1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 }; 121 122 static const char * const link_type_name[] = { 123 [BPF_LINK_TYPE_UNSPEC] = "unspec", 124 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 125 [BPF_LINK_TYPE_TRACING] = "tracing", 126 [BPF_LINK_TYPE_CGROUP] = "cgroup", 127 [BPF_LINK_TYPE_ITER] = "iter", 128 [BPF_LINK_TYPE_NETNS] = "netns", 129 [BPF_LINK_TYPE_XDP] = "xdp", 130 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 131 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 132 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 133 }; 134 135 static const char * const map_type_name[] = { 136 [BPF_MAP_TYPE_UNSPEC] = "unspec", 137 [BPF_MAP_TYPE_HASH] = "hash", 138 [BPF_MAP_TYPE_ARRAY] = "array", 139 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 140 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 141 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 142 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 143 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 144 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 145 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 146 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 147 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 148 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 149 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 150 [BPF_MAP_TYPE_DEVMAP] = "devmap", 151 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 152 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 153 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 154 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 155 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 156 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 157 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 158 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 159 [BPF_MAP_TYPE_QUEUE] = "queue", 160 [BPF_MAP_TYPE_STACK] = "stack", 161 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 162 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 163 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 164 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 165 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 166 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 167 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 168 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 169 }; 170 171 static const char * const prog_type_name[] = { 172 [BPF_PROG_TYPE_UNSPEC] = "unspec", 173 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 174 [BPF_PROG_TYPE_KPROBE] = "kprobe", 175 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 176 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 177 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 178 [BPF_PROG_TYPE_XDP] = "xdp", 179 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 180 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 181 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 182 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 183 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 184 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 185 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 186 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 187 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 188 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 189 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 190 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 191 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 192 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 193 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 194 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 195 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 196 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 197 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 198 [BPF_PROG_TYPE_TRACING] = "tracing", 199 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 200 [BPF_PROG_TYPE_EXT] = "ext", 201 [BPF_PROG_TYPE_LSM] = "lsm", 202 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 203 [BPF_PROG_TYPE_SYSCALL] = "syscall", 204 }; 205 206 static int __base_pr(enum libbpf_print_level level, const char *format, 207 va_list args) 208 { 209 if (level == LIBBPF_DEBUG) 210 return 0; 211 212 return vfprintf(stderr, format, args); 213 } 214 215 static libbpf_print_fn_t __libbpf_pr = __base_pr; 216 217 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 218 { 219 libbpf_print_fn_t old_print_fn; 220 221 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 222 223 return old_print_fn; 224 } 225 226 __printf(2, 3) 227 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 228 { 229 va_list args; 230 int old_errno; 231 libbpf_print_fn_t print_fn; 232 233 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 234 if (!print_fn) 235 return; 236 237 old_errno = errno; 238 239 va_start(args, format); 240 __libbpf_pr(level, format, args); 241 va_end(args); 242 243 errno = old_errno; 244 } 245 246 static void pr_perm_msg(int err) 247 { 248 struct rlimit limit; 249 char buf[100]; 250 251 if (err != -EPERM || geteuid() != 0) 252 return; 253 254 err = getrlimit(RLIMIT_MEMLOCK, &limit); 255 if (err) 256 return; 257 258 if (limit.rlim_cur == RLIM_INFINITY) 259 return; 260 261 if (limit.rlim_cur < 1024) 262 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 263 else if (limit.rlim_cur < 1024*1024) 264 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 265 else 266 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 267 268 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 269 buf); 270 } 271 272 #define STRERR_BUFSIZE 128 273 274 /* Copied from tools/perf/util/util.h */ 275 #ifndef zfree 276 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 277 #endif 278 279 #ifndef zclose 280 # define zclose(fd) ({ \ 281 int ___err = 0; \ 282 if ((fd) >= 0) \ 283 ___err = close((fd)); \ 284 fd = -1; \ 285 ___err; }) 286 #endif 287 288 static inline __u64 ptr_to_u64(const void *ptr) 289 { 290 return (__u64) (unsigned long) ptr; 291 } 292 293 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 294 { 295 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 296 return 0; 297 } 298 299 __u32 libbpf_major_version(void) 300 { 301 return LIBBPF_MAJOR_VERSION; 302 } 303 304 __u32 libbpf_minor_version(void) 305 { 306 return LIBBPF_MINOR_VERSION; 307 } 308 309 const char *libbpf_version_string(void) 310 { 311 #define __S(X) #X 312 #define _S(X) __S(X) 313 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 314 #undef _S 315 #undef __S 316 } 317 318 enum reloc_type { 319 RELO_LD64, 320 RELO_CALL, 321 RELO_DATA, 322 RELO_EXTERN_LD64, 323 RELO_EXTERN_CALL, 324 RELO_SUBPROG_ADDR, 325 RELO_CORE, 326 }; 327 328 struct reloc_desc { 329 enum reloc_type type; 330 int insn_idx; 331 union { 332 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 333 struct { 334 int map_idx; 335 int sym_off; 336 }; 337 }; 338 }; 339 340 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 341 enum sec_def_flags { 342 SEC_NONE = 0, 343 /* expected_attach_type is optional, if kernel doesn't support that */ 344 SEC_EXP_ATTACH_OPT = 1, 345 /* legacy, only used by libbpf_get_type_names() and 346 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 347 * This used to be associated with cgroup (and few other) BPF programs 348 * that were attachable through BPF_PROG_ATTACH command. Pretty 349 * meaningless nowadays, though. 350 */ 351 SEC_ATTACHABLE = 2, 352 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 353 /* attachment target is specified through BTF ID in either kernel or 354 * other BPF program's BTF object 355 */ 356 SEC_ATTACH_BTF = 4, 357 /* BPF program type allows sleeping/blocking in kernel */ 358 SEC_SLEEPABLE = 8, 359 /* BPF program support non-linear XDP buffer */ 360 SEC_XDP_FRAGS = 16, 361 }; 362 363 struct bpf_sec_def { 364 char *sec; 365 enum bpf_prog_type prog_type; 366 enum bpf_attach_type expected_attach_type; 367 long cookie; 368 int handler_id; 369 370 libbpf_prog_setup_fn_t prog_setup_fn; 371 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 372 libbpf_prog_attach_fn_t prog_attach_fn; 373 }; 374 375 /* 376 * bpf_prog should be a better name but it has been used in 377 * linux/filter.h. 378 */ 379 struct bpf_program { 380 char *name; 381 char *sec_name; 382 size_t sec_idx; 383 const struct bpf_sec_def *sec_def; 384 /* this program's instruction offset (in number of instructions) 385 * within its containing ELF section 386 */ 387 size_t sec_insn_off; 388 /* number of original instructions in ELF section belonging to this 389 * program, not taking into account subprogram instructions possible 390 * appended later during relocation 391 */ 392 size_t sec_insn_cnt; 393 /* Offset (in number of instructions) of the start of instruction 394 * belonging to this BPF program within its containing main BPF 395 * program. For the entry-point (main) BPF program, this is always 396 * zero. For a sub-program, this gets reset before each of main BPF 397 * programs are processed and relocated and is used to determined 398 * whether sub-program was already appended to the main program, and 399 * if yes, at which instruction offset. 400 */ 401 size_t sub_insn_off; 402 403 /* instructions that belong to BPF program; insns[0] is located at 404 * sec_insn_off instruction within its ELF section in ELF file, so 405 * when mapping ELF file instruction index to the local instruction, 406 * one needs to subtract sec_insn_off; and vice versa. 407 */ 408 struct bpf_insn *insns; 409 /* actual number of instruction in this BPF program's image; for 410 * entry-point BPF programs this includes the size of main program 411 * itself plus all the used sub-programs, appended at the end 412 */ 413 size_t insns_cnt; 414 415 struct reloc_desc *reloc_desc; 416 int nr_reloc; 417 418 /* BPF verifier log settings */ 419 char *log_buf; 420 size_t log_size; 421 __u32 log_level; 422 423 struct bpf_object *obj; 424 425 int fd; 426 bool autoload; 427 bool autoattach; 428 bool mark_btf_static; 429 enum bpf_prog_type type; 430 enum bpf_attach_type expected_attach_type; 431 432 int prog_ifindex; 433 __u32 attach_btf_obj_fd; 434 __u32 attach_btf_id; 435 __u32 attach_prog_fd; 436 437 void *func_info; 438 __u32 func_info_rec_size; 439 __u32 func_info_cnt; 440 441 void *line_info; 442 __u32 line_info_rec_size; 443 __u32 line_info_cnt; 444 __u32 prog_flags; 445 }; 446 447 struct bpf_struct_ops { 448 const char *tname; 449 const struct btf_type *type; 450 struct bpf_program **progs; 451 __u32 *kern_func_off; 452 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 453 void *data; 454 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 455 * btf_vmlinux's format. 456 * struct bpf_struct_ops_tcp_congestion_ops { 457 * [... some other kernel fields ...] 458 * struct tcp_congestion_ops data; 459 * } 460 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 461 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 462 * from "data". 463 */ 464 void *kern_vdata; 465 __u32 type_id; 466 }; 467 468 #define DATA_SEC ".data" 469 #define BSS_SEC ".bss" 470 #define RODATA_SEC ".rodata" 471 #define KCONFIG_SEC ".kconfig" 472 #define KSYMS_SEC ".ksyms" 473 #define STRUCT_OPS_SEC ".struct_ops" 474 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 475 476 enum libbpf_map_type { 477 LIBBPF_MAP_UNSPEC, 478 LIBBPF_MAP_DATA, 479 LIBBPF_MAP_BSS, 480 LIBBPF_MAP_RODATA, 481 LIBBPF_MAP_KCONFIG, 482 }; 483 484 struct bpf_map_def { 485 unsigned int type; 486 unsigned int key_size; 487 unsigned int value_size; 488 unsigned int max_entries; 489 unsigned int map_flags; 490 }; 491 492 struct bpf_map { 493 struct bpf_object *obj; 494 char *name; 495 /* real_name is defined for special internal maps (.rodata*, 496 * .data*, .bss, .kconfig) and preserves their original ELF section 497 * name. This is important to be able to find corresponding BTF 498 * DATASEC information. 499 */ 500 char *real_name; 501 int fd; 502 int sec_idx; 503 size_t sec_offset; 504 int map_ifindex; 505 int inner_map_fd; 506 struct bpf_map_def def; 507 __u32 numa_node; 508 __u32 btf_var_idx; 509 __u32 btf_key_type_id; 510 __u32 btf_value_type_id; 511 __u32 btf_vmlinux_value_type_id; 512 enum libbpf_map_type libbpf_type; 513 void *mmaped; 514 struct bpf_struct_ops *st_ops; 515 struct bpf_map *inner_map; 516 void **init_slots; 517 int init_slots_sz; 518 char *pin_path; 519 bool pinned; 520 bool reused; 521 bool autocreate; 522 __u64 map_extra; 523 }; 524 525 enum extern_type { 526 EXT_UNKNOWN, 527 EXT_KCFG, 528 EXT_KSYM, 529 }; 530 531 enum kcfg_type { 532 KCFG_UNKNOWN, 533 KCFG_CHAR, 534 KCFG_BOOL, 535 KCFG_INT, 536 KCFG_TRISTATE, 537 KCFG_CHAR_ARR, 538 }; 539 540 struct extern_desc { 541 enum extern_type type; 542 int sym_idx; 543 int btf_id; 544 int sec_btf_id; 545 const char *name; 546 bool is_set; 547 bool is_weak; 548 union { 549 struct { 550 enum kcfg_type type; 551 int sz; 552 int align; 553 int data_off; 554 bool is_signed; 555 } kcfg; 556 struct { 557 unsigned long long addr; 558 559 /* target btf_id of the corresponding kernel var. */ 560 int kernel_btf_obj_fd; 561 int kernel_btf_id; 562 563 /* local btf_id of the ksym extern's type. */ 564 __u32 type_id; 565 /* BTF fd index to be patched in for insn->off, this is 566 * 0 for vmlinux BTF, index in obj->fd_array for module 567 * BTF 568 */ 569 __s16 btf_fd_idx; 570 } ksym; 571 }; 572 }; 573 574 struct module_btf { 575 struct btf *btf; 576 char *name; 577 __u32 id; 578 int fd; 579 int fd_array_idx; 580 }; 581 582 enum sec_type { 583 SEC_UNUSED = 0, 584 SEC_RELO, 585 SEC_BSS, 586 SEC_DATA, 587 SEC_RODATA, 588 }; 589 590 struct elf_sec_desc { 591 enum sec_type sec_type; 592 Elf64_Shdr *shdr; 593 Elf_Data *data; 594 }; 595 596 struct elf_state { 597 int fd; 598 const void *obj_buf; 599 size_t obj_buf_sz; 600 Elf *elf; 601 Elf64_Ehdr *ehdr; 602 Elf_Data *symbols; 603 Elf_Data *st_ops_data; 604 Elf_Data *st_ops_link_data; 605 size_t shstrndx; /* section index for section name strings */ 606 size_t strtabidx; 607 struct elf_sec_desc *secs; 608 size_t sec_cnt; 609 int btf_maps_shndx; 610 __u32 btf_maps_sec_btf_id; 611 int text_shndx; 612 int symbols_shndx; 613 int st_ops_shndx; 614 int st_ops_link_shndx; 615 }; 616 617 struct usdt_manager; 618 619 struct bpf_object { 620 char name[BPF_OBJ_NAME_LEN]; 621 char license[64]; 622 __u32 kern_version; 623 624 struct bpf_program *programs; 625 size_t nr_programs; 626 struct bpf_map *maps; 627 size_t nr_maps; 628 size_t maps_cap; 629 630 char *kconfig; 631 struct extern_desc *externs; 632 int nr_extern; 633 int kconfig_map_idx; 634 635 bool loaded; 636 bool has_subcalls; 637 bool has_rodata; 638 639 struct bpf_gen *gen_loader; 640 641 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 642 struct elf_state efile; 643 644 struct btf *btf; 645 struct btf_ext *btf_ext; 646 647 /* Parse and load BTF vmlinux if any of the programs in the object need 648 * it at load time. 649 */ 650 struct btf *btf_vmlinux; 651 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 652 * override for vmlinux BTF. 653 */ 654 char *btf_custom_path; 655 /* vmlinux BTF override for CO-RE relocations */ 656 struct btf *btf_vmlinux_override; 657 /* Lazily initialized kernel module BTFs */ 658 struct module_btf *btf_modules; 659 bool btf_modules_loaded; 660 size_t btf_module_cnt; 661 size_t btf_module_cap; 662 663 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 664 char *log_buf; 665 size_t log_size; 666 __u32 log_level; 667 668 int *fd_array; 669 size_t fd_array_cap; 670 size_t fd_array_cnt; 671 672 struct usdt_manager *usdt_man; 673 674 char path[]; 675 }; 676 677 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 678 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 679 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 680 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 681 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 682 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 683 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 684 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 685 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 686 687 void bpf_program__unload(struct bpf_program *prog) 688 { 689 if (!prog) 690 return; 691 692 zclose(prog->fd); 693 694 zfree(&prog->func_info); 695 zfree(&prog->line_info); 696 } 697 698 static void bpf_program__exit(struct bpf_program *prog) 699 { 700 if (!prog) 701 return; 702 703 bpf_program__unload(prog); 704 zfree(&prog->name); 705 zfree(&prog->sec_name); 706 zfree(&prog->insns); 707 zfree(&prog->reloc_desc); 708 709 prog->nr_reloc = 0; 710 prog->insns_cnt = 0; 711 prog->sec_idx = -1; 712 } 713 714 static bool insn_is_subprog_call(const struct bpf_insn *insn) 715 { 716 return BPF_CLASS(insn->code) == BPF_JMP && 717 BPF_OP(insn->code) == BPF_CALL && 718 BPF_SRC(insn->code) == BPF_K && 719 insn->src_reg == BPF_PSEUDO_CALL && 720 insn->dst_reg == 0 && 721 insn->off == 0; 722 } 723 724 static bool is_call_insn(const struct bpf_insn *insn) 725 { 726 return insn->code == (BPF_JMP | BPF_CALL); 727 } 728 729 static bool insn_is_pseudo_func(struct bpf_insn *insn) 730 { 731 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 732 } 733 734 static int 735 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 736 const char *name, size_t sec_idx, const char *sec_name, 737 size_t sec_off, void *insn_data, size_t insn_data_sz) 738 { 739 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 740 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 741 sec_name, name, sec_off, insn_data_sz); 742 return -EINVAL; 743 } 744 745 memset(prog, 0, sizeof(*prog)); 746 prog->obj = obj; 747 748 prog->sec_idx = sec_idx; 749 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 750 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 751 /* insns_cnt can later be increased by appending used subprograms */ 752 prog->insns_cnt = prog->sec_insn_cnt; 753 754 prog->type = BPF_PROG_TYPE_UNSPEC; 755 prog->fd = -1; 756 757 /* libbpf's convention for SEC("?abc...") is that it's just like 758 * SEC("abc...") but the corresponding bpf_program starts out with 759 * autoload set to false. 760 */ 761 if (sec_name[0] == '?') { 762 prog->autoload = false; 763 /* from now on forget there was ? in section name */ 764 sec_name++; 765 } else { 766 prog->autoload = true; 767 } 768 769 prog->autoattach = true; 770 771 /* inherit object's log_level */ 772 prog->log_level = obj->log_level; 773 774 prog->sec_name = strdup(sec_name); 775 if (!prog->sec_name) 776 goto errout; 777 778 prog->name = strdup(name); 779 if (!prog->name) 780 goto errout; 781 782 prog->insns = malloc(insn_data_sz); 783 if (!prog->insns) 784 goto errout; 785 memcpy(prog->insns, insn_data, insn_data_sz); 786 787 return 0; 788 errout: 789 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 790 bpf_program__exit(prog); 791 return -ENOMEM; 792 } 793 794 static int 795 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 796 const char *sec_name, int sec_idx) 797 { 798 Elf_Data *symbols = obj->efile.symbols; 799 struct bpf_program *prog, *progs; 800 void *data = sec_data->d_buf; 801 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 802 int nr_progs, err, i; 803 const char *name; 804 Elf64_Sym *sym; 805 806 progs = obj->programs; 807 nr_progs = obj->nr_programs; 808 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 809 810 for (i = 0; i < nr_syms; i++) { 811 sym = elf_sym_by_idx(obj, i); 812 813 if (sym->st_shndx != sec_idx) 814 continue; 815 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 816 continue; 817 818 prog_sz = sym->st_size; 819 sec_off = sym->st_value; 820 821 name = elf_sym_str(obj, sym->st_name); 822 if (!name) { 823 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 824 sec_name, sec_off); 825 return -LIBBPF_ERRNO__FORMAT; 826 } 827 828 if (sec_off + prog_sz > sec_sz) { 829 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 830 sec_name, sec_off); 831 return -LIBBPF_ERRNO__FORMAT; 832 } 833 834 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 835 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 836 return -ENOTSUP; 837 } 838 839 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 840 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 841 842 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 843 if (!progs) { 844 /* 845 * In this case the original obj->programs 846 * is still valid, so don't need special treat for 847 * bpf_close_object(). 848 */ 849 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 850 sec_name, name); 851 return -ENOMEM; 852 } 853 obj->programs = progs; 854 855 prog = &progs[nr_progs]; 856 857 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 858 sec_off, data + sec_off, prog_sz); 859 if (err) 860 return err; 861 862 /* if function is a global/weak symbol, but has restricted 863 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 864 * as static to enable more permissive BPF verification mode 865 * with more outside context available to BPF verifier 866 */ 867 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 868 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 869 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 870 prog->mark_btf_static = true; 871 872 nr_progs++; 873 obj->nr_programs = nr_progs; 874 } 875 876 return 0; 877 } 878 879 static const struct btf_member * 880 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 881 { 882 struct btf_member *m; 883 int i; 884 885 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 886 if (btf_member_bit_offset(t, i) == bit_offset) 887 return m; 888 } 889 890 return NULL; 891 } 892 893 static const struct btf_member * 894 find_member_by_name(const struct btf *btf, const struct btf_type *t, 895 const char *name) 896 { 897 struct btf_member *m; 898 int i; 899 900 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 901 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 902 return m; 903 } 904 905 return NULL; 906 } 907 908 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 909 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 910 const char *name, __u32 kind); 911 912 static int 913 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 914 const struct btf_type **type, __u32 *type_id, 915 const struct btf_type **vtype, __u32 *vtype_id, 916 const struct btf_member **data_member) 917 { 918 const struct btf_type *kern_type, *kern_vtype; 919 const struct btf_member *kern_data_member; 920 __s32 kern_vtype_id, kern_type_id; 921 __u32 i; 922 923 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 924 if (kern_type_id < 0) { 925 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 926 tname); 927 return kern_type_id; 928 } 929 kern_type = btf__type_by_id(btf, kern_type_id); 930 931 /* Find the corresponding "map_value" type that will be used 932 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 933 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 934 * btf_vmlinux. 935 */ 936 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 937 tname, BTF_KIND_STRUCT); 938 if (kern_vtype_id < 0) { 939 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 940 STRUCT_OPS_VALUE_PREFIX, tname); 941 return kern_vtype_id; 942 } 943 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 944 945 /* Find "struct tcp_congestion_ops" from 946 * struct bpf_struct_ops_tcp_congestion_ops { 947 * [ ... ] 948 * struct tcp_congestion_ops data; 949 * } 950 */ 951 kern_data_member = btf_members(kern_vtype); 952 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 953 if (kern_data_member->type == kern_type_id) 954 break; 955 } 956 if (i == btf_vlen(kern_vtype)) { 957 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 958 tname, STRUCT_OPS_VALUE_PREFIX, tname); 959 return -EINVAL; 960 } 961 962 *type = kern_type; 963 *type_id = kern_type_id; 964 *vtype = kern_vtype; 965 *vtype_id = kern_vtype_id; 966 *data_member = kern_data_member; 967 968 return 0; 969 } 970 971 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 972 { 973 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 974 } 975 976 /* Init the map's fields that depend on kern_btf */ 977 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 978 const struct btf *btf, 979 const struct btf *kern_btf) 980 { 981 const struct btf_member *member, *kern_member, *kern_data_member; 982 const struct btf_type *type, *kern_type, *kern_vtype; 983 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 984 struct bpf_struct_ops *st_ops; 985 void *data, *kern_data; 986 const char *tname; 987 int err; 988 989 st_ops = map->st_ops; 990 type = st_ops->type; 991 tname = st_ops->tname; 992 err = find_struct_ops_kern_types(kern_btf, tname, 993 &kern_type, &kern_type_id, 994 &kern_vtype, &kern_vtype_id, 995 &kern_data_member); 996 if (err) 997 return err; 998 999 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1000 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1001 1002 map->def.value_size = kern_vtype->size; 1003 map->btf_vmlinux_value_type_id = kern_vtype_id; 1004 1005 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1006 if (!st_ops->kern_vdata) 1007 return -ENOMEM; 1008 1009 data = st_ops->data; 1010 kern_data_off = kern_data_member->offset / 8; 1011 kern_data = st_ops->kern_vdata + kern_data_off; 1012 1013 member = btf_members(type); 1014 for (i = 0; i < btf_vlen(type); i++, member++) { 1015 const struct btf_type *mtype, *kern_mtype; 1016 __u32 mtype_id, kern_mtype_id; 1017 void *mdata, *kern_mdata; 1018 __s64 msize, kern_msize; 1019 __u32 moff, kern_moff; 1020 __u32 kern_member_idx; 1021 const char *mname; 1022 1023 mname = btf__name_by_offset(btf, member->name_off); 1024 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1025 if (!kern_member) { 1026 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1027 map->name, mname); 1028 return -ENOTSUP; 1029 } 1030 1031 kern_member_idx = kern_member - btf_members(kern_type); 1032 if (btf_member_bitfield_size(type, i) || 1033 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1034 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1035 map->name, mname); 1036 return -ENOTSUP; 1037 } 1038 1039 moff = member->offset / 8; 1040 kern_moff = kern_member->offset / 8; 1041 1042 mdata = data + moff; 1043 kern_mdata = kern_data + kern_moff; 1044 1045 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1046 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1047 &kern_mtype_id); 1048 if (BTF_INFO_KIND(mtype->info) != 1049 BTF_INFO_KIND(kern_mtype->info)) { 1050 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1051 map->name, mname, BTF_INFO_KIND(mtype->info), 1052 BTF_INFO_KIND(kern_mtype->info)); 1053 return -ENOTSUP; 1054 } 1055 1056 if (btf_is_ptr(mtype)) { 1057 struct bpf_program *prog; 1058 1059 prog = st_ops->progs[i]; 1060 if (!prog) 1061 continue; 1062 1063 kern_mtype = skip_mods_and_typedefs(kern_btf, 1064 kern_mtype->type, 1065 &kern_mtype_id); 1066 1067 /* mtype->type must be a func_proto which was 1068 * guaranteed in bpf_object__collect_st_ops_relos(), 1069 * so only check kern_mtype for func_proto here. 1070 */ 1071 if (!btf_is_func_proto(kern_mtype)) { 1072 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1073 map->name, mname); 1074 return -ENOTSUP; 1075 } 1076 1077 prog->attach_btf_id = kern_type_id; 1078 prog->expected_attach_type = kern_member_idx; 1079 1080 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1081 1082 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1083 map->name, mname, prog->name, moff, 1084 kern_moff); 1085 1086 continue; 1087 } 1088 1089 msize = btf__resolve_size(btf, mtype_id); 1090 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1091 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1092 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1093 map->name, mname, (ssize_t)msize, 1094 (ssize_t)kern_msize); 1095 return -ENOTSUP; 1096 } 1097 1098 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1099 map->name, mname, (unsigned int)msize, 1100 moff, kern_moff); 1101 memcpy(kern_mdata, mdata, msize); 1102 } 1103 1104 return 0; 1105 } 1106 1107 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1108 { 1109 struct bpf_map *map; 1110 size_t i; 1111 int err; 1112 1113 for (i = 0; i < obj->nr_maps; i++) { 1114 map = &obj->maps[i]; 1115 1116 if (!bpf_map__is_struct_ops(map)) 1117 continue; 1118 1119 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1120 obj->btf_vmlinux); 1121 if (err) 1122 return err; 1123 } 1124 1125 return 0; 1126 } 1127 1128 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1129 int shndx, Elf_Data *data, __u32 map_flags) 1130 { 1131 const struct btf_type *type, *datasec; 1132 const struct btf_var_secinfo *vsi; 1133 struct bpf_struct_ops *st_ops; 1134 const char *tname, *var_name; 1135 __s32 type_id, datasec_id; 1136 const struct btf *btf; 1137 struct bpf_map *map; 1138 __u32 i; 1139 1140 if (shndx == -1) 1141 return 0; 1142 1143 btf = obj->btf; 1144 datasec_id = btf__find_by_name_kind(btf, sec_name, 1145 BTF_KIND_DATASEC); 1146 if (datasec_id < 0) { 1147 pr_warn("struct_ops init: DATASEC %s not found\n", 1148 sec_name); 1149 return -EINVAL; 1150 } 1151 1152 datasec = btf__type_by_id(btf, datasec_id); 1153 vsi = btf_var_secinfos(datasec); 1154 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1155 type = btf__type_by_id(obj->btf, vsi->type); 1156 var_name = btf__name_by_offset(obj->btf, type->name_off); 1157 1158 type_id = btf__resolve_type(obj->btf, vsi->type); 1159 if (type_id < 0) { 1160 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1161 vsi->type, sec_name); 1162 return -EINVAL; 1163 } 1164 1165 type = btf__type_by_id(obj->btf, type_id); 1166 tname = btf__name_by_offset(obj->btf, type->name_off); 1167 if (!tname[0]) { 1168 pr_warn("struct_ops init: anonymous type is not supported\n"); 1169 return -ENOTSUP; 1170 } 1171 if (!btf_is_struct(type)) { 1172 pr_warn("struct_ops init: %s is not a struct\n", tname); 1173 return -EINVAL; 1174 } 1175 1176 map = bpf_object__add_map(obj); 1177 if (IS_ERR(map)) 1178 return PTR_ERR(map); 1179 1180 map->sec_idx = shndx; 1181 map->sec_offset = vsi->offset; 1182 map->name = strdup(var_name); 1183 if (!map->name) 1184 return -ENOMEM; 1185 1186 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1187 map->def.key_size = sizeof(int); 1188 map->def.value_size = type->size; 1189 map->def.max_entries = 1; 1190 map->def.map_flags = map_flags; 1191 1192 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1193 if (!map->st_ops) 1194 return -ENOMEM; 1195 st_ops = map->st_ops; 1196 st_ops->data = malloc(type->size); 1197 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1198 st_ops->kern_func_off = malloc(btf_vlen(type) * 1199 sizeof(*st_ops->kern_func_off)); 1200 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1201 return -ENOMEM; 1202 1203 if (vsi->offset + type->size > data->d_size) { 1204 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1205 var_name, sec_name); 1206 return -EINVAL; 1207 } 1208 1209 memcpy(st_ops->data, 1210 data->d_buf + vsi->offset, 1211 type->size); 1212 st_ops->tname = tname; 1213 st_ops->type = type; 1214 st_ops->type_id = type_id; 1215 1216 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1217 tname, type_id, var_name, vsi->offset); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1224 { 1225 int err; 1226 1227 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1228 obj->efile.st_ops_data, 0); 1229 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1230 obj->efile.st_ops_link_shndx, 1231 obj->efile.st_ops_link_data, 1232 BPF_F_LINK); 1233 return err; 1234 } 1235 1236 static struct bpf_object *bpf_object__new(const char *path, 1237 const void *obj_buf, 1238 size_t obj_buf_sz, 1239 const char *obj_name) 1240 { 1241 struct bpf_object *obj; 1242 char *end; 1243 1244 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1245 if (!obj) { 1246 pr_warn("alloc memory failed for %s\n", path); 1247 return ERR_PTR(-ENOMEM); 1248 } 1249 1250 strcpy(obj->path, path); 1251 if (obj_name) { 1252 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1253 } else { 1254 /* Using basename() GNU version which doesn't modify arg. */ 1255 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1256 end = strchr(obj->name, '.'); 1257 if (end) 1258 *end = 0; 1259 } 1260 1261 obj->efile.fd = -1; 1262 /* 1263 * Caller of this function should also call 1264 * bpf_object__elf_finish() after data collection to return 1265 * obj_buf to user. If not, we should duplicate the buffer to 1266 * avoid user freeing them before elf finish. 1267 */ 1268 obj->efile.obj_buf = obj_buf; 1269 obj->efile.obj_buf_sz = obj_buf_sz; 1270 obj->efile.btf_maps_shndx = -1; 1271 obj->efile.st_ops_shndx = -1; 1272 obj->efile.st_ops_link_shndx = -1; 1273 obj->kconfig_map_idx = -1; 1274 1275 obj->kern_version = get_kernel_version(); 1276 obj->loaded = false; 1277 1278 return obj; 1279 } 1280 1281 static void bpf_object__elf_finish(struct bpf_object *obj) 1282 { 1283 if (!obj->efile.elf) 1284 return; 1285 1286 elf_end(obj->efile.elf); 1287 obj->efile.elf = NULL; 1288 obj->efile.symbols = NULL; 1289 obj->efile.st_ops_data = NULL; 1290 obj->efile.st_ops_link_data = NULL; 1291 1292 zfree(&obj->efile.secs); 1293 obj->efile.sec_cnt = 0; 1294 zclose(obj->efile.fd); 1295 obj->efile.obj_buf = NULL; 1296 obj->efile.obj_buf_sz = 0; 1297 } 1298 1299 static int bpf_object__elf_init(struct bpf_object *obj) 1300 { 1301 Elf64_Ehdr *ehdr; 1302 int err = 0; 1303 Elf *elf; 1304 1305 if (obj->efile.elf) { 1306 pr_warn("elf: init internal error\n"); 1307 return -LIBBPF_ERRNO__LIBELF; 1308 } 1309 1310 if (obj->efile.obj_buf_sz > 0) { 1311 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1312 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1313 } else { 1314 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1315 if (obj->efile.fd < 0) { 1316 char errmsg[STRERR_BUFSIZE], *cp; 1317 1318 err = -errno; 1319 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1320 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1321 return err; 1322 } 1323 1324 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1325 } 1326 1327 if (!elf) { 1328 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1329 err = -LIBBPF_ERRNO__LIBELF; 1330 goto errout; 1331 } 1332 1333 obj->efile.elf = elf; 1334 1335 if (elf_kind(elf) != ELF_K_ELF) { 1336 err = -LIBBPF_ERRNO__FORMAT; 1337 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1338 goto errout; 1339 } 1340 1341 if (gelf_getclass(elf) != ELFCLASS64) { 1342 err = -LIBBPF_ERRNO__FORMAT; 1343 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1344 goto errout; 1345 } 1346 1347 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1348 if (!obj->efile.ehdr) { 1349 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1350 err = -LIBBPF_ERRNO__FORMAT; 1351 goto errout; 1352 } 1353 1354 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1355 pr_warn("elf: failed to get section names section index for %s: %s\n", 1356 obj->path, elf_errmsg(-1)); 1357 err = -LIBBPF_ERRNO__FORMAT; 1358 goto errout; 1359 } 1360 1361 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1362 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1363 pr_warn("elf: failed to get section names strings from %s: %s\n", 1364 obj->path, elf_errmsg(-1)); 1365 err = -LIBBPF_ERRNO__FORMAT; 1366 goto errout; 1367 } 1368 1369 /* Old LLVM set e_machine to EM_NONE */ 1370 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1371 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1372 err = -LIBBPF_ERRNO__FORMAT; 1373 goto errout; 1374 } 1375 1376 return 0; 1377 errout: 1378 bpf_object__elf_finish(obj); 1379 return err; 1380 } 1381 1382 static int bpf_object__check_endianness(struct bpf_object *obj) 1383 { 1384 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1385 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1386 return 0; 1387 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1388 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1389 return 0; 1390 #else 1391 # error "Unrecognized __BYTE_ORDER__" 1392 #endif 1393 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1394 return -LIBBPF_ERRNO__ENDIAN; 1395 } 1396 1397 static int 1398 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1399 { 1400 if (!data) { 1401 pr_warn("invalid license section in %s\n", obj->path); 1402 return -LIBBPF_ERRNO__FORMAT; 1403 } 1404 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1405 * go over allowed ELF data section buffer 1406 */ 1407 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1408 pr_debug("license of %s is %s\n", obj->path, obj->license); 1409 return 0; 1410 } 1411 1412 static int 1413 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1414 { 1415 __u32 kver; 1416 1417 if (!data || size != sizeof(kver)) { 1418 pr_warn("invalid kver section in %s\n", obj->path); 1419 return -LIBBPF_ERRNO__FORMAT; 1420 } 1421 memcpy(&kver, data, sizeof(kver)); 1422 obj->kern_version = kver; 1423 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1424 return 0; 1425 } 1426 1427 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1428 { 1429 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1430 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1431 return true; 1432 return false; 1433 } 1434 1435 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1436 { 1437 Elf_Data *data; 1438 Elf_Scn *scn; 1439 1440 if (!name) 1441 return -EINVAL; 1442 1443 scn = elf_sec_by_name(obj, name); 1444 data = elf_sec_data(obj, scn); 1445 if (data) { 1446 *size = data->d_size; 1447 return 0; /* found it */ 1448 } 1449 1450 return -ENOENT; 1451 } 1452 1453 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1454 { 1455 Elf_Data *symbols = obj->efile.symbols; 1456 const char *sname; 1457 size_t si; 1458 1459 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1460 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1461 1462 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1463 continue; 1464 1465 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1466 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1467 continue; 1468 1469 sname = elf_sym_str(obj, sym->st_name); 1470 if (!sname) { 1471 pr_warn("failed to get sym name string for var %s\n", name); 1472 return ERR_PTR(-EIO); 1473 } 1474 if (strcmp(name, sname) == 0) 1475 return sym; 1476 } 1477 1478 return ERR_PTR(-ENOENT); 1479 } 1480 1481 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1482 { 1483 struct bpf_map *map; 1484 int err; 1485 1486 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1487 sizeof(*obj->maps), obj->nr_maps + 1); 1488 if (err) 1489 return ERR_PTR(err); 1490 1491 map = &obj->maps[obj->nr_maps++]; 1492 map->obj = obj; 1493 map->fd = -1; 1494 map->inner_map_fd = -1; 1495 map->autocreate = true; 1496 1497 return map; 1498 } 1499 1500 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1501 { 1502 long page_sz = sysconf(_SC_PAGE_SIZE); 1503 size_t map_sz; 1504 1505 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1506 map_sz = roundup(map_sz, page_sz); 1507 return map_sz; 1508 } 1509 1510 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1511 { 1512 char map_name[BPF_OBJ_NAME_LEN], *p; 1513 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1514 1515 /* This is one of the more confusing parts of libbpf for various 1516 * reasons, some of which are historical. The original idea for naming 1517 * internal names was to include as much of BPF object name prefix as 1518 * possible, so that it can be distinguished from similar internal 1519 * maps of a different BPF object. 1520 * As an example, let's say we have bpf_object named 'my_object_name' 1521 * and internal map corresponding to '.rodata' ELF section. The final 1522 * map name advertised to user and to the kernel will be 1523 * 'my_objec.rodata', taking first 8 characters of object name and 1524 * entire 7 characters of '.rodata'. 1525 * Somewhat confusingly, if internal map ELF section name is shorter 1526 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1527 * for the suffix, even though we only have 4 actual characters, and 1528 * resulting map will be called 'my_objec.bss', not even using all 15 1529 * characters allowed by the kernel. Oh well, at least the truncated 1530 * object name is somewhat consistent in this case. But if the map 1531 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1532 * (8 chars) and thus will be left with only first 7 characters of the 1533 * object name ('my_obje'). Happy guessing, user, that the final map 1534 * name will be "my_obje.kconfig". 1535 * Now, with libbpf starting to support arbitrarily named .rodata.* 1536 * and .data.* data sections, it's possible that ELF section name is 1537 * longer than allowed 15 chars, so we now need to be careful to take 1538 * only up to 15 first characters of ELF name, taking no BPF object 1539 * name characters at all. So '.rodata.abracadabra' will result in 1540 * '.rodata.abracad' kernel and user-visible name. 1541 * We need to keep this convoluted logic intact for .data, .bss and 1542 * .rodata maps, but for new custom .data.custom and .rodata.custom 1543 * maps we use their ELF names as is, not prepending bpf_object name 1544 * in front. We still need to truncate them to 15 characters for the 1545 * kernel. Full name can be recovered for such maps by using DATASEC 1546 * BTF type associated with such map's value type, though. 1547 */ 1548 if (sfx_len >= BPF_OBJ_NAME_LEN) 1549 sfx_len = BPF_OBJ_NAME_LEN - 1; 1550 1551 /* if there are two or more dots in map name, it's a custom dot map */ 1552 if (strchr(real_name + 1, '.') != NULL) 1553 pfx_len = 0; 1554 else 1555 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1556 1557 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1558 sfx_len, real_name); 1559 1560 /* sanitise map name to characters allowed by kernel */ 1561 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1562 if (!isalnum(*p) && *p != '_' && *p != '.') 1563 *p = '_'; 1564 1565 return strdup(map_name); 1566 } 1567 1568 static int 1569 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1570 1571 /* Internal BPF map is mmap()'able only if at least one of corresponding 1572 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1573 * variable and it's not marked as __hidden (which turns it into, effectively, 1574 * a STATIC variable). 