xref: /linux/tools/lib/bpf/libbpf.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 #include "bpf_gen_internal.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64 
65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
66  * compilation if user enables corresponding warning. Disable it explicitly.
67  */
68 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69 
70 #define __printf(a, b)	__attribute__((format(printf, a, b)))
71 
72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74 
75 static int __base_pr(enum libbpf_print_level level, const char *format,
76 		     va_list args)
77 {
78 	if (level == LIBBPF_DEBUG)
79 		return 0;
80 
81 	return vfprintf(stderr, format, args);
82 }
83 
84 static libbpf_print_fn_t __libbpf_pr = __base_pr;
85 
86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87 {
88 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
89 
90 	__libbpf_pr = fn;
91 	return old_print_fn;
92 }
93 
94 __printf(2, 3)
95 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96 {
97 	va_list args;
98 
99 	if (!__libbpf_pr)
100 		return;
101 
102 	va_start(args, format);
103 	__libbpf_pr(level, format, args);
104 	va_end(args);
105 }
106 
107 static void pr_perm_msg(int err)
108 {
109 	struct rlimit limit;
110 	char buf[100];
111 
112 	if (err != -EPERM || geteuid() != 0)
113 		return;
114 
115 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 	if (err)
117 		return;
118 
119 	if (limit.rlim_cur == RLIM_INFINITY)
120 		return;
121 
122 	if (limit.rlim_cur < 1024)
123 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 	else if (limit.rlim_cur < 1024*1024)
125 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 	else
127 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128 
129 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 		buf);
131 }
132 
133 #define STRERR_BUFSIZE  128
134 
135 /* Copied from tools/perf/util/util.h */
136 #ifndef zfree
137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138 #endif
139 
140 #ifndef zclose
141 # define zclose(fd) ({			\
142 	int ___err = 0;			\
143 	if ((fd) >= 0)			\
144 		___err = close((fd));	\
145 	fd = -1;			\
146 	___err; })
147 #endif
148 
149 static inline __u64 ptr_to_u64(const void *ptr)
150 {
151 	return (__u64) (unsigned long) ptr;
152 }
153 
154 /* this goes away in libbpf 1.0 */
155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156 
157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158 {
159 	libbpf_mode = mode;
160 	return 0;
161 }
162 
163 __u32 libbpf_major_version(void)
164 {
165 	return LIBBPF_MAJOR_VERSION;
166 }
167 
168 __u32 libbpf_minor_version(void)
169 {
170 	return LIBBPF_MINOR_VERSION;
171 }
172 
173 const char *libbpf_version_string(void)
174 {
175 #define __S(X) #X
176 #define _S(X) __S(X)
177 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
178 #undef _S
179 #undef __S
180 }
181 
182 enum reloc_type {
183 	RELO_LD64,
184 	RELO_CALL,
185 	RELO_DATA,
186 	RELO_EXTERN_VAR,
187 	RELO_EXTERN_FUNC,
188 	RELO_SUBPROG_ADDR,
189 	RELO_CORE,
190 };
191 
192 struct reloc_desc {
193 	enum reloc_type type;
194 	int insn_idx;
195 	union {
196 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
197 		struct {
198 			int map_idx;
199 			int sym_off;
200 		};
201 	};
202 };
203 
204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
205 enum sec_def_flags {
206 	SEC_NONE = 0,
207 	/* expected_attach_type is optional, if kernel doesn't support that */
208 	SEC_EXP_ATTACH_OPT = 1,
209 	/* legacy, only used by libbpf_get_type_names() and
210 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
211 	 * This used to be associated with cgroup (and few other) BPF programs
212 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
213 	 * meaningless nowadays, though.
214 	 */
215 	SEC_ATTACHABLE = 2,
216 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
217 	/* attachment target is specified through BTF ID in either kernel or
218 	 * other BPF program's BTF object */
219 	SEC_ATTACH_BTF = 4,
220 	/* BPF program type allows sleeping/blocking in kernel */
221 	SEC_SLEEPABLE = 8,
222 	/* allow non-strict prefix matching */
223 	SEC_SLOPPY_PFX = 16,
224 	/* BPF program support non-linear XDP buffer */
225 	SEC_XDP_FRAGS = 32,
226 	/* deprecated sec definitions not supposed to be used */
227 	SEC_DEPRECATED = 64,
228 };
229 
230 struct bpf_sec_def {
231 	char *sec;
232 	enum bpf_prog_type prog_type;
233 	enum bpf_attach_type expected_attach_type;
234 	long cookie;
235 	int handler_id;
236 
237 	libbpf_prog_setup_fn_t prog_setup_fn;
238 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
239 	libbpf_prog_attach_fn_t prog_attach_fn;
240 };
241 
242 /*
243  * bpf_prog should be a better name but it has been used in
244  * linux/filter.h.
245  */
246 struct bpf_program {
247 	const struct bpf_sec_def *sec_def;
248 	char *sec_name;
249 	size_t sec_idx;
250 	/* this program's instruction offset (in number of instructions)
251 	 * within its containing ELF section
252 	 */
253 	size_t sec_insn_off;
254 	/* number of original instructions in ELF section belonging to this
255 	 * program, not taking into account subprogram instructions possible
256 	 * appended later during relocation
257 	 */
258 	size_t sec_insn_cnt;
259 	/* Offset (in number of instructions) of the start of instruction
260 	 * belonging to this BPF program  within its containing main BPF
261 	 * program. For the entry-point (main) BPF program, this is always
262 	 * zero. For a sub-program, this gets reset before each of main BPF
263 	 * programs are processed and relocated and is used to determined
264 	 * whether sub-program was already appended to the main program, and
265 	 * if yes, at which instruction offset.
266 	 */
267 	size_t sub_insn_off;
268 
269 	char *name;
270 	/* name with / replaced by _; makes recursive pinning
271 	 * in bpf_object__pin_programs easier
272 	 */
273 	char *pin_name;
274 
275 	/* instructions that belong to BPF program; insns[0] is located at
276 	 * sec_insn_off instruction within its ELF section in ELF file, so
277 	 * when mapping ELF file instruction index to the local instruction,
278 	 * one needs to subtract sec_insn_off; and vice versa.
279 	 */
280 	struct bpf_insn *insns;
281 	/* actual number of instruction in this BPF program's image; for
282 	 * entry-point BPF programs this includes the size of main program
283 	 * itself plus all the used sub-programs, appended at the end
284 	 */
285 	size_t insns_cnt;
286 
287 	struct reloc_desc *reloc_desc;
288 	int nr_reloc;
289 
290 	/* BPF verifier log settings */
291 	char *log_buf;
292 	size_t log_size;
293 	__u32 log_level;
294 
295 	struct {
296 		int nr;
297 		int *fds;
298 	} instances;
299 	bpf_program_prep_t preprocessor;
300 
301 	struct bpf_object *obj;
302 	void *priv;
303 	bpf_program_clear_priv_t clear_priv;
304 
305 	bool load;
306 	bool mark_btf_static;
307 	enum bpf_prog_type type;
308 	enum bpf_attach_type expected_attach_type;
309 	int prog_ifindex;
310 	__u32 attach_btf_obj_fd;
311 	__u32 attach_btf_id;
312 	__u32 attach_prog_fd;
313 	void *func_info;
314 	__u32 func_info_rec_size;
315 	__u32 func_info_cnt;
316 
317 	void *line_info;
318 	__u32 line_info_rec_size;
319 	__u32 line_info_cnt;
320 	__u32 prog_flags;
321 };
322 
323 struct bpf_struct_ops {
324 	const char *tname;
325 	const struct btf_type *type;
326 	struct bpf_program **progs;
327 	__u32 *kern_func_off;
328 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
329 	void *data;
330 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
331 	 *      btf_vmlinux's format.
332 	 * struct bpf_struct_ops_tcp_congestion_ops {
333 	 *	[... some other kernel fields ...]
334 	 *	struct tcp_congestion_ops data;
335 	 * }
336 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
337 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
338 	 * from "data".
339 	 */
340 	void *kern_vdata;
341 	__u32 type_id;
342 };
343 
344 #define DATA_SEC ".data"
345 #define BSS_SEC ".bss"
346 #define RODATA_SEC ".rodata"
347 #define KCONFIG_SEC ".kconfig"
348 #define KSYMS_SEC ".ksyms"
349 #define STRUCT_OPS_SEC ".struct_ops"
350 
351 enum libbpf_map_type {
352 	LIBBPF_MAP_UNSPEC,
353 	LIBBPF_MAP_DATA,
354 	LIBBPF_MAP_BSS,
355 	LIBBPF_MAP_RODATA,
356 	LIBBPF_MAP_KCONFIG,
357 };
358 
359 struct bpf_map {
360 	char *name;
361 	/* real_name is defined for special internal maps (.rodata*,
362 	 * .data*, .bss, .kconfig) and preserves their original ELF section
363 	 * name. This is important to be be able to find corresponding BTF
364 	 * DATASEC information.
365 	 */
366 	char *real_name;
367 	int fd;
368 	int sec_idx;
369 	size_t sec_offset;
370 	int map_ifindex;
371 	int inner_map_fd;
372 	struct bpf_map_def def;
373 	__u32 numa_node;
374 	__u32 btf_var_idx;
375 	__u32 btf_key_type_id;
376 	__u32 btf_value_type_id;
377 	__u32 btf_vmlinux_value_type_id;
378 	void *priv;
379 	bpf_map_clear_priv_t clear_priv;
380 	enum libbpf_map_type libbpf_type;
381 	void *mmaped;
382 	struct bpf_struct_ops *st_ops;
383 	struct bpf_map *inner_map;
384 	void **init_slots;
385 	int init_slots_sz;
386 	char *pin_path;
387 	bool pinned;
388 	bool reused;
389 	bool skipped;
390 	__u64 map_extra;
391 };
392 
393 enum extern_type {
394 	EXT_UNKNOWN,
395 	EXT_KCFG,
396 	EXT_KSYM,
397 };
398 
399 enum kcfg_type {
400 	KCFG_UNKNOWN,
401 	KCFG_CHAR,
402 	KCFG_BOOL,
403 	KCFG_INT,
404 	KCFG_TRISTATE,
405 	KCFG_CHAR_ARR,
406 };
407 
408 struct extern_desc {
409 	enum extern_type type;
410 	int sym_idx;
411 	int btf_id;
412 	int sec_btf_id;
413 	const char *name;
414 	bool is_set;
415 	bool is_weak;
416 	union {
417 		struct {
418 			enum kcfg_type type;
419 			int sz;
420 			int align;
421 			int data_off;
422 			bool is_signed;
423 		} kcfg;
424 		struct {
425 			unsigned long long addr;
426 
427 			/* target btf_id of the corresponding kernel var. */
428 			int kernel_btf_obj_fd;
429 			int kernel_btf_id;
430 
431 			/* local btf_id of the ksym extern's type. */
432 			__u32 type_id;
433 			/* BTF fd index to be patched in for insn->off, this is
434 			 * 0 for vmlinux BTF, index in obj->fd_array for module
435 			 * BTF
436 			 */
437 			__s16 btf_fd_idx;
438 		} ksym;
439 	};
440 };
441 
442 static LIST_HEAD(bpf_objects_list);
443 
444 struct module_btf {
445 	struct btf *btf;
446 	char *name;
447 	__u32 id;
448 	int fd;
449 	int fd_array_idx;
450 };
451 
452 enum sec_type {
453 	SEC_UNUSED = 0,
454 	SEC_RELO,
455 	SEC_BSS,
456 	SEC_DATA,
457 	SEC_RODATA,
458 };
459 
460 struct elf_sec_desc {
461 	enum sec_type sec_type;
462 	Elf64_Shdr *shdr;
463 	Elf_Data *data;
464 };
465 
466 struct elf_state {
467 	int fd;
468 	const void *obj_buf;
469 	size_t obj_buf_sz;
470 	Elf *elf;
471 	Elf64_Ehdr *ehdr;
472 	Elf_Data *symbols;
473 	Elf_Data *st_ops_data;
474 	size_t shstrndx; /* section index for section name strings */
475 	size_t strtabidx;
476 	struct elf_sec_desc *secs;
477 	int sec_cnt;
478 	int maps_shndx;
479 	int btf_maps_shndx;
480 	__u32 btf_maps_sec_btf_id;
481 	int text_shndx;
482 	int symbols_shndx;
483 	int st_ops_shndx;
484 };
485 
486 struct bpf_object {
487 	char name[BPF_OBJ_NAME_LEN];
488 	char license[64];
489 	__u32 kern_version;
490 
491 	struct bpf_program *programs;
492 	size_t nr_programs;
493 	struct bpf_map *maps;
494 	size_t nr_maps;
495 	size_t maps_cap;
496 
497 	char *kconfig;
498 	struct extern_desc *externs;
499 	int nr_extern;
500 	int kconfig_map_idx;
501 
502 	bool loaded;
503 	bool has_subcalls;
504 	bool has_rodata;
505 
506 	struct bpf_gen *gen_loader;
507 
508 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
509 	struct elf_state efile;
510 	/*
511 	 * All loaded bpf_object are linked in a list, which is
512 	 * hidden to caller. bpf_objects__<func> handlers deal with
513 	 * all objects.
514 	 */
515 	struct list_head list;
516 
517 	struct btf *btf;
518 	struct btf_ext *btf_ext;
519 
520 	/* Parse and load BTF vmlinux if any of the programs in the object need
521 	 * it at load time.
522 	 */
523 	struct btf *btf_vmlinux;
524 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
525 	 * override for vmlinux BTF.
526 	 */
527 	char *btf_custom_path;
528 	/* vmlinux BTF override for CO-RE relocations */
529 	struct btf *btf_vmlinux_override;
530 	/* Lazily initialized kernel module BTFs */
531 	struct module_btf *btf_modules;
532 	bool btf_modules_loaded;
533 	size_t btf_module_cnt;
534 	size_t btf_module_cap;
535 
536 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
537 	char *log_buf;
538 	size_t log_size;
539 	__u32 log_level;
540 
541 	void *priv;
542 	bpf_object_clear_priv_t clear_priv;
543 
544 	int *fd_array;
545 	size_t fd_array_cap;
546 	size_t fd_array_cnt;
547 
548 	char path[];
549 };
550 
551 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
552 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
553 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
554 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
555 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
556 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
557 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
558 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
559 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
560 
561 void bpf_program__unload(struct bpf_program *prog)
562 {
563 	int i;
564 
565 	if (!prog)
566 		return;
567 
568 	/*
569 	 * If the object is opened but the program was never loaded,
570 	 * it is possible that prog->instances.nr == -1.
571 	 */
572 	if (prog->instances.nr > 0) {
573 		for (i = 0; i < prog->instances.nr; i++)
574 			zclose(prog->instances.fds[i]);
575 	} else if (prog->instances.nr != -1) {
576 		pr_warn("Internal error: instances.nr is %d\n",
577 			prog->instances.nr);
578 	}
579 
580 	prog->instances.nr = -1;
581 	zfree(&prog->instances.fds);
582 
583 	zfree(&prog->func_info);
584 	zfree(&prog->line_info);
585 }
586 
587 static void bpf_program__exit(struct bpf_program *prog)
588 {
589 	if (!prog)
590 		return;
591 
592 	if (prog->clear_priv)
593 		prog->clear_priv(prog, prog->priv);
594 
595 	prog->priv = NULL;
596 	prog->clear_priv = NULL;
597 
598 	bpf_program__unload(prog);
599 	zfree(&prog->name);
600 	zfree(&prog->sec_name);
601 	zfree(&prog->pin_name);
602 	zfree(&prog->insns);
603 	zfree(&prog->reloc_desc);
604 
605 	prog->nr_reloc = 0;
606 	prog->insns_cnt = 0;
607 	prog->sec_idx = -1;
608 }
609 
610 static char *__bpf_program__pin_name(struct bpf_program *prog)
611 {
612 	char *name, *p;
613 
614 	if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
615 		name = strdup(prog->name);
616 	else
617 		name = strdup(prog->sec_name);
618 
619 	if (!name)
620 		return NULL;
621 
622 	p = name;
623 
624 	while ((p = strchr(p, '/')))
625 		*p = '_';
626 
627 	return name;
628 }
629 
630 static bool insn_is_subprog_call(const struct bpf_insn *insn)
631 {
632 	return BPF_CLASS(insn->code) == BPF_JMP &&
633 	       BPF_OP(insn->code) == BPF_CALL &&
634 	       BPF_SRC(insn->code) == BPF_K &&
635 	       insn->src_reg == BPF_PSEUDO_CALL &&
636 	       insn->dst_reg == 0 &&
637 	       insn->off == 0;
638 }
639 
640 static bool is_call_insn(const struct bpf_insn *insn)
641 {
642 	return insn->code == (BPF_JMP | BPF_CALL);
643 }
644 
645 static bool insn_is_pseudo_func(struct bpf_insn *insn)
646 {
647 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
648 }
649 
650 static int
651 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
652 		      const char *name, size_t sec_idx, const char *sec_name,
653 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
654 {
655 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
656 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
657 			sec_name, name, sec_off, insn_data_sz);
658 		return -EINVAL;
659 	}
660 
661 	memset(prog, 0, sizeof(*prog));
662 	prog->obj = obj;
663 
664 	prog->sec_idx = sec_idx;
665 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
666 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
667 	/* insns_cnt can later be increased by appending used subprograms */
668 	prog->insns_cnt = prog->sec_insn_cnt;
669 
670 	prog->type = BPF_PROG_TYPE_UNSPEC;
671 	prog->load = true;
672 
673 	prog->instances.fds = NULL;
674 	prog->instances.nr = -1;
675 
676 	/* inherit object's log_level */
677 	prog->log_level = obj->log_level;
678 
679 	prog->sec_name = strdup(sec_name);
680 	if (!prog->sec_name)
681 		goto errout;
682 
683 	prog->name = strdup(name);
684 	if (!prog->name)
685 		goto errout;
686 
687 	prog->pin_name = __bpf_program__pin_name(prog);
688 	if (!prog->pin_name)
689 		goto errout;
690 
691 	prog->insns = malloc(insn_data_sz);
692 	if (!prog->insns)
693 		goto errout;
694 	memcpy(prog->insns, insn_data, insn_data_sz);
695 
696 	return 0;
697 errout:
698 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
699 	bpf_program__exit(prog);
700 	return -ENOMEM;
701 }
702 
703 static int
704 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
705 			 const char *sec_name, int sec_idx)
706 {
707 	Elf_Data *symbols = obj->efile.symbols;
708 	struct bpf_program *prog, *progs;
709 	void *data = sec_data->d_buf;
710 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
711 	int nr_progs, err, i;
712 	const char *name;
713 	Elf64_Sym *sym;
714 
715 	progs = obj->programs;
716 	nr_progs = obj->nr_programs;
717 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
718 	sec_off = 0;
719 
720 	for (i = 0; i < nr_syms; i++) {
721 		sym = elf_sym_by_idx(obj, i);
722 
723 		if (sym->st_shndx != sec_idx)
724 			continue;
725 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
726 			continue;
727 
728 		prog_sz = sym->st_size;
729 		sec_off = sym->st_value;
730 
731 		name = elf_sym_str(obj, sym->st_name);
732 		if (!name) {
733 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
734 				sec_name, sec_off);
735 			return -LIBBPF_ERRNO__FORMAT;
736 		}
737 
738 		if (sec_off + prog_sz > sec_sz) {
739 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
740 				sec_name, sec_off);
741 			return -LIBBPF_ERRNO__FORMAT;
742 		}
743 
744 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
745 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
746 			return -ENOTSUP;
747 		}
748 
749 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
750 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
751 
752 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
753 		if (!progs) {
754 			/*
755 			 * In this case the original obj->programs
756 			 * is still valid, so don't need special treat for
757 			 * bpf_close_object().
758 			 */
759 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
760 				sec_name, name);
761 			return -ENOMEM;
762 		}
763 		obj->programs = progs;
764 
765 		prog = &progs[nr_progs];
766 
767 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
768 					    sec_off, data + sec_off, prog_sz);
769 		if (err)
770 			return err;
771 
772 		/* if function is a global/weak symbol, but has restricted
773 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
774 		 * as static to enable more permissive BPF verification mode
775 		 * with more outside context available to BPF verifier
776 		 */
777 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
778 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
779 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
780 			prog->mark_btf_static = true;
781 
782 		nr_progs++;
783 		obj->nr_programs = nr_progs;
784 	}
785 
786 	return 0;
787 }
788 
789 __u32 get_kernel_version(void)
790 {
791 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
792 	 * but Ubuntu provides /proc/version_signature file, as described at
793 	 * https://ubuntu.com/kernel, with an example contents below, which we
794 	 * can use to get a proper LINUX_VERSION_CODE.
795 	 *
796 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
797 	 *
798 	 * In the above, 5.4.8 is what kernel is actually expecting, while
799 	 * uname() call will return 5.4.0 in info.release.
800 	 */
801 	const char *ubuntu_kver_file = "/proc/version_signature";
802 	__u32 major, minor, patch;
803 	struct utsname info;
804 
805 	if (access(ubuntu_kver_file, R_OK) == 0) {
806 		FILE *f;
807 
808 		f = fopen(ubuntu_kver_file, "r");
809 		if (f) {
810 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
811 				fclose(f);
812 				return KERNEL_VERSION(major, minor, patch);
813 			}
814 			fclose(f);
815 		}
816 		/* something went wrong, fall back to uname() approach */
817 	}
818 
819 	uname(&info);
820 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
821 		return 0;
822 	return KERNEL_VERSION(major, minor, patch);
823 }
824 
825 static const struct btf_member *
826 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
827 {
828 	struct btf_member *m;
829 	int i;
830 
831 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
832 		if (btf_member_bit_offset(t, i) == bit_offset)
833 			return m;
834 	}
835 
836 	return NULL;
837 }
838 
839 static const struct btf_member *
840 find_member_by_name(const struct btf *btf, const struct btf_type *t,
841 		    const char *name)
842 {
843 	struct btf_member *m;
844 	int i;
845 
846 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
847 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
848 			return m;
849 	}
850 
851 	return NULL;
852 }
853 
854 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
855 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
856 				   const char *name, __u32 kind);
857 
858 static int
859 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
860 			   const struct btf_type **type, __u32 *type_id,
861 			   const struct btf_type **vtype, __u32 *vtype_id,
862 			   const struct btf_member **data_member)
863 {
864 	const struct btf_type *kern_type, *kern_vtype;
865 	const struct btf_member *kern_data_member;
866 	__s32 kern_vtype_id, kern_type_id;
867 	__u32 i;
868 
869 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
870 	if (kern_type_id < 0) {
871 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
872 			tname);
873 		return kern_type_id;
874 	}
875 	kern_type = btf__type_by_id(btf, kern_type_id);
876 
877 	/* Find the corresponding "map_value" type that will be used
878 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
879 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
880 	 * btf_vmlinux.
881 	 */
882 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
883 						tname, BTF_KIND_STRUCT);
884 	if (kern_vtype_id < 0) {
885 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
886 			STRUCT_OPS_VALUE_PREFIX, tname);
887 		return kern_vtype_id;
888 	}
889 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
890 
891 	/* Find "struct tcp_congestion_ops" from
892 	 * struct bpf_struct_ops_tcp_congestion_ops {
893 	 *	[ ... ]
894 	 *	struct tcp_congestion_ops data;
895 	 * }
896 	 */
897 	kern_data_member = btf_members(kern_vtype);
898 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
899 		if (kern_data_member->type == kern_type_id)
900 			break;
901 	}
902 	if (i == btf_vlen(kern_vtype)) {
903 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
904 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
905 		return -EINVAL;
906 	}
907 
908 	*type = kern_type;
909 	*type_id = kern_type_id;
910 	*vtype = kern_vtype;
911 	*vtype_id = kern_vtype_id;
912 	*data_member = kern_data_member;
913 
914 	return 0;
915 }
916 
917 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
918 {
919 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
920 }
921 
922 /* Init the map's fields that depend on kern_btf */
923 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
924 					 const struct btf *btf,
925 					 const struct btf *kern_btf)
926 {
927 	const struct btf_member *member, *kern_member, *kern_data_member;
928 	const struct btf_type *type, *kern_type, *kern_vtype;
929 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
930 	struct bpf_struct_ops *st_ops;
931 	void *data, *kern_data;
932 	const char *tname;
933 	int err;
934 
935 	st_ops = map->st_ops;
936 	type = st_ops->type;
937 	tname = st_ops->tname;
938 	err = find_struct_ops_kern_types(kern_btf, tname,
939 					 &kern_type, &kern_type_id,
940 					 &kern_vtype, &kern_vtype_id,
941 					 &kern_data_member);
942 	if (err)
943 		return err;
944 
945 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
946 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
947 
948 	map->def.value_size = kern_vtype->size;
949 	map->btf_vmlinux_value_type_id = kern_vtype_id;
950 
951 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
952 	if (!st_ops->kern_vdata)
953 		return -ENOMEM;
954 
955 	data = st_ops->data;
956 	kern_data_off = kern_data_member->offset / 8;
957 	kern_data = st_ops->kern_vdata + kern_data_off;
958 
959 	member = btf_members(type);
960 	for (i = 0; i < btf_vlen(type); i++, member++) {
961 		const struct btf_type *mtype, *kern_mtype;
962 		__u32 mtype_id, kern_mtype_id;
963 		void *mdata, *kern_mdata;
964 		__s64 msize, kern_msize;
965 		__u32 moff, kern_moff;
966 		__u32 kern_member_idx;
967 		const char *mname;
968 
969 		mname = btf__name_by_offset(btf, member->name_off);
970 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
971 		if (!kern_member) {
972 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
973 				map->name, mname);
974 			return -ENOTSUP;
975 		}
976 
977 		kern_member_idx = kern_member - btf_members(kern_type);
978 		if (btf_member_bitfield_size(type, i) ||
979 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
980 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
981 				map->name, mname);
982 			return -ENOTSUP;
983 		}
984 
985 		moff = member->offset / 8;
986 		kern_moff = kern_member->offset / 8;
987 
988 		mdata = data + moff;
989 		kern_mdata = kern_data + kern_moff;
990 
991 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
992 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
993 						    &kern_mtype_id);
994 		if (BTF_INFO_KIND(mtype->info) !=
995 		    BTF_INFO_KIND(kern_mtype->info)) {
996 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
997 				map->name, mname, BTF_INFO_KIND(mtype->info),
998 				BTF_INFO_KIND(kern_mtype->info));
999 			return -ENOTSUP;
1000 		}
1001 
1002 		if (btf_is_ptr(mtype)) {
1003 			struct bpf_program *prog;
1004 
1005 			prog = st_ops->progs[i];
1006 			if (!prog)
1007 				continue;
1008 
1009 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1010 							    kern_mtype->type,
1011 							    &kern_mtype_id);
1012 
1013 			/* mtype->type must be a func_proto which was
1014 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1015 			 * so only check kern_mtype for func_proto here.
1016 			 */
1017 			if (!btf_is_func_proto(kern_mtype)) {
1018 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1019 					map->name, mname);
1020 				return -ENOTSUP;
1021 			}
1022 
1023 			prog->attach_btf_id = kern_type_id;
1024 			prog->expected_attach_type = kern_member_idx;
1025 
1026 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1027 
1028 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1029 				 map->name, mname, prog->name, moff,
1030 				 kern_moff);
1031 
1032 			continue;
1033 		}
1034 
1035 		msize = btf__resolve_size(btf, mtype_id);
1036 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1037 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1038 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1039 				map->name, mname, (ssize_t)msize,
1040 				(ssize_t)kern_msize);
1041 			return -ENOTSUP;
1042 		}
1043 
1044 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1045 			 map->name, mname, (unsigned int)msize,
1046 			 moff, kern_moff);
1047 		memcpy(kern_mdata, mdata, msize);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1054 {
1055 	struct bpf_map *map;
1056 	size_t i;
1057 	int err;
1058 
1059 	for (i = 0; i < obj->nr_maps; i++) {
1060 		map = &obj->maps[i];
1061 
1062 		if (!bpf_map__is_struct_ops(map))
1063 			continue;
1064 
1065 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1066 						    obj->btf_vmlinux);
1067 		if (err)
1068 			return err;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1075 {
1076 	const struct btf_type *type, *datasec;
1077 	const struct btf_var_secinfo *vsi;
1078 	struct bpf_struct_ops *st_ops;
1079 	const char *tname, *var_name;
1080 	__s32 type_id, datasec_id;
1081 	const struct btf *btf;
1082 	struct bpf_map *map;
1083 	__u32 i;
1084 
1085 	if (obj->efile.st_ops_shndx == -1)
1086 		return 0;
1087 
1088 	btf = obj->btf;
1089 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1090 					    BTF_KIND_DATASEC);
1091 	if (datasec_id < 0) {
1092 		pr_warn("struct_ops init: DATASEC %s not found\n",
1093 			STRUCT_OPS_SEC);
1094 		return -EINVAL;
1095 	}
1096 
1097 	datasec = btf__type_by_id(btf, datasec_id);
1098 	vsi = btf_var_secinfos(datasec);
1099 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1100 		type = btf__type_by_id(obj->btf, vsi->type);
1101 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1102 
1103 		type_id = btf__resolve_type(obj->btf, vsi->type);
1104 		if (type_id < 0) {
1105 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1106 				vsi->type, STRUCT_OPS_SEC);
1107 			return -EINVAL;
1108 		}
1109 
1110 		type = btf__type_by_id(obj->btf, type_id);
1111 		tname = btf__name_by_offset(obj->btf, type->name_off);
1112 		if (!tname[0]) {
1113 			pr_warn("struct_ops init: anonymous type is not supported\n");
1114 			return -ENOTSUP;
1115 		}
1116 		if (!btf_is_struct(type)) {
1117 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1118 			return -EINVAL;
1119 		}
1120 
1121 		map = bpf_object__add_map(obj);
1122 		if (IS_ERR(map))
1123 			return PTR_ERR(map);
1124 
1125 		map->sec_idx = obj->efile.st_ops_shndx;
1126 		map->sec_offset = vsi->offset;
1127 		map->name = strdup(var_name);
1128 		if (!map->name)
1129 			return -ENOMEM;
1130 
1131 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1132 		map->def.key_size = sizeof(int);
1133 		map->def.value_size = type->size;
1134 		map->def.max_entries = 1;
1135 
1136 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1137 		if (!map->st_ops)
1138 			return -ENOMEM;
1139 		st_ops = map->st_ops;
1140 		st_ops->data = malloc(type->size);
1141 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1142 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1143 					       sizeof(*st_ops->kern_func_off));
1144 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1145 			return -ENOMEM;
1146 
1147 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1148 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1149 				var_name, STRUCT_OPS_SEC);
1150 			return -EINVAL;
1151 		}
1152 
1153 		memcpy(st_ops->data,
1154 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1155 		       type->size);
1156 		st_ops->tname = tname;
1157 		st_ops->type = type;
1158 		st_ops->type_id = type_id;
1159 
1160 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1161 			 tname, type_id, var_name, vsi->offset);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 static struct bpf_object *bpf_object__new(const char *path,
1168 					  const void *obj_buf,
1169 					  size_t obj_buf_sz,
1170 					  const char *obj_name)
1171 {
1172 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1173 	struct bpf_object *obj;
1174 	char *end;
1175 
1176 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1177 	if (!obj) {
1178 		pr_warn("alloc memory failed for %s\n", path);
1179 		return ERR_PTR(-ENOMEM);
1180 	}
1181 
1182 	strcpy(obj->path, path);
1183 	if (obj_name) {
1184 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1185 	} else {
1186 		/* Using basename() GNU version which doesn't modify arg. */
1187 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1188 		end = strchr(obj->name, '.');
1189 		if (end)
1190 			*end = 0;
1191 	}
1192 
1193 	obj->efile.fd = -1;
1194 	/*
1195 	 * Caller of this function should also call
1196 	 * bpf_object__elf_finish() after data collection to return
1197 	 * obj_buf to user. If not, we should duplicate the buffer to
1198 	 * avoid user freeing them before elf finish.
1199 	 */
1200 	obj->efile.obj_buf = obj_buf;
1201 	obj->efile.obj_buf_sz = obj_buf_sz;
1202 	obj->efile.maps_shndx = -1;
1203 	obj->efile.btf_maps_shndx = -1;
1204 	obj->efile.st_ops_shndx = -1;
1205 	obj->kconfig_map_idx = -1;
1206 
1207 	obj->kern_version = get_kernel_version();
1208 	obj->loaded = false;
1209 
1210 	INIT_LIST_HEAD(&obj->list);
1211 	if (!strict)
1212 		list_add(&obj->list, &bpf_objects_list);
1213 	return obj;
1214 }
1215 
1216 static void bpf_object__elf_finish(struct bpf_object *obj)
1217 {
1218 	if (!obj->efile.elf)
1219 		return;
1220 
1221 	if (obj->efile.elf) {
1222 		elf_end(obj->efile.elf);
1223 		obj->efile.elf = NULL;
1224 	}
1225 	obj->efile.symbols = NULL;
1226 	obj->efile.st_ops_data = NULL;
1227 
1228 	zfree(&obj->efile.secs);
1229 	obj->efile.sec_cnt = 0;
1230 	zclose(obj->efile.fd);
1231 	obj->efile.obj_buf = NULL;
1232 	obj->efile.obj_buf_sz = 0;
1233 }
1234 
1235 static int bpf_object__elf_init(struct bpf_object *obj)
1236 {
1237 	Elf64_Ehdr *ehdr;
1238 	int err = 0;
1239 	Elf *elf;
1240 
1241 	if (obj->efile.elf) {
1242 		pr_warn("elf: init internal error\n");
1243 		return -LIBBPF_ERRNO__LIBELF;
1244 	}
1245 
1246 	if (obj->efile.obj_buf_sz > 0) {
1247 		/*
1248 		 * obj_buf should have been validated by
1249 		 * bpf_object__open_buffer().
1250 		 */
1251 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1252 	} else {
1253 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1254 		if (obj->efile.fd < 0) {
1255 			char errmsg[STRERR_BUFSIZE], *cp;
1256 
1257 			err = -errno;
1258 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1259 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1260 			return err;
1261 		}
1262 
1263 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1264 	}
1265 
1266 	if (!elf) {
1267 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1268 		err = -LIBBPF_ERRNO__LIBELF;
1269 		goto errout;
1270 	}
1271 
1272 	obj->efile.elf = elf;
1273 
1274 	if (elf_kind(elf) != ELF_K_ELF) {
1275 		err = -LIBBPF_ERRNO__FORMAT;
1276 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1277 		goto errout;
1278 	}
1279 
1280 	if (gelf_getclass(elf) != ELFCLASS64) {
1281 		err = -LIBBPF_ERRNO__FORMAT;
1282 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1283 		goto errout;
1284 	}
1285 
1286 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1287 	if (!obj->efile.ehdr) {
1288 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1289 		err = -LIBBPF_ERRNO__FORMAT;
1290 		goto errout;
1291 	}
1292 
1293 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1294 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1295 			obj->path, elf_errmsg(-1));
1296 		err = -LIBBPF_ERRNO__FORMAT;
1297 		goto errout;
1298 	}
1299 
1300 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1301 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1302 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1303 			obj->path, elf_errmsg(-1));
1304 		err = -LIBBPF_ERRNO__FORMAT;
1305 		goto errout;
1306 	}
1307 
1308 	/* Old LLVM set e_machine to EM_NONE */
1309 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1310 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1311 		err = -LIBBPF_ERRNO__FORMAT;
1312 		goto errout;
1313 	}
1314 
1315 	return 0;
1316 errout:
1317 	bpf_object__elf_finish(obj);
1318 	return err;
1319 }
1320 
1321 static int bpf_object__check_endianness(struct bpf_object *obj)
1322 {
1323 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1324 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1325 		return 0;
1326 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1327 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1328 		return 0;
1329 #else
1330 # error "Unrecognized __BYTE_ORDER__"
1331 #endif
1332 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1333 	return -LIBBPF_ERRNO__ENDIAN;
1334 }
1335 
1336 static int
1337 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1338 {
1339 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1340 	 * go over allowed ELF data section buffer
1341 	 */
1342 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1343 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1344 	return 0;
1345 }
1346 
1347 static int
1348 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1349 {
1350 	__u32 kver;
1351 
1352 	if (size != sizeof(kver)) {
1353 		pr_warn("invalid kver section in %s\n", obj->path);
1354 		return -LIBBPF_ERRNO__FORMAT;
1355 	}
1356 	memcpy(&kver, data, sizeof(kver));
1357 	obj->kern_version = kver;
1358 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1359 	return 0;
1360 }
1361 
1362 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1363 {
1364 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1365 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1366 		return true;
1367 	return false;
1368 }
1369 
1370 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1371 {
1372 	Elf_Data *data;
1373 	Elf_Scn *scn;
1374 
1375 	if (!name)
1376 		return -EINVAL;
1377 
1378 	scn = elf_sec_by_name(obj, name);
1379 	data = elf_sec_data(obj, scn);
1380 	if (data) {
1381 		*size = data->d_size;
1382 		return 0; /* found it */
1383 	}
1384 
1385 	return -ENOENT;
1386 }
1387 
1388 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1389 {
1390 	Elf_Data *symbols = obj->efile.symbols;
1391 	const char *sname;
1392 	size_t si;
1393 
1394 	if (!name || !off)
1395 		return -EINVAL;
1396 
1397 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1398 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1399 
1400 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL ||
1401 		    ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1402 			continue;
1403 
1404 		sname = elf_sym_str(obj, sym->st_name);
1405 		if (!sname) {
1406 			pr_warn("failed to get sym name string for var %s\n", name);
1407 			return -EIO;
1408 		}
1409 		if (strcmp(name, sname) == 0) {
1410 			*off = sym->st_value;
1411 			return 0;
1412 		}
1413 	}
1414 
1415 	return -ENOENT;
1416 }
1417 
1418 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1419 {
1420 	struct bpf_map *new_maps;
1421 	size_t new_cap;
1422 	int i;
1423 
1424 	if (obj->nr_maps < obj->maps_cap)
1425 		return &obj->maps[obj->nr_maps++];
1426 
1427 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1428 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1429 	if (!new_maps) {
1430 		pr_warn("alloc maps for object failed\n");
1431 		return ERR_PTR(-ENOMEM);
1432 	}
1433 
1434 	obj->maps_cap = new_cap;
1435 	obj->maps = new_maps;
1436 
1437 	/* zero out new maps */
1438 	memset(obj->maps + obj->nr_maps, 0,
1439 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1440 	/*
1441 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1442 	 * when failure (zclose won't close negative fd)).
1443 	 */
1444 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1445 		obj->maps[i].fd = -1;
1446 		obj->maps[i].inner_map_fd = -1;
1447 	}
1448 
1449 	return &obj->maps[obj->nr_maps++];
1450 }
1451 
1452 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1453 {
1454 	long page_sz = sysconf(_SC_PAGE_SIZE);
1455 	size_t map_sz;
1456 
1457 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1458 	map_sz = roundup(map_sz, page_sz);
1459 	return map_sz;
1460 }
1461 
1462 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1463 {
1464 	char map_name[BPF_OBJ_NAME_LEN], *p;
1465 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1466 
1467 	/* This is one of the more confusing parts of libbpf for various
1468 	 * reasons, some of which are historical. The original idea for naming
1469 	 * internal names was to include as much of BPF object name prefix as
1470 	 * possible, so that it can be distinguished from similar internal
1471 	 * maps of a different BPF object.
1472 	 * As an example, let's say we have bpf_object named 'my_object_name'
1473 	 * and internal map corresponding to '.rodata' ELF section. The final
1474 	 * map name advertised to user and to the kernel will be
1475 	 * 'my_objec.rodata', taking first 8 characters of object name and
1476 	 * entire 7 characters of '.rodata'.
1477 	 * Somewhat confusingly, if internal map ELF section name is shorter
1478 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1479 	 * for the suffix, even though we only have 4 actual characters, and
1480 	 * resulting map will be called 'my_objec.bss', not even using all 15
1481 	 * characters allowed by the kernel. Oh well, at least the truncated
1482 	 * object name is somewhat consistent in this case. But if the map
1483 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1484 	 * (8 chars) and thus will be left with only first 7 characters of the
1485 	 * object name ('my_obje'). Happy guessing, user, that the final map
1486 	 * name will be "my_obje.kconfig".
1487 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1488 	 * and .data.* data sections, it's possible that ELF section name is
1489 	 * longer than allowed 15 chars, so we now need to be careful to take
1490 	 * only up to 15 first characters of ELF name, taking no BPF object
1491 	 * name characters at all. So '.rodata.abracadabra' will result in
1492 	 * '.rodata.abracad' kernel and user-visible name.
1493 	 * We need to keep this convoluted logic intact for .data, .bss and
1494 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1495 	 * maps we use their ELF names as is, not prepending bpf_object name
1496 	 * in front. We still need to truncate them to 15 characters for the
1497 	 * kernel. Full name can be recovered for such maps by using DATASEC
1498 	 * BTF type associated with such map's value type, though.
1499 	 */
1500 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1501 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1502 
1503 	/* if there are two or more dots in map name, it's a custom dot map */
1504 	if (strchr(real_name + 1, '.') != NULL)
1505 		pfx_len = 0;
1506 	else
1507 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1508 
1509 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1510 		 sfx_len, real_name);
1511 
1512 	/* sanitise map name to characters allowed by kernel */
1513 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1514 		if (!isalnum(*p) && *p != '_' && *p != '.')
1515 			*p = '_';
1516 
1517 	return strdup(map_name);
1518 }
1519 
1520 static int
1521 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1522 
1523 static int
1524 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1525 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1526 {
1527 	struct bpf_map_def *def;
1528 	struct bpf_map *map;
1529 	int err;
1530 
1531 	map = bpf_object__add_map(obj);
1532 	if (IS_ERR(map))
1533 		return PTR_ERR(map);
1534 
1535 	map->libbpf_type = type;
1536 	map->sec_idx = sec_idx;
1537 	map->sec_offset = 0;
1538 	map->real_name = strdup(real_name);
1539 	map->name = internal_map_name(obj, real_name);
1540 	if (!map->real_name || !map->name) {
1541 		zfree(&map->real_name);
1542 		zfree(&map->name);
1543 		return -ENOMEM;
1544 	}
1545 
1546 	def = &map->def;
1547 	def->type = BPF_MAP_TYPE_ARRAY;
1548 	def->key_size = sizeof(int);
1549 	def->value_size = data_sz;
1550 	def->max_entries = 1;
1551 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1552 			 ? BPF_F_RDONLY_PROG : 0;
1553 	def->map_flags |= BPF_F_MMAPABLE;
1554 
1555 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1556 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1557 
1558 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1559 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1560 	if (map->mmaped == MAP_FAILED) {
1561 		err = -errno;
1562 		map->mmaped = NULL;
1563 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1564 			map->name, err);
1565 		zfree(&map->real_name);
1566 		zfree(&map->name);
1567 		return err;
1568 	}
1569 
1570 	/* failures are fine because of maps like .rodata.str1.1 */
1571 	(void) bpf_map_find_btf_info(obj, map);
1572 
1573 	if (data)
1574 		memcpy(map->mmaped, data, data_sz);
1575 
1576 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1577 	return 0;
1578 }
1579 
1580 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1581 {
1582 	struct elf_sec_desc *sec_desc;
1583 	const char *sec_name;
1584 	int err = 0, sec_idx;
1585 
1586 	/*
1587 	 * Populate obj->maps with libbpf internal maps.
