;
1948 	}
1949 
1950 	ext = find_extern_by_name(obj, buf);
1951 	if (!ext || ext->is_set)
1952 		return 0;
1953 
1954 	ext_val = data + ext->kcfg.data_off;
1955 	value = sep + 1;
1956 
1957 	switch (*value) {
1958 	case 'y': case 'n': case 'm':
1959 		err = set_kcfg_value_tri(ext, ext_val, *value);
1960 		break;
1961 	case '"':
1962 		err = set_kcfg_value_str(ext, ext_val, value);
1963 		break;
1964 	default:
1965 		/* assume integer */
1966 		err = parse_u64(value, &num);
1967 		if (err) {
1968 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1969 			return err;
1970 		}
1971 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1972 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1973 			return -EINVAL;
1974 		}
1975 		err = set_kcfg_value_num(ext, ext_val, num);
1976 		break;
1977 	}
1978 	if (err)
1979 		return err;
1980 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1981 	return 0;
1982 }
1983 
1984 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1985 {
1986 	char buf[PATH_MAX];
1987 	struct utsname uts;
1988 	int len, err = 0;
1989 	gzFile file;
1990 
1991 	uname(&uts);
1992 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1993 	if (len < 0)
1994 		return -EINVAL;
1995 	else if (len >= PATH_MAX)
1996 		return -ENAMETOOLONG;
1997 
1998 	/* gzopen also accepts uncompressed files. */
1999 	file = gzopen(buf, "re");
2000 	if (!file)
2001 		file = gzopen("/proc/config.gz", "re");
2002 
2003 	if (!file) {
2004 		pr_warn("failed to open system Kconfig\n");
2005 		return -ENOENT;
2006 	}
2007 
2008 	while (gzgets(file, buf, sizeof(buf))) {
2009 		err = bpf_object__process_kconfig_line(obj, buf, data);
2010 		if (err) {
2011 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2012 				buf, err);
2013 			goto out;
2014 		}
2015 	}
2016 
2017 out:
2018 	gzclose(file);
2019 	return err;
2020 }
2021 
2022 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2023 					const char *config, void *data)
2024 {
2025 	char buf[PATH_MAX];
2026 	int err = 0;
2027 	FILE *file;
2028 
2029 	file = fmemopen((void *)config, strlen(config), "r");
2030 	if (!file) {
2031 		err = -errno;
2032 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2033 		return err;
2034 	}
2035 
2036 	while (fgets(buf, sizeof(buf), file)) {
2037 		err = bpf_object__process_kconfig_line(obj, buf, data);
2038 		if (err) {
2039 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2040 				buf, err);
2041 			break;
2042 		}
2043 	}
2044 
2045 	fclose(file);
2046 	return err;
2047 }
2048 
2049 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2050 {
2051 	struct extern_desc *last_ext = NULL, *ext;
2052 	size_t map_sz;
2053 	int i, err;
2054 
2055 	for (i = 0; i < obj->nr_extern; i++) {
2056 		ext = &obj->externs[i];
2057 		if (ext->type == EXT_KCFG)
2058 			last_ext = ext;
2059 	}
2060 
2061 	if (!last_ext)
2062 		return 0;
2063 
2064 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2065 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2066 					    ".kconfig", obj->efile.symbols_shndx,
2067 					    NULL, map_sz);
2068 	if (err)
2069 		return err;
2070 
2071 	obj->kconfig_map_idx = obj->nr_maps - 1;
2072 
2073 	return 0;
2074 }
2075 
2076 const struct btf_type *
2077 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2078 {
2079 	const struct btf_type *t = btf__type_by_id(btf, id);
2080 
2081 	if (res_id)
2082 		*res_id = id;
2083 
2084 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2085 		if (res_id)
2086 			*res_id = t->type;
2087 		t = btf__type_by_id(btf, t->type);
2088 	}
2089 
2090 	return t;
2091 }
2092 
2093 static const struct btf_type *
2094 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2095 {
2096 	const struct btf_type *t;
2097 
2098 	t = skip_mods_and_typedefs(btf, id, NULL);
2099 	if (!btf_is_ptr(t))
2100 		return NULL;
2101 
2102 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2103 
2104 	return btf_is_func_proto(t) ? t : NULL;
2105 }
2106 
2107 static const char *__btf_kind_str(__u16 kind)
2108 {
2109 	switch (kind) {
2110 	case BTF_KIND_UNKN: return "void";
2111 	case BTF_KIND_INT: return "int";
2112 	case BTF_KIND_PTR: return "ptr";
2113 	case BTF_KIND_ARRAY: return "array";
2114 	case BTF_KIND_STRUCT: return "struct";
2115 	case BTF_KIND_UNION: return "union";
2116 	case BTF_KIND_ENUM: return "enum";
2117 	case BTF_KIND_FWD: return "fwd";
2118 	case BTF_KIND_TYPEDEF: return "typedef";
2119 	case BTF_KIND_VOLATILE: return "volatile";
2120 	case BTF_KIND_CONST: return "const";
2121 	case BTF_KIND_RESTRICT: return "restrict";
2122 	case BTF_KIND_FUNC: return "func";
2123 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2124 	case BTF_KIND_VAR: return "var";
2125 	case BTF_KIND_DATASEC: return "datasec";
2126 	case BTF_KIND_FLOAT: return "float";
2127 	case BTF_KIND_DECL_TAG: return "decl_tag";
2128 	case BTF_KIND_TYPE_TAG: return "type_tag";
2129 	case BTF_KIND_ENUM64: return "enum64";
2130 	default: return "unknown";
2131 	}
2132 }
2133 
2134 const char *btf_kind_str(const struct btf_type *t)
2135 {
2136 	return __btf_kind_str(btf_kind(t));
2137 }
2138 
2139 /*
2140  * Fetch integer attribute of BTF map definition. Such attributes are
2141  * represented using a pointer to an array, in which dimensionality of array
2142  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2143  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2144  * type definition, while using only sizeof(void *) space in ELF data section.
2145  */
2146 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2147 			      const struct btf_member *m, __u32 *res)
2148 {
2149 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2150 	const char *name = btf__name_by_offset(btf, m->name_off);
2151 	const struct btf_array *arr_info;
2152 	const struct btf_type *arr_t;
2153 
2154 	if (!btf_is_ptr(t)) {
2155 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2156 			map_name, name, btf_kind_str(t));
2157 		return false;
2158 	}
2159 
2160 	arr_t = btf__type_by_id(btf, t->type);
2161 	if (!arr_t) {
2162 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2163 			map_name, name, t->type);
2164 		return false;
2165 	}
2166 	if (!btf_is_array(arr_t)) {
2167 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2168 			map_name, name, btf_kind_str(arr_t));
2169 		return false;
2170 	}
2171 	arr_info = btf_array(arr_t);
2172 	*res = arr_info->nelems;
2173 	return true;
2174 }
2175 
2176 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2177 {
2178 	int len;
2179 
2180 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2181 	if (len < 0)
2182 		return -EINVAL;
2183 	if (len >= buf_sz)
2184 		return -ENAMETOOLONG;
2185 
2186 	return 0;
2187 }
2188 
2189 static int build_map_pin_path(struct bpf_map *map, const char *path)
2190 {
2191 	char buf[PATH_MAX];
2192 	int err;
2193 
2194 	if (!path)
2195 		path = "/sys/fs/bpf";
2196 
2197 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2198 	if (err)
2199 		return err;
2200 
2201 	return bpf_map__set_pin_path(map, buf);
2202 }
2203 
2204 /* should match definition in bpf_helpers.h */
2205 enum libbpf_pin_type {
2206 	LIBBPF_PIN_NONE,
2207 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2208 	LIBBPF_PIN_BY_NAME,
2209 };
2210 
2211 int parse_btf_map_def(const char *map_name, struct btf *btf,
2212 		      const struct btf_type *def_t, bool strict,
2213 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2214 {
2215 	const struct btf_type *t;
2216 	const struct btf_member *m;
2217 	bool is_inner = inner_def == NULL;
2218 	int vlen, i;
2219 
2220 	vlen = btf_vlen(def_t);
2221 	m = btf_members(def_t);
2222 	for (i = 0; i < vlen; i++, m++) {
2223 		const char *name = btf__name_by_offset(btf, m->name_off);
2224 
2225 		if (!name) {
2226 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2227 			return -EINVAL;
2228 		}
2229 		if (strcmp(name, "type") == 0) {
2230 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2231 				return -EINVAL;
2232 			map_def->parts |= MAP_DEF_MAP_TYPE;
2233 		} else if (strcmp(name, "max_entries") == 0) {
2234 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2235 				return -EINVAL;
2236 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2237 		} else if (strcmp(name, "map_flags") == 0) {
2238 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2239 				return -EINVAL;
2240 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2241 		} else if (strcmp(name, "numa_node") == 0) {
2242 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2243 				return -EINVAL;
2244 			map_def->parts |= MAP_DEF_NUMA_NODE;
2245 		} else if (strcmp(name, "key_size") == 0) {
2246 			__u32 sz;
2247 
2248 			if (!get_map_field_int(map_name, btf, m, &sz))
2249 				return -EINVAL;
2250 			if (map_def->key_size && map_def->key_size != sz) {
2251 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2252 					map_name, map_def->key_size, sz);
2253 				return -EINVAL;
2254 			}
2255 			map_def->key_size = sz;
2256 			map_def->parts |= MAP_DEF_KEY_SIZE;
2257 		} else if (strcmp(name, "key") == 0) {
2258 			__s64 sz;
2259 
2260 			t = btf__type_by_id(btf, m->type);
2261 			if (!t) {
2262 				pr_warn("map '%s': key type [%d] not found.\n",
2263 					map_name, m->type);
2264 				return -EINVAL;
2265 			}
2266 			if (!btf_is_ptr(t)) {
2267 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2268 					map_name, btf_kind_str(t));
2269 				return -EINVAL;
2270 			}
2271 			sz = btf__resolve_size(btf, t->type);
2272 			if (sz < 0) {
2273 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2274 					map_name, t->type, (ssize_t)sz);
2275 				return sz;
2276 			}
2277 			if (map_def->key_size && map_def->key_size != sz) {
2278 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2279 					map_name, map_def->key_size, (ssize_t)sz);
2280 				return -EINVAL;
2281 			}
2282 			map_def->key_size = sz;
2283 			map_def->key_type_id = t->type;
2284 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2285 		} else if (strcmp(name, "value_size") == 0) {
2286 			__u32 sz;
2287 
2288 			if (!get_map_field_int(map_name, btf, m, &sz))
2289 				return -EINVAL;
2290 			if (map_def->value_size && map_def->value_size != sz) {
2291 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2292 					map_name, map_def->value_size, sz);
2293 				return -EINVAL;
2294 			}
2295 			map_def->value_size = sz;
2296 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2297 		} else if (strcmp(name, "value") == 0) {
2298 			__s64 sz;
2299 
2300 			t = btf__type_by_id(btf, m->type);
2301 			if (!t) {
2302 				pr_warn("map '%s': value type [%d] not found.\n",
2303 					map_name, m->type);
2304 				return -EINVAL;
2305 			}
2306 			if (!btf_is_ptr(t)) {
2307 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2308 					map_name, btf_kind_str(t));
2309 				return -EINVAL;
2310 			}
2311 			sz = btf__resolve_size(btf, t->type);
2312 			if (sz < 0) {
2313 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2314 					map_name, t->type, (ssize_t)sz);
2315 				return sz;
2316 			}
2317 			if (map_def->value_size && map_def->value_size != sz) {
2318 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2319 					map_name, map_def->value_size, (ssize_t)sz);
2320 				return -EINVAL;
2321 			}
2322 			map_def->value_size = sz;
2323 			map_def->value_type_id = t->type;
2324 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2325 		}
2326 		else if (strcmp(name, "values") == 0) {
2327 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2328 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2329 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2330 			char inner_map_name[128];
2331 			int err;
2332 
2333 			if (is_inner) {
2334 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2335 					map_name);
2336 				return -ENOTSUP;
2337 			}
2338 			if (i != vlen - 1) {
2339 				pr_warn("map '%s': '%s' member should be last.\n",
2340 					map_name, name);
2341 				return -EINVAL;
2342 			}
2343 			if (!is_map_in_map && !is_prog_array) {
2344 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2345 					map_name);
2346 				return -ENOTSUP;
2347 			}
2348 			if (map_def->value_size && map_def->value_size != 4) {
2349 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2350 					map_name, map_def->value_size);
2351 				return -EINVAL;
2352 			}
2353 			map_def->value_size = 4;
2354 			t = btf__type_by_id(btf, m->type);
2355 			if (!t) {
2356 				pr_warn("map '%s': %s type [%d] not found.\n",
2357 					map_name, desc, m->type);
2358 				return -EINVAL;
2359 			}
2360 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2361 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2362 					map_name, desc);
2363 				return -EINVAL;
2364 			}
2365 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2366 			if (!btf_is_ptr(t)) {
2367 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2368 					map_name, desc, btf_kind_str(t));
2369 				return -EINVAL;
2370 			}
2371 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2372 			if (is_prog_array) {
2373 				if (!btf_is_func_proto(t)) {
2374 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2375 						map_name, btf_kind_str(t));
2376 					return -EINVAL;
2377 				}
2378 				continue;
2379 			}
2380 			if (!btf_is_struct(t)) {
2381 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2382 					map_name, btf_kind_str(t));
2383 				return -EINVAL;
2384 			}
2385 
2386 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2387 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2388 			if (err)
2389 				return err;
2390 
2391 			map_def->parts |= MAP_DEF_INNER_MAP;
2392 		} else if (strcmp(name, "pinning") == 0) {
2393 			__u32 val;
2394 
2395 			if (is_inner) {
2396 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2397 				return -EINVAL;
2398 			}
2399 			if (!get_map_field_int(map_name, btf, m, &val))
2400 				return -EINVAL;
2401 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2402 				pr_warn("map '%s': invalid pinning value %u.\n",
2403 					map_name, val);
2404 				return -EINVAL;
2405 			}
2406 			map_def->pinning = val;
2407 			map_def->parts |= MAP_DEF_PINNING;
2408 		} else if (strcmp(name, "map_extra") == 0) {
2409 			__u32 map_extra;
2410 
2411 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2412 				return -EINVAL;
2413 			map_def->map_extra = map_extra;
2414 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2415 		} else {
2416 			if (strict) {
2417 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2418 				return -ENOTSUP;
2419 			}
2420 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2421 		}
2422 	}
2423 
2424 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2425 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2426 		return -EINVAL;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static size_t adjust_ringbuf_sz(size_t sz)
2433 {
2434 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2435 	__u32 mul;
2436 
2437 	/* if user forgot to set any size, make sure they see error */
2438 	if (sz == 0)
2439 		return 0;
2440 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2441 	 * a power-of-2 multiple of kernel's page size. If user diligently
2442 	 * satisified these conditions, pass the size through.
2443 	 */
2444 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2445 		return sz;
2446 
2447 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2448 	 * user-set size to satisfy both user size request and kernel
2449 	 * requirements and substitute correct max_entries for map creation.
2450 	 */
2451 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2452 		if (mul * page_sz > sz)
2453 			return mul * page_sz;
2454 	}
2455 
2456 	/* if it's impossible to satisfy the conditions (i.e., user size is
2457 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2458 	 * page_size) then just return original size and let kernel reject it
2459 	 */
2460 	return sz;
2461 }
2462 
2463 static bool map_is_ringbuf(const struct bpf_map *map)
2464 {
2465 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2466 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2467 }
2468 
2469 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2470 {
2471 	map->def.type = def->map_type;
2472 	map->def.key_size = def->key_size;
2473 	map->def.value_size = def->value_size;
2474 	map->def.max_entries = def->max_entries;
2475 	map->def.map_flags = def->map_flags;
2476 	map->map_extra = def->map_extra;
2477 
2478 	map->numa_node = def->numa_node;
2479 	map->btf_key_type_id = def->key_type_id;
2480 	map->btf_value_type_id = def->value_type_id;
2481 
2482 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2483 	if (map_is_ringbuf(map))
2484 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2485 
2486 	if (def->parts & MAP_DEF_MAP_TYPE)
2487 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2488 
2489 	if (def->parts & MAP_DEF_KEY_TYPE)
2490 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2491 			 map->name, def->key_type_id, def->key_size);
2492 	else if (def->parts & MAP_DEF_KEY_SIZE)
2493 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2494 
2495 	if (def->parts & MAP_DEF_VALUE_TYPE)
2496 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2497 			 map->name, def->value_type_id, def->value_size);
2498 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2499 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2500 
2501 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2502 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2503 	if (def->parts & MAP_DEF_MAP_FLAGS)
2504 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2505 	if (def->parts & MAP_DEF_MAP_EXTRA)
2506 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2507 			 (unsigned long long)def->map_extra);
2508 	if (def->parts & MAP_DEF_PINNING)
2509 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2510 	if (def->parts & MAP_DEF_NUMA_NODE)
2511 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2512 
2513 	if (def->parts & MAP_DEF_INNER_MAP)
2514 		pr_debug("map '%s': found inner map definition.\n", map->name);
2515 }
2516 
2517 static const char *btf_var_linkage_str(__u32 linkage)
2518 {
2519 	switch (linkage) {
2520 	case BTF_VAR_STATIC: return "static";
2521 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2522 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2523 	default: return "unknown";
2524 	}
2525 }
2526 
2527 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2528 					 const struct btf_type *sec,
2529 					 int var_idx, int sec_idx,
2530 					 const Elf_Data *data, bool strict,
2531 					 const char *pin_root_path)
2532 {
2533 	struct btf_map_def map_def = {}, inner_def = {};
2534 	const struct btf_type *var, *def;
2535 	const struct btf_var_secinfo *vi;
2536 	const struct btf_var *var_extra;
2537 	const char *map_name;
2538 	struct bpf_map *map;
2539 	int err;
2540 
2541 	vi = btf_var_secinfos(sec) + var_idx;
2542 	var = btf__type_by_id(obj->btf, vi->type);
2543 	var_extra = btf_var(var);
2544 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2545 
2546 	if (map_name == NULL || map_name[0] == '\0') {
2547 		pr_warn("map #%d: empty name.\n", var_idx);
2548 		return -EINVAL;
2549 	}
2550 	if ((__u64)vi->offset + vi->size > data->d_size) {
2551 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2552 		return -EINVAL;
2553 	}
2554 	if (!btf_is_var(var)) {
2555 		pr_warn("map '%s': unexpected var kind %s.\n",
2556 			map_name, btf_kind_str(var));
2557 		return -EINVAL;
2558 	}
2559 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2560 		pr_warn("map '%s': unsupported map linkage %s.\n",
2561 			map_name, btf_var_linkage_str(var_extra->linkage));
2562 		return -EOPNOTSUPP;
2563 	}
2564 
2565 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2566 	if (!btf_is_struct(def)) {
2567 		pr_warn("map '%s': unexpected def kind %s.\n",
2568 			map_name, btf_kind_str(var));
2569 		return -EINVAL;
2570 	}
2571 	if (def->size > vi->size) {
2572 		pr_warn("map '%s': invalid def size.\n", map_name);
2573 		return -EINVAL;
2574 	}
2575 
2576 	map = bpf_object__add_map(obj);
2577 	if (IS_ERR(map))
2578 		return PTR_ERR(map);
2579 	map->name = strdup(map_name);
2580 	if (!map->name) {
2581 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2582 		return -ENOMEM;
2583 	}
2584 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2585 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2586 	map->sec_idx = sec_idx;
2587 	map->sec_offset = vi->offset;
2588 	map->btf_var_idx = var_idx;
2589 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2590 		 map_name, map->sec_idx, map->sec_offset);
2591 
2592 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2593 	if (err)
2594 		return err;
2595 
2596 	fill_map_from_def(map, &map_def);
2597 
2598 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2599 		err = build_map_pin_path(map, pin_root_path);
2600 		if (err) {
2601 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2602 			return err;
2603 		}
2604 	}
2605 
2606 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2607 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2608 		if (!map->inner_map)
2609 			return -ENOMEM;
2610 		map->inner_map->fd = -1;
2611 		map->inner_map->sec_idx = sec_idx;
2612 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2613 		if (!map->inner_map->name)
2614 			return -ENOMEM;
2615 		sprintf(map->inner_map->name, "%s.inner", map_name);
2616 
2617 		fill_map_from_def(map->inner_map, &inner_def);
2618 	}
2619 
2620 	err = map_fill_btf_type_info(obj, map);
2621 	if (err)
2622 		return err;
2623 
2624 	return 0;
2625 }
2626 
2627 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2628 					  const char *pin_root_path)
2629 {
2630 	const struct btf_type *sec = NULL;
2631 	int nr_types, i, vlen, err;
2632 	const struct btf_type *t;
2633 	const char *name;
2634 	Elf_Data *data;
2635 	Elf_Scn *scn;
2636 
2637 	if (obj->efile.btf_maps_shndx < 0)
2638 		return 0;
2639 
2640 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2641 	data = elf_sec_data(obj, scn);
2642 	if (!scn || !data) {
2643 		pr_warn("elf: failed to get %s map definitions for %s\n",
2644 			MAPS_ELF_SEC, obj->path);
2645 		return -EINVAL;
2646 	}
2647 
2648 	nr_types = btf__type_cnt(obj->btf);
2649 	for (i = 1; i < nr_types; i++) {
2650 		t = btf__type_by_id(obj->btf, i);
2651 		if (!btf_is_datasec(t))
2652 			continue;
2653 		name = btf__name_by_offset(obj->btf, t->name_off);
2654 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2655 			sec = t;
2656 			obj->efile.btf_maps_sec_btf_id = i;
2657 			break;
2658 		}
2659 	}
2660 
2661 	if (!sec) {
2662 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2663 		return -ENOENT;
2664 	}
2665 
2666 	vlen = btf_vlen(sec);
2667 	for (i = 0; i < vlen; i++) {
2668 		err = bpf_object__init_user_btf_map(obj, sec, i,
2669 						    obj->efile.btf_maps_shndx,
2670 						    data, strict,
2671 						    pin_root_path);
2672 		if (err)
2673 			return err;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static int bpf_object__init_maps(struct bpf_object *obj,
2680 				 const struct bpf_object_open_opts *opts)
2681 {
2682 	const char *pin_root_path;
2683 	bool strict;
2684 	int err = 0;
2685 
2686 	strict = !OPTS_GET(opts, relaxed_maps, false);
2687 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2688 
2689 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2690 	err = err ?: bpf_object__init_global_data_maps(obj);
2691 	err = err ?: bpf_object__init_kconfig_map(obj);
2692 	err = err ?: bpf_object_init_struct_ops(obj);
2693 
2694 	return err;
2695 }
2696 
2697 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2698 {
2699 	Elf64_Shdr *sh;
2700 
2701 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2702 	if (!sh)
2703 		return false;
2704 
2705 	return sh->sh_flags & SHF_EXECINSTR;
2706 }
2707 
2708 static bool btf_needs_sanitization(struct bpf_object *obj)
2709 {
2710 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2711 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2712 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2713 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2714 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2715 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2716 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2717 
2718 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2719 	       !has_decl_tag || !has_type_tag || !has_enum64;
2720 }
2721 
2722 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2723 {
2724 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2725 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2726 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2727 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2728 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2729 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2730 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2731 	int enum64_placeholder_id = 0;
2732 	struct btf_type *t;
2733 	int i, j, vlen;
2734 
2735 	for (i = 1; i < btf__type_cnt(btf); i++) {
2736 		t = (struct btf_type *)btf__type_by_id(btf, i);
2737 
2738 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2739 			/* replace VAR/DECL_TAG with INT */
2740 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2741 			/*
2742 			 * using size = 1 is the safest choice, 4 will be too
2743 			 * big and cause kernel BTF validation failure if
2744 			 * original variable took less than 4 bytes
2745 			 */
2746 			t->size = 1;
2747 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2748 		} else if (!has_datasec && btf_is_datasec(t)) {
2749 			/* replace DATASEC with STRUCT */
2750 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2751 			struct btf_member *m = btf_members(t);
2752 			struct btf_type *vt;
2753 			char *name;
2754 
2755 			name = (char *)btf__name_by_offset(btf, t->name_off);
2756 			while (*name) {
2757 				if (*name == '.')
2758 					*name = '_';
2759 				name++;
2760 			}
2761 
2762 			vlen = btf_vlen(t);
2763 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2764 			for (j = 0; j < vlen; j++, v++, m++) {
2765 				/* order of field assignments is important */
2766 				m->offset = v->offset * 8;
2767 				m->type = v->type;
2768 				/* preserve variable name as member name */
2769 				vt = (void *)btf__type_by_id(btf, v->type);
2770 				m->name_off = vt->name_off;
2771 			}
2772 		} else if (!has_func && btf_is_func_proto(t)) {
2773 			/* replace FUNC_PROTO with ENUM */
2774 			vlen = btf_vlen(t);
2775 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2776 			t->size = sizeof(__u32); /* kernel enforced */
2777 		} else if (!has_func && btf_is_func(t)) {
2778 			/* replace FUNC with TYPEDEF */
2779 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2780 		} else if (!has_func_global && btf_is_func(t)) {
2781 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2782 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2783 		} else if (!has_float && btf_is_float(t)) {
2784 			/* replace FLOAT with an equally-sized empty STRUCT;
2785 			 * since C compilers do not accept e.g. "float" as a
2786 			 * valid struct name, make it anonymous
2787 			 */
2788 			t->name_off = 0;
2789 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2790 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2791 			/* replace TYPE_TAG with a CONST */
2792 			t->name_off = 0;
2793 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2794 		} else if (!has_enum64 && btf_is_enum(t)) {
2795 			/* clear the kflag */
2796 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2797 		} else if (!has_enum64 && btf_is_enum64(t)) {
2798 			/* replace ENUM64 with a union */
2799 			struct btf_member *m;
2800 
2801 			if (enum64_placeholder_id == 0) {
2802 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2803 				if (enum64_placeholder_id < 0)
2804 					return enum64_placeholder_id;
2805 
2806 				t = (struct btf_type *)btf__type_by_id(btf, i);
2807 			}
2808 
2809 			m = btf_members(t);
2810 			vlen = btf_vlen(t);
2811 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2812 			for (j = 0; j < vlen; j++, m++) {
2813 				m->type = enum64_placeholder_id;
2814 				m->offset = 0;
2815 			}
2816 		}
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static bool libbpf_needs_btf(const struct bpf_object *obj)
2823 {
2824 	return obj->efile.btf_maps_shndx >= 0 ||
2825 	       obj->efile.st_ops_shndx >= 0 ||
2826 	       obj->efile.st_ops_link_shndx >= 0 ||
2827 	       obj->nr_extern > 0;
2828 }
2829 
2830 static bool kernel_needs_btf(const struct bpf_object *obj)
2831 {
2832 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2833 }
2834 
2835 static int bpf_object__init_btf(struct bpf_object *obj,
2836 				Elf_Data *btf_data,
2837 				Elf_Data *btf_ext_data)
2838 {
2839 	int err = -ENOENT;
2840 
2841 	if (btf_data) {
2842 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2843 		err = libbpf_get_error(obj->btf);
2844 		if (err) {
2845 			obj->btf = NULL;
2846 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2847 			goto out;
2848 		}
2849 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2850 		btf__set_pointer_size(obj->btf, 8);
2851 	}
2852 	if (btf_ext_data) {
2853 		struct btf_ext_info *ext_segs[3];
2854 		int seg_num, sec_num;
2855 
2856 		if (!obj->btf) {
2857 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2858 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2859 			goto out;
2860 		}
2861 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2862 		err = libbpf_get_error(obj->btf_ext);
2863 		if (err) {
2864 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2865 				BTF_EXT_ELF_SEC, err);
2866 			obj->btf_ext = NULL;
2867 			goto out;
2868 		}
2869 
2870 		/* setup .BTF.ext to ELF section mapping */
2871 		ext_segs[0] = &obj->btf_ext->func_info;
2872 		ext_segs[1] = &obj->btf_ext->line_info;
2873 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2874 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2875 			struct btf_ext_info *seg = ext_segs[seg_num];
2876 			const struct btf_ext_info_sec *sec;
2877 			const char *sec_name;
2878 			Elf_Scn *scn;
2879 
2880 			if (seg->sec_cnt == 0)
2881 				continue;
2882 
2883 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2884 			if (!seg->sec_idxs) {
2885 				err = -ENOMEM;
2886 				goto out;
2887 			}
2888 
2889 			sec_num = 0;
2890 			for_each_btf_ext_sec(seg, sec) {
2891 				/* preventively increment index to avoid doing
2892 				 * this before every continue below
2893 				 */
2894 				sec_num++;
2895 
2896 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2897 				if (str_is_empty(sec_name))
2898 					continue;
2899 				scn = elf_sec_by_name(obj, sec_name);
2900 				if (!scn)
2901 					continue;
2902 
2903 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2904 			}
2905 		}
2906 	}
2907 out:
2908 	if (err && libbpf_needs_btf(obj)) {
2909 		pr_warn("BTF is required, but is missing or corrupted.\n");
2910 		return err;
2911 	}
2912 	return 0;
2913 }
2914 
2915 static int compare_vsi_off(const void *_a, const void *_b)
2916 {
2917 	const struct btf_var_secinfo *a = _a;
2918 	const struct btf_var_secinfo *b = _b;
2919 
2920 	return a->offset - b->offset;
2921 }
2922 
2923 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2924 			     struct btf_type *t)
2925 {
2926 	__u32 size = 0, i, vars = btf_vlen(t);
2927 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2928 	struct btf_var_secinfo *vsi;
2929 	bool fixup_offsets = false;
2930 	int err;
2931 
2932 	if (!sec_name) {
2933 		pr_debug("No name found in string section for DATASEC kind.\n");
2934 		return -ENOENT;
2935 	}
2936 
2937 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2938 	 * variable offsets set at the previous step. Further, not every
2939 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2940 	 * all fixups altogether for such sections and go straight to sorting
2941 	 * VARs within their DATASEC.
2942 	 */
2943 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2944 		goto sort_vars;
2945 
2946 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2947 	 * fix this up. But BPF static linker already fixes this up and fills
2948 	 * all the sizes and offsets during static linking. So this step has
2949 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2950 	 * non-extern DATASEC, so the variable fixup loop below handles both
2951 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2952 	 * symbol matching just once.
2953 	 */
2954 	if (t->size == 0) {
2955 		err = find_elf_sec_sz(obj, sec_name, &size);
2956 		if (err || !size) {
2957 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2958 				 sec_name, size, err);
2959 			return -ENOENT;
2960 		}
2961 
2962 		t->size = size;
2963 		fixup_offsets = true;
2964 	}
2965 
2966 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2967 		const struct btf_type *t_var;
2968 		struct btf_var *var;
2969 		const char *var_name;
2970 		Elf64_Sym *sym;
2971 
2972 		t_var = btf__type_by_id(btf, vsi->type);
2973 		if (!t_var || !btf_is_var(t_var)) {
2974 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2975 			return -EINVAL;
2976 		}
2977 
2978 		var = btf_var(t_var);
2979 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2980 			continue;
2981 
2982 		var_name = btf__name_by_offset(btf, t_var->name_off);
2983 		if (!var_name) {
2984 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2985 				 sec_name, i);
2986 			return -ENOENT;
2987 		}
2988 
2989 		sym = find_elf_var_sym(obj, var_name);
2990 		if (IS_ERR(sym)) {
2991 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2992 				 sec_name, var_name);
2993 			return -ENOENT;
2994 		}
2995 
2996 		if (fixup_offsets)
2997 			vsi->offset = sym->st_value;
2998 
2999 		/* if variable is a global/weak symbol, but has restricted
3000 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3001 		 * as static. This follows similar logic for functions (BPF
3002 		 * subprogs) and influences libbpf's further decisions about
3003 		 * whether to make global data BPF array maps as
3004 		 * BPF_F_MMAPABLE.
3005 		 */
3006 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3007 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3008 			var->linkage = BTF_VAR_STATIC;
3009 	}
3010 
3011 sort_vars:
3012 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3013 	return 0;
3014 }
3015 
3016 static int bpf_object_fixup_btf(struct bpf_object *obj)
3017 {
3018 	int i, n, err = 0;
3019 
3020 	if (!obj->btf)
3021 		return 0;
3022 
3023 	n = btf__type_cnt(obj->btf);
3024 	for (i = 1; i < n; i++) {
3025 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3026 
3027 		/* Loader needs to fix up some of the things compiler
3028 		 * couldn't get its hands on while emitting BTF. This
3029 		 * is section size and global variable offset. We use
3030 		 * the info from the ELF itself for this purpose.
3031 		 */
3032 		if (btf_is_datasec(t)) {
3033 			err = btf_fixup_datasec(obj, obj->btf, t);
3034 			if (err)
3035 				return err;
3036 		}
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3043 {
3044 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3045 	    prog->type == BPF_PROG_TYPE_LSM)
3046 		return true;
3047 
3048 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3049 	 * also need vmlinux BTF
3050 	 */
3051 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3052 		return true;
3053 
3054 	return false;
3055 }
3056 
3057 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3058 {
3059 	struct bpf_program *prog;
3060 	int i;
3061 
3062 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3063 	 * is not specified
3064 	 */
3065 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3066 		return true;
3067 
3068 	/* Support for typed ksyms needs kernel BTF */
3069 	for (i = 0; i < obj->nr_extern; i++) {
3070 		const struct extern_desc *ext;
3071 
3072 		ext = &obj->externs[i];
3073 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3074 			return true;
3075 	}
3076 
3077 	bpf_object__for_each_program(prog, obj) {
3078 		if (!prog->autoload)
3079 			continue;
3080 		if (prog_needs_vmlinux_btf(prog))
3081 			return true;
3082 	}
3083 
3084 	return false;
3085 }
3086 
3087 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3088 {
3089 	int err;
3090 
3091 	/* btf_vmlinux could be loaded earlier */
3092 	if (obj->btf_vmlinux || obj->gen_loader)
3093 		return 0;
3094 
3095 	if (!force && !obj_needs_vmlinux_btf(obj))
3096 		return 0;
3097 
3098 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3099 	err = libbpf_get_error(obj->btf_vmlinux);
3100 	if (err) {
3101 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3102 		obj->btf_vmlinux = NULL;
3103 		return err;
3104 	}
3105 	return 0;
3106 }
3107 
3108 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3109 {
3110 	struct btf *kern_btf = obj->btf;
3111 	bool btf_mandatory, sanitize;
3112 	int i, err = 0;
3113 
3114 	if (!obj->btf)
3115 		return 0;
3116 
3117 	if (!kernel_supports(obj, FEAT_BTF)) {
3118 		if (kernel_needs_btf(obj)) {
3119 			err = -EOPNOTSUPP;
3120 			goto report;
3121 		}
3122 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3123 		return 0;
3124 	}
3125 
3126 	/* Even though some subprogs are global/weak, user might prefer more
3127 	 * permissive BPF verification process that BPF verifier performs for
3128 	 * static functions, taking into account more context from the caller
3129 	 * functions. In such case, they need to mark such subprogs with
3130 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3131 	 * corresponding FUNC BTF type to be marked as static and trigger more
3132 	 * involved BPF verification process.
3133 	 */
3134 	for (i = 0; i < obj->nr_programs; i++) {
3135 		struct bpf_program *prog = &obj->programs[i];
3136 		struct btf_type *t;
3137 		const char *name;
3138 		int j, n;
3139 
3140 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3141 			continue;
3142 
3143 		n = btf__type_cnt(obj->btf);
3144 		for (j = 1; j < n; j++) {
3145 			t = btf_type_by_id(obj->btf, j);
3146 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3147 				continue;
3148 
3149 			name = btf__str_by_offset(obj->btf, t->name_off);
3150 			if (strcmp(name, prog->name) != 0)
3151 				continue;
3152 
3153 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3154 			break;
3155 		}
3156 	}
3157 
3158 	if (!kernel_supports(obj, FEAT_BTF_DECL_TAG))
3159 		goto skip_exception_cb;
3160 	for (i = 0; i < obj->nr_programs; i++) {
3161 		struct bpf_program *prog = &obj->programs[i];
3162 		int j, k, n;
3163 
3164 		if (prog_is_subprog(obj, prog))
3165 			continue;
3166 		n = btf__type_cnt(obj->btf);
3167 		for (j = 1; j < n; j++) {
3168 			const char *str = "exception_callback:", *name;
3169 			size_t len = strlen(str);
3170 			struct btf_type *t;
3171 
3172 			t = btf_type_by_id(obj->btf, j);
3173 			if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
3174 				continue;
3175 
3176 			name = btf__str_by_offset(obj->btf, t->name_off);
3177 			if (strncmp(name, str, len))
3178 				continue;
3179 
3180 			t = btf_type_by_id(obj->btf, t->type);
3181 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3182 				pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
3183 					prog->name);
3184 				return -EINVAL;
3185 			}
3186 			if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)))
3187 				continue;
3188 			/* Multiple callbacks are specified for the same prog,
3189 			 * the verifier will eventually return an error for this
3190 			 * case, hence simply skip appending a subprog.
3191 			 */
3192 			if (prog->exception_cb_idx >= 0) {
3193 				prog->exception_cb_idx = -1;
3194 				break;
3195 			}
3196 
3197 			name += len;
3198 			if (str_is_empty(name)) {
3199 				pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
3200 					prog->name);
3201 				return -EINVAL;
3202 			}
3203 
3204 			for (k = 0; k < obj->nr_programs; k++) {
3205 				struct bpf_program *subprog = &obj->programs[k];
3206 
3207 				if (!prog_is_subprog(obj, subprog))
3208 					continue;
3209 				if (strcmp(name, subprog->name))
3210 					continue;
3211 				/* Enforce non-hidden, as from verifier point of
3212 				 * view it expects global functions, whereas the
3213 				 * mark_btf_static fixes up linkage as static.
3214 				 */
3215 				if (!subprog->sym_global || subprog->mark_btf_static) {
3216 					pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
3217 						prog->name, subprog->name);
3218 					return -EINVAL;
3219 				}
3220 				/* Let's see if we already saw a static exception callback with the same name */
3221 				if (prog->exception_cb_idx >= 0) {
3222 					pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
3223 					        prog->name, subprog->name);
3224 					return -EINVAL;
3225 				}
3226 				prog->exception_cb_idx = k;
3227 				break;
3228 			}
3229 
3230 			if (prog->exception_cb_idx >= 0)
3231 				continue;
3232 			pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
3233 			return -ENOENT;
3234 		}
3235 	}
3236 skip_exception_cb:
3237 
3238 	sanitize = btf_needs_sanitization(obj);
3239 	if (sanitize) {
3240 		const void *raw_data;
3241 		__u32 sz;
3242 
3243 		/* clone BTF to sanitize a copy and leave the original intact */
3244 		raw_data = btf__raw_data(obj->btf, &sz);
3245 		kern_btf = btf__new(raw_data, sz);
3246 		err = libbpf_get_error(kern_btf);
3247 		if (err)
3248 			return err;
3249 
3250 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3251 		btf__set_pointer_size(obj->btf, 8);
3252 		err = bpf_object__sanitize_btf(obj, kern_btf);
3253 		if (err)
3254 			return err;
3255 	}
3256 
3257 	if (obj->gen_loader) {
3258 		__u32 raw_size = 0;
3259 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3260 
3261 		if (!raw_data)
3262 			return -ENOMEM;
3263 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3264 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3265 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3266 		 */
3267 		btf__set_fd(kern_btf, 0);
3268 	} else {
3269 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3270 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3271 					   obj->log_level ? 1 : 0);
3272 	}
3273 	if (sanitize) {
3274 		if (!err) {
3275 			/* move fd to libbpf's BTF */
3276 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3277 			btf__set_fd(kern_btf, -1);
3278 		}
3279 		btf__free(kern_btf);
3280 	}
3281 report:
3282 	if (err) {
3283 		btf_mandatory = kernel_needs_btf(obj);
3284 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3285 			btf_mandatory ? "BTF is mandatory, can't proceed."