1575 */ 1576 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1577 { 1578 const struct btf_type *t, *vt; 1579 struct btf_var_secinfo *vsi; 1580 int i, n; 1581 1582 if (!map->btf_value_type_id) 1583 return false; 1584 1585 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1586 if (!btf_is_datasec(t)) 1587 return false; 1588 1589 vsi = btf_var_secinfos(t); 1590 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1591 vt = btf__type_by_id(obj->btf, vsi->type); 1592 if (!btf_is_var(vt)) 1593 continue; 1594 1595 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1596 return true; 1597 } 1598 1599 return false; 1600 } 1601 1602 static int 1603 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1604 const char *real_name, int sec_idx, void *data, size_t data_sz) 1605 { 1606 struct bpf_map_def *def; 1607 struct bpf_map *map; 1608 int err; 1609 1610 map = bpf_object__add_map(obj); 1611 if (IS_ERR(map)) 1612 return PTR_ERR(map); 1613 1614 map->libbpf_type = type; 1615 map->sec_idx = sec_idx; 1616 map->sec_offset = 0; 1617 map->real_name = strdup(real_name); 1618 map->name = internal_map_name(obj, real_name); 1619 if (!map->real_name || !map->name) { 1620 zfree(&map->real_name); 1621 zfree(&map->name); 1622 return -ENOMEM; 1623 } 1624 1625 def = &map->def; 1626 def->type = BPF_MAP_TYPE_ARRAY; 1627 def->key_size = sizeof(int); 1628 def->value_size = data_sz; 1629 def->max_entries = 1; 1630 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1631 ? BPF_F_RDONLY_PROG : 0; 1632 1633 /* failures are fine because of maps like .rodata.str1.1 */ 1634 (void) map_fill_btf_type_info(obj, map); 1635 1636 if (map_is_mmapable(obj, map)) 1637 def->map_flags |= BPF_F_MMAPABLE; 1638 1639 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1640 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1641 1642 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1643 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1644 if (map->mmaped == MAP_FAILED) { 1645 err = -errno; 1646 map->mmaped = NULL; 1647 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1648 map->name, err); 1649 zfree(&map->real_name); 1650 zfree(&map->name); 1651 return err; 1652 } 1653 1654 if (data) 1655 memcpy(map->mmaped, data, data_sz); 1656 1657 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1658 return 0; 1659 } 1660 1661 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1662 { 1663 struct elf_sec_desc *sec_desc; 1664 const char *sec_name; 1665 int err = 0, sec_idx; 1666 1667 /* 1668 * Populate obj->maps with libbpf internal maps. 1669 */ 1670 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1671 sec_desc = &obj->efile.secs[sec_idx]; 1672 1673 /* Skip recognized sections with size 0. */ 1674 if (!sec_desc->data || sec_desc->data->d_size == 0) 1675 continue; 1676 1677 switch (sec_desc->sec_type) { 1678 case SEC_DATA: 1679 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1680 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1681 sec_name, sec_idx, 1682 sec_desc->data->d_buf, 1683 sec_desc->data->d_size); 1684 break; 1685 case SEC_RODATA: 1686 obj->has_rodata = true; 1687 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1688 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1689 sec_name, sec_idx, 1690 sec_desc->data->d_buf, 1691 sec_desc->data->d_size); 1692 break; 1693 case SEC_BSS: 1694 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1695 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1696 sec_name, sec_idx, 1697 NULL, 1698 sec_desc->data->d_size); 1699 break; 1700 default: 1701 /* skip */ 1702 break; 1703 } 1704 if (err) 1705 return err; 1706 } 1707 return 0; 1708 } 1709 1710 1711 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1712 const void *name) 1713 { 1714 int i; 1715 1716 for (i = 0; i < obj->nr_extern; i++) { 1717 if (strcmp(obj->externs[i].name, name) == 0) 1718 return &obj->externs[i]; 1719 } 1720 return NULL; 1721 } 1722 1723 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1724 char value) 1725 { 1726 switch (ext->kcfg.type) { 1727 case KCFG_BOOL: 1728 if (value == 'm') { 1729 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1730 ext->name, value); 1731 return -EINVAL; 1732 } 1733 *(bool *)ext_val = value == 'y' ? true : false; 1734 break; 1735 case KCFG_TRISTATE: 1736 if (value == 'y') 1737 *(enum libbpf_tristate *)ext_val = TRI_YES; 1738 else if (value == 'm') 1739 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1740 else /* value == 'n' */ 1741 *(enum libbpf_tristate *)ext_val = TRI_NO; 1742 break; 1743 case KCFG_CHAR: 1744 *(char *)ext_val = value; 1745 break; 1746 case KCFG_UNKNOWN: 1747 case KCFG_INT: 1748 case KCFG_CHAR_ARR: 1749 default: 1750 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1751 ext->name, value); 1752 return -EINVAL; 1753 } 1754 ext->is_set = true; 1755 return 0; 1756 } 1757 1758 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1759 const char *value) 1760 { 1761 size_t len; 1762 1763 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1764 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1765 ext->name, value); 1766 return -EINVAL; 1767 } 1768 1769 len = strlen(value); 1770 if (value[len - 1] != '"') { 1771 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1772 ext->name, value); 1773 return -EINVAL; 1774 } 1775 1776 /* strip quotes */ 1777 len -= 2; 1778 if (len >= ext->kcfg.sz) { 1779 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1780 ext->name, value, len, ext->kcfg.sz - 1); 1781 len = ext->kcfg.sz - 1; 1782 } 1783 memcpy(ext_val, value + 1, len); 1784 ext_val[len] = '\0'; 1785 ext->is_set = true; 1786 return 0; 1787 } 1788 1789 static int parse_u64(const char *value, __u64 *res) 1790 { 1791 char *value_end; 1792 int err; 1793 1794 errno = 0; 1795 *res = strtoull(value, &value_end, 0); 1796 if (errno) { 1797 err = -errno; 1798 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1799 return err; 1800 } 1801 if (*value_end) { 1802 pr_warn("failed to parse '%s' as integer completely\n", value); 1803 return -EINVAL; 1804 } 1805 return 0; 1806 } 1807 1808 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1809 { 1810 int bit_sz = ext->kcfg.sz * 8; 1811 1812 if (ext->kcfg.sz == 8) 1813 return true; 1814 1815 /* Validate that value stored in u64 fits in integer of `ext->sz` 1816 * bytes size without any loss of information. If the target integer 1817 * is signed, we rely on the following limits of integer type of 1818 * Y bits and subsequent transformation: 1819 * 1820 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1821 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1822 * 0 <= X + 2^(Y-1) < 2^Y 1823 * 1824 * For unsigned target integer, check that all the (64 - Y) bits are 1825 * zero. 1826 */ 1827 if (ext->kcfg.is_signed) 1828 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1829 else 1830 return (v >> bit_sz) == 0; 1831 } 1832 1833 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1834 __u64 value) 1835 { 1836 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1837 ext->kcfg.type != KCFG_BOOL) { 1838 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1839 ext->name, (unsigned long long)value); 1840 return -EINVAL; 1841 } 1842 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1843 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1844 ext->name, (unsigned long long)value); 1845 return -EINVAL; 1846 1847 } 1848 if (!is_kcfg_value_in_range(ext, value)) { 1849 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1850 ext->name, (unsigned long long)value, ext->kcfg.sz); 1851 return -ERANGE; 1852 } 1853 switch (ext->kcfg.sz) { 1854 case 1: 1855 *(__u8 *)ext_val = value; 1856 break; 1857 case 2: 1858 *(__u16 *)ext_val = value; 1859 break; 1860 case 4: 1861 *(__u32 *)ext_val = value; 1862 break; 1863 case 8: 1864 *(__u64 *)ext_val = value; 1865 break; 1866 default: 1867 return -EINVAL; 1868 } 1869 ext->is_set = true; 1870 return 0; 1871 } 1872 1873 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1874 char *buf, void *data) 1875 { 1876 struct extern_desc *ext; 1877 char *sep, *value; 1878 int len, err = 0; 1879 void *ext_val; 1880 __u64 num; 1881 1882 if (!str_has_pfx(buf, "CONFIG_")) 1883 return 0; 1884 1885 sep = strchr(buf, '='); 1886 if (!sep) { 1887 pr_warn("failed to parse '%s': no separator\n", buf); 1888 return -EINVAL; 1889 } 1890 1891 /* Trim ending '\n' */ 1892 len = strlen(buf); 1893 if (buf[len - 1] == '\n') 1894 buf[len - 1] = '\0'; 1895 /* Split on '=' and ensure that a value is present. */ 1896 *sep = '\0'; 1897 if (!sep[1]) { 1898 *sep = '='; 1899 pr_warn("failed to parse '%s': no value\n", buf); 1900 return -EINVAL; 1901 } 1902 1903 ext = find_extern_by_name(obj, buf); 1904 if (!ext || ext->is_set) 1905 return 0; 1906 1907 ext_val = data + ext->kcfg.data_off; 1908 value = sep + 1; 1909 1910 switch (*value) { 1911 case 'y': case 'n': case 'm': 1912 err = set_kcfg_value_tri(ext, ext_val, *value); 1913 break; 1914 case '"': 1915 err = set_kcfg_value_str(ext, ext_val, value); 1916 break; 1917 default: 1918 /* assume integer */ 1919 err = parse_u64(value, &num); 1920 if (err) { 1921 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1922 return err; 1923 } 1924 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1925 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1926 return -EINVAL; 1927 } 1928 err = set_kcfg_value_num(ext, ext_val, num); 1929 break; 1930 } 1931 if (err) 1932 return err; 1933 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1934 return 0; 1935 } 1936 1937 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1938 { 1939 char buf[PATH_MAX]; 1940 struct utsname uts; 1941 int len, err = 0; 1942 gzFile file; 1943 1944 uname(&uts); 1945 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1946 if (len < 0) 1947 return -EINVAL; 1948 else if (len >= PATH_MAX) 1949 return -ENAMETOOLONG; 1950 1951 /* gzopen also accepts uncompressed files. */ 1952 file = gzopen(buf, "r"); 1953 if (!file) 1954 file = gzopen("/proc/config.gz", "r"); 1955 1956 if (!file) { 1957 pr_warn("failed to open system Kconfig\n"); 1958 return -ENOENT; 1959 } 1960 1961 while (gzgets(file, buf, sizeof(buf))) { 1962 err = bpf_object__process_kconfig_line(obj, buf, data); 1963 if (err) { 1964 pr_warn("error parsing system Kconfig line '%s': %d\n", 1965 buf, err); 1966 goto out; 1967 } 1968 } 1969 1970 out: 1971 gzclose(file); 1972 return err; 1973 } 1974 1975 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1976 const char *config, void *data) 1977 { 1978 char buf[PATH_MAX]; 1979 int err = 0; 1980 FILE *file; 1981 1982 file = fmemopen((void *)config, strlen(config), "r"); 1983 if (!file) { 1984 err = -errno; 1985 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1986 return err; 1987 } 1988 1989 while (fgets(buf, sizeof(buf), file)) { 1990 err = bpf_object__process_kconfig_line(obj, buf, data); 1991 if (err) { 1992 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1993 buf, err); 1994 break; 1995 } 1996 } 1997 1998 fclose(file); 1999 return err; 2000 } 2001 2002 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2003 { 2004 struct extern_desc *last_ext = NULL, *ext; 2005 size_t map_sz; 2006 int i, err; 2007 2008 for (i = 0; i < obj->nr_extern; i++) { 2009 ext = &obj->externs[i]; 2010 if (ext->type == EXT_KCFG) 2011 last_ext = ext; 2012 } 2013 2014 if (!last_ext) 2015 return 0; 2016 2017 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2018 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2019 ".kconfig", obj->efile.symbols_shndx, 2020 NULL, map_sz); 2021 if (err) 2022 return err; 2023 2024 obj->kconfig_map_idx = obj->nr_maps - 1; 2025 2026 return 0; 2027 } 2028 2029 const struct btf_type * 2030 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2031 { 2032 const struct btf_type *t = btf__type_by_id(btf, id); 2033 2034 if (res_id) 2035 *res_id = id; 2036 2037 while (btf_is_mod(t) || btf_is_typedef(t)) { 2038 if (res_id) 2039 *res_id = t->type; 2040 t = btf__type_by_id(btf, t->type); 2041 } 2042 2043 return t; 2044 } 2045 2046 static const struct btf_type * 2047 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2048 { 2049 const struct btf_type *t; 2050 2051 t = skip_mods_and_typedefs(btf, id, NULL); 2052 if (!btf_is_ptr(t)) 2053 return NULL; 2054 2055 t = skip_mods_and_typedefs(btf, t->type, res_id); 2056 2057 return btf_is_func_proto(t) ? t : NULL; 2058 } 2059 2060 static const char *__btf_kind_str(__u16 kind) 2061 { 2062 switch (kind) { 2063 case BTF_KIND_UNKN: return "void"; 2064 case BTF_KIND_INT: return "int"; 2065 case BTF_KIND_PTR: return "ptr"; 2066 case BTF_KIND_ARRAY: return "array"; 2067 case BTF_KIND_STRUCT: return "struct"; 2068 case BTF_KIND_UNION: return "union"; 2069 case BTF_KIND_ENUM: return "enum"; 2070 case BTF_KIND_FWD: return "fwd"; 2071 case BTF_KIND_TYPEDEF: return "typedef"; 2072 case BTF_KIND_VOLATILE: return "volatile"; 2073 case BTF_KIND_CONST: return "const"; 2074 case BTF_KIND_RESTRICT: return "restrict"; 2075 case BTF_KIND_FUNC: return "func"; 2076 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2077 case BTF_KIND_VAR: return "var"; 2078 case BTF_KIND_DATASEC: return "datasec"; 2079 case BTF_KIND_FLOAT: return "float"; 2080 case BTF_KIND_DECL_TAG: return "decl_tag"; 2081 case BTF_KIND_TYPE_TAG: return "type_tag"; 2082 case BTF_KIND_ENUM64: return "enum64"; 2083 default: return "unknown"; 2084 } 2085 } 2086 2087 const char *btf_kind_str(const struct btf_type *t) 2088 { 2089 return __btf_kind_str(btf_kind(t)); 2090 } 2091 2092 /* 2093 * Fetch integer attribute of BTF map definition. Such attributes are 2094 * represented using a pointer to an array, in which dimensionality of array 2095 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2096 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2097 * type definition, while using only sizeof(void *) space in ELF data section. 2098 */ 2099 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2100 const struct btf_member *m, __u32 *res) 2101 { 2102 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2103 const char *name = btf__name_by_offset(btf, m->name_off); 2104 const struct btf_array *arr_info; 2105 const struct btf_type *arr_t; 2106 2107 if (!btf_is_ptr(t)) { 2108 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2109 map_name, name, btf_kind_str(t)); 2110 return false; 2111 } 2112 2113 arr_t = btf__type_by_id(btf, t->type); 2114 if (!arr_t) { 2115 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2116 map_name, name, t->type); 2117 return false; 2118 } 2119 if (!btf_is_array(arr_t)) { 2120 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2121 map_name, name, btf_kind_str(arr_t)); 2122 return false; 2123 } 2124 arr_info = btf_array(arr_t); 2125 *res = arr_info->nelems; 2126 return true; 2127 } 2128 2129 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2130 { 2131 int len; 2132 2133 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2134 if (len < 0) 2135 return -EINVAL; 2136 if (len >= buf_sz) 2137 return -ENAMETOOLONG; 2138 2139 return 0; 2140 } 2141 2142 static int build_map_pin_path(struct bpf_map *map, const char *path) 2143 { 2144 char buf[PATH_MAX]; 2145 int err; 2146 2147 if (!path) 2148 path = "/sys/fs/bpf"; 2149 2150 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2151 if (err) 2152 return err; 2153 2154 return bpf_map__set_pin_path(map, buf); 2155 } 2156 2157 /* should match definition in bpf_helpers.h */ 2158 enum libbpf_pin_type { 2159 LIBBPF_PIN_NONE, 2160 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2161 LIBBPF_PIN_BY_NAME, 2162 }; 2163 2164 int parse_btf_map_def(const char *map_name, struct btf *btf, 2165 const struct btf_type *def_t, bool strict, 2166 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2167 { 2168 const struct btf_type *t; 2169 const struct btf_member *m; 2170 bool is_inner = inner_def == NULL; 2171 int vlen, i; 2172 2173 vlen = btf_vlen(def_t); 2174 m = btf_members(def_t); 2175 for (i = 0; i < vlen; i++, m++) { 2176 const char *name = btf__name_by_offset(btf, m->name_off); 2177 2178 if (!name) { 2179 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2180 return -EINVAL; 2181 } 2182 if (strcmp(name, "type") == 0) { 2183 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2184 return -EINVAL; 2185 map_def->parts |= MAP_DEF_MAP_TYPE; 2186 } else if (strcmp(name, "max_entries") == 0) { 2187 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2188 return -EINVAL; 2189 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2190 } else if (strcmp(name, "map_flags") == 0) { 2191 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2192 return -EINVAL; 2193 map_def->parts |= MAP_DEF_MAP_FLAGS; 2194 } else if (strcmp(name, "numa_node") == 0) { 2195 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2196 return -EINVAL; 2197 map_def->parts |= MAP_DEF_NUMA_NODE; 2198 } else if (strcmp(name, "key_size") == 0) { 2199 __u32 sz; 2200 2201 if (!get_map_field_int(map_name, btf, m, &sz)) 2202 return -EINVAL; 2203 if (map_def->key_size && map_def->key_size != sz) { 2204 pr_warn("map '%s': conflicting key size %u != %u.\n", 2205 map_name, map_def->key_size, sz); 2206 return -EINVAL; 2207 } 2208 map_def->key_size = sz; 2209 map_def->parts |= MAP_DEF_KEY_SIZE; 2210 } else if (strcmp(name, "key") == 0) { 2211 __s64 sz; 2212 2213 t = btf__type_by_id(btf, m->type); 2214 if (!t) { 2215 pr_warn("map '%s': key type [%d] not found.\n", 2216 map_name, m->type); 2217 return -EINVAL; 2218 } 2219 if (!btf_is_ptr(t)) { 2220 pr_warn("map '%s': key spec is not PTR: %s.\n", 2221 map_name, btf_kind_str(t)); 2222 return -EINVAL; 2223 } 2224 sz = btf__resolve_size(btf, t->type); 2225 if (sz < 0) { 2226 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2227 map_name, t->type, (ssize_t)sz); 2228 return sz; 2229 } 2230 if (map_def->key_size && map_def->key_size != sz) { 2231 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2232 map_name, map_def->key_size, (ssize_t)sz); 2233 return -EINVAL; 2234 } 2235 map_def->key_size = sz; 2236 map_def->key_type_id = t->type; 2237 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2238 } else if (strcmp(name, "value_size") == 0) { 2239 __u32 sz; 2240 2241 if (!get_map_field_int(map_name, btf, m, &sz)) 2242 return -EINVAL; 2243 if (map_def->value_size && map_def->value_size != sz) { 2244 pr_warn("map '%s': conflicting value size %u != %u.\n", 2245 map_name, map_def->value_size, sz); 2246 return -EINVAL; 2247 } 2248 map_def->value_size = sz; 2249 map_def->parts |= MAP_DEF_VALUE_SIZE; 2250 } else if (strcmp(name, "value") == 0) { 2251 __s64 sz; 2252 2253 t = btf__type_by_id(btf, m->type); 2254 if (!t) { 2255 pr_warn("map '%s': value type [%d] not found.\n", 2256 map_name, m->type); 2257 return -EINVAL; 2258 } 2259 if (!btf_is_ptr(t)) { 2260 pr_warn("map '%s': value spec is not PTR: %s.\n", 2261 map_name, btf_kind_str(t)); 2262 return -EINVAL; 2263 } 2264 sz = btf__resolve_size(btf, t->type); 2265 if (sz < 0) { 2266 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2267 map_name, t->type, (ssize_t)sz); 2268 return sz; 2269 } 2270 if (map_def->value_size && map_def->value_size != sz) { 2271 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2272 map_name, map_def->value_size, (ssize_t)sz); 2273 return -EINVAL; 2274 } 2275 map_def->value_size = sz; 2276 map_def->value_type_id = t->type; 2277 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2278 } 2279 else if (strcmp(name, "values") == 0) { 2280 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2281 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2282 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2283 char inner_map_name[128]; 2284 int err; 2285 2286 if (is_inner) { 2287 pr_warn("map '%s': multi-level inner maps not supported.\n", 2288 map_name); 2289 return -ENOTSUP; 2290 } 2291 if (i != vlen - 1) { 2292 pr_warn("map '%s': '%s' member should be last.\n", 2293 map_name, name); 2294 return -EINVAL; 2295 } 2296 if (!is_map_in_map && !is_prog_array) { 2297 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2298 map_name); 2299 return -ENOTSUP; 2300 } 2301 if (map_def->value_size && map_def->value_size != 4) { 2302 pr_warn("map '%s': conflicting value size %u != 4.\n", 2303 map_name, map_def->value_size); 2304 return -EINVAL; 2305 } 2306 map_def->value_size = 4; 2307 t = btf__type_by_id(btf, m->type); 2308 if (!t) { 2309 pr_warn("map '%s': %s type [%d] not found.\n", 2310 map_name, desc, m->type); 2311 return -EINVAL; 2312 } 2313 if (!btf_is_array(t) || btf_array(t)->nelems) { 2314 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2315 map_name, desc); 2316 return -EINVAL; 2317 } 2318 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2319 if (!btf_is_ptr(t)) { 2320 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2321 map_name, desc, btf_kind_str(t)); 2322 return -EINVAL; 2323 } 2324 t = skip_mods_and_typedefs(btf, t->type, NULL); 2325 if (is_prog_array) { 2326 if (!btf_is_func_proto(t)) { 2327 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2328 map_name, btf_kind_str(t)); 2329 return -EINVAL; 2330 } 2331 continue; 2332 } 2333 if (!btf_is_struct(t)) { 2334 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2335 map_name, btf_kind_str(t)); 2336 return -EINVAL; 2337 } 2338 2339 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2340 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2341 if (err) 2342 return err; 2343 2344 map_def->parts |= MAP_DEF_INNER_MAP; 2345 } else if (strcmp(name, "pinning") == 0) { 2346 __u32 val; 2347 2348 if (is_inner) { 2349 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2350 return -EINVAL; 2351 } 2352 if (!get_map_field_int(map_name, btf, m, &val)) 2353 return -EINVAL; 2354 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2355 pr_warn("map '%s': invalid pinning value %u.\n", 2356 map_name, val); 2357 return -EINVAL; 2358 } 2359 map_def->pinning = val; 2360 map_def->parts |= MAP_DEF_PINNING; 2361 } else if (strcmp(name, "map_extra") == 0) { 2362 __u32 map_extra; 2363 2364 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2365 return -EINVAL; 2366 map_def->map_extra = map_extra; 2367 map_def->parts |= MAP_DEF_MAP_EXTRA; 2368 } else { 2369 if (strict) { 2370 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2371 return -ENOTSUP; 2372 } 2373 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2374 } 2375 } 2376 2377 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2378 pr_warn("map '%s': map type isn't specified.\n", map_name); 2379 return -EINVAL; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static size_t adjust_ringbuf_sz(size_t sz) 2386 { 2387 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2388 __u32 mul; 2389 2390 /* if user forgot to set any size, make sure they see error */ 2391 if (sz == 0) 2392 return 0; 2393 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2394 * a power-of-2 multiple of kernel's page size. If user diligently 2395 * satisified these conditions, pass the size through. 2396 */ 2397 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2398 return sz; 2399 2400 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2401 * user-set size to satisfy both user size request and kernel 2402 * requirements and substitute correct max_entries for map creation. 2403 */ 2404 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2405 if (mul * page_sz > sz) 2406 return mul * page_sz; 2407 } 2408 2409 /* if it's impossible to satisfy the conditions (i.e., user size is 2410 * very close to UINT_MAX but is not a power-of-2 multiple of 2411 * page_size) then just return original size and let kernel reject it 2412 */ 2413 return sz; 2414 } 2415 2416 static bool map_is_ringbuf(const struct bpf_map *map) 2417 { 2418 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2419 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2420 } 2421 2422 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2423 { 2424 map->def.type = def->map_type; 2425 map->def.key_size = def->key_size; 2426 map->def.value_size = def->value_size; 2427 map->def.max_entries = def->max_entries; 2428 map->def.map_flags = def->map_flags; 2429 map->map_extra = def->map_extra; 2430 2431 map->numa_node = def->numa_node; 2432 map->btf_key_type_id = def->key_type_id; 2433 map->btf_value_type_id = def->value_type_id; 2434 2435 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2436 if (map_is_ringbuf(map)) 2437 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2438 2439 if (def->parts & MAP_DEF_MAP_TYPE) 2440 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2441 2442 if (def->parts & MAP_DEF_KEY_TYPE) 2443 pr_debug("map '%s': found key [%u], sz = %u.\n", 2444 map->name, def->key_type_id, def->key_size); 2445 else if (def->parts & MAP_DEF_KEY_SIZE) 2446 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2447 2448 if (def->parts & MAP_DEF_VALUE_TYPE) 2449 pr_debug("map '%s': found value [%u], sz = %u.\n", 2450 map->name, def->value_type_id, def->value_size); 2451 else if (def->parts & MAP_DEF_VALUE_SIZE) 2452 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2453 2454 if (def->parts & MAP_DEF_MAX_ENTRIES) 2455 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2456 if (def->parts & MAP_DEF_MAP_FLAGS) 2457 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2458 if (def->parts & MAP_DEF_MAP_EXTRA) 2459 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2460 (unsigned long long)def->map_extra); 2461 if (def->parts & MAP_DEF_PINNING) 2462 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2463 if (def->parts & MAP_DEF_NUMA_NODE) 2464 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2465 2466 if (def->parts & MAP_DEF_INNER_MAP) 2467 pr_debug("map '%s': found inner map definition.\n", map->name); 2468 } 2469 2470 static const char *btf_var_linkage_str(__u32 linkage) 2471 { 2472 switch (linkage) { 2473 case BTF_VAR_STATIC: return "static"; 2474 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2475 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2476 default: return "unknown"; 2477 } 2478 } 2479 2480 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2481 const struct btf_type *sec, 2482 int var_idx, int sec_idx, 2483 const Elf_Data *data, bool strict, 2484 const char *pin_root_path) 2485 { 2486 struct btf_map_def map_def = {}, inner_def = {}; 2487 const struct btf_type *var, *def; 2488 const struct btf_var_secinfo *vi; 2489 const struct btf_var *var_extra; 2490 const char *map_name; 2491 struct bpf_map *map; 2492 int err; 2493 2494 vi = btf_var_secinfos(sec) + var_idx; 2495 var = btf__type_by_id(obj->btf, vi->type); 2496 var_extra = btf_var(var); 2497 map_name = btf__name_by_offset(obj->btf, var->name_off); 2498 2499 if (map_name == NULL || map_name[0] == '\0') { 2500 pr_warn("map #%d: empty name.\n", var_idx); 2501 return -EINVAL; 2502 } 2503 if ((__u64)vi->offset + vi->size > data->d_size) { 2504 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2505 return -EINVAL; 2506 } 2507 if (!btf_is_var(var)) { 2508 pr_warn("map '%s': unexpected var kind %s.\n", 2509 map_name, btf_kind_str(var)); 2510 return -EINVAL; 2511 } 2512 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2513 pr_warn("map '%s': unsupported map linkage %s.\n", 2514 map_name, btf_var_linkage_str(var_extra->linkage)); 2515 return -EOPNOTSUPP; 2516 } 2517 2518 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2519 if (!btf_is_struct(def)) { 2520 pr_warn("map '%s': unexpected def kind %s.\n", 2521 map_name, btf_kind_str(var)); 2522 return -EINVAL; 2523 } 2524 if (def->size > vi->size) { 2525 pr_warn("map '%s': invalid def size.\n", map_name); 2526 return -EINVAL; 2527 } 2528 2529 map = bpf_object__add_map(obj); 2530 if (IS_ERR(map)) 2531 return PTR_ERR(map); 2532 map->name = strdup(map_name); 2533 if (!map->name) { 2534 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2535 return -ENOMEM; 2536 } 2537 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2538 map->def.type = BPF_MAP_TYPE_UNSPEC; 2539 map->sec_idx = sec_idx; 2540 map->sec_offset = vi->offset; 2541 map->btf_var_idx = var_idx; 2542 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2543 map_name, map->sec_idx, map->sec_offset); 2544 2545 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2546 if (err) 2547 return err; 2548 2549 fill_map_from_def(map, &map_def); 2550 2551 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2552 err = build_map_pin_path(map, pin_root_path); 2553 if (err) { 2554 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2555 return err; 2556 } 2557 } 2558 2559 if (map_def.parts & MAP_DEF_INNER_MAP) { 2560 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2561 if (!map->inner_map) 2562 return -ENOMEM; 2563 map->inner_map->fd = -1; 2564 map->inner_map->sec_idx = sec_idx; 2565 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2566 if (!map->inner_map->name) 2567 return -ENOMEM; 2568 sprintf(map->inner_map->name, "%s.inner", map_name); 2569 2570 fill_map_from_def(map->inner_map, &inner_def); 2571 } 2572 2573 err = map_fill_btf_type_info(obj, map); 2574 if (err) 2575 return err; 2576 2577 return 0; 2578 } 2579 2580 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2581 const char *pin_root_path) 2582 { 2583 const struct btf_type *sec = NULL; 2584 int nr_types, i, vlen, err; 2585 const struct btf_type *t; 2586 const char *name; 2587 Elf_Data *data; 2588 Elf_Scn *scn; 2589 2590 if (obj->efile.btf_maps_shndx < 0) 2591 return 0; 2592 2593 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2594 data = elf_sec_data(obj, scn); 2595 if (!scn || !data) { 2596 pr_warn("elf: failed to get %s map definitions for %s\n", 2597 MAPS_ELF_SEC, obj->path); 2598 return -EINVAL; 2599 } 2600 2601 nr_types = btf__type_cnt(obj->btf); 2602 for (i = 1; i < nr_types; i++) { 2603 t = btf__type_by_id(obj->btf, i); 2604 if (!btf_is_datasec(t)) 2605 continue; 2606 name = btf__name_by_offset(obj->btf, t->name_off); 2607 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2608 sec = t; 2609 obj->efile.btf_maps_sec_btf_id = i; 2610 break; 2611 } 2612 } 2613 2614 if (!sec) { 2615 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2616 return -ENOENT; 2617 } 2618 2619 vlen = btf_vlen(sec); 2620 for (i = 0; i < vlen; i++) { 2621 err = bpf_object__init_user_btf_map(obj, sec, i, 2622 obj->efile.btf_maps_shndx, 2623 data, strict, 2624 pin_root_path); 2625 if (err) 2626 return err; 2627 } 2628 2629 return 0; 2630 } 2631 2632 static int bpf_object__init_maps(struct bpf_object *obj, 2633 const struct bpf_object_open_opts *opts) 2634 { 2635 const char *pin_root_path; 2636 bool strict; 2637 int err = 0; 2638 2639 strict = !OPTS_GET(opts, relaxed_maps, false); 2640 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2641 2642 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2643 err = err ?: bpf_object__init_global_data_maps(obj); 2644 err = err ?: bpf_object__init_kconfig_map(obj); 2645 err = err ?: bpf_object_init_struct_ops(obj); 2646 2647 return err; 2648 } 2649 2650 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2651 { 2652 Elf64_Shdr *sh; 2653 2654 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2655 if (!sh) 2656 return false; 2657 2658 return sh->sh_flags & SHF_EXECINSTR; 2659 } 2660 2661 static bool btf_needs_sanitization(struct bpf_object *obj) 2662 { 2663 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2664 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2665 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2666 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2667 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2668 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2669 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2670 2671 return !has_func || !has_datasec || !has_func_global || !has_float || 2672 !has_decl_tag || !has_type_tag || !has_enum64; 2673 } 2674 2675 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2676 { 2677 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2678 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2679 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2680 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2681 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2682 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2683 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2684 int enum64_placeholder_id = 0; 2685 struct btf_type *t; 2686 int i, j, vlen; 2687 2688 for (i = 1; i < btf__type_cnt(btf); i++) { 2689 t = (struct btf_type *)btf__type_by_id(btf, i); 2690 2691 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2692 /* replace VAR/DECL_TAG with INT */ 2693 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2694 /* 2695 * using size = 1 is the safest choice, 4 will be too 2696 * big and cause kernel BTF validation failure if 2697 * original variable took less than 4 bytes 2698 */ 2699 t->size = 1; 2700 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2701 } else if (!has_datasec && btf_is_datasec(t)) { 2702 /* replace DATASEC with STRUCT */ 2703 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2704 struct btf_member *m = btf_members(t); 2705 struct btf_type *vt; 2706 char *name; 2707 2708 name = (char *)btf__name_by_offset(btf, t->name_off); 2709 while (*name) { 2710 if (*name == '.') 2711 *name = '_'; 2712 name++; 2713 } 2714 2715 vlen = btf_vlen(t); 2716 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2717 for (j = 0; j < vlen; j++, v++, m++) { 2718 /* order of field assignments is important */ 2719 m->offset = v->offset * 8; 2720 m->type = v->type; 2721 /* preserve variable name as member name */ 2722 vt = (void *)btf__type_by_id(btf, v->type); 2723 m->name_off = vt->name_off; 2724 } 2725 } else if (!has_func && btf_is_func_proto(t)) { 2726 /* replace FUNC_PROTO with ENUM */ 2727 vlen = btf_vlen(t); 2728 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2729 t->size = sizeof(__u32); /* kernel enforced */ 2730 } else if (!has_func && btf_is_func(t)) { 2731 /* replace FUNC with TYPEDEF */ 2732 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2733 } else if (!has_func_global && btf_is_func(t)) { 2734 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2735 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2736 } else if (!has_float && btf_is_float(t)) { 2737 /* replace FLOAT with an equally-sized empty STRUCT; 2738 * since C compilers do not accept e.g. "float" as a 2739 * valid struct name, make it anonymous 2740 */ 2741 t->name_off = 0; 2742 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2743 } else if (!has_type_tag && btf_is_type_tag(t)) { 2744 /* replace TYPE_TAG with a CONST */ 2745 t->name_off = 0; 2746 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2747 } else if (!has_enum64 && btf_is_enum(t)) { 2748 /* clear the kflag */ 2749 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2750 } else if (!has_enum64 && btf_is_enum64(t)) { 2751 /* replace ENUM64 with a union */ 2752 struct btf_member *m; 2753 2754 if (enum64_placeholder_id == 0) { 2755 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2756 if (enum64_placeholder_id < 0) 2757 return enum64_placeholder_id; 2758 2759 t = (struct btf_type *)btf__type_by_id(btf, i); 2760 } 2761 2762 m = btf_members(t); 2763 vlen = btf_vlen(t); 2764 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2765 for (j = 0; j < vlen; j++, m++) { 2766 m->type = enum64_placeholder_id; 2767 m->offset = 0; 2768 } 2769 } 2770 } 2771 2772 return 0; 2773 } 2774 2775 static bool libbpf_needs_btf(const struct bpf_object *obj) 2776 { 2777 return obj->efile.btf_maps_shndx >= 0 || 2778 obj->efile.st_ops_shndx >= 0 || 2779 obj->efile.st_ops_link_shndx >= 0 || 2780 obj->nr_extern > 0; 2781 } 2782 2783 static bool kernel_needs_btf(const struct bpf_object *obj) 2784 { 2785 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2786 } 2787 2788 static int bpf_object__init_btf(struct bpf_object *obj, 2789 Elf_Data *btf_data, 2790 Elf_Data *btf_ext_data) 2791 { 2792 int err = -ENOENT; 2793 2794 if (btf_data) { 2795 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2796 err = libbpf_get_error(obj->btf); 2797 if (err) { 2798 obj->btf = NULL; 2799 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2800 goto out; 2801 } 2802 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2803 btf__set_pointer_size(obj->btf, 8); 2804 } 2805 if (btf_ext_data) { 2806 struct btf_ext_info *ext_segs[3]; 2807 int seg_num, sec_num; 2808 2809 if (!obj->btf) { 2810 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2811 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2812 goto out; 2813 } 2814 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2815 err = libbpf_get_error(obj->btf_ext); 2816 if (err) { 2817 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2818 BTF_EXT_ELF_SEC, err); 2819 obj->btf_ext = NULL; 2820 goto out; 2821 } 2822 2823 /* setup .BTF.ext to ELF section mapping */ 2824 ext_segs[0] = &obj->btf_ext->func_info; 2825 ext_segs[1] = &obj->btf_ext->line_info; 2826 ext_segs[2] = &obj->btf_ext->core_relo_info; 2827 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2828 struct btf_ext_info *seg = ext_segs[seg_num]; 2829 const struct btf_ext_info_sec *sec; 2830 const char *sec_name; 2831 Elf_Scn *scn; 2832 2833 if (seg->sec_cnt == 0) 2834 continue; 2835 2836 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2837 if (!seg->sec_idxs) { 2838 err = -ENOMEM; 2839 goto out; 2840 } 2841 2842 sec_num = 0; 2843 for_each_btf_ext_sec(seg, sec) { 2844 /* preventively increment index to avoid doing 2845 * this before every continue below 2846 */ 2847 sec_num++; 2848 2849 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2850 if (str_is_empty(sec_name)) 2851 continue; 2852 scn = elf_sec_by_name(obj, sec_name); 2853 if (!scn) 2854 continue; 2855 2856 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2857 } 2858 } 2859 } 2860 out: 2861 if (err && libbpf_needs_btf(obj)) { 2862 pr_warn("BTF is required, but is missing or corrupted.\n"); 2863 return err; 2864 } 2865 return 0; 2866 } 2867 2868 static int compare_vsi_off(const void *_a, const void *_b) 2869 { 2870 const struct btf_var_secinfo *a = _a; 2871 const struct btf_var_secinfo *b = _b; 2872 2873 return a->offset - b->offset; 2874 } 2875 2876 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2877 struct btf_type *t) 2878 { 2879 __u32 size = 0, i, vars = btf_vlen(t); 2880 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2881 struct btf_var_secinfo *vsi; 2882 bool fixup_offsets = false; 2883 int err; 2884 2885 if (!sec_name) { 2886 pr_debug("No name found in string section for DATASEC kind.\n"); 2887 return -ENOENT; 2888 } 2889 2890 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2891 * variable offsets set at the previous step. Further, not every 2892 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2893 * all fixups altogether for such sections and go straight to sorting 2894 * VARs within their DATASEC. 2895 */ 2896 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2897 goto sort_vars; 2898 2899 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2900 * fix this up. But BPF static linker already fixes this up and fills 2901 * all the sizes and offsets during static linking. So this step has 2902 * to be optional. But the STV_HIDDEN handling is non-optional for any 2903 * non-extern DATASEC, so the variable fixup loop below handles both 2904 * functions at the same time, paying the cost of BTF VAR <-> ELF 2905 * symbol matching just once. 2906 */ 2907 if (t->size == 0) { 2908 err = find_elf_sec_sz(obj, sec_name, &size); 2909 if (err || !size) { 2910 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2911 sec_name, size, err); 2912 return -ENOENT; 2913 } 2914 2915 t->size = size; 2916 fixup_offsets = true; 2917 } 2918 2919 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2920 const struct btf_type *t_var; 2921 struct btf_var *var; 2922 const char *var_name; 2923 Elf64_Sym *sym; 2924 2925 t_var = btf__type_by_id(btf, vsi->type); 2926 if (!t_var || !btf_is_var(t_var)) { 2927 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2928 return -EINVAL; 2929 } 2930 2931 var = btf_var(t_var); 2932 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2933 continue; 2934 2935 var_name = btf__name_by_offset(btf, t_var->name_off); 2936 if (!var_name) { 2937 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2938 sec_name, i); 2939 return -ENOENT; 2940 } 2941 2942 sym = find_elf_var_sym(obj, var_name); 2943 if (IS_ERR(sym)) { 2944 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2945 sec_name, var_name); 2946 return -ENOENT; 2947 } 2948 2949 if (fixup_offsets) 2950 vsi->offset = sym->st_value; 2951 2952 /* if variable is a global/weak symbol, but has restricted 2953 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2954 * as static. This follows similar logic for functions (BPF 2955 * subprogs) and influences libbpf's further decisions about 2956 * whether to make global data BPF array maps as 2957 * BPF_F_MMAPABLE. 2958 */ 2959 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2960 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2961 var->linkage = BTF_VAR_STATIC; 2962 } 2963 2964 sort_vars: 2965 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2966 return 0; 2967 } 2968 2969 static int bpf_object_fixup_btf(struct bpf_object *obj) 2970 { 2971 int i, n, err = 0; 2972 2973 if (!obj->btf) 2974 return 0; 2975 2976 n = btf__type_cnt(obj->btf); 2977 for (i = 1; i < n; i++) { 2978 struct btf_type *t = btf_type_by_id(obj->btf, i); 2979 2980 /* Loader needs to fix up some of the things compiler 2981 * couldn't get its hands on while emitting BTF. This 2982 * is section size and global variable offset. We use 2983 * the info from the ELF itself for this purpose. 2984 */ 2985 if (btf_is_datasec(t)) { 2986 err = btf_fixup_datasec(obj, obj->btf, t); 2987 if (err) 2988 return err; 2989 } 2990 } 2991 2992 return 0; 2993 } 2994 2995 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2996 { 2997 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2998 prog->type == BPF_PROG_TYPE_LSM) 2999 return true; 3000 3001 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3002 * also need vmlinux BTF 3003 */ 3004 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3005 return true; 3006 3007 return false; 3008 } 3009 3010 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3011 { 3012 struct bpf_program *prog; 3013 int i; 3014 3015 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3016 * is not specified 3017 */ 3018 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3019 return true; 3020 3021 /* Support for typed ksyms needs kernel BTF */ 3022 for (i = 0; i < obj->nr_extern; i++) { 3023 const struct extern_desc *ext; 3024 3025 ext = &obj->externs[i]; 3026 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3027 return true; 3028 } 3029 3030 bpf_object__for_each_program(prog, obj) { 3031 if (!prog->autoload) 3032 continue; 3033 if (prog_needs_vmlinux_btf(prog)) 3034 return true; 3035 } 3036 3037 return false; 3038 } 3039 3040 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3041 { 3042 int err; 3043 3044 /* btf_vmlinux could be loaded earlier */ 3045 if (obj->btf_vmlinux || obj->gen_loader) 3046 return 0; 3047 3048 if (!force && !obj_needs_vmlinux_btf(obj)) 3049 return 0; 3050 3051 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3052 err = libbpf_get_error(obj->btf_vmlinux); 3053 if (err) { 3054 pr_warn("Error loading vmlinux BTF: %d\n", err); 3055 obj->btf_vmlinux = NULL; 3056 return err; 3057 } 3058 return 0; 3059 } 3060 3061 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3062 { 3063 struct btf *kern_btf = obj->btf; 3064 bool btf_mandatory, sanitize; 3065 int i, err = 0; 3066 3067 if (!obj->btf) 3068 return 0; 3069 3070 if (!kernel_supports(obj, FEAT_BTF)) { 3071 if (kernel_needs_btf(obj)) { 3072 err = -EOPNOTSUPP; 3073 goto report; 3074 } 3075 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3076 return 0; 3077 } 3078 3079 /* Even though some subprogs are global/weak, user might prefer more 3080 * permissive BPF verification process that BPF verifier performs for 3081 * static functions, taking into account more context from the caller 3082 * functions. In such case, they need to mark such subprogs with 3083 * __attribute__((visibility("hidden"))) and libbpf will adjust 3084 * corresponding FUNC BTF type to be marked as static and trigger more 3085 * involved BPF verification process. 3086 */ 3087 for (i = 0; i < obj->nr_programs; i++) { 3088 struct bpf_program *prog = &obj->programs[i]; 3089 struct btf_type *t; 3090 const char *name; 3091 int j, n; 3092 3093 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3094 continue; 3095 3096 n = btf__type_cnt(obj->btf); 3097 for (j = 1; j < n; j++) { 3098 t = btf_type_by_id(obj->btf, j); 3099 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3100 continue; 3101 3102 name = btf__str_by_offset(obj->btf, t->name_off); 3103 if (strcmp(name, prog->name) != 0) 3104 continue; 3105 3106 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3107 break; 3108 } 3109 } 3110 3111 sanitize = btf_needs_sanitization(obj); 3112 if (sanitize) { 3113 const void *raw_data; 3114 __u32 sz; 3115 3116 /* clone BTF to sanitize a copy and leave the original intact */ 3117 raw_data = btf__raw_data(obj->btf, &sz); 3118 kern_btf = btf__new(raw_data, sz); 3119 err = libbpf_get_error(kern_btf); 3120 if (err) 3121 return err; 3122 3123 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3124 btf__set_pointer_size(obj->btf, 8); 3125 err = bpf_object__sanitize_btf(obj, kern_btf); 3126 if (err) 3127 return err; 3128 } 3129 3130 if (obj->gen_loader) { 3131 __u32 raw_size = 0; 3132 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3133 3134 if (!raw_data) 3135 return -ENOMEM; 3136 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3137 /* Pretend to have valid FD to pass various fd >= 0 checks. 3138 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3139 */ 3140 btf__set_fd(kern_btf, 0); 3141 } else { 3142 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3143 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3144 obj->log_level ? 1 : 0); 3145 } 3146 if (sanitize) { 3147 if (!err) { 3148 /* move fd to libbpf's BTF */ 3149 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3150 btf__set_fd(kern_btf, -1); 3151 } 3152 btf__free(kern_btf); 3153 } 3154 report: 3155 if (err) { 3156 btf_mandatory = kernel_needs_btf(obj); 3157 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3158 btf_mandatory ? "BTF is mandatory, can't proceed." 