1588 	 */
1589 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1590 		sec_desc = &obj->efile.secs[sec_idx];
1591 
1592 		switch (sec_desc->sec_type) {
1593 		case SEC_DATA:
1594 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1595 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1596 							    sec_name, sec_idx,
1597 							    sec_desc->data->d_buf,
1598 							    sec_desc->data->d_size);
1599 			break;
1600 		case SEC_RODATA:
1601 			obj->has_rodata = true;
1602 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1603 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1604 							    sec_name, sec_idx,
1605 							    sec_desc->data->d_buf,
1606 							    sec_desc->data->d_size);
1607 			break;
1608 		case SEC_BSS:
1609 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1610 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1611 							    sec_name, sec_idx,
1612 							    NULL,
1613 							    sec_desc->data->d_size);
1614 			break;
1615 		default:
1616 			/* skip */
1617 			break;
1618 		}
1619 		if (err)
1620 			return err;
1621 	}
1622 	return 0;
1623 }
1624 
1625 
1626 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1627 					       const void *name)
1628 {
1629 	int i;
1630 
1631 	for (i = 0; i < obj->nr_extern; i++) {
1632 		if (strcmp(obj->externs[i].name, name) == 0)
1633 			return &obj->externs[i];
1634 	}
1635 	return NULL;
1636 }
1637 
1638 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1639 			      char value)
1640 {
1641 	switch (ext->kcfg.type) {
1642 	case KCFG_BOOL:
1643 		if (value == 'm') {
1644 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1645 				ext->name, value);
1646 			return -EINVAL;
1647 		}
1648 		*(bool *)ext_val = value == 'y' ? true : false;
1649 		break;
1650 	case KCFG_TRISTATE:
1651 		if (value == 'y')
1652 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1653 		else if (value == 'm')
1654 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1655 		else /* value == 'n' */
1656 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1657 		break;
1658 	case KCFG_CHAR:
1659 		*(char *)ext_val = value;
1660 		break;
1661 	case KCFG_UNKNOWN:
1662 	case KCFG_INT:
1663 	case KCFG_CHAR_ARR:
1664 	default:
1665 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1666 			ext->name, value);
1667 		return -EINVAL;
1668 	}
1669 	ext->is_set = true;
1670 	return 0;
1671 }
1672 
1673 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1674 			      const char *value)
1675 {
1676 	size_t len;
1677 
1678 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1679 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1680 		return -EINVAL;
1681 	}
1682 
1683 	len = strlen(value);
1684 	if (value[len - 1] != '"') {
1685 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1686 			ext->name, value);
1687 		return -EINVAL;
1688 	}
1689 
1690 	/* strip quotes */
1691 	len -= 2;
1692 	if (len >= ext->kcfg.sz) {
1693 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1694 			ext->name, value, len, ext->kcfg.sz - 1);
1695 		len = ext->kcfg.sz - 1;
1696 	}
1697 	memcpy(ext_val, value + 1, len);
1698 	ext_val[len] = '\0';
1699 	ext->is_set = true;
1700 	return 0;
1701 }
1702 
1703 static int parse_u64(const char *value, __u64 *res)
1704 {
1705 	char *value_end;
1706 	int err;
1707 
1708 	errno = 0;
1709 	*res = strtoull(value, &value_end, 0);
1710 	if (errno) {
1711 		err = -errno;
1712 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1713 		return err;
1714 	}
1715 	if (*value_end) {
1716 		pr_warn("failed to parse '%s' as integer completely\n", value);
1717 		return -EINVAL;
1718 	}
1719 	return 0;
1720 }
1721 
1722 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1723 {
1724 	int bit_sz = ext->kcfg.sz * 8;
1725 
1726 	if (ext->kcfg.sz == 8)
1727 		return true;
1728 
1729 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1730 	 * bytes size without any loss of information. If the target integer
1731 	 * is signed, we rely on the following limits of integer type of
1732 	 * Y bits and subsequent transformation:
1733 	 *
1734 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1735 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1736 	 *            0 <= X + 2^(Y-1) <  2^Y
1737 	 *
1738 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1739 	 *  zero.
1740 	 */
1741 	if (ext->kcfg.is_signed)
1742 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1743 	else
1744 		return (v >> bit_sz) == 0;
1745 }
1746 
1747 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1748 			      __u64 value)
1749 {
1750 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1751 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1752 			ext->name, (unsigned long long)value);
1753 		return -EINVAL;
1754 	}
1755 	if (!is_kcfg_value_in_range(ext, value)) {
1756 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1757 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1758 		return -ERANGE;
1759 	}
1760 	switch (ext->kcfg.sz) {
1761 		case 1: *(__u8 *)ext_val = value; break;
1762 		case 2: *(__u16 *)ext_val = value; break;
1763 		case 4: *(__u32 *)ext_val = value; break;
1764 		case 8: *(__u64 *)ext_val = value; break;
1765 		default:
1766 			return -EINVAL;
1767 	}
1768 	ext->is_set = true;
1769 	return 0;
1770 }
1771 
1772 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1773 					    char *buf, void *data)
1774 {
1775 	struct extern_desc *ext;
1776 	char *sep, *value;
1777 	int len, err = 0;
1778 	void *ext_val;
1779 	__u64 num;
1780 
1781 	if (!str_has_pfx(buf, "CONFIG_"))
1782 		return 0;
1783 
1784 	sep = strchr(buf, '=');
1785 	if (!sep) {
1786 		pr_warn("failed to parse '%s': no separator\n", buf);
1787 		return -EINVAL;
1788 	}
1789 
1790 	/* Trim ending '\n' */
1791 	len = strlen(buf);
1792 	if (buf[len - 1] == '\n')
1793 		buf[len - 1] = '\0';
1794 	/* Split on '=' and ensure that a value is present. */
1795 	*sep = '\0';
1796 	if (!sep[1]) {
1797 		*sep = '=';
1798 		pr_warn("failed to parse '%s': no value\n", buf);
1799 		return -EINVAL;
1800 	}
1801 
1802 	ext = find_extern_by_name(obj, buf);
1803 	if (!ext || ext->is_set)
1804 		return 0;
1805 
1806 	ext_val = data + ext->kcfg.data_off;
1807 	value = sep + 1;
1808 
1809 	switch (*value) {
1810 	case 'y': case 'n': case 'm':
1811 		err = set_kcfg_value_tri(ext, ext_val, *value);
1812 		break;
1813 	case '"':
1814 		err = set_kcfg_value_str(ext, ext_val, value);
1815 		break;
1816 	default:
1817 		/* assume integer */
1818 		err = parse_u64(value, &num);
1819 		if (err) {
1820 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1821 				ext->name, value);
1822 			return err;
1823 		}
1824 		err = set_kcfg_value_num(ext, ext_val, num);
1825 		break;
1826 	}
1827 	if (err)
1828 		return err;
1829 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1830 	return 0;
1831 }
1832 
1833 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1834 {
1835 	char buf[PATH_MAX];
1836 	struct utsname uts;
1837 	int len, err = 0;
1838 	gzFile file;
1839 
1840 	uname(&uts);
1841 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1842 	if (len < 0)
1843 		return -EINVAL;
1844 	else if (len >= PATH_MAX)
1845 		return -ENAMETOOLONG;
1846 
1847 	/* gzopen also accepts uncompressed files. */
1848 	file = gzopen(buf, "r");
1849 	if (!file)
1850 		file = gzopen("/proc/config.gz", "r");
1851 
1852 	if (!file) {
1853 		pr_warn("failed to open system Kconfig\n");
1854 		return -ENOENT;
1855 	}
1856 
1857 	while (gzgets(file, buf, sizeof(buf))) {
1858 		err = bpf_object__process_kconfig_line(obj, buf, data);
1859 		if (err) {
1860 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1861 				buf, err);
1862 			goto out;
1863 		}
1864 	}
1865 
1866 out:
1867 	gzclose(file);
1868 	return err;
1869 }
1870 
1871 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1872 					const char *config, void *data)
1873 {
1874 	char buf[PATH_MAX];
1875 	int err = 0;
1876 	FILE *file;
1877 
1878 	file = fmemopen((void *)config, strlen(config), "r");
1879 	if (!file) {
1880 		err = -errno;
1881 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1882 		return err;
1883 	}
1884 
1885 	while (fgets(buf, sizeof(buf), file)) {
1886 		err = bpf_object__process_kconfig_line(obj, buf, data);
1887 		if (err) {
1888 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1889 				buf, err);
1890 			break;
1891 		}
1892 	}
1893 
1894 	fclose(file);
1895 	return err;
1896 }
1897 
1898 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1899 {
1900 	struct extern_desc *last_ext = NULL, *ext;
1901 	size_t map_sz;
1902 	int i, err;
1903 
1904 	for (i = 0; i < obj->nr_extern; i++) {
1905 		ext = &obj->externs[i];
1906 		if (ext->type == EXT_KCFG)
1907 			last_ext = ext;
1908 	}
1909 
1910 	if (!last_ext)
1911 		return 0;
1912 
1913 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1914 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1915 					    ".kconfig", obj->efile.symbols_shndx,
1916 					    NULL, map_sz);
1917 	if (err)
1918 		return err;
1919 
1920 	obj->kconfig_map_idx = obj->nr_maps - 1;
1921 
1922 	return 0;
1923 }
1924 
1925 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1926 {
1927 	Elf_Data *symbols = obj->efile.symbols;
1928 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1929 	Elf_Data *data = NULL;
1930 	Elf_Scn *scn;
1931 
1932 	if (obj->efile.maps_shndx < 0)
1933 		return 0;
1934 
1935 	if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) {
1936 		pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n");
1937 		return -EOPNOTSUPP;
1938 	}
1939 
1940 	if (!symbols)
1941 		return -EINVAL;
1942 
1943 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1944 	data = elf_sec_data(obj, scn);
1945 	if (!scn || !data) {
1946 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1947 			obj->path);
1948 		return -EINVAL;
1949 	}
1950 
1951 	/*
1952 	 * Count number of maps. Each map has a name.
1953 	 * Array of maps is not supported: only the first element is
1954 	 * considered.
1955 	 *
1956 	 * TODO: Detect array of map and report error.
1957 	 */
1958 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1959 	for (i = 0; i < nr_syms; i++) {
1960 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1961 
1962 		if (sym->st_shndx != obj->efile.maps_shndx)
1963 			continue;
1964 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1965 			continue;
1966 		nr_maps++;
1967 	}
1968 	/* Assume equally sized map definitions */
1969 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1970 		 nr_maps, data->d_size, obj->path);
1971 
1972 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1973 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1974 			obj->path);
1975 		return -EINVAL;
1976 	}
1977 	map_def_sz = data->d_size / nr_maps;
1978 
1979 	/* Fill obj->maps using data in "maps" section.  */
1980 	for (i = 0; i < nr_syms; i++) {
1981 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1982 		const char *map_name;
1983 		struct bpf_map_def *def;
1984 		struct bpf_map *map;
1985 
1986 		if (sym->st_shndx != obj->efile.maps_shndx)
1987 			continue;
1988 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1989 			continue;
1990 
1991 		map = bpf_object__add_map(obj);
1992 		if (IS_ERR(map))
1993 			return PTR_ERR(map);
1994 
1995 		map_name = elf_sym_str(obj, sym->st_name);
1996 		if (!map_name) {
1997 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1998 				i, obj->path);
1999 			return -LIBBPF_ERRNO__FORMAT;
2000 		}
2001 
2002 		pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name);
2003 
2004 		if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
2005 			pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
2006 			return -ENOTSUP;
2007 		}
2008 
2009 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
2010 		map->sec_idx = sym->st_shndx;
2011 		map->sec_offset = sym->st_value;
2012 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
2013 			 map_name, map->sec_idx, map->sec_offset);
2014 		if (sym->st_value + map_def_sz > data->d_size) {
2015 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
2016 				obj->path, map_name);
2017 			return -EINVAL;
2018 		}
2019 
2020 		map->name = strdup(map_name);
2021 		if (!map->name) {
2022 			pr_warn("map '%s': failed to alloc map name\n", map_name);
2023 			return -ENOMEM;
2024 		}
2025 		pr_debug("map %d is \"%s\"\n", i, map->name);
2026 		def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
2027 		/*
2028 		 * If the definition of the map in the object file fits in
2029 		 * bpf_map_def, copy it.  Any extra fields in our version
2030 		 * of bpf_map_def will default to zero as a result of the
2031 		 * calloc above.
2032 		 */
2033 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
2034 			memcpy(&map->def, def, map_def_sz);
2035 		} else {
2036 			/*
2037 			 * Here the map structure being read is bigger than what
2038 			 * we expect, truncate if the excess bits are all zero.
2039 			 * If they are not zero, reject this map as
2040 			 * incompatible.
2041 			 */
2042 			char *b;
2043 
2044 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
2045 			     b < ((char *)def) + map_def_sz; b++) {
2046 				if (*b != 0) {
2047 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2048 						obj->path, map_name);
2049 					if (strict)
2050 						return -EINVAL;
2051 				}
2052 			}
2053 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
2054 		}
2055 
2056 		/* btf info may not exist but fill it in if it does exist */
2057 		(void) bpf_map_find_btf_info(obj, map);
2058 	}
2059 	return 0;
2060 }
2061 
2062 const struct btf_type *
2063 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2064 {
2065 	const struct btf_type *t = btf__type_by_id(btf, id);
2066 
2067 	if (res_id)
2068 		*res_id = id;
2069 
2070 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2071 		if (res_id)
2072 			*res_id = t->type;
2073 		t = btf__type_by_id(btf, t->type);
2074 	}
2075 
2076 	return t;
2077 }
2078 
2079 static const struct btf_type *
2080 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2081 {
2082 	const struct btf_type *t;
2083 
2084 	t = skip_mods_and_typedefs(btf, id, NULL);
2085 	if (!btf_is_ptr(t))
2086 		return NULL;
2087 
2088 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2089 
2090 	return btf_is_func_proto(t) ? t : NULL;
2091 }
2092 
2093 static const char *__btf_kind_str(__u16 kind)
2094 {
2095 	switch (kind) {
2096 	case BTF_KIND_UNKN: return "void";
2097 	case BTF_KIND_INT: return "int";
2098 	case BTF_KIND_PTR: return "ptr";
2099 	case BTF_KIND_ARRAY: return "array";
2100 	case BTF_KIND_STRUCT: return "struct";
2101 	case BTF_KIND_UNION: return "union";
2102 	case BTF_KIND_ENUM: return "enum";
2103 	case BTF_KIND_FWD: return "fwd";
2104 	case BTF_KIND_TYPEDEF: return "typedef";
2105 	case BTF_KIND_VOLATILE: return "volatile";
2106 	case BTF_KIND_CONST: return "const";
2107 	case BTF_KIND_RESTRICT: return "restrict";
2108 	case BTF_KIND_FUNC: return "func";
2109 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2110 	case BTF_KIND_VAR: return "var";
2111 	case BTF_KIND_DATASEC: return "datasec";
2112 	case BTF_KIND_FLOAT: return "float";
2113 	case BTF_KIND_DECL_TAG: return "decl_tag";
2114 	case BTF_KIND_TYPE_TAG: return "type_tag";
2115 	default: return "unknown";
2116 	}
2117 }
2118 
2119 const char *btf_kind_str(const struct btf_type *t)
2120 {
2121 	return __btf_kind_str(btf_kind(t));
2122 }
2123 
2124 /*
2125  * Fetch integer attribute of BTF map definition. Such attributes are
2126  * represented using a pointer to an array, in which dimensionality of array
2127  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2128  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2129  * type definition, while using only sizeof(void *) space in ELF data section.
2130  */
2131 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2132 			      const struct btf_member *m, __u32 *res)
2133 {
2134 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2135 	const char *name = btf__name_by_offset(btf, m->name_off);
2136 	const struct btf_array *arr_info;
2137 	const struct btf_type *arr_t;
2138 
2139 	if (!btf_is_ptr(t)) {
2140 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2141 			map_name, name, btf_kind_str(t));
2142 		return false;
2143 	}
2144 
2145 	arr_t = btf__type_by_id(btf, t->type);
2146 	if (!arr_t) {
2147 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2148 			map_name, name, t->type);
2149 		return false;
2150 	}
2151 	if (!btf_is_array(arr_t)) {
2152 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2153 			map_name, name, btf_kind_str(arr_t));
2154 		return false;
2155 	}
2156 	arr_info = btf_array(arr_t);
2157 	*res = arr_info->nelems;
2158 	return true;
2159 }
2160 
2161 static int build_map_pin_path(struct bpf_map *map, const char *path)
2162 {
2163 	char buf[PATH_MAX];
2164 	int len;
2165 
2166 	if (!path)
2167 		path = "/sys/fs/bpf";
2168 
2169 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2170 	if (len < 0)
2171 		return -EINVAL;
2172 	else if (len >= PATH_MAX)
2173 		return -ENAMETOOLONG;
2174 
2175 	return bpf_map__set_pin_path(map, buf);
2176 }
2177 
2178 int parse_btf_map_def(const char *map_name, struct btf *btf,
2179 		      const struct btf_type *def_t, bool strict,
2180 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2181 {
2182 	const struct btf_type *t;
2183 	const struct btf_member *m;
2184 	bool is_inner = inner_def == NULL;
2185 	int vlen, i;
2186 
2187 	vlen = btf_vlen(def_t);
2188 	m = btf_members(def_t);
2189 	for (i = 0; i < vlen; i++, m++) {
2190 		const char *name = btf__name_by_offset(btf, m->name_off);
2191 
2192 		if (!name) {
2193 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2194 			return -EINVAL;
2195 		}
2196 		if (strcmp(name, "type") == 0) {
2197 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2198 				return -EINVAL;
2199 			map_def->parts |= MAP_DEF_MAP_TYPE;
2200 		} else if (strcmp(name, "max_entries") == 0) {
2201 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2202 				return -EINVAL;
2203 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2204 		} else if (strcmp(name, "map_flags") == 0) {
2205 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2206 				return -EINVAL;
2207 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2208 		} else if (strcmp(name, "numa_node") == 0) {
2209 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2210 				return -EINVAL;
2211 			map_def->parts |= MAP_DEF_NUMA_NODE;
2212 		} else if (strcmp(name, "key_size") == 0) {
2213 			__u32 sz;
2214 
2215 			if (!get_map_field_int(map_name, btf, m, &sz))
2216 				return -EINVAL;
2217 			if (map_def->key_size && map_def->key_size != sz) {
2218 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2219 					map_name, map_def->key_size, sz);
2220 				return -EINVAL;
2221 			}
2222 			map_def->key_size = sz;
2223 			map_def->parts |= MAP_DEF_KEY_SIZE;
2224 		} else if (strcmp(name, "key") == 0) {
2225 			__s64 sz;
2226 
2227 			t = btf__type_by_id(btf, m->type);
2228 			if (!t) {
2229 				pr_warn("map '%s': key type [%d] not found.\n",
2230 					map_name, m->type);
2231 				return -EINVAL;
2232 			}
2233 			if (!btf_is_ptr(t)) {
2234 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2235 					map_name, btf_kind_str(t));
2236 				return -EINVAL;
2237 			}
2238 			sz = btf__resolve_size(btf, t->type);
2239 			if (sz < 0) {
2240 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2241 					map_name, t->type, (ssize_t)sz);
2242 				return sz;
2243 			}
2244 			if (map_def->key_size && map_def->key_size != sz) {
2245 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2246 					map_name, map_def->key_size, (ssize_t)sz);
2247 				return -EINVAL;
2248 			}
2249 			map_def->key_size = sz;
2250 			map_def->key_type_id = t->type;
2251 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2252 		} else if (strcmp(name, "value_size") == 0) {
2253 			__u32 sz;
2254 
2255 			if (!get_map_field_int(map_name, btf, m, &sz))
2256 				return -EINVAL;
2257 			if (map_def->value_size && map_def->value_size != sz) {
2258 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2259 					map_name, map_def->value_size, sz);
2260 				return -EINVAL;
2261 			}
2262 			map_def->value_size = sz;
2263 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2264 		} else if (strcmp(name, "value") == 0) {
2265 			__s64 sz;
2266 
2267 			t = btf__type_by_id(btf, m->type);
2268 			if (!t) {
2269 				pr_warn("map '%s': value type [%d] not found.\n",
2270 					map_name, m->type);
2271 				return -EINVAL;
2272 			}
2273 			if (!btf_is_ptr(t)) {
2274 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2275 					map_name, btf_kind_str(t));
2276 				return -EINVAL;
2277 			}
2278 			sz = btf__resolve_size(btf, t->type);
2279 			if (sz < 0) {
2280 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2281 					map_name, t->type, (ssize_t)sz);
2282 				return sz;
2283 			}
2284 			if (map_def->value_size && map_def->value_size != sz) {
2285 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2286 					map_name, map_def->value_size, (ssize_t)sz);
2287 				return -EINVAL;
2288 			}
2289 			map_def->value_size = sz;
2290 			map_def->value_type_id = t->type;
2291 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2292 		}
2293 		else if (strcmp(name, "values") == 0) {
2294 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2295 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2296 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2297 			char inner_map_name[128];
2298 			int err;
2299 
2300 			if (is_inner) {
2301 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2302 					map_name);
2303 				return -ENOTSUP;
2304 			}
2305 			if (i != vlen - 1) {
2306 				pr_warn("map '%s': '%s' member should be last.\n",
2307 					map_name, name);
2308 				return -EINVAL;
2309 			}
2310 			if (!is_map_in_map && !is_prog_array) {
2311 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2312 					map_name);
2313 				return -ENOTSUP;
2314 			}
2315 			if (map_def->value_size && map_def->value_size != 4) {
2316 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2317 					map_name, map_def->value_size);
2318 				return -EINVAL;
2319 			}
2320 			map_def->value_size = 4;
2321 			t = btf__type_by_id(btf, m->type);
2322 			if (!t) {
2323 				pr_warn("map '%s': %s type [%d] not found.\n",
2324 					map_name, desc, m->type);
2325 				return -EINVAL;
2326 			}
2327 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2328 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2329 					map_name, desc);
2330 				return -EINVAL;
2331 			}
2332 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2333 			if (!btf_is_ptr(t)) {
2334 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2335 					map_name, desc, btf_kind_str(t));
2336 				return -EINVAL;
2337 			}
2338 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2339 			if (is_prog_array) {
2340 				if (!btf_is_func_proto(t)) {
2341 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2342 						map_name, btf_kind_str(t));
2343 					return -EINVAL;
2344 				}
2345 				continue;
2346 			}
2347 			if (!btf_is_struct(t)) {
2348 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2349 					map_name, btf_kind_str(t));
2350 				return -EINVAL;
2351 			}
2352 
2353 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2354 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2355 			if (err)
2356 				return err;
2357 
2358 			map_def->parts |= MAP_DEF_INNER_MAP;
2359 		} else if (strcmp(name, "pinning") == 0) {
2360 			__u32 val;
2361 
2362 			if (is_inner) {
2363 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2364 				return -EINVAL;
2365 			}
2366 			if (!get_map_field_int(map_name, btf, m, &val))
2367 				return -EINVAL;
2368 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2369 				pr_warn("map '%s': invalid pinning value %u.\n",
2370 					map_name, val);
2371 				return -EINVAL;
2372 			}
2373 			map_def->pinning = val;
2374 			map_def->parts |= MAP_DEF_PINNING;
2375 		} else if (strcmp(name, "map_extra") == 0) {
2376 			__u32 map_extra;
2377 
2378 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2379 				return -EINVAL;
2380 			map_def->map_extra = map_extra;
2381 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2382 		} else {
2383 			if (strict) {
2384 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2385 				return -ENOTSUP;
2386 			}
2387 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2388 		}
2389 	}
2390 
2391 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2392 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2393 		return -EINVAL;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2400 {
2401 	map->def.type = def->map_type;
2402 	map->def.key_size = def->key_size;
2403 	map->def.value_size = def->value_size;
2404 	map->def.max_entries = def->max_entries;
2405 	map->def.map_flags = def->map_flags;
2406 	map->map_extra = def->map_extra;
2407 
2408 	map->numa_node = def->numa_node;
2409 	map->btf_key_type_id = def->key_type_id;
2410 	map->btf_value_type_id = def->value_type_id;
2411 
2412 	if (def->parts & MAP_DEF_MAP_TYPE)
2413 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2414 
2415 	if (def->parts & MAP_DEF_KEY_TYPE)
2416 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2417 			 map->name, def->key_type_id, def->key_size);
2418 	else if (def->parts & MAP_DEF_KEY_SIZE)
2419 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2420 
2421 	if (def->parts & MAP_DEF_VALUE_TYPE)
2422 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2423 			 map->name, def->value_type_id, def->value_size);
2424 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2425 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2426 
2427 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2428 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2429 	if (def->parts & MAP_DEF_MAP_FLAGS)
2430 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2431 	if (def->parts & MAP_DEF_MAP_EXTRA)
2432 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2433 			 (unsigned long long)def->map_extra);
2434 	if (def->parts & MAP_DEF_PINNING)
2435 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2436 	if (def->parts & MAP_DEF_NUMA_NODE)
2437 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2438 
2439 	if (def->parts & MAP_DEF_INNER_MAP)
2440 		pr_debug("map '%s': found inner map definition.\n", map->name);
2441 }
2442 
2443 static const char *btf_var_linkage_str(__u32 linkage)
2444 {
2445 	switch (linkage) {
2446 	case BTF_VAR_STATIC: return "static";
2447 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2448 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2449 	default: return "unknown";
2450 	}
2451 }
2452 
2453 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2454 					 const struct btf_type *sec,
2455 					 int var_idx, int sec_idx,
2456 					 const Elf_Data *data, bool strict,
2457 					 const char *pin_root_path)
2458 {
2459 	struct btf_map_def map_def = {}, inner_def = {};
2460 	const struct btf_type *var, *def;
2461 	const struct btf_var_secinfo *vi;
2462 	const struct btf_var *var_extra;
2463 	const char *map_name;
2464 	struct bpf_map *map;
2465 	int err;
2466 
2467 	vi = btf_var_secinfos(sec) + var_idx;
2468 	var = btf__type_by_id(obj->btf, vi->type);
2469 	var_extra = btf_var(var);
2470 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2471 
2472 	if (map_name == NULL || map_name[0] == '\0') {
2473 		pr_warn("map #%d: empty name.\n", var_idx);
2474 		return -EINVAL;
2475 	}
2476 	if ((__u64)vi->offset + vi->size > data->d_size) {
2477 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2478 		return -EINVAL;
2479 	}
2480 	if (!btf_is_var(var)) {
2481 		pr_warn("map '%s': unexpected var kind %s.\n",
2482 			map_name, btf_kind_str(var));
2483 		return -EINVAL;
2484 	}
2485 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2486 		pr_warn("map '%s': unsupported map linkage %s.\n",
2487 			map_name, btf_var_linkage_str(var_extra->linkage));
2488 		return -EOPNOTSUPP;
2489 	}
2490 
2491 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2492 	if (!btf_is_struct(def)) {
2493 		pr_warn("map '%s': unexpected def kind %s.\n",
2494 			map_name, btf_kind_str(var));
2495 		return -EINVAL;
2496 	}
2497 	if (def->size > vi->size) {
2498 		pr_warn("map '%s': invalid def size.\n", map_name);
2499 		return -EINVAL;
2500 	}
2501 
2502 	map = bpf_object__add_map(obj);
2503 	if (IS_ERR(map))
2504 		return PTR_ERR(map);
2505 	map->name = strdup(map_name);
2506 	if (!map->name) {
2507 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2508 		return -ENOMEM;
2509 	}
2510 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2511 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2512 	map->sec_idx = sec_idx;
2513 	map->sec_offset = vi->offset;
2514 	map->btf_var_idx = var_idx;
2515 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2516 		 map_name, map->sec_idx, map->sec_offset);
2517 
2518 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2519 	if (err)
2520 		return err;
2521 
2522 	fill_map_from_def(map, &map_def);
2523 
2524 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2525 		err = build_map_pin_path(map, pin_root_path);
2526 		if (err) {
2527 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2528 			return err;
2529 		}
2530 	}
2531 
2532 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2533 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2534 		if (!map->inner_map)
2535 			return -ENOMEM;
2536 		map->inner_map->fd = -1;
2537 		map->inner_map->sec_idx = sec_idx;
2538 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2539 		if (!map->inner_map->name)
2540 			return -ENOMEM;
2541 		sprintf(map->inner_map->name, "%s.inner", map_name);
2542 
2543 		fill_map_from_def(map->inner_map, &inner_def);
2544 	}
2545 
2546 	err = bpf_map_find_btf_info(obj, map);
2547 	if (err)
2548 		return err;
2549 
2550 	return 0;
2551 }
2552 
2553 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2554 					  const char *pin_root_path)
2555 {
2556 	const struct btf_type *sec = NULL;
2557 	int nr_types, i, vlen, err;
2558 	const struct btf_type *t;
2559 	const char *name;
2560 	Elf_Data *data;
2561 	Elf_Scn *scn;
2562 
2563 	if (obj->efile.btf_maps_shndx < 0)
2564 		return 0;
2565 
2566 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2567 	data = elf_sec_data(obj, scn);
2568 	if (!scn || !data) {
2569 		pr_warn("elf: failed to get %s map definitions for %s\n",
2570 			MAPS_ELF_SEC, obj->path);
2571 		return -EINVAL;
2572 	}
2573 
2574 	nr_types = btf__type_cnt(obj->btf);
2575 	for (i = 1; i < nr_types; i++) {
2576 		t = btf__type_by_id(obj->btf, i);
2577 		if (!btf_is_datasec(t))
2578 			continue;
2579 		name = btf__name_by_offset(obj->btf, t->name_off);
2580 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2581 			sec = t;
2582 			obj->efile.btf_maps_sec_btf_id = i;
2583 			break;
2584 		}
2585 	}
2586 
2587 	if (!sec) {
2588 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2589 		return -ENOENT;
2590 	}
2591 
2592 	vlen = btf_vlen(sec);
2593 	for (i = 0; i < vlen; i++) {
2594 		err = bpf_object__init_user_btf_map(obj, sec, i,
2595 						    obj->efile.btf_maps_shndx,
2596 						    data, strict,
2597 						    pin_root_path);
2598 		if (err)
2599 			return err;
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static int bpf_object__init_maps(struct bpf_object *obj,
2606 				 const struct bpf_object_open_opts *opts)
2607 {
2608 	const char *pin_root_path;
2609 	bool strict;
2610 	int err;
2611 
2612 	strict = !OPTS_GET(opts, relaxed_maps, false);
2613 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2614 
2615 	err = bpf_object__init_user_maps(obj, strict);
2616 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2617 	err = err ?: bpf_object__init_global_data_maps(obj);
2618 	err = err ?: bpf_object__init_kconfig_map(obj);
2619 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2620 
2621 	return err;
2622 }
2623 
2624 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2625 {
2626 	Elf64_Shdr *sh;
2627 
2628 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2629 	if (!sh)
2630 		return false;
2631 
2632 	return sh->sh_flags & SHF_EXECINSTR;
2633 }
2634 
2635 static bool btf_needs_sanitization(struct bpf_object *obj)
2636 {
2637 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2638 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2639 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2640 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2641 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2642 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2643 
2644 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2645 	       !has_decl_tag || !has_type_tag;
2646 }
2647 
2648 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2649 {
2650 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2651 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2652 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2653 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2654 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2655 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2656 	struct btf_type *t;
2657 	int i, j, vlen;
2658 
2659 	for (i = 1; i < btf__type_cnt(btf); i++) {
2660 		t = (struct btf_type *)btf__type_by_id(btf, i);
2661 
2662 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2663 			/* replace VAR/DECL_TAG with INT */
2664 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2665 			/*
2666 			 * using size = 1 is the safest choice, 4 will be too
2667 			 * big and cause kernel BTF validation failure if
2668 			 * original variable took less than 4 bytes
2669 			 */
2670 			t->size = 1;
2671 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2672 		} else if (!has_datasec && btf_is_datasec(t)) {
2673 			/* replace DATASEC with STRUCT */
2674 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2675 			struct btf_member *m = btf_members(t);
2676 			struct btf_type *vt;
2677 			char *name;
2678 
2679 			name = (char *)btf__name_by_offset(btf, t->name_off);
2680 			while (*name) {
2681 				if (*name == '.')
2682 					*name = '_';
2683 				name++;
2684 			}
2685 
2686 			vlen = btf_vlen(t);
2687 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2688 			for (j = 0; j < vlen; j++, v++, m++) {
2689 				/* order of field assignments is important */
2690 				m->offset = v->offset * 8;
2691 				m->type = v->type;
2692 				/* preserve variable name as member name */
2693 				vt = (void *)btf__type_by_id(btf, v->type);
2694 				m->name_off = vt->name_off;
2695 			}
2696 		} else if (!has_func && btf_is_func_proto(t)) {
2697 			/* replace FUNC_PROTO with ENUM */
2698 			vlen = btf_vlen(t);
2699 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2700 			t->size = sizeof(__u32); /* kernel enforced */
2701 		} else if (!has_func && btf_is_func(t)) {
2702 			/* replace FUNC with TYPEDEF */
2703 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2704 		} else if (!has_func_global && btf_is_func(t)) {
2705 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2706 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2707 		} else if (!has_float && btf_is_float(t)) {
2708 			/* replace FLOAT with an equally-sized empty STRUCT;
2709 			 * since C compilers do not accept e.g. "float" as a
2710 			 * valid struct name, make it anonymous
2711 			 */
2712 			t->name_off = 0;
2713 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2714 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2715 			/* replace TYPE_TAG with a CONST */
2716 			t->name_off = 0;
2717 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2718 		}
2719 	}
2720 }
2721 
2722 static bool libbpf_needs_btf(const struct bpf_object *obj)
2723 {
2724 	return obj->efile.btf_maps_shndx >= 0 ||
2725 	       obj->efile.st_ops_shndx >= 0 ||
2726 	       obj->nr_extern > 0;
2727 }
2728 
2729 static bool kernel_needs_btf(const struct bpf_object *obj)
2730 {
2731 	return obj->efile.st_ops_shndx >= 0;
2732 }
2733 
2734 static int bpf_object__init_btf(struct bpf_object *obj,
2735 				Elf_Data *btf_data,
2736 				Elf_Data *btf_ext_data)
2737 {
2738 	int err = -ENOENT;
2739 
2740 	if (btf_data) {
2741 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2742 		err = libbpf_get_error(obj->btf);
2743 		if (err) {
2744 			obj->btf = NULL;
2745 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2746 			goto out;
2747 		}
2748 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2749 		btf__set_pointer_size(obj->btf, 8);
2750 	}
2751 	if (btf_ext_data) {
2752 		if (!obj->btf) {
2753 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2754 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2755 			goto out;
2756 		}
2757 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2758 		err = libbpf_get_error(obj->btf_ext);
2759 		if (err) {
2760 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2761 				BTF_EXT_ELF_SEC, err);
2762 			obj->btf_ext = NULL;
2763 			goto out;
2764 		}
2765 	}
2766 out:
2767 	if (err && libbpf_needs_btf(obj)) {
2768 		pr_warn("BTF is required, but is missing or corrupted.\n");
2769 		return err;
2770 	}
2771 	return 0;
2772 }
2773 
2774 static int compare_vsi_off(const void *_a, const void *_b)
2775 {
2776 	const struct btf_var_secinfo *a = _a;
2777 	const struct btf_var_secinfo *b = _b;
2778 
2779 	return a->offset - b->offset;
2780 }
2781 
2782 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2783 			     struct btf_type *t)
2784 {
2785 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2786 	const char *name = btf__name_by_offset(btf, t->name_off);
2787 	const struct btf_type *t_var;
2788 	struct btf_var_secinfo *vsi;
2789 	const struct btf_var *var;
2790 	int ret;
2791 
2792 	if (!name) {
2793 		pr_debug("No name found in string section for DATASEC kind.\n");
2794 		return -ENOENT;
2795 	}
2796 
2797 	/* .extern datasec size and var offsets were set correctly during
2798 	 * extern collection step, so just skip straight to sorting variables
2799 	 */
2800 	if (t->size)
2801 		goto sort_vars;
2802 
2803 	ret = find_elf_sec_sz(obj, name, &size);
2804 	if (ret || !size) {
2805 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2806 		return -ENOENT;
2807 	}
2808 
2809 	t->size = size;
2810 
2811 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2812 		t_var = btf__type_by_id(btf, vsi->type);
2813 		if (!t_var || !btf_is_var(t_var)) {
2814 			pr_debug("Non-VAR type seen in section %s\n", name);
2815 			return -EINVAL;
2816 		}
2817 
2818 		var = btf_var(t_var);
2819 		if (var->linkage == BTF_VAR_STATIC)
2820 			continue;
2821 
2822 		name = btf__name_by_offset(btf, t_var->name_off);
2823 		if (!name) {
2824 			pr_debug("No name found in string section for VAR kind\n");
2825 			return -ENOENT;
2826 		}
2827 
2828 		ret = find_elf_var_offset(obj, name, &off);
2829 		if (ret) {
2830 			pr_debug("No offset found in symbol table for VAR %s\n",
2831 				 name);
2832 			return -ENOENT;
2833 		}
2834 
2835 		vsi->offset = off;
2836 	}
2837 
2838 sort_vars:
2839 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2840 	return 0;
2841 }
2842 
2843 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2844 {
2845 	int err = 0;
2846 	__u32 i, n = btf__type_cnt(btf);
2847 
2848 	for (i = 1; i < n; i++) {
2849 		struct btf_type *t = btf_type_by_id(btf, i);
2850 
2851 		/* Loader needs to fix up some of the things compiler
2852 		 * couldn't get its hands on while emitting BTF. This
2853 		 * is section size and global variable offset. We use
2854 		 * the info from the ELF itself for this purpose.
2855 		 */
2856 		if (btf_is_datasec(t)) {
2857 			err = btf_fixup_datasec(obj, btf, t);
2858 			if (err)
2859 				break;
2860 		}
2861 	}
2862 
2863 	return libbpf_err(err);
2864 }
2865 
2866 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2867 {
2868 	return btf_finalize_data(obj, btf);
2869 }
2870 
2871 static int bpf_object__finalize_btf(struct bpf_object *obj)
2872 {
2873 	int err;
2874 
2875 	if (!obj->btf)
2876 		return 0;
2877 
2878 	err = btf_finalize_data(obj, obj->btf);
2879 	if (err) {
2880 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2881 		return err;
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2888 {
2889 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2890 	    prog->type == BPF_PROG_TYPE_LSM)
2891 		return true;
2892 
2893 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2894 	 * also need vmlinux BTF
2895 	 */
2896 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2897 		return true;
2898 
2899 	return false;
2900 }
2901 
2902 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2903 {
2904 	struct bpf_program *prog;
2905 	int i;
2906 
2907 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2908 	 * is not specified
2909 	 */
2910 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2911 		return true;
2912 
2913 	/* Support for typed ksyms needs kernel BTF */
2914 	for (i = 0; i < obj->nr_extern; i++) {
2915 		const struct extern_desc *ext;
2916 
2917 		ext = &obj->externs[i];
2918 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2919 			return true;
2920 	}
2921 
2922 	bpf_object__for_each_program(prog, obj) {
2923 		if (!prog->load)
2924 			continue;
2925 		if (prog_needs_vmlinux_btf(prog))
2926 			return true;
2927 	}
2928 
2929 	return false;
2930 }
2931 
2932 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2933 {
2934 	int err;
2935 
2936 	/* btf_vmlinux could be loaded earlier */
2937 	if (obj->btf_vmlinux || obj->gen_loader)
2938 		return 0;
2939 
2940 	if (!force && !obj_needs_vmlinux_btf(obj))
2941 		return 0;
2942 
2943 	obj->btf_vmlinux = btf__load_vmlinux_btf();
2944 	err = libbpf_get_error(obj->btf_vmlinux);
2945 	if (err) {
2946 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2947 		obj->btf_vmlinux = NULL;
2948 		return err;
2949 	}
2950 	return 0;
2951 }
2952 
2953 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2954 {
2955 	struct btf *kern_btf = obj->btf;
2956 	bool btf_mandatory, sanitize;
2957 	int i, err = 0;
2958 
2959 	if (!obj->btf)
2960 		return 0;
2961 
2962 	if (!kernel_supports(obj, FEAT_BTF)) {
2963 		if (kernel_needs_btf(obj)) {
2964 			err = -EOPNOTSUPP;
2965 			goto report;
2966 		}
2967 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2968 		return 0;
2969 	}
2970 
2971 	/* Even though some subprogs are global/weak, user might prefer more
2972 	 * permissive BPF verification process that BPF verifier performs for
2973 	 * static functions, taking into account more context from the caller
2974 	 * functions. In such case, they need to mark such subprogs with
2975 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
2976 	 * corresponding FUNC BTF type to be marked as static and trigger more
2977 	 * involved BPF verification process.
2978 	 */
2979 	for (i = 0; i < obj->nr_programs; i++) {
2980 		struct bpf_program *prog = &obj->programs[i];
2981 		struct btf_type *t;
2982 		const char *name;
2983 		int j, n;
2984 
2985 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2986 			continue;
2987 
2988 		n = btf__type_cnt(obj->btf);
2989 		for (j = 1; j < n; j++) {
2990 			t = btf_type_by_id(obj->btf, j);
2991 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2992 				continue;
2993 
2994 			name = btf__str_by_offset(obj->btf, t->name_off);
2995 			if (strcmp(name, prog->name) != 0)
2996 				continue;
2997 
2998 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2999 			break;
3000 		}
3001 	}
3002 
3003 	sanitize = btf_needs_sanitization(obj);
3004 	if (sanitize) {
3005 		const void *raw_data;
3006 		__u32 sz;
3007 
3008 		/* clone BTF to sanitize a copy and leave the original intact */
3009 		raw_data = btf__raw_data(obj->btf, &sz);
3010 		kern_btf = btf__new(raw_data, sz);
3011 		err = libbpf_get_error(kern_btf);
3012 		if (err)
3013 			return err;
3014 
3015 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3016 		btf__set_pointer_size(obj->btf, 8);
3017 		bpf_object__sanitize_btf(obj, kern_btf);
3018 	}
3019 
3020 	if (obj->gen_loader) {
3021 		__u32 raw_size = 0;
3022 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3023 
3024 		if (!raw_data)
3025 			return -ENOMEM;
3026 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3027 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3028 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3029 		 */
3030 		btf__set_fd(kern_btf, 0);
3031 	} else {
3032 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3033 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3034 					   obj->log_level ? 1 : 0);
3035 	}
3036 	if (sanitize) {
3037 		if (!err) {
3038 			/* move fd to libbpf's BTF */
3039 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3040 			btf__set_fd(kern_btf, -1);
3041 		}
3042 		btf__free(kern_btf);
3043 	}
3044 report:
3045 	if (err) {
3046 		btf_mandatory = kernel_needs_btf(obj);
3047 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3048 			btf_mandatory ? "BTF is mandatory, can't proceed."
3049 				      : "BTF is optional, ignoring.");
3050 		if (!btf_mandatory)
3051 			err = 0;
3052 	}
3053 	return err;
3054 }
3055 
3056 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3057 {
3058 	const char *name;
3059 
3060 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3061 	if (!name) {
3062 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3063 			off, obj->path, elf_errmsg(-1));
3064 		return NULL;
3065 	}
3066 
3067 	return name;
3068 }
3069 
3070 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3071 {
3072 	const char *name;
3073 
3074 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3075 	if (!name) {
3076 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3077 			off, obj->path, elf_errmsg(-1));
3078 		return NULL;
3079 	}
3080 
3081 	return name;
3082 }
3083 
3084 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3085 {
3086 	Elf_Scn *scn;
3087 
3088 	scn = elf_getscn(obj->efile.elf, idx);
3089 	if (!scn) {
3090 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3091 			idx, obj->path, elf_errmsg(-1));
3092 		return NULL;
3093 	}
3094 	return scn;
3095 }
3096 
3097 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3098 {
3099 	Elf_Scn *scn = NULL;
3100 	Elf *elf = obj->efile.elf;
3101 	const char *sec_name;
3102 
3103 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3104 		sec_name = elf_sec_name(obj, scn);
3105 		if (!sec_name)
3106 			return NULL;
3107 
3108 		if (strcmp(sec_name, name) != 0)
3109 			continue;
3110 
3111 		return scn;
3112 	}
3113 	return NULL;
3114 }
3115 
3116 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3117 {
3118 	Elf64_Shdr *shdr;
3119 
3120 	if (!scn)
3121 		return NULL;
3122 
3123 	shdr = elf64_getshdr(scn);
3124 	if (!shdr) {
3125 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3126 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3127 		return NULL;
3128 	}
3129 
3130 	return shdr;
3131 }
3132 
3133 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3134 {
3135 	const char *name;
3136 	Elf64_Shdr *sh;
3137 
3138 	if (!scn)
3139 		return NULL;
3140 
3141 	sh = elf_sec_hdr(obj, scn);
3142 	if (!sh)
3143 		return NULL;
3144 
3145 	name = elf_sec_str(obj, sh->sh_name);
3146 	if (!name) {
3147 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3148 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3149 		return NULL;
3150 	}
3151 
3152 	return name;
3153 }
3154 
3155 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3156 {
3157 	Elf_Data *data;
3158 
3159 	if (!scn)
3160 		return NULL;
3161 
3162 	data = elf_getdata(scn, 0);
3163 	if (!data) {
3164 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3165 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3166 			obj->path, elf_errmsg(-1));
3167 		return NULL;
3168 	}
3169 
3170 	return data;
3171 }
3172 
3173 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3174 {
3175 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3176 		return NULL;
3177 
3178 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3179 }
3180 
3181 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3182 {
3183 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3184 		return NULL;
3185 
3186 	return (Elf64_Rel *)data->d_buf + idx;
3187 }
3188 
3189 static bool is_sec_name_dwarf(const char *name)
3190 {
3191 	/* approximation, but the actual list is too long */
3192 	return str_has_pfx(name, ".debug_");
3193 }
3194 
3195 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3196 {
3197 	/* no special handling of .strtab */
3198 	if (hdr->sh_type == SHT_STRTAB)
3199 		return true;
3200 
3201 	/* ignore .llvm_addrsig section as well */
3202 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3203 		return true;
3204 
3205 	/* no subprograms will lead to an empty .text section, ignore it */
3206 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3207 	    strcmp(name, ".text") == 0)
3208 		return true;
3209 
3210 	/* DWARF sections */
3211 	if (is_sec_name_dwarf(name))
3212 		return true;
3213 
3214 	if (str_has_pfx(name, ".rel")) {
3215 		name += sizeof(".rel") - 1;
3216 		/* DWARF section relocations */
3217 		if (is_sec_name_dwarf(name))
3218 			return true;
3219 
3220 		/* .BTF and .BTF.ext don't need relocations */
3221 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3222 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3223 			return true;
3224 	}
3225 
3226 	return false;
3227 }
3228 
3229 static int cmp_progs(const void *_a, const void *_b)
3230 {
3231 	const struct bpf_program *a = _a;
3232 	const struct bpf_program *b = _b;
3233 
3234 	if (a->sec_idx != b->sec_idx)
3235 		return a->sec_idx < b->sec_idx ? -1 : 1;
3236 
3237 	/* sec_insn_off can't be the same within the section */
3238 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3239 }
3240 
3241 static int bpf_object__elf_collect(struct bpf_object *obj)
3242 {
3243 	struct elf_sec_desc *sec_desc;
3244 	Elf *elf = obj->efile.elf;
3245 	Elf_Data *btf_ext_data = NULL;
3246 	Elf_Data *btf_data = NULL;
3247 	int idx = 0, err = 0;
3248 	const char *name;
3249 	Elf_Data *data;
3250 	Elf_Scn *scn;
3251 	Elf64_Shdr *sh;
3252 
3253 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3254 	 * section. e_shnum does include sec #0, so e_shnum is the necessary
3255 	 * size of an array to keep all the sections.
