1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 [BPF_NETKIT_PRIMARY] = "netkit_primary", 130 [BPF_NETKIT_PEER] = "netkit_peer", 131 }; 132 133 static const char * const link_type_name[] = { 134 [BPF_LINK_TYPE_UNSPEC] = "unspec", 135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 136 [BPF_LINK_TYPE_TRACING] = "tracing", 137 [BPF_LINK_TYPE_CGROUP] = "cgroup", 138 [BPF_LINK_TYPE_ITER] = "iter", 139 [BPF_LINK_TYPE_NETNS] = "netns", 140 [BPF_LINK_TYPE_XDP] = "xdp", 141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 144 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 145 [BPF_LINK_TYPE_TCX] = "tcx", 146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 147 [BPF_LINK_TYPE_NETKIT] = "netkit", 148 }; 149 150 static const char * const map_type_name[] = { 151 [BPF_MAP_TYPE_UNSPEC] = "unspec", 152 [BPF_MAP_TYPE_HASH] = "hash", 153 [BPF_MAP_TYPE_ARRAY] = "array", 154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 165 [BPF_MAP_TYPE_DEVMAP] = "devmap", 166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 168 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 169 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 174 [BPF_MAP_TYPE_QUEUE] = "queue", 175 [BPF_MAP_TYPE_STACK] = "stack", 176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 184 }; 185 186 static const char * const prog_type_name[] = { 187 [BPF_PROG_TYPE_UNSPEC] = "unspec", 188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 189 [BPF_PROG_TYPE_KPROBE] = "kprobe", 190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 193 [BPF_PROG_TYPE_XDP] = "xdp", 194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 213 [BPF_PROG_TYPE_TRACING] = "tracing", 214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 215 [BPF_PROG_TYPE_EXT] = "ext", 216 [BPF_PROG_TYPE_LSM] = "lsm", 217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 218 [BPF_PROG_TYPE_SYSCALL] = "syscall", 219 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 220 }; 221 222 static int __base_pr(enum libbpf_print_level level, const char *format, 223 va_list args) 224 { 225 if (level == LIBBPF_DEBUG) 226 return 0; 227 228 return vfprintf(stderr, format, args); 229 } 230 231 static libbpf_print_fn_t __libbpf_pr = __base_pr; 232 233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 234 { 235 libbpf_print_fn_t old_print_fn; 236 237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 238 239 return old_print_fn; 240 } 241 242 __printf(2, 3) 243 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 244 { 245 va_list args; 246 int old_errno; 247 libbpf_print_fn_t print_fn; 248 249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 250 if (!print_fn) 251 return; 252 253 old_errno = errno; 254 255 va_start(args, format); 256 __libbpf_pr(level, format, args); 257 va_end(args); 258 259 errno = old_errno; 260 } 261 262 static void pr_perm_msg(int err) 263 { 264 struct rlimit limit; 265 char buf[100]; 266 267 if (err != -EPERM || geteuid() != 0) 268 return; 269 270 err = getrlimit(RLIMIT_MEMLOCK, &limit); 271 if (err) 272 return; 273 274 if (limit.rlim_cur == RLIM_INFINITY) 275 return; 276 277 if (limit.rlim_cur < 1024) 278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 279 else if (limit.rlim_cur < 1024*1024) 280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 281 else 282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 283 284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 285 buf); 286 } 287 288 #define STRERR_BUFSIZE 128 289 290 /* Copied from tools/perf/util/util.h */ 291 #ifndef zfree 292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 293 #endif 294 295 #ifndef zclose 296 # define zclose(fd) ({ \ 297 int ___err = 0; \ 298 if ((fd) >= 0) \ 299 ___err = close((fd)); \ 300 fd = -1; \ 301 ___err; }) 302 #endif 303 304 static inline __u64 ptr_to_u64(const void *ptr) 305 { 306 return (__u64) (unsigned long) ptr; 307 } 308 309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 310 { 311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 312 return 0; 313 } 314 315 __u32 libbpf_major_version(void) 316 { 317 return LIBBPF_MAJOR_VERSION; 318 } 319 320 __u32 libbpf_minor_version(void) 321 { 322 return LIBBPF_MINOR_VERSION; 323 } 324 325 const char *libbpf_version_string(void) 326 { 327 #define __S(X) #X 328 #define _S(X) __S(X) 329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 330 #undef _S 331 #undef __S 332 } 333 334 enum reloc_type { 335 RELO_LD64, 336 RELO_CALL, 337 RELO_DATA, 338 RELO_EXTERN_LD64, 339 RELO_EXTERN_CALL, 340 RELO_SUBPROG_ADDR, 341 RELO_CORE, 342 }; 343 344 struct reloc_desc { 345 enum reloc_type type; 346 int insn_idx; 347 union { 348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 349 struct { 350 int map_idx; 351 int sym_off; 352 int ext_idx; 353 }; 354 }; 355 }; 356 357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 358 enum sec_def_flags { 359 SEC_NONE = 0, 360 /* expected_attach_type is optional, if kernel doesn't support that */ 361 SEC_EXP_ATTACH_OPT = 1, 362 /* legacy, only used by libbpf_get_type_names() and 363 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 364 * This used to be associated with cgroup (and few other) BPF programs 365 * that were attachable through BPF_PROG_ATTACH command. Pretty 366 * meaningless nowadays, though. 367 */ 368 SEC_ATTACHABLE = 2, 369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 370 /* attachment target is specified through BTF ID in either kernel or 371 * other BPF program's BTF object 372 */ 373 SEC_ATTACH_BTF = 4, 374 /* BPF program type allows sleeping/blocking in kernel */ 375 SEC_SLEEPABLE = 8, 376 /* BPF program support non-linear XDP buffer */ 377 SEC_XDP_FRAGS = 16, 378 /* Setup proper attach type for usdt probes. */ 379 SEC_USDT = 32, 380 }; 381 382 struct bpf_sec_def { 383 char *sec; 384 enum bpf_prog_type prog_type; 385 enum bpf_attach_type expected_attach_type; 386 long cookie; 387 int handler_id; 388 389 libbpf_prog_setup_fn_t prog_setup_fn; 390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 391 libbpf_prog_attach_fn_t prog_attach_fn; 392 }; 393 394 /* 395 * bpf_prog should be a better name but it has been used in 396 * linux/filter.h. 397 */ 398 struct bpf_program { 399 char *name; 400 char *sec_name; 401 size_t sec_idx; 402 const struct bpf_sec_def *sec_def; 403 /* this program's instruction offset (in number of instructions) 404 * within its containing ELF section 405 */ 406 size_t sec_insn_off; 407 /* number of original instructions in ELF section belonging to this 408 * program, not taking into account subprogram instructions possible 409 * appended later during relocation 410 */ 411 size_t sec_insn_cnt; 412 /* Offset (in number of instructions) of the start of instruction 413 * belonging to this BPF program within its containing main BPF 414 * program. For the entry-point (main) BPF program, this is always 415 * zero. For a sub-program, this gets reset before each of main BPF 416 * programs are processed and relocated and is used to determined 417 * whether sub-program was already appended to the main program, and 418 * if yes, at which instruction offset. 419 */ 420 size_t sub_insn_off; 421 422 /* instructions that belong to BPF program; insns[0] is located at 423 * sec_insn_off instruction within its ELF section in ELF file, so 424 * when mapping ELF file instruction index to the local instruction, 425 * one needs to subtract sec_insn_off; and vice versa. 426 */ 427 struct bpf_insn *insns; 428 /* actual number of instruction in this BPF program's image; for 429 * entry-point BPF programs this includes the size of main program 430 * itself plus all the used sub-programs, appended at the end 431 */ 432 size_t insns_cnt; 433 434 struct reloc_desc *reloc_desc; 435 int nr_reloc; 436 437 /* BPF verifier log settings */ 438 char *log_buf; 439 size_t log_size; 440 __u32 log_level; 441 442 struct bpf_object *obj; 443 444 int fd; 445 bool autoload; 446 bool autoattach; 447 bool sym_global; 448 bool mark_btf_static; 449 enum bpf_prog_type type; 450 enum bpf_attach_type expected_attach_type; 451 int exception_cb_idx; 452 453 int prog_ifindex; 454 __u32 attach_btf_obj_fd; 455 __u32 attach_btf_id; 456 __u32 attach_prog_fd; 457 458 void *func_info; 459 __u32 func_info_rec_size; 460 __u32 func_info_cnt; 461 462 void *line_info; 463 __u32 line_info_rec_size; 464 __u32 line_info_cnt; 465 __u32 prog_flags; 466 }; 467 468 struct bpf_struct_ops { 469 const char *tname; 470 const struct btf_type *type; 471 struct bpf_program **progs; 472 __u32 *kern_func_off; 473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 474 void *data; 475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 476 * btf_vmlinux's format. 477 * struct bpf_struct_ops_tcp_congestion_ops { 478 * [... some other kernel fields ...] 479 * struct tcp_congestion_ops data; 480 * } 481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 483 * from "data". 484 */ 485 void *kern_vdata; 486 __u32 type_id; 487 }; 488 489 #define DATA_SEC ".data" 490 #define BSS_SEC ".bss" 491 #define RODATA_SEC ".rodata" 492 #define KCONFIG_SEC ".kconfig" 493 #define KSYMS_SEC ".ksyms" 494 #define STRUCT_OPS_SEC ".struct_ops" 495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 496 497 enum libbpf_map_type { 498 LIBBPF_MAP_UNSPEC, 499 LIBBPF_MAP_DATA, 500 LIBBPF_MAP_BSS, 501 LIBBPF_MAP_RODATA, 502 LIBBPF_MAP_KCONFIG, 503 }; 504 505 struct bpf_map_def { 506 unsigned int type; 507 unsigned int key_size; 508 unsigned int value_size; 509 unsigned int max_entries; 510 unsigned int map_flags; 511 }; 512 513 struct bpf_map { 514 struct bpf_object *obj; 515 char *name; 516 /* real_name is defined for special internal maps (.rodata*, 517 * .data*, .bss, .kconfig) and preserves their original ELF section 518 * name. This is important to be able to find corresponding BTF 519 * DATASEC information. 520 */ 521 char *real_name; 522 int fd; 523 int sec_idx; 524 size_t sec_offset; 525 int map_ifindex; 526 int inner_map_fd; 527 struct bpf_map_def def; 528 __u32 numa_node; 529 __u32 btf_var_idx; 530 __u32 btf_key_type_id; 531 __u32 btf_value_type_id; 532 __u32 btf_vmlinux_value_type_id; 533 enum libbpf_map_type libbpf_type; 534 void *mmaped; 535 struct bpf_struct_ops *st_ops; 536 struct bpf_map *inner_map; 537 void **init_slots; 538 int init_slots_sz; 539 char *pin_path; 540 bool pinned; 541 bool reused; 542 bool autocreate; 543 __u64 map_extra; 544 }; 545 546 enum extern_type { 547 EXT_UNKNOWN, 548 EXT_KCFG, 549 EXT_KSYM, 550 }; 551 552 enum kcfg_type { 553 KCFG_UNKNOWN, 554 KCFG_CHAR, 555 KCFG_BOOL, 556 KCFG_INT, 557 KCFG_TRISTATE, 558 KCFG_CHAR_ARR, 559 }; 560 561 struct extern_desc { 562 enum extern_type type; 563 int sym_idx; 564 int btf_id; 565 int sec_btf_id; 566 const char *name; 567 char *essent_name; 568 bool is_set; 569 bool is_weak; 570 union { 571 struct { 572 enum kcfg_type type; 573 int sz; 574 int align; 575 int data_off; 576 bool is_signed; 577 } kcfg; 578 struct { 579 unsigned long long addr; 580 581 /* target btf_id of the corresponding kernel var. */ 582 int kernel_btf_obj_fd; 583 int kernel_btf_id; 584 585 /* local btf_id of the ksym extern's type. */ 586 __u32 type_id; 587 /* BTF fd index to be patched in for insn->off, this is 588 * 0 for vmlinux BTF, index in obj->fd_array for module 589 * BTF 590 */ 591 __s16 btf_fd_idx; 592 } ksym; 593 }; 594 }; 595 596 struct module_btf { 597 struct btf *btf; 598 char *name; 599 __u32 id; 600 int fd; 601 int fd_array_idx; 602 }; 603 604 enum sec_type { 605 SEC_UNUSED = 0, 606 SEC_RELO, 607 SEC_BSS, 608 SEC_DATA, 609 SEC_RODATA, 610 }; 611 612 struct elf_sec_desc { 613 enum sec_type sec_type; 614 Elf64_Shdr *shdr; 615 Elf_Data *data; 616 }; 617 618 struct elf_state { 619 int fd; 620 const void *obj_buf; 621 size_t obj_buf_sz; 622 Elf *elf; 623 Elf64_Ehdr *ehdr; 624 Elf_Data *symbols; 625 Elf_Data *st_ops_data; 626 Elf_Data *st_ops_link_data; 627 size_t shstrndx; /* section index for section name strings */ 628 size_t strtabidx; 629 struct elf_sec_desc *secs; 630 size_t sec_cnt; 631 int btf_maps_shndx; 632 __u32 btf_maps_sec_btf_id; 633 int text_shndx; 634 int symbols_shndx; 635 int st_ops_shndx; 636 int st_ops_link_shndx; 637 }; 638 639 struct usdt_manager; 640 641 struct bpf_object { 642 char name[BPF_OBJ_NAME_LEN]; 643 char license[64]; 644 __u32 kern_version; 645 646 struct bpf_program *programs; 647 size_t nr_programs; 648 struct bpf_map *maps; 649 size_t nr_maps; 650 size_t maps_cap; 651 652 char *kconfig; 653 struct extern_desc *externs; 654 int nr_extern; 655 int kconfig_map_idx; 656 657 bool loaded; 658 bool has_subcalls; 659 bool has_rodata; 660 661 struct bpf_gen *gen_loader; 662 663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 664 struct elf_state efile; 665 666 struct btf *btf; 667 struct btf_ext *btf_ext; 668 669 /* Parse and load BTF vmlinux if any of the programs in the object need 670 * it at load time. 671 */ 672 struct btf *btf_vmlinux; 673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 674 * override for vmlinux BTF. 675 */ 676 char *btf_custom_path; 677 /* vmlinux BTF override for CO-RE relocations */ 678 struct btf *btf_vmlinux_override; 679 /* Lazily initialized kernel module BTFs */ 680 struct module_btf *btf_modules; 681 bool btf_modules_loaded; 682 size_t btf_module_cnt; 683 size_t btf_module_cap; 684 685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 686 char *log_buf; 687 size_t log_size; 688 __u32 log_level; 689 690 int *fd_array; 691 size_t fd_array_cap; 692 size_t fd_array_cnt; 693 694 struct usdt_manager *usdt_man; 695 696 char path[]; 697 }; 698 699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 708 709 void bpf_program__unload(struct bpf_program *prog) 710 { 711 if (!prog) 712 return; 713 714 zclose(prog->fd); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 bpf_program__unload(prog); 726 zfree(&prog->name); 727 zfree(&prog->sec_name); 728 zfree(&prog->insns); 729 zfree(&prog->reloc_desc); 730 731 prog->nr_reloc = 0; 732 prog->insns_cnt = 0; 733 prog->sec_idx = -1; 734 } 735 736 static bool insn_is_subprog_call(const struct bpf_insn *insn) 737 { 738 return BPF_CLASS(insn->code) == BPF_JMP && 739 BPF_OP(insn->code) == BPF_CALL && 740 BPF_SRC(insn->code) == BPF_K && 741 insn->src_reg == BPF_PSEUDO_CALL && 742 insn->dst_reg == 0 && 743 insn->off == 0; 744 } 745 746 static bool is_call_insn(const struct bpf_insn *insn) 747 { 748 return insn->code == (BPF_JMP | BPF_CALL); 749 } 750 751 static bool insn_is_pseudo_func(struct bpf_insn *insn) 752 { 753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 754 } 755 756 static int 757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 758 const char *name, size_t sec_idx, const char *sec_name, 759 size_t sec_off, void *insn_data, size_t insn_data_sz) 760 { 761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 763 sec_name, name, sec_off, insn_data_sz); 764 return -EINVAL; 765 } 766 767 memset(prog, 0, sizeof(*prog)); 768 prog->obj = obj; 769 770 prog->sec_idx = sec_idx; 771 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 773 /* insns_cnt can later be increased by appending used subprograms */ 774 prog->insns_cnt = prog->sec_insn_cnt; 775 776 prog->type = BPF_PROG_TYPE_UNSPEC; 777 prog->fd = -1; 778 prog->exception_cb_idx = -1; 779 780 /* libbpf's convention for SEC("?abc...") is that it's just like 781 * SEC("abc...") but the corresponding bpf_program starts out with 782 * autoload set to false. 783 */ 784 if (sec_name[0] == '?') { 785 prog->autoload = false; 786 /* from now on forget there was ? in section name */ 787 sec_name++; 788 } else { 789 prog->autoload = true; 790 } 791 792 prog->autoattach = true; 793 794 /* inherit object's log_level */ 795 prog->log_level = obj->log_level; 796 797 prog->sec_name = strdup(sec_name); 798 if (!prog->sec_name) 799 goto errout; 800 801 prog->name = strdup(name); 802 if (!prog->name) 803 goto errout; 804 805 prog->insns = malloc(insn_data_sz); 806 if (!prog->insns) 807 goto errout; 808 memcpy(prog->insns, insn_data, insn_data_sz); 809 810 return 0; 811 errout: 812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 813 bpf_program__exit(prog); 814 return -ENOMEM; 815 } 816 817 static int 818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 819 const char *sec_name, int sec_idx) 820 { 821 Elf_Data *symbols = obj->efile.symbols; 822 struct bpf_program *prog, *progs; 823 void *data = sec_data->d_buf; 824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 825 int nr_progs, err, i; 826 const char *name; 827 Elf64_Sym *sym; 828 829 progs = obj->programs; 830 nr_progs = obj->nr_programs; 831 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 832 833 for (i = 0; i < nr_syms; i++) { 834 sym = elf_sym_by_idx(obj, i); 835 836 if (sym->st_shndx != sec_idx) 837 continue; 838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 839 continue; 840 841 prog_sz = sym->st_size; 842 sec_off = sym->st_value; 843 844 name = elf_sym_str(obj, sym->st_name); 845 if (!name) { 846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 847 sec_name, sec_off); 848 return -LIBBPF_ERRNO__FORMAT; 849 } 850 851 if (sec_off + prog_sz > sec_sz) { 852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 853 sec_name, sec_off); 854 return -LIBBPF_ERRNO__FORMAT; 855 } 856 857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 859 return -ENOTSUP; 860 } 861 862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 864 865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 866 if (!progs) { 867 /* 868 * In this case the original obj->programs 869 * is still valid, so don't need special treat for 870 * bpf_close_object(). 871 */ 872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 873 sec_name, name); 874 return -ENOMEM; 875 } 876 obj->programs = progs; 877 878 prog = &progs[nr_progs]; 879 880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 881 sec_off, data + sec_off, prog_sz); 882 if (err) 883 return err; 884 885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 886 prog->sym_global = true; 887 888 /* if function is a global/weak symbol, but has restricted 889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 890 * as static to enable more permissive BPF verification mode 891 * with more outside context available to BPF verifier 892 */ 893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 895 prog->mark_btf_static = true; 896 897 nr_progs++; 898 obj->nr_programs = nr_progs; 899 } 900 901 return 0; 902 } 903 904 static const struct btf_member * 905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (btf_member_bit_offset(t, i) == bit_offset) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 static const struct btf_member * 919 find_member_by_name(const struct btf *btf, const struct btf_type *t, 920 const char *name) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 935 const char *name, __u32 kind); 936 937 static int 938 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 939 const struct btf_type **type, __u32 *type_id, 940 const struct btf_type **vtype, __u32 *vtype_id, 941 const struct btf_member **data_member) 942 { 943 const struct btf_type *kern_type, *kern_vtype; 944 const struct btf_member *kern_data_member; 945 __s32 kern_vtype_id, kern_type_id; 946 __u32 i; 947 948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 949 if (kern_type_id < 0) { 950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 951 tname); 952 return kern_type_id; 953 } 954 kern_type = btf__type_by_id(btf, kern_type_id); 955 956 /* Find the corresponding "map_value" type that will be used 957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 959 * btf_vmlinux. 960 */ 961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 962 tname, BTF_KIND_STRUCT); 963 if (kern_vtype_id < 0) { 964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 965 STRUCT_OPS_VALUE_PREFIX, tname); 966 return kern_vtype_id; 967 } 968 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 969 970 /* Find "struct tcp_congestion_ops" from 971 * struct bpf_struct_ops_tcp_congestion_ops { 972 * [ ... ] 973 * struct tcp_congestion_ops data; 974 * } 975 */ 976 kern_data_member = btf_members(kern_vtype); 977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 978 if (kern_data_member->type == kern_type_id) 979 break; 980 } 981 if (i == btf_vlen(kern_vtype)) { 982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 983 tname, STRUCT_OPS_VALUE_PREFIX, tname); 984 return -EINVAL; 985 } 986 987 *type = kern_type; 988 *type_id = kern_type_id; 989 *vtype = kern_vtype; 990 *vtype_id = kern_vtype_id; 991 *data_member = kern_data_member; 992 993 return 0; 994 } 995 996 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 997 { 998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 999 } 1000 1001 /* Init the map's fields that depend on kern_btf */ 1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1003 const struct btf *btf, 1004 const struct btf *kern_btf) 1005 { 1006 const struct btf_member *member, *kern_member, *kern_data_member; 1007 const struct btf_type *type, *kern_type, *kern_vtype; 1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1009 struct bpf_struct_ops *st_ops; 1010 void *data, *kern_data; 1011 const char *tname; 1012 int err; 1013 1014 st_ops = map->st_ops; 1015 type = st_ops->type; 1016 tname = st_ops->tname; 1017 err = find_struct_ops_kern_types(kern_btf, tname, 1018 &kern_type, &kern_type_id, 1019 &kern_vtype, &kern_vtype_id, 1020 &kern_data_member); 1021 if (err) 1022 return err; 1023 1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1026 1027 map->def.value_size = kern_vtype->size; 1028 map->btf_vmlinux_value_type_id = kern_vtype_id; 1029 1030 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1031 if (!st_ops->kern_vdata) 1032 return -ENOMEM; 1033 1034 data = st_ops->data; 1035 kern_data_off = kern_data_member->offset / 8; 1036 kern_data = st_ops->kern_vdata + kern_data_off; 1037 1038 member = btf_members(type); 1039 for (i = 0; i < btf_vlen(type); i++, member++) { 1040 const struct btf_type *mtype, *kern_mtype; 1041 __u32 mtype_id, kern_mtype_id; 1042 void *mdata, *kern_mdata; 1043 __s64 msize, kern_msize; 1044 __u32 moff, kern_moff; 1045 __u32 kern_member_idx; 1046 const char *mname; 1047 1048 mname = btf__name_by_offset(btf, member->name_off); 1049 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1050 if (!kern_member) { 1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 kern_member_idx = kern_member - btf_members(kern_type); 1057 if (btf_member_bitfield_size(type, i) || 1058 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1060 map->name, mname); 1061 return -ENOTSUP; 1062 } 1063 1064 moff = member->offset / 8; 1065 kern_moff = kern_member->offset / 8; 1066 1067 mdata = data + moff; 1068 kern_mdata = kern_data + kern_moff; 1069 1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1072 &kern_mtype_id); 1073 if (BTF_INFO_KIND(mtype->info) != 1074 BTF_INFO_KIND(kern_mtype->info)) { 1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1076 map->name, mname, BTF_INFO_KIND(mtype->info), 1077 BTF_INFO_KIND(kern_mtype->info)); 1078 return -ENOTSUP; 1079 } 1080 1081 if (btf_is_ptr(mtype)) { 1082 struct bpf_program *prog; 1083 1084 prog = st_ops->progs[i]; 1085 if (!prog) 1086 continue; 1087 1088 kern_mtype = skip_mods_and_typedefs(kern_btf, 1089 kern_mtype->type, 1090 &kern_mtype_id); 1091 1092 /* mtype->type must be a func_proto which was 1093 * guaranteed in bpf_object__collect_st_ops_relos(), 1094 * so only check kern_mtype for func_proto here. 1095 */ 1096 if (!btf_is_func_proto(kern_mtype)) { 1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1098 map->name, mname); 1099 return -ENOTSUP; 1100 } 1101 1102 prog->attach_btf_id = kern_type_id; 1103 prog->expected_attach_type = kern_member_idx; 1104 1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1106 1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1108 map->name, mname, prog->name, moff, 1109 kern_moff); 1110 1111 continue; 1112 } 1113 1114 msize = btf__resolve_size(btf, mtype_id); 1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1118 map->name, mname, (ssize_t)msize, 1119 (ssize_t)kern_msize); 1120 return -ENOTSUP; 1121 } 1122 1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1124 map->name, mname, (unsigned int)msize, 1125 moff, kern_moff); 1126 memcpy(kern_mdata, mdata, msize); 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1133 { 1134 struct bpf_map *map; 1135 size_t i; 1136 int err; 1137 1138 for (i = 0; i < obj->nr_maps; i++) { 1139 map = &obj->maps[i]; 1140 1141 if (!bpf_map__is_struct_ops(map)) 1142 continue; 1143 1144 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1145 obj->btf_vmlinux); 1146 if (err) 1147 return err; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1154 int shndx, Elf_Data *data, __u32 map_flags) 1155 { 1156 const struct btf_type *type, *datasec; 1157 const struct btf_var_secinfo *vsi; 1158 struct bpf_struct_ops *st_ops; 1159 const char *tname, *var_name; 1160 __s32 type_id, datasec_id; 1161 const struct btf *btf; 1162 struct bpf_map *map; 1163 __u32 i; 1164 1165 if (shndx == -1) 1166 return 0; 1167 1168 btf = obj->btf; 1169 datasec_id = btf__find_by_name_kind(btf, sec_name, 1170 BTF_KIND_DATASEC); 1171 if (datasec_id < 0) { 1172 pr_warn("struct_ops init: DATASEC %s not found\n", 1173 sec_name); 1174 return -EINVAL; 1175 } 1176 1177 datasec = btf__type_by_id(btf, datasec_id); 1178 vsi = btf_var_secinfos(datasec); 1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1180 type = btf__type_by_id(obj->btf, vsi->type); 1181 var_name = btf__name_by_offset(obj->btf, type->name_off); 1182 1183 type_id = btf__resolve_type(obj->btf, vsi->type); 1184 if (type_id < 0) { 1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1186 vsi->type, sec_name); 1187 return -EINVAL; 1188 } 1189 1190 type = btf__type_by_id(obj->btf, type_id); 1191 tname = btf__name_by_offset(obj->btf, type->name_off); 1192 if (!tname[0]) { 1193 pr_warn("struct_ops init: anonymous type is not supported\n"); 1194 return -ENOTSUP; 1195 } 1196 if (!btf_is_struct(type)) { 1197 pr_warn("struct_ops init: %s is not a struct\n", tname); 1198 return -EINVAL; 1199 } 1200 1201 map = bpf_object__add_map(obj); 1202 if (IS_ERR(map)) 1203 return PTR_ERR(map); 1204 1205 map->sec_idx = shndx; 1206 map->sec_offset = vsi->offset; 1207 map->name = strdup(var_name); 1208 if (!map->name) 1209 return -ENOMEM; 1210 1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1212 map->def.key_size = sizeof(int); 1213 map->def.value_size = type->size; 1214 map->def.max_entries = 1; 1215 map->def.map_flags = map_flags; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, sec_name); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1249 { 1250 int err; 1251 1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1253 obj->efile.st_ops_data, 0); 1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1255 obj->efile.st_ops_link_shndx, 1256 obj->efile.st_ops_link_data, 1257 BPF_F_LINK); 1258 return err; 1259 } 1260 1261 static struct bpf_object *bpf_object__new(const char *path, 1262 const void *obj_buf, 1263 size_t obj_buf_sz, 1264 const char *obj_name) 1265 { 1266 struct bpf_object *obj; 1267 char *end; 1268 1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1270 if (!obj) { 1271 pr_warn("alloc memory failed for %s\n", path); 1272 return ERR_PTR(-ENOMEM); 1273 } 1274 1275 strcpy(obj->path, path); 1276 if (obj_name) { 1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1278 } else { 1279 /* Using basename() GNU version which doesn't modify arg. */ 1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1281 end = strchr(obj->name, '.'); 1282 if (end) 1283 *end = 0; 1284 } 1285 1286 obj->efile.fd = -1; 1287 /* 1288 * Caller of this function should also call 1289 * bpf_object__elf_finish() after data collection to return 1290 * obj_buf to user. If not, we should duplicate the buffer to 1291 * avoid user freeing them before elf finish. 1292 */ 1293 obj->efile.obj_buf = obj_buf; 1294 obj->efile.obj_buf_sz = obj_buf_sz; 1295 obj->efile.btf_maps_shndx = -1; 1296 obj->efile.st_ops_shndx = -1; 1297 obj->efile.st_ops_link_shndx = -1; 1298 obj->kconfig_map_idx = -1; 1299 1300 obj->kern_version = get_kernel_version(); 1301 obj->loaded = false; 1302 1303 return obj; 1304 } 1305 1306 static void bpf_object__elf_finish(struct bpf_object *obj) 1307 { 1308 if (!obj->efile.elf) 1309 return; 1310 1311 elf_end(obj->efile.elf); 1312 obj->efile.elf = NULL; 1313 obj->efile.symbols = NULL; 1314 obj->efile.st_ops_data = NULL; 1315 obj->efile.st_ops_link_data = NULL; 1316 1317 zfree(&obj->efile.secs); 1318 obj->efile.sec_cnt = 0; 1319 zclose(obj->efile.fd); 1320 obj->efile.obj_buf = NULL; 1321 obj->efile.obj_buf_sz = 0; 1322 } 1323 1324 static int bpf_object__elf_init(struct bpf_object *obj) 1325 { 1326 Elf64_Ehdr *ehdr; 1327 int err = 0; 1328 Elf *elf; 1329 1330 if (obj->efile.elf) { 1331 pr_warn("elf: init internal error\n"); 1332 return -LIBBPF_ERRNO__LIBELF; 1333 } 1334 1335 if (obj->efile.obj_buf_sz > 0) { 1336 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1338 } else { 1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1340 if (obj->efile.fd < 0) { 1341 char errmsg[STRERR_BUFSIZE], *cp; 1342 1343 err = -errno; 1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1346 return err; 1347 } 1348 1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1350 } 1351 1352 if (!elf) { 1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__LIBELF; 1355 goto errout; 1356 } 1357 1358 obj->efile.elf = elf; 1359 1360 if (elf_kind(elf) != ELF_K_ELF) { 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1363 goto errout; 1364 } 1365 1366 if (gelf_getclass(elf) != ELFCLASS64) { 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1369 goto errout; 1370 } 1371 1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1373 if (!obj->efile.ehdr) { 1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1380 pr_warn("elf: failed to get section names section index for %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1388 pr_warn("elf: failed to get section names strings from %s: %s\n", 1389 obj->path, elf_errmsg(-1)); 1390 err = -LIBBPF_ERRNO__FORMAT; 1391 goto errout; 1392 } 1393 1394 /* Old LLVM set e_machine to EM_NONE */ 1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1397 err = -LIBBPF_ERRNO__FORMAT; 1398 goto errout; 1399 } 1400 1401 return 0; 1402 errout: 1403 bpf_object__elf_finish(obj); 1404 return err; 1405 } 1406 1407 static int bpf_object__check_endianness(struct bpf_object *obj) 1408 { 1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1411 return 0; 1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1414 return 0; 1415 #else 1416 # error "Unrecognized __BYTE_ORDER__" 1417 #endif 1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1419 return -LIBBPF_ERRNO__ENDIAN; 1420 } 1421 1422 static int 1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 if (!data) { 1426 pr_warn("invalid license section in %s\n", obj->path); 1427 return -LIBBPF_ERRNO__FORMAT; 1428 } 1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1430 * go over allowed ELF data section buffer 1431 */ 1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1433 pr_debug("license of %s is %s\n", obj->path, obj->license); 1434 return 0; 1435 } 1436 1437 static int 1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1439 { 1440 __u32 kver; 1441 1442 if (!data || size != sizeof(kver)) { 1443 pr_warn("invalid kver section in %s\n", obj->path); 1444 return -LIBBPF_ERRNO__FORMAT; 1445 } 1446 memcpy(&kver, data, sizeof(kver)); 1447 obj->kern_version = kver; 1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1449 return 0; 1450 } 1451 1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1453 { 1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1455 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1456 return true; 1457 return false; 1458 } 1459 1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1461 { 1462 Elf_Data *data; 1463 Elf_Scn *scn; 1464 1465 if (!name) 1466 return -EINVAL; 1467 1468 scn = elf_sec_by_name(obj, name); 1469 data = elf_sec_data(obj, scn); 1470 if (data) { 1471 *size = data->d_size; 1472 return 0; /* found it */ 1473 } 1474 1475 return -ENOENT; 1476 } 1477 1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1479 { 1480 Elf_Data *symbols = obj->efile.symbols; 1481 const char *sname; 1482 size_t si; 1483 1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1486 1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1488 continue; 1489 1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1492 continue; 1493 1494 sname = elf_sym_str(obj, sym->st_name); 1495 if (!sname) { 1496 pr_warn("failed to get sym name string for var %s\n", name); 1497 return ERR_PTR(-EIO); 1498 } 1499 if (strcmp(name, sname) == 0) 1500 return sym; 1501 } 1502 1503 return ERR_PTR(-ENOENT); 1504 } 1505 1506 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1507 { 1508 struct bpf_map *map; 1509 int err; 1510 1511 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1512 sizeof(*obj->maps), obj->nr_maps + 1); 1513 if (err) 1514 return ERR_PTR(err); 1515 1516 map = &obj->maps[obj->nr_maps++]; 1517 map->obj = obj; 1518 map->fd = -1; 1519 map->inner_map_fd = -1; 1520 map->autocreate = true; 1521 1522 return map; 1523 } 1524 1525 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1526 { 1527 const long page_sz = sysconf(_SC_PAGE_SIZE); 1528 size_t map_sz; 1529 1530 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1531 map_sz = roundup(map_sz, page_sz); 1532 return map_sz; 1533 } 1534 1535 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1536 { 1537 void *mmaped; 1538 1539 if (!map->mmaped) 1540 return -EINVAL; 1541 1542 if (old_sz == new_sz) 1543 return 0; 1544 1545 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1546 if (mmaped == MAP_FAILED) 1547 return -errno; 1548 1549 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1550 munmap(map->mmaped, old_sz); 1551 map->mmaped = mmaped; 1552 return 0; 1553 } 1554 1555 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1556 { 1557 char map_name[BPF_OBJ_NAME_LEN], *p; 1558 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1559 1560 /* This is one of the more confusing parts of libbpf for various 1561 * reasons, some of which are historical. The original idea for naming 1562 * internal names was to include as much of BPF object name prefix as 1563 * possible, so that it can be distinguished from similar internal 1564 * maps of a different BPF object. 1565 * As an example, let's say we have bpf_object named 'my_object_name' 1566 * and internal map corresponding to '.rodata' ELF section. The final 1567 * map name advertised to user and to the kernel will be 1568 * 'my_objec.rodata', taking first 8 characters of object name and 1569 * entire 7 characters of '.rodata'. 1570 * Somewhat confusingly, if internal map ELF section name is shorter 1571 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1572 * for the suffix, even though we only have 4 actual characters, and 1573 * resulting map will be called 'my_objec.bss', not even using all 15 1574 * characters allowed by the kernel. Oh well, at least the truncated 1575 * object name is somewhat consistent in this case. But if the map 1576 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1577 * (8 chars) and thus will be left with only first 7 characters of the 1578 * object name ('my_obje'). Happy guessing, user, that the final map 1579 * name will be "my_obje.kconfig". 1580 * Now, with libbpf starting to support arbitrarily named .rodata.* 1581 * and .data.* data sections, it's possible that ELF section name is 1582 * longer than allowed 15 chars, so we now need to be careful to take 1583 * only up to 15 first characters of ELF name, taking no BPF object 1584 * name characters at all. So '.rodata.abracadabra' will result in 1585 * '.rodata.abracad' kernel and user-visible name. 1586 * We need to keep this convoluted logic intact for .data, .bss and 1587 * .rodata maps, but for new custom .data.custom and .rodata.custom 1588 * maps we use their ELF names as is, not prepending bpf_object name 1589 * in front. We still need to truncate them to 15 characters for the 1590 * kernel. Full name can be recovered for such maps by using DATASEC 1591 * BTF type associated with such map's value type, though. 1592 */ 1593 if (sfx_len >= BPF_OBJ_NAME_LEN) 1594 sfx_len = BPF_OBJ_NAME_LEN - 1; 1595 1596 /* if there are two or more dots in map name, it's a custom dot map */ 1597 if (strchr(real_name + 1, '.') != NULL) 1598 pfx_len = 0; 1599 else 1600 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1601 1602 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1603 sfx_len, real_name); 1604 1605 /* sanitise map name to characters allowed by kernel */ 1606 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1607 if (!isalnum(*p) && *p != '_' && *p != '.') 1608 *p = '_'; 1609 1610 return strdup(map_name); 1611 } 1612 1613 static int 1614 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1615 1616 /* Internal BPF map is mmap()'able only if at least one of corresponding 1617 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1618 * variable and it's not marked as __hidden (which turns it into, effectively, 1619 * a STATIC variable). 1620 */ 1621 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1622 { 1623 const struct btf_type *t, *vt; 1624 struct btf_var_secinfo *vsi; 1625 int i, n; 1626 1627 if (!map->btf_value_type_id) 1628 return false; 1629 1630 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1631 if (!btf_is_datasec(t)) 1632 return false; 1633 1634 vsi = btf_var_secinfos(t); 1635 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1636 vt = btf__type_by_id(obj->btf, vsi->type); 1637 if (!btf_is_var(vt)) 1638 continue; 1639 1640 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1641 return true; 1642 } 1643 1644 return false; 1645 } 1646 1647 static int 1648 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1649 const char *real_name, int sec_idx, void *data, size_t data_sz) 1650 { 1651 struct bpf_map_def *def; 1652 struct bpf_map *map; 1653 size_t mmap_sz; 1654 int err; 1655 1656 map = bpf_object__add_map(obj); 1657 if (IS_ERR(map)) 1658 return PTR_ERR(map); 1659 1660 map->libbpf_type = type; 1661 map->sec_idx = sec_idx; 1662 map->sec_offset = 0; 1663 map->real_name = strdup(real_name); 1664 map->name = internal_map_name(obj, real_name); 1665 if (!map->real_name || !map->name) { 1666 zfree(&map->real_name); 1667 zfree(&map->name); 1668 return -ENOMEM; 1669 } 1670 1671 def = &map->def; 1672 def->type = BPF_MAP_TYPE_ARRAY; 1673 def->key_size = sizeof(int); 1674 def->value_size = data_sz; 1675 def->max_entries = 1; 1676 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1677 ? BPF_F_RDONLY_PROG : 0; 1678 1679 /* failures are fine because of maps like .rodata.str1.1 */ 1680 (void) map_fill_btf_type_info(obj, map); 1681 1682 if (map_is_mmapable(obj, map)) 1683 def->map_flags |= BPF_F_MMAPABLE; 1684 1685 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1686 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1687 1688 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1689 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1690 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1691 if (map->mmaped == MAP_FAILED) { 1692 err = -errno; 1693 map->mmaped = NULL; 1694 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1695 map->name, err); 1696 zfree(&map->real_name); 1697 zfree(&map->name); 1698 return err; 1699 } 1700 1701 if (data) 1702 memcpy(map->mmaped, data, data_sz); 1703 1704 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1705 return 0; 1706 } 1707 1708 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1709 { 1710 struct elf_sec_desc *sec_desc; 1711 const char *sec_name; 1712 int err = 0, sec_idx; 1713 1714 /* 1715 * Populate obj->maps with libbpf internal maps. 1716 */ 1717 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1718 sec_desc = &obj->efile.secs[sec_idx]; 1719 1720 /* Skip recognized sections with size 0. */ 1721 if (!sec_desc->data || sec_desc->data->d_size == 0) 1722 continue; 1723 1724 switch (sec_desc->sec_type) { 1725 case SEC_DATA: 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1728 sec_name, sec_idx, 1729 sec_desc->data->d_buf, 1730 sec_desc->data->d_size); 1731 break; 1732 case SEC_RODATA: 1733 obj->has_rodata = true; 1734 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1735 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1736 sec_name, sec_idx, 1737 sec_desc->data->d_buf, 1738 sec_desc->data->d_size); 1739 break; 1740 case SEC_BSS: 1741 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1742 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1743 sec_name, sec_idx, 1744 NULL, 1745 sec_desc->data->d_size); 1746 break; 1747 default: 1748 /* skip */ 1749 break; 1750 } 1751 if (err) 1752 return err; 1753 } 1754 return 0; 1755 } 1756 1757 1758 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1759 const void *name) 1760 { 1761 int i; 1762 1763 for (i = 0; i < obj->nr_extern; i++) { 1764 if (strcmp(obj->externs[i].name, name) == 0) 1765 return &obj->externs[i]; 1766 } 1767 return NULL; 1768 } 1769 1770 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1771 char value) 1772 { 1773 switch (ext->kcfg.type) { 1774 case KCFG_BOOL: 1775 if (value == 'm') { 1776 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1777 ext->name, value); 1778 return -EINVAL; 1779 } 1780 *(bool *)ext_val = value == 'y' ? true : false; 1781 break; 1782 case KCFG_TRISTATE: 1783 if (value == 'y') 1784 *(enum libbpf_tristate *)ext_val = TRI_YES; 1785 else if (value == 'm') 1786 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1787 else /* value == 'n' */ 1788 *(enum libbpf_tristate *)ext_val = TRI_NO; 1789 break; 1790 case KCFG_CHAR: 1791 *(char *)ext_val = value; 1792 break; 1793 case KCFG_UNKNOWN: 1794 case KCFG_INT: 1795 case KCFG_CHAR_ARR: 1796 default: 1797 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1798 ext->name, value); 1799 return -EINVAL; 1800 } 1801 ext->is_set = true; 1802 return 0; 1803 } 1804 1805 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1806 const char *value) 1807 { 1808 size_t len; 1809 1810 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1811 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1812 ext->name, value); 1813 return -EINVAL; 1814 } 1815 1816 len = strlen(value); 1817 if (value[len - 1] != '"') { 1818 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1819 ext->name, value); 1820 return -EINVAL; 1821 } 1822 1823 /* strip quotes */ 1824 len -= 2; 1825 if (len >= ext->kcfg.sz) { 1826 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1827 ext->name, value, len, ext->kcfg.sz - 1); 1828 len = ext->kcfg.sz - 1; 1829 } 1830 memcpy(ext_val, value + 1, len); 1831 ext_val[len] = '\0'; 1832 ext->is_set = true; 1833 return 0; 1834 } 1835 1836 static int parse_u64(const char *value, __u64 *res) 1837 { 1838 char *value_end; 1839 int err; 1840 1841 errno = 0; 1842 *res = strtoull(value, &value_end, 0); 1843 if (errno) { 1844 err = -errno; 1845 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1846 return err; 1847 } 1848 if (*value_end) { 1849 pr_warn("failed to parse '%s' as integer completely\n", value); 1850 return -EINVAL; 1851 } 1852 return 0; 1853 } 1854 1855 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1856 { 1857 int bit_sz = ext->kcfg.sz * 8; 1858 1859 if (ext->kcfg.sz == 8) 1860 return true; 1861 1862 /* Validate that value stored in u64 fits in integer of `ext->sz` 1863 * bytes size without any loss of information. If the target integer 1864 * is signed, we rely on the following limits of integer type of 1865 * Y bits and subsequent transformation: 1866 * 1867 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1868 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1869 * 0 <= X + 2^(Y-1) < 2^Y 1870 * 1871 * For unsigned target integer, check that all the (64 - Y) bits are 1872 * zero. 1873 */ 1874 if (ext->kcfg.is_signed) 1875 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1876 else 1877 return (v >> bit_sz) == 0; 1878 } 1879 1880 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1881 __u64 value) 1882 { 1883 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1884 ext->kcfg.type != KCFG_BOOL) { 1885 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1886 ext->name, (unsigned long long)value); 1887 return -EINVAL; 1888 } 1889 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1890 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1891 ext->name, (unsigned long long)value); 1892 return -EINVAL; 1893 1894 } 1895 if (!is_kcfg_value_in_range(ext, value)) { 1896 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1897 ext->name, (unsigned long long)value, ext->kcfg.sz); 1898 return -ERANGE; 1899 } 1900 switch (ext->kcfg.sz) { 1901 case 1: 1902 *(__u8 *)ext_val = value; 1903 break; 1904 case 2: 1905 *(__u16 *)ext_val = value; 1906 break; 1907 case 4: 1908 *(__u32 *)ext_val = value; 1909 break; 1910 case 8: 1911 *(__u64 *)ext_val = value; 1912 break; 1913 default: 1914 return -EINVAL; 1915 } 1916 ext->is_set = true; 1917 return 0; 1918 } 1919 1920 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1921 char *buf, void *data) 1922 { 1923 struct extern_desc *ext; 1924 char *sep, *value; 1925 int len, err = 0; 1926 void *ext_val; 1927 __u64 num; 1928 1929 if (!str_has_pfx(buf, "CONFIG_")) 1930 return 0; 1931 1932 sep = strchr(buf, '='); 1933 if (!sep) { 1934 pr_warn("failed to parse '%s': no separator\n", buf); 1935 return -EINVAL; 1936 } 1937 1938 /* Trim ending '\n' */ 1939 len = strlen(buf); 1940 if (buf[len - 1] == '\n') 1941 buf[len - 1] = '\0'; 1942 /* Split on '=' and ensure that a value is present. */ 1943 *sep = '\0'; 1944 if (!sep[1]) { 1945 *sep = '='; 1946 pr_warn("failed to parse '%s': no value\n", buf); 1947 return -EINVAL; 1948 } 1949 1950 ext = find_extern_by_name(obj, buf); 1951 if (!ext || ext->is_set) 1952 return 0; 1953 1954 ext_val = data + ext->kcfg.data_off; 1955 value = sep + 1; 1956 1957 switch (*value) { 1958 case 'y': case 'n': case 'm': 1959 err = set_kcfg_value_tri(ext, ext_val, *value); 1960 break; 1961 case '"': 1962 err = set_kcfg_value_str(ext, ext_val, value); 1963 break; 1964 default: 1965 /* assume integer */ 1966 err = parse_u64(value, &num); 1967 if (err) { 1968 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1969 return err; 1970 } 1971 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1972 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1973 return -EINVAL; 1974 } 1975 err = set_kcfg_value_num(ext, ext_val, num); 1976 break; 1977 } 1978 if (err) 1979 return err; 1980 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1981 return 0; 1982 } 1983 1984 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1985 { 1986 char buf[PATH_MAX]; 1987 struct utsname uts; 1988 int len, err = 0; 1989 gzFile file; 1990 1991 uname(&uts); 1992 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1993 if (len < 0) 1994 return -EINVAL; 1995 else if (len >= PATH_MAX) 1996 return -ENAMETOOLONG; 1997 1998 /* gzopen also accepts uncompressed files. */ 1999 file = gzopen(buf, "re"); 2000 if (!file) 2001 file = gzopen("/proc/config.gz", "re"); 2002 2003 if (!file) { 2004 pr_warn("failed to open system Kconfig\n"); 2005 return -ENOENT; 2006 } 2007 2008 while (gzgets(file, buf, sizeof(buf))) { 2009 err = bpf_object__process_kconfig_line(obj, buf, data); 2010 if (err) { 2011 pr_warn("error parsing system Kconfig line '%s': %d\n", 2012 buf, err); 2013 goto out; 2014 } 2015 } 2016 2017 out: 2018 gzclose(file); 2019 return err; 2020 } 2021 2022 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2023 const char *config, void *data) 2024 { 2025 char buf[PATH_MAX]; 2026 int err = 0; 2027 FILE *file; 2028 2029 file = fmemopen((void *)config, strlen(config), "r"); 2030 if (!file) { 2031 err = -errno; 2032 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2033 return err; 2034 } 2035 2036 while (fgets(buf, sizeof(buf), file)) { 2037 err = bpf_object__process_kconfig_line(obj, buf, data); 2038 if (err) { 2039 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2040 buf, err); 2041 break; 2042 } 2043 } 2044 2045 fclose(file); 2046 return err; 2047 } 2048 2049 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2050 { 2051 struct extern_desc *last_ext = NULL, *ext; 2052 size_t map_sz; 2053 int i, err; 2054 2055 for (i = 0; i < obj->nr_extern; i++) { 2056 ext = &obj->externs[i]; 2057 if (ext->type == EXT_KCFG) 2058 last_ext = ext; 2059 } 2060 2061 if (!last_ext) 2062 return 0; 2063 2064 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2065 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2066 ".kconfig", obj->efile.symbols_shndx, 2067 NULL, map_sz); 2068 if (err) 2069 return err; 2070 2071 obj->kconfig_map_idx = obj->nr_maps - 1; 2072 2073 return 0; 2074 } 2075 2076 const struct btf_type * 2077 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2078 { 2079 const struct btf_type *t = btf__type_by_id(btf, id); 2080 2081 if (res_id) 2082 *res_id = id; 2083 2084 while (btf_is_mod(t) || btf_is_typedef(t)) { 2085 if (res_id) 2086 *res_id = t->type; 2087 t = btf__type_by_id(btf, t->type); 2088 } 2089 2090 return t; 2091 } 2092 2093 static const struct btf_type * 2094 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2095 { 2096 const struct btf_type *t; 2097 2098 t = skip_mods_and_typedefs(btf, id, NULL); 2099 if (!btf_is_ptr(t)) 2100 return NULL; 2101 2102 t = skip_mods_and_typedefs(btf, t->type, res_id); 2103 2104 return btf_is_func_proto(t) ? t : NULL; 2105 } 2106 2107 static const char *__btf_kind_str(__u16 kind) 2108 { 2109 switch (kind) { 2110 case BTF_KIND_UNKN: return "void"; 2111 case BTF_KIND_INT: return "int"; 2112 case BTF_KIND_PTR: return "ptr"; 2113 case BTF_KIND_ARRAY: return "array"; 2114 case BTF_KIND_STRUCT: return "struct"; 2115 case BTF_KIND_UNION: return "union"; 2116 case BTF_KIND_ENUM: return "enum"; 2117 case BTF_KIND_FWD: return "fwd"; 2118 case BTF_KIND_TYPEDEF: return "typedef"; 2119 case BTF_KIND_VOLATILE: return "volatile"; 2120 case BTF_KIND_CONST: return "const"; 2121 case BTF_KIND_RESTRICT: return "restrict"; 2122 case BTF_KIND_FUNC: return "func"; 2123 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2124 case BTF_KIND_VAR: return "var"; 2125 case BTF_KIND_DATASEC: return "datasec"; 2126 case BTF_KIND_FLOAT: return "float"; 2127 case BTF_KIND_DECL_TAG: return "decl_tag"; 2128 case BTF_KIND_TYPE_TAG: return "type_tag"; 2129 case BTF_KIND_ENUM64: return "enum64"; 2130 default: return "unknown"; 2131 } 2132 } 2133 2134 const char *btf_kind_str(const struct btf_type *t) 2135 { 2136 return __btf_kind_str(btf_kind(t)); 2137 } 2138 2139 /* 2140 * Fetch integer attribute of BTF map definition. Such attributes are 2141 * represented using a pointer to an array, in which dimensionality of array 2142 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2143 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2144 * type definition, while using only sizeof(void *) space in ELF data section. 