3159 : "BTF is optional, ignoring."); 3160 if (!btf_mandatory) 3161 err = 0; 3162 } 3163 return err; 3164 } 3165 3166 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3167 { 3168 const char *name; 3169 3170 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3171 if (!name) { 3172 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3173 off, obj->path, elf_errmsg(-1)); 3174 return NULL; 3175 } 3176 3177 return name; 3178 } 3179 3180 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3181 { 3182 const char *name; 3183 3184 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3185 if (!name) { 3186 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3187 off, obj->path, elf_errmsg(-1)); 3188 return NULL; 3189 } 3190 3191 return name; 3192 } 3193 3194 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3195 { 3196 Elf_Scn *scn; 3197 3198 scn = elf_getscn(obj->efile.elf, idx); 3199 if (!scn) { 3200 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3201 idx, obj->path, elf_errmsg(-1)); 3202 return NULL; 3203 } 3204 return scn; 3205 } 3206 3207 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3208 { 3209 Elf_Scn *scn = NULL; 3210 Elf *elf = obj->efile.elf; 3211 const char *sec_name; 3212 3213 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3214 sec_name = elf_sec_name(obj, scn); 3215 if (!sec_name) 3216 return NULL; 3217 3218 if (strcmp(sec_name, name) != 0) 3219 continue; 3220 3221 return scn; 3222 } 3223 return NULL; 3224 } 3225 3226 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3227 { 3228 Elf64_Shdr *shdr; 3229 3230 if (!scn) 3231 return NULL; 3232 3233 shdr = elf64_getshdr(scn); 3234 if (!shdr) { 3235 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3236 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3237 return NULL; 3238 } 3239 3240 return shdr; 3241 } 3242 3243 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3244 { 3245 const char *name; 3246 Elf64_Shdr *sh; 3247 3248 if (!scn) 3249 return NULL; 3250 3251 sh = elf_sec_hdr(obj, scn); 3252 if (!sh) 3253 return NULL; 3254 3255 name = elf_sec_str(obj, sh->sh_name); 3256 if (!name) { 3257 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3258 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3259 return NULL; 3260 } 3261 3262 return name; 3263 } 3264 3265 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3266 { 3267 Elf_Data *data; 3268 3269 if (!scn) 3270 return NULL; 3271 3272 data = elf_getdata(scn, 0); 3273 if (!data) { 3274 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3275 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3276 obj->path, elf_errmsg(-1)); 3277 return NULL; 3278 } 3279 3280 return data; 3281 } 3282 3283 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3284 { 3285 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3286 return NULL; 3287 3288 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3289 } 3290 3291 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3292 { 3293 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3294 return NULL; 3295 3296 return (Elf64_Rel *)data->d_buf + idx; 3297 } 3298 3299 static bool is_sec_name_dwarf(const char *name) 3300 { 3301 /* approximation, but the actual list is too long */ 3302 return str_has_pfx(name, ".debug_"); 3303 } 3304 3305 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3306 { 3307 /* no special handling of .strtab */ 3308 if (hdr->sh_type == SHT_STRTAB) 3309 return true; 3310 3311 /* ignore .llvm_addrsig section as well */ 3312 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3313 return true; 3314 3315 /* no subprograms will lead to an empty .text section, ignore it */ 3316 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3317 strcmp(name, ".text") == 0) 3318 return true; 3319 3320 /* DWARF sections */ 3321 if (is_sec_name_dwarf(name)) 3322 return true; 3323 3324 if (str_has_pfx(name, ".rel")) { 3325 name += sizeof(".rel") - 1; 3326 /* DWARF section relocations */ 3327 if (is_sec_name_dwarf(name)) 3328 return true; 3329 3330 /* .BTF and .BTF.ext don't need relocations */ 3331 if (strcmp(name, BTF_ELF_SEC) == 0 || 3332 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3333 return true; 3334 } 3335 3336 return false; 3337 } 3338 3339 static int cmp_progs(const void *_a, const void *_b) 3340 { 3341 const struct bpf_program *a = _a; 3342 const struct bpf_program *b = _b; 3343 3344 if (a->sec_idx != b->sec_idx) 3345 return a->sec_idx < b->sec_idx ? -1 : 1; 3346 3347 /* sec_insn_off can't be the same within the section */ 3348 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3349 } 3350 3351 static int bpf_object__elf_collect(struct bpf_object *obj) 3352 { 3353 struct elf_sec_desc *sec_desc; 3354 Elf *elf = obj->efile.elf; 3355 Elf_Data *btf_ext_data = NULL; 3356 Elf_Data *btf_data = NULL; 3357 int idx = 0, err = 0; 3358 const char *name; 3359 Elf_Data *data; 3360 Elf_Scn *scn; 3361 Elf64_Shdr *sh; 3362 3363 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3364 * section. Since section count retrieved by elf_getshdrnum() does 3365 * include sec #0, it is already the necessary size of an array to keep 3366 * all the sections. 3367 */ 3368 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3369 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3370 obj->path, elf_errmsg(-1)); 3371 return -LIBBPF_ERRNO__FORMAT; 3372 } 3373 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3374 if (!obj->efile.secs) 3375 return -ENOMEM; 3376 3377 /* a bunch of ELF parsing functionality depends on processing symbols, 3378 * so do the first pass and find the symbol table 3379 */ 3380 scn = NULL; 3381 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3382 sh = elf_sec_hdr(obj, scn); 3383 if (!sh) 3384 return -LIBBPF_ERRNO__FORMAT; 3385 3386 if (sh->sh_type == SHT_SYMTAB) { 3387 if (obj->efile.symbols) { 3388 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3389 return -LIBBPF_ERRNO__FORMAT; 3390 } 3391 3392 data = elf_sec_data(obj, scn); 3393 if (!data) 3394 return -LIBBPF_ERRNO__FORMAT; 3395 3396 idx = elf_ndxscn(scn); 3397 3398 obj->efile.symbols = data; 3399 obj->efile.symbols_shndx = idx; 3400 obj->efile.strtabidx = sh->sh_link; 3401 } 3402 } 3403 3404 if (!obj->efile.symbols) { 3405 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3406 obj->path); 3407 return -ENOENT; 3408 } 3409 3410 scn = NULL; 3411 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3412 idx = elf_ndxscn(scn); 3413 sec_desc = &obj->efile.secs[idx]; 3414 3415 sh = elf_sec_hdr(obj, scn); 3416 if (!sh) 3417 return -LIBBPF_ERRNO__FORMAT; 3418 3419 name = elf_sec_str(obj, sh->sh_name); 3420 if (!name) 3421 return -LIBBPF_ERRNO__FORMAT; 3422 3423 if (ignore_elf_section(sh, name)) 3424 continue; 3425 3426 data = elf_sec_data(obj, scn); 3427 if (!data) 3428 return -LIBBPF_ERRNO__FORMAT; 3429 3430 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3431 idx, name, (unsigned long)data->d_size, 3432 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3433 (int)sh->sh_type); 3434 3435 if (strcmp(name, "license") == 0) { 3436 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3437 if (err) 3438 return err; 3439 } else if (strcmp(name, "version") == 0) { 3440 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3441 if (err) 3442 return err; 3443 } else if (strcmp(name, "maps") == 0) { 3444 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3445 return -ENOTSUP; 3446 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3447 obj->efile.btf_maps_shndx = idx; 3448 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3449 if (sh->sh_type != SHT_PROGBITS) 3450 return -LIBBPF_ERRNO__FORMAT; 3451 btf_data = data; 3452 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3453 if (sh->sh_type != SHT_PROGBITS) 3454 return -LIBBPF_ERRNO__FORMAT; 3455 btf_ext_data = data; 3456 } else if (sh->sh_type == SHT_SYMTAB) { 3457 /* already processed during the first pass above */ 3458 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3459 if (sh->sh_flags & SHF_EXECINSTR) { 3460 if (strcmp(name, ".text") == 0) 3461 obj->efile.text_shndx = idx; 3462 err = bpf_object__add_programs(obj, data, name, idx); 3463 if (err) 3464 return err; 3465 } else if (strcmp(name, DATA_SEC) == 0 || 3466 str_has_pfx(name, DATA_SEC ".")) { 3467 sec_desc->sec_type = SEC_DATA; 3468 sec_desc->shdr = sh; 3469 sec_desc->data = data; 3470 } else if (strcmp(name, RODATA_SEC) == 0 || 3471 str_has_pfx(name, RODATA_SEC ".")) { 3472 sec_desc->sec_type = SEC_RODATA; 3473 sec_desc->shdr = sh; 3474 sec_desc->data = data; 3475 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3476 obj->efile.st_ops_data = data; 3477 obj->efile.st_ops_shndx = idx; 3478 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3479 obj->efile.st_ops_link_data = data; 3480 obj->efile.st_ops_link_shndx = idx; 3481 } else { 3482 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3483 idx, name); 3484 } 3485 } else if (sh->sh_type == SHT_REL) { 3486 int targ_sec_idx = sh->sh_info; /* points to other section */ 3487 3488 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3489 targ_sec_idx >= obj->efile.sec_cnt) 3490 return -LIBBPF_ERRNO__FORMAT; 3491 3492 /* Only do relo for section with exec instructions */ 3493 if (!section_have_execinstr(obj, targ_sec_idx) && 3494 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3495 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3496 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3497 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3498 idx, name, targ_sec_idx, 3499 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3500 continue; 3501 } 3502 3503 sec_desc->sec_type = SEC_RELO; 3504 sec_desc->shdr = sh; 3505 sec_desc->data = data; 3506 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3507 str_has_pfx(name, BSS_SEC "."))) { 3508 sec_desc->sec_type = SEC_BSS; 3509 sec_desc->shdr = sh; 3510 sec_desc->data = data; 3511 } else { 3512 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3513 (size_t)sh->sh_size); 3514 } 3515 } 3516 3517 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3518 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3519 return -LIBBPF_ERRNO__FORMAT; 3520 } 3521 3522 /* sort BPF programs by section name and in-section instruction offset 3523 * for faster search 3524 */ 3525 if (obj->nr_programs) 3526 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3527 3528 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3529 } 3530 3531 static bool sym_is_extern(const Elf64_Sym *sym) 3532 { 3533 int bind = ELF64_ST_BIND(sym->st_info); 3534 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3535 return sym->st_shndx == SHN_UNDEF && 3536 (bind == STB_GLOBAL || bind == STB_WEAK) && 3537 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3538 } 3539 3540 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3541 { 3542 int bind = ELF64_ST_BIND(sym->st_info); 3543 int type = ELF64_ST_TYPE(sym->st_info); 3544 3545 /* in .text section */ 3546 if (sym->st_shndx != text_shndx) 3547 return false; 3548 3549 /* local function */ 3550 if (bind == STB_LOCAL && type == STT_SECTION) 3551 return true; 3552 3553 /* global function */ 3554 return bind == STB_GLOBAL && type == STT_FUNC; 3555 } 3556 3557 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3558 { 3559 const struct btf_type *t; 3560 const char *tname; 3561 int i, n; 3562 3563 if (!btf) 3564 return -ESRCH; 3565 3566 n = btf__type_cnt(btf); 3567 for (i = 1; i < n; i++) { 3568 t = btf__type_by_id(btf, i); 3569 3570 if (!btf_is_var(t) && !btf_is_func(t)) 3571 continue; 3572 3573 tname = btf__name_by_offset(btf, t->name_off); 3574 if (strcmp(tname, ext_name)) 3575 continue; 3576 3577 if (btf_is_var(t) && 3578 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3579 return -EINVAL; 3580 3581 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3582 return -EINVAL; 3583 3584 return i; 3585 } 3586 3587 return -ENOENT; 3588 } 3589 3590 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3591 const struct btf_var_secinfo *vs; 3592 const struct btf_type *t; 3593 int i, j, n; 3594 3595 if (!btf) 3596 return -ESRCH; 3597 3598 n = btf__type_cnt(btf); 3599 for (i = 1; i < n; i++) { 3600 t = btf__type_by_id(btf, i); 3601 3602 if (!btf_is_datasec(t)) 3603 continue; 3604 3605 vs = btf_var_secinfos(t); 3606 for (j = 0; j < btf_vlen(t); j++, vs++) { 3607 if (vs->type == ext_btf_id) 3608 return i; 3609 } 3610 } 3611 3612 return -ENOENT; 3613 } 3614 3615 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3616 bool *is_signed) 3617 { 3618 const struct btf_type *t; 3619 const char *name; 3620 3621 t = skip_mods_and_typedefs(btf, id, NULL); 3622 name = btf__name_by_offset(btf, t->name_off); 3623 3624 if (is_signed) 3625 *is_signed = false; 3626 switch (btf_kind(t)) { 3627 case BTF_KIND_INT: { 3628 int enc = btf_int_encoding(t); 3629 3630 if (enc & BTF_INT_BOOL) 3631 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3632 if (is_signed) 3633 *is_signed = enc & BTF_INT_SIGNED; 3634 if (t->size == 1) 3635 return KCFG_CHAR; 3636 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3637 return KCFG_UNKNOWN; 3638 return KCFG_INT; 3639 } 3640 case BTF_KIND_ENUM: 3641 if (t->size != 4) 3642 return KCFG_UNKNOWN; 3643 if (strcmp(name, "libbpf_tristate")) 3644 return KCFG_UNKNOWN; 3645 return KCFG_TRISTATE; 3646 case BTF_KIND_ENUM64: 3647 if (strcmp(name, "libbpf_tristate")) 3648 return KCFG_UNKNOWN; 3649 return KCFG_TRISTATE; 3650 case BTF_KIND_ARRAY: 3651 if (btf_array(t)->nelems == 0) 3652 return KCFG_UNKNOWN; 3653 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3654 return KCFG_UNKNOWN; 3655 return KCFG_CHAR_ARR; 3656 default: 3657 return KCFG_UNKNOWN; 3658 } 3659 } 3660 3661 static int cmp_externs(const void *_a, const void *_b) 3662 { 3663 const struct extern_desc *a = _a; 3664 const struct extern_desc *b = _b; 3665 3666 if (a->type != b->type) 3667 return a->type < b->type ? -1 : 1; 3668 3669 if (a->type == EXT_KCFG) { 3670 /* descending order by alignment requirements */ 3671 if (a->kcfg.align != b->kcfg.align) 3672 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3673 /* ascending order by size, within same alignment class */ 3674 if (a->kcfg.sz != b->kcfg.sz) 3675 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3676 } 3677 3678 /* resolve ties by name */ 3679 return strcmp(a->name, b->name); 3680 } 3681 3682 static int find_int_btf_id(const struct btf *btf) 3683 { 3684 const struct btf_type *t; 3685 int i, n; 3686 3687 n = btf__type_cnt(btf); 3688 for (i = 1; i < n; i++) { 3689 t = btf__type_by_id(btf, i); 3690 3691 if (btf_is_int(t) && btf_int_bits(t) == 32) 3692 return i; 3693 } 3694 3695 return 0; 3696 } 3697 3698 static int add_dummy_ksym_var(struct btf *btf) 3699 { 3700 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3701 const struct btf_var_secinfo *vs; 3702 const struct btf_type *sec; 3703 3704 if (!btf) 3705 return 0; 3706 3707 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3708 BTF_KIND_DATASEC); 3709 if (sec_btf_id < 0) 3710 return 0; 3711 3712 sec = btf__type_by_id(btf, sec_btf_id); 3713 vs = btf_var_secinfos(sec); 3714 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3715 const struct btf_type *vt; 3716 3717 vt = btf__type_by_id(btf, vs->type); 3718 if (btf_is_func(vt)) 3719 break; 3720 } 3721 3722 /* No func in ksyms sec. No need to add dummy var. */ 3723 if (i == btf_vlen(sec)) 3724 return 0; 3725 3726 int_btf_id = find_int_btf_id(btf); 3727 dummy_var_btf_id = btf__add_var(btf, 3728 "dummy_ksym", 3729 BTF_VAR_GLOBAL_ALLOCATED, 3730 int_btf_id); 3731 if (dummy_var_btf_id < 0) 3732 pr_warn("cannot create a dummy_ksym var\n"); 3733 3734 return dummy_var_btf_id; 3735 } 3736 3737 static int bpf_object__collect_externs(struct bpf_object *obj) 3738 { 3739 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3740 const struct btf_type *t; 3741 struct extern_desc *ext; 3742 int i, n, off, dummy_var_btf_id; 3743 const char *ext_name, *sec_name; 3744 Elf_Scn *scn; 3745 Elf64_Shdr *sh; 3746 3747 if (!obj->efile.symbols) 3748 return 0; 3749 3750 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3751 sh = elf_sec_hdr(obj, scn); 3752 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3753 return -LIBBPF_ERRNO__FORMAT; 3754 3755 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3756 if (dummy_var_btf_id < 0) 3757 return dummy_var_btf_id; 3758 3759 n = sh->sh_size / sh->sh_entsize; 3760 pr_debug("looking for externs among %d symbols...\n", n); 3761 3762 for (i = 0; i < n; i++) { 3763 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3764 3765 if (!sym) 3766 return -LIBBPF_ERRNO__FORMAT; 3767 if (!sym_is_extern(sym)) 3768 continue; 3769 ext_name = elf_sym_str(obj, sym->st_name); 3770 if (!ext_name || !ext_name[0]) 3771 continue; 3772 3773 ext = obj->externs; 3774 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3775 if (!ext) 3776 return -ENOMEM; 3777 obj->externs = ext; 3778 ext = &ext[obj->nr_extern]; 3779 memset(ext, 0, sizeof(*ext)); 3780 obj->nr_extern++; 3781 3782 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3783 if (ext->btf_id <= 0) { 3784 pr_warn("failed to find BTF for extern '%s': %d\n", 3785 ext_name, ext->btf_id); 3786 return ext->btf_id; 3787 } 3788 t = btf__type_by_id(obj->btf, ext->btf_id); 3789 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3790 ext->sym_idx = i; 3791 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3792 3793 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3794 if (ext->sec_btf_id <= 0) { 3795 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3796 ext_name, ext->btf_id, ext->sec_btf_id); 3797 return ext->sec_btf_id; 3798 } 3799 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3800 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3801 3802 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3803 if (btf_is_func(t)) { 3804 pr_warn("extern function %s is unsupported under %s section\n", 3805 ext->name, KCONFIG_SEC); 3806 return -ENOTSUP; 3807 } 3808 kcfg_sec = sec; 3809 ext->type = EXT_KCFG; 3810 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3811 if (ext->kcfg.sz <= 0) { 3812 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3813 ext_name, ext->kcfg.sz); 3814 return ext->kcfg.sz; 3815 } 3816 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3817 if (ext->kcfg.align <= 0) { 3818 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3819 ext_name, ext->kcfg.align); 3820 return -EINVAL; 3821 } 3822 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3823 &ext->kcfg.is_signed); 3824 if (ext->kcfg.type == KCFG_UNKNOWN) { 3825 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3826 return -ENOTSUP; 3827 } 3828 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3829 ksym_sec = sec; 3830 ext->type = EXT_KSYM; 3831 skip_mods_and_typedefs(obj->btf, t->type, 3832 &ext->ksym.type_id); 3833 } else { 3834 pr_warn("unrecognized extern section '%s'\n", sec_name); 3835 return -ENOTSUP; 3836 } 3837 } 3838 pr_debug("collected %d externs total\n", obj->nr_extern); 3839 3840 if (!obj->nr_extern) 3841 return 0; 3842 3843 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3844 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3845 3846 /* for .ksyms section, we need to turn all externs into allocated 3847 * variables in BTF to pass kernel verification; we do this by 3848 * pretending that each extern is a 8-byte variable 3849 */ 3850 if (ksym_sec) { 3851 /* find existing 4-byte integer type in BTF to use for fake 3852 * extern variables in DATASEC 3853 */ 3854 int int_btf_id = find_int_btf_id(obj->btf); 3855 /* For extern function, a dummy_var added earlier 3856 * will be used to replace the vs->type and 3857 * its name string will be used to refill 3858 * the missing param's name. 3859 */ 3860 const struct btf_type *dummy_var; 3861 3862 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3863 for (i = 0; i < obj->nr_extern; i++) { 3864 ext = &obj->externs[i]; 3865 if (ext->type != EXT_KSYM) 3866 continue; 3867 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3868 i, ext->sym_idx, ext->name); 3869 } 3870 3871 sec = ksym_sec; 3872 n = btf_vlen(sec); 3873 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3874 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3875 struct btf_type *vt; 3876 3877 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3878 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3879 ext = find_extern_by_name(obj, ext_name); 3880 if (!ext) { 3881 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3882 btf_kind_str(vt), ext_name); 3883 return -ESRCH; 3884 } 3885 if (btf_is_func(vt)) { 3886 const struct btf_type *func_proto; 3887 struct btf_param *param; 3888 int j; 3889 3890 func_proto = btf__type_by_id(obj->btf, 3891 vt->type); 3892 param = btf_params(func_proto); 3893 /* Reuse the dummy_var string if the 3894 * func proto does not have param name. 3895 */ 3896 for (j = 0; j < btf_vlen(func_proto); j++) 3897 if (param[j].type && !param[j].name_off) 3898 param[j].name_off = 3899 dummy_var->name_off; 3900 vs->type = dummy_var_btf_id; 3901 vt->info &= ~0xffff; 3902 vt->info |= BTF_FUNC_GLOBAL; 3903 } else { 3904 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3905 vt->type = int_btf_id; 3906 } 3907 vs->offset = off; 3908 vs->size = sizeof(int); 3909 } 3910 sec->size = off; 3911 } 3912 3913 if (kcfg_sec) { 3914 sec = kcfg_sec; 3915 /* for kcfg externs calculate their offsets within a .kconfig map */ 3916 off = 0; 3917 for (i = 0; i < obj->nr_extern; i++) { 3918 ext = &obj->externs[i]; 3919 if (ext->type != EXT_KCFG) 3920 continue; 3921 3922 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3923 off = ext->kcfg.data_off + ext->kcfg.sz; 3924 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3925 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3926 } 3927 sec->size = off; 3928 n = btf_vlen(sec); 3929 for (i = 0; i < n; i++) { 3930 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3931 3932 t = btf__type_by_id(obj->btf, vs->type); 3933 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3934 ext = find_extern_by_name(obj, ext_name); 3935 if (!ext) { 3936 pr_warn("failed to find extern definition for BTF var '%s'\n", 3937 ext_name); 3938 return -ESRCH; 3939 } 3940 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3941 vs->offset = ext->kcfg.data_off; 3942 } 3943 } 3944 return 0; 3945 } 3946 3947 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3948 { 3949 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3950 } 3951 3952 struct bpf_program * 3953 bpf_object__find_program_by_name(const struct bpf_object *obj, 3954 const char *name) 3955 { 3956 struct bpf_program *prog; 3957 3958 bpf_object__for_each_program(prog, obj) { 3959 if (prog_is_subprog(obj, prog)) 3960 continue; 3961 if (!strcmp(prog->name, name)) 3962 return prog; 3963 } 3964 return errno = ENOENT, NULL; 3965 } 3966 3967 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3968 int shndx) 3969 { 3970 switch (obj->efile.secs[shndx].sec_type) { 3971 case SEC_BSS: 3972 case SEC_DATA: 3973 case SEC_RODATA: 3974 return true; 3975 default: 3976 return false; 3977 } 3978 } 3979 3980 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3981 int shndx) 3982 { 3983 return shndx == obj->efile.btf_maps_shndx; 3984 } 3985 3986 static enum libbpf_map_type 3987 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3988 { 3989 if (shndx == obj->efile.symbols_shndx) 3990 return LIBBPF_MAP_KCONFIG; 3991 3992 switch (obj->efile.secs[shndx].sec_type) { 3993 case SEC_BSS: 3994 return LIBBPF_MAP_BSS; 3995 case SEC_DATA: 3996 return LIBBPF_MAP_DATA; 3997 case SEC_RODATA: 3998 return LIBBPF_MAP_RODATA; 3999 default: 4000 return LIBBPF_MAP_UNSPEC; 4001 } 4002 } 4003 4004 static int bpf_program__record_reloc(struct bpf_program *prog, 4005 struct reloc_desc *reloc_desc, 4006 __u32 insn_idx, const char *sym_name, 4007 const Elf64_Sym *sym, const Elf64_Rel *rel) 4008 { 4009 struct bpf_insn *insn = &prog->insns[insn_idx]; 4010 size_t map_idx, nr_maps = prog->obj->nr_maps; 4011 struct bpf_object *obj = prog->obj; 4012 __u32 shdr_idx = sym->st_shndx; 4013 enum libbpf_map_type type; 4014 const char *sym_sec_name; 4015 struct bpf_map *map; 4016 4017 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4018 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4019 prog->name, sym_name, insn_idx, insn->code); 4020 return -LIBBPF_ERRNO__RELOC; 4021 } 4022 4023 if (sym_is_extern(sym)) { 4024 int sym_idx = ELF64_R_SYM(rel->r_info); 4025 int i, n = obj->nr_extern; 4026 struct extern_desc *ext; 4027 4028 for (i = 0; i < n; i++) { 4029 ext = &obj->externs[i]; 4030 if (ext->sym_idx == sym_idx) 4031 break; 4032 } 4033 if (i >= n) { 4034 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4035 prog->name, sym_name, sym_idx); 4036 return -LIBBPF_ERRNO__RELOC; 4037 } 4038 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4039 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4040 if (insn->code == (BPF_JMP | BPF_CALL)) 4041 reloc_desc->type = RELO_EXTERN_CALL; 4042 else 4043 reloc_desc->type = RELO_EXTERN_LD64; 4044 reloc_desc->insn_idx = insn_idx; 4045 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4046 return 0; 4047 } 4048 4049 /* sub-program call relocation */ 4050 if (is_call_insn(insn)) { 4051 if (insn->src_reg != BPF_PSEUDO_CALL) { 4052 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4053 return -LIBBPF_ERRNO__RELOC; 4054 } 4055 /* text_shndx can be 0, if no default "main" program exists */ 4056 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4057 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4058 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4059 prog->name, sym_name, sym_sec_name); 4060 return -LIBBPF_ERRNO__RELOC; 4061 } 4062 if (sym->st_value % BPF_INSN_SZ) { 4063 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4064 prog->name, sym_name, (size_t)sym->st_value); 4065 return -LIBBPF_ERRNO__RELOC; 4066 } 4067 reloc_desc->type = RELO_CALL; 4068 reloc_desc->insn_idx = insn_idx; 4069 reloc_desc->sym_off = sym->st_value; 4070 return 0; 4071 } 4072 4073 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4074 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4075 prog->name, sym_name, shdr_idx); 4076 return -LIBBPF_ERRNO__RELOC; 4077 } 4078 4079 /* loading subprog addresses */ 4080 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4081 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4082 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4083 */ 4084 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4085 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4086 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4087 return -LIBBPF_ERRNO__RELOC; 4088 } 4089 4090 reloc_desc->type = RELO_SUBPROG_ADDR; 4091 reloc_desc->insn_idx = insn_idx; 4092 reloc_desc->sym_off = sym->st_value; 4093 return 0; 4094 } 4095 4096 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4097 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4098 4099 /* generic map reference relocation */ 4100 if (type == LIBBPF_MAP_UNSPEC) { 4101 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4102 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4103 prog->name, sym_name, sym_sec_name); 4104 return -LIBBPF_ERRNO__RELOC; 4105 } 4106 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4107 map = &obj->maps[map_idx]; 4108 if (map->libbpf_type != type || 4109 map->sec_idx != sym->st_shndx || 4110 map->sec_offset != sym->st_value) 4111 continue; 4112 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4113 prog->name, map_idx, map->name, map->sec_idx, 4114 map->sec_offset, insn_idx); 4115 break; 4116 } 4117 if (map_idx >= nr_maps) { 4118 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4119 prog->name, sym_sec_name, (size_t)sym->st_value); 4120 return -LIBBPF_ERRNO__RELOC; 4121 } 4122 reloc_desc->type = RELO_LD64; 4123 reloc_desc->insn_idx = insn_idx; 4124 reloc_desc->map_idx = map_idx; 4125 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4126 return 0; 4127 } 4128 4129 /* global data map relocation */ 4130 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4131 pr_warn("prog '%s': bad data relo against section '%s'\n", 4132 prog->name, sym_sec_name); 4133 return -LIBBPF_ERRNO__RELOC; 4134 } 4135 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4136 map = &obj->maps[map_idx]; 4137 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4138 continue; 4139 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4140 prog->name, map_idx, map->name, map->sec_idx, 4141 map->sec_offset, insn_idx); 4142 break; 4143 } 4144 if (map_idx >= nr_maps) { 4145 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4146 prog->name, sym_sec_name); 4147 return -LIBBPF_ERRNO__RELOC; 4148 } 4149 4150 reloc_desc->type = RELO_DATA; 4151 reloc_desc->insn_idx = insn_idx; 4152 reloc_desc->map_idx = map_idx; 4153 reloc_desc->sym_off = sym->st_value; 4154 return 0; 4155 } 4156 4157 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4158 { 4159 return insn_idx >= prog->sec_insn_off && 4160 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4161 } 4162 4163 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4164 size_t sec_idx, size_t insn_idx) 4165 { 4166 int l = 0, r = obj->nr_programs - 1, m; 4167 struct bpf_program *prog; 4168 4169 if (!obj->nr_programs) 4170 return NULL; 4171 4172 while (l < r) { 4173 m = l + (r - l + 1) / 2; 4174 prog = &obj->programs[m]; 4175 4176 if (prog->sec_idx < sec_idx || 4177 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4178 l = m; 4179 else 4180 r = m - 1; 4181 } 4182 /* matching program could be at index l, but it still might be the 4183 * wrong one, so we need to double check conditions for the last time 4184 */ 4185 prog = &obj->programs[l]; 4186 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4187 return prog; 4188 return NULL; 4189 } 4190 4191 static int 4192 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4193 { 4194 const char *relo_sec_name, *sec_name; 4195 size_t sec_idx = shdr->sh_info, sym_idx; 4196 struct bpf_program *prog; 4197 struct reloc_desc *relos; 4198 int err, i, nrels; 4199 const char *sym_name; 4200 __u32 insn_idx; 4201 Elf_Scn *scn; 4202 Elf_Data *scn_data; 4203 Elf64_Sym *sym; 4204 Elf64_Rel *rel; 4205 4206 if (sec_idx >= obj->efile.sec_cnt) 4207 return -EINVAL; 4208 4209 scn = elf_sec_by_idx(obj, sec_idx); 4210 scn_data = elf_sec_data(obj, scn); 4211 4212 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4213 sec_name = elf_sec_name(obj, scn); 4214 if (!relo_sec_name || !sec_name) 4215 return -EINVAL; 4216 4217 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4218 relo_sec_name, sec_idx, sec_name); 4219 nrels = shdr->sh_size / shdr->sh_entsize; 4220 4221 for (i = 0; i < nrels; i++) { 4222 rel = elf_rel_by_idx(data, i); 4223 if (!rel) { 4224 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4225 return -LIBBPF_ERRNO__FORMAT; 4226 } 4227 4228 sym_idx = ELF64_R_SYM(rel->r_info); 4229 sym = elf_sym_by_idx(obj, sym_idx); 4230 if (!sym) { 4231 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4232 relo_sec_name, sym_idx, i); 4233 return -LIBBPF_ERRNO__FORMAT; 4234 } 4235 4236 if (sym->st_shndx >= obj->efile.sec_cnt) { 4237 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4238 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4239 return -LIBBPF_ERRNO__FORMAT; 4240 } 4241 4242 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4243 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4244 relo_sec_name, (size_t)rel->r_offset, i); 4245 return -LIBBPF_ERRNO__FORMAT; 4246 } 4247 4248 insn_idx = rel->r_offset / BPF_INSN_SZ; 4249 /* relocations against static functions are recorded as 4250 * relocations against the section that contains a function; 4251 * in such case, symbol will be STT_SECTION and sym.st_name 4252 * will point to empty string (0), so fetch section name 4253 * instead 4254 */ 4255 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4256 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4257 else 4258 sym_name = elf_sym_str(obj, sym->st_name); 4259 sym_name = sym_name ?: "<?"; 4260 4261 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4262 relo_sec_name, i, insn_idx, sym_name); 4263 4264 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4265 if (!prog) { 4266 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4267 relo_sec_name, i, sec_name, insn_idx); 4268 continue; 4269 } 4270 4271 relos = libbpf_reallocarray(prog->reloc_desc, 4272 prog->nr_reloc + 1, sizeof(*relos)); 4273 if (!relos) 4274 return -ENOMEM; 4275 prog->reloc_desc = relos; 4276 4277 /* adjust insn_idx to local BPF program frame of reference */ 4278 insn_idx -= prog->sec_insn_off; 4279 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4280 insn_idx, sym_name, sym, rel); 4281 if (err) 4282 return err; 4283 4284 prog->nr_reloc++; 4285 } 4286 return 0; 4287 } 4288 4289 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4290 { 4291 int id; 4292 4293 if (!obj->btf) 4294 return -ENOENT; 4295 4296 /* if it's BTF-defined map, we don't need to search for type IDs. 4297 * For struct_ops map, it does not need btf_key_type_id and 4298 * btf_value_type_id. 4299 */ 4300 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4301 return 0; 4302 4303 /* 4304 * LLVM annotates global data differently in BTF, that is, 4305 * only as '.data', '.bss' or '.rodata'. 4306 */ 4307 if (!bpf_map__is_internal(map)) 4308 return -ENOENT; 4309 4310 id = btf__find_by_name(obj->btf, map->real_name); 4311 if (id < 0) 4312 return id; 4313 4314 map->btf_key_type_id = 0; 4315 map->btf_value_type_id = id; 4316 return 0; 4317 } 4318 4319 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4320 { 4321 char file[PATH_MAX], buff[4096]; 4322 FILE *fp; 4323 __u32 val; 4324 int err; 4325 4326 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4327 memset(info, 0, sizeof(*info)); 4328 4329 fp = fopen(file, "r"); 4330 if (!fp) { 4331 err = -errno; 4332 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4333 err); 4334 return err; 4335 } 4336 4337 while (fgets(buff, sizeof(buff), fp)) { 4338 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4339 info->type = val; 4340 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4341 info->key_size = val; 4342 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4343 info->value_size = val; 4344 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4345 info->max_entries = val; 4346 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4347 info->map_flags = val; 4348 } 4349 4350 fclose(fp); 4351 4352 return 0; 4353 } 4354 4355 bool bpf_map__autocreate(const struct bpf_map *map) 4356 { 4357 return map->autocreate; 4358 } 4359 4360 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4361 { 4362 if (map->obj->loaded) 4363 return libbpf_err(-EBUSY); 4364 4365 map->autocreate = autocreate; 4366 return 0; 4367 } 4368 4369 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4370 { 4371 struct bpf_map_info info; 4372 __u32 len = sizeof(info), name_len; 4373 int new_fd, err; 4374 char *new_name; 4375 4376 memset(&info, 0, len); 4377 err = bpf_map_get_info_by_fd(fd, &info, &len); 4378 if (err && errno == EINVAL) 4379 err = bpf_get_map_info_from_fdinfo(fd, &info); 4380 if (err) 4381 return libbpf_err(err); 4382 4383 name_len = strlen(info.name); 4384 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4385 new_name = strdup(map->name); 4386 else 4387 new_name = strdup(info.name); 4388 4389 if (!new_name) 4390 return libbpf_err(-errno); 4391 4392 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4393 if (new_fd < 0) { 4394 err = -errno; 4395 goto err_free_new_name; 4396 } 4397 4398 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4399 if (new_fd < 0) { 4400 err = -errno; 4401 goto err_close_new_fd; 4402 } 4403 4404 err = zclose(map->fd); 4405 if (err) { 4406 err = -errno; 4407 goto err_close_new_fd; 4408 } 4409 free(map->name); 4410 4411 map->fd = new_fd; 4412 map->name = new_name; 4413 map->def.type = info.type; 4414 map->def.key_size = info.key_size; 4415 map->def.value_size = info.value_size; 4416 map->def.max_entries = info.max_entries; 4417 map->def.map_flags = info.map_flags; 4418 map->btf_key_type_id = info.btf_key_type_id; 4419 map->btf_value_type_id = info.btf_value_type_id; 4420 map->reused = true; 4421 map->map_extra = info.map_extra; 4422 4423 return 0; 4424 4425 err_close_new_fd: 4426 close(new_fd); 4427 err_free_new_name: 4428 free(new_name); 4429 return libbpf_err(err); 4430 } 4431 4432 __u32 bpf_map__max_entries(const struct bpf_map *map) 4433 { 4434 return map->def.max_entries; 4435 } 4436 4437 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4438 { 4439 if (!bpf_map_type__is_map_in_map(map->def.type)) 4440 return errno = EINVAL, NULL; 4441 4442 return map->inner_map; 4443 } 4444 4445 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4446 { 4447 if (map->obj->loaded) 4448 return libbpf_err(-EBUSY); 4449 4450 map->def.max_entries = max_entries; 4451 4452 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4453 if (map_is_ringbuf(map)) 4454 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4455 4456 return 0; 4457 } 4458 4459 static int 4460 bpf_object__probe_loading(struct bpf_object *obj) 4461 { 4462 char *cp, errmsg[STRERR_BUFSIZE]; 4463 struct bpf_insn insns[] = { 4464 BPF_MOV64_IMM(BPF_REG_0, 0), 4465 BPF_EXIT_INSN(), 4466 }; 4467 int ret, insn_cnt = ARRAY_SIZE(insns); 4468 4469 if (obj->gen_loader) 4470 return 0; 4471 4472 ret = bump_rlimit_memlock(); 4473 if (ret) 4474 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4475 4476 /* make sure basic loading works */ 4477 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4478 if (ret < 0) 4479 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4480 if (ret < 0) { 4481 ret = errno; 4482 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4483 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4484 "program. Make sure your kernel supports BPF " 4485 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4486 "set to big enough value.\n", __func__, cp, ret); 4487 return -ret; 4488 } 4489 close(ret); 4490 4491 return 0; 4492 } 4493 4494 static int probe_fd(int fd) 4495 { 4496 if (fd >= 0) 4497 close(fd); 4498 return fd >= 0; 4499 } 4500 4501 static int probe_kern_prog_name(void) 4502 { 4503 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4504 struct bpf_insn insns[] = { 4505 BPF_MOV64_IMM(BPF_REG_0, 0), 4506 BPF_EXIT_INSN(), 4507 }; 4508 union bpf_attr attr; 4509 int ret; 4510 4511 memset(&attr, 0, attr_sz); 4512 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4513 attr.license = ptr_to_u64("GPL"); 4514 attr.insns = ptr_to_u64(insns); 4515 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4516 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4517 4518 /* make sure loading with name works */ 4519 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4520 return probe_fd(ret); 4521 } 4522 4523 static int probe_kern_global_data(void) 4524 { 4525 char *cp, errmsg[STRERR_BUFSIZE]; 4526 struct bpf_insn insns[] = { 4527 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4528 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4529 BPF_MOV64_IMM(BPF_REG_0, 0), 4530 BPF_EXIT_INSN(), 4531 }; 4532 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4533 4534 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4535 if (map < 0) { 4536 ret = -errno; 4537 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4538 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4539 __func__, cp, -ret); 4540 return ret; 4541 } 4542 4543 insns[0].imm = map; 4544 4545 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4546 close(map); 4547 return probe_fd(ret); 4548 } 4549 4550 static int probe_kern_btf(void) 4551 { 4552 static const char strs[] = "\0int"; 4553 __u32 types[] = { 4554 /* int */ 4555 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4556 }; 4557 4558 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4559 strs, sizeof(strs))); 4560 } 4561 4562 static int probe_kern_btf_func(void) 4563 { 4564 static const char strs[] = "\0int\0x\0a"; 4565 /* void x(int a) {} */ 4566 __u32 types[] = { 4567 /* int */ 4568 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4569 /* FUNC_PROTO */ /* [2] */ 4570 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4571 BTF_PARAM_ENC(7, 1), 4572 /* FUNC x */ /* [3] */ 4573 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4574 }; 4575 4576 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4577 strs, sizeof(strs))); 4578 } 4579 4580 static int probe_kern_btf_func_global(void) 4581 { 4582 static const char strs[] = "\0int\0x\0a"; 4583 /* static void x(int a) {} */ 4584 __u32 types[] = { 4585 /* int */ 4586 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4587 /* FUNC_PROTO */ /* [2] */ 4588 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4589 BTF_PARAM_ENC(7, 1), 4590 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4591 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4592 }; 4593 4594 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4595 strs, sizeof(strs))); 4596 } 4597 4598 static int probe_kern_btf_datasec(void) 4599 { 4600 static const char strs[] = "\0x\0.data"; 4601 /* static int a; */ 4602 __u32 types[] = { 4603 /* int */ 4604 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4605 /* VAR x */ /* [2] */ 4606 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4607 BTF_VAR_STATIC, 4608 /* DATASEC val */ /* [3] */ 4609 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4610 BTF_VAR_SECINFO_ENC(2, 0, 4), 4611 }; 4612 4613 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4614 strs, sizeof(strs))); 4615 } 4616 4617 static int probe_kern_btf_float(void) 4618 { 4619 static const char strs[] = "\0float"; 4620 __u32 types[] = { 4621 /* float */ 4622 BTF_TYPE_FLOAT_ENC(1, 4), 4623 }; 4624 4625 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4626 strs, sizeof(strs))); 4627 } 4628 4629 static int probe_kern_btf_decl_tag(void) 4630 { 4631 static const char strs[] = "\0tag"; 4632 __u32 types[] = { 4633 /* int */ 4634 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4635 /* VAR x */ /* [2] */ 4636 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4637 BTF_VAR_STATIC, 4638 /* attr */ 4639 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4640 }; 4641 4642 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4643 strs, sizeof(strs))); 4644 } 4645 4646 static int probe_kern_btf_type_tag(void) 4647 { 4648 static const char strs[] = "\0tag"; 4649 __u32 types[] = { 4650 /* int */ 4651 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4652 /* attr */ 4653 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4654 /* ptr */ 4655 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4656 }; 4657 4658 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4659 strs, sizeof(strs))); 4660 } 4661 4662 static int probe_kern_array_mmap(void) 4663 { 4664 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4665 int fd; 4666 4667 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4668 return probe_fd(fd); 4669 } 4670 4671 static int probe_kern_exp_attach_type(void) 4672 { 4673 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4674 struct bpf_insn insns[] = { 4675 BPF_MOV64_IMM(BPF_REG_0, 0), 4676 BPF_EXIT_INSN(), 4677 }; 4678 int fd, insn_cnt = ARRAY_SIZE(insns); 4679 4680 /* use any valid combination of program type and (optional) 4681 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4682 * to see if kernel supports expected_attach_type field for 4683 * BPF_PROG_LOAD command 4684 */ 4685 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4686 return probe_fd(fd); 4687 } 4688 4689 static int probe_kern_probe_read_kernel(void) 4690 { 4691 struct bpf_insn insns[] = { 4692 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4693 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4694 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4695 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4696 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4697 BPF_EXIT_INSN(), 4698 }; 4699 int fd, insn_cnt = ARRAY_SIZE(insns); 4700 4701 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4702 return probe_fd(fd); 4703 } 4704 4705 static int probe_prog_bind_map(void) 4706 { 4707 char *cp, errmsg[STRERR_BUFSIZE]; 4708 struct bpf_insn insns[] = { 4709 BPF_MOV64_IMM(BPF_REG_0, 0), 4710 BPF_EXIT_INSN(), 4711 }; 4712 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4713 4714 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4715 if (map < 0) { 4716 ret = -errno; 4717 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4718 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4719 __func__, cp, -ret); 4720 return ret; 4721 } 4722 4723 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4724 if (prog < 0) { 4725 close(map); 4726 return 0; 4727 } 4728 4729 ret = bpf_prog_bind_map(prog, map, NULL); 4730 4731 close(map); 4732 close(prog); 4733 4734 return ret >= 0; 4735 } 4736 4737 static int probe_module_btf(void) 4738 { 4739 static const char strs[] = "\0int"; 4740 __u32 types[] = { 4741 /* int */ 4742 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4743 }; 4744 struct bpf_btf_info info; 4745 __u32 len = sizeof(info); 4746 char name[16]; 4747 int fd, err; 4748 4749 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4750 if (fd < 0) 4751 return 0; /* BTF not supported at all */ 4752 4753 memset(&info, 0, sizeof(info)); 4754 info.name = ptr_to_u64(name); 4755 info.name_len = sizeof(name); 4756 4757 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4758 * kernel's module BTF support coincides with support for 4759 * name/name_len fields in struct bpf_btf_info. 4760 */ 4761 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4762 close(fd); 4763 return !err; 4764 } 4765 4766 static int probe_perf_link(void) 4767 { 4768 struct bpf_insn insns[] = { 4769 BPF_MOV64_IMM(BPF_REG_0, 0), 4770 BPF_EXIT_INSN(), 4771 }; 4772 int prog_fd, link_fd, err; 4773 4774 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4775 insns, ARRAY_SIZE(insns), NULL); 4776 if (prog_fd < 0) 4777 return -errno; 4778 4779 /* use invalid perf_event FD to get EBADF, if link is supported; 4780 * otherwise EINVAL should be returned 4781 */ 4782 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4783 err = -errno; /* close() can clobber errno */ 4784 4785 if (link_fd >= 0) 4786 close(link_fd); 4787 close(prog_fd); 4788 4789 return link_fd < 0 && err == -EBADF; 4790 } 4791 4792 static int probe_kern_bpf_cookie(void) 4793 { 4794 struct bpf_insn insns[] = { 4795 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4796 BPF_EXIT_INSN(), 4797 }; 4798 int ret, insn_cnt = ARRAY_SIZE(insns); 4799 4800 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4801 return probe_fd(ret); 4802 } 4803 4804 static int probe_kern_btf_enum64(void) 4805 { 4806 static const char strs[] = "\0enum64"; 4807 __u32 types[] = { 4808 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4809 }; 4810 4811 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4812 strs, sizeof(strs))); 4813 } 4814 4815 static int probe_kern_syscall_wrapper(void); 4816 4817 enum kern_feature_result { 4818 FEAT_UNKNOWN = 0, 4819 FEAT_SUPPORTED = 1, 4820 FEAT_MISSING = 2, 4821 }; 4822 4823 typedef int (*feature_probe_fn)(void); 4824 4825 static struct kern_feature_desc { 4826 const char *desc; 4827 feature_probe_fn probe; 4828 enum kern_feature_result res; 4829 } feature_probes[__FEAT_CNT] = { 4830 [FEAT_PROG_NAME] = { 4831 "BPF program name", probe_kern_prog_name, 4832 }, 4833 [FEAT_GLOBAL_DATA] = { 4834 "global variables", probe_kern_global_data, 4835 }, 4836 [FEAT_BTF] = { 4837 "minimal BTF", probe_kern_btf, 4838 }, 4839 [FEAT_BTF_FUNC] = { 4840 "BTF functions", probe_kern_btf_func, 4841 }, 4842 [FEAT_BTF_GLOBAL_FUNC] = { 4843 "BTF global function", probe_kern_btf_func_global, 4844 }, 4845 [FEAT_BTF_DATASEC] = { 4846 "BTF data section and variable", probe_kern_btf_datasec, 4847 }, 4848 [FEAT_ARRAY_MMAP] = { 4849 "ARRAY map mmap()", probe_kern_array_mmap, 4850 }, 4851 [FEAT_EXP_ATTACH_TYPE] = { 4852 "BPF_PROG_LOAD expected_attach_type attribute", 4853 probe_kern_exp_attach_type, 4854 }, 4855 [FEAT_PROBE_READ_KERN] = { 4856 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4857 }, 4858 [FEAT_PROG_BIND_MAP] = { 4859 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4860 }, 4861 [FEAT_MODULE_BTF] = { 4862 "module BTF support", probe_module_btf, 4863 }, 4864 [FEAT_BTF_FLOAT] = { 4865 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4866 }, 4867 [FEAT_PERF_LINK] = { 4868 "BPF perf link support", probe_perf_link, 4869 }, 4870 [FEAT_BTF_DECL_TAG] = { 4871 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4872 }, 4873 [FEAT_BTF_TYPE_TAG] = { 4874 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4875 }, 4876 [FEAT_MEMCG_ACCOUNT] = { 4877 "memcg-based memory accounting", probe_memcg_account, 4878 }, 4879 [FEAT_BPF_COOKIE] = { 4880 "BPF cookie support", probe_kern_bpf_cookie, 4881 }, 4882 [FEAT_BTF_ENUM64] = { 4883 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4884 }, 4885 [FEAT_SYSCALL_WRAPPER] = { 4886 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4887 }, 4888 }; 4889 4890 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4891 { 4892 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4893 int ret; 4894 4895 if (obj && obj->gen_loader) 4896 /* To generate loader program assume the latest kernel 4897 * to avoid doing extra prog_load, map_create syscalls. 