1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <tools/libc_compat.h> 48 #include <libelf.h> 49 #include <gelf.h> 50 #include <zlib.h> 51 52 #include "libbpf.h" 53 #include "bpf.h" 54 #include "btf.h" 55 #include "str_error.h" 56 #include "libbpf_internal.h" 57 #include "hashmap.h" 58 59 /* make sure libbpf doesn't use kernel-only integer typedefs */ 60 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 61 62 #ifndef EM_BPF 63 #define EM_BPF 247 64 #endif 65 66 #ifndef BPF_FS_MAGIC 67 #define BPF_FS_MAGIC 0xcafe4a11 68 #endif 69 70 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 71 * compilation if user enables corresponding warning. Disable it explicitly. 72 */ 73 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 74 75 #define __printf(a, b) __attribute__((format(printf, a, b))) 76 77 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 78 static struct bpf_program *bpf_object__find_prog_by_idx(struct bpf_object *obj, 79 int idx); 80 static const struct btf_type * 81 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 82 83 static int __base_pr(enum libbpf_print_level level, const char *format, 84 va_list args) 85 { 86 if (level == LIBBPF_DEBUG) 87 return 0; 88 89 return vfprintf(stderr, format, args); 90 } 91 92 static libbpf_print_fn_t __libbpf_pr = __base_pr; 93 94 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 95 { 96 libbpf_print_fn_t old_print_fn = __libbpf_pr; 97 98 __libbpf_pr = fn; 99 return old_print_fn; 100 } 101 102 __printf(2, 3) 103 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 104 { 105 va_list args; 106 107 if (!__libbpf_pr) 108 return; 109 110 va_start(args, format); 111 __libbpf_pr(level, format, args); 112 va_end(args); 113 } 114 115 static void pr_perm_msg(int err) 116 { 117 struct rlimit limit; 118 char buf[100]; 119 120 if (err != -EPERM || geteuid() != 0) 121 return; 122 123 err = getrlimit(RLIMIT_MEMLOCK, &limit); 124 if (err) 125 return; 126 127 if (limit.rlim_cur == RLIM_INFINITY) 128 return; 129 130 if (limit.rlim_cur < 1024) 131 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 132 else if (limit.rlim_cur < 1024*1024) 133 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 134 else 135 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 136 137 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 138 buf); 139 } 140 141 #define STRERR_BUFSIZE 128 142 143 /* Copied from tools/perf/util/util.h */ 144 #ifndef zfree 145 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 146 #endif 147 148 #ifndef zclose 149 # define zclose(fd) ({ \ 150 int ___err = 0; \ 151 if ((fd) >= 0) \ 152 ___err = close((fd)); \ 153 fd = -1; \ 154 ___err; }) 155 #endif 156 157 #ifdef HAVE_LIBELF_MMAP_SUPPORT 158 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP 159 #else 160 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ 161 #endif 162 163 static inline __u64 ptr_to_u64(const void *ptr) 164 { 165 return (__u64) (unsigned long) ptr; 166 } 167 168 struct bpf_capabilities { 169 /* v4.14: kernel support for program & map names. */ 170 __u32 name:1; 171 /* v5.2: kernel support for global data sections. */ 172 __u32 global_data:1; 173 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 174 __u32 btf_func:1; 175 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 176 __u32 btf_datasec:1; 177 /* BPF_F_MMAPABLE is supported for arrays */ 178 __u32 array_mmap:1; 179 /* BTF_FUNC_GLOBAL is supported */ 180 __u32 btf_func_global:1; 181 }; 182 183 enum reloc_type { 184 RELO_LD64, 185 RELO_CALL, 186 RELO_DATA, 187 RELO_EXTERN, 188 }; 189 190 struct reloc_desc { 191 enum reloc_type type; 192 int insn_idx; 193 int map_idx; 194 int sym_off; 195 }; 196 197 /* 198 * bpf_prog should be a better name but it has been used in 199 * linux/filter.h. 200 */ 201 struct bpf_program { 202 /* Index in elf obj file, for relocation use. */ 203 int idx; 204 char *name; 205 int prog_ifindex; 206 char *section_name; 207 /* section_name with / replaced by _; makes recursive pinning 208 * in bpf_object__pin_programs easier 209 */ 210 char *pin_name; 211 struct bpf_insn *insns; 212 size_t insns_cnt, main_prog_cnt; 213 enum bpf_prog_type type; 214 215 struct reloc_desc *reloc_desc; 216 int nr_reloc; 217 int log_level; 218 219 struct { 220 int nr; 221 int *fds; 222 } instances; 223 bpf_program_prep_t preprocessor; 224 225 struct bpf_object *obj; 226 void *priv; 227 bpf_program_clear_priv_t clear_priv; 228 229 enum bpf_attach_type expected_attach_type; 230 __u32 attach_btf_id; 231 __u32 attach_prog_fd; 232 void *func_info; 233 __u32 func_info_rec_size; 234 __u32 func_info_cnt; 235 236 struct bpf_capabilities *caps; 237 238 void *line_info; 239 __u32 line_info_rec_size; 240 __u32 line_info_cnt; 241 __u32 prog_flags; 242 }; 243 244 struct bpf_struct_ops { 245 const char *tname; 246 const struct btf_type *type; 247 struct bpf_program **progs; 248 __u32 *kern_func_off; 249 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 250 void *data; 251 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 252 * btf_vmlinux's format. 253 * struct bpf_struct_ops_tcp_congestion_ops { 254 * [... some other kernel fields ...] 255 * struct tcp_congestion_ops data; 256 * } 257 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 258 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 259 * from "data". 260 */ 261 void *kern_vdata; 262 __u32 type_id; 263 }; 264 265 #define DATA_SEC ".data" 266 #define BSS_SEC ".bss" 267 #define RODATA_SEC ".rodata" 268 #define KCONFIG_SEC ".kconfig" 269 #define STRUCT_OPS_SEC ".struct_ops" 270 271 enum libbpf_map_type { 272 LIBBPF_MAP_UNSPEC, 273 LIBBPF_MAP_DATA, 274 LIBBPF_MAP_BSS, 275 LIBBPF_MAP_RODATA, 276 LIBBPF_MAP_KCONFIG, 277 }; 278 279 static const char * const libbpf_type_to_btf_name[] = { 280 [LIBBPF_MAP_DATA] = DATA_SEC, 281 [LIBBPF_MAP_BSS] = BSS_SEC, 282 [LIBBPF_MAP_RODATA] = RODATA_SEC, 283 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 284 }; 285 286 struct bpf_map { 287 char *name; 288 int fd; 289 int sec_idx; 290 size_t sec_offset; 291 int map_ifindex; 292 int inner_map_fd; 293 struct bpf_map_def def; 294 __u32 btf_key_type_id; 295 __u32 btf_value_type_id; 296 __u32 btf_vmlinux_value_type_id; 297 void *priv; 298 bpf_map_clear_priv_t clear_priv; 299 enum libbpf_map_type libbpf_type; 300 void *mmaped; 301 struct bpf_struct_ops *st_ops; 302 char *pin_path; 303 bool pinned; 304 bool reused; 305 }; 306 307 enum extern_type { 308 EXT_UNKNOWN, 309 EXT_CHAR, 310 EXT_BOOL, 311 EXT_INT, 312 EXT_TRISTATE, 313 EXT_CHAR_ARR, 314 }; 315 316 struct extern_desc { 317 const char *name; 318 int sym_idx; 319 int btf_id; 320 enum extern_type type; 321 int sz; 322 int align; 323 int data_off; 324 bool is_signed; 325 bool is_weak; 326 bool is_set; 327 }; 328 329 static LIST_HEAD(bpf_objects_list); 330 331 struct bpf_object { 332 char name[BPF_OBJ_NAME_LEN]; 333 char license[64]; 334 __u32 kern_version; 335 336 struct bpf_program *programs; 337 size_t nr_programs; 338 struct bpf_map *maps; 339 size_t nr_maps; 340 size_t maps_cap; 341 342 char *kconfig; 343 struct extern_desc *externs; 344 int nr_extern; 345 int kconfig_map_idx; 346 347 bool loaded; 348 bool has_pseudo_calls; 349 350 /* 351 * Information when doing elf related work. Only valid if fd 352 * is valid. 353 */ 354 struct { 355 int fd; 356 const void *obj_buf; 357 size_t obj_buf_sz; 358 Elf *elf; 359 GElf_Ehdr ehdr; 360 Elf_Data *symbols; 361 Elf_Data *data; 362 Elf_Data *rodata; 363 Elf_Data *bss; 364 Elf_Data *st_ops_data; 365 size_t strtabidx; 366 struct { 367 GElf_Shdr shdr; 368 Elf_Data *data; 369 } *reloc_sects; 370 int nr_reloc_sects; 371 int maps_shndx; 372 int btf_maps_shndx; 373 int text_shndx; 374 int symbols_shndx; 375 int data_shndx; 376 int rodata_shndx; 377 int bss_shndx; 378 int st_ops_shndx; 379 } efile; 380 /* 381 * All loaded bpf_object is linked in a list, which is 382 * hidden to caller. bpf_objects__<func> handlers deal with 383 * all objects. 384 */ 385 struct list_head list; 386 387 struct btf *btf; 388 /* Parse and load BTF vmlinux if any of the programs in the object need 389 * it at load time. 390 */ 391 struct btf *btf_vmlinux; 392 struct btf_ext *btf_ext; 393 394 void *priv; 395 bpf_object_clear_priv_t clear_priv; 396 397 struct bpf_capabilities caps; 398 399 char path[]; 400 }; 401 #define obj_elf_valid(o) ((o)->efile.elf) 402 403 void bpf_program__unload(struct bpf_program *prog) 404 { 405 int i; 406 407 if (!prog) 408 return; 409 410 /* 411 * If the object is opened but the program was never loaded, 412 * it is possible that prog->instances.nr == -1. 413 */ 414 if (prog->instances.nr > 0) { 415 for (i = 0; i < prog->instances.nr; i++) 416 zclose(prog->instances.fds[i]); 417 } else if (prog->instances.nr != -1) { 418 pr_warn("Internal error: instances.nr is %d\n", 419 prog->instances.nr); 420 } 421 422 prog->instances.nr = -1; 423 zfree(&prog->instances.fds); 424 425 zfree(&prog->func_info); 426 zfree(&prog->line_info); 427 } 428 429 static void bpf_program__exit(struct bpf_program *prog) 430 { 431 if (!prog) 432 return; 433 434 if (prog->clear_priv) 435 prog->clear_priv(prog, prog->priv); 436 437 prog->priv = NULL; 438 prog->clear_priv = NULL; 439 440 bpf_program__unload(prog); 441 zfree(&prog->name); 442 zfree(&prog->section_name); 443 zfree(&prog->pin_name); 444 zfree(&prog->insns); 445 zfree(&prog->reloc_desc); 446 447 prog->nr_reloc = 0; 448 prog->insns_cnt = 0; 449 prog->idx = -1; 450 } 451 452 static char *__bpf_program__pin_name(struct bpf_program *prog) 453 { 454 char *name, *p; 455 456 name = p = strdup(prog->section_name); 457 while ((p = strchr(p, '/'))) 458 *p = '_'; 459 460 return name; 461 } 462 463 static int 464 bpf_program__init(void *data, size_t size, char *section_name, int idx, 465 struct bpf_program *prog) 466 { 467 const size_t bpf_insn_sz = sizeof(struct bpf_insn); 468 469 if (size == 0 || size % bpf_insn_sz) { 470 pr_warn("corrupted section '%s', size: %zu\n", 471 section_name, size); 472 return -EINVAL; 473 } 474 475 memset(prog, 0, sizeof(*prog)); 476 477 prog->section_name = strdup(section_name); 478 if (!prog->section_name) { 479 pr_warn("failed to alloc name for prog under section(%d) %s\n", 480 idx, section_name); 481 goto errout; 482 } 483 484 prog->pin_name = __bpf_program__pin_name(prog); 485 if (!prog->pin_name) { 486 pr_warn("failed to alloc pin name for prog under section(%d) %s\n", 487 idx, section_name); 488 goto errout; 489 } 490 491 prog->insns = malloc(size); 492 if (!prog->insns) { 493 pr_warn("failed to alloc insns for prog under section %s\n", 494 section_name); 495 goto errout; 496 } 497 prog->insns_cnt = size / bpf_insn_sz; 498 memcpy(prog->insns, data, size); 499 prog->idx = idx; 500 prog->instances.fds = NULL; 501 prog->instances.nr = -1; 502 prog->type = BPF_PROG_TYPE_UNSPEC; 503 504 return 0; 505 errout: 506 bpf_program__exit(prog); 507 return -ENOMEM; 508 } 509 510 static int 511 bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, 512 char *section_name, int idx) 513 { 514 struct bpf_program prog, *progs; 515 int nr_progs, err; 516 517 err = bpf_program__init(data, size, section_name, idx, &prog); 518 if (err) 519 return err; 520 521 prog.caps = &obj->caps; 522 progs = obj->programs; 523 nr_progs = obj->nr_programs; 524 525 progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); 526 if (!progs) { 527 /* 528 * In this case the original obj->programs 529 * is still valid, so don't need special treat for 530 * bpf_close_object(). 531 */ 532 pr_warn("failed to alloc a new program under section '%s'\n", 533 section_name); 534 bpf_program__exit(&prog); 535 return -ENOMEM; 536 } 537 538 pr_debug("found program %s\n", prog.section_name); 539 obj->programs = progs; 540 obj->nr_programs = nr_progs + 1; 541 prog.obj = obj; 542 progs[nr_progs] = prog; 543 return 0; 544 } 545 546 static int 547 bpf_object__init_prog_names(struct bpf_object *obj) 548 { 549 Elf_Data *symbols = obj->efile.symbols; 550 struct bpf_program *prog; 551 size_t pi, si; 552 553 for (pi = 0; pi < obj->nr_programs; pi++) { 554 const char *name = NULL; 555 556 prog = &obj->programs[pi]; 557 558 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; 559 si++) { 560 GElf_Sym sym; 561 562 if (!gelf_getsym(symbols, si, &sym)) 563 continue; 564 if (sym.st_shndx != prog->idx) 565 continue; 566 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) 567 continue; 568 569 name = elf_strptr(obj->efile.elf, 570 obj->efile.strtabidx, 571 sym.st_name); 572 if (!name) { 573 pr_warn("failed to get sym name string for prog %s\n", 574 prog->section_name); 575 return -LIBBPF_ERRNO__LIBELF; 576 } 577 } 578 579 if (!name && prog->idx == obj->efile.text_shndx) 580 name = ".text"; 581 582 if (!name) { 583 pr_warn("failed to find sym for prog %s\n", 584 prog->section_name); 585 return -EINVAL; 586 } 587 588 prog->name = strdup(name); 589 if (!prog->name) { 590 pr_warn("failed to allocate memory for prog sym %s\n", 591 name); 592 return -ENOMEM; 593 } 594 } 595 596 return 0; 597 } 598 599 static __u32 get_kernel_version(void) 600 { 601 __u32 major, minor, patch; 602 struct utsname info; 603 604 uname(&info); 605 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 606 return 0; 607 return KERNEL_VERSION(major, minor, patch); 608 } 609 610 static const struct btf_member * 611 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 612 { 613 struct btf_member *m; 614 int i; 615 616 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 617 if (btf_member_bit_offset(t, i) == bit_offset) 618 return m; 619 } 620 621 return NULL; 622 } 623 624 static const struct btf_member * 625 find_member_by_name(const struct btf *btf, const struct btf_type *t, 626 const char *name) 627 { 628 struct btf_member *m; 629 int i; 630 631 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 632 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 633 return m; 634 } 635 636 return NULL; 637 } 638 639 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 640 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 641 const char *name, __u32 kind); 642 643 static int 644 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 645 const struct btf_type **type, __u32 *type_id, 646 const struct btf_type **vtype, __u32 *vtype_id, 647 const struct btf_member **data_member) 648 { 649 const struct btf_type *kern_type, *kern_vtype; 650 const struct btf_member *kern_data_member; 651 __s32 kern_vtype_id, kern_type_id; 652 __u32 i; 653 654 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 655 if (kern_type_id < 0) { 656 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 657 tname); 658 return kern_type_id; 659 } 660 kern_type = btf__type_by_id(btf, kern_type_id); 661 662 /* Find the corresponding "map_value" type that will be used 663 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 664 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 665 * btf_vmlinux. 666 */ 667 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 668 tname, BTF_KIND_STRUCT); 669 if (kern_vtype_id < 0) { 670 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 671 STRUCT_OPS_VALUE_PREFIX, tname); 672 return kern_vtype_id; 673 } 674 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 675 676 /* Find "struct tcp_congestion_ops" from 677 * struct bpf_struct_ops_tcp_congestion_ops { 678 * [ ... ] 679 * struct tcp_congestion_ops data; 680 * } 681 */ 682 kern_data_member = btf_members(kern_vtype); 683 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 684 if (kern_data_member->type == kern_type_id) 685 break; 686 } 687 if (i == btf_vlen(kern_vtype)) { 688 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 689 tname, STRUCT_OPS_VALUE_PREFIX, tname); 690 return -EINVAL; 691 } 692 693 *type = kern_type; 694 *type_id = kern_type_id; 695 *vtype = kern_vtype; 696 *vtype_id = kern_vtype_id; 697 *data_member = kern_data_member; 698 699 return 0; 700 } 701 702 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 703 { 704 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 705 } 706 707 /* Init the map's fields that depend on kern_btf */ 708 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 709 const struct btf *btf, 710 const struct btf *kern_btf) 711 { 712 const struct btf_member *member, *kern_member, *kern_data_member; 713 const struct btf_type *type, *kern_type, *kern_vtype; 714 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 715 struct bpf_struct_ops *st_ops; 716 void *data, *kern_data; 717 const char *tname; 718 int err; 719 720 st_ops = map->st_ops; 721 type = st_ops->type; 722 tname = st_ops->tname; 723 err = find_struct_ops_kern_types(kern_btf, tname, 724 &kern_type, &kern_type_id, 725 &kern_vtype, &kern_vtype_id, 726 &kern_data_member); 727 if (err) 728 return err; 729 730 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 731 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 732 733 map->def.value_size = kern_vtype->size; 734 map->btf_vmlinux_value_type_id = kern_vtype_id; 735 736 st_ops->kern_vdata = calloc(1, kern_vtype->size); 737 if (!st_ops->kern_vdata) 738 return -ENOMEM; 739 740 data = st_ops->data; 741 kern_data_off = kern_data_member->offset / 8; 742 kern_data = st_ops->kern_vdata + kern_data_off; 743 744 member = btf_members(type); 745 for (i = 0; i < btf_vlen(type); i++, member++) { 746 const struct btf_type *mtype, *kern_mtype; 747 __u32 mtype_id, kern_mtype_id; 748 void *mdata, *kern_mdata; 749 __s64 msize, kern_msize; 750 __u32 moff, kern_moff; 751 __u32 kern_member_idx; 752 const char *mname; 753 754 mname = btf__name_by_offset(btf, member->name_off); 755 kern_member = find_member_by_name(kern_btf, kern_type, mname); 756 if (!kern_member) { 757 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 758 map->name, mname); 759 return -ENOTSUP; 760 } 761 762 kern_member_idx = kern_member - btf_members(kern_type); 763 if (btf_member_bitfield_size(type, i) || 764 btf_member_bitfield_size(kern_type, kern_member_idx)) { 765 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 766 map->name, mname); 767 return -ENOTSUP; 768 } 769 770 moff = member->offset / 8; 771 kern_moff = kern_member->offset / 8; 772 773 mdata = data + moff; 774 kern_mdata = kern_data + kern_moff; 775 776 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 777 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 778 &kern_mtype_id); 779 if (BTF_INFO_KIND(mtype->info) != 780 BTF_INFO_KIND(kern_mtype->info)) { 781 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 782 map->name, mname, BTF_INFO_KIND(mtype->info), 783 BTF_INFO_KIND(kern_mtype->info)); 784 return -ENOTSUP; 785 } 786 787 if (btf_is_ptr(mtype)) { 788 struct bpf_program *prog; 789 790 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 791 kern_mtype = skip_mods_and_typedefs(kern_btf, 792 kern_mtype->type, 793 &kern_mtype_id); 794 if (!btf_is_func_proto(mtype) || 795 !btf_is_func_proto(kern_mtype)) { 796 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 797 map->name, mname); 798 return -ENOTSUP; 799 } 800 801 prog = st_ops->progs[i]; 802 if (!prog) { 803 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 804 map->name, mname); 805 continue; 806 } 807 808 prog->attach_btf_id = kern_type_id; 809 prog->expected_attach_type = kern_member_idx; 810 811 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 812 813 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 814 map->name, mname, prog->name, moff, 815 kern_moff); 816 817 continue; 818 } 819 820 msize = btf__resolve_size(btf, mtype_id); 821 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 822 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 823 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 824 map->name, mname, (ssize_t)msize, 825 (ssize_t)kern_msize); 826 return -ENOTSUP; 827 } 828 829 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 830 map->name, mname, (unsigned int)msize, 831 moff, kern_moff); 832 memcpy(kern_mdata, mdata, msize); 833 } 834 835 return 0; 836 } 837 838 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 839 { 840 struct bpf_map *map; 841 size_t i; 842 int err; 843 844 for (i = 0; i < obj->nr_maps; i++) { 845 map = &obj->maps[i]; 846 847 if (!bpf_map__is_struct_ops(map)) 848 continue; 849 850 err = bpf_map__init_kern_struct_ops(map, obj->btf, 851 obj->btf_vmlinux); 852 if (err) 853 return err; 854 } 855 856 return 0; 857 } 858 859 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 860 { 861 const struct btf_type *type, *datasec; 862 const struct btf_var_secinfo *vsi; 863 struct bpf_struct_ops *st_ops; 864 const char *tname, *var_name; 865 __s32 type_id, datasec_id; 866 const struct btf *btf; 867 struct bpf_map *map; 868 __u32 i; 869 870 if (obj->efile.st_ops_shndx == -1) 871 return 0; 872 873 btf = obj->btf; 874 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 875 BTF_KIND_DATASEC); 876 if (datasec_id < 0) { 877 pr_warn("struct_ops init: DATASEC %s not found\n", 878 STRUCT_OPS_SEC); 879 return -EINVAL; 880 } 881 882 datasec = btf__type_by_id(btf, datasec_id); 883 vsi = btf_var_secinfos(datasec); 884 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 885 type = btf__type_by_id(obj->btf, vsi->type); 886 var_name = btf__name_by_offset(obj->btf, type->name_off); 887 888 type_id = btf__resolve_type(obj->btf, vsi->type); 889 if (type_id < 0) { 890 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 891 vsi->type, STRUCT_OPS_SEC); 892 return -EINVAL; 893 } 894 895 type = btf__type_by_id(obj->btf, type_id); 896 tname = btf__name_by_offset(obj->btf, type->name_off); 897 if (!tname[0]) { 898 pr_warn("struct_ops init: anonymous type is not supported\n"); 899 return -ENOTSUP; 900 } 901 if (!btf_is_struct(type)) { 902 pr_warn("struct_ops init: %s is not a struct\n", tname); 903 return -EINVAL; 904 } 905 906 map = bpf_object__add_map(obj); 907 if (IS_ERR(map)) 908 return PTR_ERR(map); 909 910 map->sec_idx = obj->efile.st_ops_shndx; 911 map->sec_offset = vsi->offset; 912 map->name = strdup(var_name); 913 if (!map->name) 914 return -ENOMEM; 915 916 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 917 map->def.key_size = sizeof(int); 918 map->def.value_size = type->size; 919 map->def.max_entries = 1; 920 921 map->st_ops = calloc(1, sizeof(*map->st_ops)); 922 if (!map->st_ops) 923 return -ENOMEM; 924 st_ops = map->st_ops; 925 st_ops->data = malloc(type->size); 926 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 927 st_ops->kern_func_off = malloc(btf_vlen(type) * 928 sizeof(*st_ops->kern_func_off)); 929 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 930 return -ENOMEM; 931 932 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 933 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 934 var_name, STRUCT_OPS_SEC); 935 return -EINVAL; 936 } 937 938 memcpy(st_ops->data, 939 obj->efile.st_ops_data->d_buf + vsi->offset, 940 type->size); 941 st_ops->tname = tname; 942 st_ops->type = type; 943 st_ops->type_id = type_id; 944 945 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 946 tname, type_id, var_name, vsi->offset); 947 } 948 949 return 0; 950 } 951 952 static struct bpf_object *bpf_object__new(const char *path, 953 const void *obj_buf, 954 size_t obj_buf_sz, 955 const char *obj_name) 956 { 957 struct bpf_object *obj; 958 char *end; 959 960 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 961 if (!obj) { 962 pr_warn("alloc memory failed for %s\n", path); 963 return ERR_PTR(-ENOMEM); 964 } 965 966 strcpy(obj->path, path); 967 if (obj_name) { 968 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 969 obj->name[sizeof(obj->name) - 1] = 0; 970 } else { 971 /* Using basename() GNU version which doesn't modify arg. */ 972 strncpy(obj->name, basename((void *)path), 973 sizeof(obj->name) - 1); 974 end = strchr(obj->name, '.'); 975 if (end) 976 *end = 0; 977 } 978 979 obj->efile.fd = -1; 980 /* 981 * Caller of this function should also call 982 * bpf_object__elf_finish() after data collection to return 983 * obj_buf to user. If not, we should duplicate the buffer to 984 * avoid user freeing them before elf finish. 985 */ 986 obj->efile.obj_buf = obj_buf; 987 obj->efile.obj_buf_sz = obj_buf_sz; 988 obj->efile.maps_shndx = -1; 989 obj->efile.btf_maps_shndx = -1; 990 obj->efile.data_shndx = -1; 991 obj->efile.rodata_shndx = -1; 992 obj->efile.bss_shndx = -1; 993 obj->efile.st_ops_shndx = -1; 994 obj->kconfig_map_idx = -1; 995 996 obj->kern_version = get_kernel_version(); 997 obj->loaded = false; 998 999 INIT_LIST_HEAD(&obj->list); 1000 list_add(&obj->list, &bpf_objects_list); 1001 return obj; 1002 } 1003 1004 static void bpf_object__elf_finish(struct bpf_object *obj) 1005 { 1006 if (!obj_elf_valid(obj)) 1007 return; 1008 1009 if (obj->efile.elf) { 1010 elf_end(obj->efile.elf); 1011 obj->efile.elf = NULL; 1012 } 1013 obj->efile.symbols = NULL; 1014 obj->efile.data = NULL; 1015 obj->efile.rodata = NULL; 1016 obj->efile.bss = NULL; 1017 obj->efile.st_ops_data = NULL; 1018 1019 zfree(&obj->efile.reloc_sects); 1020 obj->efile.nr_reloc_sects = 0; 1021 zclose(obj->efile.fd); 1022 obj->efile.obj_buf = NULL; 1023 obj->efile.obj_buf_sz = 0; 1024 } 1025 1026 static int bpf_object__elf_init(struct bpf_object *obj) 1027 { 1028 int err = 0; 1029 GElf_Ehdr *ep; 1030 1031 if (obj_elf_valid(obj)) { 1032 pr_warn("elf init: internal error\n"); 1033 return -LIBBPF_ERRNO__LIBELF; 1034 } 1035 1036 if (obj->efile.obj_buf_sz > 0) { 1037 /* 1038 * obj_buf should have been validated by 1039 * bpf_object__open_buffer(). 1040 */ 1041 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1042 obj->efile.obj_buf_sz); 1043 } else { 1044 obj->efile.fd = open(obj->path, O_RDONLY); 1045 if (obj->efile.fd < 0) { 1046 char errmsg[STRERR_BUFSIZE], *cp; 1047 1048 err = -errno; 1049 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1050 pr_warn("failed to open %s: %s\n", obj->path, cp); 1051 return err; 1052 } 1053 1054 obj->efile.elf = elf_begin(obj->efile.fd, 1055 LIBBPF_ELF_C_READ_MMAP, NULL); 1056 } 1057 1058 if (!obj->efile.elf) { 1059 pr_warn("failed to open %s as ELF file\n", obj->path); 1060 err = -LIBBPF_ERRNO__LIBELF; 1061 goto errout; 1062 } 1063 1064 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1065 pr_warn("failed to get EHDR from %s\n", obj->path); 1066 err = -LIBBPF_ERRNO__FORMAT; 1067 goto errout; 1068 } 1069 ep = &obj->efile.ehdr; 1070 1071 /* Old LLVM set e_machine to EM_NONE */ 1072 if (ep->e_type != ET_REL || 1073 (ep->e_machine && ep->e_machine != EM_BPF)) { 1074 pr_warn("%s is not an eBPF object file\n", obj->path); 1075 err = -LIBBPF_ERRNO__FORMAT; 1076 goto errout; 1077 } 1078 1079 return 0; 1080 errout: 1081 bpf_object__elf_finish(obj); 1082 return err; 1083 } 1084 1085 static int bpf_object__check_endianness(struct bpf_object *obj) 1086 { 1087 #if __BYTE_ORDER == __LITTLE_ENDIAN 1088 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1089 return 0; 1090 #elif __BYTE_ORDER == __BIG_ENDIAN 1091 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1092 return 0; 1093 #else 1094 # error "Unrecognized __BYTE_ORDER__" 1095 #endif 1096 pr_warn("endianness mismatch.\n"); 1097 return -LIBBPF_ERRNO__ENDIAN; 1098 } 1099 1100 static int 1101 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1102 { 1103 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1104 pr_debug("license of %s is %s\n", obj->path, obj->license); 1105 return 0; 1106 } 1107 1108 static int 1109 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1110 { 1111 __u32 kver; 1112 1113 if (size != sizeof(kver)) { 1114 pr_warn("invalid kver section in %s\n", obj->path); 1115 return -LIBBPF_ERRNO__FORMAT; 1116 } 1117 memcpy(&kver, data, sizeof(kver)); 1118 obj->kern_version = kver; 1119 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1120 return 0; 1121 } 1122 1123 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1124 { 1125 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1126 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1127 return true; 1128 return false; 1129 } 1130 1131 static int bpf_object_search_section_size(const struct bpf_object *obj, 1132 const char *name, size_t *d_size) 1133 { 1134 const GElf_Ehdr *ep = &obj->efile.ehdr; 1135 Elf *elf = obj->efile.elf; 1136 Elf_Scn *scn = NULL; 1137 int idx = 0; 1138 1139 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1140 const char *sec_name; 1141 Elf_Data *data; 1142 GElf_Shdr sh; 1143 1144 idx++; 1145 if (gelf_getshdr(scn, &sh) != &sh) { 1146 pr_warn("failed to get section(%d) header from %s\n", 1147 idx, obj->path); 1148 return -EIO; 1149 } 1150 1151 sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 1152 if (!sec_name) { 1153 pr_warn("failed to get section(%d) name from %s\n", 1154 idx, obj->path); 1155 return -EIO; 1156 } 1157 1158 if (strcmp(name, sec_name)) 1159 continue; 1160 1161 data = elf_getdata(scn, 0); 1162 if (!data) { 1163 pr_warn("failed to get section(%d) data from %s(%s)\n", 1164 idx, name, obj->path); 1165 return -EIO; 1166 } 1167 1168 *d_size = data->d_size; 1169 return 0; 1170 } 1171 1172 return -ENOENT; 1173 } 1174 1175 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1176 __u32 *size) 1177 { 1178 int ret = -ENOENT; 1179 size_t d_size; 1180 1181 *size = 0; 1182 if (!name) { 1183 return -EINVAL; 1184 } else if (!strcmp(name, DATA_SEC)) { 1185 if (obj->efile.data) 1186 *size = obj->efile.data->d_size; 1187 } else if (!strcmp(name, BSS_SEC)) { 1188 if (obj->efile.bss) 1189 *size = obj->efile.bss->d_size; 1190 } else if (!strcmp(name, RODATA_SEC)) { 1191 if (obj->efile.rodata) 1192 *size = obj->efile.rodata->d_size; 1193 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1194 if (obj->efile.st_ops_data) 1195 *size = obj->efile.st_ops_data->d_size; 1196 } else { 1197 ret = bpf_object_search_section_size(obj, name, &d_size); 1198 if (!ret) 1199 *size = d_size; 1200 } 1201 1202 return *size ? 