3286 				      : "BTF is optional, ignoring.");
3287 		if (!btf_mandatory)
3288 			err = 0;
3289 	}
3290 	return err;
3291 }
3292 
3293 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3294 {
3295 	const char *name;
3296 
3297 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3298 	if (!name) {
3299 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3300 			off, obj->path, elf_errmsg(-1));
3301 		return NULL;
3302 	}
3303 
3304 	return name;
3305 }
3306 
3307 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3308 {
3309 	const char *name;
3310 
3311 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3312 	if (!name) {
3313 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3314 			off, obj->path, elf_errmsg(-1));
3315 		return NULL;
3316 	}
3317 
3318 	return name;
3319 }
3320 
3321 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3322 {
3323 	Elf_Scn *scn;
3324 
3325 	scn = elf_getscn(obj->efile.elf, idx);
3326 	if (!scn) {
3327 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3328 			idx, obj->path, elf_errmsg(-1));
3329 		return NULL;
3330 	}
3331 	return scn;
3332 }
3333 
3334 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3335 {
3336 	Elf_Scn *scn = NULL;
3337 	Elf *elf = obj->efile.elf;
3338 	const char *sec_name;
3339 
3340 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3341 		sec_name = elf_sec_name(obj, scn);
3342 		if (!sec_name)
3343 			return NULL;
3344 
3345 		if (strcmp(sec_name, name) != 0)
3346 			continue;
3347 
3348 		return scn;
3349 	}
3350 	return NULL;
3351 }
3352 
3353 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3354 {
3355 	Elf64_Shdr *shdr;
3356 
3357 	if (!scn)
3358 		return NULL;
3359 
3360 	shdr = elf64_getshdr(scn);
3361 	if (!shdr) {
3362 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3363 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3364 		return NULL;
3365 	}
3366 
3367 	return shdr;
3368 }
3369 
3370 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3371 {
3372 	const char *name;
3373 	Elf64_Shdr *sh;
3374 
3375 	if (!scn)
3376 		return NULL;
3377 
3378 	sh = elf_sec_hdr(obj, scn);
3379 	if (!sh)
3380 		return NULL;
3381 
3382 	name = elf_sec_str(obj, sh->sh_name);
3383 	if (!name) {
3384 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3385 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3386 		return NULL;
3387 	}
3388 
3389 	return name;
3390 }
3391 
3392 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3393 {
3394 	Elf_Data *data;
3395 
3396 	if (!scn)
3397 		return NULL;
3398 
3399 	data = elf_getdata(scn, 0);
3400 	if (!data) {
3401 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3402 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3403 			obj->path, elf_errmsg(-1));
3404 		return NULL;
3405 	}
3406 
3407 	return data;
3408 }
3409 
3410 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3411 {
3412 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3413 		return NULL;
3414 
3415 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3416 }
3417 
3418 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3419 {
3420 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3421 		return NULL;
3422 
3423 	return (Elf64_Rel *)data->d_buf + idx;
3424 }
3425 
3426 static bool is_sec_name_dwarf(const char *name)
3427 {
3428 	/* approximation, but the actual list is too long */
3429 	return str_has_pfx(name, ".debug_");
3430 }
3431 
3432 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3433 {
3434 	/* no special handling of .strtab */
3435 	if (hdr->sh_type == SHT_STRTAB)
3436 		return true;
3437 
3438 	/* ignore .llvm_addrsig section as well */
3439 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3440 		return true;
3441 
3442 	/* no subprograms will lead to an empty .text section, ignore it */
3443 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3444 	    strcmp(name, ".text") == 0)
3445 		return true;
3446 
3447 	/* DWARF sections */
3448 	if (is_sec_name_dwarf(name))
3449 		return true;
3450 
3451 	if (str_has_pfx(name, ".rel")) {
3452 		name += sizeof(".rel") - 1;
3453 		/* DWARF section relocations */
3454 		if (is_sec_name_dwarf(name))
3455 			return true;
3456 
3457 		/* .BTF and .BTF.ext don't need relocations */
3458 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3459 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3460 			return true;
3461 	}
3462 
3463 	return false;
3464 }
3465 
3466 static int cmp_progs(const void *_a, const void *_b)
3467 {
3468 	const struct bpf_program *a = _a;
3469 	const struct bpf_program *b = _b;
3470 
3471 	if (a->sec_idx != b->sec_idx)
3472 		return a->sec_idx < b->sec_idx ? -1 : 1;
3473 
3474 	/* sec_insn_off can't be the same within the section */
3475 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3476 }
3477 
3478 static int bpf_object__elf_collect(struct bpf_object *obj)
3479 {
3480 	struct elf_sec_desc *sec_desc;
3481 	Elf *elf = obj->efile.elf;
3482 	Elf_Data *btf_ext_data = NULL;
3483 	Elf_Data *btf_data = NULL;
3484 	int idx = 0, err = 0;
3485 	const char *name;
3486 	Elf_Data *data;
3487 	Elf_Scn *scn;
3488 	Elf64_Shdr *sh;
3489 
3490 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3491 	 * section. Since section count retrieved by elf_getshdrnum() does
3492 	 * include sec #0, it is already the necessary size of an array to keep
3493 	 * all the sections.
3494 	 */
3495 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3496 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3497 			obj->path, elf_errmsg(-1));
3498 		return -LIBBPF_ERRNO__FORMAT;
3499 	}
3500 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3501 	if (!obj->efile.secs)
3502 		return -ENOMEM;
3503 
3504 	/* a bunch of ELF parsing functionality depends on processing symbols,
3505 	 * so do the first pass and find the symbol table
3506 	 */
3507 	scn = NULL;
3508 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3509 		sh = elf_sec_hdr(obj, scn);
3510 		if (!sh)
3511 			return -LIBBPF_ERRNO__FORMAT;
3512 
3513 		if (sh->sh_type == SHT_SYMTAB) {
3514 			if (obj->efile.symbols) {
3515 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3516 				return -LIBBPF_ERRNO__FORMAT;
3517 			}
3518 
3519 			data = elf_sec_data(obj, scn);
3520 			if (!data)
3521 				return -LIBBPF_ERRNO__FORMAT;
3522 
3523 			idx = elf_ndxscn(scn);
3524 
3525 			obj->efile.symbols = data;
3526 			obj->efile.symbols_shndx = idx;
3527 			obj->efile.strtabidx = sh->sh_link;
3528 		}
3529 	}
3530 
3531 	if (!obj->efile.symbols) {
3532 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3533 			obj->path);
3534 		return -ENOENT;
3535 	}
3536 
3537 	scn = NULL;
3538 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3539 		idx = elf_ndxscn(scn);
3540 		sec_desc = &obj->efile.secs[idx];
3541 
3542 		sh = elf_sec_hdr(obj, scn);
3543 		if (!sh)
3544 			return -LIBBPF_ERRNO__FORMAT;
3545 
3546 		name = elf_sec_str(obj, sh->sh_name);
3547 		if (!name)
3548 			return -LIBBPF_ERRNO__FORMAT;
3549 
3550 		if (ignore_elf_section(sh, name))
3551 			continue;
3552 
3553 		data = elf_sec_data(obj, scn);
3554 		if (!data)
3555 			return -LIBBPF_ERRNO__FORMAT;
3556 
3557 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3558 			 idx, name, (unsigned long)data->d_size,
3559 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3560 			 (int)sh->sh_type);
3561 
3562 		if (strcmp(name, "license") == 0) {
3563 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3564 			if (err)
3565 				return err;
3566 		} else if (strcmp(name, "version") == 0) {
3567 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3568 			if (err)
3569 				return err;
3570 		} else if (strcmp(name, "maps") == 0) {
3571 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3572 			return -ENOTSUP;
3573 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3574 			obj->efile.btf_maps_shndx = idx;
3575 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3576 			if (sh->sh_type != SHT_PROGBITS)
3577 				return -LIBBPF_ERRNO__FORMAT;
3578 			btf_data = data;
3579 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3580 			if (sh->sh_type != SHT_PROGBITS)
3581 				return -LIBBPF_ERRNO__FORMAT;
3582 			btf_ext_data = data;
3583 		} else if (sh->sh_type == SHT_SYMTAB) {
3584 			/* already processed during the first pass above */
3585 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3586 			if (sh->sh_flags & SHF_EXECINSTR) {
3587 				if (strcmp(name, ".text") == 0)
3588 					obj->efile.text_shndx = idx;
3589 				err = bpf_object__add_programs(obj, data, name, idx);
3590 				if (err)
3591 					return err;
3592 			} else if (strcmp(name, DATA_SEC) == 0 ||
3593 				   str_has_pfx(name, DATA_SEC ".")) {
3594 				sec_desc->sec_type = SEC_DATA;
3595 				sec_desc->shdr = sh;
3596 				sec_desc->data = data;
3597 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3598 				   str_has_pfx(name, RODATA_SEC ".")) {
3599 				sec_desc->sec_type = SEC_RODATA;
3600 				sec_desc->shdr = sh;
3601 				sec_desc->data = data;
3602 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3603 				obj->efile.st_ops_data = data;
3604 				obj->efile.st_ops_shndx = idx;
3605 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3606 				obj->efile.st_ops_link_data = data;
3607 				obj->efile.st_ops_link_shndx = idx;
3608 			} else {
3609 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3610 					idx, name);
3611 			}
3612 		} else if (sh->sh_type == SHT_REL) {
3613 			int targ_sec_idx = sh->sh_info; /* points to other section */
3614 
3615 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3616 			    targ_sec_idx >= obj->efile.sec_cnt)
3617 				return -LIBBPF_ERRNO__FORMAT;
3618 
3619 			/* Only do relo for section with exec instructions */
3620 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3621 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3622 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3623 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3624 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3625 					idx, name, targ_sec_idx,
3626 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3627 				continue;
3628 			}
3629 
3630 			sec_desc->sec_type = SEC_RELO;
3631 			sec_desc->shdr = sh;
3632 			sec_desc->data = data;
3633 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3634 							 str_has_pfx(name, BSS_SEC "."))) {
3635 			sec_desc->sec_type = SEC_BSS;
3636 			sec_desc->shdr = sh;
3637 			sec_desc->data = data;
3638 		} else {
3639 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3640 				(size_t)sh->sh_size);
3641 		}
3642 	}
3643 
3644 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3645 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3646 		return -LIBBPF_ERRNO__FORMAT;
3647 	}
3648 
3649 	/* sort BPF programs by section name and in-section instruction offset
3650 	 * for faster search
3651 	 */
3652 	if (obj->nr_programs)
3653 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3654 
3655 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3656 }
3657 
3658 static bool sym_is_extern(const Elf64_Sym *sym)
3659 {
3660 	int bind = ELF64_ST_BIND(sym->st_info);
3661 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3662 	return sym->st_shndx == SHN_UNDEF &&
3663 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3664 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3665 }
3666 
3667 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3668 {
3669 	int bind = ELF64_ST_BIND(sym->st_info);
3670 	int type = ELF64_ST_TYPE(sym->st_info);
3671 
3672 	/* in .text section */
3673 	if (sym->st_shndx != text_shndx)
3674 		return false;
3675 
3676 	/* local function */
3677 	if (bind == STB_LOCAL && type == STT_SECTION)
3678 		return true;
3679 
3680 	/* global function */
3681 	return bind == STB_GLOBAL && type == STT_FUNC;
3682 }
3683 
3684 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3685 {
3686 	const struct btf_type *t;
3687 	const char *tname;
3688 	int i, n;
3689 
3690 	if (!btf)
3691 		return -ESRCH;
3692 
3693 	n = btf__type_cnt(btf);
3694 	for (i = 1; i < n; i++) {
3695 		t = btf__type_by_id(btf, i);
3696 
3697 		if (!btf_is_var(t) && !btf_is_func(t))
3698 			continue;
3699 
3700 		tname = btf__name_by_offset(btf, t->name_off);
3701 		if (strcmp(tname, ext_name))
3702 			continue;
3703 
3704 		if (btf_is_var(t) &&
3705 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3706 			return -EINVAL;
3707 
3708 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3709 			return -EINVAL;
3710 
3711 		return i;
3712 	}
3713 
3714 	return -ENOENT;
3715 }
3716 
3717 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3718 	const struct btf_var_secinfo *vs;
3719 	const struct btf_type *t;
3720 	int i, j, n;
3721 
3722 	if (!btf)
3723 		return -ESRCH;
3724 
3725 	n = btf__type_cnt(btf);
3726 	for (i = 1; i < n; i++) {
3727 		t = btf__type_by_id(btf, i);
3728 
3729 		if (!btf_is_datasec(t))
3730 			continue;
3731 
3732 		vs = btf_var_secinfos(t);
3733 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3734 			if (vs->type == ext_btf_id)
3735 				return i;
3736 		}
3737 	}
3738 
3739 	return -ENOENT;
3740 }
3741 
3742 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3743 				     bool *is_signed)
3744 {
3745 	const struct btf_type *t;
3746 	const char *name;
3747 
3748 	t = skip_mods_and_typedefs(btf, id, NULL);
3749 	name = btf__name_by_offset(btf, t->name_off);
3750 
3751 	if (is_signed)
3752 		*is_signed = false;
3753 	switch (btf_kind(t)) {
3754 	case BTF_KIND_INT: {
3755 		int enc = btf_int_encoding(t);
3756 
3757 		if (enc & BTF_INT_BOOL)
3758 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3759 		if (is_signed)
3760 			*is_signed = enc & BTF_INT_SIGNED;
3761 		if (t->size == 1)
3762 			return KCFG_CHAR;
3763 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3764 			return KCFG_UNKNOWN;
3765 		return KCFG_INT;
3766 	}
3767 	case BTF_KIND_ENUM:
3768 		if (t->size != 4)
3769 			return KCFG_UNKNOWN;
3770 		if (strcmp(name, "libbpf_tristate"))
3771 			return KCFG_UNKNOWN;
3772 		return KCFG_TRISTATE;
3773 	case BTF_KIND_ENUM64:
3774 		if (strcmp(name, "libbpf_tristate"))
3775 			return KCFG_UNKNOWN;
3776 		return KCFG_TRISTATE;
3777 	case BTF_KIND_ARRAY:
3778 		if (btf_array(t)->nelems == 0)
3779 			return KCFG_UNKNOWN;
3780 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3781 			return KCFG_UNKNOWN;
3782 		return KCFG_CHAR_ARR;
3783 	default:
3784 		return KCFG_UNKNOWN;
3785 	}
3786 }
3787 
3788 static int cmp_externs(const void *_a, const void *_b)
3789 {
3790 	const struct extern_desc *a = _a;
3791 	const struct extern_desc *b = _b;
3792 
3793 	if (a->type != b->type)
3794 		return a->type < b->type ? -1 : 1;
3795 
3796 	if (a->type == EXT_KCFG) {
3797 		/* descending order by alignment requirements */
3798 		if (a->kcfg.align != b->kcfg.align)
3799 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3800 		/* ascending order by size, within same alignment class */
3801 		if (a->kcfg.sz != b->kcfg.sz)
3802 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3803 	}
3804 
3805 	/* resolve ties by name */
3806 	return strcmp(a->name, b->name);
3807 }
3808 
3809 static int find_int_btf_id(const struct btf *btf)
3810 {
3811 	const struct btf_type *t;
3812 	int i, n;
3813 
3814 	n = btf__type_cnt(btf);
3815 	for (i = 1; i < n; i++) {
3816 		t = btf__type_by_id(btf, i);
3817 
3818 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3819 			return i;
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static int add_dummy_ksym_var(struct btf *btf)
3826 {
3827 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3828 	const struct btf_var_secinfo *vs;
3829 	const struct btf_type *sec;
3830 
3831 	if (!btf)
3832 		return 0;
3833 
3834 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3835 					    BTF_KIND_DATASEC);
3836 	if (sec_btf_id < 0)
3837 		return 0;
3838 
3839 	sec = btf__type_by_id(btf, sec_btf_id);
3840 	vs = btf_var_secinfos(sec);
3841 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3842 		const struct btf_type *vt;
3843 
3844 		vt = btf__type_by_id(btf, vs->type);
3845 		if (btf_is_func(vt))
3846 			break;
3847 	}
3848 
3849 	/* No func in ksyms sec.  No need to add dummy var. */
3850 	if (i == btf_vlen(sec))
3851 		return 0;
3852 
3853 	int_btf_id = find_int_btf_id(btf);
3854 	dummy_var_btf_id = btf__add_var(btf,
3855 					"dummy_ksym",
3856 					BTF_VAR_GLOBAL_ALLOCATED,
3857 					int_btf_id);
3858 	if (dummy_var_btf_id < 0)
3859 		pr_warn("cannot create a dummy_ksym var\n");
3860 
3861 	return dummy_var_btf_id;
3862 }
3863 
3864 static int bpf_object__collect_externs(struct bpf_object *obj)
3865 {
3866 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3867 	const struct btf_type *t;
3868 	struct extern_desc *ext;
3869 	int i, n, off, dummy_var_btf_id;
3870 	const char *ext_name, *sec_name;
3871 	size_t ext_essent_len;
3872 	Elf_Scn *scn;
3873 	Elf64_Shdr *sh;
3874 
3875 	if (!obj->efile.symbols)
3876 		return 0;
3877 
3878 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3879 	sh = elf_sec_hdr(obj, scn);
3880 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3881 		return -LIBBPF_ERRNO__FORMAT;
3882 
3883 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3884 	if (dummy_var_btf_id < 0)
3885 		return dummy_var_btf_id;
3886 
3887 	n = sh->sh_size / sh->sh_entsize;
3888 	pr_debug("looking for externs among %d symbols...\n", n);
3889 
3890 	for (i = 0; i < n; i++) {
3891 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3892 
3893 		if (!sym)
3894 			return -LIBBPF_ERRNO__FORMAT;
3895 		if (!sym_is_extern(sym))
3896 			continue;
3897 		ext_name = elf_sym_str(obj, sym->st_name);
3898 		if (!ext_name || !ext_name[0])
3899 			continue;
3900 
3901 		ext = obj->externs;
3902 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3903 		if (!ext)
3904 			return -ENOMEM;
3905 		obj->externs = ext;
3906 		ext = &ext[obj->nr_extern];
3907 		memset(ext, 0, sizeof(*ext));
3908 		obj->nr_extern++;
3909 
3910 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3911 		if (ext->btf_id <= 0) {
3912 			pr_warn("failed to find BTF for extern '%s': %d\n",
3913 				ext_name, ext->btf_id);
3914 			return ext->btf_id;
3915 		}
3916 		t = btf__type_by_id(obj->btf, ext->btf_id);
3917 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3918 		ext->sym_idx = i;
3919 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3920 
3921 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3922 		ext->essent_name = NULL;
3923 		if (ext_essent_len != strlen(ext->name)) {
3924 			ext->essent_name = strndup(ext->name, ext_essent_len);
3925 			if (!ext->essent_name)
3926 				return -ENOMEM;
3927 		}
3928 
3929 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3930 		if (ext->sec_btf_id <= 0) {
3931 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3932 				ext_name, ext->btf_id, ext->sec_btf_id);
3933 			return ext->sec_btf_id;
3934 		}
3935 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3936 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3937 
3938 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3939 			if (btf_is_func(t)) {
3940 				pr_warn("extern function %s is unsupported under %s section\n",
3941 					ext->name, KCONFIG_SEC);
3942 				return -ENOTSUP;
3943 			}
3944 			kcfg_sec = sec;
3945 			ext->type = EXT_KCFG;
3946 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3947 			if (ext->kcfg.sz <= 0) {
3948 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3949 					ext_name, ext->kcfg.sz);
3950 				return ext->kcfg.sz;
3951 			}
3952 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3953 			if (ext->kcfg.align <= 0) {
3954 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3955 					ext_name, ext->kcfg.align);
3956 				return -EINVAL;
3957 			}
3958 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3959 							&ext->kcfg.is_signed);
3960 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3961 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3962 				return -ENOTSUP;
3963 			}
3964 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3965 			ksym_sec = sec;
3966 			ext->type = EXT_KSYM;
3967 			skip_mods_and_typedefs(obj->btf, t->type,
3968 					       &ext->ksym.type_id);
3969 		} else {
3970 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3971 			return -ENOTSUP;
3972 		}
3973 	}
3974 	pr_debug("collected %d externs total\n", obj->nr_extern);
3975 
3976 	if (!obj->nr_extern)
3977 		return 0;
3978 
3979 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3980 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3981 
3982 	/* for .ksyms section, we need to turn all externs into allocated
3983 	 * variables in BTF to pass kernel verification; we do this by
3984 	 * pretending that each extern is a 8-byte variable
3985 	 */
3986 	if (ksym_sec) {
3987 		/* find existing 4-byte integer type in BTF to use for fake
3988 		 * extern variables in DATASEC
3989 		 */
3990 		int int_btf_id = find_int_btf_id(obj->btf);
3991 		/* For extern function, a dummy_var added earlier
3992 		 * will be used to replace the vs->type and
3993 		 * its name string will be used to refill
3994 		 * the missing param's name.
3995 		 */
3996 		const struct btf_type *dummy_var;
3997 
3998 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3999 		for (i = 0; i < obj->nr_extern; i++) {
4000 			ext = &obj->externs[i];
4001 			if (ext->type != EXT_KSYM)
4002 				continue;
4003 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4004 				 i, ext->sym_idx, ext->name);
4005 		}
4006 
4007 		sec = ksym_sec;
4008 		n = btf_vlen(sec);
4009 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4010 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4011 			struct btf_type *vt;
4012 
4013 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4014 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4015 			ext = find_extern_by_name(obj, ext_name);
4016 			if (!ext) {
4017 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4018 					btf_kind_str(vt), ext_name);
4019 				return -ESRCH;
4020 			}
4021 			if (btf_is_func(vt)) {
4022 				const struct btf_type *func_proto;
4023 				struct btf_param *param;
4024 				int j;
4025 
4026 				func_proto = btf__type_by_id(obj->btf,
4027 							     vt->type);
4028 				param = btf_params(func_proto);
4029 				/* Reuse the dummy_var string if the
4030 				 * func proto does not have param name.
4031 				 */
4032 				for (j = 0; j < btf_vlen(func_proto); j++)
4033 					if (param[j].type && !param[j].name_off)
4034 						param[j].name_off =
4035 							dummy_var->name_off;
4036 				vs->type = dummy_var_btf_id;
4037 				vt->info &= ~0xffff;
4038 				vt->info |= BTF_FUNC_GLOBAL;
4039 			} else {
4040 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4041 				vt->type = int_btf_id;
4042 			}
4043 			vs->offset = off;
4044 			vs->size = sizeof(int);
4045 		}
4046 		sec->size = off;
4047 	}
4048 
4049 	if (kcfg_sec) {
4050 		sec = kcfg_sec;
4051 		/* for kcfg externs calculate their offsets within a .kconfig map */
4052 		off = 0;
4053 		for (i = 0; i < obj->nr_extern; i++) {
4054 			ext = &obj->externs[i];
4055 			if (ext->type != EXT_KCFG)
4056 				continue;
4057 
4058 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4059 			off = ext->kcfg.data_off + ext->kcfg.sz;
4060 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4061 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4062 		}
4063 		sec->size = off;
4064 		n = btf_vlen(sec);
4065 		for (i = 0; i < n; i++) {
4066 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4067 
4068 			t = btf__type_by_id(obj->btf, vs->type);
4069 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4070 			ext = find_extern_by_name(obj, ext_name);
4071 			if (!ext) {
4072 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4073 					ext_name);
4074 				return -ESRCH;
4075 			}
4076 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4077 			vs->offset = ext->kcfg.data_off;
4078 		}
4079 	}
4080 	return 0;
4081 }
4082 
4083 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4084 {
4085 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4086 }
4087 
4088 struct bpf_program *
4089 bpf_object__find_program_by_name(const struct bpf_object *obj,
4090 				 const char *name)
4091 {
4092 	struct bpf_program *prog;
4093 
4094 	bpf_object__for_each_program(prog, obj) {
4095 		if (prog_is_subprog(obj, prog))
4096 			continue;
4097 		if (!strcmp(prog->name, name))
4098 			return prog;
4099 	}
4100 	return errno = ENOENT, NULL;
4101 }
4102 
4103 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4104 				      int shndx)
4105 {
4106 	switch (obj->efile.secs[shndx].sec_type) {
4107 	case SEC_BSS:
4108 	case SEC_DATA:
4109 	case SEC_RODATA:
4110 		return true;
4111 	default:
4112 		return false;
4113 	}
4114 }
4115 
4116 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4117 				      int shndx)
4118 {
4119 	return shndx == obj->efile.btf_maps_shndx;
4120 }
4121 
4122 static enum libbpf_map_type
4123 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4124 {
4125 	if (shndx == obj->efile.symbols_shndx)
4126 		return LIBBPF_MAP_KCONFIG;
4127 
4128 	switch (obj->efile.secs[shndx].sec_type) {
4129 	case SEC_BSS:
4130 		return LIBBPF_MAP_BSS;
4131 	case SEC_DATA:
4132 		return LIBBPF_MAP_DATA;
4133 	case SEC_RODATA:
4134 		return LIBBPF_MAP_RODATA;
4135 	default:
4136 		return LIBBPF_MAP_UNSPEC;
4137 	}
4138 }
4139 
4140 static int bpf_program__record_reloc(struct bpf_program *prog,
4141 				     struct reloc_desc *reloc_desc,
4142 				     __u32 insn_idx, const char *sym_name,
4143 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4144 {
4145 	struct bpf_insn *insn = &prog->insns[insn_idx];
4146 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4147 	struct bpf_object *obj = prog->obj;
4148 	__u32 shdr_idx = sym->st_shndx;
4149 	enum libbpf_map_type type;
4150 	const char *sym_sec_name;
4151 	struct bpf_map *map;
4152 
4153 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4154 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4155 			prog->name, sym_name, insn_idx, insn->code);
4156 		return -LIBBPF_ERRNO__RELOC;
4157 	}
4158 
4159 	if (sym_is_extern(sym)) {
4160 		int sym_idx = ELF64_R_SYM(rel->r_info);
4161 		int i, n = obj->nr_extern;
4162 		struct extern_desc *ext;
4163 
4164 		for (i = 0; i < n; i++) {
4165 			ext = &obj->externs[i];
4166 			if (ext->sym_idx == sym_idx)
4167 				break;
4168 		}
4169 		if (i >= n) {
4170 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4171 				prog->name, sym_name, sym_idx);
4172 			return -LIBBPF_ERRNO__RELOC;
4173 		}
4174 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4175 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4176 		if (insn->code == (BPF_JMP | BPF_CALL))
4177 			reloc_desc->type = RELO_EXTERN_CALL;
4178 		else
4179 			reloc_desc->type = RELO_EXTERN_LD64;
4180 		reloc_desc->insn_idx = insn_idx;
4181 		reloc_desc->ext_idx = i;
4182 		return 0;
4183 	}
4184 
4185 	/* sub-program call relocation */
4186 	if (is_call_insn(insn)) {
4187 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4188 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4189 			return -LIBBPF_ERRNO__RELOC;
4190 		}
4191 		/* text_shndx can be 0, if no default "main" program exists */
4192 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4193 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4194 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4195 				prog->name, sym_name, sym_sec_name);
4196 			return -LIBBPF_ERRNO__RELOC;
4197 		}
4198 		if (sym->st_value % BPF_INSN_SZ) {
4199 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4200 				prog->name, sym_name, (size_t)sym->st_value);
4201 			return -LIBBPF_ERRNO__RELOC;
4202 		}
4203 		reloc_desc->type = RELO_CALL;
4204 		reloc_desc->insn_idx = insn_idx;
4205 		reloc_desc->sym_off = sym->st_value;
4206 		return 0;
4207 	}
4208 
4209 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4210 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4211 			prog->name, sym_name, shdr_idx);
4212 		return -LIBBPF_ERRNO__RELOC;
4213 	}
4214 
4215 	/* loading subprog addresses */
4216 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4217 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4218 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4219 		 */
4220 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4221 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4222 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4223 			return -LIBBPF_ERRNO__RELOC;
4224 		}
4225 
4226 		reloc_desc->type = RELO_SUBPROG_ADDR;
4227 		reloc_desc->insn_idx = insn_idx;
4228 		reloc_desc->sym_off = sym->st_value;
4229 		return 0;
4230 	}
4231 
4232 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4233 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4234 
4235 	/* generic map reference relocation */
4236 	if (type == LIBBPF_MAP_UNSPEC) {
4237 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4238 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4239 				prog->name, sym_name, sym_sec_name);
4240 			return -LIBBPF_ERRNO__RELOC;
4241 		}
4242 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4243 			map = &obj->maps[map_idx];
4244 			if (map->libbpf_type != type ||
4245 			    map->sec_idx != sym->st_shndx ||
4246 			    map->sec_offset != sym->st_value)
4247 				continue;
4248 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4249 				 prog->name, map_idx, map->name, map->sec_idx,
4250 				 map->sec_offset, insn_idx);
4251 			break;
4252 		}
4253 		if (map_idx >= nr_maps) {
4254 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4255 				prog->name, sym_sec_name, (size_t)sym->st_value);
4256 			return -LIBBPF_ERRNO__RELOC;
4257 		}
4258 		reloc_desc->type = RELO_LD64;
4259 		reloc_desc->insn_idx = insn_idx;
4260 		reloc_desc->map_idx = map_idx;
4261 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4262 		return 0;
4263 	}
4264 
4265 	/* global data map relocation */
4266 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4267 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4268 			prog->name, sym_sec_name);
4269 		return -LIBBPF_ERRNO__RELOC;
4270 	}
4271 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4272 		map = &obj->maps[map_idx];
4273 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4274 			continue;
4275 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4276 			 prog->name, map_idx, map->name, map->sec_idx,
4277 			 map->sec_offset, insn_idx);
4278 		break;
4279 	}
4280 	if (map_idx >= nr_maps) {
4281 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4282 			prog->name, sym_sec_name);
4283 		return -LIBBPF_ERRNO__RELOC;
4284 	}
4285 
4286 	reloc_desc->type = RELO_DATA;
4287 	reloc_desc->insn_idx = insn_idx;
4288 	reloc_desc->map_idx = map_idx;
4289 	reloc_desc->sym_off = sym->st_value;
4290 	return 0;
4291 }
4292 
4293 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4294 {
4295 	return insn_idx >= prog->sec_insn_off &&
4296 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4297 }
4298 
4299 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4300 						 size_t sec_idx, size_t insn_idx)
4301 {
4302 	int l = 0, r = obj->nr_programs - 1, m;
4303 	struct bpf_program *prog;
4304 
4305 	if (!obj->nr_programs)
4306 		return NULL;
4307 
4308 	while (l < r) {
4309 		m = l + (r - l + 1) / 2;
4310 		prog = &obj->programs[m];
4311 
4312 		if (prog->sec_idx < sec_idx ||
4313 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4314 			l = m;
4315 		else
4316 			r = m - 1;
4317 	}
4318 	/* matching program could be at index l, but it still might be the
4319 	 * wrong one, so we need to double check conditions for the last time
4320 	 */
4321 	prog = &obj->programs[l];
4322 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4323 		return prog;
4324 	return NULL;
4325 }
4326 
4327 static int
4328 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4329 {
4330 	const char *relo_sec_name, *sec_name;
4331 	size_t sec_idx = shdr->sh_info, sym_idx;
4332 	struct bpf_program *prog;
4333 	struct reloc_desc *relos;
4334 	int err, i, nrels;
4335 	const char *sym_name;
4336 	__u32 insn_idx;
4337 	Elf_Scn *scn;
4338 	Elf_Data *scn_data;
4339 	Elf64_Sym *sym;
4340 	Elf64_Rel *rel;
4341 
4342 	if (sec_idx >= obj->efile.sec_cnt)
4343 		return -EINVAL;
4344 
4345 	scn = elf_sec_by_idx(obj, sec_idx);
4346 	scn_data = elf_sec_data(obj, scn);
4347 
4348 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4349 	sec_name = elf_sec_name(obj, scn);
4350 	if (!relo_sec_name || !sec_name)
4351 		return -EINVAL;
4352 
4353 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4354 		 relo_sec_name, sec_idx, sec_name);
4355 	nrels = shdr->sh_size / shdr->sh_entsize;
4356 
4357 	for (i = 0; i < nrels; i++) {
4358 		rel = elf_rel_by_idx(data, i);
4359 		if (!rel) {
4360 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4361 			return -LIBBPF_ERRNO__FORMAT;
4362 		}
4363 
4364 		sym_idx = ELF64_R_SYM(rel->r_info);
4365 		sym = elf_sym_by_idx(obj, sym_idx);
4366 		if (!sym) {
4367 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4368 				relo_sec_name, sym_idx, i);
4369 			return -LIBBPF_ERRNO__FORMAT;
4370 		}
4371 
4372 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4373 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4374 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4375 			return -LIBBPF_ERRNO__FORMAT;
4376 		}
4377 
4378 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4379 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4380 				relo_sec_name, (size_t)rel->r_offset, i);
4381 			return -LIBBPF_ERRNO__FORMAT;
4382 		}
4383 
4384 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4385 		/* relocations against static functions are recorded as
4386 		 * relocations against the section that contains a function;
4387 		 * in such case, symbol will be STT_SECTION and sym.st_name
4388 		 * will point to empty string (0), so fetch section name
4389 		 * instead
4390 		 */
4391 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4392 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4393 		else
4394 			sym_name = elf_sym_str(obj, sym->st_name);
4395 		sym_name = sym_name ?: "<?";
4396 
4397 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4398 			 relo_sec_name, i, insn_idx, sym_name);
4399 
4400 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4401 		if (!prog) {
4402 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4403 				relo_sec_name, i, sec_name, insn_idx);
4404 			continue;
4405 		}
4406 
4407 		relos = libbpf_reallocarray(prog->reloc_desc,
4408 					    prog->nr_reloc + 1, sizeof(*relos));
4409 		if (!relos)
4410 			return -ENOMEM;
4411 		prog->reloc_desc = relos;
4412 
4413 		/* adjust insn_idx to local BPF program frame of reference */
4414 		insn_idx -= prog->sec_insn_off;
4415 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4416 						insn_idx, sym_name, sym, rel);
4417 		if (err)
4418 			return err;
4419 
4420 		prog->nr_reloc++;
4421 	}
4422 	return 0;
4423 }
4424 
4425 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4426 {
4427 	int id;
4428 
4429 	if (!obj->btf)
4430 		return -ENOENT;
4431 
4432 	/* if it's BTF-defined map, we don't need to search for type IDs.
4433 	 * For struct_ops map, it does not need btf_key_type_id and
4434 	 * btf_value_type_id.
4435 	 */
4436 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4437 		return 0;
4438 
4439 	/*
4440 	 * LLVM annotates global data differently in BTF, that is,
4441 	 * only as '.data', '.bss' or '.rodata'.
4442 	 */
4443 	if (!bpf_map__is_internal(map))
4444 		return -ENOENT;
4445 
4446 	id = btf__find_by_name(obj->btf, map->real_name);
4447 	if (id < 0)
4448 		return id;
4449 
4450 	map->btf_key_type_id = 0;
4451 	map->btf_value_type_id = id;
4452 	return 0;
4453 }
4454 
4455 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4456 {
4457 	char file[PATH_MAX], buff[4096];
4458 	FILE *fp;
4459 	__u32 val;
4460 	int err;
4461 
4462 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4463 	memset(info, 0, sizeof(*info));
4464 
4465 	fp = fopen(file, "re");
4466 	if (!fp) {
4467 		err = -errno;
4468 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4469 			err);
4470 		return err;
4471 	}
4472 
4473 	while (fgets(buff, sizeof(buff), fp)) {
4474 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4475 			info->type = val;
4476 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4477 			info->key_size = val;
4478 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4479 			info->value_size = val;
4480 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4481 			info->max_entries = val;
4482 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4483 			info->map_flags = val;
4484 	}
4485 
4486 	fclose(fp);
4487 
4488 	return 0;
4489 }
4490 
4491 bool bpf_map__autocreate(const struct bpf_map *map)
4492 {
4493 	return map->autocreate;
4494 }
4495 
4496 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4497 {
4498 	if (map->obj->loaded)
4499 		return libbpf_err(-EBUSY);
4500 
4501 	map->autocreate = autocreate;
4502 	return 0;
4503 }
4504 
4505 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4506 {
4507 	struct bpf_map_info info;
4508 	__u32 len = sizeof(info), name_len;
4509 	int new_fd, err;
4510 	char *new_name;
4511 
4512 	memset(&info, 0, len);
4513 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4514 	if (err && errno == EINVAL)
4515 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4516 	if (err)
4517 		return libbpf_err(err);
4518 
4519 	name_len = strlen(info.name);
4520 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4521 		new_name = strdup(map->name);
4522 	else
4523 		new_name = strdup(info.name);
4524 
4525 	if (!new_name)
4526 		return libbpf_err(-errno);
4527 
4528 	/*
4529 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4530 	 * This is similar to what we do in ensure_good_fd(), but without
4531 	 * closing original FD.
4532 	 */
4533 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4534 	if (new_fd < 0) {
4535 		err = -errno;
4536 		goto err_free_new_name;
4537 	}
4538 
4539 	err = zclose(map->fd);
4540 	if (err) {
4541 		err = -errno;
4542 		goto err_close_new_fd;
4543 	}
4544 	free(map->name);
4545 
4546 	map->fd = new_fd;
4547 	map->name = new_name;
4548 	map->def.type = info.type;
4549 	map->def.key_size = info.key_size;
4550 	map->def.value_size = info.value_size;
4551 	map->def.max_entries = info.max_entries;
4552 	map->def.map_flags = info.map_flags;
4553 	map->btf_key_type_id = info.btf_key_type_id;
4554 	map->btf_value_type_id = info.btf_value_type_id;
4555 	map->reused = true;
4556 	map->map_extra = info.map_extra;
4557 
4558 	return 0;
4559 
4560 err_close_new_fd:
4561 	close(new_fd);
4562 err_free_new_name:
4563 	free(new_name);
4564 	return libbpf_err(err);
4565 }
4566 
4567 __u32 bpf_map__max_entries(const struct bpf_map *map)
4568 {
4569 	return map->def.max_entries;
4570 }
4571 
4572 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4573 {
4574 	if (!bpf_map_type__is_map_in_map(map->def.type))
4575 		return errno = EINVAL, NULL;
4576 
4577 	return map->inner_map;
4578 }
4579 
4580 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4581 {
4582 	if (map->obj->loaded)
4583 		return libbpf_err(-EBUSY);
4584 
4585 	map->def.max_entries = max_entries;
4586 
4587 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4588 	if (map_is_ringbuf(map))
4589 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4590 
4591 	return 0;
4592 }
4593 
4594 static int
4595 bpf_object__probe_loading(struct bpf_object *obj)
4596 {
4597 	char *cp, errmsg[STRERR_BUFSIZE];
4598 	struct bpf_insn insns[] = {
4599 		BPF_MOV64_IMM(BPF_REG_0, 0),
4600 		BPF_EXIT_INSN(),
4601 	};
4602 	int ret, insn_cnt = ARRAY_SIZE(insns);
4603 
4604 	if (obj->gen_loader)
4605 		return 0;
4606 
4607 	ret = bump_rlimit_memlock();
4608 	if (ret)
4609 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4610 
4611 	/* make sure basic loading works */
4612 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4613 	if (ret < 0)
4614 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4615 	if (ret < 0) {
4616 		ret = errno;
4617 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4618 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4619 			"program. Make sure your kernel supports BPF "
4620 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4621 			"set to big enough value.\n", __func__, cp, ret);
4622 		return -ret;
4623 	}
4624 	close(ret);
4625 
4626 	return 0;
4627 }
4628 
4629 static int probe_fd(int fd)
4630 {
4631 	if (fd >= 0)
4632 		close(fd);
4633 	return fd >= 0;
4634 }
4635 
4636 static int probe_kern_prog_name(void)
4637 {
4638 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4639 	struct bpf_insn insns[] = {
4640 		BPF_MOV64_IMM(BPF_REG_0, 0),
4641 		BPF_EXIT_INSN(),
4642 	};
4643 	union bpf_attr attr;
4644 	int ret;
4645 
4646 	memset(&attr, 0, attr_sz);
4647 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4648 	attr.license = ptr_to_u64("GPL");
4649 	attr.insns = ptr_to_u64(insns);
4650 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4651 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4652 
4653 	/* make sure loading with name works */
4654 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4655 	return probe_fd(ret);
4656 }
4657 
4658 static int probe_kern_global_data(void)
4659 {
4660 	char *cp, errmsg[STRERR_BUFSIZE];
4661 	struct bpf_insn insns[] = {
4662 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4663 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4664 		BPF_MOV64_IMM(BPF_REG_0, 0),
4665 		BPF_EXIT_INSN(),
4666 	};
4667 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4668 
4669 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4670 	if (map < 0) {
4671 		ret = -errno;
4672 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4673 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4674 			__func__, cp, -ret);
4675 		return ret;
4676 	}
4677 
4678 	insns[0].imm = map;
4679 
4680 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4681 	close(map);
4682 	return probe_fd(ret);
4683 }
4684 
4685 static int probe_kern_btf(void)
4686 {
4687 	static const char strs[] = "\0int";
4688 	__u32 types[] = {
4689 		/* int */
4690 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4691 	};
4692 
4693 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4694 					     strs, sizeof(strs)));
4695 }
4696 
4697 static int probe_kern_btf_func(void)
4698 {
4699 	static const char strs[] = "\0int\0x\0a";
4700 	/* void x(int a) {} */
4701 	__u32 types[] = {
4702 		/* int */
4703 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4704 		/* FUNC_PROTO */                                /* [2] */
4705 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4706 		BTF_PARAM_ENC(7, 1),
4707 		/* FUNC x */                                    /* [3] */
4708 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4709 	};
4710 
4711 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4712 					     strs, sizeof(strs)));
4713 }
4714 
4715 static int probe_kern_btf_func_global(void)
4716 {
4717 	static const char strs[] = "\0int\0x\0a";
4718 	/* static void x(int a) {} */
4719 	__u32 types[] = {
4720 		/* int */
4721 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4722 		/* FUNC_PROTO */                                /* [2] */
4723 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4724 		BTF_PARAM_ENC(7, 1),
4725 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4726 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4727 	};
4728 
4729 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4730 					     strs, sizeof(strs)));
4731 }
4732 
4733 static int probe_kern_btf_datasec(void)
4734 {
4735 	static const char strs[] = "\0x\0.data";
4736 	/* static int a; */
4737 	__u32 types[] = {
4738 		/* int */
4739 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4740 		/* VAR x */                                     /* [2] */
4741 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4742 		BTF_VAR_STATIC,
4743 		/* DATASEC val */                               /* [3] */
4744 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4745 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4746 	};
4747 
4748 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 					     strs, sizeof(strs)));
4750 }
4751 
4752 static int probe_kern_btf_float(void)
4753 {
4754 	static const char strs[] = "\0float";
4755 	__u32 types[] = {
4756 		/* float */
4757 		BTF_TYPE_FLOAT_ENC(1, 4),
4758 	};
4759 
4760 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4761 					     strs, sizeof(strs)));
4762 }
4763 
4764 static int probe_kern_btf_decl_tag(void)
4765 {
4766 	static const char strs[] = "\0tag";
4767 	__u32 types[] = {
4768 		/* int */
4769 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4770 		/* VAR x */                                     /* [2] */
4771 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4772 		BTF_VAR_STATIC,
4773 		/* attr */
4774 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4775 	};
4776 
4777 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4778 					     strs, sizeof(strs)));
4779 }
4780 
4781 static int probe_kern_btf_type_tag(void)
4782 {
4783 	static const char strs[] = "\0tag";
4784 	__u32 types[] = {
4785 		/* int */
4786 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4787 		/* attr */
4788 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4789 		/* ptr */
4790 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4791 	};
4792 
4793 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4794 					     strs, sizeof(strs)));
4795 }
4796 
4797 static int probe_kern_array_mmap(void)
4798 {
4799 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4800 	int fd;
4801 
4802 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4803 	return probe_fd(fd);
4804 }
4805 
4806 static int probe_kern_exp_attach_type(void)
4807 {
4808 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4809 	struct bpf_insn insns[] = {
4810 		BPF_MOV64_IMM(BPF_REG_0, 0),
4811 		BPF_EXIT_INSN(),
4812 	};
4813 	int fd, insn_cnt = ARRAY_SIZE(insns);
4814 
4815 	/* use any valid combination of program type and (optional)
4816 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4817 	 * to see if kernel supports expected_attach_type field for
4818 	 * BPF_PROG_LOAD command
4819 	 */
4820 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4821 	return probe_fd(fd);
4822 }
4823 
4824 static int probe_kern_probe_read_kernel(void)
4825 {
4826 	struct bpf_insn insns[] = {
4827 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4828 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4829 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4830 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4831 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4832 		BPF_EXIT_INSN(),
4833 	};
4834 	int fd, insn_cnt = ARRAY_SIZE(insns);
4835 
4836 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4837 	return probe_fd(fd);
4838 }
4839 
4840 static int probe_prog_bind_map(void)
4841 {
4842 	char *cp, errmsg[STRERR_BUFSIZE];
4843 	struct bpf_insn insns[] = {
4844 		BPF_MOV64_IMM(BPF_REG_0, 0),
4845 		BPF_EXIT_INSN(),
4846 	};
4847 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4848 
4849 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4850 	if (map < 0) {
4851 		ret = -errno;
4852 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4853 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4854 			__func__, cp, -ret);
4855 		return ret;
4856 	}
4857 
4858 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4859 	if (prog < 0) {
4860 		close(map);
4861 		return 0;
4862 	}
4863 
4864 	ret = bpf_prog_bind_map(prog, map, NULL);
4865 
4866 	close(map);
4867 	close(prog);
4868 
4869 	return ret >= 0;
4870 }
4871 
4872 static int probe_module_btf(void)
4873 {
4874 	static const char strs[] = "\0int";
4875 	__u32 types[] = {
4876 		/* int */
4877 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4878 	};
4879 	struct bpf_btf_info info;
4880 	__u32 len = sizeof(info);
4881 	char name[16];
4882 	int fd, err;
4883 
4884 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4885 	if (fd < 0)
4886 		return 0; /* BTF not supported at all */
4887 
4888 	memset(&info, 0, sizeof(info));
4889 	info.name = ptr_to_u64(name);
4890 	info.name_len = sizeof(name);
4891 
4892 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4893 	 * kernel's module BTF support coincides with support for
4894 	 * name/name_len fields in struct bpf_btf_info.