4898 */ 4899 return true; 4900 4901 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4902 ret = feat->probe(); 4903 if (ret > 0) { 4904 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4905 } else if (ret == 0) { 4906 WRITE_ONCE(feat->res, FEAT_MISSING); 4907 } else { 4908 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4909 WRITE_ONCE(feat->res, FEAT_MISSING); 4910 } 4911 } 4912 4913 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4914 } 4915 4916 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4917 { 4918 struct bpf_map_info map_info; 4919 char msg[STRERR_BUFSIZE]; 4920 __u32 map_info_len = sizeof(map_info); 4921 int err; 4922 4923 memset(&map_info, 0, map_info_len); 4924 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4925 if (err && errno == EINVAL) 4926 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4927 if (err) { 4928 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4929 libbpf_strerror_r(errno, msg, sizeof(msg))); 4930 return false; 4931 } 4932 4933 return (map_info.type == map->def.type && 4934 map_info.key_size == map->def.key_size && 4935 map_info.value_size == map->def.value_size && 4936 map_info.max_entries == map->def.max_entries && 4937 map_info.map_flags == map->def.map_flags && 4938 map_info.map_extra == map->map_extra); 4939 } 4940 4941 static int 4942 bpf_object__reuse_map(struct bpf_map *map) 4943 { 4944 char *cp, errmsg[STRERR_BUFSIZE]; 4945 int err, pin_fd; 4946 4947 pin_fd = bpf_obj_get(map->pin_path); 4948 if (pin_fd < 0) { 4949 err = -errno; 4950 if (err == -ENOENT) { 4951 pr_debug("found no pinned map to reuse at '%s'\n", 4952 map->pin_path); 4953 return 0; 4954 } 4955 4956 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4957 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4958 map->pin_path, cp); 4959 return err; 4960 } 4961 4962 if (!map_is_reuse_compat(map, pin_fd)) { 4963 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4964 map->pin_path); 4965 close(pin_fd); 4966 return -EINVAL; 4967 } 4968 4969 err = bpf_map__reuse_fd(map, pin_fd); 4970 close(pin_fd); 4971 if (err) 4972 return err; 4973 4974 map->pinned = true; 4975 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4976 4977 return 0; 4978 } 4979 4980 static int 4981 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4982 { 4983 enum libbpf_map_type map_type = map->libbpf_type; 4984 char *cp, errmsg[STRERR_BUFSIZE]; 4985 int err, zero = 0; 4986 4987 if (obj->gen_loader) { 4988 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4989 map->mmaped, map->def.value_size); 4990 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4991 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4992 return 0; 4993 } 4994 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4995 if (err) { 4996 err = -errno; 4997 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4998 pr_warn("Error setting initial map(%s) contents: %s\n", 4999 map->name, cp); 5000 return err; 5001 } 5002 5003 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5004 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5005 err = bpf_map_freeze(map->fd); 5006 if (err) { 5007 err = -errno; 5008 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5009 pr_warn("Error freezing map(%s) as read-only: %s\n", 5010 map->name, cp); 5011 return err; 5012 } 5013 } 5014 return 0; 5015 } 5016 5017 static void bpf_map__destroy(struct bpf_map *map); 5018 5019 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5020 { 5021 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5022 struct bpf_map_def *def = &map->def; 5023 const char *map_name = NULL; 5024 int err = 0; 5025 5026 if (kernel_supports(obj, FEAT_PROG_NAME)) 5027 map_name = map->name; 5028 create_attr.map_ifindex = map->map_ifindex; 5029 create_attr.map_flags = def->map_flags; 5030 create_attr.numa_node = map->numa_node; 5031 create_attr.map_extra = map->map_extra; 5032 5033 if (bpf_map__is_struct_ops(map)) 5034 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5035 5036 if (obj->btf && btf__fd(obj->btf) >= 0) { 5037 create_attr.btf_fd = btf__fd(obj->btf); 5038 create_attr.btf_key_type_id = map->btf_key_type_id; 5039 create_attr.btf_value_type_id = map->btf_value_type_id; 5040 } 5041 5042 if (bpf_map_type__is_map_in_map(def->type)) { 5043 if (map->inner_map) { 5044 err = bpf_object__create_map(obj, map->inner_map, true); 5045 if (err) { 5046 pr_warn("map '%s': failed to create inner map: %d\n", 5047 map->name, err); 5048 return err; 5049 } 5050 map->inner_map_fd = bpf_map__fd(map->inner_map); 5051 } 5052 if (map->inner_map_fd >= 0) 5053 create_attr.inner_map_fd = map->inner_map_fd; 5054 } 5055 5056 switch (def->type) { 5057 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5058 case BPF_MAP_TYPE_CGROUP_ARRAY: 5059 case BPF_MAP_TYPE_STACK_TRACE: 5060 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5061 case BPF_MAP_TYPE_HASH_OF_MAPS: 5062 case BPF_MAP_TYPE_DEVMAP: 5063 case BPF_MAP_TYPE_DEVMAP_HASH: 5064 case BPF_MAP_TYPE_CPUMAP: 5065 case BPF_MAP_TYPE_XSKMAP: 5066 case BPF_MAP_TYPE_SOCKMAP: 5067 case BPF_MAP_TYPE_SOCKHASH: 5068 case BPF_MAP_TYPE_QUEUE: 5069 case BPF_MAP_TYPE_STACK: 5070 create_attr.btf_fd = 0; 5071 create_attr.btf_key_type_id = 0; 5072 create_attr.btf_value_type_id = 0; 5073 map->btf_key_type_id = 0; 5074 map->btf_value_type_id = 0; 5075 default: 5076 break; 5077 } 5078 5079 if (obj->gen_loader) { 5080 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5081 def->key_size, def->value_size, def->max_entries, 5082 &create_attr, is_inner ? -1 : map - obj->maps); 5083 /* Pretend to have valid FD to pass various fd >= 0 checks. 5084 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5085 */ 5086 map->fd = 0; 5087 } else { 5088 map->fd = bpf_map_create(def->type, map_name, 5089 def->key_size, def->value_size, 5090 def->max_entries, &create_attr); 5091 } 5092 if (map->fd < 0 && (create_attr.btf_key_type_id || 5093 create_attr.btf_value_type_id)) { 5094 char *cp, errmsg[STRERR_BUFSIZE]; 5095 5096 err = -errno; 5097 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5098 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5099 map->name, cp, err); 5100 create_attr.btf_fd = 0; 5101 create_attr.btf_key_type_id = 0; 5102 create_attr.btf_value_type_id = 0; 5103 map->btf_key_type_id = 0; 5104 map->btf_value_type_id = 0; 5105 map->fd = bpf_map_create(def->type, map_name, 5106 def->key_size, def->value_size, 5107 def->max_entries, &create_attr); 5108 } 5109 5110 err = map->fd < 0 ? -errno : 0; 5111 5112 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5113 if (obj->gen_loader) 5114 map->inner_map->fd = -1; 5115 bpf_map__destroy(map->inner_map); 5116 zfree(&map->inner_map); 5117 } 5118 5119 return err; 5120 } 5121 5122 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5123 { 5124 const struct bpf_map *targ_map; 5125 unsigned int i; 5126 int fd, err = 0; 5127 5128 for (i = 0; i < map->init_slots_sz; i++) { 5129 if (!map->init_slots[i]) 5130 continue; 5131 5132 targ_map = map->init_slots[i]; 5133 fd = bpf_map__fd(targ_map); 5134 5135 if (obj->gen_loader) { 5136 bpf_gen__populate_outer_map(obj->gen_loader, 5137 map - obj->maps, i, 5138 targ_map - obj->maps); 5139 } else { 5140 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5141 } 5142 if (err) { 5143 err = -errno; 5144 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5145 map->name, i, targ_map->name, fd, err); 5146 return err; 5147 } 5148 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5149 map->name, i, targ_map->name, fd); 5150 } 5151 5152 zfree(&map->init_slots); 5153 map->init_slots_sz = 0; 5154 5155 return 0; 5156 } 5157 5158 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5159 { 5160 const struct bpf_program *targ_prog; 5161 unsigned int i; 5162 int fd, err; 5163 5164 if (obj->gen_loader) 5165 return -ENOTSUP; 5166 5167 for (i = 0; i < map->init_slots_sz; i++) { 5168 if (!map->init_slots[i]) 5169 continue; 5170 5171 targ_prog = map->init_slots[i]; 5172 fd = bpf_program__fd(targ_prog); 5173 5174 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5175 if (err) { 5176 err = -errno; 5177 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5178 map->name, i, targ_prog->name, fd, err); 5179 return err; 5180 } 5181 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5182 map->name, i, targ_prog->name, fd); 5183 } 5184 5185 zfree(&map->init_slots); 5186 map->init_slots_sz = 0; 5187 5188 return 0; 5189 } 5190 5191 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5192 { 5193 struct bpf_map *map; 5194 int i, err; 5195 5196 for (i = 0; i < obj->nr_maps; i++) { 5197 map = &obj->maps[i]; 5198 5199 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5200 continue; 5201 5202 err = init_prog_array_slots(obj, map); 5203 if (err < 0) { 5204 zclose(map->fd); 5205 return err; 5206 } 5207 } 5208 return 0; 5209 } 5210 5211 static int map_set_def_max_entries(struct bpf_map *map) 5212 { 5213 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5214 int nr_cpus; 5215 5216 nr_cpus = libbpf_num_possible_cpus(); 5217 if (nr_cpus < 0) { 5218 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5219 map->name, nr_cpus); 5220 return nr_cpus; 5221 } 5222 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5223 map->def.max_entries = nr_cpus; 5224 } 5225 5226 return 0; 5227 } 5228 5229 static int 5230 bpf_object__create_maps(struct bpf_object *obj) 5231 { 5232 struct bpf_map *map; 5233 char *cp, errmsg[STRERR_BUFSIZE]; 5234 unsigned int i, j; 5235 int err; 5236 bool retried; 5237 5238 for (i = 0; i < obj->nr_maps; i++) { 5239 map = &obj->maps[i]; 5240 5241 /* To support old kernels, we skip creating global data maps 5242 * (.rodata, .data, .kconfig, etc); later on, during program 5243 * loading, if we detect that at least one of the to-be-loaded 5244 * programs is referencing any global data map, we'll error 5245 * out with program name and relocation index logged. 5246 * This approach allows to accommodate Clang emitting 5247 * unnecessary .rodata.str1.1 sections for string literals, 5248 * but also it allows to have CO-RE applications that use 5249 * global variables in some of BPF programs, but not others. 5250 * If those global variable-using programs are not loaded at 5251 * runtime due to bpf_program__set_autoload(prog, false), 5252 * bpf_object loading will succeed just fine even on old 5253 * kernels. 5254 */ 5255 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5256 map->autocreate = false; 5257 5258 if (!map->autocreate) { 5259 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5260 continue; 5261 } 5262 5263 err = map_set_def_max_entries(map); 5264 if (err) 5265 goto err_out; 5266 5267 retried = false; 5268 retry: 5269 if (map->pin_path) { 5270 err = bpf_object__reuse_map(map); 5271 if (err) { 5272 pr_warn("map '%s': error reusing pinned map\n", 5273 map->name); 5274 goto err_out; 5275 } 5276 if (retried && map->fd < 0) { 5277 pr_warn("map '%s': cannot find pinned map\n", 5278 map->name); 5279 err = -ENOENT; 5280 goto err_out; 5281 } 5282 } 5283 5284 if (map->fd >= 0) { 5285 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5286 map->name, map->fd); 5287 } else { 5288 err = bpf_object__create_map(obj, map, false); 5289 if (err) 5290 goto err_out; 5291 5292 pr_debug("map '%s': created successfully, fd=%d\n", 5293 map->name, map->fd); 5294 5295 if (bpf_map__is_internal(map)) { 5296 err = bpf_object__populate_internal_map(obj, map); 5297 if (err < 0) { 5298 zclose(map->fd); 5299 goto err_out; 5300 } 5301 } 5302 5303 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5304 err = init_map_in_map_slots(obj, map); 5305 if (err < 0) { 5306 zclose(map->fd); 5307 goto err_out; 5308 } 5309 } 5310 } 5311 5312 if (map->pin_path && !map->pinned) { 5313 err = bpf_map__pin(map, NULL); 5314 if (err) { 5315 zclose(map->fd); 5316 if (!retried && err == -EEXIST) { 5317 retried = true; 5318 goto retry; 5319 } 5320 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5321 map->name, map->pin_path, err); 5322 goto err_out; 5323 } 5324 } 5325 } 5326 5327 return 0; 5328 5329 err_out: 5330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5331 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5332 pr_perm_msg(err); 5333 for (j = 0; j < i; j++) 5334 zclose(obj->maps[j].fd); 5335 return err; 5336 } 5337 5338 static bool bpf_core_is_flavor_sep(const char *s) 5339 { 5340 /* check X___Y name pattern, where X and Y are not underscores */ 5341 return s[0] != '_' && /* X */ 5342 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5343 s[4] != '_'; /* Y */ 5344 } 5345 5346 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5347 * before last triple underscore. Struct name part after last triple 5348 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5349 */ 5350 size_t bpf_core_essential_name_len(const char *name) 5351 { 5352 size_t n = strlen(name); 5353 int i; 5354 5355 for (i = n - 5; i >= 0; i--) { 5356 if (bpf_core_is_flavor_sep(name + i)) 5357 return i + 1; 5358 } 5359 return n; 5360 } 5361 5362 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5363 { 5364 if (!cands) 5365 return; 5366 5367 free(cands->cands); 5368 free(cands); 5369 } 5370 5371 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5372 size_t local_essent_len, 5373 const struct btf *targ_btf, 5374 const char *targ_btf_name, 5375 int targ_start_id, 5376 struct bpf_core_cand_list *cands) 5377 { 5378 struct bpf_core_cand *new_cands, *cand; 5379 const struct btf_type *t, *local_t; 5380 const char *targ_name, *local_name; 5381 size_t targ_essent_len; 5382 int n, i; 5383 5384 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5385 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5386 5387 n = btf__type_cnt(targ_btf); 5388 for (i = targ_start_id; i < n; i++) { 5389 t = btf__type_by_id(targ_btf, i); 5390 if (!btf_kind_core_compat(t, local_t)) 5391 continue; 5392 5393 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5394 if (str_is_empty(targ_name)) 5395 continue; 5396 5397 targ_essent_len = bpf_core_essential_name_len(targ_name); 5398 if (targ_essent_len != local_essent_len) 5399 continue; 5400 5401 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5402 continue; 5403 5404 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5405 local_cand->id, btf_kind_str(local_t), 5406 local_name, i, btf_kind_str(t), targ_name, 5407 targ_btf_name); 5408 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5409 sizeof(*cands->cands)); 5410 if (!new_cands) 5411 return -ENOMEM; 5412 5413 cand = &new_cands[cands->len]; 5414 cand->btf = targ_btf; 5415 cand->id = i; 5416 5417 cands->cands = new_cands; 5418 cands->len++; 5419 } 5420 return 0; 5421 } 5422 5423 static int load_module_btfs(struct bpf_object *obj) 5424 { 5425 struct bpf_btf_info info; 5426 struct module_btf *mod_btf; 5427 struct btf *btf; 5428 char name[64]; 5429 __u32 id = 0, len; 5430 int err, fd; 5431 5432 if (obj->btf_modules_loaded) 5433 return 0; 5434 5435 if (obj->gen_loader) 5436 return 0; 5437 5438 /* don't do this again, even if we find no module BTFs */ 5439 obj->btf_modules_loaded = true; 5440 5441 /* kernel too old to support module BTFs */ 5442 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5443 return 0; 5444 5445 while (true) { 5446 err = bpf_btf_get_next_id(id, &id); 5447 if (err && errno == ENOENT) 5448 return 0; 5449 if (err) { 5450 err = -errno; 5451 pr_warn("failed to iterate BTF objects: %d\n", err); 5452 return err; 5453 } 5454 5455 fd = bpf_btf_get_fd_by_id(id); 5456 if (fd < 0) { 5457 if (errno == ENOENT) 5458 continue; /* expected race: BTF was unloaded */ 5459 err = -errno; 5460 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5461 return err; 5462 } 5463 5464 len = sizeof(info); 5465 memset(&info, 0, sizeof(info)); 5466 info.name = ptr_to_u64(name); 5467 info.name_len = sizeof(name); 5468 5469 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5470 if (err) { 5471 err = -errno; 5472 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5473 goto err_out; 5474 } 5475 5476 /* ignore non-module BTFs */ 5477 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5478 close(fd); 5479 continue; 5480 } 5481 5482 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5483 err = libbpf_get_error(btf); 5484 if (err) { 5485 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5486 name, id, err); 5487 goto err_out; 5488 } 5489 5490 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5491 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5492 if (err) 5493 goto err_out; 5494 5495 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5496 5497 mod_btf->btf = btf; 5498 mod_btf->id = id; 5499 mod_btf->fd = fd; 5500 mod_btf->name = strdup(name); 5501 if (!mod_btf->name) { 5502 err = -ENOMEM; 5503 goto err_out; 5504 } 5505 continue; 5506 5507 err_out: 5508 close(fd); 5509 return err; 5510 } 5511 5512 return 0; 5513 } 5514 5515 static struct bpf_core_cand_list * 5516 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5517 { 5518 struct bpf_core_cand local_cand = {}; 5519 struct bpf_core_cand_list *cands; 5520 const struct btf *main_btf; 5521 const struct btf_type *local_t; 5522 const char *local_name; 5523 size_t local_essent_len; 5524 int err, i; 5525 5526 local_cand.btf = local_btf; 5527 local_cand.id = local_type_id; 5528 local_t = btf__type_by_id(local_btf, local_type_id); 5529 if (!local_t) 5530 return ERR_PTR(-EINVAL); 5531 5532 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5533 if (str_is_empty(local_name)) 5534 return ERR_PTR(-EINVAL); 5535 local_essent_len = bpf_core_essential_name_len(local_name); 5536 5537 cands = calloc(1, sizeof(*cands)); 5538 if (!cands) 5539 return ERR_PTR(-ENOMEM); 5540 5541 /* Attempt to find target candidates in vmlinux BTF first */ 5542 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5543 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5544 if (err) 5545 goto err_out; 5546 5547 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5548 if (cands->len) 5549 return cands; 5550 5551 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5552 if (obj->btf_vmlinux_override) 5553 return cands; 5554 5555 /* now look through module BTFs, trying to still find candidates */ 5556 err = load_module_btfs(obj); 5557 if (err) 5558 goto err_out; 5559 5560 for (i = 0; i < obj->btf_module_cnt; i++) { 5561 err = bpf_core_add_cands(&local_cand, local_essent_len, 5562 obj->btf_modules[i].btf, 5563 obj->btf_modules[i].name, 5564 btf__type_cnt(obj->btf_vmlinux), 5565 cands); 5566 if (err) 5567 goto err_out; 5568 } 5569 5570 return cands; 5571 err_out: 5572 bpf_core_free_cands(cands); 5573 return ERR_PTR(err); 5574 } 5575 5576 /* Check local and target types for compatibility. This check is used for 5577 * type-based CO-RE relocations and follow slightly different rules than 5578 * field-based relocations. This function assumes that root types were already 5579 * checked for name match. Beyond that initial root-level name check, names 5580 * are completely ignored. Compatibility rules are as follows: 5581 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5582 * kind should match for local and target types (i.e., STRUCT is not 5583 * compatible with UNION); 5584 * - for ENUMs, the size is ignored; 5585 * - for INT, size and signedness are ignored; 5586 * - for ARRAY, dimensionality is ignored, element types are checked for 5587 * compatibility recursively; 5588 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5589 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5590 * - FUNC_PROTOs are compatible if they have compatible signature: same 5591 * number of input args and compatible return and argument types. 5592 * These rules are not set in stone and probably will be adjusted as we get 5593 * more experience with using BPF CO-RE relocations. 5594 */ 5595 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5596 const struct btf *targ_btf, __u32 targ_id) 5597 { 5598 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5599 } 5600 5601 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5602 const struct btf *targ_btf, __u32 targ_id) 5603 { 5604 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5605 } 5606 5607 static size_t bpf_core_hash_fn(const long key, void *ctx) 5608 { 5609 return key; 5610 } 5611 5612 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5613 { 5614 return k1 == k2; 5615 } 5616 5617 static int record_relo_core(struct bpf_program *prog, 5618 const struct bpf_core_relo *core_relo, int insn_idx) 5619 { 5620 struct reloc_desc *relos, *relo; 5621 5622 relos = libbpf_reallocarray(prog->reloc_desc, 5623 prog->nr_reloc + 1, sizeof(*relos)); 5624 if (!relos) 5625 return -ENOMEM; 5626 relo = &relos[prog->nr_reloc]; 5627 relo->type = RELO_CORE; 5628 relo->insn_idx = insn_idx; 5629 relo->core_relo = core_relo; 5630 prog->reloc_desc = relos; 5631 prog->nr_reloc++; 5632 return 0; 5633 } 5634 5635 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5636 { 5637 struct reloc_desc *relo; 5638 int i; 5639 5640 for (i = 0; i < prog->nr_reloc; i++) { 5641 relo = &prog->reloc_desc[i]; 5642 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5643 continue; 5644 5645 return relo->core_relo; 5646 } 5647 5648 return NULL; 5649 } 5650 5651 static int bpf_core_resolve_relo(struct bpf_program *prog, 5652 const struct bpf_core_relo *relo, 5653 int relo_idx, 5654 const struct btf *local_btf, 5655 struct hashmap *cand_cache, 5656 struct bpf_core_relo_res *targ_res) 5657 { 5658 struct bpf_core_spec specs_scratch[3] = {}; 5659 struct bpf_core_cand_list *cands = NULL; 5660 const char *prog_name = prog->name; 5661 const struct btf_type *local_type; 5662 const char *local_name; 5663 __u32 local_id = relo->type_id; 5664 int err; 5665 5666 local_type = btf__type_by_id(local_btf, local_id); 5667 if (!local_type) 5668 return -EINVAL; 5669 5670 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5671 if (!local_name) 5672 return -EINVAL; 5673 5674 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5675 !hashmap__find(cand_cache, local_id, &cands)) { 5676 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5677 if (IS_ERR(cands)) { 5678 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5679 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5680 local_name, PTR_ERR(cands)); 5681 return PTR_ERR(cands); 5682 } 5683 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5684 if (err) { 5685 bpf_core_free_cands(cands); 5686 return err; 5687 } 5688 } 5689 5690 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5691 targ_res); 5692 } 5693 5694 static int 5695 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5696 { 5697 const struct btf_ext_info_sec *sec; 5698 struct bpf_core_relo_res targ_res; 5699 const struct bpf_core_relo *rec; 5700 const struct btf_ext_info *seg; 5701 struct hashmap_entry *entry; 5702 struct hashmap *cand_cache = NULL; 5703 struct bpf_program *prog; 5704 struct bpf_insn *insn; 5705 const char *sec_name; 5706 int i, err = 0, insn_idx, sec_idx, sec_num; 5707 5708 if (obj->btf_ext->core_relo_info.len == 0) 5709 return 0; 5710 5711 if (targ_btf_path) { 5712 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5713 err = libbpf_get_error(obj->btf_vmlinux_override); 5714 if (err) { 5715 pr_warn("failed to parse target BTF: %d\n", err); 5716 return err; 5717 } 5718 } 5719 5720 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5721 if (IS_ERR(cand_cache)) { 5722 err = PTR_ERR(cand_cache); 5723 goto out; 5724 } 5725 5726 seg = &obj->btf_ext->core_relo_info; 5727 sec_num = 0; 5728 for_each_btf_ext_sec(seg, sec) { 5729 sec_idx = seg->sec_idxs[sec_num]; 5730 sec_num++; 5731 5732 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5733 if (str_is_empty(sec_name)) { 5734 err = -EINVAL; 5735 goto out; 5736 } 5737 5738 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5739 5740 for_each_btf_ext_rec(seg, sec, i, rec) { 5741 if (rec->insn_off % BPF_INSN_SZ) 5742 return -EINVAL; 5743 insn_idx = rec->insn_off / BPF_INSN_SZ; 5744 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5745 if (!prog) { 5746 /* When __weak subprog is "overridden" by another instance 5747 * of the subprog from a different object file, linker still 5748 * appends all the .BTF.ext info that used to belong to that 5749 * eliminated subprogram. 5750 * This is similar to what x86-64 linker does for relocations. 5751 * So just ignore such relocations just like we ignore 5752 * subprog instructions when discovering subprograms. 5753 */ 5754 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5755 sec_name, i, insn_idx); 5756 continue; 5757 } 5758 /* no need to apply CO-RE relocation if the program is 5759 * not going to be loaded 5760 */ 5761 if (!prog->autoload) 5762 continue; 5763 5764 /* adjust insn_idx from section frame of reference to the local 5765 * program's frame of reference; (sub-)program code is not yet 5766 * relocated, so it's enough to just subtract in-section offset 5767 */ 5768 insn_idx = insn_idx - prog->sec_insn_off; 5769 if (insn_idx >= prog->insns_cnt) 5770 return -EINVAL; 5771 insn = &prog->insns[insn_idx]; 5772 5773 err = record_relo_core(prog, rec, insn_idx); 5774 if (err) { 5775 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5776 prog->name, i, err); 5777 goto out; 5778 } 5779 5780 if (prog->obj->gen_loader) 5781 continue; 5782 5783 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5784 if (err) { 5785 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5786 prog->name, i, err); 5787 goto out; 5788 } 5789 5790 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5791 if (err) { 5792 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5793 prog->name, i, insn_idx, err); 5794 goto out; 5795 } 5796 } 5797 } 5798 5799 out: 5800 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5801 btf__free(obj->btf_vmlinux_override); 5802 obj->btf_vmlinux_override = NULL; 5803 5804 if (!IS_ERR_OR_NULL(cand_cache)) { 5805 hashmap__for_each_entry(cand_cache, entry, i) { 5806 bpf_core_free_cands(entry->pvalue); 5807 } 5808 hashmap__free(cand_cache); 5809 } 5810 return err; 5811 } 5812 5813 /* base map load ldimm64 special constant, used also for log fixup logic */ 5814 #define MAP_LDIMM64_POISON_BASE 2001000000 5815 #define MAP_LDIMM64_POISON_PFX "200100" 5816 5817 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5818 int insn_idx, struct bpf_insn *insn, 5819 int map_idx, const struct bpf_map *map) 5820 { 5821 int i; 5822 5823 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5824 prog->name, relo_idx, insn_idx, map_idx, map->name); 5825 5826 /* we turn single ldimm64 into two identical invalid calls */ 5827 for (i = 0; i < 2; i++) { 5828 insn->code = BPF_JMP | BPF_CALL; 5829 insn->dst_reg = 0; 5830 insn->src_reg = 0; 5831 insn->off = 0; 5832 /* if this instruction is reachable (not a dead code), 5833 * verifier will complain with something like: 5834 * invalid func unknown#2001000123 5835 * where lower 123 is map index into obj->maps[] array 5836 */ 5837 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5838 5839 insn++; 5840 } 5841 } 5842 5843 /* Relocate data references within program code: 5844 * - map references; 5845 * - global variable references; 5846 * - extern references. 5847 */ 5848 static int 5849 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5850 { 5851 int i; 5852 5853 for (i = 0; i < prog->nr_reloc; i++) { 5854 struct reloc_desc *relo = &prog->reloc_desc[i]; 5855 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5856 const struct bpf_map *map; 5857 struct extern_desc *ext; 5858 5859 switch (relo->type) { 5860 case RELO_LD64: 5861 map = &obj->maps[relo->map_idx]; 5862 if (obj->gen_loader) { 5863 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5864 insn[0].imm = relo->map_idx; 5865 } else if (map->autocreate) { 5866 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5867 insn[0].imm = map->fd; 5868 } else { 5869 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5870 relo->map_idx, map); 5871 } 5872 break; 5873 case RELO_DATA: 5874 map = &obj->maps[relo->map_idx]; 5875 insn[1].imm = insn[0].imm + relo->sym_off; 5876 if (obj->gen_loader) { 5877 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5878 insn[0].imm = relo->map_idx; 5879 } else if (map->autocreate) { 5880 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5881 insn[0].imm = map->fd; 5882 } else { 5883 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5884 relo->map_idx, map); 5885 } 5886 break; 5887 case RELO_EXTERN_LD64: 5888 ext = &obj->externs[relo->sym_off]; 5889 if (ext->type == EXT_KCFG) { 5890 if (obj->gen_loader) { 5891 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5892 insn[0].imm = obj->kconfig_map_idx; 5893 } else { 5894 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5895 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5896 } 5897 insn[1].imm = ext->kcfg.data_off; 5898 } else /* EXT_KSYM */ { 5899 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5900 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5901 insn[0].imm = ext->ksym.kernel_btf_id; 5902 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5903 } else { /* typeless ksyms or unresolved typed ksyms */ 5904 insn[0].imm = (__u32)ext->ksym.addr; 5905 insn[1].imm = ext->ksym.addr >> 32; 5906 } 5907 } 5908 break; 5909 case RELO_EXTERN_CALL: 5910 ext = &obj->externs[relo->sym_off]; 5911 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5912 if (ext->is_set) { 5913 insn[0].imm = ext->ksym.kernel_btf_id; 5914 insn[0].off = ext->ksym.btf_fd_idx; 5915 } else { /* unresolved weak kfunc */ 5916 insn[0].imm = 0; 5917 insn[0].off = 0; 5918 } 5919 break; 5920 case RELO_SUBPROG_ADDR: 5921 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5922 pr_warn("prog '%s': relo #%d: bad insn\n", 5923 prog->name, i); 5924 return -EINVAL; 5925 } 5926 /* handled already */ 5927 break; 5928 case RELO_CALL: 5929 /* handled already */ 5930 break; 5931 case RELO_CORE: 5932 /* will be handled by bpf_program_record_relos() */ 5933 break; 5934 default: 5935 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5936 prog->name, i, relo->type); 5937 return -EINVAL; 5938 } 5939 } 5940 5941 return 0; 5942 } 5943 5944 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5945 const struct bpf_program *prog, 5946 const struct btf_ext_info *ext_info, 5947 void **prog_info, __u32 *prog_rec_cnt, 5948 __u32 *prog_rec_sz) 5949 { 5950 void *copy_start = NULL, *copy_end = NULL; 5951 void *rec, *rec_end, *new_prog_info; 5952 const struct btf_ext_info_sec *sec; 5953 size_t old_sz, new_sz; 5954 int i, sec_num, sec_idx, off_adj; 5955 5956 sec_num = 0; 5957 for_each_btf_ext_sec(ext_info, sec) { 5958 sec_idx = ext_info->sec_idxs[sec_num]; 5959 sec_num++; 5960 if (prog->sec_idx != sec_idx) 5961 continue; 5962 5963 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5964 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5965 5966 if (insn_off < prog->sec_insn_off) 5967 continue; 5968 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5969 break; 5970 5971 if (!copy_start) 5972 copy_start = rec; 5973 copy_end = rec + ext_info->rec_size; 5974 } 5975 5976 if (!copy_start) 5977 return -ENOENT; 5978 5979 /* append func/line info of a given (sub-)program to the main 5980 * program func/line info 5981 */ 5982 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5983 new_sz = old_sz + (copy_end - copy_start); 5984 new_prog_info = realloc(*prog_info, new_sz); 5985 if (!new_prog_info) 5986 return -ENOMEM; 5987 *prog_info = new_prog_info; 5988 *prog_rec_cnt = new_sz / ext_info->rec_size; 5989 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5990 5991 /* Kernel instruction offsets are in units of 8-byte 5992 * instructions, while .BTF.ext instruction offsets generated 5993 * by Clang are in units of bytes. So convert Clang offsets 5994 * into kernel offsets and adjust offset according to program 5995 * relocated position. 5996 */ 5997 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5998 rec = new_prog_info + old_sz; 5999 rec_end = new_prog_info + new_sz; 6000 for (; rec < rec_end; rec += ext_info->rec_size) { 6001 __u32 *insn_off = rec; 6002 6003 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6004 } 6005 *prog_rec_sz = ext_info->rec_size; 6006 return 0; 6007 } 6008 6009 return -ENOENT; 6010 } 6011 6012 static int 6013 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6014 struct bpf_program *main_prog, 6015 const struct bpf_program *prog) 6016 { 6017 int err; 6018 6019 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6020 * supprot func/line info 6021 */ 6022 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6023 return 0; 6024 6025 /* only attempt func info relocation if main program's func_info 6026 * relocation was successful 6027 */ 6028 if (main_prog != prog && !main_prog->func_info) 6029 goto line_info; 6030 6031 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6032 &main_prog->func_info, 6033 &main_prog->func_info_cnt, 6034 &main_prog->func_info_rec_size); 6035 if (err) { 6036 if (err != -ENOENT) { 6037 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6038 prog->name, err); 6039 return err; 6040 } 6041 if (main_prog->func_info) { 6042 /* 6043 * Some info has already been found but has problem 6044 * in the last btf_ext reloc. Must have to error out. 6045 */ 6046 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6047 return err; 6048 } 6049 /* Have problem loading the very first info. Ignore the rest. */ 6050 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6051 prog->name); 6052 } 6053 6054 line_info: 6055 /* don't relocate line info if main program's relocation failed */ 6056 if (main_prog != prog && !main_prog->line_info) 6057 return 0; 6058 6059 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6060 &main_prog->line_info, 6061 &main_prog->line_info_cnt, 6062 &main_prog->line_info_rec_size); 6063 if (err) { 6064 if (err != -ENOENT) { 6065 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6066 prog->name, err); 6067 return err; 6068 } 6069 if (main_prog->line_info) { 6070 /* 6071 * Some info has already been found but has problem 6072 * in the last btf_ext reloc. Must have to error out. 6073 */ 6074 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6075 return err; 6076 } 6077 /* Have problem loading the very first info. Ignore the rest. */ 6078 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6079 prog->name); 6080 } 6081 return 0; 6082 } 6083 6084 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6085 { 6086 size_t insn_idx = *(const size_t *)key; 6087 const struct reloc_desc *relo = elem; 6088 6089 if (insn_idx == relo->insn_idx) 6090 return 0; 6091 return insn_idx < relo->insn_idx ? -1 : 1; 6092 } 6093 6094 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6095 { 6096 if (!prog->nr_reloc) 6097 return NULL; 6098 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6099 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6100 } 6101 6102 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6103 { 6104 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6105 struct reloc_desc *relos; 6106 int i; 6107 6108 if (main_prog == subprog) 6109 return 0; 6110 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6111 if (!relos) 6112 return -ENOMEM; 6113 if (subprog->nr_reloc) 6114 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6115 sizeof(*relos) * subprog->nr_reloc); 6116 6117 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6118 relos[i].insn_idx += subprog->sub_insn_off; 6119 /* After insn_idx adjustment the 'relos' array is still sorted 6120 * by insn_idx and doesn't break bsearch. 6121 */ 6122 main_prog->reloc_desc = relos; 6123 main_prog->nr_reloc = new_cnt; 6124 return 0; 6125 } 6126 6127 static int 6128 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6129 struct bpf_program *prog) 6130 { 6131 size_t sub_insn_idx, insn_idx, new_cnt; 6132 struct bpf_program *subprog; 6133 struct bpf_insn *insns, *insn; 6134 struct reloc_desc *relo; 6135 int err; 6136 6137 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6138 if (err) 6139 return err; 6140 6141 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6142 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6143 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6144 continue; 6145 6146 relo = find_prog_insn_relo(prog, insn_idx); 6147 if (relo && relo->type == RELO_EXTERN_CALL) 6148 /* kfunc relocations will be handled later 6149 * in bpf_object__relocate_data() 6150 */ 6151 continue; 6152 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6153 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6154 prog->name, insn_idx, relo->type); 6155 return -LIBBPF_ERRNO__RELOC; 6156 } 6157 if (relo) { 6158 /* sub-program instruction index is a combination of 6159 * an offset of a symbol pointed to by relocation and 6160 * call instruction's imm field; for global functions, 6161 * call always has imm = -1, but for static functions 6162 * relocation is against STT_SECTION and insn->imm 6163 * points to a start of a static function 6164 * 6165 * for subprog addr relocation, the relo->sym_off + insn->imm is 6166 * the byte offset in the corresponding section. 6167 */ 6168 if (relo->type == RELO_CALL) 6169 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6170 else 6171 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6172 } else if (insn_is_pseudo_func(insn)) { 6173 /* 6174 * RELO_SUBPROG_ADDR relo is always emitted even if both 6175 * functions are in the same section, so it shouldn't reach here. 6176 */ 6177 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6178 prog->name, insn_idx); 6179 return -LIBBPF_ERRNO__RELOC; 6180 } else { 6181 /* if subprogram call is to a static function within 6182 * the same ELF section, there won't be any relocation 6183 * emitted, but it also means there is no additional 6184 * offset necessary, insns->imm is relative to 6185 * instruction's original position within the section 6186 */ 6187 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6188 } 6189 6190 /* we enforce that sub-programs should be in .text section */ 6191 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6192 if (!subprog) { 6193 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6194 prog->name); 6195 return -LIBBPF_ERRNO__RELOC; 6196 } 6197 6198 /* if it's the first call instruction calling into this 6199 * subprogram (meaning this subprog hasn't been processed 6200 * yet) within the context of current main program: 6201 * - append it at the end of main program's instructions blog; 6202 * - process is recursively, while current program is put on hold; 6203 * - if that subprogram calls some other not yet processes 6204 * subprogram, same thing will happen recursively until 6205 * there are no more unprocesses subprograms left to append 6206 * and relocate. 6207 */ 6208 if (subprog->sub_insn_off == 0) { 6209 subprog->sub_insn_off = main_prog->insns_cnt; 6210 6211 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6212 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6213 if (!insns) { 6214 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6215 return -ENOMEM; 6216 } 6217 main_prog->insns = insns; 6218 main_prog->insns_cnt = new_cnt; 6219 6220 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6221 subprog->insns_cnt * sizeof(*insns)); 6222 6223 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6224 main_prog->name, subprog->insns_cnt, subprog->name); 6225 6226 /* The subprog insns are now appended. Append its relos too. */ 6227 err = append_subprog_relos(main_prog, subprog); 6228 if (err) 6229 return err; 6230 err = bpf_object__reloc_code(obj, main_prog, subprog); 6231 if (err) 6232 return err; 6233 } 6234 6235 /* main_prog->insns memory could have been re-allocated, so 6236 * calculate pointer again 6237 */ 6238 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6239 /* calculate correct instruction position within current main 6240 * prog; each main prog can have a different set of 6241 * subprograms appended (potentially in different order as 6242 * well), so position of any subprog can be different for 6243 * different main programs 6244 */ 6245 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6246 6247 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6248 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6249 } 6250 6251 return 0; 6252 } 6253 6254 /* 6255 * Relocate sub-program calls. 6256 * 6257 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6258 * main prog) is processed separately. For each subprog (non-entry functions, 6259 * that can be called from either entry progs or other subprogs) gets their 6260 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6261 * hasn't been yet appended and relocated within current main prog. Once its 6262 * relocated, sub_insn_off will point at the position within current main prog 6263 * where given subprog was appended. This will further be used to relocate all 6264 * the call instructions jumping into this subprog. 6265 * 6266 * We start with main program and process all call instructions. If the call 6267 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6268 * is zero), subprog instructions are appended at the end of main program's 6269 * instruction array. Then main program is "put on hold" while we recursively 6270 * process newly appended subprogram. If that subprogram calls into another 6271 * subprogram that hasn't been appended, new subprogram is appended again to 6272 * the *main* prog's instructions (subprog's instructions are always left 6273 * untouched, as they need to be in unmodified state for subsequent main progs 6274 * and subprog instructions are always sent only as part of a main prog) and 6275 * the process continues recursively. Once all the subprogs called from a main 6276 * prog or any of its subprogs are appended (and relocated), all their 6277 * positions within finalized instructions array are known, so it's easy to 6278 * rewrite call instructions with correct relative offsets, corresponding to 6279 * desired target subprog. 6280 * 6281 * Its important to realize that some subprogs might not be called from some 6282 * main prog and any of its called/used subprogs. Those will keep their 6283 * subprog->sub_insn_off as zero at all times and won't be appended to current 6284 * main prog and won't be relocated within the context of current main prog. 6285 * They might still be used from other main progs later. 