2145 */ 2146 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2147 const struct btf_member *m, __u32 *res) 2148 { 2149 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2150 const char *name = btf__name_by_offset(btf, m->name_off); 2151 const struct btf_array *arr_info; 2152 const struct btf_type *arr_t; 2153 2154 if (!btf_is_ptr(t)) { 2155 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2156 map_name, name, btf_kind_str(t)); 2157 return false; 2158 } 2159 2160 arr_t = btf__type_by_id(btf, t->type); 2161 if (!arr_t) { 2162 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2163 map_name, name, t->type); 2164 return false; 2165 } 2166 if (!btf_is_array(arr_t)) { 2167 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2168 map_name, name, btf_kind_str(arr_t)); 2169 return false; 2170 } 2171 arr_info = btf_array(arr_t); 2172 *res = arr_info->nelems; 2173 return true; 2174 } 2175 2176 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2177 { 2178 int len; 2179 2180 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2181 if (len < 0) 2182 return -EINVAL; 2183 if (len >= buf_sz) 2184 return -ENAMETOOLONG; 2185 2186 return 0; 2187 } 2188 2189 static int build_map_pin_path(struct bpf_map *map, const char *path) 2190 { 2191 char buf[PATH_MAX]; 2192 int err; 2193 2194 if (!path) 2195 path = "/sys/fs/bpf"; 2196 2197 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2198 if (err) 2199 return err; 2200 2201 return bpf_map__set_pin_path(map, buf); 2202 } 2203 2204 /* should match definition in bpf_helpers.h */ 2205 enum libbpf_pin_type { 2206 LIBBPF_PIN_NONE, 2207 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2208 LIBBPF_PIN_BY_NAME, 2209 }; 2210 2211 int parse_btf_map_def(const char *map_name, struct btf *btf, 2212 const struct btf_type *def_t, bool strict, 2213 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2214 { 2215 const struct btf_type *t; 2216 const struct btf_member *m; 2217 bool is_inner = inner_def == NULL; 2218 int vlen, i; 2219 2220 vlen = btf_vlen(def_t); 2221 m = btf_members(def_t); 2222 for (i = 0; i < vlen; i++, m++) { 2223 const char *name = btf__name_by_offset(btf, m->name_off); 2224 2225 if (!name) { 2226 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2227 return -EINVAL; 2228 } 2229 if (strcmp(name, "type") == 0) { 2230 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2231 return -EINVAL; 2232 map_def->parts |= MAP_DEF_MAP_TYPE; 2233 } else if (strcmp(name, "max_entries") == 0) { 2234 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2235 return -EINVAL; 2236 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2237 } else if (strcmp(name, "map_flags") == 0) { 2238 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2239 return -EINVAL; 2240 map_def->parts |= MAP_DEF_MAP_FLAGS; 2241 } else if (strcmp(name, "numa_node") == 0) { 2242 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2243 return -EINVAL; 2244 map_def->parts |= MAP_DEF_NUMA_NODE; 2245 } else if (strcmp(name, "key_size") == 0) { 2246 __u32 sz; 2247 2248 if (!get_map_field_int(map_name, btf, m, &sz)) 2249 return -EINVAL; 2250 if (map_def->key_size && map_def->key_size != sz) { 2251 pr_warn("map '%s': conflicting key size %u != %u.\n", 2252 map_name, map_def->key_size, sz); 2253 return -EINVAL; 2254 } 2255 map_def->key_size = sz; 2256 map_def->parts |= MAP_DEF_KEY_SIZE; 2257 } else if (strcmp(name, "key") == 0) { 2258 __s64 sz; 2259 2260 t = btf__type_by_id(btf, m->type); 2261 if (!t) { 2262 pr_warn("map '%s': key type [%d] not found.\n", 2263 map_name, m->type); 2264 return -EINVAL; 2265 } 2266 if (!btf_is_ptr(t)) { 2267 pr_warn("map '%s': key spec is not PTR: %s.\n", 2268 map_name, btf_kind_str(t)); 2269 return -EINVAL; 2270 } 2271 sz = btf__resolve_size(btf, t->type); 2272 if (sz < 0) { 2273 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2274 map_name, t->type, (ssize_t)sz); 2275 return sz; 2276 } 2277 if (map_def->key_size && map_def->key_size != sz) { 2278 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2279 map_name, map_def->key_size, (ssize_t)sz); 2280 return -EINVAL; 2281 } 2282 map_def->key_size = sz; 2283 map_def->key_type_id = t->type; 2284 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2285 } else if (strcmp(name, "value_size") == 0) { 2286 __u32 sz; 2287 2288 if (!get_map_field_int(map_name, btf, m, &sz)) 2289 return -EINVAL; 2290 if (map_def->value_size && map_def->value_size != sz) { 2291 pr_warn("map '%s': conflicting value size %u != %u.\n", 2292 map_name, map_def->value_size, sz); 2293 return -EINVAL; 2294 } 2295 map_def->value_size = sz; 2296 map_def->parts |= MAP_DEF_VALUE_SIZE; 2297 } else if (strcmp(name, "value") == 0) { 2298 __s64 sz; 2299 2300 t = btf__type_by_id(btf, m->type); 2301 if (!t) { 2302 pr_warn("map '%s': value type [%d] not found.\n", 2303 map_name, m->type); 2304 return -EINVAL; 2305 } 2306 if (!btf_is_ptr(t)) { 2307 pr_warn("map '%s': value spec is not PTR: %s.\n", 2308 map_name, btf_kind_str(t)); 2309 return -EINVAL; 2310 } 2311 sz = btf__resolve_size(btf, t->type); 2312 if (sz < 0) { 2313 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2314 map_name, t->type, (ssize_t)sz); 2315 return sz; 2316 } 2317 if (map_def->value_size && map_def->value_size != sz) { 2318 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2319 map_name, map_def->value_size, (ssize_t)sz); 2320 return -EINVAL; 2321 } 2322 map_def->value_size = sz; 2323 map_def->value_type_id = t->type; 2324 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2325 } 2326 else if (strcmp(name, "values") == 0) { 2327 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2328 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2329 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2330 char inner_map_name[128]; 2331 int err; 2332 2333 if (is_inner) { 2334 pr_warn("map '%s': multi-level inner maps not supported.\n", 2335 map_name); 2336 return -ENOTSUP; 2337 } 2338 if (i != vlen - 1) { 2339 pr_warn("map '%s': '%s' member should be last.\n", 2340 map_name, name); 2341 return -EINVAL; 2342 } 2343 if (!is_map_in_map && !is_prog_array) { 2344 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2345 map_name); 2346 return -ENOTSUP; 2347 } 2348 if (map_def->value_size && map_def->value_size != 4) { 2349 pr_warn("map '%s': conflicting value size %u != 4.\n", 2350 map_name, map_def->value_size); 2351 return -EINVAL; 2352 } 2353 map_def->value_size = 4; 2354 t = btf__type_by_id(btf, m->type); 2355 if (!t) { 2356 pr_warn("map '%s': %s type [%d] not found.\n", 2357 map_name, desc, m->type); 2358 return -EINVAL; 2359 } 2360 if (!btf_is_array(t) || btf_array(t)->nelems) { 2361 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2362 map_name, desc); 2363 return -EINVAL; 2364 } 2365 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2366 if (!btf_is_ptr(t)) { 2367 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2368 map_name, desc, btf_kind_str(t)); 2369 return -EINVAL; 2370 } 2371 t = skip_mods_and_typedefs(btf, t->type, NULL); 2372 if (is_prog_array) { 2373 if (!btf_is_func_proto(t)) { 2374 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2375 map_name, btf_kind_str(t)); 2376 return -EINVAL; 2377 } 2378 continue; 2379 } 2380 if (!btf_is_struct(t)) { 2381 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2382 map_name, btf_kind_str(t)); 2383 return -EINVAL; 2384 } 2385 2386 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2387 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2388 if (err) 2389 return err; 2390 2391 map_def->parts |= MAP_DEF_INNER_MAP; 2392 } else if (strcmp(name, "pinning") == 0) { 2393 __u32 val; 2394 2395 if (is_inner) { 2396 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2397 return -EINVAL; 2398 } 2399 if (!get_map_field_int(map_name, btf, m, &val)) 2400 return -EINVAL; 2401 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2402 pr_warn("map '%s': invalid pinning value %u.\n", 2403 map_name, val); 2404 return -EINVAL; 2405 } 2406 map_def->pinning = val; 2407 map_def->parts |= MAP_DEF_PINNING; 2408 } else if (strcmp(name, "map_extra") == 0) { 2409 __u32 map_extra; 2410 2411 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2412 return -EINVAL; 2413 map_def->map_extra = map_extra; 2414 map_def->parts |= MAP_DEF_MAP_EXTRA; 2415 } else { 2416 if (strict) { 2417 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2418 return -ENOTSUP; 2419 } 2420 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2421 } 2422 } 2423 2424 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2425 pr_warn("map '%s': map type isn't specified.\n", map_name); 2426 return -EINVAL; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static size_t adjust_ringbuf_sz(size_t sz) 2433 { 2434 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2435 __u32 mul; 2436 2437 /* if user forgot to set any size, make sure they see error */ 2438 if (sz == 0) 2439 return 0; 2440 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2441 * a power-of-2 multiple of kernel's page size. If user diligently 2442 * satisified these conditions, pass the size through. 2443 */ 2444 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2445 return sz; 2446 2447 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2448 * user-set size to satisfy both user size request and kernel 2449 * requirements and substitute correct max_entries for map creation. 2450 */ 2451 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2452 if (mul * page_sz > sz) 2453 return mul * page_sz; 2454 } 2455 2456 /* if it's impossible to satisfy the conditions (i.e., user size is 2457 * very close to UINT_MAX but is not a power-of-2 multiple of 2458 * page_size) then just return original size and let kernel reject it 2459 */ 2460 return sz; 2461 } 2462 2463 static bool map_is_ringbuf(const struct bpf_map *map) 2464 { 2465 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2466 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2467 } 2468 2469 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2470 { 2471 map->def.type = def->map_type; 2472 map->def.key_size = def->key_size; 2473 map->def.value_size = def->value_size; 2474 map->def.max_entries = def->max_entries; 2475 map->def.map_flags = def->map_flags; 2476 map->map_extra = def->map_extra; 2477 2478 map->numa_node = def->numa_node; 2479 map->btf_key_type_id = def->key_type_id; 2480 map->btf_value_type_id = def->value_type_id; 2481 2482 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2483 if (map_is_ringbuf(map)) 2484 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2485 2486 if (def->parts & MAP_DEF_MAP_TYPE) 2487 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2488 2489 if (def->parts & MAP_DEF_KEY_TYPE) 2490 pr_debug("map '%s': found key [%u], sz = %u.\n", 2491 map->name, def->key_type_id, def->key_size); 2492 else if (def->parts & MAP_DEF_KEY_SIZE) 2493 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2494 2495 if (def->parts & MAP_DEF_VALUE_TYPE) 2496 pr_debug("map '%s': found value [%u], sz = %u.\n", 2497 map->name, def->value_type_id, def->value_size); 2498 else if (def->parts & MAP_DEF_VALUE_SIZE) 2499 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2500 2501 if (def->parts & MAP_DEF_MAX_ENTRIES) 2502 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2503 if (def->parts & MAP_DEF_MAP_FLAGS) 2504 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2505 if (def->parts & MAP_DEF_MAP_EXTRA) 2506 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2507 (unsigned long long)def->map_extra); 2508 if (def->parts & MAP_DEF_PINNING) 2509 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2510 if (def->parts & MAP_DEF_NUMA_NODE) 2511 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2512 2513 if (def->parts & MAP_DEF_INNER_MAP) 2514 pr_debug("map '%s': found inner map definition.\n", map->name); 2515 } 2516 2517 static const char *btf_var_linkage_str(__u32 linkage) 2518 { 2519 switch (linkage) { 2520 case BTF_VAR_STATIC: return "static"; 2521 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2522 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2523 default: return "unknown"; 2524 } 2525 } 2526 2527 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2528 const struct btf_type *sec, 2529 int var_idx, int sec_idx, 2530 const Elf_Data *data, bool strict, 2531 const char *pin_root_path) 2532 { 2533 struct btf_map_def map_def = {}, inner_def = {}; 2534 const struct btf_type *var, *def; 2535 const struct btf_var_secinfo *vi; 2536 const struct btf_var *var_extra; 2537 const char *map_name; 2538 struct bpf_map *map; 2539 int err; 2540 2541 vi = btf_var_secinfos(sec) + var_idx; 2542 var = btf__type_by_id(obj->btf, vi->type); 2543 var_extra = btf_var(var); 2544 map_name = btf__name_by_offset(obj->btf, var->name_off); 2545 2546 if (map_name == NULL || map_name[0] == '\0') { 2547 pr_warn("map #%d: empty name.\n", var_idx); 2548 return -EINVAL; 2549 } 2550 if ((__u64)vi->offset + vi->size > data->d_size) { 2551 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2552 return -EINVAL; 2553 } 2554 if (!btf_is_var(var)) { 2555 pr_warn("map '%s': unexpected var kind %s.\n", 2556 map_name, btf_kind_str(var)); 2557 return -EINVAL; 2558 } 2559 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2560 pr_warn("map '%s': unsupported map linkage %s.\n", 2561 map_name, btf_var_linkage_str(var_extra->linkage)); 2562 return -EOPNOTSUPP; 2563 } 2564 2565 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2566 if (!btf_is_struct(def)) { 2567 pr_warn("map '%s': unexpected def kind %s.\n", 2568 map_name, btf_kind_str(var)); 2569 return -EINVAL; 2570 } 2571 if (def->size > vi->size) { 2572 pr_warn("map '%s': invalid def size.\n", map_name); 2573 return -EINVAL; 2574 } 2575 2576 map = bpf_object__add_map(obj); 2577 if (IS_ERR(map)) 2578 return PTR_ERR(map); 2579 map->name = strdup(map_name); 2580 if (!map->name) { 2581 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2582 return -ENOMEM; 2583 } 2584 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2585 map->def.type = BPF_MAP_TYPE_UNSPEC; 2586 map->sec_idx = sec_idx; 2587 map->sec_offset = vi->offset; 2588 map->btf_var_idx = var_idx; 2589 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2590 map_name, map->sec_idx, map->sec_offset); 2591 2592 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2593 if (err) 2594 return err; 2595 2596 fill_map_from_def(map, &map_def); 2597 2598 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2599 err = build_map_pin_path(map, pin_root_path); 2600 if (err) { 2601 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2602 return err; 2603 } 2604 } 2605 2606 if (map_def.parts & MAP_DEF_INNER_MAP) { 2607 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2608 if (!map->inner_map) 2609 return -ENOMEM; 2610 map->inner_map->fd = -1; 2611 map->inner_map->sec_idx = sec_idx; 2612 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2613 if (!map->inner_map->name) 2614 return -ENOMEM; 2615 sprintf(map->inner_map->name, "%s.inner", map_name); 2616 2617 fill_map_from_def(map->inner_map, &inner_def); 2618 } 2619 2620 err = map_fill_btf_type_info(obj, map); 2621 if (err) 2622 return err; 2623 2624 return 0; 2625 } 2626 2627 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2628 const char *pin_root_path) 2629 { 2630 const struct btf_type *sec = NULL; 2631 int nr_types, i, vlen, err; 2632 const struct btf_type *t; 2633 const char *name; 2634 Elf_Data *data; 2635 Elf_Scn *scn; 2636 2637 if (obj->efile.btf_maps_shndx < 0) 2638 return 0; 2639 2640 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2641 data = elf_sec_data(obj, scn); 2642 if (!scn || !data) { 2643 pr_warn("elf: failed to get %s map definitions for %s\n", 2644 MAPS_ELF_SEC, obj->path); 2645 return -EINVAL; 2646 } 2647 2648 nr_types = btf__type_cnt(obj->btf); 2649 for (i = 1; i < nr_types; i++) { 2650 t = btf__type_by_id(obj->btf, i); 2651 if (!btf_is_datasec(t)) 2652 continue; 2653 name = btf__name_by_offset(obj->btf, t->name_off); 2654 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2655 sec = t; 2656 obj->efile.btf_maps_sec_btf_id = i; 2657 break; 2658 } 2659 } 2660 2661 if (!sec) { 2662 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2663 return -ENOENT; 2664 } 2665 2666 vlen = btf_vlen(sec); 2667 for (i = 0; i < vlen; i++) { 2668 err = bpf_object__init_user_btf_map(obj, sec, i, 2669 obj->efile.btf_maps_shndx, 2670 data, strict, 2671 pin_root_path); 2672 if (err) 2673 return err; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int bpf_object__init_maps(struct bpf_object *obj, 2680 const struct bpf_object_open_opts *opts) 2681 { 2682 const char *pin_root_path; 2683 bool strict; 2684 int err = 0; 2685 2686 strict = !OPTS_GET(opts, relaxed_maps, false); 2687 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2688 2689 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2690 err = err ?: bpf_object__init_global_data_maps(obj); 2691 err = err ?: bpf_object__init_kconfig_map(obj); 2692 err = err ?: bpf_object_init_struct_ops(obj); 2693 2694 return err; 2695 } 2696 2697 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2698 { 2699 Elf64_Shdr *sh; 2700 2701 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2702 if (!sh) 2703 return false; 2704 2705 return sh->sh_flags & SHF_EXECINSTR; 2706 } 2707 2708 static bool btf_needs_sanitization(struct bpf_object *obj) 2709 { 2710 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2711 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2712 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2713 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2714 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2715 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2716 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2717 2718 return !has_func || !has_datasec || !has_func_global || !has_float || 2719 !has_decl_tag || !has_type_tag || !has_enum64; 2720 } 2721 2722 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2723 { 2724 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2725 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2726 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2727 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2728 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2729 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2730 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2731 int enum64_placeholder_id = 0; 2732 struct btf_type *t; 2733 int i, j, vlen; 2734 2735 for (i = 1; i < btf__type_cnt(btf); i++) { 2736 t = (struct btf_type *)btf__type_by_id(btf, i); 2737 2738 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2739 /* replace VAR/DECL_TAG with INT */ 2740 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2741 /* 2742 * using size = 1 is the safest choice, 4 will be too 2743 * big and cause kernel BTF validation failure if 2744 * original variable took less than 4 bytes 2745 */ 2746 t->size = 1; 2747 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2748 } else if (!has_datasec && btf_is_datasec(t)) { 2749 /* replace DATASEC with STRUCT */ 2750 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2751 struct btf_member *m = btf_members(t); 2752 struct btf_type *vt; 2753 char *name; 2754 2755 name = (char *)btf__name_by_offset(btf, t->name_off); 2756 while (*name) { 2757 if (*name == '.') 2758 *name = '_'; 2759 name++; 2760 } 2761 2762 vlen = btf_vlen(t); 2763 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2764 for (j = 0; j < vlen; j++, v++, m++) { 2765 /* order of field assignments is important */ 2766 m->offset = v->offset * 8; 2767 m->type = v->type; 2768 /* preserve variable name as member name */ 2769 vt = (void *)btf__type_by_id(btf, v->type); 2770 m->name_off = vt->name_off; 2771 } 2772 } else if (!has_func && btf_is_func_proto(t)) { 2773 /* replace FUNC_PROTO with ENUM */ 2774 vlen = btf_vlen(t); 2775 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2776 t->size = sizeof(__u32); /* kernel enforced */ 2777 } else if (!has_func && btf_is_func(t)) { 2778 /* replace FUNC with TYPEDEF */ 2779 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2780 } else if (!has_func_global && btf_is_func(t)) { 2781 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2782 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2783 } else if (!has_float && btf_is_float(t)) { 2784 /* replace FLOAT with an equally-sized empty STRUCT; 2785 * since C compilers do not accept e.g. "float" as a 2786 * valid struct name, make it anonymous 2787 */ 2788 t->name_off = 0; 2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2790 } else if (!has_type_tag && btf_is_type_tag(t)) { 2791 /* replace TYPE_TAG with a CONST */ 2792 t->name_off = 0; 2793 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2794 } else if (!has_enum64 && btf_is_enum(t)) { 2795 /* clear the kflag */ 2796 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2797 } else if (!has_enum64 && btf_is_enum64(t)) { 2798 /* replace ENUM64 with a union */ 2799 struct btf_member *m; 2800 2801 if (enum64_placeholder_id == 0) { 2802 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2803 if (enum64_placeholder_id < 0) 2804 return enum64_placeholder_id; 2805 2806 t = (struct btf_type *)btf__type_by_id(btf, i); 2807 } 2808 2809 m = btf_members(t); 2810 vlen = btf_vlen(t); 2811 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2812 for (j = 0; j < vlen; j++, m++) { 2813 m->type = enum64_placeholder_id; 2814 m->offset = 0; 2815 } 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 static bool libbpf_needs_btf(const struct bpf_object *obj) 2823 { 2824 return obj->efile.btf_maps_shndx >= 0 || 2825 obj->efile.st_ops_shndx >= 0 || 2826 obj->efile.st_ops_link_shndx >= 0 || 2827 obj->nr_extern > 0; 2828 } 2829 2830 static bool kernel_needs_btf(const struct bpf_object *obj) 2831 { 2832 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2833 } 2834 2835 static int bpf_object__init_btf(struct bpf_object *obj, 2836 Elf_Data *btf_data, 2837 Elf_Data *btf_ext_data) 2838 { 2839 int err = -ENOENT; 2840 2841 if (btf_data) { 2842 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2843 err = libbpf_get_error(obj->btf); 2844 if (err) { 2845 obj->btf = NULL; 2846 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2847 goto out; 2848 } 2849 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2850 btf__set_pointer_size(obj->btf, 8); 2851 } 2852 if (btf_ext_data) { 2853 struct btf_ext_info *ext_segs[3]; 2854 int seg_num, sec_num; 2855 2856 if (!obj->btf) { 2857 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2858 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2859 goto out; 2860 } 2861 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2862 err = libbpf_get_error(obj->btf_ext); 2863 if (err) { 2864 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2865 BTF_EXT_ELF_SEC, err); 2866 obj->btf_ext = NULL; 2867 goto out; 2868 } 2869 2870 /* setup .BTF.ext to ELF section mapping */ 2871 ext_segs[0] = &obj->btf_ext->func_info; 2872 ext_segs[1] = &obj->btf_ext->line_info; 2873 ext_segs[2] = &obj->btf_ext->core_relo_info; 2874 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2875 struct btf_ext_info *seg = ext_segs[seg_num]; 2876 const struct btf_ext_info_sec *sec; 2877 const char *sec_name; 2878 Elf_Scn *scn; 2879 2880 if (seg->sec_cnt == 0) 2881 continue; 2882 2883 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2884 if (!seg->sec_idxs) { 2885 err = -ENOMEM; 2886 goto out; 2887 } 2888 2889 sec_num = 0; 2890 for_each_btf_ext_sec(seg, sec) { 2891 /* preventively increment index to avoid doing 2892 * this before every continue below 2893 */ 2894 sec_num++; 2895 2896 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2897 if (str_is_empty(sec_name)) 2898 continue; 2899 scn = elf_sec_by_name(obj, sec_name); 2900 if (!scn) 2901 continue; 2902 2903 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2904 } 2905 } 2906 } 2907 out: 2908 if (err && libbpf_needs_btf(obj)) { 2909 pr_warn("BTF is required, but is missing or corrupted.\n"); 2910 return err; 2911 } 2912 return 0; 2913 } 2914 2915 static int compare_vsi_off(const void *_a, const void *_b) 2916 { 2917 const struct btf_var_secinfo *a = _a; 2918 const struct btf_var_secinfo *b = _b; 2919 2920 return a->offset - b->offset; 2921 } 2922 2923 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2924 struct btf_type *t) 2925 { 2926 __u32 size = 0, i, vars = btf_vlen(t); 2927 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2928 struct btf_var_secinfo *vsi; 2929 bool fixup_offsets = false; 2930 int err; 2931 2932 if (!sec_name) { 2933 pr_debug("No name found in string section for DATASEC kind.\n"); 2934 return -ENOENT; 2935 } 2936 2937 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2938 * variable offsets set at the previous step. Further, not every 2939 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2940 * all fixups altogether for such sections and go straight to sorting 2941 * VARs within their DATASEC. 2942 */ 2943 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2944 goto sort_vars; 2945 2946 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2947 * fix this up. But BPF static linker already fixes this up and fills 2948 * all the sizes and offsets during static linking. So this step has 2949 * to be optional. But the STV_HIDDEN handling is non-optional for any 2950 * non-extern DATASEC, so the variable fixup loop below handles both 2951 * functions at the same time, paying the cost of BTF VAR <-> ELF 2952 * symbol matching just once. 2953 */ 2954 if (t->size == 0) { 2955 err = find_elf_sec_sz(obj, sec_name, &size); 2956 if (err || !size) { 2957 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2958 sec_name, size, err); 2959 return -ENOENT; 2960 } 2961 2962 t->size = size; 2963 fixup_offsets = true; 2964 } 2965 2966 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2967 const struct btf_type *t_var; 2968 struct btf_var *var; 2969 const char *var_name; 2970 Elf64_Sym *sym; 2971 2972 t_var = btf__type_by_id(btf, vsi->type); 2973 if (!t_var || !btf_is_var(t_var)) { 2974 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2975 return -EINVAL; 2976 } 2977 2978 var = btf_var(t_var); 2979 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2980 continue; 2981 2982 var_name = btf__name_by_offset(btf, t_var->name_off); 2983 if (!var_name) { 2984 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2985 sec_name, i); 2986 return -ENOENT; 2987 } 2988 2989 sym = find_elf_var_sym(obj, var_name); 2990 if (IS_ERR(sym)) { 2991 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2992 sec_name, var_name); 2993 return -ENOENT; 2994 } 2995 2996 if (fixup_offsets) 2997 vsi->offset = sym->st_value; 2998 2999 /* if variable is a global/weak symbol, but has restricted 3000 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3001 * as static. This follows similar logic for functions (BPF 3002 * subprogs) and influences libbpf's further decisions about 3003 * whether to make global data BPF array maps as 3004 * BPF_F_MMAPABLE. 3005 */ 3006 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3007 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3008 var->linkage = BTF_VAR_STATIC; 3009 } 3010 3011 sort_vars: 3012 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3013 return 0; 3014 } 3015 3016 static int bpf_object_fixup_btf(struct bpf_object *obj) 3017 { 3018 int i, n, err = 0; 3019 3020 if (!obj->btf) 3021 return 0; 3022 3023 n = btf__type_cnt(obj->btf); 3024 for (i = 1; i < n; i++) { 3025 struct btf_type *t = btf_type_by_id(obj->btf, i); 3026 3027 /* Loader needs to fix up some of the things compiler 3028 * couldn't get its hands on while emitting BTF. This 3029 * is section size and global variable offset. We use 3030 * the info from the ELF itself for this purpose. 3031 */ 3032 if (btf_is_datasec(t)) { 3033 err = btf_fixup_datasec(obj, obj->btf, t); 3034 if (err) 3035 return err; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3043 { 3044 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3045 prog->type == BPF_PROG_TYPE_LSM) 3046 return true; 3047 3048 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3049 * also need vmlinux BTF 3050 */ 3051 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3052 return true; 3053 3054 return false; 3055 } 3056 3057 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3058 { 3059 struct bpf_program *prog; 3060 int i; 3061 3062 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3063 * is not specified 3064 */ 3065 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3066 return true; 3067 3068 /* Support for typed ksyms needs kernel BTF */ 3069 for (i = 0; i < obj->nr_extern; i++) { 3070 const struct extern_desc *ext; 3071 3072 ext = &obj->externs[i]; 3073 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3074 return true; 3075 } 3076 3077 bpf_object__for_each_program(prog, obj) { 3078 if (!prog->autoload) 3079 continue; 3080 if (prog_needs_vmlinux_btf(prog)) 3081 return true; 3082 } 3083 3084 return false; 3085 } 3086 3087 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3088 { 3089 int err; 3090 3091 /* btf_vmlinux could be loaded earlier */ 3092 if (obj->btf_vmlinux || obj->gen_loader) 3093 return 0; 3094 3095 if (!force && !obj_needs_vmlinux_btf(obj)) 3096 return 0; 3097 3098 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3099 err = libbpf_get_error(obj->btf_vmlinux); 3100 if (err) { 3101 pr_warn("Error loading vmlinux BTF: %d\n", err); 3102 obj->btf_vmlinux = NULL; 3103 return err; 3104 } 3105 return 0; 3106 } 3107 3108 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3109 { 3110 struct btf *kern_btf = obj->btf; 3111 bool btf_mandatory, sanitize; 3112 int i, err = 0; 3113 3114 if (!obj->btf) 3115 return 0; 3116 3117 if (!kernel_supports(obj, FEAT_BTF)) { 3118 if (kernel_needs_btf(obj)) { 3119 err = -EOPNOTSUPP; 3120 goto report; 3121 } 3122 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3123 return 0; 3124 } 3125 3126 /* Even though some subprogs are global/weak, user might prefer more 3127 * permissive BPF verification process that BPF verifier performs for 3128 * static functions, taking into account more context from the caller 3129 * functions. In such case, they need to mark such subprogs with 3130 * __attribute__((visibility("hidden"))) and libbpf will adjust 3131 * corresponding FUNC BTF type to be marked as static and trigger more 3132 * involved BPF verification process. 3133 */ 3134 for (i = 0; i < obj->nr_programs; i++) { 3135 struct bpf_program *prog = &obj->programs[i]; 3136 struct btf_type *t; 3137 const char *name; 3138 int j, n; 3139 3140 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3141 continue; 3142 3143 n = btf__type_cnt(obj->btf); 3144 for (j = 1; j < n; j++) { 3145 t = btf_type_by_id(obj->btf, j); 3146 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3147 continue; 3148 3149 name = btf__str_by_offset(obj->btf, t->name_off); 3150 if (strcmp(name, prog->name) != 0) 3151 continue; 3152 3153 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3154 break; 3155 } 3156 } 3157 3158 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG)) 3159 goto skip_exception_cb; 3160 for (i = 0; i < obj->nr_programs; i++) { 3161 struct bpf_program *prog = &obj->programs[i]; 3162 int j, k, n; 3163 3164 if (prog_is_subprog(obj, prog)) 3165 continue; 3166 n = btf__type_cnt(obj->btf); 3167 for (j = 1; j < n; j++) { 3168 const char *str = "exception_callback:", *name; 3169 size_t len = strlen(str); 3170 struct btf_type *t; 3171 3172 t = btf_type_by_id(obj->btf, j); 3173 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 3174 continue; 3175 3176 name = btf__str_by_offset(obj->btf, t->name_off); 3177 if (strncmp(name, str, len)) 3178 continue; 3179 3180 t = btf_type_by_id(obj->btf, t->type); 3181 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3182 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 3183 prog->name); 3184 return -EINVAL; 3185 } 3186 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off))) 3187 continue; 3188 /* Multiple callbacks are specified for the same prog, 3189 * the verifier will eventually return an error for this 3190 * case, hence simply skip appending a subprog. 3191 */ 3192 if (prog->exception_cb_idx >= 0) { 3193 prog->exception_cb_idx = -1; 3194 break; 3195 } 3196 3197 name += len; 3198 if (str_is_empty(name)) { 3199 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 3200 prog->name); 3201 return -EINVAL; 3202 } 3203 3204 for (k = 0; k < obj->nr_programs; k++) { 3205 struct bpf_program *subprog = &obj->programs[k]; 3206 3207 if (!prog_is_subprog(obj, subprog)) 3208 continue; 3209 if (strcmp(name, subprog->name)) 3210 continue; 3211 /* Enforce non-hidden, as from verifier point of 3212 * view it expects global functions, whereas the 3213 * mark_btf_static fixes up linkage as static. 3214 */ 3215 if (!subprog->sym_global || subprog->mark_btf_static) { 3216 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 3217 prog->name, subprog->name); 3218 return -EINVAL; 3219 } 3220 /* Let's see if we already saw a static exception callback with the same name */ 3221 if (prog->exception_cb_idx >= 0) { 3222 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 3223 prog->name, subprog->name); 3224 return -EINVAL; 3225 } 3226 prog->exception_cb_idx = k; 3227 break; 3228 } 3229 3230 if (prog->exception_cb_idx >= 0) 3231 continue; 3232 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 3233 return -ENOENT; 3234 } 3235 } 3236 skip_exception_cb: 3237 3238 sanitize = btf_needs_sanitization(obj); 3239 if (sanitize) { 3240 const void *raw_data; 3241 __u32 sz; 3242 3243 /* clone BTF to sanitize a copy and leave the original intact */ 3244 raw_data = btf__raw_data(obj->btf, &sz); 3245 kern_btf = btf__new(raw_data, sz); 3246 err = libbpf_get_error(kern_btf); 3247 if (err) 3248 return err; 3249 3250 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3251 btf__set_pointer_size(obj->btf, 8); 3252 err = bpf_object__sanitize_btf(obj, kern_btf); 3253 if (err) 3254 return err; 3255 } 3256 3257 if (obj->gen_loader) { 3258 __u32 raw_size = 0; 3259 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3260 3261 if (!raw_data) 3262 return -ENOMEM; 3263 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3264 /* Pretend to have valid FD to pass various fd >= 0 checks. 3265 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3266 */ 3267 btf__set_fd(kern_btf, 0); 3268 } else { 3269 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3270 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3271 obj->log_level ? 1 : 0); 3272 } 3273 if (sanitize) { 3274 if (!err) { 3275 /* move fd to libbpf's BTF */ 3276 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3277 btf__set_fd(kern_btf, -1); 3278 } 3279 btf__free(kern_btf); 3280 } 3281 report: 3282 if (err) { 3283 btf_mandatory = kernel_needs_btf(obj); 3284 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3285 btf_mandatory ? "BTF is mandatory, can't proceed." 3286 : "BTF is optional, ignoring."); 3287 if (!btf_mandatory) 3288 err = 0; 3289 } 3290 return err; 3291 } 3292 3293 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3294 { 3295 const char *name; 3296 3297 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3298 if (!name) { 3299 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3300 off, obj->path, elf_errmsg(-1)); 3301 return NULL; 3302 } 3303 3304 return name; 3305 } 3306 3307 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3308 { 3309 const char *name; 3310 3311 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3312 if (!name) { 3313 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3314 off, obj->path, elf_errmsg(-1)); 3315 return NULL; 3316 } 3317 3318 return name; 3319 } 3320 3321 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3322 { 3323 Elf_Scn *scn; 3324 3325 scn = elf_getscn(obj->efile.elf, idx); 3326 if (!scn) { 3327 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3328 idx, obj->path, elf_errmsg(-1)); 3329 return NULL; 3330 } 3331 return scn; 3332 } 3333 3334 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3335 { 3336 Elf_Scn *scn = NULL; 3337 Elf *elf = obj->efile.elf; 3338 const char *sec_name; 3339 3340 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3341 sec_name = elf_sec_name(obj, scn); 3342 if (!sec_name) 3343 return NULL; 3344 3345 if (strcmp(sec_name, name) != 0) 3346 continue; 3347 3348 return scn; 3349 } 3350 return NULL; 3351 } 3352 3353 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3354 { 3355 Elf64_Shdr *shdr; 3356 3357 if (!scn) 3358 return NULL; 3359 3360 shdr = elf64_getshdr(scn); 3361 if (!shdr) { 3362 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3363 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3364 return NULL; 3365 } 3366 3367 return shdr; 3368 } 3369 3370 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3371 { 3372 const char *name; 3373 Elf64_Shdr *sh; 3374 3375 if (!scn) 3376 return NULL; 3377 3378 sh = elf_sec_hdr(obj, scn); 3379 if (!sh) 3380 return NULL; 3381 3382 name = elf_sec_str(obj, sh->sh_name); 3383 if (!name) { 3384 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3385 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3386 return NULL; 3387 } 3388 3389 return name; 3390 } 3391 3392 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3393 { 3394 Elf_Data *data; 3395 3396 if (!scn) 3397 return NULL; 3398 3399 data = elf_getdata(scn, 0); 3400 if (!data) { 3401 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3402 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3403 obj->path, elf_errmsg(-1)); 3404 return NULL; 3405 } 3406 3407 return data; 3408 } 3409 3410 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3411 { 3412 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3413 return NULL; 3414 3415 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3416 } 3417 3418 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3419 { 3420 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3421 return NULL; 3422 3423 return (Elf64_Rel *)data->d_buf + idx; 3424 } 3425 3426 static bool is_sec_name_dwarf(const char *name) 3427 { 3428 /* approximation, but the actual list is too long */ 3429 return str_has_pfx(name, ".debug_"); 3430 } 3431 3432 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3433 { 3434 /* no special handling of .strtab */ 3435 if (hdr->sh_type == SHT_STRTAB) 3436 return true; 3437 3438 /* ignore .llvm_addrsig section as well */ 3439 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3440 return true; 3441 3442 /* no subprograms will lead to an empty .text section, ignore it */ 3443 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3444 strcmp(name, ".text") == 0) 3445 return true; 3446 3447 /* DWARF sections */ 3448 if (is_sec_name_dwarf(name)) 3449 return true; 3450 3451 if (str_has_pfx(name, ".rel")) { 3452 name += sizeof(".rel") - 1; 3453 /* DWARF section relocations */ 3454 if (is_sec_name_dwarf(name)) 3455 return true; 3456 3457 /* .BTF and .BTF.ext don't need relocations */ 3458 if (strcmp(name, BTF_ELF_SEC) == 0 || 3459 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3460 return true; 3461 } 3462 3463 return false; 3464 } 3465 3466 static int cmp_progs(const void *_a, const void *_b) 3467 { 3468 const struct bpf_program *a = _a; 3469 const struct bpf_program *b = _b; 3470 3471 if (a->sec_idx != b->sec_idx) 3472 return a->sec_idx < b->sec_idx ? -1 : 1; 3473 3474 /* sec_insn_off can't be the same within the section */ 3475 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3476 } 3477 3478 static int bpf_object__elf_collect(struct bpf_object *obj) 3479 { 3480 struct elf_sec_desc *sec_desc; 3481 Elf *elf = obj->efile.elf; 3482 Elf_Data *btf_ext_data = NULL; 3483 Elf_Data *btf_data = NULL; 3484 int idx = 0, err = 0; 3485 const char *name; 3486 Elf_Data *data; 3487 Elf_Scn *scn; 3488 Elf64_Shdr *sh; 3489 3490 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3491 * section. Since section count retrieved by elf_getshdrnum() does 3492 * include sec #0, it is already the necessary size of an array to keep 3493 * all the sections. 