4895 	 */
4896 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4897 	close(fd);
4898 	return !err;
4899 }
4900 
4901 static int probe_perf_link(void)
4902 {
4903 	struct bpf_insn insns[] = {
4904 		BPF_MOV64_IMM(BPF_REG_0, 0),
4905 		BPF_EXIT_INSN(),
4906 	};
4907 	int prog_fd, link_fd, err;
4908 
4909 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4910 				insns, ARRAY_SIZE(insns), NULL);
4911 	if (prog_fd < 0)
4912 		return -errno;
4913 
4914 	/* use invalid perf_event FD to get EBADF, if link is supported;
4915 	 * otherwise EINVAL should be returned
4916 	 */
4917 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4918 	err = -errno; /* close() can clobber errno */
4919 
4920 	if (link_fd >= 0)
4921 		close(link_fd);
4922 	close(prog_fd);
4923 
4924 	return link_fd < 0 && err == -EBADF;
4925 }
4926 
4927 static int probe_uprobe_multi_link(void)
4928 {
4929 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4930 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4931 	);
4932 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4933 	struct bpf_insn insns[] = {
4934 		BPF_MOV64_IMM(BPF_REG_0, 0),
4935 		BPF_EXIT_INSN(),
4936 	};
4937 	int prog_fd, link_fd, err;
4938 	unsigned long offset = 0;
4939 
4940 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4941 				insns, ARRAY_SIZE(insns), &load_opts);
4942 	if (prog_fd < 0)
4943 		return -errno;
4944 
4945 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4946 	link_opts.uprobe_multi.path = "/";
4947 	link_opts.uprobe_multi.offsets = &offset;
4948 	link_opts.uprobe_multi.cnt = 1;
4949 
4950 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4951 	err = -errno; /* close() can clobber errno */
4952 
4953 	if (link_fd >= 0)
4954 		close(link_fd);
4955 	close(prog_fd);
4956 
4957 	return link_fd < 0 && err == -EBADF;
4958 }
4959 
4960 static int probe_kern_bpf_cookie(void)
4961 {
4962 	struct bpf_insn insns[] = {
4963 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4964 		BPF_EXIT_INSN(),
4965 	};
4966 	int ret, insn_cnt = ARRAY_SIZE(insns);
4967 
4968 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4969 	return probe_fd(ret);
4970 }
4971 
4972 static int probe_kern_btf_enum64(void)
4973 {
4974 	static const char strs[] = "\0enum64";
4975 	__u32 types[] = {
4976 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4977 	};
4978 
4979 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4980 					     strs, sizeof(strs)));
4981 }
4982 
4983 static int probe_kern_syscall_wrapper(void);
4984 
4985 enum kern_feature_result {
4986 	FEAT_UNKNOWN = 0,
4987 	FEAT_SUPPORTED = 1,
4988 	FEAT_MISSING = 2,
4989 };
4990 
4991 typedef int (*feature_probe_fn)(void);
4992 
4993 static struct kern_feature_desc {
4994 	const char *desc;
4995 	feature_probe_fn probe;
4996 	enum kern_feature_result res;
4997 } feature_probes[__FEAT_CNT] = {
4998 	[FEAT_PROG_NAME] = {
4999 		"BPF program name", probe_kern_prog_name,
5000 	},
5001 	[FEAT_GLOBAL_DATA] = {
5002 		"global variables", probe_kern_global_data,
5003 	},
5004 	[FEAT_BTF] = {
5005 		"minimal BTF", probe_kern_btf,
5006 	},
5007 	[FEAT_BTF_FUNC] = {
5008 		"BTF functions", probe_kern_btf_func,
5009 	},
5010 	[FEAT_BTF_GLOBAL_FUNC] = {
5011 		"BTF global function", probe_kern_btf_func_global,
5012 	},
5013 	[FEAT_BTF_DATASEC] = {
5014 		"BTF data section and variable", probe_kern_btf_datasec,
5015 	},
5016 	[FEAT_ARRAY_MMAP] = {
5017 		"ARRAY map mmap()", probe_kern_array_mmap,
5018 	},
5019 	[FEAT_EXP_ATTACH_TYPE] = {
5020 		"BPF_PROG_LOAD expected_attach_type attribute",
5021 		probe_kern_exp_attach_type,
5022 	},
5023 	[FEAT_PROBE_READ_KERN] = {
5024 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
5025 	},
5026 	[FEAT_PROG_BIND_MAP] = {
5027 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
5028 	},
5029 	[FEAT_MODULE_BTF] = {
5030 		"module BTF support", probe_module_btf,
5031 	},
5032 	[FEAT_BTF_FLOAT] = {
5033 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
5034 	},
5035 	[FEAT_PERF_LINK] = {
5036 		"BPF perf link support", probe_perf_link,
5037 	},
5038 	[FEAT_BTF_DECL_TAG] = {
5039 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
5040 	},
5041 	[FEAT_BTF_TYPE_TAG] = {
5042 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
5043 	},
5044 	[FEAT_MEMCG_ACCOUNT] = {
5045 		"memcg-based memory accounting", probe_memcg_account,
5046 	},
5047 	[FEAT_BPF_COOKIE] = {
5048 		"BPF cookie support", probe_kern_bpf_cookie,
5049 	},
5050 	[FEAT_BTF_ENUM64] = {
5051 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5052 	},
5053 	[FEAT_SYSCALL_WRAPPER] = {
5054 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5055 	},
5056 	[FEAT_UPROBE_MULTI_LINK] = {
5057 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
5058 	},
5059 };
5060 
5061 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5062 {
5063 	struct kern_feature_desc *feat = &feature_probes[feat_id];
5064 	int ret;
5065 
5066 	if (obj && obj->gen_loader)
5067 		/* To generate loader program assume the latest kernel
5068 		 * to avoid doing extra prog_load, map_create syscalls.
5069 		 */
5070 		return true;
5071 
5072 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5073 		ret = feat->probe();
5074 		if (ret > 0) {
5075 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5076 		} else if (ret == 0) {
5077 			WRITE_ONCE(feat->res, FEAT_MISSING);
5078 		} else {
5079 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5080 			WRITE_ONCE(feat->res, FEAT_MISSING);
5081 		}
5082 	}
5083 
5084 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5085 }
5086 
5087 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5088 {
5089 	struct bpf_map_info map_info;
5090 	char msg[STRERR_BUFSIZE];
5091 	__u32 map_info_len = sizeof(map_info);
5092 	int err;
5093 
5094 	memset(&map_info, 0, map_info_len);
5095 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5096 	if (err && errno == EINVAL)
5097 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5098 	if (err) {
5099 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5100 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5101 		return false;
5102 	}
5103 
5104 	return (map_info.type == map->def.type &&
5105 		map_info.key_size == map->def.key_size &&
5106 		map_info.value_size == map->def.value_size &&
5107 		map_info.max_entries == map->def.max_entries &&
5108 		map_info.map_flags == map->def.map_flags &&
5109 		map_info.map_extra == map->map_extra);
5110 }
5111 
5112 static int
5113 bpf_object__reuse_map(struct bpf_map *map)
5114 {
5115 	char *cp, errmsg[STRERR_BUFSIZE];
5116 	int err, pin_fd;
5117 
5118 	pin_fd = bpf_obj_get(map->pin_path);
5119 	if (pin_fd < 0) {
5120 		err = -errno;
5121 		if (err == -ENOENT) {
5122 			pr_debug("found no pinned map to reuse at '%s'\n",
5123 				 map->pin_path);
5124 			return 0;
5125 		}
5126 
5127 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5128 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5129 			map->pin_path, cp);
5130 		return err;
5131 	}
5132 
5133 	if (!map_is_reuse_compat(map, pin_fd)) {
5134 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5135 			map->pin_path);
5136 		close(pin_fd);
5137 		return -EINVAL;
5138 	}
5139 
5140 	err = bpf_map__reuse_fd(map, pin_fd);
5141 	close(pin_fd);
5142 	if (err)
5143 		return err;
5144 
5145 	map->pinned = true;
5146 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5147 
5148 	return 0;
5149 }
5150 
5151 static int
5152 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5153 {
5154 	enum libbpf_map_type map_type = map->libbpf_type;
5155 	char *cp, errmsg[STRERR_BUFSIZE];
5156 	int err, zero = 0;
5157 
5158 	if (obj->gen_loader) {
5159 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5160 					 map->mmaped, map->def.value_size);
5161 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5162 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5163 		return 0;
5164 	}
5165 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5166 	if (err) {
5167 		err = -errno;
5168 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5169 		pr_warn("Error setting initial map(%s) contents: %s\n",
5170 			map->name, cp);
5171 		return err;
5172 	}
5173 
5174 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5175 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5176 		err = bpf_map_freeze(map->fd);
5177 		if (err) {
5178 			err = -errno;
5179 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5180 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5181 				map->name, cp);
5182 			return err;
5183 		}
5184 	}
5185 	return 0;
5186 }
5187 
5188 static void bpf_map__destroy(struct bpf_map *map);
5189 
5190 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5191 {
5192 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5193 	struct bpf_map_def *def = &map->def;
5194 	const char *map_name = NULL;
5195 	int err = 0;
5196 
5197 	if (kernel_supports(obj, FEAT_PROG_NAME))
5198 		map_name = map->name;
5199 	create_attr.map_ifindex = map->map_ifindex;
5200 	create_attr.map_flags = def->map_flags;
5201 	create_attr.numa_node = map->numa_node;
5202 	create_attr.map_extra = map->map_extra;
5203 
5204 	if (bpf_map__is_struct_ops(map))
5205 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5206 
5207 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5208 		create_attr.btf_fd = btf__fd(obj->btf);
5209 		create_attr.btf_key_type_id = map->btf_key_type_id;
5210 		create_attr.btf_value_type_id = map->btf_value_type_id;
5211 	}
5212 
5213 	if (bpf_map_type__is_map_in_map(def->type)) {
5214 		if (map->inner_map) {
5215 			err = bpf_object__create_map(obj, map->inner_map, true);
5216 			if (err) {
5217 				pr_warn("map '%s': failed to create inner map: %d\n",
5218 					map->name, err);
5219 				return err;
5220 			}
5221 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5222 		}
5223 		if (map->inner_map_fd >= 0)
5224 			create_attr.inner_map_fd = map->inner_map_fd;
5225 	}
5226 
5227 	switch (def->type) {
5228 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5229 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5230 	case BPF_MAP_TYPE_STACK_TRACE:
5231 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5232 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5233 	case BPF_MAP_TYPE_DEVMAP:
5234 	case BPF_MAP_TYPE_DEVMAP_HASH:
5235 	case BPF_MAP_TYPE_CPUMAP:
5236 	case BPF_MAP_TYPE_XSKMAP:
5237 	case BPF_MAP_TYPE_SOCKMAP:
5238 	case BPF_MAP_TYPE_SOCKHASH:
5239 	case BPF_MAP_TYPE_QUEUE:
5240 	case BPF_MAP_TYPE_STACK:
5241 		create_attr.btf_fd = 0;
5242 		create_attr.btf_key_type_id = 0;
5243 		create_attr.btf_value_type_id = 0;
5244 		map->btf_key_type_id = 0;
5245 		map->btf_value_type_id = 0;
5246 	default:
5247 		break;
5248 	}
5249 
5250 	if (obj->gen_loader) {
5251 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5252 				    def->key_size, def->value_size, def->max_entries,
5253 				    &create_attr, is_inner ? -1 : map - obj->maps);
5254 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5255 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5256 		 */
5257 		map->fd = 0;
5258 	} else {
5259 		map->fd = bpf_map_create(def->type, map_name,
5260 					 def->key_size, def->value_size,
5261 					 def->max_entries, &create_attr);
5262 	}
5263 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5264 			    create_attr.btf_value_type_id)) {
5265 		char *cp, errmsg[STRERR_BUFSIZE];
5266 
5267 		err = -errno;
5268 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5269 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5270 			map->name, cp, err);
5271 		create_attr.btf_fd = 0;
5272 		create_attr.btf_key_type_id = 0;
5273 		create_attr.btf_value_type_id = 0;
5274 		map->btf_key_type_id = 0;
5275 		map->btf_value_type_id = 0;
5276 		map->fd = bpf_map_create(def->type, map_name,
5277 					 def->key_size, def->value_size,
5278 					 def->max_entries, &create_attr);
5279 	}
5280 
5281 	err = map->fd < 0 ? -errno : 0;
5282 
5283 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5284 		if (obj->gen_loader)
5285 			map->inner_map->fd = -1;
5286 		bpf_map__destroy(map->inner_map);
5287 		zfree(&map->inner_map);
5288 	}
5289 
5290 	return err;
5291 }
5292 
5293 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5294 {
5295 	const struct bpf_map *targ_map;
5296 	unsigned int i;
5297 	int fd, err = 0;
5298 
5299 	for (i = 0; i < map->init_slots_sz; i++) {
5300 		if (!map->init_slots[i])
5301 			continue;
5302 
5303 		targ_map = map->init_slots[i];
5304 		fd = bpf_map__fd(targ_map);
5305 
5306 		if (obj->gen_loader) {
5307 			bpf_gen__populate_outer_map(obj->gen_loader,
5308 						    map - obj->maps, i,
5309 						    targ_map - obj->maps);
5310 		} else {
5311 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5312 		}
5313 		if (err) {
5314 			err = -errno;
5315 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5316 				map->name, i, targ_map->name, fd, err);
5317 			return err;
5318 		}
5319 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5320 			 map->name, i, targ_map->name, fd);
5321 	}
5322 
5323 	zfree(&map->init_slots);
5324 	map->init_slots_sz = 0;
5325 
5326 	return 0;
5327 }
5328 
5329 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5330 {
5331 	const struct bpf_program *targ_prog;
5332 	unsigned int i;
5333 	int fd, err;
5334 
5335 	if (obj->gen_loader)
5336 		return -ENOTSUP;
5337 
5338 	for (i = 0; i < map->init_slots_sz; i++) {
5339 		if (!map->init_slots[i])
5340 			continue;
5341 
5342 		targ_prog = map->init_slots[i];
5343 		fd = bpf_program__fd(targ_prog);
5344 
5345 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5346 		if (err) {
5347 			err = -errno;
5348 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5349 				map->name, i, targ_prog->name, fd, err);
5350 			return err;
5351 		}
5352 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5353 			 map->name, i, targ_prog->name, fd);
5354 	}
5355 
5356 	zfree(&map->init_slots);
5357 	map->init_slots_sz = 0;
5358 
5359 	return 0;
5360 }
5361 
5362 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5363 {
5364 	struct bpf_map *map;
5365 	int i, err;
5366 
5367 	for (i = 0; i < obj->nr_maps; i++) {
5368 		map = &obj->maps[i];
5369 
5370 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5371 			continue;
5372 
5373 		err = init_prog_array_slots(obj, map);
5374 		if (err < 0) {
5375 			zclose(map->fd);
5376 			return err;
5377 		}
5378 	}
5379 	return 0;
5380 }
5381 
5382 static int map_set_def_max_entries(struct bpf_map *map)
5383 {
5384 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5385 		int nr_cpus;
5386 
5387 		nr_cpus = libbpf_num_possible_cpus();
5388 		if (nr_cpus < 0) {
5389 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5390 				map->name, nr_cpus);
5391 			return nr_cpus;
5392 		}
5393 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5394 		map->def.max_entries = nr_cpus;
5395 	}
5396 
5397 	return 0;
5398 }
5399 
5400 static int
5401 bpf_object__create_maps(struct bpf_object *obj)
5402 {
5403 	struct bpf_map *map;
5404 	char *cp, errmsg[STRERR_BUFSIZE];
5405 	unsigned int i, j;
5406 	int err;
5407 	bool retried;
5408 
5409 	for (i = 0; i < obj->nr_maps; i++) {
5410 		map = &obj->maps[i];
5411 
5412 		/* To support old kernels, we skip creating global data maps
5413 		 * (.rodata, .data, .kconfig, etc); later on, during program
5414 		 * loading, if we detect that at least one of the to-be-loaded
5415 		 * programs is referencing any global data map, we'll error
5416 		 * out with program name and relocation index logged.
5417 		 * This approach allows to accommodate Clang emitting
5418 		 * unnecessary .rodata.str1.1 sections for string literals,
5419 		 * but also it allows to have CO-RE applications that use
5420 		 * global variables in some of BPF programs, but not others.
5421 		 * If those global variable-using programs are not loaded at
5422 		 * runtime due to bpf_program__set_autoload(prog, false),
5423 		 * bpf_object loading will succeed just fine even on old
5424 		 * kernels.
5425 		 */
5426 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5427 			map->autocreate = false;
5428 
5429 		if (!map->autocreate) {
5430 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5431 			continue;
5432 		}
5433 
5434 		err = map_set_def_max_entries(map);
5435 		if (err)
5436 			goto err_out;
5437 
5438 		retried = false;
5439 retry:
5440 		if (map->pin_path) {
5441 			err = bpf_object__reuse_map(map);
5442 			if (err) {
5443 				pr_warn("map '%s': error reusing pinned map\n",
5444 					map->name);
5445 				goto err_out;
5446 			}
5447 			if (retried && map->fd < 0) {
5448 				pr_warn("map '%s': cannot find pinned map\n",
5449 					map->name);
5450 				err = -ENOENT;
5451 				goto err_out;
5452 			}
5453 		}
5454 
5455 		if (map->fd >= 0) {
5456 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5457 				 map->name, map->fd);
5458 		} else {
5459 			err = bpf_object__create_map(obj, map, false);
5460 			if (err)
5461 				goto err_out;
5462 
5463 			pr_debug("map '%s': created successfully, fd=%d\n",
5464 				 map->name, map->fd);
5465 
5466 			if (bpf_map__is_internal(map)) {
5467 				err = bpf_object__populate_internal_map(obj, map);
5468 				if (err < 0) {
5469 					zclose(map->fd);
5470 					goto err_out;
5471 				}
5472 			}
5473 
5474 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5475 				err = init_map_in_map_slots(obj, map);
5476 				if (err < 0) {
5477 					zclose(map->fd);
5478 					goto err_out;
5479 				}
5480 			}
5481 		}
5482 
5483 		if (map->pin_path && !map->pinned) {
5484 			err = bpf_map__pin(map, NULL);
5485 			if (err) {
5486 				zclose(map->fd);
5487 				if (!retried && err == -EEXIST) {
5488 					retried = true;
5489 					goto retry;
5490 				}
5491 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5492 					map->name, map->pin_path, err);
5493 				goto err_out;
5494 			}
5495 		}
5496 	}
5497 
5498 	return 0;
5499 
5500 err_out:
5501 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5502 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5503 	pr_perm_msg(err);
5504 	for (j = 0; j < i; j++)
5505 		zclose(obj->maps[j].fd);
5506 	return err;
5507 }
5508 
5509 static bool bpf_core_is_flavor_sep(const char *s)
5510 {
5511 	/* check X___Y name pattern, where X and Y are not underscores */
5512 	return s[0] != '_' &&				      /* X */
5513 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5514 	       s[4] != '_';				      /* Y */
5515 }
5516 
5517 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5518  * before last triple underscore. Struct name part after last triple
5519  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5520  */
5521 size_t bpf_core_essential_name_len(const char *name)
5522 {
5523 	size_t n = strlen(name);
5524 	int i;
5525 
5526 	for (i = n - 5; i >= 0; i--) {
5527 		if (bpf_core_is_flavor_sep(name + i))
5528 			return i + 1;
5529 	}
5530 	return n;
5531 }
5532 
5533 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5534 {
5535 	if (!cands)
5536 		return;
5537 
5538 	free(cands->cands);
5539 	free(cands);
5540 }
5541 
5542 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5543 		       size_t local_essent_len,
5544 		       const struct btf *targ_btf,
5545 		       const char *targ_btf_name,
5546 		       int targ_start_id,
5547 		       struct bpf_core_cand_list *cands)
5548 {
5549 	struct bpf_core_cand *new_cands, *cand;
5550 	const struct btf_type *t, *local_t;
5551 	const char *targ_name, *local_name;
5552 	size_t targ_essent_len;
5553 	int n, i;
5554 
5555 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5556 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5557 
5558 	n = btf__type_cnt(targ_btf);
5559 	for (i = targ_start_id; i < n; i++) {
5560 		t = btf__type_by_id(targ_btf, i);
5561 		if (!btf_kind_core_compat(t, local_t))
5562 			continue;
5563 
5564 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5565 		if (str_is_empty(targ_name))
5566 			continue;
5567 
5568 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5569 		if (targ_essent_len != local_essent_len)
5570 			continue;
5571 
5572 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5573 			continue;
5574 
5575 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5576 			 local_cand->id, btf_kind_str(local_t),
5577 			 local_name, i, btf_kind_str(t), targ_name,
5578 			 targ_btf_name);
5579 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5580 					      sizeof(*cands->cands));
5581 		if (!new_cands)
5582 			return -ENOMEM;
5583 
5584 		cand = &new_cands[cands->len];
5585 		cand->btf = targ_btf;
5586 		cand->id = i;
5587 
5588 		cands->cands = new_cands;
5589 		cands->len++;
5590 	}
5591 	return 0;
5592 }
5593 
5594 static int load_module_btfs(struct bpf_object *obj)
5595 {
5596 	struct bpf_btf_info info;
5597 	struct module_btf *mod_btf;
5598 	struct btf *btf;
5599 	char name[64];
5600 	__u32 id = 0, len;
5601 	int err, fd;
5602 
5603 	if (obj->btf_modules_loaded)
5604 		return 0;
5605 
5606 	if (obj->gen_loader)
5607 		return 0;
5608 
5609 	/* don't do this again, even if we find no module BTFs */
5610 	obj->btf_modules_loaded = true;
5611 
5612 	/* kernel too old to support module BTFs */
5613 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5614 		return 0;
5615 
5616 	while (true) {
5617 		err = bpf_btf_get_next_id(id, &id);
5618 		if (err && errno == ENOENT)
5619 			return 0;
5620 		if (err && errno == EPERM) {
5621 			pr_debug("skipping module BTFs loading, missing privileges\n");
5622 			return 0;
5623 		}
5624 		if (err) {
5625 			err = -errno;
5626 			pr_warn("failed to iterate BTF objects: %d\n", err);
5627 			return err;
5628 		}
5629 
5630 		fd = bpf_btf_get_fd_by_id(id);
5631 		if (fd < 0) {
5632 			if (errno == ENOENT)
5633 				continue; /* expected race: BTF was unloaded */
5634 			err = -errno;
5635 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5636 			return err;
5637 		}
5638 
5639 		len = sizeof(info);
5640 		memset(&info, 0, sizeof(info));
5641 		info.name = ptr_to_u64(name);
5642 		info.name_len = sizeof(name);
5643 
5644 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5645 		if (err) {
5646 			err = -errno;
5647 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5648 			goto err_out;
5649 		}
5650 
5651 		/* ignore non-module BTFs */
5652 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5653 			close(fd);
5654 			continue;
5655 		}
5656 
5657 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5658 		err = libbpf_get_error(btf);
5659 		if (err) {
5660 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5661 				name, id, err);
5662 			goto err_out;
5663 		}
5664 
5665 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5666 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5667 		if (err)
5668 			goto err_out;
5669 
5670 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5671 
5672 		mod_btf->btf = btf;
5673 		mod_btf->id = id;
5674 		mod_btf->fd = fd;
5675 		mod_btf->name = strdup(name);
5676 		if (!mod_btf->name) {
5677 			err = -ENOMEM;
5678 			goto err_out;
5679 		}
5680 		continue;
5681 
5682 err_out:
5683 		close(fd);
5684 		return err;
5685 	}
5686 
5687 	return 0;
5688 }
5689 
5690 static struct bpf_core_cand_list *
5691 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5692 {
5693 	struct bpf_core_cand local_cand = {};
5694 	struct bpf_core_cand_list *cands;
5695 	const struct btf *main_btf;
5696 	const struct btf_type *local_t;
5697 	const char *local_name;
5698 	size_t local_essent_len;
5699 	int err, i;
5700 
5701 	local_cand.btf = local_btf;
5702 	local_cand.id = local_type_id;
5703 	local_t = btf__type_by_id(local_btf, local_type_id);
5704 	if (!local_t)
5705 		return ERR_PTR(-EINVAL);
5706 
5707 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5708 	if (str_is_empty(local_name))
5709 		return ERR_PTR(-EINVAL);
5710 	local_essent_len = bpf_core_essential_name_len(local_name);
5711 
5712 	cands = calloc(1, sizeof(*cands));
5713 	if (!cands)
5714 		return ERR_PTR(-ENOMEM);
5715 
5716 	/* Attempt to find target candidates in vmlinux BTF first */
5717 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5718 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5719 	if (err)
5720 		goto err_out;
5721 
5722 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5723 	if (cands->len)
5724 		return cands;
5725 
5726 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5727 	if (obj->btf_vmlinux_override)
5728 		return cands;
5729 
5730 	/* now look through module BTFs, trying to still find candidates */
5731 	err = load_module_btfs(obj);
5732 	if (err)
5733 		goto err_out;
5734 
5735 	for (i = 0; i < obj->btf_module_cnt; i++) {
5736 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5737 					 obj->btf_modules[i].btf,
5738 					 obj->btf_modules[i].name,
5739 					 btf__type_cnt(obj->btf_vmlinux),
5740 					 cands);
5741 		if (err)
5742 			goto err_out;
5743 	}
5744 
5745 	return cands;
5746 err_out:
5747 	bpf_core_free_cands(cands);
5748 	return ERR_PTR(err);
5749 }
5750 
5751 /* Check local and target types for compatibility. This check is used for
5752  * type-based CO-RE relocations and follow slightly different rules than
5753  * field-based relocations. This function assumes that root types were already
5754  * checked for name match. Beyond that initial root-level name check, names
5755  * are completely ignored. Compatibility rules are as follows:
5756  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5757  *     kind should match for local and target types (i.e., STRUCT is not
5758  *     compatible with UNION);
5759  *   - for ENUMs, the size is ignored;
5760  *   - for INT, size and signedness are ignored;
5761  *   - for ARRAY, dimensionality is ignored, element types are checked for
5762  *     compatibility recursively;
5763  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5764  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5765  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5766  *     number of input args and compatible return and argument types.
5767  * These rules are not set in stone and probably will be adjusted as we get
5768  * more experience with using BPF CO-RE relocations.
5769  */
5770 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5771 			      const struct btf *targ_btf, __u32 targ_id)
5772 {
5773 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5774 }
5775 
5776 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5777 			 const struct btf *targ_btf, __u32 targ_id)
5778 {
5779 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5780 }
5781 
5782 static size_t bpf_core_hash_fn(const long key, void *ctx)
5783 {
5784 	return key;
5785 }
5786 
5787 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5788 {
5789 	return k1 == k2;
5790 }
5791 
5792 static int record_relo_core(struct bpf_program *prog,
5793 			    const struct bpf_core_relo *core_relo, int insn_idx)
5794 {
5795 	struct reloc_desc *relos, *relo;
5796 
5797 	relos = libbpf_reallocarray(prog->reloc_desc,
5798 				    prog->nr_reloc + 1, sizeof(*relos));
5799 	if (!relos)
5800 		return -ENOMEM;
5801 	relo = &relos[prog->nr_reloc];
5802 	relo->type = RELO_CORE;
5803 	relo->insn_idx = insn_idx;
5804 	relo->core_relo = core_relo;
5805 	prog->reloc_desc = relos;
5806 	prog->nr_reloc++;
5807 	return 0;
5808 }
5809 
5810 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5811 {
5812 	struct reloc_desc *relo;
5813 	int i;
5814 
5815 	for (i = 0; i < prog->nr_reloc; i++) {
5816 		relo = &prog->reloc_desc[i];
5817 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5818 			continue;
5819 
5820 		return relo->core_relo;
5821 	}
5822 
5823 	return NULL;
5824 }
5825 
5826 static int bpf_core_resolve_relo(struct bpf_program *prog,
5827 				 const struct bpf_core_relo *relo,
5828 				 int relo_idx,
5829 				 const struct btf *local_btf,
5830 				 struct hashmap *cand_cache,
5831 				 struct bpf_core_relo_res *targ_res)
5832 {
5833 	struct bpf_core_spec specs_scratch[3] = {};
5834 	struct bpf_core_cand_list *cands = NULL;
5835 	const char *prog_name = prog->name;
5836 	const struct btf_type *local_type;
5837 	const char *local_name;
5838 	__u32 local_id = relo->type_id;
5839 	int err;
5840 
5841 	local_type = btf__type_by_id(local_btf, local_id);
5842 	if (!local_type)
5843 		return -EINVAL;
5844 
5845 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5846 	if (!local_name)
5847 		return -EINVAL;
5848 
5849 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5850 	    !hashmap__find(cand_cache, local_id, &cands)) {
5851 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5852 		if (IS_ERR(cands)) {
5853 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5854 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5855 				local_name, PTR_ERR(cands));
5856 			return PTR_ERR(cands);
5857 		}
5858 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5859 		if (err) {
5860 			bpf_core_free_cands(cands);
5861 			return err;
5862 		}
5863 	}
5864 
5865 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5866 				       targ_res);
5867 }
5868 
5869 static int
5870 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5871 {
5872 	const struct btf_ext_info_sec *sec;
5873 	struct bpf_core_relo_res targ_res;
5874 	const struct bpf_core_relo *rec;
5875 	const struct btf_ext_info *seg;
5876 	struct hashmap_entry *entry;
5877 	struct hashmap *cand_cache = NULL;
5878 	struct bpf_program *prog;
5879 	struct bpf_insn *insn;
5880 	const char *sec_name;
5881 	int i, err = 0, insn_idx, sec_idx, sec_num;
5882 
5883 	if (obj->btf_ext->core_relo_info.len == 0)
5884 		return 0;
5885 
5886 	if (targ_btf_path) {
5887 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5888 		err = libbpf_get_error(obj->btf_vmlinux_override);
5889 		if (err) {
5890 			pr_warn("failed to parse target BTF: %d\n", err);
5891 			return err;
5892 		}
5893 	}
5894 
5895 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5896 	if (IS_ERR(cand_cache)) {
5897 		err = PTR_ERR(cand_cache);
5898 		goto out;
5899 	}
5900 
5901 	seg = &obj->btf_ext->core_relo_info;
5902 	sec_num = 0;
5903 	for_each_btf_ext_sec(seg, sec) {
5904 		sec_idx = seg->sec_idxs[sec_num];
5905 		sec_num++;
5906 
5907 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5908 		if (str_is_empty(sec_name)) {
5909 			err = -EINVAL;
5910 			goto out;
5911 		}
5912 
5913 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5914 
5915 		for_each_btf_ext_rec(seg, sec, i, rec) {
5916 			if (rec->insn_off % BPF_INSN_SZ)
5917 				return -EINVAL;
5918 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5919 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5920 			if (!prog) {
5921 				/* When __weak subprog is "overridden" by another instance
5922 				 * of the subprog from a different object file, linker still
5923 				 * appends all the .BTF.ext info that used to belong to that
5924 				 * eliminated subprogram.
5925 				 * This is similar to what x86-64 linker does for relocations.
5926 				 * So just ignore such relocations just like we ignore
5927 				 * subprog instructions when discovering subprograms.
5928 				 */
5929 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5930 					 sec_name, i, insn_idx);
5931 				continue;
5932 			}
5933 			/* no need to apply CO-RE relocation if the program is
5934 			 * not going to be loaded
5935 			 */
5936 			if (!prog->autoload)
5937 				continue;
5938 
5939 			/* adjust insn_idx from section frame of reference to the local
5940 			 * program's frame of reference; (sub-)program code is not yet
5941 			 * relocated, so it's enough to just subtract in-section offset
5942 			 */
5943 			insn_idx = insn_idx - prog->sec_insn_off;
5944 			if (insn_idx >= prog->insns_cnt)
5945 				return -EINVAL;
5946 			insn = &prog->insns[insn_idx];
5947 
5948 			err = record_relo_core(prog, rec, insn_idx);
5949 			if (err) {
5950 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5951 					prog->name, i, err);
5952 				goto out;
5953 			}
5954 
5955 			if (prog->obj->gen_loader)
5956 				continue;
5957 
5958 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5959 			if (err) {
5960 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5961 					prog->name, i, err);
5962 				goto out;
5963 			}
5964 
5965 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5966 			if (err) {
5967 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5968 					prog->name, i, insn_idx, err);
5969 				goto out;
5970 			}
5971 		}
5972 	}
5973 
5974 out:
5975 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5976 	btf__free(obj->btf_vmlinux_override);
5977 	obj->btf_vmlinux_override = NULL;
5978 
5979 	if (!IS_ERR_OR_NULL(cand_cache)) {
5980 		hashmap__for_each_entry(cand_cache, entry, i) {
5981 			bpf_core_free_cands(entry->pvalue);
5982 		}
5983 		hashmap__free(cand_cache);
5984 	}
5985 	return err;
5986 }
5987 
5988 /* base map load ldimm64 special constant, used also for log fixup logic */
5989 #define POISON_LDIMM64_MAP_BASE 2001000000
5990 #define POISON_LDIMM64_MAP_PFX "200100"
5991 
5992 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5993 			       int insn_idx, struct bpf_insn *insn,
5994 			       int map_idx, const struct bpf_map *map)
5995 {
5996 	int i;
5997 
5998 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5999 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6000 
6001 	/* we turn single ldimm64 into two identical invalid calls */
6002 	for (i = 0; i < 2; i++) {
6003 		insn->code = BPF_JMP | BPF_CALL;
6004 		insn->dst_reg = 0;
6005 		insn->src_reg = 0;
6006 		insn->off = 0;
6007 		/* if this instruction is reachable (not a dead code),
6008 		 * verifier will complain with something like:
6009 		 * invalid func unknown#2001000123
6010 		 * where lower 123 is map index into obj->maps[] array
6011 		 */
6012 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6013 
6014 		insn++;
6015 	}
6016 }
6017 
6018 /* unresolved kfunc call special constant, used also for log fixup logic */
6019 #define POISON_CALL_KFUNC_BASE 2002000000
6020 #define POISON_CALL_KFUNC_PFX "2002"
6021 
6022 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6023 			      int insn_idx, struct bpf_insn *insn,
6024 			      int ext_idx, const struct extern_desc *ext)
6025 {
6026 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6027 		 prog->name, relo_idx, insn_idx, ext->name);
6028 
6029 	/* we turn kfunc call into invalid helper call with identifiable constant */
6030 	insn->code = BPF_JMP | BPF_CALL;
6031 	insn->dst_reg = 0;
6032 	insn->src_reg = 0;
6033 	insn->off = 0;
6034 	/* if this instruction is reachable (not a dead code),
6035 	 * verifier will complain with something like:
6036 	 * invalid func unknown#2001000123
6037 	 * where lower 123 is extern index into obj->externs[] array
6038 	 */
6039 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6040 }
6041 
6042 /* Relocate data references within program code:
6043  *  - map references;
6044  *  - global variable references;
6045  *  - extern references.
6046  */
6047 static int
6048 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6049 {
6050 	int i;
6051 
6052 	for (i = 0; i < prog->nr_reloc; i++) {
6053 		struct reloc_desc *relo = &prog->reloc_desc[i];
6054 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6055 		const struct bpf_map *map;
6056 		struct extern_desc *ext;
6057 
6058 		switch (relo->type) {
6059 		case RELO_LD64:
6060 			map = &obj->maps[relo->map_idx];
6061 			if (obj->gen_loader) {
6062 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6063 				insn[0].imm = relo->map_idx;
6064 			} else if (map->autocreate) {
6065 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6066 				insn[0].imm = map->fd;
6067 			} else {
6068 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6069 						   relo->map_idx, map);
6070 			}
6071 			break;
6072 		case RELO_DATA:
6073 			map = &obj->maps[relo->map_idx];
6074 			insn[1].imm = insn[0].imm + relo->sym_off;
6075 			if (obj->gen_loader) {
6076 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6077 				insn[0].imm = relo->map_idx;
6078 			} else if (map->autocreate) {
6079 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6080 				insn[0].imm = map->fd;
6081 			} else {
6082 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6083 						   relo->map_idx, map);
6084 			}
6085 			break;
6086 		case RELO_EXTERN_LD64:
6087 			ext = &obj->externs[relo->ext_idx];
6088 			if (ext->type == EXT_KCFG) {
6089 				if (obj->gen_loader) {
6090 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6091 					insn[0].imm = obj->kconfig_map_idx;
6092 				} else {
6093 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6094 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6095 				}
6096 				insn[1].imm = ext->kcfg.data_off;
6097 			} else /* EXT_KSYM */ {
6098 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6099 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6100 					insn[0].imm = ext->ksym.kernel_btf_id;
6101 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6102 				} else { /* typeless ksyms or unresolved typed ksyms */
6103 					insn[0].imm = (__u32)ext->ksym.addr;
6104 					insn[1].imm = ext->ksym.addr >> 32;
6105 				}
6106 			}
6107 			break;
6108 		case RELO_EXTERN_CALL:
6109 			ext = &obj->externs[relo->ext_idx];
6110 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6111 			if (ext->is_set) {
6112 				insn[0].imm = ext->ksym.kernel_btf_id;
6113 				insn[0].off = ext->ksym.btf_fd_idx;
6114 			} else { /* unresolved weak kfunc call */
6115 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6116 						  relo->ext_idx, ext);
6117 			}
6118 			break;
6119 		case RELO_SUBPROG_ADDR:
6120 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6121 				pr_warn("prog '%s': relo #%d: bad insn\n",
6122 					prog->name, i);
6123 				return -EINVAL;
6124 			}
6125 			/* handled already */
6126 			break;
6127 		case RELO_CALL:
6128 			/* handled already */
6129 			break;
6130 		case RELO_CORE:
6131 			/* will be handled by bpf_program_record_relos() */
6132 			break;
6133 		default:
6134 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6135 				prog->name, i, relo->type);
6136 			return -EINVAL;
6137 		}
6138 	}
6139 
6140 	return 0;
6141 }
6142 
6143 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6144 				    const struct bpf_program *prog,
6145 				    const struct btf_ext_info *ext_info,
6146 				    void **prog_info, __u32 *prog_rec_cnt,
6147 				    __u32 *prog_rec_sz)
6148 {
6149 	void *copy_start = NULL, *copy_end = NULL;
6150 	void *rec, *rec_end, *new_prog_info;
6151 	const struct btf_ext_info_sec *sec;
6152 	size_t old_sz, new_sz;
6153 	int i, sec_num, sec_idx, off_adj;
6154 
6155 	sec_num = 0;
6156 	for_each_btf_ext_sec(ext_info, sec) {
6157 		sec_idx = ext_info->sec_idxs[sec_num];
6158 		sec_num++;
6159 		if (prog->sec_idx != sec_idx)
6160 			continue;
6161 
6162 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6163 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6164 
6165 			if (insn_off < prog->sec_insn_off)
6166 				continue;
6167 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6168 				break;
6169 
6170 			if (!copy_start)
6171 				copy_start = rec;
6172 			copy_end = rec + ext_info->rec_size;
6173 		}
6174 
6175 		if (!copy_start)
6176 			return -ENOENT;
6177 
6178 		/* append func/line info of a given (sub-)program to the main
6179 		 * program func/line info
6180 		 */
6181 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6182 		new_sz = old_sz + (copy_end - copy_start);
6183 		new_prog_info = realloc(*prog_info, new_sz);
6184 		if (!new_prog_info)
6185 			return -ENOMEM;
6186 		*prog_info = new_prog_info;
6187 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6188 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6189 
6190 		/* Kernel instruction offsets are in units of 8-byte
6191 		 * instructions, while .BTF.ext instruction offsets generated
6192 		 * by Clang are in units of bytes. So convert Clang offsets
6193 		 * into kernel offsets and adjust offset according to program
6194 		 * relocated position.