6286 * 6287 * Visually this process can be shown as below. Suppose we have two main 6288 * programs mainA and mainB and BPF object contains three subprogs: subA, 6289 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6290 * subC both call subB: 6291 * 6292 * +--------+ +-------+ 6293 * | v v | 6294 * +--+---+ +--+-+-+ +---+--+ 6295 * | subA | | subB | | subC | 6296 * +--+---+ +------+ +---+--+ 6297 * ^ ^ 6298 * | | 6299 * +---+-------+ +------+----+ 6300 * | mainA | | mainB | 6301 * +-----------+ +-----------+ 6302 * 6303 * We'll start relocating mainA, will find subA, append it and start 6304 * processing sub A recursively: 6305 * 6306 * +-----------+------+ 6307 * | mainA | subA | 6308 * +-----------+------+ 6309 * 6310 * At this point we notice that subB is used from subA, so we append it and 6311 * relocate (there are no further subcalls from subB): 6312 * 6313 * +-----------+------+------+ 6314 * | mainA | subA | subB | 6315 * +-----------+------+------+ 6316 * 6317 * At this point, we relocate subA calls, then go one level up and finish with 6318 * relocatin mainA calls. mainA is done. 6319 * 6320 * For mainB process is similar but results in different order. We start with 6321 * mainB and skip subA and subB, as mainB never calls them (at least 6322 * directly), but we see subC is needed, so we append and start processing it: 6323 * 6324 * +-----------+------+ 6325 * | mainB | subC | 6326 * +-----------+------+ 6327 * Now we see subC needs subB, so we go back to it, append and relocate it: 6328 * 6329 * +-----------+------+------+ 6330 * | mainB | subC | subB | 6331 * +-----------+------+------+ 6332 * 6333 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6334 */ 6335 static int 6336 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6337 { 6338 struct bpf_program *subprog; 6339 int i, err; 6340 6341 /* mark all subprogs as not relocated (yet) within the context of 6342 * current main program 6343 */ 6344 for (i = 0; i < obj->nr_programs; i++) { 6345 subprog = &obj->programs[i]; 6346 if (!prog_is_subprog(obj, subprog)) 6347 continue; 6348 6349 subprog->sub_insn_off = 0; 6350 } 6351 6352 err = bpf_object__reloc_code(obj, prog, prog); 6353 if (err) 6354 return err; 6355 6356 return 0; 6357 } 6358 6359 static void 6360 bpf_object__free_relocs(struct bpf_object *obj) 6361 { 6362 struct bpf_program *prog; 6363 int i; 6364 6365 /* free up relocation descriptors */ 6366 for (i = 0; i < obj->nr_programs; i++) { 6367 prog = &obj->programs[i]; 6368 zfree(&prog->reloc_desc); 6369 prog->nr_reloc = 0; 6370 } 6371 } 6372 6373 static int cmp_relocs(const void *_a, const void *_b) 6374 { 6375 const struct reloc_desc *a = _a; 6376 const struct reloc_desc *b = _b; 6377 6378 if (a->insn_idx != b->insn_idx) 6379 return a->insn_idx < b->insn_idx ? -1 : 1; 6380 6381 /* no two relocations should have the same insn_idx, but ... */ 6382 if (a->type != b->type) 6383 return a->type < b->type ? -1 : 1; 6384 6385 return 0; 6386 } 6387 6388 static void bpf_object__sort_relos(struct bpf_object *obj) 6389 { 6390 int i; 6391 6392 for (i = 0; i < obj->nr_programs; i++) { 6393 struct bpf_program *p = &obj->programs[i]; 6394 6395 if (!p->nr_reloc) 6396 continue; 6397 6398 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6399 } 6400 } 6401 6402 static int 6403 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6404 { 6405 struct bpf_program *prog; 6406 size_t i, j; 6407 int err; 6408 6409 if (obj->btf_ext) { 6410 err = bpf_object__relocate_core(obj, targ_btf_path); 6411 if (err) { 6412 pr_warn("failed to perform CO-RE relocations: %d\n", 6413 err); 6414 return err; 6415 } 6416 bpf_object__sort_relos(obj); 6417 } 6418 6419 /* Before relocating calls pre-process relocations and mark 6420 * few ld_imm64 instructions that points to subprogs. 6421 * Otherwise bpf_object__reloc_code() later would have to consider 6422 * all ld_imm64 insns as relocation candidates. That would 6423 * reduce relocation speed, since amount of find_prog_insn_relo() 6424 * would increase and most of them will fail to find a relo. 6425 */ 6426 for (i = 0; i < obj->nr_programs; i++) { 6427 prog = &obj->programs[i]; 6428 for (j = 0; j < prog->nr_reloc; j++) { 6429 struct reloc_desc *relo = &prog->reloc_desc[j]; 6430 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6431 6432 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6433 if (relo->type == RELO_SUBPROG_ADDR) 6434 insn[0].src_reg = BPF_PSEUDO_FUNC; 6435 } 6436 } 6437 6438 /* relocate subprogram calls and append used subprograms to main 6439 * programs; each copy of subprogram code needs to be relocated 6440 * differently for each main program, because its code location might 6441 * have changed. 6442 * Append subprog relos to main programs to allow data relos to be 6443 * processed after text is completely relocated. 6444 */ 6445 for (i = 0; i < obj->nr_programs; i++) { 6446 prog = &obj->programs[i]; 6447 /* sub-program's sub-calls are relocated within the context of 6448 * its main program only 6449 */ 6450 if (prog_is_subprog(obj, prog)) 6451 continue; 6452 if (!prog->autoload) 6453 continue; 6454 6455 err = bpf_object__relocate_calls(obj, prog); 6456 if (err) { 6457 pr_warn("prog '%s': failed to relocate calls: %d\n", 6458 prog->name, err); 6459 return err; 6460 } 6461 } 6462 /* Process data relos for main programs */ 6463 for (i = 0; i < obj->nr_programs; i++) { 6464 prog = &obj->programs[i]; 6465 if (prog_is_subprog(obj, prog)) 6466 continue; 6467 if (!prog->autoload) 6468 continue; 6469 err = bpf_object__relocate_data(obj, prog); 6470 if (err) { 6471 pr_warn("prog '%s': failed to relocate data references: %d\n", 6472 prog->name, err); 6473 return err; 6474 } 6475 } 6476 6477 return 0; 6478 } 6479 6480 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6481 Elf64_Shdr *shdr, Elf_Data *data); 6482 6483 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6484 Elf64_Shdr *shdr, Elf_Data *data) 6485 { 6486 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6487 int i, j, nrels, new_sz; 6488 const struct btf_var_secinfo *vi = NULL; 6489 const struct btf_type *sec, *var, *def; 6490 struct bpf_map *map = NULL, *targ_map = NULL; 6491 struct bpf_program *targ_prog = NULL; 6492 bool is_prog_array, is_map_in_map; 6493 const struct btf_member *member; 6494 const char *name, *mname, *type; 6495 unsigned int moff; 6496 Elf64_Sym *sym; 6497 Elf64_Rel *rel; 6498 void *tmp; 6499 6500 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6501 return -EINVAL; 6502 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6503 if (!sec) 6504 return -EINVAL; 6505 6506 nrels = shdr->sh_size / shdr->sh_entsize; 6507 for (i = 0; i < nrels; i++) { 6508 rel = elf_rel_by_idx(data, i); 6509 if (!rel) { 6510 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6511 return -LIBBPF_ERRNO__FORMAT; 6512 } 6513 6514 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6515 if (!sym) { 6516 pr_warn(".maps relo #%d: symbol %zx not found\n", 6517 i, (size_t)ELF64_R_SYM(rel->r_info)); 6518 return -LIBBPF_ERRNO__FORMAT; 6519 } 6520 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6521 6522 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6523 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6524 (size_t)rel->r_offset, sym->st_name, name); 6525 6526 for (j = 0; j < obj->nr_maps; j++) { 6527 map = &obj->maps[j]; 6528 if (map->sec_idx != obj->efile.btf_maps_shndx) 6529 continue; 6530 6531 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6532 if (vi->offset <= rel->r_offset && 6533 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6534 break; 6535 } 6536 if (j == obj->nr_maps) { 6537 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6538 i, name, (size_t)rel->r_offset); 6539 return -EINVAL; 6540 } 6541 6542 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6543 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6544 type = is_map_in_map ? "map" : "prog"; 6545 if (is_map_in_map) { 6546 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6547 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6548 i, name); 6549 return -LIBBPF_ERRNO__RELOC; 6550 } 6551 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6552 map->def.key_size != sizeof(int)) { 6553 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6554 i, map->name, sizeof(int)); 6555 return -EINVAL; 6556 } 6557 targ_map = bpf_object__find_map_by_name(obj, name); 6558 if (!targ_map) { 6559 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6560 i, name); 6561 return -ESRCH; 6562 } 6563 } else if (is_prog_array) { 6564 targ_prog = bpf_object__find_program_by_name(obj, name); 6565 if (!targ_prog) { 6566 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6567 i, name); 6568 return -ESRCH; 6569 } 6570 if (targ_prog->sec_idx != sym->st_shndx || 6571 targ_prog->sec_insn_off * 8 != sym->st_value || 6572 prog_is_subprog(obj, targ_prog)) { 6573 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6574 i, name); 6575 return -LIBBPF_ERRNO__RELOC; 6576 } 6577 } else { 6578 return -EINVAL; 6579 } 6580 6581 var = btf__type_by_id(obj->btf, vi->type); 6582 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6583 if (btf_vlen(def) == 0) 6584 return -EINVAL; 6585 member = btf_members(def) + btf_vlen(def) - 1; 6586 mname = btf__name_by_offset(obj->btf, member->name_off); 6587 if (strcmp(mname, "values")) 6588 return -EINVAL; 6589 6590 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6591 if (rel->r_offset - vi->offset < moff) 6592 return -EINVAL; 6593 6594 moff = rel->r_offset - vi->offset - moff; 6595 /* here we use BPF pointer size, which is always 64 bit, as we 6596 * are parsing ELF that was built for BPF target 6597 */ 6598 if (moff % bpf_ptr_sz) 6599 return -EINVAL; 6600 moff /= bpf_ptr_sz; 6601 if (moff >= map->init_slots_sz) { 6602 new_sz = moff + 1; 6603 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6604 if (!tmp) 6605 return -ENOMEM; 6606 map->init_slots = tmp; 6607 memset(map->init_slots + map->init_slots_sz, 0, 6608 (new_sz - map->init_slots_sz) * host_ptr_sz); 6609 map->init_slots_sz = new_sz; 6610 } 6611 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6612 6613 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6614 i, map->name, moff, type, name); 6615 } 6616 6617 return 0; 6618 } 6619 6620 static int bpf_object__collect_relos(struct bpf_object *obj) 6621 { 6622 int i, err; 6623 6624 for (i = 0; i < obj->efile.sec_cnt; i++) { 6625 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6626 Elf64_Shdr *shdr; 6627 Elf_Data *data; 6628 int idx; 6629 6630 if (sec_desc->sec_type != SEC_RELO) 6631 continue; 6632 6633 shdr = sec_desc->shdr; 6634 data = sec_desc->data; 6635 idx = shdr->sh_info; 6636 6637 if (shdr->sh_type != SHT_REL) { 6638 pr_warn("internal error at %d\n", __LINE__); 6639 return -LIBBPF_ERRNO__INTERNAL; 6640 } 6641 6642 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6643 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6644 else if (idx == obj->efile.btf_maps_shndx) 6645 err = bpf_object__collect_map_relos(obj, shdr, data); 6646 else 6647 err = bpf_object__collect_prog_relos(obj, shdr, data); 6648 if (err) 6649 return err; 6650 } 6651 6652 bpf_object__sort_relos(obj); 6653 return 0; 6654 } 6655 6656 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6657 { 6658 if (BPF_CLASS(insn->code) == BPF_JMP && 6659 BPF_OP(insn->code) == BPF_CALL && 6660 BPF_SRC(insn->code) == BPF_K && 6661 insn->src_reg == 0 && 6662 insn->dst_reg == 0) { 6663 *func_id = insn->imm; 6664 return true; 6665 } 6666 return false; 6667 } 6668 6669 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6670 { 6671 struct bpf_insn *insn = prog->insns; 6672 enum bpf_func_id func_id; 6673 int i; 6674 6675 if (obj->gen_loader) 6676 return 0; 6677 6678 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6679 if (!insn_is_helper_call(insn, &func_id)) 6680 continue; 6681 6682 /* on kernels that don't yet support 6683 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6684 * to bpf_probe_read() which works well for old kernels 6685 */ 6686 switch (func_id) { 6687 case BPF_FUNC_probe_read_kernel: 6688 case BPF_FUNC_probe_read_user: 6689 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6690 insn->imm = BPF_FUNC_probe_read; 6691 break; 6692 case BPF_FUNC_probe_read_kernel_str: 6693 case BPF_FUNC_probe_read_user_str: 6694 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6695 insn->imm = BPF_FUNC_probe_read_str; 6696 break; 6697 default: 6698 break; 6699 } 6700 } 6701 return 0; 6702 } 6703 6704 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6705 int *btf_obj_fd, int *btf_type_id); 6706 6707 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6708 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6709 struct bpf_prog_load_opts *opts, long cookie) 6710 { 6711 enum sec_def_flags def = cookie; 6712 6713 /* old kernels might not support specifying expected_attach_type */ 6714 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6715 opts->expected_attach_type = 0; 6716 6717 if (def & SEC_SLEEPABLE) 6718 opts->prog_flags |= BPF_F_SLEEPABLE; 6719 6720 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6721 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6722 6723 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6724 int btf_obj_fd = 0, btf_type_id = 0, err; 6725 const char *attach_name; 6726 6727 attach_name = strchr(prog->sec_name, '/'); 6728 if (!attach_name) { 6729 /* if BPF program is annotated with just SEC("fentry") 6730 * (or similar) without declaratively specifying 6731 * target, then it is expected that target will be 6732 * specified with bpf_program__set_attach_target() at 6733 * runtime before BPF object load step. If not, then 6734 * there is nothing to load into the kernel as BPF 6735 * verifier won't be able to validate BPF program 6736 * correctness anyways. 6737 */ 6738 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6739 prog->name); 6740 return -EINVAL; 6741 } 6742 attach_name++; /* skip over / */ 6743 6744 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6745 if (err) 6746 return err; 6747 6748 /* cache resolved BTF FD and BTF type ID in the prog */ 6749 prog->attach_btf_obj_fd = btf_obj_fd; 6750 prog->attach_btf_id = btf_type_id; 6751 6752 /* but by now libbpf common logic is not utilizing 6753 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6754 * this callback is called after opts were populated by 6755 * libbpf, so this callback has to update opts explicitly here 6756 */ 6757 opts->attach_btf_obj_fd = btf_obj_fd; 6758 opts->attach_btf_id = btf_type_id; 6759 } 6760 return 0; 6761 } 6762 6763 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6764 6765 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6766 struct bpf_insn *insns, int insns_cnt, 6767 const char *license, __u32 kern_version, int *prog_fd) 6768 { 6769 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6770 const char *prog_name = NULL; 6771 char *cp, errmsg[STRERR_BUFSIZE]; 6772 size_t log_buf_size = 0; 6773 char *log_buf = NULL, *tmp; 6774 int btf_fd, ret, err; 6775 bool own_log_buf = true; 6776 __u32 log_level = prog->log_level; 6777 6778 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6779 /* 6780 * The program type must be set. Most likely we couldn't find a proper 6781 * section definition at load time, and thus we didn't infer the type. 6782 */ 6783 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6784 prog->name, prog->sec_name); 6785 return -EINVAL; 6786 } 6787 6788 if (!insns || !insns_cnt) 6789 return -EINVAL; 6790 6791 load_attr.expected_attach_type = prog->expected_attach_type; 6792 if (kernel_supports(obj, FEAT_PROG_NAME)) 6793 prog_name = prog->name; 6794 load_attr.attach_prog_fd = prog->attach_prog_fd; 6795 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6796 load_attr.attach_btf_id = prog->attach_btf_id; 6797 load_attr.kern_version = kern_version; 6798 load_attr.prog_ifindex = prog->prog_ifindex; 6799 6800 /* specify func_info/line_info only if kernel supports them */ 6801 btf_fd = bpf_object__btf_fd(obj); 6802 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6803 load_attr.prog_btf_fd = btf_fd; 6804 load_attr.func_info = prog->func_info; 6805 load_attr.func_info_rec_size = prog->func_info_rec_size; 6806 load_attr.func_info_cnt = prog->func_info_cnt; 6807 load_attr.line_info = prog->line_info; 6808 load_attr.line_info_rec_size = prog->line_info_rec_size; 6809 load_attr.line_info_cnt = prog->line_info_cnt; 6810 } 6811 load_attr.log_level = log_level; 6812 load_attr.prog_flags = prog->prog_flags; 6813 load_attr.fd_array = obj->fd_array; 6814 6815 /* adjust load_attr if sec_def provides custom preload callback */ 6816 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6817 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6818 if (err < 0) { 6819 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6820 prog->name, err); 6821 return err; 6822 } 6823 insns = prog->insns; 6824 insns_cnt = prog->insns_cnt; 6825 } 6826 6827 if (obj->gen_loader) { 6828 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6829 license, insns, insns_cnt, &load_attr, 6830 prog - obj->programs); 6831 *prog_fd = -1; 6832 return 0; 6833 } 6834 6835 retry_load: 6836 /* if log_level is zero, we don't request logs initially even if 6837 * custom log_buf is specified; if the program load fails, then we'll 6838 * bump log_level to 1 and use either custom log_buf or we'll allocate 6839 * our own and retry the load to get details on what failed 6840 */ 6841 if (log_level) { 6842 if (prog->log_buf) { 6843 log_buf = prog->log_buf; 6844 log_buf_size = prog->log_size; 6845 own_log_buf = false; 6846 } else if (obj->log_buf) { 6847 log_buf = obj->log_buf; 6848 log_buf_size = obj->log_size; 6849 own_log_buf = false; 6850 } else { 6851 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6852 tmp = realloc(log_buf, log_buf_size); 6853 if (!tmp) { 6854 ret = -ENOMEM; 6855 goto out; 6856 } 6857 log_buf = tmp; 6858 log_buf[0] = '\0'; 6859 own_log_buf = true; 6860 } 6861 } 6862 6863 load_attr.log_buf = log_buf; 6864 load_attr.log_size = log_buf_size; 6865 load_attr.log_level = log_level; 6866 6867 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6868 if (ret >= 0) { 6869 if (log_level && own_log_buf) { 6870 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6871 prog->name, log_buf); 6872 } 6873 6874 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6875 struct bpf_map *map; 6876 int i; 6877 6878 for (i = 0; i < obj->nr_maps; i++) { 6879 map = &prog->obj->maps[i]; 6880 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6881 continue; 6882 6883 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6884 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6885 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6886 prog->name, map->real_name, cp); 6887 /* Don't fail hard if can't bind rodata. */ 6888 } 6889 } 6890 } 6891 6892 *prog_fd = ret; 6893 ret = 0; 6894 goto out; 6895 } 6896 6897 if (log_level == 0) { 6898 log_level = 1; 6899 goto retry_load; 6900 } 6901 /* On ENOSPC, increase log buffer size and retry, unless custom 6902 * log_buf is specified. 6903 * Be careful to not overflow u32, though. Kernel's log buf size limit 6904 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6905 * multiply by 2 unless we are sure we'll fit within 32 bits. 6906 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6907 */ 6908 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6909 goto retry_load; 6910 6911 ret = -errno; 6912 6913 /* post-process verifier log to improve error descriptions */ 6914 fixup_verifier_log(prog, log_buf, log_buf_size); 6915 6916 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6917 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6918 pr_perm_msg(ret); 6919 6920 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6921 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6922 prog->name, log_buf); 6923 } 6924 6925 out: 6926 if (own_log_buf) 6927 free(log_buf); 6928 return ret; 6929 } 6930 6931 static char *find_prev_line(char *buf, char *cur) 6932 { 6933 char *p; 6934 6935 if (cur == buf) /* end of a log buf */ 6936 return NULL; 6937 6938 p = cur - 1; 6939 while (p - 1 >= buf && *(p - 1) != '\n') 6940 p--; 6941 6942 return p; 6943 } 6944 6945 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6946 char *orig, size_t orig_sz, const char *patch) 6947 { 6948 /* size of the remaining log content to the right from the to-be-replaced part */ 6949 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6950 size_t patch_sz = strlen(patch); 6951 6952 if (patch_sz != orig_sz) { 6953 /* If patch line(s) are longer than original piece of verifier log, 6954 * shift log contents by (patch_sz - orig_sz) bytes to the right 6955 * starting from after to-be-replaced part of the log. 6956 * 6957 * If patch line(s) are shorter than original piece of verifier log, 6958 * shift log contents by (orig_sz - patch_sz) bytes to the left 6959 * starting from after to-be-replaced part of the log 6960 * 6961 * We need to be careful about not overflowing available 6962 * buf_sz capacity. If that's the case, we'll truncate the end 6963 * of the original log, as necessary. 6964 */ 6965 if (patch_sz > orig_sz) { 6966 if (orig + patch_sz >= buf + buf_sz) { 6967 /* patch is big enough to cover remaining space completely */ 6968 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6969 rem_sz = 0; 6970 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6971 /* patch causes part of remaining log to be truncated */ 6972 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6973 } 6974 } 6975 /* shift remaining log to the right by calculated amount */ 6976 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6977 } 6978 6979 memcpy(orig, patch, patch_sz); 6980 } 6981 6982 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6983 char *buf, size_t buf_sz, size_t log_sz, 6984 char *line1, char *line2, char *line3) 6985 { 6986 /* Expected log for failed and not properly guarded CO-RE relocation: 6987 * line1 -> 123: (85) call unknown#195896080 6988 * line2 -> invalid func unknown#195896080 6989 * line3 -> <anything else or end of buffer> 6990 * 6991 * "123" is the index of the instruction that was poisoned. We extract 6992 * instruction index to find corresponding CO-RE relocation and 6993 * replace this part of the log with more relevant information about 6994 * failed CO-RE relocation. 6995 */ 6996 const struct bpf_core_relo *relo; 6997 struct bpf_core_spec spec; 6998 char patch[512], spec_buf[256]; 6999 int insn_idx, err, spec_len; 7000 7001 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7002 return; 7003 7004 relo = find_relo_core(prog, insn_idx); 7005 if (!relo) 7006 return; 7007 7008 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7009 if (err) 7010 return; 7011 7012 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7013 snprintf(patch, sizeof(patch), 7014 "%d: <invalid CO-RE relocation>\n" 7015 "failed to resolve CO-RE relocation %s%s\n", 7016 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7017 7018 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7019 } 7020 7021 static void fixup_log_missing_map_load(struct bpf_program *prog, 7022 char *buf, size_t buf_sz, size_t log_sz, 7023 char *line1, char *line2, char *line3) 7024 { 7025 /* Expected log for failed and not properly guarded CO-RE relocation: 7026 * line1 -> 123: (85) call unknown#2001000345 7027 * line2 -> invalid func unknown#2001000345 7028 * line3 -> <anything else or end of buffer> 7029 * 7030 * "123" is the index of the instruction that was poisoned. 7031 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7032 */ 7033 struct bpf_object *obj = prog->obj; 7034 const struct bpf_map *map; 7035 int insn_idx, map_idx; 7036 char patch[128]; 7037 7038 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7039 return; 7040 7041 map_idx -= MAP_LDIMM64_POISON_BASE; 7042 if (map_idx < 0 || map_idx >= obj->nr_maps) 7043 return; 7044 map = &obj->maps[map_idx]; 7045 7046 snprintf(patch, sizeof(patch), 7047 "%d: <invalid BPF map reference>\n" 7048 "BPF map '%s' is referenced but wasn't created\n", 7049 insn_idx, map->name); 7050 7051 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7052 } 7053 7054 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7055 { 7056 /* look for familiar error patterns in last N lines of the log */ 7057 const size_t max_last_line_cnt = 10; 7058 char *prev_line, *cur_line, *next_line; 7059 size_t log_sz; 7060 int i; 7061 7062 if (!buf) 7063 return; 7064 7065 log_sz = strlen(buf) + 1; 7066 next_line = buf + log_sz - 1; 7067 7068 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7069 cur_line = find_prev_line(buf, next_line); 7070 if (!cur_line) 7071 return; 7072 7073 /* failed CO-RE relocation case */ 7074 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7075 prev_line = find_prev_line(buf, cur_line); 7076 if (!prev_line) 7077 continue; 7078 7079 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7080 prev_line, cur_line, next_line); 7081 return; 7082 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7083 prev_line = find_prev_line(buf, cur_line); 7084 if (!prev_line) 7085 continue; 7086 7087 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7088 prev_line, cur_line, next_line); 7089 return; 7090 } 7091 } 7092 } 7093 7094 static int bpf_program_record_relos(struct bpf_program *prog) 7095 { 7096 struct bpf_object *obj = prog->obj; 7097 int i; 7098 7099 for (i = 0; i < prog->nr_reloc; i++) { 7100 struct reloc_desc *relo = &prog->reloc_desc[i]; 7101 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7102 int kind; 7103 7104 switch (relo->type) { 7105 case RELO_EXTERN_LD64: 7106 if (ext->type != EXT_KSYM) 7107 continue; 7108 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7109 BTF_KIND_VAR : BTF_KIND_FUNC; 7110 bpf_gen__record_extern(obj->gen_loader, ext->name, 7111 ext->is_weak, !ext->ksym.type_id, 7112 true, kind, relo->insn_idx); 7113 break; 7114 case RELO_EXTERN_CALL: 7115 bpf_gen__record_extern(obj->gen_loader, ext->name, 7116 ext->is_weak, false, false, BTF_KIND_FUNC, 7117 relo->insn_idx); 7118 break; 7119 case RELO_CORE: { 7120 struct bpf_core_relo cr = { 7121 .insn_off = relo->insn_idx * 8, 7122 .type_id = relo->core_relo->type_id, 7123 .access_str_off = relo->core_relo->access_str_off, 7124 .kind = relo->core_relo->kind, 7125 }; 7126 7127 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7128 break; 7129 } 7130 default: 7131 continue; 7132 } 7133 } 7134 return 0; 7135 } 7136 7137 static int 7138 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7139 { 7140 struct bpf_program *prog; 7141 size_t i; 7142 int err; 7143 7144 for (i = 0; i < obj->nr_programs; i++) { 7145 prog = &obj->programs[i]; 7146 err = bpf_object__sanitize_prog(obj, prog); 7147 if (err) 7148 return err; 7149 } 7150 7151 for (i = 0; i < obj->nr_programs; i++) { 7152 prog = &obj->programs[i]; 7153 if (prog_is_subprog(obj, prog)) 7154 continue; 7155 if (!prog->autoload) { 7156 pr_debug("prog '%s': skipped loading\n", prog->name); 7157 continue; 7158 } 7159 prog->log_level |= log_level; 7160 7161 if (obj->gen_loader) 7162 bpf_program_record_relos(prog); 7163 7164 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7165 obj->license, obj->kern_version, &prog->fd); 7166 if (err) { 7167 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7168 return err; 7169 } 7170 } 7171 7172 bpf_object__free_relocs(obj); 7173 return 0; 7174 } 7175 7176 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7177 7178 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7179 { 7180 struct bpf_program *prog; 7181 int err; 7182 7183 bpf_object__for_each_program(prog, obj) { 7184 prog->sec_def = find_sec_def(prog->sec_name); 7185 if (!prog->sec_def) { 7186 /* couldn't guess, but user might manually specify */ 7187 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7188 prog->name, prog->sec_name); 7189 continue; 7190 } 7191 7192 prog->type = prog->sec_def->prog_type; 7193 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7194 7195 /* sec_def can have custom callback which should be called 7196 * after bpf_program is initialized to adjust its properties 7197 */ 7198 if (prog->sec_def->prog_setup_fn) { 7199 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7200 if (err < 0) { 7201 pr_warn("prog '%s': failed to initialize: %d\n", 7202 prog->name, err); 7203 return err; 7204 } 7205 } 7206 } 7207 7208 return 0; 7209 } 7210 7211 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7212 const struct bpf_object_open_opts *opts) 7213 { 7214 const char *obj_name, *kconfig, *btf_tmp_path; 7215 struct bpf_object *obj; 7216 char tmp_name[64]; 7217 int err; 7218 char *log_buf; 7219 size_t log_size; 7220 __u32 log_level; 7221 7222 if (elf_version(EV_CURRENT) == EV_NONE) { 7223 pr_warn("failed to init libelf for %s\n", 7224 path ? : "(mem buf)"); 7225 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7226 } 7227 7228 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7229 return ERR_PTR(-EINVAL); 7230 7231 obj_name = OPTS_GET(opts, object_name, NULL); 7232 if (obj_buf) { 7233 if (!obj_name) { 7234 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7235 (unsigned long)obj_buf, 7236 (unsigned long)obj_buf_sz); 7237 obj_name = tmp_name; 7238 } 7239 path = obj_name; 7240 pr_debug("loading object '%s' from buffer\n", obj_name); 7241 } 7242 7243 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7244 log_size = OPTS_GET(opts, kernel_log_size, 0); 7245 log_level = OPTS_GET(opts, kernel_log_level, 0); 7246 if (log_size > UINT_MAX) 7247 return ERR_PTR(-EINVAL); 7248 if (log_size && !log_buf) 7249 return ERR_PTR(-EINVAL); 7250 7251 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7252 if (IS_ERR(obj)) 7253 return obj; 7254 7255 obj->log_buf = log_buf; 7256 obj->log_size = log_size; 7257 obj->log_level = log_level; 7258 7259 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7260 if (btf_tmp_path) { 7261 if (strlen(btf_tmp_path) >= PATH_MAX) { 7262 err = -ENAMETOOLONG; 7263 goto out; 7264 } 7265 obj->btf_custom_path = strdup(btf_tmp_path); 7266 if (!obj->btf_custom_path) { 7267 err = -ENOMEM; 7268 goto out; 7269 } 7270 } 7271 7272 kconfig = OPTS_GET(opts, kconfig, NULL); 7273 if (kconfig) { 7274 obj->kconfig = strdup(kconfig); 7275 if (!obj->kconfig) { 7276 err = -ENOMEM; 7277 goto out; 7278 } 7279 } 7280 7281 err = bpf_object__elf_init(obj); 7282 err = err ? : bpf_object__check_endianness(obj); 7283 err = err ? : bpf_object__elf_collect(obj); 7284 err = err ? : bpf_object__collect_externs(obj); 7285 err = err ? : bpf_object_fixup_btf(obj); 7286 err = err ? : bpf_object__init_maps(obj, opts); 7287 err = err ? : bpf_object_init_progs(obj, opts); 7288 err = err ? : bpf_object__collect_relos(obj); 7289 if (err) 7290 goto out; 7291 7292 bpf_object__elf_finish(obj); 7293 7294 return obj; 7295 out: 7296 bpf_object__close(obj); 7297 return ERR_PTR(err); 7298 } 7299 7300 struct bpf_object * 7301 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7302 { 7303 if (!path) 7304 return libbpf_err_ptr(-EINVAL); 7305 7306 pr_debug("loading %s\n", path); 7307 7308 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7309 } 7310 7311 struct bpf_object *bpf_object__open(const char *path) 7312 { 7313 return bpf_object__open_file(path, NULL); 7314 } 7315 7316 struct bpf_object * 7317 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7318 const struct bpf_object_open_opts *opts) 7319 { 7320 if (!obj_buf || obj_buf_sz == 0) 7321 return libbpf_err_ptr(-EINVAL); 7322 7323 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7324 } 7325 7326 static int bpf_object_unload(struct bpf_object *obj) 7327 { 7328 size_t i; 7329 7330 if (!obj) 7331 return libbpf_err(-EINVAL); 7332 7333 for (i = 0; i < obj->nr_maps; i++) { 7334 zclose(obj->maps[i].fd); 7335 if (obj->maps[i].st_ops) 7336 zfree(&obj->maps[i].st_ops->kern_vdata); 7337 } 7338 7339 for (i = 0; i < obj->nr_programs; i++) 7340 bpf_program__unload(&obj->programs[i]); 7341 7342 return 0; 7343 } 7344 7345 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7346 { 7347 struct bpf_map *m; 7348 7349 bpf_object__for_each_map(m, obj) { 7350 if (!bpf_map__is_internal(m)) 7351 continue; 7352 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7353 m->def.map_flags &= ~BPF_F_MMAPABLE; 7354 } 7355 7356 return 0; 7357 } 7358 7359 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7360 { 7361 char sym_type, sym_name[500]; 7362 unsigned long long sym_addr; 7363 int ret, err = 0; 7364 FILE *f; 7365 7366 f = fopen("/proc/kallsyms", "r"); 7367 if (!f) { 7368 err = -errno; 7369 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7370 return err; 7371 } 7372 7373 while (true) { 7374 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7375 &sym_addr, &sym_type, sym_name); 7376 if (ret == EOF && feof(f)) 7377 break; 7378 if (ret != 3) { 7379 pr_warn("failed to read kallsyms entry: %d\n", ret); 7380 err = -EINVAL; 7381 break; 7382 } 7383 7384 err = cb(sym_addr, sym_type, sym_name, ctx); 7385 if (err) 7386 break; 7387 } 7388 7389 fclose(f); 7390 return err; 7391 } 7392 7393 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7394 const char *sym_name, void *ctx) 7395 { 7396 struct bpf_object *obj = ctx; 7397 const struct btf_type *t; 7398 struct extern_desc *ext; 7399 7400 ext = find_extern_by_name(obj, sym_name); 7401 if (!ext || ext->type != EXT_KSYM) 7402 return 0; 7403 7404 t = btf__type_by_id(obj->btf, ext->btf_id); 7405 if (!btf_is_var(t)) 7406 return 0; 7407 7408 if (ext->is_set && ext->ksym.addr != sym_addr) { 7409 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7410 sym_name, ext->ksym.addr, sym_addr); 7411 return -EINVAL; 7412 } 7413 if (!ext->is_set) { 7414 ext->is_set = true; 7415 ext->ksym.addr = sym_addr; 7416 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7417 } 7418 return 0; 7419 } 7420 7421 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7422 { 7423 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7424 } 7425 7426 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7427 __u16 kind, struct btf **res_btf, 7428 struct module_btf **res_mod_btf) 7429 { 7430 struct module_btf *mod_btf; 7431 struct btf *btf; 7432 int i, id, err; 7433 7434 btf = obj->btf_vmlinux; 7435 mod_btf = NULL; 7436 id = btf__find_by_name_kind(btf, ksym_name, kind); 7437 7438 if (id == -ENOENT) { 7439 err = load_module_btfs(obj); 7440 if (err) 7441 return err; 7442 7443 for (i = 0; i < obj->btf_module_cnt; i++) { 7444 /* we assume module_btf's BTF FD is always >0 */ 7445 mod_btf = &obj->btf_modules[i]; 7446 btf = mod_btf->btf; 7447 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7448 if (id != -ENOENT) 7449 break; 7450 } 7451 } 7452 if (id <= 0) 7453 return -ESRCH; 7454 7455 *res_btf = btf; 7456 *res_mod_btf = mod_btf; 7457 return id; 7458 } 7459 7460 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7461 struct extern_desc *ext) 7462 { 7463 const struct btf_type *targ_var, *targ_type; 7464 __u32 targ_type_id, local_type_id; 7465 struct module_btf *mod_btf = NULL; 7466 const char *targ_var_name; 7467 struct btf *btf = NULL; 7468 int id, err; 7469 7470 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7471 if (id < 0) { 7472 if (id == -ESRCH && ext->is_weak) 7473 return 0; 7474 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7475 ext->name); 7476 return id; 7477 } 7478 7479 /* find local type_id */ 7480 local_type_id = ext->ksym.type_id; 7481 7482 /* find target type_id */ 7483 targ_var = btf__type_by_id(btf, id); 7484 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7485 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7486 7487 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7488 btf, targ_type_id); 7489 if (err <= 0) { 7490 const struct btf_type *local_type; 7491 const char *targ_name, *local_name; 7492 7493 local_type = btf__type_by_id(obj->btf, local_type_id); 7494 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7495 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7496 7497 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7498 ext->name, local_type_id, 7499 btf_kind_str(local_type), local_name, targ_type_id, 7500 btf_kind_str(targ_type), targ_name); 7501 return -EINVAL; 7502 } 7503 7504 ext->is_set = true; 7505 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7506 ext->ksym.kernel_btf_id = id; 7507 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7508 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7509 7510 return 0; 7511 } 7512 7513 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7514 struct extern_desc *ext) 7515 { 7516 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7517 struct module_btf *mod_btf = NULL; 7518 const struct btf_type *kern_func; 7519 struct btf *kern_btf = NULL; 7520 int ret; 7521 7522 local_func_proto_id = ext->ksym.type_id; 7523 7524 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7525 if (kfunc_id < 0) { 7526 if (kfunc_id == -ESRCH && ext->is_weak) 7527 return 0; 7528 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7529 ext->name); 7530 return kfunc_id; 7531 } 7532 7533 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7534 kfunc_proto_id = kern_func->type; 7535 7536 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7537 kern_btf, kfunc_proto_id); 7538 if (ret <= 0) { 7539 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7540 ext->name, local_func_proto_id, kfunc_proto_id); 7541 return -EINVAL; 7542 } 7543 7544 /* set index for module BTF fd in fd_array, if unset */ 7545 if (mod_btf && !mod_btf->fd_array_idx) { 7546 /* insn->off is s16 */ 7547 if (obj->fd_array_cnt == INT16_MAX) { 7548 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7549 ext->name, mod_btf->fd_array_idx); 7550 return -E2BIG; 7551 } 7552 /* Cannot use index 0 for module BTF fd */ 7553 if (!obj->fd_array_cnt) 7554 obj->fd_array_cnt = 1; 7555 7556 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7557 obj->fd_array_cnt + 1); 7558 if (ret) 7559 return ret; 7560 mod_btf->fd_array_idx = obj->fd_array_cnt; 7561 /* we assume module BTF FD is always >0 */ 7562 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7563 } 7564 7565 ext->is_set = true; 7566 ext->ksym.kernel_btf_id = kfunc_id; 7567 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7568 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7569 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7570 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7571 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7572 */ 7573 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7574 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7575 ext->name, kfunc_id); 7576 7577 return 0; 7578 } 7579 7580 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7581 { 7582 const struct btf_type *t; 7583 struct extern_desc *ext; 7584 int i, err; 7585 7586 for (i = 0; i < obj->nr_extern; i++) { 7587 ext = &obj->externs[i]; 7588 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7589 continue; 7590 7591 if (obj->gen_loader) { 7592 ext->is_set = true; 7593 ext->ksym.kernel_btf_obj_fd = 0; 7594 ext->ksym.kernel_btf_id = 0; 7595 continue; 7596 } 7597 t = btf__type_by_id(obj->btf, ext->btf_id); 7598 if (btf_is_var(t)) 7599 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7600 else 7601 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7602 if (err) 7603 return err; 7604 } 7605 return 0; 7606 } 7607 7608 static int bpf_object__resolve_externs(struct bpf_object *obj, 7609 const char *extra_kconfig) 7610 { 7611 bool need_config = false, need_kallsyms = false; 7612 bool need_vmlinux_btf = false; 7613 struct extern_desc *ext; 7614 void *kcfg_data = NULL; 7615 int err, i; 7616 7617 if (obj->nr_extern == 0) 7618 return 0; 7619 7620 if (obj->kconfig_map_idx >= 0) 7621 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7622 7623 for (i = 0; i < obj->nr_extern; i++) { 7624 ext = &obj->externs[i]; 7625 7626 if (ext->type == EXT_KSYM) { 7627 if (ext->ksym.type_id) 7628 need_vmlinux_btf = true; 7629 else 7630 need_kallsyms = true; 7631 continue; 7632 } else if (ext->type == EXT_KCFG) { 7633 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7634 __u64 value = 0; 7635 7636 /* Kconfig externs need actual /proc/config.gz */ 7637 if (str_has_pfx(ext->name, "CONFIG_")) { 7638 need_config = true; 7639 continue; 7640 } 7641 7642 /* Virtual kcfg externs are customly handled by libbpf */ 7643 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7644 value = get_kernel_version(); 7645 if (!value) { 7646 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7647 return -EINVAL; 7648 } 7649 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7650 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7651 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7652 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7653 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7654 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7655 * __kconfig externs, where LINUX_ ones are virtual and filled out 7656 * customly by libbpf (their values don't come from Kconfig). 7657 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7658 * __weak, it defaults to zero value, just like for CONFIG_xxx 7659 * externs. 7660 */ 7661 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7662 return -EINVAL; 7663 } 7664 7665 err = set_kcfg_value_num(ext, ext_ptr, value); 7666 if (err) 7667 return err; 7668 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7669 ext->name, (long long)value); 7670 } else { 7671 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7672 return -EINVAL; 7673 } 7674 } 7675 if (need_config && extra_kconfig) { 7676 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7677 if (err) 7678 return -EINVAL; 7679 need_config = false; 7680 for (i = 0; i < obj->nr_extern; i++) { 7681 ext = &obj->externs[i]; 7682 if (ext->type == EXT_KCFG && !ext->is_set) { 7683 need_config = true; 7684 break; 7685 } 7686 } 7687 } 7688 if (need_config) { 7689 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7690 if (err) 7691 return -EINVAL; 7692 } 7693 if (need_kallsyms) { 7694 err = bpf_object__read_kallsyms_file(obj); 7695 if (err) 7696 return -EINVAL; 7697 } 7698 if (need_vmlinux_btf) { 7699 err = bpf_object__resolve_ksyms_btf_id(obj); 7700 if (err) 7701 return -EINVAL; 7702 } 7703 for (i = 0; i < obj->nr_extern; i++) { 7704 ext = &obj->externs[i]; 7705 7706 if (!ext->is_set && !ext->is_weak) { 7707 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7708 return -ESRCH; 7709 } else if (!ext->is_set) { 7710 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7711 ext->name); 7712 } 7713 } 7714 7715 return 0; 7716 } 7717 7718 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7719 { 7720 struct bpf_struct_ops *st_ops; 7721 __u32 i; 7722 7723 st_ops = map->st_ops; 7724 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7725 struct bpf_program *prog = st_ops->progs[i]; 7726 void *kern_data; 7727 int prog_fd; 7728 7729 if (!prog) 7730 continue; 7731 7732 prog_fd = bpf_program__fd(prog); 7733 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7734 *(unsigned long *)kern_data = prog_fd; 7735 } 7736 } 7737 7738 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7739 { 7740 int i; 7741 7742 for (i = 0; i < obj->nr_maps; i++) 7743 if (bpf_map__is_struct_ops(&obj->maps[i])) 7744 bpf_map_prepare_vdata(&obj->maps[i]); 7745 7746 return 0; 7747 } 7748 7749 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7750 { 7751 int err, i; 7752 7753 if (!obj) 7754 return libbpf_err(-EINVAL); 7755 7756 if (obj->loaded) { 7757 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7758 return libbpf_err(-EINVAL); 7759 } 7760 7761 if (obj->gen_loader) 7762 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7763 7764 err = bpf_object__probe_loading(obj); 7765 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7766 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7767 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7768 err = err ? : bpf_object__sanitize_maps(obj); 7769 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7770 err = err ? : bpf_object__create_maps(obj); 7771 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7772 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7773 err = err ? : bpf_object_init_prog_arrays(obj); 7774 err = err ? : bpf_object_prepare_struct_ops(obj); 7775 7776 if (obj->gen_loader) { 7777 /* reset FDs */ 7778 if (obj->btf) 7779 btf__set_fd(obj->btf, -1); 7780 for (i = 0; i < obj->nr_maps; i++) 7781 obj->maps[i].fd = -1; 7782 if (!err) 7783 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7784 } 7785 7786 /* clean up fd_array */ 7787 zfree(&obj->fd_array); 7788 7789 /* clean up module BTFs */ 7790 for (i = 0; i < obj->btf_module_cnt; i++) { 7791 close(obj->btf_modules[i].fd); 7792 btf__free(obj->btf_modules[i].btf); 7793 free(obj->btf_modules[i].name); 7794 } 7795 free(obj->btf_modules); 7796 7797 /* clean up vmlinux BTF */ 7798 btf__free(obj->btf_vmlinux); 7799 obj->btf_vmlinux = NULL; 7800 7801 obj->loaded = true; /* doesn't matter if successfully or not */ 7802 7803 if (err) 7804 goto out; 7805 7806 return 0; 7807 out: 7808 /* unpin any maps that were auto-pinned during load */ 7809 for (i = 0; i < obj->nr_maps; i++) 7810 if (obj->maps[i].pinned && !obj->maps[i].reused) 7811 bpf_map__unpin(&obj->maps[i], NULL); 7812 7813 bpf_object_unload(obj); 7814 pr_warn("failed to load object '%s'\n", obj->path); 7815 return libbpf_err(err); 7816 } 7817 7818 int bpf_object__load(struct bpf_object *obj) 7819 { 7820 return bpf_object_load(obj, 0, NULL); 7821 } 7822 7823 static int make_parent_dir(const char *path) 7824 { 7825 char *cp, errmsg[STRERR_BUFSIZE]; 7826 char *dname, *dir; 7827 int err = 0; 7828 7829 dname = strdup(path); 7830 if (dname == NULL) 7831 return -ENOMEM; 7832 7833 dir = dirname(dname); 7834 if (mkdir(dir, 0700) && errno != EEXIST) 7835 err = -errno; 7836 7837 free(dname); 7838 if (err) { 7839 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7840 pr_warn("failed to mkdir %s: %s\n", path, cp); 7841 } 7842 return err; 7843 } 7844 7845 static int check_path(const char *path) 7846 { 7847 char *cp, errmsg[STRERR_BUFSIZE]; 7848 struct statfs st_fs; 7849 char *dname, *dir; 7850 int err = 0; 7851 7852 if (path == NULL) 7853 return -EINVAL; 7854 7855 dname = strdup(path); 7856 if (dname == NULL) 7857 return -ENOMEM; 7858 7859 dir = dirname(dname); 7860 if (statfs(dir, &st_fs)) { 7861 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7862 pr_warn("failed to statfs %s: %s\n", dir, cp); 7863 err = -errno; 7864 } 7865 free(dname); 7866 7867 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7868 pr_warn("specified path %s is not on BPF FS\n", path); 7869 err = -EINVAL; 7870 } 7871 7872 return err; 7873 } 7874 7875 int bpf_program__pin(struct bpf_program *prog, const char *path) 7876 { 7877 char *cp, errmsg[STRERR_BUFSIZE]; 7878 int err; 7879 7880 if (prog->fd < 0) { 7881 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7882 return libbpf_err(-EINVAL); 7883 } 7884 7885 err = make_parent_dir(path); 7886 if (err) 7887 return libbpf_err(err); 7888 7889 err = check_path(path); 7890 if (err) 7891 return libbpf_err(err); 7892 7893 if (bpf_obj_pin(prog->fd, path)) { 7894 err = -errno; 7895 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7896 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7897 return libbpf_err(err); 7898 } 7899 7900 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7901 return 0; 7902 } 7903 7904 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7905 { 7906 int err; 7907 7908 if (prog->fd < 0) { 7909 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7910 return libbpf_err(-EINVAL); 7911 } 7912 7913 err = check_path(path); 7914 if (err) 7915 return libbpf_err(err); 7916 7917 err = unlink(path); 7918 if (err) 7919 return libbpf_err(-errno); 7920 7921 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7922 return 0; 7923 } 7924 7925 int bpf_map__pin(struct bpf_map *map, const char *path) 7926 { 7927 char *cp, errmsg[STRERR_BUFSIZE]; 7928 int err; 7929 7930 if (map == NULL) { 7931 pr_warn("invalid map pointer\n"); 7932 return libbpf_err(-EINVAL); 7933 } 7934 7935 if (map->pin_path) { 7936 if (path && strcmp(path, map->pin_path)) { 7937 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7938 bpf_map__name(map), map->pin_path, path); 7939 return libbpf_err(-EINVAL); 7940 } else if (map->pinned) { 7941 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7942 bpf_map__name(map), map->pin_path); 7943 return 0; 7944 } 7945 } else { 7946 if (!path) { 7947 pr_warn("missing a path to pin map '%s' at\n", 7948 bpf_map__name(map)); 7949 return libbpf_err(-EINVAL); 7950 } else if (map->pinned) { 7951 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7952 return libbpf_err(-EEXIST); 7953 } 7954 7955 map->pin_path = strdup(path); 7956 if (!map->pin_path) { 7957 err = -errno; 7958 goto out_err; 7959 } 7960 } 7961 7962 err = make_parent_dir(map->pin_path); 7963 if (err) 7964 return libbpf_err(err); 7965 7966 err = check_path(map->pin_path); 7967 if (err) 7968 return libbpf_err(err); 7969 7970 if (bpf_obj_pin(map->fd, map->pin_path)) { 7971 err = -errno; 7972 goto out_err; 7973 } 7974 7975 map->pinned = true; 7976 pr_debug("pinned map '%s'\n", map->pin_path); 7977 7978 return 0; 7979 7980 out_err: 7981 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7982 pr_warn("failed to pin map: %s\n", cp); 7983 return libbpf_err(err); 7984 } 7985 7986 int bpf_map__unpin(struct bpf_map *map, const char *path) 7987 { 7988 int err; 7989 7990 if (map == NULL) { 7991 pr_warn("invalid map pointer\n"); 7992 return libbpf_err(-EINVAL); 7993 } 7994 7995 if (map->pin_path) { 7996 if (path && strcmp(path, map->pin_path)) { 7997 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7998 bpf_map__name(map), map->pin_path, path); 7999 return libbpf_err(-EINVAL); 8000 } 8001 path = map->pin_path; 8002 } else if (!path) { 8003 pr_warn("no path to unpin map '%s' from\n", 8004 bpf_map__name(map)); 8005 return libbpf_err(-EINVAL); 8006 } 8007 8008 err = check_path(path); 8009 if (err) 8010 return libbpf_err(err); 8011 8012 err = unlink(path); 8013 if (err != 0) 8014 return libbpf_err(-errno); 8015 8016 map->pinned = false; 8017 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8018 8019 return 0; 8020 } 8021 8022 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8023 { 8024 char *new = NULL; 8025 8026 if (path) { 8027 new = strdup(path); 8028 if (!new) 8029 return libbpf_err(-errno); 8030 } 8031 8032 free(map->pin_path); 8033 map->pin_path = new; 8034 return 0; 8035 } 8036 8037 __alias(bpf_map__pin_path) 8038 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8039 8040 const char *bpf_map__pin_path(const struct bpf_map *map) 8041 { 8042 return map->pin_path; 8043 } 8044 8045 bool bpf_map__is_pinned(const struct bpf_map *map) 8046 { 8047 return map->pinned; 8048 } 8049 8050 static void sanitize_pin_path(char *s) 8051 { 8052 /* bpffs disallows periods in path names */ 8053 while (*s) { 8054 if (*s == '.') 