3256 	 */
3257 	obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3258 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3259 	if (!obj->efile.secs)
3260 		return -ENOMEM;
3261 
3262 	/* a bunch of ELF parsing functionality depends on processing symbols,
3263 	 * so do the first pass and find the symbol table
3264 	 */
3265 	scn = NULL;
3266 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3267 		sh = elf_sec_hdr(obj, scn);
3268 		if (!sh)
3269 			return -LIBBPF_ERRNO__FORMAT;
3270 
3271 		if (sh->sh_type == SHT_SYMTAB) {
3272 			if (obj->efile.symbols) {
3273 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3274 				return -LIBBPF_ERRNO__FORMAT;
3275 			}
3276 
3277 			data = elf_sec_data(obj, scn);
3278 			if (!data)
3279 				return -LIBBPF_ERRNO__FORMAT;
3280 
3281 			idx = elf_ndxscn(scn);
3282 
3283 			obj->efile.symbols = data;
3284 			obj->efile.symbols_shndx = idx;
3285 			obj->efile.strtabidx = sh->sh_link;
3286 		}
3287 	}
3288 
3289 	if (!obj->efile.symbols) {
3290 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3291 			obj->path);
3292 		return -ENOENT;
3293 	}
3294 
3295 	scn = NULL;
3296 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3297 		idx = elf_ndxscn(scn);
3298 		sec_desc = &obj->efile.secs[idx];
3299 
3300 		sh = elf_sec_hdr(obj, scn);
3301 		if (!sh)
3302 			return -LIBBPF_ERRNO__FORMAT;
3303 
3304 		name = elf_sec_str(obj, sh->sh_name);
3305 		if (!name)
3306 			return -LIBBPF_ERRNO__FORMAT;
3307 
3308 		if (ignore_elf_section(sh, name))
3309 			continue;
3310 
3311 		data = elf_sec_data(obj, scn);
3312 		if (!data)
3313 			return -LIBBPF_ERRNO__FORMAT;
3314 
3315 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3316 			 idx, name, (unsigned long)data->d_size,
3317 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3318 			 (int)sh->sh_type);
3319 
3320 		if (strcmp(name, "license") == 0) {
3321 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3322 			if (err)
3323 				return err;
3324 		} else if (strcmp(name, "version") == 0) {
3325 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3326 			if (err)
3327 				return err;
3328 		} else if (strcmp(name, "maps") == 0) {
3329 			obj->efile.maps_shndx = idx;
3330 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3331 			obj->efile.btf_maps_shndx = idx;
3332 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3333 			if (sh->sh_type != SHT_PROGBITS)
3334 				return -LIBBPF_ERRNO__FORMAT;
3335 			btf_data = data;
3336 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3337 			if (sh->sh_type != SHT_PROGBITS)
3338 				return -LIBBPF_ERRNO__FORMAT;
3339 			btf_ext_data = data;
3340 		} else if (sh->sh_type == SHT_SYMTAB) {
3341 			/* already processed during the first pass above */
3342 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3343 			if (sh->sh_flags & SHF_EXECINSTR) {
3344 				if (strcmp(name, ".text") == 0)
3345 					obj->efile.text_shndx = idx;
3346 				err = bpf_object__add_programs(obj, data, name, idx);
3347 				if (err)
3348 					return err;
3349 			} else if (strcmp(name, DATA_SEC) == 0 ||
3350 				   str_has_pfx(name, DATA_SEC ".")) {
3351 				sec_desc->sec_type = SEC_DATA;
3352 				sec_desc->shdr = sh;
3353 				sec_desc->data = data;
3354 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3355 				   str_has_pfx(name, RODATA_SEC ".")) {
3356 				sec_desc->sec_type = SEC_RODATA;
3357 				sec_desc->shdr = sh;
3358 				sec_desc->data = data;
3359 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3360 				obj->efile.st_ops_data = data;
3361 				obj->efile.st_ops_shndx = idx;
3362 			} else {
3363 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3364 					idx, name);
3365 			}
3366 		} else if (sh->sh_type == SHT_REL) {
3367 			int targ_sec_idx = sh->sh_info; /* points to other section */
3368 
3369 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3370 			    targ_sec_idx >= obj->efile.sec_cnt)
3371 				return -LIBBPF_ERRNO__FORMAT;
3372 
3373 			/* Only do relo for section with exec instructions */
3374 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3375 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3376 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3377 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3378 					idx, name, targ_sec_idx,
3379 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3380 				continue;
3381 			}
3382 
3383 			sec_desc->sec_type = SEC_RELO;
3384 			sec_desc->shdr = sh;
3385 			sec_desc->data = data;
3386 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3387 			sec_desc->sec_type = SEC_BSS;
3388 			sec_desc->shdr = sh;
3389 			sec_desc->data = data;
3390 		} else {
3391 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3392 				(size_t)sh->sh_size);
3393 		}
3394 	}
3395 
3396 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3397 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3398 		return -LIBBPF_ERRNO__FORMAT;
3399 	}
3400 
3401 	/* sort BPF programs by section name and in-section instruction offset
3402 	 * for faster search */
3403 	if (obj->nr_programs)
3404 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3405 
3406 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3407 }
3408 
3409 static bool sym_is_extern(const Elf64_Sym *sym)
3410 {
3411 	int bind = ELF64_ST_BIND(sym->st_info);
3412 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3413 	return sym->st_shndx == SHN_UNDEF &&
3414 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3415 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3416 }
3417 
3418 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3419 {
3420 	int bind = ELF64_ST_BIND(sym->st_info);
3421 	int type = ELF64_ST_TYPE(sym->st_info);
3422 
3423 	/* in .text section */
3424 	if (sym->st_shndx != text_shndx)
3425 		return false;
3426 
3427 	/* local function */
3428 	if (bind == STB_LOCAL && type == STT_SECTION)
3429 		return true;
3430 
3431 	/* global function */
3432 	return bind == STB_GLOBAL && type == STT_FUNC;
3433 }
3434 
3435 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3436 {
3437 	const struct btf_type *t;
3438 	const char *tname;
3439 	int i, n;
3440 
3441 	if (!btf)
3442 		return -ESRCH;
3443 
3444 	n = btf__type_cnt(btf);
3445 	for (i = 1; i < n; i++) {
3446 		t = btf__type_by_id(btf, i);
3447 
3448 		if (!btf_is_var(t) && !btf_is_func(t))
3449 			continue;
3450 
3451 		tname = btf__name_by_offset(btf, t->name_off);
3452 		if (strcmp(tname, ext_name))
3453 			continue;
3454 
3455 		if (btf_is_var(t) &&
3456 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3457 			return -EINVAL;
3458 
3459 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3460 			return -EINVAL;
3461 
3462 		return i;
3463 	}
3464 
3465 	return -ENOENT;
3466 }
3467 
3468 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3469 	const struct btf_var_secinfo *vs;
3470 	const struct btf_type *t;
3471 	int i, j, n;
3472 
3473 	if (!btf)
3474 		return -ESRCH;
3475 
3476 	n = btf__type_cnt(btf);
3477 	for (i = 1; i < n; i++) {
3478 		t = btf__type_by_id(btf, i);
3479 
3480 		if (!btf_is_datasec(t))
3481 			continue;
3482 
3483 		vs = btf_var_secinfos(t);
3484 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3485 			if (vs->type == ext_btf_id)
3486 				return i;
3487 		}
3488 	}
3489 
3490 	return -ENOENT;
3491 }
3492 
3493 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3494 				     bool *is_signed)
3495 {
3496 	const struct btf_type *t;
3497 	const char *name;
3498 
3499 	t = skip_mods_and_typedefs(btf, id, NULL);
3500 	name = btf__name_by_offset(btf, t->name_off);
3501 
3502 	if (is_signed)
3503 		*is_signed = false;
3504 	switch (btf_kind(t)) {
3505 	case BTF_KIND_INT: {
3506 		int enc = btf_int_encoding(t);
3507 
3508 		if (enc & BTF_INT_BOOL)
3509 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3510 		if (is_signed)
3511 			*is_signed = enc & BTF_INT_SIGNED;
3512 		if (t->size == 1)
3513 			return KCFG_CHAR;
3514 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3515 			return KCFG_UNKNOWN;
3516 		return KCFG_INT;
3517 	}
3518 	case BTF_KIND_ENUM:
3519 		if (t->size != 4)
3520 			return KCFG_UNKNOWN;
3521 		if (strcmp(name, "libbpf_tristate"))
3522 			return KCFG_UNKNOWN;
3523 		return KCFG_TRISTATE;
3524 	case BTF_KIND_ARRAY:
3525 		if (btf_array(t)->nelems == 0)
3526 			return KCFG_UNKNOWN;
3527 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3528 			return KCFG_UNKNOWN;
3529 		return KCFG_CHAR_ARR;
3530 	default:
3531 		return KCFG_UNKNOWN;
3532 	}
3533 }
3534 
3535 static int cmp_externs(const void *_a, const void *_b)
3536 {
3537 	const struct extern_desc *a = _a;
3538 	const struct extern_desc *b = _b;
3539 
3540 	if (a->type != b->type)
3541 		return a->type < b->type ? -1 : 1;
3542 
3543 	if (a->type == EXT_KCFG) {
3544 		/* descending order by alignment requirements */
3545 		if (a->kcfg.align != b->kcfg.align)
3546 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3547 		/* ascending order by size, within same alignment class */
3548 		if (a->kcfg.sz != b->kcfg.sz)
3549 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3550 	}
3551 
3552 	/* resolve ties by name */
3553 	return strcmp(a->name, b->name);
3554 }
3555 
3556 static int find_int_btf_id(const struct btf *btf)
3557 {
3558 	const struct btf_type *t;
3559 	int i, n;
3560 
3561 	n = btf__type_cnt(btf);
3562 	for (i = 1; i < n; i++) {
3563 		t = btf__type_by_id(btf, i);
3564 
3565 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3566 			return i;
3567 	}
3568 
3569 	return 0;
3570 }
3571 
3572 static int add_dummy_ksym_var(struct btf *btf)
3573 {
3574 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3575 	const struct btf_var_secinfo *vs;
3576 	const struct btf_type *sec;
3577 
3578 	if (!btf)
3579 		return 0;
3580 
3581 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3582 					    BTF_KIND_DATASEC);
3583 	if (sec_btf_id < 0)
3584 		return 0;
3585 
3586 	sec = btf__type_by_id(btf, sec_btf_id);
3587 	vs = btf_var_secinfos(sec);
3588 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3589 		const struct btf_type *vt;
3590 
3591 		vt = btf__type_by_id(btf, vs->type);
3592 		if (btf_is_func(vt))
3593 			break;
3594 	}
3595 
3596 	/* No func in ksyms sec.  No need to add dummy var. */
3597 	if (i == btf_vlen(sec))
3598 		return 0;
3599 
3600 	int_btf_id = find_int_btf_id(btf);
3601 	dummy_var_btf_id = btf__add_var(btf,
3602 					"dummy_ksym",
3603 					BTF_VAR_GLOBAL_ALLOCATED,
3604 					int_btf_id);
3605 	if (dummy_var_btf_id < 0)
3606 		pr_warn("cannot create a dummy_ksym var\n");
3607 
3608 	return dummy_var_btf_id;
3609 }
3610 
3611 static int bpf_object__collect_externs(struct bpf_object *obj)
3612 {
3613 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3614 	const struct btf_type *t;
3615 	struct extern_desc *ext;
3616 	int i, n, off, dummy_var_btf_id;
3617 	const char *ext_name, *sec_name;
3618 	Elf_Scn *scn;
3619 	Elf64_Shdr *sh;
3620 
3621 	if (!obj->efile.symbols)
3622 		return 0;
3623 
3624 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3625 	sh = elf_sec_hdr(obj, scn);
3626 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3627 		return -LIBBPF_ERRNO__FORMAT;
3628 
3629 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3630 	if (dummy_var_btf_id < 0)
3631 		return dummy_var_btf_id;
3632 
3633 	n = sh->sh_size / sh->sh_entsize;
3634 	pr_debug("looking for externs among %d symbols...\n", n);
3635 
3636 	for (i = 0; i < n; i++) {
3637 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3638 
3639 		if (!sym)
3640 			return -LIBBPF_ERRNO__FORMAT;
3641 		if (!sym_is_extern(sym))
3642 			continue;
3643 		ext_name = elf_sym_str(obj, sym->st_name);
3644 		if (!ext_name || !ext_name[0])
3645 			continue;
3646 
3647 		ext = obj->externs;
3648 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3649 		if (!ext)
3650 			return -ENOMEM;
3651 		obj->externs = ext;
3652 		ext = &ext[obj->nr_extern];
3653 		memset(ext, 0, sizeof(*ext));
3654 		obj->nr_extern++;
3655 
3656 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3657 		if (ext->btf_id <= 0) {
3658 			pr_warn("failed to find BTF for extern '%s': %d\n",
3659 				ext_name, ext->btf_id);
3660 			return ext->btf_id;
3661 		}
3662 		t = btf__type_by_id(obj->btf, ext->btf_id);
3663 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3664 		ext->sym_idx = i;
3665 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3666 
3667 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3668 		if (ext->sec_btf_id <= 0) {
3669 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3670 				ext_name, ext->btf_id, ext->sec_btf_id);
3671 			return ext->sec_btf_id;
3672 		}
3673 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3674 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3675 
3676 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3677 			if (btf_is_func(t)) {
3678 				pr_warn("extern function %s is unsupported under %s section\n",
3679 					ext->name, KCONFIG_SEC);
3680 				return -ENOTSUP;
3681 			}
3682 			kcfg_sec = sec;
3683 			ext->type = EXT_KCFG;
3684 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3685 			if (ext->kcfg.sz <= 0) {
3686 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3687 					ext_name, ext->kcfg.sz);
3688 				return ext->kcfg.sz;
3689 			}
3690 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3691 			if (ext->kcfg.align <= 0) {
3692 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3693 					ext_name, ext->kcfg.align);
3694 				return -EINVAL;
3695 			}
3696 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3697 						        &ext->kcfg.is_signed);
3698 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3699 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3700 				return -ENOTSUP;
3701 			}
3702 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3703 			ksym_sec = sec;
3704 			ext->type = EXT_KSYM;
3705 			skip_mods_and_typedefs(obj->btf, t->type,
3706 					       &ext->ksym.type_id);
3707 		} else {
3708 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3709 			return -ENOTSUP;
3710 		}
3711 	}
3712 	pr_debug("collected %d externs total\n", obj->nr_extern);
3713 
3714 	if (!obj->nr_extern)
3715 		return 0;
3716 
3717 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3718 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3719 
3720 	/* for .ksyms section, we need to turn all externs into allocated
3721 	 * variables in BTF to pass kernel verification; we do this by
3722 	 * pretending that each extern is a 8-byte variable
3723 	 */
3724 	if (ksym_sec) {
3725 		/* find existing 4-byte integer type in BTF to use for fake
3726 		 * extern variables in DATASEC
3727 		 */
3728 		int int_btf_id = find_int_btf_id(obj->btf);
3729 		/* For extern function, a dummy_var added earlier
3730 		 * will be used to replace the vs->type and
3731 		 * its name string will be used to refill
3732 		 * the missing param's name.
3733 		 */
3734 		const struct btf_type *dummy_var;
3735 
3736 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3737 		for (i = 0; i < obj->nr_extern; i++) {
3738 			ext = &obj->externs[i];
3739 			if (ext->type != EXT_KSYM)
3740 				continue;
3741 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3742 				 i, ext->sym_idx, ext->name);
3743 		}
3744 
3745 		sec = ksym_sec;
3746 		n = btf_vlen(sec);
3747 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3748 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3749 			struct btf_type *vt;
3750 
3751 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3752 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3753 			ext = find_extern_by_name(obj, ext_name);
3754 			if (!ext) {
3755 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3756 					btf_kind_str(vt), ext_name);
3757 				return -ESRCH;
3758 			}
3759 			if (btf_is_func(vt)) {
3760 				const struct btf_type *func_proto;
3761 				struct btf_param *param;
3762 				int j;
3763 
3764 				func_proto = btf__type_by_id(obj->btf,
3765 							     vt->type);
3766 				param = btf_params(func_proto);
3767 				/* Reuse the dummy_var string if the
3768 				 * func proto does not have param name.
3769 				 */
3770 				for (j = 0; j < btf_vlen(func_proto); j++)
3771 					if (param[j].type && !param[j].name_off)
3772 						param[j].name_off =
3773 							dummy_var->name_off;
3774 				vs->type = dummy_var_btf_id;
3775 				vt->info &= ~0xffff;
3776 				vt->info |= BTF_FUNC_GLOBAL;
3777 			} else {
3778 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3779 				vt->type = int_btf_id;
3780 			}
3781 			vs->offset = off;
3782 			vs->size = sizeof(int);
3783 		}
3784 		sec->size = off;
3785 	}
3786 
3787 	if (kcfg_sec) {
3788 		sec = kcfg_sec;
3789 		/* for kcfg externs calculate their offsets within a .kconfig map */
3790 		off = 0;
3791 		for (i = 0; i < obj->nr_extern; i++) {
3792 			ext = &obj->externs[i];
3793 			if (ext->type != EXT_KCFG)
3794 				continue;
3795 
3796 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3797 			off = ext->kcfg.data_off + ext->kcfg.sz;
3798 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3799 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3800 		}
3801 		sec->size = off;
3802 		n = btf_vlen(sec);
3803 		for (i = 0; i < n; i++) {
3804 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3805 
3806 			t = btf__type_by_id(obj->btf, vs->type);
3807 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3808 			ext = find_extern_by_name(obj, ext_name);
3809 			if (!ext) {
3810 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3811 					ext_name);
3812 				return -ESRCH;
3813 			}
3814 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3815 			vs->offset = ext->kcfg.data_off;
3816 		}
3817 	}
3818 	return 0;
3819 }
3820 
3821 struct bpf_program *
3822 bpf_object__find_program_by_title(const struct bpf_object *obj,
3823 				  const char *title)
3824 {
3825 	struct bpf_program *pos;
3826 
3827 	bpf_object__for_each_program(pos, obj) {
3828 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3829 			return pos;
3830 	}
3831 	return errno = ENOENT, NULL;
3832 }
3833 
3834 static bool prog_is_subprog(const struct bpf_object *obj,
3835 			    const struct bpf_program *prog)
3836 {
3837 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3838 	 * without SEC() attribute, i.e., those in the .text section. But if
3839 	 * there are 2 or more such programs in the .text section, they all
3840 	 * must be subprograms called from entry-point BPF programs in
3841 	 * designated SEC()'tions, otherwise there is no way to distinguish
3842 	 * which of those programs should be loaded vs which are a subprogram.
3843 	 * Similarly, if there is a function/program in .text and at least one
3844 	 * other BPF program with custom SEC() attribute, then we just assume
3845 	 * .text programs are subprograms (even if they are not called from
3846 	 * other programs), because libbpf never explicitly supported mixing
3847 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3848 	 *
3849 	 * In libbpf 1.0 strict mode, we always consider .text
3850 	 * programs to be subprograms.
3851 	 */
3852 
3853 	if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
3854 		return prog->sec_idx == obj->efile.text_shndx;
3855 
3856 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3857 }
3858 
3859 struct bpf_program *
3860 bpf_object__find_program_by_name(const struct bpf_object *obj,
3861 				 const char *name)
3862 {
3863 	struct bpf_program *prog;
3864 
3865 	bpf_object__for_each_program(prog, obj) {
3866 		if (prog_is_subprog(obj, prog))
3867 			continue;
3868 		if (!strcmp(prog->name, name))
3869 			return prog;
3870 	}
3871 	return errno = ENOENT, NULL;
3872 }
3873 
3874 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3875 				      int shndx)
3876 {
3877 	switch (obj->efile.secs[shndx].sec_type) {
3878 	case SEC_BSS:
3879 	case SEC_DATA:
3880 	case SEC_RODATA:
3881 		return true;
3882 	default:
3883 		return false;
3884 	}
3885 }
3886 
3887 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3888 				      int shndx)
3889 {
3890 	return shndx == obj->efile.maps_shndx ||
3891 	       shndx == obj->efile.btf_maps_shndx;
3892 }
3893 
3894 static enum libbpf_map_type
3895 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3896 {
3897 	if (shndx == obj->efile.symbols_shndx)
3898 		return LIBBPF_MAP_KCONFIG;
3899 
3900 	switch (obj->efile.secs[shndx].sec_type) {
3901 	case SEC_BSS:
3902 		return LIBBPF_MAP_BSS;
3903 	case SEC_DATA:
3904 		return LIBBPF_MAP_DATA;
3905 	case SEC_RODATA:
3906 		return LIBBPF_MAP_RODATA;
3907 	default:
3908 		return LIBBPF_MAP_UNSPEC;
3909 	}
3910 }
3911 
3912 static int bpf_program__record_reloc(struct bpf_program *prog,
3913 				     struct reloc_desc *reloc_desc,
3914 				     __u32 insn_idx, const char *sym_name,
3915 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3916 {
3917 	struct bpf_insn *insn = &prog->insns[insn_idx];
3918 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3919 	struct bpf_object *obj = prog->obj;
3920 	__u32 shdr_idx = sym->st_shndx;
3921 	enum libbpf_map_type type;
3922 	const char *sym_sec_name;
3923 	struct bpf_map *map;
3924 
3925 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3926 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3927 			prog->name, sym_name, insn_idx, insn->code);
3928 		return -LIBBPF_ERRNO__RELOC;
3929 	}
3930 
3931 	if (sym_is_extern(sym)) {
3932 		int sym_idx = ELF64_R_SYM(rel->r_info);
3933 		int i, n = obj->nr_extern;
3934 		struct extern_desc *ext;
3935 
3936 		for (i = 0; i < n; i++) {
3937 			ext = &obj->externs[i];
3938 			if (ext->sym_idx == sym_idx)
3939 				break;
3940 		}
3941 		if (i >= n) {
3942 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3943 				prog->name, sym_name, sym_idx);
3944 			return -LIBBPF_ERRNO__RELOC;
3945 		}
3946 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3947 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3948 		if (insn->code == (BPF_JMP | BPF_CALL))
3949 			reloc_desc->type = RELO_EXTERN_FUNC;
3950 		else
3951 			reloc_desc->type = RELO_EXTERN_VAR;
3952 		reloc_desc->insn_idx = insn_idx;
3953 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3954 		return 0;
3955 	}
3956 
3957 	/* sub-program call relocation */
3958 	if (is_call_insn(insn)) {
3959 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3960 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3961 			return -LIBBPF_ERRNO__RELOC;
3962 		}
3963 		/* text_shndx can be 0, if no default "main" program exists */
3964 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3965 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3966 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3967 				prog->name, sym_name, sym_sec_name);
3968 			return -LIBBPF_ERRNO__RELOC;
3969 		}
3970 		if (sym->st_value % BPF_INSN_SZ) {
3971 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3972 				prog->name, sym_name, (size_t)sym->st_value);
3973 			return -LIBBPF_ERRNO__RELOC;
3974 		}
3975 		reloc_desc->type = RELO_CALL;
3976 		reloc_desc->insn_idx = insn_idx;
3977 		reloc_desc->sym_off = sym->st_value;
3978 		return 0;
3979 	}
3980 
3981 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3982 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3983 			prog->name, sym_name, shdr_idx);
3984 		return -LIBBPF_ERRNO__RELOC;
3985 	}
3986 
3987 	/* loading subprog addresses */
3988 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3989 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3990 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3991 		 */
3992 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3993 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3994 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3995 			return -LIBBPF_ERRNO__RELOC;
3996 		}
3997 
3998 		reloc_desc->type = RELO_SUBPROG_ADDR;
3999 		reloc_desc->insn_idx = insn_idx;
4000 		reloc_desc->sym_off = sym->st_value;
4001 		return 0;
4002 	}
4003 
4004 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4005 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4006 
4007 	/* generic map reference relocation */
4008 	if (type == LIBBPF_MAP_UNSPEC) {
4009 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4010 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4011 				prog->name, sym_name, sym_sec_name);
4012 			return -LIBBPF_ERRNO__RELOC;
4013 		}
4014 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4015 			map = &obj->maps[map_idx];
4016 			if (map->libbpf_type != type ||
4017 			    map->sec_idx != sym->st_shndx ||
4018 			    map->sec_offset != sym->st_value)
4019 				continue;
4020 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4021 				 prog->name, map_idx, map->name, map->sec_idx,
4022 				 map->sec_offset, insn_idx);
4023 			break;
4024 		}
4025 		if (map_idx >= nr_maps) {
4026 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4027 				prog->name, sym_sec_name, (size_t)sym->st_value);
4028 			return -LIBBPF_ERRNO__RELOC;
4029 		}
4030 		reloc_desc->type = RELO_LD64;
4031 		reloc_desc->insn_idx = insn_idx;
4032 		reloc_desc->map_idx = map_idx;
4033 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4034 		return 0;
4035 	}
4036 
4037 	/* global data map relocation */
4038 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4039 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4040 			prog->name, sym_sec_name);
4041 		return -LIBBPF_ERRNO__RELOC;
4042 	}
4043 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4044 		map = &obj->maps[map_idx];
4045 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4046 			continue;
4047 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4048 			 prog->name, map_idx, map->name, map->sec_idx,
4049 			 map->sec_offset, insn_idx);
4050 		break;
4051 	}
4052 	if (map_idx >= nr_maps) {
4053 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4054 			prog->name, sym_sec_name);
4055 		return -LIBBPF_ERRNO__RELOC;
4056 	}
4057 
4058 	reloc_desc->type = RELO_DATA;
4059 	reloc_desc->insn_idx = insn_idx;
4060 	reloc_desc->map_idx = map_idx;
4061 	reloc_desc->sym_off = sym->st_value;
4062 	return 0;
4063 }
4064 
4065 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4066 {
4067 	return insn_idx >= prog->sec_insn_off &&
4068 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4069 }
4070 
4071 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4072 						 size_t sec_idx, size_t insn_idx)
4073 {
4074 	int l = 0, r = obj->nr_programs - 1, m;
4075 	struct bpf_program *prog;
4076 
4077 	while (l < r) {
4078 		m = l + (r - l + 1) / 2;
4079 		prog = &obj->programs[m];
4080 
4081 		if (prog->sec_idx < sec_idx ||
4082 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4083 			l = m;
4084 		else
4085 			r = m - 1;
4086 	}
4087 	/* matching program could be at index l, but it still might be the
4088 	 * wrong one, so we need to double check conditions for the last time
4089 	 */
4090 	prog = &obj->programs[l];
4091 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4092 		return prog;
4093 	return NULL;
4094 }
4095 
4096 static int
4097 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4098 {
4099 	const char *relo_sec_name, *sec_name;
4100 	size_t sec_idx = shdr->sh_info, sym_idx;
4101 	struct bpf_program *prog;
4102 	struct reloc_desc *relos;
4103 	int err, i, nrels;
4104 	const char *sym_name;
4105 	__u32 insn_idx;
4106 	Elf_Scn *scn;
4107 	Elf_Data *scn_data;
4108 	Elf64_Sym *sym;
4109 	Elf64_Rel *rel;
4110 
4111 	if (sec_idx >= obj->efile.sec_cnt)
4112 		return -EINVAL;
4113 
4114 	scn = elf_sec_by_idx(obj, sec_idx);
4115 	scn_data = elf_sec_data(obj, scn);
4116 
4117 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4118 	sec_name = elf_sec_name(obj, scn);
4119 	if (!relo_sec_name || !sec_name)
4120 		return -EINVAL;
4121 
4122 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4123 		 relo_sec_name, sec_idx, sec_name);
4124 	nrels = shdr->sh_size / shdr->sh_entsize;
4125 
4126 	for (i = 0; i < nrels; i++) {
4127 		rel = elf_rel_by_idx(data, i);
4128 		if (!rel) {
4129 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4130 			return -LIBBPF_ERRNO__FORMAT;
4131 		}
4132 
4133 		sym_idx = ELF64_R_SYM(rel->r_info);
4134 		sym = elf_sym_by_idx(obj, sym_idx);
4135 		if (!sym) {
4136 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4137 				relo_sec_name, sym_idx, i);
4138 			return -LIBBPF_ERRNO__FORMAT;
4139 		}
4140 
4141 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4142 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4143 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4144 			return -LIBBPF_ERRNO__FORMAT;
4145 		}
4146 
4147 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4148 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4149 				relo_sec_name, (size_t)rel->r_offset, i);
4150 			return -LIBBPF_ERRNO__FORMAT;
4151 		}
4152 
4153 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4154 		/* relocations against static functions are recorded as
4155 		 * relocations against the section that contains a function;
4156 		 * in such case, symbol will be STT_SECTION and sym.st_name
4157 		 * will point to empty string (0), so fetch section name
4158 		 * instead
4159 		 */
4160 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4161 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4162 		else
4163 			sym_name = elf_sym_str(obj, sym->st_name);
4164 		sym_name = sym_name ?: "<?";
4165 
4166 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4167 			 relo_sec_name, i, insn_idx, sym_name);
4168 
4169 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4170 		if (!prog) {
4171 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4172 				relo_sec_name, i, sec_name, insn_idx);
4173 			continue;
4174 		}
4175 
4176 		relos = libbpf_reallocarray(prog->reloc_desc,
4177 					    prog->nr_reloc + 1, sizeof(*relos));
4178 		if (!relos)
4179 			return -ENOMEM;
4180 		prog->reloc_desc = relos;
4181 
4182 		/* adjust insn_idx to local BPF program frame of reference */
4183 		insn_idx -= prog->sec_insn_off;
4184 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4185 						insn_idx, sym_name, sym, rel);
4186 		if (err)
4187 			return err;
4188 
4189 		prog->nr_reloc++;
4190 	}
4191 	return 0;
4192 }
4193 
4194 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4195 {
4196 	struct bpf_map_def *def = &map->def;
4197 	__u32 key_type_id = 0, value_type_id = 0;
4198 	int ret;
4199 
4200 	if (!obj->btf)
4201 		return -ENOENT;
4202 
4203 	/* if it's BTF-defined map, we don't need to search for type IDs.
4204 	 * For struct_ops map, it does not need btf_key_type_id and
4205 	 * btf_value_type_id.
4206 	 */
4207 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
4208 	    bpf_map__is_struct_ops(map))
4209 		return 0;
4210 
4211 	if (!bpf_map__is_internal(map)) {
4212 		pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n");
4213 #pragma GCC diagnostic push
4214 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
4215 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4216 					   def->value_size, &key_type_id,
4217 					   &value_type_id);
4218 #pragma GCC diagnostic pop
4219 	} else {
4220 		/*
4221 		 * LLVM annotates global data differently in BTF, that is,
4222 		 * only as '.data', '.bss' or '.rodata'.
4223 		 */
4224 		ret = btf__find_by_name(obj->btf, map->real_name);
4225 	}
4226 	if (ret < 0)
4227 		return ret;
4228 
4229 	map->btf_key_type_id = key_type_id;
4230 	map->btf_value_type_id = bpf_map__is_internal(map) ?
4231 				 ret : value_type_id;
4232 	return 0;
4233 }
4234 
4235 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4236 {
4237 	char file[PATH_MAX], buff[4096];
4238 	FILE *fp;
4239 	__u32 val;
4240 	int err;
4241 
4242 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4243 	memset(info, 0, sizeof(*info));
4244 
4245 	fp = fopen(file, "r");
4246 	if (!fp) {
4247 		err = -errno;
4248 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4249 			err);
4250 		return err;
4251 	}
4252 
4253 	while (fgets(buff, sizeof(buff), fp)) {
4254 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4255 			info->type = val;
4256 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4257 			info->key_size = val;
4258 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4259 			info->value_size = val;
4260 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4261 			info->max_entries = val;
4262 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4263 			info->map_flags = val;
4264 	}
4265 
4266 	fclose(fp);
4267 
4268 	return 0;
4269 }
4270 
4271 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4272 {
4273 	struct bpf_map_info info = {};
4274 	__u32 len = sizeof(info);
4275 	int new_fd, err;
4276 	char *new_name;
4277 
4278 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4279 	if (err && errno == EINVAL)
4280 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4281 	if (err)
4282 		return libbpf_err(err);
4283 
4284 	new_name = strdup(info.name);
4285 	if (!new_name)
4286 		return libbpf_err(-errno);
4287 
4288 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4289 	if (new_fd < 0) {
4290 		err = -errno;
4291 		goto err_free_new_name;
4292 	}
4293 
4294 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4295 	if (new_fd < 0) {
4296 		err = -errno;
4297 		goto err_close_new_fd;
4298 	}
4299 
4300 	err = zclose(map->fd);
4301 	if (err) {
4302 		err = -errno;
4303 		goto err_close_new_fd;
4304 	}
4305 	free(map->name);
4306 
4307 	map->fd = new_fd;
4308 	map->name = new_name;
4309 	map->def.type = info.type;
4310 	map->def.key_size = info.key_size;
4311 	map->def.value_size = info.value_size;
4312 	map->def.max_entries = info.max_entries;
4313 	map->def.map_flags = info.map_flags;
4314 	map->btf_key_type_id = info.btf_key_type_id;
4315 	map->btf_value_type_id = info.btf_value_type_id;
4316 	map->reused = true;
4317 	map->map_extra = info.map_extra;
4318 
4319 	return 0;
4320 
4321 err_close_new_fd:
4322 	close(new_fd);
4323 err_free_new_name:
4324 	free(new_name);
4325 	return libbpf_err(err);
4326 }
4327 
4328 __u32 bpf_map__max_entries(const struct bpf_map *map)
4329 {
4330 	return map->def.max_entries;
4331 }
4332 
4333 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4334 {
4335 	if (!bpf_map_type__is_map_in_map(map->def.type))
4336 		return errno = EINVAL, NULL;
4337 
4338 	return map->inner_map;
4339 }
4340 
4341 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4342 {
4343 	if (map->fd >= 0)
4344 		return libbpf_err(-EBUSY);
4345 	map->def.max_entries = max_entries;
4346 	return 0;
4347 }
4348 
4349 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4350 {
4351 	if (!map || !max_entries)
4352 		return libbpf_err(-EINVAL);
4353 
4354 	return bpf_map__set_max_entries(map, max_entries);
4355 }
4356 
4357 static int
4358 bpf_object__probe_loading(struct bpf_object *obj)
4359 {
4360 	char *cp, errmsg[STRERR_BUFSIZE];
4361 	struct bpf_insn insns[] = {
4362 		BPF_MOV64_IMM(BPF_REG_0, 0),
4363 		BPF_EXIT_INSN(),
4364 	};
4365 	int ret, insn_cnt = ARRAY_SIZE(insns);
4366 
4367 	if (obj->gen_loader)
4368 		return 0;
4369 
4370 	ret = bump_rlimit_memlock();
4371 	if (ret)
4372 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4373 
4374 	/* make sure basic loading works */
4375 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4376 	if (ret < 0)
4377 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4378 	if (ret < 0) {
4379 		ret = errno;
4380 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4381 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4382 			"program. Make sure your kernel supports BPF "
4383 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4384 			"set to big enough value.\n", __func__, cp, ret);
4385 		return -ret;
4386 	}
4387 	close(ret);
4388 
4389 	return 0;
4390 }
4391 
4392 static int probe_fd(int fd)
4393 {
4394 	if (fd >= 0)
4395 		close(fd);
4396 	return fd >= 0;
4397 }
4398 
4399 static int probe_kern_prog_name(void)
4400 {
4401 	struct bpf_insn insns[] = {
4402 		BPF_MOV64_IMM(BPF_REG_0, 0),
4403 		BPF_EXIT_INSN(),
4404 	};
4405 	int ret, insn_cnt = ARRAY_SIZE(insns);
4406 
4407 	/* make sure loading with name works */
4408 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4409 	return probe_fd(ret);
4410 }
4411 
4412 static int probe_kern_global_data(void)
4413 {
4414 	char *cp, errmsg[STRERR_BUFSIZE];
4415 	struct bpf_insn insns[] = {
4416 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4417 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4418 		BPF_MOV64_IMM(BPF_REG_0, 0),
4419 		BPF_EXIT_INSN(),
4420 	};
4421 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4422 
4423 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4424 	if (map < 0) {
4425 		ret = -errno;
4426 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4427 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4428 			__func__, cp, -ret);
4429 		return ret;
4430 	}
4431 
4432 	insns[0].imm = map;
4433 
4434 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4435 	close(map);
4436 	return probe_fd(ret);
4437 }
4438 
4439 static int probe_kern_btf(void)
4440 {
4441 	static const char strs[] = "\0int";
4442 	__u32 types[] = {
4443 		/* int */
4444 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4445 	};
4446 
4447 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4448 					     strs, sizeof(strs)));
4449 }
4450 
4451 static int probe_kern_btf_func(void)
4452 {
4453 	static const char strs[] = "\0int\0x\0a";
4454 	/* void x(int a) {} */
4455 	__u32 types[] = {
4456 		/* int */
4457 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4458 		/* FUNC_PROTO */                                /* [2] */
4459 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4460 		BTF_PARAM_ENC(7, 1),
4461 		/* FUNC x */                                    /* [3] */
4462 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4463 	};
4464 
4465 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4466 					     strs, sizeof(strs)));
4467 }
4468 
4469 static int probe_kern_btf_func_global(void)
4470 {
4471 	static const char strs[] = "\0int\0x\0a";
4472 	/* static void x(int a) {} */
4473 	__u32 types[] = {
4474 		/* int */
4475 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4476 		/* FUNC_PROTO */                                /* [2] */
4477 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4478 		BTF_PARAM_ENC(7, 1),
4479 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4480 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4481 	};
4482 
4483 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4484 					     strs, sizeof(strs)));
4485 }
4486 
4487 static int probe_kern_btf_datasec(void)
4488 {
4489 	static const char strs[] = "\0x\0.data";
4490 	/* static int a; */
4491 	__u32 types[] = {
4492 		/* int */
4493 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4494 		/* VAR x */                                     /* [2] */
4495 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4496 		BTF_VAR_STATIC,
4497 		/* DATASEC val */                               /* [3] */
4498 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4499 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4500 	};
4501 
4502 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4503 					     strs, sizeof(strs)));
4504 }
4505 
4506 static int probe_kern_btf_float(void)
4507 {
4508 	static const char strs[] = "\0float";
4509 	__u32 types[] = {
4510 		/* float */
4511 		BTF_TYPE_FLOAT_ENC(1, 4),
4512 	};
4513 
4514 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4515 					     strs, sizeof(strs)));
4516 }
4517 
4518 static int probe_kern_btf_decl_tag(void)
4519 {
4520 	static const char strs[] = "\0tag";
4521 	__u32 types[] = {
4522 		/* int */
4523 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4524 		/* VAR x */                                     /* [2] */
4525 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4526 		BTF_VAR_STATIC,
4527 		/* attr */
4528 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4529 	};
4530 
4531 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4532 					     strs, sizeof(strs)));
4533 }
4534 
4535 static int probe_kern_btf_type_tag(void)
4536 {
4537 	static const char strs[] = "\0tag";
4538 	__u32 types[] = {
4539 		/* int */
4540 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4541 		/* attr */
4542 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4543 		/* ptr */
4544 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4545 	};
4546 
4547 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4548 					     strs, sizeof(strs)));
4549 }
4550 
4551 static int probe_kern_array_mmap(void)
4552 {
4553 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4554 	int fd;
4555 
4556 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4557 	return probe_fd(fd);
4558 }
4559 
4560 static int probe_kern_exp_attach_type(void)
4561 {
4562 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4563 	struct bpf_insn insns[] = {
4564 		BPF_MOV64_IMM(BPF_REG_0, 0),
4565 		BPF_EXIT_INSN(),
4566 	};
4567 	int fd, insn_cnt = ARRAY_SIZE(insns);
4568 
4569 	/* use any valid combination of program type and (optional)
4570 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4571 	 * to see if kernel supports expected_attach_type field for
4572 	 * BPF_PROG_LOAD command
4573 	 */
4574 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4575 	return probe_fd(fd);
4576 }
4577 
4578 static int probe_kern_probe_read_kernel(void)
4579 {
4580 	struct bpf_insn insns[] = {
4581 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4582 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4583 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4584 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4585 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4586 		BPF_EXIT_INSN(),
4587 	};
4588 	int fd, insn_cnt = ARRAY_SIZE(insns);
4589 
4590 	fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4591 	return probe_fd(fd);
4592 }
4593 
4594 static int probe_prog_bind_map(void)
4595 {
4596 	char *cp, errmsg[STRERR_BUFSIZE];
4597 	struct bpf_insn insns[] = {
4598 		BPF_MOV64_IMM(BPF_REG_0, 0),
4599 		BPF_EXIT_INSN(),
4600 	};
4601 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4602 
4603 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4604 	if (map < 0) {
4605 		ret = -errno;
4606 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4607 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4608 			__func__, cp, -ret);
4609 		return ret;
4610 	}
4611 
4612 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4613 	if (prog < 0) {
4614 		close(map);
4615 		return 0;
4616 	}
4617 
4618 	ret = bpf_prog_bind_map(prog, map, NULL);
4619 
4620 	close(map);
4621 	close(prog);
4622 
4623 	return ret >= 0;
4624 }
4625 
4626 static int probe_module_btf(void)
4627 {
4628 	static const char strs[] = "\0int";
4629 	__u32 types[] = {
4630 		/* int */
4631 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4632 	};
4633 	struct bpf_btf_info info;
4634 	__u32 len = sizeof(info);
4635 	char name[16];
4636 	int fd, err;
4637 
4638 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4639 	if (fd < 0)
4640 		return 0; /* BTF not supported at all */
4641 
4642 	memset(&info, 0, sizeof(info));
4643 	info.name = ptr_to_u64(name);
4644 	info.name_len = sizeof(name);
4645 
4646 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4647 	 * kernel's module BTF support coincides with support for
4648 	 * name/name_len fields in struct bpf_btf_info.