6195 		 */
6196 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6197 		rec = new_prog_info + old_sz;
6198 		rec_end = new_prog_info + new_sz;
6199 		for (; rec < rec_end; rec += ext_info->rec_size) {
6200 			__u32 *insn_off = rec;
6201 
6202 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6203 		}
6204 		*prog_rec_sz = ext_info->rec_size;
6205 		return 0;
6206 	}
6207 
6208 	return -ENOENT;
6209 }
6210 
6211 static int
6212 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6213 			      struct bpf_program *main_prog,
6214 			      const struct bpf_program *prog)
6215 {
6216 	int err;
6217 
6218 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6219 	 * supprot func/line info
6220 	 */
6221 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6222 		return 0;
6223 
6224 	/* only attempt func info relocation if main program's func_info
6225 	 * relocation was successful
6226 	 */
6227 	if (main_prog != prog && !main_prog->func_info)
6228 		goto line_info;
6229 
6230 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6231 				       &main_prog->func_info,
6232 				       &main_prog->func_info_cnt,
6233 				       &main_prog->func_info_rec_size);
6234 	if (err) {
6235 		if (err != -ENOENT) {
6236 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6237 				prog->name, err);
6238 			return err;
6239 		}
6240 		if (main_prog->func_info) {
6241 			/*
6242 			 * Some info has already been found but has problem
6243 			 * in the last btf_ext reloc. Must have to error out.
6244 			 */
6245 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6246 			return err;
6247 		}
6248 		/* Have problem loading the very first info. Ignore the rest. */
6249 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6250 			prog->name);
6251 	}
6252 
6253 line_info:
6254 	/* don't relocate line info if main program's relocation failed */
6255 	if (main_prog != prog && !main_prog->line_info)
6256 		return 0;
6257 
6258 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6259 				       &main_prog->line_info,
6260 				       &main_prog->line_info_cnt,
6261 				       &main_prog->line_info_rec_size);
6262 	if (err) {
6263 		if (err != -ENOENT) {
6264 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6265 				prog->name, err);
6266 			return err;
6267 		}
6268 		if (main_prog->line_info) {
6269 			/*
6270 			 * Some info has already been found but has problem
6271 			 * in the last btf_ext reloc. Must have to error out.
6272 			 */
6273 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6274 			return err;
6275 		}
6276 		/* Have problem loading the very first info. Ignore the rest. */
6277 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6278 			prog->name);
6279 	}
6280 	return 0;
6281 }
6282 
6283 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6284 {
6285 	size_t insn_idx = *(const size_t *)key;
6286 	const struct reloc_desc *relo = elem;
6287 
6288 	if (insn_idx == relo->insn_idx)
6289 		return 0;
6290 	return insn_idx < relo->insn_idx ? -1 : 1;
6291 }
6292 
6293 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6294 {
6295 	if (!prog->nr_reloc)
6296 		return NULL;
6297 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6298 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6299 }
6300 
6301 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6302 {
6303 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6304 	struct reloc_desc *relos;
6305 	int i;
6306 
6307 	if (main_prog == subprog)
6308 		return 0;
6309 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6310 	/* if new count is zero, reallocarray can return a valid NULL result;
6311 	 * in this case the previous pointer will be freed, so we *have to*
6312 	 * reassign old pointer to the new value (even if it's NULL)
6313 	 */
6314 	if (!relos && new_cnt)
6315 		return -ENOMEM;
6316 	if (subprog->nr_reloc)
6317 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6318 		       sizeof(*relos) * subprog->nr_reloc);
6319 
6320 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6321 		relos[i].insn_idx += subprog->sub_insn_off;
6322 	/* After insn_idx adjustment the 'relos' array is still sorted
6323 	 * by insn_idx and doesn't break bsearch.
6324 	 */
6325 	main_prog->reloc_desc = relos;
6326 	main_prog->nr_reloc = new_cnt;
6327 	return 0;
6328 }
6329 
6330 static int
6331 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6332 				struct bpf_program *subprog)
6333 {
6334        struct bpf_insn *insns;
6335        size_t new_cnt;
6336        int err;
6337 
6338        subprog->sub_insn_off = main_prog->insns_cnt;
6339 
6340        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6341        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6342        if (!insns) {
6343                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6344                return -ENOMEM;
6345        }
6346        main_prog->insns = insns;
6347        main_prog->insns_cnt = new_cnt;
6348 
6349        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6350               subprog->insns_cnt * sizeof(*insns));
6351 
6352        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6353                 main_prog->name, subprog->insns_cnt, subprog->name);
6354 
6355        /* The subprog insns are now appended. Append its relos too. */
6356        err = append_subprog_relos(main_prog, subprog);
6357        if (err)
6358                return err;
6359        return 0;
6360 }
6361 
6362 static int
6363 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6364 		       struct bpf_program *prog)
6365 {
6366 	size_t sub_insn_idx, insn_idx;
6367 	struct bpf_program *subprog;
6368 	struct reloc_desc *relo;
6369 	struct bpf_insn *insn;
6370 	int err;
6371 
6372 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6373 	if (err)
6374 		return err;
6375 
6376 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6377 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6378 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6379 			continue;
6380 
6381 		relo = find_prog_insn_relo(prog, insn_idx);
6382 		if (relo && relo->type == RELO_EXTERN_CALL)
6383 			/* kfunc relocations will be handled later
6384 			 * in bpf_object__relocate_data()
6385 			 */
6386 			continue;
6387 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6388 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6389 				prog->name, insn_idx, relo->type);
6390 			return -LIBBPF_ERRNO__RELOC;
6391 		}
6392 		if (relo) {
6393 			/* sub-program instruction index is a combination of
6394 			 * an offset of a symbol pointed to by relocation and
6395 			 * call instruction's imm field; for global functions,
6396 			 * call always has imm = -1, but for static functions
6397 			 * relocation is against STT_SECTION and insn->imm
6398 			 * points to a start of a static function
6399 			 *
6400 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6401 			 * the byte offset in the corresponding section.
6402 			 */
6403 			if (relo->type == RELO_CALL)
6404 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6405 			else
6406 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6407 		} else if (insn_is_pseudo_func(insn)) {
6408 			/*
6409 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6410 			 * functions are in the same section, so it shouldn't reach here.
6411 			 */
6412 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6413 				prog->name, insn_idx);
6414 			return -LIBBPF_ERRNO__RELOC;
6415 		} else {
6416 			/* if subprogram call is to a static function within
6417 			 * the same ELF section, there won't be any relocation
6418 			 * emitted, but it also means there is no additional
6419 			 * offset necessary, insns->imm is relative to
6420 			 * instruction's original position within the section
6421 			 */
6422 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6423 		}
6424 
6425 		/* we enforce that sub-programs should be in .text section */
6426 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6427 		if (!subprog) {
6428 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6429 				prog->name);
6430 			return -LIBBPF_ERRNO__RELOC;
6431 		}
6432 
6433 		/* if it's the first call instruction calling into this
6434 		 * subprogram (meaning this subprog hasn't been processed
6435 		 * yet) within the context of current main program:
6436 		 *   - append it at the end of main program's instructions blog;
6437 		 *   - process is recursively, while current program is put on hold;
6438 		 *   - if that subprogram calls some other not yet processes
6439 		 *   subprogram, same thing will happen recursively until
6440 		 *   there are no more unprocesses subprograms left to append
6441 		 *   and relocate.
6442 		 */
6443 		if (subprog->sub_insn_off == 0) {
6444 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6445 			if (err)
6446 				return err;
6447 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6448 			if (err)
6449 				return err;
6450 		}
6451 
6452 		/* main_prog->insns memory could have been re-allocated, so
6453 		 * calculate pointer again
6454 		 */
6455 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6456 		/* calculate correct instruction position within current main
6457 		 * prog; each main prog can have a different set of
6458 		 * subprograms appended (potentially in different order as
6459 		 * well), so position of any subprog can be different for
6460 		 * different main programs
6461 		 */
6462 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6463 
6464 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6465 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6466 	}
6467 
6468 	return 0;
6469 }
6470 
6471 /*
6472  * Relocate sub-program calls.
6473  *
6474  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6475  * main prog) is processed separately. For each subprog (non-entry functions,
6476  * that can be called from either entry progs or other subprogs) gets their
6477  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6478  * hasn't been yet appended and relocated within current main prog. Once its
6479  * relocated, sub_insn_off will point at the position within current main prog
6480  * where given subprog was appended. This will further be used to relocate all
6481  * the call instructions jumping into this subprog.
6482  *
6483  * We start with main program and process all call instructions. If the call
6484  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6485  * is zero), subprog instructions are appended at the end of main program's
6486  * instruction array. Then main program is "put on hold" while we recursively
6487  * process newly appended subprogram. If that subprogram calls into another
6488  * subprogram that hasn't been appended, new subprogram is appended again to
6489  * the *main* prog's instructions (subprog's instructions are always left
6490  * untouched, as they need to be in unmodified state for subsequent main progs
6491  * and subprog instructions are always sent only as part of a main prog) and
6492  * the process continues recursively. Once all the subprogs called from a main
6493  * prog or any of its subprogs are appended (and relocated), all their
6494  * positions within finalized instructions array are known, so it's easy to
6495  * rewrite call instructions with correct relative offsets, corresponding to
6496  * desired target subprog.
6497  *
6498  * Its important to realize that some subprogs might not be called from some
6499  * main prog and any of its called/used subprogs. Those will keep their
6500  * subprog->sub_insn_off as zero at all times and won't be appended to current
6501  * main prog and won't be relocated within the context of current main prog.
6502  * They might still be used from other main progs later.
6503  *
6504  * Visually this process can be shown as below. Suppose we have two main
6505  * programs mainA and mainB and BPF object contains three subprogs: subA,
6506  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6507  * subC both call subB:
6508  *
6509  *        +--------+ +-------+
6510  *        |        v v       |
6511  *     +--+---+ +--+-+-+ +---+--+
6512  *     | subA | | subB | | subC |
6513  *     +--+---+ +------+ +---+--+
6514  *        ^                  ^
6515  *        |                  |
6516  *    +---+-------+   +------+----+
6517  *    |   mainA   |   |   mainB   |
6518  *    +-----------+   +-----------+
6519  *
6520  * We'll start relocating mainA, will find subA, append it and start
6521  * processing sub A recursively:
6522  *
6523  *    +-----------+------+
6524  *    |   mainA   | subA |
6525  *    +-----------+------+
6526  *
6527  * At this point we notice that subB is used from subA, so we append it and
6528  * relocate (there are no further subcalls from subB):
6529  *
6530  *    +-----------+------+------+
6531  *    |   mainA   | subA | subB |
6532  *    +-----------+------+------+
6533  *
6534  * At this point, we relocate subA calls, then go one level up and finish with
6535  * relocatin mainA calls. mainA is done.
6536  *
6537  * For mainB process is similar but results in different order. We start with
6538  * mainB and skip subA and subB, as mainB never calls them (at least
6539  * directly), but we see subC is needed, so we append and start processing it:
6540  *
6541  *    +-----------+------+
6542  *    |   mainB   | subC |
6543  *    +-----------+------+
6544  * Now we see subC needs subB, so we go back to it, append and relocate it:
6545  *
6546  *    +-----------+------+------+
6547  *    |   mainB   | subC | subB |
6548  *    +-----------+------+------+
6549  *
6550  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6551  */
6552 static int
6553 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6554 {
6555 	struct bpf_program *subprog;
6556 	int i, err;
6557 
6558 	/* mark all subprogs as not relocated (yet) within the context of
6559 	 * current main program
6560 	 */
6561 	for (i = 0; i < obj->nr_programs; i++) {
6562 		subprog = &obj->programs[i];
6563 		if (!prog_is_subprog(obj, subprog))
6564 			continue;
6565 
6566 		subprog->sub_insn_off = 0;
6567 	}
6568 
6569 	err = bpf_object__reloc_code(obj, prog, prog);
6570 	if (err)
6571 		return err;
6572 
6573 	return 0;
6574 }
6575 
6576 static void
6577 bpf_object__free_relocs(struct bpf_object *obj)
6578 {
6579 	struct bpf_program *prog;
6580 	int i;
6581 
6582 	/* free up relocation descriptors */
6583 	for (i = 0; i < obj->nr_programs; i++) {
6584 		prog = &obj->programs[i];
6585 		zfree(&prog->reloc_desc);
6586 		prog->nr_reloc = 0;
6587 	}
6588 }
6589 
6590 static int cmp_relocs(const void *_a, const void *_b)
6591 {
6592 	const struct reloc_desc *a = _a;
6593 	const struct reloc_desc *b = _b;
6594 
6595 	if (a->insn_idx != b->insn_idx)
6596 		return a->insn_idx < b->insn_idx ? -1 : 1;
6597 
6598 	/* no two relocations should have the same insn_idx, but ... */
6599 	if (a->type != b->type)
6600 		return a->type < b->type ? -1 : 1;
6601 
6602 	return 0;
6603 }
6604 
6605 static void bpf_object__sort_relos(struct bpf_object *obj)
6606 {
6607 	int i;
6608 
6609 	for (i = 0; i < obj->nr_programs; i++) {
6610 		struct bpf_program *p = &obj->programs[i];
6611 
6612 		if (!p->nr_reloc)
6613 			continue;
6614 
6615 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6616 	}
6617 }
6618 
6619 static int
6620 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6621 {
6622 	struct bpf_program *prog;
6623 	size_t i, j;
6624 	int err;
6625 
6626 	if (obj->btf_ext) {
6627 		err = bpf_object__relocate_core(obj, targ_btf_path);
6628 		if (err) {
6629 			pr_warn("failed to perform CO-RE relocations: %d\n",
6630 				err);
6631 			return err;
6632 		}
6633 		bpf_object__sort_relos(obj);
6634 	}
6635 
6636 	/* Before relocating calls pre-process relocations and mark
6637 	 * few ld_imm64 instructions that points to subprogs.
6638 	 * Otherwise bpf_object__reloc_code() later would have to consider
6639 	 * all ld_imm64 insns as relocation candidates. That would
6640 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6641 	 * would increase and most of them will fail to find a relo.
6642 	 */
6643 	for (i = 0; i < obj->nr_programs; i++) {
6644 		prog = &obj->programs[i];
6645 		for (j = 0; j < prog->nr_reloc; j++) {
6646 			struct reloc_desc *relo = &prog->reloc_desc[j];
6647 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6648 
6649 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6650 			if (relo->type == RELO_SUBPROG_ADDR)
6651 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6652 		}
6653 	}
6654 
6655 	/* relocate subprogram calls and append used subprograms to main
6656 	 * programs; each copy of subprogram code needs to be relocated
6657 	 * differently for each main program, because its code location might
6658 	 * have changed.
6659 	 * Append subprog relos to main programs to allow data relos to be
6660 	 * processed after text is completely relocated.
6661 	 */
6662 	for (i = 0; i < obj->nr_programs; i++) {
6663 		prog = &obj->programs[i];
6664 		/* sub-program's sub-calls are relocated within the context of
6665 		 * its main program only
6666 		 */
6667 		if (prog_is_subprog(obj, prog))
6668 			continue;
6669 		if (!prog->autoload)
6670 			continue;
6671 
6672 		err = bpf_object__relocate_calls(obj, prog);
6673 		if (err) {
6674 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6675 				prog->name, err);
6676 			return err;
6677 		}
6678 
6679 		/* Now, also append exception callback if it has not been done already. */
6680 		if (prog->exception_cb_idx >= 0) {
6681 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
6682 
6683 			/* Calling exception callback directly is disallowed, which the
6684 			 * verifier will reject later. In case it was processed already,
6685 			 * we can skip this step, otherwise for all other valid cases we
6686 			 * have to append exception callback now.
6687 			 */
6688 			if (subprog->sub_insn_off == 0) {
6689 				err = bpf_object__append_subprog_code(obj, prog, subprog);
6690 				if (err)
6691 					return err;
6692 				err = bpf_object__reloc_code(obj, prog, subprog);
6693 				if (err)
6694 					return err;
6695 			}
6696 		}
6697 	}
6698 	/* Process data relos for main programs */
6699 	for (i = 0; i < obj->nr_programs; i++) {
6700 		prog = &obj->programs[i];
6701 		if (prog_is_subprog(obj, prog))
6702 			continue;
6703 		if (!prog->autoload)
6704 			continue;
6705 		err = bpf_object__relocate_data(obj, prog);
6706 		if (err) {
6707 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6708 				prog->name, err);
6709 			return err;
6710 		}
6711 	}
6712 
6713 	return 0;
6714 }
6715 
6716 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6717 					    Elf64_Shdr *shdr, Elf_Data *data);
6718 
6719 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6720 					 Elf64_Shdr *shdr, Elf_Data *data)
6721 {
6722 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6723 	int i, j, nrels, new_sz;
6724 	const struct btf_var_secinfo *vi = NULL;
6725 	const struct btf_type *sec, *var, *def;
6726 	struct bpf_map *map = NULL, *targ_map = NULL;
6727 	struct bpf_program *targ_prog = NULL;
6728 	bool is_prog_array, is_map_in_map;
6729 	const struct btf_member *member;
6730 	const char *name, *mname, *type;
6731 	unsigned int moff;
6732 	Elf64_Sym *sym;
6733 	Elf64_Rel *rel;
6734 	void *tmp;
6735 
6736 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6737 		return -EINVAL;
6738 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6739 	if (!sec)
6740 		return -EINVAL;
6741 
6742 	nrels = shdr->sh_size / shdr->sh_entsize;
6743 	for (i = 0; i < nrels; i++) {
6744 		rel = elf_rel_by_idx(data, i);
6745 		if (!rel) {
6746 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6747 			return -LIBBPF_ERRNO__FORMAT;
6748 		}
6749 
6750 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6751 		if (!sym) {
6752 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6753 				i, (size_t)ELF64_R_SYM(rel->r_info));
6754 			return -LIBBPF_ERRNO__FORMAT;
6755 		}
6756 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6757 
6758 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6759 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6760 			 (size_t)rel->r_offset, sym->st_name, name);
6761 
6762 		for (j = 0; j < obj->nr_maps; j++) {
6763 			map = &obj->maps[j];
6764 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6765 				continue;
6766 
6767 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6768 			if (vi->offset <= rel->r_offset &&
6769 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6770 				break;
6771 		}
6772 		if (j == obj->nr_maps) {
6773 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6774 				i, name, (size_t)rel->r_offset);
6775 			return -EINVAL;
6776 		}
6777 
6778 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6779 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6780 		type = is_map_in_map ? "map" : "prog";
6781 		if (is_map_in_map) {
6782 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6783 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6784 					i, name);
6785 				return -LIBBPF_ERRNO__RELOC;
6786 			}
6787 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6788 			    map->def.key_size != sizeof(int)) {
6789 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6790 					i, map->name, sizeof(int));
6791 				return -EINVAL;
6792 			}
6793 			targ_map = bpf_object__find_map_by_name(obj, name);
6794 			if (!targ_map) {
6795 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6796 					i, name);
6797 				return -ESRCH;
6798 			}
6799 		} else if (is_prog_array) {
6800 			targ_prog = bpf_object__find_program_by_name(obj, name);
6801 			if (!targ_prog) {
6802 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6803 					i, name);
6804 				return -ESRCH;
6805 			}
6806 			if (targ_prog->sec_idx != sym->st_shndx ||
6807 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6808 			    prog_is_subprog(obj, targ_prog)) {
6809 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6810 					i, name);
6811 				return -LIBBPF_ERRNO__RELOC;
6812 			}
6813 		} else {
6814 			return -EINVAL;
6815 		}
6816 
6817 		var = btf__type_by_id(obj->btf, vi->type);
6818 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6819 		if (btf_vlen(def) == 0)
6820 			return -EINVAL;
6821 		member = btf_members(def) + btf_vlen(def) - 1;
6822 		mname = btf__name_by_offset(obj->btf, member->name_off);
6823 		if (strcmp(mname, "values"))
6824 			return -EINVAL;
6825 
6826 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6827 		if (rel->r_offset - vi->offset < moff)
6828 			return -EINVAL;
6829 
6830 		moff = rel->r_offset - vi->offset - moff;
6831 		/* here we use BPF pointer size, which is always 64 bit, as we
6832 		 * are parsing ELF that was built for BPF target
6833 		 */
6834 		if (moff % bpf_ptr_sz)
6835 			return -EINVAL;
6836 		moff /= bpf_ptr_sz;
6837 		if (moff >= map->init_slots_sz) {
6838 			new_sz = moff + 1;
6839 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6840 			if (!tmp)
6841 				return -ENOMEM;
6842 			map->init_slots = tmp;
6843 			memset(map->init_slots + map->init_slots_sz, 0,
6844 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6845 			map->init_slots_sz = new_sz;
6846 		}
6847 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6848 
6849 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6850 			 i, map->name, moff, type, name);
6851 	}
6852 
6853 	return 0;
6854 }
6855 
6856 static int bpf_object__collect_relos(struct bpf_object *obj)
6857 {
6858 	int i, err;
6859 
6860 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6861 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6862 		Elf64_Shdr *shdr;
6863 		Elf_Data *data;
6864 		int idx;
6865 
6866 		if (sec_desc->sec_type != SEC_RELO)
6867 			continue;
6868 
6869 		shdr = sec_desc->shdr;
6870 		data = sec_desc->data;
6871 		idx = shdr->sh_info;
6872 
6873 		if (shdr->sh_type != SHT_REL) {
6874 			pr_warn("internal error at %d\n", __LINE__);
6875 			return -LIBBPF_ERRNO__INTERNAL;
6876 		}
6877 
6878 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6879 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6880 		else if (idx == obj->efile.btf_maps_shndx)
6881 			err = bpf_object__collect_map_relos(obj, shdr, data);
6882 		else
6883 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6884 		if (err)
6885 			return err;
6886 	}
6887 
6888 	bpf_object__sort_relos(obj);
6889 	return 0;
6890 }
6891 
6892 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6893 {
6894 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6895 	    BPF_OP(insn->code) == BPF_CALL &&
6896 	    BPF_SRC(insn->code) == BPF_K &&
6897 	    insn->src_reg == 0 &&
6898 	    insn->dst_reg == 0) {
6899 		    *func_id = insn->imm;
6900 		    return true;
6901 	}
6902 	return false;
6903 }
6904 
6905 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6906 {
6907 	struct bpf_insn *insn = prog->insns;
6908 	enum bpf_func_id func_id;
6909 	int i;
6910 
6911 	if (obj->gen_loader)
6912 		return 0;
6913 
6914 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6915 		if (!insn_is_helper_call(insn, &func_id))
6916 			continue;
6917 
6918 		/* on kernels that don't yet support
6919 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6920 		 * to bpf_probe_read() which works well for old kernels
6921 		 */
6922 		switch (func_id) {
6923 		case BPF_FUNC_probe_read_kernel:
6924 		case BPF_FUNC_probe_read_user:
6925 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6926 				insn->imm = BPF_FUNC_probe_read;
6927 			break;
6928 		case BPF_FUNC_probe_read_kernel_str:
6929 		case BPF_FUNC_probe_read_user_str:
6930 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6931 				insn->imm = BPF_FUNC_probe_read_str;
6932 			break;
6933 		default:
6934 			break;
6935 		}
6936 	}
6937 	return 0;
6938 }
6939 
6940 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6941 				     int *btf_obj_fd, int *btf_type_id);
6942 
6943 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6944 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6945 				    struct bpf_prog_load_opts *opts, long cookie)
6946 {
6947 	enum sec_def_flags def = cookie;
6948 
6949 	/* old kernels might not support specifying expected_attach_type */
6950 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6951 		opts->expected_attach_type = 0;
6952 
6953 	if (def & SEC_SLEEPABLE)
6954 		opts->prog_flags |= BPF_F_SLEEPABLE;
6955 
6956 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6957 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6958 
6959 	/* special check for usdt to use uprobe_multi link */
6960 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6961 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6962 
6963 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6964 		int btf_obj_fd = 0, btf_type_id = 0, err;
6965 		const char *attach_name;
6966 
6967 		attach_name = strchr(prog->sec_name, '/');
6968 		if (!attach_name) {
6969 			/* if BPF program is annotated with just SEC("fentry")
6970 			 * (or similar) without declaratively specifying
6971 			 * target, then it is expected that target will be
6972 			 * specified with bpf_program__set_attach_target() at
6973 			 * runtime before BPF object load step. If not, then
6974 			 * there is nothing to load into the kernel as BPF
6975 			 * verifier won't be able to validate BPF program
6976 			 * correctness anyways.
6977 			 */
6978 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6979 				prog->name);
6980 			return -EINVAL;
6981 		}
6982 		attach_name++; /* skip over / */
6983 
6984 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6985 		if (err)
6986 			return err;
6987 
6988 		/* cache resolved BTF FD and BTF type ID in the prog */
6989 		prog->attach_btf_obj_fd = btf_obj_fd;
6990 		prog->attach_btf_id = btf_type_id;
6991 
6992 		/* but by now libbpf common logic is not utilizing
6993 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6994 		 * this callback is called after opts were populated by
6995 		 * libbpf, so this callback has to update opts explicitly here
6996 		 */
6997 		opts->attach_btf_obj_fd = btf_obj_fd;
6998 		opts->attach_btf_id = btf_type_id;
6999 	}
7000 	return 0;
7001 }
7002 
7003 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7004 
7005 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7006 				struct bpf_insn *insns, int insns_cnt,
7007 				const char *license, __u32 kern_version, int *prog_fd)
7008 {
7009 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7010 	const char *prog_name = NULL;
7011 	char *cp, errmsg[STRERR_BUFSIZE];
7012 	size_t log_buf_size = 0;
7013 	char *log_buf = NULL, *tmp;
7014 	int btf_fd, ret, err;
7015 	bool own_log_buf = true;
7016 	__u32 log_level = prog->log_level;
7017 
7018 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7019 		/*
7020 		 * The program type must be set.  Most likely we couldn't find a proper
7021 		 * section definition at load time, and thus we didn't infer the type.
7022 		 */
7023 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7024 			prog->name, prog->sec_name);
7025 		return -EINVAL;
7026 	}
7027 
7028 	if (!insns || !insns_cnt)
7029 		return -EINVAL;
7030 
7031 	if (kernel_supports(obj, FEAT_PROG_NAME))
7032 		prog_name = prog->name;
7033 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7034 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7035 	load_attr.attach_btf_id = prog->attach_btf_id;
7036 	load_attr.kern_version = kern_version;
7037 	load_attr.prog_ifindex = prog->prog_ifindex;
7038 
7039 	/* specify func_info/line_info only if kernel supports them */
7040 	btf_fd = bpf_object__btf_fd(obj);
7041 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7042 		load_attr.prog_btf_fd = btf_fd;
7043 		load_attr.func_info = prog->func_info;
7044 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7045 		load_attr.func_info_cnt = prog->func_info_cnt;
7046 		load_attr.line_info = prog->line_info;
7047 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7048 		load_attr.line_info_cnt = prog->line_info_cnt;
7049 	}
7050 	load_attr.log_level = log_level;
7051 	load_attr.prog_flags = prog->prog_flags;
7052 	load_attr.fd_array = obj->fd_array;
7053 
7054 	/* adjust load_attr if sec_def provides custom preload callback */
7055 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7056 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7057 		if (err < 0) {
7058 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7059 				prog->name, err);
7060 			return err;
7061 		}
7062 		insns = prog->insns;
7063 		insns_cnt = prog->insns_cnt;
7064 	}
7065 
7066 	/* allow prog_prepare_load_fn to change expected_attach_type */
7067 	load_attr.expected_attach_type = prog->expected_attach_type;
7068 
7069 	if (obj->gen_loader) {
7070 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7071 				   license, insns, insns_cnt, &load_attr,
7072 				   prog - obj->programs);
7073 		*prog_fd = -1;
7074 		return 0;
7075 	}
7076 
7077 retry_load:
7078 	/* if log_level is zero, we don't request logs initially even if
7079 	 * custom log_buf is specified; if the program load fails, then we'll
7080 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7081 	 * our own and retry the load to get details on what failed
7082 	 */
7083 	if (log_level) {
7084 		if (prog->log_buf) {
7085 			log_buf = prog->log_buf;
7086 			log_buf_size = prog->log_size;
7087 			own_log_buf = false;
7088 		} else if (obj->log_buf) {
7089 			log_buf = obj->log_buf;
7090 			log_buf_size = obj->log_size;
7091 			own_log_buf = false;
7092 		} else {
7093 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7094 			tmp = realloc(log_buf, log_buf_size);
7095 			if (!tmp) {
7096 				ret = -ENOMEM;
7097 				goto out;
7098 			}
7099 			log_buf = tmp;
7100 			log_buf[0] = '\0';
7101 			own_log_buf = true;
7102 		}
7103 	}
7104 
7105 	load_attr.log_buf = log_buf;
7106 	load_attr.log_size = log_buf_size;
7107 	load_attr.log_level = log_level;
7108 
7109 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7110 	if (ret >= 0) {
7111 		if (log_level && own_log_buf) {
7112 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7113 				 prog->name, log_buf);
7114 		}
7115 
7116 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7117 			struct bpf_map *map;
7118 			int i;
7119 
7120 			for (i = 0; i < obj->nr_maps; i++) {
7121 				map = &prog->obj->maps[i];
7122 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7123 					continue;
7124 
7125 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7126 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7127 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7128 						prog->name, map->real_name, cp);
7129 					/* Don't fail hard if can't bind rodata. */
7130 				}
7131 			}
7132 		}
7133 
7134 		*prog_fd = ret;
7135 		ret = 0;
7136 		goto out;
7137 	}
7138 
7139 	if (log_level == 0) {
7140 		log_level = 1;
7141 		goto retry_load;
7142 	}
7143 	/* On ENOSPC, increase log buffer size and retry, unless custom
7144 	 * log_buf is specified.
7145 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7146 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7147 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7148 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7149 	 */
7150 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7151 		goto retry_load;
7152 
7153 	ret = -errno;
7154 
7155 	/* post-process verifier log to improve error descriptions */
7156 	fixup_verifier_log(prog, log_buf, log_buf_size);
7157 
7158 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7159 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7160 	pr_perm_msg(ret);
7161 
7162 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7163 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7164 			prog->name, log_buf);
7165 	}
7166 
7167 out:
7168 	if (own_log_buf)
7169 		free(log_buf);
7170 	return ret;
7171 }
7172 
7173 static char *find_prev_line(char *buf, char *cur)
7174 {
7175 	char *p;
7176 
7177 	if (cur == buf) /* end of a log buf */
7178 		return NULL;
7179 
7180 	p = cur - 1;
7181 	while (p - 1 >= buf && *(p - 1) != '\n')
7182 		p--;
7183 
7184 	return p;
7185 }
7186 
7187 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7188 		      char *orig, size_t orig_sz, const char *patch)
7189 {
7190 	/* size of the remaining log content to the right from the to-be-replaced part */
7191 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7192 	size_t patch_sz = strlen(patch);
7193 
7194 	if (patch_sz != orig_sz) {
7195 		/* If patch line(s) are longer than original piece of verifier log,
7196 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7197 		 * starting from after to-be-replaced part of the log.
7198 		 *
7199 		 * If patch line(s) are shorter than original piece of verifier log,
7200 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7201 		 * starting from after to-be-replaced part of the log
7202 		 *
7203 		 * We need to be careful about not overflowing available
7204 		 * buf_sz capacity. If that's the case, we'll truncate the end
7205 		 * of the original log, as necessary.
7206 		 */
7207 		if (patch_sz > orig_sz) {
7208 			if (orig + patch_sz >= buf + buf_sz) {
7209 				/* patch is big enough to cover remaining space completely */
7210 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7211 				rem_sz = 0;
7212 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7213 				/* patch causes part of remaining log to be truncated */
7214 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7215 			}
7216 		}
7217 		/* shift remaining log to the right by calculated amount */
7218 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7219 	}
7220 
7221 	memcpy(orig, patch, patch_sz);
7222 }
7223 
7224 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7225 				       char *buf, size_t buf_sz, size_t log_sz,
7226 				       char *line1, char *line2, char *line3)
7227 {
7228 	/* Expected log for failed and not properly guarded CO-RE relocation:
7229 	 * line1 -> 123: (85) call unknown#195896080
7230 	 * line2 -> invalid func unknown#195896080
7231 	 * line3 -> <anything else or end of buffer>
7232 	 *
7233 	 * "123" is the index of the instruction that was poisoned. We extract
7234 	 * instruction index to find corresponding CO-RE relocation and
7235 	 * replace this part of the log with more relevant information about
7236 	 * failed CO-RE relocation.
7237 	 */
7238 	const struct bpf_core_relo *relo;
7239 	struct bpf_core_spec spec;
7240 	char patch[512], spec_buf[256];
7241 	int insn_idx, err, spec_len;
7242 
7243 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7244 		return;
7245 
7246 	relo = find_relo_core(prog, insn_idx);
7247 	if (!relo)
7248 		return;
7249 
7250 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7251 	if (err)
7252 		return;
7253 
7254 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7255 	snprintf(patch, sizeof(patch),
7256 		 "%d: <invalid CO-RE relocation>\n"
7257 		 "failed to resolve CO-RE relocation %s%s\n",
7258 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7259 
7260 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7261 }
7262 
7263 static void fixup_log_missing_map_load(struct bpf_program *prog,
7264 				       char *buf, size_t buf_sz, size_t log_sz,
7265 				       char *line1, char *line2, char *line3)
7266 {
7267 	/* Expected log for failed and not properly guarded map reference:
7268 	 * line1 -> 123: (85) call unknown#2001000345
7269 	 * line2 -> invalid func unknown#2001000345
7270 	 * line3 -> <anything else or end of buffer>
7271 	 *
7272 	 * "123" is the index of the instruction that was poisoned.
7273 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7274 	 */
7275 	struct bpf_object *obj = prog->obj;
7276 	const struct bpf_map *map;
7277 	int insn_idx, map_idx;
7278 	char patch[128];
7279 
7280 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7281 		return;
7282 
7283 	map_idx -= POISON_LDIMM64_MAP_BASE;
7284 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7285 		return;
7286 	map = &obj->maps[map_idx];
7287 
7288 	snprintf(patch, sizeof(patch),
7289 		 "%d: <invalid BPF map reference>\n"
7290 		 "BPF map '%s' is referenced but wasn't created\n",
7291 		 insn_idx, map->name);
7292 
7293 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7294 }
7295 
7296 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7297 					 char *buf, size_t buf_sz, size_t log_sz,
7298 					 char *line1, char *line2, char *line3)
7299 {
7300 	/* Expected log for failed and not properly guarded kfunc call:
7301 	 * line1 -> 123: (85) call unknown#2002000345
7302 	 * line2 -> invalid func unknown#2002000345
7303 	 * line3 -> <anything else or end of buffer>
7304 	 *
7305 	 * "123" is the index of the instruction that was poisoned.