8055 *s = '_'; 8056 s++; 8057 } 8058 } 8059 8060 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8061 { 8062 struct bpf_map *map; 8063 int err; 8064 8065 if (!obj) 8066 return libbpf_err(-ENOENT); 8067 8068 if (!obj->loaded) { 8069 pr_warn("object not yet loaded; load it first\n"); 8070 return libbpf_err(-ENOENT); 8071 } 8072 8073 bpf_object__for_each_map(map, obj) { 8074 char *pin_path = NULL; 8075 char buf[PATH_MAX]; 8076 8077 if (!map->autocreate) 8078 continue; 8079 8080 if (path) { 8081 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8082 if (err) 8083 goto err_unpin_maps; 8084 sanitize_pin_path(buf); 8085 pin_path = buf; 8086 } else if (!map->pin_path) { 8087 continue; 8088 } 8089 8090 err = bpf_map__pin(map, pin_path); 8091 if (err) 8092 goto err_unpin_maps; 8093 } 8094 8095 return 0; 8096 8097 err_unpin_maps: 8098 while ((map = bpf_object__prev_map(obj, map))) { 8099 if (!map->pin_path) 8100 continue; 8101 8102 bpf_map__unpin(map, NULL); 8103 } 8104 8105 return libbpf_err(err); 8106 } 8107 8108 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8109 { 8110 struct bpf_map *map; 8111 int err; 8112 8113 if (!obj) 8114 return libbpf_err(-ENOENT); 8115 8116 bpf_object__for_each_map(map, obj) { 8117 char *pin_path = NULL; 8118 char buf[PATH_MAX]; 8119 8120 if (path) { 8121 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8122 if (err) 8123 return libbpf_err(err); 8124 sanitize_pin_path(buf); 8125 pin_path = buf; 8126 } else if (!map->pin_path) { 8127 continue; 8128 } 8129 8130 err = bpf_map__unpin(map, pin_path); 8131 if (err) 8132 return libbpf_err(err); 8133 } 8134 8135 return 0; 8136 } 8137 8138 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8139 { 8140 struct bpf_program *prog; 8141 char buf[PATH_MAX]; 8142 int err; 8143 8144 if (!obj) 8145 return libbpf_err(-ENOENT); 8146 8147 if (!obj->loaded) { 8148 pr_warn("object not yet loaded; load it first\n"); 8149 return libbpf_err(-ENOENT); 8150 } 8151 8152 bpf_object__for_each_program(prog, obj) { 8153 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8154 if (err) 8155 goto err_unpin_programs; 8156 8157 err = bpf_program__pin(prog, buf); 8158 if (err) 8159 goto err_unpin_programs; 8160 } 8161 8162 return 0; 8163 8164 err_unpin_programs: 8165 while ((prog = bpf_object__prev_program(obj, prog))) { 8166 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8167 continue; 8168 8169 bpf_program__unpin(prog, buf); 8170 } 8171 8172 return libbpf_err(err); 8173 } 8174 8175 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8176 { 8177 struct bpf_program *prog; 8178 int err; 8179 8180 if (!obj) 8181 return libbpf_err(-ENOENT); 8182 8183 bpf_object__for_each_program(prog, obj) { 8184 char buf[PATH_MAX]; 8185 8186 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8187 if (err) 8188 return libbpf_err(err); 8189 8190 err = bpf_program__unpin(prog, buf); 8191 if (err) 8192 return libbpf_err(err); 8193 } 8194 8195 return 0; 8196 } 8197 8198 int bpf_object__pin(struct bpf_object *obj, const char *path) 8199 { 8200 int err; 8201 8202 err = bpf_object__pin_maps(obj, path); 8203 if (err) 8204 return libbpf_err(err); 8205 8206 err = bpf_object__pin_programs(obj, path); 8207 if (err) { 8208 bpf_object__unpin_maps(obj, path); 8209 return libbpf_err(err); 8210 } 8211 8212 return 0; 8213 } 8214 8215 static void bpf_map__destroy(struct bpf_map *map) 8216 { 8217 if (map->inner_map) { 8218 bpf_map__destroy(map->inner_map); 8219 zfree(&map->inner_map); 8220 } 8221 8222 zfree(&map->init_slots); 8223 map->init_slots_sz = 0; 8224 8225 if (map->mmaped) { 8226 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8227 map->mmaped = NULL; 8228 } 8229 8230 if (map->st_ops) { 8231 zfree(&map->st_ops->data); 8232 zfree(&map->st_ops->progs); 8233 zfree(&map->st_ops->kern_func_off); 8234 zfree(&map->st_ops); 8235 } 8236 8237 zfree(&map->name); 8238 zfree(&map->real_name); 8239 zfree(&map->pin_path); 8240 8241 if (map->fd >= 0) 8242 zclose(map->fd); 8243 } 8244 8245 void bpf_object__close(struct bpf_object *obj) 8246 { 8247 size_t i; 8248 8249 if (IS_ERR_OR_NULL(obj)) 8250 return; 8251 8252 usdt_manager_free(obj->usdt_man); 8253 obj->usdt_man = NULL; 8254 8255 bpf_gen__free(obj->gen_loader); 8256 bpf_object__elf_finish(obj); 8257 bpf_object_unload(obj); 8258 btf__free(obj->btf); 8259 btf_ext__free(obj->btf_ext); 8260 8261 for (i = 0; i < obj->nr_maps; i++) 8262 bpf_map__destroy(&obj->maps[i]); 8263 8264 zfree(&obj->btf_custom_path); 8265 zfree(&obj->kconfig); 8266 zfree(&obj->externs); 8267 obj->nr_extern = 0; 8268 8269 zfree(&obj->maps); 8270 obj->nr_maps = 0; 8271 8272 if (obj->programs && obj->nr_programs) { 8273 for (i = 0; i < obj->nr_programs; i++) 8274 bpf_program__exit(&obj->programs[i]); 8275 } 8276 zfree(&obj->programs); 8277 8278 free(obj); 8279 } 8280 8281 const char *bpf_object__name(const struct bpf_object *obj) 8282 { 8283 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8284 } 8285 8286 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8287 { 8288 return obj ? obj->kern_version : 0; 8289 } 8290 8291 struct btf *bpf_object__btf(const struct bpf_object *obj) 8292 { 8293 return obj ? obj->btf : NULL; 8294 } 8295 8296 int bpf_object__btf_fd(const struct bpf_object *obj) 8297 { 8298 return obj->btf ? btf__fd(obj->btf) : -1; 8299 } 8300 8301 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8302 { 8303 if (obj->loaded) 8304 return libbpf_err(-EINVAL); 8305 8306 obj->kern_version = kern_version; 8307 8308 return 0; 8309 } 8310 8311 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8312 { 8313 struct bpf_gen *gen; 8314 8315 if (!opts) 8316 return -EFAULT; 8317 if (!OPTS_VALID(opts, gen_loader_opts)) 8318 return -EINVAL; 8319 gen = calloc(sizeof(*gen), 1); 8320 if (!gen) 8321 return -ENOMEM; 8322 gen->opts = opts; 8323 obj->gen_loader = gen; 8324 return 0; 8325 } 8326 8327 static struct bpf_program * 8328 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8329 bool forward) 8330 { 8331 size_t nr_programs = obj->nr_programs; 8332 ssize_t idx; 8333 8334 if (!nr_programs) 8335 return NULL; 8336 8337 if (!p) 8338 /* Iter from the beginning */ 8339 return forward ? &obj->programs[0] : 8340 &obj->programs[nr_programs - 1]; 8341 8342 if (p->obj != obj) { 8343 pr_warn("error: program handler doesn't match object\n"); 8344 return errno = EINVAL, NULL; 8345 } 8346 8347 idx = (p - obj->programs) + (forward ? 1 : -1); 8348 if (idx >= obj->nr_programs || idx < 0) 8349 return NULL; 8350 return &obj->programs[idx]; 8351 } 8352 8353 struct bpf_program * 8354 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8355 { 8356 struct bpf_program *prog = prev; 8357 8358 do { 8359 prog = __bpf_program__iter(prog, obj, true); 8360 } while (prog && prog_is_subprog(obj, prog)); 8361 8362 return prog; 8363 } 8364 8365 struct bpf_program * 8366 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8367 { 8368 struct bpf_program *prog = next; 8369 8370 do { 8371 prog = __bpf_program__iter(prog, obj, false); 8372 } while (prog && prog_is_subprog(obj, prog)); 8373 8374 return prog; 8375 } 8376 8377 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8378 { 8379 prog->prog_ifindex = ifindex; 8380 } 8381 8382 const char *bpf_program__name(const struct bpf_program *prog) 8383 { 8384 return prog->name; 8385 } 8386 8387 const char *bpf_program__section_name(const struct bpf_program *prog) 8388 { 8389 return prog->sec_name; 8390 } 8391 8392 bool bpf_program__autoload(const struct bpf_program *prog) 8393 { 8394 return prog->autoload; 8395 } 8396 8397 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8398 { 8399 if (prog->obj->loaded) 8400 return libbpf_err(-EINVAL); 8401 8402 prog->autoload = autoload; 8403 return 0; 8404 } 8405 8406 bool bpf_program__autoattach(const struct bpf_program *prog) 8407 { 8408 return prog->autoattach; 8409 } 8410 8411 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8412 { 8413 prog->autoattach = autoattach; 8414 } 8415 8416 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8417 { 8418 return prog->insns; 8419 } 8420 8421 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8422 { 8423 return prog->insns_cnt; 8424 } 8425 8426 int bpf_program__set_insns(struct bpf_program *prog, 8427 struct bpf_insn *new_insns, size_t new_insn_cnt) 8428 { 8429 struct bpf_insn *insns; 8430 8431 if (prog->obj->loaded) 8432 return -EBUSY; 8433 8434 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8435 if (!insns) { 8436 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8437 return -ENOMEM; 8438 } 8439 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8440 8441 prog->insns = insns; 8442 prog->insns_cnt = new_insn_cnt; 8443 return 0; 8444 } 8445 8446 int bpf_program__fd(const struct bpf_program *prog) 8447 { 8448 if (!prog) 8449 return libbpf_err(-EINVAL); 8450 8451 if (prog->fd < 0) 8452 return libbpf_err(-ENOENT); 8453 8454 return prog->fd; 8455 } 8456 8457 __alias(bpf_program__type) 8458 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8459 8460 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8461 { 8462 return prog->type; 8463 } 8464 8465 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8466 { 8467 if (prog->obj->loaded) 8468 return libbpf_err(-EBUSY); 8469 8470 prog->type = type; 8471 prog->sec_def = NULL; 8472 return 0; 8473 } 8474 8475 __alias(bpf_program__expected_attach_type) 8476 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8477 8478 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8479 { 8480 return prog->expected_attach_type; 8481 } 8482 8483 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8484 enum bpf_attach_type type) 8485 { 8486 if (prog->obj->loaded) 8487 return libbpf_err(-EBUSY); 8488 8489 prog->expected_attach_type = type; 8490 return 0; 8491 } 8492 8493 __u32 bpf_program__flags(const struct bpf_program *prog) 8494 { 8495 return prog->prog_flags; 8496 } 8497 8498 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8499 { 8500 if (prog->obj->loaded) 8501 return libbpf_err(-EBUSY); 8502 8503 prog->prog_flags = flags; 8504 return 0; 8505 } 8506 8507 __u32 bpf_program__log_level(const struct bpf_program *prog) 8508 { 8509 return prog->log_level; 8510 } 8511 8512 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8513 { 8514 if (prog->obj->loaded) 8515 return libbpf_err(-EBUSY); 8516 8517 prog->log_level = log_level; 8518 return 0; 8519 } 8520 8521 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8522 { 8523 *log_size = prog->log_size; 8524 return prog->log_buf; 8525 } 8526 8527 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8528 { 8529 if (log_size && !log_buf) 8530 return -EINVAL; 8531 if (prog->log_size > UINT_MAX) 8532 return -EINVAL; 8533 if (prog->obj->loaded) 8534 return -EBUSY; 8535 8536 prog->log_buf = log_buf; 8537 prog->log_size = log_size; 8538 return 0; 8539 } 8540 8541 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8542 .sec = (char *)sec_pfx, \ 8543 .prog_type = BPF_PROG_TYPE_##ptype, \ 8544 .expected_attach_type = atype, \ 8545 .cookie = (long)(flags), \ 8546 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8547 __VA_ARGS__ \ 8548 } 8549 8550 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8551 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8552 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8553 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8554 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8555 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8556 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8557 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8558 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8559 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8560 8561 static const struct bpf_sec_def section_defs[] = { 8562 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8563 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8564 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8565 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8566 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8567 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8568 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8569 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8570 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8571 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8572 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8573 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8574 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8575 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8576 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8577 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8578 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8579 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8580 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8581 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8582 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8583 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8584 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8585 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8586 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8587 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8588 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8589 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8590 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8591 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8592 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8593 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8594 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8595 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8596 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8597 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8598 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8599 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8600 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8601 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8602 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8603 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8604 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8605 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8606 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8607 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8608 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8609 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8610 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8611 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8612 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8613 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8614 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8615 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8616 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8617 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8618 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8619 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8620 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8621 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8622 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8623 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8624 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8625 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8626 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8627 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8628 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8629 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8630 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8631 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8632 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8633 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8634 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8635 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8636 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8637 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8638 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8639 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8640 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8641 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8642 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8643 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8644 }; 8645 8646 static size_t custom_sec_def_cnt; 8647 static struct bpf_sec_def *custom_sec_defs; 8648 static struct bpf_sec_def custom_fallback_def; 8649 static bool has_custom_fallback_def; 8650 8651 static int last_custom_sec_def_handler_id; 8652 8653 int libbpf_register_prog_handler(const char *sec, 8654 enum bpf_prog_type prog_type, 8655 enum bpf_attach_type exp_attach_type, 8656 const struct libbpf_prog_handler_opts *opts) 8657 { 8658 struct bpf_sec_def *sec_def; 8659 8660 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8661 return libbpf_err(-EINVAL); 8662 8663 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8664 return libbpf_err(-E2BIG); 8665 8666 if (sec) { 8667 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8668 sizeof(*sec_def)); 8669 if (!sec_def) 8670 return libbpf_err(-ENOMEM); 8671 8672 custom_sec_defs = sec_def; 8673 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8674 } else { 8675 if (has_custom_fallback_def) 8676 return libbpf_err(-EBUSY); 8677 8678 sec_def = &custom_fallback_def; 8679 } 8680 8681 sec_def->sec = sec ? strdup(sec) : NULL; 8682 if (sec && !sec_def->sec) 8683 return libbpf_err(-ENOMEM); 8684 8685 sec_def->prog_type = prog_type; 8686 sec_def->expected_attach_type = exp_attach_type; 8687 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8688 8689 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8690 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8691 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8692 8693 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8694 8695 if (sec) 8696 custom_sec_def_cnt++; 8697 else 8698 has_custom_fallback_def = true; 8699 8700 return sec_def->handler_id; 8701 } 8702 8703 int libbpf_unregister_prog_handler(int handler_id) 8704 { 8705 struct bpf_sec_def *sec_defs; 8706 int i; 8707 8708 if (handler_id <= 0) 8709 return libbpf_err(-EINVAL); 8710 8711 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8712 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8713 has_custom_fallback_def = false; 8714 return 0; 8715 } 8716 8717 for (i = 0; i < custom_sec_def_cnt; i++) { 8718 if (custom_sec_defs[i].handler_id == handler_id) 8719 break; 8720 } 8721 8722 if (i == custom_sec_def_cnt) 8723 return libbpf_err(-ENOENT); 8724 8725 free(custom_sec_defs[i].sec); 8726 for (i = i + 1; i < custom_sec_def_cnt; i++) 8727 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8728 custom_sec_def_cnt--; 8729 8730 /* try to shrink the array, but it's ok if we couldn't */ 8731 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8732 if (sec_defs) 8733 custom_sec_defs = sec_defs; 8734 8735 return 0; 8736 } 8737 8738 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8739 { 8740 size_t len = strlen(sec_def->sec); 8741 8742 /* "type/" always has to have proper SEC("type/extras") form */ 8743 if (sec_def->sec[len - 1] == '/') { 8744 if (str_has_pfx(sec_name, sec_def->sec)) 8745 return true; 8746 return false; 8747 } 8748 8749 /* "type+" means it can be either exact SEC("type") or 8750 * well-formed SEC("type/extras") with proper '/' separator 8751 */ 8752 if (sec_def->sec[len - 1] == '+') { 8753 len--; 8754 /* not even a prefix */ 8755 if (strncmp(sec_name, sec_def->sec, len) != 0) 8756 return false; 8757 /* exact match or has '/' separator */ 8758 if (sec_name[len] == '\0' || sec_name[len] == '/') 8759 return true; 8760 return false; 8761 } 8762 8763 return strcmp(sec_name, sec_def->sec) == 0; 8764 } 8765 8766 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8767 { 8768 const struct bpf_sec_def *sec_def; 8769 int i, n; 8770 8771 n = custom_sec_def_cnt; 8772 for (i = 0; i < n; i++) { 8773 sec_def = &custom_sec_defs[i]; 8774 if (sec_def_matches(sec_def, sec_name)) 8775 return sec_def; 8776 } 8777 8778 n = ARRAY_SIZE(section_defs); 8779 for (i = 0; i < n; i++) { 8780 sec_def = §ion_defs[i]; 8781 if (sec_def_matches(sec_def, sec_name)) 8782 return sec_def; 8783 } 8784 8785 if (has_custom_fallback_def) 8786 return &custom_fallback_def; 8787 8788 return NULL; 8789 } 8790 8791 #define MAX_TYPE_NAME_SIZE 32 8792 8793 static char *libbpf_get_type_names(bool attach_type) 8794 { 8795 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8796 char *buf; 8797 8798 buf = malloc(len); 8799 if (!buf) 8800 return NULL; 8801 8802 buf[0] = '\0'; 8803 /* Forge string buf with all available names */ 8804 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8805 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8806 8807 if (attach_type) { 8808 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8809 continue; 8810 8811 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8812 continue; 8813 } 8814 8815 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8816 free(buf); 8817 return NULL; 8818 } 8819 strcat(buf, " "); 8820 strcat(buf, section_defs[i].sec); 8821 } 8822 8823 return buf; 8824 } 8825 8826 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8827 enum bpf_attach_type *expected_attach_type) 8828 { 8829 const struct bpf_sec_def *sec_def; 8830 char *type_names; 8831 8832 if (!name) 8833 return libbpf_err(-EINVAL); 8834 8835 sec_def = find_sec_def(name); 8836 if (sec_def) { 8837 *prog_type = sec_def->prog_type; 8838 *expected_attach_type = sec_def->expected_attach_type; 8839 return 0; 8840 } 8841 8842 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8843 type_names = libbpf_get_type_names(false); 8844 if (type_names != NULL) { 8845 pr_debug("supported section(type) names are:%s\n", type_names); 8846 free(type_names); 8847 } 8848 8849 return libbpf_err(-ESRCH); 8850 } 8851 8852 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8853 { 8854 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8855 return NULL; 8856 8857 return attach_type_name[t]; 8858 } 8859 8860 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8861 { 8862 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8863 return NULL; 8864 8865 return link_type_name[t]; 8866 } 8867 8868 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8869 { 8870 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8871 return NULL; 8872 8873 return map_type_name[t]; 8874 } 8875 8876 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8877 { 8878 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8879 return NULL; 8880 8881 return prog_type_name[t]; 8882 } 8883 8884 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8885 int sec_idx, 8886 size_t offset) 8887 { 8888 struct bpf_map *map; 8889 size_t i; 8890 8891 for (i = 0; i < obj->nr_maps; i++) { 8892 map = &obj->maps[i]; 8893 if (!bpf_map__is_struct_ops(map)) 8894 continue; 8895 if (map->sec_idx == sec_idx && 8896 map->sec_offset <= offset && 8897 offset - map->sec_offset < map->def.value_size) 8898 return map; 8899 } 8900 8901 return NULL; 8902 } 8903 8904 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8905 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8906 Elf64_Shdr *shdr, Elf_Data *data) 8907 { 8908 const struct btf_member *member; 8909 struct bpf_struct_ops *st_ops; 8910 struct bpf_program *prog; 8911 unsigned int shdr_idx; 8912 const struct btf *btf; 8913 struct bpf_map *map; 8914 unsigned int moff, insn_idx; 8915 const char *name; 8916 __u32 member_idx; 8917 Elf64_Sym *sym; 8918 Elf64_Rel *rel; 8919 int i, nrels; 8920 8921 btf = obj->btf; 8922 nrels = shdr->sh_size / shdr->sh_entsize; 8923 for (i = 0; i < nrels; i++) { 8924 rel = elf_rel_by_idx(data, i); 8925 if (!rel) { 8926 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8927 return -LIBBPF_ERRNO__FORMAT; 8928 } 8929 8930 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8931 if (!sym) { 8932 pr_warn("struct_ops reloc: symbol %zx not found\n", 8933 (size_t)ELF64_R_SYM(rel->r_info)); 8934 return -LIBBPF_ERRNO__FORMAT; 8935 } 8936 8937 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8938 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 8939 if (!map) { 8940 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8941 (size_t)rel->r_offset); 8942 return -EINVAL; 8943 } 8944 8945 moff = rel->r_offset - map->sec_offset; 8946 shdr_idx = sym->st_shndx; 8947 st_ops = map->st_ops; 8948 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8949 map->name, 8950 (long long)(rel->r_info >> 32), 8951 (long long)sym->st_value, 8952 shdr_idx, (size_t)rel->r_offset, 8953 map->sec_offset, sym->st_name, name); 8954 8955 if (shdr_idx >= SHN_LORESERVE) { 8956 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8957 map->name, (size_t)rel->r_offset, shdr_idx); 8958 return -LIBBPF_ERRNO__RELOC; 8959 } 8960 if (sym->st_value % BPF_INSN_SZ) { 8961 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8962 map->name, (unsigned long long)sym->st_value); 8963 return -LIBBPF_ERRNO__FORMAT; 8964 } 8965 insn_idx = sym->st_value / BPF_INSN_SZ; 8966 8967 member = find_member_by_offset(st_ops->type, moff * 8); 8968 if (!member) { 8969 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8970 map->name, moff); 8971 return -EINVAL; 8972 } 8973 member_idx = member - btf_members(st_ops->type); 8974 name = btf__name_by_offset(btf, member->name_off); 8975 8976 if (!resolve_func_ptr(btf, member->type, NULL)) { 8977 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8978 map->name, name); 8979 return -EINVAL; 8980 } 8981 8982 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8983 if (!prog) { 8984 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8985 map->name, shdr_idx, name); 8986 return -EINVAL; 8987 } 8988 8989 /* prevent the use of BPF prog with invalid type */ 8990 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8991 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8992 map->name, prog->name); 8993 return -EINVAL; 8994 } 8995 8996 /* if we haven't yet processed this BPF program, record proper 8997 * attach_btf_id and member_idx 8998 */ 8999 if (!prog->attach_btf_id) { 9000 prog->attach_btf_id = st_ops->type_id; 9001 prog->expected_attach_type = member_idx; 9002 } 9003 9004 /* struct_ops BPF prog can be re-used between multiple 9005 * .struct_ops & .struct_ops.link as long as it's the 9006 * same struct_ops struct definition and the same 9007 * function pointer field 9008 */ 9009 if (prog->attach_btf_id != st_ops->type_id || 9010 prog->expected_attach_type != member_idx) { 9011 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9012 map->name, prog->name, prog->sec_name, prog->type, 9013 prog->attach_btf_id, prog->expected_attach_type, name); 9014 return -EINVAL; 9015 } 9016 9017 st_ops->progs[member_idx] = prog; 9018 } 9019 9020 return 0; 9021 } 9022 9023 #define BTF_TRACE_PREFIX "btf_trace_" 9024 #define BTF_LSM_PREFIX "bpf_lsm_" 9025 #define BTF_ITER_PREFIX "bpf_iter_" 9026 #define BTF_MAX_NAME_SIZE 128 9027 9028 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9029 const char **prefix, int *kind) 9030 { 9031 switch (attach_type) { 9032 case BPF_TRACE_RAW_TP: 9033 *prefix = BTF_TRACE_PREFIX; 9034 *kind = BTF_KIND_TYPEDEF; 9035 break; 9036 case BPF_LSM_MAC: 9037 case BPF_LSM_CGROUP: 9038 *prefix = BTF_LSM_PREFIX; 9039 *kind = BTF_KIND_FUNC; 9040 break; 9041 case BPF_TRACE_ITER: 9042 *prefix = BTF_ITER_PREFIX; 9043 *kind = BTF_KIND_FUNC; 9044 break; 9045 default: 9046 *prefix = ""; 9047 *kind = BTF_KIND_FUNC; 9048 } 9049 } 9050 9051 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9052 const char *name, __u32 kind) 9053 { 9054 char btf_type_name[BTF_MAX_NAME_SIZE]; 9055 int ret; 9056 9057 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9058 "%s%s", prefix, name); 9059 /* snprintf returns the number of characters written excluding the 9060 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9061 * indicates truncation. 9062 */ 9063 if (ret < 0 || ret >= sizeof(btf_type_name)) 9064 return -ENAMETOOLONG; 9065 return btf__find_by_name_kind(btf, btf_type_name, kind); 9066 } 9067 9068 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9069 enum bpf_attach_type attach_type) 9070 { 9071 const char *prefix; 9072 int kind; 9073 9074 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9075 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9076 } 9077 9078 int libbpf_find_vmlinux_btf_id(const char *name, 9079 enum bpf_attach_type attach_type) 9080 { 9081 struct btf *btf; 9082 int err; 9083 9084 btf = btf__load_vmlinux_btf(); 9085 err = libbpf_get_error(btf); 9086 if (err) { 9087 pr_warn("vmlinux BTF is not found\n"); 9088 return libbpf_err(err); 9089 } 9090 9091 err = find_attach_btf_id(btf, name, attach_type); 9092 if (err <= 0) 9093 pr_warn("%s is not found in vmlinux BTF\n", name); 9094 9095 btf__free(btf); 9096 return libbpf_err(err); 9097 } 9098 9099 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9100 { 9101 struct bpf_prog_info info; 9102 __u32 info_len = sizeof(info); 9103 struct btf *btf; 9104 int err; 9105 9106 memset(&info, 0, info_len); 9107 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9108 if (err) { 9109 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9110 attach_prog_fd, err); 9111 return err; 9112 } 9113 9114 err = -EINVAL; 9115 if (!info.btf_id) { 9116 pr_warn("The target program doesn't have BTF\n"); 9117 goto out; 9118 } 9119 btf = btf__load_from_kernel_by_id(info.btf_id); 9120 err = libbpf_get_error(btf); 9121 if (err) { 9122 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9123 goto out; 9124 } 9125 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9126 btf__free(btf); 9127 if (err <= 0) { 9128 pr_warn("%s is not found in prog's BTF\n", name); 9129 goto out; 9130 } 9131 out: 9132 return err; 9133 } 9134 9135 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9136 enum bpf_attach_type attach_type, 9137 int *btf_obj_fd, int *btf_type_id) 9138 { 9139 int ret, i; 9140 9141 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9142 if (ret > 0) { 9143 *btf_obj_fd = 0; /* vmlinux BTF */ 9144 *btf_type_id = ret; 9145 return 0; 9146 } 9147 if (ret != -ENOENT) 9148 return ret; 9149 9150 ret = load_module_btfs(obj); 9151 if (ret) 9152 return ret; 9153 9154 for (i = 0; i < obj->btf_module_cnt; i++) { 9155 const struct module_btf *mod = &obj->btf_modules[i]; 9156 9157 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9158 if (ret > 0) { 9159 *btf_obj_fd = mod->fd; 9160 *btf_type_id = ret; 9161 return 0; 9162 } 9163 if (ret == -ENOENT) 9164 continue; 9165 9166 return ret; 9167 } 9168 9169 return -ESRCH; 9170 } 9171 9172 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9173 int *btf_obj_fd, int *btf_type_id) 9174 { 9175 enum bpf_attach_type attach_type = prog->expected_attach_type; 9176 __u32 attach_prog_fd = prog->attach_prog_fd; 9177 int err = 0; 9178 9179 /* BPF program's BTF ID */ 9180 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9181 if (!attach_prog_fd) { 9182 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9183 return -EINVAL; 9184 } 9185 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9186 if (err < 0) { 9187 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9188 prog->name, attach_prog_fd, attach_name, err); 9189 return err; 9190 } 9191 *btf_obj_fd = 0; 9192 *btf_type_id = err; 9193 return 0; 9194 } 9195 9196 /* kernel/module BTF ID */ 9197 if (prog->obj->gen_loader) { 9198 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9199 *btf_obj_fd = 0; 9200 *btf_type_id = 1; 9201 } else { 9202 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9203 } 9204 if (err) { 9205 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9206 prog->name, attach_name, err); 9207 return err; 9208 } 9209 return 0; 9210 } 9211 9212 int libbpf_attach_type_by_name(const char *name, 9213 enum bpf_attach_type *attach_type) 9214 { 9215 char *type_names; 9216 const struct bpf_sec_def *sec_def; 9217 9218 if (!name) 9219 return libbpf_err(-EINVAL); 9220 9221 sec_def = find_sec_def(name); 9222 if (!sec_def) { 9223 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9224 type_names = libbpf_get_type_names(true); 9225 if (type_names != NULL) { 9226 pr_debug("attachable section(type) names are:%s\n", type_names); 9227 free(type_names); 9228 } 9229 9230 return libbpf_err(-EINVAL); 9231 } 9232 9233 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9234 return libbpf_err(-EINVAL); 9235 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9236 return libbpf_err(-EINVAL); 9237 9238 *attach_type = sec_def->expected_attach_type; 9239 return 0; 9240 } 9241 9242 int bpf_map__fd(const struct bpf_map *map) 9243 { 9244 return map ? map->fd : libbpf_err(-EINVAL); 9245 } 9246 9247 static bool map_uses_real_name(const struct bpf_map *map) 9248 { 9249 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9250 * their user-visible name differs from kernel-visible name. Users see 9251 * such map's corresponding ELF section name as a map name. 9252 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9253 * maps to know which name has to be returned to the user. 9254 */ 9255 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9256 return true; 9257 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9258 return true; 9259 return false; 9260 } 9261 9262 const char *bpf_map__name(const struct bpf_map *map) 9263 { 9264 if (!map) 9265 return NULL; 9266 9267 if (map_uses_real_name(map)) 9268 return map->real_name; 9269 9270 return map->name; 9271 } 9272 9273 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9274 { 9275 return map->def.type; 9276 } 9277 9278 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9279 { 9280 if (map->fd >= 0) 9281 return libbpf_err(-EBUSY); 9282 map->def.type = type; 9283 return 0; 9284 } 9285 9286 __u32 bpf_map__map_flags(const struct bpf_map *map) 9287 { 9288 return map->def.map_flags; 9289 } 9290 9291 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9292 { 9293 if (map->fd >= 0) 9294 return libbpf_err(-EBUSY); 9295 map->def.map_flags = flags; 9296 return 0; 9297 } 9298 9299 __u64 bpf_map__map_extra(const struct bpf_map *map) 9300 { 9301 return map->map_extra; 9302 } 9303 9304 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9305 { 9306 if (map->fd >= 0) 9307 return libbpf_err(-EBUSY); 9308 map->map_extra = map_extra; 9309 return 0; 9310 } 9311 9312 __u32 bpf_map__numa_node(const struct bpf_map *map) 9313 { 9314 return map->numa_node; 9315 } 9316 9317 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9318 { 9319 if (map->fd >= 0) 9320 return libbpf_err(-EBUSY); 9321 map->numa_node = numa_node; 9322 return 0; 9323 } 9324 9325 __u32 bpf_map__key_size(const struct bpf_map *map) 9326 { 9327 return map->def.key_size; 9328 } 9329 9330 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9331 { 9332 if (map->fd >= 0) 9333 return libbpf_err(-EBUSY); 9334 map->def.key_size = size; 9335 return 0; 9336 } 9337 9338 __u32 bpf_map__value_size(const struct bpf_map *map) 9339 { 9340 return map->def.value_size; 9341 } 9342 9343 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9344 { 9345 if (map->fd >= 0) 9346 return libbpf_err(-EBUSY); 9347 map->def.value_size = size; 9348 return 0; 9349 } 9350 9351 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9352 { 9353 return map ? map->btf_key_type_id : 0; 9354 } 9355 9356 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9357 { 9358 return map ? map->btf_value_type_id : 0; 9359 } 9360 9361 int bpf_map__set_initial_value(struct bpf_map *map, 9362 const void *data, size_t size) 9363 { 9364 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9365 size != map->def.value_size || map->fd >= 0) 9366 return libbpf_err(-EINVAL); 9367 9368 memcpy(map->mmaped, data, size); 9369 return 0; 9370 } 9371 9372 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9373 { 9374 if (!map->mmaped) 9375 return NULL; 9376 *psize = map->def.value_size; 9377 return map->mmaped; 9378 } 9379 9380 bool bpf_map__is_internal(const struct bpf_map *map) 9381 { 9382 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9383 } 9384 9385 __u32 bpf_map__ifindex(const struct bpf_map *map) 9386 { 9387 return map->map_ifindex; 9388 } 9389 9390 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9391 { 9392 if (map->fd >= 0) 9393 return libbpf_err(-EBUSY); 9394 map->map_ifindex = ifindex; 9395 return 0; 9396 } 9397 9398 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9399 { 9400 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9401 pr_warn("error: unsupported map type\n"); 9402 return libbpf_err(-EINVAL); 9403 } 9404 if (map->inner_map_fd != -1) { 9405 pr_warn("error: inner_map_fd already specified\n"); 9406 return libbpf_err(-EINVAL); 9407 } 9408 if (map->inner_map) { 9409 bpf_map__destroy(map->inner_map); 9410 zfree(&map->inner_map); 9411 } 9412 map->inner_map_fd = fd; 9413 return 0; 9414 } 9415 9416 static struct bpf_map * 9417 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9418 { 9419 ssize_t idx; 9420 struct bpf_map *s, *e; 9421 9422 if (!obj || !obj->maps) 9423 return errno = EINVAL, NULL; 9424 9425 s = obj->maps; 9426 e = obj->maps + obj->nr_maps; 9427 9428 if ((m < s) || (m >= e)) { 9429 pr_warn("error in %s: map handler doesn't belong to object\n", 9430 __func__); 9431 return errno = EINVAL, NULL; 9432 } 9433 9434 idx = (m - obj->maps) + i; 9435 if (idx >= obj->nr_maps || idx < 0) 9436 return NULL; 9437 return &obj->maps[idx]; 9438 } 9439 9440 struct bpf_map * 9441 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9442 { 9443 if (prev == NULL) 9444 return obj->maps; 9445 9446 return __bpf_map__iter(prev, obj, 1); 9447 } 9448 9449 struct bpf_map * 9450 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9451 { 9452 if (next == NULL) { 9453 if (!obj->nr_maps) 9454 return NULL; 9455 return obj->maps + obj->nr_maps - 1; 9456 } 9457 9458 return __bpf_map__iter(next, obj, -1); 9459 } 9460 9461 struct bpf_map * 9462 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9463 { 9464 struct bpf_map *pos; 9465 9466 bpf_object__for_each_map(pos, obj) { 9467 /* if it's a special internal map name (which always starts 9468 * with dot) then check if that special name matches the 9469 * real map name (ELF section name) 9470 */ 9471 if (name[0] == '.') { 9472 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9473 return pos; 9474 continue; 9475 } 9476 /* otherwise map name has to be an exact match */ 9477 if (map_uses_real_name(pos)) { 9478 if (strcmp(pos->real_name, name) == 0) 9479 return pos; 9480 continue; 9481 } 9482 if (strcmp(pos->name, name) == 0) 9483 return pos; 9484 } 9485 return errno = ENOENT, NULL; 9486 } 9487 9488 int 9489 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9490 { 9491 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9492 } 9493 9494 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9495 size_t value_sz, bool check_value_sz) 9496 { 9497 if (map->fd <= 0) 9498 return -ENOENT; 9499 9500 if (map->def.key_size != key_sz) { 9501 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9502 map->name, key_sz, map->def.key_size); 9503 return -EINVAL; 9504 } 9505 9506 if (!check_value_sz) 9507 return 0; 9508 9509 switch (map->def.type) { 9510 case BPF_MAP_TYPE_PERCPU_ARRAY: 9511 case BPF_MAP_TYPE_PERCPU_HASH: 9512 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9513 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9514 int num_cpu = libbpf_num_possible_cpus(); 9515 size_t elem_sz = roundup(map->def.value_size, 8); 9516 9517 if (value_sz != num_cpu * elem_sz) { 9518 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9519 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9520 return -EINVAL; 9521 } 9522 break; 9523 } 9524 default: 9525 if (map->def.value_size != value_sz) { 9526 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9527 map->name, value_sz, map->def.value_size); 9528 return -EINVAL; 9529 } 9530 break; 9531 } 9532 return 0; 9533 } 9534 9535 int bpf_map__lookup_elem(const struct bpf_map *map, 9536 const void *key, size_t key_sz, 9537 void *value, size_t value_sz, __u64 flags) 9538 { 9539 int err; 9540 9541 err = validate_map_op(map, key_sz, value_sz, true); 9542 if (err) 9543 return libbpf_err(err); 9544 9545 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9546 } 9547 9548 int bpf_map__update_elem(const struct bpf_map *map, 9549 const void *key, size_t key_sz, 9550 const void *value, size_t value_sz, __u64 flags) 9551 { 9552 int err; 9553 9554 err = validate_map_op(map, key_sz, value_sz, true); 9555 if (err) 9556 return libbpf_err(err); 9557 9558 return bpf_map_update_elem(map->fd, key, value, flags); 9559 } 9560 9561 int bpf_map__delete_elem(const struct bpf_map *map, 9562 const void *key, size_t key_sz, __u64 flags) 9563 { 9564 int err; 9565 9566 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9567 if (err) 9568 return libbpf_err(err); 9569 9570 return bpf_map_delete_elem_flags(map->fd, key, flags); 9571 } 9572 9573 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9574 const void *key, size_t key_sz, 9575 void *value, size_t value_sz, __u64 flags) 9576 { 9577 int err; 9578 9579 err = validate_map_op(map, key_sz, value_sz, true); 9580 if (err) 9581 return libbpf_err(err); 9582 9583 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9584 } 9585 9586 int bpf_map__get_next_key(const struct bpf_map *map, 9587 const void *cur_key, void *next_key, size_t key_sz) 9588 { 9589 int err; 9590 9591 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9592 if (err) 9593 return libbpf_err(err); 9594 9595 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9596 } 9597 9598 long libbpf_get_error(const void *ptr) 9599 { 9600 if (!IS_ERR_OR_NULL(ptr)) 9601 return 0; 9602 9603 if (IS_ERR(ptr)) 9604 errno = -PTR_ERR(ptr); 9605 9606 /* If ptr == NULL, then errno should be already set by the failing 9607 * API, because libbpf never returns NULL on success and it now always 9608 * sets errno on error. So no extra errno handling for ptr == NULL 9609 * case. 9610 */ 9611 return -errno; 9612 } 9613 9614 /* Replace link's underlying BPF program with the new one */ 9615 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9616 { 9617 int ret; 9618 9619 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9620 return libbpf_err_errno(ret); 9621 } 9622 9623 /* Release "ownership" of underlying BPF resource (typically, BPF program 9624 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9625 * link, when destructed through bpf_link__destroy() call won't attempt to 9626 * detach/unregisted that BPF resource. This is useful in situations where, 9627 * say, attached BPF program has to outlive userspace program that attached it 9628 * in the system. Depending on type of BPF program, though, there might be 9629 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9630 * exit of userspace program doesn't trigger automatic detachment and clean up 9631 * inside the kernel. 