4649 	 */
4650 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4651 	close(fd);
4652 	return !err;
4653 }
4654 
4655 static int probe_perf_link(void)
4656 {
4657 	struct bpf_insn insns[] = {
4658 		BPF_MOV64_IMM(BPF_REG_0, 0),
4659 		BPF_EXIT_INSN(),
4660 	};
4661 	int prog_fd, link_fd, err;
4662 
4663 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4664 				insns, ARRAY_SIZE(insns), NULL);
4665 	if (prog_fd < 0)
4666 		return -errno;
4667 
4668 	/* use invalid perf_event FD to get EBADF, if link is supported;
4669 	 * otherwise EINVAL should be returned
4670 	 */
4671 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4672 	err = -errno; /* close() can clobber errno */
4673 
4674 	if (link_fd >= 0)
4675 		close(link_fd);
4676 	close(prog_fd);
4677 
4678 	return link_fd < 0 && err == -EBADF;
4679 }
4680 
4681 enum kern_feature_result {
4682 	FEAT_UNKNOWN = 0,
4683 	FEAT_SUPPORTED = 1,
4684 	FEAT_MISSING = 2,
4685 };
4686 
4687 typedef int (*feature_probe_fn)(void);
4688 
4689 static struct kern_feature_desc {
4690 	const char *desc;
4691 	feature_probe_fn probe;
4692 	enum kern_feature_result res;
4693 } feature_probes[__FEAT_CNT] = {
4694 	[FEAT_PROG_NAME] = {
4695 		"BPF program name", probe_kern_prog_name,
4696 	},
4697 	[FEAT_GLOBAL_DATA] = {
4698 		"global variables", probe_kern_global_data,
4699 	},
4700 	[FEAT_BTF] = {
4701 		"minimal BTF", probe_kern_btf,
4702 	},
4703 	[FEAT_BTF_FUNC] = {
4704 		"BTF functions", probe_kern_btf_func,
4705 	},
4706 	[FEAT_BTF_GLOBAL_FUNC] = {
4707 		"BTF global function", probe_kern_btf_func_global,
4708 	},
4709 	[FEAT_BTF_DATASEC] = {
4710 		"BTF data section and variable", probe_kern_btf_datasec,
4711 	},
4712 	[FEAT_ARRAY_MMAP] = {
4713 		"ARRAY map mmap()", probe_kern_array_mmap,
4714 	},
4715 	[FEAT_EXP_ATTACH_TYPE] = {
4716 		"BPF_PROG_LOAD expected_attach_type attribute",
4717 		probe_kern_exp_attach_type,
4718 	},
4719 	[FEAT_PROBE_READ_KERN] = {
4720 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4721 	},
4722 	[FEAT_PROG_BIND_MAP] = {
4723 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4724 	},
4725 	[FEAT_MODULE_BTF] = {
4726 		"module BTF support", probe_module_btf,
4727 	},
4728 	[FEAT_BTF_FLOAT] = {
4729 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4730 	},
4731 	[FEAT_PERF_LINK] = {
4732 		"BPF perf link support", probe_perf_link,
4733 	},
4734 	[FEAT_BTF_DECL_TAG] = {
4735 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4736 	},
4737 	[FEAT_BTF_TYPE_TAG] = {
4738 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4739 	},
4740 	[FEAT_MEMCG_ACCOUNT] = {
4741 		"memcg-based memory accounting", probe_memcg_account,
4742 	},
4743 };
4744 
4745 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4746 {
4747 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4748 	int ret;
4749 
4750 	if (obj && obj->gen_loader)
4751 		/* To generate loader program assume the latest kernel
4752 		 * to avoid doing extra prog_load, map_create syscalls.
4753 		 */
4754 		return true;
4755 
4756 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4757 		ret = feat->probe();
4758 		if (ret > 0) {
4759 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4760 		} else if (ret == 0) {
4761 			WRITE_ONCE(feat->res, FEAT_MISSING);
4762 		} else {
4763 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4764 			WRITE_ONCE(feat->res, FEAT_MISSING);
4765 		}
4766 	}
4767 
4768 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4769 }
4770 
4771 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4772 {
4773 	struct bpf_map_info map_info = {};
4774 	char msg[STRERR_BUFSIZE];
4775 	__u32 map_info_len;
4776 	int err;
4777 
4778 	map_info_len = sizeof(map_info);
4779 
4780 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4781 	if (err && errno == EINVAL)
4782 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4783 	if (err) {
4784 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4785 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4786 		return false;
4787 	}
4788 
4789 	return (map_info.type == map->def.type &&
4790 		map_info.key_size == map->def.key_size &&
4791 		map_info.value_size == map->def.value_size &&
4792 		map_info.max_entries == map->def.max_entries &&
4793 		map_info.map_flags == map->def.map_flags &&
4794 		map_info.map_extra == map->map_extra);
4795 }
4796 
4797 static int
4798 bpf_object__reuse_map(struct bpf_map *map)
4799 {
4800 	char *cp, errmsg[STRERR_BUFSIZE];
4801 	int err, pin_fd;
4802 
4803 	pin_fd = bpf_obj_get(map->pin_path);
4804 	if (pin_fd < 0) {
4805 		err = -errno;
4806 		if (err == -ENOENT) {
4807 			pr_debug("found no pinned map to reuse at '%s'\n",
4808 				 map->pin_path);
4809 			return 0;
4810 		}
4811 
4812 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4813 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4814 			map->pin_path, cp);
4815 		return err;
4816 	}
4817 
4818 	if (!map_is_reuse_compat(map, pin_fd)) {
4819 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4820 			map->pin_path);
4821 		close(pin_fd);
4822 		return -EINVAL;
4823 	}
4824 
4825 	err = bpf_map__reuse_fd(map, pin_fd);
4826 	close(pin_fd);
4827 	if (err) {
4828 		return err;
4829 	}
4830 	map->pinned = true;
4831 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4832 
4833 	return 0;
4834 }
4835 
4836 static int
4837 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4838 {
4839 	enum libbpf_map_type map_type = map->libbpf_type;
4840 	char *cp, errmsg[STRERR_BUFSIZE];
4841 	int err, zero = 0;
4842 
4843 	if (obj->gen_loader) {
4844 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4845 					 map->mmaped, map->def.value_size);
4846 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4847 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4848 		return 0;
4849 	}
4850 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4851 	if (err) {
4852 		err = -errno;
4853 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4854 		pr_warn("Error setting initial map(%s) contents: %s\n",
4855 			map->name, cp);
4856 		return err;
4857 	}
4858 
4859 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4860 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4861 		err = bpf_map_freeze(map->fd);
4862 		if (err) {
4863 			err = -errno;
4864 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4865 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4866 				map->name, cp);
4867 			return err;
4868 		}
4869 	}
4870 	return 0;
4871 }
4872 
4873 static void bpf_map__destroy(struct bpf_map *map);
4874 
4875 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4876 {
4877 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4878 	struct bpf_map_def *def = &map->def;
4879 	const char *map_name = NULL;
4880 	int err = 0;
4881 
4882 	if (kernel_supports(obj, FEAT_PROG_NAME))
4883 		map_name = map->name;
4884 	create_attr.map_ifindex = map->map_ifindex;
4885 	create_attr.map_flags = def->map_flags;
4886 	create_attr.numa_node = map->numa_node;
4887 	create_attr.map_extra = map->map_extra;
4888 
4889 	if (bpf_map__is_struct_ops(map))
4890 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4891 
4892 	if (obj->btf && btf__fd(obj->btf) >= 0) {
4893 		create_attr.btf_fd = btf__fd(obj->btf);
4894 		create_attr.btf_key_type_id = map->btf_key_type_id;
4895 		create_attr.btf_value_type_id = map->btf_value_type_id;
4896 	}
4897 
4898 	if (bpf_map_type__is_map_in_map(def->type)) {
4899 		if (map->inner_map) {
4900 			err = bpf_object__create_map(obj, map->inner_map, true);
4901 			if (err) {
4902 				pr_warn("map '%s': failed to create inner map: %d\n",
4903 					map->name, err);
4904 				return err;
4905 			}
4906 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4907 		}
4908 		if (map->inner_map_fd >= 0)
4909 			create_attr.inner_map_fd = map->inner_map_fd;
4910 	}
4911 
4912 	switch (def->type) {
4913 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4914 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4915 	case BPF_MAP_TYPE_STACK_TRACE:
4916 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4917 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4918 	case BPF_MAP_TYPE_DEVMAP:
4919 	case BPF_MAP_TYPE_DEVMAP_HASH:
4920 	case BPF_MAP_TYPE_CPUMAP:
4921 	case BPF_MAP_TYPE_XSKMAP:
4922 	case BPF_MAP_TYPE_SOCKMAP:
4923 	case BPF_MAP_TYPE_SOCKHASH:
4924 	case BPF_MAP_TYPE_QUEUE:
4925 	case BPF_MAP_TYPE_STACK:
4926 	case BPF_MAP_TYPE_RINGBUF:
4927 		create_attr.btf_fd = 0;
4928 		create_attr.btf_key_type_id = 0;
4929 		create_attr.btf_value_type_id = 0;
4930 		map->btf_key_type_id = 0;
4931 		map->btf_value_type_id = 0;
4932 	default:
4933 		break;
4934 	}
4935 
4936 	if (obj->gen_loader) {
4937 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4938 				    def->key_size, def->value_size, def->max_entries,
4939 				    &create_attr, is_inner ? -1 : map - obj->maps);
4940 		/* Pretend to have valid FD to pass various fd >= 0 checks.
4941 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4942 		 */
4943 		map->fd = 0;
4944 	} else {
4945 		map->fd = bpf_map_create(def->type, map_name,
4946 					 def->key_size, def->value_size,
4947 					 def->max_entries, &create_attr);
4948 	}
4949 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4950 			    create_attr.btf_value_type_id)) {
4951 		char *cp, errmsg[STRERR_BUFSIZE];
4952 
4953 		err = -errno;
4954 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4955 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4956 			map->name, cp, err);
4957 		create_attr.btf_fd = 0;
4958 		create_attr.btf_key_type_id = 0;
4959 		create_attr.btf_value_type_id = 0;
4960 		map->btf_key_type_id = 0;
4961 		map->btf_value_type_id = 0;
4962 		map->fd = bpf_map_create(def->type, map_name,
4963 					 def->key_size, def->value_size,
4964 					 def->max_entries, &create_attr);
4965 	}
4966 
4967 	err = map->fd < 0 ? -errno : 0;
4968 
4969 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4970 		if (obj->gen_loader)
4971 			map->inner_map->fd = -1;
4972 		bpf_map__destroy(map->inner_map);
4973 		zfree(&map->inner_map);
4974 	}
4975 
4976 	return err;
4977 }
4978 
4979 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
4980 {
4981 	const struct bpf_map *targ_map;
4982 	unsigned int i;
4983 	int fd, err = 0;
4984 
4985 	for (i = 0; i < map->init_slots_sz; i++) {
4986 		if (!map->init_slots[i])
4987 			continue;
4988 
4989 		targ_map = map->init_slots[i];
4990 		fd = bpf_map__fd(targ_map);
4991 
4992 		if (obj->gen_loader) {
4993 			bpf_gen__populate_outer_map(obj->gen_loader,
4994 						    map - obj->maps, i,
4995 						    targ_map - obj->maps);
4996 		} else {
4997 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4998 		}
4999 		if (err) {
5000 			err = -errno;
5001 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5002 				map->name, i, targ_map->name, fd, err);
5003 			return err;
5004 		}
5005 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5006 			 map->name, i, targ_map->name, fd);
5007 	}
5008 
5009 	zfree(&map->init_slots);
5010 	map->init_slots_sz = 0;
5011 
5012 	return 0;
5013 }
5014 
5015 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5016 {
5017 	const struct bpf_program *targ_prog;
5018 	unsigned int i;
5019 	int fd, err;
5020 
5021 	if (obj->gen_loader)
5022 		return -ENOTSUP;
5023 
5024 	for (i = 0; i < map->init_slots_sz; i++) {
5025 		if (!map->init_slots[i])
5026 			continue;
5027 
5028 		targ_prog = map->init_slots[i];
5029 		fd = bpf_program__fd(targ_prog);
5030 
5031 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5032 		if (err) {
5033 			err = -errno;
5034 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5035 				map->name, i, targ_prog->name, fd, err);
5036 			return err;
5037 		}
5038 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5039 			 map->name, i, targ_prog->name, fd);
5040 	}
5041 
5042 	zfree(&map->init_slots);
5043 	map->init_slots_sz = 0;
5044 
5045 	return 0;
5046 }
5047 
5048 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5049 {
5050 	struct bpf_map *map;
5051 	int i, err;
5052 
5053 	for (i = 0; i < obj->nr_maps; i++) {
5054 		map = &obj->maps[i];
5055 
5056 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5057 			continue;
5058 
5059 		err = init_prog_array_slots(obj, map);
5060 		if (err < 0) {
5061 			zclose(map->fd);
5062 			return err;
5063 		}
5064 	}
5065 	return 0;
5066 }
5067 
5068 static int map_set_def_max_entries(struct bpf_map *map)
5069 {
5070 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5071 		int nr_cpus;
5072 
5073 		nr_cpus = libbpf_num_possible_cpus();
5074 		if (nr_cpus < 0) {
5075 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5076 				map->name, nr_cpus);
5077 			return nr_cpus;
5078 		}
5079 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5080 		map->def.max_entries = nr_cpus;
5081 	}
5082 
5083 	return 0;
5084 }
5085 
5086 static int
5087 bpf_object__create_maps(struct bpf_object *obj)
5088 {
5089 	struct bpf_map *map;
5090 	char *cp, errmsg[STRERR_BUFSIZE];
5091 	unsigned int i, j;
5092 	int err;
5093 	bool retried;
5094 
5095 	for (i = 0; i < obj->nr_maps; i++) {
5096 		map = &obj->maps[i];
5097 
5098 		/* To support old kernels, we skip creating global data maps
5099 		 * (.rodata, .data, .kconfig, etc); later on, during program
5100 		 * loading, if we detect that at least one of the to-be-loaded
5101 		 * programs is referencing any global data map, we'll error
5102 		 * out with program name and relocation index logged.
5103 		 * This approach allows to accommodate Clang emitting
5104 		 * unnecessary .rodata.str1.1 sections for string literals,
5105 		 * but also it allows to have CO-RE applications that use
5106 		 * global variables in some of BPF programs, but not others.
5107 		 * If those global variable-using programs are not loaded at
5108 		 * runtime due to bpf_program__set_autoload(prog, false),
5109 		 * bpf_object loading will succeed just fine even on old
5110 		 * kernels.
5111 		 */
5112 		if (bpf_map__is_internal(map) &&
5113 		    !kernel_supports(obj, FEAT_GLOBAL_DATA)) {
5114 			map->skipped = true;
5115 			continue;
5116 		}
5117 
5118 		err = map_set_def_max_entries(map);
5119 		if (err)
5120 			goto err_out;
5121 
5122 		retried = false;
5123 retry:
5124 		if (map->pin_path) {
5125 			err = bpf_object__reuse_map(map);
5126 			if (err) {
5127 				pr_warn("map '%s': error reusing pinned map\n",
5128 					map->name);
5129 				goto err_out;
5130 			}
5131 			if (retried && map->fd < 0) {
5132 				pr_warn("map '%s': cannot find pinned map\n",
5133 					map->name);
5134 				err = -ENOENT;
5135 				goto err_out;
5136 			}
5137 		}
5138 
5139 		if (map->fd >= 0) {
5140 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5141 				 map->name, map->fd);
5142 		} else {
5143 			err = bpf_object__create_map(obj, map, false);
5144 			if (err)
5145 				goto err_out;
5146 
5147 			pr_debug("map '%s': created successfully, fd=%d\n",
5148 				 map->name, map->fd);
5149 
5150 			if (bpf_map__is_internal(map)) {
5151 				err = bpf_object__populate_internal_map(obj, map);
5152 				if (err < 0) {
5153 					zclose(map->fd);
5154 					goto err_out;
5155 				}
5156 			}
5157 
5158 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5159 				err = init_map_in_map_slots(obj, map);
5160 				if (err < 0) {
5161 					zclose(map->fd);
5162 					goto err_out;
5163 				}
5164 			}
5165 		}
5166 
5167 		if (map->pin_path && !map->pinned) {
5168 			err = bpf_map__pin(map, NULL);
5169 			if (err) {
5170 				zclose(map->fd);
5171 				if (!retried && err == -EEXIST) {
5172 					retried = true;
5173 					goto retry;
5174 				}
5175 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5176 					map->name, map->pin_path, err);
5177 				goto err_out;
5178 			}
5179 		}
5180 	}
5181 
5182 	return 0;
5183 
5184 err_out:
5185 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5186 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5187 	pr_perm_msg(err);
5188 	for (j = 0; j < i; j++)
5189 		zclose(obj->maps[j].fd);
5190 	return err;
5191 }
5192 
5193 static bool bpf_core_is_flavor_sep(const char *s)
5194 {
5195 	/* check X___Y name pattern, where X and Y are not underscores */
5196 	return s[0] != '_' &&				      /* X */
5197 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5198 	       s[4] != '_';				      /* Y */
5199 }
5200 
5201 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5202  * before last triple underscore. Struct name part after last triple
5203  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5204  */
5205 size_t bpf_core_essential_name_len(const char *name)
5206 {
5207 	size_t n = strlen(name);
5208 	int i;
5209 
5210 	for (i = n - 5; i >= 0; i--) {
5211 		if (bpf_core_is_flavor_sep(name + i))
5212 			return i + 1;
5213 	}
5214 	return n;
5215 }
5216 
5217 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5218 {
5219 	if (!cands)
5220 		return;
5221 
5222 	free(cands->cands);
5223 	free(cands);
5224 }
5225 
5226 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5227 		       size_t local_essent_len,
5228 		       const struct btf *targ_btf,
5229 		       const char *targ_btf_name,
5230 		       int targ_start_id,
5231 		       struct bpf_core_cand_list *cands)
5232 {
5233 	struct bpf_core_cand *new_cands, *cand;
5234 	const struct btf_type *t, *local_t;
5235 	const char *targ_name, *local_name;
5236 	size_t targ_essent_len;
5237 	int n, i;
5238 
5239 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5240 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5241 
5242 	n = btf__type_cnt(targ_btf);
5243 	for (i = targ_start_id; i < n; i++) {
5244 		t = btf__type_by_id(targ_btf, i);
5245 		if (btf_kind(t) != btf_kind(local_t))
5246 			continue;
5247 
5248 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5249 		if (str_is_empty(targ_name))
5250 			continue;
5251 
5252 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5253 		if (targ_essent_len != local_essent_len)
5254 			continue;
5255 
5256 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5257 			continue;
5258 
5259 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5260 			 local_cand->id, btf_kind_str(local_t),
5261 			 local_name, i, btf_kind_str(t), targ_name,
5262 			 targ_btf_name);
5263 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5264 					      sizeof(*cands->cands));
5265 		if (!new_cands)
5266 			return -ENOMEM;
5267 
5268 		cand = &new_cands[cands->len];
5269 		cand->btf = targ_btf;
5270 		cand->id = i;
5271 
5272 		cands->cands = new_cands;
5273 		cands->len++;
5274 	}
5275 	return 0;
5276 }
5277 
5278 static int load_module_btfs(struct bpf_object *obj)
5279 {
5280 	struct bpf_btf_info info;
5281 	struct module_btf *mod_btf;
5282 	struct btf *btf;
5283 	char name[64];
5284 	__u32 id = 0, len;
5285 	int err, fd;
5286 
5287 	if (obj->btf_modules_loaded)
5288 		return 0;
5289 
5290 	if (obj->gen_loader)
5291 		return 0;
5292 
5293 	/* don't do this again, even if we find no module BTFs */
5294 	obj->btf_modules_loaded = true;
5295 
5296 	/* kernel too old to support module BTFs */
5297 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5298 		return 0;
5299 
5300 	while (true) {
5301 		err = bpf_btf_get_next_id(id, &id);
5302 		if (err && errno == ENOENT)
5303 			return 0;
5304 		if (err) {
5305 			err = -errno;
5306 			pr_warn("failed to iterate BTF objects: %d\n", err);
5307 			return err;
5308 		}
5309 
5310 		fd = bpf_btf_get_fd_by_id(id);
5311 		if (fd < 0) {
5312 			if (errno == ENOENT)
5313 				continue; /* expected race: BTF was unloaded */
5314 			err = -errno;
5315 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5316 			return err;
5317 		}
5318 
5319 		len = sizeof(info);
5320 		memset(&info, 0, sizeof(info));
5321 		info.name = ptr_to_u64(name);
5322 		info.name_len = sizeof(name);
5323 
5324 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5325 		if (err) {
5326 			err = -errno;
5327 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5328 			goto err_out;
5329 		}
5330 
5331 		/* ignore non-module BTFs */
5332 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5333 			close(fd);
5334 			continue;
5335 		}
5336 
5337 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5338 		err = libbpf_get_error(btf);
5339 		if (err) {
5340 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5341 				name, id, err);
5342 			goto err_out;
5343 		}
5344 
5345 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5346 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5347 		if (err)
5348 			goto err_out;
5349 
5350 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5351 
5352 		mod_btf->btf = btf;
5353 		mod_btf->id = id;
5354 		mod_btf->fd = fd;
5355 		mod_btf->name = strdup(name);
5356 		if (!mod_btf->name) {
5357 			err = -ENOMEM;
5358 			goto err_out;
5359 		}
5360 		continue;
5361 
5362 err_out:
5363 		close(fd);
5364 		return err;
5365 	}
5366 
5367 	return 0;
5368 }
5369 
5370 static struct bpf_core_cand_list *
5371 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5372 {
5373 	struct bpf_core_cand local_cand = {};
5374 	struct bpf_core_cand_list *cands;
5375 	const struct btf *main_btf;
5376 	const struct btf_type *local_t;
5377 	const char *local_name;
5378 	size_t local_essent_len;
5379 	int err, i;
5380 
5381 	local_cand.btf = local_btf;
5382 	local_cand.id = local_type_id;
5383 	local_t = btf__type_by_id(local_btf, local_type_id);
5384 	if (!local_t)
5385 		return ERR_PTR(-EINVAL);
5386 
5387 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5388 	if (str_is_empty(local_name))
5389 		return ERR_PTR(-EINVAL);
5390 	local_essent_len = bpf_core_essential_name_len(local_name);
5391 
5392 	cands = calloc(1, sizeof(*cands));
5393 	if (!cands)
5394 		return ERR_PTR(-ENOMEM);
5395 
5396 	/* Attempt to find target candidates in vmlinux BTF first */
5397 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5398 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5399 	if (err)
5400 		goto err_out;
5401 
5402 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5403 	if (cands->len)
5404 		return cands;
5405 
5406 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5407 	if (obj->btf_vmlinux_override)
5408 		return cands;
5409 
5410 	/* now look through module BTFs, trying to still find candidates */
5411 	err = load_module_btfs(obj);
5412 	if (err)
5413 		goto err_out;
5414 
5415 	for (i = 0; i < obj->btf_module_cnt; i++) {
5416 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5417 					 obj->btf_modules[i].btf,
5418 					 obj->btf_modules[i].name,
5419 					 btf__type_cnt(obj->btf_vmlinux),
5420 					 cands);
5421 		if (err)
5422 			goto err_out;
5423 	}
5424 
5425 	return cands;
5426 err_out:
5427 	bpf_core_free_cands(cands);
5428 	return ERR_PTR(err);
5429 }
5430 
5431 /* Check local and target types for compatibility. This check is used for
5432  * type-based CO-RE relocations and follow slightly different rules than
5433  * field-based relocations. This function assumes that root types were already
5434  * checked for name match. Beyond that initial root-level name check, names
5435  * are completely ignored. Compatibility rules are as follows:
5436  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5437  *     kind should match for local and target types (i.e., STRUCT is not
5438  *     compatible with UNION);
5439  *   - for ENUMs, the size is ignored;
5440  *   - for INT, size and signedness are ignored;
5441  *   - for ARRAY, dimensionality is ignored, element types are checked for
5442  *     compatibility recursively;
5443  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5444  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5445  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5446  *     number of input args and compatible return and argument types.
5447  * These rules are not set in stone and probably will be adjusted as we get
5448  * more experience with using BPF CO-RE relocations.
5449  */
5450 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5451 			      const struct btf *targ_btf, __u32 targ_id)
5452 {
5453 	const struct btf_type *local_type, *targ_type;
5454 	int depth = 32; /* max recursion depth */
5455 
5456 	/* caller made sure that names match (ignoring flavor suffix) */
5457 	local_type = btf__type_by_id(local_btf, local_id);
5458 	targ_type = btf__type_by_id(targ_btf, targ_id);
5459 	if (btf_kind(local_type) != btf_kind(targ_type))
5460 		return 0;
5461 
5462 recur:
5463 	depth--;
5464 	if (depth < 0)
5465 		return -EINVAL;
5466 
5467 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5468 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5469 	if (!local_type || !targ_type)
5470 		return -EINVAL;
5471 
5472 	if (btf_kind(local_type) != btf_kind(targ_type))
5473 		return 0;
5474 
5475 	switch (btf_kind(local_type)) {
5476 	case BTF_KIND_UNKN:
5477 	case BTF_KIND_STRUCT:
5478 	case BTF_KIND_UNION:
5479 	case BTF_KIND_ENUM:
5480 	case BTF_KIND_FWD:
5481 		return 1;
5482 	case BTF_KIND_INT:
5483 		/* just reject deprecated bitfield-like integers; all other
5484 		 * integers are by default compatible between each other
5485 		 */
5486 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5487 	case BTF_KIND_PTR:
5488 		local_id = local_type->type;
5489 		targ_id = targ_type->type;
5490 		goto recur;
5491 	case BTF_KIND_ARRAY:
5492 		local_id = btf_array(local_type)->type;
5493 		targ_id = btf_array(targ_type)->type;
5494 		goto recur;
5495 	case BTF_KIND_FUNC_PROTO: {
5496 		struct btf_param *local_p = btf_params(local_type);
5497 		struct btf_param *targ_p = btf_params(targ_type);
5498 		__u16 local_vlen = btf_vlen(local_type);
5499 		__u16 targ_vlen = btf_vlen(targ_type);
5500 		int i, err;
5501 
5502 		if (local_vlen != targ_vlen)
5503 			return 0;
5504 
5505 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5506 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5507 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5508 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5509 			if (err <= 0)
5510 				return err;
5511 		}
5512 
5513 		/* tail recurse for return type check */
5514 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5515 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5516 		goto recur;
5517 	}
5518 	default:
5519 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5520 			btf_kind_str(local_type), local_id, targ_id);
5521 		return 0;
5522 	}
5523 }
5524 
5525 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5526 {
5527 	return (size_t)key;
5528 }
5529 
5530 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5531 {
5532 	return k1 == k2;
5533 }
5534 
5535 static void *u32_as_hash_key(__u32 x)
5536 {
5537 	return (void *)(uintptr_t)x;
5538 }
5539 
5540 static int record_relo_core(struct bpf_program *prog,
5541 			    const struct bpf_core_relo *core_relo, int insn_idx)
5542 {
5543 	struct reloc_desc *relos, *relo;
5544 
5545 	relos = libbpf_reallocarray(prog->reloc_desc,
5546 				    prog->nr_reloc + 1, sizeof(*relos));
5547 	if (!relos)
5548 		return -ENOMEM;
5549 	relo = &relos[prog->nr_reloc];
5550 	relo->type = RELO_CORE;
5551 	relo->insn_idx = insn_idx;
5552 	relo->core_relo = core_relo;
5553 	prog->reloc_desc = relos;
5554 	prog->nr_reloc++;
5555 	return 0;
5556 }
5557 
5558 static int bpf_core_resolve_relo(struct bpf_program *prog,
5559 				 const struct bpf_core_relo *relo,
5560 				 int relo_idx,
5561 				 const struct btf *local_btf,
5562 				 struct hashmap *cand_cache,
5563 				 struct bpf_core_relo_res *targ_res)
5564 {
5565 	struct bpf_core_spec specs_scratch[3] = {};
5566 	const void *type_key = u32_as_hash_key(relo->type_id);
5567 	struct bpf_core_cand_list *cands = NULL;
5568 	const char *prog_name = prog->name;
5569 	const struct btf_type *local_type;
5570 	const char *local_name;
5571 	__u32 local_id = relo->type_id;
5572 	int err;
5573 
5574 	local_type = btf__type_by_id(local_btf, local_id);
5575 	if (!local_type)
5576 		return -EINVAL;
5577 
5578 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5579 	if (!local_name)
5580 		return -EINVAL;
5581 
5582 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5583 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5584 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5585 		if (IS_ERR(cands)) {
5586 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5587 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5588 				local_name, PTR_ERR(cands));
5589 			return PTR_ERR(cands);
5590 		}
5591 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5592 		if (err) {
5593 			bpf_core_free_cands(cands);
5594 			return err;
5595 		}
5596 	}
5597 
5598 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5599 				       targ_res);
5600 }
5601 
5602 static int
5603 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5604 {
5605 	const struct btf_ext_info_sec *sec;
5606 	struct bpf_core_relo_res targ_res;
5607 	const struct bpf_core_relo *rec;
5608 	const struct btf_ext_info *seg;
5609 	struct hashmap_entry *entry;
5610 	struct hashmap *cand_cache = NULL;
5611 	struct bpf_program *prog;
5612 	struct bpf_insn *insn;
5613 	const char *sec_name;
5614 	int i, err = 0, insn_idx, sec_idx;
5615 
5616 	if (obj->btf_ext->core_relo_info.len == 0)
5617 		return 0;
5618 
5619 	if (targ_btf_path) {
5620 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5621 		err = libbpf_get_error(obj->btf_vmlinux_override);
5622 		if (err) {
5623 			pr_warn("failed to parse target BTF: %d\n", err);
5624 			return err;
5625 		}
5626 	}
5627 
5628 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5629 	if (IS_ERR(cand_cache)) {
5630 		err = PTR_ERR(cand_cache);
5631 		goto out;
5632 	}
5633 
5634 	seg = &obj->btf_ext->core_relo_info;
5635 	for_each_btf_ext_sec(seg, sec) {
5636 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5637 		if (str_is_empty(sec_name)) {
5638 			err = -EINVAL;
5639 			goto out;
5640 		}
5641 		/* bpf_object's ELF is gone by now so it's not easy to find
5642 		 * section index by section name, but we can find *any*
5643 		 * bpf_program within desired section name and use it's
5644 		 * prog->sec_idx to do a proper search by section index and
5645 		 * instruction offset
5646 		 */
5647 		prog = NULL;
5648 		for (i = 0; i < obj->nr_programs; i++) {
5649 			prog = &obj->programs[i];
5650 			if (strcmp(prog->sec_name, sec_name) == 0)
5651 				break;
5652 		}
5653 		if (!prog) {
5654 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5655 			return -ENOENT;
5656 		}
5657 		sec_idx = prog->sec_idx;
5658 
5659 		pr_debug("sec '%s': found %d CO-RE relocations\n",
5660 			 sec_name, sec->num_info);
5661 
5662 		for_each_btf_ext_rec(seg, sec, i, rec) {
5663 			if (rec->insn_off % BPF_INSN_SZ)
5664 				return -EINVAL;
5665 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5666 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5667 			if (!prog) {
5668 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5669 					sec_name, insn_idx, i);
5670 				err = -EINVAL;
5671 				goto out;
5672 			}
5673 			/* no need to apply CO-RE relocation if the program is
5674 			 * not going to be loaded
5675 			 */
5676 			if (!prog->load)
5677 				continue;
5678 
5679 			/* adjust insn_idx from section frame of reference to the local
5680 			 * program's frame of reference; (sub-)program code is not yet
5681 			 * relocated, so it's enough to just subtract in-section offset
5682 			 */
5683 			insn_idx = insn_idx - prog->sec_insn_off;
5684 			if (insn_idx >= prog->insns_cnt)
5685 				return -EINVAL;
5686 			insn = &prog->insns[insn_idx];
5687 
5688 			if (prog->obj->gen_loader) {
5689 				err = record_relo_core(prog, rec, insn_idx);
5690 				if (err) {
5691 					pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5692 						prog->name, i, err);
5693 					goto out;
5694 				}
5695 				continue;
5696 			}
5697 
5698 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5699 			if (err) {
5700 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5701 					prog->name, i, err);
5702 				goto out;
5703 			}
5704 
5705 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5706 			if (err) {
5707 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5708 					prog->name, i, insn_idx, err);
5709 				goto out;
5710 			}
5711 		}
5712 	}
5713 
5714 out:
5715 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5716 	btf__free(obj->btf_vmlinux_override);
5717 	obj->btf_vmlinux_override = NULL;
5718 
5719 	if (!IS_ERR_OR_NULL(cand_cache)) {
5720 		hashmap__for_each_entry(cand_cache, entry, i) {
5721 			bpf_core_free_cands(entry->value);
5722 		}
5723 		hashmap__free(cand_cache);
5724 	}
5725 	return err;
5726 }
5727 
5728 /* Relocate data references within program code:
5729  *  - map references;
5730  *  - global variable references;
5731  *  - extern references.
5732  */
5733 static int
5734 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5735 {
5736 	int i;
5737 
5738 	for (i = 0; i < prog->nr_reloc; i++) {
5739 		struct reloc_desc *relo = &prog->reloc_desc[i];
5740 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5741 		struct extern_desc *ext;
5742 
5743 		switch (relo->type) {
5744 		case RELO_LD64:
5745 			if (obj->gen_loader) {
5746 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5747 				insn[0].imm = relo->map_idx;
5748 			} else {
5749 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5750 				insn[0].imm = obj->maps[relo->map_idx].fd;
5751 			}
5752 			break;
5753 		case RELO_DATA:
5754 			insn[1].imm = insn[0].imm + relo->sym_off;
5755 			if (obj->gen_loader) {
5756 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5757 				insn[0].imm = relo->map_idx;
5758 			} else {
5759 				const struct bpf_map *map = &obj->maps[relo->map_idx];
5760 
5761 				if (map->skipped) {
5762 					pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n",
5763 						prog->name, i);
5764 					return -ENOTSUP;
5765 				}
5766 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5767 				insn[0].imm = obj->maps[relo->map_idx].fd;
5768 			}
5769 			break;
5770 		case RELO_EXTERN_VAR:
5771 			ext = &obj->externs[relo->sym_off];
5772 			if (ext->type == EXT_KCFG) {
5773 				if (obj->gen_loader) {
5774 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5775 					insn[0].imm = obj->kconfig_map_idx;
5776 				} else {
5777 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5778 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5779 				}
5780 				insn[1].imm = ext->kcfg.data_off;
5781 			} else /* EXT_KSYM */ {
5782 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5783 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5784 					insn[0].imm = ext->ksym.kernel_btf_id;
5785 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5786 				} else { /* typeless ksyms or unresolved typed ksyms */
5787 					insn[0].imm = (__u32)ext->ksym.addr;
5788 					insn[1].imm = ext->ksym.addr >> 32;
5789 				}
5790 			}
5791 			break;
5792 		case RELO_EXTERN_FUNC:
5793 			ext = &obj->externs[relo->sym_off];
5794 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5795 			if (ext->is_set) {
5796 				insn[0].imm = ext->ksym.kernel_btf_id;
5797 				insn[0].off = ext->ksym.btf_fd_idx;
5798 			} else { /* unresolved weak kfunc */
5799 				insn[0].imm = 0;
5800 				insn[0].off = 0;
5801 			}
5802 			break;
5803 		case RELO_SUBPROG_ADDR:
5804 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5805 				pr_warn("prog '%s': relo #%d: bad insn\n",
5806 					prog->name, i);
5807 				return -EINVAL;
5808 			}
5809 			/* handled already */
5810 			break;
5811 		case RELO_CALL:
5812 			/* handled already */
5813 			break;
5814 		case RELO_CORE:
5815 			/* will be handled by bpf_program_record_relos() */
5816 			break;
5817 		default:
5818 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5819 				prog->name, i, relo->type);
5820 			return -EINVAL;
5821 		}
5822 	}
5823 
5824 	return 0;
5825 }
5826 
5827 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5828 				    const struct bpf_program *prog,
5829 				    const struct btf_ext_info *ext_info,
5830 				    void **prog_info, __u32 *prog_rec_cnt,
5831 				    __u32 *prog_rec_sz)
5832 {
5833 	void *copy_start = NULL, *copy_end = NULL;
5834 	void *rec, *rec_end, *new_prog_info;
5835 	const struct btf_ext_info_sec *sec;
5836 	size_t old_sz, new_sz;
5837 	const char *sec_name;
5838 	int i, off_adj;
5839 
5840 	for_each_btf_ext_sec(ext_info, sec) {
5841 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5842 		if (!sec_name)
5843 			return -EINVAL;
5844 		if (strcmp(sec_name, prog->sec_name) != 0)
5845 			continue;
5846 
5847 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5848 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5849 
5850 			if (insn_off < prog->sec_insn_off)
5851 				continue;
5852 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5853 				break;
5854 
5855 			if (!copy_start)
5856 				copy_start = rec;
5857 			copy_end = rec + ext_info->rec_size;
5858 		}
5859 
5860 		if (!copy_start)
5861 			return -ENOENT;
5862 
5863 		/* append func/line info of a given (sub-)program to the main
5864 		 * program func/line info
5865 		 */
5866 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5867 		new_sz = old_sz + (copy_end - copy_start);
5868 		new_prog_info = realloc(*prog_info, new_sz);
5869 		if (!new_prog_info)
5870 			return -ENOMEM;
5871 		*prog_info = new_prog_info;
5872 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5873 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5874 
5875 		/* Kernel instruction offsets are in units of 8-byte
5876 		 * instructions, while .BTF.ext instruction offsets generated
5877 		 * by Clang are in units of bytes. So convert Clang offsets
5878 		 * into kernel offsets and adjust offset according to program
5879 		 * relocated position.
5880 		 */
5881 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5882 		rec = new_prog_info + old_sz;
5883 		rec_end = new_prog_info + new_sz;
5884 		for (; rec < rec_end; rec += ext_info->rec_size) {
5885 			__u32 *insn_off = rec;
5886 
5887 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5888 		}
5889 		*prog_rec_sz = ext_info->rec_size;
5890 		return 0;
5891 	}
5892 
5893 	return -ENOENT;
5894 }
5895 
5896 static int
5897 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5898 			      struct bpf_program *main_prog,
5899 			      const struct bpf_program *prog)
5900 {
5901 	int err;
5902 
5903 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5904 	 * supprot func/line info
5905 	 */
5906 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5907 		return 0;
5908 
5909 	/* only attempt func info relocation if main program's func_info
5910 	 * relocation was successful
5911 	 */
5912 	if (main_prog != prog && !main_prog->func_info)
5913 		goto line_info;
5914 
5915 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5916 				       &main_prog->func_info,
5917 				       &main_prog->func_info_cnt,
5918 				       &main_prog->func_info_rec_size);
5919 	if (err) {
5920 		if (err != -ENOENT) {
5921 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5922 				prog->name, err);
5923 			return err;
5924 		}
5925 		if (main_prog->func_info) {
5926 			/*
5927 			 * Some info has already been found but has problem
5928 			 * in the last btf_ext reloc. Must have to error out.
5929 			 */
5930 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5931 			return err;
5932 		}
5933 		/* Have problem loading the very first info. Ignore the rest. */
5934 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5935 			prog->name);
5936 	}
5937 
5938 line_info:
5939 	/* don't relocate line info if main program's relocation failed */
5940 	if (main_prog != prog && !main_prog->line_info)
5941 		return 0;
5942 
5943 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5944 				       &main_prog->line_info,
5945 				       &main_prog->line_info_cnt,
5946 				       &main_prog->line_info_rec_size);
5947 	if (err) {
5948 		if (err != -ENOENT) {
5949 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5950 				prog->name, err);
5951 			return err;
5952 		}
5953 		if (main_prog->line_info) {
5954 			/*
5955 			 * Some info has already been found but has problem
5956 			 * in the last btf_ext reloc. Must have to error out.
5957 			 */
5958 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5959 			return err;
5960 		}
5961 		/* Have problem loading the very first info. Ignore the rest. */
5962 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5963 			prog->name);
5964 	}
5965 	return 0;
5966 }
5967 
5968 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5969 {
5970 	size_t insn_idx = *(const size_t *)key;
5971 	const struct reloc_desc *relo = elem;
5972 
5973 	if (insn_idx == relo->insn_idx)
5974 		return 0;
5975 	return insn_idx < relo->insn_idx ? -1 : 1;
5976 }
5977 
5978 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5979 {
5980 	if (!prog->nr_reloc)
5981 		return NULL;
5982 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5983 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5984 }
5985 
5986 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
5987 {
5988 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
5989 	struct reloc_desc *relos;
5990 	int i;
5991 
5992 	if (main_prog == subprog)
5993 		return 0;
5994 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
5995 	if (!relos)
5996 		return -ENOMEM;
5997 	if (subprog->nr_reloc)
5998 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
5999 		       sizeof(*relos) * subprog->nr_reloc);
6000 
6001 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6002 		relos[i].insn_idx += subprog->sub_insn_off;
6003 	/* After insn_idx adjustment the 'relos' array is still sorted
6004 	 * by insn_idx and doesn't break bsearch.
6005 	 */
6006 	main_prog->reloc_desc = relos;
6007 	main_prog->nr_reloc = new_cnt;
6008 	return 0;
6009 }
6010 
6011 static int
6012 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6013 		       struct bpf_program *prog)
6014 {
6015 	size_t sub_insn_idx, insn_idx, new_cnt;
6016 	struct bpf_program *subprog;
6017 	struct bpf_insn *insns, *insn;
6018 	struct reloc_desc *relo;
6019 	int err;
6020 
6021 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6022 	if (err)
6023 		return err;
6024 
6025 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6026 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6027 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6028 			continue;
6029 
6030 		relo = find_prog_insn_relo(prog, insn_idx);
6031 		if (relo && relo->type == RELO_EXTERN_FUNC)
6032 			/* kfunc relocations will be handled later
6033 			 * in bpf_object__relocate_data()
6034 			 */
6035 			continue;
6036 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6037 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6038 				prog->name, insn_idx, relo->type);
6039 			return -LIBBPF_ERRNO__RELOC;
6040 		}
6041 		if (relo) {
6042 			/* sub-program instruction index is a combination of
6043 			 * an offset of a symbol pointed to by relocation and
6044 			 * call instruction's imm field; for global functions,
6045 			 * call always has imm = -1, but for static functions
6046 			 * relocation is against STT_SECTION and insn->imm
6047 			 * points to a start of a static function
6048 			 *
6049 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6050 			 * the byte offset in the corresponding section.
6051 			 */
6052 			if (relo->type == RELO_CALL)
6053 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6054 			else
6055 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6056 		} else if (insn_is_pseudo_func(insn)) {
6057 			/*
6058 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6059 			 * functions are in the same section, so it shouldn't reach here.
6060 			 */
6061 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6062 				prog->name, insn_idx);
6063 			return -LIBBPF_ERRNO__RELOC;
6064 		} else {
6065 			/* if subprogram call is to a static function within
6066 			 * the same ELF section, there won't be any relocation
6067 			 * emitted, but it also means there is no additional
6068 			 * offset necessary, insns->imm is relative to
6069 			 * instruction's original position within the section
6070 			 */
6071 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6072 		}
6073 
6074 		/* we enforce that sub-programs should be in .text section */
6075 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6076 		if (!subprog) {
6077 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6078 				prog->name);
6079 			return -LIBBPF_ERRNO__RELOC;
6080 		}
6081 
6082 		/* if it's the first call instruction calling into this
6083 		 * subprogram (meaning this subprog hasn't been processed
6084 		 * yet) within the context of current main program:
6085 		 *   - append it at the end of main program's instructions blog;
6086 		 *   - process is recursively, while current program is put on hold;
6087 		 *   - if that subprogram calls some other not yet processes
6088 		 *   subprogram, same thing will happen recursively until
6089 		 *   there are no more unprocesses subprograms left to append
6090 		 *   and relocate.
6091 		 */
6092 		if (subprog->sub_insn_off == 0) {
6093 			subprog->sub_insn_off = main_prog->insns_cnt;
6094 
6095 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6096 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6097 			if (!insns) {
6098 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6099 				return -ENOMEM;
6100 			}
6101 			main_prog->insns = insns;
6102 			main_prog->insns_cnt = new_cnt;
6103 
6104 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6105 			       subprog->insns_cnt * sizeof(*insns));
6106 
6107 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6108 				 main_prog->name, subprog->insns_cnt, subprog->name);
6109 
6110 			/* The subprog insns are now appended. Append its relos too. */
6111 			err = append_subprog_relos(main_prog, subprog);
6112 			if (err)
6113 				return err;
6114 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6115 			if (err)
6116 				return err;
6117 		}
6118 
6119 		/* main_prog->insns memory could have been re-allocated, so
6120 		 * calculate pointer again
6121 		 */
6122 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6123 		/* calculate correct instruction position within current main
6124 		 * prog; each main prog can have a different set of
6125 		 * subprograms appended (potentially in different order as
6126 		 * well), so position of any subprog can be different for
6127 		 * different main programs */
6128 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6129 
6130 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6131 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6132 	}
6133 
6134 	return 0;
6135 }
6136 
6137 /*
6138  * Relocate sub-program calls.