7306 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7307 	 */
7308 	struct bpf_object *obj = prog->obj;
7309 	const struct extern_desc *ext;
7310 	int insn_idx, ext_idx;
7311 	char patch[128];
7312 
7313 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7314 		return;
7315 
7316 	ext_idx -= POISON_CALL_KFUNC_BASE;
7317 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7318 		return;
7319 	ext = &obj->externs[ext_idx];
7320 
7321 	snprintf(patch, sizeof(patch),
7322 		 "%d: <invalid kfunc call>\n"
7323 		 "kfunc '%s' is referenced but wasn't resolved\n",
7324 		 insn_idx, ext->name);
7325 
7326 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7327 }
7328 
7329 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7330 {
7331 	/* look for familiar error patterns in last N lines of the log */
7332 	const size_t max_last_line_cnt = 10;
7333 	char *prev_line, *cur_line, *next_line;
7334 	size_t log_sz;
7335 	int i;
7336 
7337 	if (!buf)
7338 		return;
7339 
7340 	log_sz = strlen(buf) + 1;
7341 	next_line = buf + log_sz - 1;
7342 
7343 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7344 		cur_line = find_prev_line(buf, next_line);
7345 		if (!cur_line)
7346 			return;
7347 
7348 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7349 			prev_line = find_prev_line(buf, cur_line);
7350 			if (!prev_line)
7351 				continue;
7352 
7353 			/* failed CO-RE relocation case */
7354 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7355 						   prev_line, cur_line, next_line);
7356 			return;
7357 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7358 			prev_line = find_prev_line(buf, cur_line);
7359 			if (!prev_line)
7360 				continue;
7361 
7362 			/* reference to uncreated BPF map */
7363 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7364 						   prev_line, cur_line, next_line);
7365 			return;
7366 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7367 			prev_line = find_prev_line(buf, cur_line);
7368 			if (!prev_line)
7369 				continue;
7370 
7371 			/* reference to unresolved kfunc */
7372 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7373 						     prev_line, cur_line, next_line);
7374 			return;
7375 		}
7376 	}
7377 }
7378 
7379 static int bpf_program_record_relos(struct bpf_program *prog)
7380 {
7381 	struct bpf_object *obj = prog->obj;
7382 	int i;
7383 
7384 	for (i = 0; i < prog->nr_reloc; i++) {
7385 		struct reloc_desc *relo = &prog->reloc_desc[i];
7386 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7387 		int kind;
7388 
7389 		switch (relo->type) {
7390 		case RELO_EXTERN_LD64:
7391 			if (ext->type != EXT_KSYM)
7392 				continue;
7393 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7394 				BTF_KIND_VAR : BTF_KIND_FUNC;
7395 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7396 					       ext->is_weak, !ext->ksym.type_id,
7397 					       true, kind, relo->insn_idx);
7398 			break;
7399 		case RELO_EXTERN_CALL:
7400 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7401 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7402 					       relo->insn_idx);
7403 			break;
7404 		case RELO_CORE: {
7405 			struct bpf_core_relo cr = {
7406 				.insn_off = relo->insn_idx * 8,
7407 				.type_id = relo->core_relo->type_id,
7408 				.access_str_off = relo->core_relo->access_str_off,
7409 				.kind = relo->core_relo->kind,
7410 			};
7411 
7412 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7413 			break;
7414 		}
7415 		default:
7416 			continue;
7417 		}
7418 	}
7419 	return 0;
7420 }
7421 
7422 static int
7423 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7424 {
7425 	struct bpf_program *prog;
7426 	size_t i;
7427 	int err;
7428 
7429 	for (i = 0; i < obj->nr_programs; i++) {
7430 		prog = &obj->programs[i];
7431 		err = bpf_object__sanitize_prog(obj, prog);
7432 		if (err)
7433 			return err;
7434 	}
7435 
7436 	for (i = 0; i < obj->nr_programs; i++) {
7437 		prog = &obj->programs[i];
7438 		if (prog_is_subprog(obj, prog))
7439 			continue;
7440 		if (!prog->autoload) {
7441 			pr_debug("prog '%s': skipped loading\n", prog->name);
7442 			continue;
7443 		}
7444 		prog->log_level |= log_level;
7445 
7446 		if (obj->gen_loader)
7447 			bpf_program_record_relos(prog);
7448 
7449 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7450 					   obj->license, obj->kern_version, &prog->fd);
7451 		if (err) {
7452 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7453 			return err;
7454 		}
7455 	}
7456 
7457 	bpf_object__free_relocs(obj);
7458 	return 0;
7459 }
7460 
7461 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7462 
7463 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7464 {
7465 	struct bpf_program *prog;
7466 	int err;
7467 
7468 	bpf_object__for_each_program(prog, obj) {
7469 		prog->sec_def = find_sec_def(prog->sec_name);
7470 		if (!prog->sec_def) {
7471 			/* couldn't guess, but user might manually specify */
7472 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7473 				prog->name, prog->sec_name);
7474 			continue;
7475 		}
7476 
7477 		prog->type = prog->sec_def->prog_type;
7478 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7479 
7480 		/* sec_def can have custom callback which should be called
7481 		 * after bpf_program is initialized to adjust its properties
7482 		 */
7483 		if (prog->sec_def->prog_setup_fn) {
7484 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7485 			if (err < 0) {
7486 				pr_warn("prog '%s': failed to initialize: %d\n",
7487 					prog->name, err);
7488 				return err;
7489 			}
7490 		}
7491 	}
7492 
7493 	return 0;
7494 }
7495 
7496 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7497 					  const struct bpf_object_open_opts *opts)
7498 {
7499 	const char *obj_name, *kconfig, *btf_tmp_path;
7500 	struct bpf_object *obj;
7501 	char tmp_name[64];
7502 	int err;
7503 	char *log_buf;
7504 	size_t log_size;
7505 	__u32 log_level;
7506 
7507 	if (elf_version(EV_CURRENT) == EV_NONE) {
7508 		pr_warn("failed to init libelf for %s\n",
7509 			path ? : "(mem buf)");
7510 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7511 	}
7512 
7513 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7514 		return ERR_PTR(-EINVAL);
7515 
7516 	obj_name = OPTS_GET(opts, object_name, NULL);
7517 	if (obj_buf) {
7518 		if (!obj_name) {
7519 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7520 				 (unsigned long)obj_buf,
7521 				 (unsigned long)obj_buf_sz);
7522 			obj_name = tmp_name;
7523 		}
7524 		path = obj_name;
7525 		pr_debug("loading object '%s' from buffer\n", obj_name);
7526 	}
7527 
7528 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7529 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7530 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7531 	if (log_size > UINT_MAX)
7532 		return ERR_PTR(-EINVAL);
7533 	if (log_size && !log_buf)
7534 		return ERR_PTR(-EINVAL);
7535 
7536 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7537 	if (IS_ERR(obj))
7538 		return obj;
7539 
7540 	obj->log_buf = log_buf;
7541 	obj->log_size = log_size;
7542 	obj->log_level = log_level;
7543 
7544 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7545 	if (btf_tmp_path) {
7546 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7547 			err = -ENAMETOOLONG;
7548 			goto out;
7549 		}
7550 		obj->btf_custom_path = strdup(btf_tmp_path);
7551 		if (!obj->btf_custom_path) {
7552 			err = -ENOMEM;
7553 			goto out;
7554 		}
7555 	}
7556 
7557 	kconfig = OPTS_GET(opts, kconfig, NULL);
7558 	if (kconfig) {
7559 		obj->kconfig = strdup(kconfig);
7560 		if (!obj->kconfig) {
7561 			err = -ENOMEM;
7562 			goto out;
7563 		}
7564 	}
7565 
7566 	err = bpf_object__elf_init(obj);
7567 	err = err ? : bpf_object__check_endianness(obj);
7568 	err = err ? : bpf_object__elf_collect(obj);
7569 	err = err ? : bpf_object__collect_externs(obj);
7570 	err = err ? : bpf_object_fixup_btf(obj);
7571 	err = err ? : bpf_object__init_maps(obj, opts);
7572 	err = err ? : bpf_object_init_progs(obj, opts);
7573 	err = err ? : bpf_object__collect_relos(obj);
7574 	if (err)
7575 		goto out;
7576 
7577 	bpf_object__elf_finish(obj);
7578 
7579 	return obj;
7580 out:
7581 	bpf_object__close(obj);
7582 	return ERR_PTR(err);
7583 }
7584 
7585 struct bpf_object *
7586 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7587 {
7588 	if (!path)
7589 		return libbpf_err_ptr(-EINVAL);
7590 
7591 	pr_debug("loading %s\n", path);
7592 
7593 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7594 }
7595 
7596 struct bpf_object *bpf_object__open(const char *path)
7597 {
7598 	return bpf_object__open_file(path, NULL);
7599 }
7600 
7601 struct bpf_object *
7602 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7603 		     const struct bpf_object_open_opts *opts)
7604 {
7605 	if (!obj_buf || obj_buf_sz == 0)
7606 		return libbpf_err_ptr(-EINVAL);
7607 
7608 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7609 }
7610 
7611 static int bpf_object_unload(struct bpf_object *obj)
7612 {
7613 	size_t i;
7614 
7615 	if (!obj)
7616 		return libbpf_err(-EINVAL);
7617 
7618 	for (i = 0; i < obj->nr_maps; i++) {
7619 		zclose(obj->maps[i].fd);
7620 		if (obj->maps[i].st_ops)
7621 			zfree(&obj->maps[i].st_ops->kern_vdata);
7622 	}
7623 
7624 	for (i = 0; i < obj->nr_programs; i++)
7625 		bpf_program__unload(&obj->programs[i]);
7626 
7627 	return 0;
7628 }
7629 
7630 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7631 {
7632 	struct bpf_map *m;
7633 
7634 	bpf_object__for_each_map(m, obj) {
7635 		if (!bpf_map__is_internal(m))
7636 			continue;
7637 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7638 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7639 	}
7640 
7641 	return 0;
7642 }
7643 
7644 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7645 {
7646 	char sym_type, sym_name[500];
7647 	unsigned long long sym_addr;
7648 	int ret, err = 0;
7649 	FILE *f;
7650 
7651 	f = fopen("/proc/kallsyms", "re");
7652 	if (!f) {
7653 		err = -errno;
7654 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7655 		return err;
7656 	}
7657 
7658 	while (true) {
7659 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7660 			     &sym_addr, &sym_type, sym_name);
7661 		if (ret == EOF && feof(f))
7662 			break;
7663 		if (ret != 3) {
7664 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7665 			err = -EINVAL;
7666 			break;
7667 		}
7668 
7669 		err = cb(sym_addr, sym_type, sym_name, ctx);
7670 		if (err)
7671 			break;
7672 	}
7673 
7674 	fclose(f);
7675 	return err;
7676 }
7677 
7678 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7679 		       const char *sym_name, void *ctx)
7680 {
7681 	struct bpf_object *obj = ctx;
7682 	const struct btf_type *t;
7683 	struct extern_desc *ext;
7684 
7685 	ext = find_extern_by_name(obj, sym_name);
7686 	if (!ext || ext->type != EXT_KSYM)
7687 		return 0;
7688 
7689 	t = btf__type_by_id(obj->btf, ext->btf_id);
7690 	if (!btf_is_var(t))
7691 		return 0;
7692 
7693 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7694 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7695 			sym_name, ext->ksym.addr, sym_addr);
7696 		return -EINVAL;
7697 	}
7698 	if (!ext->is_set) {
7699 		ext->is_set = true;
7700 		ext->ksym.addr = sym_addr;
7701 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7702 	}
7703 	return 0;
7704 }
7705 
7706 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7707 {
7708 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7709 }
7710 
7711 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7712 			    __u16 kind, struct btf **res_btf,
7713 			    struct module_btf **res_mod_btf)
7714 {
7715 	struct module_btf *mod_btf;
7716 	struct btf *btf;
7717 	int i, id, err;
7718 
7719 	btf = obj->btf_vmlinux;
7720 	mod_btf = NULL;
7721 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7722 
7723 	if (id == -ENOENT) {
7724 		err = load_module_btfs(obj);
7725 		if (err)
7726 			return err;
7727 
7728 		for (i = 0; i < obj->btf_module_cnt; i++) {
7729 			/* we assume module_btf's BTF FD is always >0 */
7730 			mod_btf = &obj->btf_modules[i];
7731 			btf = mod_btf->btf;
7732 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7733 			if (id != -ENOENT)
7734 				break;
7735 		}
7736 	}
7737 	if (id <= 0)
7738 		return -ESRCH;
7739 
7740 	*res_btf = btf;
7741 	*res_mod_btf = mod_btf;
7742 	return id;
7743 }
7744 
7745 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7746 					       struct extern_desc *ext)
7747 {
7748 	const struct btf_type *targ_var, *targ_type;
7749 	__u32 targ_type_id, local_type_id;
7750 	struct module_btf *mod_btf = NULL;
7751 	const char *targ_var_name;
7752 	struct btf *btf = NULL;
7753 	int id, err;
7754 
7755 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7756 	if (id < 0) {
7757 		if (id == -ESRCH && ext->is_weak)
7758 			return 0;
7759 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7760 			ext->name);
7761 		return id;
7762 	}
7763 
7764 	/* find local type_id */
7765 	local_type_id = ext->ksym.type_id;
7766 
7767 	/* find target type_id */
7768 	targ_var = btf__type_by_id(btf, id);
7769 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7770 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7771 
7772 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7773 					btf, targ_type_id);
7774 	if (err <= 0) {
7775 		const struct btf_type *local_type;
7776 		const char *targ_name, *local_name;
7777 
7778 		local_type = btf__type_by_id(obj->btf, local_type_id);
7779 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7780 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7781 
7782 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7783 			ext->name, local_type_id,
7784 			btf_kind_str(local_type), local_name, targ_type_id,
7785 			btf_kind_str(targ_type), targ_name);
7786 		return -EINVAL;
7787 	}
7788 
7789 	ext->is_set = true;
7790 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7791 	ext->ksym.kernel_btf_id = id;
7792 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7793 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7794 
7795 	return 0;
7796 }
7797 
7798 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7799 						struct extern_desc *ext)
7800 {
7801 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7802 	struct module_btf *mod_btf = NULL;
7803 	const struct btf_type *kern_func;
7804 	struct btf *kern_btf = NULL;
7805 	int ret;
7806 
7807 	local_func_proto_id = ext->ksym.type_id;
7808 
7809 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7810 				    &mod_btf);
7811 	if (kfunc_id < 0) {
7812 		if (kfunc_id == -ESRCH && ext->is_weak)
7813 			return 0;
7814 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7815 			ext->name);
7816 		return kfunc_id;
7817 	}
7818 
7819 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7820 	kfunc_proto_id = kern_func->type;
7821 
7822 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7823 					kern_btf, kfunc_proto_id);
7824 	if (ret <= 0) {
7825 		if (ext->is_weak)
7826 			return 0;
7827 
7828 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7829 			ext->name, local_func_proto_id,
7830 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7831 		return -EINVAL;
7832 	}
7833 
7834 	/* set index for module BTF fd in fd_array, if unset */
7835 	if (mod_btf && !mod_btf->fd_array_idx) {
7836 		/* insn->off is s16 */
7837 		if (obj->fd_array_cnt == INT16_MAX) {
7838 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7839 				ext->name, mod_btf->fd_array_idx);
7840 			return -E2BIG;
7841 		}
7842 		/* Cannot use index 0 for module BTF fd */
7843 		if (!obj->fd_array_cnt)
7844 			obj->fd_array_cnt = 1;
7845 
7846 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7847 					obj->fd_array_cnt + 1);
7848 		if (ret)
7849 			return ret;
7850 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7851 		/* we assume module BTF FD is always >0 */
7852 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7853 	}
7854 
7855 	ext->is_set = true;
7856 	ext->ksym.kernel_btf_id = kfunc_id;
7857 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7858 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7859 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7860 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7861 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7862 	 */
7863 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7864 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7865 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7866 
7867 	return 0;
7868 }
7869 
7870 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7871 {
7872 	const struct btf_type *t;
7873 	struct extern_desc *ext;
7874 	int i, err;
7875 
7876 	for (i = 0; i < obj->nr_extern; i++) {
7877 		ext = &obj->externs[i];
7878 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7879 			continue;
7880 
7881 		if (obj->gen_loader) {
7882 			ext->is_set = true;
7883 			ext->ksym.kernel_btf_obj_fd = 0;
7884 			ext->ksym.kernel_btf_id = 0;
7885 			continue;
7886 		}
7887 		t = btf__type_by_id(obj->btf, ext->btf_id);
7888 		if (btf_is_var(t))
7889 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7890 		else
7891 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7892 		if (err)
7893 			return err;
7894 	}
7895 	return 0;
7896 }
7897 
7898 static int bpf_object__resolve_externs(struct bpf_object *obj,
7899 				       const char *extra_kconfig)
7900 {
7901 	bool need_config = false, need_kallsyms = false;
7902 	bool need_vmlinux_btf = false;
7903 	struct extern_desc *ext;
7904 	void *kcfg_data = NULL;
7905 	int err, i;
7906 
7907 	if (obj->nr_extern == 0)
7908 		return 0;
7909 
7910 	if (obj->kconfig_map_idx >= 0)
7911 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7912 
7913 	for (i = 0; i < obj->nr_extern; i++) {
7914 		ext = &obj->externs[i];
7915 
7916 		if (ext->type == EXT_KSYM) {
7917 			if (ext->ksym.type_id)
7918 				need_vmlinux_btf = true;
7919 			else
7920 				need_kallsyms = true;
7921 			continue;
7922 		} else if (ext->type == EXT_KCFG) {
7923 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7924 			__u64 value = 0;
7925 
7926 			/* Kconfig externs need actual /proc/config.gz */
7927 			if (str_has_pfx(ext->name, "CONFIG_")) {
7928 				need_config = true;
7929 				continue;
7930 			}
7931 
7932 			/* Virtual kcfg externs are customly handled by libbpf */
7933 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7934 				value = get_kernel_version();
7935 				if (!value) {
7936 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7937 					return -EINVAL;
7938 				}
7939 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7940 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7941 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7942 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7943 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7944 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7945 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7946 				 * customly by libbpf (their values don't come from Kconfig).
7947 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7948 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7949 				 * externs.
7950 				 */
7951 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7952 				return -EINVAL;
7953 			}
7954 
7955 			err = set_kcfg_value_num(ext, ext_ptr, value);
7956 			if (err)
7957 				return err;
7958 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7959 				 ext->name, (long long)value);
7960 		} else {
7961 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7962 			return -EINVAL;
7963 		}
7964 	}
7965 	if (need_config && extra_kconfig) {
7966 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7967 		if (err)
7968 			return -EINVAL;
7969 		need_config = false;
7970 		for (i = 0; i < obj->nr_extern; i++) {
7971 			ext = &obj->externs[i];
7972 			if (ext->type == EXT_KCFG && !ext->is_set) {
7973 				need_config = true;
7974 				break;
7975 			}
7976 		}
7977 	}
7978 	if (need_config) {
7979 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7980 		if (err)
7981 			return -EINVAL;
7982 	}
7983 	if (need_kallsyms) {
7984 		err = bpf_object__read_kallsyms_file(obj);
7985 		if (err)
7986 			return -EINVAL;
7987 	}
7988 	if (need_vmlinux_btf) {
7989 		err = bpf_object__resolve_ksyms_btf_id(obj);
7990 		if (err)
7991 			return -EINVAL;
7992 	}
7993 	for (i = 0; i < obj->nr_extern; i++) {
7994 		ext = &obj->externs[i];
7995 
7996 		if (!ext->is_set && !ext->is_weak) {
7997 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7998 			return -ESRCH;
7999 		} else if (!ext->is_set) {
8000 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8001 				 ext->name);
8002 		}
8003 	}
8004 
8005 	return 0;
8006 }
8007 
8008 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8009 {
8010 	struct bpf_struct_ops *st_ops;
8011 	__u32 i;
8012 
8013 	st_ops = map->st_ops;
8014 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8015 		struct bpf_program *prog = st_ops->progs[i];
8016 		void *kern_data;
8017 		int prog_fd;
8018 
8019 		if (!prog)
8020 			continue;
8021 
8022 		prog_fd = bpf_program__fd(prog);
8023 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8024 		*(unsigned long *)kern_data = prog_fd;
8025 	}
8026 }
8027 
8028 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8029 {
8030 	int i;
8031 
8032 	for (i = 0; i < obj->nr_maps; i++)
8033 		if (bpf_map__is_struct_ops(&obj->maps[i]))
8034 			bpf_map_prepare_vdata(&obj->maps[i]);
8035 
8036 	return 0;
8037 }
8038 
8039 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8040 {
8041 	int err, i;
8042 
8043 	if (!obj)
8044 		return libbpf_err(-EINVAL);
8045 
8046 	if (obj->loaded) {
8047 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8048 		return libbpf_err(-EINVAL);
8049 	}
8050 
8051 	if (obj->gen_loader)
8052 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8053 
8054 	err = bpf_object__probe_loading(obj);
8055 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8056 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8057 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8058 	err = err ? : bpf_object__sanitize_maps(obj);
8059 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8060 	err = err ? : bpf_object__create_maps(obj);
8061 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8062 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8063 	err = err ? : bpf_object_init_prog_arrays(obj);
8064 	err = err ? : bpf_object_prepare_struct_ops(obj);
8065 
8066 	if (obj->gen_loader) {
8067 		/* reset FDs */
8068 		if (obj->btf)
8069 			btf__set_fd(obj->btf, -1);
8070 		for (i = 0; i < obj->nr_maps; i++)
8071 			obj->maps[i].fd = -1;
8072 		if (!err)
8073 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8074 	}
8075 
8076 	/* clean up fd_array */
8077 	zfree(&obj->fd_array);
8078 
8079 	/* clean up module BTFs */
8080 	for (i = 0; i < obj->btf_module_cnt; i++) {
8081 		close(obj->btf_modules[i].fd);
8082 		btf__free(obj->btf_modules[i].btf);
8083 		free(obj->btf_modules[i].name);
8084 	}
8085 	free(obj->btf_modules);
8086 
8087 	/* clean up vmlinux BTF */
8088 	btf__free(obj->btf_vmlinux);
8089 	obj->btf_vmlinux = NULL;
8090 
8091 	obj->loaded = true; /* doesn't matter if successfully or not */
8092 
8093 	if (err)
8094 		goto out;
8095 
8096 	return 0;
8097 out:
8098 	/* unpin any maps that were auto-pinned during load */
8099 	for (i = 0; i < obj->nr_maps; i++)
8100 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8101 			bpf_map__unpin(&obj->maps[i], NULL);
8102 
8103 	bpf_object_unload(obj);
8104 	pr_warn("failed to load object '%s'\n", obj->path);
8105 	return libbpf_err(err);
8106 }
8107 
8108 int bpf_object__load(struct bpf_object *obj)
8109 {
8110 	return bpf_object_load(obj, 0, NULL);
8111 }
8112 
8113 static int make_parent_dir(const char *path)
8114 {
8115 	char *cp, errmsg[STRERR_BUFSIZE];
8116 	char *dname, *dir;
8117 	int err = 0;
8118 
8119 	dname = strdup(path);
8120 	if (dname == NULL)
8121 		return -ENOMEM;
8122 
8123 	dir = dirname(dname);
8124 	if (mkdir(dir, 0700) && errno != EEXIST)
8125 		err = -errno;
8126 
8127 	free(dname);
8128 	if (err) {
8129 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8130 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8131 	}
8132 	return err;
8133 }
8134 
8135 static int check_path(const char *path)
8136 {
8137 	char *cp, errmsg[STRERR_BUFSIZE];
8138 	struct statfs st_fs;
8139 	char *dname, *dir;
8140 	int err = 0;
8141 
8142 	if (path == NULL)
8143 		return -EINVAL;
8144 
8145 	dname = strdup(path);
8146 	if (dname == NULL)
8147 		return -ENOMEM;
8148 
8149 	dir = dirname(dname);
8150 	if (statfs(dir, &st_fs)) {
8151 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8152 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8153 		err = -errno;
8154 	}
8155 	free(dname);
8156 
8157 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8158 		pr_warn("specified path %s is not on BPF FS\n", path);
8159 		err = -EINVAL;
8160 	}
8161 
8162 	return err;
8163 }
8164 
8165 int bpf_program__pin(struct bpf_program *prog, const char *path)
8166 {
8167 	char *cp, errmsg[STRERR_BUFSIZE];
8168 	int err;
8169 
8170 	if (prog->fd < 0) {
8171 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8172 		return libbpf_err(-EINVAL);
8173 	}
8174 
8175 	err = make_parent_dir(path);
8176 	if (err)
8177 		return libbpf_err(err);
8178 
8179 	err = check_path(path);
8180 	if (err)
8181 		return libbpf_err(err);
8182 
8183 	if (bpf_obj_pin(prog->fd, path)) {
8184 		err = -errno;
8185 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8186 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8187 		return libbpf_err(err);
8188 	}
8189 
8190 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8191 	return 0;
8192 }
8193 
8194 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8195 {
8196 	int err;
8197 
8198 	if (prog->fd < 0) {
8199 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8200 		return libbpf_err(-EINVAL);
8201 	}
8202 
8203 	err = check_path(path);
8204 	if (err)
8205 		return libbpf_err(err);
8206 
8207 	err = unlink(path);
8208 	if (err)
8209 		return libbpf_err(-errno);
8210 
8211 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8212 	return 0;
8213 }
8214 
8215 int bpf_map__pin(struct bpf_map *map, const char *path)
8216 {
8217 	char *cp, errmsg[STRERR_BUFSIZE];
8218 	int err;
8219 
8220 	if (map == NULL) {
8221 		pr_warn("invalid map pointer\n");
8222 		return libbpf_err(-EINVAL);
8223 	}
8224 
8225 	if (map->pin_path) {
8226 		if (path && strcmp(path, map->pin_path)) {
8227 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8228 				bpf_map__name(map), map->pin_path, path);
8229 			return libbpf_err(-EINVAL);
8230 		} else if (map->pinned) {
8231 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8232 				 bpf_map__name(map), map->pin_path);
8233 			return 0;
8234 		}
8235 	} else {
8236 		if (!path) {
8237 			pr_warn("missing a path to pin map '%s' at\n",
8238 				bpf_map__name(map));
8239 			return libbpf_err(-EINVAL);
8240 		} else if (map->pinned) {
8241 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8242 			return libbpf_err(-EEXIST);
8243 		}
8244 
8245 		map->pin_path = strdup(path);
8246 		if (!map->pin_path) {
8247 			err = -errno;
8248 			goto out_err;
8249 		}
8250 	}
8251 
8252 	err = make_parent_dir(map->pin_path);
8253 	if (err)
8254 		return libbpf_err(err);
8255 
8256 	err = check_path(map->pin_path);
8257 	if (err)
8258 		return libbpf_err(err);
8259 
8260 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8261 		err = -errno;
8262 		goto out_err;
8263 	}
8264 
8265 	map->pinned = true;
8266 	pr_debug("pinned map '%s'\n", map->pin_path);
8267 
8268 	return 0;
8269 
8270 out_err:
8271 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8272 	pr_warn("failed to pin map: %s\n", cp);
8273 	return libbpf_err(err);
8274 }
8275 
8276 int bpf_map__unpin(struct bpf_map *map, const char *path)
8277 {
8278 	int err;
8279 
8280 	if (map == NULL) {
8281 		pr_warn("invalid map pointer\n");
8282 		return libbpf_err(-EINVAL);
8283 	}
8284 
8285 	if (map->pin_path) {
8286 		if (path && strcmp(path, map->pin_path)) {
8287 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8288 				bpf_map__name(map), map->pin_path, path);
8289 			return libbpf_err(-EINVAL);
8290 		}
8291 		path = map->pin_path;
8292 	} else if (!path) {
8293 		pr_warn("no path to unpin map '%s' from\n",
8294 			bpf_map__name(map));
8295 		return libbpf_err(-EINVAL);
8296 	}
8297 
8298 	err = check_path(path);
8299 	if (err)
8300 		return libbpf_err(err);
8301 
8302 	err = unlink(path);
8303 	if (err != 0)
8304 		return libbpf_err(-errno);
8305 
8306 	map->pinned = false;
8307 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8308 
8309 	return 0;
8310 }
8311 
8312 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8313 {
8314 	char *new = NULL;
8315 
8316 	if (path) {
8317 		new = strdup(path);
8318 		if (!new)
8319 			return libbpf_err(-errno);
8320 	}
8321 
8322 	free(map->pin_path);
8323 	map->pin_path = new;
8324 	return 0;
8325 }
8326 
8327 __alias(bpf_map__pin_path)
8328 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8329 
8330 const char *bpf_map__pin_path(const struct bpf_map *map)
8331 {
8332 	return map->pin_path;
8333 }
8334 
8335 bool bpf_map__is_pinned(const struct bpf_map *map)
8336 {
8337 	return map->pinned;
8338 }
8339 
8340 static void sanitize_pin_path(char *s)
8341 {
8342 	/* bpffs disallows periods in path names */
8343 	while (*s) {
8344 		if (*s == '.')
8345 			*s = '_';
8346 		s++;
8347 	}
8348 }
8349 
8350 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8351 {
8352 	struct bpf_map *map;
8353 	int err;
8354 
8355 	if (!obj)
8356 		return libbpf_err(-ENOENT);
8357 
8358 	if (!obj->loaded) {
8359 		pr_warn("object not yet loaded; load it first\n");
8360 		return libbpf_err(-ENOENT);
8361 	}
8362 
8363 	bpf_object__for_each_map(map, obj) {
8364 		char *pin_path = NULL;
8365 		char buf[PATH_MAX];
8366 
8367 		if (!map->autocreate)
8368 			continue;
8369 
8370 		if (path) {
8371 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8372 			if (err)
8373 				goto err_unpin_maps;
8374 			sanitize_pin_path(buf);
8375 			pin_path = buf;
8376 		} else if (!map->pin_path) {
8377 			continue;
8378 		}
8379 
8380 		err = bpf_map__pin(map, pin_path);
8381 		if (err)
8382 			goto err_unpin_maps;
8383 	}
8384 
8385 	return 0;
8386 
8387 err_unpin_maps:
8388 	while ((map = bpf_object__prev_map(obj, map))) {
8389 		if (!map->pin_path)
8390 			continue;
8391 
8392 		bpf_map__unpin(map, NULL);
8393 	}
8394 
8395 	return libbpf_err(err);
8396 }
8397 
8398 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8399 {
8400 	struct bpf_map *map;
8401 	int err;
8402 
8403 	if (!obj)
8404 		return libbpf_err(-ENOENT);
8405 
8406 	bpf_object__for_each_map(map, obj) {
8407 		char *pin_path = NULL;
8408 		char buf[PATH_MAX];
8409 
8410 		if (path) {
8411 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8412 			if (err)
8413 				return libbpf_err(err);
8414 			sanitize_pin_path(buf);
8415 			pin_path = buf;
8416 		} else if (!map->pin_path) {
8417 			continue;
8418 		}
8419 
8420 		err = bpf_map__unpin(map, pin_path);
8421 		if (err)
8422 			return libbpf_err(err);
8423 	}
8424 
8425 	return 0;
8426 }
8427 
8428 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8429 {
8430 	struct bpf_program *prog;
8431 	char buf[PATH_MAX];
8432 	int err;
8433 
8434 	if (!obj)
8435 		return libbpf_err(-ENOENT);
8436 
8437 	if (!obj->loaded) {
8438 		pr_warn("object not yet loaded; load it first\n");
8439 		return libbpf_err(-ENOENT);
8440 	}
8441 
8442 	bpf_object__for_each_program(prog, obj) {
8443 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8444 		if (err)
8445 			goto err_unpin_programs;
8446 
8447 		err = bpf_program__pin(prog, buf);
8448 		if (err)
8449 			goto err_unpin_programs;
8450 	}
8451 
8452 	return 0;
8453 
8454 err_unpin_programs:
8455 	while ((prog = bpf_object__prev_program(obj, prog))) {
8456 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8457 			continue;
8458 
8459 		bpf_program__unpin(prog, buf);
8460 	}
8461 
8462 	return libbpf_err(err);
8463 }
8464 
8465 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8466 {
8467 	struct bpf_program *prog;
8468 	int err;
8469 
8470 	if (!obj)
8471 		return libbpf_err(-ENOENT);
8472 
8473 	bpf_object__for_each_program(prog, obj) {
8474 		char buf[PATH_MAX];
8475 
8476 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8477 		if (err)
8478 			return libbpf_err(err);
8479 
8480 		err = bpf_program__unpin(prog, buf);
8481 		if (err)
8482 			return libbpf_err(err);
8483 	}
8484 
8485 	return 0;
8486 }
8487 
8488 int bpf_object__pin(struct bpf_object *obj, const char *path)
8489 {
8490 	int err;
8491 
8492 	err = bpf_object__pin_maps(obj, path);
8493 	if (err)
8494 		return libbpf_err(err);
8495 
8496 	err = bpf_object__pin_programs(obj, path);
8497 	if (err) {
8498 		bpf_object__unpin_maps(obj, path);
8499 		return libbpf_err(err);
8500 	}
8501 
8502 	return 0;
8503 }
8504 
8505 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8506 {
8507 	int err;
8508 
8509 	err = bpf_object__unpin_programs(obj, path);
8510 	if (err)
8511 		return libbpf_err(err);
8512 
8513 	err = bpf_object__unpin_maps(obj, path);
8514 	if (err)
8515 		return libbpf_err(err);
8516 
8517 	return 0;
8518 }
8519 
8520 static void bpf_map__destroy(struct bpf_map *map)
8521 {
8522 	if (map->inner_map) {
8523 		bpf_map__destroy(map->inner_map);
8524 		zfree(&map->inner_map);
8525 	}
8526 
8527 	zfree(&map->init_slots);
8528 	map->init_slots_sz = 0;
8529 
8530 	if (map->mmaped) {
8531 		size_t mmap_sz;
8532 
8533 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8534 		munmap(map->mmaped, mmap_sz);
8535 		map->mmaped = NULL;
8536 	}
8537 
8538 	if (map->st_ops) {
8539 		zfree(&map->st_ops->data);
8540 		zfree(&map->st_ops->progs);
8541 		zfree(&map->st_ops->kern_func_off);
8542 		zfree(&map->st_ops);
8543 	}
8544 
8545 	zfree(&map->name);
8546 	zfree(&map->real_name);
8547 	zfree(&map->pin_path);
8548 
8549 	if (map->fd >= 0)
8550 		zclose(map->fd);
8551 }
8552 
8553 void bpf_object__close(struct bpf_object *obj)
8554 {
8555 	size_t i;
8556 
8557 	if (IS_ERR_OR_NULL(obj))
8558 		return;
8559 
8560 	usdt_manager_free(obj->usdt_man);
8561 	obj->usdt_man = NULL;
8562 
8563 	bpf_gen__free(obj->gen_loader);
8564 	bpf_object__elf_finish(obj);
8565 	bpf_object_unload(obj);
8566 	btf__free(obj->btf);
8567 	btf__free(obj->btf_vmlinux);
8568 	btf_ext__free(obj->btf_ext);
8569 
8570 	for (i = 0; i < obj->nr_maps; i++)
8571 		bpf_map__destroy(&obj->maps[i]);
8572 
8573 	zfree(&obj->btf_custom_path);
8574 	zfree(&obj->kconfig);
8575 
8576 	for (i = 0; i < obj->nr_extern; i++)
8577 		zfree(&obj->externs[i].essent_name);
8578 
8579 	zfree(&obj->externs);
8580 	obj->nr_extern = 0;
8581 
8582 	zfree(&obj->maps);
8583 	obj->nr_maps = 0;
8584 
8585 	if (obj->programs && obj->nr_programs) {
8586 		for (i = 0; i < obj->nr_programs; i++)
8587 			bpf_program__exit(&obj->programs[i]);
8588 	}
8589 	zfree(&obj->programs);
8590 
8591 	free(obj);
8592 }
8593 
8594 const char *bpf_object__name(const struct bpf_object *obj)
8595 {
8596 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8597 }
8598 
8599 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8600 {
8601 	return obj ? obj->kern_version : 0;
8602 }
8603 
8604 struct btf *bpf_object__btf(const struct bpf_object *obj)
8605 {
8606 	return obj ? obj->btf : NULL;
8607 }
8608 
8609 int bpf_object__btf_fd(const struct bpf_object *obj)
8610 {
8611 	return obj->btf ? btf__fd(obj->btf) : -1;
8612 }
8613 
8614 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8615 {
8616 	if (obj->loaded)
8617 		return libbpf_err(-EINVAL);
8618 
8619 	obj->kern_version = kern_version;
8620 
8621 	return 0;
8622 }
8623 
8624 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8625 {
8626 	struct bpf_gen *gen;
8627 
8628 	if (!opts)
8629 		return -EFAULT;
8630 	if (!OPTS_VALID(opts, gen_loader_opts))
8631 		return -EINVAL;
8632 	gen = calloc(sizeof(*gen), 1);
8633 	if (!gen)
8634 		return -ENOMEM;
8635 	gen->opts = opts;
8636 	obj->gen_loader = gen;
8637 	return 0;
8638 }
8639 
8640 static struct bpf_program *
8641 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8642 		    bool forward)
8643 {
8644 	size_t nr_programs = obj->nr_programs;
8645 	ssize_t idx;
8646 
8647 	if (!nr_programs)
8648 		return NULL;
8649 
8650 	if (!p)
8651 		/* Iter from the beginning */
8652 		return forward ? &obj->programs[0] :
8653 			&obj->programs[nr_programs - 1];
8654 
8655 	if (p->obj != obj) {
8656 		pr_warn("error: program handler doesn't match object\n");
8657 		return errno = EINVAL, NULL;
8658 	}
8659 
8660 	idx = (p - obj->programs) + (forward ? 1 : -1);
8661 	if (idx >= obj->nr_programs || idx < 0)
8662 		return NULL;
8663 	return &obj->programs[idx];
8664 }
8665 
8666 struct bpf_program *
8667 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8668 {
8669 	struct bpf_program *prog = prev;
8670 
8671 	do {
8672 		prog = __bpf_program__iter(prog, obj, true);
8673 	} while (prog && prog_is_subprog(obj, prog));
8674 
8675 	return prog;
8676 }
8677 
8678 struct bpf_program *
8679 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8680 {
8681 	struct bpf_program *prog = next;
8682 
8683 	do {
8684 		prog = __bpf_program__iter(prog, obj, false);
8685 	} while (prog && prog_is_subprog(obj, prog));
8686 
8687 	return prog;
8688 }
8689 
8690 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8691 {
8692 	prog->prog_ifindex = ifindex;
8693 }
8694 
8695 const char *bpf_program__name(const struct bpf_program *prog)
8696 {
8697 	return prog->name;
8698 }
8699 
8700 const char *bpf_program__section_name(const struct bpf_program *prog)
8701 {
8702 	return prog->sec_name;
8703 }
8704 
8705 bool bpf_program__autoload(const struct bpf_program *prog)
8706 {
8707 	return prog->autoload;
8708 }
8709 
8710 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8711 {
8712 	if (prog->obj->loaded)
8713 		return libbpf_err(-EINVAL);
8714 
8715 	prog->autoload = autoload;
8716 	return 0;
8717 }
8718 
8719 bool bpf_program__autoattach(const struct bpf_program *prog)
8720 {
8721 	return prog->autoattach;
8722 }
8723 
8724 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8725 {
8726 	prog->autoattach = autoattach;
8727 }
8728 
8729 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8730 {
8731 	return prog->insns;
8732 }
8733 
8734 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8735 {
8736 	return prog->insns_cnt;
8737 }
8738 
8739 int bpf_program__set_insns(struct bpf_program *prog,
8740 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8741 {
8742 	struct bpf_insn *insns;
8743 
8744 	if (prog->obj->loaded)
8745 		return -EBUSY;
8746 
8747 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8748 	/* NULL is a valid return from reallocarray if the new count is zero */
8749 	if (!insns && new_insn_cnt) {
8750 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8751 		return -ENOMEM;
8752 	}
8753 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8754 
8755 	prog->insns = insns;
8756 	prog->insns_cnt = new_insn_cnt;
8757 	return 0;
8758 }
8759 
8760 int bpf_program__fd(const struct bpf_program *prog)
8761 {
8762 	if (!prog)
8763 		return libbpf_err(-EINVAL);
8764 
8765 	if (prog->fd < 0)
8766 		return libbpf_err(-ENOENT);
8767 
8768 	return prog->fd;
8769 }
8770 
8771 __alias(bpf_program__type)
8772 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8773 
8774 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8775 {
8776 	return prog->type;
8777 }
8778 
8779 static size_t custom_sec_def_cnt;
8780 static struct bpf_sec_def *custom_sec_defs;
8781 static struct bpf_sec_def custom_fallback_def;
8782 static bool has_custom_fallback_def;
8783 static int last_custom_sec_def_handler_id;
8784 
8785 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8786 {
8787 	if (prog->obj->loaded)
8788 		return libbpf_err(-EBUSY);
8789 
8790 	/* if type is not changed, do nothing */
8791 	if (prog->type == type)
8792 		return 0;
8793 
8794 	prog->type = type;
8795 
8796 	/* If a program type was changed, we need to reset associated SEC()
8797 	 * handler, as it will be invalid now. The only exception is a generic
8798 	 * fallback handler, which by definition is program type-agnostic and
8799 	 * is a catch-all custom handler, optionally set by the application,
8800 	 * so should be able to handle any type of BPF program.
