1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 [BPF_NETFILTER] = "netfilter", 121 [BPF_TCX_INGRESS] = "tcx_ingress", 122 [BPF_TCX_EGRESS] = "tcx_egress", 123 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 124 }; 125 126 static const char * const link_type_name[] = { 127 [BPF_LINK_TYPE_UNSPEC] = "unspec", 128 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 129 [BPF_LINK_TYPE_TRACING] = "tracing", 130 [BPF_LINK_TYPE_CGROUP] = "cgroup", 131 [BPF_LINK_TYPE_ITER] = "iter", 132 [BPF_LINK_TYPE_NETNS] = "netns", 133 [BPF_LINK_TYPE_XDP] = "xdp", 134 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 135 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 136 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 137 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 138 [BPF_LINK_TYPE_TCX] = "tcx", 139 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 140 }; 141 142 static const char * const map_type_name[] = { 143 [BPF_MAP_TYPE_UNSPEC] = "unspec", 144 [BPF_MAP_TYPE_HASH] = "hash", 145 [BPF_MAP_TYPE_ARRAY] = "array", 146 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 147 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 148 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 149 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 150 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 151 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 152 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 153 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 154 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 155 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 156 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 157 [BPF_MAP_TYPE_DEVMAP] = "devmap", 158 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 159 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 160 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 161 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 162 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 163 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 164 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 165 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 166 [BPF_MAP_TYPE_QUEUE] = "queue", 167 [BPF_MAP_TYPE_STACK] = "stack", 168 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 169 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 170 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 171 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 172 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 173 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 174 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 175 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 176 }; 177 178 static const char * const prog_type_name[] = { 179 [BPF_PROG_TYPE_UNSPEC] = "unspec", 180 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 181 [BPF_PROG_TYPE_KPROBE] = "kprobe", 182 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 183 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 184 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 185 [BPF_PROG_TYPE_XDP] = "xdp", 186 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 187 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 188 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 189 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 190 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 191 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 192 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 193 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 194 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 195 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 196 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 197 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 198 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 199 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 200 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 201 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 202 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 203 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 204 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 205 [BPF_PROG_TYPE_TRACING] = "tracing", 206 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 207 [BPF_PROG_TYPE_EXT] = "ext", 208 [BPF_PROG_TYPE_LSM] = "lsm", 209 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 210 [BPF_PROG_TYPE_SYSCALL] = "syscall", 211 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 212 }; 213 214 static int __base_pr(enum libbpf_print_level level, const char *format, 215 va_list args) 216 { 217 if (level == LIBBPF_DEBUG) 218 return 0; 219 220 return vfprintf(stderr, format, args); 221 } 222 223 static libbpf_print_fn_t __libbpf_pr = __base_pr; 224 225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 226 { 227 libbpf_print_fn_t old_print_fn; 228 229 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 230 231 return old_print_fn; 232 } 233 234 __printf(2, 3) 235 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 236 { 237 va_list args; 238 int old_errno; 239 libbpf_print_fn_t print_fn; 240 241 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 242 if (!print_fn) 243 return; 244 245 old_errno = errno; 246 247 va_start(args, format); 248 __libbpf_pr(level, format, args); 249 va_end(args); 250 251 errno = old_errno; 252 } 253 254 static void pr_perm_msg(int err) 255 { 256 struct rlimit limit; 257 char buf[100]; 258 259 if (err != -EPERM || geteuid() != 0) 260 return; 261 262 err = getrlimit(RLIMIT_MEMLOCK, &limit); 263 if (err) 264 return; 265 266 if (limit.rlim_cur == RLIM_INFINITY) 267 return; 268 269 if (limit.rlim_cur < 1024) 270 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 271 else if (limit.rlim_cur < 1024*1024) 272 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 273 else 274 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 275 276 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 277 buf); 278 } 279 280 #define STRERR_BUFSIZE 128 281 282 /* Copied from tools/perf/util/util.h */ 283 #ifndef zfree 284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 285 #endif 286 287 #ifndef zclose 288 # define zclose(fd) ({ \ 289 int ___err = 0; \ 290 if ((fd) >= 0) \ 291 ___err = close((fd)); \ 292 fd = -1; \ 293 ___err; }) 294 #endif 295 296 static inline __u64 ptr_to_u64(const void *ptr) 297 { 298 return (__u64) (unsigned long) ptr; 299 } 300 301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 302 { 303 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 304 return 0; 305 } 306 307 __u32 libbpf_major_version(void) 308 { 309 return LIBBPF_MAJOR_VERSION; 310 } 311 312 __u32 libbpf_minor_version(void) 313 { 314 return LIBBPF_MINOR_VERSION; 315 } 316 317 const char *libbpf_version_string(void) 