0 : ret; 1203 } 1204 1205 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1206 __u32 *off) 1207 { 1208 Elf_Data *symbols = obj->efile.symbols; 1209 const char *sname; 1210 size_t si; 1211 1212 if (!name || !off) 1213 return -EINVAL; 1214 1215 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1216 GElf_Sym sym; 1217 1218 if (!gelf_getsym(symbols, si, &sym)) 1219 continue; 1220 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1221 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1222 continue; 1223 1224 sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1225 sym.st_name); 1226 if (!sname) { 1227 pr_warn("failed to get sym name string for var %s\n", 1228 name); 1229 return -EIO; 1230 } 1231 if (strcmp(name, sname) == 0) { 1232 *off = sym.st_value; 1233 return 0; 1234 } 1235 } 1236 1237 return -ENOENT; 1238 } 1239 1240 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1241 { 1242 struct bpf_map *new_maps; 1243 size_t new_cap; 1244 int i; 1245 1246 if (obj->nr_maps < obj->maps_cap) 1247 return &obj->maps[obj->nr_maps++]; 1248 1249 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1250 new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); 1251 if (!new_maps) { 1252 pr_warn("alloc maps for object failed\n"); 1253 return ERR_PTR(-ENOMEM); 1254 } 1255 1256 obj->maps_cap = new_cap; 1257 obj->maps = new_maps; 1258 1259 /* zero out new maps */ 1260 memset(obj->maps + obj->nr_maps, 0, 1261 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1262 /* 1263 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1264 * when failure (zclose won't close negative fd)). 1265 */ 1266 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1267 obj->maps[i].fd = -1; 1268 obj->maps[i].inner_map_fd = -1; 1269 } 1270 1271 return &obj->maps[obj->nr_maps++]; 1272 } 1273 1274 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1275 { 1276 long page_sz = sysconf(_SC_PAGE_SIZE); 1277 size_t map_sz; 1278 1279 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1280 map_sz = roundup(map_sz, page_sz); 1281 return map_sz; 1282 } 1283 1284 static char *internal_map_name(struct bpf_object *obj, 1285 enum libbpf_map_type type) 1286 { 1287 char map_name[BPF_OBJ_NAME_LEN], *p; 1288 const char *sfx = libbpf_type_to_btf_name[type]; 1289 int sfx_len = max((size_t)7, strlen(sfx)); 1290 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1291 strlen(obj->name)); 1292 1293 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1294 sfx_len, libbpf_type_to_btf_name[type]); 1295 1296 /* sanitise map name to characters allowed by kernel */ 1297 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1298 if (!isalnum(*p) && *p != '_' && *p != '.') 1299 *p = '_'; 1300 1301 return strdup(map_name); 1302 } 1303 1304 static int 1305 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1306 int sec_idx, void *data, size_t data_sz) 1307 { 1308 struct bpf_map_def *def; 1309 struct bpf_map *map; 1310 int err; 1311 1312 map = bpf_object__add_map(obj); 1313 if (IS_ERR(map)) 1314 return PTR_ERR(map); 1315 1316 map->libbpf_type = type; 1317 map->sec_idx = sec_idx; 1318 map->sec_offset = 0; 1319 map->name = internal_map_name(obj, type); 1320 if (!map->name) { 1321 pr_warn("failed to alloc map name\n"); 1322 return -ENOMEM; 1323 } 1324 1325 def = &map->def; 1326 def->type = BPF_MAP_TYPE_ARRAY; 1327 def->key_size = sizeof(int); 1328 def->value_size = data_sz; 1329 def->max_entries = 1; 1330 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1331 ? BPF_F_RDONLY_PROG : 0; 1332 def->map_flags |= BPF_F_MMAPABLE; 1333 1334 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1335 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1336 1337 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1338 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1339 if (map->mmaped == MAP_FAILED) { 1340 err = -errno; 1341 map->mmaped = NULL; 1342 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1343 map->name, err); 1344 zfree(&map->name); 1345 return err; 1346 } 1347 1348 if (data) 1349 memcpy(map->mmaped, data, data_sz); 1350 1351 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1352 return 0; 1353 } 1354 1355 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1356 { 1357 int err; 1358 1359 /* 1360 * Populate obj->maps with libbpf internal maps. 1361 */ 1362 if (obj->efile.data_shndx >= 0) { 1363 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1364 obj->efile.data_shndx, 1365 obj->efile.data->d_buf, 1366 obj->efile.data->d_size); 1367 if (err) 1368 return err; 1369 } 1370 if (obj->efile.rodata_shndx >= 0) { 1371 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1372 obj->efile.rodata_shndx, 1373 obj->efile.rodata->d_buf, 1374 obj->efile.rodata->d_size); 1375 if (err) 1376 return err; 1377 } 1378 if (obj->efile.bss_shndx >= 0) { 1379 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1380 obj->efile.bss_shndx, 1381 NULL, 1382 obj->efile.bss->d_size); 1383 if (err) 1384 return err; 1385 } 1386 return 0; 1387 } 1388 1389 1390 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1391 const void *name) 1392 { 1393 int i; 1394 1395 for (i = 0; i < obj->nr_extern; i++) { 1396 if (strcmp(obj->externs[i].name, name) == 0) 1397 return &obj->externs[i]; 1398 } 1399 return NULL; 1400 } 1401 1402 static int set_ext_value_tri(struct extern_desc *ext, void *ext_val, 1403 char value) 1404 { 1405 switch (ext->type) { 1406 case EXT_BOOL: 1407 if (value == 'm') { 1408 pr_warn("extern %s=%c should be tristate or char\n", 1409 ext->name, value); 1410 return -EINVAL; 1411 } 1412 *(bool *)ext_val = value == 'y' ? true : false; 1413 break; 1414 case EXT_TRISTATE: 1415 if (value == 'y') 1416 *(enum libbpf_tristate *)ext_val = TRI_YES; 1417 else if (value == 'm') 1418 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1419 else /* value == 'n' */ 1420 *(enum libbpf_tristate *)ext_val = TRI_NO; 1421 break; 1422 case EXT_CHAR: 1423 *(char *)ext_val = value; 1424 break; 1425 case EXT_UNKNOWN: 1426 case EXT_INT: 1427 case EXT_CHAR_ARR: 1428 default: 1429 pr_warn("extern %s=%c should be bool, tristate, or char\n", 1430 ext->name, value); 1431 return -EINVAL; 1432 } 1433 ext->is_set = true; 1434 return 0; 1435 } 1436 1437 static int set_ext_value_str(struct extern_desc *ext, char *ext_val, 1438 const char *value) 1439 { 1440 size_t len; 1441 1442 if (ext->type != EXT_CHAR_ARR) { 1443 pr_warn("extern %s=%s should char array\n", ext->name, value); 1444 return -EINVAL; 1445 } 1446 1447 len = strlen(value); 1448 if (value[len - 1] != '"') { 1449 pr_warn("extern '%s': invalid string config '%s'\n", 1450 ext->name, value); 1451 return -EINVAL; 1452 } 1453 1454 /* strip quotes */ 1455 len -= 2; 1456 if (len >= ext->sz) { 1457 pr_warn("extern '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1458 ext->name, value, len, ext->sz - 1); 1459 len = ext->sz - 1; 1460 } 1461 memcpy(ext_val, value + 1, len); 1462 ext_val[len] = '\0'; 1463 ext->is_set = true; 1464 return 0; 1465 } 1466 1467 static int parse_u64(const char *value, __u64 *res) 1468 { 1469 char *value_end; 1470 int err; 1471 1472 errno = 0; 1473 *res = strtoull(value, &value_end, 0); 1474 if (errno) { 1475 err = -errno; 1476 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1477 return err; 1478 } 1479 if (*value_end) { 1480 pr_warn("failed to parse '%s' as integer completely\n", value); 1481 return -EINVAL; 1482 } 1483 return 0; 1484 } 1485 1486 static bool is_ext_value_in_range(const struct extern_desc *ext, __u64 v) 1487 { 1488 int bit_sz = ext->sz * 8; 1489 1490 if (ext->sz == 8) 1491 return true; 1492 1493 /* Validate that value stored in u64 fits in integer of `ext->sz` 1494 * bytes size without any loss of information. If the target integer 1495 * is signed, we rely on the following limits of integer type of 1496 * Y bits and subsequent transformation: 1497 * 1498 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1499 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1500 * 0 <= X + 2^(Y-1) < 2^Y 1501 * 1502 * For unsigned target integer, check that all the (64 - Y) bits are 1503 * zero. 1504 */ 1505 if (ext->is_signed) 1506 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1507 else 1508 return (v >> bit_sz) == 0; 1509 } 1510 1511 static int set_ext_value_num(struct extern_desc *ext, void *ext_val, 1512 __u64 value) 1513 { 1514 if (ext->type != EXT_INT && ext->type != EXT_CHAR) { 1515 pr_warn("extern %s=%llu should be integer\n", 1516 ext->name, (unsigned long long)value); 1517 return -EINVAL; 1518 } 1519 if (!is_ext_value_in_range(ext, value)) { 1520 pr_warn("extern %s=%llu value doesn't fit in %d bytes\n", 1521 ext->name, (unsigned long long)value, ext->sz); 1522 return -ERANGE; 1523 } 1524 switch (ext->sz) { 1525 case 1: *(__u8 *)ext_val = value; break; 1526 case 2: *(__u16 *)ext_val = value; break; 1527 case 4: *(__u32 *)ext_val = value; break; 1528 case 8: *(__u64 *)ext_val = value; break; 1529 default: 1530 return -EINVAL; 1531 } 1532 ext->is_set = true; 1533 return 0; 1534 } 1535 1536 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1537 char *buf, void *data) 1538 { 1539 struct extern_desc *ext; 1540 char *sep, *value; 1541 int len, err = 0; 1542 void *ext_val; 1543 __u64 num; 1544 1545 if (strncmp(buf, "CONFIG_", 7)) 1546 return 0; 1547 1548 sep = strchr(buf, '='); 1549 if (!sep) { 1550 pr_warn("failed to parse '%s': no separator\n", buf); 1551 return -EINVAL; 1552 } 1553 1554 /* Trim ending '\n' */ 1555 len = strlen(buf); 1556 if (buf[len - 1] == '\n') 1557 buf[len - 1] = '\0'; 1558 /* Split on '=' and ensure that a value is present. */ 1559 *sep = '\0'; 1560 if (!sep[1]) { 1561 *sep = '='; 1562 pr_warn("failed to parse '%s': no value\n", buf); 1563 return -EINVAL; 1564 } 1565 1566 ext = find_extern_by_name(obj, buf); 1567 if (!ext || ext->is_set) 1568 return 0; 1569 1570 ext_val = data + ext->data_off; 1571 value = sep + 1; 1572 1573 switch (*value) { 1574 case 'y': case 'n': case 'm': 1575 err = set_ext_value_tri(ext, ext_val, *value); 1576 break; 1577 case '"': 1578 err = set_ext_value_str(ext, ext_val, value); 1579 break; 1580 default: 1581 /* assume integer */ 1582 err = parse_u64(value, &num); 1583 if (err) { 1584 pr_warn("extern %s=%s should be integer\n", 1585 ext->name, value); 1586 return err; 1587 } 1588 err = set_ext_value_num(ext, ext_val, num); 1589 break; 1590 } 1591 if (err) 1592 return err; 1593 pr_debug("extern %s=%s\n", ext->name, value); 1594 return 0; 1595 } 1596 1597 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1598 { 1599 char buf[PATH_MAX]; 1600 struct utsname uts; 1601 int len, err = 0; 1602 gzFile file; 1603 1604 uname(&uts); 1605 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1606 if (len < 0) 1607 return -EINVAL; 1608 else if (len >= PATH_MAX) 1609 return -ENAMETOOLONG; 1610 1611 /* gzopen also accepts uncompressed files. */ 1612 file = gzopen(buf, "r"); 1613 if (!file) 1614 file = gzopen("/proc/config.gz", "r"); 1615 1616 if (!file) { 1617 pr_warn("failed to open system Kconfig\n"); 1618 return -ENOENT; 1619 } 1620 1621 while (gzgets(file, buf, sizeof(buf))) { 1622 err = bpf_object__process_kconfig_line(obj, buf, data); 1623 if (err) { 1624 pr_warn("error parsing system Kconfig line '%s': %d\n", 1625 buf, err); 1626 goto out; 1627 } 1628 } 1629 1630 out: 1631 gzclose(file); 1632 return err; 1633 } 1634 1635 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1636 const char *config, void *data) 1637 { 1638 char buf[PATH_MAX]; 1639 int err = 0; 1640 FILE *file; 1641 1642 file = fmemopen((void *)config, strlen(config), "r"); 1643 if (!file) { 1644 err = -errno; 1645 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1646 return err; 1647 } 1648 1649 while (fgets(buf, sizeof(buf), file)) { 1650 err = bpf_object__process_kconfig_line(obj, buf, data); 1651 if (err) { 1652 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1653 buf, err); 1654 break; 1655 } 1656 } 1657 1658 fclose(file); 1659 return err; 1660 } 1661 1662 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1663 { 1664 struct extern_desc *last_ext; 1665 size_t map_sz; 1666 int err; 1667 1668 if (obj->nr_extern == 0) 1669 return 0; 1670 1671 last_ext = &obj->externs[obj->nr_extern - 1]; 1672 map_sz = last_ext->data_off + last_ext->sz; 1673 1674 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1675 obj->efile.symbols_shndx, 1676 NULL, map_sz); 1677 if (err) 1678 return err; 1679 1680 obj->kconfig_map_idx = obj->nr_maps - 1; 1681 1682 return 0; 1683 } 1684 1685 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1686 { 1687 Elf_Data *symbols = obj->efile.symbols; 1688 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1689 Elf_Data *data = NULL; 1690 Elf_Scn *scn; 1691 1692 if (obj->efile.maps_shndx < 0) 1693 return 0; 1694 1695 if (!symbols) 1696 return -EINVAL; 1697 1698 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); 1699 if (scn) 1700 data = elf_getdata(scn, NULL); 1701 if (!scn || !data) { 1702 pr_warn("failed to get Elf_Data from map section %d\n", 1703 obj->efile.maps_shndx); 1704 return -EINVAL; 1705 } 1706 1707 /* 1708 * Count number of maps. Each map has a name. 1709 * Array of maps is not supported: only the first element is 1710 * considered. 1711 * 1712 * TODO: Detect array of map and report error. 1713 */ 1714 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1715 for (i = 0; i < nr_syms; i++) { 1716 GElf_Sym sym; 1717 1718 if (!gelf_getsym(symbols, i, &sym)) 1719 continue; 1720 if (sym.st_shndx != obj->efile.maps_shndx) 1721 continue; 1722 nr_maps++; 1723 } 1724 /* Assume equally sized map definitions */ 1725 pr_debug("maps in %s: %d maps in %zd bytes\n", 1726 obj->path, nr_maps, data->d_size); 1727 1728 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1729 pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", 1730 obj->path, nr_maps, data->d_size); 1731 return -EINVAL; 1732 } 1733 map_def_sz = data->d_size / nr_maps; 1734 1735 /* Fill obj->maps using data in "maps" section. */ 1736 for (i = 0; i < nr_syms; i++) { 1737 GElf_Sym sym; 1738 const char *map_name; 1739 struct bpf_map_def *def; 1740 struct bpf_map *map; 1741 1742 if (!gelf_getsym(symbols, i, &sym)) 1743 continue; 1744 if (sym.st_shndx != obj->efile.maps_shndx) 1745 continue; 1746 1747 map = bpf_object__add_map(obj); 1748 if (IS_ERR(map)) 1749 return PTR_ERR(map); 1750 1751 map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1752 sym.st_name); 1753 if (!map_name) { 1754 pr_warn("failed to get map #%d name sym string for obj %s\n", 1755 i, obj->path); 1756 return -LIBBPF_ERRNO__FORMAT; 1757 } 1758 1759 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1760 map->sec_idx = sym.st_shndx; 1761 map->sec_offset = sym.st_value; 1762 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1763 map_name, map->sec_idx, map->sec_offset); 1764 if (sym.st_value + map_def_sz > data->d_size) { 1765 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1766 obj->path, map_name); 1767 return -EINVAL; 1768 } 1769 1770 map->name = strdup(map_name); 1771 if (!map->name) { 1772 pr_warn("failed to alloc map name\n"); 1773 return -ENOMEM; 1774 } 1775 pr_debug("map %d is \"%s\"\n", i, map->name); 1776 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1777 /* 1778 * If the definition of the map in the object file fits in 1779 * bpf_map_def, copy it. Any extra fields in our version 1780 * of bpf_map_def will default to zero as a result of the 1781 * calloc above. 1782 */ 1783 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1784 memcpy(&map->def, def, map_def_sz); 1785 } else { 1786 /* 1787 * Here the map structure being read is bigger than what 1788 * we expect, truncate if the excess bits are all zero. 1789 * If they are not zero, reject this map as 1790 * incompatible. 1791 */ 1792 char *b; 1793 1794 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1795 b < ((char *)def) + map_def_sz; b++) { 1796 if (*b != 0) { 1797 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1798 obj->path, map_name); 1799 if (strict) 1800 return -EINVAL; 1801 } 1802 } 1803 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1804 } 1805 } 1806 return 0; 1807 } 1808 1809 static const struct btf_type * 1810 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1811 { 1812 const struct btf_type *t = btf__type_by_id(btf, id); 1813 1814 if (res_id) 1815 *res_id = id; 1816 1817 while (btf_is_mod(t) || btf_is_typedef(t)) { 1818 if (res_id) 1819 *res_id = t->type; 1820 t = btf__type_by_id(btf, t->type); 1821 } 1822 1823 return t; 1824 } 1825 1826 static const struct btf_type * 1827 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1828 { 1829 const struct btf_type *t; 1830 1831 t = skip_mods_and_typedefs(btf, id, NULL); 1832 if (!btf_is_ptr(t)) 1833 return NULL; 1834 1835 t = skip_mods_and_typedefs(btf, t->type, res_id); 1836 1837 return btf_is_func_proto(t) ? t : NULL; 1838 } 1839 1840 /* 1841 * Fetch integer attribute of BTF map definition. Such attributes are 1842 * represented using a pointer to an array, in which dimensionality of array 1843 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1844 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1845 * type definition, while using only sizeof(void *) space in ELF data section. 1846 */ 1847 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1848 const struct btf_type *def, 1849 const struct btf_member *m, __u32 *res) 1850 { 1851 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1852 const char *name = btf__name_by_offset(btf, m->name_off); 1853 const struct btf_array *arr_info; 1854 const struct btf_type *arr_t; 1855 1856 if (!btf_is_ptr(t)) { 1857 pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", 1858 map_name, name, btf_kind(t)); 1859 return false; 1860 } 1861 1862 arr_t = btf__type_by_id(btf, t->type); 1863 if (!arr_t) { 1864 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1865 map_name, name, t->type); 1866 return false; 1867 } 1868 if (!btf_is_array(arr_t)) { 1869 pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", 1870 map_name, name, btf_kind(arr_t)); 1871 return false; 1872 } 1873 arr_info = btf_array(arr_t); 1874 *res = arr_info->nelems; 1875 return true; 1876 } 1877 1878 static int build_map_pin_path(struct bpf_map *map, const char *path) 1879 { 1880 char buf[PATH_MAX]; 1881 int err, len; 1882 1883 if (!path) 1884 path = "/sys/fs/bpf"; 1885 1886 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1887 if (len < 0) 1888 return -EINVAL; 1889 else if (len >= PATH_MAX) 1890 return -ENAMETOOLONG; 1891 1892 err = bpf_map__set_pin_path(map, buf); 1893 if (err) 1894 return err; 1895 1896 return 0; 1897 } 1898 1899 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 1900 const struct btf_type *sec, 1901 int var_idx, int sec_idx, 1902 const Elf_Data *data, bool strict, 1903 const char *pin_root_path) 1904 { 1905 const struct btf_type *var, *def, *t; 1906 const struct btf_var_secinfo *vi; 1907 const struct btf_var *var_extra; 1908 const struct btf_member *m; 1909 const char *map_name; 1910 struct bpf_map *map; 1911 int vlen, i; 1912 1913 vi = btf_var_secinfos(sec) + var_idx; 1914 var = btf__type_by_id(obj->btf, vi->type); 1915 var_extra = btf_var(var); 1916 map_name = btf__name_by_offset(obj->btf, var->name_off); 1917 vlen = btf_vlen(var); 1918 1919 if (map_name == NULL || map_name[0] == '\0') { 1920 pr_warn("map #%d: empty name.\n", var_idx); 1921 return -EINVAL; 1922 } 1923 if ((__u64)vi->offset + vi->size > data->d_size) { 1924 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 1925 return -EINVAL; 1926 } 1927 if (!btf_is_var(var)) { 1928 pr_warn("map '%s': unexpected var kind %u.\n", 1929 map_name, btf_kind(var)); 1930 return -EINVAL; 1931 } 1932 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 1933 var_extra->linkage != BTF_VAR_STATIC) { 1934 pr_warn("map '%s': unsupported var linkage %u.\n", 1935 map_name, var_extra->linkage); 1936 return -EOPNOTSUPP; 1937 } 1938 1939 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 1940 if (!btf_is_struct(def)) { 1941 pr_warn("map '%s': unexpected def kind %u.\n", 1942 map_name, btf_kind(var)); 1943 return -EINVAL; 1944 } 1945 if (def->size > vi->size) { 1946 pr_warn("map '%s': invalid def size.\n", map_name); 1947 return -EINVAL; 1948 } 1949 1950 map = bpf_object__add_map(obj); 1951 if (IS_ERR(map)) 1952 return PTR_ERR(map); 1953 map->name = strdup(map_name); 1954 if (!map->name) { 1955 pr_warn("map '%s': failed to alloc map name.\n", map_name); 1956 return -ENOMEM; 1957 } 1958 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1959 map->def.type = BPF_MAP_TYPE_UNSPEC; 1960 map->sec_idx = sec_idx; 1961 map->sec_offset = vi->offset; 1962 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 1963 map_name, map->sec_idx, map->sec_offset); 1964 1965 vlen = btf_vlen(def); 1966 m = btf_members(def); 1967 for (i = 0; i < vlen; i++, m++) { 1968 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1969 1970 if (!name) { 1971 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 1972 return -EINVAL; 1973 } 1974 if (strcmp(name, "type") == 0) { 1975 if (!get_map_field_int(map_name, obj->btf, def, m, 1976 &map->def.type)) 1977 return -EINVAL; 1978 pr_debug("map '%s': found type = %u.\n", 1979 map_name, map->def.type); 1980 } else if (strcmp(name, "max_entries") == 0) { 1981 if (!get_map_field_int(map_name, obj->btf, def, m, 1982 &map->def.max_entries)) 1983 return -EINVAL; 1984 pr_debug("map '%s': found max_entries = %u.\n", 1985 map_name, map->def.max_entries); 1986 } else if (strcmp(name, "map_flags") == 0) { 1987 if (!get_map_field_int(map_name, obj->btf, def, m, 1988 &map->def.map_flags)) 1989 return -EINVAL; 1990 pr_debug("map '%s': found map_flags = %u.\n", 1991 map_name, map->def.map_flags); 1992 } else if (strcmp(name, "key_size") == 0) { 1993 __u32 sz; 1994 1995 if (!get_map_field_int(map_name, obj->btf, def, m, 1996 &sz)) 1997 return -EINVAL; 1998 pr_debug("map '%s': found key_size = %u.\n", 1999 map_name, sz); 2000 if (map->def.key_size && map->def.key_size != sz) { 2001 pr_warn("map '%s': conflicting key size %u != %u.\n", 2002 map_name, map->def.key_size, sz); 2003 return -EINVAL; 2004 } 2005 map->def.key_size = sz; 2006 } else if (strcmp(name, "key") == 0) { 2007 __s64 sz; 2008 2009 t = btf__type_by_id(obj->btf, m->type); 2010 if (!t) { 2011 pr_warn("map '%s': key type [%d] not found.\n", 2012 map_name, m->type); 2013 return -EINVAL; 2014 } 2015 if (!btf_is_ptr(t)) { 2016 pr_warn("map '%s': key spec is not PTR: %u.\n", 2017 map_name, btf_kind(t)); 2018 return -EINVAL; 2019 } 2020 sz = btf__resolve_size(obj->btf, t->type); 2021 if (sz < 0) { 2022 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2023 map_name, t->type, (ssize_t)sz); 2024 return sz; 2025 } 2026 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2027 map_name, t->type, (ssize_t)sz); 2028 if (map->def.key_size && map->def.key_size != sz) { 2029 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2030 map_name, map->def.key_size, (ssize_t)sz); 2031 return -EINVAL; 2032 } 2033 map->def.key_size = sz; 2034 map->btf_key_type_id = t->type; 2035 } else if (strcmp(name, "value_size") == 0) { 2036 __u32 sz; 2037 2038 if (!get_map_field_int(map_name, obj->btf, def, m, 2039 &sz)) 2040 return -EINVAL; 2041 pr_debug("map '%s': found value_size = %u.\n", 2042 map_name, sz); 2043 if (map->def.value_size && map->def.value_size != sz) { 2044 pr_warn("map '%s': conflicting value size %u != %u.\n", 2045 map_name, map->def.value_size, sz); 2046 return -EINVAL; 2047 } 2048 map->def.value_size = sz; 2049 } else if (strcmp(name, "value") == 0) { 2050 __s64 sz; 2051 2052 t = btf__type_by_id(obj->btf, m->type); 2053 if (!t) { 2054 pr_warn("map '%s': value type [%d] not found.\n", 2055 map_name, m->type); 2056 return -EINVAL; 2057 } 2058 if (!btf_is_ptr(t)) { 2059 pr_warn("map '%s': value spec is not PTR: %u.\n", 2060 map_name, btf_kind(t)); 2061 return -EINVAL; 2062 } 2063 sz = btf__resolve_size(obj->btf, t->type); 2064 if (sz < 0) { 2065 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2066 map_name, t->type, (ssize_t)sz); 2067 return sz; 2068 } 2069 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2070 map_name, t->type, (ssize_t)sz); 2071 if (map->def.value_size && map->def.value_size != sz) { 2072 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2073 map_name, map->def.value_size, (ssize_t)sz); 2074 return -EINVAL; 2075 } 2076 map->def.value_size = sz; 2077 map->btf_value_type_id = t->type; 2078 } else if (strcmp(name, "pinning") == 0) { 2079 __u32 val; 2080 int err; 2081 2082 if (!get_map_field_int(map_name, obj->btf, def, m, 2083 &val)) 2084 return -EINVAL; 2085 pr_debug("map '%s': found pinning = %u.\n", 2086 map_name, val); 2087 2088 if (val != LIBBPF_PIN_NONE && 2089 val != LIBBPF_PIN_BY_NAME) { 2090 pr_warn("map '%s': invalid pinning value %u.\n", 2091 map_name, val); 2092 return -EINVAL; 2093 } 2094 if (val == LIBBPF_PIN_BY_NAME) { 2095 err = build_map_pin_path(map, pin_root_path); 2096 if (err) { 2097 pr_warn("map '%s': couldn't build pin path.\n", 2098 map_name); 2099 return err; 2100 } 2101 } 2102 } else { 2103 if (strict) { 2104 pr_warn("map '%s': unknown field '%s'.\n", 2105 map_name, name); 2106 return -ENOTSUP; 2107 } 2108 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2109 map_name, name); 2110 } 2111 } 2112 2113 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2114 pr_warn("map '%s': map type isn't specified.\n", map_name); 2115 return -EINVAL; 2116 } 2117 2118 return 0; 2119 } 2120 2121 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2122 const char *pin_root_path) 2123 { 2124 const struct btf_type *sec = NULL; 2125 int nr_types, i, vlen, err; 2126 const struct btf_type *t; 2127 const char *name; 2128 Elf_Data *data; 2129 Elf_Scn *scn; 2130 2131 if (obj->efile.btf_maps_shndx < 0) 2132 return 0; 2133 2134 scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); 2135 if (scn) 2136 data = elf_getdata(scn, NULL); 2137 if (!scn || !data) { 2138 pr_warn("failed to get Elf_Data from map section %d (%s)\n", 2139 obj->efile.maps_shndx, MAPS_ELF_SEC); 2140 return -EINVAL; 2141 } 2142 2143 nr_types = btf__get_nr_types(obj->btf); 2144 for (i = 1; i <= nr_types; i++) { 2145 t = btf__type_by_id(obj->btf, i); 2146 if (!btf_is_datasec(t)) 2147 continue; 2148 name = btf__name_by_offset(obj->btf, t->name_off); 2149 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2150 sec = t; 2151 break; 2152 } 2153 } 2154 2155 if (!sec) { 2156 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2157 return -ENOENT; 2158 } 2159 2160 vlen = btf_vlen(sec); 2161 for (i = 0; i < vlen; i++) { 2162 err = bpf_object__init_user_btf_map(obj, sec, i, 2163 obj->efile.btf_maps_shndx, 2164 data, strict, 2165 pin_root_path); 2166 if (err) 2167 return err; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int bpf_object__init_maps(struct bpf_object *obj, 2174 const struct bpf_object_open_opts *opts) 2175 { 2176 const char *pin_root_path; 2177 bool strict; 2178 int err; 2179 2180 strict = !OPTS_GET(opts, relaxed_maps, false); 2181 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2182 2183 err = bpf_object__init_user_maps(obj, strict); 2184 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2185 err = err ?: bpf_object__init_global_data_maps(obj); 2186 err = err ?: bpf_object__init_kconfig_map(obj); 2187 err = err ?: bpf_object__init_struct_ops_maps(obj); 2188 if (err) 2189 return err; 2190 2191 return 0; 2192 } 2193 2194 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2195 { 2196 Elf_Scn *scn; 2197 GElf_Shdr sh; 2198 2199 scn = elf_getscn(obj->efile.elf, idx); 2200 if (!scn) 2201 return false; 2202 2203 if (gelf_getshdr(scn, &sh) != &sh) 2204 return false; 2205 2206 if (sh.sh_flags & SHF_EXECINSTR) 2207 return true; 2208 2209 return false; 2210 } 2211 2212 static void bpf_object__sanitize_btf(struct bpf_object *obj) 2213 { 2214 bool has_func_global = obj->caps.btf_func_global; 2215 bool has_datasec = obj->caps.btf_datasec; 2216 bool has_func = obj->caps.btf_func; 2217 struct btf *btf = obj->btf; 2218 struct btf_type *t; 2219 int i, j, vlen; 2220 2221 if (!obj->btf || (has_func && has_datasec && has_func_global)) 2222 return; 2223 2224 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2225 t = (struct btf_type *)btf__type_by_id(btf, i); 2226 2227 if (!has_datasec && btf_is_var(t)) { 2228 /* replace VAR with INT */ 2229 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2230 /* 2231 * using size = 1 is the safest choice, 4 will be too 2232 * big and cause kernel BTF validation failure if 2233 * original variable took less than 4 bytes 2234 */ 2235 t->size = 1; 2236 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2237 } else if (!has_datasec && btf_is_datasec(t)) { 2238 /* replace DATASEC with STRUCT */ 2239 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2240 struct btf_member *m = btf_members(t); 2241 struct btf_type *vt; 2242 char *name; 2243 2244 name = (char *)btf__name_by_offset(btf, t->name_off); 2245 while (*name) { 2246 if (*name == '.') 