8801 	 */
8802 	if (prog->sec_def != &custom_fallback_def)
8803 		prog->sec_def = NULL;
8804 	return 0;
8805 }
8806 
8807 __alias(bpf_program__expected_attach_type)
8808 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8809 
8810 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8811 {
8812 	return prog->expected_attach_type;
8813 }
8814 
8815 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8816 					   enum bpf_attach_type type)
8817 {
8818 	if (prog->obj->loaded)
8819 		return libbpf_err(-EBUSY);
8820 
8821 	prog->expected_attach_type = type;
8822 	return 0;
8823 }
8824 
8825 __u32 bpf_program__flags(const struct bpf_program *prog)
8826 {
8827 	return prog->prog_flags;
8828 }
8829 
8830 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8831 {
8832 	if (prog->obj->loaded)
8833 		return libbpf_err(-EBUSY);
8834 
8835 	prog->prog_flags = flags;
8836 	return 0;
8837 }
8838 
8839 __u32 bpf_program__log_level(const struct bpf_program *prog)
8840 {
8841 	return prog->log_level;
8842 }
8843 
8844 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8845 {
8846 	if (prog->obj->loaded)
8847 		return libbpf_err(-EBUSY);
8848 
8849 	prog->log_level = log_level;
8850 	return 0;
8851 }
8852 
8853 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8854 {
8855 	*log_size = prog->log_size;
8856 	return prog->log_buf;
8857 }
8858 
8859 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8860 {
8861 	if (log_size && !log_buf)
8862 		return -EINVAL;
8863 	if (prog->log_size > UINT_MAX)
8864 		return -EINVAL;
8865 	if (prog->obj->loaded)
8866 		return -EBUSY;
8867 
8868 	prog->log_buf = log_buf;
8869 	prog->log_size = log_size;
8870 	return 0;
8871 }
8872 
8873 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8874 	.sec = (char *)sec_pfx,						    \
8875 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8876 	.expected_attach_type = atype,					    \
8877 	.cookie = (long)(flags),					    \
8878 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8879 	__VA_ARGS__							    \
8880 }
8881 
8882 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8883 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8884 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8885 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8886 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8887 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8888 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8889 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8890 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8891 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8892 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8893 
8894 static const struct bpf_sec_def section_defs[] = {
8895 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8896 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8897 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8898 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8899 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8900 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8901 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8902 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8903 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8904 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8905 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8906 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8907 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8908 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8909 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8910 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8911 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8912 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
8913 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8914 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8915 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
8916 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8917 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8918 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8919 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8920 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8921 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
8922 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
8923 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8924 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8925 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8926 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8927 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8928 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8929 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8930 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8931 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8932 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8933 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8934 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8935 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8936 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8937 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8938 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8939 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8940 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8941 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8942 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8943 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8944 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8945 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8946 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8947 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8948 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8949 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8950 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8951 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8952 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8953 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8954 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8955 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8956 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8957 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8958 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8959 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8960 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8961 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8962 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8963 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8964 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8965 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8966 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8967 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8968 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8969 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8970 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8971 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8972 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8973 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
8974 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8975 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8976 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
8977 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8978 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8979 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
8980 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8981 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8982 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
8983 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8984 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8985 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
8986 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8987 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8988 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8989 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8990 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8991 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8992 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8993 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
8994 };
8995 
8996 int libbpf_register_prog_handler(const char *sec,
8997 				 enum bpf_prog_type prog_type,
8998 				 enum bpf_attach_type exp_attach_type,
8999 				 const struct libbpf_prog_handler_opts *opts)
9000 {
9001 	struct bpf_sec_def *sec_def;
9002 
9003 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9004 		return libbpf_err(-EINVAL);
9005 
9006 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9007 		return libbpf_err(-E2BIG);
9008 
9009 	if (sec) {
9010 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9011 					      sizeof(*sec_def));
9012 		if (!sec_def)
9013 			return libbpf_err(-ENOMEM);
9014 
9015 		custom_sec_defs = sec_def;
9016 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9017 	} else {
9018 		if (has_custom_fallback_def)
9019 			return libbpf_err(-EBUSY);
9020 
9021 		sec_def = &custom_fallback_def;
9022 	}
9023 
9024 	sec_def->sec = sec ? strdup(sec) : NULL;
9025 	if (sec && !sec_def->sec)
9026 		return libbpf_err(-ENOMEM);
9027 
9028 	sec_def->prog_type = prog_type;
9029 	sec_def->expected_attach_type = exp_attach_type;
9030 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9031 
9032 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9033 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9034 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9035 
9036 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9037 
9038 	if (sec)
9039 		custom_sec_def_cnt++;
9040 	else
9041 		has_custom_fallback_def = true;
9042 
9043 	return sec_def->handler_id;
9044 }
9045 
9046 int libbpf_unregister_prog_handler(int handler_id)
9047 {
9048 	struct bpf_sec_def *sec_defs;
9049 	int i;
9050 
9051 	if (handler_id <= 0)
9052 		return libbpf_err(-EINVAL);
9053 
9054 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9055 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9056 		has_custom_fallback_def = false;
9057 		return 0;
9058 	}
9059 
9060 	for (i = 0; i < custom_sec_def_cnt; i++) {
9061 		if (custom_sec_defs[i].handler_id == handler_id)
9062 			break;
9063 	}
9064 
9065 	if (i == custom_sec_def_cnt)
9066 		return libbpf_err(-ENOENT);
9067 
9068 	free(custom_sec_defs[i].sec);
9069 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9070 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9071 	custom_sec_def_cnt--;
9072 
9073 	/* try to shrink the array, but it's ok if we couldn't */
9074 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9075 	/* if new count is zero, reallocarray can return a valid NULL result;
9076 	 * in this case the previous pointer will be freed, so we *have to*
9077 	 * reassign old pointer to the new value (even if it's NULL)
9078 	 */
9079 	if (sec_defs || custom_sec_def_cnt == 0)
9080 		custom_sec_defs = sec_defs;
9081 
9082 	return 0;
9083 }
9084 
9085 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9086 {
9087 	size_t len = strlen(sec_def->sec);
9088 
9089 	/* "type/" always has to have proper SEC("type/extras") form */
9090 	if (sec_def->sec[len - 1] == '/') {
9091 		if (str_has_pfx(sec_name, sec_def->sec))
9092 			return true;
9093 		return false;
9094 	}
9095 
9096 	/* "type+" means it can be either exact SEC("type") or
9097 	 * well-formed SEC("type/extras") with proper '/' separator
9098 	 */
9099 	if (sec_def->sec[len - 1] == '+') {
9100 		len--;
9101 		/* not even a prefix */
9102 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9103 			return false;
9104 		/* exact match or has '/' separator */
9105 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9106 			return true;
9107 		return false;
9108 	}
9109 
9110 	return strcmp(sec_name, sec_def->sec) == 0;
9111 }
9112 
9113 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9114 {
9115 	const struct bpf_sec_def *sec_def;
9116 	int i, n;
9117 
9118 	n = custom_sec_def_cnt;
9119 	for (i = 0; i < n; i++) {
9120 		sec_def = &custom_sec_defs[i];
9121 		if (sec_def_matches(sec_def, sec_name))
9122 			return sec_def;
9123 	}
9124 
9125 	n = ARRAY_SIZE(section_defs);
9126 	for (i = 0; i < n; i++) {
9127 		sec_def = &section_defs[i];
9128 		if (sec_def_matches(sec_def, sec_name))
9129 			return sec_def;
9130 	}
9131 
9132 	if (has_custom_fallback_def)
9133 		return &custom_fallback_def;
9134 
9135 	return NULL;
9136 }
9137 
9138 #define MAX_TYPE_NAME_SIZE 32
9139 
9140 static char *libbpf_get_type_names(bool attach_type)
9141 {
9142 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9143 	char *buf;
9144 
9145 	buf = malloc(len);
9146 	if (!buf)
9147 		return NULL;
9148 
9149 	buf[0] = '\0';
9150 	/* Forge string buf with all available names */
9151 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9152 		const struct bpf_sec_def *sec_def = &section_defs[i];
9153 
9154 		if (attach_type) {
9155 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9156 				continue;
9157 
9158 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9159 				continue;
9160 		}
9161 
9162 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9163 			free(buf);
9164 			return NULL;
9165 		}
9166 		strcat(buf, " ");
9167 		strcat(buf, section_defs[i].sec);
9168 	}
9169 
9170 	return buf;
9171 }
9172 
9173 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9174 			     enum bpf_attach_type *expected_attach_type)
9175 {
9176 	const struct bpf_sec_def *sec_def;
9177 	char *type_names;
9178 
9179 	if (!name)
9180 		return libbpf_err(-EINVAL);
9181 
9182 	sec_def = find_sec_def(name);
9183 	if (sec_def) {
9184 		*prog_type = sec_def->prog_type;
9185 		*expected_attach_type = sec_def->expected_attach_type;
9186 		return 0;
9187 	}
9188 
9189 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9190 	type_names = libbpf_get_type_names(false);
9191 	if (type_names != NULL) {
9192 		pr_debug("supported section(type) names are:%s\n", type_names);
9193 		free(type_names);
9194 	}
9195 
9196 	return libbpf_err(-ESRCH);
9197 }
9198 
9199 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9200 {
9201 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9202 		return NULL;
9203 
9204 	return attach_type_name[t];
9205 }
9206 
9207 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9208 {
9209 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9210 		return NULL;
9211 
9212 	return link_type_name[t];
9213 }
9214 
9215 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9216 {
9217 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9218 		return NULL;
9219 
9220 	return map_type_name[t];
9221 }
9222 
9223 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9224 {
9225 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9226 		return NULL;
9227 
9228 	return prog_type_name[t];
9229 }
9230 
9231 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9232 						     int sec_idx,
9233 						     size_t offset)
9234 {
9235 	struct bpf_map *map;
9236 	size_t i;
9237 
9238 	for (i = 0; i < obj->nr_maps; i++) {
9239 		map = &obj->maps[i];
9240 		if (!bpf_map__is_struct_ops(map))
9241 			continue;
9242 		if (map->sec_idx == sec_idx &&
9243 		    map->sec_offset <= offset &&
9244 		    offset - map->sec_offset < map->def.value_size)
9245 			return map;
9246 	}
9247 
9248 	return NULL;
9249 }
9250 
9251 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9252 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9253 					    Elf64_Shdr *shdr, Elf_Data *data)
9254 {
9255 	const struct btf_member *member;
9256 	struct bpf_struct_ops *st_ops;
9257 	struct bpf_program *prog;
9258 	unsigned int shdr_idx;
9259 	const struct btf *btf;
9260 	struct bpf_map *map;
9261 	unsigned int moff, insn_idx;
9262 	const char *name;
9263 	__u32 member_idx;
9264 	Elf64_Sym *sym;
9265 	Elf64_Rel *rel;
9266 	int i, nrels;
9267 
9268 	btf = obj->btf;
9269 	nrels = shdr->sh_size / shdr->sh_entsize;
9270 	for (i = 0; i < nrels; i++) {
9271 		rel = elf_rel_by_idx(data, i);
9272 		if (!rel) {
9273 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9274 			return -LIBBPF_ERRNO__FORMAT;
9275 		}
9276 
9277 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9278 		if (!sym) {
9279 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9280 				(size_t)ELF64_R_SYM(rel->r_info));
9281 			return -LIBBPF_ERRNO__FORMAT;
9282 		}
9283 
9284 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9285 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9286 		if (!map) {
9287 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9288 				(size_t)rel->r_offset);
9289 			return -EINVAL;
9290 		}
9291 
9292 		moff = rel->r_offset - map->sec_offset;
9293 		shdr_idx = sym->st_shndx;
9294 		st_ops = map->st_ops;
9295 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9296 			 map->name,
9297 			 (long long)(rel->r_info >> 32),
9298 			 (long long)sym->st_value,
9299 			 shdr_idx, (size_t)rel->r_offset,
9300 			 map->sec_offset, sym->st_name, name);
9301 
9302 		if (shdr_idx >= SHN_LORESERVE) {
9303 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9304 				map->name, (size_t)rel->r_offset, shdr_idx);
9305 			return -LIBBPF_ERRNO__RELOC;
9306 		}
9307 		if (sym->st_value % BPF_INSN_SZ) {
9308 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9309 				map->name, (unsigned long long)sym->st_value);
9310 			return -LIBBPF_ERRNO__FORMAT;
9311 		}
9312 		insn_idx = sym->st_value / BPF_INSN_SZ;
9313 
9314 		member = find_member_by_offset(st_ops->type, moff * 8);
9315 		if (!member) {
9316 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9317 				map->name, moff);
9318 			return -EINVAL;
9319 		}
9320 		member_idx = member - btf_members(st_ops->type);
9321 		name = btf__name_by_offset(btf, member->name_off);
9322 
9323 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9324 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9325 				map->name, name);
9326 			return -EINVAL;
9327 		}
9328 
9329 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9330 		if (!prog) {
9331 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9332 				map->name, shdr_idx, name);
9333 			return -EINVAL;
9334 		}
9335 
9336 		/* prevent the use of BPF prog with invalid type */
9337 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9338 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9339 				map->name, prog->name);
9340 			return -EINVAL;
9341 		}
9342 
9343 		/* if we haven't yet processed this BPF program, record proper
9344 		 * attach_btf_id and member_idx
9345 		 */
9346 		if (!prog->attach_btf_id) {
9347 			prog->attach_btf_id = st_ops->type_id;
9348 			prog->expected_attach_type = member_idx;
9349 		}
9350 
9351 		/* struct_ops BPF prog can be re-used between multiple
9352 		 * .struct_ops & .struct_ops.link as long as it's the
9353 		 * same struct_ops struct definition and the same
9354 		 * function pointer field
9355 		 */
9356 		if (prog->attach_btf_id != st_ops->type_id ||
9357 		    prog->expected_attach_type != member_idx) {
9358 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9359 				map->name, prog->name, prog->sec_name, prog->type,
9360 				prog->attach_btf_id, prog->expected_attach_type, name);
9361 			return -EINVAL;
9362 		}
9363 
9364 		st_ops->progs[member_idx] = prog;
9365 	}
9366 
9367 	return 0;
9368 }
9369 
9370 #define BTF_TRACE_PREFIX "btf_trace_"
9371 #define BTF_LSM_PREFIX "bpf_lsm_"
9372 #define BTF_ITER_PREFIX "bpf_iter_"
9373 #define BTF_MAX_NAME_SIZE 128
9374 
9375 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9376 				const char **prefix, int *kind)
9377 {
9378 	switch (attach_type) {
9379 	case BPF_TRACE_RAW_TP:
9380 		*prefix = BTF_TRACE_PREFIX;
9381 		*kind = BTF_KIND_TYPEDEF;
9382 		break;
9383 	case BPF_LSM_MAC:
9384 	case BPF_LSM_CGROUP:
9385 		*prefix = BTF_LSM_PREFIX;
9386 		*kind = BTF_KIND_FUNC;
9387 		break;
9388 	case BPF_TRACE_ITER:
9389 		*prefix = BTF_ITER_PREFIX;
9390 		*kind = BTF_KIND_FUNC;
9391 		break;
9392 	default:
9393 		*prefix = "";
9394 		*kind = BTF_KIND_FUNC;
9395 	}
9396 }
9397 
9398 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9399 				   const char *name, __u32 kind)
9400 {
9401 	char btf_type_name[BTF_MAX_NAME_SIZE];
9402 	int ret;
9403 
9404 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9405 		       "%s%s", prefix, name);
9406 	/* snprintf returns the number of characters written excluding the
9407 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9408 	 * indicates truncation.
9409 	 */
9410 	if (ret < 0 || ret >= sizeof(btf_type_name))
9411 		return -ENAMETOOLONG;
9412 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9413 }
9414 
9415 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9416 				     enum bpf_attach_type attach_type)
9417 {
9418 	const char *prefix;
9419 	int kind;
9420 
9421 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9422 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9423 }
9424 
9425 int libbpf_find_vmlinux_btf_id(const char *name,
9426 			       enum bpf_attach_type attach_type)
9427 {
9428 	struct btf *btf;
9429 	int err;
9430 
9431 	btf = btf__load_vmlinux_btf();
9432 	err = libbpf_get_error(btf);
9433 	if (err) {
9434 		pr_warn("vmlinux BTF is not found\n");
9435 		return libbpf_err(err);
9436 	}
9437 
9438 	err = find_attach_btf_id(btf, name, attach_type);
9439 	if (err <= 0)
9440 		pr_warn("%s is not found in vmlinux BTF\n", name);
9441 
9442 	btf__free(btf);
9443 	return libbpf_err(err);
9444 }
9445 
9446 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9447 {
9448 	struct bpf_prog_info info;
9449 	__u32 info_len = sizeof(info);
9450 	struct btf *btf;
9451 	int err;
9452 
9453 	memset(&info, 0, info_len);
9454 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9455 	if (err) {
9456 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9457 			attach_prog_fd, err);
9458 		return err;
9459 	}
9460 
9461 	err = -EINVAL;
9462 	if (!info.btf_id) {
9463 		pr_warn("The target program doesn't have BTF\n");
9464 		goto out;
9465 	}
9466 	btf = btf__load_from_kernel_by_id(info.btf_id);
9467 	err = libbpf_get_error(btf);
9468 	if (err) {
9469 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9470 		goto out;
9471 	}
9472 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9473 	btf__free(btf);
9474 	if (err <= 0) {
9475 		pr_warn("%s is not found in prog's BTF\n", name);
9476 		goto out;
9477 	}
9478 out:
9479 	return err;
9480 }
9481 
9482 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9483 			      enum bpf_attach_type attach_type,
9484 			      int *btf_obj_fd, int *btf_type_id)
9485 {
9486 	int ret, i;
9487 
9488 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9489 	if (ret > 0) {
9490 		*btf_obj_fd = 0; /* vmlinux BTF */
9491 		*btf_type_id = ret;
9492 		return 0;
9493 	}
9494 	if (ret != -ENOENT)
9495 		return ret;
9496 
9497 	ret = load_module_btfs(obj);
9498 	if (ret)
9499 		return ret;
9500 
9501 	for (i = 0; i < obj->btf_module_cnt; i++) {
9502 		const struct module_btf *mod = &obj->btf_modules[i];
9503 
9504 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9505 		if (ret > 0) {
9506 			*btf_obj_fd = mod->fd;
9507 			*btf_type_id = ret;
9508 			return 0;
9509 		}
9510 		if (ret == -ENOENT)
9511 			continue;
9512 
9513 		return ret;
9514 	}
9515 
9516 	return -ESRCH;
9517 }
9518 
9519 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9520 				     int *btf_obj_fd, int *btf_type_id)
9521 {
9522 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9523 	__u32 attach_prog_fd = prog->attach_prog_fd;
9524 	int err = 0;
9525 
9526 	/* BPF program's BTF ID */
9527 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9528 		if (!attach_prog_fd) {
9529 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9530 			return -EINVAL;
9531 		}
9532 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9533 		if (err < 0) {
9534 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9535 				 prog->name, attach_prog_fd, attach_name, err);
9536 			return err;
9537 		}
9538 		*btf_obj_fd = 0;
9539 		*btf_type_id = err;
9540 		return 0;
9541 	}
9542 
9543 	/* kernel/module BTF ID */
9544 	if (prog->obj->gen_loader) {
9545 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9546 		*btf_obj_fd = 0;
9547 		*btf_type_id = 1;
9548 	} else {
9549 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9550 	}
9551 	if (err) {
9552 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9553 			prog->name, attach_name, err);
9554 		return err;
9555 	}
9556 	return 0;
9557 }
9558 
9559 int libbpf_attach_type_by_name(const char *name,
9560 			       enum bpf_attach_type *attach_type)
9561 {
9562 	char *type_names;
9563 	const struct bpf_sec_def *sec_def;
9564 
9565 	if (!name)
9566 		return libbpf_err(-EINVAL);
9567 
9568 	sec_def = find_sec_def(name);
9569 	if (!sec_def) {
9570 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9571 		type_names = libbpf_get_type_names(true);
9572 		if (type_names != NULL) {
9573 			pr_debug("attachable section(type) names are:%s\n", type_names);
9574 			free(type_names);
9575 		}
9576 
9577 		return libbpf_err(-EINVAL);
9578 	}
9579 
9580 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9581 		return libbpf_err(-EINVAL);
9582 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9583 		return libbpf_err(-EINVAL);
9584 
9585 	*attach_type = sec_def->expected_attach_type;
9586 	return 0;
9587 }
9588 
9589 int bpf_map__fd(const struct bpf_map *map)
9590 {
9591 	return map ? map->fd : libbpf_err(-EINVAL);
9592 }
9593 
9594 static bool map_uses_real_name(const struct bpf_map *map)
9595 {
9596 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9597 	 * their user-visible name differs from kernel-visible name. Users see
9598 	 * such map's corresponding ELF section name as a map name.
9599 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9600 	 * maps to know which name has to be returned to the user.
9601 	 */
9602 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9603 		return true;
9604 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9605 		return true;
9606 	return false;
9607 }
9608 
9609 const char *bpf_map__name(const struct bpf_map *map)
9610 {
9611 	if (!map)
9612 		return NULL;
9613 
9614 	if (map_uses_real_name(map))
9615 		return map->real_name;
9616 
9617 	return map->name;
9618 }
9619 
9620 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9621 {
9622 	return map->def.type;
9623 }
9624 
9625 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9626 {
9627 	if (map->fd >= 0)
9628 		return libbpf_err(-EBUSY);
9629 	map->def.type = type;
9630 	return 0;
9631 }
9632 
9633 __u32 bpf_map__map_flags(const struct bpf_map *map)
9634 {
9635 	return map->def.map_flags;
9636 }
9637 
9638 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9639 {
9640 	if (map->fd >= 0)
9641 		return libbpf_err(-EBUSY);
9642 	map->def.map_flags = flags;
9643 	return 0;
9644 }
9645 
9646 __u64 bpf_map__map_extra(const struct bpf_map *map)
9647 {
9648 	return map->map_extra;
9649 }
9650 
9651 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9652 {
9653 	if (map->fd >= 0)
9654 		return libbpf_err(-EBUSY);
9655 	map->map_extra = map_extra;
9656 	return 0;
9657 }
9658 
9659 __u32 bpf_map__numa_node(const struct bpf_map *map)
9660 {
9661 	return map->numa_node;
9662 }
9663 
9664 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9665 {
9666 	if (map->fd >= 0)
9667 		return libbpf_err(-EBUSY);
9668 	map->numa_node = numa_node;
9669 	return 0;
9670 }
9671 
9672 __u32 bpf_map__key_size(const struct bpf_map *map)
9673 {
9674 	return map->def.key_size;
9675 }
9676 
9677 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9678 {
9679 	if (map->fd >= 0)
9680 		return libbpf_err(-EBUSY);
9681 	map->def.key_size = size;
9682 	return 0;
9683 }
9684 
9685 __u32 bpf_map__value_size(const struct bpf_map *map)
9686 {
9687 	return map->def.value_size;
9688 }
9689 
9690 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9691 {
9692 	struct btf *btf;
9693 	struct btf_type *datasec_type, *var_type;
9694 	struct btf_var_secinfo *var;
9695 	const struct btf_type *array_type;
9696 	const struct btf_array *array;
9697 	int vlen, element_sz, new_array_id;
9698 	__u32 nr_elements;
9699 
9700 	/* check btf existence */
9701 	btf = bpf_object__btf(map->obj);
9702 	if (!btf)
9703 		return -ENOENT;
9704 
9705 	/* verify map is datasec */
9706 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9707 	if (!btf_is_datasec(datasec_type)) {
9708 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9709 			bpf_map__name(map));
9710 		return -EINVAL;
9711 	}
9712 
9713 	/* verify datasec has at least one var */
9714 	vlen = btf_vlen(datasec_type);
9715 	if (vlen == 0) {
9716 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9717 			bpf_map__name(map));
9718 		return -EINVAL;
9719 	}
9720 
9721 	/* verify last var in the datasec is an array */
9722 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9723 	var_type = btf_type_by_id(btf, var->type);
9724 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9725 	if (!btf_is_array(array_type)) {
9726 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9727 			bpf_map__name(map));
9728 		return -EINVAL;
9729 	}
9730 
9731 	/* verify request size aligns with array */
9732 	array = btf_array(array_type);
9733 	element_sz = btf__resolve_size(btf, array->type);
9734 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9735 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9736 			bpf_map__name(map), element_sz, size);
9737 		return -EINVAL;
9738 	}
9739 
9740 	/* create a new array based on the existing array, but with new length */
9741 	nr_elements = (size - var->offset) / element_sz;
9742 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9743 	if (new_array_id < 0)
9744 		return new_array_id;
9745 
9746 	/* adding a new btf type invalidates existing pointers to btf objects,
9747 	 * so refresh pointers before proceeding
9748 	 */
9749 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9750 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9751 	var_type = btf_type_by_id(btf, var->type);
9752 
9753 	/* finally update btf info */
9754 	datasec_type->size = size;
9755 	var->size = size - var->offset;
9756 	var_type->type = new_array_id;
9757 
9758 	return 0;
9759 }
9760 
9761 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9762 {
9763 	if (map->fd >= 0)
9764 		return libbpf_err(-EBUSY);
9765 
9766 	if (map->mmaped) {
9767 		int err;
9768 		size_t mmap_old_sz, mmap_new_sz;
9769 
9770 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9771 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9772 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9773 		if (err) {
9774 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9775 				bpf_map__name(map), err);
9776 			return err;
9777 		}
9778 		err = map_btf_datasec_resize(map, size);
9779 		if (err && err != -ENOENT) {
9780 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9781 				bpf_map__name(map), err);
9782 			map->btf_value_type_id = 0;
9783 			map->btf_key_type_id = 0;
9784 		}
9785 	}
9786 
9787 	map->def.value_size = size;
9788 	return 0;
9789 }
9790 
9791 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9792 {
9793 	return map ? map->btf_key_type_id : 0;
9794 }
9795 
9796 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9797 {
9798 	return map ? map->btf_value_type_id : 0;
9799 }
9800 
9801 int bpf_map__set_initial_value(struct bpf_map *map,
9802 			       const void *data, size_t size)
9803 {
9804 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9805 	    size != map->def.value_size || map->fd >= 0)
9806 		return libbpf_err(-EINVAL);
9807 
9808 	memcpy(map->mmaped, data, size);
9809 	return 0;
9810 }
9811 
9812 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9813 {
9814 	if (!map->mmaped)
9815 		return NULL;
9816 	*psize = map->def.value_size;
9817 	return map->mmaped;
9818 }
9819 
9820 bool bpf_map__is_internal(const struct bpf_map *map)
9821 {
9822 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9823 }
9824 
9825 __u32 bpf_map__ifindex(const struct bpf_map *map)
9826 {
9827 	return map->map_ifindex;
9828 }
9829 
9830 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9831 {
9832 	if (map->fd >= 0)
9833 		return libbpf_err(-EBUSY);
9834 	map->map_ifindex = ifindex;
9835 	return 0;
9836 }
9837 
9838 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9839 {
9840 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9841 		pr_warn("error: unsupported map type\n");
9842 		return libbpf_err(-EINVAL);
9843 	}
9844 	if (map->inner_map_fd != -1) {
9845 		pr_warn("error: inner_map_fd already specified\n");
9846 		return libbpf_err(-EINVAL);
9847 	}
9848 	if (map->inner_map) {
9849 		bpf_map__destroy(map->inner_map);
9850 		zfree(&map->inner_map);
9851 	}
9852 	map->inner_map_fd = fd;
9853 	return 0;
9854 }
9855 
9856 static struct bpf_map *
9857 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9858 {
9859 	ssize_t idx;
9860 	struct bpf_map *s, *e;
9861 
9862 	if (!obj || !obj->maps)
9863 		return errno = EINVAL, NULL;
9864 
9865 	s = obj->maps;
9866 	e = obj->maps + obj->nr_maps;
9867 
9868 	if ((m < s) || (m >= e)) {
9869 		pr_warn("error in %s: map handler doesn't belong to object\n",
9870 			 __func__);
9871 		return errno = EINVAL, NULL;
9872 	}
9873 
9874 	idx = (m - obj->maps) + i;
9875 	if (idx >= obj->nr_maps || idx < 0)
9876 		return NULL;
9877 	return &obj->maps[idx];
9878 }
9879 
9880 struct bpf_map *
9881 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9882 {
9883 	if (prev == NULL)
9884 		return obj->maps;
9885 
9886 	return __bpf_map__iter(prev, obj, 1);
9887 }
9888 
9889 struct bpf_map *
9890 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9891 {
9892 	if (next == NULL) {
9893 		if (!obj->nr_maps)
9894 			return NULL;
9895 		return obj->maps + obj->nr_maps - 1;
9896 	}
9897 
9898 	return __bpf_map__iter(next, obj, -1);
9899 }
9900 
9901 struct bpf_map *
9902 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9903 {
9904 	struct bpf_map *pos;
9905 
9906 	bpf_object__for_each_map(pos, obj) {
9907 		/* if it's a special internal map name (which always starts
9908 		 * with dot) then check if that special name matches the
9909 		 * real map name (ELF section name)
9910 		 */
9911 		if (name[0] == '.') {
9912 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9913 				return pos;
9914 			continue;
9915 		}
9916 		/* otherwise map name has to be an exact match */
9917 		if (map_uses_real_name(pos)) {
9918 			if (strcmp(pos->real_name, name) == 0)
9919 				return pos;
9920 			continue;
9921 		}
9922 		if (strcmp(pos->name, name) == 0)
9923 			return pos;
9924 	}
9925 	return errno = ENOENT, NULL;
9926 }
9927 
9928 int
9929 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9930 {
9931 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9932 }
9933 
9934 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9935 			   size_t value_sz, bool check_value_sz)
9936 {
9937 	if (map->fd <= 0)
9938 		return -ENOENT;
9939 
9940 	if (map->def.key_size != key_sz) {
9941 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9942 			map->name, key_sz, map->def.key_size);
9943 		return -EINVAL;
9944 	}
9945 
9946 	if (!check_value_sz)
9947 		return 0;
9948 
9949 	switch (map->def.type) {
9950 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9951 	case BPF_MAP_TYPE_PERCPU_HASH:
9952 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9953 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9954 		int num_cpu = libbpf_num_possible_cpus();
9955 		size_t elem_sz = roundup(map->def.value_size, 8);
9956 
9957 		if (value_sz != num_cpu * elem_sz) {
9958 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9959 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9960 			return -EINVAL;
9961 		}
9962 		break;
9963 	}
9964 	default:
9965 		if (map->def.value_size != value_sz) {
9966 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9967 				map->name, value_sz, map->def.value_size);
9968 			return -EINVAL;
9969 		}
9970 		break;
9971 	}
9972 	return 0;
9973 }
9974 
9975 int bpf_map__lookup_elem(const struct bpf_map *map,
9976 			 const void *key, size_t key_sz,
9977 			 void *value, size_t value_sz, __u64 flags)
9978 {
9979 	int err;
9980 
9981 	err = validate_map_op(map, key_sz, value_sz, true);
9982 	if (err)
9983 		return libbpf_err(err);
9984 
9985 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9986 }
9987 
9988 int bpf_map__update_elem(const struct bpf_map *map,
9989 			 const void *key, size_t key_sz,
9990 			 const void *value, size_t value_sz, __u64 flags)
9991 {
9992 	int err;
9993 
9994 	err = validate_map_op(map, key_sz, value_sz, true);
9995 	if (err)
9996 		return libbpf_err(err);
9997 
9998 	return bpf_map_update_elem(map->fd, key, value, flags);
9999 }
10000 
10001 int bpf_map__delete_elem(const struct bpf_map *map,
10002 			 const void *key, size_t key_sz, __u64 flags)
10003 {
10004 	int err;
10005 
10006 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10007 	if (err)
10008 		return libbpf_err(err);
10009 
10010 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10011 }
10012 
10013 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10014 				    const void *key, size_t key_sz,
10015 				    void *value, size_t value_sz, __u64 flags)
10016 {
10017 	int err;
10018 
10019 	err = validate_map_op(map, key_sz, value_sz, true);
10020 	if (err)
10021 		return libbpf_err(err);
10022 
10023 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10024 }
10025 
10026 int bpf_map__get_next_key(const struct bpf_map *map,
10027 			  const void *cur_key, void *next_key, size_t key_sz)
10028 {
10029 	int err;
10030 
10031 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10032 	if (err)
10033 		return libbpf_err(err);
10034 
10035 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10036 }
10037 
10038 long libbpf_get_error(const void *ptr)
10039 {
10040 	if (!IS_ERR_OR_NULL(ptr))
10041 		return 0;
10042 
10043 	if (IS_ERR(ptr))
10044 		errno = -PTR_ERR(ptr);
10045 
10046 	/* If ptr == NULL, then errno should be already set by the failing
10047 	 * API, because libbpf never returns NULL on success and it now always
10048 	 * sets errno on error. So no extra errno handling for ptr == NULL
10049 	 * case.
10050 	 */
10051 	return -errno;
10052 }
10053 
10054 /* Replace link's underlying BPF program with the new one */
10055 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10056 {
10057 	int ret;
10058 
10059 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10060 	return libbpf_err_errno(ret);
10061 }
10062 
10063 /* Release "ownership" of underlying BPF resource (typically, BPF program
10064  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10065  * link, when destructed through bpf_link__destroy() call won't attempt to
10066  * detach/unregisted that BPF resource. This is useful in situations where,
10067  * say, attached BPF program has to outlive userspace program that attached it
10068  * in the system. Depending on type of BPF program, though, there might be
10069  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10070  * exit of userspace program doesn't trigger automatic detachment and clean up
10071  * inside the kernel.
10072  */
10073 void bpf_link__disconnect(struct bpf_link *link)
10074 {
10075 	link->disconnected = true;
10076 }
10077 
10078 int bpf_link__destroy(struct bpf_link *link)
10079 {
10080 	int err = 0;
10081 
10082 	if (IS_ERR_OR_NULL(link))
10083 		return 0;
10084 
10085 	if (!link->disconnected && link->detach)
10086 		err = link->detach(link);
10087 	if (link->pin_path)
10088 		free(link->pin_path);
10089 	if (link->dealloc)
10090 		link->dealloc(link);
10091 	else
10092 		free(link);
10093 
10094 	return libbpf_err(err);
10095 }
10096 
10097 int bpf_link__fd(const struct bpf_link *link)
10098 {
10099 	return link->fd;
10100 }
10101 
10102 const char *bpf_link__pin_path(const struct bpf_link *link)
10103 {
10104 	return link->pin_path;
10105 }
10106 
10107 static int bpf_link__detach_fd(struct bpf_link *link)
10108 {
10109 	return libbpf_err_errno(close(link->fd));
10110 }
10111 
10112 struct bpf_link *bpf_link__open(const char *path)
10113 {
10114 	struct bpf_link *link;
10115 	int fd;
10116 
10117 	fd = bpf_obj_get(path);
10118 	if (fd < 0) {
10119 		fd = -errno;
10120 		pr_warn("failed to open link at %s: %d\n", path, fd);
10121 		return libbpf_err_ptr(fd);
10122 	}
10123 
10124 	link = calloc(1, sizeof(*link));
10125 	if (!link) {
10126 		close(fd);
10127 		return libbpf_err_ptr(-ENOMEM);
10128 	}
10129 	link->detach = &bpf_link__detach_fd;
10130 	link->fd = fd;
10131 
10132 	link->pin_path = strdup(path);
10133 	if (!link->pin_path) {
10134 		bpf_link__destroy(link);
10135 		return libbpf_err_ptr(-ENOMEM);
10136 	}
10137 
10138 	return link;
10139 }
10140 
10141 int bpf_link__detach(struct bpf_link *link)
10142 {
10143 	return bpf_link_detach(link->fd) ? -errno : 0;
10144 }
10145 
10146 int bpf_link__pin(struct bpf_link *link, const char *path)
10147 {
10148 	int err;
10149 
10150 	if (link->pin_path)
10151 		return libbpf_err(-EBUSY);
10152 	err = make_parent_dir(path);
10153 	if (err)
10154 		return libbpf_err(err);
10155 	err = check_path(path);
10156 	if (err)
10157 		return libbpf_err(err);
10158 
10159 	link->pin_path = strdup(path);
10160 	if (!link->pin_path)
10161 		return libbpf_err(-ENOMEM);
10162 
10163 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10164 		err = -errno;
10165 		zfree(&link->pin_path);
10166 		return libbpf_err(err);
10167 	}
10168 
10169 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10170 	return 0;
10171 }
10172 
10173 int bpf_link__unpin(struct bpf_link *link)
10174 {
10175 	int err;
10176 
10177 	if (!link->pin_path)
10178 		return libbpf_err(-EINVAL);
10179 
10180 	err = unlink(link->pin_path);
10181 	if (err != 0)
10182 		return -errno;
10183 
10184 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10185 	zfree(&link->pin_path);
10186 	return 0;
10187 }
10188 
10189 struct bpf_link_perf {
10190 	struct bpf_link link;
10191 	int perf_event_fd;
10192 	/* legacy kprobe support: keep track of probe identifier and type */
10193 	char *legacy_probe_name;
10194 	bool legacy_is_kprobe;
10195 	bool legacy_is_retprobe;
10196 };
10197 
10198 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10199 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10200 
10201 static int bpf_link_perf_detach(struct bpf_link *link)
10202 {
10203 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10204 	int err = 0;
10205 
10206 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10207 		err = -errno;
10208 
10209 	if (perf_link->perf_event_fd != link->fd)
10210 		close(perf_link->perf_event_fd);
10211 	close(link->fd);
10212 
10213 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10214 	if (perf_link->legacy_probe_name) {
10215 		if (perf_link->legacy_is_kprobe) {
10216 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10217 							 perf_link->legacy_is_retprobe);
10218 		} else {
10219 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10220 							 perf_link->legacy_is_retprobe);
10221 		}
10222 	}
10223 
10224 	return err;
10225 }
10226 
10227 static void bpf_link_perf_dealloc(struct bpf_link *link)
10228 {
10229 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10230 
10231 	free(perf_link->legacy_probe_name);
10232 	free(perf_link);
10233 }
10234 
10235 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10236 						     const struct bpf_perf_event_opts *opts)
10237 {
10238 	char errmsg[STRERR_BUFSIZE];
10239 	struct bpf_link_perf *link;
10240 	int prog_fd, link_fd = -1, err;
10241 	bool force_ioctl_attach;
10242 
10243 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10244 		return libbpf_err_ptr(-EINVAL);
10245 
10246 	if (pfd < 0) {
10247 		pr_warn("prog '%s': invalid perf event FD %d\n",
10248 			prog->name, pfd);
10249 		return libbpf_err_ptr(-EINVAL);
10250 	}
10251 	prog_fd = bpf_program__fd(prog);
10252 	if (prog_fd < 0) {
10253 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10254 			prog->name);
10255 		return libbpf_err_ptr(-EINVAL);
10256 	}
10257 
10258 	link = calloc(1, sizeof(*link));
10259 	if (!link)
10260 		return libbpf_err_ptr(-ENOMEM);
10261 	link->link.detach = &bpf_link_perf_detach;
10262 	link->link.dealloc = &bpf_link_perf_dealloc;
10263 	link->perf_event_fd = pfd;
10264 
10265 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10266 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10267 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10268 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10269 
10270 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10271 		if (link_fd < 0) {
10272 			err = -errno;
10273 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10274 				prog->name, pfd,
10275 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10276 			goto err_out;
10277 		}
10278 		link->link.fd = link_fd;
10279 	} else {
10280 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10281 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10282 			err = -EOPNOTSUPP;
10283 			goto err_out;
10284 		}
10285 
10286 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10287 			err = -errno;
10288 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10289 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10290 			if (err == -EPROTO)
10291 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10292 					prog->name, pfd);
10293 			goto err_out;
10294 		}
10295 		link->link.fd = pfd;
10296 	}
10297 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10298 		err = -errno;
10299 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10300 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10301 		goto err_out;
10302 	}
10303 
10304 	return &link->link;
10305 err_out:
10306 	if (link_fd >= 0)
10307 		close(link_fd);
10308 	free(link);
10309 	return libbpf_err_ptr(err);
10310 }
10311 
10312 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10313 {
10314 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10315 }
10316 
10317 /*
10318  * this function is expected to parse integer in the range of [0, 2^31-1] from
10319  * given file using scanf format string fmt. If actual parsed value is
10320  * negative, the result might be indistinguishable from error
10321  */
10322 static int parse_uint_from_file(const char *file, const char *fmt)
10323 {
10324 	char buf[STRERR_BUFSIZE];
10325 	int err, ret;
10326 	FILE *f;
10327 
10328 	f = fopen(file, "re");
10329 	if (!f) {
10330 		err = -errno;
10331 		pr_debug("failed to open '%s': %s\n", file,
10332 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10333 		return err;
10334 	}
10335 	err = fscanf(f, fmt, &ret);
10336 	if (err != 1) {
10337 		err = err == EOF ? -EIO : -errno;
10338 		pr_debug("failed to parse '%s': %s\n", file,
10339 			libbpf_strerror_r(err, buf, sizeof(buf)));
10340 		fclose(f);
10341 		return err;
10342 	}
10343 	fclose(f);
10344 	return ret;
10345 }
10346 
10347 static int determine_kprobe_perf_type(void)
10348 {
10349 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10350 
10351 	return parse_uint_from_file(file, "%d\n");
10352 }
10353 
10354 static int determine_uprobe_perf_type(void)
10355 {
10356 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10357 
10358 	return parse_uint_from_file(file, "%d\n");
10359 }
10360 
10361 static int determine_kprobe_retprobe_bit(void)
10362 {
10363 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10364 
10365 	return parse_uint_from_file(file, "config:%d\n");
10366 }
10367 
10368 static int determine_uprobe_retprobe_bit(void)
10369 {
10370 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10371 
10372 	return parse_uint_from_file(file, "config:%d\n");
10373 }
10374 
10375 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10376 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10377 
10378 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10379 				 uint64_t offset, int pid, size_t ref_ctr_off)
10380 {
10381 	const size_t attr_sz = sizeof(struct perf_event_attr);
10382 	struct perf_event_attr attr;
10383 	char errmsg[STRERR_BUFSIZE];
10384 	int type, pfd;
10385 
10386 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10387 		return -EINVAL;
10388 
10389 	memset(&attr, 0, attr_sz);
10390 
10391 	type = uprobe ? determine_uprobe_perf_type()
10392 		      : determine_kprobe_perf_type();
10393 	if (type < 0) {
10394 		pr_warn("failed to determine %s perf type: %s\n",
10395 			uprobe ? "uprobe" : "kprobe",
10396 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10397 		return type;
10398 	}
10399 	if (retprobe) {
10400 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10401 				 : determine_kprobe_retprobe_bit();
10402 
10403 		if (bit < 0) {
10404 			pr_warn("failed to determine %s retprobe bit: %s\n",
10405 				uprobe ? "uprobe" : "kprobe",
10406 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10407 			return bit;
10408 		}
10409 		attr.config |= 1 << bit;
10410 	}
10411 	attr.size = attr_sz;
10412 	attr.type = type;
10413 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10414 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10415 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10416 
10417 	/* pid filter is meaningful only for uprobes */
10418 	pfd = syscall(__NR_perf_event_open, &attr,
10419 		      pid < 0 ? -1 : pid /* pid */,
10420 		      pid == -1 ? 0 : -1 /* cpu */,
10421 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10422 	return pfd >= 0 ? pfd : -errno;
10423 }
10424 
10425 static int append_to_file(const char *file, const char *fmt, ...)