318 { 319 #define __S(X) #X 320 #define _S(X) __S(X) 321 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 322 #undef _S 323 #undef __S 324 } 325 326 enum reloc_type { 327 RELO_LD64, 328 RELO_CALL, 329 RELO_DATA, 330 RELO_EXTERN_LD64, 331 RELO_EXTERN_CALL, 332 RELO_SUBPROG_ADDR, 333 RELO_CORE, 334 }; 335 336 struct reloc_desc { 337 enum reloc_type type; 338 int insn_idx; 339 union { 340 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 341 struct { 342 int map_idx; 343 int sym_off; 344 int ext_idx; 345 }; 346 }; 347 }; 348 349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 350 enum sec_def_flags { 351 SEC_NONE = 0, 352 /* expected_attach_type is optional, if kernel doesn't support that */ 353 SEC_EXP_ATTACH_OPT = 1, 354 /* legacy, only used by libbpf_get_type_names() and 355 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 356 * This used to be associated with cgroup (and few other) BPF programs 357 * that were attachable through BPF_PROG_ATTACH command. Pretty 358 * meaningless nowadays, though. 359 */ 360 SEC_ATTACHABLE = 2, 361 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 362 /* attachment target is specified through BTF ID in either kernel or 363 * other BPF program's BTF object 364 */ 365 SEC_ATTACH_BTF = 4, 366 /* BPF program type allows sleeping/blocking in kernel */ 367 SEC_SLEEPABLE = 8, 368 /* BPF program support non-linear XDP buffer */ 369 SEC_XDP_FRAGS = 16, 370 /* Setup proper attach type for usdt probes. */ 371 SEC_USDT = 32, 372 }; 373 374 struct bpf_sec_def { 375 char *sec; 376 enum bpf_prog_type prog_type; 377 enum bpf_attach_type expected_attach_type; 378 long cookie; 379 int handler_id; 380 381 libbpf_prog_setup_fn_t prog_setup_fn; 382 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 383 libbpf_prog_attach_fn_t prog_attach_fn; 384 }; 385 386 /* 387 * bpf_prog should be a better name but it has been used in 388 * linux/filter.h. 389 */ 390 struct bpf_program { 391 char *name; 392 char *sec_name; 393 size_t sec_idx; 394 const struct bpf_sec_def *sec_def; 395 /* this program's instruction offset (in number of instructions) 396 * within its containing ELF section 397 */ 398 size_t sec_insn_off; 399 /* number of original instructions in ELF section belonging to this 400 * program, not taking into account subprogram instructions possible 401 * appended later during relocation 402 */ 403 size_t sec_insn_cnt; 404 /* Offset (in number of instructions) of the start of instruction 405 * belonging to this BPF program within its containing main BPF 406 * program. For the entry-point (main) BPF program, this is always 407 * zero. For a sub-program, this gets reset before each of main BPF 408 * programs are processed and relocated and is used to determined 409 * whether sub-program was already appended to the main program, and 410 * if yes, at which instruction offset. 411 */ 412 size_t sub_insn_off; 413 414 /* instructions that belong to BPF program; insns[0] is located at 415 * sec_insn_off instruction within its ELF section in ELF file, so 416 * when mapping ELF file instruction index to the local instruction, 417 * one needs to subtract sec_insn_off; and vice versa. 418 */ 419 struct bpf_insn *insns; 420 /* actual number of instruction in this BPF program's image; for 421 * entry-point BPF programs this includes the size of main program 422 * itself plus all the used sub-programs, appended at the end 423 */ 424 size_t insns_cnt; 425 426 struct reloc_desc *reloc_desc; 427 int nr_reloc; 428 429 /* BPF verifier log settings */ 430 char *log_buf; 431 size_t log_size; 432 __u32 log_level; 433 434 struct bpf_object *obj; 435 436 int fd; 437 bool autoload; 438 bool autoattach; 439 bool sym_global; 440 bool mark_btf_static; 441 enum bpf_prog_type type; 442 enum bpf_attach_type expected_attach_type; 443 int exception_cb_idx; 444 445 int prog_ifindex; 446 __u32 attach_btf_obj_fd; 447 __u32 attach_btf_id; 448 __u32 attach_prog_fd; 449 450 void *func_info; 451 __u32 func_info_rec_size; 452 __u32 func_info_cnt; 453 454 void *line_info; 455 __u32 line_info_rec_size; 456 __u32 line_info_cnt; 457 __u32 prog_flags; 458 }; 459 460 struct bpf_struct_ops { 461 const char *tname; 462 const struct btf_type *type; 463 struct bpf_program **progs; 464 __u32 *kern_func_off; 465 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 466 void *data; 467 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 468 * btf_vmlinux's format. 469 * struct bpf_struct_ops_tcp_congestion_ops { 470 * [... some other kernel fields ...] 471 * struct tcp_congestion_ops data; 472 * } 473 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 474 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 475 * from "data". 476 */ 477 void *kern_vdata; 478 __u32 type_id; 479 }; 480 481 #define DATA_SEC ".data" 482 #define BSS_SEC ".bss" 483 #define RODATA_SEC ".rodata" 484 #define KCONFIG_SEC ".kconfig" 485 #define KSYMS_SEC ".ksyms" 486 #define STRUCT_OPS_SEC ".struct_ops" 487 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 488 489 enum libbpf_map_type { 490 LIBBPF_MAP_UNSPEC, 491 LIBBPF_MAP_DATA, 492 LIBBPF_MAP_BSS, 493 LIBBPF_MAP_RODATA, 494 LIBBPF_MAP_KCONFIG, 495 }; 496 497 struct bpf_map_def { 498 unsigned int type; 499 unsigned int key_size; 500 unsigned int value_size; 501 unsigned int max_entries; 502 unsigned int map_flags; 503 }; 504 505 struct bpf_map { 506 struct bpf_object *obj; 507 char *name; 508 /* real_name is defined for special internal maps (.rodata*, 509 * .data*, .bss, .kconfig) and preserves their original ELF section 510 * name. This is important to be able to find corresponding BTF 511 * DATASEC information. 512 */ 513 char *real_name; 514 int fd; 515 int sec_idx; 516 size_t sec_offset; 517 int map_ifindex; 518 int inner_map_fd; 519 struct bpf_map_def def; 520 __u32 numa_node; 521 __u32 btf_var_idx; 522 __u32 btf_key_type_id; 523 __u32 btf_value_type_id; 524 __u32 btf_vmlinux_value_type_id; 525 enum libbpf_map_type libbpf_type; 526 void *mmaped; 527 struct bpf_struct_ops *st_ops; 528 struct bpf_map *inner_map; 529 void **init_slots; 530 int init_slots_sz; 531 char *pin_path; 532 bool pinned; 533 bool reused; 534 bool autocreate; 535 __u64 map_extra; 536 }; 537 538 enum extern_type { 539 EXT_UNKNOWN, 540 EXT_KCFG, 541 EXT_KSYM, 542 }; 543 544 enum kcfg_type { 545 KCFG_UNKNOWN, 546 KCFG_CHAR, 547 KCFG_BOOL, 548 KCFG_INT, 549 KCFG_TRISTATE, 550 KCFG_CHAR_ARR, 551 }; 552 553 struct extern_desc { 554 enum extern_type type; 555 int sym_idx; 556 int btf_id; 557 int sec_btf_id; 558 const char *name; 559 char *essent_name; 560 bool is_set; 561 bool is_weak; 562 union { 563 struct { 564 enum kcfg_type type; 565 int sz; 566 int align; 567 int data_off; 568 bool is_signed; 569 } kcfg; 570 struct { 571 unsigned long long addr; 572 573 /* target btf_id of the corresponding kernel var. */ 574 int