3494 */ 3495 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3496 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3497 obj->path, elf_errmsg(-1)); 3498 return -LIBBPF_ERRNO__FORMAT; 3499 } 3500 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3501 if (!obj->efile.secs) 3502 return -ENOMEM; 3503 3504 /* a bunch of ELF parsing functionality depends on processing symbols, 3505 * so do the first pass and find the symbol table 3506 */ 3507 scn = NULL; 3508 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3509 sh = elf_sec_hdr(obj, scn); 3510 if (!sh) 3511 return -LIBBPF_ERRNO__FORMAT; 3512 3513 if (sh->sh_type == SHT_SYMTAB) { 3514 if (obj->efile.symbols) { 3515 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3516 return -LIBBPF_ERRNO__FORMAT; 3517 } 3518 3519 data = elf_sec_data(obj, scn); 3520 if (!data) 3521 return -LIBBPF_ERRNO__FORMAT; 3522 3523 idx = elf_ndxscn(scn); 3524 3525 obj->efile.symbols = data; 3526 obj->efile.symbols_shndx = idx; 3527 obj->efile.strtabidx = sh->sh_link; 3528 } 3529 } 3530 3531 if (!obj->efile.symbols) { 3532 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3533 obj->path); 3534 return -ENOENT; 3535 } 3536 3537 scn = NULL; 3538 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3539 idx = elf_ndxscn(scn); 3540 sec_desc = &obj->efile.secs[idx]; 3541 3542 sh = elf_sec_hdr(obj, scn); 3543 if (!sh) 3544 return -LIBBPF_ERRNO__FORMAT; 3545 3546 name = elf_sec_str(obj, sh->sh_name); 3547 if (!name) 3548 return -LIBBPF_ERRNO__FORMAT; 3549 3550 if (ignore_elf_section(sh, name)) 3551 continue; 3552 3553 data = elf_sec_data(obj, scn); 3554 if (!data) 3555 return -LIBBPF_ERRNO__FORMAT; 3556 3557 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3558 idx, name, (unsigned long)data->d_size, 3559 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3560 (int)sh->sh_type); 3561 3562 if (strcmp(name, "license") == 0) { 3563 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3564 if (err) 3565 return err; 3566 } else if (strcmp(name, "version") == 0) { 3567 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3568 if (err) 3569 return err; 3570 } else if (strcmp(name, "maps") == 0) { 3571 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3572 return -ENOTSUP; 3573 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3574 obj->efile.btf_maps_shndx = idx; 3575 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3576 if (sh->sh_type != SHT_PROGBITS) 3577 return -LIBBPF_ERRNO__FORMAT; 3578 btf_data = data; 3579 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3580 if (sh->sh_type != SHT_PROGBITS) 3581 return -LIBBPF_ERRNO__FORMAT; 3582 btf_ext_data = data; 3583 } else if (sh->sh_type == SHT_SYMTAB) { 3584 /* already processed during the first pass above */ 3585 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3586 if (sh->sh_flags & SHF_EXECINSTR) { 3587 if (strcmp(name, ".text") == 0) 3588 obj->efile.text_shndx = idx; 3589 err = bpf_object__add_programs(obj, data, name, idx); 3590 if (err) 3591 return err; 3592 } else if (strcmp(name, DATA_SEC) == 0 || 3593 str_has_pfx(name, DATA_SEC ".")) { 3594 sec_desc->sec_type = SEC_DATA; 3595 sec_desc->shdr = sh; 3596 sec_desc->data = data; 3597 } else if (strcmp(name, RODATA_SEC) == 0 || 3598 str_has_pfx(name, RODATA_SEC ".")) { 3599 sec_desc->sec_type = SEC_RODATA; 3600 sec_desc->shdr = sh; 3601 sec_desc->data = data; 3602 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3603 obj->efile.st_ops_data = data; 3604 obj->efile.st_ops_shndx = idx; 3605 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3606 obj->efile.st_ops_link_data = data; 3607 obj->efile.st_ops_link_shndx = idx; 3608 } else { 3609 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3610 idx, name); 3611 } 3612 } else if (sh->sh_type == SHT_REL) { 3613 int targ_sec_idx = sh->sh_info; /* points to other section */ 3614 3615 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3616 targ_sec_idx >= obj->efile.sec_cnt) 3617 return -LIBBPF_ERRNO__FORMAT; 3618 3619 /* Only do relo for section with exec instructions */ 3620 if (!section_have_execinstr(obj, targ_sec_idx) && 3621 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3622 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3623 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3624 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3625 idx, name, targ_sec_idx, 3626 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3627 continue; 3628 } 3629 3630 sec_desc->sec_type = SEC_RELO; 3631 sec_desc->shdr = sh; 3632 sec_desc->data = data; 3633 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3634 str_has_pfx(name, BSS_SEC "."))) { 3635 sec_desc->sec_type = SEC_BSS; 3636 sec_desc->shdr = sh; 3637 sec_desc->data = data; 3638 } else { 3639 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3640 (size_t)sh->sh_size); 3641 } 3642 } 3643 3644 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3645 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3646 return -LIBBPF_ERRNO__FORMAT; 3647 } 3648 3649 /* sort BPF programs by section name and in-section instruction offset 3650 * for faster search 3651 */ 3652 if (obj->nr_programs) 3653 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3654 3655 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3656 } 3657 3658 static bool sym_is_extern(const Elf64_Sym *sym) 3659 { 3660 int bind = ELF64_ST_BIND(sym->st_info); 3661 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3662 return sym->st_shndx == SHN_UNDEF && 3663 (bind == STB_GLOBAL || bind == STB_WEAK) && 3664 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3665 } 3666 3667 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3668 { 3669 int bind = ELF64_ST_BIND(sym->st_info); 3670 int type = ELF64_ST_TYPE(sym->st_info); 3671 3672 /* in .text section */ 3673 if (sym->st_shndx != text_shndx) 3674 return false; 3675 3676 /* local function */ 3677 if (bind == STB_LOCAL && type == STT_SECTION) 3678 return true; 3679 3680 /* global function */ 3681 return bind == STB_GLOBAL && type == STT_FUNC; 3682 } 3683 3684 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3685 { 3686 const struct btf_type *t; 3687 const char *tname; 3688 int i, n; 3689 3690 if (!btf) 3691 return -ESRCH; 3692 3693 n = btf__type_cnt(btf); 3694 for (i = 1; i < n; i++) { 3695 t = btf__type_by_id(btf, i); 3696 3697 if (!btf_is_var(t) && !btf_is_func(t)) 3698 continue; 3699 3700 tname = btf__name_by_offset(btf, t->name_off); 3701 if (strcmp(tname, ext_name)) 3702 continue; 3703 3704 if (btf_is_var(t) && 3705 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3706 return -EINVAL; 3707 3708 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3709 return -EINVAL; 3710 3711 return i; 3712 } 3713 3714 return -ENOENT; 3715 } 3716 3717 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3718 const struct btf_var_secinfo *vs; 3719 const struct btf_type *t; 3720 int i, j, n; 3721 3722 if (!btf) 3723 return -ESRCH; 3724 3725 n = btf__type_cnt(btf); 3726 for (i = 1; i < n; i++) { 3727 t = btf__type_by_id(btf, i); 3728 3729 if (!btf_is_datasec(t)) 3730 continue; 3731 3732 vs = btf_var_secinfos(t); 3733 for (j = 0; j < btf_vlen(t); j++, vs++) { 3734 if (vs->type == ext_btf_id) 3735 return i; 3736 } 3737 } 3738 3739 return -ENOENT; 3740 } 3741 3742 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3743 bool *is_signed) 3744 { 3745 const struct btf_type *t; 3746 const char *name; 3747 3748 t = skip_mods_and_typedefs(btf, id, NULL); 3749 name = btf__name_by_offset(btf, t->name_off); 3750 3751 if (is_signed) 3752 *is_signed = false; 3753 switch (btf_kind(t)) { 3754 case BTF_KIND_INT: { 3755 int enc = btf_int_encoding(t); 3756 3757 if (enc & BTF_INT_BOOL) 3758 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3759 if (is_signed) 3760 *is_signed = enc & BTF_INT_SIGNED; 3761 if (t->size == 1) 3762 return KCFG_CHAR; 3763 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3764 return KCFG_UNKNOWN; 3765 return KCFG_INT; 3766 } 3767 case BTF_KIND_ENUM: 3768 if (t->size != 4) 3769 return KCFG_UNKNOWN; 3770 if (strcmp(name, "libbpf_tristate")) 3771 return KCFG_UNKNOWN; 3772 return KCFG_TRISTATE; 3773 case BTF_KIND_ENUM64: 3774 if (strcmp(name, "libbpf_tristate")) 3775 return KCFG_UNKNOWN; 3776 return KCFG_TRISTATE; 3777 case BTF_KIND_ARRAY: 3778 if (btf_array(t)->nelems == 0) 3779 return KCFG_UNKNOWN; 3780 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3781 return KCFG_UNKNOWN; 3782 return KCFG_CHAR_ARR; 3783 default: 3784 return KCFG_UNKNOWN; 3785 } 3786 } 3787 3788 static int cmp_externs(const void *_a, const void *_b) 3789 { 3790 const struct extern_desc *a = _a; 3791 const struct extern_desc *b = _b; 3792 3793 if (a->type != b->type) 3794 return a->type < b->type ? -1 : 1; 3795 3796 if (a->type == EXT_KCFG) { 3797 /* descending order by alignment requirements */ 3798 if (a->kcfg.align != b->kcfg.align) 3799 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3800 /* ascending order by size, within same alignment class */ 3801 if (a->kcfg.sz != b->kcfg.sz) 3802 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3803 } 3804 3805 /* resolve ties by name */ 3806 return strcmp(a->name, b->name); 3807 } 3808 3809 static int find_int_btf_id(const struct btf *btf) 3810 { 3811 const struct btf_type *t; 3812 int i, n; 3813 3814 n = btf__type_cnt(btf); 3815 for (i = 1; i < n; i++) { 3816 t = btf__type_by_id(btf, i); 3817 3818 if (btf_is_int(t) && btf_int_bits(t) == 32) 3819 return i; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int add_dummy_ksym_var(struct btf *btf) 3826 { 3827 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3828 const struct btf_var_secinfo *vs; 3829 const struct btf_type *sec; 3830 3831 if (!btf) 3832 return 0; 3833 3834 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3835 BTF_KIND_DATASEC); 3836 if (sec_btf_id < 0) 3837 return 0; 3838 3839 sec = btf__type_by_id(btf, sec_btf_id); 3840 vs = btf_var_secinfos(sec); 3841 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3842 const struct btf_type *vt; 3843 3844 vt = btf__type_by_id(btf, vs->type); 3845 if (btf_is_func(vt)) 3846 break; 3847 } 3848 3849 /* No func in ksyms sec. No need to add dummy var. */ 3850 if (i == btf_vlen(sec)) 3851 return 0; 3852 3853 int_btf_id = find_int_btf_id(btf); 3854 dummy_var_btf_id = btf__add_var(btf, 3855 "dummy_ksym", 3856 BTF_VAR_GLOBAL_ALLOCATED, 3857 int_btf_id); 3858 if (dummy_var_btf_id < 0) 3859 pr_warn("cannot create a dummy_ksym var\n"); 3860 3861 return dummy_var_btf_id; 3862 } 3863 3864 static int bpf_object__collect_externs(struct bpf_object *obj) 3865 { 3866 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3867 const struct btf_type *t; 3868 struct extern_desc *ext; 3869 int i, n, off, dummy_var_btf_id; 3870 const char *ext_name, *sec_name; 3871 size_t ext_essent_len; 3872 Elf_Scn *scn; 3873 Elf64_Shdr *sh; 3874 3875 if (!obj->efile.symbols) 3876 return 0; 3877 3878 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3879 sh = elf_sec_hdr(obj, scn); 3880 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3881 return -LIBBPF_ERRNO__FORMAT; 3882 3883 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3884 if (dummy_var_btf_id < 0) 3885 return dummy_var_btf_id; 3886 3887 n = sh->sh_size / sh->sh_entsize; 3888 pr_debug("looking for externs among %d symbols...\n", n); 3889 3890 for (i = 0; i < n; i++) { 3891 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3892 3893 if (!sym) 3894 return -LIBBPF_ERRNO__FORMAT; 3895 if (!sym_is_extern(sym)) 3896 continue; 3897 ext_name = elf_sym_str(obj, sym->st_name); 3898 if (!ext_name || !ext_name[0]) 3899 continue; 3900 3901 ext = obj->externs; 3902 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3903 if (!ext) 3904 return -ENOMEM; 3905 obj->externs = ext; 3906 ext = &ext[obj->nr_extern]; 3907 memset(ext, 0, sizeof(*ext)); 3908 obj->nr_extern++; 3909 3910 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3911 if (ext->btf_id <= 0) { 3912 pr_warn("failed to find BTF for extern '%s': %d\n", 3913 ext_name, ext->btf_id); 3914 return ext->btf_id; 3915 } 3916 t = btf__type_by_id(obj->btf, ext->btf_id); 3917 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3918 ext->sym_idx = i; 3919 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3920 3921 ext_essent_len = bpf_core_essential_name_len(ext->name); 3922 ext->essent_name = NULL; 3923 if (ext_essent_len != strlen(ext->name)) { 3924 ext->essent_name = strndup(ext->name, ext_essent_len); 3925 if (!ext->essent_name) 3926 return -ENOMEM; 3927 } 3928 3929 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3930 if (ext->sec_btf_id <= 0) { 3931 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3932 ext_name, ext->btf_id, ext->sec_btf_id); 3933 return ext->sec_btf_id; 3934 } 3935 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3936 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3937 3938 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3939 if (btf_is_func(t)) { 3940 pr_warn("extern function %s is unsupported under %s section\n", 3941 ext->name, KCONFIG_SEC); 3942 return -ENOTSUP; 3943 } 3944 kcfg_sec = sec; 3945 ext->type = EXT_KCFG; 3946 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3947 if (ext->kcfg.sz <= 0) { 3948 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3949 ext_name, ext->kcfg.sz); 3950 return ext->kcfg.sz; 3951 } 3952 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3953 if (ext->kcfg.align <= 0) { 3954 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3955 ext_name, ext->kcfg.align); 3956 return -EINVAL; 3957 } 3958 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3959 &ext->kcfg.is_signed); 3960 if (ext->kcfg.type == KCFG_UNKNOWN) { 3961 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3962 return -ENOTSUP; 3963 } 3964 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3965 ksym_sec = sec; 3966 ext->type = EXT_KSYM; 3967 skip_mods_and_typedefs(obj->btf, t->type, 3968 &ext->ksym.type_id); 3969 } else { 3970 pr_warn("unrecognized extern section '%s'\n", sec_name); 3971 return -ENOTSUP; 3972 } 3973 } 3974 pr_debug("collected %d externs total\n", obj->nr_extern); 3975 3976 if (!obj->nr_extern) 3977 return 0; 3978 3979 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3980 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3981 3982 /* for .ksyms section, we need to turn all externs into allocated 3983 * variables in BTF to pass kernel verification; we do this by 3984 * pretending that each extern is a 8-byte variable 3985 */ 3986 if (ksym_sec) { 3987 /* find existing 4-byte integer type in BTF to use for fake 3988 * extern variables in DATASEC 3989 */ 3990 int int_btf_id = find_int_btf_id(obj->btf); 3991 /* For extern function, a dummy_var added earlier 3992 * will be used to replace the vs->type and 3993 * its name string will be used to refill 3994 * the missing param's name. 3995 */ 3996 const struct btf_type *dummy_var; 3997 3998 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3999 for (i = 0; i < obj->nr_extern; i++) { 4000 ext = &obj->externs[i]; 4001 if (ext->type != EXT_KSYM) 4002 continue; 4003 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4004 i, ext->sym_idx, ext->name); 4005 } 4006 4007 sec = ksym_sec; 4008 n = btf_vlen(sec); 4009 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4010 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4011 struct btf_type *vt; 4012 4013 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4014 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4015 ext = find_extern_by_name(obj, ext_name); 4016 if (!ext) { 4017 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4018 btf_kind_str(vt), ext_name); 4019 return -ESRCH; 4020 } 4021 if (btf_is_func(vt)) { 4022 const struct btf_type *func_proto; 4023 struct btf_param *param; 4024 int j; 4025 4026 func_proto = btf__type_by_id(obj->btf, 4027 vt->type); 4028 param = btf_params(func_proto); 4029 /* Reuse the dummy_var string if the 4030 * func proto does not have param name. 4031 */ 4032 for (j = 0; j < btf_vlen(func_proto); j++) 4033 if (param[j].type && !param[j].name_off) 4034 param[j].name_off = 4035 dummy_var->name_off; 4036 vs->type = dummy_var_btf_id; 4037 vt->info &= ~0xffff; 4038 vt->info |= BTF_FUNC_GLOBAL; 4039 } else { 4040 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4041 vt->type = int_btf_id; 4042 } 4043 vs->offset = off; 4044 vs->size = sizeof(int); 4045 } 4046 sec->size = off; 4047 } 4048 4049 if (kcfg_sec) { 4050 sec = kcfg_sec; 4051 /* for kcfg externs calculate their offsets within a .kconfig map */ 4052 off = 0; 4053 for (i = 0; i < obj->nr_extern; i++) { 4054 ext = &obj->externs[i]; 4055 if (ext->type != EXT_KCFG) 4056 continue; 4057 4058 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4059 off = ext->kcfg.data_off + ext->kcfg.sz; 4060 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4061 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4062 } 4063 sec->size = off; 4064 n = btf_vlen(sec); 4065 for (i = 0; i < n; i++) { 4066 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4067 4068 t = btf__type_by_id(obj->btf, vs->type); 4069 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4070 ext = find_extern_by_name(obj, ext_name); 4071 if (!ext) { 4072 pr_warn("failed to find extern definition for BTF var '%s'\n", 4073 ext_name); 4074 return -ESRCH; 4075 } 4076 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4077 vs->offset = ext->kcfg.data_off; 4078 } 4079 } 4080 return 0; 4081 } 4082 4083 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4084 { 4085 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4086 } 4087 4088 struct bpf_program * 4089 bpf_object__find_program_by_name(const struct bpf_object *obj, 4090 const char *name) 4091 { 4092 struct bpf_program *prog; 4093 4094 bpf_object__for_each_program(prog, obj) { 4095 if (prog_is_subprog(obj, prog)) 4096 continue; 4097 if (!strcmp(prog->name, name)) 4098 return prog; 4099 } 4100 return errno = ENOENT, NULL; 4101 } 4102 4103 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4104 int shndx) 4105 { 4106 switch (obj->efile.secs[shndx].sec_type) { 4107 case SEC_BSS: 4108 case SEC_DATA: 4109 case SEC_RODATA: 4110 return true; 4111 default: 4112 return false; 4113 } 4114 } 4115 4116 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4117 int shndx) 4118 { 4119 return shndx == obj->efile.btf_maps_shndx; 4120 } 4121 4122 static enum libbpf_map_type 4123 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4124 { 4125 if (shndx == obj->efile.symbols_shndx) 4126 return LIBBPF_MAP_KCONFIG; 4127 4128 switch (obj->efile.secs[shndx].sec_type) { 4129 case SEC_BSS: 4130 return LIBBPF_MAP_BSS; 4131 case SEC_DATA: 4132 return LIBBPF_MAP_DATA; 4133 case SEC_RODATA: 4134 return LIBBPF_MAP_RODATA; 4135 default: 4136 return LIBBPF_MAP_UNSPEC; 4137 } 4138 } 4139 4140 static int bpf_program__record_reloc(struct bpf_program *prog, 4141 struct reloc_desc *reloc_desc, 4142 __u32 insn_idx, const char *sym_name, 4143 const Elf64_Sym *sym, const Elf64_Rel *rel) 4144 { 4145 struct bpf_insn *insn = &prog->insns[insn_idx]; 4146 size_t map_idx, nr_maps = prog->obj->nr_maps; 4147 struct bpf_object *obj = prog->obj; 4148 __u32 shdr_idx = sym->st_shndx; 4149 enum libbpf_map_type type; 4150 const char *sym_sec_name; 4151 struct bpf_map *map; 4152 4153 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4154 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4155 prog->name, sym_name, insn_idx, insn->code); 4156 return -LIBBPF_ERRNO__RELOC; 4157 } 4158 4159 if (sym_is_extern(sym)) { 4160 int sym_idx = ELF64_R_SYM(rel->r_info); 4161 int i, n = obj->nr_extern; 4162 struct extern_desc *ext; 4163 4164 for (i = 0; i < n; i++) { 4165 ext = &obj->externs[i]; 4166 if (ext->sym_idx == sym_idx) 4167 break; 4168 } 4169 if (i >= n) { 4170 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4171 prog->name, sym_name, sym_idx); 4172 return -LIBBPF_ERRNO__RELOC; 4173 } 4174 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4175 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4176 if (insn->code == (BPF_JMP | BPF_CALL)) 4177 reloc_desc->type = RELO_EXTERN_CALL; 4178 else 4179 reloc_desc->type = RELO_EXTERN_LD64; 4180 reloc_desc->insn_idx = insn_idx; 4181 reloc_desc->ext_idx = i; 4182 return 0; 4183 } 4184 4185 /* sub-program call relocation */ 4186 if (is_call_insn(insn)) { 4187 if (insn->src_reg != BPF_PSEUDO_CALL) { 4188 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4189 return -LIBBPF_ERRNO__RELOC; 4190 } 4191 /* text_shndx can be 0, if no default "main" program exists */ 4192 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4193 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4194 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4195 prog->name, sym_name, sym_sec_name); 4196 return -LIBBPF_ERRNO__RELOC; 4197 } 4198 if (sym->st_value % BPF_INSN_SZ) { 4199 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4200 prog->name, sym_name, (size_t)sym->st_value); 4201 return -LIBBPF_ERRNO__RELOC; 4202 } 4203 reloc_desc->type = RELO_CALL; 4204 reloc_desc->insn_idx = insn_idx; 4205 reloc_desc->sym_off = sym->st_value; 4206 return 0; 4207 } 4208 4209 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4210 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4211 prog->name, sym_name, shdr_idx); 4212 return -LIBBPF_ERRNO__RELOC; 4213 } 4214 4215 /* loading subprog addresses */ 4216 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4217 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4218 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4219 */ 4220 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4221 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4222 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4223 return -LIBBPF_ERRNO__RELOC; 4224 } 4225 4226 reloc_desc->type = RELO_SUBPROG_ADDR; 4227 reloc_desc->insn_idx = insn_idx; 4228 reloc_desc->sym_off = sym->st_value; 4229 return 0; 4230 } 4231 4232 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4233 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4234 4235 /* generic map reference relocation */ 4236 if (type == LIBBPF_MAP_UNSPEC) { 4237 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4238 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4239 prog->name, sym_name, sym_sec_name); 4240 return -LIBBPF_ERRNO__RELOC; 4241 } 4242 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4243 map = &obj->maps[map_idx]; 4244 if (map->libbpf_type != type || 4245 map->sec_idx != sym->st_shndx || 4246 map->sec_offset != sym->st_value) 4247 continue; 4248 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4249 prog->name, map_idx, map->name, map->sec_idx, 4250 map->sec_offset, insn_idx); 4251 break; 4252 } 4253 if (map_idx >= nr_maps) { 4254 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4255 prog->name, sym_sec_name, (size_t)sym->st_value); 4256 return -LIBBPF_ERRNO__RELOC; 4257 } 4258 reloc_desc->type = RELO_LD64; 4259 reloc_desc->insn_idx = insn_idx; 4260 reloc_desc->map_idx = map_idx; 4261 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4262 return 0; 4263 } 4264 4265 /* global data map relocation */ 4266 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4267 pr_warn("prog '%s': bad data relo against section '%s'\n", 4268 prog->name, sym_sec_name); 4269 return -LIBBPF_ERRNO__RELOC; 4270 } 4271 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4272 map = &obj->maps[map_idx]; 4273 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4274 continue; 4275 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4276 prog->name, map_idx, map->name, map->sec_idx, 4277 map->sec_offset, insn_idx); 4278 break; 4279 } 4280 if (map_idx >= nr_maps) { 4281 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4282 prog->name, sym_sec_name); 4283 return -LIBBPF_ERRNO__RELOC; 4284 } 4285 4286 reloc_desc->type = RELO_DATA; 4287 reloc_desc->insn_idx = insn_idx; 4288 reloc_desc->map_idx = map_idx; 4289 reloc_desc->sym_off = sym->st_value; 4290 return 0; 4291 } 4292 4293 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4294 { 4295 return insn_idx >= prog->sec_insn_off && 4296 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4297 } 4298 4299 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4300 size_t sec_idx, size_t insn_idx) 4301 { 4302 int l = 0, r = obj->nr_programs - 1, m; 4303 struct bpf_program *prog; 4304 4305 if (!obj->nr_programs) 4306 return NULL; 4307 4308 while (l < r) { 4309 m = l + (r - l + 1) / 2; 4310 prog = &obj->programs[m]; 4311 4312 if (prog->sec_idx < sec_idx || 4313 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4314 l = m; 4315 else 4316 r = m - 1; 4317 } 4318 /* matching program could be at index l, but it still might be the 4319 * wrong one, so we need to double check conditions for the last time 4320 */ 4321 prog = &obj->programs[l]; 4322 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4323 return prog; 4324 return NULL; 4325 } 4326 4327 static int 4328 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4329 { 4330 const char *relo_sec_name, *sec_name; 4331 size_t sec_idx = shdr->sh_info, sym_idx; 4332 struct bpf_program *prog; 4333 struct reloc_desc *relos; 4334 int err, i, nrels; 4335 const char *sym_name; 4336 __u32 insn_idx; 4337 Elf_Scn *scn; 4338 Elf_Data *scn_data; 4339 Elf64_Sym *sym; 4340 Elf64_Rel *rel; 4341 4342 if (sec_idx >= obj->efile.sec_cnt) 4343 return -EINVAL; 4344 4345 scn = elf_sec_by_idx(obj, sec_idx); 4346 scn_data = elf_sec_data(obj, scn); 4347 4348 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4349 sec_name = elf_sec_name(obj, scn); 4350 if (!relo_sec_name || !sec_name) 4351 return -EINVAL; 4352 4353 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4354 relo_sec_name, sec_idx, sec_name); 4355 nrels = shdr->sh_size / shdr->sh_entsize; 4356 4357 for (i = 0; i < nrels; i++) { 4358 rel = elf_rel_by_idx(data, i); 4359 if (!rel) { 4360 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4361 return -LIBBPF_ERRNO__FORMAT; 4362 } 4363 4364 sym_idx = ELF64_R_SYM(rel->r_info); 4365 sym = elf_sym_by_idx(obj, sym_idx); 4366 if (!sym) { 4367 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4368 relo_sec_name, sym_idx, i); 4369 return -LIBBPF_ERRNO__FORMAT; 4370 } 4371 4372 if (sym->st_shndx >= obj->efile.sec_cnt) { 4373 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4374 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4375 return -LIBBPF_ERRNO__FORMAT; 4376 } 4377 4378 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4379 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4380 relo_sec_name, (size_t)rel->r_offset, i); 4381 return -LIBBPF_ERRNO__FORMAT; 4382 } 4383 4384 insn_idx = rel->r_offset / BPF_INSN_SZ; 4385 /* relocations against static functions are recorded as 4386 * relocations against the section that contains a function; 4387 * in such case, symbol will be STT_SECTION and sym.st_name 4388 * will point to empty string (0), so fetch section name 4389 * instead 4390 */ 4391 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4392 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4393 else 4394 sym_name = elf_sym_str(obj, sym->st_name); 4395 sym_name = sym_name ?: "<?"; 4396 4397 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4398 relo_sec_name, i, insn_idx, sym_name); 4399 4400 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4401 if (!prog) { 4402 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4403 relo_sec_name, i, sec_name, insn_idx); 4404 continue; 4405 } 4406 4407 relos = libbpf_reallocarray(prog->reloc_desc, 4408 prog->nr_reloc + 1, sizeof(*relos)); 4409 if (!relos) 4410 return -ENOMEM; 4411 prog->reloc_desc = relos; 4412 4413 /* adjust insn_idx to local BPF program frame of reference */ 4414 insn_idx -= prog->sec_insn_off; 4415 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4416 insn_idx, sym_name, sym, rel); 4417 if (err) 4418 return err; 4419 4420 prog->nr_reloc++; 4421 } 4422 return 0; 4423 } 4424 4425 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4426 { 4427 int id; 4428 4429 if (!obj->btf) 4430 return -ENOENT; 4431 4432 /* if it's BTF-defined map, we don't need to search for type IDs. 4433 * For struct_ops map, it does not need btf_key_type_id and 4434 * btf_value_type_id. 4435 */ 4436 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4437 return 0; 4438 4439 /* 4440 * LLVM annotates global data differently in BTF, that is, 4441 * only as '.data', '.bss' or '.rodata'. 4442 */ 4443 if (!bpf_map__is_internal(map)) 4444 return -ENOENT; 4445 4446 id = btf__find_by_name(obj->btf, map->real_name); 4447 if (id < 0) 4448 return id; 4449 4450 map->btf_key_type_id = 0; 4451 map->btf_value_type_id = id; 4452 return 0; 4453 } 4454 4455 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4456 { 4457 char file[PATH_MAX], buff[4096]; 4458 FILE *fp; 4459 __u32 val; 4460 int err; 4461 4462 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4463 memset(info, 0, sizeof(*info)); 4464 4465 fp = fopen(file, "re"); 4466 if (!fp) { 4467 err = -errno; 4468 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4469 err); 4470 return err; 4471 } 4472 4473 while (fgets(buff, sizeof(buff), fp)) { 4474 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4475 info->type = val; 4476 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4477 info->key_size = val; 4478 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4479 info->value_size = val; 4480 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4481 info->max_entries = val; 4482 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4483 info->map_flags = val; 4484 } 4485 4486 fclose(fp); 4487 4488 return 0; 4489 } 4490 4491 bool bpf_map__autocreate(const struct bpf_map *map) 4492 { 4493 return map->autocreate; 4494 } 4495 4496 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4497 { 4498 if (map->obj->loaded) 4499 return libbpf_err(-EBUSY); 4500 4501 map->autocreate = autocreate; 4502 return 0; 4503 } 4504 4505 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4506 { 4507 struct bpf_map_info info; 4508 __u32 len = sizeof(info), name_len; 4509 int new_fd, err; 4510 char *new_name; 4511 4512 memset(&info, 0, len); 4513 err = bpf_map_get_info_by_fd(fd, &info, &len); 4514 if (err && errno == EINVAL) 4515 err = bpf_get_map_info_from_fdinfo(fd, &info); 4516 if (err) 4517 return libbpf_err(err); 4518 4519 name_len = strlen(info.name); 4520 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4521 new_name = strdup(map->name); 4522 else 4523 new_name = strdup(info.name); 4524 4525 if (!new_name) 4526 return libbpf_err(-errno); 4527 4528 /* 4529 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4530 * This is similar to what we do in ensure_good_fd(), but without 4531 * closing original FD. 4532 */ 4533 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4534 if (new_fd < 0) { 4535 err = -errno; 4536 goto err_free_new_name; 4537 } 4538 4539 err = zclose(map->fd); 4540 if (err) { 4541 err = -errno; 4542 goto err_close_new_fd; 4543 } 4544 free(map->name); 4545 4546 map->fd = new_fd; 4547 map->name = new_name; 4548 map->def.type = info.type; 4549 map->def.key_size = info.key_size; 4550 map->def.value_size = info.value_size; 4551 map->def.max_entries = info.max_entries; 4552 map->def.map_flags = info.map_flags; 4553 map->btf_key_type_id = info.btf_key_type_id; 4554 map->btf_value_type_id = info.btf_value_type_id; 4555 map->reused = true; 4556 map->map_extra = info.map_extra; 4557 4558 return 0; 4559 4560 err_close_new_fd: 4561 close(new_fd); 4562 err_free_new_name: 4563 free(new_name); 4564 return libbpf_err(err); 4565 } 4566 4567 __u32 bpf_map__max_entries(const struct bpf_map *map) 4568 { 4569 return map->def.max_entries; 4570 } 4571 4572 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4573 { 4574 if (!bpf_map_type__is_map_in_map(map->def.type)) 4575 return errno = EINVAL, NULL; 4576 4577 return map->inner_map; 4578 } 4579 4580 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4581 { 4582 if (map->obj->loaded) 4583 return libbpf_err(-EBUSY); 4584 4585 map->def.max_entries = max_entries; 4586 4587 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4588 if (map_is_ringbuf(map)) 4589 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4590 4591 return 0; 4592 } 4593 4594 static int 4595 bpf_object__probe_loading(struct bpf_object *obj) 4596 { 4597 char *cp, errmsg[STRERR_BUFSIZE]; 4598 struct bpf_insn insns[] = { 4599 BPF_MOV64_IMM(BPF_REG_0, 0), 4600 BPF_EXIT_INSN(), 4601 }; 4602 int ret, insn_cnt = ARRAY_SIZE(insns); 4603 4604 if (obj->gen_loader) 4605 return 0; 4606 4607 ret = bump_rlimit_memlock(); 4608 if (ret) 4609 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4610 4611 /* make sure basic loading works */ 4612 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4613 if (ret < 0) 4614 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4615 if (ret < 0) { 4616 ret = errno; 4617 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4618 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4619 "program. Make sure your kernel supports BPF " 4620 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4621 "set to big enough value.\n", __func__, cp, ret); 4622 return -ret; 4623 } 4624 close(ret); 4625 4626 return 0; 4627 } 4628 4629 static int probe_fd(int fd) 4630 { 4631 if (fd >= 0) 4632 close(fd); 4633 return fd >= 0; 4634 } 4635 4636 static int probe_kern_prog_name(void) 4637 { 4638 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4639 struct bpf_insn insns[] = { 4640 BPF_MOV64_IMM(BPF_REG_0, 0), 4641 BPF_EXIT_INSN(), 4642 }; 4643 union bpf_attr attr; 4644 int ret; 4645 4646 memset(&attr, 0, attr_sz); 4647 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4648 attr.license = ptr_to_u64("GPL"); 4649 attr.insns = ptr_to_u64(insns); 4650 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4651 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4652 4653 /* make sure loading with name works */ 4654 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4655 return probe_fd(ret); 4656 } 4657 4658 static int probe_kern_global_data(void) 4659 { 4660 char *cp, errmsg[STRERR_BUFSIZE]; 4661 struct bpf_insn insns[] = { 4662 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4663 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4664 BPF_MOV64_IMM(BPF_REG_0, 0), 4665 BPF_EXIT_INSN(), 4666 }; 4667 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4668 4669 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4670 if (map < 0) { 4671 ret = -errno; 4672 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4673 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4674 __func__, cp, -ret); 4675 return ret; 4676 } 4677 4678 insns[0].imm = map; 4679 4680 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4681 close(map); 4682 return probe_fd(ret); 4683 } 4684 4685 static int probe_kern_btf(void) 4686 { 4687 static const char strs[] = "\0int"; 4688 __u32 types[] = { 4689 /* int */ 4690 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4691 }; 4692 4693 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4694 strs, sizeof(strs))); 4695 } 4696 4697 static int probe_kern_btf_func(void) 4698 { 4699 static const char strs[] = "\0int\0x\0a"; 4700 /* void x(int a) {} */ 4701 __u32 types[] = { 4702 /* int */ 4703 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4704 /* FUNC_PROTO */ /* [2] */ 4705 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4706 BTF_PARAM_ENC(7, 1), 4707 /* FUNC x */ /* [3] */ 4708 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4709 }; 4710 4711 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4712 strs, sizeof(strs))); 4713 } 4714 4715 static int probe_kern_btf_func_global(void) 4716 { 4717 static const char strs[] = "\0int\0x\0a"; 4718 /* static void x(int a) {} */ 4719 __u32 types[] = { 4720 /* int */ 4721 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4722 /* FUNC_PROTO */ /* [2] */ 4723 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4724 BTF_PARAM_ENC(7, 1), 4725 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4726 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4727 }; 4728 4729 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4730 strs, sizeof(strs))); 4731 } 4732 4733 static int probe_kern_btf_datasec(void) 4734 { 4735 static const char strs[] = "\0x\0.data"; 4736 /* static int a; */ 4737 __u32 types[] = { 4738 /* int */ 4739 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4740 /* VAR x */ /* [2] */ 4741 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4742 BTF_VAR_STATIC, 4743 /* DATASEC val */ /* [3] */ 4744 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4745 BTF_VAR_SECINFO_ENC(2, 0, 4), 4746 }; 4747 4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4749 strs, sizeof(strs))); 4750 } 4751 4752 static int probe_kern_btf_float(void) 4753 { 4754 static const char strs[] = "\0float"; 4755 __u32 types[] = { 4756 /* float */ 4757 BTF_TYPE_FLOAT_ENC(1, 4), 4758 }; 4759 4760 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4761 strs, sizeof(strs))); 4762 } 4763 4764 static int probe_kern_btf_decl_tag(void) 4765 { 4766 static const char strs[] = "\0tag"; 4767 __u32 types[] = { 4768 /* int */ 4769 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4770 /* VAR x */ /* [2] */ 4771 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4772 BTF_VAR_STATIC, 4773 /* attr */ 4774 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4775 }; 4776 4777 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4778 strs, sizeof(strs))); 4779 } 4780 4781 static int probe_kern_btf_type_tag(void) 4782 { 4783 static const char strs[] = "\0tag"; 4784 __u32 types[] = { 4785 /* int */ 4786 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4787 /* attr */ 4788 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4789 /* ptr */ 4790 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4791 }; 4792 4793 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4794 strs, sizeof(strs))); 4795 } 4796 4797 static int probe_kern_array_mmap(void) 4798 { 4799 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4800 int fd; 4801 4802 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4803 return probe_fd(fd); 4804 } 4805 4806 static int probe_kern_exp_attach_type(void) 4807 { 4808 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4809 struct bpf_insn insns[] = { 4810 BPF_MOV64_IMM(BPF_REG_0, 0), 4811 BPF_EXIT_INSN(), 4812 }; 4813 int fd, insn_cnt = ARRAY_SIZE(insns); 4814 4815 /* use any valid combination of program type and (optional) 4816 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4817 * to see if kernel supports expected_attach_type field for 4818 * BPF_PROG_LOAD command 4819 */ 4820 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4821 return probe_fd(fd); 4822 } 4823 4824 static int probe_kern_probe_read_kernel(void) 4825 { 4826 struct bpf_insn insns[] = { 4827 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4828 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4829 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4830 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4831 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4832 BPF_EXIT_INSN(), 4833 }; 4834 int fd, insn_cnt = ARRAY_SIZE(insns); 4835 4836 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4837 return probe_fd(fd); 4838 } 4839 4840 static int probe_prog_bind_map(void) 4841 { 4842 char *cp, errmsg[STRERR_BUFSIZE]; 4843 struct bpf_insn insns[] = { 4844 BPF_MOV64_IMM(BPF_REG_0, 0), 4845 BPF_EXIT_INSN(), 4846 }; 4847 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4848 4849 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4850 if (map < 0) { 4851 ret = -errno; 4852 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4853 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4854 __func__, cp, -ret); 4855 return ret; 4856 } 4857 4858 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4859 if (prog < 0) { 4860 close(map); 4861 return 0; 4862 } 4863 4864 ret = bpf_prog_bind_map(prog, map, NULL); 4865 4866 close(map); 4867 close(prog); 4868 4869 return ret >= 0; 4870 } 4871 4872 static int probe_module_btf(void) 4873 { 4874 static const char strs[] = "\0int"; 4875 __u32 types[] = { 4876 /* int */ 4877 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4878 }; 4879 struct bpf_btf_info info; 4880 __u32 len = sizeof(info); 4881 char name[16]; 4882 int fd, err; 4883 4884 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4885 if (fd < 0) 4886 return 0; /* BTF not supported at all */ 4887 4888 memset(&info, 0, sizeof(info)); 4889 info.name = ptr_to_u64(name); 4890 info.name_len = sizeof(name); 4891 4892 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4893 * kernel's module BTF support coincides with support for 4894 * name/name_len fields in struct bpf_btf_info. 4895 */ 4896 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4897 close(fd); 4898 return !err; 4899 } 4900 4901 static int probe_perf_link(void) 4902 { 4903 struct bpf_insn insns[] = { 4904 BPF_MOV64_IMM(BPF_REG_0, 0), 4905 BPF_EXIT_INSN(), 4906 }; 4907 int prog_fd, link_fd, err; 4908 4909 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4910 insns, ARRAY_SIZE(insns), NULL); 4911 if (prog_fd < 0) 4912 return -errno; 4913 4914 /* use invalid perf_event FD to get EBADF, if link is supported; 4915 * otherwise EINVAL should be returned 4916 */ 4917 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4918 err = -errno; /* close() can clobber errno */ 4919 4920 if (link_fd >= 0) 4921 close(link_fd); 4922 close(prog_fd); 4923 4924 return link_fd < 0 && err == -EBADF; 4925 } 4926 4927 static int probe_uprobe_multi_link(void) 4928 { 4929 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4930 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4931 ); 4932 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4933 struct bpf_insn insns[] = { 4934 BPF_MOV64_IMM(BPF_REG_0, 0), 4935 BPF_EXIT_INSN(), 4936 }; 4937 int prog_fd, link_fd, err; 4938 unsigned long offset = 0; 4939 4940 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4941 insns, ARRAY_SIZE(insns), &load_opts); 4942 if (prog_fd < 0) 4943 return -errno; 4944 4945 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4946 link_opts.uprobe_multi.path = "/"; 4947 link_opts.uprobe_multi.offsets = &offset; 4948 link_opts.uprobe_multi.cnt = 1; 4949 4950 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4951 err = -errno; /* close() can clobber errno */ 4952 4953 if (link_fd >= 0) 4954 close(link_fd); 4955 close(prog_fd); 4956 4957 return link_fd < 0 && err == -EBADF; 4958 } 4959 4960 static int probe_kern_bpf_cookie(void) 4961 { 4962 struct bpf_insn insns[] = { 4963 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4964 BPF_EXIT_INSN(), 4965 }; 4966 int ret, insn_cnt = ARRAY_SIZE(insns); 4967 4968 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4969 return probe_fd(ret); 4970 } 4971 4972 static int probe_kern_btf_enum64(void) 4973 { 4974 static const char strs[] = "\0enum64"; 4975 __u32 types[] = { 4976 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4977 }; 4978 4979 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4980 strs, sizeof(strs))); 4981 } 4982 4983 static int probe_kern_syscall_wrapper(void); 4984 4985 enum kern_feature_result { 4986 FEAT_UNKNOWN = 0, 4987 FEAT_SUPPORTED = 1, 4988 FEAT_MISSING = 2, 4989 }; 4990 4991 typedef int (*feature_probe_fn)(void); 4992 4993 static struct kern_feature_desc { 4994 const char *desc; 4995 feature_probe_fn probe; 4996 enum kern_feature_result res; 4997 } feature_probes[__FEAT_CNT] = { 4998 [FEAT_PROG_NAME] = { 4999 "BPF program name", probe_kern_prog_name, 5000 }, 5001 [FEAT_GLOBAL_DATA] = { 5002 "global variables", probe_kern_global_data, 5003 }, 5004 [FEAT_BTF] = { 5005 "minimal BTF", probe_kern_btf, 5006 }, 5007 [FEAT_BTF_FUNC] = { 5008 "BTF functions", probe_kern_btf_func, 5009 }, 5010 [FEAT_BTF_GLOBAL_FUNC] = { 5011 "BTF global function", probe_kern_btf_func_global, 5012 }, 5013 [FEAT_BTF_DATASEC] = { 5014 "BTF data section and variable", probe_kern_btf_datasec, 5015 }, 5016 [FEAT_ARRAY_MMAP] = { 5017 "ARRAY map mmap()", probe_kern_array_mmap, 5018 }, 5019 [FEAT_EXP_ATTACH_TYPE] = { 5020 "BPF_PROG_LOAD expected_attach_type attribute", 5021 probe_kern_exp_attach_type, 5022 }, 5023 [FEAT_PROBE_READ_KERN] = { 5024 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 5025 }, 5026 [FEAT_PROG_BIND_MAP] = { 5027 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 5028 }, 5029 [FEAT_MODULE_BTF] = { 5030 "module BTF support", probe_module_btf, 5031 }, 5032 [FEAT_BTF_FLOAT] = { 5033 "BTF_KIND_FLOAT support", probe_kern_btf_float, 5034 }, 5035 [FEAT_PERF_LINK] = { 5036 "BPF perf link support", probe_perf_link, 5037 }, 5038 [FEAT_BTF_DECL_TAG] = { 5039 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 5040 }, 5041 [FEAT_BTF_TYPE_TAG] = { 5042 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 5043 }, 5044 [FEAT_MEMCG_ACCOUNT] = { 5045 "memcg-based memory accounting", probe_memcg_account, 5046 }, 5047 [FEAT_BPF_COOKIE] = { 5048 "BPF cookie support", probe_kern_bpf_cookie, 5049 }, 5050 [FEAT_BTF_ENUM64] = { 5051 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5052 }, 5053 [FEAT_SYSCALL_WRAPPER] = { 5054 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5055 }, 5056 [FEAT_UPROBE_MULTI_LINK] = { 5057 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5058 }, 5059 }; 5060 5061 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5062 { 5063 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5064 int ret; 5065 5066 if (obj && obj->gen_loader) 5067 /* To generate loader program assume the latest kernel 5068 * to avoid doing extra prog_load, map_create syscalls. 5069 */ 5070 return true; 5071 5072 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5073 ret = feat->probe(); 5074 if (ret > 0) { 5075 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5076 } else if (ret == 0) { 5077 WRITE_ONCE(feat->res, FEAT_MISSING); 5078 } else { 5079 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5080 WRITE_ONCE(feat->res, FEAT_MISSING); 5081 } 5082 } 5083 5084 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5085 } 5086 5087 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5088 { 5089 struct bpf_map_info map_info; 5090 char msg[STRERR_BUFSIZE]; 5091 __u32 map_info_len = sizeof(map_info); 5092 int err; 5093 5094 memset(&map_info, 0, map_info_len); 5095 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5096 if (err && errno == EINVAL) 5097 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5098 if (err) { 5099 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5100 libbpf_strerror_r(errno, msg, sizeof(msg))); 5101 return false; 5102 } 5103 5104 return (map_info.type == map->def.type && 5105 map_info.key_size == map->def.key_size && 5106 map_info.value_size == map->def.value_size && 5107 map_info.max_entries == map->def.max_entries && 5108 map_info.map_flags == map->def.map_flags && 5109 map_info.map_extra == map->map_extra); 5110 } 5111 5112 static int 5113 bpf_object__reuse_map(struct bpf_map *map) 5114 { 5115 char *cp, errmsg[STRERR_BUFSIZE]; 5116 int err, pin_fd; 5117 5118 pin_fd = bpf_obj_get(map->pin_path); 5119 if (pin_fd < 0) { 5120 err = -errno; 5121 if (err == -ENOENT) { 5122 pr_debug("found no pinned map to reuse at '%s'\n", 5123 map->pin_path); 5124 return 0; 5125 } 5126 5127 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5128 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5129 map->pin_path, cp); 5130 return err; 5131 } 5132 5133 if (!map_is_reuse_compat(map, pin_fd)) { 5134 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5135 map->pin_path); 5136 close(pin_fd); 5137 return -EINVAL; 5138 } 5139 5140 err = bpf_map__reuse_fd(map, pin_fd); 5141 close(pin_fd); 5142 if (err) 5143 return err; 5144 5145 map->pinned = true; 5146 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5147 5148 return 0; 5149 } 5150 5151 static int 5152 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5153 { 5154 enum libbpf_map_type map_type = map->libbpf_type; 5155 char *cp, errmsg[STRERR_BUFSIZE]; 5156 int err, zero = 0; 5157 5158 if (obj->gen_loader) { 5159 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5160 map->mmaped, map->def.value_size); 5161 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5162 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5163 return 0; 5164 } 5165 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5166 if (err) { 5167 err = -errno; 5168 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5169 pr_warn("Error setting initial map(%s) contents: %s\n", 5170 map->name, cp); 5171 return err; 5172 } 5173 5174 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5175 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5176 err = bpf_map_freeze(map->fd); 5177 if (err) { 5178 err = -errno; 5179 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5180 pr_warn("Error freezing map(%s) as read-only: %s\n", 5181 map->name, cp); 5182 return err; 5183 } 5184 } 5185 return 0; 5186 } 5187 5188 static void bpf_map__destroy(struct bpf_map *map); 5189 5190 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5191 { 5192 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5193 struct bpf_map_def *def = &map->def; 5194 const char *map_name = NULL; 5195 int err = 0; 5196 5197 if (kernel_supports(obj, FEAT_PROG_NAME)) 5198 map_name = map->name; 5199 create_attr.map_ifindex = map->map_ifindex; 5200 create_attr.map_flags = def->map_flags; 5201 create_attr.numa_node = map->numa_node; 5202 create_attr.map_extra = map->map_extra; 5203 5204 if (bpf_map__is_struct_ops(map)) 5205 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5206 5207 if (obj->btf && btf__fd(obj->btf) >= 0) { 5208 create_attr.btf_fd = btf__fd(obj->btf); 5209 create_attr.btf_key_type_id = map->btf_key_type_id; 5210 create_attr.btf_value_type_id = map->btf_value_type_id; 5211 } 5212 5213 if (bpf_map_type__is_map_in_map(def->type)) { 5214 if (map->inner_map) { 5215 err = bpf_object__create_map(obj, map->inner_map, true); 5216 if (err) { 5217 pr_warn("map '%s': failed to create inner map: %d\n", 5218 map->name, err); 5219 return err; 5220 } 5221 map->inner_map_fd = bpf_map__fd(map->inner_map); 5222 } 5223 if (map->inner_map_fd >= 0) 5224 create_attr.inner_map_fd = map->inner_map_fd; 5225 } 5226 5227 switch (def->type) { 5228 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5229 case BPF_MAP_TYPE_CGROUP_ARRAY: 5230 case BPF_MAP_TYPE_STACK_TRACE: 5231 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5232 case BPF_MAP_TYPE_HASH_OF_MAPS: 5233 case BPF_MAP_TYPE_DEVMAP: 5234 case BPF_MAP_TYPE_DEVMAP_HASH: 5235 case BPF_MAP_TYPE_CPUMAP: 5236 case BPF_MAP_TYPE_XSKMAP: 5237 case BPF_MAP_TYPE_SOCKMAP: 5238 case BPF_MAP_TYPE_SOCKHASH: 5239 case BPF_MAP_TYPE_QUEUE: 5240 case BPF_MAP_TYPE_STACK: 5241 create_attr.btf_fd = 0; 5242 create_attr.btf_key_type_id = 0; 5243 create_attr.btf_value_type_id = 0; 5244 map->btf_key_type_id = 0; 5245 map->btf_value_type_id = 0; 5246 default: 5247 break; 5248 } 5249 5250 if (obj->gen_loader) { 5251 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5252 def->key_size, def->value_size, def->max_entries, 5253 &create_attr, is_inner ? -1 : map - obj->maps); 5254 /* Pretend to have valid FD to pass various fd >= 0 checks. 