2247 *name = '_'; 2248 name++; 2249 } 2250 2251 vlen = btf_vlen(t); 2252 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2253 for (j = 0; j < vlen; j++, v++, m++) { 2254 /* order of field assignments is important */ 2255 m->offset = v->offset * 8; 2256 m->type = v->type; 2257 /* preserve variable name as member name */ 2258 vt = (void *)btf__type_by_id(btf, v->type); 2259 m->name_off = vt->name_off; 2260 } 2261 } else if (!has_func && btf_is_func_proto(t)) { 2262 /* replace FUNC_PROTO with ENUM */ 2263 vlen = btf_vlen(t); 2264 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2265 t->size = sizeof(__u32); /* kernel enforced */ 2266 } else if (!has_func && btf_is_func(t)) { 2267 /* replace FUNC with TYPEDEF */ 2268 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2269 } else if (!has_func_global && btf_is_func(t)) { 2270 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2271 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2272 } 2273 } 2274 } 2275 2276 static void bpf_object__sanitize_btf_ext(struct bpf_object *obj) 2277 { 2278 if (!obj->btf_ext) 2279 return; 2280 2281 if (!obj->caps.btf_func) { 2282 btf_ext__free(obj->btf_ext); 2283 obj->btf_ext = NULL; 2284 } 2285 } 2286 2287 static bool libbpf_needs_btf(const struct bpf_object *obj) 2288 { 2289 return obj->efile.btf_maps_shndx >= 0 || 2290 obj->efile.st_ops_shndx >= 0 || 2291 obj->nr_extern > 0; 2292 } 2293 2294 static bool kernel_needs_btf(const struct bpf_object *obj) 2295 { 2296 return obj->efile.st_ops_shndx >= 0; 2297 } 2298 2299 static int bpf_object__init_btf(struct bpf_object *obj, 2300 Elf_Data *btf_data, 2301 Elf_Data *btf_ext_data) 2302 { 2303 int err = -ENOENT; 2304 2305 if (btf_data) { 2306 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2307 if (IS_ERR(obj->btf)) { 2308 err = PTR_ERR(obj->btf); 2309 obj->btf = NULL; 2310 pr_warn("Error loading ELF section %s: %d.\n", 2311 BTF_ELF_SEC, err); 2312 goto out; 2313 } 2314 err = 0; 2315 } 2316 if (btf_ext_data) { 2317 if (!obj->btf) { 2318 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2319 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2320 goto out; 2321 } 2322 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2323 btf_ext_data->d_size); 2324 if (IS_ERR(obj->btf_ext)) { 2325 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2326 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2327 obj->btf_ext = NULL; 2328 goto out; 2329 } 2330 } 2331 out: 2332 if (err && libbpf_needs_btf(obj)) { 2333 pr_warn("BTF is required, but is missing or corrupted.\n"); 2334 return err; 2335 } 2336 return 0; 2337 } 2338 2339 static int bpf_object__finalize_btf(struct bpf_object *obj) 2340 { 2341 int err; 2342 2343 if (!obj->btf) 2344 return 0; 2345 2346 err = btf__finalize_data(obj, obj->btf); 2347 if (!err) 2348 return 0; 2349 2350 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2351 btf__free(obj->btf); 2352 obj->btf = NULL; 2353 btf_ext__free(obj->btf_ext); 2354 obj->btf_ext = NULL; 2355 2356 if (libbpf_needs_btf(obj)) { 2357 pr_warn("BTF is required, but is missing or corrupted.\n"); 2358 return -ENOENT; 2359 } 2360 return 0; 2361 } 2362 2363 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2364 { 2365 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 2366 return true; 2367 2368 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2369 * also need vmlinux BTF 2370 */ 2371 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2372 return true; 2373 2374 return false; 2375 } 2376 2377 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2378 { 2379 struct bpf_program *prog; 2380 int err; 2381 2382 bpf_object__for_each_program(prog, obj) { 2383 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2384 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2385 if (IS_ERR(obj->btf_vmlinux)) { 2386 err = PTR_ERR(obj->btf_vmlinux); 2387 pr_warn("Error loading vmlinux BTF: %d\n", err); 2388 obj->btf_vmlinux = NULL; 2389 return err; 2390 } 2391 return 0; 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2399 { 2400 int err = 0; 2401 2402 if (!obj->btf) 2403 return 0; 2404 2405 bpf_object__sanitize_btf(obj); 2406 bpf_object__sanitize_btf_ext(obj); 2407 2408 err = btf__load(obj->btf); 2409 if (err) { 2410 pr_warn("Error loading %s into kernel: %d.\n", 2411 BTF_ELF_SEC, err); 2412 btf__free(obj->btf); 2413 obj->btf = NULL; 2414 /* btf_ext can't exist without btf, so free it as well */ 2415 if (obj->btf_ext) { 2416 btf_ext__free(obj->btf_ext); 2417 obj->btf_ext = NULL; 2418 } 2419 2420 if (kernel_needs_btf(obj)) 2421 return err; 2422 } 2423 return 0; 2424 } 2425 2426 static int bpf_object__elf_collect(struct bpf_object *obj) 2427 { 2428 Elf *elf = obj->efile.elf; 2429 GElf_Ehdr *ep = &obj->efile.ehdr; 2430 Elf_Data *btf_ext_data = NULL; 2431 Elf_Data *btf_data = NULL; 2432 Elf_Scn *scn = NULL; 2433 int idx = 0, err = 0; 2434 2435 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 2436 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { 2437 pr_warn("failed to get e_shstrndx from %s\n", obj->path); 2438 return -LIBBPF_ERRNO__FORMAT; 2439 } 2440 2441 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2442 char *name; 2443 GElf_Shdr sh; 2444 Elf_Data *data; 2445 2446 idx++; 2447 if (gelf_getshdr(scn, &sh) != &sh) { 2448 pr_warn("failed to get section(%d) header from %s\n", 2449 idx, obj->path); 2450 return -LIBBPF_ERRNO__FORMAT; 2451 } 2452 2453 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 2454 if (!name) { 2455 pr_warn("failed to get section(%d) name from %s\n", 2456 idx, obj->path); 2457 return -LIBBPF_ERRNO__FORMAT; 2458 } 2459 2460 data = elf_getdata(scn, 0); 2461 if (!data) { 2462 pr_warn("failed to get section(%d) data from %s(%s)\n", 2463 idx, name, obj->path); 2464 return -LIBBPF_ERRNO__FORMAT; 2465 } 2466 pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2467 idx, name, (unsigned long)data->d_size, 2468 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2469 (int)sh.sh_type); 2470 2471 if (strcmp(name, "license") == 0) { 2472 err = bpf_object__init_license(obj, 2473 data->d_buf, 2474 data->d_size); 2475 if (err) 2476 return err; 2477 } else if (strcmp(name, "version") == 0) { 2478 err = bpf_object__init_kversion(obj, 2479 data->d_buf, 2480 data->d_size); 2481 if (err) 2482 return err; 2483 } else if (strcmp(name, "maps") == 0) { 2484 obj->efile.maps_shndx = idx; 2485 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2486 obj->efile.btf_maps_shndx = idx; 2487 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2488 btf_data = data; 2489 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2490 btf_ext_data = data; 2491 } else if (sh.sh_type == SHT_SYMTAB) { 2492 if (obj->efile.symbols) { 2493 pr_warn("bpf: multiple SYMTAB in %s\n", 2494 obj->path); 2495 return -LIBBPF_ERRNO__FORMAT; 2496 } 2497 obj->efile.symbols = data; 2498 obj->efile.symbols_shndx = idx; 2499 obj->efile.strtabidx = sh.sh_link; 2500 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2501 if (sh.sh_flags & SHF_EXECINSTR) { 2502 if (strcmp(name, ".text") == 0) 2503 obj->efile.text_shndx = idx; 2504 err = bpf_object__add_program(obj, data->d_buf, 2505 data->d_size, 2506 name, idx); 2507 if (err) { 2508 char errmsg[STRERR_BUFSIZE]; 2509 char *cp; 2510 2511 cp = libbpf_strerror_r(-err, errmsg, 2512 sizeof(errmsg)); 2513 pr_warn("failed to alloc program %s (%s): %s", 2514 name, obj->path, cp); 2515 return err; 2516 } 2517 } else if (strcmp(name, DATA_SEC) == 0) { 2518 obj->efile.data = data; 2519 obj->efile.data_shndx = idx; 2520 } else if (strcmp(name, RODATA_SEC) == 0) { 2521 obj->efile.rodata = data; 2522 obj->efile.rodata_shndx = idx; 2523 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2524 obj->efile.st_ops_data = data; 2525 obj->efile.st_ops_shndx = idx; 2526 } else { 2527 pr_debug("skip section(%d) %s\n", idx, name); 2528 } 2529 } else if (sh.sh_type == SHT_REL) { 2530 int nr_sects = obj->efile.nr_reloc_sects; 2531 void *sects = obj->efile.reloc_sects; 2532 int sec = sh.sh_info; /* points to other section */ 2533 2534 /* Only do relo for section with exec instructions */ 2535 if (!section_have_execinstr(obj, sec) && 2536 strcmp(name, ".rel" STRUCT_OPS_SEC)) { 2537 pr_debug("skip relo %s(%d) for section(%d)\n", 2538 name, idx, sec); 2539 continue; 2540 } 2541 2542 sects = reallocarray(sects, nr_sects + 1, 2543 sizeof(*obj->efile.reloc_sects)); 2544 if (!sects) { 2545 pr_warn("reloc_sects realloc failed\n"); 2546 return -ENOMEM; 2547 } 2548 2549 obj->efile.reloc_sects = sects; 2550 obj->efile.nr_reloc_sects++; 2551 2552 obj->efile.reloc_sects[nr_sects].shdr = sh; 2553 obj->efile.reloc_sects[nr_sects].data = data; 2554 } else if (sh.sh_type == SHT_NOBITS && 2555 strcmp(name, BSS_SEC) == 0) { 2556 obj->efile.bss = data; 2557 obj->efile.bss_shndx = idx; 2558 } else { 2559 pr_debug("skip section(%d) %s\n", idx, name); 2560 } 2561 } 2562 2563 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2564 pr_warn("Corrupted ELF file: index of strtab invalid\n"); 2565 return -LIBBPF_ERRNO__FORMAT; 2566 } 2567 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2568 } 2569 2570 static bool sym_is_extern(const GElf_Sym *sym) 2571 { 2572 int bind = GELF_ST_BIND(sym->st_info); 2573 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2574 return sym->st_shndx == SHN_UNDEF && 2575 (bind == STB_GLOBAL || bind == STB_WEAK) && 2576 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2577 } 2578 2579 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2580 { 2581 const struct btf_type *t; 2582 const char *var_name; 2583 int i, n; 2584 2585 if (!btf) 2586 return -ESRCH; 2587 2588 n = btf__get_nr_types(btf); 2589 for (i = 1; i <= n; i++) { 2590 t = btf__type_by_id(btf, i); 2591 2592 if (!btf_is_var(t)) 2593 continue; 2594 2595 var_name = btf__name_by_offset(btf, t->name_off); 2596 if (strcmp(var_name, ext_name)) 2597 continue; 2598 2599 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2600 return -EINVAL; 2601 2602 return i; 2603 } 2604 2605 return -ENOENT; 2606 } 2607 2608 static enum extern_type find_extern_type(const struct btf *btf, int id, 2609 bool *is_signed) 2610 { 2611 const struct btf_type *t; 2612 const char *name; 2613 2614 t = skip_mods_and_typedefs(btf, id, NULL); 2615 name = btf__name_by_offset(btf, t->name_off); 2616 2617 if (is_signed) 2618 *is_signed = false; 2619 switch (btf_kind(t)) { 2620 case BTF_KIND_INT: { 2621 int enc = btf_int_encoding(t); 2622 2623 if (enc & BTF_INT_BOOL) 2624 return t->size == 1 ? EXT_BOOL : EXT_UNKNOWN; 2625 if (is_signed) 2626 *is_signed = enc & BTF_INT_SIGNED; 2627 if (t->size == 1) 2628 return EXT_CHAR; 2629 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 2630 return EXT_UNKNOWN; 2631 return EXT_INT; 2632 } 2633 case BTF_KIND_ENUM: 2634 if (t->size != 4) 2635 return EXT_UNKNOWN; 2636 if (strcmp(name, "libbpf_tristate")) 2637 return EXT_UNKNOWN; 2638 return EXT_TRISTATE; 2639 case BTF_KIND_ARRAY: 2640 if (btf_array(t)->nelems == 0) 2641 return EXT_UNKNOWN; 2642 if (find_extern_type(btf, btf_array(t)->type, NULL) != EXT_CHAR) 2643 return EXT_UNKNOWN; 2644 return EXT_CHAR_ARR; 2645 default: 2646 return EXT_UNKNOWN; 2647 } 2648 } 2649 2650 static int cmp_externs(const void *_a, const void *_b) 2651 { 2652 const struct extern_desc *a = _a; 2653 const struct extern_desc *b = _b; 2654 2655 /* descending order by alignment requirements */ 2656 if (a->align != b->align) 2657 return a->align > b->align ? -1 : 1; 2658 /* ascending order by size, within same alignment class */ 2659 if (a->sz != b->sz) 2660 return a->sz < b->sz ? -1 : 1; 2661 /* resolve ties by name */ 2662 return strcmp(a->name, b->name); 2663 } 2664 2665 static int bpf_object__collect_externs(struct bpf_object *obj) 2666 { 2667 const struct btf_type *t; 2668 struct extern_desc *ext; 2669 int i, n, off, btf_id; 2670 struct btf_type *sec; 2671 const char *ext_name; 2672 Elf_Scn *scn; 2673 GElf_Shdr sh; 2674 2675 if (!obj->efile.symbols) 2676 return 0; 2677 2678 scn = elf_getscn(obj->efile.elf, obj->efile.symbols_shndx); 2679 if (!scn) 2680 return -LIBBPF_ERRNO__FORMAT; 2681 if (gelf_getshdr(scn, &sh) != &sh) 2682 return -LIBBPF_ERRNO__FORMAT; 2683 n = sh.sh_size / sh.sh_entsize; 2684 2685 pr_debug("looking for externs among %d symbols...\n", n); 2686 for (i = 0; i < n; i++) { 2687 GElf_Sym sym; 2688 2689 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 2690 return -LIBBPF_ERRNO__FORMAT; 2691 if (!sym_is_extern(&sym)) 2692 continue; 2693 ext_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2694 sym.st_name); 2695 if (!ext_name || !ext_name[0]) 2696 continue; 2697 2698 ext = obj->externs; 2699 ext = reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 2700 if (!ext) 2701 return -ENOMEM; 2702 obj->externs = ext; 2703 ext = &ext[obj->nr_extern]; 2704 memset(ext, 0, sizeof(*ext)); 2705 obj->nr_extern++; 2706 2707 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 2708 if (ext->btf_id <= 0) { 2709 pr_warn("failed to find BTF for extern '%s': %d\n", 2710 ext_name, ext->btf_id); 2711 return ext->btf_id; 2712 } 2713 t = btf__type_by_id(obj->btf, ext->btf_id); 2714 ext->name = btf__name_by_offset(obj->btf, t->name_off); 2715 ext->sym_idx = i; 2716 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 2717 ext->sz = btf__resolve_size(obj->btf, t->type); 2718 if (ext->sz <= 0) { 2719 pr_warn("failed to resolve size of extern '%s': %d\n", 2720 ext_name, ext->sz); 2721 return ext->sz; 2722 } 2723 ext->align = btf__align_of(obj->btf, t->type); 2724 if (ext->align <= 0) { 2725 pr_warn("failed to determine alignment of extern '%s': %d\n", 2726 ext_name, ext->align); 2727 return -EINVAL; 2728 } 2729 ext->type = find_extern_type(obj->btf, t->type, 2730 &ext->is_signed); 2731 if (ext->type == EXT_UNKNOWN) { 2732 pr_warn("extern '%s' type is unsupported\n", ext_name); 2733 return -ENOTSUP; 2734 } 2735 } 2736 pr_debug("collected %d externs total\n", obj->nr_extern); 2737 2738 if (!obj->nr_extern) 2739 return 0; 2740 2741 /* sort externs by (alignment, size, name) and calculate their offsets 2742 * within a map */ 2743 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 2744 off = 0; 2745 for (i = 0; i < obj->nr_extern; i++) { 2746 ext = &obj->externs[i]; 2747 ext->data_off = roundup(off, ext->align); 2748 off = ext->data_off + ext->sz; 2749 pr_debug("extern #%d: symbol %d, off %u, name %s\n", 2750 i, ext->sym_idx, ext->data_off, ext->name); 2751 } 2752 2753 btf_id = btf__find_by_name(obj->btf, KCONFIG_SEC); 2754 if (btf_id <= 0) { 2755 pr_warn("no BTF info found for '%s' datasec\n", KCONFIG_SEC); 2756 return -ESRCH; 2757 } 2758 2759 sec = (struct btf_type *)btf__type_by_id(obj->btf, btf_id); 2760 sec->size = off; 2761 n = btf_vlen(sec); 2762 for (i = 0; i < n; i++) { 2763 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 2764 2765 t = btf__type_by_id(obj->btf, vs->type); 2766 ext_name = btf__name_by_offset(obj->btf, t->name_off); 2767 ext = find_extern_by_name(obj, ext_name); 2768 if (!ext) { 2769 pr_warn("failed to find extern definition for BTF var '%s'\n", 2770 ext_name); 2771 return -ESRCH; 2772 } 2773 vs->offset = ext->data_off; 2774 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 2775 } 2776 2777 return 0; 2778 } 2779 2780 static struct bpf_program * 2781 bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) 2782 { 2783 struct bpf_program *prog; 2784 size_t i; 2785 2786 for (i = 0; i < obj->nr_programs; i++) { 2787 prog = &obj->programs[i]; 2788 if (prog->idx == idx) 2789 return prog; 2790 } 2791 return NULL; 2792 } 2793 2794 struct bpf_program * 2795 bpf_object__find_program_by_title(const struct bpf_object *obj, 2796 const char *title) 2797 { 2798 struct bpf_program *pos; 2799 2800 bpf_object__for_each_program(pos, obj) { 2801 if (pos->section_name && !strcmp(pos->section_name, title)) 2802 return pos; 2803 } 2804 return NULL; 2805 } 2806 2807 struct bpf_program * 2808 bpf_object__find_program_by_name(const struct bpf_object *obj, 2809 const char *name) 2810 { 2811 struct bpf_program *prog; 2812 2813 bpf_object__for_each_program(prog, obj) { 2814 if (!strcmp(prog->name, name)) 2815 return prog; 2816 } 2817 return NULL; 2818 } 2819 2820 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 2821 int shndx) 2822 { 2823 return shndx == obj->efile.data_shndx || 2824 shndx == obj->efile.bss_shndx || 2825 shndx == obj->efile.rodata_shndx; 2826 } 2827 2828 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 2829 int shndx) 2830 { 2831 return shndx == obj->efile.maps_shndx || 2832 shndx == obj->efile.btf_maps_shndx; 2833 } 2834 2835 static enum libbpf_map_type 2836 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 2837 { 2838 if (shndx == obj->efile.data_shndx) 2839 return LIBBPF_MAP_DATA; 2840 else if (shndx == obj->efile.bss_shndx) 2841 return LIBBPF_MAP_BSS; 2842 else if (shndx == obj->efile.rodata_shndx) 2843 return LIBBPF_MAP_RODATA; 2844 else if (shndx == obj->efile.symbols_shndx) 2845 return LIBBPF_MAP_KCONFIG; 2846 else 2847 return LIBBPF_MAP_UNSPEC; 2848 } 2849 2850 static int bpf_program__record_reloc(struct bpf_program *prog, 2851 struct reloc_desc *reloc_desc, 2852 __u32 insn_idx, const char *name, 2853 const GElf_Sym *sym, const GElf_Rel *rel) 2854 { 2855 struct bpf_insn *insn = &prog->insns[insn_idx]; 2856 size_t map_idx, nr_maps = prog->obj->nr_maps; 2857 struct bpf_object *obj = prog->obj; 2858 __u32 shdr_idx = sym->st_shndx; 2859 enum libbpf_map_type type; 2860 struct bpf_map *map; 2861 2862 /* sub-program call relocation */ 2863 if (insn->code == (BPF_JMP | BPF_CALL)) { 2864 if (insn->src_reg != BPF_PSEUDO_CALL) { 2865 pr_warn("incorrect bpf_call opcode\n"); 2866 return -LIBBPF_ERRNO__RELOC; 2867 } 2868 /* text_shndx can be 0, if no default "main" program exists */ 2869 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 2870 pr_warn("bad call relo against section %u\n", shdr_idx); 2871 return -LIBBPF_ERRNO__RELOC; 2872 } 2873 if (sym->st_value % 8) { 2874 pr_warn("bad call relo offset: %zu\n", 2875 (size_t)sym->st_value); 2876 return -LIBBPF_ERRNO__RELOC; 2877 } 2878 reloc_desc->type = RELO_CALL; 2879 reloc_desc->insn_idx = insn_idx; 2880 reloc_desc->sym_off = sym->st_value; 2881 obj->has_pseudo_calls = true; 2882 return 0; 2883 } 2884 2885 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 2886 pr_warn("invalid relo for insns[%d].code 0x%x\n", 2887 insn_idx, insn->code); 2888 return -LIBBPF_ERRNO__RELOC; 2889 } 2890 2891 if (sym_is_extern(sym)) { 2892 int sym_idx = GELF_R_SYM(rel->r_info); 2893 int i, n = obj->nr_extern; 2894 struct extern_desc *ext; 2895 2896 for (i = 0; i < n; i++) { 2897 ext = &obj->externs[i]; 2898 if (ext->sym_idx == sym_idx) 2899 break; 2900 } 2901 if (i >= n) { 2902 pr_warn("extern relo failed to find extern for sym %d\n", 2903 sym_idx); 2904 return -LIBBPF_ERRNO__RELOC; 2905 } 2906 pr_debug("found extern #%d '%s' (sym %d, off %u) for insn %u\n", 2907 i, ext->name, ext->sym_idx, ext->data_off, insn_idx); 2908 reloc_desc->type = RELO_EXTERN; 2909 reloc_desc->insn_idx = insn_idx; 2910 reloc_desc->sym_off = ext->data_off; 2911 return 0; 2912 } 2913 2914 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 2915 pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", 2916 name, shdr_idx); 2917 return -LIBBPF_ERRNO__RELOC; 2918 } 2919 2920 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 2921 2922 /* generic map reference relocation */ 2923 if (type == LIBBPF_MAP_UNSPEC) { 2924 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 2925 pr_warn("bad map relo against section %u\n", 2926 shdr_idx); 2927 return -LIBBPF_ERRNO__RELOC; 2928 } 2929 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2930 map = &obj->maps[map_idx]; 2931 if (map->libbpf_type != type || 2932 map->sec_idx != sym->st_shndx || 2933 map->sec_offset != sym->st_value) 2934 continue; 2935 pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", 2936 map_idx, map->name, map->sec_idx, 2937 map->sec_offset, insn_idx); 2938 break; 2939 } 2940 if (map_idx >= nr_maps) { 2941 pr_warn("map relo failed to find map for sec %u, off %zu\n", 2942 shdr_idx, (size_t)sym->st_value); 2943 return -LIBBPF_ERRNO__RELOC; 2944 } 2945 reloc_desc->type = RELO_LD64; 2946 reloc_desc->insn_idx = insn_idx; 2947 reloc_desc->map_idx = map_idx; 2948 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 2949 return 0; 2950 } 2951 2952 /* global data map relocation */ 2953 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 2954 pr_warn("bad data relo against section %u\n", shdr_idx); 2955 return -LIBBPF_ERRNO__RELOC; 2956 } 2957 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2958 map = &obj->maps[map_idx]; 2959 if (map->libbpf_type != type) 2960 continue; 2961 pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", 2962 map_idx, map->name, map->sec_idx, map->sec_offset, 2963 insn_idx); 2964 break; 2965 } 2966 if (map_idx >= nr_maps) { 2967 pr_warn("data relo failed to find map for sec %u\n", 2968 shdr_idx); 2969 return -LIBBPF_ERRNO__RELOC; 2970 } 2971 2972 reloc_desc->type = RELO_DATA; 2973 reloc_desc->insn_idx = insn_idx; 2974 reloc_desc->map_idx = map_idx; 2975 reloc_desc->sym_off = sym->st_value; 2976 return 0; 2977 } 2978 2979 static int 2980 bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, 2981 Elf_Data *data, struct bpf_object *obj) 2982 { 2983 Elf_Data *symbols = obj->efile.symbols; 2984 int err, i, nrels; 2985 2986 pr_debug("collecting relocating info for: '%s'\n", prog->section_name); 2987 nrels = shdr->sh_size / shdr->sh_entsize; 2988 2989 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); 2990 if (!prog->reloc_desc) { 2991 pr_warn("failed to alloc memory in relocation\n"); 2992 return -ENOMEM; 2993 } 2994 prog->nr_reloc = nrels; 2995 2996 for (i = 0; i < nrels; i++) { 2997 const char *name; 2998 __u32 insn_idx; 2999 GElf_Sym sym; 3000 GElf_Rel rel; 3001 3002 if (!gelf_getrel(data, i, &rel)) { 3003 pr_warn("relocation: failed to get %d reloc\n", i); 3004 return -LIBBPF_ERRNO__FORMAT; 3005 } 3006 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3007 pr_warn("relocation: symbol %"PRIx64" not found\n", 3008 GELF_R_SYM(rel.r_info)); 3009 return -LIBBPF_ERRNO__FORMAT; 3010 } 3011 if (rel.r_offset % sizeof(struct bpf_insn)) 3012 return -LIBBPF_ERRNO__FORMAT; 3013 3014 insn_idx = rel.r_offset / sizeof(struct bpf_insn); 3015 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 3016 sym.st_name) ? : "<?>"; 3017 3018 pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", 3019 (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), 3020 (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), 3021 GELF_ST_BIND(sym.st_info), sym.st_name, name, 3022 insn_idx); 3023 3024 err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], 3025 insn_idx, name, &sym, &rel); 3026 if (err) 3027 return err; 3028 } 3029 return 0; 3030 } 3031 3032 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3033 { 3034 struct bpf_map_def *def = &map->def; 3035 __u32 key_type_id = 0, value_type_id = 0; 3036 int ret; 3037 3038 /* if it's BTF-defined map, we don't need to search for type IDs. 3039 * For struct_ops map, it does not need btf_key_type_id and 3040 * btf_value_type_id. 3041 */ 3042 if (map->sec_idx == obj->efile.btf_maps_shndx || 3043 bpf_map__is_struct_ops(map)) 3044 return 0; 3045 3046 if (!bpf_map__is_internal(map)) { 3047 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3048 def->value_size, &key_type_id, 3049 &value_type_id); 3050 } else { 3051 /* 3052 * LLVM annotates global data differently in BTF, that is, 3053 * only as '.data', '.bss' or '.rodata'. 3054 */ 3055 ret = btf__find_by_name(obj->btf, 3056 libbpf_type_to_btf_name[map->libbpf_type]); 3057 } 3058 if (ret < 0) 3059 return ret; 3060 3061 map->btf_key_type_id = key_type_id; 3062 map->btf_value_type_id = bpf_map__is_internal(map) ? 3063 ret : value_type_id; 3064 return 0; 3065 } 3066 3067 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3068 { 3069 struct bpf_map_info info = {}; 3070 __u32 len = sizeof(info); 3071 int new_fd, err; 3072 char *new_name; 3073 3074 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3075 if (err) 3076 return err; 3077 3078 new_name = strdup(info.name); 3079 if (!new_name) 3080 return -errno; 3081 3082 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3083 if (new_fd < 0) { 3084 err = -errno; 3085 goto err_free_new_name; 3086 } 3087 3088 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3089 if (new_fd < 0) { 3090 err = -errno; 3091 goto err_close_new_fd; 3092 } 3093 3094 err = zclose(map->fd); 3095 if (err) { 3096 err = -errno; 3097 goto err_close_new_fd; 3098 } 3099 free(map->name); 3100 3101 map->fd = new_fd; 3102 map->name = new_name; 3103 map->def.type = info.type; 3104 map->def.key_size = info.key_size; 3105 map->def.value_size = info.value_size; 3106 map->def.max_entries = info.max_entries; 3107 map->def.map_flags = info.map_flags; 3108 map->btf_key_type_id = info.btf_key_type_id; 3109 map->btf_value_type_id = info.btf_value_type_id; 3110 map->reused = true; 3111 3112 return 0; 3113 3114 err_close_new_fd: 3115 close(new_fd); 3116 err_free_new_name: 3117 free(new_name); 3118 return err; 3119 } 3120 3121 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3122 { 3123 if (!map || !max_entries) 3124 return -EINVAL; 3125 3126 /* If map already created, its attributes can't be changed. */ 3127 if (map->fd >= 0) 3128 return -EBUSY; 3129 3130 map->def.max_entries = max_entries; 3131 3132 return 0; 3133 } 3134 3135 static int 3136 bpf_object__probe_name(struct bpf_object *obj) 3137 { 3138 struct bpf_load_program_attr attr; 3139 char *cp, errmsg[STRERR_BUFSIZE]; 3140 struct bpf_insn insns[] = { 3141 BPF_MOV64_IMM(BPF_REG_0, 0), 3142 BPF_EXIT_INSN(), 3143 }; 3144 int ret; 3145 3146 /* make sure basic loading works */ 3147 3148 memset(&attr, 0, sizeof(attr)); 3149 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3150 attr.insns = insns; 3151 attr.insns_cnt = ARRAY_SIZE(insns); 3152 attr.license = "GPL"; 3153 3154 ret = bpf_load_program_xattr(&attr, NULL, 0); 3155 if (ret < 0) { 3156 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3157 pr_warn("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n", 3158 __func__, cp, errno); 3159 return -errno; 3160 } 3161 close(ret); 3162 3163 /* now try the same program, but with the name */ 3164 3165 attr.name = "test"; 3166 ret = bpf_load_program_xattr(&attr, NULL, 0); 3167 if (ret >= 0) { 3168 obj->caps.name = 1; 3169 close(ret); 3170 } 3171 3172 return 0; 3173 } 3174 3175 static int 3176 bpf_object__probe_global_data(struct bpf_object *obj) 3177 { 3178 struct bpf_load_program_attr prg_attr; 3179 struct bpf_create_map_attr map_attr; 3180 char *cp, errmsg[STRERR_BUFSIZE]; 3181 struct bpf_insn insns[] = { 3182 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3183 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3184 BPF_MOV64_IMM(BPF_REG_0, 0), 3185 BPF_EXIT_INSN(), 3186 }; 3187 int ret, map; 3188 3189 memset(&map_attr, 0, sizeof(map_attr)); 3190 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3191 map_attr.key_size = sizeof(int); 3192 map_attr.value_size = 32; 3193 map_attr.max_entries = 1; 3194 3195 map = bpf_create_map_xattr(&map_attr); 3196 if (map < 0) { 3197 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3198 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3199 __func__, cp, errno); 3200 return -errno; 3201 } 3202 3203 insns[0].imm = map; 3204 3205 memset(&prg_attr, 0, sizeof(prg_attr)); 3206 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3207 prg_attr.insns = insns; 3208 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3209 prg_attr.license = "GPL"; 3210 3211 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3212 if (ret >= 0) { 3213 obj->caps.global_data = 1; 3214 close(ret); 3215 } 3216 3217 close(map); 3218 return 0; 3219 } 3220 3221 static int bpf_object__probe_btf_func(struct bpf_object *obj) 3222 { 3223 static const char strs[] = "\0int\0x\0a"; 3224 /* void x(int a) {} */ 3225 __u32 types[] = { 3226 /* int */ 3227 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3228 /* FUNC_PROTO */ /* [2] */ 3229 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3230 BTF_PARAM_ENC(7, 1), 3231 /* FUNC x */ /* [3] */ 3232 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3233 }; 3234 int btf_fd; 3235 3236 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3237 strs, sizeof(strs)); 3238 if (btf_fd >= 0) { 3239 obj->caps.btf_func = 1; 3240 close(btf_fd); 3241 return 1; 3242 } 3243 3244 return 0; 3245 } 3246 3247 static int bpf_object__probe_btf_func_global(struct bpf_object *obj) 3248 { 3249 static const char strs[] = "\0int\0x\0a"; 3250 /* static void x(int a) {} */ 3251 __u32 types[] = { 3252 /* int */ 3253 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3254 /* FUNC_PROTO */ /* [2] */ 3255 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3256 BTF_PARAM_ENC(7, 1), 3257 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3258 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3259 }; 3260 int btf_fd; 3261 3262 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3263 strs, sizeof(strs)); 3264 if (btf_fd >= 0) { 3265 obj->caps.btf_func_global = 1; 3266 close(btf_fd); 3267 return 1; 3268 } 3269 3270 return 0; 3271 } 3272 3273 static int bpf_object__probe_btf_datasec(struct bpf_object *obj) 3274 { 3275 static const char strs[] = "\0x\0.data"; 3276 /* static int a; */ 3277 __u32 types[] = { 3278 /* int */ 3279 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3280 /* VAR x */ /* [2] */ 3281 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3282 BTF_VAR_STATIC, 3283 /* DATASEC val */ /* [3] */ 3284 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3285 BTF_VAR_SECINFO_ENC(2, 0, 4), 3286 }; 3287 int btf_fd; 3288 3289 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3290 strs, sizeof(strs)); 3291 if (btf_fd >= 0) { 3292 obj->caps.btf_datasec = 1; 3293 close(btf_fd); 3294 return 1; 3295 } 3296 3297 return 0; 3298 } 3299 3300 static int bpf_object__probe_array_mmap(struct bpf_object *obj) 3301 { 3302 struct bpf_create_map_attr attr = { 3303 .map_type = BPF_MAP_TYPE_ARRAY, 3304 .map_flags = BPF_F_MMAPABLE, 3305 .key_size = sizeof(int), 3306 .value_size = sizeof(int), 3307 .max_entries = 1, 3308 }; 3309 int fd; 3310 3311 fd = bpf_create_map_xattr(&attr); 3312 if (fd >= 0) { 3313 obj->caps.array_mmap = 1; 3314 close(fd); 3315 return 1; 3316 } 3317 3318 return 0; 3319 } 3320 3321 static int 3322 bpf_object__probe_caps(struct bpf_object *obj) 3323 { 3324 int (*probe_fn[])(struct bpf_object *obj) = { 3325 bpf_object__probe_name, 3326 bpf_object__probe_global_data, 3327 bpf_object__probe_btf_func, 3328 bpf_object__probe_btf_func_global, 3329 bpf_object__probe_btf_datasec, 3330 bpf_object__probe_array_mmap, 3331 }; 3332 int i, ret; 3333 3334 for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { 3335 ret = probe_fn[i](obj); 3336 if (ret < 0) 3337 pr_debug("Probe #%d failed with %d.