kernel_btf_obj_fd; 575 int kernel_btf_id; 576 577 /* local btf_id of the ksym extern's type. */ 578 __u32 type_id; 579 /* BTF fd index to be patched in for insn->off, this is 580 * 0 for vmlinux BTF, index in obj->fd_array for module 581 * BTF 582 */ 583 __s16 btf_fd_idx; 584 } ksym; 585 }; 586 }; 587 588 struct module_btf { 589 struct btf *btf; 590 char *name; 591 __u32 id; 592 int fd; 593 int fd_array_idx; 594 }; 595 596 enum sec_type { 597 SEC_UNUSED = 0, 598 SEC_RELO, 599 SEC_BSS, 600 SEC_DATA, 601 SEC_RODATA, 602 }; 603 604 struct elf_sec_desc { 605 enum sec_type sec_type; 606 Elf64_Shdr *shdr; 607 Elf_Data *data; 608 }; 609 610 struct elf_state { 611 int fd; 612 const void *obj_buf; 613 size_t obj_buf_sz; 614 Elf *elf; 615 Elf64_Ehdr *ehdr; 616 Elf_Data *symbols; 617 Elf_Data *st_ops_data; 618 Elf_Data *st_ops_link_data; 619 size_t shstrndx; /* section index for section name strings */ 620 size_t strtabidx; 621 struct elf_sec_desc *secs; 622 size_t sec_cnt; 623 int btf_maps_shndx; 624 __u32 btf_maps_sec_btf_id; 625 int text_shndx; 626 int symbols_shndx; 627 int st_ops_shndx; 628 int st_ops_link_shndx; 629 }; 630 631 struct usdt_manager; 632 633 struct bpf_object { 634 char name[BPF_OBJ_NAME_LEN]; 635 char license[64]; 636 __u32 kern_version; 637 638 struct bpf_program *programs; 639 size_t nr_programs; 640 struct bpf_map *maps; 641 size_t nr_maps; 642 size_t maps_cap; 643 644 char *kconfig; 645 struct extern_desc *externs; 646 int nr_extern; 647 int kconfig_map_idx; 648 649 bool loaded; 650 bool has_subcalls; 651 bool has_rodata; 652 653 struct bpf_gen *gen_loader; 654 655 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 656 struct elf_state efile; 657 658 struct btf *btf; 659 struct btf_ext *btf_ext; 660 661 /* Parse and load BTF vmlinux if any of the programs in the object need 662 * it at load time. 663 */ 664 struct btf *btf_vmlinux; 665 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 666 * override for vmlinux BTF. 667 */ 668 char *btf_custom_path; 669 /* vmlinux BTF override for CO-RE relocations */ 670 struct btf *btf_vmlinux_override; 671 /* Lazily initialized kernel module BTFs */ 672 struct module_btf *btf_modules; 673 bool btf_modules_loaded; 674 size_t btf_module_cnt; 675 size_t btf_module_cap; 676 677 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 678 char *log_buf; 679 size_t log_size; 680 __u32 log_level; 681 682 int *fd_array; 683 size_t fd_array_cap; 684 size_t fd_array_cnt; 685 686 struct usdt_manager *usdt_man; 687 688 char path[]; 689 }; 690 691 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 692 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 693 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 694 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 695 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 696 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 697 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 698 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 699 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 700 701 void bpf_program__unload(struct bpf_program *prog) 702 { 703 if (!prog) 704 return; 705 706 zclose(prog->fd); 707 708 zfree(&prog->func_info); 709 zfree(&prog->line_info); 710 } 711 712 static void bpf_program__exit(struct bpf_program *prog) 713 { 714 if (!prog) 715 return; 716 717 bpf_program__unload(prog); 718 zfree(&prog->name); 719 zfree(&prog->sec_name); 720 zfree(&prog->insns); 721 zfree(&prog->reloc_desc); 722 723 prog->nr_reloc = 0; 724 prog->insns_cnt = 0; 725 prog->sec_idx = -1; 726 } 727 728 static bool insn_is_subprog_call(const struct bpf_insn *insn) 729 { 730 return BPF_CLASS(insn->code) == BPF_JMP && 731 BPF_OP(insn->code) == BPF_CALL && 732 BPF_SRC(insn->code) == BPF_K && 733 insn->src_reg == BPF_PSEUDO_CALL && 734 insn->dst_reg == 0 && 735 insn->off == 0; 736 } 737 738 static bool is_call_insn(const struct bpf_insn *insn) 739 { 740 return insn->code == (BPF_JMP | BPF_CALL); 741 } 742 743 static bool insn_is_pseudo_func(struct bpf_insn *insn) 744 { 745 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 746 } 747 748 static int 749 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 750 const char *name, size_t sec_idx, const char *sec_name, 751 size_t sec_off, void *insn_data, size_t insn_data_sz) 752 { 753 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 754 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 755 sec_name, name, sec_off, insn_data_sz); 756 return -EINVAL; 757 } 758 759 memset(prog, 0, sizeof(*prog)); 760 prog->obj = obj; 761 762 prog->sec_idx = sec_idx; 763 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 764 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 765 /* insns_cnt can later be increased by appending used subprograms */ 766 prog->insns_cnt = prog->sec_insn_cnt; 767 768 prog->type = BPF_PROG_TYPE_UNSPEC; 769 prog->fd = -1; 770 prog->exception_cb_idx = -1; 771 772 /* libbpf's convention for SEC("?abc...") is that it's just like 773 * SEC("abc...") but the corresponding bpf_program starts out with 774 * autoload set to false. 775 */ 776 if (sec_name[0] == '?') { 777 prog->autoload = false; 778 /* from now on forget there was ? in section name */ 779 sec_name++; 780 } else { 781 prog->autoload = true; 782 } 783 784 prog->autoattach = true; 785 786 /* inherit object's log_level */ 787 prog->log_level = obj->log_level; 788 789 prog->sec_name = strdup(sec_name); 790 if (!prog->sec_name) 791 goto errout; 792 793 prog->name = strdup(name); 794 if (!prog->name) 795 goto errout; 796 797 prog->insns = malloc(insn_data_sz); 798 if (!prog->insns) 799 goto errout; 800 memcpy(prog->insns, insn_data, insn_data_sz); 801 802 return 0; 803 errout: 804 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 805 bpf_program__exit(prog); 806 return -ENOMEM; 807 } 808 809 static int 810 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 811 const char *sec_name, int sec_idx) 812 { 813 Elf_Data *symbols = obj->efile.symbols; 814 struct bpf_program *prog, *progs; 815 void *data = sec_data->d_buf; 816 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 817 int nr_progs, err, i; 818 const char *name; 819 Elf64_Sym *sym; 820 821 progs = obj->programs; 822 nr_progs = obj->nr_programs; 823 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 824 825 for (i = 0; i < nr_syms; i++) { 826 sym = elf_sym_by_idx(obj, i); 827 828 if (sym->st_shndx != sec_idx) 829 continue; 830 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 831 continue; 832 833 prog_sz = sym->st_size; 834 sec_off = sym->st_value; 835 836 name = elf_sym_str(obj, sym->st_name); 837 if (!name) { 838 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 839 sec_name, sec_off); 840 return -LIBBPF_ERRNO__FORMAT; 841 } 842 843 if (sec_off + prog_sz > sec_sz) { 844 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 845 sec_name, sec_off); 846 return -LIBBPF_ERRNO__FORMAT; 847 } 848 849 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 850 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 851 return -ENOTSUP; 852 } 853 854 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 855 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 856 857 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 858 if (!progs) { 859 /* 860 * In this case the original obj->programs 861 * is still valid, so don't need special treat for 862 * bpf_close_object(). 