5255 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5256 */ 5257 map->fd = 0; 5258 } else { 5259 map->fd = bpf_map_create(def->type, map_name, 5260 def->key_size, def->value_size, 5261 def->max_entries, &create_attr); 5262 } 5263 if (map->fd < 0 && (create_attr.btf_key_type_id || 5264 create_attr.btf_value_type_id)) { 5265 char *cp, errmsg[STRERR_BUFSIZE]; 5266 5267 err = -errno; 5268 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5269 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5270 map->name, cp, err); 5271 create_attr.btf_fd = 0; 5272 create_attr.btf_key_type_id = 0; 5273 create_attr.btf_value_type_id = 0; 5274 map->btf_key_type_id = 0; 5275 map->btf_value_type_id = 0; 5276 map->fd = bpf_map_create(def->type, map_name, 5277 def->key_size, def->value_size, 5278 def->max_entries, &create_attr); 5279 } 5280 5281 err = map->fd < 0 ? -errno : 0; 5282 5283 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5284 if (obj->gen_loader) 5285 map->inner_map->fd = -1; 5286 bpf_map__destroy(map->inner_map); 5287 zfree(&map->inner_map); 5288 } 5289 5290 return err; 5291 } 5292 5293 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5294 { 5295 const struct bpf_map *targ_map; 5296 unsigned int i; 5297 int fd, err = 0; 5298 5299 for (i = 0; i < map->init_slots_sz; i++) { 5300 if (!map->init_slots[i]) 5301 continue; 5302 5303 targ_map = map->init_slots[i]; 5304 fd = bpf_map__fd(targ_map); 5305 5306 if (obj->gen_loader) { 5307 bpf_gen__populate_outer_map(obj->gen_loader, 5308 map - obj->maps, i, 5309 targ_map - obj->maps); 5310 } else { 5311 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5312 } 5313 if (err) { 5314 err = -errno; 5315 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5316 map->name, i, targ_map->name, fd, err); 5317 return err; 5318 } 5319 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5320 map->name, i, targ_map->name, fd); 5321 } 5322 5323 zfree(&map->init_slots); 5324 map->init_slots_sz = 0; 5325 5326 return 0; 5327 } 5328 5329 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5330 { 5331 const struct bpf_program *targ_prog; 5332 unsigned int i; 5333 int fd, err; 5334 5335 if (obj->gen_loader) 5336 return -ENOTSUP; 5337 5338 for (i = 0; i < map->init_slots_sz; i++) { 5339 if (!map->init_slots[i]) 5340 continue; 5341 5342 targ_prog = map->init_slots[i]; 5343 fd = bpf_program__fd(targ_prog); 5344 5345 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5346 if (err) { 5347 err = -errno; 5348 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5349 map->name, i, targ_prog->name, fd, err); 5350 return err; 5351 } 5352 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5353 map->name, i, targ_prog->name, fd); 5354 } 5355 5356 zfree(&map->init_slots); 5357 map->init_slots_sz = 0; 5358 5359 return 0; 5360 } 5361 5362 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5363 { 5364 struct bpf_map *map; 5365 int i, err; 5366 5367 for (i = 0; i < obj->nr_maps; i++) { 5368 map = &obj->maps[i]; 5369 5370 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5371 continue; 5372 5373 err = init_prog_array_slots(obj, map); 5374 if (err < 0) { 5375 zclose(map->fd); 5376 return err; 5377 } 5378 } 5379 return 0; 5380 } 5381 5382 static int map_set_def_max_entries(struct bpf_map *map) 5383 { 5384 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5385 int nr_cpus; 5386 5387 nr_cpus = libbpf_num_possible_cpus(); 5388 if (nr_cpus < 0) { 5389 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5390 map->name, nr_cpus); 5391 return nr_cpus; 5392 } 5393 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5394 map->def.max_entries = nr_cpus; 5395 } 5396 5397 return 0; 5398 } 5399 5400 static int 5401 bpf_object__create_maps(struct bpf_object *obj) 5402 { 5403 struct bpf_map *map; 5404 char *cp, errmsg[STRERR_BUFSIZE]; 5405 unsigned int i, j; 5406 int err; 5407 bool retried; 5408 5409 for (i = 0; i < obj->nr_maps; i++) { 5410 map = &obj->maps[i]; 5411 5412 /* To support old kernels, we skip creating global data maps 5413 * (.rodata, .data, .kconfig, etc); later on, during program 5414 * loading, if we detect that at least one of the to-be-loaded 5415 * programs is referencing any global data map, we'll error 5416 * out with program name and relocation index logged. 5417 * This approach allows to accommodate Clang emitting 5418 * unnecessary .rodata.str1.1 sections for string literals, 5419 * but also it allows to have CO-RE applications that use 5420 * global variables in some of BPF programs, but not others. 5421 * If those global variable-using programs are not loaded at 5422 * runtime due to bpf_program__set_autoload(prog, false), 5423 * bpf_object loading will succeed just fine even on old 5424 * kernels. 5425 */ 5426 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5427 map->autocreate = false; 5428 5429 if (!map->autocreate) { 5430 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5431 continue; 5432 } 5433 5434 err = map_set_def_max_entries(map); 5435 if (err) 5436 goto err_out; 5437 5438 retried = false; 5439 retry: 5440 if (map->pin_path) { 5441 err = bpf_object__reuse_map(map); 5442 if (err) { 5443 pr_warn("map '%s': error reusing pinned map\n", 5444 map->name); 5445 goto err_out; 5446 } 5447 if (retried && map->fd < 0) { 5448 pr_warn("map '%s': cannot find pinned map\n", 5449 map->name); 5450 err = -ENOENT; 5451 goto err_out; 5452 } 5453 } 5454 5455 if (map->fd >= 0) { 5456 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5457 map->name, map->fd); 5458 } else { 5459 err = bpf_object__create_map(obj, map, false); 5460 if (err) 5461 goto err_out; 5462 5463 pr_debug("map '%s': created successfully, fd=%d\n", 5464 map->name, map->fd); 5465 5466 if (bpf_map__is_internal(map)) { 5467 err = bpf_object__populate_internal_map(obj, map); 5468 if (err < 0) { 5469 zclose(map->fd); 5470 goto err_out; 5471 } 5472 } 5473 5474 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5475 err = init_map_in_map_slots(obj, map); 5476 if (err < 0) { 5477 zclose(map->fd); 5478 goto err_out; 5479 } 5480 } 5481 } 5482 5483 if (map->pin_path && !map->pinned) { 5484 err = bpf_map__pin(map, NULL); 5485 if (err) { 5486 zclose(map->fd); 5487 if (!retried && err == -EEXIST) { 5488 retried = true; 5489 goto retry; 5490 } 5491 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5492 map->name, map->pin_path, err); 5493 goto err_out; 5494 } 5495 } 5496 } 5497 5498 return 0; 5499 5500 err_out: 5501 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5502 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5503 pr_perm_msg(err); 5504 for (j = 0; j < i; j++) 5505 zclose(obj->maps[j].fd); 5506 return err; 5507 } 5508 5509 static bool bpf_core_is_flavor_sep(const char *s) 5510 { 5511 /* check X___Y name pattern, where X and Y are not underscores */ 5512 return s[0] != '_' && /* X */ 5513 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5514 s[4] != '_'; /* Y */ 5515 } 5516 5517 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5518 * before last triple underscore. Struct name part after last triple 5519 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5520 */ 5521 size_t bpf_core_essential_name_len(const char *name) 5522 { 5523 size_t n = strlen(name); 5524 int i; 5525 5526 for (i = n - 5; i >= 0; i--) { 5527 if (bpf_core_is_flavor_sep(name + i)) 5528 return i + 1; 5529 } 5530 return n; 5531 } 5532 5533 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5534 { 5535 if (!cands) 5536 return; 5537 5538 free(cands->cands); 5539 free(cands); 5540 } 5541 5542 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5543 size_t local_essent_len, 5544 const struct btf *targ_btf, 5545 const char *targ_btf_name, 5546 int targ_start_id, 5547 struct bpf_core_cand_list *cands) 5548 { 5549 struct bpf_core_cand *new_cands, *cand; 5550 const struct btf_type *t, *local_t; 5551 const char *targ_name, *local_name; 5552 size_t targ_essent_len; 5553 int n, i; 5554 5555 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5556 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5557 5558 n = btf__type_cnt(targ_btf); 5559 for (i = targ_start_id; i < n; i++) { 5560 t = btf__type_by_id(targ_btf, i); 5561 if (!btf_kind_core_compat(t, local_t)) 5562 continue; 5563 5564 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5565 if (str_is_empty(targ_name)) 5566 continue; 5567 5568 targ_essent_len = bpf_core_essential_name_len(targ_name); 5569 if (targ_essent_len != local_essent_len) 5570 continue; 5571 5572 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5573 continue; 5574 5575 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5576 local_cand->id, btf_kind_str(local_t), 5577 local_name, i, btf_kind_str(t), targ_name, 5578 targ_btf_name); 5579 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5580 sizeof(*cands->cands)); 5581 if (!new_cands) 5582 return -ENOMEM; 5583 5584 cand = &new_cands[cands->len]; 5585 cand->btf = targ_btf; 5586 cand->id = i; 5587 5588 cands->cands = new_cands; 5589 cands->len++; 5590 } 5591 return 0; 5592 } 5593 5594 static int load_module_btfs(struct bpf_object *obj) 5595 { 5596 struct bpf_btf_info info; 5597 struct module_btf *mod_btf; 5598 struct btf *btf; 5599 char name[64]; 5600 __u32 id = 0, len; 5601 int err, fd; 5602 5603 if (obj->btf_modules_loaded) 5604 return 0; 5605 5606 if (obj->gen_loader) 5607 return 0; 5608 5609 /* don't do this again, even if we find no module BTFs */ 5610 obj->btf_modules_loaded = true; 5611 5612 /* kernel too old to support module BTFs */ 5613 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5614 return 0; 5615 5616 while (true) { 5617 err = bpf_btf_get_next_id(id, &id); 5618 if (err && errno == ENOENT) 5619 return 0; 5620 if (err && errno == EPERM) { 5621 pr_debug("skipping module BTFs loading, missing privileges\n"); 5622 return 0; 5623 } 5624 if (err) { 5625 err = -errno; 5626 pr_warn("failed to iterate BTF objects: %d\n", err); 5627 return err; 5628 } 5629 5630 fd = bpf_btf_get_fd_by_id(id); 5631 if (fd < 0) { 5632 if (errno == ENOENT) 5633 continue; /* expected race: BTF was unloaded */ 5634 err = -errno; 5635 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5636 return err; 5637 } 5638 5639 len = sizeof(info); 5640 memset(&info, 0, sizeof(info)); 5641 info.name = ptr_to_u64(name); 5642 info.name_len = sizeof(name); 5643 5644 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5645 if (err) { 5646 err = -errno; 5647 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5648 goto err_out; 5649 } 5650 5651 /* ignore non-module BTFs */ 5652 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5653 close(fd); 5654 continue; 5655 } 5656 5657 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5658 err = libbpf_get_error(btf); 5659 if (err) { 5660 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5661 name, id, err); 5662 goto err_out; 5663 } 5664 5665 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5666 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5667 if (err) 5668 goto err_out; 5669 5670 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5671 5672 mod_btf->btf = btf; 5673 mod_btf->id = id; 5674 mod_btf->fd = fd; 5675 mod_btf->name = strdup(name); 5676 if (!mod_btf->name) { 5677 err = -ENOMEM; 5678 goto err_out; 5679 } 5680 continue; 5681 5682 err_out: 5683 close(fd); 5684 return err; 5685 } 5686 5687 return 0; 5688 } 5689 5690 static struct bpf_core_cand_list * 5691 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5692 { 5693 struct bpf_core_cand local_cand = {}; 5694 struct bpf_core_cand_list *cands; 5695 const struct btf *main_btf; 5696 const struct btf_type *local_t; 5697 const char *local_name; 5698 size_t local_essent_len; 5699 int err, i; 5700 5701 local_cand.btf = local_btf; 5702 local_cand.id = local_type_id; 5703 local_t = btf__type_by_id(local_btf, local_type_id); 5704 if (!local_t) 5705 return ERR_PTR(-EINVAL); 5706 5707 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5708 if (str_is_empty(local_name)) 5709 return ERR_PTR(-EINVAL); 5710 local_essent_len = bpf_core_essential_name_len(local_name); 5711 5712 cands = calloc(1, sizeof(*cands)); 5713 if (!cands) 5714 return ERR_PTR(-ENOMEM); 5715 5716 /* Attempt to find target candidates in vmlinux BTF first */ 5717 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5718 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5719 if (err) 5720 goto err_out; 5721 5722 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5723 if (cands->len) 5724 return cands; 5725 5726 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5727 if (obj->btf_vmlinux_override) 5728 return cands; 5729 5730 /* now look through module BTFs, trying to still find candidates */ 5731 err = load_module_btfs(obj); 5732 if (err) 5733 goto err_out; 5734 5735 for (i = 0; i < obj->btf_module_cnt; i++) { 5736 err = bpf_core_add_cands(&local_cand, local_essent_len, 5737 obj->btf_modules[i].btf, 5738 obj->btf_modules[i].name, 5739 btf__type_cnt(obj->btf_vmlinux), 5740 cands); 5741 if (err) 5742 goto err_out; 5743 } 5744 5745 return cands; 5746 err_out: 5747 bpf_core_free_cands(cands); 5748 return ERR_PTR(err); 5749 } 5750 5751 /* Check local and target types for compatibility. This check is used for 5752 * type-based CO-RE relocations and follow slightly different rules than 5753 * field-based relocations. This function assumes that root types were already 5754 * checked for name match. Beyond that initial root-level name check, names 5755 * are completely ignored. Compatibility rules are as follows: 5756 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5757 * kind should match for local and target types (i.e., STRUCT is not 5758 * compatible with UNION); 5759 * - for ENUMs, the size is ignored; 5760 * - for INT, size and signedness are ignored; 5761 * - for ARRAY, dimensionality is ignored, element types are checked for 5762 * compatibility recursively; 5763 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5764 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5765 * - FUNC_PROTOs are compatible if they have compatible signature: same 5766 * number of input args and compatible return and argument types. 5767 * These rules are not set in stone and probably will be adjusted as we get 5768 * more experience with using BPF CO-RE relocations. 5769 */ 5770 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5771 const struct btf *targ_btf, __u32 targ_id) 5772 { 5773 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5774 } 5775 5776 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5777 const struct btf *targ_btf, __u32 targ_id) 5778 { 5779 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5780 } 5781 5782 static size_t bpf_core_hash_fn(const long key, void *ctx) 5783 { 5784 return key; 5785 } 5786 5787 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5788 { 5789 return k1 == k2; 5790 } 5791 5792 static int record_relo_core(struct bpf_program *prog, 5793 const struct bpf_core_relo *core_relo, int insn_idx) 5794 { 5795 struct reloc_desc *relos, *relo; 5796 5797 relos = libbpf_reallocarray(prog->reloc_desc, 5798 prog->nr_reloc + 1, sizeof(*relos)); 5799 if (!relos) 5800 return -ENOMEM; 5801 relo = &relos[prog->nr_reloc]; 5802 relo->type = RELO_CORE; 5803 relo->insn_idx = insn_idx; 5804 relo->core_relo = core_relo; 5805 prog->reloc_desc = relos; 5806 prog->nr_reloc++; 5807 return 0; 5808 } 5809 5810 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5811 { 5812 struct reloc_desc *relo; 5813 int i; 5814 5815 for (i = 0; i < prog->nr_reloc; i++) { 5816 relo = &prog->reloc_desc[i]; 5817 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5818 continue; 5819 5820 return relo->core_relo; 5821 } 5822 5823 return NULL; 5824 } 5825 5826 static int bpf_core_resolve_relo(struct bpf_program *prog, 5827 const struct bpf_core_relo *relo, 5828 int relo_idx, 5829 const struct btf *local_btf, 5830 struct hashmap *cand_cache, 5831 struct bpf_core_relo_res *targ_res) 5832 { 5833 struct bpf_core_spec specs_scratch[3] = {}; 5834 struct bpf_core_cand_list *cands = NULL; 5835 const char *prog_name = prog->name; 5836 const struct btf_type *local_type; 5837 const char *local_name; 5838 __u32 local_id = relo->type_id; 5839 int err; 5840 5841 local_type = btf__type_by_id(local_btf, local_id); 5842 if (!local_type) 5843 return -EINVAL; 5844 5845 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5846 if (!local_name) 5847 return -EINVAL; 5848 5849 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5850 !hashmap__find(cand_cache, local_id, &cands)) { 5851 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5852 if (IS_ERR(cands)) { 5853 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5854 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5855 local_name, PTR_ERR(cands)); 5856 return PTR_ERR(cands); 5857 } 5858 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5859 if (err) { 5860 bpf_core_free_cands(cands); 5861 return err; 5862 } 5863 } 5864 5865 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5866 targ_res); 5867 } 5868 5869 static int 5870 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5871 { 5872 const struct btf_ext_info_sec *sec; 5873 struct bpf_core_relo_res targ_res; 5874 const struct bpf_core_relo *rec; 5875 const struct btf_ext_info *seg; 5876 struct hashmap_entry *entry; 5877 struct hashmap *cand_cache = NULL; 5878 struct bpf_program *prog; 5879 struct bpf_insn *insn; 5880 const char *sec_name; 5881 int i, err = 0, insn_idx, sec_idx, sec_num; 5882 5883 if (obj->btf_ext->core_relo_info.len == 0) 5884 return 0; 5885 5886 if (targ_btf_path) { 5887 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5888 err = libbpf_get_error(obj->btf_vmlinux_override); 5889 if (err) { 5890 pr_warn("failed to parse target BTF: %d\n", err); 5891 return err; 5892 } 5893 } 5894 5895 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5896 if (IS_ERR(cand_cache)) { 5897 err = PTR_ERR(cand_cache); 5898 goto out; 5899 } 5900 5901 seg = &obj->btf_ext->core_relo_info; 5902 sec_num = 0; 5903 for_each_btf_ext_sec(seg, sec) { 5904 sec_idx = seg->sec_idxs[sec_num]; 5905 sec_num++; 5906 5907 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5908 if (str_is_empty(sec_name)) { 5909 err = -EINVAL; 5910 goto out; 5911 } 5912 5913 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5914 5915 for_each_btf_ext_rec(seg, sec, i, rec) { 5916 if (rec->insn_off % BPF_INSN_SZ) 5917 return -EINVAL; 5918 insn_idx = rec->insn_off / BPF_INSN_SZ; 5919 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5920 if (!prog) { 5921 /* When __weak subprog is "overridden" by another instance 5922 * of the subprog from a different object file, linker still 5923 * appends all the .BTF.ext info that used to belong to that 5924 * eliminated subprogram. 5925 * This is similar to what x86-64 linker does for relocations. 5926 * So just ignore such relocations just like we ignore 5927 * subprog instructions when discovering subprograms. 5928 */ 5929 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5930 sec_name, i, insn_idx); 5931 continue; 5932 } 5933 /* no need to apply CO-RE relocation if the program is 5934 * not going to be loaded 5935 */ 5936 if (!prog->autoload) 5937 continue; 5938 5939 /* adjust insn_idx from section frame of reference to the local 5940 * program's frame of reference; (sub-)program code is not yet 5941 * relocated, so it's enough to just subtract in-section offset 5942 */ 5943 insn_idx = insn_idx - prog->sec_insn_off; 5944 if (insn_idx >= prog->insns_cnt) 5945 return -EINVAL; 5946 insn = &prog->insns[insn_idx]; 5947 5948 err = record_relo_core(prog, rec, insn_idx); 5949 if (err) { 5950 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5951 prog->name, i, err); 5952 goto out; 5953 } 5954 5955 if (prog->obj->gen_loader) 5956 continue; 5957 5958 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5959 if (err) { 5960 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5961 prog->name, i, err); 5962 goto out; 5963 } 5964 5965 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5966 if (err) { 5967 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5968 prog->name, i, insn_idx, err); 5969 goto out; 5970 } 5971 } 5972 } 5973 5974 out: 5975 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5976 btf__free(obj->btf_vmlinux_override); 5977 obj->btf_vmlinux_override = NULL; 5978 5979 if (!IS_ERR_OR_NULL(cand_cache)) { 5980 hashmap__for_each_entry(cand_cache, entry, i) { 5981 bpf_core_free_cands(entry->pvalue); 5982 } 5983 hashmap__free(cand_cache); 5984 } 5985 return err; 5986 } 5987 5988 /* base map load ldimm64 special constant, used also for log fixup logic */ 5989 #define POISON_LDIMM64_MAP_BASE 2001000000 5990 #define POISON_LDIMM64_MAP_PFX "200100" 5991 5992 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5993 int insn_idx, struct bpf_insn *insn, 5994 int map_idx, const struct bpf_map *map) 5995 { 5996 int i; 5997 5998 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5999 prog->name, relo_idx, insn_idx, map_idx, map->name); 6000 6001 /* we turn single ldimm64 into two identical invalid calls */ 6002 for (i = 0; i < 2; i++) { 6003 insn->code = BPF_JMP | BPF_CALL; 6004 insn->dst_reg = 0; 6005 insn->src_reg = 0; 6006 insn->off = 0; 6007 /* if this instruction is reachable (not a dead code), 6008 * verifier will complain with something like: 6009 * invalid func unknown#2001000123 6010 * where lower 123 is map index into obj->maps[] array 6011 */ 6012 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6013 6014 insn++; 6015 } 6016 } 6017 6018 /* unresolved kfunc call special constant, used also for log fixup logic */ 6019 #define POISON_CALL_KFUNC_BASE 2002000000 6020 #define POISON_CALL_KFUNC_PFX "2002" 6021 6022 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6023 int insn_idx, struct bpf_insn *insn, 6024 int ext_idx, const struct extern_desc *ext) 6025 { 6026 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6027 prog->name, relo_idx, insn_idx, ext->name); 6028 6029 /* we turn kfunc call into invalid helper call with identifiable constant */ 6030 insn->code = BPF_JMP | BPF_CALL; 6031 insn->dst_reg = 0; 6032 insn->src_reg = 0; 6033 insn->off = 0; 6034 /* if this instruction is reachable (not a dead code), 6035 * verifier will complain with something like: 6036 * invalid func unknown#2001000123 6037 * where lower 123 is extern index into obj->externs[] array 6038 */ 6039 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6040 } 6041 6042 /* Relocate data references within program code: 6043 * - map references; 6044 * - global variable references; 6045 * - extern references. 6046 */ 6047 static int 6048 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6049 { 6050 int i; 6051 6052 for (i = 0; i < prog->nr_reloc; i++) { 6053 struct reloc_desc *relo = &prog->reloc_desc[i]; 6054 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6055 const struct bpf_map *map; 6056 struct extern_desc *ext; 6057 6058 switch (relo->type) { 6059 case RELO_LD64: 6060 map = &obj->maps[relo->map_idx]; 6061 if (obj->gen_loader) { 6062 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6063 insn[0].imm = relo->map_idx; 6064 } else if (map->autocreate) { 6065 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6066 insn[0].imm = map->fd; 6067 } else { 6068 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6069 relo->map_idx, map); 6070 } 6071 break; 6072 case RELO_DATA: 6073 map = &obj->maps[relo->map_idx]; 6074 insn[1].imm = insn[0].imm + relo->sym_off; 6075 if (obj->gen_loader) { 6076 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6077 insn[0].imm = relo->map_idx; 6078 } else if (map->autocreate) { 6079 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6080 insn[0].imm = map->fd; 6081 } else { 6082 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6083 relo->map_idx, map); 6084 } 6085 break; 6086 case RELO_EXTERN_LD64: 6087 ext = &obj->externs[relo->ext_idx]; 6088 if (ext->type == EXT_KCFG) { 6089 if (obj->gen_loader) { 6090 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6091 insn[0].imm = obj->kconfig_map_idx; 6092 } else { 6093 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6094 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6095 } 6096 insn[1].imm = ext->kcfg.data_off; 6097 } else /* EXT_KSYM */ { 6098 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6099 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6100 insn[0].imm = ext->ksym.kernel_btf_id; 6101 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6102 } else { /* typeless ksyms or unresolved typed ksyms */ 6103 insn[0].imm = (__u32)ext->ksym.addr; 6104 insn[1].imm = ext->ksym.addr >> 32; 6105 } 6106 } 6107 break; 6108 case RELO_EXTERN_CALL: 6109 ext = &obj->externs[relo->ext_idx]; 6110 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6111 if (ext->is_set) { 6112 insn[0].imm = ext->ksym.kernel_btf_id; 6113 insn[0].off = ext->ksym.btf_fd_idx; 6114 } else { /* unresolved weak kfunc call */ 6115 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6116 relo->ext_idx, ext); 6117 } 6118 break; 6119 case RELO_SUBPROG_ADDR: 6120 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6121 pr_warn("prog '%s': relo #%d: bad insn\n", 6122 prog->name, i); 6123 return -EINVAL; 6124 } 6125 /* handled already */ 6126 break; 6127 case RELO_CALL: 6128 /* handled already */ 6129 break; 6130 case RELO_CORE: 6131 /* will be handled by bpf_program_record_relos() */ 6132 break; 6133 default: 6134 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6135 prog->name, i, relo->type); 6136 return -EINVAL; 6137 } 6138 } 6139 6140 return 0; 6141 } 6142 6143 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6144 const struct bpf_program *prog, 6145 const struct btf_ext_info *ext_info, 6146 void **prog_info, __u32 *prog_rec_cnt, 6147 __u32 *prog_rec_sz) 6148 { 6149 void *copy_start = NULL, *copy_end = NULL; 6150 void *rec, *rec_end, *new_prog_info; 6151 const struct btf_ext_info_sec *sec; 6152 size_t old_sz, new_sz; 6153 int i, sec_num, sec_idx, off_adj; 6154 6155 sec_num = 0; 6156 for_each_btf_ext_sec(ext_info, sec) { 6157 sec_idx = ext_info->sec_idxs[sec_num]; 6158 sec_num++; 6159 if (prog->sec_idx != sec_idx) 6160 continue; 6161 6162 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6163 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6164 6165 if (insn_off < prog->sec_insn_off) 6166 continue; 6167 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6168 break; 6169 6170 if (!copy_start) 6171 copy_start = rec; 6172 copy_end = rec + ext_info->rec_size; 6173 } 6174 6175 if (!copy_start) 6176 return -ENOENT; 6177 6178 /* append func/line info of a given (sub-)program to the main 6179 * program func/line info 6180 */ 6181 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6182 new_sz = old_sz + (copy_end - copy_start); 6183 new_prog_info = realloc(*prog_info, new_sz); 6184 if (!new_prog_info) 6185 return -ENOMEM; 6186 *prog_info = new_prog_info; 6187 *prog_rec_cnt = new_sz / ext_info->rec_size; 6188 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6189 6190 /* Kernel instruction offsets are in units of 8-byte 6191 * instructions, while .BTF.ext instruction offsets generated 6192 * by Clang are in units of bytes. So convert Clang offsets 6193 * into kernel offsets and adjust offset according to program 6194 * relocated position. 6195 */ 6196 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6197 rec = new_prog_info + old_sz; 6198 rec_end = new_prog_info + new_sz; 6199 for (; rec < rec_end; rec += ext_info->rec_size) { 6200 __u32 *insn_off = rec; 6201 6202 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6203 } 6204 *prog_rec_sz = ext_info->rec_size; 6205 return 0; 6206 } 6207 6208 return -ENOENT; 6209 } 6210 6211 static int 6212 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6213 struct bpf_program *main_prog, 6214 const struct bpf_program *prog) 6215 { 6216 int err; 6217 6218 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6219 * supprot func/line info 6220 */ 6221 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6222 return 0; 6223 6224 /* only attempt func info relocation if main program's func_info 6225 * relocation was successful 6226 */ 6227 if (main_prog != prog && !main_prog->func_info) 6228 goto line_info; 6229 6230 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6231 &main_prog->func_info, 6232 &main_prog->func_info_cnt, 6233 &main_prog->func_info_rec_size); 6234 if (err) { 6235 if (err != -ENOENT) { 6236 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6237 prog->name, err); 6238 return err; 6239 } 6240 if (main_prog->func_info) { 6241 /* 6242 * Some info has already been found but has problem 6243 * in the last btf_ext reloc. Must have to error out. 6244 */ 6245 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6246 return err; 6247 } 6248 /* Have problem loading the very first info. Ignore the rest. */ 6249 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6250 prog->name); 6251 } 6252 6253 line_info: 6254 /* don't relocate line info if main program's relocation failed */ 6255 if (main_prog != prog && !main_prog->line_info) 6256 return 0; 6257 6258 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6259 &main_prog->line_info, 6260 &main_prog->line_info_cnt, 6261 &main_prog->line_info_rec_size); 6262 if (err) { 6263 if (err != -ENOENT) { 6264 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6265 prog->name, err); 6266 return err; 6267 } 6268 if (main_prog->line_info) { 6269 /* 6270 * Some info has already been found but has problem 6271 * in the last btf_ext reloc. Must have to error out. 6272 */ 6273 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6274 return err; 6275 } 6276 /* Have problem loading the very first info. Ignore the rest. */ 6277 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6278 prog->name); 6279 } 6280 return 0; 6281 } 6282 6283 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6284 { 6285 size_t insn_idx = *(const size_t *)key; 6286 const struct reloc_desc *relo = elem; 6287 6288 if (insn_idx == relo->insn_idx) 6289 return 0; 6290 return insn_idx < relo->insn_idx ? -1 : 1; 6291 } 6292 6293 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6294 { 6295 if (!prog->nr_reloc) 6296 return NULL; 6297 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6298 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6299 } 6300 6301 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6302 { 6303 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6304 struct reloc_desc *relos; 6305 int i; 6306 6307 if (main_prog == subprog) 6308 return 0; 6309 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6310 /* if new count is zero, reallocarray can return a valid NULL result; 6311 * in this case the previous pointer will be freed, so we *have to* 6312 * reassign old pointer to the new value (even if it's NULL) 6313 */ 6314 if (!relos && new_cnt) 6315 return -ENOMEM; 6316 if (subprog->nr_reloc) 6317 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6318 sizeof(*relos) * subprog->nr_reloc); 6319 6320 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6321 relos[i].insn_idx += subprog->sub_insn_off; 6322 /* After insn_idx adjustment the 'relos' array is still sorted 6323 * by insn_idx and doesn't break bsearch. 6324 */ 6325 main_prog->reloc_desc = relos; 6326 main_prog->nr_reloc = new_cnt; 6327 return 0; 6328 } 6329 6330 static int 6331 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6332 struct bpf_program *subprog) 6333 { 6334 struct bpf_insn *insns; 6335 size_t new_cnt; 6336 int err; 6337 6338 subprog->sub_insn_off = main_prog->insns_cnt; 6339 6340 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6341 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6342 if (!insns) { 6343 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6344 return -ENOMEM; 6345 } 6346 main_prog->insns = insns; 6347 main_prog->insns_cnt = new_cnt; 6348 6349 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6350 subprog->insns_cnt * sizeof(*insns)); 6351 6352 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6353 main_prog->name, subprog->insns_cnt, subprog->name); 6354 6355 /* The subprog insns are now appended. Append its relos too. */ 6356 err = append_subprog_relos(main_prog, subprog); 6357 if (err) 6358 return err; 6359 return 0; 6360 } 6361 6362 static int 6363 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6364 struct bpf_program *prog) 6365 { 6366 size_t sub_insn_idx, insn_idx; 6367 struct bpf_program *subprog; 6368 struct reloc_desc *relo; 6369 struct bpf_insn *insn; 6370 int err; 6371 6372 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6373 if (err) 6374 return err; 6375 6376 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6377 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6378 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6379 continue; 6380 6381 relo = find_prog_insn_relo(prog, insn_idx); 6382 if (relo && relo->type == RELO_EXTERN_CALL) 6383 /* kfunc relocations will be handled later 6384 * in bpf_object__relocate_data() 6385 */ 6386 continue; 6387 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6388 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6389 prog->name, insn_idx, relo->type); 6390 return -LIBBPF_ERRNO__RELOC; 6391 } 6392 if (relo) { 6393 /* sub-program instruction index is a combination of 6394 * an offset of a symbol pointed to by relocation and 6395 * call instruction's imm field; for global functions, 6396 * call always has imm = -1, but for static functions 6397 * relocation is against STT_SECTION and insn->imm 6398 * points to a start of a static function 6399 * 6400 * for subprog addr relocation, the relo->sym_off + insn->imm is 6401 * the byte offset in the corresponding section. 6402 */ 6403 if (relo->type == RELO_CALL) 6404 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6405 else 6406 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6407 } else if (insn_is_pseudo_func(insn)) { 6408 /* 6409 * RELO_SUBPROG_ADDR relo is always emitted even if both 6410 * functions are in the same section, so it shouldn't reach here. 6411 */ 6412 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6413 prog->name, insn_idx); 6414 return -LIBBPF_ERRNO__RELOC; 6415 } else { 6416 /* if subprogram call is to a static function within 6417 * the same ELF section, there won't be any relocation 6418 * emitted, but it also means there is no additional 6419 * offset necessary, insns->imm is relative to 6420 * instruction's original position within the section 6421 */ 6422 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6423 } 6424 6425 /* we enforce that sub-programs should be in .text section */ 6426 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6427 if (!subprog) { 6428 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6429 prog->name); 6430 return -LIBBPF_ERRNO__RELOC; 6431 } 6432 6433 /* if it's the first call instruction calling into this 6434 * subprogram (meaning this subprog hasn't been processed 6435 * yet) within the context of current main program: 6436 * - append it at the end of main program's instructions blog; 6437 * - process is recursively, while current program is put on hold; 6438 * - if that subprogram calls some other not yet processes 6439 * subprogram, same thing will happen recursively until 6440 * there are no more unprocesses subprograms left to append 6441 * and relocate. 6442 */ 6443 if (subprog->sub_insn_off == 0) { 6444 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6445 if (err) 6446 return err; 6447 err = bpf_object__reloc_code(obj, main_prog, subprog); 6448 if (err) 6449 return err; 6450 } 6451 6452 /* main_prog->insns memory could have been re-allocated, so 6453 * calculate pointer again 6454 */ 6455 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6456 /* calculate correct instruction position within current main 6457 * prog; each main prog can have a different set of 6458 * subprograms appended (potentially in different order as 6459 * well), so position of any subprog can be different for 6460 * different main programs 6461 */ 6462 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6463 6464 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6465 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6466 } 6467 6468 return 0; 6469 } 6470 6471 /* 6472 * Relocate sub-program calls. 6473 * 6474 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6475 * main prog) is processed separately. For each subprog (non-entry functions, 6476 * that can be called from either entry progs or other subprogs) gets their 6477 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6478 * hasn't been yet appended and relocated within current main prog. Once its 6479 * relocated, sub_insn_off will point at the position within current main prog 6480 * where given subprog was appended. This will further be used to relocate all 6481 * the call instructions jumping into this subprog. 6482 * 6483 * We start with main program and process all call instructions. If the call 6484 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6485 * is zero), subprog instructions are appended at the end of main program's 6486 * instruction array. Then main program is "put on hold" while we recursively 6487 * process newly appended subprogram. If that subprogram calls into another 6488 * subprogram that hasn't been appended, new subprogram is appended again to 6489 * the *main* prog's instructions (subprog's instructions are always left 6490 * untouched, as they need to be in unmodified state for subsequent main progs 6491 * and subprog instructions are always sent only as part of a main prog) and 6492 * the process continues recursively. Once all the subprogs called from a main 6493 * prog or any of its subprogs are appended (and relocated), all their 6494 * positions within finalized instructions array are known, so it's easy to 6495 * rewrite call instructions with correct relative offsets, corresponding to 6496 * desired target subprog. 6497 * 6498 * Its important to realize that some subprogs might not be called from some 6499 * main prog and any of its called/used subprogs. Those will keep their 6500 * subprog->sub_insn_off as zero at all times and won't be appended to current 6501 * main prog and won't be relocated within the context of current main prog. 6502 * They might still be used from other main progs later. 6503 * 6504 * Visually this process can be shown as below. Suppose we have two main 6505 * programs mainA and mainB and BPF object contains three subprogs: subA, 6506 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6507 * subC both call subB: 6508 * 6509 * +--------+ +-------+ 6510 * | v v | 6511 * +--+---+ +--+-+-+ +---+--+ 6512 * | subA | | subB | | subC | 6513 * +--+---+ +------+ +---+--+ 6514 * ^ ^ 6515 * | | 6516 * +---+-------+ +------+----+ 6517 * | mainA | | mainB | 6518 * +-----------+ +-----------+ 6519 * 6520 * We'll start relocating mainA, will find subA, append it and start 6521 * processing sub A recursively: 6522 * 6523 * +-----------+------+ 6524 * | mainA | subA | 6525 * +-----------+------+ 6526 * 6527 * At this point we notice that subB is used from subA, so we append it and 6528 * relocate (there are no further subcalls from subB): 6529 * 6530 * +-----------+------+------+ 6531 * | mainA | subA | subB | 6532 * +-----------+------+------+ 6533 * 6534 * At this point, we relocate subA calls, then go one level up and finish with 6535 * relocatin mainA calls. mainA is done. 6536 * 6537 * For mainB process is similar but results in different order. We start with 6538 * mainB and skip subA and subB, as mainB never calls them (at least 6539 * directly), but we see subC is needed, so we append and start processing it: 6540 * 6541 * +-----------+------+ 6542 * | mainB | subC | 6543 * +-----------+------+ 6544 * Now we see subC needs subB, so we go back to it, append and relocate it: 6545 * 6546 * +-----------+------+------+ 6547 * | mainB | subC | subB | 6548 * +-----------+------+------+ 6549 * 6550 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6551 */ 6552 static int 6553 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6554 { 6555 struct bpf_program *subprog; 6556 int i, err; 6557 6558 /* mark all subprogs as not relocated (yet) within the context of 6559 * current main program 6560 */ 6561 for (i = 0; i < obj->nr_programs; i++) { 6562 subprog = &obj->programs[i]; 6563 if (!prog_is_subprog(obj, subprog)) 6564 continue; 6565 6566 subprog->sub_insn_off = 0; 6567 } 6568 6569 err = bpf_object__reloc_code(obj, prog, prog); 6570 if (err) 6571 return err; 6572 6573 return 0; 6574 } 6575 6576 static void 6577 bpf_object__free_relocs(struct bpf_object *obj) 6578 { 6579 struct bpf_program *prog; 6580 int i; 6581 6582 /* free up relocation descriptors */ 6583 for (i = 0; i < obj->nr_programs; i++) { 6584 prog = &obj->programs[i]; 6585 zfree(&prog->reloc_desc); 6586 prog->nr_reloc = 0; 6587 } 6588 } 6589 6590 static int cmp_relocs(const void *_a, const void *_b) 6591 { 6592 const struct reloc_desc *a = _a; 6593 const struct reloc_desc *b = _b; 6594 6595 if (a->insn_idx != b->insn_idx) 6596 return a->insn_idx < b->insn_idx ? -1 : 1; 6597 6598 /* no two relocations should have the same insn_idx, but ... */ 6599 if (a->type != b->type) 6600 return a->type < b->type ? -1 : 1; 6601 6602 return 0; 6603 } 6604 6605 static void bpf_object__sort_relos(struct bpf_object *obj) 6606 { 6607 int i; 6608 6609 for (i = 0; i < obj->nr_programs; i++) { 6610 struct bpf_program *p = &obj->programs[i]; 6611 6612 if (!p->nr_reloc) 6613 continue; 6614 6615 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6616 } 6617 } 6618 6619 static int 6620 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6621 { 6622 struct bpf_program *prog; 6623 size_t i, j; 6624 int err; 6625 6626 if (obj->btf_ext) { 6627 err = bpf_object__relocate_core(obj, targ_btf_path); 6628 if (err) { 6629 pr_warn("failed to perform CO-RE relocations: %d\n", 6630 err); 6631 return err; 6632 } 6633 bpf_object__sort_relos(obj); 6634 } 6635 6636 /* Before relocating calls pre-process relocations and mark 6637 * few ld_imm64 instructions that points to subprogs. 6638 * Otherwise bpf_object__reloc_code() later would have to consider 6639 * all ld_imm64 insns as relocation candidates. That would 6640 * reduce relocation speed, since amount of find_prog_insn_relo() 6641 * would increase and most of them will fail to find a relo. 6642 */ 6643 for (i = 0; i < obj->nr_programs; i++) { 6644 prog = &obj->programs[i]; 6645 for (j = 0; j < prog->nr_reloc; j++) { 6646 struct reloc_desc *relo = &prog->reloc_desc[j]; 6647 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6648 6649 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6650 if (relo->type == RELO_SUBPROG_ADDR) 6651 insn[0].src_reg = BPF_PSEUDO_FUNC; 6652 } 6653 } 6654 6655 /* relocate subprogram calls and append used subprograms to main 6656 * programs; each copy of subprogram code needs to be relocated 6657 * differently for each main program, because its code location might 6658 * have changed. 6659 * Append subprog relos to main programs to allow data relos to be 6660 * processed after text is completely relocated. 