6139  *
6140  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6141  * main prog) is processed separately. For each subprog (non-entry functions,
6142  * that can be called from either entry progs or other subprogs) gets their
6143  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6144  * hasn't been yet appended and relocated within current main prog. Once its
6145  * relocated, sub_insn_off will point at the position within current main prog
6146  * where given subprog was appended. This will further be used to relocate all
6147  * the call instructions jumping into this subprog.
6148  *
6149  * We start with main program and process all call instructions. If the call
6150  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6151  * is zero), subprog instructions are appended at the end of main program's
6152  * instruction array. Then main program is "put on hold" while we recursively
6153  * process newly appended subprogram. If that subprogram calls into another
6154  * subprogram that hasn't been appended, new subprogram is appended again to
6155  * the *main* prog's instructions (subprog's instructions are always left
6156  * untouched, as they need to be in unmodified state for subsequent main progs
6157  * and subprog instructions are always sent only as part of a main prog) and
6158  * the process continues recursively. Once all the subprogs called from a main
6159  * prog or any of its subprogs are appended (and relocated), all their
6160  * positions within finalized instructions array are known, so it's easy to
6161  * rewrite call instructions with correct relative offsets, corresponding to
6162  * desired target subprog.
6163  *
6164  * Its important to realize that some subprogs might not be called from some
6165  * main prog and any of its called/used subprogs. Those will keep their
6166  * subprog->sub_insn_off as zero at all times and won't be appended to current
6167  * main prog and won't be relocated within the context of current main prog.
6168  * They might still be used from other main progs later.
6169  *
6170  * Visually this process can be shown as below. Suppose we have two main
6171  * programs mainA and mainB and BPF object contains three subprogs: subA,
6172  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6173  * subC both call subB:
6174  *
6175  *        +--------+ +-------+
6176  *        |        v v       |
6177  *     +--+---+ +--+-+-+ +---+--+
6178  *     | subA | | subB | | subC |
6179  *     +--+---+ +------+ +---+--+
6180  *        ^                  ^
6181  *        |                  |
6182  *    +---+-------+   +------+----+
6183  *    |   mainA   |   |   mainB   |
6184  *    +-----------+   +-----------+
6185  *
6186  * We'll start relocating mainA, will find subA, append it and start
6187  * processing sub A recursively:
6188  *
6189  *    +-----------+------+
6190  *    |   mainA   | subA |
6191  *    +-----------+------+
6192  *
6193  * At this point we notice that subB is used from subA, so we append it and
6194  * relocate (there are no further subcalls from subB):
6195  *
6196  *    +-----------+------+------+
6197  *    |   mainA   | subA | subB |
6198  *    +-----------+------+------+
6199  *
6200  * At this point, we relocate subA calls, then go one level up and finish with
6201  * relocatin mainA calls. mainA is done.
6202  *
6203  * For mainB process is similar but results in different order. We start with
6204  * mainB and skip subA and subB, as mainB never calls them (at least
6205  * directly), but we see subC is needed, so we append and start processing it:
6206  *
6207  *    +-----------+------+
6208  *    |   mainB   | subC |
6209  *    +-----------+------+
6210  * Now we see subC needs subB, so we go back to it, append and relocate it:
6211  *
6212  *    +-----------+------+------+
6213  *    |   mainB   | subC | subB |
6214  *    +-----------+------+------+
6215  *
6216  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6217  */
6218 static int
6219 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6220 {
6221 	struct bpf_program *subprog;
6222 	int i, err;
6223 
6224 	/* mark all subprogs as not relocated (yet) within the context of
6225 	 * current main program
6226 	 */
6227 	for (i = 0; i < obj->nr_programs; i++) {
6228 		subprog = &obj->programs[i];
6229 		if (!prog_is_subprog(obj, subprog))
6230 			continue;
6231 
6232 		subprog->sub_insn_off = 0;
6233 	}
6234 
6235 	err = bpf_object__reloc_code(obj, prog, prog);
6236 	if (err)
6237 		return err;
6238 
6239 
6240 	return 0;
6241 }
6242 
6243 static void
6244 bpf_object__free_relocs(struct bpf_object *obj)
6245 {
6246 	struct bpf_program *prog;
6247 	int i;
6248 
6249 	/* free up relocation descriptors */
6250 	for (i = 0; i < obj->nr_programs; i++) {
6251 		prog = &obj->programs[i];
6252 		zfree(&prog->reloc_desc);
6253 		prog->nr_reloc = 0;
6254 	}
6255 }
6256 
6257 static int cmp_relocs(const void *_a, const void *_b)
6258 {
6259 	const struct reloc_desc *a = _a;
6260 	const struct reloc_desc *b = _b;
6261 
6262 	if (a->insn_idx != b->insn_idx)
6263 		return a->insn_idx < b->insn_idx ? -1 : 1;
6264 
6265 	/* no two relocations should have the same insn_idx, but ... */
6266 	if (a->type != b->type)
6267 		return a->type < b->type ? -1 : 1;
6268 
6269 	return 0;
6270 }
6271 
6272 static void bpf_object__sort_relos(struct bpf_object *obj)
6273 {
6274 	int i;
6275 
6276 	for (i = 0; i < obj->nr_programs; i++) {
6277 		struct bpf_program *p = &obj->programs[i];
6278 
6279 		if (!p->nr_reloc)
6280 			continue;
6281 
6282 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6283 	}
6284 }
6285 
6286 static int
6287 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6288 {
6289 	struct bpf_program *prog;
6290 	size_t i, j;
6291 	int err;
6292 
6293 	if (obj->btf_ext) {
6294 		err = bpf_object__relocate_core(obj, targ_btf_path);
6295 		if (err) {
6296 			pr_warn("failed to perform CO-RE relocations: %d\n",
6297 				err);
6298 			return err;
6299 		}
6300 		if (obj->gen_loader)
6301 			bpf_object__sort_relos(obj);
6302 	}
6303 
6304 	/* Before relocating calls pre-process relocations and mark
6305 	 * few ld_imm64 instructions that points to subprogs.
6306 	 * Otherwise bpf_object__reloc_code() later would have to consider
6307 	 * all ld_imm64 insns as relocation candidates. That would
6308 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6309 	 * would increase and most of them will fail to find a relo.
6310 	 */
6311 	for (i = 0; i < obj->nr_programs; i++) {
6312 		prog = &obj->programs[i];
6313 		for (j = 0; j < prog->nr_reloc; j++) {
6314 			struct reloc_desc *relo = &prog->reloc_desc[j];
6315 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6316 
6317 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6318 			if (relo->type == RELO_SUBPROG_ADDR)
6319 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6320 		}
6321 	}
6322 
6323 	/* relocate subprogram calls and append used subprograms to main
6324 	 * programs; each copy of subprogram code needs to be relocated
6325 	 * differently for each main program, because its code location might
6326 	 * have changed.
6327 	 * Append subprog relos to main programs to allow data relos to be
6328 	 * processed after text is completely relocated.
6329 	 */
6330 	for (i = 0; i < obj->nr_programs; i++) {
6331 		prog = &obj->programs[i];
6332 		/* sub-program's sub-calls are relocated within the context of
6333 		 * its main program only
6334 		 */
6335 		if (prog_is_subprog(obj, prog))
6336 			continue;
6337 		if (!prog->load)
6338 			continue;
6339 
6340 		err = bpf_object__relocate_calls(obj, prog);
6341 		if (err) {
6342 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6343 				prog->name, err);
6344 			return err;
6345 		}
6346 	}
6347 	/* Process data relos for main programs */
6348 	for (i = 0; i < obj->nr_programs; i++) {
6349 		prog = &obj->programs[i];
6350 		if (prog_is_subprog(obj, prog))
6351 			continue;
6352 		if (!prog->load)
6353 			continue;
6354 		err = bpf_object__relocate_data(obj, prog);
6355 		if (err) {
6356 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6357 				prog->name, err);
6358 			return err;
6359 		}
6360 	}
6361 	if (!obj->gen_loader)
6362 		bpf_object__free_relocs(obj);
6363 	return 0;
6364 }
6365 
6366 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6367 					    Elf64_Shdr *shdr, Elf_Data *data);
6368 
6369 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6370 					 Elf64_Shdr *shdr, Elf_Data *data)
6371 {
6372 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6373 	int i, j, nrels, new_sz;
6374 	const struct btf_var_secinfo *vi = NULL;
6375 	const struct btf_type *sec, *var, *def;
6376 	struct bpf_map *map = NULL, *targ_map = NULL;
6377 	struct bpf_program *targ_prog = NULL;
6378 	bool is_prog_array, is_map_in_map;
6379 	const struct btf_member *member;
6380 	const char *name, *mname, *type;
6381 	unsigned int moff;
6382 	Elf64_Sym *sym;
6383 	Elf64_Rel *rel;
6384 	void *tmp;
6385 
6386 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6387 		return -EINVAL;
6388 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6389 	if (!sec)
6390 		return -EINVAL;
6391 
6392 	nrels = shdr->sh_size / shdr->sh_entsize;
6393 	for (i = 0; i < nrels; i++) {
6394 		rel = elf_rel_by_idx(data, i);
6395 		if (!rel) {
6396 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6397 			return -LIBBPF_ERRNO__FORMAT;
6398 		}
6399 
6400 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6401 		if (!sym) {
6402 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6403 				i, (size_t)ELF64_R_SYM(rel->r_info));
6404 			return -LIBBPF_ERRNO__FORMAT;
6405 		}
6406 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6407 
6408 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6409 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6410 			 (size_t)rel->r_offset, sym->st_name, name);
6411 
6412 		for (j = 0; j < obj->nr_maps; j++) {
6413 			map = &obj->maps[j];
6414 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6415 				continue;
6416 
6417 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6418 			if (vi->offset <= rel->r_offset &&
6419 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6420 				break;
6421 		}
6422 		if (j == obj->nr_maps) {
6423 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6424 				i, name, (size_t)rel->r_offset);
6425 			return -EINVAL;
6426 		}
6427 
6428 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6429 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6430 		type = is_map_in_map ? "map" : "prog";
6431 		if (is_map_in_map) {
6432 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6433 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6434 					i, name);
6435 				return -LIBBPF_ERRNO__RELOC;
6436 			}
6437 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6438 			    map->def.key_size != sizeof(int)) {
6439 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6440 					i, map->name, sizeof(int));
6441 				return -EINVAL;
6442 			}
6443 			targ_map = bpf_object__find_map_by_name(obj, name);
6444 			if (!targ_map) {
6445 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6446 					i, name);
6447 				return -ESRCH;
6448 			}
6449 		} else if (is_prog_array) {
6450 			targ_prog = bpf_object__find_program_by_name(obj, name);
6451 			if (!targ_prog) {
6452 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6453 					i, name);
6454 				return -ESRCH;
6455 			}
6456 			if (targ_prog->sec_idx != sym->st_shndx ||
6457 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6458 			    prog_is_subprog(obj, targ_prog)) {
6459 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6460 					i, name);
6461 				return -LIBBPF_ERRNO__RELOC;
6462 			}
6463 		} else {
6464 			return -EINVAL;
6465 		}
6466 
6467 		var = btf__type_by_id(obj->btf, vi->type);
6468 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6469 		if (btf_vlen(def) == 0)
6470 			return -EINVAL;
6471 		member = btf_members(def) + btf_vlen(def) - 1;
6472 		mname = btf__name_by_offset(obj->btf, member->name_off);
6473 		if (strcmp(mname, "values"))
6474 			return -EINVAL;
6475 
6476 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6477 		if (rel->r_offset - vi->offset < moff)
6478 			return -EINVAL;
6479 
6480 		moff = rel->r_offset - vi->offset - moff;
6481 		/* here we use BPF pointer size, which is always 64 bit, as we
6482 		 * are parsing ELF that was built for BPF target
6483 		 */
6484 		if (moff % bpf_ptr_sz)
6485 			return -EINVAL;
6486 		moff /= bpf_ptr_sz;
6487 		if (moff >= map->init_slots_sz) {
6488 			new_sz = moff + 1;
6489 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6490 			if (!tmp)
6491 				return -ENOMEM;
6492 			map->init_slots = tmp;
6493 			memset(map->init_slots + map->init_slots_sz, 0,
6494 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6495 			map->init_slots_sz = new_sz;
6496 		}
6497 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6498 
6499 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6500 			 i, map->name, moff, type, name);
6501 	}
6502 
6503 	return 0;
6504 }
6505 
6506 static int bpf_object__collect_relos(struct bpf_object *obj)
6507 {
6508 	int i, err;
6509 
6510 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6511 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6512 		Elf64_Shdr *shdr;
6513 		Elf_Data *data;
6514 		int idx;
6515 
6516 		if (sec_desc->sec_type != SEC_RELO)
6517 			continue;
6518 
6519 		shdr = sec_desc->shdr;
6520 		data = sec_desc->data;
6521 		idx = shdr->sh_info;
6522 
6523 		if (shdr->sh_type != SHT_REL) {
6524 			pr_warn("internal error at %d\n", __LINE__);
6525 			return -LIBBPF_ERRNO__INTERNAL;
6526 		}
6527 
6528 		if (idx == obj->efile.st_ops_shndx)
6529 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6530 		else if (idx == obj->efile.btf_maps_shndx)
6531 			err = bpf_object__collect_map_relos(obj, shdr, data);
6532 		else
6533 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6534 		if (err)
6535 			return err;
6536 	}
6537 
6538 	bpf_object__sort_relos(obj);
6539 	return 0;
6540 }
6541 
6542 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6543 {
6544 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6545 	    BPF_OP(insn->code) == BPF_CALL &&
6546 	    BPF_SRC(insn->code) == BPF_K &&
6547 	    insn->src_reg == 0 &&
6548 	    insn->dst_reg == 0) {
6549 		    *func_id = insn->imm;
6550 		    return true;
6551 	}
6552 	return false;
6553 }
6554 
6555 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6556 {
6557 	struct bpf_insn *insn = prog->insns;
6558 	enum bpf_func_id func_id;
6559 	int i;
6560 
6561 	if (obj->gen_loader)
6562 		return 0;
6563 
6564 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6565 		if (!insn_is_helper_call(insn, &func_id))
6566 			continue;
6567 
6568 		/* on kernels that don't yet support
6569 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6570 		 * to bpf_probe_read() which works well for old kernels
6571 		 */
6572 		switch (func_id) {
6573 		case BPF_FUNC_probe_read_kernel:
6574 		case BPF_FUNC_probe_read_user:
6575 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6576 				insn->imm = BPF_FUNC_probe_read;
6577 			break;
6578 		case BPF_FUNC_probe_read_kernel_str:
6579 		case BPF_FUNC_probe_read_user_str:
6580 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6581 				insn->imm = BPF_FUNC_probe_read_str;
6582 			break;
6583 		default:
6584 			break;
6585 		}
6586 	}
6587 	return 0;
6588 }
6589 
6590 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6591 				     int *btf_obj_fd, int *btf_type_id);
6592 
6593 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6594 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6595 				    struct bpf_prog_load_opts *opts, long cookie)
6596 {
6597 	enum sec_def_flags def = cookie;
6598 
6599 	/* old kernels might not support specifying expected_attach_type */
6600 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6601 		opts->expected_attach_type = 0;
6602 
6603 	if (def & SEC_SLEEPABLE)
6604 		opts->prog_flags |= BPF_F_SLEEPABLE;
6605 
6606 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6607 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6608 
6609 	if (def & SEC_DEPRECATED)
6610 		pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n",
6611 			prog->sec_name);
6612 
6613 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6614 	     prog->type == BPF_PROG_TYPE_LSM ||
6615 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6616 		int btf_obj_fd = 0, btf_type_id = 0, err;
6617 		const char *attach_name;
6618 
6619 		attach_name = strchr(prog->sec_name, '/') + 1;
6620 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6621 		if (err)
6622 			return err;
6623 
6624 		/* cache resolved BTF FD and BTF type ID in the prog */
6625 		prog->attach_btf_obj_fd = btf_obj_fd;
6626 		prog->attach_btf_id = btf_type_id;
6627 
6628 		/* but by now libbpf common logic is not utilizing
6629 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6630 		 * this callback is called after opts were populated by
6631 		 * libbpf, so this callback has to update opts explicitly here
6632 		 */
6633 		opts->attach_btf_obj_fd = btf_obj_fd;
6634 		opts->attach_btf_id = btf_type_id;
6635 	}
6636 	return 0;
6637 }
6638 
6639 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog,
6640 					 struct bpf_insn *insns, int insns_cnt,
6641 					 const char *license, __u32 kern_version,
6642 					 int *prog_fd)
6643 {
6644 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6645 	const char *prog_name = NULL;
6646 	char *cp, errmsg[STRERR_BUFSIZE];
6647 	size_t log_buf_size = 0;
6648 	char *log_buf = NULL, *tmp;
6649 	int btf_fd, ret, err;
6650 	bool own_log_buf = true;
6651 	__u32 log_level = prog->log_level;
6652 
6653 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6654 		/*
6655 		 * The program type must be set.  Most likely we couldn't find a proper
6656 		 * section definition at load time, and thus we didn't infer the type.
6657 		 */
6658 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6659 			prog->name, prog->sec_name);
6660 		return -EINVAL;
6661 	}
6662 
6663 	if (!insns || !insns_cnt)
6664 		return -EINVAL;
6665 
6666 	load_attr.expected_attach_type = prog->expected_attach_type;
6667 	if (kernel_supports(obj, FEAT_PROG_NAME))
6668 		prog_name = prog->name;
6669 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6670 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6671 	load_attr.attach_btf_id = prog->attach_btf_id;
6672 	load_attr.kern_version = kern_version;
6673 	load_attr.prog_ifindex = prog->prog_ifindex;
6674 
6675 	/* specify func_info/line_info only if kernel supports them */
6676 	btf_fd = bpf_object__btf_fd(obj);
6677 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6678 		load_attr.prog_btf_fd = btf_fd;
6679 		load_attr.func_info = prog->func_info;
6680 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6681 		load_attr.func_info_cnt = prog->func_info_cnt;
6682 		load_attr.line_info = prog->line_info;
6683 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6684 		load_attr.line_info_cnt = prog->line_info_cnt;
6685 	}
6686 	load_attr.log_level = log_level;
6687 	load_attr.prog_flags = prog->prog_flags;
6688 	load_attr.fd_array = obj->fd_array;
6689 
6690 	/* adjust load_attr if sec_def provides custom preload callback */
6691 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6692 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6693 		if (err < 0) {
6694 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6695 				prog->name, err);
6696 			return err;
6697 		}
6698 	}
6699 
6700 	if (obj->gen_loader) {
6701 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6702 				   license, insns, insns_cnt, &load_attr,
6703 				   prog - obj->programs);
6704 		*prog_fd = -1;
6705 		return 0;
6706 	}
6707 
6708 retry_load:
6709 	/* if log_level is zero, we don't request logs initiallly even if
6710 	 * custom log_buf is specified; if the program load fails, then we'll
6711 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6712 	 * our own and retry the load to get details on what failed
6713 	 */
6714 	if (log_level) {
6715 		if (prog->log_buf) {
6716 			log_buf = prog->log_buf;
6717 			log_buf_size = prog->log_size;
6718 			own_log_buf = false;
6719 		} else if (obj->log_buf) {
6720 			log_buf = obj->log_buf;
6721 			log_buf_size = obj->log_size;
6722 			own_log_buf = false;
6723 		} else {
6724 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6725 			tmp = realloc(log_buf, log_buf_size);
6726 			if (!tmp) {
6727 				ret = -ENOMEM;
6728 				goto out;
6729 			}
6730 			log_buf = tmp;
6731 			log_buf[0] = '\0';
6732 			own_log_buf = true;
6733 		}
6734 	}
6735 
6736 	load_attr.log_buf = log_buf;
6737 	load_attr.log_size = log_buf_size;
6738 	load_attr.log_level = log_level;
6739 
6740 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6741 	if (ret >= 0) {
6742 		if (log_level && own_log_buf) {
6743 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6744 				 prog->name, log_buf);
6745 		}
6746 
6747 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6748 			struct bpf_map *map;
6749 			int i;
6750 
6751 			for (i = 0; i < obj->nr_maps; i++) {
6752 				map = &prog->obj->maps[i];
6753 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6754 					continue;
6755 
6756 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6757 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6758 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6759 						prog->name, map->real_name, cp);
6760 					/* Don't fail hard if can't bind rodata. */
6761 				}
6762 			}
6763 		}
6764 
6765 		*prog_fd = ret;
6766 		ret = 0;
6767 		goto out;
6768 	}
6769 
6770 	if (log_level == 0) {
6771 		log_level = 1;
6772 		goto retry_load;
6773 	}
6774 	/* On ENOSPC, increase log buffer size and retry, unless custom
6775 	 * log_buf is specified.
6776 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6777 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6778 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6779 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6780 	 */
6781 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6782 		goto retry_load;
6783 
6784 	ret = -errno;
6785 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6786 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6787 	pr_perm_msg(ret);
6788 
6789 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6790 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6791 			prog->name, log_buf);
6792 	}
6793 	if (insns_cnt >= BPF_MAXINSNS) {
6794 		pr_warn("prog '%s': program too large (%d insns), at most %d insns\n",
6795 			prog->name, insns_cnt, BPF_MAXINSNS);
6796 	}
6797 
6798 out:
6799 	if (own_log_buf)
6800 		free(log_buf);
6801 	return ret;
6802 }
6803 
6804 static int bpf_program_record_relos(struct bpf_program *prog)
6805 {
6806 	struct bpf_object *obj = prog->obj;
6807 	int i;
6808 
6809 	for (i = 0; i < prog->nr_reloc; i++) {
6810 		struct reloc_desc *relo = &prog->reloc_desc[i];
6811 		struct extern_desc *ext = &obj->externs[relo->sym_off];
6812 
6813 		switch (relo->type) {
6814 		case RELO_EXTERN_VAR:
6815 			if (ext->type != EXT_KSYM)
6816 				continue;
6817 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6818 					       ext->is_weak, !ext->ksym.type_id,
6819 					       BTF_KIND_VAR, relo->insn_idx);
6820 			break;
6821 		case RELO_EXTERN_FUNC:
6822 			bpf_gen__record_extern(obj->gen_loader, ext->name,
6823 					       ext->is_weak, false, BTF_KIND_FUNC,
6824 					       relo->insn_idx);
6825 			break;
6826 		case RELO_CORE: {
6827 			struct bpf_core_relo cr = {
6828 				.insn_off = relo->insn_idx * 8,
6829 				.type_id = relo->core_relo->type_id,
6830 				.access_str_off = relo->core_relo->access_str_off,
6831 				.kind = relo->core_relo->kind,
6832 			};
6833 
6834 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
6835 			break;
6836 		}
6837 		default:
6838 			continue;
6839 		}
6840 	}
6841 	return 0;
6842 }
6843 
6844 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6845 				const char *license, __u32 kern_ver)
6846 {
6847 	int err = 0, fd, i;
6848 
6849 	if (obj->loaded) {
6850 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6851 		return libbpf_err(-EINVAL);
6852 	}
6853 
6854 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6855 		if (prog->preprocessor) {
6856 			pr_warn("Internal error: can't load program '%s'\n",
6857 				prog->name);
6858 			return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
6859 		}
6860 
6861 		prog->instances.fds = malloc(sizeof(int));
6862 		if (!prog->instances.fds) {
6863 			pr_warn("Not enough memory for BPF fds\n");
6864 			return libbpf_err(-ENOMEM);
6865 		}
6866 		prog->instances.nr = 1;
6867 		prog->instances.fds[0] = -1;
6868 	}
6869 
6870 	if (!prog->preprocessor) {
6871 		if (prog->instances.nr != 1) {
6872 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6873 				prog->name, prog->instances.nr);
6874 		}
6875 		if (obj->gen_loader)
6876 			bpf_program_record_relos(prog);
6877 		err = bpf_object_load_prog_instance(obj, prog,
6878 						    prog->insns, prog->insns_cnt,
6879 						    license, kern_ver, &fd);
6880 		if (!err)
6881 			prog->instances.fds[0] = fd;
6882 		goto out;
6883 	}
6884 
6885 	for (i = 0; i < prog->instances.nr; i++) {
6886 		struct bpf_prog_prep_result result;
6887 		bpf_program_prep_t preprocessor = prog->preprocessor;
6888 
6889 		memset(&result, 0, sizeof(result));
6890 		err = preprocessor(prog, i, prog->insns,
6891 				   prog->insns_cnt, &result);
6892 		if (err) {
6893 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6894 				i, prog->name);
6895 			goto out;
6896 		}
6897 
6898 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
6899 			pr_debug("Skip loading the %dth instance of program '%s'\n",
6900 				 i, prog->name);
6901 			prog->instances.fds[i] = -1;
6902 			if (result.pfd)
6903 				*result.pfd = -1;
6904 			continue;
6905 		}
6906 
6907 		err = bpf_object_load_prog_instance(obj, prog,
6908 						    result.new_insn_ptr, result.new_insn_cnt,
6909 						    license, kern_ver, &fd);
6910 		if (err) {
6911 			pr_warn("Loading the %dth instance of program '%s' failed\n",
6912 				i, prog->name);
6913 			goto out;
6914 		}
6915 
6916 		if (result.pfd)
6917 			*result.pfd = fd;
6918 		prog->instances.fds[i] = fd;
6919 	}
6920 out:
6921 	if (err)
6922 		pr_warn("failed to load program '%s'\n", prog->name);
6923 	return libbpf_err(err);
6924 }
6925 
6926 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver)
6927 {
6928 	return bpf_object_load_prog(prog->obj, prog, license, kern_ver);
6929 }
6930 
6931 static int
6932 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6933 {
6934 	struct bpf_program *prog;
6935 	size_t i;
6936 	int err;
6937 
6938 	for (i = 0; i < obj->nr_programs; i++) {
6939 		prog = &obj->programs[i];
6940 		err = bpf_object__sanitize_prog(obj, prog);
6941 		if (err)
6942 			return err;
6943 	}
6944 
6945 	for (i = 0; i < obj->nr_programs; i++) {
6946 		prog = &obj->programs[i];
6947 		if (prog_is_subprog(obj, prog))
6948 			continue;
6949 		if (!prog->load) {
6950 			pr_debug("prog '%s': skipped loading\n", prog->name);
6951 			continue;
6952 		}
6953 		prog->log_level |= log_level;
6954 		err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version);
6955 		if (err)
6956 			return err;
6957 	}
6958 	if (obj->gen_loader)
6959 		bpf_object__free_relocs(obj);
6960 	return 0;
6961 }
6962 
6963 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6964 
6965 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
6966 {
6967 	struct bpf_program *prog;
6968 	int err;
6969 
6970 	bpf_object__for_each_program(prog, obj) {
6971 		prog->sec_def = find_sec_def(prog->sec_name);
6972 		if (!prog->sec_def) {
6973 			/* couldn't guess, but user might manually specify */
6974 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
6975 				prog->name, prog->sec_name);
6976 			continue;
6977 		}
6978 
6979 		bpf_program__set_type(prog, prog->sec_def->prog_type);
6980 		bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type);
6981 
6982 #pragma GCC diagnostic push
6983 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
6984 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6985 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6986 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6987 #pragma GCC diagnostic pop
6988 
6989 		/* sec_def can have custom callback which should be called
6990 		 * after bpf_program is initialized to adjust its properties
6991 		 */
6992 		if (prog->sec_def->prog_setup_fn) {
6993 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
6994 			if (err < 0) {
6995 				pr_warn("prog '%s': failed to initialize: %d\n",
6996 					prog->name, err);
6997 				return err;
6998 			}
6999 		}
7000 	}
7001 
7002 	return 0;
7003 }
7004 
7005 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7006 					  const struct bpf_object_open_opts *opts)
7007 {
7008 	const char *obj_name, *kconfig, *btf_tmp_path;
7009 	struct bpf_object *obj;
7010 	char tmp_name[64];
7011 	int err;
7012 	char *log_buf;
7013 	size_t log_size;
7014 	__u32 log_level;
7015 
7016 	if (elf_version(EV_CURRENT) == EV_NONE) {
7017 		pr_warn("failed to init libelf for %s\n",
7018 			path ? : "(mem buf)");
7019 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7020 	}
7021 
7022 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7023 		return ERR_PTR(-EINVAL);
7024 
7025 	obj_name = OPTS_GET(opts, object_name, NULL);
7026 	if (obj_buf) {
7027 		if (!obj_name) {
7028 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7029 				 (unsigned long)obj_buf,
7030 				 (unsigned long)obj_buf_sz);
7031 			obj_name = tmp_name;
7032 		}
7033 		path = obj_name;
7034 		pr_debug("loading object '%s' from buffer\n", obj_name);
7035 	}
7036 
7037 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7038 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7039 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7040 	if (log_size > UINT_MAX)
7041 		return ERR_PTR(-EINVAL);
7042 	if (log_size && !log_buf)
7043 		return ERR_PTR(-EINVAL);
7044 
7045 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7046 	if (IS_ERR(obj))
7047 		return obj;
7048 
7049 	obj->log_buf = log_buf;
7050 	obj->log_size = log_size;
7051 	obj->log_level = log_level;
7052 
7053 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7054 	if (btf_tmp_path) {
7055 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7056 			err = -ENAMETOOLONG;
7057 			goto out;
7058 		}
7059 		obj->btf_custom_path = strdup(btf_tmp_path);
7060 		if (!obj->btf_custom_path) {
7061 			err = -ENOMEM;
7062 			goto out;
7063 		}
7064 	}
7065 
7066 	kconfig = OPTS_GET(opts, kconfig, NULL);
7067 	if (kconfig) {
7068 		obj->kconfig = strdup(kconfig);
7069 		if (!obj->kconfig) {
7070 			err = -ENOMEM;
7071 			goto out;
7072 		}
7073 	}
7074 
7075 	err = bpf_object__elf_init(obj);
7076 	err = err ? : bpf_object__check_endianness(obj);
7077 	err = err ? : bpf_object__elf_collect(obj);
7078 	err = err ? : bpf_object__collect_externs(obj);
7079 	err = err ? : bpf_object__finalize_btf(obj);
7080 	err = err ? : bpf_object__init_maps(obj, opts);
7081 	err = err ? : bpf_object_init_progs(obj, opts);
7082 	err = err ? : bpf_object__collect_relos(obj);
7083 	if (err)
7084 		goto out;
7085 
7086 	bpf_object__elf_finish(obj);
7087 
7088 	return obj;
7089 out:
7090 	bpf_object__close(obj);
7091 	return ERR_PTR(err);
7092 }
7093 
7094 static struct bpf_object *
7095 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7096 {
7097 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7098 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7099 	);
7100 
7101 	/* param validation */
7102 	if (!attr->file)
7103 		return NULL;
7104 
7105 	pr_debug("loading %s\n", attr->file);
7106 	return bpf_object_open(attr->file, NULL, 0, &opts);
7107 }
7108 
7109 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7110 {
7111 	return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7112 }
7113 
7114 struct bpf_object *bpf_object__open(const char *path)
7115 {
7116 	struct bpf_object_open_attr attr = {
7117 		.file		= path,
7118 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7119 	};
7120 
7121 	return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7122 }
7123 
7124 struct bpf_object *
7125 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7126 {
7127 	if (!path)
7128 		return libbpf_err_ptr(-EINVAL);
7129 
7130 	pr_debug("loading %s\n", path);
7131 
7132 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7133 }
7134 
7135 struct bpf_object *
7136 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7137 		     const struct bpf_object_open_opts *opts)
7138 {
7139 	if (!obj_buf || obj_buf_sz == 0)
7140 		return libbpf_err_ptr(-EINVAL);
7141 
7142 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7143 }
7144 
7145 struct bpf_object *
7146 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7147 			const char *name)
7148 {
7149 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7150 		.object_name = name,
7151 		/* wrong default, but backwards-compatible */
7152 		.relaxed_maps = true,
7153 	);
7154 
7155 	/* returning NULL is wrong, but backwards-compatible */
7156 	if (!obj_buf || obj_buf_sz == 0)
7157 		return errno = EINVAL, NULL;
7158 
7159 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts));
7160 }
7161 
7162 static int bpf_object_unload(struct bpf_object *obj)
7163 {
7164 	size_t i;
7165 
7166 	if (!obj)
7167 		return libbpf_err(-EINVAL);
7168 
7169 	for (i = 0; i < obj->nr_maps; i++) {
7170 		zclose(obj->maps[i].fd);
7171 		if (obj->maps[i].st_ops)
7172 			zfree(&obj->maps[i].st_ops->kern_vdata);
7173 	}
7174 
7175 	for (i = 0; i < obj->nr_programs; i++)
7176 		bpf_program__unload(&obj->programs[i]);
7177 
7178 	return 0;
7179 }
7180 
7181 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7182 
7183 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7184 {
7185 	struct bpf_map *m;
7186 
7187 	bpf_object__for_each_map(m, obj) {
7188 		if (!bpf_map__is_internal(m))
7189 			continue;
7190 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7191 			m->def.map_flags ^= BPF_F_MMAPABLE;
7192 	}
7193 
7194 	return 0;
7195 }
7196 
7197 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7198 {
7199 	char sym_type, sym_name[500];
7200 	unsigned long long sym_addr;
7201 	int ret, err = 0;
7202 	FILE *f;
7203 
7204 	f = fopen("/proc/kallsyms", "r");
7205 	if (!f) {
7206 		err = -errno;
7207 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7208 		return err;
7209 	}
7210 
7211 	while (true) {
7212 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7213 			     &sym_addr, &sym_type, sym_name);
7214 		if (ret == EOF && feof(f))
7215 			break;
7216 		if (ret != 3) {
7217 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7218 			err = -EINVAL;
7219 			break;
7220 		}
7221 
7222 		err = cb(sym_addr, sym_type, sym_name, ctx);
7223 		if (err)
7224 			break;
7225 	}
7226 
7227 	fclose(f);
7228 	return err;
7229 }
7230 
7231 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7232 		       const char *sym_name, void *ctx)
7233 {
7234 	struct bpf_object *obj = ctx;
7235 	const struct btf_type *t;
7236 	struct extern_desc *ext;
7237 
7238 	ext = find_extern_by_name(obj, sym_name);
7239 	if (!ext || ext->type != EXT_KSYM)
7240 		return 0;
7241 
7242 	t = btf__type_by_id(obj->btf, ext->btf_id);
7243 	if (!btf_is_var(t))
7244 		return 0;
7245 
7246 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7247 		pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7248 			sym_name, ext->ksym.addr, sym_addr);
7249 		return -EINVAL;
7250 	}
7251 	if (!ext->is_set) {
7252 		ext->is_set = true;
7253 		ext->ksym.addr = sym_addr;
7254 		pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7255 	}
7256 	return 0;
7257 }
7258 
7259 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7260 {
7261 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7262 }
7263 
7264 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7265 			    __u16 kind, struct btf **res_btf,
7266 			    struct module_btf **res_mod_btf)
7267 {
7268 	struct module_btf *mod_btf;
7269 	struct btf *btf;
7270 	int i, id, err;
7271 
7272 	btf = obj->btf_vmlinux;
7273 	mod_btf = NULL;
7274 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7275 
7276 	if (id == -ENOENT) {
7277 		err = load_module_btfs(obj);
7278 		if (err)
7279 			return err;
7280 
7281 		for (i = 0; i < obj->btf_module_cnt; i++) {
7282 			/* we assume module_btf's BTF FD is always >0 */
7283 			mod_btf = &obj->btf_modules[i];
7284 			btf = mod_btf->btf;
7285 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7286 			if (id != -ENOENT)
7287 				break;
7288 		}
7289 	}
7290 	if (id <= 0)
7291 		return -ESRCH;
7292 
7293 	*res_btf = btf;
7294 	*res_mod_btf = mod_btf;
7295 	return id;
7296 }
7297 
7298 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7299 					       struct extern_desc *ext)
7300 {
7301 	const struct btf_type *targ_var, *targ_type;
7302 	__u32 targ_type_id, local_type_id;
7303 	struct module_btf *mod_btf = NULL;
7304 	const char *targ_var_name;
7305 	struct btf *btf = NULL;
7306 	int id, err;
7307 
7308 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7309 	if (id < 0) {
7310 		if (id == -ESRCH && ext->is_weak)
7311 			return 0;
7312 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7313 			ext->name);
7314 		return id;
7315 	}
7316 
7317 	/* find local type_id */
7318 	local_type_id = ext->ksym.type_id;
7319 
7320 	/* find target type_id */
7321 	targ_var = btf__type_by_id(btf, id);
7322 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7323 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7324 
7325 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7326 					btf, targ_type_id);
7327 	if (err <= 0) {
7328 		const struct btf_type *local_type;
7329 		const char *targ_name, *local_name;
7330 
7331 		local_type = btf__type_by_id(obj->btf, local_type_id);
7332 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7333 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7334 
7335 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7336 			ext->name, local_type_id,
7337 			btf_kind_str(local_type), local_name, targ_type_id,
7338 			btf_kind_str(targ_type), targ_name);
7339 		return -EINVAL;
7340 	}
7341 
7342 	ext->is_set = true;
7343 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7344 	ext->ksym.kernel_btf_id = id;
7345 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7346 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7347 
7348 	return 0;
7349 }
7350 
7351 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7352 						struct extern_desc *ext)
7353 {
7354 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7355 	struct module_btf *mod_btf = NULL;
7356 	const struct btf_type *kern_func;
7357 	struct btf *kern_btf = NULL;
7358 	int ret;
7359 
7360 	local_func_proto_id = ext->ksym.type_id;
7361 
7362 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7363 	if (kfunc_id < 0) {
7364 		if (kfunc_id == -ESRCH && ext->is_weak)
7365 			return 0;
7366 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7367 			ext->name);
7368 		return kfunc_id;
7369 	}
7370 
7371 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7372 	kfunc_proto_id = kern_func->type;
7373 
7374 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7375 					kern_btf, kfunc_proto_id);
7376 	if (ret <= 0) {
7377 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7378 			ext->name, local_func_proto_id, kfunc_proto_id);
7379 		return -EINVAL;
7380 	}
7381 
7382 	/* set index for module BTF fd in fd_array, if unset */
7383 	if (mod_btf && !mod_btf->fd_array_idx) {
7384 		/* insn->off is s16 */
7385 		if (obj->fd_array_cnt == INT16_MAX) {
7386 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7387 				ext->name, mod_btf->fd_array_idx);
7388 			return -E2BIG;
7389 		}
7390 		/* Cannot use index 0 for module BTF fd */
7391 		if (!obj->fd_array_cnt)
7392 			obj->fd_array_cnt = 1;
7393 
7394 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7395 					obj->fd_array_cnt + 1);
7396 		if (ret)
7397 			return ret;
7398 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7399 		/* we assume module BTF FD is always >0 */
7400 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7401 	}
7402 
7403 	ext->is_set = true;
7404 	ext->ksym.kernel_btf_id = kfunc_id;
7405 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7406 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7407 		 ext->name, kfunc_id);
7408 
7409 	return 0;
7410 }
7411 
7412 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7413 {
7414 	const struct btf_type *t;
7415 	struct extern_desc *ext;
7416 	int i, err;
7417 
7418 	for (i = 0; i < obj->nr_extern; i++) {
7419 		ext = &obj->externs[i];
7420 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7421 			continue;
7422 
7423 		if (obj->gen_loader) {
7424 			ext->is_set = true;
7425 			ext->ksym.kernel_btf_obj_fd = 0;
7426 			ext->ksym.kernel_btf_id = 0;
7427 			continue;
7428 		}
7429 		t = btf__type_by_id(obj->btf, ext->btf_id);
7430 		if (btf_is_var(t))
7431 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7432 		else
7433 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7434 		if (err)
7435 			return err;
7436 	}
7437 	return 0;
7438 }
7439 
7440 static int bpf_object__resolve_externs(struct bpf_object *obj,
7441 				       const char *extra_kconfig)
7442 {
7443 	bool need_config = false, need_kallsyms = false;
7444 	bool need_vmlinux_btf = false;
7445 	struct extern_desc *ext;
7446 	void *kcfg_data = NULL;
7447 	int err, i;
7448 
7449 	if (obj->nr_extern == 0)
7450 		return 0;
7451 
7452 	if (obj->kconfig_map_idx >= 0)
7453 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7454 
7455 	for (i = 0; i < obj->nr_extern; i++) {
7456 		ext = &obj->externs[i];
7457 
7458 		if (ext->type == EXT_KCFG &&
7459 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7460 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7461 			__u32 kver = get_kernel_version();
7462 
7463 			if (!kver) {
7464 				pr_warn("failed to get kernel version\n");
7465 				return -EINVAL;
7466 			}
7467 			err = set_kcfg_value_num(ext, ext_val, kver);
7468 			if (err)
7469 				return err;
7470 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7471 		} else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7472 			need_config = true;
7473 		} else if (ext->type == EXT_KSYM) {
7474 			if (ext->ksym.type_id)
7475 				need_vmlinux_btf = true;
7476 			else
7477 				need_kallsyms = true;
7478 		} else {
7479 			pr_warn("unrecognized extern '%s'\n", ext->name);
7480 			return -EINVAL;
7481 		}
7482 	}
7483 	if (need_config && extra_kconfig) {
7484 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7485 		if (err)
7486 			return -EINVAL;
7487 		need_config = false;
7488 		for (i = 0; i < obj->nr_extern; i++) {
7489 			ext = &obj->externs[i];
7490 			if (ext->type == EXT_KCFG && !ext->is_set) {
7491 				need_config = true;
7492 				break;
7493 			}
7494 		}
7495 	}
7496 	if (need_config) {
7497 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7498 		if (err)
7499 			return -EINVAL;
7500 	}
7501 	if (need_kallsyms) {
7502 		err = bpf_object__read_kallsyms_file(obj);
7503 		if (err)
7504 			return -EINVAL;
7505 	}
7506 	if (need_vmlinux_btf) {
7507 		err = bpf_object__resolve_ksyms_btf_id(obj);
7508 		if (err)
7509 			return -EINVAL;
7510 	}
7511 	for (i = 0; i < obj->nr_extern; i++) {
7512 		ext = &obj->externs[i];
7513 
7514 		if (!ext->is_set && !ext->is_weak) {
7515 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7516 			return -ESRCH;
7517 		} else if (!ext->is_set) {
7518 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7519 				 ext->name);
7520 		}
7521 	}
7522 
7523 	return 0;
7524 }
7525 
7526 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7527 {
7528 	int err, i;
7529 
7530 	if (!obj)
7531 		return libbpf_err(-EINVAL);
7532 
7533 	if (obj->loaded) {
7534 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7535 		return libbpf_err(-EINVAL);
7536 	}
7537 
7538 	if (obj->gen_loader)
7539 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7540 
7541 	err = bpf_object__probe_loading(obj);
7542 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7543 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7544 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7545 	err = err ? : bpf_object__sanitize_maps(obj);
7546 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7547 	err = err ? : bpf_object__create_maps(obj);
7548 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7549 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7550 	err = err ? : bpf_object_init_prog_arrays(obj);
7551 
7552 	if (obj->gen_loader) {
7553 		/* reset FDs */
7554 		if (obj->btf)
7555 			btf__set_fd(obj->btf, -1);
7556 		for (i = 0; i < obj->nr_maps; i++)
7557 			obj->maps[i].fd = -1;
7558 		if (!err)
7559 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7560 	}
7561 
7562 	/* clean up fd_array */
7563 	zfree(&obj->fd_array);
7564 
7565 	/* clean up module BTFs */
7566 	for (i = 0; i < obj->btf_module_cnt; i++) {
7567 		close(obj->btf_modules[i].fd);
7568 		btf__free(obj->btf_modules[i].btf);
7569 		free(obj->btf_modules[i].name);
7570 	}
7571 	free(obj->btf_modules);
7572 
7573 	/* clean up vmlinux BTF */
7574 	btf__free(obj->btf_vmlinux);
7575 	obj->btf_vmlinux = NULL;
7576 
7577 	obj->loaded = true; /* doesn't matter if successfully or not */
7578 
7579 	if (err)
7580 		goto out;
7581 
7582 	return 0;
7583 out:
7584 	/* unpin any maps that were auto-pinned during load */
7585 	for (i = 0; i < obj->nr_maps; i++)
7586 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7587 			bpf_map__unpin(&obj->maps[i], NULL);
7588 
7589 	bpf_object_unload(obj);
7590 	pr_warn("failed to load object '%s'\n", obj->path);
7591 	return libbpf_err(err);
7592 }
7593 
7594 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7595 {
7596 	return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path);
7597 }
7598 
7599 int bpf_object__load(struct bpf_object *obj)
7600 {
7601 	return bpf_object_load(obj, 0, NULL);
7602 }
7603 
7604 static int make_parent_dir(const char *path)
7605 {
7606 	char *cp, errmsg[STRERR_BUFSIZE];
7607 	char *dname, *dir;
7608 	int err = 0;
7609 
7610 	dname = strdup(path);
7611 	if (dname == NULL)
7612 		return -ENOMEM;
7613 
7614 	dir = dirname(dname);
7615 	if (mkdir(dir, 0700) && errno != EEXIST)
7616 		err = -errno;
7617 
7618 	free(dname);
7619 	if (err) {
7620 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7621 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7622 	}
7623 	return err;
7624 }
7625 
7626 static int check_path(const char *path)
7627 {
7628 	char *cp, errmsg[STRERR_BUFSIZE];
7629 	struct statfs st_fs;
7630 	char *dname, *dir;
7631 	int err = 0;
7632 
7633 	if (path == NULL)
7634 		return -EINVAL;
7635 
7636 	dname = strdup(path);
7637 	if (dname == NULL)
7638 		return -ENOMEM;
7639 
7640 	dir = dirname(dname);
7641 	if (statfs(dir, &st_fs)) {
7642 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7643 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7644 		err = -errno;
7645 	}
7646 	free(dname);
7647 
7648 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7649 		pr_warn("specified path %s is not on BPF FS\n", path);
7650 		err = -EINVAL;
7651 	}
7652 
7653 	return err;
7654 }
7655 
7656 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7657 {
7658 	char *cp, errmsg[STRERR_BUFSIZE];
7659 	int err;
7660 
7661 	err = make_parent_dir(path);
7662 	if (err)
7663 		return libbpf_err(err);
7664 
7665 	err = check_path(path);
7666 	if (err)
7667 		return libbpf_err(err);
7668 
7669 	if (prog == NULL) {
7670 		pr_warn("invalid program pointer\n");
7671 		return libbpf_err(-EINVAL);
7672 	}
7673 
7674 	if (instance < 0 || instance >= prog->instances.nr) {
7675 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7676 			instance, prog->name, prog->instances.nr);
7677 		return libbpf_err(-EINVAL);
7678 	}
7679 
7680 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7681 		err = -errno;
7682 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7683 		pr_warn("failed to pin program: %s\n", cp);
7684 		return libbpf_err(err);
7685 	}
7686 	pr_debug("pinned program '%s'\n", path);
7687 
7688 	return 0;
7689 }
7690 
7691 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
7692 {
7693 	int err;
7694 
7695 	err = check_path(path);
7696 	if (err)
7697 		return libbpf_err(err);
7698 
7699 	if (prog == NULL) {
7700 		pr_warn("invalid program pointer\n");
7701 		return libbpf_err(-EINVAL);
7702 	}
7703 
7704 	if (instance < 0 || instance >= prog->instances.nr) {
7705 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7706 			instance, prog->name, prog->instances.nr);
7707 		return libbpf_err(-EINVAL);
7708 	}
7709 
7710 	err = unlink(path);
7711 	if (err != 0)
7712 		return libbpf_err(-errno);
7713 
7714 	pr_debug("unpinned program '%s'\n", path);
7715 
7716 	return 0;
7717 }
7718 
7719 __attribute__((alias("bpf_program_pin_instance")))
7720 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
7721 
7722 __attribute__((alias("bpf_program_unpin_instance")))
7723 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
7724 
7725 int bpf_program__pin(struct bpf_program *prog, const char *path)
7726 {
7727 	int i, err;
7728 
7729 	err = make_parent_dir(path);
7730 	if (err)
7731 		return libbpf_err(err);
7732 
7733 	err = check_path(path);
7734 	if (err)
7735 		return libbpf_err(err);
7736 
7737 	if (prog == NULL) {
7738 		pr_warn("invalid program pointer\n");
7739 		return libbpf_err(-EINVAL);
7740 	}
7741 
7742 	if (prog->instances.nr <= 0) {
7743 		pr_warn("no instances of prog %s to pin\n", prog->name);
7744 		return libbpf_err(-EINVAL);
7745 	}
7746 
7747 	if (prog->instances.nr == 1) {
7748 		/* don't create subdirs when pinning single instance */
7749 		return bpf_program_pin_instance(prog, path, 0);
7750 	}
7751 
7752 	for (i = 0; i < prog->instances.nr; i++) {
7753 		char buf[PATH_MAX];
7754 		int len;
7755 
7756 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7757 		if (len < 0) {
7758 			err = -EINVAL;
7759 			goto err_unpin;
7760 		} else if (len >= PATH_MAX) {
7761 			err = -ENAMETOOLONG;
7762 			goto err_unpin;
7763 		}
7764 
7765 		err = bpf_program_pin_instance(prog, buf, i);
7766 		if (err)
7767 			goto err_unpin;
7768 	}
7769 
7770 	return 0;
7771 
7772 err_unpin:
7773 	for (i = i - 1; i >= 0; i--) {
7774 		char buf[PATH_MAX];
7775 		int len;
7776 
7777 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7778 		if (len < 0)
7779 			continue;
7780 		else if (len >= PATH_MAX)
7781 			continue;
7782 
7783 		bpf_program_unpin_instance(prog, buf, i);
7784 	}
7785 
7786 	rmdir(path);
7787 
7788 	return libbpf_err(err);
7789 }
7790 
7791 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7792 {
7793 	int i, err;
7794 
7795 	err = check_path(path);
7796 	if (err)
7797 		return libbpf_err(err);
7798 
7799 	if (prog == NULL) {
7800 		pr_warn("invalid program pointer\n");
7801 		return libbpf_err(-EINVAL);
7802 	}
7803 
7804 	if (prog->instances.nr <= 0) {
7805 		pr_warn("no instances of prog %s to pin\n", prog->name);
7806 		return libbpf_err(-EINVAL);
7807 	}
7808 
7809 	if (prog->instances.nr == 1) {
7810 		/* don't create subdirs when pinning single instance */
7811 		return bpf_program_unpin_instance(prog, path, 0);
7812 	}
7813 
7814 	for (i = 0; i < prog->instances.nr; i++) {
7815 		char buf[PATH_MAX];
7816 		int len;
7817 
7818 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7819 		if (len < 0)
7820 			return libbpf_err(-EINVAL);
7821 		else if (len >= PATH_MAX)
7822 			return libbpf_err(-ENAMETOOLONG);
7823 
7824 		err = bpf_program_unpin_instance(prog, buf, i);
7825 		if (err)
7826 			return err;
7827 	}
7828 
7829 	err = rmdir(path);
7830 	if (err)
7831 		return libbpf_err(-errno);
7832 
7833 	return 0;
7834 }
7835 
7836 int bpf_map__pin(struct bpf_map *map, const char *path)
7837 {
7838 	char *cp, errmsg[STRERR_BUFSIZE];
7839 	int err;
7840 
7841 	if (map == NULL) {
7842 		pr_warn("invalid map pointer\n");
7843 		return libbpf_err(-EINVAL);
7844 	}
7845 
7846 	if (map->pin_path) {
7847 		if (path && strcmp(path, map->pin_path)) {
7848 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7849 				bpf_map__name(map), map->pin_path, path);
7850 			return libbpf_err(-EINVAL);
7851 		} else if (map->pinned) {
7852 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7853 				 bpf_map__name(map), map->pin_path);
7854 			return 0;
7855 		}
7856 	} else {
7857 		if (!path) {
7858 			pr_warn("missing a path to pin map '%s' at\n",
7859 				bpf_map__name(map));
7860 			return libbpf_err(-EINVAL);
7861 		} else if (map->pinned) {
7862 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7863 			return libbpf_err(-EEXIST);
7864 		}
7865 
7866 		map->pin_path = strdup(path);
7867 		if (!map->pin_path) {
7868 			err = -errno;
7869 			goto out_err;
7870 		}
7871 	}
7872 
7873 	err = make_parent_dir(map->pin_path);
7874 	if (err)
7875 		return libbpf_err(err);
7876 
7877 	err = check_path(map->pin_path);
7878 	if (err)
7879 		return libbpf_err(err);
7880 
7881 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7882 		err = -errno;
7883 		goto out_err;
7884 	}
7885 
7886 	map->pinned = true;
7887 	pr_debug("pinned map '%s'\n", map->pin_path);
7888 
7889 	return 0;
7890 
7891 out_err:
7892 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7893 	pr_warn("failed to pin map: %s\n", cp);
7894 	return libbpf_err(err);
7895 }
7896 
7897 int bpf_map__unpin(struct bpf_map *map, const char *path)
7898 {
7899 	int err;
7900 
7901 	if (map == NULL) {
7902 		pr_warn("invalid map pointer\n");
7903 		return libbpf_err(-EINVAL);
7904 	}
7905 
7906 	if (map->pin_path) {
7907 		if (path && strcmp(path, map->pin_path)) {
7908 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7909 				bpf_map__name(map), map->pin_path, path);
7910 			return libbpf_err(-EINVAL);
7911 		}
7912 		path = map->pin_path;
7913 	} else if (!path) {
7914 		pr_warn("no path to unpin map '%s' from\n",
7915 			bpf_map__name(map));
7916 		return libbpf_err(-EINVAL);
7917 	}
7918 
7919 	err = check_path(path);
7920 	if (err)
7921 		return libbpf_err(err);
7922 
7923 	err = unlink(path);
7924 	if (err != 0)
7925 		return libbpf_err(-errno);
7926 
7927 	map->pinned = false;
7928 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7929 
7930 	return 0;
7931 }
7932 
7933 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7934 {
7935 	char *new = NULL;
7936 
7937 	if (path) {
7938 		new = strdup(path);
7939 		if (!new)
7940 			return libbpf_err(-errno);
7941 	}
7942 
7943 	free(map->pin_path);
7944 	map->pin_path = new;
7945 	return 0;
7946 }
7947 
7948 __alias(bpf_map__pin_path)
7949 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7950 
7951 const char *bpf_map__pin_path(const struct bpf_map *map)
7952 {
7953 	return map->pin_path;
7954 }
7955 
7956 bool bpf_map__is_pinned(const struct bpf_map *map)
7957 {
7958 	return map->pinned;
7959 }
7960 
7961 static void sanitize_pin_path(char *s)
7962 {
7963 	/* bpffs disallows periods in path names */
7964 	while (*s) {
7965 		if (*s == '.')