\n", i, ret); 3338 } 3339 3340 return 0; 3341 } 3342 3343 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 3344 { 3345 struct bpf_map_info map_info = {}; 3346 char msg[STRERR_BUFSIZE]; 3347 __u32 map_info_len; 3348 3349 map_info_len = sizeof(map_info); 3350 3351 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 3352 pr_warn("failed to get map info for map FD %d: %s\n", 3353 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 3354 return false; 3355 } 3356 3357 return (map_info.type == map->def.type && 3358 map_info.key_size == map->def.key_size && 3359 map_info.value_size == map->def.value_size && 3360 map_info.max_entries == map->def.max_entries && 3361 map_info.map_flags == map->def.map_flags); 3362 } 3363 3364 static int 3365 bpf_object__reuse_map(struct bpf_map *map) 3366 { 3367 char *cp, errmsg[STRERR_BUFSIZE]; 3368 int err, pin_fd; 3369 3370 pin_fd = bpf_obj_get(map->pin_path); 3371 if (pin_fd < 0) { 3372 err = -errno; 3373 if (err == -ENOENT) { 3374 pr_debug("found no pinned map to reuse at '%s'\n", 3375 map->pin_path); 3376 return 0; 3377 } 3378 3379 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 3380 pr_warn("couldn't retrieve pinned map '%s': %s\n", 3381 map->pin_path, cp); 3382 return err; 3383 } 3384 3385 if (!map_is_reuse_compat(map, pin_fd)) { 3386 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 3387 map->pin_path); 3388 close(pin_fd); 3389 return -EINVAL; 3390 } 3391 3392 err = bpf_map__reuse_fd(map, pin_fd); 3393 if (err) { 3394 close(pin_fd); 3395 return err; 3396 } 3397 map->pinned = true; 3398 pr_debug("reused pinned map at '%s'\n", map->pin_path); 3399 3400 return 0; 3401 } 3402 3403 static int 3404 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 3405 { 3406 enum libbpf_map_type map_type = map->libbpf_type; 3407 char *cp, errmsg[STRERR_BUFSIZE]; 3408 int err, zero = 0; 3409 3410 /* kernel already zero-initializes .bss map. */ 3411 if (map_type == LIBBPF_MAP_BSS) 3412 return 0; 3413 3414 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 3415 if (err) { 3416 err = -errno; 3417 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3418 pr_warn("Error setting initial map(%s) contents: %s\n", 3419 map->name, cp); 3420 return err; 3421 } 3422 3423 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 3424 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 3425 err = bpf_map_freeze(map->fd); 3426 if (err) { 3427 err = -errno; 3428 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3429 pr_warn("Error freezing map(%s) as read-only: %s\n", 3430 map->name, cp); 3431 return err; 3432 } 3433 } 3434 return 0; 3435 } 3436 3437 static int 3438 bpf_object__create_maps(struct bpf_object *obj) 3439 { 3440 struct bpf_create_map_attr create_attr = {}; 3441 int nr_cpus = 0; 3442 unsigned int i; 3443 int err; 3444 3445 for (i = 0; i < obj->nr_maps; i++) { 3446 struct bpf_map *map = &obj->maps[i]; 3447 struct bpf_map_def *def = &map->def; 3448 char *cp, errmsg[STRERR_BUFSIZE]; 3449 int *pfd = &map->fd; 3450 3451 if (map->pin_path) { 3452 err = bpf_object__reuse_map(map); 3453 if (err) { 3454 pr_warn("error reusing pinned map %s\n", 3455 map->name); 3456 return err; 3457 } 3458 } 3459 3460 if (map->fd >= 0) { 3461 pr_debug("skip map create (preset) %s: fd=%d\n", 3462 map->name, map->fd); 3463 continue; 3464 } 3465 3466 if (obj->caps.name) 3467 create_attr.name = map->name; 3468 create_attr.map_ifindex = map->map_ifindex; 3469 create_attr.map_type = def->type; 3470 create_attr.map_flags = def->map_flags; 3471 create_attr.key_size = def->key_size; 3472 create_attr.value_size = def->value_size; 3473 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && 3474 !def->max_entries) { 3475 if (!nr_cpus) 3476 nr_cpus = libbpf_num_possible_cpus(); 3477 if (nr_cpus < 0) { 3478 pr_warn("failed to determine number of system CPUs: %d\n", 3479 nr_cpus); 3480 err = nr_cpus; 3481 goto err_out; 3482 } 3483 pr_debug("map '%s': setting size to %d\n", 3484 map->name, nr_cpus); 3485 create_attr.max_entries = nr_cpus; 3486 } else { 3487 create_attr.max_entries = def->max_entries; 3488 } 3489 create_attr.btf_fd = 0; 3490 create_attr.btf_key_type_id = 0; 3491 create_attr.btf_value_type_id = 0; 3492 if (bpf_map_type__is_map_in_map(def->type) && 3493 map->inner_map_fd >= 0) 3494 create_attr.inner_map_fd = map->inner_map_fd; 3495 if (bpf_map__is_struct_ops(map)) 3496 create_attr.btf_vmlinux_value_type_id = 3497 map->btf_vmlinux_value_type_id; 3498 3499 if (obj->btf && !bpf_map_find_btf_info(obj, map)) { 3500 create_attr.btf_fd = btf__fd(obj->btf); 3501 create_attr.btf_key_type_id = map->btf_key_type_id; 3502 create_attr.btf_value_type_id = map->btf_value_type_id; 3503 } 3504 3505 *pfd = bpf_create_map_xattr(&create_attr); 3506 if (*pfd < 0 && (create_attr.btf_key_type_id || 3507 create_attr.btf_value_type_id)) { 3508 err = -errno; 3509 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3510 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 3511 map->name, cp, err); 3512 create_attr.btf_fd = 0; 3513 create_attr.btf_key_type_id = 0; 3514 create_attr.btf_value_type_id = 0; 3515 map->btf_key_type_id = 0; 3516 map->btf_value_type_id = 0; 3517 *pfd = bpf_create_map_xattr(&create_attr); 3518 } 3519 3520 if (*pfd < 0) { 3521 size_t j; 3522 3523 err = -errno; 3524 err_out: 3525 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3526 pr_warn("failed to create map (name: '%s'): %s(%d)\n", 3527 map->name, cp, err); 3528 pr_perm_msg(err); 3529 for (j = 0; j < i; j++) 3530 zclose(obj->maps[j].fd); 3531 return err; 3532 } 3533 3534 if (bpf_map__is_internal(map)) { 3535 err = bpf_object__populate_internal_map(obj, map); 3536 if (err < 0) { 3537 zclose(*pfd); 3538 goto err_out; 3539 } 3540 } 3541 3542 if (map->pin_path && !map->pinned) { 3543 err = bpf_map__pin(map, NULL); 3544 if (err) { 3545 pr_warn("failed to auto-pin map name '%s' at '%s'\n", 3546 map->name, map->pin_path); 3547 return err; 3548 } 3549 } 3550 3551 pr_debug("created map %s: fd=%d\n", map->name, *pfd); 3552 } 3553 3554 return 0; 3555 } 3556 3557 static int 3558 check_btf_ext_reloc_err(struct bpf_program *prog, int err, 3559 void *btf_prog_info, const char *info_name) 3560 { 3561 if (err != -ENOENT) { 3562 pr_warn("Error in loading %s for sec %s.\n", 3563 info_name, prog->section_name); 3564 return err; 3565 } 3566 3567 /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ 3568 3569 if (btf_prog_info) { 3570 /* 3571 * Some info has already been found but has problem 3572 * in the last btf_ext reloc. Must have to error out. 3573 */ 3574 pr_warn("Error in relocating %s for sec %s.\n", 3575 info_name, prog->section_name); 3576 return err; 3577 } 3578 3579 /* Have problem loading the very first info. Ignore the rest. */ 3580 pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", 3581 info_name, prog->section_name, info_name); 3582 return 0; 3583 } 3584 3585 static int 3586 bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, 3587 const char *section_name, __u32 insn_offset) 3588 { 3589 int err; 3590 3591 if (!insn_offset || prog->func_info) { 3592 /* 3593 * !insn_offset => main program 3594 * 3595 * For sub prog, the main program's func_info has to 3596 * be loaded first (i.e. prog->func_info != NULL) 3597 */ 3598 err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, 3599 section_name, insn_offset, 3600 &prog->func_info, 3601 &prog->func_info_cnt); 3602 if (err) 3603 return check_btf_ext_reloc_err(prog, err, 3604 prog->func_info, 3605 "bpf_func_info"); 3606 3607 prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); 3608 } 3609 3610 if (!insn_offset || prog->line_info) { 3611 err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, 3612 section_name, insn_offset, 3613 &prog->line_info, 3614 &prog->line_info_cnt); 3615 if (err) 3616 return check_btf_ext_reloc_err(prog, err, 3617 prog->line_info, 3618 "bpf_line_info"); 3619 3620 prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); 3621 } 3622 3623 return 0; 3624 } 3625 3626 #define BPF_CORE_SPEC_MAX_LEN 64 3627 3628 /* represents BPF CO-RE field or array element accessor */ 3629 struct bpf_core_accessor { 3630 __u32 type_id; /* struct/union type or array element type */ 3631 __u32 idx; /* field index or array index */ 3632 const char *name; /* field name or NULL for array accessor */ 3633 }; 3634 3635 struct bpf_core_spec { 3636 const struct btf *btf; 3637 /* high-level spec: named fields and array indices only */ 3638 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 3639 /* high-level spec length */ 3640 int len; 3641 /* raw, low-level spec: 1-to-1 with accessor spec string */ 3642 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 3643 /* raw spec length */ 3644 int raw_len; 3645 /* field bit offset represented by spec */ 3646 __u32 bit_offset; 3647 }; 3648 3649 static bool str_is_empty(const char *s) 3650 { 3651 return !s || !s[0]; 3652 } 3653 3654 static bool is_flex_arr(const struct btf *btf, 3655 const struct bpf_core_accessor *acc, 3656 const struct btf_array *arr) 3657 { 3658 const struct btf_type *t; 3659 3660 /* not a flexible array, if not inside a struct or has non-zero size */ 3661 if (!acc->name || arr->nelems > 0) 3662 return false; 3663 3664 /* has to be the last member of enclosing struct */ 3665 t = btf__type_by_id(btf, acc->type_id); 3666 return acc->idx == btf_vlen(t) - 1; 3667 } 3668 3669 /* 3670 * Turn bpf_field_reloc into a low- and high-level spec representation, 3671 * validating correctness along the way, as well as calculating resulting 3672 * field bit offset, specified by accessor string. Low-level spec captures 3673 * every single level of nestedness, including traversing anonymous 3674 * struct/union members. High-level one only captures semantically meaningful 3675 * "turning points": named fields and array indicies. 3676 * E.g., for this case: 3677 * 3678 * struct sample { 3679 * int __unimportant; 3680 * struct { 3681 * int __1; 3682 * int __2; 3683 * int a[7]; 3684 * }; 3685 * }; 3686 * 3687 * struct sample *s = ...; 3688 * 3689 * int x = &s->a[3]; // access string = '0:1:2:3' 3690 * 3691 * Low-level spec has 1:1 mapping with each element of access string (it's 3692 * just a parsed access string representation): [0, 1, 2, 3]. 3693 * 3694 * High-level spec will capture only 3 points: 3695 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 3696 * - field 'a' access (corresponds to '2' in low-level spec); 3697 * - array element #3 access (corresponds to '3' in low-level spec). 3698 * 3699 */ 3700 static int bpf_core_spec_parse(const struct btf *btf, 3701 __u32 type_id, 3702 const char *spec_str, 3703 struct bpf_core_spec *spec) 3704 { 3705 int access_idx, parsed_len, i; 3706 struct bpf_core_accessor *acc; 3707 const struct btf_type *t; 3708 const char *name; 3709 __u32 id; 3710 __s64 sz; 3711 3712 if (str_is_empty(spec_str) || *spec_str == ':') 3713 return -EINVAL; 3714 3715 memset(spec, 0, sizeof(*spec)); 3716 spec->btf = btf; 3717 3718 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 3719 while (*spec_str) { 3720 if (*spec_str == ':') 3721 ++spec_str; 3722 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 3723 return -EINVAL; 3724 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3725 return -E2BIG; 3726 spec_str += parsed_len; 3727 spec->raw_spec[spec->raw_len++] = access_idx; 3728 } 3729 3730 if (spec->raw_len == 0) 3731 return -EINVAL; 3732 3733 /* first spec value is always reloc type array index */ 3734 t = skip_mods_and_typedefs(btf, type_id, &id); 3735 if (!t) 3736 return -EINVAL; 3737 3738 access_idx = spec->raw_spec[0]; 3739 spec->spec[0].type_id = id; 3740 spec->spec[0].idx = access_idx; 3741 spec->len++; 3742 3743 sz = btf__resolve_size(btf, id); 3744 if (sz < 0) 3745 return sz; 3746 spec->bit_offset = access_idx * sz * 8; 3747 3748 for (i = 1; i < spec->raw_len; i++) { 3749 t = skip_mods_and_typedefs(btf, id, &id); 3750 if (!t) 3751 return -EINVAL; 3752 3753 access_idx = spec->raw_spec[i]; 3754 acc = &spec->spec[spec->len]; 3755 3756 if (btf_is_composite(t)) { 3757 const struct btf_member *m; 3758 __u32 bit_offset; 3759 3760 if (access_idx >= btf_vlen(t)) 3761 return -EINVAL; 3762 3763 bit_offset = btf_member_bit_offset(t, access_idx); 3764 spec->bit_offset += bit_offset; 3765 3766 m = btf_members(t) + access_idx; 3767 if (m->name_off) { 3768 name = btf__name_by_offset(btf, m->name_off); 3769 if (str_is_empty(name)) 3770 return -EINVAL; 3771 3772 acc->type_id = id; 3773 acc->idx = access_idx; 3774 acc->name = name; 3775 spec->len++; 3776 } 3777 3778 id = m->type; 3779 } else if (btf_is_array(t)) { 3780 const struct btf_array *a = btf_array(t); 3781 bool flex; 3782 3783 t = skip_mods_and_typedefs(btf, a->type, &id); 3784 if (!t) 3785 return -EINVAL; 3786 3787 flex = is_flex_arr(btf, acc - 1, a); 3788 if (!flex && access_idx >= a->nelems) 3789 return -EINVAL; 3790 3791 spec->spec[spec->len].type_id = id; 3792 spec->spec[spec->len].idx = access_idx; 3793 spec->len++; 3794 3795 sz = btf__resolve_size(btf, id); 3796 if (sz < 0) 3797 return sz; 3798 spec->bit_offset += access_idx * sz * 8; 3799 } else { 3800 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", 3801 type_id, spec_str, i, id, btf_kind(t)); 3802 return -EINVAL; 3803 } 3804 } 3805 3806 return 0; 3807 } 3808 3809 static bool bpf_core_is_flavor_sep(const char *s) 3810 { 3811 /* check X___Y name pattern, where X and Y are not underscores */ 3812 return s[0] != '_' && /* X */ 3813 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 3814 s[4] != '_'; /* Y */ 3815 } 3816 3817 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 3818 * before last triple underscore. Struct name part after last triple 3819 * underscore is ignored by BPF CO-RE relocation during relocation matching. 3820 */ 3821 static size_t bpf_core_essential_name_len(const char *name) 3822 { 3823 size_t n = strlen(name); 3824 int i; 3825 3826 for (i = n - 5; i >= 0; i--) { 3827 if (bpf_core_is_flavor_sep(name + i)) 3828 return i + 1; 3829 } 3830 return n; 3831 } 3832 3833 /* dynamically sized list of type IDs */ 3834 struct ids_vec { 3835 __u32 *data; 3836 int len; 3837 }; 3838 3839 static void bpf_core_free_cands(struct ids_vec *cand_ids) 3840 { 3841 free(cand_ids->data); 3842 free(cand_ids); 3843 } 3844 3845 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 3846 __u32 local_type_id, 3847 const struct btf *targ_btf) 3848 { 3849 size_t local_essent_len, targ_essent_len; 3850 const char *local_name, *targ_name; 3851 const struct btf_type *t; 3852 struct ids_vec *cand_ids; 3853 __u32 *new_ids; 3854 int i, err, n; 3855 3856 t = btf__type_by_id(local_btf, local_type_id); 3857 if (!t) 3858 return ERR_PTR(-EINVAL); 3859 3860 local_name = btf__name_by_offset(local_btf, t->name_off); 3861 if (str_is_empty(local_name)) 3862 return ERR_PTR(-EINVAL); 3863 local_essent_len = bpf_core_essential_name_len(local_name); 3864 3865 cand_ids = calloc(1, sizeof(*cand_ids)); 3866 if (!cand_ids) 3867 return ERR_PTR(-ENOMEM); 3868 3869 n = btf__get_nr_types(targ_btf); 3870 for (i = 1; i <= n; i++) { 3871 t = btf__type_by_id(targ_btf, i); 3872 targ_name = btf__name_by_offset(targ_btf, t->name_off); 3873 if (str_is_empty(targ_name)) 3874 continue; 3875 3876 targ_essent_len = bpf_core_essential_name_len(targ_name); 3877 if (targ_essent_len != local_essent_len) 3878 continue; 3879 3880 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 3881 pr_debug("[%d] %s: found candidate [%d] %s\n", 3882 local_type_id, local_name, i, targ_name); 3883 new_ids = reallocarray(cand_ids->data, 3884 cand_ids->len + 1, 3885 sizeof(*cand_ids->data)); 3886 if (!new_ids) { 3887 err = -ENOMEM; 3888 goto err_out; 3889 } 3890 cand_ids->data = new_ids; 3891 cand_ids->data[cand_ids->len++] = i; 3892 } 3893 } 3894 return cand_ids; 3895 err_out: 3896 bpf_core_free_cands(cand_ids); 3897 return ERR_PTR(err); 3898 } 3899 3900 /* Check two types for compatibility, skipping const/volatile/restrict and 3901 * typedefs, to ensure we are relocating compatible entities: 3902 * - any two STRUCTs/UNIONs are compatible and can be mixed; 3903 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 3904 * - any two PTRs are always compatible; 3905 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 3906 * least one of enums should be anonymous; 3907 * - for ENUMs, check sizes, names are ignored; 3908 * - for INT, size and signedness are ignored; 3909 * - for ARRAY, dimensionality is ignored, element types are checked for 3910 * compatibility recursively; 3911 * - everything else shouldn't be ever a target of relocation. 3912 * These rules are not set in stone and probably will be adjusted as we get 3913 * more experience with using BPF CO-RE relocations. 3914 */ 3915 static int bpf_core_fields_are_compat(const struct btf *local_btf, 3916 __u32 local_id, 3917 const struct btf *targ_btf, 3918 __u32 targ_id) 3919 { 3920 const struct btf_type *local_type, *targ_type; 3921 3922 recur: 3923 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 3924 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3925 if (!local_type || !targ_type) 3926 return -EINVAL; 3927 3928 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 3929 return 1; 3930 if (btf_kind(local_type) != btf_kind(targ_type)) 3931 return 0; 3932 3933 switch (btf_kind(local_type)) { 3934 case BTF_KIND_PTR: 3935 return 1; 3936 case BTF_KIND_FWD: 3937 case BTF_KIND_ENUM: { 3938 const char *local_name, *targ_name; 3939 size_t local_len, targ_len; 3940 3941 local_name = btf__name_by_offset(local_btf, 3942 local_type->name_off); 3943 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 3944 local_len = bpf_core_essential_name_len(local_name); 3945 targ_len = bpf_core_essential_name_len(targ_name); 3946 /* one of them is anonymous or both w/ same flavor-less names */ 3947 return local_len == 0 || targ_len == 0 || 3948 (local_len == targ_len && 3949 strncmp(local_name, targ_name, local_len) == 0); 3950 } 3951 case BTF_KIND_INT: 3952 /* just reject deprecated bitfield-like integers; all other 3953 * integers are by default compatible between each other 3954 */ 3955 return btf_int_offset(local_type) == 0 && 3956 btf_int_offset(targ_type) == 0; 3957 case BTF_KIND_ARRAY: 3958 local_id = btf_array(local_type)->type; 3959 targ_id = btf_array(targ_type)->type; 3960 goto recur; 3961 default: 3962 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 3963 btf_kind(local_type), local_id, targ_id); 3964 return 0; 3965 } 3966 } 3967 3968 /* 3969 * Given single high-level named field accessor in local type, find 3970 * corresponding high-level accessor for a target type. Along the way, 3971 * maintain low-level spec for target as well. Also keep updating target 3972 * bit offset. 3973 * 3974 * Searching is performed through recursive exhaustive enumeration of all 3975 * fields of a struct/union. If there are any anonymous (embedded) 3976 * structs/unions, they are recursively searched as well. If field with 3977 * desired name is found, check compatibility between local and target types, 3978 * before returning result. 3979 * 3980 * 1 is returned, if field is found. 3981 * 0 is returned if no compatible field is found. 3982 * <0 is returned on error. 3983 */ 3984 static int bpf_core_match_member(const struct btf *local_btf, 3985 const struct bpf_core_accessor *local_acc, 3986 const struct btf *targ_btf, 3987 __u32 targ_id, 3988 struct bpf_core_spec *spec, 3989 __u32 *next_targ_id) 3990 { 3991 const struct btf_type *local_type, *targ_type; 3992 const struct btf_member *local_member, *m; 3993 const char *local_name, *targ_name; 3994 __u32 local_id; 3995 int i, n, found; 3996 3997 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3998 if (!targ_type) 3999 return -EINVAL; 4000 if (!btf_is_composite(targ_type)) 4001 return 0; 4002 4003 local_id = local_acc->type_id; 4004 local_type = btf__type_by_id(local_btf, local_id); 4005 local_member = btf_members(local_type) + local_acc->idx; 4006 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4007 4008 n = btf_vlen(targ_type); 4009 m = btf_members(targ_type); 4010 for (i = 0; i < n; i++, m++) { 4011 __u32 bit_offset; 4012 4013 bit_offset = btf_member_bit_offset(targ_type, i); 4014 4015 /* too deep struct/union/array nesting */ 4016 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4017 return -E2BIG; 4018 4019 /* speculate this member will be the good one */ 4020 spec->bit_offset += bit_offset; 4021 spec->raw_spec[spec->raw_len++] = i; 4022 4023 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4024 if (str_is_empty(targ_name)) { 4025 /* embedded struct/union, we need to go deeper */ 4026 found = bpf_core_match_member(local_btf, local_acc, 4027 targ_btf, m->type, 4028 spec, next_targ_id); 4029 if (found) /* either found or error */ 4030 return found; 4031 } else if (strcmp(local_name, targ_name) == 0) { 4032 /* matching named field */ 4033 struct bpf_core_accessor *targ_acc; 4034 4035 targ_acc = &spec->spec[spec->len++]; 4036 targ_acc->type_id = targ_id; 4037 targ_acc->idx = i; 4038 targ_acc->name = targ_name; 4039 4040 *next_targ_id = m->type; 4041 found = bpf_core_fields_are_compat(local_btf, 4042 local_member->type, 4043 targ_btf, m->type); 4044 if (!found) 4045 spec->len--; /* pop accessor */ 4046 return found; 4047 } 4048 /* member turned out not to be what we looked for */ 4049 spec->bit_offset -= bit_offset; 4050 spec->raw_len--; 4051 } 4052 4053 return 0; 4054 } 4055 4056 /* 4057 * Try to match local spec to a target type and, if successful, produce full 4058 * target spec (high-level, low-level + bit offset). 4059 */ 4060 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4061 const struct btf *targ_btf, __u32 targ_id, 4062 struct bpf_core_spec *targ_spec) 4063 { 4064 const struct btf_type *targ_type; 4065 const struct bpf_core_accessor *local_acc; 4066 struct bpf_core_accessor *targ_acc; 4067 int i, sz, matched; 4068 4069 memset(targ_spec, 0, sizeof(*targ_spec)); 4070 targ_spec->btf = targ_btf; 4071 4072 local_acc = &local_spec->spec[0]; 4073 targ_acc = &targ_spec->spec[0]; 4074 4075 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4076 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4077 &targ_id); 4078 if (!targ_type) 4079 return -EINVAL; 4080 4081 if (local_acc->name) { 4082 matched = bpf_core_match_member(local_spec->btf, 4083 local_acc, 4084 targ_btf, targ_id, 4085 targ_spec, &targ_id); 4086 if (matched <= 0) 4087 return matched; 4088 } else { 4089 /* for i=0, targ_id is already treated as array element 4090 * type (because it's the original struct), for others 4091 * we should find array element type first 4092 */ 4093 if (i > 0) { 4094 const struct btf_array *a; 4095 bool flex; 4096 4097 if (!btf_is_array(targ_type)) 4098 return 0; 4099 4100 a = btf_array(targ_type); 4101 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4102 if (!flex && local_acc->idx >= a->nelems) 4103 return 0; 4104 if (!skip_mods_and_typedefs(targ_btf, a->type, 4105 &targ_id)) 4106 return -EINVAL; 4107 } 4108 4109 /* too deep struct/union/array nesting */ 4110 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4111 return -E2BIG; 4112 4113 targ_acc->type_id = targ_id; 4114 targ_acc->idx = local_acc->idx; 4115 targ_acc->name = NULL; 4116 targ_spec->len++; 4117 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4118 targ_spec->raw_len++; 4119 4120 sz = btf__resolve_size(targ_btf, targ_id); 4121 if (sz < 0) 4122 return sz; 4123 targ_spec->bit_offset += local_acc->idx * sz * 8; 4124 } 4125 } 4126 4127 return 1; 4128 } 4129 4130 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 4131 const struct bpf_field_reloc *relo, 4132 const struct bpf_core_spec *spec, 4133 __u32 *val, bool *validate) 4134 { 4135 const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; 4136 const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); 4137 __u32 byte_off, byte_sz, bit_off, bit_sz; 4138 const struct btf_member *m; 4139 const struct btf_type *mt; 4140 bool bitfield; 4141 __s64 sz; 4142 4143 /* a[n] accessor needs special handling */ 4144 if (!acc->name) { 4145 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 4146 *val = spec->bit_offset / 8; 4147 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 4148 sz = btf__resolve_size(spec->btf, acc->type_id); 4149 if (sz < 0) 4150 return -EINVAL; 4151 *val = sz; 4152 } else { 4153 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 4154 bpf_program__title(prog, false), 4155 relo->kind, relo->insn_off / 8); 4156 return -EINVAL; 4157 } 4158 if (validate) 4159 *validate = true; 4160 return 0; 4161 } 4162 4163 m = btf_members(t) + acc->idx; 4164 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 4165 bit_off = spec->bit_offset; 4166 bit_sz = btf_member_bitfield_size(t, acc->idx); 4167 4168 bitfield = bit_sz > 0; 4169 if (bitfield) { 4170 byte_sz = mt->size; 4171 byte_off = bit_off / 8 / byte_sz * byte_sz; 4172 /* figure out smallest int size necessary for bitfield load */ 4173 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 4174 if (byte_sz >= 8) { 4175 /* bitfield can't be read with 64-bit read */ 4176 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 4177 bpf_program__title(prog, false), 4178 relo->kind, relo->insn_off / 8); 4179 return -E2BIG; 4180 } 4181 byte_sz *= 2; 4182 byte_off = bit_off / 8 / byte_sz * byte_sz; 4183 } 4184 } else { 4185 sz = btf__resolve_size(spec->btf, m->type); 4186 if (sz < 0) 4187 return -EINVAL; 4188 byte_sz = sz; 4189 byte_off = spec->bit_offset / 8; 4190 bit_sz = byte_sz * 8; 4191 } 4192 4193 /* for bitfields, all the relocatable aspects are ambiguous and we 4194 * might disagree with compiler, so turn off validation of expected 4195 * value, except for signedness 4196 */ 4197 if (validate) 4198 *validate = !bitfield; 4199 4200 switch (relo->kind) { 4201 case BPF_FIELD_BYTE_OFFSET: 4202 *val = byte_off; 4203 break; 4204 case BPF_FIELD_BYTE_SIZE: 4205 *val = byte_sz; 4206 break; 4207 case BPF_FIELD_SIGNED: 4208 /* enums will be assumed unsigned */ 4209 *val = btf_is_enum(mt) || 4210 (btf_int_encoding(mt) & BTF_INT_SIGNED); 4211 if (validate) 4212 *validate = true; /* signedness is never ambiguous */ 4213 break; 4214 case BPF_FIELD_LSHIFT_U64: 4215 #if __BYTE_ORDER == __LITTLE_ENDIAN 4216 *val = 64 - (bit_off + bit_sz - byte_off * 8); 4217 #else 4218 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 4219 #endif 4220 break; 4221 case BPF_FIELD_RSHIFT_U64: 4222 *val = 64 - bit_sz; 4223 if (validate) 4224 *validate = true; /* right shift is never ambiguous */ 4225 break; 4226 case BPF_FIELD_EXISTS: 4227 default: 4228 pr_warn("prog '%s': unknown relo %d at insn #%d\n", 4229 bpf_program__title(prog, false), 4230 relo->kind, relo->insn_off / 8); 4231 return -EINVAL; 4232 } 4233 4234 return 0; 4235 } 4236 4237 /* 4238 * Patch relocatable BPF instruction. 4239 * 4240 * Patched value is determined by relocation kind and target specification. 4241 * For field existence relocation target spec will be NULL if field is not 4242 * found. 4243 * Expected insn->imm value is determined using relocation kind and local 4244 * spec, and is checked before patching instruction. If actual insn->imm value 4245 * is wrong, bail out with error. 4246 * 4247 * Currently three kinds of BPF instructions are supported: 4248 * 1. rX = <imm> (assignment with immediate operand); 4249 * 2. rX += <imm> (arithmetic operations with immediate operand); 4250 */ 4251 static int bpf_core_reloc_insn(struct bpf_program *prog, 4252 const struct bpf_field_reloc *relo, 4253 int relo_idx, 4254 const struct bpf_core_spec *local_spec, 4255 const struct bpf_core_spec *targ_spec) 4256 { 4257 __u32 orig_val, new_val; 4258 struct bpf_insn *insn; 4259 bool validate = true; 4260 int insn_idx, err; 4261 __u8 class; 4262 4263 if (relo->insn_off % sizeof(struct bpf_insn)) 4264 return -EINVAL; 4265 insn_idx = relo->insn_off / sizeof(struct bpf_insn); 4266 insn = &prog->insns[insn_idx]; 4267 class = BPF_CLASS(insn->code); 4268 4269 if (relo->kind == BPF_FIELD_EXISTS) { 4270 orig_val = 1; /* can't generate EXISTS relo w/o local field */ 4271 new_val = targ_spec ? 