6661 */ 6662 for (i = 0; i < obj->nr_programs; i++) { 6663 prog = &obj->programs[i]; 6664 /* sub-program's sub-calls are relocated within the context of 6665 * its main program only 6666 */ 6667 if (prog_is_subprog(obj, prog)) 6668 continue; 6669 if (!prog->autoload) 6670 continue; 6671 6672 err = bpf_object__relocate_calls(obj, prog); 6673 if (err) { 6674 pr_warn("prog '%s': failed to relocate calls: %d\n", 6675 prog->name, err); 6676 return err; 6677 } 6678 6679 /* Now, also append exception callback if it has not been done already. */ 6680 if (prog->exception_cb_idx >= 0) { 6681 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6682 6683 /* Calling exception callback directly is disallowed, which the 6684 * verifier will reject later. In case it was processed already, 6685 * we can skip this step, otherwise for all other valid cases we 6686 * have to append exception callback now. 6687 */ 6688 if (subprog->sub_insn_off == 0) { 6689 err = bpf_object__append_subprog_code(obj, prog, subprog); 6690 if (err) 6691 return err; 6692 err = bpf_object__reloc_code(obj, prog, subprog); 6693 if (err) 6694 return err; 6695 } 6696 } 6697 } 6698 /* Process data relos for main programs */ 6699 for (i = 0; i < obj->nr_programs; i++) { 6700 prog = &obj->programs[i]; 6701 if (prog_is_subprog(obj, prog)) 6702 continue; 6703 if (!prog->autoload) 6704 continue; 6705 err = bpf_object__relocate_data(obj, prog); 6706 if (err) { 6707 pr_warn("prog '%s': failed to relocate data references: %d\n", 6708 prog->name, err); 6709 return err; 6710 } 6711 } 6712 6713 return 0; 6714 } 6715 6716 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6717 Elf64_Shdr *shdr, Elf_Data *data); 6718 6719 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6720 Elf64_Shdr *shdr, Elf_Data *data) 6721 { 6722 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6723 int i, j, nrels, new_sz; 6724 const struct btf_var_secinfo *vi = NULL; 6725 const struct btf_type *sec, *var, *def; 6726 struct bpf_map *map = NULL, *targ_map = NULL; 6727 struct bpf_program *targ_prog = NULL; 6728 bool is_prog_array, is_map_in_map; 6729 const struct btf_member *member; 6730 const char *name, *mname, *type; 6731 unsigned int moff; 6732 Elf64_Sym *sym; 6733 Elf64_Rel *rel; 6734 void *tmp; 6735 6736 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6737 return -EINVAL; 6738 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6739 if (!sec) 6740 return -EINVAL; 6741 6742 nrels = shdr->sh_size / shdr->sh_entsize; 6743 for (i = 0; i < nrels; i++) { 6744 rel = elf_rel_by_idx(data, i); 6745 if (!rel) { 6746 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6747 return -LIBBPF_ERRNO__FORMAT; 6748 } 6749 6750 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6751 if (!sym) { 6752 pr_warn(".maps relo #%d: symbol %zx not found\n", 6753 i, (size_t)ELF64_R_SYM(rel->r_info)); 6754 return -LIBBPF_ERRNO__FORMAT; 6755 } 6756 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6757 6758 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6759 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6760 (size_t)rel->r_offset, sym->st_name, name); 6761 6762 for (j = 0; j < obj->nr_maps; j++) { 6763 map = &obj->maps[j]; 6764 if (map->sec_idx != obj->efile.btf_maps_shndx) 6765 continue; 6766 6767 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6768 if (vi->offset <= rel->r_offset && 6769 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6770 break; 6771 } 6772 if (j == obj->nr_maps) { 6773 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6774 i, name, (size_t)rel->r_offset); 6775 return -EINVAL; 6776 } 6777 6778 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6779 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6780 type = is_map_in_map ? "map" : "prog"; 6781 if (is_map_in_map) { 6782 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6783 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6784 i, name); 6785 return -LIBBPF_ERRNO__RELOC; 6786 } 6787 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6788 map->def.key_size != sizeof(int)) { 6789 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6790 i, map->name, sizeof(int)); 6791 return -EINVAL; 6792 } 6793 targ_map = bpf_object__find_map_by_name(obj, name); 6794 if (!targ_map) { 6795 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6796 i, name); 6797 return -ESRCH; 6798 } 6799 } else if (is_prog_array) { 6800 targ_prog = bpf_object__find_program_by_name(obj, name); 6801 if (!targ_prog) { 6802 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6803 i, name); 6804 return -ESRCH; 6805 } 6806 if (targ_prog->sec_idx != sym->st_shndx || 6807 targ_prog->sec_insn_off * 8 != sym->st_value || 6808 prog_is_subprog(obj, targ_prog)) { 6809 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6810 i, name); 6811 return -LIBBPF_ERRNO__RELOC; 6812 } 6813 } else { 6814 return -EINVAL; 6815 } 6816 6817 var = btf__type_by_id(obj->btf, vi->type); 6818 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6819 if (btf_vlen(def) == 0) 6820 return -EINVAL; 6821 member = btf_members(def) + btf_vlen(def) - 1; 6822 mname = btf__name_by_offset(obj->btf, member->name_off); 6823 if (strcmp(mname, "values")) 6824 return -EINVAL; 6825 6826 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6827 if (rel->r_offset - vi->offset < moff) 6828 return -EINVAL; 6829 6830 moff = rel->r_offset - vi->offset - moff; 6831 /* here we use BPF pointer size, which is always 64 bit, as we 6832 * are parsing ELF that was built for BPF target 6833 */ 6834 if (moff % bpf_ptr_sz) 6835 return -EINVAL; 6836 moff /= bpf_ptr_sz; 6837 if (moff >= map->init_slots_sz) { 6838 new_sz = moff + 1; 6839 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6840 if (!tmp) 6841 return -ENOMEM; 6842 map->init_slots = tmp; 6843 memset(map->init_slots + map->init_slots_sz, 0, 6844 (new_sz - map->init_slots_sz) * host_ptr_sz); 6845 map->init_slots_sz = new_sz; 6846 } 6847 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6848 6849 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6850 i, map->name, moff, type, name); 6851 } 6852 6853 return 0; 6854 } 6855 6856 static int bpf_object__collect_relos(struct bpf_object *obj) 6857 { 6858 int i, err; 6859 6860 for (i = 0; i < obj->efile.sec_cnt; i++) { 6861 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6862 Elf64_Shdr *shdr; 6863 Elf_Data *data; 6864 int idx; 6865 6866 if (sec_desc->sec_type != SEC_RELO) 6867 continue; 6868 6869 shdr = sec_desc->shdr; 6870 data = sec_desc->data; 6871 idx = shdr->sh_info; 6872 6873 if (shdr->sh_type != SHT_REL) { 6874 pr_warn("internal error at %d\n", __LINE__); 6875 return -LIBBPF_ERRNO__INTERNAL; 6876 } 6877 6878 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6879 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6880 else if (idx == obj->efile.btf_maps_shndx) 6881 err = bpf_object__collect_map_relos(obj, shdr, data); 6882 else 6883 err = bpf_object__collect_prog_relos(obj, shdr, data); 6884 if (err) 6885 return err; 6886 } 6887 6888 bpf_object__sort_relos(obj); 6889 return 0; 6890 } 6891 6892 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6893 { 6894 if (BPF_CLASS(insn->code) == BPF_JMP && 6895 BPF_OP(insn->code) == BPF_CALL && 6896 BPF_SRC(insn->code) == BPF_K && 6897 insn->src_reg == 0 && 6898 insn->dst_reg == 0) { 6899 *func_id = insn->imm; 6900 return true; 6901 } 6902 return false; 6903 } 6904 6905 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6906 { 6907 struct bpf_insn *insn = prog->insns; 6908 enum bpf_func_id func_id; 6909 int i; 6910 6911 if (obj->gen_loader) 6912 return 0; 6913 6914 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6915 if (!insn_is_helper_call(insn, &func_id)) 6916 continue; 6917 6918 /* on kernels that don't yet support 6919 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6920 * to bpf_probe_read() which works well for old kernels 6921 */ 6922 switch (func_id) { 6923 case BPF_FUNC_probe_read_kernel: 6924 case BPF_FUNC_probe_read_user: 6925 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6926 insn->imm = BPF_FUNC_probe_read; 6927 break; 6928 case BPF_FUNC_probe_read_kernel_str: 6929 case BPF_FUNC_probe_read_user_str: 6930 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6931 insn->imm = BPF_FUNC_probe_read_str; 6932 break; 6933 default: 6934 break; 6935 } 6936 } 6937 return 0; 6938 } 6939 6940 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6941 int *btf_obj_fd, int *btf_type_id); 6942 6943 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6944 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6945 struct bpf_prog_load_opts *opts, long cookie) 6946 { 6947 enum sec_def_flags def = cookie; 6948 6949 /* old kernels might not support specifying expected_attach_type */ 6950 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6951 opts->expected_attach_type = 0; 6952 6953 if (def & SEC_SLEEPABLE) 6954 opts->prog_flags |= BPF_F_SLEEPABLE; 6955 6956 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6957 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6958 6959 /* special check for usdt to use uprobe_multi link */ 6960 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6961 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6962 6963 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6964 int btf_obj_fd = 0, btf_type_id = 0, err; 6965 const char *attach_name; 6966 6967 attach_name = strchr(prog->sec_name, '/'); 6968 if (!attach_name) { 6969 /* if BPF program is annotated with just SEC("fentry") 6970 * (or similar) without declaratively specifying 6971 * target, then it is expected that target will be 6972 * specified with bpf_program__set_attach_target() at 6973 * runtime before BPF object load step. If not, then 6974 * there is nothing to load into the kernel as BPF 6975 * verifier won't be able to validate BPF program 6976 * correctness anyways. 6977 */ 6978 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6979 prog->name); 6980 return -EINVAL; 6981 } 6982 attach_name++; /* skip over / */ 6983 6984 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6985 if (err) 6986 return err; 6987 6988 /* cache resolved BTF FD and BTF type ID in the prog */ 6989 prog->attach_btf_obj_fd = btf_obj_fd; 6990 prog->attach_btf_id = btf_type_id; 6991 6992 /* but by now libbpf common logic is not utilizing 6993 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6994 * this callback is called after opts were populated by 6995 * libbpf, so this callback has to update opts explicitly here 6996 */ 6997 opts->attach_btf_obj_fd = btf_obj_fd; 6998 opts->attach_btf_id = btf_type_id; 6999 } 7000 return 0; 7001 } 7002 7003 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7004 7005 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7006 struct bpf_insn *insns, int insns_cnt, 7007 const char *license, __u32 kern_version, int *prog_fd) 7008 { 7009 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7010 const char *prog_name = NULL; 7011 char *cp, errmsg[STRERR_BUFSIZE]; 7012 size_t log_buf_size = 0; 7013 char *log_buf = NULL, *tmp; 7014 int btf_fd, ret, err; 7015 bool own_log_buf = true; 7016 __u32 log_level = prog->log_level; 7017 7018 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7019 /* 7020 * The program type must be set. Most likely we couldn't find a proper 7021 * section definition at load time, and thus we didn't infer the type. 7022 */ 7023 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7024 prog->name, prog->sec_name); 7025 return -EINVAL; 7026 } 7027 7028 if (!insns || !insns_cnt) 7029 return -EINVAL; 7030 7031 if (kernel_supports(obj, FEAT_PROG_NAME)) 7032 prog_name = prog->name; 7033 load_attr.attach_prog_fd = prog->attach_prog_fd; 7034 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7035 load_attr.attach_btf_id = prog->attach_btf_id; 7036 load_attr.kern_version = kern_version; 7037 load_attr.prog_ifindex = prog->prog_ifindex; 7038 7039 /* specify func_info/line_info only if kernel supports them */ 7040 btf_fd = bpf_object__btf_fd(obj); 7041 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7042 load_attr.prog_btf_fd = btf_fd; 7043 load_attr.func_info = prog->func_info; 7044 load_attr.func_info_rec_size = prog->func_info_rec_size; 7045 load_attr.func_info_cnt = prog->func_info_cnt; 7046 load_attr.line_info = prog->line_info; 7047 load_attr.line_info_rec_size = prog->line_info_rec_size; 7048 load_attr.line_info_cnt = prog->line_info_cnt; 7049 } 7050 load_attr.log_level = log_level; 7051 load_attr.prog_flags = prog->prog_flags; 7052 load_attr.fd_array = obj->fd_array; 7053 7054 /* adjust load_attr if sec_def provides custom preload callback */ 7055 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7056 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7057 if (err < 0) { 7058 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7059 prog->name, err); 7060 return err; 7061 } 7062 insns = prog->insns; 7063 insns_cnt = prog->insns_cnt; 7064 } 7065 7066 /* allow prog_prepare_load_fn to change expected_attach_type */ 7067 load_attr.expected_attach_type = prog->expected_attach_type; 7068 7069 if (obj->gen_loader) { 7070 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7071 license, insns, insns_cnt, &load_attr, 7072 prog - obj->programs); 7073 *prog_fd = -1; 7074 return 0; 7075 } 7076 7077 retry_load: 7078 /* if log_level is zero, we don't request logs initially even if 7079 * custom log_buf is specified; if the program load fails, then we'll 7080 * bump log_level to 1 and use either custom log_buf or we'll allocate 7081 * our own and retry the load to get details on what failed 7082 */ 7083 if (log_level) { 7084 if (prog->log_buf) { 7085 log_buf = prog->log_buf; 7086 log_buf_size = prog->log_size; 7087 own_log_buf = false; 7088 } else if (obj->log_buf) { 7089 log_buf = obj->log_buf; 7090 log_buf_size = obj->log_size; 7091 own_log_buf = false; 7092 } else { 7093 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7094 tmp = realloc(log_buf, log_buf_size); 7095 if (!tmp) { 7096 ret = -ENOMEM; 7097 goto out; 7098 } 7099 log_buf = tmp; 7100 log_buf[0] = '\0'; 7101 own_log_buf = true; 7102 } 7103 } 7104 7105 load_attr.log_buf = log_buf; 7106 load_attr.log_size = log_buf_size; 7107 load_attr.log_level = log_level; 7108 7109 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7110 if (ret >= 0) { 7111 if (log_level && own_log_buf) { 7112 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7113 prog->name, log_buf); 7114 } 7115 7116 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7117 struct bpf_map *map; 7118 int i; 7119 7120 for (i = 0; i < obj->nr_maps; i++) { 7121 map = &prog->obj->maps[i]; 7122 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7123 continue; 7124 7125 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7126 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7127 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7128 prog->name, map->real_name, cp); 7129 /* Don't fail hard if can't bind rodata. */ 7130 } 7131 } 7132 } 7133 7134 *prog_fd = ret; 7135 ret = 0; 7136 goto out; 7137 } 7138 7139 if (log_level == 0) { 7140 log_level = 1; 7141 goto retry_load; 7142 } 7143 /* On ENOSPC, increase log buffer size and retry, unless custom 7144 * log_buf is specified. 7145 * Be careful to not overflow u32, though. Kernel's log buf size limit 7146 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7147 * multiply by 2 unless we are sure we'll fit within 32 bits. 7148 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7149 */ 7150 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7151 goto retry_load; 7152 7153 ret = -errno; 7154 7155 /* post-process verifier log to improve error descriptions */ 7156 fixup_verifier_log(prog, log_buf, log_buf_size); 7157 7158 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7159 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7160 pr_perm_msg(ret); 7161 7162 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7163 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7164 prog->name, log_buf); 7165 } 7166 7167 out: 7168 if (own_log_buf) 7169 free(log_buf); 7170 return ret; 7171 } 7172 7173 static char *find_prev_line(char *buf, char *cur) 7174 { 7175 char *p; 7176 7177 if (cur == buf) /* end of a log buf */ 7178 return NULL; 7179 7180 p = cur - 1; 7181 while (p - 1 >= buf && *(p - 1) != '\n') 7182 p--; 7183 7184 return p; 7185 } 7186 7187 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7188 char *orig, size_t orig_sz, const char *patch) 7189 { 7190 /* size of the remaining log content to the right from the to-be-replaced part */ 7191 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7192 size_t patch_sz = strlen(patch); 7193 7194 if (patch_sz != orig_sz) { 7195 /* If patch line(s) are longer than original piece of verifier log, 7196 * shift log contents by (patch_sz - orig_sz) bytes to the right 7197 * starting from after to-be-replaced part of the log. 7198 * 7199 * If patch line(s) are shorter than original piece of verifier log, 7200 * shift log contents by (orig_sz - patch_sz) bytes to the left 7201 * starting from after to-be-replaced part of the log 7202 * 7203 * We need to be careful about not overflowing available 7204 * buf_sz capacity. If that's the case, we'll truncate the end 7205 * of the original log, as necessary. 7206 */ 7207 if (patch_sz > orig_sz) { 7208 if (orig + patch_sz >= buf + buf_sz) { 7209 /* patch is big enough to cover remaining space completely */ 7210 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7211 rem_sz = 0; 7212 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7213 /* patch causes part of remaining log to be truncated */ 7214 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7215 } 7216 } 7217 /* shift remaining log to the right by calculated amount */ 7218 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7219 } 7220 7221 memcpy(orig, patch, patch_sz); 7222 } 7223 7224 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7225 char *buf, size_t buf_sz, size_t log_sz, 7226 char *line1, char *line2, char *line3) 7227 { 7228 /* Expected log for failed and not properly guarded CO-RE relocation: 7229 * line1 -> 123: (85) call unknown#195896080 7230 * line2 -> invalid func unknown#195896080 7231 * line3 -> <anything else or end of buffer> 7232 * 7233 * "123" is the index of the instruction that was poisoned. We extract 7234 * instruction index to find corresponding CO-RE relocation and 7235 * replace this part of the log with more relevant information about 7236 * failed CO-RE relocation. 7237 */ 7238 const struct bpf_core_relo *relo; 7239 struct bpf_core_spec spec; 7240 char patch[512], spec_buf[256]; 7241 int insn_idx, err, spec_len; 7242 7243 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7244 return; 7245 7246 relo = find_relo_core(prog, insn_idx); 7247 if (!relo) 7248 return; 7249 7250 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7251 if (err) 7252 return; 7253 7254 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7255 snprintf(patch, sizeof(patch), 7256 "%d: <invalid CO-RE relocation>\n" 7257 "failed to resolve CO-RE relocation %s%s\n", 7258 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7259 7260 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7261 } 7262 7263 static void fixup_log_missing_map_load(struct bpf_program *prog, 7264 char *buf, size_t buf_sz, size_t log_sz, 7265 char *line1, char *line2, char *line3) 7266 { 7267 /* Expected log for failed and not properly guarded map reference: 7268 * line1 -> 123: (85) call unknown#2001000345 7269 * line2 -> invalid func unknown#2001000345 7270 * line3 -> <anything else or end of buffer> 7271 * 7272 * "123" is the index of the instruction that was poisoned. 7273 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7274 */ 7275 struct bpf_object *obj = prog->obj; 7276 const struct bpf_map *map; 7277 int insn_idx, map_idx; 7278 char patch[128]; 7279 7280 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7281 return; 7282 7283 map_idx -= POISON_LDIMM64_MAP_BASE; 7284 if (map_idx < 0 || map_idx >= obj->nr_maps) 7285 return; 7286 map = &obj->maps[map_idx]; 7287 7288 snprintf(patch, sizeof(patch), 7289 "%d: <invalid BPF map reference>\n" 7290 "BPF map '%s' is referenced but wasn't created\n", 7291 insn_idx, map->name); 7292 7293 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7294 } 7295 7296 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7297 char *buf, size_t buf_sz, size_t log_sz, 7298 char *line1, char *line2, char *line3) 7299 { 7300 /* Expected log for failed and not properly guarded kfunc call: 7301 * line1 -> 123: (85) call unknown#2002000345 7302 * line2 -> invalid func unknown#2002000345 7303 * line3 -> <anything else or end of buffer> 7304 * 7305 * "123" is the index of the instruction that was poisoned. 7306 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7307 */ 7308 struct bpf_object *obj = prog->obj; 7309 const struct extern_desc *ext; 7310 int insn_idx, ext_idx; 7311 char patch[128]; 7312 7313 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7314 return; 7315 7316 ext_idx -= POISON_CALL_KFUNC_BASE; 7317 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7318 return; 7319 ext = &obj->externs[ext_idx]; 7320 7321 snprintf(patch, sizeof(patch), 7322 "%d: <invalid kfunc call>\n" 7323 "kfunc '%s' is referenced but wasn't resolved\n", 7324 insn_idx, ext->name); 7325 7326 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7327 } 7328 7329 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7330 { 7331 /* look for familiar error patterns in last N lines of the log */ 7332 const size_t max_last_line_cnt = 10; 7333 char *prev_line, *cur_line, *next_line; 7334 size_t log_sz; 7335 int i; 7336 7337 if (!buf) 7338 return; 7339 7340 log_sz = strlen(buf) + 1; 7341 next_line = buf + log_sz - 1; 7342 7343 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7344 cur_line = find_prev_line(buf, next_line); 7345 if (!cur_line) 7346 return; 7347 7348 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7349 prev_line = find_prev_line(buf, cur_line); 7350 if (!prev_line) 7351 continue; 7352 7353 /* failed CO-RE relocation case */ 7354 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7355 prev_line, cur_line, next_line); 7356 return; 7357 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7358 prev_line = find_prev_line(buf, cur_line); 7359 if (!prev_line) 7360 continue; 7361 7362 /* reference to uncreated BPF map */ 7363 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7364 prev_line, cur_line, next_line); 7365 return; 7366 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7367 prev_line = find_prev_line(buf, cur_line); 7368 if (!prev_line) 7369 continue; 7370 7371 /* reference to unresolved kfunc */ 7372 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7373 prev_line, cur_line, next_line); 7374 return; 7375 } 7376 } 7377 } 7378 7379 static int bpf_program_record_relos(struct bpf_program *prog) 7380 { 7381 struct bpf_object *obj = prog->obj; 7382 int i; 7383 7384 for (i = 0; i < prog->nr_reloc; i++) { 7385 struct reloc_desc *relo = &prog->reloc_desc[i]; 7386 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7387 int kind; 7388 7389 switch (relo->type) { 7390 case RELO_EXTERN_LD64: 7391 if (ext->type != EXT_KSYM) 7392 continue; 7393 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7394 BTF_KIND_VAR : BTF_KIND_FUNC; 7395 bpf_gen__record_extern(obj->gen_loader, ext->name, 7396 ext->is_weak, !ext->ksym.type_id, 7397 true, kind, relo->insn_idx); 7398 break; 7399 case RELO_EXTERN_CALL: 7400 bpf_gen__record_extern(obj->gen_loader, ext->name, 7401 ext->is_weak, false, false, BTF_KIND_FUNC, 7402 relo->insn_idx); 7403 break; 7404 case RELO_CORE: { 7405 struct bpf_core_relo cr = { 7406 .insn_off = relo->insn_idx * 8, 7407 .type_id = relo->core_relo->type_id, 7408 .access_str_off = relo->core_relo->access_str_off, 7409 .kind = relo->core_relo->kind, 7410 }; 7411 7412 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7413 break; 7414 } 7415 default: 7416 continue; 7417 } 7418 } 7419 return 0; 7420 } 7421 7422 static int 7423 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7424 { 7425 struct bpf_program *prog; 7426 size_t i; 7427 int err; 7428 7429 for (i = 0; i < obj->nr_programs; i++) { 7430 prog = &obj->programs[i]; 7431 err = bpf_object__sanitize_prog(obj, prog); 7432 if (err) 7433 return err; 7434 } 7435 7436 for (i = 0; i < obj->nr_programs; i++) { 7437 prog = &obj->programs[i]; 7438 if (prog_is_subprog(obj, prog)) 7439 continue; 7440 if (!prog->autoload) { 7441 pr_debug("prog '%s': skipped loading\n", prog->name); 7442 continue; 7443 } 7444 prog->log_level |= log_level; 7445 7446 if (obj->gen_loader) 7447 bpf_program_record_relos(prog); 7448 7449 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7450 obj->license, obj->kern_version, &prog->fd); 7451 if (err) { 7452 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7453 return err; 7454 } 7455 } 7456 7457 bpf_object__free_relocs(obj); 7458 return 0; 7459 } 7460 7461 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7462 7463 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7464 { 7465 struct bpf_program *prog; 7466 int err; 7467 7468 bpf_object__for_each_program(prog, obj) { 7469 prog->sec_def = find_sec_def(prog->sec_name); 7470 if (!prog->sec_def) { 7471 /* couldn't guess, but user might manually specify */ 7472 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7473 prog->name, prog->sec_name); 7474 continue; 7475 } 7476 7477 prog->type = prog->sec_def->prog_type; 7478 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7479 7480 /* sec_def can have custom callback which should be called 7481 * after bpf_program is initialized to adjust its properties 7482 */ 7483 if (prog->sec_def->prog_setup_fn) { 7484 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7485 if (err < 0) { 7486 pr_warn("prog '%s': failed to initialize: %d\n", 7487 prog->name, err); 7488 return err; 7489 } 7490 } 7491 } 7492 7493 return 0; 7494 } 7495 7496 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7497 const struct bpf_object_open_opts *opts) 7498 { 7499 const char *obj_name, *kconfig, *btf_tmp_path; 7500 struct bpf_object *obj; 7501 char tmp_name[64]; 7502 int err; 7503 char *log_buf; 7504 size_t log_size; 7505 __u32 log_level; 7506 7507 if (elf_version(EV_CURRENT) == EV_NONE) { 7508 pr_warn("failed to init libelf for %s\n", 7509 path ? : "(mem buf)"); 7510 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7511 } 7512 7513 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7514 return ERR_PTR(-EINVAL); 7515 7516 obj_name = OPTS_GET(opts, object_name, NULL); 7517 if (obj_buf) { 7518 if (!obj_name) { 7519 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7520 (unsigned long)obj_buf, 7521 (unsigned long)obj_buf_sz); 7522 obj_name = tmp_name; 7523 } 7524 path = obj_name; 7525 pr_debug("loading object '%s' from buffer\n", obj_name); 7526 } 7527 7528 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7529 log_size = OPTS_GET(opts, kernel_log_size, 0); 7530 log_level = OPTS_GET(opts, kernel_log_level, 0); 7531 if (log_size > UINT_MAX) 7532 return ERR_PTR(-EINVAL); 7533 if (log_size && !log_buf) 7534 return ERR_PTR(-EINVAL); 7535 7536 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7537 if (IS_ERR(obj)) 7538 return obj; 7539 7540 obj->log_buf = log_buf; 7541 obj->log_size = log_size; 7542 obj->log_level = log_level; 7543 7544 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7545 if (btf_tmp_path) { 7546 if (strlen(btf_tmp_path) >= PATH_MAX) { 7547 err = -ENAMETOOLONG; 7548 goto out; 7549 } 7550 obj->btf_custom_path = strdup(btf_tmp_path); 7551 if (!obj->btf_custom_path) { 7552 err = -ENOMEM; 7553 goto out; 7554 } 7555 } 7556 7557 kconfig = OPTS_GET(opts, kconfig, NULL); 7558 if (kconfig) { 7559 obj->kconfig = strdup(kconfig); 7560 if (!obj->kconfig) { 7561 err = -ENOMEM; 7562 goto out; 7563 } 7564 } 7565 7566 err = bpf_object__elf_init(obj); 7567 err = err ? : bpf_object__check_endianness(obj); 7568 err = err ? : bpf_object__elf_collect(obj); 7569 err = err ? : bpf_object__collect_externs(obj); 7570 err = err ? : bpf_object_fixup_btf(obj); 7571 err = err ? : bpf_object__init_maps(obj, opts); 7572 err = err ? : bpf_object_init_progs(obj, opts); 7573 err = err ? : bpf_object__collect_relos(obj); 7574 if (err) 7575 goto out; 7576 7577 bpf_object__elf_finish(obj); 7578 7579 return obj; 7580 out: 7581 bpf_object__close(obj); 7582 return ERR_PTR(err); 7583 } 7584 7585 struct bpf_object * 7586 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7587 { 7588 if (!path) 7589 return libbpf_err_ptr(-EINVAL); 7590 7591 pr_debug("loading %s\n", path); 7592 7593 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7594 } 7595 7596 struct bpf_object *bpf_object__open(const char *path) 7597 { 7598 return bpf_object__open_file(path, NULL); 7599 } 7600 7601 struct bpf_object * 7602 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7603 const struct bpf_object_open_opts *opts) 7604 { 7605 if (!obj_buf || obj_buf_sz == 0) 7606 return libbpf_err_ptr(-EINVAL); 7607 7608 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7609 } 7610 7611 static int bpf_object_unload(struct bpf_object *obj) 7612 { 7613 size_t i; 7614 7615 if (!obj) 7616 return libbpf_err(-EINVAL); 7617 7618 for (i = 0; i < obj->nr_maps; i++) { 7619 zclose(obj->maps[i].fd); 7620 if (obj->maps[i].st_ops) 7621 zfree(&obj->maps[i].st_ops->kern_vdata); 7622 } 7623 7624 for (i = 0; i < obj->nr_programs; i++) 7625 bpf_program__unload(&obj->programs[i]); 7626 7627 return 0; 7628 } 7629 7630 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7631 { 7632 struct bpf_map *m; 7633 7634 bpf_object__for_each_map(m, obj) { 7635 if (!bpf_map__is_internal(m)) 7636 continue; 7637 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7638 m->def.map_flags &= ~BPF_F_MMAPABLE; 7639 } 7640 7641 return 0; 7642 } 7643 7644 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7645 { 7646 char sym_type, sym_name[500]; 7647 unsigned long long sym_addr; 7648 int ret, err = 0; 7649 FILE *f; 7650 7651 f = fopen("/proc/kallsyms", "re"); 7652 if (!f) { 7653 err = -errno; 7654 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7655 return err; 7656 } 7657 7658 while (true) { 7659 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7660 &sym_addr, &sym_type, sym_name); 7661 if (ret == EOF && feof(f)) 7662 break; 7663 if (ret != 3) { 7664 pr_warn("failed to read kallsyms entry: %d\n", ret); 7665 err = -EINVAL; 7666 break; 7667 } 7668 7669 err = cb(sym_addr, sym_type, sym_name, ctx); 7670 if (err) 7671 break; 7672 } 7673 7674 fclose(f); 7675 return err; 7676 } 7677 7678 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7679 const char *sym_name, void *ctx) 7680 { 7681 struct bpf_object *obj = ctx; 7682 const struct btf_type *t; 7683 struct extern_desc *ext; 7684 7685 ext = find_extern_by_name(obj, sym_name); 7686 if (!ext || ext->type != EXT_KSYM) 7687 return 0; 7688 7689 t = btf__type_by_id(obj->btf, ext->btf_id); 7690 if (!btf_is_var(t)) 7691 return 0; 7692 7693 if (ext->is_set && ext->ksym.addr != sym_addr) { 7694 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7695 sym_name, ext->ksym.addr, sym_addr); 7696 return -EINVAL; 7697 } 7698 if (!ext->is_set) { 7699 ext->is_set = true; 7700 ext->ksym.addr = sym_addr; 7701 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7702 } 7703 return 0; 7704 } 7705 7706 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7707 { 7708 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7709 } 7710 7711 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7712 __u16 kind, struct btf **res_btf, 7713 struct module_btf **res_mod_btf) 7714 { 7715 struct module_btf *mod_btf; 7716 struct btf *btf; 7717 int i, id, err; 7718 7719 btf = obj->btf_vmlinux; 7720 mod_btf = NULL; 7721 id = btf__find_by_name_kind(btf, ksym_name, kind); 7722 7723 if (id == -ENOENT) { 7724 err = load_module_btfs(obj); 7725 if (err) 7726 return err; 7727 7728 for (i = 0; i < obj->btf_module_cnt; i++) { 7729 /* we assume module_btf's BTF FD is always >0 */ 7730 mod_btf = &obj->btf_modules[i]; 7731 btf = mod_btf->btf; 7732 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7733 if (id != -ENOENT) 7734 break; 7735 } 7736 } 7737 if (id <= 0) 7738 return -ESRCH; 7739 7740 *res_btf = btf; 7741 *res_mod_btf = mod_btf; 7742 return id; 7743 } 7744 7745 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7746 struct extern_desc *ext) 7747 { 7748 const struct btf_type *targ_var, *targ_type; 7749 __u32 targ_type_id, local_type_id; 7750 struct module_btf *mod_btf = NULL; 7751 const char *targ_var_name; 7752 struct btf *btf = NULL; 7753 int id, err; 7754 7755 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7756 if (id < 0) { 7757 if (id == -ESRCH && ext->is_weak) 7758 return 0; 7759 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7760 ext->name); 7761 return id; 7762 } 7763 7764 /* find local type_id */ 7765 local_type_id = ext->ksym.type_id; 7766 7767 /* find target type_id */ 7768 targ_var = btf__type_by_id(btf, id); 7769 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7770 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7771 7772 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7773 btf, targ_type_id); 7774 if (err <= 0) { 7775 const struct btf_type *local_type; 7776 const char *targ_name, *local_name; 7777 7778 local_type = btf__type_by_id(obj->btf, local_type_id); 7779 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7780 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7781 7782 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7783 ext->name, local_type_id, 7784 btf_kind_str(local_type), local_name, targ_type_id, 7785 btf_kind_str(targ_type), targ_name); 7786 return -EINVAL; 7787 } 7788 7789 ext->is_set = true; 7790 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7791 ext->ksym.kernel_btf_id = id; 7792 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7793 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7794 7795 return 0; 7796 } 7797 7798 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7799 struct extern_desc *ext) 7800 { 7801 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7802 struct module_btf *mod_btf = NULL; 7803 const struct btf_type *kern_func; 7804 struct btf *kern_btf = NULL; 7805 int ret; 7806 7807 local_func_proto_id = ext->ksym.type_id; 7808 7809 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7810 &mod_btf); 7811 if (kfunc_id < 0) { 7812 if (kfunc_id == -ESRCH && ext->is_weak) 7813 return 0; 7814 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7815 ext->name); 7816 return kfunc_id; 7817 } 7818 7819 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7820 kfunc_proto_id = kern_func->type; 7821 7822 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7823 kern_btf, kfunc_proto_id); 7824 if (ret <= 0) { 7825 if (ext->is_weak) 7826 return 0; 7827 7828 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7829 ext->name, local_func_proto_id, 7830 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7831 return -EINVAL; 7832 } 7833 7834 /* set index for module BTF fd in fd_array, if unset */ 7835 if (mod_btf && !mod_btf->fd_array_idx) { 7836 /* insn->off is s16 */ 7837 if (obj->fd_array_cnt == INT16_MAX) { 7838 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7839 ext->name, mod_btf->fd_array_idx); 7840 return -E2BIG; 7841 } 7842 /* Cannot use index 0 for module BTF fd */ 7843 if (!obj->fd_array_cnt) 7844 obj->fd_array_cnt = 1; 7845 7846 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7847 obj->fd_array_cnt + 1); 7848 if (ret) 7849 return ret; 7850 mod_btf->fd_array_idx = obj->fd_array_cnt; 7851 /* we assume module BTF FD is always >0 */ 7852 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7853 } 7854 7855 ext->is_set = true; 7856 ext->ksym.kernel_btf_id = kfunc_id; 7857 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7858 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7859 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7860 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7861 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7862 */ 7863 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7864 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7865 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7866 7867 return 0; 7868 } 7869 7870 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7871 { 7872 const struct btf_type *t; 7873 struct extern_desc *ext; 7874 int i, err; 7875 7876 for (i = 0; i < obj->nr_extern; i++) { 7877 ext = &obj->externs[i]; 7878 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7879 continue; 7880 7881 if (obj->gen_loader) { 7882 ext->is_set = true; 7883 ext->ksym.kernel_btf_obj_fd = 0; 7884 ext->ksym.kernel_btf_id = 0; 7885 continue; 7886 } 7887 t = btf__type_by_id(obj->btf, ext->btf_id); 7888 if (btf_is_var(t)) 7889 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7890 else 7891 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7892 if (err) 7893 return err; 7894 } 7895 return 0; 7896 } 7897 7898 static int bpf_object__resolve_externs(struct bpf_object *obj, 7899 const char *extra_kconfig) 7900 { 7901 bool need_config = false, need_kallsyms = false; 7902 bool need_vmlinux_btf = false; 7903 struct extern_desc *ext; 7904 void *kcfg_data = NULL; 7905 int err, i; 7906 7907 if (obj->nr_extern == 0) 7908 return 0; 7909 7910 if (obj->kconfig_map_idx >= 0) 7911 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7912 7913 for (i = 0; i < obj->nr_extern; i++) { 7914 ext = &obj->externs[i]; 7915 7916 if (ext->type == EXT_KSYM) { 7917 if (ext->ksym.type_id) 7918 need_vmlinux_btf = true; 7919 else 7920 need_kallsyms = true; 7921 continue; 7922 } else if (ext->type == EXT_KCFG) { 7923 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7924 __u64 value = 0; 7925 7926 /* Kconfig externs need actual /proc/config.gz */ 7927 if (str_has_pfx(ext->name, "CONFIG_")) { 7928 need_config = true; 7929 continue; 7930 } 7931 7932 /* Virtual kcfg externs are customly handled by libbpf */ 7933 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7934 value = get_kernel_version(); 7935 if (!value) { 7936 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7937 return -EINVAL; 7938 } 7939 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7940 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7941 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7942 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7943 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7944 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7945 * __kconfig externs, where LINUX_ ones are virtual and filled out 7946 * customly by libbpf (their values don't come from Kconfig). 7947 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7948 * __weak, it defaults to zero value, just like for CONFIG_xxx 7949 * externs. 7950 */ 7951 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7952 return -EINVAL; 7953 } 7954 7955 err = set_kcfg_value_num(ext, ext_ptr, value); 7956 if (err) 7957 return err; 7958 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7959 ext->name, (long long)value); 7960 } else { 7961 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7962 return -EINVAL; 7963 } 7964 } 7965 if (need_config && extra_kconfig) { 7966 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7967 if (err) 7968 return -EINVAL; 7969 need_config = false; 7970 for (i = 0; i < obj->nr_extern; i++) { 7971 ext = &obj->externs[i]; 7972 if (ext->type == EXT_KCFG && !ext->is_set) { 7973 need_config = true; 7974 break; 7975 } 7976 } 7977 } 7978 if (need_config) { 7979 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7980 if (err) 7981 return -EINVAL; 7982 } 7983 if (need_kallsyms) { 7984 err = bpf_object__read_kallsyms_file(obj); 7985 if (err) 7986 return -EINVAL; 7987 } 7988 if (need_vmlinux_btf) { 7989 err = bpf_object__resolve_ksyms_btf_id(obj); 7990 if (err) 7991 return -EINVAL; 7992 } 7993 for (i = 0; i < obj->nr_extern; i++) { 7994 ext = &obj->externs[i]; 7995 7996 if (!ext->is_set && !ext->is_weak) { 7997 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7998 return -ESRCH; 7999 } else if (!ext->is_set) { 8000 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8001 ext->name); 8002 } 8003 } 8004 8005 return 0; 8006 } 8007 8008 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8009 { 8010 struct bpf_struct_ops *st_ops; 8011 __u32 i; 8012 8013 st_ops = map->st_ops; 8014 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8015 struct bpf_program *prog = st_ops->progs[i]; 8016 void *kern_data; 8017 int prog_fd; 8018 8019 if (!prog) 8020 continue; 8021 8022 prog_fd = bpf_program__fd(prog); 8023 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8024 *(unsigned long *)kern_data = prog_fd; 8025 } 8026 } 8027 8028 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8029 { 8030 int i; 8031 8032 for (i = 0; i < obj->nr_maps; i++) 8033 if (bpf_map__is_struct_ops(&obj->maps[i])) 8034 bpf_map_prepare_vdata(&obj->maps[i]); 8035 8036 return 0; 8037 } 8038 8039 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8040 { 8041 int err, i; 8042 8043 if (!obj) 8044 return libbpf_err(-EINVAL); 8045 8046 if (obj->loaded) { 8047 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8048 return libbpf_err(-EINVAL); 8049 } 8050 8051 if (obj->gen_loader) 8052 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8053 8054 err = bpf_object__probe_loading(obj); 8055 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8056 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8057 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8058 err = err ? : bpf_object__sanitize_maps(obj); 8059 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8060 err = err ? : bpf_object__create_maps(obj); 8061 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8062 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8063 err = err ? : bpf_object_init_prog_arrays(obj); 8064 err = err ? : bpf_object_prepare_struct_ops(obj); 8065 8066 if (obj->gen_loader) { 8067 /* reset FDs */ 8068 if (obj->btf) 8069 btf__set_fd(obj->btf, -1); 8070 for (i = 0; i < obj->nr_maps; i++) 8071 obj->maps[i].fd = -1; 8072 if (!err) 8073 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8074 } 8075 8076 /* clean up fd_array */ 8077 zfree(&obj->fd_array); 8078 8079 /* clean up module BTFs */ 8080 for (i = 0; i < obj->btf_module_cnt; i++) { 8081 close(obj->btf_modules[i].fd); 8082 btf__free(obj->btf_modules[i].btf); 8083 free(obj->btf_modules[i].name); 8084 } 8085 free(obj->btf_modules); 8086 8087 /* clean up vmlinux BTF */ 8088 btf__free(obj->btf_vmlinux); 8089 obj->btf_vmlinux = NULL; 8090 8091 obj->loaded = true; /* doesn't matter if successfully or not */ 8092 8093 if (err) 8094 goto out; 8095 8096 return 0; 8097 out: 8098 /* unpin any maps that were auto-pinned during load */ 8099 for (i = 0; i < obj->nr_maps; i++) 8100 if (obj->maps[i].pinned && !obj->maps[i].reused) 8101 bpf_map__unpin(&obj->maps[i], NULL); 8102 8103 bpf_object_unload(obj); 8104 pr_warn("failed to load object '%s'\n", obj->path); 8105 return libbpf_err(err); 8106 } 8107 8108 int bpf_object__load(struct bpf_object *obj) 8109 { 8110 return bpf_object_load(obj, 0, NULL); 8111 } 8112 8113 static int make_parent_dir(const char *path) 8114 { 8115 char *cp, errmsg[STRERR_BUFSIZE]; 8116 char *dname, *dir; 8117 int err = 0; 8118 8119 dname = strdup(path); 8120 if (dname == NULL) 8121 return -ENOMEM; 8122 8123 dir = dirname(dname); 8124 if (mkdir(dir, 0700) && errno != EEXIST) 8125 err = -errno; 8126 8127 free(dname); 8128 if (err) { 8129 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8130 pr_warn("failed to mkdir %s: %s\n", path, cp); 8131 } 8132 return err; 8133 } 8134 8135 static int check_path(const char *path) 8136 { 8137 char *cp, errmsg[STRERR_BUFSIZE]; 8138 struct statfs st_fs; 8139 char *dname, *dir; 8140 int err = 0; 8141 8142 if (path == NULL) 8143 return -EINVAL; 8144 8145 dname = strdup(path); 8146 if (dname == NULL) 8147 return -ENOMEM; 8148 8149 dir = dirname(dname); 8150 if (statfs(dir, &st_fs)) { 8151 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8152 pr_warn("failed to statfs %s: %s\n", dir, cp); 8153 err = -errno; 8154 } 8155 free(dname); 8156 8157 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8158 pr_warn("specified path %s is not on BPF FS\n", path); 8159 err = -EINVAL; 8160 } 8161 8162 return err; 8163 } 8164 8165 int bpf_program__pin(struct bpf_program *prog, const char *path) 8166 { 8167 char *cp, errmsg[STRERR_BUFSIZE]; 8168 int err; 8169 8170 if (prog->fd < 0) { 8171 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8172 return libbpf_err(-EINVAL); 8173 } 8174 8175 err = make_parent_dir(path); 8176 if (err) 8177 return libbpf_err(err); 8178 8179 err = check_path(path); 8180 if (err) 8181 return libbpf_err(err); 8182 8183 if (bpf_obj_pin(prog->fd, path)) { 8184 err = -errno; 8185 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8186 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8187 return libbpf_err(err); 8188 } 8189 8190 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8191 return 0; 8192 } 8193 8194 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8195 { 8196 int err; 8197 8198 if (prog->fd < 0) { 8199 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8200 return libbpf_err(-EINVAL); 8201 } 8202 8203 err = check_path(path); 8204 if (err) 8205 return libbpf_err(err); 8206 8207 err = unlink(path); 8208 if (err) 8209 return libbpf_err(-errno); 8210 8211 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8212 return 0; 8213 } 8214 8215 int bpf_map__pin(struct bpf_map *map, const char *path) 8216 { 8217 char *cp, errmsg[STRERR_BUFSIZE]; 8218 int err; 8219 8220 if (map == NULL) { 8221 pr_warn("invalid map pointer\n"); 8222 return libbpf_err(-EINVAL); 8223 } 8224 8225 if (map->pin_path) { 8226 if (path && strcmp(path, map->pin_path)) { 8227 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8228 bpf_map__name(map), map->pin_path, path); 8229 return libbpf_err(-EINVAL); 8230 } else if (map->pinned) { 8231 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8232 bpf_map__name(map), map->pin_path); 8233 return 0; 8234 } 8235 } else { 8236 if (!path) { 8237 pr_warn("missing a path to pin map '%s' at\n", 8238 bpf_map__name(map)); 8239 return libbpf_err(-EINVAL); 8240 } else if (map->pinned) { 8241 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8242 return libbpf_err(-EEXIST); 8243 } 8244 8245 map->pin_path = strdup(path); 8246 if (!map->pin_path) { 8247 err = -errno; 8248 goto out_err; 8249 } 8250 } 8251 8252 err = make_parent_dir(map->pin_path); 8253 if (err) 8254 return libbpf_err(err); 8255 8256 err = check_path(map->pin_path); 8257 if (err) 8258 return libbpf_err(err); 8259 8260 if (bpf_obj_pin(map->fd, map->pin_path)) { 8261 err = -errno; 8262 goto out_err; 8263 } 8264 8265 map->pinned = true; 8266 pr_debug("pinned map '%s'\n", map->pin_path); 8267 8268 return 0; 8269 8270 out_err: 8271 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8272 pr_warn("failed to pin map: %s\n", cp); 8273 return libbpf_err(err); 8274 } 8275 8276 int bpf_map__unpin(struct bpf_map *map, const char *path) 8277 { 8278 int err; 8279 8280 if (map == NULL) { 8281 pr_warn("invalid map pointer\n"); 8282 return libbpf_err(-EINVAL); 8283 } 8284 8285 if (map->pin_path) { 8286 if (path && strcmp(path, map->pin_path)) { 8287 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8288 bpf_map__name(map), map->pin_path, path); 8289 return libbpf_err(-EINVAL); 8290 } 8291 path = map->pin_path; 8292 } else if (!path) { 8293 pr_warn("no path to unpin map '%s' from\n", 8294 bpf_map__name(map)); 8295 return libbpf_err(-EINVAL); 8296 } 8297 8298 err = check_path(path); 8299 if (err) 8300 return libbpf_err(err); 8301 8302 err = unlink(path); 8303 if (err != 0) 8304 return libbpf_err(-errno); 8305 8306 map->pinned = false; 8307 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8308 8309 return 0; 8310 } 8311 8312 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8313 { 8314 char *new = NULL; 8315 8316 if (path) { 8317 new = strdup(path); 8318 if (!new) 8319 return libbpf_err(-errno); 8320 } 8321 8322 free(map->pin_path); 8323 map->pin_path = new; 8324 return 0; 8325 } 8326 8327 __alias(bpf_map__pin_path) 8328 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8329 8330 const char *bpf_map__pin_path(const struct bpf_map *map) 8331 { 8332 return map->pin_path; 8333 } 8334 8335 bool bpf_map__is_pinned(const struct bpf_map *map) 8336 { 8337 return map->pinned; 8338 } 8339 8340 static void sanitize_pin_path(char *s) 8341 { 8342 /* bpffs disallows periods in path names */ 8343 while (*s) { 8344 if (*s == '.') 