863 */ 864 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 865 sec_name, name); 866 return -ENOMEM; 867 } 868 obj->programs = progs; 869 870 prog = &progs[nr_progs]; 871 872 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 873 sec_off, data + sec_off, prog_sz); 874 if (err) 875 return err; 876 877 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 878 prog->sym_global = true; 879 880 /* if function is a global/weak symbol, but has restricted 881 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 882 * as static to enable more permissive BPF verification mode 883 * with more outside context available to BPF verifier 884 */ 885 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 886 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 887 prog->mark_btf_static = true; 888 889 nr_progs++; 890 obj->nr_programs = nr_progs; 891 } 892 893 return 0; 894 } 895 896 static const struct btf_member * 897 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 898 { 899 struct btf_member *m; 900 int i; 901 902 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 903 if (btf_member_bit_offset(t, i) == bit_offset) 904 return m; 905 } 906 907 return NULL; 908 } 909 910 static const struct btf_member * 911 find_member_by_name(const struct btf *btf, const struct btf_type *t, 912 const char *name) 913 { 914 struct btf_member *m; 915 int i; 916 917 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 918 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 919 return m; 920 } 921 922 return NULL; 923 } 924 925 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 926 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 927 const char *name, __u32 kind); 928 929 static int 930 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 931 const struct btf_type **type, __u32 *type_id, 932 const struct btf_type **vtype, __u32 *vtype_id, 933 const struct btf_member **data_member) 934 { 935 const struct btf_type *kern_type, *kern_vtype; 936 const struct btf_member *kern_data_member; 937 __s32 kern_vtype_id, kern_type_id; 938 __u32 i; 939 940 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 941 if (kern_type_id < 0) { 942 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 943 tname); 944 return kern_type_id; 945 } 946 kern_type = btf__type_by_id(btf, kern_type_id); 947 948 /* Find the corresponding "map_value" type that will be used 949 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 950 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 951 * btf_vmlinux. 952 */ 953 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 954 tname, BTF_KIND_STRUCT); 955 if (kern_vtype_id < 0) { 956 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 957 STRUCT_OPS_VALUE_PREFIX, tname); 958 return kern_vtype_id; 959 } 960 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 961 962 /* Find "struct tcp_congestion_ops" from 963 * struct bpf_struct_ops_tcp_congestion_ops { 964 * [ ... ] 965 * struct tcp_congestion_ops data; 966 * } 967 */ 968 kern_data_member = btf_members(kern_vtype); 969 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 970 if (kern_data_member->type == kern_type_id) 971 break; 972 } 973 if (i == btf_vlen(kern_vtype)) { 974 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 975 tname, STRUCT_OPS_VALUE_PREFIX, tname); 976 return -EINVAL; 977 } 978 979 *type = kern_type; 980 *type_id = kern_type_id; 981 *vtype = kern_vtype; 982 *vtype_id = kern_vtype_id; 983 *data_member = kern_data_member; 984 985 return 0; 986 } 987 988 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 989 { 990 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 991 } 992 993 /* Init the map's fields that depend on kern_btf */ 994 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 995 const struct btf *btf, 996 const struct btf *kern_btf) 997 { 998 const struct btf_member *member, *kern_member, *kern_data_member; 999 const struct btf_type *type, *kern_type, *kern_vtype; 1000 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1001 struct bpf_struct_ops *st_ops; 1002 void *data, *kern_data; 1003 const char *tname; 1004 int err; 1005 1006 st_ops = map->st_ops; 1007 type = st_ops->type; 1008 tname = st_ops->tname; 1009 err = find_struct_ops_kern_types(kern_btf, tname, 1010 &kern_type, &kern_type_id, 1011 &kern_vtype, &kern_vtype_id, 1012 &kern_data_member); 1013 if (err) 1014 return err; 1015 1016 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1017 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1018 1019 map->def.value_size = kern_vtype->size; 1020 map->btf_vmlinux_value_type_id = kern_vtype_id; 1021 1022 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1023 if (!st_ops->kern_vdata) 1024 return -ENOMEM; 1025 1026 data = st_ops->data; 1027 kern_data_off = kern_data_member->offset / 8; 1028 kern_data = st_ops->kern_vdata + kern_data_off; 1029 1030 member = btf_members(type); 1031 for (i = 0; i < btf_vlen(type); i++, member++) { 1032 const struct btf_type *mtype, *kern_mtype; 1033 __u32 mtype_id, kern_mtype_id; 1034 void *mdata, *kern_mdata; 1035 __s64 msize, kern_msize; 1036 __u32 moff, kern_moff; 1037 __u32 kern_member_idx; 1038 const char *mname; 1039 1040 mname = btf__name_by_offset(btf, member->name_off); 1041 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1042 if (!kern_member) { 1043 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1044 map->name, mname); 1045 return -ENOTSUP; 1046 } 1047 1048 kern_member_idx = kern_member - btf_members(kern_type); 1049 if (btf_member_bitfield_size(type, i) || 1050 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1051 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 moff = member->offset / 8; 1057 kern_moff = kern_member->offset / 8; 1058 1059 mdata = data + moff; 1060 kern_mdata = kern_data + kern_moff; 1061 1062 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1063 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1064 &kern_mtype_id); 1065 if (BTF_INFO_KIND(mtype->info) != 1066 BTF_INFO_KIND(kern_mtype->info)) { 1067 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1068 map->name, mname, BTF_INFO_KIND(mtype->info), 1069 BTF_INFO_KIND(kern_mtype->info)); 1070 return -ENOTSUP; 1071 } 1072 1073 if (btf_is_ptr(mtype)) { 1074 struct bpf_program *prog; 1075 1076 prog = st_ops->progs[i]; 1077 if (!prog) 1078 