1 : 0; 4272 } else if (!targ_spec) { 4273 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 4274 bpf_program__title(prog, false), relo_idx, insn_idx); 4275 insn->code = BPF_JMP | BPF_CALL; 4276 insn->dst_reg = 0; 4277 insn->src_reg = 0; 4278 insn->off = 0; 4279 /* if this instruction is reachable (not a dead code), 4280 * verifier will complain with the following message: 4281 * invalid func unknown#195896080 4282 */ 4283 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 4284 return 0; 4285 } else { 4286 err = bpf_core_calc_field_relo(prog, relo, local_spec, 4287 &orig_val, &validate); 4288 if (err) 4289 return err; 4290 err = bpf_core_calc_field_relo(prog, relo, targ_spec, 4291 &new_val, NULL); 4292 if (err) 4293 return err; 4294 } 4295 4296 switch (class) { 4297 case BPF_ALU: 4298 case BPF_ALU64: 4299 if (BPF_SRC(insn->code) != BPF_K) 4300 return -EINVAL; 4301 if (validate && insn->imm != orig_val) { 4302 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 4303 bpf_program__title(prog, false), relo_idx, 4304 insn_idx, insn->imm, orig_val, new_val); 4305 return -EINVAL; 4306 } 4307 orig_val = insn->imm; 4308 insn->imm = new_val; 4309 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 4310 bpf_program__title(prog, false), relo_idx, insn_idx, 4311 orig_val, new_val); 4312 break; 4313 case BPF_LDX: 4314 case BPF_ST: 4315 case BPF_STX: 4316 if (validate && insn->off != orig_val) { 4317 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LD/LDX/ST/STX) value: got %u, exp %u -> %u\n", 4318 bpf_program__title(prog, false), relo_idx, 4319 insn_idx, insn->off, orig_val, new_val); 4320 return -EINVAL; 4321 } 4322 if (new_val > SHRT_MAX) { 4323 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 4324 bpf_program__title(prog, false), relo_idx, 4325 insn_idx, new_val); 4326 return -ERANGE; 4327 } 4328 orig_val = insn->off; 4329 insn->off = new_val; 4330 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 4331 bpf_program__title(prog, false), relo_idx, insn_idx, 4332 orig_val, new_val); 4333 break; 4334 default: 4335 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", 4336 bpf_program__title(prog, false), relo_idx, 4337 insn_idx, insn->code, insn->src_reg, insn->dst_reg, 4338 insn->off, insn->imm); 4339 return -EINVAL; 4340 } 4341 4342 return 0; 4343 } 4344 4345 /* Output spec definition in the format: 4346 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 4347 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 4348 */ 4349 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 4350 { 4351 const struct btf_type *t; 4352 const char *s; 4353 __u32 type_id; 4354 int i; 4355 4356 type_id = spec->spec[0].type_id; 4357 t = btf__type_by_id(spec->btf, type_id); 4358 s = btf__name_by_offset(spec->btf, t->name_off); 4359 libbpf_print(level, "[%u] %s + ", type_id, s); 4360 4361 for (i = 0; i < spec->raw_len; i++) 4362 libbpf_print(level, "%d%s", spec->raw_spec[i], 4363 i == spec->raw_len - 1 ? " => " : ":"); 4364 4365 libbpf_print(level, "%u.%u @ &x", 4366 spec->bit_offset / 8, spec->bit_offset % 8); 4367 4368 for (i = 0; i < spec->len; i++) { 4369 if (spec->spec[i].name) 4370 libbpf_print(level, ".%s", spec->spec[i].name); 4371 else 4372 libbpf_print(level, "[%u]", spec->spec[i].idx); 4373 } 4374 4375 } 4376 4377 static size_t bpf_core_hash_fn(const void *key, void *ctx) 4378 { 4379 return (size_t)key; 4380 } 4381 4382 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 4383 { 4384 return k1 == k2; 4385 } 4386 4387 static void *u32_as_hash_key(__u32 x) 4388 { 4389 return (void *)(uintptr_t)x; 4390 } 4391 4392 /* 4393 * CO-RE relocate single instruction. 4394 * 4395 * The outline and important points of the algorithm: 4396 * 1. For given local type, find corresponding candidate target types. 4397 * Candidate type is a type with the same "essential" name, ignoring 4398 * everything after last triple underscore (___). E.g., `sample`, 4399 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 4400 * for each other. Names with triple underscore are referred to as 4401 * "flavors" and are useful, among other things, to allow to 4402 * specify/support incompatible variations of the same kernel struct, which 4403 * might differ between different kernel versions and/or build 4404 * configurations. 4405 * 4406 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 4407 * converter, when deduplicated BTF of a kernel still contains more than 4408 * one different types with the same name. In that case, ___2, ___3, etc 4409 * are appended starting from second name conflict. But start flavors are 4410 * also useful to be defined "locally", in BPF program, to extract same 4411 * data from incompatible changes between different kernel 4412 * versions/configurations. For instance, to handle field renames between 4413 * kernel versions, one can use two flavors of the struct name with the 4414 * same common name and use conditional relocations to extract that field, 4415 * depending on target kernel version. 4416 * 2. For each candidate type, try to match local specification to this 4417 * candidate target type. Matching involves finding corresponding 4418 * high-level spec accessors, meaning that all named fields should match, 4419 * as well as all array accesses should be within the actual bounds. Also, 4420 * types should be compatible (see bpf_core_fields_are_compat for details). 4421 * 3. It is supported and expected that there might be multiple flavors 4422 * matching the spec. As long as all the specs resolve to the same set of 4423 * offsets across all candidates, there is no error. If there is any 4424 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 4425 * imprefection of BTF deduplication, which can cause slight duplication of 4426 * the same BTF type, if some directly or indirectly referenced (by 4427 * pointer) type gets resolved to different actual types in different 4428 * object files. If such situation occurs, deduplicated BTF will end up 4429 * with two (or more) structurally identical types, which differ only in 4430 * types they refer to through pointer. This should be OK in most cases and 4431 * is not an error. 4432 * 4. Candidate types search is performed by linearly scanning through all 4433 * types in target BTF. It is anticipated that this is overall more 4434 * efficient memory-wise and not significantly worse (if not better) 4435 * CPU-wise compared to prebuilding a map from all local type names to 4436 * a list of candidate type names. It's also sped up by caching resolved 4437 * list of matching candidates per each local "root" type ID, that has at 4438 * least one bpf_field_reloc associated with it. This list is shared 4439 * between multiple relocations for the same type ID and is updated as some 4440 * of the candidates are pruned due to structural incompatibility. 4441 */ 4442 static int bpf_core_reloc_field(struct bpf_program *prog, 4443 const struct bpf_field_reloc *relo, 4444 int relo_idx, 4445 const struct btf *local_btf, 4446 const struct btf *targ_btf, 4447 struct hashmap *cand_cache) 4448 { 4449 const char *prog_name = bpf_program__title(prog, false); 4450 struct bpf_core_spec local_spec, cand_spec, targ_spec; 4451 const void *type_key = u32_as_hash_key(relo->type_id); 4452 const struct btf_type *local_type, *cand_type; 4453 const char *local_name, *cand_name; 4454 struct ids_vec *cand_ids; 4455 __u32 local_id, cand_id; 4456 const char *spec_str; 4457 int i, j, err; 4458 4459 local_id = relo->type_id; 4460 local_type = btf__type_by_id(local_btf, local_id); 4461 if (!local_type) 4462 return -EINVAL; 4463 4464 local_name = btf__name_by_offset(local_btf, local_type->name_off); 4465 if (str_is_empty(local_name)) 4466 return -EINVAL; 4467 4468 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 4469 if (str_is_empty(spec_str)) 4470 return -EINVAL; 4471 4472 err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); 4473 if (err) { 4474 pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", 4475 prog_name, relo_idx, local_id, local_name, spec_str, 4476 err); 4477 return -EINVAL; 4478 } 4479 4480 pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, 4481 relo->kind); 4482 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 4483 libbpf_print(LIBBPF_DEBUG, "\n"); 4484 4485 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 4486 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 4487 if (IS_ERR(cand_ids)) { 4488 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", 4489 prog_name, relo_idx, local_id, local_name, 4490 PTR_ERR(cand_ids)); 4491 return PTR_ERR(cand_ids); 4492 } 4493 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 4494 if (err) { 4495 bpf_core_free_cands(cand_ids); 4496 return err; 4497 } 4498 } 4499 4500 for (i = 0, j = 0; i < cand_ids->len; i++) { 4501 cand_id = cand_ids->data[i]; 4502 cand_type = btf__type_by_id(targ_btf, cand_id); 4503 cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); 4504 4505 err = bpf_core_spec_match(&local_spec, targ_btf, 4506 cand_id, &cand_spec); 4507 pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", 4508 prog_name, relo_idx, i, cand_name); 4509 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 4510 libbpf_print(LIBBPF_DEBUG, ": %d\n", err); 4511 if (err < 0) { 4512 pr_warn("prog '%s': relo #%d: matching error: %d\n", 4513 prog_name, relo_idx, err); 4514 return err; 4515 } 4516 if (err == 0) 4517 continue; 4518 4519 if (j == 0) { 4520 targ_spec = cand_spec; 4521 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 4522 /* if there are many candidates, they should all 4523 * resolve to the same bit offset 4524 */ 4525 pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", 4526 prog_name, relo_idx, cand_spec.bit_offset, 4527 targ_spec.bit_offset); 4528 return -EINVAL; 4529 } 4530 4531 cand_ids->data[j++] = cand_spec.spec[0].type_id; 4532 } 4533 4534 /* 4535 * For BPF_FIELD_EXISTS relo or when used BPF program has field 4536 * existence checks or kernel version/config checks, it's expected 4537 * that we might not find any candidates. In this case, if field 4538 * wasn't found in any candidate, the list of candidates shouldn't 4539 * change at all, we'll just handle relocating appropriately, 4540 * depending on relo's kind. 4541 */ 4542 if (j > 0) 4543 cand_ids->len = j; 4544 4545 /* 4546 * If no candidates were found, it might be both a programmer error, 4547 * as well as expected case, depending whether instruction w/ 4548 * relocation is guarded in some way that makes it unreachable (dead 4549 * code) if relocation can't be resolved. This is handled in 4550 * bpf_core_reloc_insn() uniformly by replacing that instruction with 4551 * BPF helper call insn (using invalid helper ID). If that instruction 4552 * is indeed unreachable, then it will be ignored and eliminated by 4553 * verifier. If it was an error, then verifier will complain and point 4554 * to a specific instruction number in its log. 4555 */ 4556 if (j == 0) 4557 pr_debug("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", 4558 prog_name, relo_idx, local_id, local_name, spec_str); 4559 4560 /* bpf_core_reloc_insn should know how to handle missing targ_spec */ 4561 err = bpf_core_reloc_insn(prog, relo, relo_idx, &local_spec, 4562 j ? &targ_spec : NULL); 4563 if (err) { 4564 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 4565 prog_name, relo_idx, relo->insn_off, err); 4566 return -EINVAL; 4567 } 4568 4569 return 0; 4570 } 4571 4572 static int 4573 bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) 4574 { 4575 const struct btf_ext_info_sec *sec; 4576 const struct bpf_field_reloc *rec; 4577 const struct btf_ext_info *seg; 4578 struct hashmap_entry *entry; 4579 struct hashmap *cand_cache = NULL; 4580 struct bpf_program *prog; 4581 struct btf *targ_btf; 4582 const char *sec_name; 4583 int i, err = 0; 4584 4585 if (targ_btf_path) 4586 targ_btf = btf__parse_elf(targ_btf_path, NULL); 4587 else 4588 targ_btf = libbpf_find_kernel_btf(); 4589 if (IS_ERR(targ_btf)) { 4590 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 4591 return PTR_ERR(targ_btf); 4592 } 4593 4594 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 4595 if (IS_ERR(cand_cache)) { 4596 err = PTR_ERR(cand_cache); 4597 goto out; 4598 } 4599 4600 seg = &obj->btf_ext->field_reloc_info; 4601 for_each_btf_ext_sec(seg, sec) { 4602 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 4603 if (str_is_empty(sec_name)) { 4604 err = -EINVAL; 4605 goto out; 4606 } 4607 prog = bpf_object__find_program_by_title(obj, sec_name); 4608 if (!prog) { 4609 pr_warn("failed to find program '%s' for CO-RE offset relocation\n", 4610 sec_name); 4611 err = -EINVAL; 4612 goto out; 4613 } 4614 4615 pr_debug("prog '%s': performing %d CO-RE offset relocs\n", 4616 sec_name, sec->num_info); 4617 4618 for_each_btf_ext_rec(seg, sec, i, rec) { 4619 err = bpf_core_reloc_field(prog, rec, i, obj->btf, 4620 targ_btf, cand_cache); 4621 if (err) { 4622 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 4623 sec_name, i, err); 4624 goto out; 4625 } 4626 } 4627 } 4628 4629 out: 4630 btf__free(targ_btf); 4631 if (!IS_ERR_OR_NULL(cand_cache)) { 4632 hashmap__for_each_entry(cand_cache, entry, i) { 4633 bpf_core_free_cands(entry->value); 4634 } 4635 hashmap__free(cand_cache); 4636 } 4637 return err; 4638 } 4639 4640 static int 4641 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 4642 { 4643 int err = 0; 4644 4645 if (obj->btf_ext->field_reloc_info.len) 4646 err = bpf_core_reloc_fields(obj, targ_btf_path); 4647 4648 return err; 4649 } 4650 4651 static int 4652 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, 4653 struct reloc_desc *relo) 4654 { 4655 struct bpf_insn *insn, *new_insn; 4656 struct bpf_program *text; 4657 size_t new_cnt; 4658 int err; 4659 4660 if (prog->idx != obj->efile.text_shndx && prog->main_prog_cnt == 0) { 4661 text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); 4662 if (!text) { 4663 pr_warn("no .text section found yet relo into text exist\n"); 4664 return -LIBBPF_ERRNO__RELOC; 4665 } 4666 new_cnt = prog->insns_cnt + text->insns_cnt; 4667 new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); 4668 if (!new_insn) { 4669 pr_warn("oom in prog realloc\n"); 4670 return -ENOMEM; 4671 } 4672 prog->insns = new_insn; 4673 4674 if (obj->btf_ext) { 4675 err = bpf_program_reloc_btf_ext(prog, obj, 4676 text->section_name, 4677 prog->insns_cnt); 4678 if (err) 4679 return err; 4680 } 4681 4682 memcpy(new_insn + prog->insns_cnt, text->insns, 4683 text->insns_cnt * sizeof(*insn)); 4684 prog->main_prog_cnt = prog->insns_cnt; 4685 prog->insns_cnt = new_cnt; 4686 pr_debug("added %zd insn from %s to prog %s\n", 4687 text->insns_cnt, text->section_name, 4688 prog->section_name); 4689 } 4690 4691 insn = &prog->insns[relo->insn_idx]; 4692 insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; 4693 return 0; 4694 } 4695 4696 static int 4697 bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) 4698 { 4699 int i, err; 4700 4701 if (!prog) 4702 return 0; 4703 4704 if (obj->btf_ext) { 4705 err = bpf_program_reloc_btf_ext(prog, obj, 4706 prog->section_name, 0); 4707 if (err) 4708 return err; 4709 } 4710 4711 if (!prog->reloc_desc) 4712 return 0; 4713 4714 for (i = 0; i < prog->nr_reloc; i++) { 4715 struct reloc_desc *relo = &prog->reloc_desc[i]; 4716 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 4717 4718 if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { 4719 pr_warn("relocation out of range: '%s'\n", 4720 prog->section_name); 4721 return -LIBBPF_ERRNO__RELOC; 4722 } 4723 4724 switch (relo->type) { 4725 case RELO_LD64: 4726 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 4727 insn[0].imm = obj->maps[relo->map_idx].fd; 4728 break; 4729 case RELO_DATA: 4730 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4731 insn[1].imm = insn[0].imm + relo->sym_off; 4732 insn[0].imm = obj->maps[relo->map_idx].fd; 4733 break; 4734 case RELO_EXTERN: 4735 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4736 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 4737 insn[1].imm = relo->sym_off; 4738 break; 4739 case RELO_CALL: 4740 err = bpf_program__reloc_text(prog, obj, relo); 4741 if (err) 4742 return err; 4743 break; 4744 default: 4745 pr_warn("relo #%d: bad relo type %d\n", i, relo->type); 4746 return -EINVAL; 4747 } 4748 } 4749 4750 zfree(&prog->reloc_desc); 4751 prog->nr_reloc = 0; 4752 return 0; 4753 } 4754 4755 static int 4756 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 4757 { 4758 struct bpf_program *prog; 4759 size_t i; 4760 int err; 4761 4762 if (obj->btf_ext) { 4763 err = bpf_object__relocate_core(obj, targ_btf_path); 4764 if (err) { 4765 pr_warn("failed to perform CO-RE relocations: %d\n", 4766 err); 4767 return err; 4768 } 4769 } 4770 /* ensure .text is relocated first, as it's going to be copied as-is 4771 * later for sub-program calls 4772 */ 4773 for (i = 0; i < obj->nr_programs; i++) { 4774 prog = &obj->programs[i]; 4775 if (prog->idx != obj->efile.text_shndx) 4776 continue; 4777 4778 err = bpf_program__relocate(prog, obj); 4779 if (err) { 4780 pr_warn("failed to relocate '%s'\n", prog->section_name); 4781 return err; 4782 } 4783 break; 4784 } 4785 /* now relocate everything but .text, which by now is relocated 4786 * properly, so we can copy raw sub-program instructions as is safely 4787 */ 4788 for (i = 0; i < obj->nr_programs; i++) { 4789 prog = &obj->programs[i]; 4790 if (prog->idx == obj->efile.text_shndx) 4791 continue; 4792 4793 err = bpf_program__relocate(prog, obj); 4794 if (err) { 4795 pr_warn("failed to relocate '%s'\n", prog->section_name); 4796 return err; 4797 } 4798 } 4799 return 0; 4800 } 4801 4802 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 4803 GElf_Shdr *shdr, 4804 Elf_Data *data); 4805 4806 static int bpf_object__collect_reloc(struct bpf_object *obj) 4807 { 4808 int i, err; 4809 4810 if (!obj_elf_valid(obj)) { 4811 pr_warn("Internal error: elf object is closed\n"); 4812 return -LIBBPF_ERRNO__INTERNAL; 4813 } 4814 4815 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 4816 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 4817 Elf_Data *data = obj->efile.reloc_sects[i].data; 4818 int idx = shdr->sh_info; 4819 struct bpf_program *prog; 4820 4821 if (shdr->sh_type != SHT_REL) { 4822 pr_warn("internal error at %d\n", __LINE__); 4823 return -LIBBPF_ERRNO__INTERNAL; 4824 } 4825 4826 if (idx == obj->efile.st_ops_shndx) { 4827 err = bpf_object__collect_struct_ops_map_reloc(obj, 4828 shdr, 4829 data); 4830 if (err) 4831 return err; 4832 continue; 4833 } 4834 4835 prog = bpf_object__find_prog_by_idx(obj, idx); 4836 if (!prog) { 4837 pr_warn("relocation failed: no section(%d)\n", idx); 4838 return -LIBBPF_ERRNO__RELOC; 4839 } 4840 4841 err = bpf_program__collect_reloc(prog, shdr, data, obj); 4842 if (err) 4843 return err; 4844 } 4845 return 0; 4846 } 4847 4848 static int 4849 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 4850 char *license, __u32 kern_version, int *pfd) 4851 { 4852 struct bpf_load_program_attr load_attr; 4853 char *cp, errmsg[STRERR_BUFSIZE]; 4854 int log_buf_size = BPF_LOG_BUF_SIZE; 4855 char *log_buf; 4856 int btf_fd, ret; 4857 4858 if (!insns || !insns_cnt) 4859 return -EINVAL; 4860 4861 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 4862 load_attr.prog_type = prog->type; 4863 load_attr.expected_attach_type = prog->expected_attach_type; 4864 if (prog->caps->name) 4865 load_attr.name = prog->name; 4866 load_attr.insns = insns; 4867 load_attr.insns_cnt = insns_cnt; 4868 load_attr.license = license; 4869 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 4870 load_attr.attach_btf_id = prog->attach_btf_id; 4871 } else if (prog->type == BPF_PROG_TYPE_TRACING || 4872 prog->type == BPF_PROG_TYPE_EXT) { 4873 load_attr.attach_prog_fd = prog->attach_prog_fd; 4874 load_attr.attach_btf_id = prog->attach_btf_id; 4875 } else { 4876 load_attr.kern_version = kern_version; 4877 load_attr.prog_ifindex = prog->prog_ifindex; 4878 } 4879 /* if .BTF.ext was loaded, kernel supports associated BTF for prog */ 4880 if (prog->obj->btf_ext) 4881 btf_fd = bpf_object__btf_fd(prog->obj); 4882 else 4883 btf_fd = -1; 4884 load_attr.prog_btf_fd = btf_fd >= 0 ? btf_fd : 0; 4885 load_attr.func_info = prog->func_info; 4886 load_attr.func_info_rec_size = prog->func_info_rec_size; 4887 load_attr.func_info_cnt = prog->func_info_cnt; 4888 load_attr.line_info = prog->line_info; 4889 load_attr.line_info_rec_size = prog->line_info_rec_size; 4890 load_attr.line_info_cnt = prog->line_info_cnt; 4891 load_attr.log_level = prog->log_level; 4892 load_attr.prog_flags = prog->prog_flags; 4893 4894 retry_load: 4895 log_buf = malloc(log_buf_size); 4896 if (!log_buf) 4897 pr_warn("Alloc log buffer for bpf loader error, continue without log\n"); 4898 4899 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 4900 4901 if (ret >= 0) { 4902 if (load_attr.log_level) 4903 pr_debug("verifier log:\n%s", log_buf); 4904 *pfd = ret; 4905 ret = 0; 4906 goto out; 4907 } 4908 4909 if (errno == ENOSPC) { 4910 log_buf_size <<= 1; 4911 free(log_buf); 4912 goto retry_load; 4913 } 4914 ret = -errno; 4915 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4916 pr_warn("load bpf program failed: %s\n", cp); 4917 pr_perm_msg(ret); 4918 4919 if (log_buf && log_buf[0] != '\0') { 4920 ret = -LIBBPF_ERRNO__VERIFY; 4921 pr_warn("-- BEGIN DUMP LOG ---\n"); 4922 pr_warn("\n%s\n", log_buf); 4923 pr_warn("-- END LOG --\n"); 4924 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 4925 pr_warn("Program too large (%zu insns), at most %d insns\n", 4926 load_attr.insns_cnt, BPF_MAXINSNS); 4927 ret = -LIBBPF_ERRNO__PROG2BIG; 4928 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 4929 /* Wrong program type? */ 4930 int fd; 4931 4932 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 4933 load_attr.expected_attach_type = 0; 4934 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 4935 if (fd >= 0) { 4936 close(fd); 4937 ret = -LIBBPF_ERRNO__PROGTYPE; 4938 goto out; 4939 } 4940 } 4941 4942 out: 4943 free(log_buf); 4944 return ret; 4945 } 4946 4947 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 4948 4949 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 4950 { 4951 int err = 0, fd, i, btf_id; 4952 4953 if ((prog->type == BPF_PROG_TYPE_TRACING || 4954 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 4955 btf_id = libbpf_find_attach_btf_id(prog); 4956 if (btf_id <= 0) 4957 return btf_id; 4958 prog->attach_btf_id = btf_id; 4959 } 4960 4961 if (prog->instances.nr < 0 || !prog->instances.fds) { 4962 if (prog->preprocessor) { 4963 pr_warn("Internal error: can't load program '%s'\n", 4964 prog->section_name); 4965 return -LIBBPF_ERRNO__INTERNAL; 4966 } 4967 4968 prog->instances.fds = malloc(sizeof(int)); 4969 if (!prog->instances.fds) { 4970 pr_warn("Not enough memory for BPF fds\n"); 4971 return -ENOMEM; 4972 } 4973 prog->instances.nr = 1; 4974 prog->instances.fds[0] = -1; 4975 } 4976 4977 if (!prog->preprocessor) { 4978 if (prog->instances.nr != 1) { 4979 pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", 4980 prog->section_name, prog->instances.nr); 4981 } 4982 err = load_program(prog, prog->insns, prog->insns_cnt, 4983 license, kern_ver, &fd); 4984 if (!err) 4985 prog->instances.fds[0] = fd; 4986 goto out; 4987 } 4988 4989 for (i = 0; i < prog->instances.nr; i++) { 4990 struct bpf_prog_prep_result result; 4991 bpf_program_prep_t preprocessor = prog->preprocessor; 4992 4993 memset(&result, 0, sizeof(result)); 4994 err = preprocessor(prog, i, prog->insns, 4995 prog->insns_cnt, &result); 4996 if (err) { 4997 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 4998 i, prog->section_name); 4999 goto out; 5000 } 5001 5002 if (!result.new_insn_ptr || !result.new_insn_cnt) { 5003 pr_debug("Skip loading the %dth instance of program '%s'\n", 5004 i, prog->section_name); 5005 prog->instances.fds[i] = -1; 5006 if (result.pfd) 5007 *result.pfd = -1; 5008 continue; 5009 } 5010 5011 err = load_program(prog, result.new_insn_ptr, 5012 result.new_insn_cnt, license, kern_ver, &fd); 5013 if (err) { 5014 pr_warn("Loading the %dth instance of program '%s' failed\n", 5015 i, prog->section_name); 5016 goto out; 5017 } 5018 5019 if (result.pfd) 5020 *result.pfd = fd; 5021 prog->instances.fds[i] = fd; 5022 } 5023 out: 5024 if (err) 5025 pr_warn("failed to load program '%s'\n", prog->section_name); 5026 zfree(&prog->insns); 5027 prog->insns_cnt = 0; 5028 return err; 5029 } 5030 5031 static bool bpf_program__is_function_storage(const struct bpf_program *prog, 5032 const struct bpf_object *obj) 5033 { 5034 return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; 5035 } 5036 5037 static int 5038 bpf_object__load_progs(struct bpf_object *obj, int log_level) 5039 { 5040 size_t i; 5041 int err; 5042 5043 for (i = 0; i < obj->nr_programs; i++) { 5044 if (bpf_program__is_function_storage(&obj->programs[i], obj)) 5045 continue; 5046 obj->programs[i].log_level |= log_level; 5047 err = bpf_program__load(&obj->programs[i], 5048 obj->license, 5049 obj->kern_version); 5050 if (err) 5051 return err; 5052 } 5053 return 0; 5054 } 5055 5056 static struct bpf_object * 5057 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 5058 const struct bpf_object_open_opts *opts) 5059 { 5060 const char *obj_name, *kconfig; 5061 struct bpf_program *prog; 5062 struct bpf_object *obj; 5063 char tmp_name[64]; 5064 int err; 5065 5066 if (elf_version(EV_CURRENT) == EV_NONE) { 5067 pr_warn("failed to init libelf for %s\n", 5068 path ? : "(mem buf)"); 5069 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 5070 } 5071 5072 if (!OPTS_VALID(opts, bpf_object_open_opts)) 5073 return ERR_PTR(-EINVAL); 5074 5075 obj_name = OPTS_GET(opts, object_name, NULL); 5076 if (obj_buf) { 5077 if (!obj_name) { 5078 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 5079 (unsigned long)obj_buf, 5080 (unsigned long)obj_buf_sz); 5081 obj_name = tmp_name; 5082 } 5083 path = obj_name; 5084 pr_debug("loading object '%s' from buffer\n", obj_name); 5085 } 5086 5087 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 5088 if (IS_ERR(obj)) 5089 return obj; 5090 5091 kconfig = OPTS_GET(opts, kconfig, NULL); 5092 if (kconfig) { 5093 obj->kconfig = strdup(kconfig); 5094 if (!obj->kconfig) 5095 return ERR_PTR(-ENOMEM); 5096 } 5097 5098 err = bpf_object__elf_init(obj); 5099 err = err ? : bpf_object__check_endianness(obj); 5100 err = err ? : bpf_object__elf_collect(obj); 5101 err = err ? : bpf_object__collect_externs(obj); 5102 err = err ? : bpf_object__finalize_btf(obj); 5103 err = err ? : bpf_object__init_maps(obj, opts); 5104 err = err ? : bpf_object__init_prog_names(obj); 5105 err = err ? : bpf_object__collect_reloc(obj); 5106 if (err) 5107 goto out; 5108 bpf_object__elf_finish(obj); 5109 5110 bpf_object__for_each_program(prog, obj) { 5111 enum bpf_prog_type prog_type; 5112 enum bpf_attach_type attach_type; 5113 5114 if (prog->type != BPF_PROG_TYPE_UNSPEC) 5115 continue; 5116 5117 err = libbpf_prog_type_by_name(prog->section_name, &prog_type, 5118 &attach_type); 5119 if (err == -ESRCH) 5120 /* couldn't guess, but user might manually specify */ 5121 continue; 5122 if (err) 5123 goto out; 5124 5125 bpf_program__set_type(prog, prog_type); 5126 bpf_program__set_expected_attach_type(prog, attach_type); 5127 if (prog_type == BPF_PROG_TYPE_TRACING || 5128 prog_type == BPF_PROG_TYPE_EXT) 5129 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 5130 } 5131 5132 return obj; 5133 out: 5134 bpf_object__close(obj); 5135 return ERR_PTR(err); 5136 } 5137 5138 static struct bpf_object * 5139 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 5140 { 5141 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5142 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 5143 ); 5144 5145 /* param validation */ 5146 if (!attr->file) 5147 return NULL; 5148 5149 pr_debug("loading %s\n", attr->file); 5150 return __bpf_object__open(attr->file, NULL, 0, &opts); 5151 } 5152 5153 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 5154 { 5155 return __bpf_object__open_xattr(attr, 0); 5156 } 5157 5158 struct bpf_object *bpf_object__open(const char *path) 5159 { 5160 struct bpf_object_open_attr attr = { 5161 .file = path, 5162 .prog_type = BPF_PROG_TYPE_UNSPEC, 5163 }; 5164 5165 return bpf_object__open_xattr(&attr); 5166 } 5167 5168 struct bpf_object * 5169 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 5170 { 5171 if (!path) 5172 return ERR_PTR(-EINVAL); 5173 5174 pr_debug("loading %s\n", path); 5175 5176 return __bpf_object__open(path, NULL, 0, opts); 5177 } 5178 5179 struct bpf_object * 5180 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 5181 const struct bpf_object_open_opts *opts) 5182 { 5183 if (!obj_buf || obj_buf_sz == 0) 5184 return ERR_PTR(-EINVAL); 5185 5186 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 5187 } 5188 5189 struct bpf_object * 5190 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 5191 const char *name) 5192 { 5193 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5194 .object_name = name, 5195 /* wrong default, but backwards-compatible */ 5196 .relaxed_maps = true, 5197 ); 5198 5199 /* returning NULL is wrong, but backwards-compatible */ 5200 if (!obj_buf || obj_buf_sz == 0) 5201 return NULL; 5202 5203 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 5204 } 5205 5206 int bpf_object__unload(struct bpf_object *obj) 5207 { 5208 size_t i; 5209 5210 if (!obj) 5211 return -EINVAL; 5212 5213 for (i = 0; i < obj->nr_maps; i++) { 5214 zclose(obj->maps[i].fd); 5215 if (obj->maps[i].st_ops) 5216 zfree(&obj->maps[i].st_ops->kern_vdata); 5217 } 5218 5219 for (i = 0; i < obj->nr_programs; i++) 5220 bpf_program__unload(&obj->programs[i]); 5221 5222 return 0; 5223 } 5224 5225 static int bpf_object__sanitize_maps(struct bpf_object *obj) 5226 { 5227 struct bpf_map *m; 5228 5229 bpf_object__for_each_map(m, obj) { 5230 if (!bpf_map__is_internal(m)) 5231 continue; 5232 if (!obj->caps.global_data) { 5233 pr_warn("kernel doesn't support global data\n"); 5234 return -ENOTSUP; 5235 } 5236 if (!obj->caps.array_mmap) 5237 m->def.map_flags ^= BPF_F_MMAPABLE; 5238 } 5239 5240 return 0; 5241 } 5242 5243 static int bpf_object__resolve_externs(struct bpf_object *obj, 5244 const char *extra_kconfig) 5245 { 5246 bool need_config = false; 5247 struct extern_desc *ext; 5248 int err, i; 5249 void *data; 5250 5251 if (obj->nr_extern == 0) 5252 return 0; 5253 5254 data = obj->maps[obj->kconfig_map_idx].mmaped; 5255 5256 for (i = 0; i < obj->nr_extern; i++) { 5257 ext = &obj->externs[i]; 5258 5259 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 5260 void *ext_val = data + ext->data_off; 5261 __u32 kver = get_kernel_version(); 5262 5263 if (!kver) { 5264 pr_warn("failed to get kernel version\n"); 5265 return -EINVAL; 5266 } 5267 err = set_ext_value_num(ext, ext_val, kver); 5268 if (err) 5269 return err; 5270 pr_debug("extern %s=0x%x\n", ext->name, kver); 5271 } else if (strncmp(ext->name, "CONFIG_", 7) == 0) { 5272 need_config = true; 5273 } else { 5274 pr_warn("unrecognized extern '%s'\n", ext->name); 5275 return -EINVAL; 5276 } 5277 } 5278 if (need_config && extra_kconfig) { 5279 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, data); 5280 if (err) 5281 return -EINVAL; 5282 need_config = false; 5283 for (i = 0; i < obj->nr_extern; i++) { 5284 ext = &obj->externs[i]; 5285 if (!ext->is_set) { 5286 need_config = true; 5287 break; 5288 } 5289 } 5290 } 5291 if (need_config) { 5292 err = bpf_object__read_kconfig_file(obj, data); 5293 if (err) 5294 return -EINVAL; 5295 } 5296 for (i = 0; i < obj->nr_extern; i++) { 5297 ext = &obj->externs[i]; 5298 5299 if (!ext->is_set && !ext->is_weak) { 5300 pr_warn("extern %s (strong) not resolved\n", ext->name); 5301 return -ESRCH; 5302 } else if (!ext->is_set) { 5303 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 5304 ext->name); 5305 } 5306 } 5307 5308 return 0; 5309 } 5310 5311 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 5312 { 5313 struct bpf_object *obj; 5314 int err, i; 5315 5316 if (!attr) 5317 return -EINVAL; 5318 obj = attr->obj; 5319 if (!obj) 5320 return -EINVAL; 5321 5322 if (obj->loaded) { 5323 pr_warn("object should not be loaded twice\n"); 5324 return -EINVAL; 5325 } 5326 5327 obj->loaded = true; 5328 5329 err = bpf_object__probe_caps(obj); 5330 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 5331 err = err ? : bpf_object__sanitize_and_load_btf(obj); 5332 err = err ? : bpf_object__sanitize_maps(obj); 5333 err = err ? : bpf_object__load_vmlinux_btf(obj); 5334 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 5335 err = err ? : bpf_object__create_maps(obj); 5336 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 5337 err = err ? : bpf_object__load_progs(obj, attr->log_level); 5338 5339 btf__free(obj->btf_vmlinux); 5340 obj->btf_vmlinux = NULL; 5341 5342 if (err) 5343 goto out; 5344 5345 return 0; 5346 out: 5347 /* unpin any maps that were auto-pinned during load */ 5348 for (i = 0; i < obj->nr_maps; i++) 5349 if (obj->maps[i].pinned && !obj->maps[i].reused) 5350 bpf_map__unpin(&obj->maps[i], NULL); 5351 5352 bpf_object__unload(obj); 5353 pr_warn("failed to load object '%s'\n", obj->path); 5354 return err; 5355 } 5356 5357 int bpf_object__load(struct bpf_object *obj) 5358 { 5359 struct bpf_object_load_attr attr = { 5360 .obj = obj, 5361 }; 5362 5363 return bpf_object__load_xattr(&attr); 5364 } 5365 5366 static int make_parent_dir(const char *path) 5367 { 5368 char *cp, errmsg[STRERR_BUFSIZE]; 5369 char *dname, *dir; 5370 int err = 0; 5371 5372 dname = strdup(path); 5373 if (dname == NULL) 5374 return -ENOMEM; 5375 5376 dir = dirname(dname); 5377 if (mkdir(dir, 0700) && errno != EEXIST) 5378 err = -errno; 5379 5380 free(dname); 5381 if (err) { 5382 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5383 pr_warn("failed to mkdir %s: %s\n", path, cp); 5384 } 5385 return err; 5386 } 5387 5388 static int check_path(const char *path) 5389 { 5390 char *cp, errmsg[STRERR_BUFSIZE]; 5391 struct statfs st_fs; 5392 char *dname, *dir; 5393 int err = 0; 5394 5395 if (path == NULL) 5396 return -EINVAL; 5397 5398 dname = strdup(path); 5399 if (dname == NULL) 5400 return -ENOMEM; 5401 5402 dir = dirname(dname); 5403 if (statfs(dir, &st_fs)) { 5404 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5405 pr_warn("failed to statfs %s: %s\n", dir, cp); 5406 err = -errno; 5407 } 5408 free(dname); 5409 5410 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 5411 pr_warn("specified path %s is not on BPF FS\n", path); 5412 err = -EINVAL; 5413 } 5414 5415 return err; 5416 } 5417 5418 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 5419 int instance) 5420 { 5421 char *cp, errmsg[STRERR_BUFSIZE]; 5422 int err; 5423 5424 err = make_parent_dir(path); 5425 if (err) 5426 return err; 5427 5428 err = check_path(path); 5429 if (err) 5430 return err; 5431 5432 if (prog == NULL) { 5433 pr_warn("invalid program pointer\n"); 5434 return -EINVAL; 5435 } 5436 5437 if (instance < 0 || instance >= prog->instances.nr) { 5438 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5439 instance, prog->section_name, prog->instances.nr); 5440 return -EINVAL; 5441 } 5442 5443 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 5444 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5445 pr_warn("failed to pin program: %s\n", cp); 5446 return -errno; 5447 } 5448 pr_debug("pinned program '%s'\n", path); 5449 5450 return 0; 5451 } 5452 5453 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 5454 int instance) 5455 { 5456 int err; 5457 5458 err = check_path(path); 5459 if (err) 5460 return err; 5461 5462 if (prog == NULL) { 5463 pr_warn("invalid program pointer\n"); 5464 return -EINVAL; 5465 } 5466 5467 if (instance < 0 || instance >= prog->instances.nr) { 5468 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5469 instance, prog->section_name, prog->instances.nr); 5470 return -EINVAL; 5471 } 5472 5473 err = unlink(path); 5474 if (err != 0) 5475 return -errno; 5476 pr_debug("unpinned program '%s'\n", path); 5477 5478 return 0; 5479 } 5480 5481 int bpf_program__pin(struct bpf_program *prog, const char *path) 5482 { 5483 int i, err; 5484 5485 err = make_parent_dir(path); 5486 if (err) 5487 return err; 5488 5489 err = check_path(path); 5490 if (err) 5491 return err; 5492 5493 if (prog == NULL) { 5494 pr_warn("invalid program pointer\n"); 5495 return -EINVAL; 5496 } 5497 5498 if (prog->instances.nr <= 0) { 5499 pr_warn("no instances of prog %s to pin\n", 5500 prog->section_name); 5501 return -EINVAL; 5502 } 5503 5504 if (prog->instances.nr == 1) { 5505 /* don't create subdirs when pinning single instance */ 5506 return bpf_program__pin_instance(prog, path, 0); 5507 } 5508 5509 for (i = 0; i < prog->instances.nr; i++) { 5510 char buf[PATH_MAX]; 5511 int len; 5512 5513 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5514 if (len < 0) { 5515 err = -EINVAL; 5516 goto err_unpin; 5517 } else if (len >= PATH_MAX) { 5518 err = -ENAMETOOLONG; 5519 goto err_unpin; 5520 } 5521 5522 err = bpf_program__pin_instance(prog, buf, i); 5523 if (err) 5524 goto err_unpin; 5525 } 5526 5527 return 0; 5528 5529 err_unpin: 5530 for (i = i - 1; i >= 0; i--) { 5531 char buf[PATH_MAX]; 5532 int len; 5533 5534 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5535 if (len < 0) 5536 continue; 5537 else if (len >= PATH_MAX) 5538 continue; 5539 5540 bpf_program__unpin_instance(prog, buf, i); 5541 } 5542 5543 rmdir(path); 5544 5545 return err; 5546 } 5547 5548 int bpf_program__unpin(struct bpf_program *prog, const char *path) 5549 { 5550 int i, err; 5551 5552 err = check_path(path); 5553 if (err) 5554 return err; 5555 5556 if (prog == NULL) { 5557 pr_warn("invalid program pointer\n"); 5558 return -EINVAL; 5559 } 5560 5561 if (prog->instances.nr <= 0) { 5562 pr_warn("no instances of prog %s to pin\n", 5563 prog->section_name); 5564 return -EINVAL; 5565 } 5566 5567 if (prog->instances.nr == 1) { 5568 /* don't create subdirs when pinning single instance */ 5569 return bpf_program__unpin_instance(prog, path, 0); 5570 } 5571 5572 for (i = 0; i < prog->instances.nr; i++) { 5573 char buf[PATH_MAX]; 5574 int len; 5575 5576 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5577 if (len < 0) 5578 return -EINVAL; 5579 else if (len >= PATH_MAX) 5580 return -ENAMETOOLONG; 5581 5582 err = bpf_program__unpin_instance(prog, buf, i); 5583 if (err) 5584 return err; 5585 } 5586 5587 err = rmdir(path); 5588 if (err) 5589 return -errno; 5590 5591 return 0; 5592 } 5593 5594 int bpf_map__pin(struct bpf_map *map, const char *path) 5595 { 5596 char *cp, errmsg[STRERR_BUFSIZE]; 5597 int err; 5598 5599 if (map == NULL) { 5600 pr_warn("invalid map pointer\n"); 5601 return -EINVAL; 5602 } 5603 5604 if (map->pin_path) { 5605 if (path && strcmp(path, map->pin_path)) { 5606 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5607 bpf_map__name(map), map->pin_path, path); 5608 return -EINVAL; 5609 } else if (map->pinned) { 5610 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 5611 bpf_map__name(map), map->pin_path); 5612 return 0; 5613 } 5614 } else { 5615 if (!path) { 5616 pr_warn("missing a path to pin map '%s' at\n", 5617 bpf_map__name(map)); 5618 return -EINVAL; 5619 } else if (map->pinned) { 5620 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 5621 return -EEXIST; 5622 } 5623 5624 map->pin_path = strdup(path); 5625 if (!map->pin_path) { 5626 err = -errno; 5627 goto out_err; 5628 } 5629 } 5630 5631 err = make_parent_dir(map->pin_path); 5632 if (err) 5633 return err; 5634 5635 err = check_path(map->pin_path); 5636 if (err) 5637 return err; 5638 5639 if (bpf_obj_pin(map->fd, map->pin_path)) { 5640 err = -errno; 5641 goto out_err; 5642 } 5643 5644 map->pinned = true; 5645 pr_debug("pinned map '%s'\n", map->pin_path); 5646 5647 return 0; 5648 5649 out_err: 5650 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5651 pr_warn("failed to pin map: %s\n", cp); 5652 return err; 5653 } 5654 5655 int bpf_map__unpin(struct bpf_map *map, const char *path) 5656 { 5657 int err; 5658 5659 if (map == NULL) { 5660 pr_warn("invalid map pointer\n"); 5661 return -EINVAL; 5662 } 5663 5664 if (map->pin_path) { 5665 if (path && strcmp(path, map->pin_path)) { 5666 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5667 bpf_map__name(map), map->pin_path, path); 5668 return -EINVAL; 5669 } 5670 path = map->pin_path; 5671 } else if (!path) { 5672 pr_warn("no path to unpin map '%s' from\n", 5673 bpf_map__name(map)); 5674 return -EINVAL; 5675 } 5676 5677 err = check_path(path); 5678 if (err) 5679 return err; 5680 5681 err = unlink(path); 5682 if (err != 0) 5683 return -errno; 5684 5685 map->pinned = false; 5686 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 5687 5688 return 0; 5689 } 5690 5691 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 5692 { 5693 char *new = NULL; 5694 5695 if (path) { 5696 new = strdup(path); 5697 if (!new) 5698 return -errno; 5699 } 5700 5701 free(map->pin_path); 5702 map->pin_path = new; 5703 return 0; 5704 } 5705 5706 const char *bpf_map__get_pin_path(const struct bpf_map *map) 5707 { 5708 return map->pin_path; 5709 } 5710 5711 bool bpf_map__is_pinned(const struct bpf_map *map) 5712 { 5713 return map->pinned; 5714 } 5715 5716 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 5717 { 5718 struct bpf_map *map; 5719 int err; 5720 5721 if (!obj) 5722 return -ENOENT; 5723 5724 if (!obj->loaded) { 5725 pr_warn("object not yet loaded; load it first\n"); 5726 return -ENOENT; 5727 } 5728 5729 bpf_object__for_each_map(map, obj) { 5730 char *pin_path = NULL; 5731 char buf[PATH_MAX]; 5732 5733 if (path) { 5734 int len; 5735 5736 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5737 bpf_map__name(map)); 5738 if (len < 0) { 5739 err = -EINVAL; 5740 goto err_unpin_maps; 5741 } else if (len >= PATH_MAX) { 5742 err = -ENAMETOOLONG; 5743 goto err_unpin_maps; 5744 } 5745 pin_path = buf; 5746 } else if (!map->pin_path) { 5747 continue; 5748 } 5749 5750 err = bpf_map__pin(map, pin_path); 5751 if (err) 5752 goto err_unpin_maps; 5753 } 5754 5755 return 0; 5756 5757 err_unpin_maps: 5758 while ((map = bpf_map__prev(map, obj))) { 5759 if (!map->pin_path) 5760 continue; 5761 5762 bpf_map__unpin(map, NULL); 5763 } 5764 5765 return err; 5766 } 5767 5768 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 5769 { 5770 struct bpf_map *map; 5771 int err; 5772 5773 if (!obj) 5774 return -ENOENT; 5775 5776 bpf_object__for_each_map(map, obj) { 5777 char *pin_path = NULL; 5778 char buf[PATH_MAX]; 5779 5780 if (path) { 5781 int len; 5782 5783 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5784 bpf_map__name(map)); 5785 if (len < 0) 5786 return -EINVAL; 5787 else if (len >= PATH_MAX) 5788 return -ENAMETOOLONG; 5789 pin_path = buf; 5790 } else if (!map->pin_path) { 5791 continue; 5792 } 5793 5794 err = bpf_map__unpin(map, pin_path); 5795 if (err) 5796 return err; 5797 } 5798 5799 return 0; 5800 } 5801 5802 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 5803 { 5804 struct bpf_program *prog; 5805 int err; 5806 5807 if (!obj) 5808 return -ENOENT; 5809 5810 if (!obj->loaded) { 5811 pr_warn("object not yet loaded; load it first\n"); 5812 return -ENOENT; 5813 } 5814 5815 bpf_object__for_each_program(prog, obj) { 5816 char buf[PATH_MAX]; 5817 int len; 5818 5819 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5820 prog->pin_name); 5821 if (len < 0) { 5822 err = -EINVAL; 5823 goto err_unpin_programs; 5824 } else if (len >= PATH_MAX) { 5825 err = -ENAMETOOLONG; 5826 goto err_unpin_programs; 5827 } 5828 5829 err = bpf_program__pin(prog, buf); 5830 if (err) 5831 goto err_unpin_programs; 5832 } 5833 5834 return 0; 5835 5836 err_unpin_programs: 5837 while ((prog = bpf_program__prev(prog, obj))) { 5838 char buf[PATH_MAX]; 5839 int len; 5840 5841 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5842 prog->pin_name); 5843 if (len < 0) 5844 continue; 5845 else if (len >= PATH_MAX) 5846 continue; 5847 5848 bpf_program__unpin(prog, buf); 5849 } 5850 5851 return err; 5852 } 5853 5854 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 5855 { 5856 struct bpf_program *prog; 5857 int err; 5858 5859 if (!obj) 5860 return -ENOENT; 5861 5862 bpf_object__for_each_program(prog, obj) { 5863 char buf[PATH_MAX]; 5864 int len; 5865 5866 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5867 prog->pin_name); 5868 if (len < 0) 5869 return -EINVAL; 5870 else if (len >= PATH_MAX) 5871 return -ENAMETOOLONG; 5872 5873 err = bpf_program__unpin(prog, buf); 5874 if (err) 5875 return err; 5876 } 5877 5878 return 0; 5879 } 5880 5881 int bpf_object__pin(struct bpf_object *obj, const char *path) 5882 { 5883 int err; 5884 5885 err = bpf_object__pin_maps(obj, path); 5886 if (err) 5887 return err; 5888 5889 err = bpf_object__pin_programs(obj, path); 5890 if (err) { 5891 bpf_object__unpin_maps(obj, path); 5892 return err; 5893 } 5894 5895 return 0; 5896 } 5897 5898 void bpf_object__close(struct bpf_object *obj) 5899 { 5900 size_t i; 5901 5902 if (!obj) 5903 return; 5904 5905 if (obj->clear_priv) 5906 obj->clear_priv(obj, obj->priv); 5907 5908 bpf_object__elf_finish(obj); 5909 bpf_object__unload(obj); 5910 btf__free(obj->btf); 5911 btf_ext__free(obj->btf_ext); 5912 5913 for (i = 0; i < obj->nr_maps; i++) { 5914 struct bpf_map *map = &obj->maps[i]; 5915 5916 if (map->clear_priv) 5917 map->clear_priv(map, map->priv); 5918 map->priv = NULL; 5919 map->clear_priv = NULL; 5920 5921 if (map->mmaped) { 5922 munmap(map->mmaped, bpf_map_mmap_sz(map)); 5923 map->mmaped = NULL; 5924 } 5925 5926 if (map->st_ops) { 5927 zfree(&map->st_ops->data); 5928 zfree(&map->st_ops->progs); 5929 zfree(&map->st_ops->kern_func_off); 5930 zfree(&map->st_ops); 5931 } 5932 5933 zfree(&map->name); 5934 zfree(&map->pin_path); 5935 } 5936 5937 zfree(&obj->kconfig); 5938 zfree(&obj->externs); 5939 obj->nr_extern = 0; 5940 5941 zfree(&obj->maps); 5942 obj->nr_maps = 0; 5943 5944 if (obj->programs && obj->nr_programs) { 5945 for (i = 0; i < obj->nr_programs; i++) 5946 bpf_program__exit(&obj->programs[i]); 5947 } 5948 zfree(&obj->programs); 5949 5950 list_del(&obj->list); 5951 free(obj); 5952 } 5953 5954 struct bpf_object * 5955 bpf_object__next(struct bpf_object *prev) 5956 { 5957 struct bpf_object *next; 5958 5959 if (!prev) 5960 next = list_first_entry(&bpf_objects_list, 5961 struct bpf_object, 5962 list); 5963 else 5964 next = list_next_entry(prev, list); 5965 5966 /* Empty list is noticed here so don't need checking on entry. */ 5967 if (&next->list == &bpf_objects_list) 5968 return NULL; 5969 5970 return next; 5971 } 5972 5973 const char *bpf_object__name(const struct bpf_object *obj) 5974 { 5975 return obj ? obj->name : ERR_PTR(-EINVAL); 5976 } 5977 5978 unsigned int bpf_object__kversion(const struct bpf_object *obj) 5979 { 5980 return obj ? obj->kern_version : 0; 5981 } 5982 5983 struct btf *bpf_object__btf(const struct bpf_object *obj) 5984 { 5985 return obj ? obj->btf : NULL; 5986 } 5987 5988 int bpf_object__btf_fd(const struct bpf_object *obj) 5989 { 5990 return obj->btf ? btf__fd(obj->btf) : -1; 5991 } 5992 5993 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 5994 bpf_object_clear_priv_t clear_priv) 5995 { 5996 if (obj->priv && obj->clear_priv) 5997 obj->clear_priv(obj, obj->priv); 5998 5999 obj->priv = priv; 6000 obj->clear_priv = clear_priv; 6001 return 0; 6002 } 6003 6004 void *bpf_object__priv(const struct bpf_object *obj) 6005 { 6006 return obj ? obj->priv : ERR_PTR(-EINVAL); 6007 } 6008 6009 static struct bpf_program * 6010 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 6011 bool forward) 6012 { 6013 size_t nr_programs = obj->nr_programs; 6014 ssize_t idx; 6015 6016 if (!nr_programs) 6017 return NULL; 6018 6019 if (!p) 6020 /* Iter from the beginning */ 6021 return forward ? &obj->programs[0] : 6022 &obj->programs[nr_programs - 1]; 6023 6024 if (p->obj != obj) { 6025 pr_warn("error: program handler doesn't match object\n"); 6026 return NULL; 6027 } 6028 6029 idx = (p - obj->programs) + (forward ? 1 : -1); 6030 if (idx >= obj->nr_programs || idx < 0) 6031 return NULL; 6032 return &obj->programs[idx]; 6033 } 6034 6035 struct bpf_program * 6036 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 6037 { 6038 struct bpf_program *prog = prev; 6039 6040 do { 6041 prog = __bpf_program__iter(prog, obj, true); 6042 } while (prog && bpf_program__is_function_storage(prog, obj)); 6043 6044 return prog; 6045 } 6046 6047 struct bpf_program * 6048 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 6049 { 6050 struct bpf_program *prog = next; 6051 6052 do { 6053 prog = __bpf_program__iter(prog, obj, false); 6054 } while (prog && bpf_program__is_function_storage(prog, obj)); 6055 6056 return prog; 6057 } 6058 6059 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 6060 bpf_program_clear_priv_t clear_priv) 6061 { 6062 if (prog->priv && prog->clear_priv) 6063 prog->clear_priv(prog, prog->priv); 6064 6065 prog->priv = priv; 6066 prog->clear_priv = clear_priv; 6067 return 0; 6068 } 6069 6070 void *bpf_program__priv(const struct bpf_program *prog) 6071 { 6072 return prog ? prog->priv : ERR_PTR(-EINVAL); 6073 } 6074 6075 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 6076 { 6077 prog->prog_ifindex = ifindex; 6078 } 6079 6080 const char *bpf_program__name(const struct bpf_program *prog) 6081 { 6082 return prog->name; 6083 } 6084 6085 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 6086 { 6087 const char *title; 6088 6089 title = prog->section_name; 6090 if (needs_copy) { 6091 title = strdup(title); 6092 if (!title) { 6093 pr_warn("failed to strdup program title\n"); 6094 return ERR_PTR(-ENOMEM); 6095 } 6096 } 6097 6098 return title; 6099 } 6100 6101 int bpf_program__fd(const struct bpf_program *prog) 6102 { 6103 return bpf_program__nth_fd(prog, 0); 6104 } 6105 6106 size_t bpf_program__size(const struct bpf_program *prog) 6107 { 6108 return prog->insns_cnt * sizeof(struct bpf_insn); 6109 } 6110 6111 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 6112 bpf_program_prep_t prep) 6113 { 6114 int *instances_fds; 6115 6116 if (nr_instances <= 0 || !prep) 6117 return -EINVAL; 6118 6119 if (prog->instances.nr > 0 || prog->instances.fds) { 6120 pr_warn("Can't set pre-processor after loading\n"); 6121 return -EINVAL; 6122 } 6123 6124 instances_fds = malloc(sizeof(int) * nr_instances); 6125 if (!instances_fds) { 6126 pr_warn("alloc memory failed for fds\n"); 6127 return -ENOMEM; 6128 } 6129 6130 /* fill all fd with -1 */ 6131 memset(instances_fds, -1, sizeof(int) * nr_instances); 6132 6133 prog->instances.nr = nr_instances; 6134 prog->instances.fds = instances_fds; 6135 prog->preprocessor = prep; 6136 return 0; 6137 } 6138 6139 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 6140 { 6141 int fd; 6142 6143 if (!prog) 6144 return -EINVAL; 6145 6146 if (n >= prog->instances.nr || n < 0) { 6147 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 6148 n, prog->section_name, prog->instances.nr); 6149 return -EINVAL; 6150 } 6151 6152 fd = prog->instances.fds[n]; 6153 if (fd < 0) { 6154 pr_warn("%dth instance of program '%s' is invalid\n", 6155 n, prog->section_name); 6156 return -ENOENT; 6157 } 6158 6159 return fd; 6160 } 6161 6162 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 6163 { 6164 return prog->type; 6165 } 6166 6167 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 6168 { 6169 prog->type = type; 6170 } 6171 6172 static bool bpf_program__is_type(const struct bpf_program *prog, 6173 enum bpf_prog_type type) 6174 { 6175 return prog ? (prog->type == type) : false; 6176 } 6177 6178 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 6179 int bpf_program__set_##NAME(struct bpf_program *prog) \ 6180 { \ 6181 if (!prog) \ 6182 return -EINVAL; \ 6183 bpf_program__set_type(prog, TYPE); \ 6184 return 0; \ 6185 } \ 6186 \ 6187 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 6188 { \ 6189 return bpf_program__is_type(prog, TYPE); \ 6190 } \ 6191 6192 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 6193 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 6194 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 6195 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 6196 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 6197 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 6198 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 6199 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 6200 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 6201 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 6202 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 6203 6204 enum bpf_attach_type 6205 bpf_program__get_expected_attach_type(struct bpf_program *prog) 6206 { 6207 return prog->expected_attach_type; 6208 } 6209 6210 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 6211 enum bpf_attach_type type) 6212 { 6213 prog->expected_attach_type = type; 6214 } 6215 6216 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, is_attachable, btf, atype) \ 6217 { string, sizeof(string) - 1, ptype, eatype, is_attachable, btf, atype } 6218 6219 /* Programs that can NOT be attached. */ 6220 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 6221 6222 /* Programs that can be attached. */ 6223 #define BPF_APROG_SEC(string, ptype, atype) \ 6224 BPF_PROG_SEC_IMPL(string, ptype, 0, 1, 0, atype) 6225 6226 /* Programs that must specify expected attach type at load time. */ 6227 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 6228 BPF_PROG_SEC_IMPL(string, ptype, eatype, 1, 0, eatype) 6229 6230 /* Programs that use BTF to identify attach point */ 6231 #define BPF_PROG_BTF(string, ptype, eatype) \ 6232 BPF_PROG_SEC_IMPL(string, ptype, eatype, 0, 1, 0) 6233 6234 /* Programs that can be attached but attach type can't be identified by section 6235 * name. Kept for backward compatibility. 6236 */ 6237 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 6238 6239 #define SEC_DEF(sec_pfx, ptype, ...) { \ 6240 .sec = sec_pfx, \ 6241 .len = sizeof(sec_pfx) - 1, \ 6242 .prog_type = BPF_PROG_TYPE_##ptype, \ 6243 __VA_ARGS__ \ 6244 } 6245 6246 struct bpf_sec_def; 6247 6248 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 6249 struct bpf_program *prog); 6250 6251 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 6252 struct bpf_program *prog); 6253 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 6254 struct bpf_program *prog); 6255 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 6256 struct bpf_program *prog); 6257 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 6258 struct bpf_program *prog); 6259 6260 struct bpf_sec_def { 6261 const char *sec; 6262 size_t len; 6263 enum bpf_prog_type prog_type; 6264 enum bpf_attach_type expected_attach_type; 6265 bool is_attachable; 6266 bool is_attach_btf; 6267 enum bpf_attach_type attach_type; 6268 attach_fn_t attach_fn; 6269 }; 6270 6271 static const struct bpf_sec_def section_defs[] = { 6272 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 6273 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 6274 SEC_DEF("kprobe/", KPROBE, 6275 .attach_fn = attach_kprobe), 6276 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 6277 SEC_DEF("kretprobe/", KPROBE, 6278 .attach_fn = attach_kprobe), 6279 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 6280 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 6281 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 6282 SEC_DEF("tracepoint/", TRACEPOINT, 6283 .attach_fn = attach_tp), 6284 SEC_DEF("tp/", TRACEPOINT, 6285 .attach_fn = attach_tp), 6286 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 6287 .attach_fn = attach_raw_tp), 6288 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 6289 .attach_fn = attach_raw_tp), 6290 SEC_DEF("tp_btf/", TRACING, 6291 .expected_attach_type = BPF_TRACE_RAW_TP, 6292 .is_attach_btf = true, 6293 .attach_fn = attach_trace), 6294 SEC_DEF("fentry/", TRACING, 6295 .expected_attach_type = BPF_TRACE_FENTRY, 6296 .is_attach_btf = true, 6297 .attach_fn = attach_trace), 6298 SEC_DEF("fmod_ret/", TRACING, 6299 .expected_attach_type = BPF_MODIFY_RETURN, 6300 .is_attach_btf = true, 6301 .attach_fn = attach_trace), 6302 SEC_DEF("fexit/", TRACING, 6303 .expected_attach_type = BPF_TRACE_FEXIT, 6304 .is_attach_btf = true, 6305 .attach_fn = attach_trace), 6306 SEC_DEF("freplace/", EXT, 6307 .is_attach_btf = true, 6308 .attach_fn = attach_trace), 6309 BPF_PROG_SEC("xdp", BPF_PROG_TYPE_XDP), 6310 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 6311 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 6312 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 6313 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 6314 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 6315 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 6316 BPF_CGROUP_INET_INGRESS), 6317 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 6318 BPF_CGROUP_INET_EGRESS), 6319 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 6320 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 6321 BPF_CGROUP_INET_SOCK_CREATE), 6322 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 6323 BPF_CGROUP_INET4_POST_BIND), 6324 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 6325 BPF_CGROUP_INET6_POST_BIND), 6326 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 6327 BPF_CGROUP_DEVICE), 6328 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 6329 BPF_CGROUP_SOCK_OPS), 6330 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 6331 BPF_SK_SKB_STREAM_PARSER), 6332 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 6333 BPF_SK_SKB_STREAM_VERDICT), 6334 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 6335 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 6336 BPF_SK_MSG_VERDICT), 6337 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 6338 BPF_LIRC_MODE2), 6339 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 6340 BPF_FLOW_DISSECTOR), 6341 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6342 BPF_CGROUP_INET4_BIND), 6343 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6344 BPF_CGROUP_INET6_BIND), 6345 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6346 BPF_CGROUP_INET4_CONNECT), 6347 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6348 BPF_CGROUP_INET6_CONNECT), 6349 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6350 BPF_CGROUP_UDP4_SENDMSG), 6351 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6352 BPF_CGROUP_UDP6_SENDMSG), 6353 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6354 BPF_CGROUP_UDP4_RECVMSG), 6355 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6356 BPF_CGROUP_UDP6_RECVMSG), 6357 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 6358 BPF_CGROUP_SYSCTL), 6359 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6360 BPF_CGROUP_GETSOCKOPT), 6361 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6362 BPF_CGROUP_SETSOCKOPT), 6363 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 6364 }; 6365 6366 #undef BPF_PROG_SEC_IMPL 6367 #undef BPF_PROG_SEC 6368 #undef BPF_APROG_SEC 6369 #undef BPF_EAPROG_SEC 6370 #undef BPF_APROG_COMPAT 6371 #undef SEC_DEF 6372 6373 #define MAX_TYPE_NAME_SIZE 32 6374 6375 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 6376 { 6377 int i, n = ARRAY_SIZE(section_defs); 6378 6379 for (i = 0; i < n; i++) { 6380 if (strncmp(sec_name, 6381 section_defs[i].sec, section_defs[i].len)) 6382 continue; 6383 return §ion_defs[i]; 6384 } 6385 return NULL; 6386 } 6387 6388 static char *libbpf_get_type_names(bool attach_type) 6389 { 6390 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 6391 char *buf; 6392 6393 buf = malloc(len); 6394 if (!buf) 6395 return NULL; 6396 6397 buf[0] = '\0'; 6398 /* Forge string buf with all available names */ 6399 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6400 if (attach_type && !section_defs[i].is_attachable) 6401 continue; 6402 6403 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 6404 free(buf); 6405 return NULL; 6406 } 6407 strcat(buf, " "); 6408 strcat(buf, section_defs[i].sec); 6409 } 6410 6411 return buf; 6412 } 6413 6414 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 6415 enum bpf_attach_type *expected_attach_type) 6416 { 6417 const struct bpf_sec_def *sec_def; 6418 char *type_names; 6419 6420 if (!name) 6421 return -EINVAL; 6422 6423 sec_def = find_sec_def(name); 6424 if (sec_def) { 6425 *prog_type = sec_def->prog_type; 6426 *expected_attach_type = sec_def->expected_attach_type; 6427 return 0; 6428 } 6429 6430 pr_debug("failed to guess program type from ELF section '%s'\n", name); 6431 type_names = libbpf_get_type_names(false); 6432 if (type_names != NULL) { 6433 pr_debug("supported section(type) names are:%s\n", type_names); 6434 free(type_names); 6435 } 6436 6437 return -ESRCH; 6438 } 6439 6440 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 6441 size_t offset) 6442 { 6443 struct bpf_map *map; 6444 size_t i; 6445 6446 for (i = 0; i < obj->nr_maps; i++) { 6447 map = &obj->maps[i]; 6448 if (!bpf_map__is_struct_ops(map)) 6449 continue; 6450 if (map->sec_offset <= offset && 6451 offset - map->sec_offset < map->def.value_size) 6452 return map; 6453 } 6454 6455 return NULL; 6456 } 6457 6458 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 6459 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 6460 GElf_Shdr *shdr, 6461 Elf_Data *data) 6462 { 6463 const struct btf_member *member; 6464 struct bpf_struct_ops *st_ops; 6465 struct bpf_program *prog; 6466 unsigned int shdr_idx; 6467 const struct btf *btf; 6468 struct bpf_map *map; 6469 Elf_Data *symbols; 6470 unsigned int moff; 6471 const char *name; 6472 __u32 member_idx; 6473 GElf_Sym sym; 6474 GElf_Rel rel; 6475 int i, nrels; 6476 6477 symbols = obj->efile.symbols; 6478 btf = obj->btf; 6479 nrels = shdr->sh_size / shdr->sh_entsize; 6480 for (i = 0; i < nrels; i++) { 6481 if (!gelf_getrel(data, i, &rel)) { 6482 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 6483 return -LIBBPF_ERRNO__FORMAT; 6484 } 6485 6486 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6487 pr_warn("struct_ops reloc: symbol %zx not found\n", 6488 (size_t)GELF_R_SYM(rel.r_info)); 6489 return -LIBBPF_ERRNO__FORMAT; 6490 } 6491 6492 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 6493 sym.st_name) ? : "<?