10426 {
10427 	int fd, n, err = 0;
10428 	va_list ap;
10429 	char buf[1024];
10430 
10431 	va_start(ap, fmt);
10432 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10433 	va_end(ap);
10434 
10435 	if (n < 0 || n >= sizeof(buf))
10436 		return -EINVAL;
10437 
10438 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10439 	if (fd < 0)
10440 		return -errno;
10441 
10442 	if (write(fd, buf, n) < 0)
10443 		err = -errno;
10444 
10445 	close(fd);
10446 	return err;
10447 }
10448 
10449 #define DEBUGFS "/sys/kernel/debug/tracing"
10450 #define TRACEFS "/sys/kernel/tracing"
10451 
10452 static bool use_debugfs(void)
10453 {
10454 	static int has_debugfs = -1;
10455 
10456 	if (has_debugfs < 0)
10457 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10458 
10459 	return has_debugfs == 1;
10460 }
10461 
10462 static const char *tracefs_path(void)
10463 {
10464 	return use_debugfs() ? DEBUGFS : TRACEFS;
10465 }
10466 
10467 static const char *tracefs_kprobe_events(void)
10468 {
10469 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10470 }
10471 
10472 static const char *tracefs_uprobe_events(void)
10473 {
10474 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10475 }
10476 
10477 static const char *tracefs_available_filter_functions(void)
10478 {
10479 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10480 			     : TRACEFS"/available_filter_functions";
10481 }
10482 
10483 static const char *tracefs_available_filter_functions_addrs(void)
10484 {
10485 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10486 			     : TRACEFS"/available_filter_functions_addrs";
10487 }
10488 
10489 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10490 					 const char *kfunc_name, size_t offset)
10491 {
10492 	static int index = 0;
10493 	int i;
10494 
10495 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10496 		 __sync_fetch_and_add(&index, 1));
10497 
10498 	/* sanitize binary_path in the probe name */
10499 	for (i = 0; buf[i]; i++) {
10500 		if (!isalnum(buf[i]))
10501 			buf[i] = '_';
10502 	}
10503 }
10504 
10505 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10506 				   const char *kfunc_name, size_t offset)
10507 {
10508 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10509 			      retprobe ? 'r' : 'p',
10510 			      retprobe ? "kretprobes" : "kprobes",
10511 			      probe_name, kfunc_name, offset);
10512 }
10513 
10514 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10515 {
10516 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10517 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10518 }
10519 
10520 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10521 {
10522 	char file[256];
10523 
10524 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10525 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10526 
10527 	return parse_uint_from_file(file, "%d\n");
10528 }
10529 
10530 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10531 					 const char *kfunc_name, size_t offset, int pid)
10532 {
10533 	const size_t attr_sz = sizeof(struct perf_event_attr);
10534 	struct perf_event_attr attr;
10535 	char errmsg[STRERR_BUFSIZE];
10536 	int type, pfd, err;
10537 
10538 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10539 	if (err < 0) {
10540 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10541 			kfunc_name, offset,
10542 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10543 		return err;
10544 	}
10545 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10546 	if (type < 0) {
10547 		err = type;
10548 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10549 			kfunc_name, offset,
10550 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10551 		goto err_clean_legacy;
10552 	}
10553 
10554 	memset(&attr, 0, attr_sz);
10555 	attr.size = attr_sz;
10556 	attr.config = type;
10557 	attr.type = PERF_TYPE_TRACEPOINT;
10558 
10559 	pfd = syscall(__NR_perf_event_open, &attr,
10560 		      pid < 0 ? -1 : pid, /* pid */
10561 		      pid == -1 ? 0 : -1, /* cpu */
10562 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10563 	if (pfd < 0) {
10564 		err = -errno;
10565 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10566 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10567 		goto err_clean_legacy;
10568 	}
10569 	return pfd;
10570 
10571 err_clean_legacy:
10572 	/* Clear the newly added legacy kprobe_event */
10573 	remove_kprobe_event_legacy(probe_name, retprobe);
10574 	return err;
10575 }
10576 
10577 static const char *arch_specific_syscall_pfx(void)
10578 {
10579 #if defined(__x86_64__)
10580 	return "x64";
10581 #elif defined(__i386__)
10582 	return "ia32";
10583 #elif defined(__s390x__)
10584 	return "s390x";
10585 #elif defined(__s390__)
10586 	return "s390";
10587 #elif defined(__arm__)
10588 	return "arm";
10589 #elif defined(__aarch64__)
10590 	return "arm64";
10591 #elif defined(__mips__)
10592 	return "mips";
10593 #elif defined(__riscv)
10594 	return "riscv";
10595 #elif defined(__powerpc__)
10596 	return "powerpc";
10597 #elif defined(__powerpc64__)
10598 	return "powerpc64";
10599 #else
10600 	return NULL;
10601 #endif
10602 }
10603 
10604 static int probe_kern_syscall_wrapper(void)
10605 {
10606 	char syscall_name[64];
10607 	const char *ksys_pfx;
10608 
10609 	ksys_pfx = arch_specific_syscall_pfx();
10610 	if (!ksys_pfx)
10611 		return 0;
10612 
10613 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10614 
10615 	if (determine_kprobe_perf_type() >= 0) {
10616 		int pfd;
10617 
10618 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10619 		if (pfd >= 0)
10620 			close(pfd);
10621 
10622 		return pfd >= 0 ? 1 : 0;
10623 	} else { /* legacy mode */
10624 		char probe_name[128];
10625 
10626 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10627 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10628 			return 0;
10629 
10630 		(void)remove_kprobe_event_legacy(probe_name, false);
10631 		return 1;
10632 	}
10633 }
10634 
10635 struct bpf_link *
10636 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10637 				const char *func_name,
10638 				const struct bpf_kprobe_opts *opts)
10639 {
10640 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10641 	enum probe_attach_mode attach_mode;
10642 	char errmsg[STRERR_BUFSIZE];
10643 	char *legacy_probe = NULL;
10644 	struct bpf_link *link;
10645 	size_t offset;
10646 	bool retprobe, legacy;
10647 	int pfd, err;
10648 
10649 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10650 		return libbpf_err_ptr(-EINVAL);
10651 
10652 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10653 	retprobe = OPTS_GET(opts, retprobe, false);
10654 	offset = OPTS_GET(opts, offset, 0);
10655 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10656 
10657 	legacy = determine_kprobe_perf_type() < 0;
10658 	switch (attach_mode) {
10659 	case PROBE_ATTACH_MODE_LEGACY:
10660 		legacy = true;
10661 		pe_opts.force_ioctl_attach = true;
10662 		break;
10663 	case PROBE_ATTACH_MODE_PERF:
10664 		if (legacy)
10665 			return libbpf_err_ptr(-ENOTSUP);
10666 		pe_opts.force_ioctl_attach = true;
10667 		break;
10668 	case PROBE_ATTACH_MODE_LINK:
10669 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10670 			return libbpf_err_ptr(-ENOTSUP);
10671 		break;
10672 	case PROBE_ATTACH_MODE_DEFAULT:
10673 		break;
10674 	default:
10675 		return libbpf_err_ptr(-EINVAL);
10676 	}
10677 
10678 	if (!legacy) {
10679 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10680 					    func_name, offset,
10681 					    -1 /* pid */, 0 /* ref_ctr_off */);
10682 	} else {
10683 		char probe_name[256];
10684 
10685 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10686 					     func_name, offset);
10687 
10688 		legacy_probe = strdup(probe_name);
10689 		if (!legacy_probe)
10690 			return libbpf_err_ptr(-ENOMEM);
10691 
10692 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10693 						    offset, -1 /* pid */);
10694 	}
10695 	if (pfd < 0) {
10696 		err = -errno;
10697 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10698 			prog->name, retprobe ? "kretprobe" : "kprobe",
10699 			func_name, offset,
10700 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10701 		goto err_out;
10702 	}
10703 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10704 	err = libbpf_get_error(link);
10705 	if (err) {
10706 		close(pfd);
10707 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10708 			prog->name, retprobe ? "kretprobe" : "kprobe",
10709 			func_name, offset,
10710 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10711 		goto err_clean_legacy;
10712 	}
10713 	if (legacy) {
10714 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10715 
10716 		perf_link->legacy_probe_name = legacy_probe;
10717 		perf_link->legacy_is_kprobe = true;
10718 		perf_link->legacy_is_retprobe = retprobe;
10719 	}
10720 
10721 	return link;
10722 
10723 err_clean_legacy:
10724 	if (legacy)
10725 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10726 err_out:
10727 	free(legacy_probe);
10728 	return libbpf_err_ptr(err);
10729 }
10730 
10731 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10732 					    bool retprobe,
10733 					    const char *func_name)
10734 {
10735 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10736 		.retprobe = retprobe,
10737 	);
10738 
10739 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10740 }
10741 
10742 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10743 					      const char *syscall_name,
10744 					      const struct bpf_ksyscall_opts *opts)
10745 {
10746 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10747 	char func_name[128];
10748 
10749 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10750 		return libbpf_err_ptr(-EINVAL);
10751 
10752 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10753 		/* arch_specific_syscall_pfx() should never return NULL here
10754 		 * because it is guarded by kernel_supports(). However, since
10755 		 * compiler does not know that we have an explicit conditional
10756 		 * as well.
10757 		 */
10758 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10759 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10760 	} else {
10761 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10762 	}
10763 
10764 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10765 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10766 
10767 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10768 }
10769 
10770 /* Adapted from perf/util/string.c */
10771 bool glob_match(const char *str, const char *pat)
10772 {
10773 	while (*str && *pat && *pat != '*') {
10774 		if (*pat == '?') {      /* Matches any single character */
10775 			str++;
10776 			pat++;
10777 			continue;
10778 		}
10779 		if (*str != *pat)
10780 			return false;
10781 		str++;
10782 		pat++;
10783 	}
10784 	/* Check wild card */
10785 	if (*pat == '*') {
10786 		while (*pat == '*')
10787 			pat++;
10788 		if (!*pat) /* Tail wild card matches all */
10789 			return true;
10790 		while (*str)
10791 			if (glob_match(str++, pat))
10792 				return true;
10793 	}
10794 	return !*str && !*pat;
10795 }
10796 
10797 struct kprobe_multi_resolve {
10798 	const char *pattern;
10799 	unsigned long *addrs;
10800 	size_t cap;
10801 	size_t cnt;
10802 };
10803 
10804 struct avail_kallsyms_data {
10805 	char **syms;
10806 	size_t cnt;
10807 	struct kprobe_multi_resolve *res;
10808 };
10809 
10810 static int avail_func_cmp(const void *a, const void *b)
10811 {
10812 	return strcmp(*(const char **)a, *(const char **)b);
10813 }
10814 
10815 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10816 			     const char *sym_name, void *ctx)
10817 {
10818 	struct avail_kallsyms_data *data = ctx;
10819 	struct kprobe_multi_resolve *res = data->res;
10820 	int err;
10821 
10822 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10823 		return 0;
10824 
10825 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10826 	if (err)
10827 		return err;
10828 
10829 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
10830 	return 0;
10831 }
10832 
10833 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10834 {
10835 	const char *available_functions_file = tracefs_available_filter_functions();
10836 	struct avail_kallsyms_data data;
10837 	char sym_name[500];
10838 	FILE *f;
10839 	int err = 0, ret, i;
10840 	char **syms = NULL;
10841 	size_t cap = 0, cnt = 0;
10842 
10843 	f = fopen(available_functions_file, "re");
10844 	if (!f) {
10845 		err = -errno;
10846 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
10847 		return err;
10848 	}
10849 
10850 	while (true) {
10851 		char *name;
10852 
10853 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10854 		if (ret == EOF && feof(f))
10855 			break;
10856 
10857 		if (ret != 1) {
10858 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10859 			err = -EINVAL;
10860 			goto cleanup;
10861 		}
10862 
10863 		if (!glob_match(sym_name, res->pattern))
10864 			continue;
10865 
10866 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10867 		if (err)
10868 			goto cleanup;
10869 
10870 		name = strdup(sym_name);
10871 		if (!name) {
10872 			err = -errno;
10873 			goto cleanup;
10874 		}
10875 
10876 		syms[cnt++] = name;
10877 	}
10878 
10879 	/* no entries found, bail out */
10880 	if (cnt == 0) {
10881 		err = -ENOENT;
10882 		goto cleanup;
10883 	}
10884 
10885 	/* sort available functions */
10886 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10887 
10888 	data.syms = syms;
10889 	data.res = res;
10890 	data.cnt = cnt;
10891 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10892 
10893 	if (res->cnt == 0)
10894 		err = -ENOENT;
10895 
10896 cleanup:
10897 	for (i = 0; i < cnt; i++)
10898 		free((char *)syms[i]);
10899 	free(syms);
10900 
10901 	fclose(f);
10902 	return err;
10903 }
10904 
10905 static bool has_available_filter_functions_addrs(void)
10906 {
10907 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10908 }
10909 
10910 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10911 {
10912 	const char *available_path = tracefs_available_filter_functions_addrs();
10913 	char sym_name[500];
10914 	FILE *f;
10915 	int ret, err = 0;
10916 	unsigned long long sym_addr;
10917 
10918 	f = fopen(available_path, "re");
10919 	if (!f) {
10920 		err = -errno;
10921 		pr_warn("failed to open %s: %d\n", available_path, err);
10922 		return err;
10923 	}
10924 
10925 	while (true) {
10926 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10927 		if (ret == EOF && feof(f))
10928 			break;
10929 
10930 		if (ret != 2) {
10931 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10932 				ret);
10933 			err = -EINVAL;
10934 			goto cleanup;
10935 		}
10936 
10937 		if (!glob_match(sym_name, res->pattern))
10938 			continue;
10939 
10940 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10941 					sizeof(*res->addrs), res->cnt + 1);
10942 		if (err)
10943 			goto cleanup;
10944 
10945 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
10946 	}
10947 
10948 	if (res->cnt == 0)
10949 		err = -ENOENT;
10950 
10951 cleanup:
10952 	fclose(f);
10953 	return err;
10954 }
10955 
10956 struct bpf_link *
10957 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10958 				      const char *pattern,
10959 				      const struct bpf_kprobe_multi_opts *opts)
10960 {
10961 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10962 	struct kprobe_multi_resolve res = {
10963 		.pattern = pattern,
10964 	};
10965 	struct bpf_link *link = NULL;
10966 	char errmsg[STRERR_BUFSIZE];
10967 	const unsigned long *addrs;
10968 	int err, link_fd, prog_fd;
10969 	const __u64 *cookies;
10970 	const char **syms;
10971 	bool retprobe;
10972 	size_t cnt;
10973 
10974 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10975 		return libbpf_err_ptr(-EINVAL);
10976 
10977 	syms    = OPTS_GET(opts, syms, false);
10978 	addrs   = OPTS_GET(opts, addrs, false);
10979 	cnt     = OPTS_GET(opts, cnt, false);
10980 	cookies = OPTS_GET(opts, cookies, false);
10981 
10982 	if (!pattern && !addrs && !syms)
10983 		return libbpf_err_ptr(-EINVAL);
10984 	if (pattern && (addrs || syms || cookies || cnt))
10985 		return libbpf_err_ptr(-EINVAL);
10986 	if (!pattern && !cnt)
10987 		return libbpf_err_ptr(-EINVAL);
10988 	if (addrs && syms)
10989 		return libbpf_err_ptr(-EINVAL);
10990 
10991 	if (pattern) {
10992 		if (has_available_filter_functions_addrs())
10993 			err = libbpf_available_kprobes_parse(&res);
10994 		else
10995 			err = libbpf_available_kallsyms_parse(&res);
10996 		if (err)
10997 			goto error;
10998 		addrs = res.addrs;
10999 		cnt = res.cnt;
11000 	}
11001 
11002 	retprobe = OPTS_GET(opts, retprobe, false);
11003 
11004 	lopts.kprobe_multi.syms = syms;
11005 	lopts.kprobe_multi.addrs = addrs;
11006 	lopts.kprobe_multi.cookies = cookies;
11007 	lopts.kprobe_multi.cnt = cnt;
11008 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11009 
11010 	link = calloc(1, sizeof(*link));
11011 	if (!link) {
11012 		err = -ENOMEM;
11013 		goto error;
11014 	}
11015 	link->detach = &bpf_link__detach_fd;
11016 
11017 	prog_fd = bpf_program__fd(prog);
11018 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11019 	if (link_fd < 0) {
11020 		err = -errno;
11021 		pr_warn("prog '%s': failed to attach: %s\n",
11022 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11023 		goto error;
11024 	}
11025 	link->fd = link_fd;
11026 	free(res.addrs);
11027 	return link;
11028 
11029 error:
11030 	free(link);
11031 	free(res.addrs);
11032 	return libbpf_err_ptr(err);
11033 }
11034 
11035 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11036 {
11037 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11038 	unsigned long offset = 0;
11039 	const char *func_name;
11040 	char *func;
11041 	int n;
11042 
11043 	*link = NULL;
11044 
11045 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11046 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11047 		return 0;
11048 
11049 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11050 	if (opts.retprobe)
11051 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11052 	else
11053 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11054 
11055 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11056 	if (n < 1) {
11057 		pr_warn("kprobe name is invalid: %s\n", func_name);
11058 		return -EINVAL;
11059 	}
11060 	if (opts.retprobe && offset != 0) {
11061 		free(func);
11062 		pr_warn("kretprobes do not support offset specification\n");
11063 		return -EINVAL;
11064 	}
11065 
11066 	opts.offset = offset;
11067 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11068 	free(func);
11069 	return libbpf_get_error(*link);
11070 }
11071 
11072 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11073 {
11074 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11075 	const char *syscall_name;
11076 
11077 	*link = NULL;
11078 
11079 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11080 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11081 		return 0;
11082 
11083 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11084 	if (opts.retprobe)
11085 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11086 	else
11087 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11088 
11089 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11090 	return *link ? 0 : -errno;
11091 }
11092 
11093 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11094 {
11095 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11096 	const char *spec;
11097 	char *pattern;
11098 	int n;
11099 
11100 	*link = NULL;
11101 
11102 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11103 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11104 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11105 		return 0;
11106 
11107 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11108 	if (opts.retprobe)
11109 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11110 	else
11111 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11112 
11113 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11114 	if (n < 1) {
11115 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11116 		return -EINVAL;
11117 	}
11118 
11119 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11120 	free(pattern);
11121 	return libbpf_get_error(*link);
11122 }
11123 
11124 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11125 {
11126 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11127 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11128 	int n, ret = -EINVAL;
11129 
11130 	*link = NULL;
11131 
11132 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11133 		   &probe_type, &binary_path, &func_name);
11134 	switch (n) {
11135 	case 1:
11136 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11137 		ret = 0;
11138 		break;
11139 	case 3:
11140 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11141 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11142 		ret = libbpf_get_error(*link);
11143 		break;
11144 	default:
11145 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11146 			prog->sec_name);
11147 		break;
11148 	}
11149 	free(probe_type);
11150 	free(binary_path);
11151 	free(func_name);
11152 	return ret;
11153 }
11154 
11155 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11156 					 const char *binary_path, uint64_t offset)
11157 {
11158 	int i;
11159 
11160 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11161 
11162 	/* sanitize binary_path in the probe name */
11163 	for (i = 0; buf[i]; i++) {
11164 		if (!isalnum(buf[i]))
11165 			buf[i] = '_';
11166 	}
11167 }
11168 
11169 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11170 					  const char *binary_path, size_t offset)
11171 {
11172 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11173 			      retprobe ? 'r' : 'p',
11174 			      retprobe ? "uretprobes" : "uprobes",
11175 			      probe_name, binary_path, offset);
11176 }
11177 
11178 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11179 {
11180 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11181 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11182 }
11183 
11184 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11185 {
11186 	char file[512];
11187 
11188 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11189 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11190 
11191 	return parse_uint_from_file(file, "%d\n");
11192 }
11193 
11194 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11195 					 const char *binary_path, size_t offset, int pid)
11196 {
11197 	const size_t attr_sz = sizeof(struct perf_event_attr);
11198 	struct perf_event_attr attr;
11199 	int type, pfd, err;
11200 
11201 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11202 	if (err < 0) {
11203 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11204 			binary_path, (size_t)offset, err);
11205 		return err;
11206 	}
11207 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11208 	if (type < 0) {
11209 		err = type;
11210 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11211 			binary_path, offset, err);
11212 		goto err_clean_legacy;
11213 	}
11214 
11215 	memset(&attr, 0, attr_sz);
11216 	attr.size = attr_sz;
11217 	attr.config = type;
11218 	attr.type = PERF_TYPE_TRACEPOINT;
11219 
11220 	pfd = syscall(__NR_perf_event_open, &attr,
11221 		      pid < 0 ? -1 : pid, /* pid */
11222 		      pid == -1 ? 0 : -1, /* cpu */
11223 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11224 	if (pfd < 0) {
11225 		err = -errno;
11226 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11227 		goto err_clean_legacy;
11228 	}
11229 	return pfd;
11230 
11231 err_clean_legacy:
11232 	/* Clear the newly added legacy uprobe_event */
11233 	remove_uprobe_event_legacy(probe_name, retprobe);
11234 	return err;
11235 }
11236 
11237 /* Find offset of function name in archive specified by path. Currently
11238  * supported are .zip files that do not compress their contents, as used on
11239  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11240  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11241  * library functions.
11242  *
11243  * An overview of the APK format specifically provided here:
11244  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11245  */
11246 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11247 					      const char *func_name)
11248 {
11249 	struct zip_archive *archive;
11250 	struct zip_entry entry;
11251 	long ret;
11252 	Elf *elf;
11253 
11254 	archive = zip_archive_open(archive_path);
11255 	if (IS_ERR(archive)) {
11256 		ret = PTR_ERR(archive);
11257 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11258 		return ret;
11259 	}
11260 
11261 	ret = zip_archive_find_entry(archive, file_name, &entry);
11262 	if (ret) {
11263 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11264 			archive_path, ret);
11265 		goto out;
11266 	}
11267 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11268 		 (unsigned long)entry.data_offset);
11269 
11270 	if (entry.compression) {
11271 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11272 			archive_path);
11273 		ret = -LIBBPF_ERRNO__FORMAT;
11274 		goto out;
11275 	}
11276 
11277 	elf = elf_memory((void *)entry.data, entry.data_length);
11278 	if (!elf) {
11279 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11280 			elf_errmsg(-1));
11281 		ret = -LIBBPF_ERRNO__LIBELF;
11282 		goto out;
11283 	}
11284 
11285 	ret = elf_find_func_offset(elf, file_name, func_name);
11286 	if (ret > 0) {
11287 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11288 			 func_name, file_name, archive_path, entry.data_offset, ret,
11289 			 ret + entry.data_offset);
11290 		ret += entry.data_offset;
11291 	}
11292 	elf_end(elf);
11293 
11294 out:
11295 	zip_archive_close(archive);
11296 	return ret;
11297 }
11298 
11299 static const char *arch_specific_lib_paths(void)
11300 {
11301 	/*
11302 	 * Based on https://packages.debian.org/sid/libc6.
11303 	 *
11304 	 * Assume that the traced program is built for the same architecture
11305 	 * as libbpf, which should cover the vast majority of cases.
11306 	 */
11307 #if defined(__x86_64__)
11308 	return "/lib/x86_64-linux-gnu";
11309 #elif defined(__i386__)
11310 	return "/lib/i386-linux-gnu";
11311 #elif defined(__s390x__)
11312 	return "/lib/s390x-linux-gnu";
11313 #elif defined(__s390__)
11314 	return "/lib/s390-linux-gnu";
11315 #elif defined(__arm__) && defined(__SOFTFP__)
11316 	return "/lib/arm-linux-gnueabi";
11317 #elif defined(__arm__) && !defined(__SOFTFP__)
11318 	return "/lib/arm-linux-gnueabihf";
11319 #elif defined(__aarch64__)
11320 	return "/lib/aarch64-linux-gnu";
11321 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11322 	return "/lib/mips64el-linux-gnuabi64";
11323 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11324 	return "/lib/mipsel-linux-gnu";
11325 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11326 	return "/lib/powerpc64le-linux-gnu";
11327 #elif defined(__sparc__) && defined(__arch64__)
11328 	return "/lib/sparc64-linux-gnu";
11329 #elif defined(__riscv) && __riscv_xlen == 64
11330 	return "/lib/riscv64-linux-gnu";
11331 #else
11332 	return NULL;
11333 #endif
11334 }
11335 
11336 /* Get full path to program/shared library. */
11337 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11338 {
11339 	const char *search_paths[3] = {};
11340 	int i, perm;
11341 
11342 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11343 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11344 		search_paths[1] = "/usr/lib64:/usr/lib";
11345 		search_paths[2] = arch_specific_lib_paths();
11346 		perm = R_OK;
11347 	} else {
11348 		search_paths[0] = getenv("PATH");
11349 		search_paths[1] = "/usr/bin:/usr/sbin";
11350 		perm = R_OK | X_OK;
11351 	}
11352 
11353 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11354 		const char *s;
11355 
11356 		if (!search_paths[i])
11357 			continue;
11358 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11359 			char *next_path;
11360 			int seg_len;
11361 
11362 			if (s[0] == ':')
11363 				s++;
11364 			next_path = strchr(s, ':');
11365 			seg_len = next_path ? next_path - s : strlen(s);
11366 			if (!seg_len)
11367 				continue;
11368 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11369 			/* ensure it has required permissions */
11370 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11371 				continue;
11372 			pr_debug("resolved '%s' to '%s'\n", file, result);
11373 			return 0;
11374 		}
11375 	}
11376 	return -ENOENT;
11377 }
11378 
11379 struct bpf_link *
11380 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11381 				 pid_t pid,
11382 				 const char *path,
11383 				 const char *func_pattern,
11384 				 const struct bpf_uprobe_multi_opts *opts)
11385 {
11386 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11387 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11388 	unsigned long *resolved_offsets = NULL;
11389 	int err = 0, link_fd, prog_fd;
11390 	struct bpf_link *link = NULL;
11391 	char errmsg[STRERR_BUFSIZE];
11392 	char full_path[PATH_MAX];
11393 	const __u64 *cookies;
11394 	const char **syms;
11395 	size_t cnt;
11396 
11397 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11398 		return libbpf_err_ptr(-EINVAL);
11399 
11400 	syms = OPTS_GET(opts, syms, NULL);
11401 	offsets = OPTS_GET(opts, offsets, NULL);
11402 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11403 	cookies = OPTS_GET(opts, cookies, NULL);
11404 	cnt = OPTS_GET(opts, cnt, 0);
11405 
11406 	/*
11407 	 * User can specify 2 mutually exclusive set of inputs:
11408 	 *
11409 	 * 1) use only path/func_pattern/pid arguments
11410 	 *
11411 	 * 2) use path/pid with allowed combinations of:
11412 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11413 	 *
11414 	 *    - syms and offsets are mutually exclusive
11415 	 *    - ref_ctr_offsets and cookies are optional
11416 	 *
11417 	 * Any other usage results in error.
11418 	 */
11419 
11420 	if (!path)
11421 		return libbpf_err_ptr(-EINVAL);
11422 	if (!func_pattern && cnt == 0)
11423 		return libbpf_err_ptr(-EINVAL);
11424 
11425 	if (func_pattern) {
11426 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11427 			return libbpf_err_ptr(-EINVAL);
11428 	} else {
11429 		if (!!syms == !!offsets)
11430 			return libbpf_err_ptr(-EINVAL);
11431 	}
11432 
11433 	if (func_pattern) {
11434 		if (!strchr(path, '/')) {
11435 			err = resolve_full_path(path, full_path, sizeof(full_path));
11436 			if (err) {
11437 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11438 					prog->name, path, err);
11439 				return libbpf_err_ptr(err);
11440 			}
11441 			path = full_path;
11442 		}
11443 
11444 		err = elf_resolve_pattern_offsets(path, func_pattern,
11445 						  &resolved_offsets, &cnt);
11446 		if (err < 0)
11447 			return libbpf_err_ptr(err);
11448 		offsets = resolved_offsets;
11449 	} else if (syms) {
11450 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11451 		if (err < 0)
11452 			return libbpf_err_ptr(err);
11453 		offsets = resolved_offsets;
11454 	}
11455 
11456 	lopts.uprobe_multi.path = path;
11457 	lopts.uprobe_multi.offsets = offsets;
11458 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11459 	lopts.uprobe_multi.cookies = cookies;
11460 	lopts.uprobe_multi.cnt = cnt;
11461 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11462 
11463 	if (pid == 0)
11464 		pid = getpid();
11465 	if (pid > 0)
11466 		lopts.uprobe_multi.pid = pid;
11467 
11468 	link = calloc(1, sizeof(*link));
11469 	if (!link) {
11470 		err = -ENOMEM;
11471 		goto error;
11472 	}
11473 	link->detach = &bpf_link__detach_fd;
11474 
11475 	prog_fd = bpf_program__fd(prog);
11476 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11477 	if (link_fd < 0) {
11478 		err = -errno;
11479 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11480 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11481 		goto error;
11482 	}
11483 	link->fd = link_fd;
11484 	free(resolved_offsets);
11485 	return link;
11486 
11487 error:
11488 	free(resolved_offsets);
11489 	free(link);
11490 	return libbpf_err_ptr(err);
11491 }
11492 
11493 LIBBPF_API struct bpf_link *
11494 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11495 				const char *binary_path, size_t func_offset,
11496 				const struct bpf_uprobe_opts *opts)
11497 {
11498 	const char *archive_path = NULL, *archive_sep = NULL;
11499 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11500 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11501 	enum probe_attach_mode attach_mode;
11502 	char full_path[PATH_MAX];
11503 	struct bpf_link *link;
11504 	size_t ref_ctr_off;
11505 	int pfd, err;
11506 	bool retprobe, legacy;
11507 	const char *func_name;
11508 
11509 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11510 		return libbpf_err_ptr(-EINVAL);
11511 
11512 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11513 	retprobe = OPTS_GET(opts, retprobe, false);
11514 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11515 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11516 
11517 	if (!binary_path)
11518 		return libbpf_err_ptr(-EINVAL);
11519 
11520 	/* Check if "binary_path" refers to an archive. */
11521 	archive_sep = strstr(binary_path, "!/");
11522 	if (archive_sep) {
11523 		full_path[0] = '\0';
11524 		libbpf_strlcpy(full_path, binary_path,
11525 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11526 		archive_path = full_path;
11527 		binary_path = archive_sep + 2;
11528 	} else if (!strchr(binary_path, '/')) {
11529 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11530 		if (err) {
11531 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11532 				prog->name, binary_path, err);
11533 			return libbpf_err_ptr(err);
11534 		}
11535 		binary_path = full_path;
11536 	}
11537 	func_name = OPTS_GET(opts, func_name, NULL);
11538 	if (func_name) {
11539 		long sym_off;
11540 
11541 		if (archive_path) {
11542 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11543 								    func_name);
11544 			binary_path = archive_path;
11545 		} else {
11546 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11547 		}
11548 		if (sym_off < 0)
11549 			return libbpf_err_ptr(sym_off);
11550 		func_offset += sym_off;
11551 	}
11552 
11553 	legacy = determine_uprobe_perf_type() < 0;
11554 	switch (attach_mode) {
11555 	case PROBE_ATTACH_MODE_LEGACY:
11556 		legacy = true;
11557 		pe_opts.force_ioctl_attach = true;
11558 		break;
11559 	case PROBE_ATTACH_MODE_PERF:
11560 		if (legacy)
11561 			return libbpf_err_ptr(-ENOTSUP);
11562 		pe_opts.force_ioctl_attach = true;
11563 		break;
11564 	case PROBE_ATTACH_MODE_LINK:
11565 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11566 			return libbpf_err_ptr(-ENOTSUP);
11567 		break;
11568 	case PROBE_ATTACH_MODE_DEFAULT:
11569 		break;
11570 	default:
11571 		return libbpf_err_ptr(-EINVAL);
11572 	}
11573 
11574 	if (!legacy) {
11575 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11576 					    func_offset, pid, ref_ctr_off);
11577 	} else {
11578 		char probe_name[PATH_MAX + 64];
11579 
11580 		if (ref_ctr_off)
11581 			return libbpf_err_ptr(-EINVAL);
11582 
11583 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11584 					     binary_path, func_offset);
11585 
11586 		legacy_probe = strdup(probe_name);
11587 		if (!legacy_probe)
11588 			return libbpf_err_ptr(-ENOMEM);
11589 
11590 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11591 						    binary_path, func_offset, pid);
11592 	}
11593 	if (pfd < 0) {
11594 		err = -errno;
11595 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11596 			prog->name, retprobe ? "uretprobe" : "uprobe",
11597 			binary_path, func_offset,
11598 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11599 		goto err_out;
11600 	}
11601 
11602 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11603 	err = libbpf_get_error(link);
11604 	if (err) {
11605 		close(pfd);
11606 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11607 			prog->name, retprobe ? "uretprobe" : "uprobe",
11608 			binary_path, func_offset,
11609 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11610 		goto err_clean_legacy;
11611 	}
11612 	if (legacy) {
11613 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11614 
11615 		perf_link->legacy_probe_name = legacy_probe;
11616 		perf_link->legacy_is_kprobe = false;
11617 		perf_link->legacy_is_retprobe = retprobe;
11618 	}
11619 	return link;
11620 
11621 err_clean_legacy:
11622 	if (legacy)
11623 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11624 err_out:
11625 	free(legacy_probe);
11626 	return libbpf_err_ptr(err);
11627 }
11628 
11629 /* Format of u[ret]probe section definition supporting auto-attach:
11630  * u[ret]probe/binary:function[+offset]
11631  *
11632  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11633  * full binary path via bpf_program__attach_uprobe_opts.
11634  *
11635  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11636  * specified (and auto-attach is not possible) or the above format is specified for
11637  * auto-attach.
11638  */
11639 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11640 {
11641 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11642 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
11643 	int n, c, ret = -EINVAL;
11644 	long offset = 0;
11645 
11646 	*link = NULL;
11647 
11648 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11649 		   &probe_type, &binary_path, &func_name);
11650 	switch (n) {
11651 	case 1:
11652 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11653 		ret = 0;
11654 		break;
11655 	case 2:
11656 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11657 			prog->name, prog->sec_name);
11658 		break;
11659 	case 3:
11660 		/* check if user specifies `+offset`, if yes, this should be
11661 		 * the last part of the string, make sure sscanf read to EOL
11662 		 */
11663 		func_off = strrchr(func_name, '+');
11664 		if (func_off) {
11665 			n = sscanf(func_off, "+%li%n", &offset, &c);
11666 			if (n == 1 && *(func_off + c) == '\0')
11667 				func_off[0] = '\0';
11668 			else
11669 				offset = 0;
11670 		}
11671 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11672 				strcmp(probe_type, "uretprobe.s") == 0;
11673 		if (opts.retprobe && offset != 0) {
11674 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11675 				prog->name);
11676 			break;
11677 		}
11678 		opts.func_name = func_name;
11679 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11680 		ret = libbpf_get_error(*link);
11681 		break;
11682 	default:
11683 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11684 			prog->sec_name);
11685 		break;
11686 	}
11687 	free(probe_type);
11688 	free(binary_path);
11689 	free(func_name);
11690 
11691 	return ret;
11692 }
11693 
11694 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11695 					    bool retprobe, pid_t pid,
11696 					    const char *binary_path,
11697 					    size_t func_offset)
11698 {
11699 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11700 
11701 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11702 }
11703 
11704 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11705 					  pid_t pid, const char *binary_path,
11706 					  const char *usdt_provider, const char *usdt_name,
11707 					  const struct bpf_usdt_opts *opts)
11708 {
11709 	char resolved_path[512];
11710 	struct bpf_object *obj = prog->obj;
11711 	struct bpf_link *link;
11712 	__u64 usdt_cookie;
11713 	int err;
11714 
11715 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11716 		return libbpf_err_ptr(-EINVAL);
11717 
11718 	if (bpf_program__fd(prog) < 0) {
11719 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11720 			prog->name);
11721 		return libbpf_err_ptr(-EINVAL);
11722 	}
11723 
11724 	if (!binary_path)
11725 		return libbpf_err_ptr(-EINVAL);
11726 
11727 	if (!strchr(binary_path, '/')) {
11728 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11729 		if (err) {
11730 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11731 				prog->name, binary_path, err);
11732 			return libbpf_err_ptr(err);
11733 		}
11734 		binary_path = resolved_path;
11735 	}
11736 
11737 	/* USDT manager is instantiated lazily on first USDT attach. It will
11738 	 * be destroyed together with BPF object in bpf_object__close().