continue; 1079 1080 kern_mtype = skip_mods_and_typedefs(kern_btf, 1081 kern_mtype->type, 1082 &kern_mtype_id); 1083 1084 /* mtype->type must be a func_proto which was 1085 * guaranteed in bpf_object__collect_st_ops_relos(), 1086 * so only check kern_mtype for func_proto here. 1087 */ 1088 if (!btf_is_func_proto(kern_mtype)) { 1089 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1090 map->name, mname); 1091 return -ENOTSUP; 1092 } 1093 1094 prog->attach_btf_id = kern_type_id; 1095 prog->expected_attach_type = kern_member_idx; 1096 1097 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1098 1099 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1100 map->name, mname, prog->name, moff, 1101 kern_moff); 1102 1103 continue; 1104 } 1105 1106 msize = btf__resolve_size(btf, mtype_id); 1107 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1108 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1109 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1110 map->name, mname, (ssize_t)msize, 1111 (ssize_t)kern_msize); 1112 return -ENOTSUP; 1113 } 1114 1115 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1116 map->name, mname, (unsigned int)msize, 1117 moff, kern_moff); 1118 memcpy(kern_mdata, mdata, msize); 1119 } 1120 1121 return 0; 1122 } 1123 1124 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1125 { 1126 struct bpf_map *map; 1127 size_t i; 1128 int err; 1129 1130 for (i = 0; i < obj->nr_maps; i++) { 1131 map = &obj->maps[i]; 1132 1133 if (!bpf_map__is_struct_ops(map)) 1134 continue; 1135 1136 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1137 obj->btf_vmlinux); 1138 if (err) 1139 return err; 1140 } 1141 1142 return 0; 1143 } 1144 1145 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1146 int shndx, Elf_Data *data, __u32 map_flags) 1147 { 1148 const struct btf_type *type, *datasec; 1149 const struct btf_var_secinfo *vsi; 1150 struct bpf_struct_ops *st_ops; 1151 const char *tname, *var_name; 1152 __s32 type_id, datasec_id; 1153 const struct btf *btf; 1154 struct bpf_map *map; 1155 __u32 i; 1156 1157 if (shndx == -1) 1158 return 0; 1159 1160 btf = obj->btf; 1161 datasec_id = btf__find_by_name_kind(btf, sec_name, 1162 BTF_KIND_DATASEC); 1163 if (datasec_id < 0) { 1164 pr_warn("struct_ops init: DATASEC %s not found\n", 1165 sec_name); 1166 return -EINVAL; 1167 } 1168 1169 datasec = btf__type_by_id(btf, datasec_id); 1170 vsi = btf_var_secinfos(datasec); 1171 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1172 type = btf__type_by_id(obj->btf, vsi->type); 1173 var_name = btf__name_by_offset(obj->btf, type->name_off); 1174 1175 type_id = btf__resolve_type(obj->btf, vsi->type); 1176 if (type_id < 0) { 1177 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1178 vsi->type, sec_name); 1179 return -EINVAL; 1180 } 1181 1182 type = btf__type_by_id(obj->btf, type_id); 1183 tname = btf__name_by_offset(obj->btf, type->name_off); 1184 if (!tname[0]) { 1185 pr_warn("struct_ops init: anonymous type is not supported\n"); 1186 return -ENOTSUP; 1187 } 1188 if (!btf_is_struct(type)) { 1189 pr_warn("struct_ops init: %s is not a struct\n", tname); 1190 return -EINVAL; 1191 } 1192 1193 map = bpf_object__add_map(obj); 1194 if (IS_ERR(map)) 1195 return PTR_ERR(map); 1196 1197 map->sec_idx = shndx; 1198 map->sec_offset = vsi->offset; 1199 map->name = strdup(var_name); 1200 if (!map->name) 1201 return -ENOMEM; 1202 1203 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1204 map->def.key_size = sizeof(int); 1205 map->def.value_size = type->size; 1206 map->def.max_entries = 1; 1207 map->def.map_flags = map_flags; 1208 1209 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1210 if (!map->st_ops) 1211 return -ENOMEM; 1212 st_ops = map->st_ops; 1213 st_ops->data = malloc(type->size); 1214 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1215 st_ops->kern_func_off = malloc(btf_vlen(type) * 1216 sizeof(*st_ops->kern_func_off)); 1217 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1218 return -ENOMEM; 1219 1220 if (vsi->offset + type->size > data->d_size) { 1221 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1222 var_name, sec_name); 1223 return -EINVAL; 1224 } 1225 1226 memcpy(st_ops->data, 1227 data->d_buf + vsi->offset, 1228 type->size); 1229 st_ops->tname = tname; 1230 st_ops->type = type; 1231 st_ops->type_id = type_id; 1232 1233 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1234 tname, type_id, var_name, vsi->offset); 1235 } 1236 1237 return 0; 1238 } 1239 1240 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1241 { 1242 int err; 1243 1244 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1245 obj->efile.st_ops_data, 0); 1246 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1247 obj->efile.st_ops_link_shndx, 1248 obj->efile.st_ops_link_data, 1249 BPF_F_LINK); 1250 return err; 1251 } 1252 1253 static struct bpf_object *bpf_object__new(const char *path, 1254 const void *obj_buf, 1255 size_t obj_buf_sz, 1256 const char *obj_name) 1257 { 1258 struct bpf_object *obj; 1259 char *end; 1260 1261 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1262 if (!obj) { 1263 pr_warn("alloc memory failed for %s\n", path); 1264 return ERR_PTR(-ENOMEM); 1265 } 1266 1267 strcpy(obj->path, path); 1268 if (obj_name) { 1269 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1270 } else { 1271 /* Using basename() GNU version which doesn't modify arg. */ 1272 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1273 end = strchr(obj->name, '.'); 1274 if (end) 1275 *end = 0; 1276 } 1277 1278 obj->efile.fd = -1; 1279 /* 1280 * Caller of this function should also call 1281 * bpf_object__elf_finish() after data collection to return 1282 * obj_buf to user. If not, we should duplicate the buffer to 1283 * avoid user freeing them before elf finish. 1284 */ 1285 obj->efile.obj_buf = obj_buf; 1286 obj->efile.obj_buf_sz = obj_buf_sz; 1287 obj->efile.btf_maps_shndx = -1; 1288 obj->efile.st_ops_shndx = -1; 1289 obj->efile.st_ops_link_shndx = -1; 1290 obj->kconfig_map_idx = -1; 1291 1292 obj->kern_version = get_kernel_version(); 1293 obj->loaded = false; 1294 1295 return obj; 1296 } 1297 1298 static void bpf_object__elf_finish(struct bpf_object *obj) 1299 { 1300 if (!obj->efile.elf) 1301 return; 1302 1303 elf_end(obj->efile.elf); 1304 obj->efile.elf = NULL; 1305 obj->efile.symbols = NULL; 1306 obj->efile.st_ops_data = NULL; 1307 obj->efile.st_ops_link_data = NULL; 1308 1309 zfree(&obj->efile.secs); 1310 obj->efile.sec_cnt = 0; 1311 zclose(obj->efile.fd); 1312 obj->efile.obj_buf = NULL; 1313 obj->efile.obj_buf_sz = 0; 1314 } 1315 1316 static int bpf_object__elf_init(struct bpf_object *obj) 1317 { 1318 Elf64_Ehdr *ehdr; 1319 int err = 0; 1320 Elf *elf; 1321 1322 if (obj->efile.elf) { 1323 pr_warn("elf: init internal error\n"); 1324 return -LIBBPF_ERRNO__LIBELF; 1325 } 1326 1327 if (obj->efile.obj_buf_sz > 0) { 1328 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1329 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1330 } else { 1331 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1332 if (obj->efile.fd < 0) { 1333 char errmsg[STRERR_BUFSIZE], *cp; 1334 1335 err = -errno; 1336 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1337 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1338 return err; 1339 } 1340 1341 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1342 } 1343 1344 if (!elf) { 1345 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1346 err = -LIBBPF_ERRNO__LIBELF; 1347 goto errout; 1348 } 1349 1350 obj->efile.elf = elf; 1351 1352 if (elf_kind(elf) != ELF_K_ELF) { 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1355 goto errout; 1356 } 1357 1358 if (gelf_getclass(elf) != ELFCLASS64) { 1359 err = -LIBBPF_ERRNO__FORMAT; 1360 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1361 goto errout; 1362 } 1363 1364 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1365 if (!obj->efile.ehdr) { 1366 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 goto errout; 1369 } 1370 1371 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1372 pr_warn("elf: failed to get section names section index for %s: %s\n", 1373 obj->path, elf_errmsg(-1)); 1374 err = -LIBBPF_ERRNO__FORMAT; 1375 goto errout; 1376 } 1377 1378 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1379 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1380 pr_warn("elf: failed to get section names strings from %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* Old LLVM set e_machine to EM_NONE */ 1387 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1388 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1389 err = -LIBBPF_ERRNO__FORMAT; 1390 goto errout; 1391 } 1392 1393 return 0; 1394 errout: 1395 bpf_object__elf_finish(obj); 1396 return err; 1397 } 1398 1399 static int bpf_object__check_endianness(struct bpf_object *obj) 1400 { 1401 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1402 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1403 return 0; 1404 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1405 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1406 return 0; 1407 #else 1408 # error "Unrecognized __BYTE_ORDER__" 1409 #endif 1410 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1411 return -LIBBPF_ERRNO__ENDIAN; 1412 } 1413 1414 static int 1415 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1416 { 1417 if (!data) { 1418 pr_warn("invalid license section in %s\n", obj->path); 1419 return -LIBBPF_ERRNO__FORMAT; 1420 } 1421 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1422 * go over allowed ELF data section buffer 1423 */ 1424 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1425 pr_debug("license of %s is %s\n", obj->path, obj->license); 1426 return 0; 1427 } 1428 1429 static int 1430 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1431 { 1432 __u32 kver; 1433 1434 if (!data || size != sizeof(kver)) { 1435 pr_warn("invalid kver section in %s\n", obj->path); 1436 return -LIBBPF_ERRNO__FORMAT; 1437 } 1438 memcpy(&kver, data, sizeof(kver)); 1439 obj->kern_version = kver; 1440 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1441 return 0; 1442 } 1443 1444 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1445 { 1446 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1447 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1448 return true; 1449 return false; 1450 } 1451 1452 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1453 { 1454 Elf_Data *data; 1455 Elf_Scn *scn; 1456 1457 if (!name) 1458 return -EINVAL; 1459 1460 scn = elf_sec_by_name(obj, name); 1461 data = elf_sec_data(obj, scn); 1462 if (data) { 1463 *size = data->d_size; 1464 return 0; /* found it */ 1465 } 1466 1467 return -ENOENT; 1468 } 1469 1470 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1471 { 1472 Elf_Data *symbols = obj->efile.symbols; 1473 const char *sname; 1474 size_t si; 1475 1476 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1477 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1478 1479 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1480 continue; 1481 1482 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1483 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1484 continue; 1485 1486 sname = elf_sym_str(obj, sym->st_name); 1487 if (!sname) { 1488 pr_warn("failed to get sym name string for var %s\n", name); 1489 return ERR_PTR(-EIO); 1490 } 1491 if (strcmp(name, sname) == 0) 1492 return sym; 1493 } 1494 1495 return ERR_PTR(-ENOENT); 1496 } 1497 1498 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1499 { 1500 struct bpf_map *map; 1501 int err; 1502 1503 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1504 sizeof(*obj->maps), obj->nr_maps + 1); 1505 if (err) 1506 return ERR_PTR(err); 1507 1508 map = &obj->maps[obj->nr_maps++]; 1509 map->obj = obj; 1510 map->fd = -1; 1511 map->inner_map_fd = -1; 1512 map->autocreate = true; 1513 1514 return map; 1515 } 1516 1517 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1518 { 1519 const long page_sz = sysconf(_SC_PAGE_SIZE); 1520 size_t map_sz; 1521 1522 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1523 map_sz = roundup(map_sz, page_sz); 1524 return map_sz; 1525 } 1526 1527 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1528 { 1529 void *mmaped; 1530 1531 if (!map->mmaped) 1532 return -EINVAL; 1533 1534 if (old_sz == new_sz) 1535 return 0; 1536 1537 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1538 if (mmaped == MAP_FAILED) 1539 return -errno; 1540 1541 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1542 munmap(map->mmaped, old_sz); 1543 map->mmaped = mmaped; 1544 return 0; 1545 } 1546 1547 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1548 { 1549 char map_name[BPF_OBJ_NAME_LEN], *p; 1550 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1551 1552 /* This is one of the more confusing parts of libbpf for various 1553 * reasons, some of which are historical. The original idea for naming 1554 * internal names was to include as much of BPF object name prefix as 1555 * possible, so that it can be distinguished from similar internal 1556 * maps of a different BPF object. 1557 * As an example, let's say we have bpf_object named 'my_object_name' 1558 * and internal map corresponding to '.rodata' ELF section. The final 1559 * map name advertised to user and to the kernel will be 1560 * 'my_objec.rodata', taking first 8 characters of object name and 1561 * entire 7 characters of '.rodata'. 