9632 */ 9633 void bpf_link__disconnect(struct bpf_link *link) 9634 { 9635 link->disconnected = true; 9636 } 9637 9638 int bpf_link__destroy(struct bpf_link *link) 9639 { 9640 int err = 0; 9641 9642 if (IS_ERR_OR_NULL(link)) 9643 return 0; 9644 9645 if (!link->disconnected && link->detach) 9646 err = link->detach(link); 9647 if (link->pin_path) 9648 free(link->pin_path); 9649 if (link->dealloc) 9650 link->dealloc(link); 9651 else 9652 free(link); 9653 9654 return libbpf_err(err); 9655 } 9656 9657 int bpf_link__fd(const struct bpf_link *link) 9658 { 9659 return link->fd; 9660 } 9661 9662 const char *bpf_link__pin_path(const struct bpf_link *link) 9663 { 9664 return link->pin_path; 9665 } 9666 9667 static int bpf_link__detach_fd(struct bpf_link *link) 9668 { 9669 return libbpf_err_errno(close(link->fd)); 9670 } 9671 9672 struct bpf_link *bpf_link__open(const char *path) 9673 { 9674 struct bpf_link *link; 9675 int fd; 9676 9677 fd = bpf_obj_get(path); 9678 if (fd < 0) { 9679 fd = -errno; 9680 pr_warn("failed to open link at %s: %d\n", path, fd); 9681 return libbpf_err_ptr(fd); 9682 } 9683 9684 link = calloc(1, sizeof(*link)); 9685 if (!link) { 9686 close(fd); 9687 return libbpf_err_ptr(-ENOMEM); 9688 } 9689 link->detach = &bpf_link__detach_fd; 9690 link->fd = fd; 9691 9692 link->pin_path = strdup(path); 9693 if (!link->pin_path) { 9694 bpf_link__destroy(link); 9695 return libbpf_err_ptr(-ENOMEM); 9696 } 9697 9698 return link; 9699 } 9700 9701 int bpf_link__detach(struct bpf_link *link) 9702 { 9703 return bpf_link_detach(link->fd) ? -errno : 0; 9704 } 9705 9706 int bpf_link__pin(struct bpf_link *link, const char *path) 9707 { 9708 int err; 9709 9710 if (link->pin_path) 9711 return libbpf_err(-EBUSY); 9712 err = make_parent_dir(path); 9713 if (err) 9714 return libbpf_err(err); 9715 err = check_path(path); 9716 if (err) 9717 return libbpf_err(err); 9718 9719 link->pin_path = strdup(path); 9720 if (!link->pin_path) 9721 return libbpf_err(-ENOMEM); 9722 9723 if (bpf_obj_pin(link->fd, link->pin_path)) { 9724 err = -errno; 9725 zfree(&link->pin_path); 9726 return libbpf_err(err); 9727 } 9728 9729 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9730 return 0; 9731 } 9732 9733 int bpf_link__unpin(struct bpf_link *link) 9734 { 9735 int err; 9736 9737 if (!link->pin_path) 9738 return libbpf_err(-EINVAL); 9739 9740 err = unlink(link->pin_path); 9741 if (err != 0) 9742 return -errno; 9743 9744 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9745 zfree(&link->pin_path); 9746 return 0; 9747 } 9748 9749 struct bpf_link_perf { 9750 struct bpf_link link; 9751 int perf_event_fd; 9752 /* legacy kprobe support: keep track of probe identifier and type */ 9753 char *legacy_probe_name; 9754 bool legacy_is_kprobe; 9755 bool legacy_is_retprobe; 9756 }; 9757 9758 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9759 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9760 9761 static int bpf_link_perf_detach(struct bpf_link *link) 9762 { 9763 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9764 int err = 0; 9765 9766 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9767 err = -errno; 9768 9769 if (perf_link->perf_event_fd != link->fd) 9770 close(perf_link->perf_event_fd); 9771 close(link->fd); 9772 9773 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9774 if (perf_link->legacy_probe_name) { 9775 if (perf_link->legacy_is_kprobe) { 9776 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9777 perf_link->legacy_is_retprobe); 9778 } else { 9779 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9780 perf_link->legacy_is_retprobe); 9781 } 9782 } 9783 9784 return err; 9785 } 9786 9787 static void bpf_link_perf_dealloc(struct bpf_link *link) 9788 { 9789 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9790 9791 free(perf_link->legacy_probe_name); 9792 free(perf_link); 9793 } 9794 9795 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9796 const struct bpf_perf_event_opts *opts) 9797 { 9798 char errmsg[STRERR_BUFSIZE]; 9799 struct bpf_link_perf *link; 9800 int prog_fd, link_fd = -1, err; 9801 bool force_ioctl_attach; 9802 9803 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9804 return libbpf_err_ptr(-EINVAL); 9805 9806 if (pfd < 0) { 9807 pr_warn("prog '%s': invalid perf event FD %d\n", 9808 prog->name, pfd); 9809 return libbpf_err_ptr(-EINVAL); 9810 } 9811 prog_fd = bpf_program__fd(prog); 9812 if (prog_fd < 0) { 9813 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9814 prog->name); 9815 return libbpf_err_ptr(-EINVAL); 9816 } 9817 9818 link = calloc(1, sizeof(*link)); 9819 if (!link) 9820 return libbpf_err_ptr(-ENOMEM); 9821 link->link.detach = &bpf_link_perf_detach; 9822 link->link.dealloc = &bpf_link_perf_dealloc; 9823 link->perf_event_fd = pfd; 9824 9825 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 9826 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 9827 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9828 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9829 9830 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9831 if (link_fd < 0) { 9832 err = -errno; 9833 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9834 prog->name, pfd, 9835 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9836 goto err_out; 9837 } 9838 link->link.fd = link_fd; 9839 } else { 9840 if (OPTS_GET(opts, bpf_cookie, 0)) { 9841 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9842 err = -EOPNOTSUPP; 9843 goto err_out; 9844 } 9845 9846 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9847 err = -errno; 9848 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9849 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9850 if (err == -EPROTO) 9851 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9852 prog->name, pfd); 9853 goto err_out; 9854 } 9855 link->link.fd = pfd; 9856 } 9857 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9858 err = -errno; 9859 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9860 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9861 goto err_out; 9862 } 9863 9864 return &link->link; 9865 err_out: 9866 if (link_fd >= 0) 9867 close(link_fd); 9868 free(link); 9869 return libbpf_err_ptr(err); 9870 } 9871 9872 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9873 { 9874 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9875 } 9876 9877 /* 9878 * this function is expected to parse integer in the range of [0, 2^31-1] from 9879 * given file using scanf format string fmt. If actual parsed value is 9880 * negative, the result might be indistinguishable from error 9881 */ 9882 static int parse_uint_from_file(const char *file, const char *fmt) 9883 { 9884 char buf[STRERR_BUFSIZE]; 9885 int err, ret; 9886 FILE *f; 9887 9888 f = fopen(file, "r"); 9889 if (!f) { 9890 err = -errno; 9891 pr_debug("failed to open '%s': %s\n", file, 9892 libbpf_strerror_r(err, buf, sizeof(buf))); 9893 return err; 9894 } 9895 err = fscanf(f, fmt, &ret); 9896 if (err != 1) { 9897 err = err == EOF ? -EIO : -errno; 9898 pr_debug("failed to parse '%s': %s\n", file, 9899 libbpf_strerror_r(err, buf, sizeof(buf))); 9900 fclose(f); 9901 return err; 9902 } 9903 fclose(f); 9904 return ret; 9905 } 9906 9907 static int determine_kprobe_perf_type(void) 9908 { 9909 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9910 9911 return parse_uint_from_file(file, "%d\n"); 9912 } 9913 9914 static int determine_uprobe_perf_type(void) 9915 { 9916 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9917 9918 return parse_uint_from_file(file, "%d\n"); 9919 } 9920 9921 static int determine_kprobe_retprobe_bit(void) 9922 { 9923 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9924 9925 return parse_uint_from_file(file, "config:%d\n"); 9926 } 9927 9928 static int determine_uprobe_retprobe_bit(void) 9929 { 9930 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9931 9932 return parse_uint_from_file(file, "config:%d\n"); 9933 } 9934 9935 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9936 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9937 9938 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9939 uint64_t offset, int pid, size_t ref_ctr_off) 9940 { 9941 const size_t attr_sz = sizeof(struct perf_event_attr); 9942 struct perf_event_attr attr; 9943 char errmsg[STRERR_BUFSIZE]; 9944 int type, pfd; 9945 9946 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9947 return -EINVAL; 9948 9949 memset(&attr, 0, attr_sz); 9950 9951 type = uprobe ? determine_uprobe_perf_type() 9952 : determine_kprobe_perf_type(); 9953 if (type < 0) { 9954 pr_warn("failed to determine %s perf type: %s\n", 9955 uprobe ? "uprobe" : "kprobe", 9956 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9957 return type; 9958 } 9959 if (retprobe) { 9960 int bit = uprobe ? determine_uprobe_retprobe_bit() 9961 : determine_kprobe_retprobe_bit(); 9962 9963 if (bit < 0) { 9964 pr_warn("failed to determine %s retprobe bit: %s\n", 9965 uprobe ? "uprobe" : "kprobe", 9966 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9967 return bit; 9968 } 9969 attr.config |= 1 << bit; 9970 } 9971 attr.size = attr_sz; 9972 attr.type = type; 9973 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9974 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9975 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9976 9977 /* pid filter is meaningful only for uprobes */ 9978 pfd = syscall(__NR_perf_event_open, &attr, 9979 pid < 0 ? -1 : pid /* pid */, 9980 pid == -1 ? 0 : -1 /* cpu */, 9981 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9982 return pfd >= 0 ? pfd : -errno; 9983 } 9984 9985 static int append_to_file(const char *file, const char *fmt, ...) 9986 { 9987 int fd, n, err = 0; 9988 va_list ap; 9989 char buf[1024]; 9990 9991 va_start(ap, fmt); 9992 n = vsnprintf(buf, sizeof(buf), fmt, ap); 9993 va_end(ap); 9994 9995 if (n < 0 || n >= sizeof(buf)) 9996 return -EINVAL; 9997 9998 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9999 if (fd < 0) 10000 return -errno; 10001 10002 if (write(fd, buf, n) < 0) 10003 err = -errno; 10004 10005 close(fd); 10006 return err; 10007 } 10008 10009 #define DEBUGFS "/sys/kernel/debug/tracing" 10010 #define TRACEFS "/sys/kernel/tracing" 10011 10012 static bool use_debugfs(void) 10013 { 10014 static int has_debugfs = -1; 10015 10016 if (has_debugfs < 0) 10017 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10018 10019 return has_debugfs == 1; 10020 } 10021 10022 static const char *tracefs_path(void) 10023 { 10024 return use_debugfs() ? DEBUGFS : TRACEFS; 10025 } 10026 10027 static const char *tracefs_kprobe_events(void) 10028 { 10029 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10030 } 10031 10032 static const char *tracefs_uprobe_events(void) 10033 { 10034 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10035 } 10036 10037 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10038 const char *kfunc_name, size_t offset) 10039 { 10040 static int index = 0; 10041 int i; 10042 10043 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10044 __sync_fetch_and_add(&index, 1)); 10045 10046 /* sanitize binary_path in the probe name */ 10047 for (i = 0; buf[i]; i++) { 10048 if (!isalnum(buf[i])) 10049 buf[i] = '_'; 10050 } 10051 } 10052 10053 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10054 const char *kfunc_name, size_t offset) 10055 { 10056 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10057 retprobe ? 'r' : 'p', 10058 retprobe ? "kretprobes" : "kprobes", 10059 probe_name, kfunc_name, offset); 10060 } 10061 10062 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10063 { 10064 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10065 retprobe ? "kretprobes" : "kprobes", probe_name); 10066 } 10067 10068 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10069 { 10070 char file[256]; 10071 10072 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10073 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10074 10075 return parse_uint_from_file(file, "%d\n"); 10076 } 10077 10078 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10079 const char *kfunc_name, size_t offset, int pid) 10080 { 10081 const size_t attr_sz = sizeof(struct perf_event_attr); 10082 struct perf_event_attr attr; 10083 char errmsg[STRERR_BUFSIZE]; 10084 int type, pfd, err; 10085 10086 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10087 if (err < 0) { 10088 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10089 kfunc_name, offset, 10090 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10091 return err; 10092 } 10093 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10094 if (type < 0) { 10095 err = type; 10096 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10097 kfunc_name, offset, 10098 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10099 goto err_clean_legacy; 10100 } 10101 10102 memset(&attr, 0, attr_sz); 10103 attr.size = attr_sz; 10104 attr.config = type; 10105 attr.type = PERF_TYPE_TRACEPOINT; 10106 10107 pfd = syscall(__NR_perf_event_open, &attr, 10108 pid < 0 ? -1 : pid, /* pid */ 10109 pid == -1 ? 0 : -1, /* cpu */ 10110 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10111 if (pfd < 0) { 10112 err = -errno; 10113 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10114 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10115 goto err_clean_legacy; 10116 } 10117 return pfd; 10118 10119 err_clean_legacy: 10120 /* Clear the newly added legacy kprobe_event */ 10121 remove_kprobe_event_legacy(probe_name, retprobe); 10122 return err; 10123 } 10124 10125 static const char *arch_specific_syscall_pfx(void) 10126 { 10127 #if defined(__x86_64__) 10128 return "x64"; 10129 #elif defined(__i386__) 10130 return "ia32"; 10131 #elif defined(__s390x__) 10132 return "s390x"; 10133 #elif defined(__s390__) 10134 return "s390"; 10135 #elif defined(__arm__) 10136 return "arm"; 10137 #elif defined(__aarch64__) 10138 return "arm64"; 10139 #elif defined(__mips__) 10140 return "mips"; 10141 #elif defined(__riscv) 10142 return "riscv"; 10143 #elif defined(__powerpc__) 10144 return "powerpc"; 10145 #elif defined(__powerpc64__) 10146 return "powerpc64"; 10147 #else 10148 return NULL; 10149 #endif 10150 } 10151 10152 static int probe_kern_syscall_wrapper(void) 10153 { 10154 char syscall_name[64]; 10155 const char *ksys_pfx; 10156 10157 ksys_pfx = arch_specific_syscall_pfx(); 10158 if (!ksys_pfx) 10159 return 0; 10160 10161 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10162 10163 if (determine_kprobe_perf_type() >= 0) { 10164 int pfd; 10165 10166 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10167 if (pfd >= 0) 10168 close(pfd); 10169 10170 return pfd >= 0 ? 1 : 0; 10171 } else { /* legacy mode */ 10172 char probe_name[128]; 10173 10174 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10175 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10176 return 0; 10177 10178 (void)remove_kprobe_event_legacy(probe_name, false); 10179 return 1; 10180 } 10181 } 10182 10183 struct bpf_link * 10184 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10185 const char *func_name, 10186 const struct bpf_kprobe_opts *opts) 10187 { 10188 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10189 enum probe_attach_mode attach_mode; 10190 char errmsg[STRERR_BUFSIZE]; 10191 char *legacy_probe = NULL; 10192 struct bpf_link *link; 10193 size_t offset; 10194 bool retprobe, legacy; 10195 int pfd, err; 10196 10197 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10198 return libbpf_err_ptr(-EINVAL); 10199 10200 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10201 retprobe = OPTS_GET(opts, retprobe, false); 10202 offset = OPTS_GET(opts, offset, 0); 10203 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10204 10205 legacy = determine_kprobe_perf_type() < 0; 10206 switch (attach_mode) { 10207 case PROBE_ATTACH_MODE_LEGACY: 10208 legacy = true; 10209 pe_opts.force_ioctl_attach = true; 10210 break; 10211 case PROBE_ATTACH_MODE_PERF: 10212 if (legacy) 10213 return libbpf_err_ptr(-ENOTSUP); 10214 pe_opts.force_ioctl_attach = true; 10215 break; 10216 case PROBE_ATTACH_MODE_LINK: 10217 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10218 return libbpf_err_ptr(-ENOTSUP); 10219 break; 10220 case PROBE_ATTACH_MODE_DEFAULT: 10221 break; 10222 default: 10223 return libbpf_err_ptr(-EINVAL); 10224 } 10225 10226 if (!legacy) { 10227 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10228 func_name, offset, 10229 -1 /* pid */, 0 /* ref_ctr_off */); 10230 } else { 10231 char probe_name[256]; 10232 10233 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10234 func_name, offset); 10235 10236 legacy_probe = strdup(probe_name); 10237 if (!legacy_probe) 10238 return libbpf_err_ptr(-ENOMEM); 10239 10240 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10241 offset, -1 /* pid */); 10242 } 10243 if (pfd < 0) { 10244 err = -errno; 10245 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10246 prog->name, retprobe ? "kretprobe" : "kprobe", 10247 func_name, offset, 10248 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10249 goto err_out; 10250 } 10251 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10252 err = libbpf_get_error(link); 10253 if (err) { 10254 close(pfd); 10255 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10256 prog->name, retprobe ? "kretprobe" : "kprobe", 10257 func_name, offset, 10258 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10259 goto err_clean_legacy; 10260 } 10261 if (legacy) { 10262 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10263 10264 perf_link->legacy_probe_name = legacy_probe; 10265 perf_link->legacy_is_kprobe = true; 10266 perf_link->legacy_is_retprobe = retprobe; 10267 } 10268 10269 return link; 10270 10271 err_clean_legacy: 10272 if (legacy) 10273 remove_kprobe_event_legacy(legacy_probe, retprobe); 10274 err_out: 10275 free(legacy_probe); 10276 return libbpf_err_ptr(err); 10277 } 10278 10279 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10280 bool retprobe, 10281 const char *func_name) 10282 { 10283 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10284 .retprobe = retprobe, 10285 ); 10286 10287 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10288 } 10289 10290 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10291 const char *syscall_name, 10292 const struct bpf_ksyscall_opts *opts) 10293 { 10294 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10295 char func_name[128]; 10296 10297 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10298 return libbpf_err_ptr(-EINVAL); 10299 10300 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10301 /* arch_specific_syscall_pfx() should never return NULL here 10302 * because it is guarded by kernel_supports(). However, since 10303 * compiler does not know that we have an explicit conditional 10304 * as well. 10305 */ 10306 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10307 arch_specific_syscall_pfx() ? : "", syscall_name); 10308 } else { 10309 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10310 } 10311 10312 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10313 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10314 10315 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10316 } 10317 10318 /* Adapted from perf/util/string.c */ 10319 static bool glob_match(const char *str, const char *pat) 10320 { 10321 while (*str && *pat && *pat != '*') { 10322 if (*pat == '?') { /* Matches any single character */ 10323 str++; 10324 pat++; 10325 continue; 10326 } 10327 if (*str != *pat) 10328 return false; 10329 str++; 10330 pat++; 10331 } 10332 /* Check wild card */ 10333 if (*pat == '*') { 10334 while (*pat == '*') 10335 pat++; 10336 if (!*pat) /* Tail wild card matches all */ 10337 return true; 10338 while (*str) 10339 if (glob_match(str++, pat)) 10340 return true; 10341 } 10342 return !*str && !*pat; 10343 } 10344 10345 struct kprobe_multi_resolve { 10346 const char *pattern; 10347 unsigned long *addrs; 10348 size_t cap; 10349 size_t cnt; 10350 }; 10351 10352 static int 10353 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10354 const char *sym_name, void *ctx) 10355 { 10356 struct kprobe_multi_resolve *res = ctx; 10357 int err; 10358 10359 if (!glob_match(sym_name, res->pattern)) 10360 return 0; 10361 10362 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10363 res->cnt + 1); 10364 if (err) 10365 return err; 10366 10367 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10368 return 0; 10369 } 10370 10371 struct bpf_link * 10372 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10373 const char *pattern, 10374 const struct bpf_kprobe_multi_opts *opts) 10375 { 10376 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10377 struct kprobe_multi_resolve res = { 10378 .pattern = pattern, 10379 }; 10380 struct bpf_link *link = NULL; 10381 char errmsg[STRERR_BUFSIZE]; 10382 const unsigned long *addrs; 10383 int err, link_fd, prog_fd; 10384 const __u64 *cookies; 10385 const char **syms; 10386 bool retprobe; 10387 size_t cnt; 10388 10389 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10390 return libbpf_err_ptr(-EINVAL); 10391 10392 syms = OPTS_GET(opts, syms, false); 10393 addrs = OPTS_GET(opts, addrs, false); 10394 cnt = OPTS_GET(opts, cnt, false); 10395 cookies = OPTS_GET(opts, cookies, false); 10396 10397 if (!pattern && !addrs && !syms) 10398 return libbpf_err_ptr(-EINVAL); 10399 if (pattern && (addrs || syms || cookies || cnt)) 10400 return libbpf_err_ptr(-EINVAL); 10401 if (!pattern && !cnt) 10402 return libbpf_err_ptr(-EINVAL); 10403 if (addrs && syms) 10404 return libbpf_err_ptr(-EINVAL); 10405 10406 if (pattern) { 10407 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10408 if (err) 10409 goto error; 10410 if (!res.cnt) { 10411 err = -ENOENT; 10412 goto error; 10413 } 10414 addrs = res.addrs; 10415 cnt = res.cnt; 10416 } 10417 10418 retprobe = OPTS_GET(opts, retprobe, false); 10419 10420 lopts.kprobe_multi.syms = syms; 10421 lopts.kprobe_multi.addrs = addrs; 10422 lopts.kprobe_multi.cookies = cookies; 10423 lopts.kprobe_multi.cnt = cnt; 10424 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10425 10426 link = calloc(1, sizeof(*link)); 10427 if (!link) { 10428 err = -ENOMEM; 10429 goto error; 10430 } 10431 link->detach = &bpf_link__detach_fd; 10432 10433 prog_fd = bpf_program__fd(prog); 10434 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10435 if (link_fd < 0) { 10436 err = -errno; 10437 pr_warn("prog '%s': failed to attach: %s\n", 10438 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10439 goto error; 10440 } 10441 link->fd = link_fd; 10442 free(res.addrs); 10443 return link; 10444 10445 error: 10446 free(link); 10447 free(res.addrs); 10448 return libbpf_err_ptr(err); 10449 } 10450 10451 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10452 { 10453 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10454 unsigned long offset = 0; 10455 const char *func_name; 10456 char *func; 10457 int n; 10458 10459 *link = NULL; 10460 10461 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10462 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10463 return 0; 10464 10465 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10466 if (opts.retprobe) 10467 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10468 else 10469 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10470 10471 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10472 if (n < 1) { 10473 pr_warn("kprobe name is invalid: %s\n", func_name); 10474 return -EINVAL; 10475 } 10476 if (opts.retprobe && offset != 0) { 10477 free(func); 10478 pr_warn("kretprobes do not support offset specification\n"); 10479 return -EINVAL; 10480 } 10481 10482 opts.offset = offset; 10483 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10484 free(func); 10485 return libbpf_get_error(*link); 10486 } 10487 10488 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10489 { 10490 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10491 const char *syscall_name; 10492 10493 *link = NULL; 10494 10495 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10496 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10497 return 0; 10498 10499 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10500 if (opts.retprobe) 10501 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10502 else 10503 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10504 10505 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10506 return *link ? 0 : -errno; 10507 } 10508 10509 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10510 { 10511 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10512 const char *spec; 10513 char *pattern; 10514 int n; 10515 10516 *link = NULL; 10517 10518 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10519 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10520 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10521 return 0; 10522 10523 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10524 if (opts.retprobe) 10525 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10526 else 10527 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10528 10529 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10530 if (n < 1) { 10531 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10532 return -EINVAL; 10533 } 10534 10535 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10536 free(pattern); 10537 return libbpf_get_error(*link); 10538 } 10539 10540 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10541 const char *binary_path, uint64_t offset) 10542 { 10543 int i; 10544 10545 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10546 10547 /* sanitize binary_path in the probe name */ 10548 for (i = 0; buf[i]; i++) { 10549 if (!isalnum(buf[i])) 10550 buf[i] = '_'; 10551 } 10552 } 10553 10554 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10555 const char *binary_path, size_t offset) 10556 { 10557 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10558 retprobe ? 'r' : 'p', 10559 retprobe ? "uretprobes" : "uprobes", 10560 probe_name, binary_path, offset); 10561 } 10562 10563 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10564 { 10565 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10566 retprobe ? "uretprobes" : "uprobes", probe_name); 10567 } 10568 10569 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10570 { 10571 char file[512]; 10572 10573 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10574 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10575 10576 return parse_uint_from_file(file, "%d\n"); 10577 } 10578 10579 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10580 const char *binary_path, size_t offset, int pid) 10581 { 10582 const size_t attr_sz = sizeof(struct perf_event_attr); 10583 struct perf_event_attr attr; 10584 int type, pfd, err; 10585 10586 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10587 if (err < 0) { 10588 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10589 binary_path, (size_t)offset, err); 10590 return err; 10591 } 10592 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10593 if (type < 0) { 10594 err = type; 10595 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10596 binary_path, offset, err); 10597 goto err_clean_legacy; 10598 } 10599 10600 memset(&attr, 0, attr_sz); 10601 attr.size = attr_sz; 10602 attr.config = type; 10603 attr.type = PERF_TYPE_TRACEPOINT; 10604 10605 pfd = syscall(__NR_perf_event_open, &attr, 10606 pid < 0 ? -1 : pid, /* pid */ 10607 pid == -1 ? 0 : -1, /* cpu */ 10608 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10609 if (pfd < 0) { 10610 err = -errno; 10611 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10612 goto err_clean_legacy; 10613 } 10614 return pfd; 10615 10616 err_clean_legacy: 10617 /* Clear the newly added legacy uprobe_event */ 10618 remove_uprobe_event_legacy(probe_name, retprobe); 10619 return err; 10620 } 10621 10622 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10623 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10624 { 10625 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10626 GElf_Shdr sh; 10627 10628 if (!gelf_getshdr(scn, &sh)) 10629 continue; 10630 if (sh.sh_type == sh_type) 10631 return scn; 10632 } 10633 return NULL; 10634 } 10635 10636 /* Find offset of function name in the provided ELF object. "binary_path" is 10637 * the path to the ELF binary represented by "elf", and only used for error 10638 * reporting matters. "name" matches symbol name or name@@LIB for library 10639 * functions. 10640 */ 10641 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 10642 { 10643 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10644 bool is_shared_lib, is_name_qualified; 10645 long ret = -ENOENT; 10646 size_t name_len; 10647 GElf_Ehdr ehdr; 10648 10649 if (!gelf_getehdr(elf, &ehdr)) { 10650 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10651 ret = -LIBBPF_ERRNO__FORMAT; 10652 goto out; 10653 } 10654 /* for shared lib case, we do not need to calculate relative offset */ 10655 is_shared_lib = ehdr.e_type == ET_DYN; 10656 10657 name_len = strlen(name); 10658 /* Does name specify "@@LIB"? */ 10659 is_name_qualified = strstr(name, "@@") != NULL; 10660 10661 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10662 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10663 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10664 * reported as a warning/error. 10665 */ 10666 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10667 size_t nr_syms, strtabidx, idx; 10668 Elf_Data *symbols = NULL; 10669 Elf_Scn *scn = NULL; 10670 int last_bind = -1; 10671 const char *sname; 10672 GElf_Shdr sh; 10673 10674 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10675 if (!scn) { 10676 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10677 binary_path); 10678 continue; 10679 } 10680 if (!gelf_getshdr(scn, &sh)) 10681 continue; 10682 strtabidx = sh.sh_link; 10683 symbols = elf_getdata(scn, 0); 10684 if (!symbols) { 10685 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10686 binary_path, elf_errmsg(-1)); 10687 ret = -LIBBPF_ERRNO__FORMAT; 10688 goto out; 10689 } 10690 nr_syms = symbols->d_size / sh.sh_entsize; 10691 10692 for (idx = 0; idx < nr_syms; idx++) { 10693 int curr_bind; 10694 GElf_Sym sym; 10695 Elf_Scn *sym_scn; 10696 GElf_Shdr sym_sh; 10697 10698 if (!gelf_getsym(symbols, idx, &sym)) 10699 continue; 10700 10701 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10702 continue; 10703 10704 sname = elf_strptr(elf, strtabidx, sym.st_name); 10705 if (!sname) 10706 continue; 10707 10708 curr_bind = GELF_ST_BIND(sym.st_info); 10709 10710 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10711 if (strncmp(sname, name, name_len) != 0) 10712 continue; 10713 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10714 * additional characters in sname should be of the form "@@LIB". 10715 */ 10716 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10717 continue; 10718 10719 if (ret >= 0) { 10720 /* handle multiple matches */ 10721 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10722 /* Only accept one non-weak bind. */ 10723 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10724 sname, name, binary_path); 10725 ret = -LIBBPF_ERRNO__FORMAT; 10726 goto out; 10727 } else if (curr_bind == STB_WEAK) { 10728 /* already have a non-weak bind, and 10729 * this is a weak bind, so ignore. 10730 */ 10731 continue; 10732 } 10733 } 10734 10735 /* Transform symbol's virtual address (absolute for 10736 * binaries and relative for shared libs) into file 10737 * offset, which is what kernel is expecting for 10738 * uprobe/uretprobe attachment. 10739 * See Documentation/trace/uprobetracer.rst for more 10740 * details. 10741 * This is done by looking up symbol's containing 10742 * section's header and using it's virtual address 10743 * (sh_addr) and corresponding file offset (sh_offset) 10744 * to transform sym.st_value (virtual address) into 10745 * desired final file offset. 10746 */ 10747 sym_scn = elf_getscn(elf, sym.st_shndx); 10748 if (!sym_scn) 10749 continue; 10750 if (!gelf_getshdr(sym_scn, &sym_sh)) 10751 continue; 10752 10753 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10754 last_bind = curr_bind; 10755 } 10756 if (ret > 0) 10757 break; 10758 } 10759 10760 if (ret > 0) { 10761 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10762 ret); 10763 } else { 10764 if (ret == 0) { 10765 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10766 is_shared_lib ? "should not be 0 in a shared library" : 10767 "try using shared library path instead"); 10768 ret = -ENOENT; 10769 } else { 10770 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10771 } 10772 } 10773 out: 10774 return ret; 10775 } 10776 10777 /* Find offset of function name in ELF object specified by path. "name" matches 10778 * symbol name or name@@LIB for library functions. 10779 */ 10780 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 10781 { 10782 char errmsg[STRERR_BUFSIZE]; 10783 long ret = -ENOENT; 10784 Elf *elf; 10785 int fd; 10786 10787 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10788 if (fd < 0) { 10789 ret = -errno; 10790 pr_warn("failed to open %s: %s\n", binary_path, 10791 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10792 return ret; 10793 } 10794 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10795 if (!elf) { 10796 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10797 close(fd); 10798 return -LIBBPF_ERRNO__FORMAT; 10799 } 10800 10801 ret = elf_find_func_offset(elf, binary_path, name); 10802 elf_end(elf); 10803 close(fd); 10804 return ret; 10805 } 10806 10807 /* Find offset of function name in archive specified by path. Currently 10808 * supported are .zip files that do not compress their contents, as used on 10809 * Android in the form of APKs, for example. "file_name" is the name of the ELF 10810 * file inside the archive. "func_name" matches symbol name or name@@LIB for 10811 * library functions. 10812 * 10813 * An overview of the APK format specifically provided here: 10814 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 10815 */ 10816 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 10817 const char *func_name) 10818 { 10819 struct zip_archive *archive; 10820 struct zip_entry entry; 10821 long ret; 10822 Elf *elf; 10823 10824 archive = zip_archive_open(archive_path); 10825 if (IS_ERR(archive)) { 10826 ret = PTR_ERR(archive); 10827 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 10828 return ret; 10829 } 10830 10831 ret = zip_archive_find_entry(archive, file_name, &entry); 10832 if (ret) { 10833 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 10834 archive_path, ret); 10835 goto out; 10836 } 10837 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 10838 (unsigned long)entry.data_offset); 10839 10840 if (entry.compression) { 10841 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 10842 archive_path); 10843 ret = -LIBBPF_ERRNO__FORMAT; 10844 goto out; 10845 } 10846 10847 elf = elf_memory((void *)entry.data, entry.data_length); 10848 if (!elf) { 10849 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 10850 elf_errmsg(-1)); 10851 ret = -LIBBPF_ERRNO__LIBELF; 10852 goto out; 10853 } 10854 10855 ret = elf_find_func_offset(elf, file_name, func_name); 10856 if (ret > 0) { 10857 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 10858 func_name, file_name, archive_path, entry.data_offset, ret, 10859 ret + entry.data_offset); 10860 ret += entry.data_offset; 10861 } 10862 elf_end(elf); 10863 10864 out: 10865 zip_archive_close(archive); 10866 return ret; 10867 } 10868 10869 static const char *arch_specific_lib_paths(void) 10870 { 10871 /* 10872 * Based on https://packages.debian.org/sid/libc6. 10873 * 10874 * Assume that the traced program is built for the same architecture 10875 * as libbpf, which should cover the vast majority of cases. 10876 */ 10877 #if defined(__x86_64__) 10878 return "/lib/x86_64-linux-gnu"; 10879 #elif defined(__i386__) 10880 return "/lib/i386-linux-gnu"; 10881 #elif defined(__s390x__) 10882 return "/lib/s390x-linux-gnu"; 10883 #elif defined(__s390__) 10884 return "/lib/s390-linux-gnu"; 10885 #elif defined(__arm__) && defined(__SOFTFP__) 10886 return "/lib/arm-linux-gnueabi"; 10887 #elif defined(__arm__) && !defined(__SOFTFP__) 10888 return "/lib/arm-linux-gnueabihf"; 10889 #elif defined(__aarch64__) 10890 return "/lib/aarch64-linux-gnu"; 10891 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10892 return "/lib/mips64el-linux-gnuabi64"; 10893 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10894 return "/lib/mipsel-linux-gnu"; 10895 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10896 return "/lib/powerpc64le-linux-gnu"; 10897 #elif defined(__sparc__) && defined(__arch64__) 10898 return "/lib/sparc64-linux-gnu"; 10899 #elif defined(__riscv) && __riscv_xlen == 64 10900 return "/lib/riscv64-linux-gnu"; 10901 #else 10902 return NULL; 10903 #endif 10904 } 10905 10906 /* Get full path to program/shared library. */ 10907 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10908 { 10909 const char *search_paths[3] = {}; 10910 int i, perm; 10911 10912 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10913 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10914 search_paths[1] = "/usr/lib64:/usr/lib"; 10915 search_paths[2] = arch_specific_lib_paths(); 10916 perm = R_OK; 10917 } else { 10918 search_paths[0] = getenv("PATH"); 10919 search_paths[1] = "/usr/bin:/usr/sbin"; 10920 perm = R_OK | X_OK; 10921 } 10922 10923 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10924 const char *s; 10925 10926 if (!search_paths[i]) 10927 continue; 10928 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10929 char *next_path; 10930 int seg_len; 10931 10932 if (s[0] == ':') 10933 s++; 10934 next_path = strchr(s, ':'); 10935 seg_len = next_path ? next_path - s : strlen(s); 10936 if (!seg_len) 10937 continue; 10938 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10939 /* ensure it has required permissions */ 10940 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10941 continue; 10942 pr_debug("resolved '%s' to '%s'\n", file, result); 10943 return 0; 10944 } 10945 } 10946 return -ENOENT; 10947 } 10948 10949 LIBBPF_API struct bpf_link * 10950 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10951 const char *binary_path, size_t func_offset, 10952 const struct bpf_uprobe_opts *opts) 10953 { 10954 const char *archive_path = NULL, *archive_sep = NULL; 10955 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10956 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10957 enum probe_attach_mode attach_mode; 10958 char full_path[PATH_MAX]; 10959 struct bpf_link *link; 10960 size_t ref_ctr_off; 10961 int pfd, err; 10962 bool retprobe, legacy; 10963 const char *func_name; 10964 10965 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10966 return libbpf_err_ptr(-EINVAL); 10967 10968 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10969 retprobe = OPTS_GET(opts, retprobe, false); 10970 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10971 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10972 10973 if (!binary_path) 10974 return libbpf_err_ptr(-EINVAL); 10975 10976 /* Check if "binary_path" refers to an archive. */ 10977 archive_sep = strstr(binary_path, "!/"); 10978 if (archive_sep) { 10979 full_path[0] = '\0'; 10980 libbpf_strlcpy(full_path, binary_path, 10981 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 10982 archive_path = full_path; 10983 binary_path = archive_sep + 2; 10984 } else if (!strchr(binary_path, '/')) { 10985 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 10986 if (err) { 10987 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10988 prog->name, binary_path, err); 10989 return libbpf_err_ptr(err); 10990 } 10991 binary_path = full_path; 10992 } 10993 func_name = OPTS_GET(opts, func_name, NULL); 10994 if (func_name) { 10995 long sym_off; 10996 10997 if (archive_path) { 10998 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 10999 func_name); 11000 binary_path = archive_path; 11001 } else { 11002 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11003 } 11004 if (sym_off < 0) 11005 return libbpf_err_ptr(sym_off); 11006 func_offset += sym_off; 11007 } 11008 11009 legacy = determine_uprobe_perf_type() < 0; 11010 switch (attach_mode) { 11011 case PROBE_ATTACH_MODE_LEGACY: 11012 legacy = true; 11013 pe_opts.force_ioctl_attach = true; 11014 break; 11015 case PROBE_ATTACH_MODE_PERF: 11016 if (legacy) 11017 return libbpf_err_ptr(-ENOTSUP); 11018 pe_opts.force_ioctl_attach = true; 11019 break; 11020 case PROBE_ATTACH_MODE_LINK: 11021 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11022 return libbpf_err_ptr(-ENOTSUP); 11023 break; 11024 case PROBE_ATTACH_MODE_DEFAULT: 11025 break; 11026 default: 11027 return libbpf_err_ptr(-EINVAL); 11028 } 11029 11030 if (!legacy) { 11031 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11032 func_offset, pid, ref_ctr_off); 11033 } else { 11034 char probe_name[PATH_MAX + 64]; 11035 11036 if (ref_ctr_off) 11037 return libbpf_err_ptr(-EINVAL); 11038 11039 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11040 binary_path, func_offset); 11041 11042 legacy_probe = strdup(probe_name); 11043 if (!legacy_probe) 11044 return libbpf_err_ptr(-ENOMEM); 11045 11046 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11047 binary_path, func_offset, pid); 11048 } 11049 if (pfd < 0) { 11050 err = -errno; 11051 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11052 prog->name, retprobe ? "uretprobe" : "uprobe", 11053 binary_path, func_offset, 11054 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11055 goto err_out; 11056 } 11057 11058 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11059 err = libbpf_get_error(link); 11060 if (err) { 11061 close(pfd); 11062 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11063 prog->name, retprobe ? "uretprobe" : "uprobe", 11064 binary_path, func_offset, 11065 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11066 goto err_clean_legacy; 11067 } 11068 if (legacy) { 11069 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11070 11071 perf_link->legacy_probe_name = legacy_probe; 11072 perf_link->legacy_is_kprobe = false; 11073 perf_link->legacy_is_retprobe = retprobe; 11074 } 11075 return link; 11076 11077 err_clean_legacy: 11078 if (legacy) 11079 remove_uprobe_event_legacy(legacy_probe, retprobe); 11080 err_out: 11081 free(legacy_probe); 11082 return libbpf_err_ptr(err); 11083 } 11084 11085 /* Format of u[ret]probe section definition supporting auto-attach: 11086 * u[ret]probe/binary:function[+offset] 11087 * 11088 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11089 * full binary path via bpf_program__attach_uprobe_opts. 11090 * 11091 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11092 * specified (and auto-attach is not possible) or the above format is specified for 11093 * auto-attach. 