7966 			*s = '_';
7967 		s++;
7968 	}
7969 }
7970 
7971 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7972 {
7973 	struct bpf_map *map;
7974 	int err;
7975 
7976 	if (!obj)
7977 		return libbpf_err(-ENOENT);
7978 
7979 	if (!obj->loaded) {
7980 		pr_warn("object not yet loaded; load it first\n");
7981 		return libbpf_err(-ENOENT);
7982 	}
7983 
7984 	bpf_object__for_each_map(map, obj) {
7985 		char *pin_path = NULL;
7986 		char buf[PATH_MAX];
7987 
7988 		if (map->skipped)
7989 			continue;
7990 
7991 		if (path) {
7992 			int len;
7993 
7994 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7995 				       bpf_map__name(map));
7996 			if (len < 0) {
7997 				err = -EINVAL;
7998 				goto err_unpin_maps;
7999 			} else if (len >= PATH_MAX) {
8000 				err = -ENAMETOOLONG;
8001 				goto err_unpin_maps;
8002 			}
8003 			sanitize_pin_path(buf);
8004 			pin_path = buf;
8005 		} else if (!map->pin_path) {
8006 			continue;
8007 		}
8008 
8009 		err = bpf_map__pin(map, pin_path);
8010 		if (err)
8011 			goto err_unpin_maps;
8012 	}
8013 
8014 	return 0;
8015 
8016 err_unpin_maps:
8017 	while ((map = bpf_object__prev_map(obj, map))) {
8018 		if (!map->pin_path)
8019 			continue;
8020 
8021 		bpf_map__unpin(map, NULL);
8022 	}
8023 
8024 	return libbpf_err(err);
8025 }
8026 
8027 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8028 {
8029 	struct bpf_map *map;
8030 	int err;
8031 
8032 	if (!obj)
8033 		return libbpf_err(-ENOENT);
8034 
8035 	bpf_object__for_each_map(map, obj) {
8036 		char *pin_path = NULL;
8037 		char buf[PATH_MAX];
8038 
8039 		if (path) {
8040 			int len;
8041 
8042 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8043 				       bpf_map__name(map));
8044 			if (len < 0)
8045 				return libbpf_err(-EINVAL);
8046 			else if (len >= PATH_MAX)
8047 				return libbpf_err(-ENAMETOOLONG);
8048 			sanitize_pin_path(buf);
8049 			pin_path = buf;
8050 		} else if (!map->pin_path) {
8051 			continue;
8052 		}
8053 
8054 		err = bpf_map__unpin(map, pin_path);
8055 		if (err)
8056 			return libbpf_err(err);
8057 	}
8058 
8059 	return 0;
8060 }
8061 
8062 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8063 {
8064 	struct bpf_program *prog;
8065 	int err;
8066 
8067 	if (!obj)
8068 		return libbpf_err(-ENOENT);
8069 
8070 	if (!obj->loaded) {
8071 		pr_warn("object not yet loaded; load it first\n");
8072 		return libbpf_err(-ENOENT);
8073 	}
8074 
8075 	bpf_object__for_each_program(prog, obj) {
8076 		char buf[PATH_MAX];
8077 		int len;
8078 
8079 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8080 			       prog->pin_name);
8081 		if (len < 0) {
8082 			err = -EINVAL;
8083 			goto err_unpin_programs;
8084 		} else if (len >= PATH_MAX) {
8085 			err = -ENAMETOOLONG;
8086 			goto err_unpin_programs;
8087 		}
8088 
8089 		err = bpf_program__pin(prog, buf);
8090 		if (err)
8091 			goto err_unpin_programs;
8092 	}
8093 
8094 	return 0;
8095 
8096 err_unpin_programs:
8097 	while ((prog = bpf_object__prev_program(obj, prog))) {
8098 		char buf[PATH_MAX];
8099 		int len;
8100 
8101 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8102 			       prog->pin_name);
8103 		if (len < 0)
8104 			continue;
8105 		else if (len >= PATH_MAX)
8106 			continue;
8107 
8108 		bpf_program__unpin(prog, buf);
8109 	}
8110 
8111 	return libbpf_err(err);
8112 }
8113 
8114 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8115 {
8116 	struct bpf_program *prog;
8117 	int err;
8118 
8119 	if (!obj)
8120 		return libbpf_err(-ENOENT);
8121 
8122 	bpf_object__for_each_program(prog, obj) {
8123 		char buf[PATH_MAX];
8124 		int len;
8125 
8126 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8127 			       prog->pin_name);
8128 		if (len < 0)
8129 			return libbpf_err(-EINVAL);
8130 		else if (len >= PATH_MAX)
8131 			return libbpf_err(-ENAMETOOLONG);
8132 
8133 		err = bpf_program__unpin(prog, buf);
8134 		if (err)
8135 			return libbpf_err(err);
8136 	}
8137 
8138 	return 0;
8139 }
8140 
8141 int bpf_object__pin(struct bpf_object *obj, const char *path)
8142 {
8143 	int err;
8144 
8145 	err = bpf_object__pin_maps(obj, path);
8146 	if (err)
8147 		return libbpf_err(err);
8148 
8149 	err = bpf_object__pin_programs(obj, path);
8150 	if (err) {
8151 		bpf_object__unpin_maps(obj, path);
8152 		return libbpf_err(err);
8153 	}
8154 
8155 	return 0;
8156 }
8157 
8158 static void bpf_map__destroy(struct bpf_map *map)
8159 {
8160 	if (map->clear_priv)
8161 		map->clear_priv(map, map->priv);
8162 	map->priv = NULL;
8163 	map->clear_priv = NULL;
8164 
8165 	if (map->inner_map) {
8166 		bpf_map__destroy(map->inner_map);
8167 		zfree(&map->inner_map);
8168 	}
8169 
8170 	zfree(&map->init_slots);
8171 	map->init_slots_sz = 0;
8172 
8173 	if (map->mmaped) {
8174 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8175 		map->mmaped = NULL;
8176 	}
8177 
8178 	if (map->st_ops) {
8179 		zfree(&map->st_ops->data);
8180 		zfree(&map->st_ops->progs);
8181 		zfree(&map->st_ops->kern_func_off);
8182 		zfree(&map->st_ops);
8183 	}
8184 
8185 	zfree(&map->name);
8186 	zfree(&map->real_name);
8187 	zfree(&map->pin_path);
8188 
8189 	if (map->fd >= 0)
8190 		zclose(map->fd);
8191 }
8192 
8193 void bpf_object__close(struct bpf_object *obj)
8194 {
8195 	size_t i;
8196 
8197 	if (IS_ERR_OR_NULL(obj))
8198 		return;
8199 
8200 	if (obj->clear_priv)
8201 		obj->clear_priv(obj, obj->priv);
8202 
8203 	bpf_gen__free(obj->gen_loader);
8204 	bpf_object__elf_finish(obj);
8205 	bpf_object_unload(obj);
8206 	btf__free(obj->btf);
8207 	btf_ext__free(obj->btf_ext);
8208 
8209 	for (i = 0; i < obj->nr_maps; i++)
8210 		bpf_map__destroy(&obj->maps[i]);
8211 
8212 	zfree(&obj->btf_custom_path);
8213 	zfree(&obj->kconfig);
8214 	zfree(&obj->externs);
8215 	obj->nr_extern = 0;
8216 
8217 	zfree(&obj->maps);
8218 	obj->nr_maps = 0;
8219 
8220 	if (obj->programs && obj->nr_programs) {
8221 		for (i = 0; i < obj->nr_programs; i++)
8222 			bpf_program__exit(&obj->programs[i]);
8223 	}
8224 	zfree(&obj->programs);
8225 
8226 	list_del(&obj->list);
8227 	free(obj);
8228 }
8229 
8230 struct bpf_object *
8231 bpf_object__next(struct bpf_object *prev)
8232 {
8233 	struct bpf_object *next;
8234 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
8235 
8236 	if (strict)
8237 		return NULL;
8238 
8239 	if (!prev)
8240 		next = list_first_entry(&bpf_objects_list,
8241 					struct bpf_object,
8242 					list);
8243 	else
8244 		next = list_next_entry(prev, list);
8245 
8246 	/* Empty list is noticed here so don't need checking on entry. */
8247 	if (&next->list == &bpf_objects_list)
8248 		return NULL;
8249 
8250 	return next;
8251 }
8252 
8253 const char *bpf_object__name(const struct bpf_object *obj)
8254 {
8255 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8256 }
8257 
8258 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8259 {
8260 	return obj ? obj->kern_version : 0;
8261 }
8262 
8263 struct btf *bpf_object__btf(const struct bpf_object *obj)
8264 {
8265 	return obj ? obj->btf : NULL;
8266 }
8267 
8268 int bpf_object__btf_fd(const struct bpf_object *obj)
8269 {
8270 	return obj->btf ? btf__fd(obj->btf) : -1;
8271 }
8272 
8273 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8274 {
8275 	if (obj->loaded)
8276 		return libbpf_err(-EINVAL);
8277 
8278 	obj->kern_version = kern_version;
8279 
8280 	return 0;
8281 }
8282 
8283 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8284 			 bpf_object_clear_priv_t clear_priv)
8285 {
8286 	if (obj->priv && obj->clear_priv)
8287 		obj->clear_priv(obj, obj->priv);
8288 
8289 	obj->priv = priv;
8290 	obj->clear_priv = clear_priv;
8291 	return 0;
8292 }
8293 
8294 void *bpf_object__priv(const struct bpf_object *obj)
8295 {
8296 	return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8297 }
8298 
8299 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8300 {
8301 	struct bpf_gen *gen;
8302 
8303 	if (!opts)
8304 		return -EFAULT;
8305 	if (!OPTS_VALID(opts, gen_loader_opts))
8306 		return -EINVAL;
8307 	gen = calloc(sizeof(*gen), 1);
8308 	if (!gen)
8309 		return -ENOMEM;
8310 	gen->opts = opts;
8311 	obj->gen_loader = gen;
8312 	return 0;
8313 }
8314 
8315 static struct bpf_program *
8316 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8317 		    bool forward)
8318 {
8319 	size_t nr_programs = obj->nr_programs;
8320 	ssize_t idx;
8321 
8322 	if (!nr_programs)
8323 		return NULL;
8324 
8325 	if (!p)
8326 		/* Iter from the beginning */
8327 		return forward ? &obj->programs[0] :
8328 			&obj->programs[nr_programs - 1];
8329 
8330 	if (p->obj != obj) {
8331 		pr_warn("error: program handler doesn't match object\n");
8332 		return errno = EINVAL, NULL;
8333 	}
8334 
8335 	idx = (p - obj->programs) + (forward ? 1 : -1);
8336 	if (idx >= obj->nr_programs || idx < 0)
8337 		return NULL;
8338 	return &obj->programs[idx];
8339 }
8340 
8341 struct bpf_program *
8342 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8343 {
8344 	return bpf_object__next_program(obj, prev);
8345 }
8346 
8347 struct bpf_program *
8348 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8349 {
8350 	struct bpf_program *prog = prev;
8351 
8352 	do {
8353 		prog = __bpf_program__iter(prog, obj, true);
8354 	} while (prog && prog_is_subprog(obj, prog));
8355 
8356 	return prog;
8357 }
8358 
8359 struct bpf_program *
8360 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8361 {
8362 	return bpf_object__prev_program(obj, next);
8363 }
8364 
8365 struct bpf_program *
8366 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8367 {
8368 	struct bpf_program *prog = next;
8369 
8370 	do {
8371 		prog = __bpf_program__iter(prog, obj, false);
8372 	} while (prog && prog_is_subprog(obj, prog));
8373 
8374 	return prog;
8375 }
8376 
8377 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8378 			  bpf_program_clear_priv_t clear_priv)
8379 {
8380 	if (prog->priv && prog->clear_priv)
8381 		prog->clear_priv(prog, prog->priv);
8382 
8383 	prog->priv = priv;
8384 	prog->clear_priv = clear_priv;
8385 	return 0;
8386 }
8387 
8388 void *bpf_program__priv(const struct bpf_program *prog)
8389 {
8390 	return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8391 }
8392 
8393 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8394 {
8395 	prog->prog_ifindex = ifindex;
8396 }
8397 
8398 const char *bpf_program__name(const struct bpf_program *prog)
8399 {
8400 	return prog->name;
8401 }
8402 
8403 const char *bpf_program__section_name(const struct bpf_program *prog)
8404 {
8405 	return prog->sec_name;
8406 }
8407 
8408 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8409 {
8410 	const char *title;
8411 
8412 	title = prog->sec_name;
8413 	if (needs_copy) {
8414 		title = strdup(title);
8415 		if (!title) {
8416 			pr_warn("failed to strdup program title\n");
8417 			return libbpf_err_ptr(-ENOMEM);
8418 		}
8419 	}
8420 
8421 	return title;
8422 }
8423 
8424 bool bpf_program__autoload(const struct bpf_program *prog)
8425 {
8426 	return prog->load;
8427 }
8428 
8429 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8430 {
8431 	if (prog->obj->loaded)
8432 		return libbpf_err(-EINVAL);
8433 
8434 	prog->load = autoload;
8435 	return 0;
8436 }
8437 
8438 static int bpf_program_nth_fd(const struct bpf_program *prog, int n);
8439 
8440 int bpf_program__fd(const struct bpf_program *prog)
8441 {
8442 	return bpf_program_nth_fd(prog, 0);
8443 }
8444 
8445 size_t bpf_program__size(const struct bpf_program *prog)
8446 {
8447 	return prog->insns_cnt * BPF_INSN_SZ;
8448 }
8449 
8450 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8451 {
8452 	return prog->insns;
8453 }
8454 
8455 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8456 {
8457 	return prog->insns_cnt;
8458 }
8459 
8460 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8461 			  bpf_program_prep_t prep)
8462 {
8463 	int *instances_fds;
8464 
8465 	if (nr_instances <= 0 || !prep)
8466 		return libbpf_err(-EINVAL);
8467 
8468 	if (prog->instances.nr > 0 || prog->instances.fds) {
8469 		pr_warn("Can't set pre-processor after loading\n");
8470 		return libbpf_err(-EINVAL);
8471 	}
8472 
8473 	instances_fds = malloc(sizeof(int) * nr_instances);
8474 	if (!instances_fds) {
8475 		pr_warn("alloc memory failed for fds\n");
8476 		return libbpf_err(-ENOMEM);
8477 	}
8478 
8479 	/* fill all fd with -1 */
8480 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8481 
8482 	prog->instances.nr = nr_instances;
8483 	prog->instances.fds = instances_fds;
8484 	prog->preprocessor = prep;
8485 	return 0;
8486 }
8487 
8488 __attribute__((alias("bpf_program_nth_fd")))
8489 int bpf_program__nth_fd(const struct bpf_program *prog, int n);
8490 
8491 static int bpf_program_nth_fd(const struct bpf_program *prog, int n)
8492 {
8493 	int fd;
8494 
8495 	if (!prog)
8496 		return libbpf_err(-EINVAL);
8497 
8498 	if (n >= prog->instances.nr || n < 0) {
8499 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8500 			n, prog->name, prog->instances.nr);
8501 		return libbpf_err(-EINVAL);
8502 	}
8503 
8504 	fd = prog->instances.fds[n];
8505 	if (fd < 0) {
8506 		pr_warn("%dth instance of program '%s' is invalid\n",
8507 			n, prog->name);
8508 		return libbpf_err(-ENOENT);
8509 	}
8510 
8511 	return fd;
8512 }
8513 
8514 __alias(bpf_program__type)
8515 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8516 
8517 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8518 {
8519 	return prog->type;
8520 }
8521 
8522 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8523 {
8524 	prog->type = type;
8525 }
8526 
8527 static bool bpf_program__is_type(const struct bpf_program *prog,
8528 				 enum bpf_prog_type type)
8529 {
8530 	return prog ? (prog->type == type) : false;
8531 }
8532 
8533 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8534 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8535 {								\
8536 	if (!prog)						\
8537 		return libbpf_err(-EINVAL);			\
8538 	bpf_program__set_type(prog, TYPE);			\
8539 	return 0;						\
8540 }								\
8541 								\
8542 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8543 {								\
8544 	return bpf_program__is_type(prog, TYPE);		\
8545 }								\
8546 
8547 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8548 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8549 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8550 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8551 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8552 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8553 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8554 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8555 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8556 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8557 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8558 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8559 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8560 
8561 __alias(bpf_program__expected_attach_type)
8562 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8563 
8564 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8565 {
8566 	return prog->expected_attach_type;
8567 }
8568 
8569 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8570 					   enum bpf_attach_type type)
8571 {
8572 	prog->expected_attach_type = type;
8573 }
8574 
8575 __u32 bpf_program__flags(const struct bpf_program *prog)
8576 {
8577 	return prog->prog_flags;
8578 }
8579 
8580 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8581 {
8582 	if (prog->obj->loaded)
8583 		return libbpf_err(-EBUSY);
8584 
8585 	prog->prog_flags = flags;
8586 	return 0;
8587 }
8588 
8589 __u32 bpf_program__log_level(const struct bpf_program *prog)
8590 {
8591 	return prog->log_level;
8592 }
8593 
8594 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8595 {
8596 	if (prog->obj->loaded)
8597 		return libbpf_err(-EBUSY);
8598 
8599 	prog->log_level = log_level;
8600 	return 0;
8601 }
8602 
8603 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8604 {
8605 	*log_size = prog->log_size;
8606 	return prog->log_buf;
8607 }
8608 
8609 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8610 {
8611 	if (log_size && !log_buf)
8612 		return -EINVAL;
8613 	if (prog->log_size > UINT_MAX)
8614 		return -EINVAL;
8615 	if (prog->obj->loaded)
8616 		return -EBUSY;
8617 
8618 	prog->log_buf = log_buf;
8619 	prog->log_size = log_size;
8620 	return 0;
8621 }
8622 
8623 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8624 	.sec = (char *)sec_pfx,						    \
8625 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8626 	.expected_attach_type = atype,					    \
8627 	.cookie = (long)(flags),					    \
8628 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8629 	__VA_ARGS__							    \
8630 }
8631 
8632 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8633 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8634 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8635 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8636 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8637 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8638 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8639 
8640 static const struct bpf_sec_def section_defs[] = {
8641 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
8642 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8643 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8644 	SEC_DEF("kprobe/",		KPROBE,	0, SEC_NONE, attach_kprobe),
8645 	SEC_DEF("uprobe/",		KPROBE,	0, SEC_NONE),
8646 	SEC_DEF("kretprobe/",		KPROBE, 0, SEC_NONE, attach_kprobe),
8647 	SEC_DEF("uretprobe/",		KPROBE, 0, SEC_NONE),
8648 	SEC_DEF("kprobe.multi/",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8649 	SEC_DEF("kretprobe.multi/",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8650 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8651 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED),
8652 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8653 	SEC_DEF("tracepoint/",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8654 	SEC_DEF("tp/",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8655 	SEC_DEF("raw_tracepoint/",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8656 	SEC_DEF("raw_tp/",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8657 	SEC_DEF("raw_tracepoint.w/",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8658 	SEC_DEF("raw_tp.w/",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8659 	SEC_DEF("tp_btf/",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8660 	SEC_DEF("fentry/",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8661 	SEC_DEF("fmod_ret/",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8662 	SEC_DEF("fexit/",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8663 	SEC_DEF("fentry.s/",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8664 	SEC_DEF("fmod_ret.s/",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8665 	SEC_DEF("fexit.s/",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8666 	SEC_DEF("freplace/",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8667 	SEC_DEF("lsm/",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8668 	SEC_DEF("lsm.s/",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8669 	SEC_DEF("iter/",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8670 	SEC_DEF("iter.s/",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8671 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8672 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8673 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8674 	SEC_DEF("xdp_devmap/",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
8675 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8676 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8677 	SEC_DEF("xdp_cpumap/",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
8678 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8679 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8680 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8681 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
8682 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8683 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8684 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
8685 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8686 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8687 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8688 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8689 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8690 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8691 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8692 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8693 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8694 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8695 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8696 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8697 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8698 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8699 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8700 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8701 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8702 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8703 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8704 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8705 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8706 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8707 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8708 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8709 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8710 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8711 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8712 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8713 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8714 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8715 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8716 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8717 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8718 };
8719 
8720 static size_t custom_sec_def_cnt;
8721 static struct bpf_sec_def *custom_sec_defs;
8722 static struct bpf_sec_def custom_fallback_def;
8723 static bool has_custom_fallback_def;
8724 
8725 static int last_custom_sec_def_handler_id;
8726 
8727 int libbpf_register_prog_handler(const char *sec,
8728 				 enum bpf_prog_type prog_type,
8729 				 enum bpf_attach_type exp_attach_type,
8730 				 const struct libbpf_prog_handler_opts *opts)
8731 {
8732 	struct bpf_sec_def *sec_def;
8733 
8734 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8735 		return libbpf_err(-EINVAL);
8736 
8737 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8738 		return libbpf_err(-E2BIG);
8739 
8740 	if (sec) {
8741 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8742 					      sizeof(*sec_def));
8743 		if (!sec_def)
8744 			return libbpf_err(-ENOMEM);
8745 
8746 		custom_sec_defs = sec_def;
8747 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8748 	} else {
8749 		if (has_custom_fallback_def)
8750 			return libbpf_err(-EBUSY);
8751 
8752 		sec_def = &custom_fallback_def;
8753 	}
8754 
8755 	sec_def->sec = sec ? strdup(sec) : NULL;
8756 	if (sec && !sec_def->sec)
8757 		return libbpf_err(-ENOMEM);
8758 
8759 	sec_def->prog_type = prog_type;
8760 	sec_def->expected_attach_type = exp_attach_type;
8761 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8762 
8763 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8764 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8765 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8766 
8767 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8768 
8769 	if (sec)
8770 		custom_sec_def_cnt++;
8771 	else
8772 		has_custom_fallback_def = true;
8773 
8774 	return sec_def->handler_id;
8775 }
8776 
8777 int libbpf_unregister_prog_handler(int handler_id)
8778 {
8779 	struct bpf_sec_def *sec_defs;
8780 	int i;
8781 
8782 	if (handler_id <= 0)
8783 		return libbpf_err(-EINVAL);
8784 
8785 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8786 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8787 		has_custom_fallback_def = false;
8788 		return 0;
8789 	}
8790 
8791 	for (i = 0; i < custom_sec_def_cnt; i++) {
8792 		if (custom_sec_defs[i].handler_id == handler_id)
8793 			break;
8794 	}
8795 
8796 	if (i == custom_sec_def_cnt)
8797 		return libbpf_err(-ENOENT);
8798 
8799 	free(custom_sec_defs[i].sec);
8800 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8801 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8802 	custom_sec_def_cnt--;
8803 
8804 	/* try to shrink the array, but it's ok if we couldn't */
8805 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8806 	if (sec_defs)
8807 		custom_sec_defs = sec_defs;
8808 
8809 	return 0;
8810 }
8811 
8812 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name,
8813 			    bool allow_sloppy)
8814 {
8815 	size_t len = strlen(sec_def->sec);
8816 
8817 	/* "type/" always has to have proper SEC("type/extras") form */
8818 	if (sec_def->sec[len - 1] == '/') {
8819 		if (str_has_pfx(sec_name, sec_def->sec))
8820 			return true;
8821 		return false;
8822 	}
8823 
8824 	/* "type+" means it can be either exact SEC("type") or
8825 	 * well-formed SEC("type/extras") with proper '/' separator
8826 	 */
8827 	if (sec_def->sec[len - 1] == '+') {
8828 		len--;
8829 		/* not even a prefix */
8830 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8831 			return false;
8832 		/* exact match or has '/' separator */
8833 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8834 			return true;
8835 		return false;
8836 	}
8837 
8838 	/* SEC_SLOPPY_PFX definitions are allowed to be just prefix
8839 	 * matches, unless strict section name mode
8840 	 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
8841 	 * match has to be exact.
8842 	 */
8843 	if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec))
8844 		return true;
8845 
8846 	/* Definitions not marked SEC_SLOPPY_PFX (e.g.,
8847 	 * SEC("syscall")) are exact matches in both modes.
8848 	 */
8849 	return strcmp(sec_name, sec_def->sec) == 0;
8850 }
8851 
8852 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8853 {
8854 	const struct bpf_sec_def *sec_def;
8855 	int i, n;
8856 	bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy;
8857 
8858 	n = custom_sec_def_cnt;
8859 	for (i = 0; i < n; i++) {
8860 		sec_def = &custom_sec_defs[i];
8861 		if (sec_def_matches(sec_def, sec_name, false))
8862 			return sec_def;
8863 	}
8864 
8865 	n = ARRAY_SIZE(section_defs);
8866 	for (i = 0; i < n; i++) {
8867 		sec_def = &section_defs[i];
8868 		allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict;
8869 		if (sec_def_matches(sec_def, sec_name, allow_sloppy))
8870 			return sec_def;
8871 	}
8872 
8873 	if (has_custom_fallback_def)
8874 		return &custom_fallback_def;
8875 
8876 	return NULL;
8877 }
8878 
8879 #define MAX_TYPE_NAME_SIZE 32
8880 
8881 static char *libbpf_get_type_names(bool attach_type)
8882 {
8883 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8884 	char *buf;
8885 
8886 	buf = malloc(len);
8887 	if (!buf)
8888 		return NULL;
8889 
8890 	buf[0] = '\0';
8891 	/* Forge string buf with all available names */
8892 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8893 		const struct bpf_sec_def *sec_def = &section_defs[i];
8894 
8895 		if (attach_type) {
8896 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8897 				continue;
8898 
8899 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8900 				continue;
8901 		}
8902 
8903 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8904 			free(buf);
8905 			return NULL;
8906 		}
8907 		strcat(buf, " ");
8908 		strcat(buf, section_defs[i].sec);
8909 	}
8910 
8911 	return buf;
8912 }
8913 
8914 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8915 			     enum bpf_attach_type *expected_attach_type)
8916 {
8917 	const struct bpf_sec_def *sec_def;
8918 	char *type_names;
8919 
8920 	if (!name)
8921 		return libbpf_err(-EINVAL);
8922 
8923 	sec_def = find_sec_def(name);
8924 	if (sec_def) {
8925 		*prog_type = sec_def->prog_type;
8926 		*expected_attach_type = sec_def->expected_attach_type;
8927 		return 0;
8928 	}
8929 
8930 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8931 	type_names = libbpf_get_type_names(false);
8932 	if (type_names != NULL) {
8933 		pr_debug("supported section(type) names are:%s\n", type_names);
8934 		free(type_names);
8935 	}
8936 
8937 	return libbpf_err(-ESRCH);
8938 }
8939 
8940 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8941 						     size_t offset)
8942 {
8943 	struct bpf_map *map;
8944 	size_t i;
8945 
8946 	for (i = 0; i < obj->nr_maps; i++) {
8947 		map = &obj->maps[i];
8948 		if (!bpf_map__is_struct_ops(map))
8949 			continue;
8950 		if (map->sec_offset <= offset &&
8951 		    offset - map->sec_offset < map->def.value_size)
8952 			return map;
8953 	}
8954 
8955 	return NULL;
8956 }
8957 
8958 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8959 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8960 					    Elf64_Shdr *shdr, Elf_Data *data)
8961 {
8962 	const struct btf_member *member;
8963 	struct bpf_struct_ops *st_ops;
8964 	struct bpf_program *prog;
8965 	unsigned int shdr_idx;
8966 	const struct btf *btf;
8967 	struct bpf_map *map;
8968 	unsigned int moff, insn_idx;
8969 	const char *name;
8970 	__u32 member_idx;
8971 	Elf64_Sym *sym;
8972 	Elf64_Rel *rel;
8973 	int i, nrels;
8974 
8975 	btf = obj->btf;
8976 	nrels = shdr->sh_size / shdr->sh_entsize;
8977 	for (i = 0; i < nrels; i++) {
8978 		rel = elf_rel_by_idx(data, i);
8979 		if (!rel) {
8980 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8981 			return -LIBBPF_ERRNO__FORMAT;
8982 		}
8983 
8984 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8985 		if (!sym) {
8986 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8987 				(size_t)ELF64_R_SYM(rel->r_info));
8988 			return -LIBBPF_ERRNO__FORMAT;
8989 		}
8990 
8991 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8992 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8993 		if (!map) {
8994 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8995 				(size_t)rel->r_offset);
8996 			return -EINVAL;
8997 		}
8998 
8999 		moff = rel->r_offset - map->sec_offset;
9000 		shdr_idx = sym->st_shndx;
9001 		st_ops = map->st_ops;
9002 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9003 			 map->name,
9004 			 (long long)(rel->r_info >> 32),
9005 			 (long long)sym->st_value,
9006 			 shdr_idx, (size_t)rel->r_offset,
9007 			 map->sec_offset, sym->st_name, name);
9008 
9009 		if (shdr_idx >= SHN_LORESERVE) {
9010 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9011 				map->name, (size_t)rel->r_offset, shdr_idx);
9012 			return -LIBBPF_ERRNO__RELOC;
9013 		}
9014 		if (sym->st_value % BPF_INSN_SZ) {
9015 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9016 				map->name, (unsigned long long)sym->st_value);
9017 			return -LIBBPF_ERRNO__FORMAT;
9018 		}
9019 		insn_idx = sym->st_value / BPF_INSN_SZ;
9020 
9021 		member = find_member_by_offset(st_ops->type, moff * 8);
9022 		if (!member) {
9023 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9024 				map->name, moff);
9025 			return -EINVAL;
9026 		}
9027 		member_idx = member - btf_members(st_ops->type);
9028 		name = btf__name_by_offset(btf, member->name_off);
9029 
9030 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9031 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9032 				map->name, name);
9033 			return -EINVAL;
9034 		}
9035 
9036 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9037 		if (!prog) {
9038 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9039 				map->name, shdr_idx, name);
9040 			return -EINVAL;
9041 		}
9042 
9043 		/* prevent the use of BPF prog with invalid type */
9044 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9045 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9046 				map->name, prog->name);
9047 			return -EINVAL;
9048 		}
9049 
9050 		/* if we haven't yet processed this BPF program, record proper
9051 		 * attach_btf_id and member_idx
9052 		 */
9053 		if (!prog->attach_btf_id) {
9054 			prog->attach_btf_id = st_ops->type_id;
9055 			prog->expected_attach_type = member_idx;
9056 		}
9057 
9058 		/* struct_ops BPF prog can be re-used between multiple
9059 		 * .struct_ops as long as it's the same struct_ops struct
9060 		 * definition and the same function pointer field
9061 		 */
9062 		if (prog->attach_btf_id != st_ops->type_id ||
9063 		    prog->expected_attach_type != member_idx) {
9064 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9065 				map->name, prog->name, prog->sec_name, prog->type,
9066 				prog->attach_btf_id, prog->expected_attach_type, name);
9067 			return -EINVAL;
9068 		}
9069 
9070 		st_ops->progs[member_idx] = prog;
9071 	}
9072 
9073 	return 0;
9074 }
9075 
9076 #define BTF_TRACE_PREFIX "btf_trace_"
9077 #define BTF_LSM_PREFIX "bpf_lsm_"
9078 #define BTF_ITER_PREFIX "bpf_iter_"
9079 #define BTF_MAX_NAME_SIZE 128
9080 
9081 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9082 				const char **prefix, int *kind)
9083 {
9084 	switch (attach_type) {
9085 	case BPF_TRACE_RAW_TP:
9086 		*prefix = BTF_TRACE_PREFIX;
9087 		*kind = BTF_KIND_TYPEDEF;
9088 		break;
9089 	case BPF_LSM_MAC:
9090 		*prefix = BTF_LSM_PREFIX;
9091 		*kind = BTF_KIND_FUNC;
9092 		break;
9093 	case BPF_TRACE_ITER:
9094 		*prefix = BTF_ITER_PREFIX;
9095 		*kind = BTF_KIND_FUNC;
9096 		break;
9097 	default:
9098 		*prefix = "";
9099 		*kind = BTF_KIND_FUNC;
9100 	}
9101 }
9102 
9103 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9104 				   const char *name, __u32 kind)
9105 {
9106 	char btf_type_name[BTF_MAX_NAME_SIZE];
9107 	int ret;
9108 
9109 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9110 		       "%s%s", prefix, name);
9111 	/* snprintf returns the number of characters written excluding the
9112 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9113 	 * indicates truncation.