>"; 6494 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 6495 if (!map) { 6496 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 6497 (size_t)rel.r_offset); 6498 return -EINVAL; 6499 } 6500 6501 moff = rel.r_offset - map->sec_offset; 6502 shdr_idx = sym.st_shndx; 6503 st_ops = map->st_ops; 6504 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 6505 map->name, 6506 (long long)(rel.r_info >> 32), 6507 (long long)sym.st_value, 6508 shdr_idx, (size_t)rel.r_offset, 6509 map->sec_offset, sym.st_name, name); 6510 6511 if (shdr_idx >= SHN_LORESERVE) { 6512 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 6513 map->name, (size_t)rel.r_offset, shdr_idx); 6514 return -LIBBPF_ERRNO__RELOC; 6515 } 6516 6517 member = find_member_by_offset(st_ops->type, moff * 8); 6518 if (!member) { 6519 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 6520 map->name, moff); 6521 return -EINVAL; 6522 } 6523 member_idx = member - btf_members(st_ops->type); 6524 name = btf__name_by_offset(btf, member->name_off); 6525 6526 if (!resolve_func_ptr(btf, member->type, NULL)) { 6527 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 6528 map->name, name); 6529 return -EINVAL; 6530 } 6531 6532 prog = bpf_object__find_prog_by_idx(obj, shdr_idx); 6533 if (!prog) { 6534 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 6535 map->name, shdr_idx, name); 6536 return -EINVAL; 6537 } 6538 6539 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6540 const struct bpf_sec_def *sec_def; 6541 6542 sec_def = find_sec_def(prog->section_name); 6543 if (sec_def && 6544 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 6545 /* for pr_warn */ 6546 prog->type = sec_def->prog_type; 6547 goto invalid_prog; 6548 } 6549 6550 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 6551 prog->attach_btf_id = st_ops->type_id; 6552 prog->expected_attach_type = member_idx; 6553 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 6554 prog->attach_btf_id != st_ops->type_id || 6555 prog->expected_attach_type != member_idx) { 6556 goto invalid_prog; 6557 } 6558 st_ops->progs[member_idx] = prog; 6559 } 6560 6561 return 0; 6562 6563 invalid_prog: 6564 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 6565 map->name, prog->name, prog->section_name, prog->type, 6566 prog->attach_btf_id, prog->expected_attach_type, name); 6567 return -EINVAL; 6568 } 6569 6570 #define BTF_TRACE_PREFIX "btf_trace_" 6571 #define BTF_MAX_NAME_SIZE 128 6572 6573 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 6574 const char *name, __u32 kind) 6575 { 6576 char btf_type_name[BTF_MAX_NAME_SIZE]; 6577 int ret; 6578 6579 ret = snprintf(btf_type_name, sizeof(btf_type_name), 6580 "%s%s", prefix, name); 6581 /* snprintf returns the number of characters written excluding the 6582 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 6583 * indicates truncation. 6584 */ 6585 if (ret < 0 || ret >= sizeof(btf_type_name)) 6586 return -ENAMETOOLONG; 6587 return btf__find_by_name_kind(btf, btf_type_name, kind); 6588 } 6589 6590 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 6591 enum bpf_attach_type attach_type) 6592 { 6593 int err; 6594 6595 if (attach_type == BPF_TRACE_RAW_TP) 6596 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 6597 BTF_KIND_TYPEDEF); 6598 else 6599 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6600 6601 if (err <= 0) 6602 pr_warn("%s is not found in vmlinux BTF\n", name); 6603 6604 return err; 6605 } 6606 6607 int libbpf_find_vmlinux_btf_id(const char *name, 6608 enum bpf_attach_type attach_type) 6609 { 6610 struct btf *btf; 6611 6612 btf = libbpf_find_kernel_btf(); 6613 if (IS_ERR(btf)) { 6614 pr_warn("vmlinux BTF is not found\n"); 6615 return -EINVAL; 6616 } 6617 6618 return __find_vmlinux_btf_id(btf, name, attach_type); 6619 } 6620 6621 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 6622 { 6623 struct bpf_prog_info_linear *info_linear; 6624 struct bpf_prog_info *info; 6625 struct btf *btf = NULL; 6626 int err = -EINVAL; 6627 6628 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 6629 if (IS_ERR_OR_NULL(info_linear)) { 6630 pr_warn("failed get_prog_info_linear for FD %d\n", 6631 attach_prog_fd); 6632 return -EINVAL; 6633 } 6634 info = &info_linear->info; 6635 if (!info->btf_id) { 6636 pr_warn("The target program doesn't have BTF\n"); 6637 goto out; 6638 } 6639 if (btf__get_from_id(info->btf_id, &btf)) { 6640 pr_warn("Failed to get BTF of the program\n"); 6641 goto out; 6642 } 6643 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6644 btf__free(btf); 6645 if (err <= 0) { 6646 pr_warn("%s is not found in prog's BTF\n", name); 6647 goto out; 6648 } 6649 out: 6650 free(info_linear); 6651 return err; 6652 } 6653 6654 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 6655 { 6656 enum bpf_attach_type attach_type = prog->expected_attach_type; 6657 __u32 attach_prog_fd = prog->attach_prog_fd; 6658 const char *name = prog->section_name; 6659 int i, err; 6660 6661 if (!name) 6662 return -EINVAL; 6663 6664 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6665 if (!section_defs[i].is_attach_btf) 6666 continue; 6667 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6668 continue; 6669 if (attach_prog_fd) 6670 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 6671 attach_prog_fd); 6672 else 6673 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 6674 name + section_defs[i].len, 6675 attach_type); 6676 return err; 6677 } 6678 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 6679 return -ESRCH; 6680 } 6681 6682 int libbpf_attach_type_by_name(const char *name, 6683 enum bpf_attach_type *attach_type) 6684 { 6685 char *type_names; 6686 int i; 6687 6688 if (!name) 6689 return -EINVAL; 6690 6691 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6692 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6693 continue; 6694 if (!section_defs[i].is_attachable) 6695 return -EINVAL; 6696 *attach_type = section_defs[i].attach_type; 6697 return 0; 6698 } 6699 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 6700 type_names = libbpf_get_type_names(true); 6701 if (type_names != NULL) { 6702 pr_debug("attachable section(type) names are:%s\n", type_names); 6703 free(type_names); 6704 } 6705 6706 return -EINVAL; 6707 } 6708 6709 int bpf_map__fd(const struct bpf_map *map) 6710 { 6711 return map ? map->fd : -EINVAL; 6712 } 6713 6714 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 6715 { 6716 return map ? &map->def : ERR_PTR(-EINVAL); 6717 } 6718 6719 const char *bpf_map__name(const struct bpf_map *map) 6720 { 6721 return map ? map->name : NULL; 6722 } 6723 6724 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 6725 { 6726 return map ? map->btf_key_type_id : 0; 6727 } 6728 6729 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 6730 { 6731 return map ? map->btf_value_type_id : 0; 6732 } 6733 6734 int bpf_map__set_priv(struct bpf_map *map, void *priv, 6735 bpf_map_clear_priv_t clear_priv) 6736 { 6737 if (!map) 6738 return -EINVAL; 6739 6740 if (map->priv) { 6741 if (map->clear_priv) 6742 map->clear_priv(map, map->priv); 6743 } 6744 6745 map->priv = priv; 6746 map->clear_priv = clear_priv; 6747 return 0; 6748 } 6749 6750 void *bpf_map__priv(const struct bpf_map *map) 6751 { 6752 return map ? map->priv : ERR_PTR(-EINVAL); 6753 } 6754 6755 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 6756 { 6757 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 6758 } 6759 6760 bool bpf_map__is_internal(const struct bpf_map *map) 6761 { 6762 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 6763 } 6764 6765 void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 6766 { 6767 map->map_ifindex = ifindex; 6768 } 6769 6770 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 6771 { 6772 if (!bpf_map_type__is_map_in_map(map->def.type)) { 6773 pr_warn("error: unsupported map type\n"); 6774 return -EINVAL; 6775 } 6776 if (map->inner_map_fd != -1) { 6777 pr_warn("error: inner_map_fd already specified\n"); 6778 return -EINVAL; 6779 } 6780 map->inner_map_fd = fd; 6781 return 0; 6782 } 6783 6784 static struct bpf_map * 6785 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 6786 { 6787 ssize_t idx; 6788 struct bpf_map *s, *e; 6789 6790 if (!obj || !obj->maps) 6791 return NULL; 6792 6793 s = obj->maps; 6794 e = obj->maps + obj->nr_maps; 6795 6796 if ((m < s) || (m >= e)) { 6797 pr_warn("error in %s: map handler doesn't belong to object\n", 6798 __func__); 6799 return NULL; 6800 } 6801 6802 idx = (m - obj->maps) + i; 6803 if (idx >= obj->nr_maps || idx < 0) 6804 return NULL; 6805 return &obj->maps[idx]; 6806 } 6807 6808 struct bpf_map * 6809 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 6810 { 6811 if (prev == NULL) 6812 return obj->maps; 6813 6814 return __bpf_map__iter(prev, obj, 1); 6815 } 6816 6817 struct bpf_map * 6818 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 6819 { 6820 if (next == NULL) { 6821 if (!obj->nr_maps) 6822 return NULL; 6823 return obj->maps + obj->nr_maps - 1; 6824 } 6825 6826 return __bpf_map__iter(next, obj, -1); 6827 } 6828 6829 struct bpf_map * 6830 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 6831 { 6832 struct bpf_map *pos; 6833 6834 bpf_object__for_each_map(pos, obj) { 6835 if (pos->name && !strcmp(pos->name, name)) 6836 return pos; 6837 } 6838 return NULL; 6839 } 6840 6841 int 6842 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 6843 { 6844 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 6845 } 6846 6847 struct bpf_map * 6848 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 6849 { 6850 return ERR_PTR(-ENOTSUP); 6851 } 6852 6853 long libbpf_get_error(const void *ptr) 6854 { 6855 return PTR_ERR_OR_ZERO(ptr); 6856 } 6857 6858 int bpf_prog_load(const char *file, enum bpf_prog_type type, 6859 struct bpf_object **pobj, int *prog_fd) 6860 { 6861 struct bpf_prog_load_attr attr; 6862 6863 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 6864 attr.file = file; 6865 attr.prog_type = type; 6866 attr.expected_attach_type = 0; 6867 6868 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 6869 } 6870 6871 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 6872 struct bpf_object **pobj, int *prog_fd) 6873 { 6874 struct bpf_object_open_attr open_attr = {}; 6875 struct bpf_program *prog, *first_prog = NULL; 6876 struct bpf_object *obj; 6877 struct bpf_map *map; 6878 int err; 6879 6880 if (!attr) 6881 return -EINVAL; 6882 if (!attr->file) 6883 return -EINVAL; 6884 6885 open_attr.file = attr->file; 6886 open_attr.prog_type = attr->prog_type; 6887 6888 obj = bpf_object__open_xattr(&open_attr); 6889 if (IS_ERR_OR_NULL(obj)) 6890 return -ENOENT; 6891 6892 bpf_object__for_each_program(prog, obj) { 6893 enum bpf_attach_type attach_type = attr->expected_attach_type; 6894 /* 6895 * to preserve backwards compatibility, bpf_prog_load treats 6896 * attr->prog_type, if specified, as an override to whatever 6897 * bpf_object__open guessed 6898 */ 6899 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 6900 bpf_program__set_type(prog, attr->prog_type); 6901 bpf_program__set_expected_attach_type(prog, 6902 attach_type); 6903 } 6904 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 6905 /* 6906 * we haven't guessed from section name and user 6907 * didn't provide a fallback type, too bad... 6908 */ 6909 bpf_object__close(obj); 6910 return -EINVAL; 6911 } 6912 6913 prog->prog_ifindex = attr->ifindex; 6914 prog->log_level = attr->log_level; 6915 prog->prog_flags = attr->prog_flags; 6916 if (!first_prog) 6917 first_prog = prog; 6918 } 6919 6920 bpf_object__for_each_map(map, obj) { 6921 if (!bpf_map__is_offload_neutral(map)) 6922 map->map_ifindex = attr->ifindex; 6923 } 6924 6925 if (!first_prog) { 6926 pr_warn("object file doesn't contain bpf program\n"); 6927 bpf_object__close(obj); 6928 return -ENOENT; 6929 } 6930 6931 err = bpf_object__load(obj); 6932 if (err) { 6933 bpf_object__close(obj); 6934 return -EINVAL; 6935 } 6936 6937 *pobj = obj; 6938 *prog_fd = bpf_program__fd(first_prog); 6939 return 0; 6940 } 6941 6942 struct bpf_link { 6943 int (*detach)(struct bpf_link *link); 6944 int (*destroy)(struct bpf_link *link); 6945 char *pin_path; /* NULL, if not pinned */ 6946 int fd; /* hook FD, -1 if not applicable */ 6947 bool disconnected; 6948 }; 6949 6950 /* Release "ownership" of underlying BPF resource (typically, BPF program 6951 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 6952 * link, when destructed through bpf_link__destroy() call won't attempt to 6953 * detach/unregisted that BPF resource. This is useful in situations where, 6954 * say, attached BPF program has to outlive userspace program that attached it 6955 * in the system. Depending on type of BPF program, though, there might be 6956 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 6957 * exit of userspace program doesn't trigger automatic detachment and clean up 6958 * inside the kernel. 6959 */ 6960 void bpf_link__disconnect(struct bpf_link *link) 6961 { 6962 link->disconnected = true; 6963 } 6964 6965 int bpf_link__destroy(struct bpf_link *link) 6966 { 6967 int err = 0; 6968 6969 if (!link) 6970 return 0; 6971 6972 if (!link->disconnected && link->detach) 6973 err = link->detach(link); 6974 if (link->destroy) 6975 link->destroy(link); 6976 if (link->pin_path) 6977 free(link->pin_path); 6978 free(link); 6979 6980 return err; 6981 } 6982 6983 int bpf_link__fd(const struct bpf_link *link) 6984 { 6985 return link->fd; 6986 } 6987 6988 const char *bpf_link__pin_path(const struct bpf_link *link) 6989 { 6990 return link->pin_path; 6991 } 6992 6993 static int bpf_link__detach_fd(struct bpf_link *link) 6994 { 6995 return close(link->fd); 6996 } 6997 6998 struct bpf_link *bpf_link__open(const char *path) 6999 { 7000 struct bpf_link *link; 7001 int fd; 7002 7003 fd = bpf_obj_get(path); 7004 if (fd < 0) { 7005 fd = -errno; 7006 pr_warn("failed to open link at %s: %d\n", path, fd); 7007 return ERR_PTR(fd); 7008 } 7009 7010 link = calloc(1, sizeof(*link)); 7011 if (!link) { 7012 close(fd); 7013 return ERR_PTR(-ENOMEM); 7014 } 7015 link->detach = &bpf_link__detach_fd; 7016 link->fd = fd; 7017 7018 link->pin_path = strdup(path); 7019 if (!link->pin_path) { 7020 bpf_link__destroy(link); 7021 return ERR_PTR(-ENOMEM); 7022 } 7023 7024 return link; 7025 } 7026 7027 int bpf_link__pin(struct bpf_link *link, const char *path) 7028 { 7029 int err; 7030 7031 if (link->pin_path) 7032 return -EBUSY; 7033 err = make_parent_dir(path); 7034 if (err) 7035 return err; 7036 err = check_path(path); 7037 if (err) 7038 return err; 7039 7040 link->pin_path = strdup(path); 7041 if (!link->pin_path) 7042 return -ENOMEM; 7043 7044 if (bpf_obj_pin(link->fd, link->pin_path)) { 7045 err = -errno; 7046 zfree(&link->pin_path); 7047 return err; 7048 } 7049 7050 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 7051 return 0; 7052 } 7053 7054 int bpf_link__unpin(struct bpf_link *link) 7055 { 7056 int err; 7057 7058 if (!link->pin_path) 7059 return -EINVAL; 7060 7061 err = unlink(link->pin_path); 7062 if (err != 0) 7063 return -errno; 7064 7065 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 7066 zfree(&link->pin_path); 7067 return 0; 7068 } 7069 7070 static int bpf_link__detach_perf_event(struct bpf_link *link) 7071 { 7072 int err; 7073 7074 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 7075 if (err) 7076 err = -errno; 7077 7078 close(link->fd); 7079 return err; 7080 } 7081 7082 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 7083 int pfd) 7084 { 7085 char errmsg[STRERR_BUFSIZE]; 7086 struct bpf_link *link; 7087 int prog_fd, err; 7088 7089 if (pfd < 0) { 7090 pr_warn("program '%s': invalid perf event FD %d\n", 7091 bpf_program__title(prog, false), pfd); 7092 return ERR_PTR(-EINVAL); 7093 } 7094 prog_fd = bpf_program__fd(prog); 7095 if (prog_fd < 0) { 7096 pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", 7097 bpf_program__title(prog, false)); 7098 return ERR_PTR(-EINVAL); 7099 } 7100 7101 link = calloc(1, sizeof(*link)); 7102 if (!link) 7103 return ERR_PTR(-ENOMEM); 7104 link->detach = &bpf_link__detach_perf_event; 7105 link->fd = pfd; 7106 7107 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 7108 err = -errno; 7109 free(link); 7110 pr_warn("program '%s': failed to attach to pfd %d: %s\n", 7111 bpf_program__title(prog, false), pfd, 7112 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7113 return ERR_PTR(err); 7114 } 7115 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7116 err = -errno; 7117 free(link); 7118 pr_warn("program '%s': failed to enable pfd %d: %s\n", 7119 bpf_program__title(prog, false), pfd, 7120 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7121 return ERR_PTR(err); 7122 } 7123 return link; 7124 } 7125 7126 /* 7127 * this function is expected to parse integer in the range of [0, 2^31-1] from 7128 * given file using scanf format string fmt. If actual parsed value is 7129 * negative, the result might be indistinguishable from error 7130 */ 7131 static int parse_uint_from_file(const char *file, const char *fmt) 7132 { 7133 char buf[STRERR_BUFSIZE]; 7134 int err, ret; 7135 FILE *f; 7136 7137 f = fopen(file, "r"); 7138 if (!f) { 7139 err = -errno; 7140 pr_debug("failed to open '%s': %s\n", file, 7141 libbpf_strerror_r(err, buf, sizeof(buf))); 7142 return err; 7143 } 7144 err = fscanf(f, fmt, &ret); 7145 if (err != 1) { 7146 err = err == EOF ? -EIO : -errno; 7147 pr_debug("failed to parse '%s': %s\n", file, 7148 libbpf_strerror_r(err, buf, sizeof(buf))); 7149 fclose(f); 7150 return err; 7151 } 7152 fclose(f); 7153 return ret; 7154 } 7155 7156 static int determine_kprobe_perf_type(void) 7157 { 7158 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 7159 7160 return parse_uint_from_file(file, "%d\n"); 7161 } 7162 7163 static int determine_uprobe_perf_type(void) 7164 { 7165 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 7166 7167 return parse_uint_from_file(file, "%d\n"); 7168 } 7169 7170 static int determine_kprobe_retprobe_bit(void) 7171 { 7172 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 7173 7174 return parse_uint_from_file(file, "config:%d\n"); 7175 } 7176 7177 static int determine_uprobe_retprobe_bit(void) 7178 { 7179 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 7180 7181 return parse_uint_from_file(file, "config:%d\n"); 7182 } 7183 7184 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 7185 uint64_t offset, int pid) 7186 { 7187 struct perf_event_attr attr = {}; 7188 char errmsg[STRERR_BUFSIZE]; 7189 int type, pfd, err; 7190 7191 type = uprobe ? determine_uprobe_perf_type() 7192 : determine_kprobe_perf_type(); 7193 if (type < 0) { 7194 pr_warn("failed to determine %s perf type: %s\n", 7195 uprobe ? "uprobe" : "kprobe", 7196 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 7197 return type; 7198 } 7199 if (retprobe) { 7200 int bit = uprobe ? determine_uprobe_retprobe_bit() 7201 : determine_kprobe_retprobe_bit(); 7202 7203 if (bit < 0) { 7204 pr_warn("failed to determine %s retprobe bit: %s\n", 7205 uprobe ? "uprobe" : "kprobe", 7206 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 7207 return bit; 7208 } 7209 attr.config |= 1 << bit; 7210 } 7211 attr.size = sizeof(attr); 7212 attr.type = type; 7213 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 7214 attr.config2 = offset; /* kprobe_addr or probe_offset */ 7215 7216 /* pid filter is meaningful only for uprobes */ 7217 pfd = syscall(__NR_perf_event_open, &attr, 7218 pid < 0 ? -1 : pid /* pid */, 7219 pid == -1 ? 0 : -1 /* cpu */, 7220 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7221 if (pfd < 0) { 7222 err = -errno; 7223 pr_warn("%s perf_event_open() failed: %s\n", 7224 uprobe ? "uprobe" : "kprobe", 7225 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7226 return err; 7227 } 7228 return pfd; 7229 } 7230 7231 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 7232 bool retprobe, 7233 const char *func_name) 7234 { 7235 char errmsg[STRERR_BUFSIZE]; 7236 struct bpf_link *link; 7237 int pfd, err; 7238 7239 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 7240 0 /* offset */, -1 /* pid */); 7241 if (pfd < 0) { 7242 pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", 7243 bpf_program__title(prog, false), 7244 retprobe ? "kretprobe" : "kprobe", func_name, 7245 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7246 return ERR_PTR(pfd); 7247 } 7248 link = bpf_program__attach_perf_event(prog, pfd); 7249 if (IS_ERR(link)) { 7250 close(pfd); 7251 err = PTR_ERR(link); 7252 pr_warn("program '%s': failed to attach to %s '%s': %s\n", 7253 bpf_program__title(prog, false), 7254 retprobe ? "kretprobe" : "kprobe", func_name, 7255 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7256 return link; 7257 } 7258 return link; 7259 } 7260 7261 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7262 struct bpf_program *prog) 7263 { 7264 const char *func_name; 7265 bool retprobe; 7266 7267 func_name = bpf_program__title(prog, false) + sec->len; 7268 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 7269 7270 return bpf_program__attach_kprobe(prog, retprobe, func_name); 7271 } 7272 7273 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 7274 bool retprobe, pid_t pid, 7275 const char *binary_path, 7276 size_t func_offset) 7277 { 7278 char errmsg[STRERR_BUFSIZE]; 7279 struct bpf_link *link; 7280 int pfd, err; 7281 7282 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 7283 binary_path, func_offset, pid); 7284 if (pfd < 0) { 7285 pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 7286 bpf_program__title(prog, false), 7287 retprobe ? "uretprobe" : "uprobe", 7288 binary_path, func_offset, 7289 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7290 return ERR_PTR(pfd); 7291 } 7292 link = bpf_program__attach_perf_event(prog, pfd); 7293 if (IS_ERR(link)) { 7294 close(pfd); 7295 err = PTR_ERR(link); 7296 pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", 7297 bpf_program__title(prog, false), 7298 retprobe ? "uretprobe" : "uprobe", 7299 binary_path, func_offset, 7300 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7301 return link; 7302 } 7303 return link; 7304 } 7305 7306 static int determine_tracepoint_id(const char *tp_category, 7307 const char *tp_name) 7308 { 7309 char file[PATH_MAX]; 7310 int ret; 7311 7312 ret = snprintf(file, sizeof(file), 7313 "/sys/kernel/debug/tracing/events/%s/%s/id", 7314 tp_category, tp_name); 7315 if (ret < 0) 7316 return -errno; 7317 if (ret >= sizeof(file)) { 7318 pr_debug("tracepoint %s/%s path is too long\n", 7319 tp_category, tp_name); 7320 return -E2BIG; 7321 } 7322 return parse_uint_from_file(file, "%d\n"); 7323 } 7324 7325 static int perf_event_open_tracepoint(const char *tp_category, 7326 const char *tp_name) 7327 { 7328 struct perf_event_attr attr = {}; 7329 char errmsg[STRERR_BUFSIZE]; 7330 int tp_id, pfd, err; 7331 7332 tp_id = determine_tracepoint_id(tp_category, tp_name); 7333 if (tp_id < 0) { 7334 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 7335 tp_category, tp_name, 7336 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 7337 return tp_id; 7338 } 7339 7340 attr.type = PERF_TYPE_TRACEPOINT; 7341 attr.size = sizeof(attr); 7342 attr.config = tp_id; 7343 7344 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 7345 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7346 if (pfd < 0) { 7347 err = -errno; 7348 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 7349 tp_category, tp_name, 7350 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7351 return err; 7352 } 7353 return pfd; 7354 } 7355 7356 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 7357 const char *tp_category, 7358 const char *tp_name) 7359 { 7360 char errmsg[STRERR_BUFSIZE]; 7361 struct bpf_link *link; 7362 int pfd, err; 7363 7364 pfd = perf_event_open_tracepoint(tp_category, tp_name); 7365 if (pfd < 0) { 7366 pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 7367 bpf_program__title(prog, false), 7368 tp_category, tp_name, 7369 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7370 return ERR_PTR(pfd); 7371 } 7372 link = bpf_program__attach_perf_event(prog, pfd); 7373 if (IS_ERR(link)) { 7374 close(pfd); 7375 err = PTR_ERR(link); 7376 pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", 7377 bpf_program__title(prog, false), 7378 tp_category, tp_name, 7379 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7380 return link; 7381 } 7382 return link; 7383 } 7384 7385 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 7386 struct bpf_program *prog) 7387 { 7388 char *sec_name, *tp_cat, *tp_name; 7389 struct bpf_link *link; 7390 7391 sec_name = strdup(bpf_program__title(prog, false)); 7392 if (!sec_name) 7393 return ERR_PTR(-ENOMEM); 7394 7395 /* extract "tp/<category>/<name>" */ 7396 tp_cat = sec_name + sec->len; 7397 tp_name = strchr(tp_cat, '/'); 7398 if (!tp_name) { 7399 link = ERR_PTR(-EINVAL); 7400 goto out; 7401 } 7402 *tp_name = '\0'; 7403 tp_name++; 7404 7405 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 7406 out: 7407 free(sec_name); 7408 return link; 7409 } 7410 7411 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 7412 const char *tp_name) 7413 { 7414 char errmsg[STRERR_BUFSIZE]; 7415 struct bpf_link *link; 7416 int prog_fd, pfd; 7417 7418 prog_fd = bpf_program__fd(prog); 7419 if (prog_fd < 0) { 7420 pr_warn("program '%s': can't attach before loaded\n", 7421 bpf_program__title(prog, false)); 7422 return ERR_PTR(-EINVAL); 7423 } 7424 7425 link = calloc(1, sizeof(*link)); 7426 if (!link) 7427 return ERR_PTR(-ENOMEM); 7428 link->detach = &bpf_link__detach_fd; 7429 7430 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 7431 if (pfd < 0) { 7432 pfd = -errno; 7433 free(link); 7434 pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", 7435 bpf_program__title(prog, false), tp_name, 7436 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7437 return ERR_PTR(pfd); 7438 } 7439 link->fd = pfd; 7440 return link; 7441 } 7442 7443 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 7444 struct bpf_program *prog) 7445 { 7446 const char *tp_name = bpf_program__title(prog, false) + sec->len; 7447 7448 return bpf_program__attach_raw_tracepoint(prog, tp_name); 7449 } 7450 7451 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 7452 { 7453 char errmsg[STRERR_BUFSIZE]; 7454 struct bpf_link *link; 7455 int prog_fd, pfd; 7456 7457 prog_fd = bpf_program__fd(prog); 7458 if (prog_fd < 0) { 7459 pr_warn("program '%s': can't attach before loaded\n", 7460 bpf_program__title(prog, false)); 7461 return ERR_PTR(-EINVAL); 7462 } 7463 7464 link = calloc(1, sizeof(*link)); 7465 if (!link) 7466 return ERR_PTR(-ENOMEM); 7467 link->detach = &bpf_link__detach_fd; 7468 7469 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 7470 if (pfd < 0) { 7471 pfd = -errno; 7472 free(link); 7473 pr_warn("program '%s': failed to attach to trace: %s\n", 7474 bpf_program__title(prog, false), 7475 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7476 return ERR_PTR(pfd); 7477 } 7478 link->fd = pfd; 7479 return (struct bpf_link *)link; 7480 } 7481 7482 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 7483 struct bpf_program *prog) 7484 { 7485 return bpf_program__attach_trace(prog); 7486 } 7487 7488 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 7489 { 7490 const struct bpf_sec_def *sec_def; 7491 7492 sec_def = find_sec_def(bpf_program__title(prog, false)); 7493 if (!sec_def || !sec_def->attach_fn) 7494 return ERR_PTR(-ESRCH); 7495 7496 return sec_def->attach_fn(sec_def, prog); 7497 } 7498 7499 static int bpf_link__detach_struct_ops(struct bpf_link *link) 7500 { 7501 __u32 zero = 0; 7502 7503 if (bpf_map_delete_elem(link->fd, &zero)) 7504 return -errno; 7505 7506 return 0; 7507 } 7508 7509 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 7510 { 7511 struct bpf_struct_ops *st_ops; 7512 struct bpf_link *link; 7513 __u32 i, zero = 0; 7514 int err; 7515 7516 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 7517 return ERR_PTR(-EINVAL); 7518 7519 link = calloc(1, sizeof(*link)); 7520 if (!link) 7521 return ERR_PTR(-EINVAL); 7522 7523 st_ops = map->st_ops; 7524 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7525 struct bpf_program *prog = st_ops->progs[i]; 7526 void *kern_data; 7527 int prog_fd; 7528 7529 if (!prog) 7530 continue; 7531 7532 prog_fd = bpf_program__fd(prog); 7533 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7534 *(unsigned long *)kern_data = prog_fd; 7535 } 7536 7537 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 7538 if (err) { 7539 err = -errno; 7540 free(link); 7541 return ERR_PTR(err); 7542 } 7543 7544 link->detach = bpf_link__detach_struct_ops; 7545 link->fd = map->fd; 7546 7547 return link; 7548 } 7549 7550 enum bpf_perf_event_ret 7551 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 7552 void **copy_mem, size_t *copy_size, 7553 bpf_perf_event_print_t fn, void *private_data) 7554 { 7555 struct perf_event_mmap_page *header = mmap_mem; 7556 __u64 data_head = ring_buffer_read_head(header); 7557 __u64 data_tail = header->data_tail; 7558 void *base = ((__u8 *)header) + page_size; 7559 int ret = LIBBPF_PERF_EVENT_CONT; 7560 struct perf_event_header *ehdr; 7561 size_t ehdr_size; 7562 7563 while (data_head != data_tail) { 7564 ehdr = base + (data_tail & (mmap_size - 1)); 7565 ehdr_size = ehdr->size; 7566 7567 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 7568 void *copy_start = ehdr; 7569 size_t len_first = base + mmap_size - copy_start; 7570 size_t len_secnd = ehdr_size - len_first; 7571 7572 if (*copy_size < ehdr_size) { 7573 free(*copy_mem); 7574 *copy_mem = malloc(ehdr_size); 7575 if (!