11094 */ 11095 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11096 { 11097 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11098 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11099 int n, ret = -EINVAL; 11100 long offset = 0; 11101 11102 *link = NULL; 11103 11104 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11105 &probe_type, &binary_path, &func_name, &offset); 11106 switch (n) { 11107 case 1: 11108 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11109 ret = 0; 11110 break; 11111 case 2: 11112 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11113 prog->name, prog->sec_name); 11114 break; 11115 case 3: 11116 case 4: 11117 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11118 strcmp(probe_type, "uretprobe.s") == 0; 11119 if (opts.retprobe && offset != 0) { 11120 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11121 prog->name); 11122 break; 11123 } 11124 opts.func_name = func_name; 11125 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11126 ret = libbpf_get_error(*link); 11127 break; 11128 default: 11129 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11130 prog->sec_name); 11131 break; 11132 } 11133 free(probe_type); 11134 free(binary_path); 11135 free(func_name); 11136 11137 return ret; 11138 } 11139 11140 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11141 bool retprobe, pid_t pid, 11142 const char *binary_path, 11143 size_t func_offset) 11144 { 11145 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11146 11147 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11148 } 11149 11150 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11151 pid_t pid, const char *binary_path, 11152 const char *usdt_provider, const char *usdt_name, 11153 const struct bpf_usdt_opts *opts) 11154 { 11155 char resolved_path[512]; 11156 struct bpf_object *obj = prog->obj; 11157 struct bpf_link *link; 11158 __u64 usdt_cookie; 11159 int err; 11160 11161 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11162 return libbpf_err_ptr(-EINVAL); 11163 11164 if (bpf_program__fd(prog) < 0) { 11165 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11166 prog->name); 11167 return libbpf_err_ptr(-EINVAL); 11168 } 11169 11170 if (!binary_path) 11171 return libbpf_err_ptr(-EINVAL); 11172 11173 if (!strchr(binary_path, '/')) { 11174 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11175 if (err) { 11176 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11177 prog->name, binary_path, err); 11178 return libbpf_err_ptr(err); 11179 } 11180 binary_path = resolved_path; 11181 } 11182 11183 /* USDT manager is instantiated lazily on first USDT attach. It will 11184 * be destroyed together with BPF object in bpf_object__close(). 11185 */ 11186 if (IS_ERR(obj->usdt_man)) 11187 return libbpf_ptr(obj->usdt_man); 11188 if (!obj->usdt_man) { 11189 obj->usdt_man = usdt_manager_new(obj); 11190 if (IS_ERR(obj->usdt_man)) 11191 return libbpf_ptr(obj->usdt_man); 11192 } 11193 11194 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11195 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11196 usdt_provider, usdt_name, usdt_cookie); 11197 err = libbpf_get_error(link); 11198 if (err) 11199 return libbpf_err_ptr(err); 11200 return link; 11201 } 11202 11203 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11204 { 11205 char *path = NULL, *provider = NULL, *name = NULL; 11206 const char *sec_name; 11207 int n, err; 11208 11209 sec_name = bpf_program__section_name(prog); 11210 if (strcmp(sec_name, "usdt") == 0) { 11211 /* no auto-attach for just SEC("usdt") */ 11212 *link = NULL; 11213 return 0; 11214 } 11215 11216 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11217 if (n != 3) { 11218 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11219 sec_name); 11220 err = -EINVAL; 11221 } else { 11222 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11223 provider, name, NULL); 11224 err = libbpf_get_error(*link); 11225 } 11226 free(path); 11227 free(provider); 11228 free(name); 11229 return err; 11230 } 11231 11232 static int determine_tracepoint_id(const char *tp_category, 11233 const char *tp_name) 11234 { 11235 char file[PATH_MAX]; 11236 int ret; 11237 11238 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11239 tracefs_path(), tp_category, tp_name); 11240 if (ret < 0) 11241 return -errno; 11242 if (ret >= sizeof(file)) { 11243 pr_debug("tracepoint %s/%s path is too long\n", 11244 tp_category, tp_name); 11245 return -E2BIG; 11246 } 11247 return parse_uint_from_file(file, "%d\n"); 11248 } 11249 11250 static int perf_event_open_tracepoint(const char *tp_category, 11251 const char *tp_name) 11252 { 11253 const size_t attr_sz = sizeof(struct perf_event_attr); 11254 struct perf_event_attr attr; 11255 char errmsg[STRERR_BUFSIZE]; 11256 int tp_id, pfd, err; 11257 11258 tp_id = determine_tracepoint_id(tp_category, tp_name); 11259 if (tp_id < 0) { 11260 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11261 tp_category, tp_name, 11262 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11263 return tp_id; 11264 } 11265 11266 memset(&attr, 0, attr_sz); 11267 attr.type = PERF_TYPE_TRACEPOINT; 11268 attr.size = attr_sz; 11269 attr.config = tp_id; 11270 11271 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11272 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11273 if (pfd < 0) { 11274 err = -errno; 11275 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11276 tp_category, tp_name, 11277 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11278 return err; 11279 } 11280 return pfd; 11281 } 11282 11283 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11284 const char *tp_category, 11285 const char *tp_name, 11286 const struct bpf_tracepoint_opts *opts) 11287 { 11288 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11289 char errmsg[STRERR_BUFSIZE]; 11290 struct bpf_link *link; 11291 int pfd, err; 11292 11293 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11294 return libbpf_err_ptr(-EINVAL); 11295 11296 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11297 11298 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11299 if (pfd < 0) { 11300 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11301 prog->name, tp_category, tp_name, 11302 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11303 return libbpf_err_ptr(pfd); 11304 } 11305 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11306 err = libbpf_get_error(link); 11307 if (err) { 11308 close(pfd); 11309 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11310 prog->name, tp_category, tp_name, 11311 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11312 return libbpf_err_ptr(err); 11313 } 11314 return link; 11315 } 11316 11317 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11318 const char *tp_category, 11319 const char *tp_name) 11320 { 11321 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11322 } 11323 11324 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11325 { 11326 char *sec_name, *tp_cat, *tp_name; 11327 11328 *link = NULL; 11329 11330 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11331 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11332 return 0; 11333 11334 sec_name = strdup(prog->sec_name); 11335 if (!sec_name) 11336 return -ENOMEM; 11337 11338 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11339 if (str_has_pfx(prog->sec_name, "tp/")) 11340 tp_cat = sec_name + sizeof("tp/") - 1; 11341 else 11342 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11343 tp_name = strchr(tp_cat, '/'); 11344 if (!tp_name) { 11345 free(sec_name); 11346 return -EINVAL; 11347 } 11348 *tp_name = '\0'; 11349 tp_name++; 11350 11351 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11352 free(sec_name); 11353 return libbpf_get_error(*link); 11354 } 11355 11356 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11357 const char *tp_name) 11358 { 11359 char errmsg[STRERR_BUFSIZE]; 11360 struct bpf_link *link; 11361 int prog_fd, pfd; 11362 11363 prog_fd = bpf_program__fd(prog); 11364 if (prog_fd < 0) { 11365 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11366 return libbpf_err_ptr(-EINVAL); 11367 } 11368 11369 link = calloc(1, sizeof(*link)); 11370 if (!link) 11371 return libbpf_err_ptr(-ENOMEM); 11372 link->detach = &bpf_link__detach_fd; 11373 11374 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11375 if (pfd < 0) { 11376 pfd = -errno; 11377 free(link); 11378 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11379 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11380 return libbpf_err_ptr(pfd); 11381 } 11382 link->fd = pfd; 11383 return link; 11384 } 11385 11386 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11387 { 11388 static const char *const prefixes[] = { 11389 "raw_tp", 11390 "raw_tracepoint", 11391 "raw_tp.w", 11392 "raw_tracepoint.w", 11393 }; 11394 size_t i; 11395 const char *tp_name = NULL; 11396 11397 *link = NULL; 11398 11399 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11400 size_t pfx_len; 11401 11402 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11403 continue; 11404 11405 pfx_len = strlen(prefixes[i]); 11406 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11407 if (prog->sec_name[pfx_len] == '\0') 11408 return 0; 11409 11410 if (prog->sec_name[pfx_len] != '/') 11411 continue; 11412 11413 tp_name = prog->sec_name + pfx_len + 1; 11414 break; 11415 } 11416 11417 if (!tp_name) { 11418 pr_warn("prog '%s': invalid section name '%s'\n", 11419 prog->name, prog->sec_name); 11420 return -EINVAL; 11421 } 11422 11423 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11424 return libbpf_get_error(*link); 11425 } 11426 11427 /* Common logic for all BPF program types that attach to a btf_id */ 11428 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11429 const struct bpf_trace_opts *opts) 11430 { 11431 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11432 char errmsg[STRERR_BUFSIZE]; 11433 struct bpf_link *link; 11434 int prog_fd, pfd; 11435 11436 if (!OPTS_VALID(opts, bpf_trace_opts)) 11437 return libbpf_err_ptr(-EINVAL); 11438 11439 prog_fd = bpf_program__fd(prog); 11440 if (prog_fd < 0) { 11441 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11442 return libbpf_err_ptr(-EINVAL); 11443 } 11444 11445 link = calloc(1, sizeof(*link)); 11446 if (!link) 11447 return libbpf_err_ptr(-ENOMEM); 11448 link->detach = &bpf_link__detach_fd; 11449 11450 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11451 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11452 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11453 if (pfd < 0) { 11454 pfd = -errno; 11455 free(link); 11456 pr_warn("prog '%s': failed to attach: %s\n", 11457 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11458 return libbpf_err_ptr(pfd); 11459 } 11460 link->fd = pfd; 11461 return link; 11462 } 11463 11464 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11465 { 11466 return bpf_program__attach_btf_id(prog, NULL); 11467 } 11468 11469 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11470 const struct bpf_trace_opts *opts) 11471 { 11472 return bpf_program__attach_btf_id(prog, opts); 11473 } 11474 11475 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11476 { 11477 return bpf_program__attach_btf_id(prog, NULL); 11478 } 11479 11480 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11481 { 11482 *link = bpf_program__attach_trace(prog); 11483 return libbpf_get_error(*link); 11484 } 11485 11486 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11487 { 11488 *link = bpf_program__attach_lsm(prog); 11489 return libbpf_get_error(*link); 11490 } 11491 11492 static struct bpf_link * 11493 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11494 const char *target_name) 11495 { 11496 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11497 .target_btf_id = btf_id); 11498 enum bpf_attach_type attach_type; 11499 char errmsg[STRERR_BUFSIZE]; 11500 struct bpf_link *link; 11501 int prog_fd, link_fd; 11502 11503 prog_fd = bpf_program__fd(prog); 11504 if (prog_fd < 0) { 11505 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11506 return libbpf_err_ptr(-EINVAL); 11507 } 11508 11509 link = calloc(1, sizeof(*link)); 11510 if (!link) 11511 return libbpf_err_ptr(-ENOMEM); 11512 link->detach = &bpf_link__detach_fd; 11513 11514 attach_type = bpf_program__expected_attach_type(prog); 11515 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11516 if (link_fd < 0) { 11517 link_fd = -errno; 11518 free(link); 11519 pr_warn("prog '%s': failed to attach to %s: %s\n", 11520 prog->name, target_name, 11521 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11522 return libbpf_err_ptr(link_fd); 11523 } 11524 link->fd = link_fd; 11525 return link; 11526 } 11527 11528 struct bpf_link * 11529 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11530 { 11531 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11532 } 11533 11534 struct bpf_link * 11535 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11536 { 11537 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11538 } 11539 11540 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11541 { 11542 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11543 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11544 } 11545 11546 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11547 int target_fd, 11548 const char *attach_func_name) 11549 { 11550 int btf_id; 11551 11552 if (!!target_fd != !!attach_func_name) { 11553 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11554 prog->name); 11555 return libbpf_err_ptr(-EINVAL); 11556 } 11557 11558 if (prog->type != BPF_PROG_TYPE_EXT) { 11559 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11560 prog->name); 11561 return libbpf_err_ptr(-EINVAL); 11562 } 11563 11564 if (target_fd) { 11565 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11566 if (btf_id < 0) 11567 return libbpf_err_ptr(btf_id); 11568 11569 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11570 } else { 11571 /* no target, so use raw_tracepoint_open for compatibility 11572 * with old kernels 11573 */ 11574 return bpf_program__attach_trace(prog); 11575 } 11576 } 11577 11578 struct bpf_link * 11579 bpf_program__attach_iter(const struct bpf_program *prog, 11580 const struct bpf_iter_attach_opts *opts) 11581 { 11582 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11583 char errmsg[STRERR_BUFSIZE]; 11584 struct bpf_link *link; 11585 int prog_fd, link_fd; 11586 __u32 target_fd = 0; 11587 11588 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11589 return libbpf_err_ptr(-EINVAL); 11590 11591 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11592 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11593 11594 prog_fd = bpf_program__fd(prog); 11595 if (prog_fd < 0) { 11596 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11597 return libbpf_err_ptr(-EINVAL); 11598 } 11599 11600 link = calloc(1, sizeof(*link)); 11601 if (!link) 11602 return libbpf_err_ptr(-ENOMEM); 11603 link->detach = &bpf_link__detach_fd; 11604 11605 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11606 &link_create_opts); 11607 if (link_fd < 0) { 11608 link_fd = -errno; 11609 free(link); 11610 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11611 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11612 return libbpf_err_ptr(link_fd); 11613 } 11614 link->fd = link_fd; 11615 return link; 11616 } 11617 11618 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11619 { 11620 *link = bpf_program__attach_iter(prog, NULL); 11621 return libbpf_get_error(*link); 11622 } 11623 11624 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11625 { 11626 struct bpf_link *link = NULL; 11627 int err; 11628 11629 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11630 return libbpf_err_ptr(-EOPNOTSUPP); 11631 11632 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11633 if (err) 11634 return libbpf_err_ptr(err); 11635 11636 /* When calling bpf_program__attach() explicitly, auto-attach support 11637 * is expected to work, so NULL returned link is considered an error. 11638 * This is different for skeleton's attach, see comment in 11639 * bpf_object__attach_skeleton(). 11640 */ 11641 if (!link) 11642 return libbpf_err_ptr(-EOPNOTSUPP); 11643 11644 return link; 11645 } 11646 11647 struct bpf_link_struct_ops { 11648 struct bpf_link link; 11649 int map_fd; 11650 }; 11651 11652 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11653 { 11654 struct bpf_link_struct_ops *st_link; 11655 __u32 zero = 0; 11656 11657 st_link = container_of(link, struct bpf_link_struct_ops, link); 11658 11659 if (st_link->map_fd < 0) 11660 /* w/o a real link */ 11661 return bpf_map_delete_elem(link->fd, &zero); 11662 11663 return close(link->fd); 11664 } 11665 11666 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11667 { 11668 struct bpf_link_struct_ops *link; 11669 __u32 zero = 0; 11670 int err, fd; 11671 11672 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11673 return libbpf_err_ptr(-EINVAL); 11674 11675 link = calloc(1, sizeof(*link)); 11676 if (!link) 11677 return libbpf_err_ptr(-EINVAL); 11678 11679 /* kern_vdata should be prepared during the loading phase. */ 11680 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11681 /* It can be EBUSY if the map has been used to create or 11682 * update a link before. We don't allow updating the value of 11683 * a struct_ops once it is set. That ensures that the value 11684 * never changed. So, it is safe to skip EBUSY. 11685 */ 11686 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 11687 free(link); 11688 return libbpf_err_ptr(err); 11689 } 11690 11691 link->link.detach = bpf_link__detach_struct_ops; 11692 11693 if (!(map->def.map_flags & BPF_F_LINK)) { 11694 /* w/o a real link */ 11695 link->link.fd = map->fd; 11696 link->map_fd = -1; 11697 return &link->link; 11698 } 11699 11700 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 11701 if (fd < 0) { 11702 free(link); 11703 return libbpf_err_ptr(fd); 11704 } 11705 11706 link->link.fd = fd; 11707 link->map_fd = map->fd; 11708 11709 return &link->link; 11710 } 11711 11712 /* 11713 * Swap the back struct_ops of a link with a new struct_ops map. 11714 */ 11715 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 11716 { 11717 struct bpf_link_struct_ops *st_ops_link; 11718 __u32 zero = 0; 11719 int err; 11720 11721 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 11722 return -EINVAL; 11723 11724 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 11725 /* Ensure the type of a link is correct */ 11726 if (st_ops_link->map_fd < 0) 11727 return -EINVAL; 11728 11729 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11730 /* It can be EBUSY if the map has been used to create or 11731 * update a link before. We don't allow updating the value of 11732 * a struct_ops once it is set. That ensures that the value 11733 * never changed. So, it is safe to skip EBUSY. 11734 */ 11735 if (err && err != -EBUSY) 11736 return err; 11737 11738 err = bpf_link_update(link->fd, map->fd, NULL); 11739 if (err < 0) 11740 return err; 11741 11742 st_ops_link->map_fd = map->fd; 11743 11744 return 0; 11745 } 11746 11747 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11748 void *private_data); 11749 11750 static enum bpf_perf_event_ret 11751 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11752 void **copy_mem, size_t *copy_size, 11753 bpf_perf_event_print_t fn, void *private_data) 11754 { 11755 struct perf_event_mmap_page *header = mmap_mem; 11756 __u64 data_head = ring_buffer_read_head(header); 11757 __u64 data_tail = header->data_tail; 11758 void *base = ((__u8 *)header) + page_size; 11759 int ret = LIBBPF_PERF_EVENT_CONT; 11760 struct perf_event_header *ehdr; 11761 size_t ehdr_size; 11762 11763 while (data_head != data_tail) { 11764 ehdr = base + (data_tail & (mmap_size - 1)); 11765 ehdr_size = ehdr->size; 11766 11767 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11768 void *copy_start = ehdr; 11769 size_t len_first = base + mmap_size - copy_start; 11770 size_t len_secnd = ehdr_size - len_first; 11771 11772 if (*copy_size < ehdr_size) { 11773 free(*copy_mem); 11774 *copy_mem = malloc(ehdr_size); 11775 if (!*copy_mem) { 11776 *copy_size = 0; 11777 ret = LIBBPF_PERF_EVENT_ERROR; 11778 break; 11779 } 11780 *copy_size = ehdr_size; 11781 } 11782 11783 memcpy(*copy_mem, copy_start, len_first); 11784 memcpy(*copy_mem + len_first, base, len_secnd); 11785 ehdr = *copy_mem; 11786 } 11787 11788 ret = fn(ehdr, private_data); 11789 data_tail += ehdr_size; 11790 if (ret != LIBBPF_PERF_EVENT_CONT) 11791 break; 11792 } 11793 11794 ring_buffer_write_tail(header, data_tail); 11795 return libbpf_err(ret); 11796 } 11797 11798 struct perf_buffer; 11799 11800 struct perf_buffer_params { 11801 struct perf_event_attr *attr; 11802 /* if event_cb is specified, it takes precendence */ 11803 perf_buffer_event_fn event_cb; 11804 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11805 perf_buffer_sample_fn sample_cb; 11806 perf_buffer_lost_fn lost_cb; 11807 void *ctx; 11808 int cpu_cnt; 11809 int *cpus; 11810 int *map_keys; 11811 }; 11812 11813 struct perf_cpu_buf { 11814 struct perf_buffer *pb; 11815 void *base; /* mmap()'ed memory */ 11816 void *buf; /* for reconstructing segmented data */ 11817 size_t buf_size; 11818 int fd; 11819 int cpu; 11820 int map_key; 11821 }; 11822 11823 struct perf_buffer { 11824 perf_buffer_event_fn event_cb; 11825 perf_buffer_sample_fn sample_cb; 11826 perf_buffer_lost_fn lost_cb; 11827 void *ctx; /* passed into callbacks */ 11828 11829 size_t page_size; 11830 size_t mmap_size; 11831 struct perf_cpu_buf **cpu_bufs; 11832 struct epoll_event *events; 11833 int cpu_cnt; /* number of allocated CPU buffers */ 11834 int epoll_fd; /* perf event FD */ 11835 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11836 }; 11837 11838 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11839 struct perf_cpu_buf *cpu_buf) 11840 { 11841 if (!cpu_buf) 11842 return; 11843 if (cpu_buf->base && 11844 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11845 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11846 if (cpu_buf->fd >= 0) { 11847 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11848 close(cpu_buf->fd); 11849 } 11850 free(cpu_buf->buf); 11851 free(cpu_buf); 11852 } 11853 11854 void perf_buffer__free(struct perf_buffer *pb) 11855 { 11856 int i; 11857 11858 if (IS_ERR_OR_NULL(pb)) 11859 return; 11860 if (pb->cpu_bufs) { 11861 for (i = 0; i < pb->cpu_cnt; i++) { 11862 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11863 11864 if (!cpu_buf) 11865 continue; 11866 11867 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11868 perf_buffer__free_cpu_buf(pb, cpu_buf); 11869 } 11870 free(pb->cpu_bufs); 11871 } 11872 if (pb->epoll_fd >= 0) 11873 close(pb->epoll_fd); 11874 free(pb->events); 11875 free(pb); 11876 } 11877 11878 static struct perf_cpu_buf * 11879 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11880 int cpu, int map_key) 11881 { 11882 struct perf_cpu_buf *cpu_buf; 11883 char msg[STRERR_BUFSIZE]; 11884 int err; 11885 11886 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11887 if (!cpu_buf) 11888 return ERR_PTR(-ENOMEM); 11889 11890 cpu_buf->pb = pb; 11891 cpu_buf->cpu = cpu; 11892 cpu_buf->map_key = map_key; 11893 11894 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11895 -1, PERF_FLAG_FD_CLOEXEC); 11896 if (cpu_buf->fd < 0) { 11897 err = -errno; 11898 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11899 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11900 goto error; 11901 } 11902 11903 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11904 PROT_READ | PROT_WRITE, MAP_SHARED, 11905 cpu_buf->fd, 0); 11906 if (cpu_buf->base == MAP_FAILED) { 11907 cpu_buf->base = NULL; 11908 err = -errno; 11909 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11910 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11911 goto error; 11912 } 11913 11914 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11915 err = -errno; 11916 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11917 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11918 goto error; 11919 } 11920 11921 return cpu_buf; 11922 11923 error: 11924 perf_buffer__free_cpu_buf(pb, cpu_buf); 11925 return (struct perf_cpu_buf *)ERR_PTR(err); 11926 } 11927 11928 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11929 struct perf_buffer_params *p); 11930 11931 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11932 perf_buffer_sample_fn sample_cb, 11933 perf_buffer_lost_fn lost_cb, 11934 void *ctx, 11935 const struct perf_buffer_opts *opts) 11936 { 11937 const size_t attr_sz = sizeof(struct perf_event_attr); 11938 struct perf_buffer_params p = {}; 11939 struct perf_event_attr attr; 11940 __u32 sample_period; 11941 11942 if (!OPTS_VALID(opts, perf_buffer_opts)) 11943 return libbpf_err_ptr(-EINVAL); 11944 11945 sample_period = OPTS_GET(opts, sample_period, 1); 11946 if (!sample_period) 11947 sample_period = 1; 11948 11949 memset(&attr, 0, attr_sz); 11950 attr.size = attr_sz; 11951 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11952 attr.type = PERF_TYPE_SOFTWARE; 11953 attr.sample_type = PERF_SAMPLE_RAW; 11954 attr.sample_period = sample_period; 11955 attr.wakeup_events = sample_period; 11956 11957 p.attr = &attr; 11958 p.sample_cb = sample_cb; 11959 p.lost_cb = lost_cb; 11960 p.ctx = ctx; 11961 11962 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11963 } 11964 11965 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11966 struct perf_event_attr *attr, 11967 perf_buffer_event_fn event_cb, void *ctx, 11968 const struct perf_buffer_raw_opts *opts) 11969 { 11970 struct perf_buffer_params p = {}; 11971 11972 if (!attr) 11973 return libbpf_err_ptr(-EINVAL); 11974 11975 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11976 return libbpf_err_ptr(-EINVAL); 11977 11978 p.attr = attr; 11979 p.event_cb = event_cb; 11980 p.ctx = ctx; 11981 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11982 p.cpus = OPTS_GET(opts, cpus, NULL); 11983 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11984 11985 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11986 } 11987 11988 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11989 struct perf_buffer_params *p) 11990 { 11991 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11992 struct bpf_map_info map; 11993 char msg[STRERR_BUFSIZE]; 11994 struct perf_buffer *pb; 11995 bool *online = NULL; 11996 __u32 map_info_len; 11997 int err, i, j, n; 11998 11999 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12000 pr_warn("page count should be power of two, but is %zu\n", 12001 page_cnt); 12002 return ERR_PTR(-EINVAL); 12003 } 12004 12005 /* best-effort sanity checks */ 12006 memset(&map, 0, sizeof(map)); 12007 map_info_len = sizeof(map); 12008 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12009 if (err) { 12010 err = -errno; 12011 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12012 * -EBADFD, -EFAULT, or -E2BIG on real error 12013 */ 12014 if (err != -EINVAL) { 12015 pr_warn("failed to get map info for map FD %d: %s\n", 12016 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12017 return ERR_PTR(err); 12018 } 12019 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12020 map_fd); 12021 } else { 12022 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12023 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12024 map.name); 12025 return ERR_PTR(-EINVAL); 12026 } 12027 } 12028 12029 pb = calloc(1, sizeof(*pb)); 12030 if (!pb) 12031 return ERR_PTR(-ENOMEM); 12032 12033 pb->event_cb = p->event_cb; 12034 pb->sample_cb = p->sample_cb; 12035 pb->lost_cb = p->lost_cb; 12036 pb->ctx = p->ctx; 12037 12038 pb->page_size = getpagesize(); 12039 pb->mmap_size = pb->page_size * page_cnt; 12040 pb->map_fd = map_fd; 12041 12042 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12043 if (pb->epoll_fd < 0) { 12044 err = -errno; 12045 pr_warn("failed to create epoll instance: %s\n", 12046 libbpf_strerror_r(err, msg, sizeof(msg))); 12047 goto error; 12048 } 12049 12050 if (p->cpu_cnt > 0) { 12051 pb->cpu_cnt = p->cpu_cnt; 12052 } else { 12053 pb->cpu_cnt = libbpf_num_possible_cpus(); 12054 if (pb->cpu_cnt < 0) { 12055 err = pb->cpu_cnt; 12056 goto error; 12057 } 12058 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12059 pb->cpu_cnt = map.max_entries; 12060 } 12061 12062 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12063 if (!pb->events) { 12064 err = -ENOMEM; 12065 pr_warn("failed to allocate events: out of memory\n"); 12066 goto error; 12067 } 12068 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12069 if (!pb->cpu_bufs) { 12070 err = -ENOMEM; 12071 pr_warn("failed to allocate buffers: out of memory\n"); 12072 goto error; 12073 } 12074 12075 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12076 if (err) { 12077 pr_warn("failed to get online CPU mask: %d\n", err); 12078 goto error; 12079 } 12080 12081 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12082 struct perf_cpu_buf *cpu_buf; 12083 int cpu, map_key; 12084 12085 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12086 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12087 12088 /* in case user didn't explicitly requested particular CPUs to 12089 * be attached to, skip offline/not present CPUs 12090 */ 12091 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12092 continue; 12093 12094 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12095 if (IS_ERR(cpu_buf)) { 12096 err = PTR_ERR(cpu_buf); 12097 goto error; 12098 } 12099 12100 pb->cpu_bufs[j] = cpu_buf; 12101 12102 err = bpf_map_update_elem(pb->map_fd, &map_key, 12103 &cpu_buf->fd, 0); 12104 if (err) { 12105 err = -errno; 12106 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12107 cpu, map_key, cpu_buf->fd, 12108 libbpf_strerror_r(err, msg, sizeof(msg))); 12109 goto error; 12110 } 12111 12112 pb->events[j].events = EPOLLIN; 12113 pb->events[j].data.ptr = cpu_buf; 12114 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12115 &pb->events[j]) < 0) { 12116 err = -errno; 12117 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12118 cpu, cpu_buf->fd, 12119 libbpf_strerror_r(err, msg, sizeof(msg))); 12120 goto error; 12121 } 12122 j++; 12123 } 12124 pb->cpu_cnt = j; 12125 free(online); 12126 12127 return pb; 12128 12129 error: 12130 free(online); 12131 if (pb) 12132 perf_buffer__free(pb); 12133 return ERR_PTR(err); 12134 } 12135 12136 struct perf_sample_raw { 12137 struct perf_event_header header; 12138 uint32_t size; 12139 char data[]; 12140 }; 12141 12142 struct perf_sample_lost { 12143 struct perf_event_header header; 12144 uint64_t id; 12145 uint64_t lost; 12146 uint64_t sample_id; 12147 }; 12148 12149 static enum bpf_perf_event_ret 12150 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12151 { 12152 struct perf_cpu_buf *cpu_buf = ctx; 12153 struct perf_buffer *pb = cpu_buf->pb; 12154 void *data = e; 12155 12156 /* user wants full control over parsing perf event */ 12157 if (pb->event_cb) 12158 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12159 12160 switch (e->type) { 12161 case PERF_RECORD_SAMPLE: { 12162 struct perf_sample_raw *s = data; 12163 12164 if (pb->sample_cb) 12165 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12166 break; 12167 } 12168 case PERF_RECORD_LOST: { 12169 struct perf_sample_lost *s = data; 12170 12171 if (pb->lost_cb) 12172 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12173 break; 12174 } 12175 default: 12176 pr_warn("unknown perf sample type %d\n", e->type); 12177 return LIBBPF_PERF_EVENT_ERROR; 12178 } 12179 return LIBBPF_PERF_EVENT_CONT; 12180 } 12181 12182 static int perf_buffer__process_records(struct perf_buffer *pb, 12183 struct perf_cpu_buf *cpu_buf) 12184 { 12185 enum bpf_perf_event_ret ret; 12186 12187 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12188 pb->page_size, &cpu_buf->buf, 12189 &cpu_buf->buf_size, 12190 perf_buffer__process_record, cpu_buf); 12191 if (ret != LIBBPF_PERF_EVENT_CONT) 12192 return ret; 12193 return 0; 12194 } 12195 12196 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12197 { 12198 return pb->epoll_fd; 12199 } 12200 12201 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12202 { 12203 int i, cnt, err; 12204 12205 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12206 if (cnt < 0) 12207 return -errno; 12208 12209 for (i = 0; i < cnt; i++) { 12210 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12211 12212 err = perf_buffer__process_records(pb, cpu_buf); 12213 if (err) { 12214 pr_warn("error while processing records: %d\n", err); 12215 return libbpf_err(err); 12216 } 12217 } 12218 return cnt; 12219 } 12220 12221 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12222 * manager. 12223 */ 12224 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12225 { 12226 return pb->cpu_cnt; 12227 } 12228 12229 /* 12230 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12231 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12232 * select()/poll()/epoll() Linux syscalls. 12233 */ 12234 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12235 { 12236 struct perf_cpu_buf *cpu_buf; 12237 12238 if (buf_idx >= pb->cpu_cnt) 12239 return libbpf_err(-EINVAL); 12240 12241 cpu_buf = pb->cpu_bufs[buf_idx]; 12242 if (!cpu_buf) 12243 return libbpf_err(-ENOENT); 12244 12245 return cpu_buf->fd; 12246 } 12247 12248 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12249 { 12250 struct perf_cpu_buf *cpu_buf; 12251 12252 if (buf_idx >= pb->cpu_cnt) 12253 return libbpf_err(-EINVAL); 12254 12255 cpu_buf = pb->cpu_bufs[buf_idx]; 12256 if (!cpu_buf) 12257 return libbpf_err(-ENOENT); 12258 12259 *buf = cpu_buf->base; 12260 *buf_size = pb->mmap_size; 12261 return 0; 12262 } 12263 12264 /* 12265 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12266 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12267 * consume, do nothing and return success. 12268 * Returns: 12269 * - 0 on success; 12270 * - <0 on failure. 12271 */ 12272 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12273 { 12274 struct perf_cpu_buf *cpu_buf; 12275 12276 if (buf_idx >= pb->cpu_cnt) 12277 return libbpf_err(-EINVAL); 12278 12279 cpu_buf = pb->cpu_bufs[buf_idx]; 12280 if (!cpu_buf) 12281 return libbpf_err(-ENOENT); 12282 12283 return perf_buffer__process_records(pb, cpu_buf); 12284 } 12285 12286 int perf_buffer__consume(struct perf_buffer *pb) 12287 { 12288 int i, err; 12289 12290 for (i = 0; i < pb->cpu_cnt; i++) { 12291 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12292 12293 if (!cpu_buf) 12294 continue; 12295 12296 err = perf_buffer__process_records(pb, cpu_buf); 12297 if (err) { 12298 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12299 return libbpf_err(err); 12300 } 12301 } 12302 return 0; 12303 } 12304 12305 int bpf_program__set_attach_target(struct bpf_program *prog, 12306 int attach_prog_fd, 12307 const char *attach_func_name) 12308 { 12309 int btf_obj_fd = 0, btf_id = 0, err; 12310 12311 if (!prog || attach_prog_fd < 0) 12312 return libbpf_err(-EINVAL); 12313 12314 if (prog->obj->loaded) 12315 return libbpf_err(-EINVAL); 12316 12317 if (attach_prog_fd && !attach_func_name) { 12318 /* remember attach_prog_fd and let bpf_program__load() find 12319 * BTF ID during the program load 12320 */ 12321 prog->attach_prog_fd = attach_prog_fd; 12322 return 0; 12323 } 12324 12325 if (attach_prog_fd) { 12326 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12327 attach_prog_fd); 12328 if (btf_id < 0) 12329 return libbpf_err(btf_id); 12330 } else { 12331 if (!attach_func_name) 12332 return libbpf_err(-EINVAL); 12333 12334 /* load btf_vmlinux, if not yet */ 12335 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12336 if (err) 12337 return libbpf_err(err); 12338 err = find_kernel_btf_id(prog->obj, attach_func_name, 12339 prog->expected_attach_type, 12340 &btf_obj_fd, &btf_id); 12341 if (err) 12342 return libbpf_err(err); 12343 } 12344 12345 prog->attach_btf_id = btf_id; 12346 prog->attach_btf_obj_fd = btf_obj_fd; 12347 prog->attach_prog_fd = attach_prog_fd; 12348 return 0; 12349 } 12350 12351 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12352 { 12353 int err = 0, n, len, start, end = -1; 12354 bool *tmp; 12355 12356 *mask = NULL; 12357 *mask_sz = 0; 12358 12359 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12360 while (*s) { 12361 if (*s == ',' || *s == '\n') { 12362 s++; 12363 continue; 12364 } 12365 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12366 if (n <= 0 || n > 2) { 12367 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12368 err = -EINVAL; 12369 goto cleanup; 12370 } else if (n == 1) { 12371 end = start; 12372 } 12373 if (start < 0 || start > end) { 12374 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12375 start, end, s); 12376 err = -EINVAL; 12377 goto cleanup; 12378 } 12379 tmp = realloc(*mask, end + 1); 12380 if (!tmp) { 12381 err = -ENOMEM; 12382 goto cleanup; 12383 } 12384 *mask = tmp; 12385 memset(tmp + *mask_sz, 0, start - *mask_sz); 12386 memset(tmp + start, 1, end - start + 1); 12387 *mask_sz = end + 1; 12388 s += len; 12389 } 12390 if (!*mask_sz) { 12391 pr_warn("Empty CPU range\n"); 12392 return -EINVAL; 12393 } 12394 return 0; 12395 cleanup: 12396 free(*mask); 12397 *mask = NULL; 12398 return err; 12399 } 12400 12401 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12402 { 12403 int fd, err = 0, len; 12404 char buf[128]; 12405 12406 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12407 if (fd < 0) { 12408 err = -errno; 12409 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12410 return err; 12411 } 12412 len = read(fd, buf, sizeof(buf)); 12413 close(fd); 12414 if (len <= 0) { 12415 err = len ? -errno : -EINVAL; 12416 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12417 return err; 12418 } 12419 if (len >= sizeof(buf)) { 12420 pr_warn("CPU mask is too big in file %s\n", fcpu); 12421 return -E2BIG; 12422 } 12423 buf[len] = '\0'; 12424 12425 return parse_cpu_mask_str(buf, mask, mask_sz); 12426 } 12427 12428 int libbpf_num_possible_cpus(void) 12429 { 12430 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12431 static int cpus; 12432 int err, n, i, tmp_cpus; 12433 bool *mask; 12434 12435 tmp_cpus = READ_ONCE(cpus); 12436 if (tmp_cpus > 0) 12437 return tmp_cpus; 12438 12439 err = parse_cpu_mask_file(fcpu, &mask, &n); 12440 if (err) 12441 return libbpf_err(err); 12442 12443 tmp_cpus = 0; 12444 for (i = 0; i < n; i++) { 12445 if (mask[i]) 12446 tmp_cpus++; 12447 } 12448 free(mask); 12449 12450 WRITE_ONCE(cpus, tmp_cpus); 12451 return tmp_cpus; 12452 } 12453 12454 static int populate_skeleton_maps(const struct bpf_object *obj, 12455 struct bpf_map_skeleton *maps, 12456 size_t map_cnt) 12457 { 12458 int i; 12459 12460 for (i = 0; i < map_cnt; i++) { 12461 struct bpf_map **map = maps[i].map; 12462 const char *name = maps[i].name; 12463 void **mmaped = maps[i].mmaped; 12464 12465 *map = bpf_object__find_map_by_name(obj, name); 12466 if (!*map) { 12467 pr_warn("failed to find skeleton map '%s'\n", name); 12468 return -ESRCH; 12469 } 12470 12471 /* externs shouldn't be pre-setup from user code */ 12472 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12473 *mmaped = (*map)->mmaped; 12474 } 12475 return 0; 12476 } 12477 12478 static int populate_skeleton_progs(const struct bpf_object *obj, 12479 struct bpf_prog_skeleton *progs, 12480 size_t prog_cnt) 12481 { 12482 int i; 12483 12484 for (i = 0; i < prog_cnt; i++) { 12485 struct bpf_program **prog = progs[i].prog; 12486 const char *name = progs[i].name; 12487 12488 *prog = bpf_object__find_program_by_name(obj, name); 12489 if (!*prog) { 12490 pr_warn("failed to find skeleton program '%s'\n", name); 12491 return -ESRCH; 12492 } 12493 } 12494 return 0; 12495 } 12496 12497 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12498 const struct bpf_object_open_opts *opts) 12499 { 12500 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12501 .object_name = s->name, 12502 ); 12503 struct bpf_object *obj; 12504 int err; 12505 12506 /* Attempt to preserve opts->object_name, unless overriden by user 12507 * explicitly. Overwriting object name for skeletons is discouraged, 12508 * as it breaks global data maps, because they contain object name 12509 * prefix as their own map name prefix. When skeleton is generated, 12510 * bpftool is making an assumption that this name will stay the same. 12511 */ 12512 if (opts) { 12513 memcpy(&skel_opts, opts, sizeof(*opts)); 12514 if (!opts->object_name) 12515 skel_opts.object_name = s->name; 12516 } 12517 12518 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12519 err = libbpf_get_error(obj); 12520 if (err) { 12521 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12522 s->name, err); 12523 return libbpf_err(err); 12524 } 12525 12526 *s->obj = obj; 12527 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12528 if (err) { 12529 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12530 return libbpf_err(err); 12531 } 12532 12533 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12534 if (err) { 12535 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12536 return libbpf_err(err); 12537 } 12538 12539 return 0; 12540 } 12541 12542 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12543 { 12544 int err, len, var_idx, i; 12545 const char *var_name; 12546 const struct bpf_map *map; 12547 struct btf *btf; 12548 __u32 map_type_id; 12549 const struct btf_type *map_type, *var_type; 12550 const struct bpf_var_skeleton *var_skel; 12551 struct btf_var_secinfo *var; 12552 12553 if (!s->obj) 12554 return libbpf_err(-EINVAL); 12555 12556 btf = bpf_object__btf(s->obj); 12557 if (!btf) { 12558 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12559 bpf_object__name(s->obj)); 12560 return libbpf_err(-errno); 12561 } 12562 12563 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12564 if (err) { 12565 pr_warn("failed to populate subskeleton maps: %d\n", err); 12566 return libbpf_err(err); 12567 } 12568 12569 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12570 if (err) { 12571 pr_warn("failed to populate subskeleton maps: %d\n", err); 12572 return libbpf_err(err); 12573 } 12574 12575 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12576 var_skel = &s->vars[var_idx]; 12577 map = *var_skel->map; 12578 map_type_id = bpf_map__btf_value_type_id(map); 12579 map_type = btf__type_by_id(btf, map_type_id); 12580 12581 if (!btf_is_datasec(map_type)) { 12582 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12583 bpf_map__name(map), 12584 __btf_kind_str(btf_kind(map_type))); 12585 return libbpf_err(-EINVAL); 12586 } 12587 12588 len = btf_vlen(map_type); 12589 var = btf_var_secinfos(map_type); 12590 for (i = 0; i < len; i++, var++) { 12591 var_type = btf__type_by_id(btf, var->type); 12592 var_name = btf__name_by_offset(btf, var_type->name_off); 12593 if (strcmp(var_name, var_skel->name) == 0) { 12594 *var_skel->addr = map->mmaped + var->offset; 12595 break; 12596 } 12597 } 12598 } 12599 return 0; 12600 } 12601 12602 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12603 { 12604 if (!s) 12605 return; 12606 free(s->maps); 12607 free(s->progs); 12608 free(s->vars); 12609 free(s); 12610 } 12611 12612 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12613 { 12614 int i, err; 12615 12616 err = bpf_object__load(*s->obj); 12617 if (err) { 12618 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12619 return libbpf_err(err); 12620 } 12621 12622 for (i = 0; i < s->map_cnt; i++) { 12623 struct bpf_map *map = *s->maps[i].map; 12624 size_t mmap_sz = bpf_map_mmap_sz(map); 12625 int prot, map_fd = bpf_map__fd(map); 12626 void **mmaped = s->maps[i].mmaped; 12627 12628 if (!mmaped) 12629 continue; 12630 12631 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12632 *mmaped = NULL; 12633 continue; 12634 } 12635 12636 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12637 prot = PROT_READ; 12638 else 12639 prot = PROT_READ | PROT_WRITE; 12640 12641 /* Remap anonymous mmap()-ed "map initialization image" as 12642 * a BPF map-backed mmap()-ed memory, but preserving the same 12643 * memory address. This will cause kernel to change process' 12644 * page table to point to a different piece of kernel memory, 12645 * but from userspace point of view memory address (and its 12646 * contents, being identical at this point) will stay the 12647 * same. This mapping will be released by bpf_object__close() 12648 * as per normal clean up procedure, so we don't need to worry 12649 * about it from skeleton's clean up perspective. 12650 */ 12651 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12652 MAP_SHARED | MAP_FIXED, map_fd, 0); 12653 if (*mmaped == MAP_FAILED) { 12654 err = -errno; 12655 *mmaped = NULL; 12656 pr_warn("failed to re-mmap() map '%s': %d\n", 12657 bpf_map__name(map), err); 12658 return libbpf_err(err); 12659 } 12660 } 12661 12662 return 0; 12663 } 12664 12665 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12666 { 12667 int i, err; 12668 12669 for (i = 0; i < s->prog_cnt; i++) { 12670 struct bpf_program *prog = *s->progs[i].prog; 12671 struct bpf_link **link = s->progs[i].link; 12672 12673 if (!prog->autoload || !prog->autoattach) 12674 continue; 12675 12676 /* auto-attaching not supported for this program */ 12677 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12678 continue; 12679 12680 /* if user already set the link manually, don't attempt auto-attach */ 12681 if (*link) 12682 continue; 12683 12684 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12685 if (err) { 12686 pr_warn("prog '%s': failed to auto-attach: %d\n", 12687 bpf_program__name(prog), err); 12688 return libbpf_err(err); 12689 } 12690 12691 /* It's possible that for some SEC() definitions auto-attach 12692 * is supported in some cases (e.g., if definition completely 12693 * specifies target information), but is not in other cases. 12694 * SEC("uprobe") is one such case. If user specified target 12695 * binary and function name, such BPF program can be 12696 * auto-attached. But if not, it shouldn't trigger skeleton's 12697 * attach to fail. It should just be skipped. 12698 * attach_fn signals such case with returning 0 (no error) and 12699 * setting link to NULL. 12700 */ 12701 } 12702 12703 return 0; 12704 } 12705 12706 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12707 { 12708 int i; 12709 12710 for (i = 0; i < s->prog_cnt; i++) { 12711 struct bpf_link **link = s->progs[i].link; 12712 12713 bpf_link__destroy(*link); 12714 *link = NULL; 12715 } 12716 } 12717 12718 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12719 { 12720 if (!s) 12721 return; 12722 12723 if (s->progs) 12724 bpf_object__detach_skeleton(s); 12725 if (s->obj) 12726 bpf_object__close(*s->obj); 12727 free(s->maps); 12728 free(s->progs); 12729 free(s); 12730 } 12731