11739 	 */
11740 	if (IS_ERR(obj->usdt_man))
11741 		return libbpf_ptr(obj->usdt_man);
11742 	if (!obj->usdt_man) {
11743 		obj->usdt_man = usdt_manager_new(obj);
11744 		if (IS_ERR(obj->usdt_man))
11745 			return libbpf_ptr(obj->usdt_man);
11746 	}
11747 
11748 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11749 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11750 					usdt_provider, usdt_name, usdt_cookie);
11751 	err = libbpf_get_error(link);
11752 	if (err)
11753 		return libbpf_err_ptr(err);
11754 	return link;
11755 }
11756 
11757 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11758 {
11759 	char *path = NULL, *provider = NULL, *name = NULL;
11760 	const char *sec_name;
11761 	int n, err;
11762 
11763 	sec_name = bpf_program__section_name(prog);
11764 	if (strcmp(sec_name, "usdt") == 0) {
11765 		/* no auto-attach for just SEC("usdt") */
11766 		*link = NULL;
11767 		return 0;
11768 	}
11769 
11770 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11771 	if (n != 3) {
11772 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11773 			sec_name);
11774 		err = -EINVAL;
11775 	} else {
11776 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11777 						 provider, name, NULL);
11778 		err = libbpf_get_error(*link);
11779 	}
11780 	free(path);
11781 	free(provider);
11782 	free(name);
11783 	return err;
11784 }
11785 
11786 static int determine_tracepoint_id(const char *tp_category,
11787 				   const char *tp_name)
11788 {
11789 	char file[PATH_MAX];
11790 	int ret;
11791 
11792 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11793 		       tracefs_path(), tp_category, tp_name);
11794 	if (ret < 0)
11795 		return -errno;
11796 	if (ret >= sizeof(file)) {
11797 		pr_debug("tracepoint %s/%s path is too long\n",
11798 			 tp_category, tp_name);
11799 		return -E2BIG;
11800 	}
11801 	return parse_uint_from_file(file, "%d\n");
11802 }
11803 
11804 static int perf_event_open_tracepoint(const char *tp_category,
11805 				      const char *tp_name)
11806 {
11807 	const size_t attr_sz = sizeof(struct perf_event_attr);
11808 	struct perf_event_attr attr;
11809 	char errmsg[STRERR_BUFSIZE];
11810 	int tp_id, pfd, err;
11811 
11812 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11813 	if (tp_id < 0) {
11814 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11815 			tp_category, tp_name,
11816 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11817 		return tp_id;
11818 	}
11819 
11820 	memset(&attr, 0, attr_sz);
11821 	attr.type = PERF_TYPE_TRACEPOINT;
11822 	attr.size = attr_sz;
11823 	attr.config = tp_id;
11824 
11825 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11826 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11827 	if (pfd < 0) {
11828 		err = -errno;
11829 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11830 			tp_category, tp_name,
11831 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11832 		return err;
11833 	}
11834 	return pfd;
11835 }
11836 
11837 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11838 						     const char *tp_category,
11839 						     const char *tp_name,
11840 						     const struct bpf_tracepoint_opts *opts)
11841 {
11842 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11843 	char errmsg[STRERR_BUFSIZE];
11844 	struct bpf_link *link;
11845 	int pfd, err;
11846 
11847 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11848 		return libbpf_err_ptr(-EINVAL);
11849 
11850 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11851 
11852 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11853 	if (pfd < 0) {
11854 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11855 			prog->name, tp_category, tp_name,
11856 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11857 		return libbpf_err_ptr(pfd);
11858 	}
11859 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11860 	err = libbpf_get_error(link);
11861 	if (err) {
11862 		close(pfd);
11863 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11864 			prog->name, tp_category, tp_name,
11865 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11866 		return libbpf_err_ptr(err);
11867 	}
11868 	return link;
11869 }
11870 
11871 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11872 						const char *tp_category,
11873 						const char *tp_name)
11874 {
11875 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11876 }
11877 
11878 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11879 {
11880 	char *sec_name, *tp_cat, *tp_name;
11881 
11882 	*link = NULL;
11883 
11884 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11885 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11886 		return 0;
11887 
11888 	sec_name = strdup(prog->sec_name);
11889 	if (!sec_name)
11890 		return -ENOMEM;
11891 
11892 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11893 	if (str_has_pfx(prog->sec_name, "tp/"))
11894 		tp_cat = sec_name + sizeof("tp/") - 1;
11895 	else
11896 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11897 	tp_name = strchr(tp_cat, '/');
11898 	if (!tp_name) {
11899 		free(sec_name);
11900 		return -EINVAL;
11901 	}
11902 	*tp_name = '\0';
11903 	tp_name++;
11904 
11905 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11906 	free(sec_name);
11907 	return libbpf_get_error(*link);
11908 }
11909 
11910 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11911 						    const char *tp_name)
11912 {
11913 	char errmsg[STRERR_BUFSIZE];
11914 	struct bpf_link *link;
11915 	int prog_fd, pfd;
11916 
11917 	prog_fd = bpf_program__fd(prog);
11918 	if (prog_fd < 0) {
11919 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11920 		return libbpf_err_ptr(-EINVAL);
11921 	}
11922 
11923 	link = calloc(1, sizeof(*link));
11924 	if (!link)
11925 		return libbpf_err_ptr(-ENOMEM);
11926 	link->detach = &bpf_link__detach_fd;
11927 
11928 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11929 	if (pfd < 0) {
11930 		pfd = -errno;
11931 		free(link);
11932 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11933 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11934 		return libbpf_err_ptr(pfd);
11935 	}
11936 	link->fd = pfd;
11937 	return link;
11938 }
11939 
11940 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11941 {
11942 	static const char *const prefixes[] = {
11943 		"raw_tp",
11944 		"raw_tracepoint",
11945 		"raw_tp.w",
11946 		"raw_tracepoint.w",
11947 	};
11948 	size_t i;
11949 	const char *tp_name = NULL;
11950 
11951 	*link = NULL;
11952 
11953 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11954 		size_t pfx_len;
11955 
11956 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11957 			continue;
11958 
11959 		pfx_len = strlen(prefixes[i]);
11960 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11961 		if (prog->sec_name[pfx_len] == '\0')
11962 			return 0;
11963 
11964 		if (prog->sec_name[pfx_len] != '/')
11965 			continue;
11966 
11967 		tp_name = prog->sec_name + pfx_len + 1;
11968 		break;
11969 	}
11970 
11971 	if (!tp_name) {
11972 		pr_warn("prog '%s': invalid section name '%s'\n",
11973 			prog->name, prog->sec_name);
11974 		return -EINVAL;
11975 	}
11976 
11977 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11978 	return libbpf_get_error(*link);
11979 }
11980 
11981 /* Common logic for all BPF program types that attach to a btf_id */
11982 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11983 						   const struct bpf_trace_opts *opts)
11984 {
11985 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11986 	char errmsg[STRERR_BUFSIZE];
11987 	struct bpf_link *link;
11988 	int prog_fd, pfd;
11989 
11990 	if (!OPTS_VALID(opts, bpf_trace_opts))
11991 		return libbpf_err_ptr(-EINVAL);
11992 
11993 	prog_fd = bpf_program__fd(prog);
11994 	if (prog_fd < 0) {
11995 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11996 		return libbpf_err_ptr(-EINVAL);
11997 	}
11998 
11999 	link = calloc(1, sizeof(*link));
12000 	if (!link)
12001 		return libbpf_err_ptr(-ENOMEM);
12002 	link->detach = &bpf_link__detach_fd;
12003 
12004 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12005 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12006 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12007 	if (pfd < 0) {
12008 		pfd = -errno;
12009 		free(link);
12010 		pr_warn("prog '%s': failed to attach: %s\n",
12011 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12012 		return libbpf_err_ptr(pfd);
12013 	}
12014 	link->fd = pfd;
12015 	return link;
12016 }
12017 
12018 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12019 {
12020 	return bpf_program__attach_btf_id(prog, NULL);
12021 }
12022 
12023 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12024 						const struct bpf_trace_opts *opts)
12025 {
12026 	return bpf_program__attach_btf_id(prog, opts);
12027 }
12028 
12029 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12030 {
12031 	return bpf_program__attach_btf_id(prog, NULL);
12032 }
12033 
12034 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12035 {
12036 	*link = bpf_program__attach_trace(prog);
12037 	return libbpf_get_error(*link);
12038 }
12039 
12040 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12041 {
12042 	*link = bpf_program__attach_lsm(prog);
12043 	return libbpf_get_error(*link);
12044 }
12045 
12046 static struct bpf_link *
12047 bpf_program_attach_fd(const struct bpf_program *prog,
12048 		      int target_fd, const char *target_name,
12049 		      const struct bpf_link_create_opts *opts)
12050 {
12051 	enum bpf_attach_type attach_type;
12052 	char errmsg[STRERR_BUFSIZE];
12053 	struct bpf_link *link;
12054 	int prog_fd, link_fd;
12055 
12056 	prog_fd = bpf_program__fd(prog);
12057 	if (prog_fd < 0) {
12058 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12059 		return libbpf_err_ptr(-EINVAL);
12060 	}
12061 
12062 	link = calloc(1, sizeof(*link));
12063 	if (!link)
12064 		return libbpf_err_ptr(-ENOMEM);
12065 	link->detach = &bpf_link__detach_fd;
12066 
12067 	attach_type = bpf_program__expected_attach_type(prog);
12068 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12069 	if (link_fd < 0) {
12070 		link_fd = -errno;
12071 		free(link);
12072 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12073 			prog->name, target_name,
12074 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12075 		return libbpf_err_ptr(link_fd);
12076 	}
12077 	link->fd = link_fd;
12078 	return link;
12079 }
12080 
12081 struct bpf_link *
12082 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12083 {
12084 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12085 }
12086 
12087 struct bpf_link *
12088 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12089 {
12090 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12091 }
12092 
12093 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12094 {
12095 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12096 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12097 }
12098 
12099 struct bpf_link *
12100 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12101 			const struct bpf_tcx_opts *opts)
12102 {
12103 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12104 	__u32 relative_id;
12105 	int relative_fd;
12106 
12107 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12108 		return libbpf_err_ptr(-EINVAL);
12109 
12110 	relative_id = OPTS_GET(opts, relative_id, 0);
12111 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12112 
12113 	/* validate we don't have unexpected combinations of non-zero fields */
12114 	if (!ifindex) {
12115 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12116 			prog->name);
12117 		return libbpf_err_ptr(-EINVAL);
12118 	}
12119 	if (relative_fd && relative_id) {
12120 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12121 			prog->name);
12122 		return libbpf_err_ptr(-EINVAL);
12123 	}
12124 
12125 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12126 	link_create_opts.tcx.relative_fd = relative_fd;
12127 	link_create_opts.tcx.relative_id = relative_id;
12128 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12129 
12130 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12131 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12132 }
12133 
12134 struct bpf_link *
12135 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12136 			   const struct bpf_netkit_opts *opts)
12137 {
12138 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12139 	__u32 relative_id;
12140 	int relative_fd;
12141 
12142 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12143 		return libbpf_err_ptr(-EINVAL);
12144 
12145 	relative_id = OPTS_GET(opts, relative_id, 0);
12146 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12147 
12148 	/* validate we don't have unexpected combinations of non-zero fields */
12149 	if (!ifindex) {
12150 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12151 			prog->name);
12152 		return libbpf_err_ptr(-EINVAL);
12153 	}
12154 	if (relative_fd && relative_id) {
12155 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12156 			prog->name);
12157 		return libbpf_err_ptr(-EINVAL);
12158 	}
12159 
12160 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12161 	link_create_opts.netkit.relative_fd = relative_fd;
12162 	link_create_opts.netkit.relative_id = relative_id;
12163 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12164 
12165 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12166 }
12167 
12168 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12169 					      int target_fd,
12170 					      const char *attach_func_name)
12171 {
12172 	int btf_id;
12173 
12174 	if (!!target_fd != !!attach_func_name) {
12175 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12176 			prog->name);
12177 		return libbpf_err_ptr(-EINVAL);
12178 	}
12179 
12180 	if (prog->type != BPF_PROG_TYPE_EXT) {
12181 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12182 			prog->name);
12183 		return libbpf_err_ptr(-EINVAL);
12184 	}
12185 
12186 	if (target_fd) {
12187 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12188 
12189 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12190 		if (btf_id < 0)
12191 			return libbpf_err_ptr(btf_id);
12192 
12193 		target_opts.target_btf_id = btf_id;
12194 
12195 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12196 					     &target_opts);
12197 	} else {
12198 		/* no target, so use raw_tracepoint_open for compatibility
12199 		 * with old kernels
12200 		 */
12201 		return bpf_program__attach_trace(prog);
12202 	}
12203 }
12204 
12205 struct bpf_link *
12206 bpf_program__attach_iter(const struct bpf_program *prog,
12207 			 const struct bpf_iter_attach_opts *opts)
12208 {
12209 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12210 	char errmsg[STRERR_BUFSIZE];
12211 	struct bpf_link *link;
12212 	int prog_fd, link_fd;
12213 	__u32 target_fd = 0;
12214 
12215 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12216 		return libbpf_err_ptr(-EINVAL);
12217 
12218 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12219 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12220 
12221 	prog_fd = bpf_program__fd(prog);
12222 	if (prog_fd < 0) {
12223 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12224 		return libbpf_err_ptr(-EINVAL);
12225 	}
12226 
12227 	link = calloc(1, sizeof(*link));
12228 	if (!link)
12229 		return libbpf_err_ptr(-ENOMEM);
12230 	link->detach = &bpf_link__detach_fd;
12231 
12232 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12233 				  &link_create_opts);
12234 	if (link_fd < 0) {
12235 		link_fd = -errno;
12236 		free(link);
12237 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12238 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12239 		return libbpf_err_ptr(link_fd);
12240 	}
12241 	link->fd = link_fd;
12242 	return link;
12243 }
12244 
12245 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12246 {
12247 	*link = bpf_program__attach_iter(prog, NULL);
12248 	return libbpf_get_error(*link);
12249 }
12250 
12251 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12252 					       const struct bpf_netfilter_opts *opts)
12253 {
12254 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12255 	struct bpf_link *link;
12256 	int prog_fd, link_fd;
12257 
12258 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12259 		return libbpf_err_ptr(-EINVAL);
12260 
12261 	prog_fd = bpf_program__fd(prog);
12262 	if (prog_fd < 0) {
12263 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12264 		return libbpf_err_ptr(-EINVAL);
12265 	}
12266 
12267 	link = calloc(1, sizeof(*link));
12268 	if (!link)
12269 		return libbpf_err_ptr(-ENOMEM);
12270 
12271 	link->detach = &bpf_link__detach_fd;
12272 
12273 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12274 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12275 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12276 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12277 
12278 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12279 	if (link_fd < 0) {
12280 		char errmsg[STRERR_BUFSIZE];
12281 
12282 		link_fd = -errno;
12283 		free(link);
12284 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12285 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12286 		return libbpf_err_ptr(link_fd);
12287 	}
12288 	link->fd = link_fd;
12289 
12290 	return link;
12291 }
12292 
12293 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12294 {
12295 	struct bpf_link *link = NULL;
12296 	int err;
12297 
12298 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12299 		return libbpf_err_ptr(-EOPNOTSUPP);
12300 
12301 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12302 	if (err)
12303 		return libbpf_err_ptr(err);
12304 
12305 	/* When calling bpf_program__attach() explicitly, auto-attach support
12306 	 * is expected to work, so NULL returned link is considered an error.
12307 	 * This is different for skeleton's attach, see comment in
12308 	 * bpf_object__attach_skeleton().
12309 	 */
12310 	if (!link)
12311 		return libbpf_err_ptr(-EOPNOTSUPP);
12312 
12313 	return link;
12314 }
12315 
12316 struct bpf_link_struct_ops {
12317 	struct bpf_link link;
12318 	int map_fd;
12319 };
12320 
12321 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12322 {
12323 	struct bpf_link_struct_ops *st_link;
12324 	__u32 zero = 0;
12325 
12326 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12327 
12328 	if (st_link->map_fd < 0)
12329 		/* w/o a real link */
12330 		return bpf_map_delete_elem(link->fd, &zero);
12331 
12332 	return close(link->fd);
12333 }
12334 
12335 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12336 {
12337 	struct bpf_link_struct_ops *link;
12338 	__u32 zero = 0;
12339 	int err, fd;
12340 
12341 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12342 		return libbpf_err_ptr(-EINVAL);
12343 
12344 	link = calloc(1, sizeof(*link));
12345 	if (!link)
12346 		return libbpf_err_ptr(-EINVAL);
12347 
12348 	/* kern_vdata should be prepared during the loading phase. */
12349 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12350 	/* It can be EBUSY if the map has been used to create or
12351 	 * update a link before.  We don't allow updating the value of
12352 	 * a struct_ops once it is set.  That ensures that the value
12353 	 * never changed.  So, it is safe to skip EBUSY.
12354 	 */
12355 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12356 		free(link);
12357 		return libbpf_err_ptr(err);
12358 	}
12359 
12360 	link->link.detach = bpf_link__detach_struct_ops;
12361 
12362 	if (!(map->def.map_flags & BPF_F_LINK)) {
12363 		/* w/o a real link */
12364 		link->link.fd = map->fd;
12365 		link->map_fd = -1;
12366 		return &link->link;
12367 	}
12368 
12369 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12370 	if (fd < 0) {
12371 		free(link);
12372 		return libbpf_err_ptr(fd);
12373 	}
12374 
12375 	link->link.fd = fd;
12376 	link->map_fd = map->fd;
12377 
12378 	return &link->link;
12379 }
12380 
12381 /*
12382  * Swap the back struct_ops of a link with a new struct_ops map.
12383  */
12384 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12385 {
12386 	struct bpf_link_struct_ops *st_ops_link;
12387 	__u32 zero = 0;
12388 	int err;
12389 
12390 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12391 		return -EINVAL;
12392 
12393 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12394 	/* Ensure the type of a link is correct */
12395 	if (st_ops_link->map_fd < 0)
12396 		return -EINVAL;
12397 
12398 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12399 	/* It can be EBUSY if the map has been used to create or
12400 	 * update a link before.  We don't allow updating the value of
12401 	 * a struct_ops once it is set.  That ensures that the value
12402 	 * never changed.  So, it is safe to skip EBUSY.
12403 	 */
12404 	if (err && err != -EBUSY)
12405 		return err;
12406 
12407 	err = bpf_link_update(link->fd, map->fd, NULL);
12408 	if (err < 0)
12409 		return err;
12410 
12411 	st_ops_link->map_fd = map->fd;
12412 
12413 	return 0;
12414 }
12415 
12416 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12417 							  void *private_data);
12418 
12419 static enum bpf_perf_event_ret
12420 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12421 		       void **copy_mem, size_t *copy_size,
12422 		       bpf_perf_event_print_t fn, void *private_data)
12423 {
12424 	struct perf_event_mmap_page *header = mmap_mem;
12425 	__u64 data_head = ring_buffer_read_head(header);
12426 	__u64 data_tail = header->data_tail;
12427 	void *base = ((__u8 *)header) + page_size;
12428 	int ret = LIBBPF_PERF_EVENT_CONT;
12429 	struct perf_event_header *ehdr;
12430 	size_t ehdr_size;
12431 
12432 	while (data_head != data_tail) {
12433 		ehdr = base + (data_tail & (mmap_size - 1));
12434 		ehdr_size = ehdr->size;
12435 
12436 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12437 			void *copy_start = ehdr;
12438 			size_t len_first = base + mmap_size - copy_start;
12439 			size_t len_secnd = ehdr_size - len_first;
12440 
12441 			if (*copy_size < ehdr_size) {
12442 				free(*copy_mem);
12443 				*copy_mem = malloc(ehdr_size);
12444 				if (!*copy_mem) {
12445 					*copy_size = 0;
12446 					ret = LIBBPF_PERF_EVENT_ERROR;
12447 					break;
12448 				}
12449 				*copy_size = ehdr_size;
12450 			}
12451 
12452 			memcpy(*copy_mem, copy_start, len_first);
12453 			memcpy(*copy_mem + len_first, base, len_secnd);
12454 			ehdr = *copy_mem;
12455 		}
12456 
12457 		ret = fn(ehdr, private_data);
12458 		data_tail += ehdr_size;
12459 		if (ret != LIBBPF_PERF_EVENT_CONT)
12460 			break;
12461 	}
12462 
12463 	ring_buffer_write_tail(header, data_tail);
12464 	return libbpf_err(ret);
12465 }
12466 
12467 struct perf_buffer;
12468 
12469 struct perf_buffer_params {
12470 	struct perf_event_attr *attr;
12471 	/* if event_cb is specified, it takes precendence */
12472 	perf_buffer_event_fn event_cb;
12473 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12474 	perf_buffer_sample_fn sample_cb;
12475 	perf_buffer_lost_fn lost_cb;
12476 	void *ctx;
12477 	int cpu_cnt;
12478 	int *cpus;
12479 	int *map_keys;
12480 };
12481 
12482 struct perf_cpu_buf {
12483 	struct perf_buffer *pb;
12484 	void *base; /* mmap()'ed memory */
12485 	void *buf; /* for reconstructing segmented data */
12486 	size_t buf_size;
12487 	int fd;
12488 	int cpu;
12489 	int map_key;
12490 };
12491 
12492 struct perf_buffer {
12493 	perf_buffer_event_fn event_cb;
12494 	perf_buffer_sample_fn sample_cb;
12495 	perf_buffer_lost_fn lost_cb;
12496 	void *ctx; /* passed into callbacks */
12497 
12498 	size_t page_size;
12499 	size_t mmap_size;
12500 	struct perf_cpu_buf **cpu_bufs;
12501 	struct epoll_event *events;
12502 	int cpu_cnt; /* number of allocated CPU buffers */
12503 	int epoll_fd; /* perf event FD */
12504 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12505 };
12506 
12507 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12508 				      struct perf_cpu_buf *cpu_buf)
12509 {
12510 	if (!cpu_buf)
12511 		return;
12512 	if (cpu_buf->base &&
12513 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12514 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12515 	if (cpu_buf->fd >= 0) {
12516 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12517 		close(cpu_buf->fd);
12518 	}
12519 	free(cpu_buf->buf);
12520 	free(cpu_buf);
12521 }
12522 
12523 void perf_buffer__free(struct perf_buffer *pb)
12524 {
12525 	int i;
12526 
12527 	if (IS_ERR_OR_NULL(pb))
12528 		return;
12529 	if (pb->cpu_bufs) {
12530 		for (i = 0; i < pb->cpu_cnt; i++) {
12531 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12532 
12533 			if (!cpu_buf)
12534 				continue;
12535 
12536 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12537 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12538 		}
12539 		free(pb->cpu_bufs);
12540 	}
12541 	if (pb->epoll_fd >= 0)
12542 		close(pb->epoll_fd);
12543 	free(pb->events);
12544 	free(pb);
12545 }
12546 
12547 static struct perf_cpu_buf *
12548 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12549 			  int cpu, int map_key)
12550 {
12551 	struct perf_cpu_buf *cpu_buf;
12552 	char msg[STRERR_BUFSIZE];
12553 	int err;
12554 
12555 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12556 	if (!cpu_buf)
12557 		return ERR_PTR(-ENOMEM);
12558 
12559 	cpu_buf->pb = pb;
12560 	cpu_buf->cpu = cpu;
12561 	cpu_buf->map_key = map_key;
12562 
12563 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12564 			      -1, PERF_FLAG_FD_CLOEXEC);
12565 	if (cpu_buf->fd < 0) {
12566 		err = -errno;
12567 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12568 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12569 		goto error;
12570 	}
12571 
12572 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12573 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12574 			     cpu_buf->fd, 0);
12575 	if (cpu_buf->base == MAP_FAILED) {
12576 		cpu_buf->base = NULL;
12577 		err = -errno;
12578 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12579 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12580 		goto error;
12581 	}
12582 
12583 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12584 		err = -errno;
12585 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12586 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12587 		goto error;
12588 	}
12589 
12590 	return cpu_buf;
12591 
12592 error:
12593 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12594 	return (struct perf_cpu_buf *)ERR_PTR(err);
12595 }
12596 
12597 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12598 					      struct perf_buffer_params *p);
12599 
12600 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12601 				     perf_buffer_sample_fn sample_cb,
12602 				     perf_buffer_lost_fn lost_cb,
12603 				     void *ctx,
12604 				     const struct perf_buffer_opts *opts)
12605 {
12606 	const size_t attr_sz = sizeof(struct perf_event_attr);
12607 	struct perf_buffer_params p = {};
12608 	struct perf_event_attr attr;
12609 	__u32 sample_period;
12610 
12611 	if (!OPTS_VALID(opts, perf_buffer_opts))
12612 		return libbpf_err_ptr(-EINVAL);
12613 
12614 	sample_period = OPTS_GET(opts, sample_period, 1);
12615 	if (!sample_period)
12616 		sample_period = 1;
12617 
12618 	memset(&attr, 0, attr_sz);
12619 	attr.size = attr_sz;
12620 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12621 	attr.type = PERF_TYPE_SOFTWARE;
12622 	attr.sample_type = PERF_SAMPLE_RAW;
12623 	attr.sample_period = sample_period;
12624 	attr.wakeup_events = sample_period;
12625 
12626 	p.attr = &attr;
12627 	p.sample_cb = sample_cb;
12628 	p.lost_cb = lost_cb;
12629 	p.ctx = ctx;
12630 
12631 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12632 }
12633 
12634 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12635 					 struct perf_event_attr *attr,
12636 					 perf_buffer_event_fn event_cb, void *ctx,
12637 					 const struct perf_buffer_raw_opts *opts)
12638 {
12639 	struct perf_buffer_params p = {};
12640 
12641 	if (!attr)
12642 		return libbpf_err_ptr(-EINVAL);
12643 
12644 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12645 		return libbpf_err_ptr(-EINVAL);
12646 
12647 	p.attr = attr;
12648 	p.event_cb = event_cb;
12649 	p.ctx = ctx;
12650 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12651 	p.cpus = OPTS_GET(opts, cpus, NULL);
12652 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12653 
12654 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12655 }
12656 
12657 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12658 					      struct perf_buffer_params *p)
12659 {
12660 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12661 	struct bpf_map_info map;
12662 	char msg[STRERR_BUFSIZE];
12663 	struct perf_buffer *pb;
12664 	bool *online = NULL;
12665 	__u32 map_info_len;
12666 	int err, i, j, n;
12667 
12668 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12669 		pr_warn("page count should be power of two, but is %zu\n",
12670 			page_cnt);
12671 		return ERR_PTR(-EINVAL);
12672 	}
12673 
12674 	/* best-effort sanity checks */
12675 	memset(&map, 0, sizeof(map));
12676 	map_info_len = sizeof(map);
12677 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12678 	if (err) {
12679 		err = -errno;
12680 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12681 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12682 		 */
12683 		if (err != -EINVAL) {
12684 			pr_warn("failed to get map info for map FD %d: %s\n",
12685 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12686 			return ERR_PTR(err);
12687 		}
12688 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12689 			 map_fd);
12690 	} else {
12691 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12692 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12693 				map.name);
12694 			return ERR_PTR(-EINVAL);
12695 		}
12696 	}
12697 
12698 	pb = calloc(1, sizeof(*pb));
12699 	if (!pb)
12700 		return ERR_PTR(-ENOMEM);
12701 
12702 	pb->event_cb = p->event_cb;
12703 	pb->sample_cb = p->sample_cb;
12704 	pb->lost_cb = p->lost_cb;
12705 	pb->ctx = p->ctx;
12706 
12707 	pb->page_size = getpagesize();
12708 	pb->mmap_size = pb->page_size * page_cnt;
12709 	pb->map_fd = map_fd;
12710 
12711 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12712 	if (pb->epoll_fd < 0) {
12713 		err = -errno;
12714 		pr_warn("failed to create epoll instance: %s\n",
12715 			libbpf_strerror_r(err, msg, sizeof(msg)));
12716 		goto error;
12717 	}
12718 
12719 	if (p->cpu_cnt > 0) {
12720 		pb->cpu_cnt = p->cpu_cnt;
12721 	} else {
12722 		pb->cpu_cnt = libbpf_num_possible_cpus();
12723 		if (pb->cpu_cnt < 0) {
12724 			err = pb->cpu_cnt;
12725 			goto error;
12726 		}
12727 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12728 			pb->cpu_cnt = map.max_entries;
12729 	}
12730 
12731 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12732 	if (!pb->events) {
12733 		err = -ENOMEM;
12734 		pr_warn("failed to allocate events: out of memory\n");
12735 		goto error;
12736 	}
12737 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12738 	if (!pb->cpu_bufs) {
12739 		err = -ENOMEM;
12740 		pr_warn("failed to allocate buffers: out of memory\n");
12741 		goto error;
12742 	}
12743 
12744 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12745 	if (err) {
12746 		pr_warn("failed to get online CPU mask: %d\n", err);
12747 		goto error;
12748 	}
12749 
12750 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12751 		struct perf_cpu_buf *cpu_buf;
12752 		int cpu, map_key;
12753 
12754 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12755 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12756 
12757 		/* in case user didn't explicitly requested particular CPUs to
12758 		 * be attached to, skip offline/not present CPUs
12759 		 */
12760 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12761 			continue;
12762 
12763 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12764 		if (IS_ERR(cpu_buf)) {
12765 			err = PTR_ERR(cpu_buf);
12766 			goto error;
12767 		}
12768 
12769 		pb->cpu_bufs[j] = cpu_buf;
12770 
12771 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12772 					  &cpu_buf->fd, 0);
12773 		if (err) {
12774 			err = -errno;
12775 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12776 				cpu, map_key, cpu_buf->fd,
12777 				libbpf_strerror_r(err, msg, sizeof(msg)));
12778 			goto error;
12779 		}
12780 
12781 		pb->events[j].events = EPOLLIN;
12782 		pb->events[j].data.ptr = cpu_buf;
12783 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12784 			      &pb->events[j]) < 0) {
12785 			err = -errno;
12786 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12787 				cpu, cpu_buf->fd,
12788 				libbpf_strerror_r(err, msg, sizeof(msg)));
12789 			goto error;
12790 		}
12791 		j++;
12792 	}
12793 	pb->cpu_cnt = j;
12794 	free(online);
12795 
12796 	return pb;
12797 
12798 error:
12799 	free(online);
12800 	if (pb)
12801 		perf_buffer__free(pb);
12802 	return ERR_PTR(err);
12803 }
12804 
12805 struct perf_sample_raw {
12806 	struct perf_event_header header;
12807 	uint32_t size;
12808 	char data[];
12809 };
12810 
12811 struct perf_sample_lost {
12812 	struct perf_event_header header;
12813 	uint64_t id;
12814 	uint64_t lost;
12815 	uint64_t sample_id;
12816 };
12817 
12818 static enum bpf_perf_event_ret
12819 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12820 {
12821 	struct perf_cpu_buf *cpu_buf = ctx;
12822 	struct perf_buffer *pb = cpu_buf->pb;
12823 	void *data = e;
12824 
12825 	/* user wants full control over parsing perf event */
12826 	if (pb->event_cb)
12827 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12828 
12829 	switch (e->type) {
12830 	case PERF_RECORD_SAMPLE: {
12831 		struct perf_sample_raw *s = data;
12832 
12833 		if (pb->sample_cb)
12834 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12835 		break;
12836 	}
12837 	case PERF_RECORD_LOST: {
12838 		struct perf_sample_lost *s = data;
12839 
12840 		if (pb->lost_cb)
12841 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12842 		break;
12843 	}
12844 	default:
12845 		pr_warn("unknown perf sample type %d\n", e->type);
12846 		return LIBBPF_PERF_EVENT_ERROR;
12847 	}
12848 	return LIBBPF_PERF_EVENT_CONT;
12849 }
12850 
12851 static int perf_buffer__process_records(struct perf_buffer *pb,
12852 					struct perf_cpu_buf *cpu_buf)
12853 {
12854 	enum bpf_perf_event_ret ret;
12855 
12856 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12857 				     pb->page_size, &cpu_buf->buf,
12858 				     &cpu_buf->buf_size,
12859 				     perf_buffer__process_record, cpu_buf);
12860 	if (ret != LIBBPF_PERF_EVENT_CONT)
12861 		return ret;
12862 	return 0;
12863 }
12864 
12865 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12866 {
12867 	return pb->epoll_fd;
12868 }
12869 
12870 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12871 {
12872 	int i, cnt, err;
12873 
12874 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12875 	if (cnt < 0)
12876 		return -errno;
12877 
12878 	for (i = 0; i < cnt; i++) {
12879 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12880 
12881 		err = perf_buffer__process_records(pb, cpu_buf);
12882 		if (err) {
12883 			pr_warn("error while processing records: %d\n", err);
12884 			return libbpf_err(err);
12885 		}
12886 	}
12887 	return cnt;
12888 }
12889 
12890 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12891  * manager.
12892  */
12893 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12894 {
12895 	return pb->cpu_cnt;
12896 }
12897 
12898 /*
12899  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12900  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12901  * select()/poll()/epoll() Linux syscalls.
12902  */
12903 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12904 {
12905 	struct perf_cpu_buf *cpu_buf;
12906 
12907 	if (buf_idx >= pb->cpu_cnt)
12908 		return libbpf_err(-EINVAL);
12909 
12910 	cpu_buf = pb->cpu_bufs[buf_idx];
12911 	if (!cpu_buf)
12912 		return libbpf_err(-ENOENT);
12913 
12914 	return cpu_buf->fd;
12915 }
12916 
12917 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12918 {
12919 	struct perf_cpu_buf *cpu_buf;
12920 
12921 	if (buf_idx >= pb->cpu_cnt)
12922 		return libbpf_err(-EINVAL);
12923 
12924 	cpu_buf = pb->cpu_bufs[buf_idx];
12925 	if (!cpu_buf)
12926 		return libbpf_err(-ENOENT);
12927 
12928 	*buf = cpu_buf->base;
12929 	*buf_size = pb->mmap_size;
12930 	return 0;
12931 }
12932 
12933 /*
12934  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12935  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12936  * consume, do nothing and return success.
12937  * Returns:
12938  *   - 0 on success;
12939  *   - <0 on failure.
12940  */
12941 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12942 {
12943 	struct perf_cpu_buf *cpu_buf;
12944 
12945 	if (buf_idx >= pb->cpu_cnt)
12946 		return libbpf_err(-EINVAL);
12947 
12948 	cpu_buf = pb->cpu_bufs[buf_idx];
12949 	if (!cpu_buf)
12950 		return libbpf_err(-ENOENT);
12951 
12952 	return perf_buffer__process_records(pb, cpu_buf);
12953 }
12954 
12955 int perf_buffer__consume(struct perf_buffer *pb)
12956 {
12957 	int i, err;
12958 
12959 	for (i = 0; i < pb->cpu_cnt; i++) {
12960 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12961 
12962 		if (!cpu_buf)
12963 			continue;
12964 
12965 		err = perf_buffer__process_records(pb, cpu_buf);
12966 		if (err) {
12967 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12968 			return libbpf_err(err);
12969 		}
12970 	}
12971 	return 0;
12972 }
12973 
12974 int bpf_program__set_attach_target(struct bpf_program *prog,
12975 				   int attach_prog_fd,
12976 				   const char *attach_func_name)
12977 {
12978 	int btf_obj_fd = 0, btf_id = 0, err;
12979 
12980 	if (!prog || attach_prog_fd < 0)
12981 		return libbpf_err(-EINVAL);
12982 
12983 	if (prog->obj->loaded)
12984 		return libbpf_err(-EINVAL);
12985 
12986 	if (attach_prog_fd && !attach_func_name) {
12987 		/* remember attach_prog_fd and let bpf_program__load() find
12988 		 * BTF ID during the program load
12989 		 */
12990 		prog->attach_prog_fd = attach_prog_fd;
12991 		return 0;
12992 	}
12993 
12994 	if (attach_prog_fd) {
12995 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12996 						 attach_prog_fd);
12997 		if (btf_id < 0)
12998 			return libbpf_err(btf_id);
12999 	} else {
13000 		if (!attach_func_name)
13001 			return libbpf_err(-EINVAL);
13002 
13003 		/* load btf_vmlinux, if not yet */
13004 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13005 		if (err)
13006 			return libbpf_err(err);
13007 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13008 					 prog->expected_attach_type,
13009 					 &btf_obj_fd, &btf_id);
13010 		if (err)
13011 			return libbpf_err(err);
13012 	}
13013 
13014 	prog->attach_btf_id = btf_id;
13015 	prog->attach_btf_obj_fd = btf_obj_fd;
13016 	prog->attach_prog_fd = attach_prog_fd;
13017 	return 0;
13018 }
13019 
13020 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13021 {
13022 	int err = 0, n, len, start, end = -1;
13023 	bool *tmp;
13024 
13025 	*mask = NULL;
13026 	*mask_sz = 0;
13027 
13028 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13029 	while (*s) {
13030 		if (*s == ',' || *s == '\n') {
13031 			s++;
13032 			continue;
13033 		}
13034 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13035 		if (n <= 0 || n > 2) {
13036 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13037 			err = -EINVAL;
13038 			goto cleanup;
13039 		} else if (n == 1) {
13040 			end = start;
13041 		}
13042 		if (start < 0 || start > end) {
13043 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13044 				start, end, s);
13045 			err = -EINVAL;
13046 			goto cleanup;
13047 		}
13048 		tmp = realloc(*mask, end + 1);
13049 		if (!tmp) {
13050 			err = -ENOMEM;
13051 			goto cleanup;
13052 		}
13053 		*mask = tmp;
13054 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13055 		memset(tmp + start, 1, end - start + 1);
13056 		*mask_sz = end + 1;
13057 		s += len;
13058 	}
13059 	if (!*mask_sz) {
13060 		pr_warn("Empty CPU range\n");
13061 		return -EINVAL;
13062 	}
13063 	return 0;
13064 cleanup:
13065 	free(*mask);
13066 	*mask = NULL;
13067 	return err;
13068 }
13069 
13070 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13071 {
13072 	int fd, err = 0, len;
13073 	char buf[128];
13074 
13075 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13076 	if (fd < 0) {
13077 		err = -errno;
13078 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13079 		return err;
13080 	}
13081 	len = read(fd, buf, sizeof(buf));
13082 	close(fd);
13083 	if (len <= 0) {
13084 		err = len ? -errno : -EINVAL;
13085 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13086 		return err;
13087 	}
13088 	if (len >= sizeof(buf)) {
13089 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13090 		return -E2BIG;
13091 	}
13092 	buf[len] = '\0';
13093 
13094 	return parse_cpu_mask_str(buf, mask, mask_sz);
13095 }
13096 
13097 int libbpf_num_possible_cpus(void)
13098 {
13099 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13100 	static int cpus;
13101 	int err, n, i, tmp_cpus;
13102 	bool *mask;
13103 
13104 	tmp_cpus = READ_ONCE(cpus);
13105 	if (tmp_cpus > 0)
13106 		return tmp_cpus;
13107 
13108 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13109 	if (err)
13110 		return libbpf_err(err);
13111 
13112 	tmp_cpus = 0;
13113 	for (i = 0; i < n; i++) {
13114 		if (mask[i])
13115 			tmp_cpus++;
13116 	}
13117 	free(mask);
13118 
13119 	WRITE_ONCE(cpus, tmp_cpus);
13120 	return tmp_cpus;
13121 }
13122 
13123 static int populate_skeleton_maps(const struct bpf_object *obj,
13124 				  struct bpf_map_skeleton *maps,
13125 				  size_t map_cnt)
13126 {
13127 	int i;
13128 
13129 	for (i = 0; i < map_cnt; i++) {
13130 		struct bpf_map **map = maps[i].map;
13131 		const char *name = maps[i].name;
13132 		void **mmaped = maps[i].mmaped;
13133 
13134 		*map = bpf_object__find_map_by_name(obj, name);
13135 		if (!*map) {
13136 			pr_warn("failed to find skeleton map '%s'\n", name);
13137 			return -ESRCH;
13138 		}
13139 
13140 		/* externs shouldn't be pre-setup from user code */
13141 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13142 			*mmaped = (*map)->mmaped;
13143 	}
13144 	return 0;
13145 }
13146 
13147 static int populate_skeleton_progs(const struct bpf_object *obj,
13148 				   struct bpf_prog_skeleton *progs,
13149 				   size_t prog_cnt)
13150 {
13151 	int i;
13152 
13153 	for (i = 0; i < prog_cnt; i++) {
13154 		struct bpf_program **prog = progs[i].prog;
13155 		const char *name = progs[i].name;
13156 
13157 		*prog = bpf_object__find_program_by_name(obj, name);
13158 		if (!*prog) {
13159 			pr_warn("failed to find skeleton program '%s'\n", name);
13160 			return -ESRCH;
13161 		}
13162 	}
13163 	return 0;
13164 }
13165 
13166 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13167 			      const struct bpf_object_open_opts *opts)
13168 {
13169 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13170 		.object_name = s->name,
13171 	);
13172 	struct bpf_object *obj;
13173 	int err;
13174 
13175 	/* Attempt to preserve opts->object_name, unless overriden by user
13176 	 * explicitly. Overwriting object name for skeletons is discouraged,
13177 	 * as it breaks global data maps, because they contain object name
13178 	 * prefix as their own map name prefix. When skeleton is generated,
13179 	 * bpftool is making an assumption that this name will stay the same.
13180 	 */
13181 	if (opts) {
13182 		memcpy(&skel_opts, opts, sizeof(*opts));
13183 		if (!opts->object_name)
13184 			skel_opts.object_name = s->name;
13185 	}
13186 
13187 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13188 	err = libbpf_get_error(obj);
13189 	if (err) {
13190 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13191 			s->name, err);
13192 		return libbpf_err(err);
13193 	}
13194 
13195 	*s->obj = obj;
13196 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13197 	if (err) {
13198 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13199 		return libbpf_err(err);
13200 	}
13201 
13202 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13203 	if (err) {
13204 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13205 		return libbpf_err(err);
13206 	}
13207 
13208 	return 0;
13209 }
13210 
13211 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13212 {
13213 	int err, len, var_idx, i;
13214 	const char *var_name;
13215 	const struct bpf_map *map;
13216 	struct btf *btf;
13217 	__u32 map_type_id;
13218 	const struct btf_type *map_type, *var_type;
13219 	const struct bpf_var_skeleton *var_skel;
13220 	struct btf_var_secinfo *var;
13221 
13222 	if (!s->obj)
13223 		return libbpf_err(-EINVAL);
13224 
13225 	btf = bpf_object__btf(s->obj);
13226 	if (!btf) {
13227 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13228 			bpf_object__name(s->obj));
13229 		return libbpf_err(-errno);
13230 	}
13231 
13232 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13233 	if (err) {
13234 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13235 		return libbpf_err(err);
13236 	}
13237 
13238 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13239 	if (err) {
13240 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13241 		return libbpf_err(err);
13242 	}
13243 
13244 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13245 		var_skel = &s->vars[var_idx];
13246 		map = *var_skel->map;
13247 		map_type_id = bpf_map__btf_value_type_id(map);
13248 		map_type = btf__type_by_id(btf, map_type_id);
13249 
13250 		if (!btf_is_datasec(map_type)) {
13251 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13252 				bpf_map__name(map),
13253 				__btf_kind_str(btf_kind(map_type)));
13254 			return libbpf_err(-EINVAL);
13255 		}
13256 
13257 		len = btf_vlen(map_type);
13258 		var = btf_var_secinfos(map_type);
13259 		for (i = 0; i < len; i++, var++) {
13260 			var_type = btf__type_by_id(btf, var->type);
13261 			var_name = btf__name_by_offset(btf, var_type->name_off);
13262 			if (strcmp(var_name, var_skel->name) == 0) {
13263 				*var_skel->addr = map->mmaped + var->offset;
13264 				break;
13265 			}
13266 		}
13267 	}
13268 	return 0;
13269 }
13270 
13271 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13272 {
13273 	if (!s)
13274 		return;
13275 	free(s->maps);
13276 	free(s->progs);
13277 	free(s->vars);
13278 	free(s);
13279 }
13280 
13281 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13282 {
13283 	int i, err;
13284 
13285 	err = bpf_object__load(*s->obj);
13286 	if (err) {
13287 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13288 		return libbpf_err(err);
13289 	}
13290 
13291 	for (i = 0; i < s->map_cnt; i++) {
13292 		struct bpf_map *map = *s->maps[i].map;
13293 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13294 		int prot, map_fd = bpf_map__fd(map);
13295 		void **mmaped = s->maps[i].mmaped;
13296 
13297 		if (!mmaped)
13298 			continue;
13299 
13300 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13301 			*mmaped = NULL;
13302 			continue;
13303 		}
13304 
13305 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13306 			prot = PROT_READ;
13307 		else
13308 			prot = PROT_READ | PROT_WRITE;
13309 
13310 		/* Remap anonymous mmap()-ed "map initialization image" as
13311 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13312 		 * memory address. This will cause kernel to change process'
13313 		 * page table to point to a different piece of kernel memory,
13314 		 * but from userspace point of view memory address (and its
13315 		 * contents, being identical at this point) will stay the
13316 		 * same. This mapping will be released by bpf_object__close()
13317 		 * as per normal clean up procedure, so we don't need to worry
13318 		 * about it from skeleton's clean up perspective.
13319 		 */
13320 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13321 		if (*mmaped == MAP_FAILED) {
13322 			err = -errno;
13323 			*mmaped = NULL;
13324 			pr_warn("failed to re-mmap() map '%s': %d\n",
13325 				 bpf_map__name(map), err);
13326 			return libbpf_err(err);
13327 		}
13328 	}
13329 
13330 	return 0;
13331 }
13332 
13333 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13334 {
13335 	int i, err;
13336 
13337 	for (i = 0; i < s->prog_cnt; i++) {
13338 		struct bpf_program *prog = *s->progs[i].prog;
13339 		struct bpf_link **link = s->progs[i].link;
13340 
13341 		if (!prog->autoload || !prog->autoattach)
13342 			continue;
13343 
13344 		/* auto-attaching not supported for this program */
13345 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13346 			continue;
13347 
13348 		/* if user already set the link manually, don't attempt auto-attach */
13349 		if (*link)
13350 			continue;
13351 
13352 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13353 		if (err) {
13354 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13355 				bpf_program__name(prog), err);
13356 			return libbpf_err(err);
13357 		}
13358 
13359 		/* It's possible that for some SEC() definitions auto-attach
13360 		 * is supported in some cases (e.g., if definition completely
13361 		 * specifies target information), but is not in other cases.
13362 		 * SEC("uprobe") is one such case. If user specified target
13363 		 * binary and function name, such BPF program can be
13364 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13365 		 * attach to fail. It should just be skipped.
13366 		 * attach_fn signals such case with returning 0 (no error) and
13367 		 * setting link to NULL.
13368 		 */
13369 	}
13370 
13371 	return 0;
13372 }
13373 
13374 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13375 {
13376 	int i;
13377 
13378 	for (i = 0; i < s->prog_cnt; i++) {
13379 		struct bpf_link **link = s->progs[i].link;
13380 
13381 		bpf_link__destroy(*link);
13382 		*link = NULL;
13383 	}
13384 }
13385 
13386 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13387 {
13388 	if (!s)
13389 		return;
13390 
13391 	if (s->progs)
13392 		bpf_object__detach_skeleton(s);
13393 	if (s->obj)
13394 		bpf_object__close(*s->obj);
13395 	free(s->maps);
13396 	free(s->progs);
13397 	free(s);
13398 }
13399