9114 	 */
9115 	if (ret < 0 || ret >= sizeof(btf_type_name))
9116 		return -ENAMETOOLONG;
9117 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9118 }
9119 
9120 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9121 				     enum bpf_attach_type attach_type)
9122 {
9123 	const char *prefix;
9124 	int kind;
9125 
9126 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9127 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9128 }
9129 
9130 int libbpf_find_vmlinux_btf_id(const char *name,
9131 			       enum bpf_attach_type attach_type)
9132 {
9133 	struct btf *btf;
9134 	int err;
9135 
9136 	btf = btf__load_vmlinux_btf();
9137 	err = libbpf_get_error(btf);
9138 	if (err) {
9139 		pr_warn("vmlinux BTF is not found\n");
9140 		return libbpf_err(err);
9141 	}
9142 
9143 	err = find_attach_btf_id(btf, name, attach_type);
9144 	if (err <= 0)
9145 		pr_warn("%s is not found in vmlinux BTF\n", name);
9146 
9147 	btf__free(btf);
9148 	return libbpf_err(err);
9149 }
9150 
9151 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9152 {
9153 	struct bpf_prog_info info = {};
9154 	__u32 info_len = sizeof(info);
9155 	struct btf *btf;
9156 	int err;
9157 
9158 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9159 	if (err) {
9160 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9161 			attach_prog_fd, err);
9162 		return err;
9163 	}
9164 
9165 	err = -EINVAL;
9166 	if (!info.btf_id) {
9167 		pr_warn("The target program doesn't have BTF\n");
9168 		goto out;
9169 	}
9170 	btf = btf__load_from_kernel_by_id(info.btf_id);
9171 	err = libbpf_get_error(btf);
9172 	if (err) {
9173 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9174 		goto out;
9175 	}
9176 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9177 	btf__free(btf);
9178 	if (err <= 0) {
9179 		pr_warn("%s is not found in prog's BTF\n", name);
9180 		goto out;
9181 	}
9182 out:
9183 	return err;
9184 }
9185 
9186 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9187 			      enum bpf_attach_type attach_type,
9188 			      int *btf_obj_fd, int *btf_type_id)
9189 {
9190 	int ret, i;
9191 
9192 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9193 	if (ret > 0) {
9194 		*btf_obj_fd = 0; /* vmlinux BTF */
9195 		*btf_type_id = ret;
9196 		return 0;
9197 	}
9198 	if (ret != -ENOENT)
9199 		return ret;
9200 
9201 	ret = load_module_btfs(obj);
9202 	if (ret)
9203 		return ret;
9204 
9205 	for (i = 0; i < obj->btf_module_cnt; i++) {
9206 		const struct module_btf *mod = &obj->btf_modules[i];
9207 
9208 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9209 		if (ret > 0) {
9210 			*btf_obj_fd = mod->fd;
9211 			*btf_type_id = ret;
9212 			return 0;
9213 		}
9214 		if (ret == -ENOENT)
9215 			continue;
9216 
9217 		return ret;
9218 	}
9219 
9220 	return -ESRCH;
9221 }
9222 
9223 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9224 				     int *btf_obj_fd, int *btf_type_id)
9225 {
9226 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9227 	__u32 attach_prog_fd = prog->attach_prog_fd;
9228 	int err = 0;
9229 
9230 	/* BPF program's BTF ID */
9231 	if (attach_prog_fd) {
9232 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9233 		if (err < 0) {
9234 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9235 				 attach_prog_fd, attach_name, err);
9236 			return err;
9237 		}
9238 		*btf_obj_fd = 0;
9239 		*btf_type_id = err;
9240 		return 0;
9241 	}
9242 
9243 	/* kernel/module BTF ID */
9244 	if (prog->obj->gen_loader) {
9245 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9246 		*btf_obj_fd = 0;
9247 		*btf_type_id = 1;
9248 	} else {
9249 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9250 	}
9251 	if (err) {
9252 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9253 		return err;
9254 	}
9255 	return 0;
9256 }
9257 
9258 int libbpf_attach_type_by_name(const char *name,
9259 			       enum bpf_attach_type *attach_type)
9260 {
9261 	char *type_names;
9262 	const struct bpf_sec_def *sec_def;
9263 
9264 	if (!name)
9265 		return libbpf_err(-EINVAL);
9266 
9267 	sec_def = find_sec_def(name);
9268 	if (!sec_def) {
9269 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9270 		type_names = libbpf_get_type_names(true);
9271 		if (type_names != NULL) {
9272 			pr_debug("attachable section(type) names are:%s\n", type_names);
9273 			free(type_names);
9274 		}
9275 
9276 		return libbpf_err(-EINVAL);
9277 	}
9278 
9279 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9280 		return libbpf_err(-EINVAL);
9281 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9282 		return libbpf_err(-EINVAL);
9283 
9284 	*attach_type = sec_def->expected_attach_type;
9285 	return 0;
9286 }
9287 
9288 int bpf_map__fd(const struct bpf_map *map)
9289 {
9290 	return map ? map->fd : libbpf_err(-EINVAL);
9291 }
9292 
9293 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9294 {
9295 	return map ? &map->def : libbpf_err_ptr(-EINVAL);
9296 }
9297 
9298 static bool map_uses_real_name(const struct bpf_map *map)
9299 {
9300 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9301 	 * their user-visible name differs from kernel-visible name. Users see
9302 	 * such map's corresponding ELF section name as a map name.
9303 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9304 	 * maps to know which name has to be returned to the user.
9305 	 */
9306 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9307 		return true;
9308 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9309 		return true;
9310 	return false;
9311 }
9312 
9313 const char *bpf_map__name(const struct bpf_map *map)
9314 {
9315 	if (!map)
9316 		return NULL;
9317 
9318 	if (map_uses_real_name(map))
9319 		return map->real_name;
9320 
9321 	return map->name;
9322 }
9323 
9324 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9325 {
9326 	return map->def.type;
9327 }
9328 
9329 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9330 {
9331 	if (map->fd >= 0)
9332 		return libbpf_err(-EBUSY);
9333 	map->def.type = type;
9334 	return 0;
9335 }
9336 
9337 __u32 bpf_map__map_flags(const struct bpf_map *map)
9338 {
9339 	return map->def.map_flags;
9340 }
9341 
9342 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9343 {
9344 	if (map->fd >= 0)
9345 		return libbpf_err(-EBUSY);
9346 	map->def.map_flags = flags;
9347 	return 0;
9348 }
9349 
9350 __u64 bpf_map__map_extra(const struct bpf_map *map)
9351 {
9352 	return map->map_extra;
9353 }
9354 
9355 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9356 {
9357 	if (map->fd >= 0)
9358 		return libbpf_err(-EBUSY);
9359 	map->map_extra = map_extra;
9360 	return 0;
9361 }
9362 
9363 __u32 bpf_map__numa_node(const struct bpf_map *map)
9364 {
9365 	return map->numa_node;
9366 }
9367 
9368 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9369 {
9370 	if (map->fd >= 0)
9371 		return libbpf_err(-EBUSY);
9372 	map->numa_node = numa_node;
9373 	return 0;
9374 }
9375 
9376 __u32 bpf_map__key_size(const struct bpf_map *map)
9377 {
9378 	return map->def.key_size;
9379 }
9380 
9381 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9382 {
9383 	if (map->fd >= 0)
9384 		return libbpf_err(-EBUSY);
9385 	map->def.key_size = size;
9386 	return 0;
9387 }
9388 
9389 __u32 bpf_map__value_size(const struct bpf_map *map)
9390 {
9391 	return map->def.value_size;
9392 }
9393 
9394 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9395 {
9396 	if (map->fd >= 0)
9397 		return libbpf_err(-EBUSY);
9398 	map->def.value_size = size;
9399 	return 0;
9400 }
9401 
9402 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9403 {
9404 	return map ? map->btf_key_type_id : 0;
9405 }
9406 
9407 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9408 {
9409 	return map ? map->btf_value_type_id : 0;
9410 }
9411 
9412 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9413 		     bpf_map_clear_priv_t clear_priv)
9414 {
9415 	if (!map)
9416 		return libbpf_err(-EINVAL);
9417 
9418 	if (map->priv) {
9419 		if (map->clear_priv)
9420 			map->clear_priv(map, map->priv);
9421 	}
9422 
9423 	map->priv = priv;
9424 	map->clear_priv = clear_priv;
9425 	return 0;
9426 }
9427 
9428 void *bpf_map__priv(const struct bpf_map *map)
9429 {
9430 	return map ? map->priv : libbpf_err_ptr(-EINVAL);
9431 }
9432 
9433 int bpf_map__set_initial_value(struct bpf_map *map,
9434 			       const void *data, size_t size)
9435 {
9436 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9437 	    size != map->def.value_size || map->fd >= 0)
9438 		return libbpf_err(-EINVAL);
9439 
9440 	memcpy(map->mmaped, data, size);
9441 	return 0;
9442 }
9443 
9444 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9445 {
9446 	if (!map->mmaped)
9447 		return NULL;
9448 	*psize = map->def.value_size;
9449 	return map->mmaped;
9450 }
9451 
9452 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9453 {
9454 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9455 }
9456 
9457 bool bpf_map__is_internal(const struct bpf_map *map)
9458 {
9459 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9460 }
9461 
9462 __u32 bpf_map__ifindex(const struct bpf_map *map)
9463 {
9464 	return map->map_ifindex;
9465 }
9466 
9467 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9468 {
9469 	if (map->fd >= 0)
9470 		return libbpf_err(-EBUSY);
9471 	map->map_ifindex = ifindex;
9472 	return 0;
9473 }
9474 
9475 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9476 {
9477 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9478 		pr_warn("error: unsupported map type\n");
9479 		return libbpf_err(-EINVAL);
9480 	}
9481 	if (map->inner_map_fd != -1) {
9482 		pr_warn("error: inner_map_fd already specified\n");
9483 		return libbpf_err(-EINVAL);
9484 	}
9485 	if (map->inner_map) {
9486 		bpf_map__destroy(map->inner_map);
9487 		zfree(&map->inner_map);
9488 	}
9489 	map->inner_map_fd = fd;
9490 	return 0;
9491 }
9492 
9493 static struct bpf_map *
9494 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9495 {
9496 	ssize_t idx;
9497 	struct bpf_map *s, *e;
9498 
9499 	if (!obj || !obj->maps)
9500 		return errno = EINVAL, NULL;
9501 
9502 	s = obj->maps;
9503 	e = obj->maps + obj->nr_maps;
9504 
9505 	if ((m < s) || (m >= e)) {
9506 		pr_warn("error in %s: map handler doesn't belong to object\n",
9507 			 __func__);
9508 		return errno = EINVAL, NULL;
9509 	}
9510 
9511 	idx = (m - obj->maps) + i;
9512 	if (idx >= obj->nr_maps || idx < 0)
9513 		return NULL;
9514 	return &obj->maps[idx];
9515 }
9516 
9517 struct bpf_map *
9518 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9519 {
9520 	return bpf_object__next_map(obj, prev);
9521 }
9522 
9523 struct bpf_map *
9524 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9525 {
9526 	if (prev == NULL)
9527 		return obj->maps;
9528 
9529 	return __bpf_map__iter(prev, obj, 1);
9530 }
9531 
9532 struct bpf_map *
9533 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9534 {
9535 	return bpf_object__prev_map(obj, next);
9536 }
9537 
9538 struct bpf_map *
9539 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9540 {
9541 	if (next == NULL) {
9542 		if (!obj->nr_maps)
9543 			return NULL;
9544 		return obj->maps + obj->nr_maps - 1;
9545 	}
9546 
9547 	return __bpf_map__iter(next, obj, -1);
9548 }
9549 
9550 struct bpf_map *
9551 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9552 {
9553 	struct bpf_map *pos;
9554 
9555 	bpf_object__for_each_map(pos, obj) {
9556 		/* if it's a special internal map name (which always starts
9557 		 * with dot) then check if that special name matches the
9558 		 * real map name (ELF section name)
9559 		 */
9560 		if (name[0] == '.') {
9561 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9562 				return pos;
9563 			continue;
9564 		}
9565 		/* otherwise map name has to be an exact match */
9566 		if (map_uses_real_name(pos)) {
9567 			if (strcmp(pos->real_name, name) == 0)
9568 				return pos;
9569 			continue;
9570 		}
9571 		if (strcmp(pos->name, name) == 0)
9572 			return pos;
9573 	}
9574 	return errno = ENOENT, NULL;
9575 }
9576 
9577 int
9578 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9579 {
9580 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9581 }
9582 
9583 struct bpf_map *
9584 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9585 {
9586 	return libbpf_err_ptr(-ENOTSUP);
9587 }
9588 
9589 long libbpf_get_error(const void *ptr)
9590 {
9591 	if (!IS_ERR_OR_NULL(ptr))
9592 		return 0;
9593 
9594 	if (IS_ERR(ptr))
9595 		errno = -PTR_ERR(ptr);
9596 
9597 	/* If ptr == NULL, then errno should be already set by the failing
9598 	 * API, because libbpf never returns NULL on success and it now always
9599 	 * sets errno on error. So no extra errno handling for ptr == NULL
9600 	 * case.
9601 	 */
9602 	return -errno;
9603 }
9604 
9605 __attribute__((alias("bpf_prog_load_xattr2")))
9606 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9607 			struct bpf_object **pobj, int *prog_fd);
9608 
9609 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr,
9610 				struct bpf_object **pobj, int *prog_fd)
9611 {
9612 	struct bpf_object_open_attr open_attr = {};
9613 	struct bpf_program *prog, *first_prog = NULL;
9614 	struct bpf_object *obj;
9615 	struct bpf_map *map;
9616 	int err;
9617 
9618 	if (!attr)
9619 		return libbpf_err(-EINVAL);
9620 	if (!attr->file)
9621 		return libbpf_err(-EINVAL);
9622 
9623 	open_attr.file = attr->file;
9624 	open_attr.prog_type = attr->prog_type;
9625 
9626 	obj = __bpf_object__open_xattr(&open_attr, 0);
9627 	err = libbpf_get_error(obj);
9628 	if (err)
9629 		return libbpf_err(-ENOENT);
9630 
9631 	bpf_object__for_each_program(prog, obj) {
9632 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9633 		/*
9634 		 * to preserve backwards compatibility, bpf_prog_load treats
9635 		 * attr->prog_type, if specified, as an override to whatever
9636 		 * bpf_object__open guessed
9637 		 */
9638 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9639 			bpf_program__set_type(prog, attr->prog_type);
9640 			bpf_program__set_expected_attach_type(prog,
9641 							      attach_type);
9642 		}
9643 		if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) {
9644 			/*
9645 			 * we haven't guessed from section name and user
9646 			 * didn't provide a fallback type, too bad...
9647 			 */
9648 			bpf_object__close(obj);
9649 			return libbpf_err(-EINVAL);
9650 		}
9651 
9652 		prog->prog_ifindex = attr->ifindex;
9653 		prog->log_level = attr->log_level;
9654 		prog->prog_flags |= attr->prog_flags;
9655 		if (!first_prog)
9656 			first_prog = prog;
9657 	}
9658 
9659 	bpf_object__for_each_map(map, obj) {
9660 		if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9661 			map->map_ifindex = attr->ifindex;
9662 	}
9663 
9664 	if (!first_prog) {
9665 		pr_warn("object file doesn't contain bpf program\n");
9666 		bpf_object__close(obj);
9667 		return libbpf_err(-ENOENT);
9668 	}
9669 
9670 	err = bpf_object__load(obj);
9671 	if (err) {
9672 		bpf_object__close(obj);
9673 		return libbpf_err(err);
9674 	}
9675 
9676 	*pobj = obj;
9677 	*prog_fd = bpf_program__fd(first_prog);
9678 	return 0;
9679 }
9680 
9681 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1)
9682 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type,
9683 			     struct bpf_object **pobj, int *prog_fd)
9684 {
9685 	struct bpf_prog_load_attr attr;
9686 
9687 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9688 	attr.file = file;
9689 	attr.prog_type = type;
9690 	attr.expected_attach_type = 0;
9691 
9692 	return bpf_prog_load_xattr2(&attr, pobj, prog_fd);
9693 }
9694 
9695 struct bpf_link {
9696 	int (*detach)(struct bpf_link *link);
9697 	void (*dealloc)(struct bpf_link *link);
9698 	char *pin_path;		/* NULL, if not pinned */
9699 	int fd;			/* hook FD, -1 if not applicable */
9700 	bool disconnected;
9701 };
9702 
9703 /* Replace link's underlying BPF program with the new one */
9704 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9705 {
9706 	int ret;
9707 
9708 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9709 	return libbpf_err_errno(ret);
9710 }
9711 
9712 /* Release "ownership" of underlying BPF resource (typically, BPF program
9713  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9714  * link, when destructed through bpf_link__destroy() call won't attempt to
9715  * detach/unregisted that BPF resource. This is useful in situations where,
9716  * say, attached BPF program has to outlive userspace program that attached it
9717  * in the system. Depending on type of BPF program, though, there might be
9718  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9719  * exit of userspace program doesn't trigger automatic detachment and clean up
9720  * inside the kernel.
9721  */
9722 void bpf_link__disconnect(struct bpf_link *link)
9723 {
9724 	link->disconnected = true;
9725 }
9726 
9727 int bpf_link__destroy(struct bpf_link *link)
9728 {
9729 	int err = 0;
9730 
9731 	if (IS_ERR_OR_NULL(link))
9732 		return 0;
9733 
9734 	if (!link->disconnected && link->detach)
9735 		err = link->detach(link);
9736 	if (link->pin_path)
9737 		free(link->pin_path);
9738 	if (link->dealloc)
9739 		link->dealloc(link);
9740 	else
9741 		free(link);
9742 
9743 	return libbpf_err(err);
9744 }
9745 
9746 int bpf_link__fd(const struct bpf_link *link)
9747 {
9748 	return link->fd;
9749 }
9750 
9751 const char *bpf_link__pin_path(const struct bpf_link *link)
9752 {
9753 	return link->pin_path;
9754 }
9755 
9756 static int bpf_link__detach_fd(struct bpf_link *link)
9757 {
9758 	return libbpf_err_errno(close(link->fd));
9759 }
9760 
9761 struct bpf_link *bpf_link__open(const char *path)
9762 {
9763 	struct bpf_link *link;
9764 	int fd;
9765 
9766 	fd = bpf_obj_get(path);
9767 	if (fd < 0) {
9768 		fd = -errno;
9769 		pr_warn("failed to open link at %s: %d\n", path, fd);
9770 		return libbpf_err_ptr(fd);
9771 	}
9772 
9773 	link = calloc(1, sizeof(*link));
9774 	if (!link) {
9775 		close(fd);
9776 		return libbpf_err_ptr(-ENOMEM);
9777 	}
9778 	link->detach = &bpf_link__detach_fd;
9779 	link->fd = fd;
9780 
9781 	link->pin_path = strdup(path);
9782 	if (!link->pin_path) {
9783 		bpf_link__destroy(link);
9784 		return libbpf_err_ptr(-ENOMEM);
9785 	}
9786 
9787 	return link;
9788 }
9789 
9790 int bpf_link__detach(struct bpf_link *link)
9791 {
9792 	return bpf_link_detach(link->fd) ? -errno : 0;
9793 }
9794 
9795 int bpf_link__pin(struct bpf_link *link, const char *path)
9796 {
9797 	int err;
9798 
9799 	if (link->pin_path)
9800 		return libbpf_err(-EBUSY);
9801 	err = make_parent_dir(path);
9802 	if (err)
9803 		return libbpf_err(err);
9804 	err = check_path(path);
9805 	if (err)
9806 		return libbpf_err(err);
9807 
9808 	link->pin_path = strdup(path);
9809 	if (!link->pin_path)
9810 		return libbpf_err(-ENOMEM);
9811 
9812 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9813 		err = -errno;
9814 		zfree(&link->pin_path);
9815 		return libbpf_err(err);
9816 	}
9817 
9818 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9819 	return 0;
9820 }
9821 
9822 int bpf_link__unpin(struct bpf_link *link)
9823 {
9824 	int err;
9825 
9826 	if (!link->pin_path)
9827 		return libbpf_err(-EINVAL);
9828 
9829 	err = unlink(link->pin_path);
9830 	if (err != 0)
9831 		return -errno;
9832 
9833 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9834 	zfree(&link->pin_path);
9835 	return 0;
9836 }
9837 
9838 struct bpf_link_perf {
9839 	struct bpf_link link;
9840 	int perf_event_fd;
9841 	/* legacy kprobe support: keep track of probe identifier and type */
9842 	char *legacy_probe_name;
9843 	bool legacy_is_kprobe;
9844 	bool legacy_is_retprobe;
9845 };
9846 
9847 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9848 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9849 
9850 static int bpf_link_perf_detach(struct bpf_link *link)
9851 {
9852 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9853 	int err = 0;
9854 
9855 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9856 		err = -errno;
9857 
9858 	if (perf_link->perf_event_fd != link->fd)
9859 		close(perf_link->perf_event_fd);
9860 	close(link->fd);
9861 
9862 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9863 	if (perf_link->legacy_probe_name) {
9864 		if (perf_link->legacy_is_kprobe) {
9865 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9866 							 perf_link->legacy_is_retprobe);
9867 		} else {
9868 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9869 							 perf_link->legacy_is_retprobe);
9870 		}
9871 	}
9872 
9873 	return err;
9874 }
9875 
9876 static void bpf_link_perf_dealloc(struct bpf_link *link)
9877 {
9878 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9879 
9880 	free(perf_link->legacy_probe_name);
9881 	free(perf_link);
9882 }
9883 
9884 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9885 						     const struct bpf_perf_event_opts *opts)
9886 {
9887 	char errmsg[STRERR_BUFSIZE];
9888 	struct bpf_link_perf *link;
9889 	int prog_fd, link_fd = -1, err;
9890 
9891 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9892 		return libbpf_err_ptr(-EINVAL);
9893 
9894 	if (pfd < 0) {
9895 		pr_warn("prog '%s': invalid perf event FD %d\n",
9896 			prog->name, pfd);
9897 		return libbpf_err_ptr(-EINVAL);
9898 	}
9899 	prog_fd = bpf_program__fd(prog);
9900 	if (prog_fd < 0) {
9901 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9902 			prog->name);
9903 		return libbpf_err_ptr(-EINVAL);
9904 	}
9905 
9906 	link = calloc(1, sizeof(*link));
9907 	if (!link)
9908 		return libbpf_err_ptr(-ENOMEM);
9909 	link->link.detach = &bpf_link_perf_detach;
9910 	link->link.dealloc = &bpf_link_perf_dealloc;
9911 	link->perf_event_fd = pfd;
9912 
9913 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9914 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9915 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9916 
9917 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9918 		if (link_fd < 0) {
9919 			err = -errno;
9920 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9921 				prog->name, pfd,
9922 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9923 			goto err_out;
9924 		}
9925 		link->link.fd = link_fd;
9926 	} else {
9927 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9928 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9929 			err = -EOPNOTSUPP;
9930 			goto err_out;
9931 		}
9932 
9933 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9934 			err = -errno;
9935 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9936 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9937 			if (err == -EPROTO)
9938 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9939 					prog->name, pfd);
9940 			goto err_out;
9941 		}
9942 		link->link.fd = pfd;
9943 	}
9944 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9945 		err = -errno;
9946 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9947 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9948 		goto err_out;
9949 	}
9950 
9951 	return &link->link;
9952 err_out:
9953 	if (link_fd >= 0)
9954 		close(link_fd);
9955 	free(link);
9956 	return libbpf_err_ptr(err);
9957 }
9958 
9959 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9960 {
9961 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9962 }
9963 
9964 /*
9965  * this function is expected to parse integer in the range of [0, 2^31-1] from
9966  * given file using scanf format string fmt. If actual parsed value is
9967  * negative, the result might be indistinguishable from error
9968  */
9969 static int parse_uint_from_file(const char *file, const char *fmt)
9970 {
9971 	char buf[STRERR_BUFSIZE];
9972 	int err, ret;
9973 	FILE *f;
9974 
9975 	f = fopen(file, "r");
9976 	if (!f) {
9977 		err = -errno;
9978 		pr_debug("failed to open '%s': %s\n", file,
9979 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9980 		return err;
9981 	}
9982 	err = fscanf(f, fmt, &ret);
9983 	if (err != 1) {
9984 		err = err == EOF ? -EIO : -errno;
9985 		pr_debug("failed to parse '%s': %s\n", file,
9986 			libbpf_strerror_r(err, buf, sizeof(buf)));
9987 		fclose(f);
9988 		return err;
9989 	}
9990 	fclose(f);
9991 	return ret;
9992 }
9993 
9994 static int determine_kprobe_perf_type(void)
9995 {
9996 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9997 
9998 	return parse_uint_from_file(file, "%d\n");
9999 }
10000 
10001 static int determine_uprobe_perf_type(void)
10002 {
10003 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10004 
10005 	return parse_uint_from_file(file, "%d\n");
10006 }
10007 
10008 static int determine_kprobe_retprobe_bit(void)
10009 {
10010 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10011 
10012 	return parse_uint_from_file(file, "config:%d\n");
10013 }
10014 
10015 static int determine_uprobe_retprobe_bit(void)
10016 {
10017 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10018 
10019 	return parse_uint_from_file(file, "config:%d\n");
10020 }
10021 
10022 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10023 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10024 
10025 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10026 				 uint64_t offset, int pid, size_t ref_ctr_off)
10027 {
10028 	struct perf_event_attr attr = {};
10029 	char errmsg[STRERR_BUFSIZE];
10030 	int type, pfd, err;
10031 
10032 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10033 		return -EINVAL;
10034 
10035 	type = uprobe ? determine_uprobe_perf_type()
10036 		      : determine_kprobe_perf_type();
10037 	if (type < 0) {
10038 		pr_warn("failed to determine %s perf type: %s\n",
10039 			uprobe ? "uprobe" : "kprobe",
10040 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10041 		return type;
10042 	}
10043 	if (retprobe) {
10044 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10045 				 : determine_kprobe_retprobe_bit();
10046 
10047 		if (bit < 0) {
10048 			pr_warn("failed to determine %s retprobe bit: %s\n",
10049 				uprobe ? "uprobe" : "kprobe",
10050 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10051 			return bit;
10052 		}
10053 		attr.config |= 1 << bit;
10054 	}
10055 	attr.size = sizeof(attr);
10056 	attr.type = type;
10057 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10058 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10059 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10060 
10061 	/* pid filter is meaningful only for uprobes */
10062 	pfd = syscall(__NR_perf_event_open, &attr,
10063 		      pid < 0 ? -1 : pid /* pid */,
10064 		      pid == -1 ? 0 : -1 /* cpu */,
10065 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10066 	if (pfd < 0) {
10067 		err = -errno;
10068 		pr_warn("%s perf_event_open() failed: %s\n",
10069 			uprobe ? "uprobe" : "kprobe",
10070 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10071 		return err;
10072 	}
10073 	return pfd;
10074 }
10075 
10076 static int append_to_file(const char *file, const char *fmt, ...)
10077 {
10078 	int fd, n, err = 0;
10079 	va_list ap;
10080 
10081 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10082 	if (fd < 0)
10083 		return -errno;
10084 
10085 	va_start(ap, fmt);
10086 	n = vdprintf(fd, fmt, ap);
10087 	va_end(ap);
10088 
10089 	if (n < 0)
10090 		err = -errno;
10091 
10092 	close(fd);
10093 	return err;
10094 }
10095 
10096 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10097 					 const char *kfunc_name, size_t offset)
10098 {
10099 	static int index = 0;
10100 
10101 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10102 		 __sync_fetch_and_add(&index, 1));
10103 }
10104 
10105 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10106 				   const char *kfunc_name, size_t offset)
10107 {
10108 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10109 
10110 	return append_to_file(file, "%c:%s/%s %s+0x%zx",
10111 			      retprobe ? 'r' : 'p',
10112 			      retprobe ? "kretprobes" : "kprobes",
10113 			      probe_name, kfunc_name, offset);
10114 }
10115 
10116 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10117 {
10118 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10119 
10120 	return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
10121 }
10122 
10123 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10124 {
10125 	char file[256];
10126 
10127 	snprintf(file, sizeof(file),
10128 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
10129 		 retprobe ? "kretprobes" : "kprobes", probe_name);
10130 
10131 	return parse_uint_from_file(file, "%d\n");
10132 }
10133 
10134 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10135 					 const char *kfunc_name, size_t offset, int pid)
10136 {
10137 	struct perf_event_attr attr = {};
10138 	char errmsg[STRERR_BUFSIZE];
10139 	int type, pfd, err;
10140 
10141 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10142 	if (err < 0) {
10143 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10144 			kfunc_name, offset,
10145 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10146 		return err;
10147 	}
10148 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10149 	if (type < 0) {
10150 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10151 			kfunc_name, offset,
10152 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10153 		return type;
10154 	}
10155 	attr.size = sizeof(attr);
10156 	attr.config = type;
10157 	attr.type = PERF_TYPE_TRACEPOINT;
10158 
10159 	pfd = syscall(__NR_perf_event_open, &attr,
10160 		      pid < 0 ? -1 : pid, /* pid */
10161 		      pid == -1 ? 0 : -1, /* cpu */
10162 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10163 	if (pfd < 0) {
10164 		err = -errno;
10165 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10166 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10167 		return err;
10168 	}
10169 	return pfd;
10170 }
10171 
10172 struct bpf_link *
10173 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10174 				const char *func_name,
10175 				const struct bpf_kprobe_opts *opts)
10176 {
10177 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10178 	char errmsg[STRERR_BUFSIZE];
10179 	char *legacy_probe = NULL;
10180 	struct bpf_link *link;
10181 	size_t offset;
10182 	bool retprobe, legacy;
10183 	int pfd, err;
10184 
10185 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10186 		return libbpf_err_ptr(-EINVAL);
10187 
10188 	retprobe = OPTS_GET(opts, retprobe, false);
10189 	offset = OPTS_GET(opts, offset, 0);
10190 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10191 
10192 	legacy = determine_kprobe_perf_type() < 0;
10193 	if (!legacy) {
10194 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10195 					    func_name, offset,
10196 					    -1 /* pid */, 0 /* ref_ctr_off */);
10197 	} else {
10198 		char probe_name[256];
10199 
10200 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10201 					     func_name, offset);
10202 
10203 		legacy_probe = strdup(probe_name);
10204 		if (!legacy_probe)
10205 			return libbpf_err_ptr(-ENOMEM);
10206 
10207 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10208 						    offset, -1 /* pid */);
10209 	}
10210 	if (pfd < 0) {
10211 		err = -errno;
10212 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10213 			prog->name, retprobe ? "kretprobe" : "kprobe",
10214 			func_name, offset,
10215 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10216 		goto err_out;
10217 	}
10218 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10219 	err = libbpf_get_error(link);
10220 	if (err) {
10221 		close(pfd);
10222 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10223 			prog->name, retprobe ? "kretprobe" : "kprobe",
10224 			func_name, offset,
10225 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10226 		goto err_out;
10227 	}
10228 	if (legacy) {
10229 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10230 
10231 		perf_link->legacy_probe_name = legacy_probe;
10232 		perf_link->legacy_is_kprobe = true;
10233 		perf_link->legacy_is_retprobe = retprobe;
10234 	}
10235 
10236 	return link;
10237 err_out:
10238 	free(legacy_probe);
10239 	return libbpf_err_ptr(err);
10240 }
10241 
10242 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10243 					    bool retprobe,
10244 					    const char *func_name)
10245 {
10246 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10247 		.retprobe = retprobe,
10248 	);
10249 
10250 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10251 }
10252 
10253 /* Adapted from perf/util/string.c */
10254 static bool glob_match(const char *str, const char *pat)
10255 {
10256 	while (*str && *pat && *pat != '*') {
10257 		if (*pat == '?') {      /* Matches any single character */
10258 			str++;
10259 			pat++;
10260 			continue;
10261 		}
10262 		if (*str != *pat)
10263 			return false;
10264 		str++;
10265 		pat++;
10266 	}
10267 	/* Check wild card */
10268 	if (*pat == '*') {
10269 		while (*pat == '*')
10270 			pat++;
10271 		if (!*pat) /* Tail wild card matches all */
10272 			return true;
10273 		while (*str)
10274 			if (glob_match(str++, pat))
10275 				return true;
10276 	}
10277 	return !*str && !*pat;
10278 }
10279 
10280 struct kprobe_multi_resolve {
10281 	const char *pattern;
10282 	unsigned long *addrs;
10283 	size_t cap;
10284 	size_t cnt;
10285 };
10286 
10287 static int
10288 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10289 			const char *sym_name, void *ctx)
10290 {
10291 	struct kprobe_multi_resolve *res = ctx;
10292 	int err;
10293 
10294 	if (!glob_match(sym_name, res->pattern))
10295 		return 0;
10296 
10297 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10298 				res->cnt + 1);
10299 	if (err)
10300 		return err;
10301 
10302 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10303 	return 0;
10304 }
10305 
10306 struct bpf_link *
10307 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10308 				      const char *pattern,
10309 				      const struct bpf_kprobe_multi_opts *opts)
10310 {
10311 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10312 	struct kprobe_multi_resolve res = {
10313 		.pattern = pattern,
10314 	};
10315 	struct bpf_link *link = NULL;
10316 	char errmsg[STRERR_BUFSIZE];
10317 	const unsigned long *addrs;
10318 	int err, link_fd, prog_fd;
10319 	const __u64 *cookies;
10320 	const char **syms;
10321 	bool retprobe;
10322 	size_t cnt;
10323 
10324 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10325 		return libbpf_err_ptr(-EINVAL);
10326 
10327 	syms    = OPTS_GET(opts, syms, false);
10328 	addrs   = OPTS_GET(opts, addrs, false);
10329 	cnt     = OPTS_GET(opts, cnt, false);
10330 	cookies = OPTS_GET(opts, cookies, false);
10331 
10332 	if (!pattern && !addrs && !syms)
10333 		return libbpf_err_ptr(-EINVAL);
10334 	if (pattern && (addrs || syms || cookies || cnt))
10335 		return libbpf_err_ptr(-EINVAL);
10336 	if (!pattern && !cnt)
10337 		return libbpf_err_ptr(-EINVAL);
10338 	if (addrs && syms)
10339 		return libbpf_err_ptr(-EINVAL);
10340 
10341 	if (pattern) {
10342 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10343 		if (err)
10344 			goto error;
10345 		if (!res.cnt) {
10346 			err = -ENOENT;
10347 			goto error;
10348 		}
10349 		addrs = res.addrs;
10350 		cnt = res.cnt;
10351 	}
10352 
10353 	retprobe = OPTS_GET(opts, retprobe, false);
10354 
10355 	lopts.kprobe_multi.syms = syms;
10356 	lopts.kprobe_multi.addrs = addrs;
10357 	lopts.kprobe_multi.cookies = cookies;
10358 	lopts.kprobe_multi.cnt = cnt;
10359 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10360 
10361 	link = calloc(1, sizeof(*link));
10362 	if (!link) {
10363 		err = -ENOMEM;
10364 		goto error;
10365 	}
10366 	link->detach = &bpf_link__detach_fd;
10367 
10368 	prog_fd = bpf_program__fd(prog);
10369 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10370 	if (link_fd < 0) {
10371 		err = -errno;
10372 		pr_warn("prog '%s': failed to attach: %s\n",
10373 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10374 		goto error;
10375 	}
10376 	link->fd = link_fd;
10377 	free(res.addrs);
10378 	return link;
10379 
10380 error:
10381 	free(link);
10382 	free(res.addrs);
10383 	return libbpf_err_ptr(err);
10384 }
10385 
10386 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10387 {
10388 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10389 	unsigned long offset = 0;
10390 	const char *func_name;
10391 	char *func;
10392 	int n;
10393 
10394 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10395 	if (opts.retprobe)
10396 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10397 	else
10398 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10399 
10400 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10401 	if (n < 1) {
10402 		pr_warn("kprobe name is invalid: %s\n", func_name);
10403 		return -EINVAL;
10404 	}
10405 	if (opts.retprobe && offset != 0) {
10406 		free(func);
10407 		pr_warn("kretprobes do not support offset specification\n");
10408 		return -EINVAL;
10409 	}
10410 
10411 	opts.offset = offset;
10412 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10413 	free(func);
10414 	return libbpf_get_error(*link);
10415 }
10416 
10417 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10418 {
10419 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10420 	const char *spec;
10421 	char *pattern;
10422 	int n;
10423 
10424 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10425 	if (opts.retprobe)
10426 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10427 	else
10428 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10429 
10430 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10431 	if (n < 1) {
10432 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10433 		return -EINVAL;
10434 	}
10435 
10436 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10437 	free(pattern);
10438 	return libbpf_get_error(*link);
10439 }
10440 
10441 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10442 					 const char *binary_path, uint64_t offset)
10443 {
10444 	int i;
10445 
10446 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10447 
10448 	/* sanitize binary_path in the probe name */
10449 	for (i = 0; buf[i]; i++) {
10450 		if (!isalnum(buf[i]))
10451 			buf[i] = '_';
10452 	}
10453 }
10454 
10455 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10456 					  const char *binary_path, size_t offset)
10457 {
10458 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10459 
10460 	return append_to_file(file, "%c:%s/%s %s:0x%zx",
10461 			      retprobe ? 'r' : 'p',
10462 			      retprobe ? "uretprobes" : "uprobes",
10463 			      probe_name, binary_path, offset);
10464 }
10465 
10466 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10467 {
10468 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10469 
10470 	return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10471 }
10472 
10473 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10474 {
10475 	char file[512];
10476 
10477 	snprintf(file, sizeof(file),
10478 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
10479 		 retprobe ? "uretprobes" : "uprobes", probe_name);
10480 
10481 	return parse_uint_from_file(file, "%d\n");
10482 }
10483 
10484 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10485 					 const char *binary_path, size_t offset, int pid)
10486 {
10487 	struct perf_event_attr attr;
10488 	int type, pfd, err;
10489 
10490 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10491 	if (err < 0) {
10492 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10493 			binary_path, (size_t)offset, err);
10494 		return err;
10495 	}
10496 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10497 	if (type < 0) {
10498 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10499 			binary_path, offset, err);
10500 		return type;
10501 	}
10502 
10503 	memset(&attr, 0, sizeof(attr));
10504 	attr.size = sizeof(attr);
10505 	attr.config = type;
10506 	attr.type = PERF_TYPE_TRACEPOINT;
10507 
10508 	pfd = syscall(__NR_perf_event_open, &attr,
10509 		      pid < 0 ? -1 : pid, /* pid */
10510 		      pid == -1 ? 0 : -1, /* cpu */
10511 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10512 	if (pfd < 0) {
10513 		err = -errno;
10514 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10515 		return err;
10516 	}
10517 	return pfd;
10518 }
10519 
10520 LIBBPF_API struct bpf_link *
10521 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10522 				const char *binary_path, size_t func_offset,
10523 				const struct bpf_uprobe_opts *opts)
10524 {
10525 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10526 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10527 	struct bpf_link *link;
10528 	size_t ref_ctr_off;
10529 	int pfd, err;
10530 	bool retprobe, legacy;
10531 
10532 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10533 		return libbpf_err_ptr(-EINVAL);
10534 
10535 	retprobe = OPTS_GET(opts, retprobe, false);
10536 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10537 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10538 
10539 	legacy = determine_uprobe_perf_type() < 0;
10540 	if (!legacy) {
10541 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10542 					    func_offset, pid, ref_ctr_off);
10543 	} else {
10544 		char probe_name[512];
10545 
10546 		if (ref_ctr_off)
10547 			return libbpf_err_ptr(-EINVAL);
10548 
10549 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10550 					     binary_path, func_offset);
10551 
10552 		legacy_probe = strdup(probe_name);
10553 		if (!legacy_probe)
10554 			return libbpf_err_ptr(-ENOMEM);
10555 
10556 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10557 						    binary_path, func_offset, pid);
10558 	}
10559 	if (pfd < 0) {
10560 		err = -errno;
10561 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10562 			prog->name, retprobe ? "uretprobe" : "uprobe",
10563 			binary_path, func_offset,
10564 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10565 		goto err_out;
10566 	}
10567 
10568 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10569 	err = libbpf_get_error(link);
10570 	if (err) {
10571 		close(pfd);
10572 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10573 			prog->name, retprobe ? "uretprobe" : "uprobe",
10574 			binary_path, func_offset,
10575 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10576 		goto err_out;
10577 	}
10578 	if (legacy) {
10579 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10580 
10581 		perf_link->legacy_probe_name = legacy_probe;
10582 		perf_link->legacy_is_kprobe = false;
10583 		perf_link->legacy_is_retprobe = retprobe;
10584 	}
10585 	return link;
10586 err_out:
10587 	free(legacy_probe);
10588 	return libbpf_err_ptr(err);
10589 
10590 }
10591 
10592 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10593 					    bool retprobe, pid_t pid,
10594 					    const char *binary_path,
10595 					    size_t func_offset)
10596 {
10597 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10598 
10599 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10600 }
10601 
10602 static int determine_tracepoint_id(const char *tp_category,
10603 				   const char *tp_name)
10604 {
10605 	char file[PATH_MAX];
10606 	int ret;
10607 
10608 	ret = snprintf(file, sizeof(file),
10609 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
10610 		       tp_category, tp_name);
10611 	if (ret < 0)
10612 		return -errno;
10613 	if (ret >= sizeof(file)) {
10614 		pr_debug("tracepoint %s/%s path is too long\n",
10615 			 tp_category, tp_name);
10616 		return -E2BIG;
10617 	}
10618 	return parse_uint_from_file(file, "%d\n");
10619 }
10620 
10621 static int perf_event_open_tracepoint(const char *tp_category,
10622 				      const char *tp_name)
10623 {
10624 	struct perf_event_attr attr = {};
10625 	char errmsg[STRERR_BUFSIZE];
10626 	int tp_id, pfd, err;
10627 
10628 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10629 	if (tp_id < 0) {
10630 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10631 			tp_category, tp_name,
10632 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10633 		return tp_id;
10634 	}
10635 
10636 	attr.type = PERF_TYPE_TRACEPOINT;
10637 	attr.size = sizeof(attr);
10638 	attr.config = tp_id;
10639 
10640 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10641 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10642 	if (pfd < 0) {
10643 		err = -errno;
10644 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10645 			tp_category, tp_name,
10646 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10647 		return err;
10648 	}
10649 	return pfd;
10650 }
10651 
10652 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10653 						     const char *tp_category,
10654 						     const char *tp_name,
10655 						     const struct bpf_tracepoint_opts *opts)
10656 {
10657 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10658 	char errmsg[STRERR_BUFSIZE];
10659 	struct bpf_link *link;
10660 	int pfd, err;
10661 
10662 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
10663 		return libbpf_err_ptr(-EINVAL);
10664 
10665 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10666 
10667 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
10668 	if (pfd < 0) {
10669 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10670 			prog->name, tp_category, tp_name,
10671 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10672 		return libbpf_err_ptr(pfd);
10673 	}
10674 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10675 	err = libbpf_get_error(link);
10676 	if (err) {
10677 		close(pfd);
10678 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10679 			prog->name, tp_category, tp_name,
10680 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10681 		return libbpf_err_ptr(err);
10682 	}
10683 	return link;
10684 }
10685 
10686 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
10687 						const char *tp_category,
10688 						const char *tp_name)
10689 {
10690 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
10691 }
10692 
10693 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10694 {
10695 	char *sec_name, *tp_cat, *tp_name;
10696 
10697 	sec_name = strdup(prog->sec_name);
10698 	if (!sec_name)
10699 		return -ENOMEM;
10700 
10701 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
10702 	if (str_has_pfx(prog->sec_name, "tp/"))
10703 		tp_cat = sec_name + sizeof("tp/") - 1;
10704 	else
10705 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
10706 	tp_name = strchr(tp_cat, '/');
10707 	if (!tp_name) {
10708 		free(sec_name);
10709 		return -EINVAL;
10710 	}
10711 	*tp_name = '\0';
10712 	tp_name++;
10713 
10714 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10715 	free(sec_name);
10716 	return libbpf_get_error(*link);
10717 }
10718 
10719 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
10720 						    const char *tp_name)
10721 {
10722 	char errmsg[STRERR_BUFSIZE];
10723 	struct bpf_link *link;
10724 	int prog_fd, pfd;
10725 
10726 	prog_fd = bpf_program__fd(prog);
10727 	if (prog_fd < 0) {
10728 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10729 		return libbpf_err_ptr(-EINVAL);
10730 	}
10731 
10732 	link = calloc(1, sizeof(*link));
10733 	if (!link)
10734 		return libbpf_err_ptr(-ENOMEM);
10735 	link->detach = &bpf_link__detach_fd;
10736 
10737 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10738 	if (pfd < 0) {
10739 		pfd = -errno;
10740 		free(link);
10741 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10742 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10743 		return libbpf_err_ptr(pfd);
10744 	}
10745 	link->fd = pfd;
10746 	return link;
10747 }
10748 
10749 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10750 {
10751 	static const char *const prefixes[] = {
10752 		"raw_tp/",
10753 		"raw_tracepoint/",
10754 		"raw_tp.w/",
10755 		"raw_tracepoint.w/",
10756 	};
10757 	size_t i;
10758 	const char *tp_name = NULL;
10759 
10760 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
10761 		if (str_has_pfx(prog->sec_name, prefixes[i])) {
10762 			tp_name = prog->sec_name + strlen(prefixes[i]);
10763 			break;
10764 		}
10765 	}
10766 	if (!tp_name) {
10767 		pr_warn("prog '%s': invalid section name '%s'\n",
10768 			prog->name, prog->sec_name);
10769 		return -EINVAL;
10770 	}
10771 
10772 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
10773 	return libbpf_get_error(link);
10774 }
10775 
10776 /* Common logic for all BPF program types that attach to a btf_id */
10777 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog)
10778 {
10779 	char errmsg[STRERR_BUFSIZE];
10780 	struct bpf_link *link;
10781 	int prog_fd, pfd;
10782 
10783 	prog_fd = bpf_program__fd(prog);
10784 	if (prog_fd < 0) {
10785 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10786 		return libbpf_err_ptr(-EINVAL);
10787 	}
10788 
10789 	link = calloc(1, sizeof(*link));
10790 	if (!link)
10791 		return libbpf_err_ptr(-ENOMEM);
10792 	link->detach = &bpf_link__detach_fd;
10793 
10794 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10795 	if (pfd < 0) {
10796 		pfd = -errno;
10797 		free(link);
10798 		pr_warn("prog '%s': failed to attach: %s\n",
10799 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10800 		return libbpf_err_ptr(pfd);
10801 	}
10802 	link->fd = pfd;
10803 	return (struct bpf_link *)link;
10804 }
10805 
10806 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
10807 {
10808 	return bpf_program__attach_btf_id(prog);
10809 }
10810 
10811 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
10812 {
10813 	return bpf_program__attach_btf_id(prog);
10814 }
10815 
10816 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10817 {
10818 	*link = bpf_program__attach_trace(prog);
10819 	return libbpf_get_error(*link);
10820 }
10821 
10822 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10823 {
10824 	*link = bpf_program__attach_lsm(prog);
10825 	return libbpf_get_error(*link);
10826 }
10827 
10828 static struct bpf_link *
10829 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
10830 		       const char *target_name)
10831 {
10832 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10833 			    .target_btf_id = btf_id);
10834 	enum bpf_attach_type attach_type;
10835 	char errmsg[STRERR_BUFSIZE];
10836 	struct bpf_link *link;
10837 	int prog_fd, link_fd;
10838 
10839 	prog_fd = bpf_program__fd(prog);
10840 	if (prog_fd < 0) {
10841 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10842 		return libbpf_err_ptr(-EINVAL);
10843 	}
10844 
10845 	link = calloc(1, sizeof(*link));
10846 	if (!link)
10847 		return libbpf_err_ptr(-ENOMEM);
10848 	link->detach = &bpf_link__detach_fd;
10849 
10850 	attach_type = bpf_program__expected_attach_type(prog);
10851 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10852 	if (link_fd < 0) {
10853 		link_fd = -errno;
10854 		free(link);
10855 		pr_warn("prog '%s': failed to attach to %s: %s\n",
10856 			prog->name, target_name,
10857 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10858 		return libbpf_err_ptr(link_fd);
10859 	}
10860 	link->fd = link_fd;
10861 	return link;
10862 }
10863 
10864 struct bpf_link *
10865 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
10866 {
10867 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10868 }
10869 
10870 struct bpf_link *
10871 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
10872 {
10873 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10874 }
10875 
10876 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
10877 {
10878 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
10879 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10880 }
10881 
10882 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
10883 					      int target_fd,
10884 					      const char *attach_func_name)
10885 {
10886 	int btf_id;
10887 
10888 	if (!!target_fd != !!attach_func_name) {
10889 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10890 			prog->name);
10891 		return libbpf_err_ptr(-EINVAL);
10892 	}
10893 
10894 	if (prog->type != BPF_PROG_TYPE_EXT) {
10895 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10896 			prog->name);
10897 		return libbpf_err_ptr(-EINVAL);
10898 	}
10899 
10900 	if (target_fd) {
10901 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10902 		if (btf_id < 0)
10903 			return libbpf_err_ptr(btf_id);
10904 
10905 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10906 	} else {
10907 		/* no target, so use raw_tracepoint_open for compatibility
10908 		 * with old kernels
10909 		 */
10910 		return bpf_program__attach_trace(prog);
10911 	}
10912 }
10913 
10914 struct bpf_link *
10915 bpf_program__attach_iter(const struct bpf_program *prog,
10916 			 const struct bpf_iter_attach_opts *opts)
10917 {
10918 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10919 	char errmsg[STRERR_BUFSIZE];
10920 	struct bpf_link *link;
10921 	int prog_fd, link_fd;
10922 	__u32 target_fd = 0;
10923 
10924 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10925 		return libbpf_err_ptr(-EINVAL);
10926 
10927 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10928 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10929 
10930 	prog_fd = bpf_program__fd(prog);
10931 	if (prog_fd < 0) {
10932 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10933 		return libbpf_err_ptr(-EINVAL);
10934 	}
10935 
10936 	link = calloc(1, sizeof(*link));
10937 	if (!link)
10938 		return libbpf_err_ptr(-ENOMEM);
10939 	link->detach = &bpf_link__detach_fd;
10940 
10941 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10942 				  &link_create_opts);
10943 	if (link_fd < 0) {
10944 		link_fd = -errno;
10945 		free(link);
10946 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10947 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10948 		return libbpf_err_ptr(link_fd);
10949 	}
10950 	link->fd = link_fd;
10951 	return link;
10952 }
10953 
10954 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10955 {
10956 	*link = bpf_program__attach_iter(prog, NULL);
10957 	return libbpf_get_error(*link);
10958 }
10959 
10960 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
10961 {
10962 	struct bpf_link *link = NULL;
10963 	int err;
10964 
10965 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
10966 		return libbpf_err_ptr(-EOPNOTSUPP);
10967 
10968 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
10969 	if (err)
10970 		return libbpf_err_ptr(err);
10971 
10972 	/* When calling bpf_program__attach() explicitly, auto-attach support
10973 	 * is expected to work, so NULL returned link is considered an error.