1562 * Somewhat confusingly, if internal map ELF section name is shorter 1563 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1564 * for the suffix, even though we only have 4 actual characters, and 1565 * resulting map will be called 'my_objec.bss', not even using all 15 1566 * characters allowed by the kernel. Oh well, at least the truncated 1567 * object name is somewhat consistent in this case. But if the map 1568 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1569 * (8 chars) and thus will be left with only first 7 characters of the 1570 * object name ('my_obje'). Happy guessing, user, that the final map 1571 * name will be "my_obje.kconfig". 1572 * Now, with libbpf starting to support arbitrarily named .rodata.* 1573 * and .data.* data sections, it's possible that ELF section name is 1574 * longer than allowed 15 chars, so we now need to be careful to take 1575 * only up to 15 first characters of ELF name, taking no BPF object 1576 * name characters at all. So '.rodata.abracadabra' will result in 1577 * '.rodata.abracad' kernel and user-visible name. 1578 * We need to keep this convoluted logic intact for .data, .bss and 1579 * .rodata maps, but for new custom .data.custom and .rodata.custom 1580 * maps we use their ELF names as is, not prepending bpf_object name 1581 * in front. We still need to truncate them to 15 characters for the 1582 * kernel. Full name can be recovered for such maps by using DATASEC 1583 * BTF type associated with such map's value type, though. 1584 */ 1585 if (sfx_len >= BPF_OBJ_NAME_LEN) 1586 sfx_len = BPF_OBJ_NAME_LEN - 1; 1587 1588 /* if there are two or more dots in map name, it's a custom dot map */ 1589 if (strchr(real_name + 1, '.') != NULL) 1590 pfx_len = 0; 1591 else 1592 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1593 1594 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1595 sfx_len, real_name); 1596 1597 /* sanitise map name to characters allowed by kernel */ 1598 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1599 if (!isalnum(*p) && *p != '_' && *p != '.') 1600 *p = '_'; 1601 1602 return strdup(map_name); 1603 } 1604 1605 static int 1606 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1607 1608 /* Internal BPF map is mmap()'able only if at least one of corresponding 1609 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1610 * variable and it's not marked as __hidden (which turns it into, effectively, 1611 * a STATIC variable). 1612 */ 1613 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1614 { 1615 const struct btf_type *t, *vt; 1616 struct btf_var_secinfo *vsi; 1617 int i, n; 1618 1619 if (!map->btf_value_type_id) 1620 return false; 1621 1622 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1623 if (!btf_is_datasec(t)) 1624 return false; 1625 1626 vsi = btf_var_secinfos(t); 1627 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1628 vt = btf__type_by_id(obj->btf, vsi->type); 1629 if (!btf_is_var(vt)) 1630 continue; 1631 1632 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1633 return true; 1634 } 1635 1636 return false; 1637 } 1638 1639 static int 1640 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1641 const char *real_name, int sec_idx, void *data, size_t data_sz) 1642 { 1643 struct bpf_map_def *def; 1644 struct bpf_map *map; 1645 size_t mmap_sz; 1646 int err; 1647 1648 map = bpf_object__add_map(obj); 1649 if (IS_ERR(map)) 1650 return PTR_ERR(map); 1651 1652 map->libbpf_type = type; 1653 map->sec_idx = sec_idx; 1654 map->sec_offset = 0; 1655 map->real_name = strdup(real_name); 1656 map->name = internal_map_name(obj, real_name); 1657 if (!map->real_name || !map->name) { 1658 zfree(&map->real_name); 1659 zfree(&map->name); 1660 return -ENOMEM; 1661 } 1662 1663 def = &map->def; 1664 def->type = BPF_MAP_TYPE_ARRAY; 1665 def->key_size = sizeof(int); 1666 def->value_size = data_sz; 1667 def->max_entries = 1; 1668 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1669 ? BPF_F_RDONLY_PROG : 0; 1670 1671 /* failures are fine because of maps like .rodata.str1.1 */ 1672 (void) map_fill_btf_type_info(obj, map); 1673 1674 if (map_is_mmapable(obj, map)) 1675 def->map_flags |= BPF_F_MMAPABLE; 1676 1677 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1678 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1679 1680 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1681 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1682 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1683 if (map->mmaped == MAP_FAILED) { 1684 err = -errno; 1685 map->mmaped = NULL; 1686 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1687 map->name, err); 1688 zfree(&map->real_name); 1689 zfree(&map->name); 1690 return err; 1691 } 1692 1693 if (data) 1694 memcpy(map->mmaped, data, data_sz); 1695 1696 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1697 return 0; 1698 } 1699 1700 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1701 { 1702 struct elf_sec_desc *sec_desc; 1703 const char *sec_name; 1704 int err = 0, sec_idx; 1705 1706 /* 1707 * Populate obj->maps with libbpf internal maps. 1708 */ 1709 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1710 sec_desc = &obj->efile.secs[sec_idx]; 1711 1712 /* Skip recognized sections with size 0. */ 1713 if (!sec_desc->data || sec_desc->data->d_size == 0) 1714 continue; 1715 1716 switch (sec_desc->sec_type) { 1717 case SEC_DATA: 1718 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1719 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1720 sec_name, sec_idx, 1721 sec_desc->data->d_buf, 1722 sec_desc->data->d_size); 1723 break; 1724 case SEC_RODATA: 1725 obj->has_rodata = true; 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1728 sec_name, sec_idx, 1729 sec_desc->data->d_buf, 1730 sec_desc->data->d_size); 1731 break; 1732 case SEC_BSS: 1733 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1734 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1735 sec_name, sec_idx, 1736 NULL, 1737 sec_desc->data->d_size); 1738 break; 1739 default: 1740 /* skip */ 1741 break; 1742 } 1743 if (err) 1744 return err; 1745 } 1746 return 0; 1747 } 1748 1749 1750 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1751 const void *name) 1752 { 1753 int i; 1754 1755 for (i = 0; i < obj->nr_extern; i++) { 1756 if (strcmp(obj->externs[i].name, name) == 0) 1757 return &obj->externs[i]; 1758 } 1759 return NULL; 1760 } 1761 1762 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1763 char value) 1764 { 1765 switch (ext->kcfg.type) { 1766 case KCFG_BOOL: 1767 if (value == 'm') { 1768 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1769 ext->name, value); 1770 return -EINVAL; 1771 } 1772 *(bool *)ext_val = value == 'y' ? true : false; 1773 break; 1774 case KCFG_TRISTATE: 1775 if (value == 'y') 1776 *(enum libbpf_tristate *)ext_val = TRI_YES; 1777 else if (value == 'm') 1778 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1779 else /* value == 'n' */ 1780 *(enum libbpf_tristate *)ext_val = TRI_NO; 1781 break; 1782 case KCFG_CHAR: 1783 *(char *)ext_val = value; 1784 break; 1785 case KCFG_UNKNOWN: 1786 case KCFG_INT: 1787 case