8345 *s = '_'; 8346 s++; 8347 } 8348 } 8349 8350 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8351 { 8352 struct bpf_map *map; 8353 int err; 8354 8355 if (!obj) 8356 return libbpf_err(-ENOENT); 8357 8358 if (!obj->loaded) { 8359 pr_warn("object not yet loaded; load it first\n"); 8360 return libbpf_err(-ENOENT); 8361 } 8362 8363 bpf_object__for_each_map(map, obj) { 8364 char *pin_path = NULL; 8365 char buf[PATH_MAX]; 8366 8367 if (!map->autocreate) 8368 continue; 8369 8370 if (path) { 8371 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8372 if (err) 8373 goto err_unpin_maps; 8374 sanitize_pin_path(buf); 8375 pin_path = buf; 8376 } else if (!map->pin_path) { 8377 continue; 8378 } 8379 8380 err = bpf_map__pin(map, pin_path); 8381 if (err) 8382 goto err_unpin_maps; 8383 } 8384 8385 return 0; 8386 8387 err_unpin_maps: 8388 while ((map = bpf_object__prev_map(obj, map))) { 8389 if (!map->pin_path) 8390 continue; 8391 8392 bpf_map__unpin(map, NULL); 8393 } 8394 8395 return libbpf_err(err); 8396 } 8397 8398 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8399 { 8400 struct bpf_map *map; 8401 int err; 8402 8403 if (!obj) 8404 return libbpf_err(-ENOENT); 8405 8406 bpf_object__for_each_map(map, obj) { 8407 char *pin_path = NULL; 8408 char buf[PATH_MAX]; 8409 8410 if (path) { 8411 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8412 if (err) 8413 return libbpf_err(err); 8414 sanitize_pin_path(buf); 8415 pin_path = buf; 8416 } else if (!map->pin_path) { 8417 continue; 8418 } 8419 8420 err = bpf_map__unpin(map, pin_path); 8421 if (err) 8422 return libbpf_err(err); 8423 } 8424 8425 return 0; 8426 } 8427 8428 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8429 { 8430 struct bpf_program *prog; 8431 char buf[PATH_MAX]; 8432 int err; 8433 8434 if (!obj) 8435 return libbpf_err(-ENOENT); 8436 8437 if (!obj->loaded) { 8438 pr_warn("object not yet loaded; load it first\n"); 8439 return libbpf_err(-ENOENT); 8440 } 8441 8442 bpf_object__for_each_program(prog, obj) { 8443 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8444 if (err) 8445 goto err_unpin_programs; 8446 8447 err = bpf_program__pin(prog, buf); 8448 if (err) 8449 goto err_unpin_programs; 8450 } 8451 8452 return 0; 8453 8454 err_unpin_programs: 8455 while ((prog = bpf_object__prev_program(obj, prog))) { 8456 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8457 continue; 8458 8459 bpf_program__unpin(prog, buf); 8460 } 8461 8462 return libbpf_err(err); 8463 } 8464 8465 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8466 { 8467 struct bpf_program *prog; 8468 int err; 8469 8470 if (!obj) 8471 return libbpf_err(-ENOENT); 8472 8473 bpf_object__for_each_program(prog, obj) { 8474 char buf[PATH_MAX]; 8475 8476 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8477 if (err) 8478 return libbpf_err(err); 8479 8480 err = bpf_program__unpin(prog, buf); 8481 if (err) 8482 return libbpf_err(err); 8483 } 8484 8485 return 0; 8486 } 8487 8488 int bpf_object__pin(struct bpf_object *obj, const char *path) 8489 { 8490 int err; 8491 8492 err = bpf_object__pin_maps(obj, path); 8493 if (err) 8494 return libbpf_err(err); 8495 8496 err = bpf_object__pin_programs(obj, path); 8497 if (err) { 8498 bpf_object__unpin_maps(obj, path); 8499 return libbpf_err(err); 8500 } 8501 8502 return 0; 8503 } 8504 8505 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8506 { 8507 int err; 8508 8509 err = bpf_object__unpin_programs(obj, path); 8510 if (err) 8511 return libbpf_err(err); 8512 8513 err = bpf_object__unpin_maps(obj, path); 8514 if (err) 8515 return libbpf_err(err); 8516 8517 return 0; 8518 } 8519 8520 static void bpf_map__destroy(struct bpf_map *map) 8521 { 8522 if (map->inner_map) { 8523 bpf_map__destroy(map->inner_map); 8524 zfree(&map->inner_map); 8525 } 8526 8527 zfree(&map->init_slots); 8528 map->init_slots_sz = 0; 8529 8530 if (map->mmaped) { 8531 size_t mmap_sz; 8532 8533 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8534 munmap(map->mmaped, mmap_sz); 8535 map->mmaped = NULL; 8536 } 8537 8538 if (map->st_ops) { 8539 zfree(&map->st_ops->data); 8540 zfree(&map->st_ops->progs); 8541 zfree(&map->st_ops->kern_func_off); 8542 zfree(&map->st_ops); 8543 } 8544 8545 zfree(&map->name); 8546 zfree(&map->real_name); 8547 zfree(&map->pin_path); 8548 8549 if (map->fd >= 0) 8550 zclose(map->fd); 8551 } 8552 8553 void bpf_object__close(struct bpf_object *obj) 8554 { 8555 size_t i; 8556 8557 if (IS_ERR_OR_NULL(obj)) 8558 return; 8559 8560 usdt_manager_free(obj->usdt_man); 8561 obj->usdt_man = NULL; 8562 8563 bpf_gen__free(obj->gen_loader); 8564 bpf_object__elf_finish(obj); 8565 bpf_object_unload(obj); 8566 btf__free(obj->btf); 8567 btf__free(obj->btf_vmlinux); 8568 btf_ext__free(obj->btf_ext); 8569 8570 for (i = 0; i < obj->nr_maps; i++) 8571 bpf_map__destroy(&obj->maps[i]); 8572 8573 zfree(&obj->btf_custom_path); 8574 zfree(&obj->kconfig); 8575 8576 for (i = 0; i < obj->nr_extern; i++) 8577 zfree(&obj->externs[i].essent_name); 8578 8579 zfree(&obj->externs); 8580 obj->nr_extern = 0; 8581 8582 zfree(&obj->maps); 8583 obj->nr_maps = 0; 8584 8585 if (obj->programs && obj->nr_programs) { 8586 for (i = 0; i < obj->nr_programs; i++) 8587 bpf_program__exit(&obj->programs[i]); 8588 } 8589 zfree(&obj->programs); 8590 8591 free(obj); 8592 } 8593 8594 const char *bpf_object__name(const struct bpf_object *obj) 8595 { 8596 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8597 } 8598 8599 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8600 { 8601 return obj ? obj->kern_version : 0; 8602 } 8603 8604 struct btf *bpf_object__btf(const struct bpf_object *obj) 8605 { 8606 return obj ? obj->btf : NULL; 8607 } 8608 8609 int bpf_object__btf_fd(const struct bpf_object *obj) 8610 { 8611 return obj->btf ? btf__fd(obj->btf) : -1; 8612 } 8613 8614 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8615 { 8616 if (obj->loaded) 8617 return libbpf_err(-EINVAL); 8618 8619 obj->kern_version = kern_version; 8620 8621 return 0; 8622 } 8623 8624 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8625 { 8626 struct bpf_gen *gen; 8627 8628 if (!opts) 8629 return -EFAULT; 8630 if (!OPTS_VALID(opts, gen_loader_opts)) 8631 return -EINVAL; 8632 gen = calloc(sizeof(*gen), 1); 8633 if (!gen) 8634 return -ENOMEM; 8635 gen->opts = opts; 8636 obj->gen_loader = gen; 8637 return 0; 8638 } 8639 8640 static struct bpf_program * 8641 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8642 bool forward) 8643 { 8644 size_t nr_programs = obj->nr_programs; 8645 ssize_t idx; 8646 8647 if (!nr_programs) 8648 return NULL; 8649 8650 if (!p) 8651 /* Iter from the beginning */ 8652 return forward ? &obj->programs[0] : 8653 &obj->programs[nr_programs - 1]; 8654 8655 if (p->obj != obj) { 8656 pr_warn("error: program handler doesn't match object\n"); 8657 return errno = EINVAL, NULL; 8658 } 8659 8660 idx = (p - obj->programs) + (forward ? 1 : -1); 8661 if (idx >= obj->nr_programs || idx < 0) 8662 return NULL; 8663 return &obj->programs[idx]; 8664 } 8665 8666 struct bpf_program * 8667 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8668 { 8669 struct bpf_program *prog = prev; 8670 8671 do { 8672 prog = __bpf_program__iter(prog, obj, true); 8673 } while (prog && prog_is_subprog(obj, prog)); 8674 8675 return prog; 8676 } 8677 8678 struct bpf_program * 8679 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8680 { 8681 struct bpf_program *prog = next; 8682 8683 do { 8684 prog = __bpf_program__iter(prog, obj, false); 8685 } while (prog && prog_is_subprog(obj, prog)); 8686 8687 return prog; 8688 } 8689 8690 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8691 { 8692 prog->prog_ifindex = ifindex; 8693 } 8694 8695 const char *bpf_program__name(const struct bpf_program *prog) 8696 { 8697 return prog->name; 8698 } 8699 8700 const char *bpf_program__section_name(const struct bpf_program *prog) 8701 { 8702 return prog->sec_name; 8703 } 8704 8705 bool bpf_program__autoload(const struct bpf_program *prog) 8706 { 8707 return prog->autoload; 8708 } 8709 8710 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8711 { 8712 if (prog->obj->loaded) 8713 return libbpf_err(-EINVAL); 8714 8715 prog->autoload = autoload; 8716 return 0; 8717 } 8718 8719 bool bpf_program__autoattach(const struct bpf_program *prog) 8720 { 8721 return prog->autoattach; 8722 } 8723 8724 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8725 { 8726 prog->autoattach = autoattach; 8727 } 8728 8729 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8730 { 8731 return prog->insns; 8732 } 8733 8734 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8735 { 8736 return prog->insns_cnt; 8737 } 8738 8739 int bpf_program__set_insns(struct bpf_program *prog, 8740 struct bpf_insn *new_insns, size_t new_insn_cnt) 8741 { 8742 struct bpf_insn *insns; 8743 8744 if (prog->obj->loaded) 8745 return -EBUSY; 8746 8747 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8748 /* NULL is a valid return from reallocarray if the new count is zero */ 8749 if (!insns && new_insn_cnt) { 8750 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8751 return -ENOMEM; 8752 } 8753 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8754 8755 prog->insns = insns; 8756 prog->insns_cnt = new_insn_cnt; 8757 return 0; 8758 } 8759 8760 int bpf_program__fd(const struct bpf_program *prog) 8761 { 8762 if (!prog) 8763 return libbpf_err(-EINVAL); 8764 8765 if (prog->fd < 0) 8766 return libbpf_err(-ENOENT); 8767 8768 return prog->fd; 8769 } 8770 8771 __alias(bpf_program__type) 8772 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8773 8774 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8775 { 8776 return prog->type; 8777 } 8778 8779 static size_t custom_sec_def_cnt; 8780 static struct bpf_sec_def *custom_sec_defs; 8781 static struct bpf_sec_def custom_fallback_def; 8782 static bool has_custom_fallback_def; 8783 static int last_custom_sec_def_handler_id; 8784 8785 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8786 { 8787 if (prog->obj->loaded) 8788 return libbpf_err(-EBUSY); 8789 8790 /* if type is not changed, do nothing */ 8791 if (prog->type == type) 8792 return 0; 8793 8794 prog->type = type; 8795 8796 /* If a program type was changed, we need to reset associated SEC() 8797 * handler, as it will be invalid now. The only exception is a generic 8798 * fallback handler, which by definition is program type-agnostic and 8799 * is a catch-all custom handler, optionally set by the application, 8800 * so should be able to handle any type of BPF program. 8801 */ 8802 if (prog->sec_def != &custom_fallback_def) 8803 prog->sec_def = NULL; 8804 return 0; 8805 } 8806 8807 __alias(bpf_program__expected_attach_type) 8808 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8809 8810 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8811 { 8812 return prog->expected_attach_type; 8813 } 8814 8815 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8816 enum bpf_attach_type type) 8817 { 8818 if (prog->obj->loaded) 8819 return libbpf_err(-EBUSY); 8820 8821 prog->expected_attach_type = type; 8822 return 0; 8823 } 8824 8825 __u32 bpf_program__flags(const struct bpf_program *prog) 8826 { 8827 return prog->prog_flags; 8828 } 8829 8830 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8831 { 8832 if (prog->obj->loaded) 8833 return libbpf_err(-EBUSY); 8834 8835 prog->prog_flags = flags; 8836 return 0; 8837 } 8838 8839 __u32 bpf_program__log_level(const struct bpf_program *prog) 8840 { 8841 return prog->log_level; 8842 } 8843 8844 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8845 { 8846 if (prog->obj->loaded) 8847 return libbpf_err(-EBUSY); 8848 8849 prog->log_level = log_level; 8850 return 0; 8851 } 8852 8853 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8854 { 8855 *log_size = prog->log_size; 8856 return prog->log_buf; 8857 } 8858 8859 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8860 { 8861 if (log_size && !log_buf) 8862 return -EINVAL; 8863 if (prog->log_size > UINT_MAX) 8864 return -EINVAL; 8865 if (prog->obj->loaded) 8866 return -EBUSY; 8867 8868 prog->log_buf = log_buf; 8869 prog->log_size = log_size; 8870 return 0; 8871 } 8872 8873 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8874 .sec = (char *)sec_pfx, \ 8875 .prog_type = BPF_PROG_TYPE_##ptype, \ 8876 .expected_attach_type = atype, \ 8877 .cookie = (long)(flags), \ 8878 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8879 __VA_ARGS__ \ 8880 } 8881 8882 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8883 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8884 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8885 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8886 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8887 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8888 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8889 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8890 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8891 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8892 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8893 8894 static const struct bpf_sec_def section_defs[] = { 8895 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8896 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8897 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8898 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8899 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8900 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8901 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8902 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8903 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8904 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8905 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8906 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8907 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8908 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8909 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8910 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8911 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8912 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8913 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8914 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8915 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8916 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8917 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8918 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8919 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8920 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8921 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 8922 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 8923 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8924 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8925 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8926 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8927 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8928 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8929 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8930 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8931 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8932 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8933 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8934 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8935 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8936 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8937 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8938 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8939 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8940 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8941 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8942 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8943 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8944 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8945 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8946 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8947 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8948 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8949 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8950 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8951 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8952 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8953 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8954 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8955 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8956 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8957 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8958 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8959 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8960 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8961 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8962 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8963 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8964 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8965 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8966 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8967 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8968 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8969 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8970 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8971 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8972 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8973 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 8974 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8975 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8976 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 8977 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8978 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8979 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 8980 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8981 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8982 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 8983 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8984 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8985 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 8986 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8987 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8988 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8989 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8990 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8991 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8992 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8993 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8994 }; 8995 8996 int libbpf_register_prog_handler(const char *sec, 8997 enum bpf_prog_type prog_type, 8998 enum bpf_attach_type exp_attach_type, 8999 const struct libbpf_prog_handler_opts *opts) 9000 { 9001 struct bpf_sec_def *sec_def; 9002 9003 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9004 return libbpf_err(-EINVAL); 9005 9006 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9007 return libbpf_err(-E2BIG); 9008 9009 if (sec) { 9010 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9011 sizeof(*sec_def)); 9012 if (!sec_def) 9013 return libbpf_err(-ENOMEM); 9014 9015 custom_sec_defs = sec_def; 9016 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9017 } else { 9018 if (has_custom_fallback_def) 9019 return libbpf_err(-EBUSY); 9020 9021 sec_def = &custom_fallback_def; 9022 } 9023 9024 sec_def->sec = sec ? strdup(sec) : NULL; 9025 if (sec && !sec_def->sec) 9026 return libbpf_err(-ENOMEM); 9027 9028 sec_def->prog_type = prog_type; 9029 sec_def->expected_attach_type = exp_attach_type; 9030 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9031 9032 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9033 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9034 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9035 9036 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9037 9038 if (sec) 9039 custom_sec_def_cnt++; 9040 else 9041 has_custom_fallback_def = true; 9042 9043 return sec_def->handler_id; 9044 } 9045 9046 int libbpf_unregister_prog_handler(int handler_id) 9047 { 9048 struct bpf_sec_def *sec_defs; 9049 int i; 9050 9051 if (handler_id <= 0) 9052 return libbpf_err(-EINVAL); 9053 9054 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9055 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9056 has_custom_fallback_def = false; 9057 return 0; 9058 } 9059 9060 for (i = 0; i < custom_sec_def_cnt; i++) { 9061 if (custom_sec_defs[i].handler_id == handler_id) 9062 break; 9063 } 9064 9065 if (i == custom_sec_def_cnt) 9066 return libbpf_err(-ENOENT); 9067 9068 free(custom_sec_defs[i].sec); 9069 for (i = i + 1; i < custom_sec_def_cnt; i++) 9070 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9071 custom_sec_def_cnt--; 9072 9073 /* try to shrink the array, but it's ok if we couldn't */ 9074 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9075 /* if new count is zero, reallocarray can return a valid NULL result; 9076 * in this case the previous pointer will be freed, so we *have to* 9077 * reassign old pointer to the new value (even if it's NULL) 9078 */ 9079 if (sec_defs || custom_sec_def_cnt == 0) 9080 custom_sec_defs = sec_defs; 9081 9082 return 0; 9083 } 9084 9085 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9086 { 9087 size_t len = strlen(sec_def->sec); 9088 9089 /* "type/" always has to have proper SEC("type/extras") form */ 9090 if (sec_def->sec[len - 1] == '/') { 9091 if (str_has_pfx(sec_name, sec_def->sec)) 9092 return true; 9093 return false; 9094 } 9095 9096 /* "type+" means it can be either exact SEC("type") or 9097 * well-formed SEC("type/extras") with proper '/' separator 9098 */ 9099 if (sec_def->sec[len - 1] == '+') { 9100 len--; 9101 /* not even a prefix */ 9102 if (strncmp(sec_name, sec_def->sec, len) != 0) 9103 return false; 9104 /* exact match or has '/' separator */ 9105 if (sec_name[len] == '\0' || sec_name[len] == '/') 9106 return true; 9107 return false; 9108 } 9109 9110 return strcmp(sec_name, sec_def->sec) == 0; 9111 } 9112 9113 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9114 { 9115 const struct bpf_sec_def *sec_def; 9116 int i, n; 9117 9118 n = custom_sec_def_cnt; 9119 for (i = 0; i < n; i++) { 9120 sec_def = &custom_sec_defs[i]; 9121 if (sec_def_matches(sec_def, sec_name)) 9122 return sec_def; 9123 } 9124 9125 n = ARRAY_SIZE(section_defs); 9126 for (i = 0; i < n; i++) { 9127 sec_def = §ion_defs[i]; 9128 if (sec_def_matches(sec_def, sec_name)) 9129 return sec_def; 9130 } 9131 9132 if (has_custom_fallback_def) 9133 return &custom_fallback_def; 9134 9135 return NULL; 9136 } 9137 9138 #define MAX_TYPE_NAME_SIZE 32 9139 9140 static char *libbpf_get_type_names(bool attach_type) 9141 { 9142 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9143 char *buf; 9144 9145 buf = malloc(len); 9146 if (!buf) 9147 return NULL; 9148 9149 buf[0] = '\0'; 9150 /* Forge string buf with all available names */ 9151 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9152 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9153 9154 if (attach_type) { 9155 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9156 continue; 9157 9158 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9159 continue; 9160 } 9161 9162 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9163 free(buf); 9164 return NULL; 9165 } 9166 strcat(buf, " "); 9167 strcat(buf, section_defs[i].sec); 9168 } 9169 9170 return buf; 9171 } 9172 9173 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9174 enum bpf_attach_type *expected_attach_type) 9175 { 9176 const struct bpf_sec_def *sec_def; 9177 char *type_names; 9178 9179 if (!name) 9180 return libbpf_err(-EINVAL); 9181 9182 sec_def = find_sec_def(name); 9183 if (sec_def) { 9184 *prog_type = sec_def->prog_type; 9185 *expected_attach_type = sec_def->expected_attach_type; 9186 return 0; 9187 } 9188 9189 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9190 type_names = libbpf_get_type_names(false); 9191 if (type_names != NULL) { 9192 pr_debug("supported section(type) names are:%s\n", type_names); 9193 free(type_names); 9194 } 9195 9196 return libbpf_err(-ESRCH); 9197 } 9198 9199 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9200 { 9201 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9202 return NULL; 9203 9204 return attach_type_name[t]; 9205 } 9206 9207 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9208 { 9209 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9210 return NULL; 9211 9212 return link_type_name[t]; 9213 } 9214 9215 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9216 { 9217 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9218 return NULL; 9219 9220 return map_type_name[t]; 9221 } 9222 9223 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9224 { 9225 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9226 return NULL; 9227 9228 return prog_type_name[t]; 9229 } 9230 9231 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9232 int sec_idx, 9233 size_t offset) 9234 { 9235 struct bpf_map *map; 9236 size_t i; 9237 9238 for (i = 0; i < obj->nr_maps; i++) { 9239 map = &obj->maps[i]; 9240 if (!bpf_map__is_struct_ops(map)) 9241 continue; 9242 if (map->sec_idx == sec_idx && 9243 map->sec_offset <= offset && 9244 offset - map->sec_offset < map->def.value_size) 9245 return map; 9246 } 9247 9248 return NULL; 9249 } 9250 9251 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9252 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9253 Elf64_Shdr *shdr, Elf_Data *data) 9254 { 9255 const struct btf_member *member; 9256 struct bpf_struct_ops *st_ops; 9257 struct bpf_program *prog; 9258 unsigned int shdr_idx; 9259 const struct btf *btf; 9260 struct bpf_map *map; 9261 unsigned int moff, insn_idx; 9262 const char *name; 9263 __u32 member_idx; 9264 Elf64_Sym *sym; 9265 Elf64_Rel *rel; 9266 int i, nrels; 9267 9268 btf = obj->btf; 9269 nrels = shdr->sh_size / shdr->sh_entsize; 9270 for (i = 0; i < nrels; i++) { 9271 rel = elf_rel_by_idx(data, i); 9272 if (!rel) { 9273 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9274 return -LIBBPF_ERRNO__FORMAT; 9275 } 9276 9277 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9278 if (!sym) { 9279 pr_warn("struct_ops reloc: symbol %zx not found\n", 9280 (size_t)ELF64_R_SYM(rel->r_info)); 9281 return -LIBBPF_ERRNO__FORMAT; 9282 } 9283 9284 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9285 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9286 if (!map) { 9287 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9288 (size_t)rel->r_offset); 9289 return -EINVAL; 9290 } 9291 9292 moff = rel->r_offset - map->sec_offset; 9293 shdr_idx = sym->st_shndx; 9294 st_ops = map->st_ops; 9295 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9296 map->name, 9297 (long long)(rel->r_info >> 32), 9298 (long long)sym->st_value, 9299 shdr_idx, (size_t)rel->r_offset, 9300 map->sec_offset, sym->st_name, name); 9301 9302 if (shdr_idx >= SHN_LORESERVE) { 9303 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9304 map->name, (size_t)rel->r_offset, shdr_idx); 9305 return -LIBBPF_ERRNO__RELOC; 9306 } 9307 if (sym->st_value % BPF_INSN_SZ) { 9308 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9309 map->name, (unsigned long long)sym->st_value); 9310 return -LIBBPF_ERRNO__FORMAT; 9311 } 9312 insn_idx = sym->st_value / BPF_INSN_SZ; 9313 9314 member = find_member_by_offset(st_ops->type, moff * 8); 9315 if (!member) { 9316 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9317 map->name, moff); 9318 return -EINVAL; 9319 } 9320 member_idx = member - btf_members(st_ops->type); 9321 name = btf__name_by_offset(btf, member->name_off); 9322 9323 if (!resolve_func_ptr(btf, member->type, NULL)) { 9324 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9325 map->name, name); 9326 return -EINVAL; 9327 } 9328 9329 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9330 if (!prog) { 9331 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9332 map->name, shdr_idx, name); 9333 return -EINVAL; 9334 } 9335 9336 /* prevent the use of BPF prog with invalid type */ 9337 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9338 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9339 map->name, prog->name); 9340 return -EINVAL; 9341 } 9342 9343 /* if we haven't yet processed this BPF program, record proper 9344 * attach_btf_id and member_idx 9345 */ 9346 if (!prog->attach_btf_id) { 9347 prog->attach_btf_id = st_ops->type_id; 9348 prog->expected_attach_type = member_idx; 9349 } 9350 9351 /* struct_ops BPF prog can be re-used between multiple 9352 * .struct_ops & .struct_ops.link as long as it's the 9353 * same struct_ops struct definition and the same 9354 * function pointer field 9355 */ 9356 if (prog->attach_btf_id != st_ops->type_id || 9357 prog->expected_attach_type != member_idx) { 9358 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9359 map->name, prog->name, prog->sec_name, prog->type, 9360 prog->attach_btf_id, prog->expected_attach_type, name); 9361 return -EINVAL; 9362 } 9363 9364 st_ops->progs[member_idx] = prog; 9365 } 9366 9367 return 0; 9368 } 9369 9370 #define BTF_TRACE_PREFIX "btf_trace_" 9371 #define BTF_LSM_PREFIX "bpf_lsm_" 9372 #define BTF_ITER_PREFIX "bpf_iter_" 9373 #define BTF_MAX_NAME_SIZE 128 9374 9375 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9376 const char **prefix, int *kind) 9377 { 9378 switch (attach_type) { 9379 case BPF_TRACE_RAW_TP: 9380 *prefix = BTF_TRACE_PREFIX; 9381 *kind = BTF_KIND_TYPEDEF; 9382 break; 9383 case BPF_LSM_MAC: 9384 case BPF_LSM_CGROUP: 9385 *prefix = BTF_LSM_PREFIX; 9386 *kind = BTF_KIND_FUNC; 9387 break; 9388 case BPF_TRACE_ITER: 9389 *prefix = BTF_ITER_PREFIX; 9390 *kind = BTF_KIND_FUNC; 9391 break; 9392 default: 9393 *prefix = ""; 9394 *kind = BTF_KIND_FUNC; 9395 } 9396 } 9397 9398 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9399 const char *name, __u32 kind) 9400 { 9401 char btf_type_name[BTF_MAX_NAME_SIZE]; 9402 int ret; 9403 9404 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9405 "%s%s", prefix, name); 9406 /* snprintf returns the number of characters written excluding the 9407 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9408 * indicates truncation. 9409 */ 9410 if (ret < 0 || ret >= sizeof(btf_type_name)) 9411 return -ENAMETOOLONG; 9412 return btf__find_by_name_kind(btf, btf_type_name, kind); 9413 } 9414 9415 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9416 enum bpf_attach_type attach_type) 9417 { 9418 const char *prefix; 9419 int kind; 9420 9421 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9422 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9423 } 9424 9425 int libbpf_find_vmlinux_btf_id(const char *name, 9426 enum bpf_attach_type attach_type) 9427 { 9428 struct btf *btf; 9429 int err; 9430 9431 btf = btf__load_vmlinux_btf(); 9432 err = libbpf_get_error(btf); 9433 if (err) { 9434 pr_warn("vmlinux BTF is not found\n"); 9435 return libbpf_err(err); 9436 } 9437 9438 err = find_attach_btf_id(btf, name, attach_type); 9439 if (err <= 0) 9440 pr_warn("%s is not found in vmlinux BTF\n", name); 9441 9442 btf__free(btf); 9443 return libbpf_err(err); 9444 } 9445 9446 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9447 { 9448 struct bpf_prog_info info; 9449 __u32 info_len = sizeof(info); 9450 struct btf *btf; 9451 int err; 9452 9453 memset(&info, 0, info_len); 9454 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9455 if (err) { 9456 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9457 attach_prog_fd, err); 9458 return err; 9459 } 9460 9461 err = -EINVAL; 9462 if (!info.btf_id) { 9463 pr_warn("The target program doesn't have BTF\n"); 9464 goto out; 9465 } 9466 btf = btf__load_from_kernel_by_id(info.btf_id); 9467 err = libbpf_get_error(btf); 9468 if (err) { 9469 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9470 goto out; 9471 } 9472 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9473 btf__free(btf); 9474 if (err <= 0) { 9475 pr_warn("%s is not found in prog's BTF\n", name); 9476 goto out; 9477 } 9478 out: 9479 return err; 9480 } 9481 9482 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9483 enum bpf_attach_type attach_type, 9484 int *btf_obj_fd, int *btf_type_id) 9485 { 9486 int ret, i; 9487 9488 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9489 if (ret > 0) { 9490 *btf_obj_fd = 0; /* vmlinux BTF */ 9491 *btf_type_id = ret; 9492 return 0; 9493 } 9494 if (ret != -ENOENT) 9495 return ret; 9496 9497 ret = load_module_btfs(obj); 9498 if (ret) 9499 return ret; 9500 9501 for (i = 0; i < obj->btf_module_cnt; i++) { 9502 const struct module_btf *mod = &obj->btf_modules[i]; 9503 9504 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9505 if (ret > 0) { 9506 *btf_obj_fd = mod->fd; 9507 *btf_type_id = ret; 9508 return 0; 9509 } 9510 if (ret == -ENOENT) 9511 continue; 9512 9513 return ret; 9514 } 9515 9516 return -ESRCH; 9517 } 9518 9519 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9520 int *btf_obj_fd, int *btf_type_id) 9521 { 9522 enum bpf_attach_type attach_type = prog->expected_attach_type; 9523 __u32 attach_prog_fd = prog->attach_prog_fd; 9524 int err = 0; 9525 9526 /* BPF program's BTF ID */ 9527 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9528 if (!attach_prog_fd) { 9529 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9530 return -EINVAL; 9531 } 9532 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9533 if (err < 0) { 9534 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9535 prog->name, attach_prog_fd, attach_name, err); 9536 return err; 9537 } 9538 *btf_obj_fd = 0; 9539 *btf_type_id = err; 9540 return 0; 9541 } 9542 9543 /* kernel/module BTF ID */ 9544 if (prog->obj->gen_loader) { 9545 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9546 *btf_obj_fd = 0; 9547 *btf_type_id = 1; 9548 } else { 9549 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9550 } 9551 if (err) { 9552 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9553 prog->name, attach_name, err); 9554 return err; 9555 } 9556 return 0; 9557 } 9558 9559 int libbpf_attach_type_by_name(const char *name, 9560 enum bpf_attach_type *attach_type) 9561 { 9562 char *type_names; 9563 const struct bpf_sec_def *sec_def; 9564 9565 if (!name) 9566 return libbpf_err(-EINVAL); 9567 9568 sec_def = find_sec_def(name); 9569 if (!sec_def) { 9570 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9571 type_names = libbpf_get_type_names(true); 9572 if (type_names != NULL) { 9573 pr_debug("attachable section(type) names are:%s\n", type_names); 9574 free(type_names); 9575 } 9576 9577 return libbpf_err(-EINVAL); 9578 } 9579 9580 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9581 return libbpf_err(-EINVAL); 9582 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9583 return libbpf_err(-EINVAL); 9584 9585 *attach_type = sec_def->expected_attach_type; 9586 return 0; 9587 } 9588 9589 int bpf_map__fd(const struct bpf_map *map) 9590 { 9591 return map ? map->fd : libbpf_err(-EINVAL); 9592 } 9593 9594 static bool map_uses_real_name(const struct bpf_map *map) 9595 { 9596 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9597 * their user-visible name differs from kernel-visible name. Users see 9598 * such map's corresponding ELF section name as a map name. 9599 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9600 * maps to know which name has to be returned to the user. 9601 */ 9602 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9603 return true; 9604 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9605 return true; 9606 return false; 9607 } 9608 9609 const char *bpf_map__name(const struct bpf_map *map) 9610 { 9611 if (!map) 9612 return NULL; 9613 9614 if (map_uses_real_name(map)) 9615 return map->real_name; 9616 9617 return map->name; 9618 } 9619 9620 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9621 { 9622 return map->def.type; 9623 } 9624 9625 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9626 { 9627 if (map->fd >= 0) 9628 return libbpf_err(-EBUSY); 9629 map->def.type = type; 9630 return 0; 9631 } 9632 9633 __u32 bpf_map__map_flags(const struct bpf_map *map) 9634 { 9635 return map->def.map_flags; 9636 } 9637 9638 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9639 { 9640 if (map->fd >= 0) 9641 return libbpf_err(-EBUSY); 9642 map->def.map_flags = flags; 9643 return 0; 9644 } 9645 9646 __u64 bpf_map__map_extra(const struct bpf_map *map) 9647 { 9648 return map->map_extra; 9649 } 9650 9651 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9652 { 9653 if (map->fd >= 0) 9654 return libbpf_err(-EBUSY); 9655 map->map_extra = map_extra; 9656 return 0; 9657 } 9658 9659 __u32 bpf_map__numa_node(const struct bpf_map *map) 9660 { 9661 return map->numa_node; 9662 } 9663 9664 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9665 { 9666 if (map->fd >= 0) 9667 return libbpf_err(-EBUSY); 9668 map->numa_node = numa_node; 9669 return 0; 9670 } 9671 9672 __u32 bpf_map__key_size(const struct bpf_map *map) 9673 { 9674 return map->def.key_size; 9675 } 9676 9677 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9678 { 9679 if (map->fd >= 0) 9680 return libbpf_err(-EBUSY); 9681 map->def.key_size = size; 9682 return 0; 9683 } 9684 9685 __u32 bpf_map__value_size(const struct bpf_map *map) 9686 { 9687 return map->def.value_size; 9688 } 9689 9690 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9691 { 9692 struct btf *btf; 9693 struct btf_type *datasec_type, *var_type; 9694 struct btf_var_secinfo *var; 9695 const struct btf_type *array_type; 9696 const struct btf_array *array; 9697 int vlen, element_sz, new_array_id; 9698 __u32 nr_elements; 9699 9700 /* check btf existence */ 9701 btf = bpf_object__btf(map->obj); 9702 if (!btf) 9703 return -ENOENT; 9704 9705 /* verify map is datasec */ 9706 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9707 if (!btf_is_datasec(datasec_type)) { 9708 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9709 bpf_map__name(map)); 9710 return -EINVAL; 9711 } 9712 9713 /* verify datasec has at least one var */ 9714 vlen = btf_vlen(datasec_type); 9715 if (vlen == 0) { 9716 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9717 bpf_map__name(map)); 9718 return -EINVAL; 9719 } 9720 9721 /* verify last var in the datasec is an array */ 9722 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9723 var_type = btf_type_by_id(btf, var->type); 9724 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9725 if (!btf_is_array(array_type)) { 9726 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9727 bpf_map__name(map)); 9728 return -EINVAL; 9729 } 9730 9731 /* verify request size aligns with array */ 9732 array = btf_array(array_type); 9733 element_sz = btf__resolve_size(btf, array->type); 9734 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9735 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9736 bpf_map__name(map), element_sz, size); 9737 return -EINVAL; 9738 } 9739 9740 /* create a new array based on the existing array, but with new length */ 9741 nr_elements = (size - var->offset) / element_sz; 9742 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9743 if (new_array_id < 0) 9744 return new_array_id; 9745 9746 /* adding a new btf type invalidates existing pointers to btf objects, 9747 * so refresh pointers before proceeding 9748 */ 9749 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9750 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9751 var_type = btf_type_by_id(btf, var->type); 9752 9753 /* finally update btf info */ 9754 datasec_type->size = size; 9755 var->size = size - var->offset; 9756 var_type->type = new_array_id; 9757 9758 return 0; 9759 } 9760 9761 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9762 { 9763 if (map->fd >= 0) 9764 return libbpf_err(-EBUSY); 9765 9766 if (map->mmaped) { 9767 int err; 9768 size_t mmap_old_sz, mmap_new_sz; 9769 9770 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9771 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9772 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9773 if (err) { 9774 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9775 bpf_map__name(map), err); 9776 return err; 9777 } 9778 err = map_btf_datasec_resize(map, size); 9779 if (err && err != -ENOENT) { 9780 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9781 bpf_map__name(map), err); 9782 map->btf_value_type_id = 0; 9783 map->btf_key_type_id = 0; 9784 } 9785 } 9786 9787 map->def.value_size = size; 9788 return 0; 9789 } 9790 9791 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9792 { 9793 return map ? map->btf_key_type_id : 0; 9794 } 9795 9796 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9797 { 9798 return map ? map->btf_value_type_id : 0; 9799 } 9800 9801 int bpf_map__set_initial_value(struct bpf_map *map, 9802 const void *data, size_t size) 9803 { 9804 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9805 size != map->def.value_size || map->fd >= 0) 9806 return libbpf_err(-EINVAL); 9807 9808 memcpy(map->mmaped, data, size); 9809 return 0; 9810 } 9811 9812 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9813 { 9814 if (!map->mmaped) 9815 return NULL; 9816 *psize = map->def.value_size; 9817 return map->mmaped; 9818 } 9819 9820 bool bpf_map__is_internal(const struct bpf_map *map) 9821 { 9822 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9823 } 9824 9825 __u32 bpf_map__ifindex(const struct bpf_map *map) 9826 { 9827 return map->map_ifindex; 9828 } 9829 9830 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9831 { 9832 if (map->fd >= 0) 9833 return libbpf_err(-EBUSY); 9834 map->map_ifindex = ifindex; 9835 return 0; 9836 } 9837 9838 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9839 { 9840 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9841 pr_warn("error: unsupported map type\n"); 9842 return libbpf_err(-EINVAL); 9843 } 9844 if (map->inner_map_fd != -1) { 9845 pr_warn("error: inner_map_fd already specified\n"); 9846 return libbpf_err(-EINVAL); 9847 } 9848 if (map->inner_map) { 9849 bpf_map__destroy(map->inner_map); 9850 zfree(&map->inner_map); 9851 } 9852 map->inner_map_fd = fd; 9853 return 0; 9854 } 9855 9856 static struct bpf_map * 9857 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9858 { 9859 ssize_t idx; 9860 struct bpf_map *s, *e; 9861 9862 if (!obj || !obj->maps) 9863 return errno = EINVAL, NULL; 9864 9865 s = obj->maps; 9866 e = obj->maps + obj->nr_maps; 9867 9868 if ((m < s) || (m >= e)) { 9869 pr_warn("error in %s: map handler doesn't belong to object\n", 9870 __func__); 9871 return errno = EINVAL, NULL; 9872 } 9873 9874 idx = (m - obj->maps) + i; 9875 if (idx >= obj->nr_maps || idx < 0) 9876 return NULL; 9877 return &obj->maps[idx]; 9878 } 9879 9880 struct bpf_map * 9881 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9882 { 9883 if (prev == NULL) 9884 return obj->maps; 9885 9886 return __bpf_map__iter(prev, obj, 1); 9887 } 9888 9889 struct bpf_map * 9890 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9891 { 9892 if (next == NULL) { 9893 if (!obj->nr_maps) 9894 return NULL; 9895 return obj->maps + obj->nr_maps - 1; 9896 } 9897 9898 return __bpf_map__iter(next, obj, -1); 9899 } 9900 9901 struct bpf_map * 9902 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9903 { 9904 struct bpf_map *pos; 9905 9906 bpf_object__for_each_map(pos, obj) { 9907 /* if it's a special internal map name (which always starts 9908 * with dot) then check if that special name matches the 9909 * real map name (ELF section name) 9910 */ 9911 if (name[0] == '.') { 9912 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9913 return pos; 9914 continue; 9915 } 9916 /* otherwise map name has to be an exact match */ 9917 if (map_uses_real_name(pos)) { 9918 if (strcmp(pos->real_name, name) == 0) 9919 return pos; 9920 continue; 9921 } 9922 if (strcmp(pos->name, name) == 0) 9923 return pos; 9924 } 9925 return errno = ENOENT, NULL; 9926 } 9927 9928 int 9929 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9930 { 9931 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9932 } 9933 9934 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9935 size_t value_sz, bool check_value_sz) 9936 { 9937 if (map->fd <= 0) 9938 return -ENOENT; 9939 9940 if (map->def.key_size != key_sz) { 9941 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9942 map->name, key_sz, map->def.key_size); 9943 return -EINVAL; 9944 } 9945 9946 if (!check_value_sz) 9947 return 0; 9948 9949 switch (map->def.type) { 9950 case BPF_MAP_TYPE_PERCPU_ARRAY: 9951 case BPF_MAP_TYPE_PERCPU_HASH: 9952 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9953 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9954 int num_cpu = libbpf_num_possible_cpus(); 9955 size_t elem_sz = roundup(map->def.value_size, 8); 9956 9957 if (value_sz != num_cpu * elem_sz) { 9958 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9959 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9960 return -EINVAL; 9961 } 9962 break; 9963 } 9964 default: 9965 if (map->def.value_size != value_sz) { 9966 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9967 map->name, value_sz, map->def.value_size); 9968 return -EINVAL; 9969 } 9970 break; 9971 } 9972 return 0; 9973 } 9974 9975 int bpf_map__lookup_elem(const struct bpf_map *map, 9976 const void *key, size_t key_sz, 9977 void *value, size_t value_sz, __u64 flags) 9978 { 9979 int err; 9980 9981 err = validate_map_op(map, key_sz, value_sz, true); 9982 if (err) 9983 return libbpf_err(err); 9984 9985 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9986 } 9987 9988 int bpf_map__update_elem(const struct bpf_map *map, 9989 const void *key, size_t key_sz, 9990 const void *value, size_t value_sz, __u64 flags) 9991 { 9992 int err; 9993 9994 err = validate_map_op(map, key_sz, value_sz, true); 9995 if (err) 9996 return libbpf_err(err); 9997 9998 return bpf_map_update_elem(map->fd, key, value, flags); 9999 } 10000 10001 int bpf_map__delete_elem(const struct bpf_map *map, 10002 const void *key, size_t key_sz, __u64 flags) 10003 { 10004 int err; 10005 10006 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10007 if (err) 10008 return libbpf_err(err); 10009 10010 return bpf_map_delete_elem_flags(map->fd, key, flags); 10011 } 10012 10013 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10014 const void *key, size_t key_sz, 10015 void *value, size_t value_sz, __u64 flags) 10016 { 10017 int err; 10018 10019 err = validate_map_op(map, key_sz, value_sz, true); 10020 if (err) 10021 return libbpf_err(err); 10022 10023 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10024 } 10025 10026 int bpf_map__get_next_key(const struct bpf_map *map, 10027 const void *cur_key, void *next_key, size_t key_sz) 10028 { 10029 int err; 10030 10031 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10032 if (err) 10033 return libbpf_err(err); 10034 10035 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10036 } 10037 10038 long libbpf_get_error(const void *ptr) 10039 { 10040 if (!IS_ERR_OR_NULL(ptr)) 10041 return 0; 10042 10043 if (IS_ERR(ptr)) 10044 errno = -PTR_ERR(ptr); 10045 10046 /* If ptr == NULL, then errno should be already set by the failing 10047 * API, because libbpf never returns NULL on success and it now always 10048 * sets errno on error. So no extra errno handling for ptr == NULL 10049 * case. 10050 */ 10051 return -errno; 10052 } 10053 10054 /* Replace link's underlying BPF program with the new one */ 10055 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10056 { 10057 int ret; 10058 10059 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10060 return libbpf_err_errno(ret); 10061 } 10062 10063 /* Release "ownership" of underlying BPF resource (typically, BPF program 10064 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10065 * link, when destructed through bpf_link__destroy() call won't attempt to 10066 * detach/unregisted that BPF resource. This is useful in situations where, 10067 * say, attached BPF program has to outlive userspace program that attached it 10068 * in the system. Depending on type of BPF program, though, there might be 10069 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10070 * exit of userspace program doesn't trigger automatic detachment and clean up 10071 * inside the kernel. 