10974 	 * This is different for skeleton's attach, see comment in
10975 	 * bpf_object__attach_skeleton().
10976 	 */
10977 	if (!link)
10978 		return libbpf_err_ptr(-EOPNOTSUPP);
10979 
10980 	return link;
10981 }
10982 
10983 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10984 {
10985 	__u32 zero = 0;
10986 
10987 	if (bpf_map_delete_elem(link->fd, &zero))
10988 		return -errno;
10989 
10990 	return 0;
10991 }
10992 
10993 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
10994 {
10995 	struct bpf_struct_ops *st_ops;
10996 	struct bpf_link *link;
10997 	__u32 i, zero = 0;
10998 	int err;
10999 
11000 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11001 		return libbpf_err_ptr(-EINVAL);
11002 
11003 	link = calloc(1, sizeof(*link));
11004 	if (!link)
11005 		return libbpf_err_ptr(-EINVAL);
11006 
11007 	st_ops = map->st_ops;
11008 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11009 		struct bpf_program *prog = st_ops->progs[i];
11010 		void *kern_data;
11011 		int prog_fd;
11012 
11013 		if (!prog)
11014 			continue;
11015 
11016 		prog_fd = bpf_program__fd(prog);
11017 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11018 		*(unsigned long *)kern_data = prog_fd;
11019 	}
11020 
11021 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11022 	if (err) {
11023 		err = -errno;
11024 		free(link);
11025 		return libbpf_err_ptr(err);
11026 	}
11027 
11028 	link->detach = bpf_link__detach_struct_ops;
11029 	link->fd = map->fd;
11030 
11031 	return link;
11032 }
11033 
11034 static enum bpf_perf_event_ret
11035 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11036 		       void **copy_mem, size_t *copy_size,
11037 		       bpf_perf_event_print_t fn, void *private_data)
11038 {
11039 	struct perf_event_mmap_page *header = mmap_mem;
11040 	__u64 data_head = ring_buffer_read_head(header);
11041 	__u64 data_tail = header->data_tail;
11042 	void *base = ((__u8 *)header) + page_size;
11043 	int ret = LIBBPF_PERF_EVENT_CONT;
11044 	struct perf_event_header *ehdr;
11045 	size_t ehdr_size;
11046 
11047 	while (data_head != data_tail) {
11048 		ehdr = base + (data_tail & (mmap_size - 1));
11049 		ehdr_size = ehdr->size;
11050 
11051 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11052 			void *copy_start = ehdr;
11053 			size_t len_first = base + mmap_size - copy_start;
11054 			size_t len_secnd = ehdr_size - len_first;
11055 
11056 			if (*copy_size < ehdr_size) {
11057 				free(*copy_mem);
11058 				*copy_mem = malloc(ehdr_size);
11059 				if (!*copy_mem) {
11060 					*copy_size = 0;
11061 					ret = LIBBPF_PERF_EVENT_ERROR;
11062 					break;
11063 				}
11064 				*copy_size = ehdr_size;
11065 			}
11066 
11067 			memcpy(*copy_mem, copy_start, len_first);
11068 			memcpy(*copy_mem + len_first, base, len_secnd);
11069 			ehdr = *copy_mem;
11070 		}
11071 
11072 		ret = fn(ehdr, private_data);
11073 		data_tail += ehdr_size;
11074 		if (ret != LIBBPF_PERF_EVENT_CONT)
11075 			break;
11076 	}
11077 
11078 	ring_buffer_write_tail(header, data_tail);
11079 	return libbpf_err(ret);
11080 }
11081 
11082 __attribute__((alias("perf_event_read_simple")))
11083 enum bpf_perf_event_ret
11084 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11085 			   void **copy_mem, size_t *copy_size,
11086 			   bpf_perf_event_print_t fn, void *private_data);
11087 
11088 struct perf_buffer;
11089 
11090 struct perf_buffer_params {
11091 	struct perf_event_attr *attr;
11092 	/* if event_cb is specified, it takes precendence */
11093 	perf_buffer_event_fn event_cb;
11094 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11095 	perf_buffer_sample_fn sample_cb;
11096 	perf_buffer_lost_fn lost_cb;
11097 	void *ctx;
11098 	int cpu_cnt;
11099 	int *cpus;
11100 	int *map_keys;
11101 };
11102 
11103 struct perf_cpu_buf {
11104 	struct perf_buffer *pb;
11105 	void *base; /* mmap()'ed memory */
11106 	void *buf; /* for reconstructing segmented data */
11107 	size_t buf_size;
11108 	int fd;
11109 	int cpu;
11110 	int map_key;
11111 };
11112 
11113 struct perf_buffer {
11114 	perf_buffer_event_fn event_cb;
11115 	perf_buffer_sample_fn sample_cb;
11116 	perf_buffer_lost_fn lost_cb;
11117 	void *ctx; /* passed into callbacks */
11118 
11119 	size_t page_size;
11120 	size_t mmap_size;
11121 	struct perf_cpu_buf **cpu_bufs;
11122 	struct epoll_event *events;
11123 	int cpu_cnt; /* number of allocated CPU buffers */
11124 	int epoll_fd; /* perf event FD */
11125 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11126 };
11127 
11128 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11129 				      struct perf_cpu_buf *cpu_buf)
11130 {
11131 	if (!cpu_buf)
11132 		return;
11133 	if (cpu_buf->base &&
11134 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11135 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11136 	if (cpu_buf->fd >= 0) {
11137 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11138 		close(cpu_buf->fd);
11139 	}
11140 	free(cpu_buf->buf);
11141 	free(cpu_buf);
11142 }
11143 
11144 void perf_buffer__free(struct perf_buffer *pb)
11145 {
11146 	int i;
11147 
11148 	if (IS_ERR_OR_NULL(pb))
11149 		return;
11150 	if (pb->cpu_bufs) {
11151 		for (i = 0; i < pb->cpu_cnt; i++) {
11152 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11153 
11154 			if (!cpu_buf)
11155 				continue;
11156 
11157 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11158 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11159 		}
11160 		free(pb->cpu_bufs);
11161 	}
11162 	if (pb->epoll_fd >= 0)
11163 		close(pb->epoll_fd);
11164 	free(pb->events);
11165 	free(pb);
11166 }
11167 
11168 static struct perf_cpu_buf *
11169 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11170 			  int cpu, int map_key)
11171 {
11172 	struct perf_cpu_buf *cpu_buf;
11173 	char msg[STRERR_BUFSIZE];
11174 	int err;
11175 
11176 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11177 	if (!cpu_buf)
11178 		return ERR_PTR(-ENOMEM);
11179 
11180 	cpu_buf->pb = pb;
11181 	cpu_buf->cpu = cpu;
11182 	cpu_buf->map_key = map_key;
11183 
11184 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11185 			      -1, PERF_FLAG_FD_CLOEXEC);
11186 	if (cpu_buf->fd < 0) {
11187 		err = -errno;
11188 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11189 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11190 		goto error;
11191 	}
11192 
11193 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11194 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11195 			     cpu_buf->fd, 0);
11196 	if (cpu_buf->base == MAP_FAILED) {
11197 		cpu_buf->base = NULL;
11198 		err = -errno;
11199 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11200 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11201 		goto error;
11202 	}
11203 
11204 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11205 		err = -errno;
11206 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11207 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11208 		goto error;
11209 	}
11210 
11211 	return cpu_buf;
11212 
11213 error:
11214 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11215 	return (struct perf_cpu_buf *)ERR_PTR(err);
11216 }
11217 
11218 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11219 					      struct perf_buffer_params *p);
11220 
11221 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0)
11222 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt,
11223 					    perf_buffer_sample_fn sample_cb,
11224 					    perf_buffer_lost_fn lost_cb,
11225 					    void *ctx,
11226 					    const struct perf_buffer_opts *opts)
11227 {
11228 	struct perf_buffer_params p = {};
11229 	struct perf_event_attr attr = {};
11230 
11231 	if (!OPTS_VALID(opts, perf_buffer_opts))
11232 		return libbpf_err_ptr(-EINVAL);
11233 
11234 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11235 	attr.type = PERF_TYPE_SOFTWARE;
11236 	attr.sample_type = PERF_SAMPLE_RAW;
11237 	attr.sample_period = 1;
11238 	attr.wakeup_events = 1;
11239 
11240 	p.attr = &attr;
11241 	p.sample_cb = sample_cb;
11242 	p.lost_cb = lost_cb;
11243 	p.ctx = ctx;
11244 
11245 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11246 }
11247 
11248 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4)
11249 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt,
11250 						const struct perf_buffer_opts *opts)
11251 {
11252 	return perf_buffer__new_v0_6_0(map_fd, page_cnt,
11253 				       opts ? opts->sample_cb : NULL,
11254 				       opts ? opts->lost_cb : NULL,
11255 				       opts ? opts->ctx : NULL,
11256 				       NULL);
11257 }
11258 
11259 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0)
11260 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt,
11261 						struct perf_event_attr *attr,
11262 						perf_buffer_event_fn event_cb, void *ctx,
11263 						const struct perf_buffer_raw_opts *opts)
11264 {
11265 	struct perf_buffer_params p = {};
11266 
11267 	if (!attr)
11268 		return libbpf_err_ptr(-EINVAL);
11269 
11270 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11271 		return libbpf_err_ptr(-EINVAL);
11272 
11273 	p.attr = attr;
11274 	p.event_cb = event_cb;
11275 	p.ctx = ctx;
11276 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11277 	p.cpus = OPTS_GET(opts, cpus, NULL);
11278 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11279 
11280 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11281 }
11282 
11283 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4)
11284 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt,
11285 						    const struct perf_buffer_raw_opts *opts)
11286 {
11287 	LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts,
11288 		.cpu_cnt = opts->cpu_cnt,
11289 		.cpus = opts->cpus,
11290 		.map_keys = opts->map_keys,
11291 	);
11292 
11293 	return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr,
11294 					   opts->event_cb, opts->ctx, &inner_opts);
11295 }
11296 
11297 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11298 					      struct perf_buffer_params *p)
11299 {
11300 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11301 	struct bpf_map_info map;
11302 	char msg[STRERR_BUFSIZE];
11303 	struct perf_buffer *pb;
11304 	bool *online = NULL;
11305 	__u32 map_info_len;
11306 	int err, i, j, n;
11307 
11308 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11309 		pr_warn("page count should be power of two, but is %zu\n",
11310 			page_cnt);
11311 		return ERR_PTR(-EINVAL);
11312 	}
11313 
11314 	/* best-effort sanity checks */
11315 	memset(&map, 0, sizeof(map));
11316 	map_info_len = sizeof(map);
11317 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11318 	if (err) {
11319 		err = -errno;
11320 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11321 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11322 		 */
11323 		if (err != -EINVAL) {
11324 			pr_warn("failed to get map info for map FD %d: %s\n",
11325 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11326 			return ERR_PTR(err);
11327 		}
11328 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11329 			 map_fd);
11330 	} else {
11331 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11332 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11333 				map.name);
11334 			return ERR_PTR(-EINVAL);
11335 		}
11336 	}
11337 
11338 	pb = calloc(1, sizeof(*pb));
11339 	if (!pb)
11340 		return ERR_PTR(-ENOMEM);
11341 
11342 	pb->event_cb = p->event_cb;
11343 	pb->sample_cb = p->sample_cb;
11344 	pb->lost_cb = p->lost_cb;
11345 	pb->ctx = p->ctx;
11346 
11347 	pb->page_size = getpagesize();
11348 	pb->mmap_size = pb->page_size * page_cnt;
11349 	pb->map_fd = map_fd;
11350 
11351 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11352 	if (pb->epoll_fd < 0) {
11353 		err = -errno;
11354 		pr_warn("failed to create epoll instance: %s\n",
11355 			libbpf_strerror_r(err, msg, sizeof(msg)));
11356 		goto error;
11357 	}
11358 
11359 	if (p->cpu_cnt > 0) {
11360 		pb->cpu_cnt = p->cpu_cnt;
11361 	} else {
11362 		pb->cpu_cnt = libbpf_num_possible_cpus();
11363 		if (pb->cpu_cnt < 0) {
11364 			err = pb->cpu_cnt;
11365 			goto error;
11366 		}
11367 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11368 			pb->cpu_cnt = map.max_entries;
11369 	}
11370 
11371 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11372 	if (!pb->events) {
11373 		err = -ENOMEM;
11374 		pr_warn("failed to allocate events: out of memory\n");
11375 		goto error;
11376 	}
11377 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11378 	if (!pb->cpu_bufs) {
11379 		err = -ENOMEM;
11380 		pr_warn("failed to allocate buffers: out of memory\n");
11381 		goto error;
11382 	}
11383 
11384 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11385 	if (err) {
11386 		pr_warn("failed to get online CPU mask: %d\n", err);
11387 		goto error;
11388 	}
11389 
11390 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11391 		struct perf_cpu_buf *cpu_buf;
11392 		int cpu, map_key;
11393 
11394 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11395 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11396 
11397 		/* in case user didn't explicitly requested particular CPUs to
11398 		 * be attached to, skip offline/not present CPUs
11399 		 */
11400 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11401 			continue;
11402 
11403 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11404 		if (IS_ERR(cpu_buf)) {
11405 			err = PTR_ERR(cpu_buf);
11406 			goto error;
11407 		}
11408 
11409 		pb->cpu_bufs[j] = cpu_buf;
11410 
11411 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11412 					  &cpu_buf->fd, 0);
11413 		if (err) {
11414 			err = -errno;
11415 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11416 				cpu, map_key, cpu_buf->fd,
11417 				libbpf_strerror_r(err, msg, sizeof(msg)));
11418 			goto error;
11419 		}
11420 
11421 		pb->events[j].events = EPOLLIN;
11422 		pb->events[j].data.ptr = cpu_buf;
11423 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11424 			      &pb->events[j]) < 0) {
11425 			err = -errno;
11426 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11427 				cpu, cpu_buf->fd,
11428 				libbpf_strerror_r(err, msg, sizeof(msg)));
11429 			goto error;
11430 		}
11431 		j++;
11432 	}
11433 	pb->cpu_cnt = j;
11434 	free(online);
11435 
11436 	return pb;
11437 
11438 error:
11439 	free(online);
11440 	if (pb)
11441 		perf_buffer__free(pb);
11442 	return ERR_PTR(err);
11443 }
11444 
11445 struct perf_sample_raw {
11446 	struct perf_event_header header;
11447 	uint32_t size;
11448 	char data[];
11449 };
11450 
11451 struct perf_sample_lost {
11452 	struct perf_event_header header;
11453 	uint64_t id;
11454 	uint64_t lost;
11455 	uint64_t sample_id;
11456 };
11457 
11458 static enum bpf_perf_event_ret
11459 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11460 {
11461 	struct perf_cpu_buf *cpu_buf = ctx;
11462 	struct perf_buffer *pb = cpu_buf->pb;
11463 	void *data = e;
11464 
11465 	/* user wants full control over parsing perf event */
11466 	if (pb->event_cb)
11467 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11468 
11469 	switch (e->type) {
11470 	case PERF_RECORD_SAMPLE: {
11471 		struct perf_sample_raw *s = data;
11472 
11473 		if (pb->sample_cb)
11474 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11475 		break;
11476 	}
11477 	case PERF_RECORD_LOST: {
11478 		struct perf_sample_lost *s = data;
11479 
11480 		if (pb->lost_cb)
11481 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11482 		break;
11483 	}
11484 	default:
11485 		pr_warn("unknown perf sample type %d\n", e->type);
11486 		return LIBBPF_PERF_EVENT_ERROR;
11487 	}
11488 	return LIBBPF_PERF_EVENT_CONT;
11489 }
11490 
11491 static int perf_buffer__process_records(struct perf_buffer *pb,
11492 					struct perf_cpu_buf *cpu_buf)
11493 {
11494 	enum bpf_perf_event_ret ret;
11495 
11496 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11497 				     pb->page_size, &cpu_buf->buf,
11498 				     &cpu_buf->buf_size,
11499 				     perf_buffer__process_record, cpu_buf);
11500 	if (ret != LIBBPF_PERF_EVENT_CONT)
11501 		return ret;
11502 	return 0;
11503 }
11504 
11505 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11506 {
11507 	return pb->epoll_fd;
11508 }
11509 
11510 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11511 {
11512 	int i, cnt, err;
11513 
11514 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11515 	if (cnt < 0)
11516 		return -errno;
11517 
11518 	for (i = 0; i < cnt; i++) {
11519 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11520 
11521 		err = perf_buffer__process_records(pb, cpu_buf);
11522 		if (err) {
11523 			pr_warn("error while processing records: %d\n", err);
11524 			return libbpf_err(err);
11525 		}
11526 	}
11527 	return cnt;
11528 }
11529 
11530 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11531  * manager.
11532  */
11533 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11534 {
11535 	return pb->cpu_cnt;
11536 }
11537 
11538 /*
11539  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11540  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11541  * select()/poll()/epoll() Linux syscalls.
11542  */
11543 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11544 {
11545 	struct perf_cpu_buf *cpu_buf;
11546 
11547 	if (buf_idx >= pb->cpu_cnt)
11548 		return libbpf_err(-EINVAL);
11549 
11550 	cpu_buf = pb->cpu_bufs[buf_idx];
11551 	if (!cpu_buf)
11552 		return libbpf_err(-ENOENT);
11553 
11554 	return cpu_buf->fd;
11555 }
11556 
11557 /*
11558  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11559  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11560  * consume, do nothing and return success.
11561  * Returns:
11562  *   - 0 on success;
11563  *   - <0 on failure.
11564  */
11565 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11566 {
11567 	struct perf_cpu_buf *cpu_buf;
11568 
11569 	if (buf_idx >= pb->cpu_cnt)
11570 		return libbpf_err(-EINVAL);
11571 
11572 	cpu_buf = pb->cpu_bufs[buf_idx];
11573 	if (!cpu_buf)
11574 		return libbpf_err(-ENOENT);
11575 
11576 	return perf_buffer__process_records(pb, cpu_buf);
11577 }
11578 
11579 int perf_buffer__consume(struct perf_buffer *pb)
11580 {
11581 	int i, err;
11582 
11583 	for (i = 0; i < pb->cpu_cnt; i++) {
11584 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11585 
11586 		if (!cpu_buf)
11587 			continue;
11588 
11589 		err = perf_buffer__process_records(pb, cpu_buf);
11590 		if (err) {
11591 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11592 			return libbpf_err(err);
11593 		}
11594 	}
11595 	return 0;
11596 }
11597 
11598 struct bpf_prog_info_array_desc {
11599 	int	array_offset;	/* e.g. offset of jited_prog_insns */
11600 	int	count_offset;	/* e.g. offset of jited_prog_len */
11601 	int	size_offset;	/* > 0: offset of rec size,
11602 				 * < 0: fix size of -size_offset
11603 				 */
11604 };
11605 
11606 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
11607 	[BPF_PROG_INFO_JITED_INSNS] = {
11608 		offsetof(struct bpf_prog_info, jited_prog_insns),
11609 		offsetof(struct bpf_prog_info, jited_prog_len),
11610 		-1,
11611 	},
11612 	[BPF_PROG_INFO_XLATED_INSNS] = {
11613 		offsetof(struct bpf_prog_info, xlated_prog_insns),
11614 		offsetof(struct bpf_prog_info, xlated_prog_len),
11615 		-1,
11616 	},
11617 	[BPF_PROG_INFO_MAP_IDS] = {
11618 		offsetof(struct bpf_prog_info, map_ids),
11619 		offsetof(struct bpf_prog_info, nr_map_ids),
11620 		-(int)sizeof(__u32),
11621 	},
11622 	[BPF_PROG_INFO_JITED_KSYMS] = {
11623 		offsetof(struct bpf_prog_info, jited_ksyms),
11624 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
11625 		-(int)sizeof(__u64),
11626 	},
11627 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
11628 		offsetof(struct bpf_prog_info, jited_func_lens),
11629 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
11630 		-(int)sizeof(__u32),
11631 	},
11632 	[BPF_PROG_INFO_FUNC_INFO] = {
11633 		offsetof(struct bpf_prog_info, func_info),
11634 		offsetof(struct bpf_prog_info, nr_func_info),
11635 		offsetof(struct bpf_prog_info, func_info_rec_size),
11636 	},
11637 	[BPF_PROG_INFO_LINE_INFO] = {
11638 		offsetof(struct bpf_prog_info, line_info),
11639 		offsetof(struct bpf_prog_info, nr_line_info),
11640 		offsetof(struct bpf_prog_info, line_info_rec_size),
11641 	},
11642 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
11643 		offsetof(struct bpf_prog_info, jited_line_info),
11644 		offsetof(struct bpf_prog_info, nr_jited_line_info),
11645 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11646 	},
11647 	[BPF_PROG_INFO_PROG_TAGS] = {
11648 		offsetof(struct bpf_prog_info, prog_tags),
11649 		offsetof(struct bpf_prog_info, nr_prog_tags),
11650 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
11651 	},
11652 
11653 };
11654 
11655 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11656 					   int offset)
11657 {
11658 	__u32 *array = (__u32 *)info;
11659 
11660 	if (offset >= 0)
11661 		return array[offset / sizeof(__u32)];
11662 	return -(int)offset;
11663 }
11664 
11665 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11666 					   int offset)
11667 {
11668 	__u64 *array = (__u64 *)info;
11669 
11670 	if (offset >= 0)
11671 		return array[offset / sizeof(__u64)];
11672 	return -(int)offset;
11673 }
11674 
11675 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11676 					 __u32 val)
11677 {
11678 	__u32 *array = (__u32 *)info;
11679 
11680 	if (offset >= 0)
11681 		array[offset / sizeof(__u32)] = val;
11682 }
11683 
11684 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11685 					 __u64 val)
11686 {
11687 	__u64 *array = (__u64 *)info;
11688 
11689 	if (offset >= 0)
11690 		array[offset / sizeof(__u64)] = val;
11691 }
11692 
11693 struct bpf_prog_info_linear *
11694 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11695 {
11696 	struct bpf_prog_info_linear *info_linear;
11697 	struct bpf_prog_info info = {};
11698 	__u32 info_len = sizeof(info);
11699 	__u32 data_len = 0;
11700 	int i, err;
11701 	void *ptr;
11702 
11703 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11704 		return libbpf_err_ptr(-EINVAL);
11705 
11706 	/* step 1: get array dimensions */
11707 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11708 	if (err) {
11709 		pr_debug("can't get prog info: %s", strerror(errno));
11710 		return libbpf_err_ptr(-EFAULT);
11711 	}
11712 
11713 	/* step 2: calculate total size of all arrays */
11714 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11715 		bool include_array = (arrays & (1UL << i)) > 0;
11716 		struct bpf_prog_info_array_desc *desc;
11717 		__u32 count, size;
11718 
11719 		desc = bpf_prog_info_array_desc + i;
11720 
11721 		/* kernel is too old to support this field */
11722 		if (info_len < desc->array_offset + sizeof(__u32) ||
11723 		    info_len < desc->count_offset + sizeof(__u32) ||
11724 		    (desc->size_offset > 0 && info_len < desc->size_offset))
11725 			include_array = false;
11726 
11727 		if (!include_array) {
11728 			arrays &= ~(1UL << i);	/* clear the bit */
11729 			continue;
11730 		}
11731 
11732 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11733 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11734 
11735 		data_len += count * size;
11736 	}
11737 
11738 	/* step 3: allocate continuous memory */
11739 	data_len = roundup(data_len, sizeof(__u64));
11740 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11741 	if (!info_linear)
11742 		return libbpf_err_ptr(-ENOMEM);
11743 
11744 	/* step 4: fill data to info_linear->info */
11745 	info_linear->arrays = arrays;
11746 	memset(&info_linear->info, 0, sizeof(info));
11747 	ptr = info_linear->data;
11748 
11749 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11750 		struct bpf_prog_info_array_desc *desc;
11751 		__u32 count, size;
11752 
11753 		if ((arrays & (1UL << i)) == 0)
11754 			continue;
11755 
11756 		desc  = bpf_prog_info_array_desc + i;
11757 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11758 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11759 		bpf_prog_info_set_offset_u32(&info_linear->info,
11760 					     desc->count_offset, count);
11761 		bpf_prog_info_set_offset_u32(&info_linear->info,
11762 					     desc->size_offset, size);
11763 		bpf_prog_info_set_offset_u64(&info_linear->info,
11764 					     desc->array_offset,
11765 					     ptr_to_u64(ptr));
11766 		ptr += count * size;
11767 	}
11768 
11769 	/* step 5: call syscall again to get required arrays */
11770 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11771 	if (err) {
11772 		pr_debug("can't get prog info: %s", strerror(errno));
11773 		free(info_linear);
11774 		return libbpf_err_ptr(-EFAULT);
11775 	}
11776 
11777 	/* step 6: verify the data */
11778 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11779 		struct bpf_prog_info_array_desc *desc;
11780 		__u32 v1, v2;
11781 
11782 		if ((arrays & (1UL << i)) == 0)
11783 			continue;
11784 
11785 		desc = bpf_prog_info_array_desc + i;
11786 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11787 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11788 						   desc->count_offset);
11789 		if (v1 != v2)
11790 			pr_warn("%s: mismatch in element count\n", __func__);
11791 
11792 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11793 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11794 						   desc->size_offset);
11795 		if (v1 != v2)
11796 			pr_warn("%s: mismatch in rec size\n", __func__);
11797 	}
11798 
11799 	/* step 7: update info_len and data_len */
11800 	info_linear->info_len = sizeof(struct bpf_prog_info);
11801 	info_linear->data_len = data_len;
11802 
11803 	return info_linear;
11804 }
11805 
11806 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11807 {
11808 	int i;
11809 
11810 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11811 		struct bpf_prog_info_array_desc *desc;
11812 		__u64 addr, offs;
11813 
11814 		if ((info_linear->arrays & (1UL << i)) == 0)
11815 			continue;
11816 
11817 		desc = bpf_prog_info_array_desc + i;
11818 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11819 						     desc->array_offset);
11820 		offs = addr - ptr_to_u64(info_linear->data);
11821 		bpf_prog_info_set_offset_u64(&info_linear->info,
11822 					     desc->array_offset, offs);
11823 	}
11824 }
11825 
11826 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11827 {
11828 	int i;
11829 
11830 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11831 		struct bpf_prog_info_array_desc *desc;
11832 		__u64 addr, offs;
11833 
11834 		if ((info_linear->arrays & (1UL << i)) == 0)
11835 			continue;
11836 
11837 		desc = bpf_prog_info_array_desc + i;
11838 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11839 						     desc->array_offset);
11840 		addr = offs + ptr_to_u64(info_linear->data);
11841 		bpf_prog_info_set_offset_u64(&info_linear->info,
11842 					     desc->array_offset, addr);
11843 	}
11844 }
11845 
11846 int bpf_program__set_attach_target(struct bpf_program *prog,
11847 				   int attach_prog_fd,
11848 				   const char *attach_func_name)
11849 {
11850 	int btf_obj_fd = 0, btf_id = 0, err;
11851 
11852 	if (!prog || attach_prog_fd < 0)
11853 		return libbpf_err(-EINVAL);
11854 
11855 	if (prog->obj->loaded)
11856 		return libbpf_err(-EINVAL);
11857 
11858 	if (attach_prog_fd && !attach_func_name) {
11859 		/* remember attach_prog_fd and let bpf_program__load() find
11860 		 * BTF ID during the program load
11861 		 */
11862 		prog->attach_prog_fd = attach_prog_fd;
11863 		return 0;
11864 	}
11865 
11866 	if (attach_prog_fd) {
11867 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11868 						 attach_prog_fd);
11869 		if (btf_id < 0)
11870 			return libbpf_err(btf_id);
11871 	} else {
11872 		if (!attach_func_name)
11873 			return libbpf_err(-EINVAL);
11874 
11875 		/* load btf_vmlinux, if not yet */
11876 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11877 		if (err)
11878 			return libbpf_err(err);
11879 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11880 					 prog->expected_attach_type,
11881 					 &btf_obj_fd, &btf_id);
11882 		if (err)
11883 			return libbpf_err(err);
11884 	}
11885 
11886 	prog->attach_btf_id = btf_id;
11887 	prog->attach_btf_obj_fd = btf_obj_fd;
11888 	prog->attach_prog_fd = attach_prog_fd;
11889 	return 0;
11890 }
11891 
11892 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11893 {
11894 	int err = 0, n, len, start, end = -1;
11895 	bool *tmp;
11896 
11897 	*mask = NULL;
11898 	*mask_sz = 0;
11899 
11900 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11901 	while (*s) {
11902 		if (*s == ',' || *s == '\n') {
11903 			s++;
11904 			continue;
11905 		}
11906 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11907 		if (n <= 0 || n > 2) {
11908 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11909 			err = -EINVAL;
11910 			goto cleanup;
11911 		} else if (n == 1) {
11912 			end = start;
11913 		}
11914 		if (start < 0 || start > end) {
11915 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11916 				start, end, s);
11917 			err = -EINVAL;
11918 			goto cleanup;
11919 		}
11920 		tmp = realloc(*mask, end + 1);
11921 		if (!tmp) {
11922 			err = -ENOMEM;
11923 			goto cleanup;
11924 		}
11925 		*mask = tmp;
11926 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11927 		memset(tmp + start, 1, end - start + 1);
11928 		*mask_sz = end + 1;
11929 		s += len;
11930 	}
11931 	if (!*mask_sz) {
11932 		pr_warn("Empty CPU range\n");
11933 		return -EINVAL;
11934 	}
11935 	return 0;
11936 cleanup:
11937 	free(*mask);
11938 	*mask = NULL;
11939 	return err;
11940 }
11941 
11942 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11943 {
11944 	int fd, err = 0, len;
11945 	char buf[128];
11946 
11947 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
11948 	if (fd < 0) {
11949 		err = -errno;
11950 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11951 		return err;
11952 	}
11953 	len = read(fd, buf, sizeof(buf));
11954 	close(fd);
11955 	if (len <= 0) {
11956 		err = len ? -errno : -EINVAL;
11957 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11958 		return err;
11959 	}
11960 	if (len >= sizeof(buf)) {
11961 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11962 		return -E2BIG;
11963 	}
11964 	buf[len] = '\0';
11965 
11966 	return parse_cpu_mask_str(buf, mask, mask_sz);
11967 }
11968 
11969 int libbpf_num_possible_cpus(void)
11970 {
11971 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11972 	static int cpus;
11973 	int err, n, i, tmp_cpus;
11974 	bool *mask;
11975 
11976 	tmp_cpus = READ_ONCE(cpus);
11977 	if (tmp_cpus > 0)
11978 		return tmp_cpus;
11979 
11980 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11981 	if (err)
11982 		return libbpf_err(err);
11983 
11984 	tmp_cpus = 0;
11985 	for (i = 0; i < n; i++) {
11986 		if (mask[i])
11987 			tmp_cpus++;
11988 	}
11989 	free(mask);
11990 
11991 	WRITE_ONCE(cpus, tmp_cpus);
11992 	return tmp_cpus;
11993 }
11994 
11995 static int populate_skeleton_maps(const struct bpf_object *obj,
11996 				  struct bpf_map_skeleton *maps,
11997 				  size_t map_cnt)
11998 {
11999 	int i;
12000 
12001 	for (i = 0; i < map_cnt; i++) {
12002 		struct bpf_map **map = maps[i].map;
12003 		const char *name = maps[i].name;
12004 		void **mmaped = maps[i].mmaped;
12005 
12006 		*map = bpf_object__find_map_by_name(obj, name);
12007 		if (!*map) {
12008 			pr_warn("failed to find skeleton map '%s'\n", name);
12009 			return -ESRCH;
12010 		}
12011 
12012 		/* externs shouldn't be pre-setup from user code */
12013 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12014 			*mmaped = (*map)->mmaped;
12015 	}
12016 	return 0;
12017 }
12018 
12019 static int populate_skeleton_progs(const struct bpf_object *obj,
12020 				   struct bpf_prog_skeleton *progs,
12021 				   size_t prog_cnt)
12022 {
12023 	int i;
12024 
12025 	for (i = 0; i < prog_cnt; i++) {
12026 		struct bpf_program **prog = progs[i].prog;
12027 		const char *name = progs[i].name;
12028 
12029 		*prog = bpf_object__find_program_by_name(obj, name);
12030 		if (!*prog) {
12031 			pr_warn("failed to find skeleton program '%s'\n", name);
12032 			return -ESRCH;
12033 		}
12034 	}
12035 	return 0;
12036 }
12037 
12038 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12039 			      const struct bpf_object_open_opts *opts)
12040 {
12041 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12042 		.object_name = s->name,
12043 	);
12044 	struct bpf_object *obj;
12045 	int err;
12046 
12047 	/* Attempt to preserve opts->object_name, unless overriden by user
12048 	 * explicitly. Overwriting object name for skeletons is discouraged,
12049 	 * as it breaks global data maps, because they contain object name
12050 	 * prefix as their own map name prefix. When skeleton is generated,
12051 	 * bpftool is making an assumption that this name will stay the same.
12052 	 */
12053 	if (opts) {
12054 		memcpy(&skel_opts, opts, sizeof(*opts));
12055 		if (!opts->object_name)
12056 			skel_opts.object_name = s->name;
12057 	}
12058 
12059 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12060 	err = libbpf_get_error(obj);
12061 	if (err) {
12062 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12063 			s->name, err);
12064 		return libbpf_err(err);
12065 	}
12066 
12067 	*s->obj = obj;
12068 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12069 	if (err) {
12070 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12071 		return libbpf_err(err);
12072 	}
12073 
12074 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12075 	if (err) {
12076 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12077 		return libbpf_err(err);
12078 	}
12079 
12080 	return 0;
12081 }
12082 
12083 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12084 {
12085 	int err, len, var_idx, i;
12086 	const char *var_name;
12087 	const struct bpf_map *map;
12088 	struct btf *btf;
12089 	__u32 map_type_id;
12090 	const struct btf_type *map_type, *var_type;
12091 	const struct bpf_var_skeleton *var_skel;
12092 	struct btf_var_secinfo *var;
12093 
12094 	if (!s->obj)
12095 		return libbpf_err(-EINVAL);
12096 
12097 	btf = bpf_object__btf(s->obj);
12098 	if (!btf) {
12099 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12100 		        bpf_object__name(s->obj));
12101 		return libbpf_err(-errno);
12102 	}
12103 
12104 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12105 	if (err) {
12106 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12107 		return libbpf_err(err);
12108 	}
12109 
12110 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12111 	if (err) {
12112 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12113 		return libbpf_err(err);
12114 	}
12115 
12116 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12117 		var_skel = &s->vars[var_idx];
12118 		map = *var_skel->map;
12119 		map_type_id = bpf_map__btf_value_type_id(map);
12120 		map_type = btf__type_by_id(btf, map_type_id);
12121 
12122 		if (!btf_is_datasec(map_type)) {
12123 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12124 				bpf_map__name(map),
12125 				__btf_kind_str(btf_kind(map_type)));
12126 			return libbpf_err(-EINVAL);
12127 		}
12128 
12129 		len = btf_vlen(map_type);
12130 		var = btf_var_secinfos(map_type);
12131 		for (i = 0; i < len; i++, var++) {
12132 			var_type = btf__type_by_id(btf, var->type);
12133 			var_name = btf__name_by_offset(btf, var_type->name_off);
12134 			if (strcmp(var_name, var_skel->name) == 0) {
12135 				*var_skel->addr = map->mmaped + var->offset;
12136 				break;
12137 			}
12138 		}
12139 	}
12140 	return 0;
12141 }
12142 
12143 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12144 {
12145 	if (!s)
12146 		return;
12147 	free(s->maps);
12148 	free(s->progs);
12149 	free(s->vars);
12150 	free(s);
12151 }
12152 
12153 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12154 {
12155 	int i, err;
12156 
12157 	err = bpf_object__load(*s->obj);
12158 	if (err) {
12159 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12160 		return libbpf_err(err);
12161 	}
12162 
12163 	for (i = 0; i < s->map_cnt; i++) {
12164 		struct bpf_map *map = *s->maps[i].map;
12165 		size_t mmap_sz = bpf_map_mmap_sz(map);
12166 		int prot, map_fd = bpf_map__fd(map);
12167 		void **mmaped = s->maps[i].mmaped;
12168 
12169 		if (!mmaped)
12170 			continue;
12171 
12172 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12173 			*mmaped = NULL;
12174 			continue;
12175 		}
12176 
12177 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12178 			prot = PROT_READ;
12179 		else
12180 			prot = PROT_READ | PROT_WRITE;
12181 
12182 		/* Remap anonymous mmap()-ed "map initialization image" as
12183 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12184 		 * memory address. This will cause kernel to change process'
12185 		 * page table to point to a different piece of kernel memory,
12186 		 * but from userspace point of view memory address (and its
12187 		 * contents, being identical at this point) will stay the
12188 		 * same. This mapping will be released by bpf_object__close()
12189 		 * as per normal clean up procedure, so we don't need to worry
12190 		 * about it from skeleton's clean up perspective.
12191 		 */
12192 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12193 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12194 		if (*mmaped == MAP_FAILED) {
12195 			err = -errno;
12196 			*mmaped = NULL;
12197 			pr_warn("failed to re-mmap() map '%s': %d\n",
12198 				 bpf_map__name(map), err);
12199 			return libbpf_err(err);
12200 		}
12201 	}
12202 
12203 	return 0;
12204 }
12205 
12206 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12207 {
12208 	int i, err;
12209 
12210 	for (i = 0; i < s->prog_cnt; i++) {
12211 		struct bpf_program *prog = *s->progs[i].prog;
12212 		struct bpf_link **link = s->progs[i].link;
12213 
12214 		if (!prog->load)
12215 			continue;
12216 
12217 		/* auto-attaching not supported for this program */
12218 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12219 			continue;
12220 
12221 		/* if user already set the link manually, don't attempt auto-attach */
12222 		if (*link)
12223 			continue;
12224 
12225 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12226 		if (err) {
12227 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12228 				bpf_program__name(prog), err);
12229 			return libbpf_err(err);
12230 		}
12231 
12232 		/* It's possible that for some SEC() definitions auto-attach
12233 		 * is supported in some cases (e.g., if definition completely
12234 		 * specifies target information), but is not in other cases.
12235 		 * SEC("uprobe") is one such case. If user specified target
12236 		 * binary and function name, such BPF program can be
12237 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12238 		 * attach to fail. It should just be skipped.
12239 		 * attach_fn signals such case with returning 0 (no error) and
12240 		 * setting link to NULL.
12241 		 */
12242 	}
12243 
12244 	return 0;
12245 }
12246 
12247 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12248 {
12249 	int i;
12250 
12251 	for (i = 0; i < s->prog_cnt; i++) {
12252 		struct bpf_link **link = s->progs[i].link;
12253 
12254 		bpf_link__destroy(*link);
12255 		*link = NULL;
12256 	}
12257 }
12258 
12259 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12260 {
12261 	if (!s)
12262 		return;
12263 
12264 	if (s->progs)
12265 		bpf_object__detach_skeleton(s);
12266 	if (s->obj)
12267 		bpf_object__close(*s->obj);
12268 	free(s->maps);
12269 	free(s->progs);
12270 	free(s);
12271 }
12272