*copy_mem) { 7576 *copy_size = 0; 7577 ret = LIBBPF_PERF_EVENT_ERROR; 7578 break; 7579 } 7580 *copy_size = ehdr_size; 7581 } 7582 7583 memcpy(*copy_mem, copy_start, len_first); 7584 memcpy(*copy_mem + len_first, base, len_secnd); 7585 ehdr = *copy_mem; 7586 } 7587 7588 ret = fn(ehdr, private_data); 7589 data_tail += ehdr_size; 7590 if (ret != LIBBPF_PERF_EVENT_CONT) 7591 break; 7592 } 7593 7594 ring_buffer_write_tail(header, data_tail); 7595 return ret; 7596 } 7597 7598 struct perf_buffer; 7599 7600 struct perf_buffer_params { 7601 struct perf_event_attr *attr; 7602 /* if event_cb is specified, it takes precendence */ 7603 perf_buffer_event_fn event_cb; 7604 /* sample_cb and lost_cb are higher-level common-case callbacks */ 7605 perf_buffer_sample_fn sample_cb; 7606 perf_buffer_lost_fn lost_cb; 7607 void *ctx; 7608 int cpu_cnt; 7609 int *cpus; 7610 int *map_keys; 7611 }; 7612 7613 struct perf_cpu_buf { 7614 struct perf_buffer *pb; 7615 void *base; /* mmap()'ed memory */ 7616 void *buf; /* for reconstructing segmented data */ 7617 size_t buf_size; 7618 int fd; 7619 int cpu; 7620 int map_key; 7621 }; 7622 7623 struct perf_buffer { 7624 perf_buffer_event_fn event_cb; 7625 perf_buffer_sample_fn sample_cb; 7626 perf_buffer_lost_fn lost_cb; 7627 void *ctx; /* passed into callbacks */ 7628 7629 size_t page_size; 7630 size_t mmap_size; 7631 struct perf_cpu_buf **cpu_bufs; 7632 struct epoll_event *events; 7633 int cpu_cnt; /* number of allocated CPU buffers */ 7634 int epoll_fd; /* perf event FD */ 7635 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 7636 }; 7637 7638 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 7639 struct perf_cpu_buf *cpu_buf) 7640 { 7641 if (!cpu_buf) 7642 return; 7643 if (cpu_buf->base && 7644 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 7645 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 7646 if (cpu_buf->fd >= 0) { 7647 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 7648 close(cpu_buf->fd); 7649 } 7650 free(cpu_buf->buf); 7651 free(cpu_buf); 7652 } 7653 7654 void perf_buffer__free(struct perf_buffer *pb) 7655 { 7656 int i; 7657 7658 if (!pb) 7659 return; 7660 if (pb->cpu_bufs) { 7661 for (i = 0; i < pb->cpu_cnt && pb->cpu_bufs[i]; i++) { 7662 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 7663 7664 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 7665 perf_buffer__free_cpu_buf(pb, cpu_buf); 7666 } 7667 free(pb->cpu_bufs); 7668 } 7669 if (pb->epoll_fd >= 0) 7670 close(pb->epoll_fd); 7671 free(pb->events); 7672 free(pb); 7673 } 7674 7675 static struct perf_cpu_buf * 7676 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 7677 int cpu, int map_key) 7678 { 7679 struct perf_cpu_buf *cpu_buf; 7680 char msg[STRERR_BUFSIZE]; 7681 int err; 7682 7683 cpu_buf = calloc(1, sizeof(*cpu_buf)); 7684 if (!cpu_buf) 7685 return ERR_PTR(-ENOMEM); 7686 7687 cpu_buf->pb = pb; 7688 cpu_buf->cpu = cpu; 7689 cpu_buf->map_key = map_key; 7690 7691 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 7692 -1, PERF_FLAG_FD_CLOEXEC); 7693 if (cpu_buf->fd < 0) { 7694 err = -errno; 7695 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 7696 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7697 goto error; 7698 } 7699 7700 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 7701 PROT_READ | PROT_WRITE, MAP_SHARED, 7702 cpu_buf->fd, 0); 7703 if (cpu_buf->base == MAP_FAILED) { 7704 cpu_buf->base = NULL; 7705 err = -errno; 7706 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 7707 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7708 goto error; 7709 } 7710 7711 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7712 err = -errno; 7713 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 7714 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7715 goto error; 7716 } 7717 7718 return cpu_buf; 7719 7720 error: 7721 perf_buffer__free_cpu_buf(pb, cpu_buf); 7722 return (struct perf_cpu_buf *)ERR_PTR(err); 7723 } 7724 7725 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7726 struct perf_buffer_params *p); 7727 7728 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 7729 const struct perf_buffer_opts *opts) 7730 { 7731 struct perf_buffer_params p = {}; 7732 struct perf_event_attr attr = { 0, }; 7733 7734 attr.config = PERF_COUNT_SW_BPF_OUTPUT, 7735 attr.type = PERF_TYPE_SOFTWARE; 7736 attr.sample_type = PERF_SAMPLE_RAW; 7737 attr.sample_period = 1; 7738 attr.wakeup_events = 1; 7739 7740 p.attr = &attr; 7741 p.sample_cb = opts ? opts->sample_cb : NULL; 7742 p.lost_cb = opts ? opts->lost_cb : NULL; 7743 p.ctx = opts ? opts->ctx : NULL; 7744 7745 return __perf_buffer__new(map_fd, page_cnt, &p); 7746 } 7747 7748 struct perf_buffer * 7749 perf_buffer__new_raw(int map_fd, size_t page_cnt, 7750 const struct perf_buffer_raw_opts *opts) 7751 { 7752 struct perf_buffer_params p = {}; 7753 7754 p.attr = opts->attr; 7755 p.event_cb = opts->event_cb; 7756 p.ctx = opts->ctx; 7757 p.cpu_cnt = opts->cpu_cnt; 7758 p.cpus = opts->cpus; 7759 p.map_keys = opts->map_keys; 7760 7761 return __perf_buffer__new(map_fd, page_cnt, &p); 7762 } 7763 7764 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7765 struct perf_buffer_params *p) 7766 { 7767 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 7768 struct bpf_map_info map = {}; 7769 char msg[STRERR_BUFSIZE]; 7770 struct perf_buffer *pb; 7771 bool *online = NULL; 7772 __u32 map_info_len; 7773 int err, i, j, n; 7774 7775 if (page_cnt & (page_cnt - 1)) { 7776 pr_warn("page count should be power of two, but is %zu\n", 7777 page_cnt); 7778 return ERR_PTR(-EINVAL); 7779 } 7780 7781 map_info_len = sizeof(map); 7782 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 7783 if (err) { 7784 err = -errno; 7785 pr_warn("failed to get map info for map FD %d: %s\n", 7786 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 7787 return ERR_PTR(err); 7788 } 7789 7790 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 7791 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 7792 map.name); 7793 return ERR_PTR(-EINVAL); 7794 } 7795 7796 pb = calloc(1, sizeof(*pb)); 7797 if (!pb) 7798 return ERR_PTR(-ENOMEM); 7799 7800 pb->event_cb = p->event_cb; 7801 pb->sample_cb = p->sample_cb; 7802 pb->lost_cb = p->lost_cb; 7803 pb->ctx = p->ctx; 7804 7805 pb->page_size = getpagesize(); 7806 pb->mmap_size = pb->page_size * page_cnt; 7807 pb->map_fd = map_fd; 7808 7809 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 7810 if (pb->epoll_fd < 0) { 7811 err = -errno; 7812 pr_warn("failed to create epoll instance: %s\n", 7813 libbpf_strerror_r(err, msg, sizeof(msg))); 7814 goto error; 7815 } 7816 7817 if (p->cpu_cnt > 0) { 7818 pb->cpu_cnt = p->cpu_cnt; 7819 } else { 7820 pb->cpu_cnt = libbpf_num_possible_cpus(); 7821 if (pb->cpu_cnt < 0) { 7822 err = pb->cpu_cnt; 7823 goto error; 7824 } 7825 if (map.max_entries < pb->cpu_cnt) 7826 pb->cpu_cnt = map.max_entries; 7827 } 7828 7829 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 7830 if (!pb->events) { 7831 err = -ENOMEM; 7832 pr_warn("failed to allocate events: out of memory\n"); 7833 goto error; 7834 } 7835 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 7836 if (!pb->cpu_bufs) { 7837 err = -ENOMEM; 7838 pr_warn("failed to allocate buffers: out of memory\n"); 7839 goto error; 7840 } 7841 7842 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 7843 if (err) { 7844 pr_warn("failed to get online CPU mask: %d\n", err); 7845 goto error; 7846 } 7847 7848 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 7849 struct perf_cpu_buf *cpu_buf; 7850 int cpu, map_key; 7851 7852 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 7853 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 7854 7855 /* in case user didn't explicitly requested particular CPUs to 7856 * be attached to, skip offline/not present CPUs 7857 */ 7858 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 7859 continue; 7860 7861 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 7862 if (IS_ERR(cpu_buf)) { 7863 err = PTR_ERR(cpu_buf); 7864 goto error; 7865 } 7866 7867 pb->cpu_bufs[j] = cpu_buf; 7868 7869 err = bpf_map_update_elem(pb->map_fd, &map_key, 7870 &cpu_buf->fd, 0); 7871 if (err) { 7872 err = -errno; 7873 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 7874 cpu, map_key, cpu_buf->fd, 7875 libbpf_strerror_r(err, msg, sizeof(msg))); 7876 goto error; 7877 } 7878 7879 pb->events[j].events = EPOLLIN; 7880 pb->events[j].data.ptr = cpu_buf; 7881 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 7882 &pb->events[j]) < 0) { 7883 err = -errno; 7884 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 7885 cpu, cpu_buf->fd, 7886 libbpf_strerror_r(err, msg, sizeof(msg))); 7887 goto error; 7888 } 7889 j++; 7890 } 7891 pb->cpu_cnt = j; 7892 free(online); 7893 7894 return pb; 7895 7896 error: 7897 free(online); 7898 if (pb) 7899 perf_buffer__free(pb); 7900 return ERR_PTR(err); 7901 } 7902 7903 struct perf_sample_raw { 7904 struct perf_event_header header; 7905 uint32_t size; 7906 char data[0]; 7907 }; 7908 7909 struct perf_sample_lost { 7910 struct perf_event_header header; 7911 uint64_t id; 7912 uint64_t lost; 7913 uint64_t sample_id; 7914 }; 7915 7916 static enum bpf_perf_event_ret 7917 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 7918 { 7919 struct perf_cpu_buf *cpu_buf = ctx; 7920 struct perf_buffer *pb = cpu_buf->pb; 7921 void *data = e; 7922 7923 /* user wants full control over parsing perf event */ 7924 if (pb->event_cb) 7925 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 7926 7927 switch (e->type) { 7928 case PERF_RECORD_SAMPLE: { 7929 struct perf_sample_raw *s = data; 7930 7931 if (pb->sample_cb) 7932 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 7933 break; 7934 } 7935 case PERF_RECORD_LOST: { 7936 struct perf_sample_lost *s = data; 7937 7938 if (pb->lost_cb) 7939 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 7940 break; 7941 } 7942 default: 7943 pr_warn("unknown perf sample type %d\n", e->type); 7944 return LIBBPF_PERF_EVENT_ERROR; 7945 } 7946 return LIBBPF_PERF_EVENT_CONT; 7947 } 7948 7949 static int perf_buffer__process_records(struct perf_buffer *pb, 7950 struct perf_cpu_buf *cpu_buf) 7951 { 7952 enum bpf_perf_event_ret ret; 7953 7954 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 7955 pb->page_size, &cpu_buf->buf, 7956 &cpu_buf->buf_size, 7957 perf_buffer__process_record, cpu_buf); 7958 if (ret != LIBBPF_PERF_EVENT_CONT) 7959 return ret; 7960 return 0; 7961 } 7962 7963 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 7964 { 7965 int i, cnt, err; 7966 7967 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 7968 for (i = 0; i < cnt; i++) { 7969 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 7970 7971 err = perf_buffer__process_records(pb, cpu_buf); 7972 if (err) { 7973 pr_warn("error while processing records: %d\n", err); 7974 return err; 7975 } 7976 } 7977 return cnt < 0 ? -errno : cnt; 7978 } 7979 7980 struct bpf_prog_info_array_desc { 7981 int array_offset; /* e.g. offset of jited_prog_insns */ 7982 int count_offset; /* e.g. offset of jited_prog_len */ 7983 int size_offset; /* > 0: offset of rec size, 7984 * < 0: fix size of -size_offset 7985 */ 7986 }; 7987 7988 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 7989 [BPF_PROG_INFO_JITED_INSNS] = { 7990 offsetof(struct bpf_prog_info, jited_prog_insns), 7991 offsetof(struct bpf_prog_info, jited_prog_len), 7992 -1, 7993 }, 7994 [BPF_PROG_INFO_XLATED_INSNS] = { 7995 offsetof(struct bpf_prog_info, xlated_prog_insns), 7996 offsetof(struct bpf_prog_info, xlated_prog_len), 7997 -1, 7998 }, 7999 [BPF_PROG_INFO_MAP_IDS] = { 8000 offsetof(struct bpf_prog_info, map_ids), 8001 offsetof(struct bpf_prog_info, nr_map_ids), 8002 -(int)sizeof(__u32), 8003 }, 8004 [BPF_PROG_INFO_JITED_KSYMS] = { 8005 offsetof(struct bpf_prog_info, jited_ksyms), 8006 offsetof(struct bpf_prog_info, nr_jited_ksyms), 8007 -(int)sizeof(__u64), 8008 }, 8009 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 8010 offsetof(struct bpf_prog_info, jited_func_lens), 8011 offsetof(struct bpf_prog_info, nr_jited_func_lens), 8012 -(int)sizeof(__u32), 8013 }, 8014 [BPF_PROG_INFO_FUNC_INFO] = { 8015 offsetof(struct bpf_prog_info, func_info), 8016 offsetof(struct bpf_prog_info, nr_func_info), 8017 offsetof(struct bpf_prog_info, func_info_rec_size), 8018 }, 8019 [BPF_PROG_INFO_LINE_INFO] = { 8020 offsetof(struct bpf_prog_info, line_info), 8021 offsetof(struct bpf_prog_info, nr_line_info), 8022 offsetof(struct bpf_prog_info, line_info_rec_size), 8023 }, 8024 [BPF_PROG_INFO_JITED_LINE_INFO] = { 8025 offsetof(struct bpf_prog_info, jited_line_info), 8026 offsetof(struct bpf_prog_info, nr_jited_line_info), 8027 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 8028 }, 8029 [BPF_PROG_INFO_PROG_TAGS] = { 8030 offsetof(struct bpf_prog_info, prog_tags), 8031 offsetof(struct bpf_prog_info, nr_prog_tags), 8032 -(int)sizeof(__u8) * BPF_TAG_SIZE, 8033 }, 8034 8035 }; 8036 8037 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 8038 int offset) 8039 { 8040 __u32 *array = (__u32 *)info; 8041 8042 if (offset >= 0) 8043 return array[offset / sizeof(__u32)]; 8044 return -(int)offset; 8045 } 8046 8047 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 8048 int offset) 8049 { 8050 __u64 *array = (__u64 *)info; 8051 8052 if (offset >= 0) 8053 return array[offset / sizeof(__u64)]; 8054 return -(int)offset; 8055 } 8056 8057 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 8058 __u32 val) 8059 { 8060 __u32 *array = (__u32 *)info; 8061 8062 if (offset >= 0) 8063 array[offset / sizeof(__u32)] = val; 8064 } 8065 8066 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 8067 __u64 val) 8068 { 8069 __u64 *array = (__u64 *)info; 8070 8071 if (offset >= 0) 8072 array[offset / sizeof(__u64)] = val; 8073 } 8074 8075 struct bpf_prog_info_linear * 8076 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 8077 { 8078 struct bpf_prog_info_linear *info_linear; 8079 struct bpf_prog_info info = {}; 8080 __u32 info_len = sizeof(info); 8081 __u32 data_len = 0; 8082 int i, err; 8083 void *ptr; 8084 8085 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 8086 return ERR_PTR(-EINVAL); 8087 8088 /* step 1: get array dimensions */ 8089 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 8090 if (err) { 8091 pr_debug("can't get prog info: %s", strerror(errno)); 8092 return ERR_PTR(-EFAULT); 8093 } 8094 8095 /* step 2: calculate total size of all arrays */ 8096 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8097 bool include_array = (arrays & (1UL << i)) > 0; 8098 struct bpf_prog_info_array_desc *desc; 8099 __u32 count, size; 8100 8101 desc = bpf_prog_info_array_desc + i; 8102 8103 /* kernel is too old to support this field */ 8104 if (info_len < desc->array_offset + sizeof(__u32) || 8105 info_len < desc->count_offset + sizeof(__u32) || 8106 (desc->size_offset > 0 && info_len < desc->size_offset)) 8107 include_array = false; 8108 8109 if (!include_array) { 8110 arrays &= ~(1UL << i); /* clear the bit */ 8111 continue; 8112 } 8113 8114 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8115 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8116 8117 data_len += count * size; 8118 } 8119 8120 /* step 3: allocate continuous memory */ 8121 data_len = roundup(data_len, sizeof(__u64)); 8122 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 8123 if (!info_linear) 8124 return ERR_PTR(-ENOMEM); 8125 8126 /* step 4: fill data to info_linear->info */ 8127 info_linear->arrays = arrays; 8128 memset(&info_linear->info, 0, sizeof(info)); 8129 ptr = info_linear->data; 8130 8131 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8132 struct bpf_prog_info_array_desc *desc; 8133 __u32 count, size; 8134 8135 if ((arrays & (1UL << i)) == 0) 8136 continue; 8137 8138 desc = bpf_prog_info_array_desc + i; 8139 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8140 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8141 bpf_prog_info_set_offset_u32(&info_linear->info, 8142 desc->count_offset, count); 8143 bpf_prog_info_set_offset_u32(&info_linear->info, 8144 desc->size_offset, size); 8145 bpf_prog_info_set_offset_u64(&info_linear->info, 8146 desc->array_offset, 8147 ptr_to_u64(ptr)); 8148 ptr += count * size; 8149 } 8150 8151 /* step 5: call syscall again to get required arrays */ 8152 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 8153 if (err) { 8154 pr_debug("can't get prog info: %s", strerror(errno)); 8155 free(info_linear); 8156 return ERR_PTR(-EFAULT); 8157 } 8158 8159 /* step 6: verify the data */ 8160 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8161 struct bpf_prog_info_array_desc *desc; 8162 __u32 v1, v2; 8163 8164 if ((arrays & (1UL << i)) == 0) 8165 continue; 8166 8167 desc = bpf_prog_info_array_desc + i; 8168 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8169 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8170 desc->count_offset); 8171 if (v1 != v2) 8172 pr_warn("%s: mismatch in element count\n", __func__); 8173 8174 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8175 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8176 desc->size_offset); 8177 if (v1 != v2) 8178 pr_warn("%s: mismatch in rec size\n", __func__); 8179 } 8180 8181 /* step 7: update info_len and data_len */ 8182 info_linear->info_len = sizeof(struct bpf_prog_info); 8183 info_linear->data_len = data_len; 8184 8185 return info_linear; 8186 } 8187 8188 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 8189 { 8190 int i; 8191 8192 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8193 struct bpf_prog_info_array_desc *desc; 8194 __u64 addr, offs; 8195 8196 if ((info_linear->arrays & (1UL << i)) == 0) 8197 continue; 8198 8199 desc = bpf_prog_info_array_desc + i; 8200 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 8201 desc->array_offset); 8202 offs = addr - ptr_to_u64(info_linear->data); 8203 bpf_prog_info_set_offset_u64(&info_linear->info, 8204 desc->array_offset, offs); 8205 } 8206 } 8207 8208 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 8209 { 8210 int i; 8211 8212 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8213 struct bpf_prog_info_array_desc *desc; 8214 __u64 addr, offs; 8215 8216 if ((info_linear->arrays & (1UL << i)) == 0) 8217 continue; 8218 8219 desc = bpf_prog_info_array_desc + i; 8220 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 8221 desc->array_offset); 8222 addr = offs + ptr_to_u64(info_linear->data); 8223 bpf_prog_info_set_offset_u64(&info_linear->info, 8224 desc->array_offset, addr); 8225 } 8226 } 8227 8228 int bpf_program__set_attach_target(struct bpf_program *prog, 8229 int attach_prog_fd, 8230 const char *attach_func_name) 8231 { 8232 int btf_id; 8233 8234 if (!prog || attach_prog_fd < 0 || !attach_func_name) 8235 return -EINVAL; 8236 8237 if (attach_prog_fd) 8238 btf_id = libbpf_find_prog_btf_id(attach_func_name, 8239 attach_prog_fd); 8240 else 8241 btf_id = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8242 attach_func_name, 8243 prog->expected_attach_type); 8244 8245 if (btf_id < 0) 8246 return btf_id; 8247 8248 prog->attach_btf_id = btf_id; 8249 prog->attach_prog_fd = attach_prog_fd; 8250 return 0; 8251 } 8252 8253 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 8254 { 8255 int err = 0, n, len, start, end = -1; 8256 bool *tmp; 8257 8258 *mask = NULL; 8259 *mask_sz = 0; 8260 8261 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 8262 while (*s) { 8263 if (*s == ',' || *s == '\n') { 8264 s++; 8265 continue; 8266 } 8267 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 8268 if (n <= 0 || n > 2) { 8269 pr_warn("Failed to get CPU range %s: %d\n", s, n); 8270 err = -EINVAL; 8271 goto cleanup; 8272 } else if (n == 1) { 8273 end = start; 8274 } 8275 if (start < 0 || start > end) { 8276 pr_warn("Invalid CPU range [%d,%d] in %s\n", 8277 start, end, s); 8278 err = -EINVAL; 8279 goto cleanup; 8280 } 8281 tmp = realloc(*mask, end + 1); 8282 if (!tmp) { 8283 err = -ENOMEM; 8284 goto cleanup; 8285 } 8286 *mask = tmp; 8287 memset(tmp + *mask_sz, 0, start - *mask_sz); 8288 memset(tmp + start, 1, end - start + 1); 8289 *mask_sz = end + 1; 8290 s += len; 8291 } 8292 if (!*mask_sz) { 8293 pr_warn("Empty CPU range\n"); 8294 return -EINVAL; 8295 } 8296 return 0; 8297 cleanup: 8298 free(*mask); 8299 *mask = NULL; 8300 return err; 8301 } 8302 8303 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 8304 { 8305 int fd, err = 0, len; 8306 char buf[128]; 8307 8308 fd = open(fcpu, O_RDONLY); 8309 if (fd < 0) { 8310 err = -errno; 8311 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 8312 return err; 8313 } 8314 len = read(fd, buf, sizeof(buf)); 8315 close(fd); 8316 if (len <= 0) { 8317 err = len ? -errno : -EINVAL; 8318 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 8319 return err; 8320 } 8321 if (len >= sizeof(buf)) { 8322 pr_warn("CPU mask is too big in file %s\n", fcpu); 8323 return -E2BIG; 8324 } 8325 buf[len] = '\0'; 8326 8327 return parse_cpu_mask_str(buf, mask, mask_sz); 8328 } 8329 8330 int libbpf_num_possible_cpus(void) 8331 { 8332 static const char *fcpu = "/sys/devices/system/cpu/possible"; 8333 static int cpus; 8334 int err, n, i, tmp_cpus; 8335 bool *mask; 8336 8337 tmp_cpus = READ_ONCE(cpus); 8338 if (tmp_cpus > 0) 8339 return tmp_cpus; 8340 8341 err = parse_cpu_mask_file(fcpu, &mask, &n); 8342 if (err) 8343 return err; 8344 8345 tmp_cpus = 0; 8346 for (i = 0; i < n; i++) { 8347 if (mask[i]) 8348 tmp_cpus++; 8349 } 8350 free(mask); 8351 8352 WRITE_ONCE(cpus, tmp_cpus); 8353 return tmp_cpus; 8354 } 8355 8356 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 8357 const struct bpf_object_open_opts *opts) 8358 { 8359 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 8360 .object_name = s->name, 8361 ); 8362 struct bpf_object *obj; 8363 int i; 8364 8365 /* Attempt to preserve opts->object_name, unless overriden by user 8366 * explicitly. Overwriting object name for skeletons is discouraged, 8367 * as it breaks global data maps, because they contain object name 8368 * prefix as their own map name prefix. When skeleton is generated, 8369 * bpftool is making an assumption that this name will stay the same. 8370 */ 8371 if (opts) { 8372 memcpy(&skel_opts, opts, sizeof(*opts)); 8373 if (!opts->object_name) 8374 skel_opts.object_name = s->name; 8375 } 8376 8377 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 8378 if (IS_ERR(obj)) { 8379 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 8380 s->name, PTR_ERR(obj)); 8381 return PTR_ERR(obj); 8382 } 8383 8384 *s->obj = obj; 8385 8386 for (i = 0; i < s->map_cnt; i++) { 8387 struct bpf_map **map = s->maps[i].map; 8388 const char *name = s->maps[i].name; 8389 void **mmaped = s->maps[i].mmaped; 8390 8391 *map = bpf_object__find_map_by_name(obj, name); 8392 if (!*map) { 8393 pr_warn("failed to find skeleton map '%s'\n", name); 8394 return -ESRCH; 8395 } 8396 8397 /* externs shouldn't be pre-setup from user code */ 8398 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 8399 *mmaped = (*map)->mmaped; 8400 } 8401 8402 for (i = 0; i < s->prog_cnt; i++) { 8403 struct bpf_program **prog = s->progs[i].prog; 8404 const char *name = s->progs[i].name; 8405 8406 *prog = bpf_object__find_program_by_name(obj, name); 8407 if (!*prog) { 8408 pr_warn("failed to find skeleton program '%s'\n", name); 8409 return -ESRCH; 8410 } 8411 } 8412 8413 return 0; 8414 } 8415 8416 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 8417 { 8418 int i, err; 8419 8420 err = bpf_object__load(*s->obj); 8421 if (err) { 8422 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 8423 return err; 8424 } 8425 8426 for (i = 0; i < s->map_cnt; i++) { 8427 struct bpf_map *map = *s->maps[i].map; 8428 size_t mmap_sz = bpf_map_mmap_sz(map); 8429 int prot, map_fd = bpf_map__fd(map); 8430 void **mmaped = s->maps[i].mmaped; 8431 8432 if (!mmaped) 8433 continue; 8434 8435 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 8436 *mmaped = NULL; 8437 continue; 8438 } 8439 8440 if (map->def.map_flags & BPF_F_RDONLY_PROG) 8441 prot = PROT_READ; 8442 else 8443 prot = PROT_READ | PROT_WRITE; 8444 8445 /* Remap anonymous mmap()-ed "map initialization image" as 8446 * a BPF map-backed mmap()-ed memory, but preserving the same 8447 * memory address. This will cause kernel to change process' 8448 * page table to point to a different piece of kernel memory, 8449 * but from userspace point of view memory address (and its 8450 * contents, being identical at this point) will stay the 8451 * same. This mapping will be released by bpf_object__close() 8452 * as per normal clean up procedure, so we don't need to worry 8453 * about it from skeleton's clean up perspective. 8454 */ 8455 *mmaped = mmap(map->mmaped, mmap_sz, prot, 8456 MAP_SHARED | MAP_FIXED, map_fd, 0); 8457 if (*mmaped == MAP_FAILED) { 8458 err = -errno; 8459 *mmaped = NULL; 8460 pr_warn("failed to re-mmap() map '%s': %d\n", 8461 bpf_map__name(map), err); 8462 return err; 8463 } 8464 } 8465 8466 return 0; 8467 } 8468 8469 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 8470 { 8471 int i; 8472 8473 for (i = 0; i < s->prog_cnt; i++) { 8474 struct bpf_program *prog = *s->progs[i].prog; 8475 struct bpf_link **link = s->progs[i].link; 8476 const struct bpf_sec_def *sec_def; 8477 const char *sec_name = bpf_program__title(prog, false); 8478 8479 sec_def = find_sec_def(sec_name); 8480 if (!sec_def || !sec_def->attach_fn) 8481 continue; 8482 8483 *link = sec_def->attach_fn(sec_def, prog); 8484 if (IS_ERR(*link)) { 8485 pr_warn("failed to auto-attach program '%s': %ld\n", 8486 bpf_program__name(prog), PTR_ERR(*link)); 8487 return PTR_ERR(*link); 8488 } 8489 } 8490 8491 return 0; 8492 } 8493 8494 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 8495 { 8496 int i; 8497 8498 for (i = 0; i < s->prog_cnt; i++) { 8499 struct bpf_link **link = s->progs[i].link; 8500 8501 if (!IS_ERR_OR_NULL(*link)) 8502 bpf_link__destroy(*link); 8503 *link = NULL; 8504 } 8505 } 8506 8507 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 8508 { 8509 if (s->progs) 8510 bpf_object__detach_skeleton(s); 8511 if (s->obj) 8512 bpf_object__close(*s->obj); 8513 free(s->maps); 8514 free(s->progs); 8515 free(s); 8516 } 8517