10072 */ 10073 void bpf_link__disconnect(struct bpf_link *link) 10074 { 10075 link->disconnected = true; 10076 } 10077 10078 int bpf_link__destroy(struct bpf_link *link) 10079 { 10080 int err = 0; 10081 10082 if (IS_ERR_OR_NULL(link)) 10083 return 0; 10084 10085 if (!link->disconnected && link->detach) 10086 err = link->detach(link); 10087 if (link->pin_path) 10088 free(link->pin_path); 10089 if (link->dealloc) 10090 link->dealloc(link); 10091 else 10092 free(link); 10093 10094 return libbpf_err(err); 10095 } 10096 10097 int bpf_link__fd(const struct bpf_link *link) 10098 { 10099 return link->fd; 10100 } 10101 10102 const char *bpf_link__pin_path(const struct bpf_link *link) 10103 { 10104 return link->pin_path; 10105 } 10106 10107 static int bpf_link__detach_fd(struct bpf_link *link) 10108 { 10109 return libbpf_err_errno(close(link->fd)); 10110 } 10111 10112 struct bpf_link *bpf_link__open(const char *path) 10113 { 10114 struct bpf_link *link; 10115 int fd; 10116 10117 fd = bpf_obj_get(path); 10118 if (fd < 0) { 10119 fd = -errno; 10120 pr_warn("failed to open link at %s: %d\n", path, fd); 10121 return libbpf_err_ptr(fd); 10122 } 10123 10124 link = calloc(1, sizeof(*link)); 10125 if (!link) { 10126 close(fd); 10127 return libbpf_err_ptr(-ENOMEM); 10128 } 10129 link->detach = &bpf_link__detach_fd; 10130 link->fd = fd; 10131 10132 link->pin_path = strdup(path); 10133 if (!link->pin_path) { 10134 bpf_link__destroy(link); 10135 return libbpf_err_ptr(-ENOMEM); 10136 } 10137 10138 return link; 10139 } 10140 10141 int bpf_link__detach(struct bpf_link *link) 10142 { 10143 return bpf_link_detach(link->fd) ? -errno : 0; 10144 } 10145 10146 int bpf_link__pin(struct bpf_link *link, const char *path) 10147 { 10148 int err; 10149 10150 if (link->pin_path) 10151 return libbpf_err(-EBUSY); 10152 err = make_parent_dir(path); 10153 if (err) 10154 return libbpf_err(err); 10155 err = check_path(path); 10156 if (err) 10157 return libbpf_err(err); 10158 10159 link->pin_path = strdup(path); 10160 if (!link->pin_path) 10161 return libbpf_err(-ENOMEM); 10162 10163 if (bpf_obj_pin(link->fd, link->pin_path)) { 10164 err = -errno; 10165 zfree(&link->pin_path); 10166 return libbpf_err(err); 10167 } 10168 10169 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10170 return 0; 10171 } 10172 10173 int bpf_link__unpin(struct bpf_link *link) 10174 { 10175 int err; 10176 10177 if (!link->pin_path) 10178 return libbpf_err(-EINVAL); 10179 10180 err = unlink(link->pin_path); 10181 if (err != 0) 10182 return -errno; 10183 10184 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10185 zfree(&link->pin_path); 10186 return 0; 10187 } 10188 10189 struct bpf_link_perf { 10190 struct bpf_link link; 10191 int perf_event_fd; 10192 /* legacy kprobe support: keep track of probe identifier and type */ 10193 char *legacy_probe_name; 10194 bool legacy_is_kprobe; 10195 bool legacy_is_retprobe; 10196 }; 10197 10198 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10199 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10200 10201 static int bpf_link_perf_detach(struct bpf_link *link) 10202 { 10203 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10204 int err = 0; 10205 10206 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10207 err = -errno; 10208 10209 if (perf_link->perf_event_fd != link->fd) 10210 close(perf_link->perf_event_fd); 10211 close(link->fd); 10212 10213 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10214 if (perf_link->legacy_probe_name) { 10215 if (perf_link->legacy_is_kprobe) { 10216 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10217 perf_link->legacy_is_retprobe); 10218 } else { 10219 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10220 perf_link->legacy_is_retprobe); 10221 } 10222 } 10223 10224 return err; 10225 } 10226 10227 static void bpf_link_perf_dealloc(struct bpf_link *link) 10228 { 10229 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10230 10231 free(perf_link->legacy_probe_name); 10232 free(perf_link); 10233 } 10234 10235 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10236 const struct bpf_perf_event_opts *opts) 10237 { 10238 char errmsg[STRERR_BUFSIZE]; 10239 struct bpf_link_perf *link; 10240 int prog_fd, link_fd = -1, err; 10241 bool force_ioctl_attach; 10242 10243 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10244 return libbpf_err_ptr(-EINVAL); 10245 10246 if (pfd < 0) { 10247 pr_warn("prog '%s': invalid perf event FD %d\n", 10248 prog->name, pfd); 10249 return libbpf_err_ptr(-EINVAL); 10250 } 10251 prog_fd = bpf_program__fd(prog); 10252 if (prog_fd < 0) { 10253 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10254 prog->name); 10255 return libbpf_err_ptr(-EINVAL); 10256 } 10257 10258 link = calloc(1, sizeof(*link)); 10259 if (!link) 10260 return libbpf_err_ptr(-ENOMEM); 10261 link->link.detach = &bpf_link_perf_detach; 10262 link->link.dealloc = &bpf_link_perf_dealloc; 10263 link->perf_event_fd = pfd; 10264 10265 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10266 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10267 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10268 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10269 10270 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10271 if (link_fd < 0) { 10272 err = -errno; 10273 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10274 prog->name, pfd, 10275 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10276 goto err_out; 10277 } 10278 link->link.fd = link_fd; 10279 } else { 10280 if (OPTS_GET(opts, bpf_cookie, 0)) { 10281 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10282 err = -EOPNOTSUPP; 10283 goto err_out; 10284 } 10285 10286 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10287 err = -errno; 10288 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10289 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10290 if (err == -EPROTO) 10291 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10292 prog->name, pfd); 10293 goto err_out; 10294 } 10295 link->link.fd = pfd; 10296 } 10297 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10298 err = -errno; 10299 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10300 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10301 goto err_out; 10302 } 10303 10304 return &link->link; 10305 err_out: 10306 if (link_fd >= 0) 10307 close(link_fd); 10308 free(link); 10309 return libbpf_err_ptr(err); 10310 } 10311 10312 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10313 { 10314 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10315 } 10316 10317 /* 10318 * this function is expected to parse integer in the range of [0, 2^31-1] from 10319 * given file using scanf format string fmt. If actual parsed value is 10320 * negative, the result might be indistinguishable from error 10321 */ 10322 static int parse_uint_from_file(const char *file, const char *fmt) 10323 { 10324 char buf[STRERR_BUFSIZE]; 10325 int err, ret; 10326 FILE *f; 10327 10328 f = fopen(file, "re"); 10329 if (!f) { 10330 err = -errno; 10331 pr_debug("failed to open '%s': %s\n", file, 10332 libbpf_strerror_r(err, buf, sizeof(buf))); 10333 return err; 10334 } 10335 err = fscanf(f, fmt, &ret); 10336 if (err != 1) { 10337 err = err == EOF ? -EIO : -errno; 10338 pr_debug("failed to parse '%s': %s\n", file, 10339 libbpf_strerror_r(err, buf, sizeof(buf))); 10340 fclose(f); 10341 return err; 10342 } 10343 fclose(f); 10344 return ret; 10345 } 10346 10347 static int determine_kprobe_perf_type(void) 10348 { 10349 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10350 10351 return parse_uint_from_file(file, "%d\n"); 10352 } 10353 10354 static int determine_uprobe_perf_type(void) 10355 { 10356 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10357 10358 return parse_uint_from_file(file, "%d\n"); 10359 } 10360 10361 static int determine_kprobe_retprobe_bit(void) 10362 { 10363 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10364 10365 return parse_uint_from_file(file, "config:%d\n"); 10366 } 10367 10368 static int determine_uprobe_retprobe_bit(void) 10369 { 10370 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10371 10372 return parse_uint_from_file(file, "config:%d\n"); 10373 } 10374 10375 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10376 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10377 10378 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10379 uint64_t offset, int pid, size_t ref_ctr_off) 10380 { 10381 const size_t attr_sz = sizeof(struct perf_event_attr); 10382 struct perf_event_attr attr; 10383 char errmsg[STRERR_BUFSIZE]; 10384 int type, pfd; 10385 10386 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10387 return -EINVAL; 10388 10389 memset(&attr, 0, attr_sz); 10390 10391 type = uprobe ? determine_uprobe_perf_type() 10392 : determine_kprobe_perf_type(); 10393 if (type < 0) { 10394 pr_warn("failed to determine %s perf type: %s\n", 10395 uprobe ? "uprobe" : "kprobe", 10396 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10397 return type; 10398 } 10399 if (retprobe) { 10400 int bit = uprobe ? determine_uprobe_retprobe_bit() 10401 : determine_kprobe_retprobe_bit(); 10402 10403 if (bit < 0) { 10404 pr_warn("failed to determine %s retprobe bit: %s\n", 10405 uprobe ? "uprobe" : "kprobe", 10406 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10407 return bit; 10408 } 10409 attr.config |= 1 << bit; 10410 } 10411 attr.size = attr_sz; 10412 attr.type = type; 10413 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10414 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10415 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10416 10417 /* pid filter is meaningful only for uprobes */ 10418 pfd = syscall(__NR_perf_event_open, &attr, 10419 pid < 0 ? -1 : pid /* pid */, 10420 pid == -1 ? 0 : -1 /* cpu */, 10421 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10422 return pfd >= 0 ? pfd : -errno; 10423 } 10424 10425 static int append_to_file(const char *file, const char *fmt, ...) 10426 { 10427 int fd, n, err = 0; 10428 va_list ap; 10429 char buf[1024]; 10430 10431 va_start(ap, fmt); 10432 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10433 va_end(ap); 10434 10435 if (n < 0 || n >= sizeof(buf)) 10436 return -EINVAL; 10437 10438 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10439 if (fd < 0) 10440 return -errno; 10441 10442 if (write(fd, buf, n) < 0) 10443 err = -errno; 10444 10445 close(fd); 10446 return err; 10447 } 10448 10449 #define DEBUGFS "/sys/kernel/debug/tracing" 10450 #define TRACEFS "/sys/kernel/tracing" 10451 10452 static bool use_debugfs(void) 10453 { 10454 static int has_debugfs = -1; 10455 10456 if (has_debugfs < 0) 10457 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10458 10459 return has_debugfs == 1; 10460 } 10461 10462 static const char *tracefs_path(void) 10463 { 10464 return use_debugfs() ? DEBUGFS : TRACEFS; 10465 } 10466 10467 static const char *tracefs_kprobe_events(void) 10468 { 10469 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10470 } 10471 10472 static const char *tracefs_uprobe_events(void) 10473 { 10474 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10475 } 10476 10477 static const char *tracefs_available_filter_functions(void) 10478 { 10479 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10480 : TRACEFS"/available_filter_functions"; 10481 } 10482 10483 static const char *tracefs_available_filter_functions_addrs(void) 10484 { 10485 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10486 : TRACEFS"/available_filter_functions_addrs"; 10487 } 10488 10489 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10490 const char *kfunc_name, size_t offset) 10491 { 10492 static int index = 0; 10493 int i; 10494 10495 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10496 __sync_fetch_and_add(&index, 1)); 10497 10498 /* sanitize binary_path in the probe name */ 10499 for (i = 0; buf[i]; i++) { 10500 if (!isalnum(buf[i])) 10501 buf[i] = '_'; 10502 } 10503 } 10504 10505 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10506 const char *kfunc_name, size_t offset) 10507 { 10508 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10509 retprobe ? 'r' : 'p', 10510 retprobe ? "kretprobes" : "kprobes", 10511 probe_name, kfunc_name, offset); 10512 } 10513 10514 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10515 { 10516 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10517 retprobe ? "kretprobes" : "kprobes", probe_name); 10518 } 10519 10520 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10521 { 10522 char file[256]; 10523 10524 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10525 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10526 10527 return parse_uint_from_file(file, "%d\n"); 10528 } 10529 10530 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10531 const char *kfunc_name, size_t offset, int pid) 10532 { 10533 const size_t attr_sz = sizeof(struct perf_event_attr); 10534 struct perf_event_attr attr; 10535 char errmsg[STRERR_BUFSIZE]; 10536 int type, pfd, err; 10537 10538 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10539 if (err < 0) { 10540 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10541 kfunc_name, offset, 10542 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10543 return err; 10544 } 10545 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10546 if (type < 0) { 10547 err = type; 10548 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10549 kfunc_name, offset, 10550 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10551 goto err_clean_legacy; 10552 } 10553 10554 memset(&attr, 0, attr_sz); 10555 attr.size = attr_sz; 10556 attr.config = type; 10557 attr.type = PERF_TYPE_TRACEPOINT; 10558 10559 pfd = syscall(__NR_perf_event_open, &attr, 10560 pid < 0 ? -1 : pid, /* pid */ 10561 pid == -1 ? 0 : -1, /* cpu */ 10562 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10563 if (pfd < 0) { 10564 err = -errno; 10565 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10566 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10567 goto err_clean_legacy; 10568 } 10569 return pfd; 10570 10571 err_clean_legacy: 10572 /* Clear the newly added legacy kprobe_event */ 10573 remove_kprobe_event_legacy(probe_name, retprobe); 10574 return err; 10575 } 10576 10577 static const char *arch_specific_syscall_pfx(void) 10578 { 10579 #if defined(__x86_64__) 10580 return "x64"; 10581 #elif defined(__i386__) 10582 return "ia32"; 10583 #elif defined(__s390x__) 10584 return "s390x"; 10585 #elif defined(__s390__) 10586 return "s390"; 10587 #elif defined(__arm__) 10588 return "arm"; 10589 #elif defined(__aarch64__) 10590 return "arm64"; 10591 #elif defined(__mips__) 10592 return "mips"; 10593 #elif defined(__riscv) 10594 return "riscv"; 10595 #elif defined(__powerpc__) 10596 return "powerpc"; 10597 #elif defined(__powerpc64__) 10598 return "powerpc64"; 10599 #else 10600 return NULL; 10601 #endif 10602 } 10603 10604 static int probe_kern_syscall_wrapper(void) 10605 { 10606 char syscall_name[64]; 10607 const char *ksys_pfx; 10608 10609 ksys_pfx = arch_specific_syscall_pfx(); 10610 if (!ksys_pfx) 10611 return 0; 10612 10613 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10614 10615 if (determine_kprobe_perf_type() >= 0) { 10616 int pfd; 10617 10618 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10619 if (pfd >= 0) 10620 close(pfd); 10621 10622 return pfd >= 0 ? 1 : 0; 10623 } else { /* legacy mode */ 10624 char probe_name[128]; 10625 10626 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10627 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10628 return 0; 10629 10630 (void)remove_kprobe_event_legacy(probe_name, false); 10631 return 1; 10632 } 10633 } 10634 10635 struct bpf_link * 10636 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10637 const char *func_name, 10638 const struct bpf_kprobe_opts *opts) 10639 { 10640 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10641 enum probe_attach_mode attach_mode; 10642 char errmsg[STRERR_BUFSIZE]; 10643 char *legacy_probe = NULL; 10644 struct bpf_link *link; 10645 size_t offset; 10646 bool retprobe, legacy; 10647 int pfd, err; 10648 10649 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10650 return libbpf_err_ptr(-EINVAL); 10651 10652 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10653 retprobe = OPTS_GET(opts, retprobe, false); 10654 offset = OPTS_GET(opts, offset, 0); 10655 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10656 10657 legacy = determine_kprobe_perf_type() < 0; 10658 switch (attach_mode) { 10659 case PROBE_ATTACH_MODE_LEGACY: 10660 legacy = true; 10661 pe_opts.force_ioctl_attach = true; 10662 break; 10663 case PROBE_ATTACH_MODE_PERF: 10664 if (legacy) 10665 return libbpf_err_ptr(-ENOTSUP); 10666 pe_opts.force_ioctl_attach = true; 10667 break; 10668 case PROBE_ATTACH_MODE_LINK: 10669 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10670 return libbpf_err_ptr(-ENOTSUP); 10671 break; 10672 case PROBE_ATTACH_MODE_DEFAULT: 10673 break; 10674 default: 10675 return libbpf_err_ptr(-EINVAL); 10676 } 10677 10678 if (!legacy) { 10679 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10680 func_name, offset, 10681 -1 /* pid */, 0 /* ref_ctr_off */); 10682 } else { 10683 char probe_name[256]; 10684 10685 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10686 func_name, offset); 10687 10688 legacy_probe = strdup(probe_name); 10689 if (!legacy_probe) 10690 return libbpf_err_ptr(-ENOMEM); 10691 10692 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10693 offset, -1 /* pid */); 10694 } 10695 if (pfd < 0) { 10696 err = -errno; 10697 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10698 prog->name, retprobe ? "kretprobe" : "kprobe", 10699 func_name, offset, 10700 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10701 goto err_out; 10702 } 10703 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10704 err = libbpf_get_error(link); 10705 if (err) { 10706 close(pfd); 10707 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10708 prog->name, retprobe ? "kretprobe" : "kprobe", 10709 func_name, offset, 10710 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10711 goto err_clean_legacy; 10712 } 10713 if (legacy) { 10714 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10715 10716 perf_link->legacy_probe_name = legacy_probe; 10717 perf_link->legacy_is_kprobe = true; 10718 perf_link->legacy_is_retprobe = retprobe; 10719 } 10720 10721 return link; 10722 10723 err_clean_legacy: 10724 if (legacy) 10725 remove_kprobe_event_legacy(legacy_probe, retprobe); 10726 err_out: 10727 free(legacy_probe); 10728 return libbpf_err_ptr(err); 10729 } 10730 10731 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10732 bool retprobe, 10733 const char *func_name) 10734 { 10735 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10736 .retprobe = retprobe, 10737 ); 10738 10739 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10740 } 10741 10742 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10743 const char *syscall_name, 10744 const struct bpf_ksyscall_opts *opts) 10745 { 10746 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10747 char func_name[128]; 10748 10749 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10750 return libbpf_err_ptr(-EINVAL); 10751 10752 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10753 /* arch_specific_syscall_pfx() should never return NULL here 10754 * because it is guarded by kernel_supports(). However, since 10755 * compiler does not know that we have an explicit conditional 10756 * as well. 10757 */ 10758 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10759 arch_specific_syscall_pfx() ? : "", syscall_name); 10760 } else { 10761 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10762 } 10763 10764 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10765 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10766 10767 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10768 } 10769 10770 /* Adapted from perf/util/string.c */ 10771 bool glob_match(const char *str, const char *pat) 10772 { 10773 while (*str && *pat && *pat != '*') { 10774 if (*pat == '?') { /* Matches any single character */ 10775 str++; 10776 pat++; 10777 continue; 10778 } 10779 if (*str != *pat) 10780 return false; 10781 str++; 10782 pat++; 10783 } 10784 /* Check wild card */ 10785 if (*pat == '*') { 10786 while (*pat == '*') 10787 pat++; 10788 if (!*pat) /* Tail wild card matches all */ 10789 return true; 10790 while (*str) 10791 if (glob_match(str++, pat)) 10792 return true; 10793 } 10794 return !*str && !*pat; 10795 } 10796 10797 struct kprobe_multi_resolve { 10798 const char *pattern; 10799 unsigned long *addrs; 10800 size_t cap; 10801 size_t cnt; 10802 }; 10803 10804 struct avail_kallsyms_data { 10805 char **syms; 10806 size_t cnt; 10807 struct kprobe_multi_resolve *res; 10808 }; 10809 10810 static int avail_func_cmp(const void *a, const void *b) 10811 { 10812 return strcmp(*(const char **)a, *(const char **)b); 10813 } 10814 10815 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10816 const char *sym_name, void *ctx) 10817 { 10818 struct avail_kallsyms_data *data = ctx; 10819 struct kprobe_multi_resolve *res = data->res; 10820 int err; 10821 10822 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10823 return 0; 10824 10825 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10826 if (err) 10827 return err; 10828 10829 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10830 return 0; 10831 } 10832 10833 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10834 { 10835 const char *available_functions_file = tracefs_available_filter_functions(); 10836 struct avail_kallsyms_data data; 10837 char sym_name[500]; 10838 FILE *f; 10839 int err = 0, ret, i; 10840 char **syms = NULL; 10841 size_t cap = 0, cnt = 0; 10842 10843 f = fopen(available_functions_file, "re"); 10844 if (!f) { 10845 err = -errno; 10846 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10847 return err; 10848 } 10849 10850 while (true) { 10851 char *name; 10852 10853 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10854 if (ret == EOF && feof(f)) 10855 break; 10856 10857 if (ret != 1) { 10858 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10859 err = -EINVAL; 10860 goto cleanup; 10861 } 10862 10863 if (!glob_match(sym_name, res->pattern)) 10864 continue; 10865 10866 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10867 if (err) 10868 goto cleanup; 10869 10870 name = strdup(sym_name); 10871 if (!name) { 10872 err = -errno; 10873 goto cleanup; 10874 } 10875 10876 syms[cnt++] = name; 10877 } 10878 10879 /* no entries found, bail out */ 10880 if (cnt == 0) { 10881 err = -ENOENT; 10882 goto cleanup; 10883 } 10884 10885 /* sort available functions */ 10886 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10887 10888 data.syms = syms; 10889 data.res = res; 10890 data.cnt = cnt; 10891 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10892 10893 if (res->cnt == 0) 10894 err = -ENOENT; 10895 10896 cleanup: 10897 for (i = 0; i < cnt; i++) 10898 free((char *)syms[i]); 10899 free(syms); 10900 10901 fclose(f); 10902 return err; 10903 } 10904 10905 static bool has_available_filter_functions_addrs(void) 10906 { 10907 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10908 } 10909 10910 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10911 { 10912 const char *available_path = tracefs_available_filter_functions_addrs(); 10913 char sym_name[500]; 10914 FILE *f; 10915 int ret, err = 0; 10916 unsigned long long sym_addr; 10917 10918 f = fopen(available_path, "re"); 10919 if (!f) { 10920 err = -errno; 10921 pr_warn("failed to open %s: %d\n", available_path, err); 10922 return err; 10923 } 10924 10925 while (true) { 10926 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10927 if (ret == EOF && feof(f)) 10928 break; 10929 10930 if (ret != 2) { 10931 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10932 ret); 10933 err = -EINVAL; 10934 goto cleanup; 10935 } 10936 10937 if (!glob_match(sym_name, res->pattern)) 10938 continue; 10939 10940 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10941 sizeof(*res->addrs), res->cnt + 1); 10942 if (err) 10943 goto cleanup; 10944 10945 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10946 } 10947 10948 if (res->cnt == 0) 10949 err = -ENOENT; 10950 10951 cleanup: 10952 fclose(f); 10953 return err; 10954 } 10955 10956 struct bpf_link * 10957 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10958 const char *pattern, 10959 const struct bpf_kprobe_multi_opts *opts) 10960 { 10961 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10962 struct kprobe_multi_resolve res = { 10963 .pattern = pattern, 10964 }; 10965 struct bpf_link *link = NULL; 10966 char errmsg[STRERR_BUFSIZE]; 10967 const unsigned long *addrs; 10968 int err, link_fd, prog_fd; 10969 const __u64 *cookies; 10970 const char **syms; 10971 bool retprobe; 10972 size_t cnt; 10973 10974 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10975 return libbpf_err_ptr(-EINVAL); 10976 10977 syms = OPTS_GET(opts, syms, false); 10978 addrs = OPTS_GET(opts, addrs, false); 10979 cnt = OPTS_GET(opts, cnt, false); 10980 cookies = OPTS_GET(opts, cookies, false); 10981 10982 if (!pattern && !addrs && !syms) 10983 return libbpf_err_ptr(-EINVAL); 10984 if (pattern && (addrs || syms || cookies || cnt)) 10985 return libbpf_err_ptr(-EINVAL); 10986 if (!pattern && !cnt) 10987 return libbpf_err_ptr(-EINVAL); 10988 if (addrs && syms) 10989 return libbpf_err_ptr(-EINVAL); 10990 10991 if (pattern) { 10992 if (has_available_filter_functions_addrs()) 10993 err = libbpf_available_kprobes_parse(&res); 10994 else 10995 err = libbpf_available_kallsyms_parse(&res); 10996 if (err) 10997 goto error; 10998 addrs = res.addrs; 10999 cnt = res.cnt; 11000 } 11001 11002 retprobe = OPTS_GET(opts, retprobe, false); 11003 11004 lopts.kprobe_multi.syms = syms; 11005 lopts.kprobe_multi.addrs = addrs; 11006 lopts.kprobe_multi.cookies = cookies; 11007 lopts.kprobe_multi.cnt = cnt; 11008 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11009 11010 link = calloc(1, sizeof(*link)); 11011 if (!link) { 11012 err = -ENOMEM; 11013 goto error; 11014 } 11015 link->detach = &bpf_link__detach_fd; 11016 11017 prog_fd = bpf_program__fd(prog); 11018 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11019 if (link_fd < 0) { 11020 err = -errno; 11021 pr_warn("prog '%s': failed to attach: %s\n", 11022 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11023 goto error; 11024 } 11025 link->fd = link_fd; 11026 free(res.addrs); 11027 return link; 11028 11029 error: 11030 free(link); 11031 free(res.addrs); 11032 return libbpf_err_ptr(err); 11033 } 11034 11035 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11036 { 11037 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11038 unsigned long offset = 0; 11039 const char *func_name; 11040 char *func; 11041 int n; 11042 11043 *link = NULL; 11044 11045 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11046 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11047 return 0; 11048 11049 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11050 if (opts.retprobe) 11051 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11052 else 11053 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11054 11055 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11056 if (n < 1) { 11057 pr_warn("kprobe name is invalid: %s\n", func_name); 11058 return -EINVAL; 11059 } 11060 if (opts.retprobe && offset != 0) { 11061 free(func); 11062 pr_warn("kretprobes do not support offset specification\n"); 11063 return -EINVAL; 11064 } 11065 11066 opts.offset = offset; 11067 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11068 free(func); 11069 return libbpf_get_error(*link); 11070 } 11071 11072 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11073 { 11074 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11075 const char *syscall_name; 11076 11077 *link = NULL; 11078 11079 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11080 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11081 return 0; 11082 11083 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11084 if (opts.retprobe) 11085 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11086 else 11087 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11088 11089 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11090 return *link ? 0 : -errno; 11091 } 11092 11093 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11094 { 11095 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11096 const char *spec; 11097 char *pattern; 11098 int n; 11099 11100 *link = NULL; 11101 11102 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11103 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11104 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11105 return 0; 11106 11107 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11108 if (opts.retprobe) 11109 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11110 else 11111 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11112 11113 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11114 if (n < 1) { 11115 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11116 return -EINVAL; 11117 } 11118 11119 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11120 free(pattern); 11121 return libbpf_get_error(*link); 11122 } 11123 11124 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11125 { 11126 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11127 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11128 int n, ret = -EINVAL; 11129 11130 *link = NULL; 11131 11132 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11133 &probe_type, &binary_path, &func_name); 11134 switch (n) { 11135 case 1: 11136 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11137 ret = 0; 11138 break; 11139 case 3: 11140 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11141 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11142 ret = libbpf_get_error(*link); 11143 break; 11144 default: 11145 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11146 prog->sec_name); 11147 break; 11148 } 11149 free(probe_type); 11150 free(binary_path); 11151 free(func_name); 11152 return ret; 11153 } 11154 11155 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11156 const char *binary_path, uint64_t offset) 11157 { 11158 int i; 11159 11160 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11161 11162 /* sanitize binary_path in the probe name */ 11163 for (i = 0; buf[i]; i++) { 11164 if (!isalnum(buf[i])) 11165 buf[i] = '_'; 11166 } 11167 } 11168 11169 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11170 const char *binary_path, size_t offset) 11171 { 11172 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11173 retprobe ? 'r' : 'p', 11174 retprobe ? "uretprobes" : "uprobes", 11175 probe_name, binary_path, offset); 11176 } 11177 11178 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11179 { 11180 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11181 retprobe ? "uretprobes" : "uprobes", probe_name); 11182 } 11183 11184 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11185 { 11186 char file[512]; 11187 11188 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11189 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11190 11191 return parse_uint_from_file(file, "%d\n"); 11192 } 11193 11194 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11195 const char *binary_path, size_t offset, int pid) 11196 { 11197 const size_t attr_sz = sizeof(struct perf_event_attr); 11198 struct perf_event_attr attr; 11199 int type, pfd, err; 11200 11201 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11202 if (err < 0) { 11203 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11204 binary_path, (size_t)offset, err); 11205 return err; 11206 } 11207 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11208 if (type < 0) { 11209 err = type; 11210 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11211 binary_path, offset, err); 11212 goto err_clean_legacy; 11213 } 11214 11215 memset(&attr, 0, attr_sz); 11216 attr.size = attr_sz; 11217 attr.config = type; 11218 attr.type = PERF_TYPE_TRACEPOINT; 11219 11220 pfd = syscall(__NR_perf_event_open, &attr, 11221 pid < 0 ? -1 : pid, /* pid */ 11222 pid == -1 ? 0 : -1, /* cpu */ 11223 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11224 if (pfd < 0) { 11225 err = -errno; 11226 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11227 goto err_clean_legacy; 11228 } 11229 return pfd; 11230 11231 err_clean_legacy: 11232 /* Clear the newly added legacy uprobe_event */ 11233 remove_uprobe_event_legacy(probe_name, retprobe); 11234 return err; 11235 } 11236 11237 /* Find offset of function name in archive specified by path. Currently 11238 * supported are .zip files that do not compress their contents, as used on 11239 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11240 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11241 * library functions. 11242 * 11243 * An overview of the APK format specifically provided here: 11244 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11245 */ 11246 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11247 const char *func_name) 11248 { 11249 struct zip_archive *archive; 11250 struct zip_entry entry; 11251 long ret; 11252 Elf *elf; 11253 11254 archive = zip_archive_open(archive_path); 11255 if (IS_ERR(archive)) { 11256 ret = PTR_ERR(archive); 11257 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11258 return ret; 11259 } 11260 11261 ret = zip_archive_find_entry(archive, file_name, &entry); 11262 if (ret) { 11263 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11264 archive_path, ret); 11265 goto out; 11266 } 11267 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11268 (unsigned long)entry.data_offset); 11269 11270 if (entry.compression) { 11271 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11272 archive_path); 11273 ret = -LIBBPF_ERRNO__FORMAT; 11274 goto out; 11275 } 11276 11277 elf = elf_memory((void *)entry.data, entry.data_length); 11278 if (!elf) { 11279 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11280 elf_errmsg(-1)); 11281 ret = -LIBBPF_ERRNO__LIBELF; 11282 goto out; 11283 } 11284 11285 ret = elf_find_func_offset(elf, file_name, func_name); 11286 if (ret > 0) { 11287 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11288 func_name, file_name, archive_path, entry.data_offset, ret, 11289 ret + entry.data_offset); 11290 ret += entry.data_offset; 11291 } 11292 elf_end(elf); 11293 11294 out: 11295 zip_archive_close(archive); 11296 return ret; 11297 } 11298 11299 static const char *arch_specific_lib_paths(void) 11300 { 11301 /* 11302 * Based on https://packages.debian.org/sid/libc6. 11303 * 11304 * Assume that the traced program is built for the same architecture 11305 * as libbpf, which should cover the vast majority of cases. 11306 */ 11307 #if defined(__x86_64__) 11308 return "/lib/x86_64-linux-gnu"; 11309 #elif defined(__i386__) 11310 return "/lib/i386-linux-gnu"; 11311 #elif defined(__s390x__) 11312 return "/lib/s390x-linux-gnu"; 11313 #elif defined(__s390__) 11314 return "/lib/s390-linux-gnu"; 11315 #elif defined(__arm__) && defined(__SOFTFP__) 11316 return "/lib/arm-linux-gnueabi"; 11317 #elif defined(__arm__) && !defined(__SOFTFP__) 11318 return "/lib/arm-linux-gnueabihf"; 11319 #elif defined(__aarch64__) 11320 return "/lib/aarch64-linux-gnu"; 11321 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11322 return "/lib/mips64el-linux-gnuabi64"; 11323 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11324 return "/lib/mipsel-linux-gnu"; 11325 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11326 return "/lib/powerpc64le-linux-gnu"; 11327 #elif defined(__sparc__) && defined(__arch64__) 11328 return "/lib/sparc64-linux-gnu"; 11329 #elif defined(__riscv) && __riscv_xlen == 64 11330 return "/lib/riscv64-linux-gnu"; 11331 #else 11332 return NULL; 11333 #endif 11334 } 11335 11336 /* Get full path to program/shared library. */ 11337 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11338 { 11339 const char *search_paths[3] = {}; 11340 int i, perm; 11341 11342 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11343 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11344 search_paths[1] = "/usr/lib64:/usr/lib"; 11345 search_paths[2] = arch_specific_lib_paths(); 11346 perm = R_OK; 11347 } else { 11348 search_paths[0] = getenv("PATH"); 11349 search_paths[1] = "/usr/bin:/usr/sbin"; 11350 perm = R_OK | X_OK; 11351 } 11352 11353 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11354 const char *s; 11355 11356 if (!search_paths[i]) 11357 continue; 11358 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11359 char *next_path; 11360 int seg_len; 11361 11362 if (s[0] == ':') 11363 s++; 11364 next_path = strchr(s, ':'); 11365 seg_len = next_path ? next_path - s : strlen(s); 11366 if (!seg_len) 11367 continue; 11368 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11369 /* ensure it has required permissions */ 11370 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11371 continue; 11372 pr_debug("resolved '%s' to '%s'\n", file, result); 11373 return 0; 11374 } 11375 } 11376 return -ENOENT; 11377 } 11378 11379 struct bpf_link * 11380 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11381 pid_t pid, 11382 const char *path, 11383 const char *func_pattern, 11384 const struct bpf_uprobe_multi_opts *opts) 11385 { 11386 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11387 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11388 unsigned long *resolved_offsets = NULL; 11389 int err = 0, link_fd, prog_fd; 11390 struct bpf_link *link = NULL; 11391 char errmsg[STRERR_BUFSIZE]; 11392 char full_path[PATH_MAX]; 11393 const __u64 *cookies; 11394 const char **syms; 11395 size_t cnt; 11396 11397 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11398 return libbpf_err_ptr(-EINVAL); 11399 11400 syms = OPTS_GET(opts, syms, NULL); 11401 offsets = OPTS_GET(opts, offsets, NULL); 11402 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11403 cookies = OPTS_GET(opts, cookies, NULL); 11404 cnt = OPTS_GET(opts, cnt, 0); 11405 11406 /* 11407 * User can specify 2 mutually exclusive set of inputs: 11408 * 11409 * 1) use only path/func_pattern/pid arguments 11410 * 11411 * 2) use path/pid with allowed combinations of: 11412 * syms/offsets/ref_ctr_offsets/cookies/cnt 11413 * 11414 * - syms and offsets are mutually exclusive 11415 * - ref_ctr_offsets and cookies are optional 11416 * 11417 * Any other usage results in error. 11418 */ 11419 11420 if (!path) 11421 return libbpf_err_ptr(-EINVAL); 11422 if (!func_pattern && cnt == 0) 11423 return libbpf_err_ptr(-EINVAL); 11424 11425 if (func_pattern) { 11426 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11427 return libbpf_err_ptr(-EINVAL); 11428 } else { 11429 if (!!syms == !!offsets) 11430 return libbpf_err_ptr(-EINVAL); 11431 } 11432 11433 if (func_pattern) { 11434 if (!strchr(path, '/')) { 11435 err = resolve_full_path(path, full_path, sizeof(full_path)); 11436 if (err) { 11437 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11438 prog->name, path, err); 11439 return libbpf_err_ptr(err); 11440 } 11441 path = full_path; 11442 } 11443 11444 err = elf_resolve_pattern_offsets(path, func_pattern, 11445 &resolved_offsets, &cnt); 11446 if (err < 0) 11447 return libbpf_err_ptr(err); 11448 offsets = resolved_offsets; 11449 } else if (syms) { 11450 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets); 11451 if (err < 0) 11452 return libbpf_err_ptr(err); 11453 offsets = resolved_offsets; 11454 } 11455 11456 lopts.uprobe_multi.path = path; 11457 lopts.uprobe_multi.offsets = offsets; 11458 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11459 lopts.uprobe_multi.cookies = cookies; 11460 lopts.uprobe_multi.cnt = cnt; 11461 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11462 11463 if (pid == 0) 11464 pid = getpid(); 11465 if (pid > 0) 11466 lopts.uprobe_multi.pid = pid; 11467 11468 link = calloc(1, sizeof(*link)); 11469 if (!link) { 11470 err = -ENOMEM; 11471 goto error; 11472 } 11473 link->detach = &bpf_link__detach_fd; 11474 11475 prog_fd = bpf_program__fd(prog); 11476 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11477 if (link_fd < 0) { 11478 err = -errno; 11479 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11480 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11481 goto error; 11482 } 11483 link->fd = link_fd; 11484 free(resolved_offsets); 11485 return link; 11486 11487 error: 11488 free(resolved_offsets); 11489 free(link); 11490 return libbpf_err_ptr(err); 11491 } 11492 11493 LIBBPF_API struct bpf_link * 11494 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11495 const char *binary_path, size_t func_offset, 11496 const struct bpf_uprobe_opts *opts) 11497 { 11498 const char *archive_path = NULL, *archive_sep = NULL; 11499 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11500 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11501 enum probe_attach_mode attach_mode; 11502 char full_path[PATH_MAX]; 11503 struct bpf_link *link; 11504 size_t ref_ctr_off; 11505 int pfd, err; 11506 bool retprobe, legacy; 11507 const char *func_name; 11508 11509 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11510 return libbpf_err_ptr(-EINVAL); 11511 11512 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11513 retprobe = OPTS_GET(opts, retprobe, false); 11514 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11515 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11516 11517 if (!binary_path) 11518 return libbpf_err_ptr(-EINVAL); 11519 11520 /* Check if "binary_path" refers to an archive. */ 11521 archive_sep = strstr(binary_path, "!/"); 11522 if (archive_sep) { 11523 full_path[0] = '\0'; 11524 libbpf_strlcpy(full_path, binary_path, 11525 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11526 archive_path = full_path; 11527 binary_path = archive_sep + 2; 11528 } else if (!strchr(binary_path, '/')) { 11529 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11530 if (err) { 11531 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11532 prog->name, binary_path, err); 11533 return libbpf_err_ptr(err); 11534 } 11535 binary_path = full_path; 11536 } 11537 func_name = OPTS_GET(opts, func_name, NULL); 11538 if (func_name) { 11539 long sym_off; 11540 11541 if (archive_path) { 11542 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11543 func_name); 11544 binary_path = archive_path; 11545 } else { 11546 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11547 } 11548 if (sym_off < 0) 11549 return libbpf_err_ptr(sym_off); 11550 func_offset += sym_off; 11551 } 11552 11553 legacy = determine_uprobe_perf_type() < 0; 11554 switch (attach_mode) { 11555 case PROBE_ATTACH_MODE_LEGACY: 11556 legacy = true; 11557 pe_opts.force_ioctl_attach = true; 11558 break; 11559 case PROBE_ATTACH_MODE_PERF: 11560 if (legacy) 11561 return libbpf_err_ptr(-ENOTSUP); 11562 pe_opts.force_ioctl_attach = true; 11563 break; 11564 case PROBE_ATTACH_MODE_LINK: 11565 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11566 return libbpf_err_ptr(-ENOTSUP); 11567 break; 11568 case PROBE_ATTACH_MODE_DEFAULT: 11569 break; 11570 default: 11571 return libbpf_err_ptr(-EINVAL); 11572 } 11573 11574 if (!legacy) { 11575 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11576 func_offset, pid, ref_ctr_off); 11577 } else { 11578 char probe_name[PATH_MAX + 64]; 11579 11580 if (ref_ctr_off) 11581 return libbpf_err_ptr(-EINVAL); 11582 11583 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11584 binary_path, func_offset); 11585 11586 legacy_probe = strdup(probe_name); 11587 if (!legacy_probe) 11588 return libbpf_err_ptr(-ENOMEM); 11589 11590 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11591 binary_path, func_offset, pid); 11592 } 11593 if (pfd < 0) { 11594 err = -errno; 11595 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11596 prog->name, retprobe ? "uretprobe" : "uprobe", 11597 binary_path, func_offset, 11598 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11599 goto err_out; 11600 } 11601 11602 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11603 err = libbpf_get_error(link); 11604 if (err) { 11605 close(pfd); 11606 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11607 prog->name, retprobe ? "uretprobe" : "uprobe", 11608 binary_path, func_offset, 11609 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11610 goto err_clean_legacy; 11611 } 11612 if (legacy) { 11613 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11614 11615 perf_link->legacy_probe_name = legacy_probe; 11616 perf_link->legacy_is_kprobe = false; 11617 perf_link->legacy_is_retprobe = retprobe; 11618 } 11619 return link; 11620 11621 err_clean_legacy: 11622 if (legacy) 11623 remove_uprobe_event_legacy(legacy_probe, retprobe); 11624 err_out: 11625 free(legacy_probe); 11626 return libbpf_err_ptr(err); 11627 } 11628 11629 /* Format of u[ret]probe section definition supporting auto-attach: 11630 * u[ret]probe/binary:function[+offset] 11631 * 11632 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11633 * full binary path via bpf_program__attach_uprobe_opts. 11634 * 11635 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11636 * specified (and auto-attach is not possible) or the above format is specified for 11637 * auto-attach. 11638 */ 11639 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11640 { 11641 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11642 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 11643 int n, c, ret = -EINVAL; 11644 long offset = 0; 11645 11646 *link = NULL; 11647 11648 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11649 &probe_type, &binary_path, &func_name); 11650 switch (n) { 11651 case 1: 11652 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11653 ret = 0; 11654 break; 11655 case 2: 11656 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11657 prog->name, prog->sec_name); 11658 break; 11659 case 3: 11660 /* check if user specifies `+offset`, if yes, this should be 11661 * the last part of the string, make sure sscanf read to EOL 11662 */ 11663 func_off = strrchr(func_name, '+'); 11664 if (func_off) { 11665 n = sscanf(func_off, "+%li%n", &offset, &c); 11666 if (n == 1 && *(func_off + c) == '\0') 11667 func_off[0] = '\0'; 11668 else 11669 offset = 0; 11670 } 11671 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11672 strcmp(probe_type, "uretprobe.s") == 0; 11673 if (opts.retprobe && offset != 0) { 11674 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11675 prog->name); 11676 break; 11677 } 11678 opts.func_name = func_name; 11679 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11680 ret = libbpf_get_error(*link); 11681 break; 11682 default: 11683 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11684 prog->sec_name); 11685 break; 11686 } 11687 free(probe_type); 11688 free(binary_path); 11689 free(func_name); 11690 11691 return ret; 11692 } 11693 11694 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11695 bool retprobe, pid_t pid, 11696 const char *binary_path, 11697 size_t func_offset) 11698 { 11699 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11700 11701 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11702 } 11703 11704 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11705 pid_t pid, const char *binary_path, 11706 const char *usdt_provider, const char *usdt_name, 11707 const struct bpf_usdt_opts *opts) 11708 { 11709 char resolved_path[512]; 11710 struct bpf_object *obj = prog->obj; 11711 struct bpf_link *link; 11712 __u64 usdt_cookie; 11713 int err; 11714 11715 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11716 return libbpf_err_ptr(-EINVAL); 11717 11718 if (bpf_program__fd(prog) < 0) { 11719 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11720 prog->name); 11721 return libbpf_err_ptr(-EINVAL); 11722 } 11723 11724 if (!binary_path) 11725 return libbpf_err_ptr(-EINVAL); 11726 11727 if (!strchr(binary_path, '/')) { 11728 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11729 if (err) { 11730 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11731 prog->name, binary_path, err); 11732 return libbpf_err_ptr(err); 11733 } 11734 binary_path = resolved_path; 11735 } 11736 11737 /* USDT manager is instantiated lazily on first USDT attach. It will 11738 * be destroyed together with BPF object in bpf_object__close(). 11739 */ 11740 if (IS_ERR(obj->usdt_man)) 11741 return libbpf_ptr(obj->usdt_man); 11742 if (!obj->usdt_man) { 11743 obj->usdt_man = usdt_manager_new(obj); 11744 if (IS_ERR(obj->usdt_man)) 11745 return libbpf_ptr(obj->usdt_man); 11746 } 11747 11748 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11749 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11750 usdt_provider, usdt_name, usdt_cookie); 11751 err = libbpf_get_error(link); 11752 if (err) 11753 return libbpf_err_ptr(err); 11754 return link; 11755 } 11756 11757 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11758 { 11759 char *path = NULL, *provider = NULL, *name = NULL; 11760 const char *sec_name; 11761 int n, err; 11762 11763 sec_name = bpf_program__section_name(prog); 11764 if (strcmp(sec_name, "usdt") == 0) { 11765 /* no auto-attach for just SEC("usdt") */ 11766 *link = NULL; 11767 return 0; 11768 } 11769 11770 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11771 if (n != 3) { 11772 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11773 sec_name); 11774 err = -EINVAL; 11775 } else { 11776 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11777 provider, name, NULL); 11778 err = libbpf_get_error(*link); 11779 } 11780 free(path); 11781 free(provider); 11782 free(name); 11783 return err; 11784 } 11785 11786 static int determine_tracepoint_id(const char *tp_category, 11787 const char *tp_name) 11788 { 11789 char file[PATH_MAX]; 11790 int ret; 11791 11792 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11793 tracefs_path(), tp_category, tp_name); 11794 if (ret < 0) 11795 return -errno; 11796 if (ret >= sizeof(file)) { 11797 pr_debug("tracepoint %s/%s path is too long\n", 11798 tp_category, tp_name); 11799 return -E2BIG; 11800 } 11801 return parse_uint_from_file(file, "%d\n"); 11802 } 11803 11804 static int perf_event_open_tracepoint(const char *tp_category, 11805 const char *tp_name) 11806 { 11807 const size_t attr_sz = sizeof(struct perf_event_attr); 11808 struct perf_event_attr attr; 11809 char errmsg[STRERR_BUFSIZE]; 11810 int tp_id, pfd, err; 11811 11812 tp_id = determine_tracepoint_id(tp_category, tp_name); 11813 if (tp_id < 0) { 11814 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11815 tp_category, tp_name, 11816 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11817 return tp_id; 11818 } 11819 11820 memset(&attr, 0, attr_sz); 11821 attr.type = PERF_TYPE_TRACEPOINT; 11822 attr.size = attr_sz; 11823 attr.config = tp_id; 11824 11825 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11826 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11827 if (pfd < 0) { 11828 err = -errno; 11829 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11830 tp_category, tp_name, 11831 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11832 return err; 11833 } 11834 return pfd; 11835 } 11836 11837 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11838 const char *tp_category, 11839 const char *tp_name, 11840 const struct bpf_tracepoint_opts *opts) 11841 { 11842 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11843 char errmsg[STRERR_BUFSIZE]; 11844 struct bpf_link *link; 11845 int pfd, err; 11846 11847 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11848 return libbpf_err_ptr(-EINVAL); 11849 11850 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11851 11852 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11853 if (pfd < 0) { 11854 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11855 prog->name, tp_category, tp_name, 11856 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11857 return libbpf_err_ptr(pfd); 11858 } 11859 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11860 err = libbpf_get_error(link); 11861 if (err) { 11862 close(pfd); 11863 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11864 prog->name, tp_category, tp_name, 11865 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11866 return libbpf_err_ptr(err); 11867 } 11868 return link; 11869 } 11870 11871 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11872 const char *tp_category, 11873 const char *tp_name) 11874 { 11875 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11876 } 11877 11878 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11879 { 11880 char *sec_name, *tp_cat, *tp_name; 11881 11882 *link = NULL; 11883 11884 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11885 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11886 return 0; 11887 11888 sec_name = strdup(prog->sec_name); 11889 if (!sec_name) 11890 return -ENOMEM; 11891 11892 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11893 if (str_has_pfx(prog->sec_name, "tp/")) 11894 tp_cat = sec_name + sizeof("tp/") - 1; 11895 else 11896 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11897 tp_name = strchr(tp_cat, '/'); 11898 if (!tp_name) { 11899 free(sec_name); 11900 return -EINVAL; 11901 } 11902 *tp_name = '\0'; 11903 tp_name++; 11904 11905 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11906 free(sec_name); 11907 return libbpf_get_error(*link); 11908 } 11909 11910 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11911 const char *tp_name) 11912 { 11913 char errmsg[STRERR_BUFSIZE]; 11914 struct bpf_link *link; 11915 int prog_fd, pfd; 11916 11917 prog_fd = bpf_program__fd(prog); 11918 if (prog_fd < 0) { 11919 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11920 return libbpf_err_ptr(-EINVAL); 11921 } 11922 11923 link = calloc(1, sizeof(*link)); 11924 if (!link) 11925 return libbpf_err_ptr(-ENOMEM); 11926 link->detach = &bpf_link__detach_fd; 11927 11928 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11929 if (pfd < 0) { 11930 pfd = -errno; 11931 free(link); 11932 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11933 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11934 return libbpf_err_ptr(pfd); 11935 } 11936 link->fd = pfd; 11937 return link; 11938 } 11939 11940 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11941 { 11942 static const char *const prefixes[] = { 11943 "raw_tp", 11944 "raw_tracepoint", 11945 "raw_tp.w", 11946 "raw_tracepoint.w", 11947 }; 11948 size_t i; 11949 const char *tp_name = NULL; 11950 11951 *link = NULL; 11952 11953 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11954 size_t pfx_len; 11955 11956 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11957 continue; 11958 11959 pfx_len = strlen(prefixes[i]); 11960 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11961 if (prog->sec_name[pfx_len] == '\0') 11962 return 0; 11963 11964 if (prog->sec_name[pfx_len] != '/') 11965 continue; 11966 11967 tp_name = prog->sec_name + pfx_len + 1; 11968 break; 11969 } 11970 11971 if (!tp_name) { 11972 pr_warn("prog '%s': invalid section name '%s'\n", 11973 prog->name, prog->sec_name); 11974 return -EINVAL; 11975 } 11976 11977 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11978 return libbpf_get_error(*link); 11979 } 11980 11981 /* Common logic for all BPF program types that attach to a btf_id */ 11982 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11983 const struct bpf_trace_opts *opts) 11984 { 11985 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11986 char errmsg[STRERR_BUFSIZE]; 11987 struct bpf_link *link; 11988 int prog_fd, pfd; 11989 11990 if (!OPTS_VALID(opts, bpf_trace_opts)) 11991 return libbpf_err_ptr(-EINVAL); 11992 11993 prog_fd = bpf_program__fd(prog); 11994 if (prog_fd < 0) { 11995 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11996 return libbpf_err_ptr(-EINVAL); 11997 } 11998 11999 link = calloc(1, sizeof(*link)); 12000 if (!link) 12001 return libbpf_err_ptr(-ENOMEM); 12002 link->detach = &bpf_link__detach_fd; 12003 12004 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12005 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12006 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12007 if (pfd < 0) { 12008 pfd = -errno; 12009 free(link); 12010 pr_warn("prog '%s': failed to attach: %s\n", 12011 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12012 return libbpf_err_ptr(pfd); 12013 } 12014 link->fd = pfd; 12015 return link; 12016 } 12017 12018 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12019 { 12020 return bpf_program__attach_btf_id(prog, NULL); 12021 } 12022 12023 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12024 const struct bpf_trace_opts *opts) 12025 { 12026 return bpf_program__attach_btf_id(prog, opts); 12027 } 12028 12029 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12030 { 12031 return bpf_program__attach_btf_id(prog, NULL); 12032 } 12033 12034 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12035 { 12036 *link = bpf_program__attach_trace(prog); 12037 return libbpf_get_error(*link); 12038 } 12039 12040 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12041 { 12042 *link = bpf_program__attach_lsm(prog); 12043 return libbpf_get_error(*link); 12044 } 12045 12046 static struct bpf_link * 12047 bpf_program_attach_fd(const struct bpf_program *prog, 12048 int target_fd, const char *target_name, 12049 const struct bpf_link_create_opts *opts) 12050 { 12051 enum bpf_attach_type attach_type; 12052 char errmsg[STRERR_BUFSIZE]; 12053 struct bpf_link *link; 12054 int prog_fd, link_fd; 12055 12056 prog_fd = bpf_program__fd(prog); 12057 if (prog_fd < 0) { 12058 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12059 return libbpf_err_ptr(-EINVAL); 12060 } 12061 12062 link = calloc(1, sizeof(*link)); 12063 if (!link) 12064 return libbpf_err_ptr(-ENOMEM); 12065 link->detach = &bpf_link__detach_fd; 12066 12067 attach_type = bpf_program__expected_attach_type(prog); 12068 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12069 if (link_fd < 0) { 12070 link_fd = -errno; 12071 free(link); 12072 pr_warn("prog '%s': failed to attach to %s: %s\n", 12073 prog->name, target_name, 12074 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12075 return libbpf_err_ptr(link_fd); 12076 } 12077 link->fd = link_fd; 12078 return link; 12079 } 12080 12081 struct bpf_link * 12082 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12083 { 12084 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12085 } 12086 12087 struct bpf_link * 12088 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12089 { 12090 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12091 } 12092 12093 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12094 { 12095 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12096 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12097 } 12098 12099 struct bpf_link * 12100 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12101 const struct bpf_tcx_opts *opts) 12102 { 12103 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12104 __u32 relative_id; 12105 int relative_fd; 12106 12107 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12108 return libbpf_err_ptr(-EINVAL); 12109 12110 relative_id = OPTS_GET(opts, relative_id, 0); 12111 relative_fd = OPTS_GET(opts, relative_fd, 0); 12112 12113 /* validate we don't have unexpected combinations of non-zero fields */ 12114 if (!ifindex) { 12115 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12116 prog->name); 12117 return libbpf_err_ptr(-EINVAL); 12118 } 12119 if (relative_fd && relative_id) { 12120 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12121 prog->name); 12122 return libbpf_err_ptr(-EINVAL); 12123 } 12124 12125 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12126 link_create_opts.tcx.relative_fd = relative_fd; 12127 link_create_opts.tcx.relative_id = relative_id; 12128 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12129 12130 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12131 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12132 } 12133 12134 struct bpf_link * 12135 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12136 const struct bpf_netkit_opts *opts) 12137 { 12138 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12139 __u32 relative_id; 12140 int relative_fd; 12141 12142 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12143 return libbpf_err_ptr(-EINVAL); 12144 12145 relative_id = OPTS_GET(opts, relative_id, 0); 12146 relative_fd = OPTS_GET(opts, relative_fd, 0); 12147 12148 /* validate we don't have unexpected combinations of non-zero fields */ 12149 if (!ifindex) { 12150 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12151 prog->name); 12152 return libbpf_err_ptr(-EINVAL); 12153 } 12154 if (relative_fd && relative_id) { 12155 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12156 prog->name); 12157 return libbpf_err_ptr(-EINVAL); 12158 } 12159 12160 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12161 link_create_opts.netkit.relative_fd = relative_fd; 12162 link_create_opts.netkit.relative_id = relative_id; 12163 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12164 12165 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12166 } 12167 12168 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12169 int target_fd, 12170 const char *attach_func_name) 12171 { 12172 int btf_id; 12173 12174 if (!!target_fd != !!attach_func_name) { 12175 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12176 prog->name); 12177 return libbpf_err_ptr(-EINVAL); 12178 } 12179 12180 if (prog->type != BPF_PROG_TYPE_EXT) { 12181 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12182 prog->name); 12183 return libbpf_err_ptr(-EINVAL); 12184 } 12185 12186 if (target_fd) { 12187 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12188 12189 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12190 if (btf_id < 0) 12191 return libbpf_err_ptr(btf_id); 12192 12193 target_opts.target_btf_id = btf_id; 12194 12195 return bpf_program_attach_fd(prog, target_fd, "freplace", 12196 &target_opts); 12197 } else { 12198 /* no target, so use raw_tracepoint_open for compatibility 12199 * with old kernels 12200 */ 12201 return bpf_program__attach_trace(prog); 12202 } 12203 } 12204 12205 struct bpf_link * 12206 bpf_program__attach_iter(const struct bpf_program *prog, 12207 const struct bpf_iter_attach_opts *opts) 12208 { 12209 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12210 char errmsg[STRERR_BUFSIZE]; 12211 struct bpf_link *link; 12212 int prog_fd, link_fd; 12213 __u32 target_fd = 0; 12214 12215 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12216 return libbpf_err_ptr(-EINVAL); 12217 12218 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12219 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12220 12221 prog_fd = bpf_program__fd(prog); 12222 if (prog_fd < 0) { 12223 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12224 return libbpf_err_ptr(-EINVAL); 12225 } 12226 12227 link = calloc(1, sizeof(*link)); 12228 if (!link) 12229 return libbpf_err_ptr(-ENOMEM); 12230 link->detach = &bpf_link__detach_fd; 12231 12232 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12233 &link_create_opts); 12234 if (link_fd < 0) { 12235 link_fd = -errno; 12236 free(link); 12237 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12238 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12239 return libbpf_err_ptr(link_fd); 12240 } 12241 link->fd = link_fd; 12242 return link; 12243 } 12244 12245 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12246 { 12247 *link = bpf_program__attach_iter(prog, NULL); 12248 return libbpf_get_error(*link); 12249 } 12250 12251 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12252 const struct bpf_netfilter_opts *opts) 12253 { 12254 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12255 struct bpf_link *link; 12256 int prog_fd, link_fd; 12257 12258 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12259 return libbpf_err_ptr(-EINVAL); 12260 12261 prog_fd = bpf_program__fd(prog); 12262 if (prog_fd < 0) { 12263 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12264 return libbpf_err_ptr(-EINVAL); 12265 } 12266 12267 link = calloc(1, sizeof(*link)); 12268 if (!link) 12269 return libbpf_err_ptr(-ENOMEM); 12270 12271 link->detach = &bpf_link__detach_fd; 12272 12273 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12274 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12275 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12276 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12277 12278 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12279 if (link_fd < 0) { 12280 char errmsg[STRERR_BUFSIZE]; 12281 12282 link_fd = -errno; 12283 free(link); 12284 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12285 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12286 return libbpf_err_ptr(link_fd); 12287 } 12288 link->fd = link_fd; 12289 12290 return link; 12291 } 12292 12293 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12294 { 12295 struct bpf_link *link = NULL; 12296 int err; 12297 12298 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12299 return libbpf_err_ptr(-EOPNOTSUPP); 12300 12301 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12302 if (err) 12303 return libbpf_err_ptr(err); 12304 12305 /* When calling bpf_program__attach() explicitly, auto-attach support 12306 * is expected to work, so NULL returned link is considered an error. 12307 * This is different for skeleton's attach, see comment in 12308 * bpf_object__attach_skeleton(). 12309 */ 12310 if (!link) 12311 return libbpf_err_ptr(-EOPNOTSUPP); 12312 12313 return link; 12314 } 12315 12316 struct bpf_link_struct_ops { 12317 struct bpf_link link; 12318 int map_fd; 12319 }; 12320 12321 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12322 { 12323 struct bpf_link_struct_ops *st_link; 12324 __u32 zero = 0; 12325 12326 st_link = container_of(link, struct bpf_link_struct_ops, link); 12327 12328 if (st_link->map_fd < 0) 12329 /* w/o a real link */ 12330 return bpf_map_delete_elem(link->fd, &zero); 12331 12332 return close(link->fd); 12333 } 12334 12335 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12336 { 12337 struct bpf_link_struct_ops *link; 12338 __u32 zero = 0; 12339 int err, fd; 12340 12341 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12342 return libbpf_err_ptr(-EINVAL); 12343 12344 link = calloc(1, sizeof(*link)); 12345 if (!link) 12346 return libbpf_err_ptr(-EINVAL); 12347 12348 /* kern_vdata should be prepared during the loading phase. */ 12349 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12350 /* It can be EBUSY if the map has been used to create or 12351 * update a link before. We don't allow updating the value of 12352 * a struct_ops once it is set. That ensures that the value 12353 * never changed. So, it is safe to skip EBUSY. 12354 */ 12355 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12356 free(link); 12357 return libbpf_err_ptr(err); 12358 } 12359 12360 link->link.detach = bpf_link__detach_struct_ops; 12361 12362 if (!(map->def.map_flags & BPF_F_LINK)) { 12363 /* w/o a real link */ 12364 link->link.fd = map->fd; 12365 link->map_fd = -1; 12366 return &link->link; 12367 } 12368 12369 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12370 if (fd < 0) { 12371 free(link); 12372 return libbpf_err_ptr(fd); 12373 } 12374 12375 link->link.fd = fd; 12376 link->map_fd = map->fd; 12377 12378 return &link->link; 12379 } 12380 12381 /* 12382 * Swap the back struct_ops of a link with a new struct_ops map. 12383 */ 12384 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12385 { 12386 struct bpf_link_struct_ops *st_ops_link; 12387 __u32 zero = 0; 12388 int err; 12389 12390 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12391 return -EINVAL; 12392 12393 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12394 /* Ensure the type of a link is correct */ 12395 if (st_ops_link->map_fd < 0) 12396 return -EINVAL; 12397 12398 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12399 /* It can be EBUSY if the map has been used to create or 12400 * update a link before. We don't allow updating the value of 12401 * a struct_ops once it is set. That ensures that the value 12402 * never changed. So, it is safe to skip EBUSY. 12403 */ 12404 if (err && err != -EBUSY) 12405 return err; 12406 12407 err = bpf_link_update(link->fd, map->fd, NULL); 12408 if (err < 0) 12409 return err; 12410 12411 st_ops_link->map_fd = map->fd; 12412 12413 return 0; 12414 } 12415 12416 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12417 void *private_data); 12418 12419 static enum bpf_perf_event_ret 12420 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12421 void **copy_mem, size_t *copy_size, 12422 bpf_perf_event_print_t fn, void *private_data) 12423 { 12424 struct perf_event_mmap_page *header = mmap_mem; 12425 __u64 data_head = ring_buffer_read_head(header); 12426 __u64 data_tail = header->data_tail; 12427 void *base = ((__u8 *)header) + page_size; 12428 int ret = LIBBPF_PERF_EVENT_CONT; 12429 struct perf_event_header *ehdr; 12430 size_t ehdr_size; 12431 12432 while (data_head != data_tail) { 12433 ehdr = base + (data_tail & (mmap_size - 1)); 12434 ehdr_size = ehdr->size; 12435 12436 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12437 void *copy_start = ehdr; 12438 size_t len_first = base + mmap_size - copy_start; 12439 size_t len_secnd = ehdr_size - len_first; 12440 12441 if (*copy_size < ehdr_size) { 12442 free(*copy_mem); 12443 *copy_mem = malloc(ehdr_size); 12444 if (!*copy_mem) { 12445 *copy_size = 0; 12446 ret = LIBBPF_PERF_EVENT_ERROR; 12447 break; 12448 } 12449 *copy_size = ehdr_size; 12450 } 12451 12452 memcpy(*copy_mem, copy_start, len_first); 12453 memcpy(*copy_mem + len_first, base, len_secnd); 12454 ehdr = *copy_mem; 12455 } 12456 12457 ret = fn(ehdr, private_data); 12458 data_tail += ehdr_size; 12459 if (ret != LIBBPF_PERF_EVENT_CONT) 12460 break; 12461 } 12462 12463 ring_buffer_write_tail(header, data_tail); 12464 return libbpf_err(ret); 12465 } 12466 12467 struct perf_buffer; 12468 12469 struct perf_buffer_params { 12470 struct perf_event_attr *attr; 12471 /* if event_cb is specified, it takes precendence */ 12472 perf_buffer_event_fn event_cb; 12473 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12474 perf_buffer_sample_fn sample_cb; 12475 perf_buffer_lost_fn lost_cb; 12476 void *ctx; 12477 int cpu_cnt; 12478 int *cpus; 12479 int *map_keys; 12480 }; 12481 12482 struct perf_cpu_buf { 12483 struct perf_buffer *pb; 12484 void *base; /* mmap()'ed memory */ 12485 void *buf; /* for reconstructing segmented data */ 12486 size_t buf_size; 12487 int fd; 12488 int cpu; 12489 int map_key; 12490 }; 12491 12492 struct perf_buffer { 12493 perf_buffer_event_fn event_cb; 12494 perf_buffer_sample_fn sample_cb; 12495 perf_buffer_lost_fn lost_cb; 12496 void *ctx; /* passed into callbacks */ 12497 12498 size_t page_size; 12499 size_t mmap_size; 12500 struct perf_cpu_buf **cpu_bufs; 12501 struct epoll_event *events; 12502 int cpu_cnt; /* number of allocated CPU buffers */ 12503 int epoll_fd; /* perf event FD */ 12504 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12505 }; 12506 12507 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12508 struct perf_cpu_buf *cpu_buf) 12509 { 12510 if (!cpu_buf) 12511 return; 12512 if (cpu_buf->base && 12513 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12514 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12515 if (cpu_buf->fd >= 0) { 12516 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12517 close(cpu_buf->fd); 12518 } 12519 free(cpu_buf->buf); 12520 free(cpu_buf); 12521 } 12522 12523 void perf_buffer__free(struct perf_buffer *pb) 12524 { 12525 int i; 12526 12527 if (IS_ERR_OR_NULL(pb)) 12528 return; 12529 if (pb->cpu_bufs) { 12530 for (i = 0; i < pb->cpu_cnt; i++) { 12531 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12532 12533 if (!cpu_buf) 12534 continue; 12535 12536 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12537 perf_buffer__free_cpu_buf(pb, cpu_buf); 12538 } 12539 free(pb->cpu_bufs); 12540 } 12541 if (pb->epoll_fd >= 0) 12542 close(pb->epoll_fd); 12543 free(pb->events); 12544 free(pb); 12545 } 12546 12547 static struct perf_cpu_buf * 12548 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12549 int cpu, int map_key) 12550 { 12551 struct perf_cpu_buf *cpu_buf; 12552 char msg[STRERR_BUFSIZE]; 12553 int err; 12554 12555 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12556 if (!cpu_buf) 12557 return ERR_PTR(-ENOMEM); 12558 12559 cpu_buf->pb = pb; 12560 cpu_buf->cpu = cpu; 12561 cpu_buf->map_key = map_key; 12562 12563 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12564 -1, PERF_FLAG_FD_CLOEXEC); 12565 if (cpu_buf->fd < 0) { 12566 err = -errno; 12567 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12568 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12569 goto error; 12570 } 12571 12572 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12573 PROT_READ | PROT_WRITE, MAP_SHARED, 12574 cpu_buf->fd, 0); 12575 if (cpu_buf->base == MAP_FAILED) { 12576 cpu_buf->base = NULL; 12577 err = -errno; 12578 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12579 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12580 goto error; 12581 } 12582 12583 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12584 err = -errno; 12585 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12586 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12587 goto error; 12588 } 12589 12590 return cpu_buf; 12591 12592 error: 12593 perf_buffer__free_cpu_buf(pb, cpu_buf); 12594 return (struct perf_cpu_buf *)ERR_PTR(err); 12595 } 12596 12597 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12598 struct perf_buffer_params *p); 12599 12600 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12601 perf_buffer_sample_fn sample_cb, 12602 perf_buffer_lost_fn lost_cb, 12603 void *ctx, 12604 const struct perf_buffer_opts *opts) 12605 { 12606 const size_t attr_sz = sizeof(struct perf_event_attr); 12607 struct perf_buffer_params p = {}; 12608 struct perf_event_attr attr; 12609 __u32 sample_period; 12610 12611 if (!OPTS_VALID(opts, perf_buffer_opts)) 12612 return libbpf_err_ptr(-EINVAL); 12613 12614 sample_period = OPTS_GET(opts, sample_period, 1); 12615 if (!sample_period) 12616 sample_period = 1; 12617 12618 memset(&attr, 0, attr_sz); 12619 attr.size = attr_sz; 12620 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12621 attr.type = PERF_TYPE_SOFTWARE; 12622 attr.sample_type = PERF_SAMPLE_RAW; 12623 attr.sample_period = sample_period; 12624 attr.wakeup_events = sample_period; 12625 12626 p.attr = &attr; 12627 p.sample_cb = sample_cb; 12628 p.lost_cb = lost_cb; 12629 p.ctx = ctx; 12630 12631 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12632 } 12633 12634 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12635 struct perf_event_attr *attr, 12636 perf_buffer_event_fn event_cb, void *ctx, 12637 const struct perf_buffer_raw_opts *opts) 12638 { 12639 struct perf_buffer_params p = {}; 12640 12641 if (!attr) 12642 return libbpf_err_ptr(-EINVAL); 12643 12644 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12645 return libbpf_err_ptr(-EINVAL); 12646 12647 p.attr = attr; 12648 p.event_cb = event_cb; 12649 p.ctx = ctx; 12650 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12651 p.cpus = OPTS_GET(opts, cpus, NULL); 12652 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12653 12654 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12655 } 12656 12657 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12658 struct perf_buffer_params *p) 12659 { 12660 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12661 struct bpf_map_info map; 12662 char msg[STRERR_BUFSIZE]; 12663 struct perf_buffer *pb; 12664 bool *online = NULL; 12665 __u32 map_info_len; 12666 int err, i, j, n; 12667 12668 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12669 pr_warn("page count should be power of two, but is %zu\n", 12670 page_cnt); 12671 return ERR_PTR(-EINVAL); 12672 } 12673 12674 /* best-effort sanity checks */ 12675 memset(&map, 0, sizeof(map)); 12676 map_info_len = sizeof(map); 12677 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12678 if (err) { 12679 err = -errno; 12680 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12681 * -EBADFD, -EFAULT, or -E2BIG on real error 12682 */ 12683 if (err != -EINVAL) { 12684 pr_warn("failed to get map info for map FD %d: %s\n", 12685 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12686 return ERR_PTR(err); 12687 } 12688 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12689 map_fd); 12690 } else { 12691 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12692 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12693 map.name); 12694 return ERR_PTR(-EINVAL); 12695 } 12696 } 12697 12698 pb = calloc(1, sizeof(*pb)); 12699 if (!pb) 12700 return ERR_PTR(-ENOMEM); 12701 12702 pb->event_cb = p->event_cb; 12703 pb->sample_cb = p->sample_cb; 12704 pb->lost_cb = p->lost_cb; 12705 pb->ctx = p->ctx; 12706 12707 pb->page_size = getpagesize(); 12708 pb->mmap_size = pb->page_size * page_cnt; 12709 pb->map_fd = map_fd; 12710 12711 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12712 if (pb->epoll_fd < 0) { 12713 err = -errno; 12714 pr_warn("failed to create epoll instance: %s\n", 12715 libbpf_strerror_r(err, msg, sizeof(msg))); 12716 goto error; 12717 } 12718 12719 if (p->cpu_cnt > 0) { 12720 pb->cpu_cnt = p->cpu_cnt; 12721 } else { 12722 pb->cpu_cnt = libbpf_num_possible_cpus(); 12723 if (pb->cpu_cnt < 0) { 12724 err = pb->cpu_cnt; 12725 goto error; 12726 } 12727 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12728 pb->cpu_cnt = map.max_entries; 12729 } 12730 12731 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12732 if (!pb->events) { 12733 err = -ENOMEM; 12734 pr_warn("failed to allocate events: out of memory\n"); 12735 goto error; 12736 } 12737 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12738 if (!pb->cpu_bufs) { 12739 err = -ENOMEM; 12740 pr_warn("failed to allocate buffers: out of memory\n"); 12741 goto error; 12742 } 12743 12744 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12745 if (err) { 12746 pr_warn("failed to get online CPU mask: %d\n", err); 12747 goto error; 12748 } 12749 12750 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12751 struct perf_cpu_buf *cpu_buf; 12752 int cpu, map_key; 12753 12754 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12755 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12756 12757 /* in case user didn't explicitly requested particular CPUs to 12758 * be attached to, skip offline/not present CPUs 12759 */ 12760 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12761 continue; 12762 12763 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12764 if (IS_ERR(cpu_buf)) { 12765 err = PTR_ERR(cpu_buf); 12766 goto error; 12767 } 12768 12769 pb->cpu_bufs[j] = cpu_buf; 12770 12771 err = bpf_map_update_elem(pb->map_fd, &map_key, 12772 &cpu_buf->fd, 0); 12773 if (err) { 12774 err = -errno; 12775 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12776 cpu, map_key, cpu_buf->fd, 12777 libbpf_strerror_r(err, msg, sizeof(msg))); 12778 goto error; 12779 } 12780 12781 pb->events[j].events = EPOLLIN; 12782 pb->events[j].data.ptr = cpu_buf; 12783 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12784 &pb->events[j]) < 0) { 12785 err = -errno; 12786 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12787 cpu, cpu_buf->fd, 12788 libbpf_strerror_r(err, msg, sizeof(msg))); 12789 goto error; 12790 } 12791 j++; 12792 } 12793 pb->cpu_cnt = j; 12794 free(online); 12795 12796 return pb; 12797 12798 error: 12799 free(online); 12800 if (pb) 12801 perf_buffer__free(pb); 12802 return ERR_PTR(err); 12803 } 12804 12805 struct perf_sample_raw { 12806 struct perf_event_header header; 12807 uint32_t size; 12808 char data[]; 12809 }; 12810 12811 struct perf_sample_lost { 12812 struct perf_event_header header; 12813 uint64_t id; 12814 uint64_t lost; 12815 uint64_t sample_id; 12816 }; 12817 12818 static enum bpf_perf_event_ret 12819 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12820 { 12821 struct perf_cpu_buf *cpu_buf = ctx; 12822 struct perf_buffer *pb = cpu_buf->pb; 12823 void *data = e; 12824 12825 /* user wants full control over parsing perf event */ 12826 if (pb->event_cb) 12827 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12828 12829 switch (e->type) { 12830 case PERF_RECORD_SAMPLE: { 12831 struct perf_sample_raw *s = data; 12832 12833 if (pb->sample_cb) 12834 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12835 break; 12836 } 12837 case PERF_RECORD_LOST: { 12838 struct perf_sample_lost *s = data; 12839 12840 if (pb->lost_cb) 12841 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12842 break; 12843 } 12844 default: 12845 pr_warn("unknown perf sample type %d\n", e->type); 12846 return LIBBPF_PERF_EVENT_ERROR; 12847 } 12848 return LIBBPF_PERF_EVENT_CONT; 12849 } 12850 12851 static int perf_buffer__process_records(struct perf_buffer *pb, 12852 struct perf_cpu_buf *cpu_buf) 12853 { 12854 enum bpf_perf_event_ret ret; 12855 12856 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12857 pb->page_size, &cpu_buf->buf, 12858 &cpu_buf->buf_size, 12859 perf_buffer__process_record, cpu_buf); 12860 if (ret != LIBBPF_PERF_EVENT_CONT) 12861 return ret; 12862 return 0; 12863 } 12864 12865 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12866 { 12867 return pb->epoll_fd; 12868 } 12869 12870 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12871 { 12872 int i, cnt, err; 12873 12874 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12875 if (cnt < 0) 12876 return -errno; 12877 12878 for (i = 0; i < cnt; i++) { 12879 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12880 12881 err = perf_buffer__process_records(pb, cpu_buf); 12882 if (err) { 12883 pr_warn("error while processing records: %d\n", err); 12884 return libbpf_err(err); 12885 } 12886 } 12887 return cnt; 12888 } 12889 12890 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12891 * manager. 12892 */ 12893 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12894 { 12895 return pb->cpu_cnt; 12896 } 12897 12898 /* 12899 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12900 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12901 * select()/poll()/epoll() Linux syscalls. 12902 */ 12903 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12904 { 12905 struct perf_cpu_buf *cpu_buf; 12906 12907 if (buf_idx >= pb->cpu_cnt) 12908 return libbpf_err(-EINVAL); 12909 12910 cpu_buf = pb->cpu_bufs[buf_idx]; 12911 if (!cpu_buf) 12912 return libbpf_err(-ENOENT); 12913 12914 return cpu_buf->fd; 12915 } 12916 12917 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12918 { 12919 struct perf_cpu_buf *cpu_buf; 12920 12921 if (buf_idx >= pb->cpu_cnt) 12922 return libbpf_err(-EINVAL); 12923 12924 cpu_buf = pb->cpu_bufs[buf_idx]; 12925 if (!cpu_buf) 12926 return libbpf_err(-ENOENT); 12927 12928 *buf = cpu_buf->base; 12929 *buf_size = pb->mmap_size; 12930 return 0; 12931 } 12932 12933 /* 12934 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12935 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12936 * consume, do nothing and return success. 12937 * Returns: 12938 * - 0 on success; 12939 * - <0 on failure. 12940 */ 12941 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12942 { 12943 struct perf_cpu_buf *cpu_buf; 12944 12945 if (buf_idx >= pb->cpu_cnt) 12946 return libbpf_err(-EINVAL); 12947 12948 cpu_buf = pb->cpu_bufs[buf_idx]; 12949 if (!cpu_buf) 12950 return libbpf_err(-ENOENT); 12951 12952 return perf_buffer__process_records(pb, cpu_buf); 12953 } 12954 12955 int perf_buffer__consume(struct perf_buffer *pb) 12956 { 12957 int i, err; 12958 12959 for (i = 0; i < pb->cpu_cnt; i++) { 12960 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12961 12962 if (!cpu_buf) 12963 continue; 12964 12965 err = perf_buffer__process_records(pb, cpu_buf); 12966 if (err) { 12967 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12968 return libbpf_err(err); 12969 } 12970 } 12971 return 0; 12972 } 12973 12974 int bpf_program__set_attach_target(struct bpf_program *prog, 12975 int attach_prog_fd, 12976 const char *attach_func_name) 12977 { 12978 int btf_obj_fd = 0, btf_id = 0, err; 12979 12980 if (!prog || attach_prog_fd < 0) 12981 return libbpf_err(-EINVAL); 12982 12983 if (prog->obj->loaded) 12984 return libbpf_err(-EINVAL); 12985 12986 if (attach_prog_fd && !attach_func_name) { 12987 /* remember attach_prog_fd and let bpf_program__load() find 12988 * BTF ID during the program load 12989 */ 12990 prog->attach_prog_fd = attach_prog_fd; 12991 return 0; 12992 } 12993 12994 if (attach_prog_fd) { 12995 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12996 attach_prog_fd); 12997 if (btf_id < 0) 12998 return libbpf_err(btf_id); 12999 } else { 13000 if (!attach_func_name) 13001 return libbpf_err(-EINVAL); 13002 13003 /* load btf_vmlinux, if not yet */ 13004 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13005 if (err) 13006 return libbpf_err(err); 13007 err = find_kernel_btf_id(prog->obj, attach_func_name, 13008 prog->expected_attach_type, 13009 &btf_obj_fd, &btf_id); 13010 if (err) 13011 return libbpf_err(err); 13012 } 13013 13014 prog->attach_btf_id = btf_id; 13015 prog->attach_btf_obj_fd = btf_obj_fd; 13016 prog->attach_prog_fd = attach_prog_fd; 13017 return 0; 13018 } 13019 13020 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13021 { 13022 int err = 0, n, len, start, end = -1; 13023 bool *tmp; 13024 13025 *mask = NULL; 13026 *mask_sz = 0; 13027 13028 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13029 while (*s) { 13030 if (*s == ',' || *s == '\n') { 13031 s++; 13032 continue; 13033 } 13034 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13035 if (n <= 0 || n > 2) { 13036 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13037 err = -EINVAL; 13038 goto cleanup; 13039 } else if (n == 1) { 13040 end = start; 13041 } 13042 if (start < 0 || start > end) { 13043 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13044 start, end, s); 13045 err = -EINVAL; 13046 goto cleanup; 13047 } 13048 tmp = realloc(*mask, end + 1); 13049 if (!tmp) { 13050 err = -ENOMEM; 13051 goto cleanup; 13052 } 13053 *mask = tmp; 13054 memset(tmp + *mask_sz, 0, start - *mask_sz); 13055 memset(tmp + start, 1, end - start + 1); 13056 *mask_sz = end + 1; 13057 s += len; 13058 } 13059 if (!*mask_sz) { 13060 pr_warn("Empty CPU range\n"); 13061 return -EINVAL; 13062 } 13063 return 0; 13064 cleanup: 13065 free(*mask); 13066 *mask = NULL; 13067 return err; 13068 } 13069 13070 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13071 { 13072 int fd, err = 0, len; 13073 char buf[128]; 13074 13075 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13076 if (fd < 0) { 13077 err = -errno; 13078 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13079 return err; 13080 } 13081 len = read(fd, buf, sizeof(buf)); 13082 close(fd); 13083 if (len <= 0) { 13084 err = len ? -errno : -EINVAL; 13085 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13086 return err; 13087 } 13088 if (len >= sizeof(buf)) { 13089 pr_warn("CPU mask is too big in file %s\n", fcpu); 13090 return -E2BIG; 13091 } 13092 buf[len] = '\0'; 13093 13094 return parse_cpu_mask_str(buf, mask, mask_sz); 13095 } 13096 13097 int libbpf_num_possible_cpus(void) 13098 { 13099 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13100 static int cpus; 13101 int err, n, i, tmp_cpus; 13102 bool *mask; 13103 13104 tmp_cpus = READ_ONCE(cpus); 13105 if (tmp_cpus > 0) 13106 return tmp_cpus; 13107 13108 err = parse_cpu_mask_file(fcpu, &mask, &n); 13109 if (err) 13110 return libbpf_err(err); 13111 13112 tmp_cpus = 0; 13113 for (i = 0; i < n; i++) { 13114 if (mask[i]) 13115 tmp_cpus++; 13116 } 13117 free(mask); 13118 13119 WRITE_ONCE(cpus, tmp_cpus); 13120 return tmp_cpus; 13121 } 13122 13123 static int populate_skeleton_maps(const struct bpf_object *obj, 13124 struct bpf_map_skeleton *maps, 13125 size_t map_cnt) 13126 { 13127 int i; 13128 13129 for (i = 0; i < map_cnt; i++) { 13130 struct bpf_map **map = maps[i].map; 13131 const char *name = maps[i].name; 13132 void **mmaped = maps[i].mmaped; 13133 13134 *map = bpf_object__find_map_by_name(obj, name); 13135 if (!*map) { 13136 pr_warn("failed to find skeleton map '%s'\n", name); 13137 return -ESRCH; 13138 } 13139 13140 /* externs shouldn't be pre-setup from user code */ 13141 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13142 *mmaped = (*map)->mmaped; 13143 } 13144 return 0; 13145 } 13146 13147 static int populate_skeleton_progs(const struct bpf_object *obj, 13148 struct bpf_prog_skeleton *progs, 13149 size_t prog_cnt) 13150 { 13151 int i; 13152 13153 for (i = 0; i < prog_cnt; i++) { 13154 struct bpf_program **prog = progs[i].prog; 13155 const char *name = progs[i].name; 13156 13157 *prog = bpf_object__find_program_by_name(obj, name); 13158 if (!*prog) { 13159 pr_warn("failed to find skeleton program '%s'\n", name); 13160 return -ESRCH; 13161 } 13162 } 13163 return 0; 13164 } 13165 13166 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13167 const struct bpf_object_open_opts *opts) 13168 { 13169 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13170 .object_name = s->name, 13171 ); 13172 struct bpf_object *obj; 13173 int err; 13174 13175 /* Attempt to preserve opts->object_name, unless overriden by user 13176 * explicitly. Overwriting object name for skeletons is discouraged, 13177 * as it breaks global data maps, because they contain object name 13178 * prefix as their own map name prefix. When skeleton is generated, 13179 * bpftool is making an assumption that this name will stay the same. 13180 */ 13181 if (opts) { 13182 memcpy(&skel_opts, opts, sizeof(*opts)); 13183 if (!opts->object_name) 13184 skel_opts.object_name = s->name; 13185 } 13186 13187 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13188 err = libbpf_get_error(obj); 13189 if (err) { 13190 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13191 s->name, err); 13192 return libbpf_err(err); 13193 } 13194 13195 *s->obj = obj; 13196 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13197 if (err) { 13198 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13199 return libbpf_err(err); 13200 } 13201 13202 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13203 if (err) { 13204 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13205 return libbpf_err(err); 13206 } 13207 13208 return 0; 13209 } 13210 13211 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13212 { 13213 int err, len, var_idx, i; 13214 const char *var_name; 13215 const struct bpf_map *map; 13216 struct btf *btf; 13217 __u32 map_type_id; 13218 const struct btf_type *map_type, *var_type; 13219 const struct bpf_var_skeleton *var_skel; 13220 struct btf_var_secinfo *var; 13221 13222 if (!s->obj) 13223 return libbpf_err(-EINVAL); 13224 13225 btf = bpf_object__btf(s->obj); 13226 if (!btf) { 13227 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13228 bpf_object__name(s->obj)); 13229 return libbpf_err(-errno); 13230 } 13231 13232 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13233 if (err) { 13234 pr_warn("failed to populate subskeleton maps: %d\n", err); 13235 return libbpf_err(err); 13236 } 13237 13238 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13239 if (err) { 13240 pr_warn("failed to populate subskeleton maps: %d\n", err); 13241 return libbpf_err(err); 13242 } 13243 13244 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13245 var_skel = &s->vars[var_idx]; 13246 map = *var_skel->map; 13247 map_type_id = bpf_map__btf_value_type_id(map); 13248 map_type = btf__type_by_id(btf, map_type_id); 13249 13250 if (!btf_is_datasec(map_type)) { 13251 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13252 bpf_map__name(map), 13253 __btf_kind_str(btf_kind(map_type))); 13254 return libbpf_err(-EINVAL); 13255 } 13256 13257 len = btf_vlen(map_type); 13258 var = btf_var_secinfos(map_type); 13259 for (i = 0; i < len; i++, var++) { 13260 var_type = btf__type_by_id(btf, var->type); 13261 var_name = btf__name_by_offset(btf, var_type->name_off); 13262 if (strcmp(var_name, var_skel->name) == 0) { 13263 *var_skel->addr = map->mmaped + var->offset; 13264 break; 13265 } 13266 } 13267 } 13268 return 0; 13269 } 13270 13271 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13272 { 13273 if (!s) 13274 return; 13275 free(s->maps); 13276 free(s->progs); 13277 free(s->vars); 13278 free(s); 13279 } 13280 13281 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13282 { 13283 int i, err; 13284 13285 err = bpf_object__load(*s->obj); 13286 if (err) { 13287 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13288 return libbpf_err(err); 13289 } 13290 13291 for (i = 0; i < s->map_cnt; i++) { 13292 struct bpf_map *map = *s->maps[i].map; 13293 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13294 int prot, map_fd = bpf_map__fd(map); 13295 void **mmaped = s->maps[i].mmaped; 13296 13297 if (!mmaped) 13298 continue; 13299 13300 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13301 *mmaped = NULL; 13302 continue; 13303 } 13304 13305 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13306 prot = PROT_READ; 13307 else 13308 prot = PROT_READ | PROT_WRITE; 13309 13310 /* Remap anonymous mmap()-ed "map initialization image" as 13311 * a BPF map-backed mmap()-ed memory, but preserving the same 13312 * memory address. This will cause kernel to change process' 13313 * page table to point to a different piece of kernel memory, 13314 * but from userspace point of view memory address (and its 13315 * contents, being identical at this point) will stay the 13316 * same. This mapping will be released by bpf_object__close() 13317 * as per normal clean up procedure, so we don't need to worry 13318 * about it from skeleton's clean up perspective. 13319 */ 13320 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13321 if (*mmaped == MAP_FAILED) { 13322 err = -errno; 13323 *mmaped = NULL; 13324 pr_warn("failed to re-mmap() map '%s': %d\n", 13325 bpf_map__name(map), err); 13326 return libbpf_err(err); 13327 } 13328 } 13329 13330 return 0; 13331 } 13332 13333 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13334 { 13335 int i, err; 13336 13337 for (i = 0; i < s->prog_cnt; i++) { 13338 struct bpf_program *prog = *s->progs[i].prog; 13339 struct bpf_link **link = s->progs[i].link; 13340 13341 if (!prog->autoload || !prog->autoattach) 13342 continue; 13343 13344 /* auto-attaching not supported for this program */ 13345 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13346 continue; 13347 13348 /* if user already set the link manually, don't attempt auto-attach */ 13349 if (*link) 13350 continue; 13351 13352 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13353 if (err) { 13354 pr_warn("prog '%s': failed to auto-attach: %d\n", 13355 bpf_program__name(prog), err); 13356 return libbpf_err(err); 13357 } 13358 13359 /* It's possible that for some SEC() definitions auto-attach 13360 * is supported in some cases (e.g., if definition completely 13361 * specifies target information), but is not in other cases. 13362 * SEC("uprobe") is one such case. If user specified target 13363 * binary and function name, such BPF program can be 13364 * auto-attached. But if not, it shouldn't trigger skeleton's 13365 * attach to fail. It should just be skipped. 13366 * attach_fn signals such case with returning 0 (no error) and 13367 * setting link to NULL. 13368 */ 13369 } 13370 13371 return 0; 13372 } 13373 13374 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13375 { 13376 int i; 13377 13378 for (i = 0; i < s->prog_cnt; i++) { 13379 struct bpf_link **link = s->progs[i].link; 13380 13381 bpf_link__destroy(*link); 13382 *link = NULL; 13383 } 13384 } 13385 13386 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13387 { 13388 if (!s) 13389 return; 13390 13391 if (s->progs) 13392 bpf_object__detach_skeleton(s); 13393 if (s->obj) 13394 bpf_object__close(*s->obj); 13395 free(s->maps); 13396 free(s->progs); 13397 free(s); 13398 } 13399