KCFG_CHAR_ARR: 1788 default: 1789 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1790 ext->name, value); 1791 return -EINVAL; 1792 } 1793 ext->is_set = true; 1794 return 0; 1795 } 1796 1797 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1798 const char *value) 1799 { 1800 size_t len; 1801 1802 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1803 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1804 ext->name, value); 1805 return -EINVAL; 1806 } 1807 1808 len = strlen(value); 1809 if (value[len - 1] != '"') { 1810 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1811 ext->name, value); 1812 return -EINVAL; 1813 } 1814 1815 /* strip quotes */ 1816 len -= 2; 1817 if (len >= ext->kcfg.sz) { 1818 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1819 ext->name, value, len, ext->kcfg.sz - 1); 1820 len = ext->kcfg.sz - 1; 1821 } 1822 memcpy(ext_val, value + 1, len); 1823 ext_val[len] = '\0'; 1824 ext->is_set = true; 1825 return 0; 1826 } 1827 1828 static int parse_u64(const char *value, __u64 *res) 1829 { 1830 char *value_end; 1831 int err; 1832 1833 errno = 0; 1834 *res = strtoull(value, &value_end, 0); 1835 if (errno) { 1836 err = -errno; 1837 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1838 return err; 1839 } 1840 if (*value_end) { 1841 pr_warn("failed to parse '%s' as integer completely\n", value); 1842 return -EINVAL; 1843 } 1844 return 0; 1845 } 1846 1847 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1848 { 1849 int bit_sz = ext->kcfg.sz * 8; 1850 1851 if (ext->kcfg.sz == 8) 1852 return true; 1853 1854 /* Validate that value stored in u64 fits in integer of `ext->sz` 1855 * bytes size without any loss of information. If the target integer 1856 * is signed, we rely on the following limits of integer type of 1857 * Y bits and subsequent transformation: 1858 * 1859 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1860 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1861 * 0 <= X + 2^(Y-1) < 2^Y 1862 * 1863 * For unsigned target integer, check that all the (64 - Y) bits are 1864 * zero. 1865 */ 1866 if (ext->kcfg.is_signed) 1867 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1868 else 1869 return (v >> bit_sz) == 0; 1870 } 1871 1872 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1873 __u64 value) 1874 { 1875 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1876 ext->kcfg.type != KCFG_BOOL) { 1877 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1878 ext->name, (unsigned long long)value); 1879 return -EINVAL; 1880 } 1881 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1882 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1883 ext->name, (unsigned long long)value); 1884 return -EINVAL; 1885 1886 } 1887 if (!is_kcfg_value_in_range(ext, value)) { 1888 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1889 ext->name, (unsigned long long)value, ext->kcfg.sz); 1890 return -ERANGE; 1891 } 1892 switch (ext->kcfg.sz) { 1893 case 1: 1894 *(__u8 *)ext_val = value; 1895 break; 1896 case 2: 1897 *(__u16 *)ext_val = value; 1898 break; 1899 case 4: 1900 *(__u32 *)ext_val = value; 1901 break; 1902 case 8: 1903 *(__u64 *)ext_val = value; 1904 break; 1905 default: 1906 return -EINVAL; 1907 } 1908 ext->is_set = true; 1909 return 0; 1910 } 1911 1912 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1913 char *buf, void *data) 1914 { 1915 struct extern_desc *ext; 1916 char *sep, *value; 1917 int len, err = 0; 1918 void *ext_val; 1919 __u64 num; 1920 1921 if (!str_has_pfx(buf, "CONFIG_")) 1922 return 0; 1923 1924 sep = strchr(buf, '='); 1925 if (!sep) { 1926 pr_warn("failed to parse '%s': no separator\n", buf); 1927 return -EINVAL; 1928 } 1929 1930 /* Trim ending '\n' */ 1931 len = strlen(buf); 1932 if (buf[len - 1] == '\n') 1933 buf[len - 1] = '\0'; 1934 /* Split on '=' and ensure that a value is present. */ 1935 *sep = '\0'; 1936 if (!sep[1]) { 1937 *sep = '='; 1938 pr_warn("failed to parse '%s': no value\n", buf); 1939 return -EINVAL; 1940 } 1941 1942 ext = find_extern_by_name(obj, buf); 1943 if (!ext || ext->is_set) 1944 return 0; 1945 1946 ext_val = data + ext->kcfg.data_off; 1947 value = sep + 1; 1948 1949 switch (*value) { 1950 case 'y': case 'n': case 'm': 1951 err = set_kcfg_value_tri(ext, ext_val, *value); 1952 break; 1953 case '"': 1954 err = set_kcfg_value_str(ext, ext_val, value); 1955 break; 1956 default: 1957 /* assume integer */ 1958 err = parse_u64(value, &num); 1959 if (err) { 1960 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1961 return err; 1962 } 1963 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1964 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1965 return -EINVAL; 1966 } 1967 err = set_kcfg_value_num(ext, ext_val, num); 1968 break; 1969 } 1970 if (err) 1971 return err; 1972 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1973 return 0; 1974 } 1975 1976 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1977 { 1978 char buf[PATH_MAX]; 1979 struct utsname uts; 1980 int len, err = 0; 1981 gzFile file; 1982 1983 uname(&uts); 1984 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1985 if (len < 0) 1986 return -EINVAL; 1987 else if (len >= PATH_MAX) 1988 return -ENAMETOOLONG; 1989 1990 /* gzopen also accepts uncompressed files. */ 1991 file = gzopen(buf, "re"); 1992 if (!file) 1993 file = gzopen("/proc/config.gz", "re"); 1994 1995 if (!file) { 1996 pr_warn("failed to open system Kconfig\n"); 1997 return -ENOENT; 1998 } 1999 2000 while (gzgets(file, buf, sizeof(buf))) { 2001 err = bpf_object__process_kconfig_line(obj, buf, data); 2002 if (err) { 2003 pr_warn("error parsing system Kconfig line '%s': %d\n", 2004 buf, err); 2005 goto out; 2006 } 2007 } 2008 2009 out: 2010 gzclose(file); 2011 return err; 2012 } 2013 2014 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2015 const char *config, void *data) 2016 { 2017 char buf[PATH_MAX]; 2018 int err = 0; 2019 FILE *file; 2020 2021 file = fmemopen((void *)config, strlen(config), "r"); 2022 if (!file) { 2023 err = -errno; 2024 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2025 return err; 2026 } 2027 2028 while (fgets(buf, sizeof(buf), file)) { 2029 err = bpf_object__process_kconfig_line(obj, buf, data); 2030 if (err) { 2031 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2032 buf, err); 2033 break; 2034 } 2035 } 2036 2037 fclose(file); 2038 return err; 2039 } 2040 2041 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2042 { 2043 struct extern_desc *last_ext = NULL, *ext; 2044 size_t map_sz; 2045 int i, err; 2046 2047 for (i = 0; i < obj->nr_extern; i++) { 2048 ext = &obj->externs[i]; 2049 if (ext->type == EXT_KCFG) 2050 last_ext = ext; 2051 } 2052 2053 if (!last_ext) 2054 return 0; 2055 2056 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2057 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2058 ".kconfig", obj->efile.symbols_shndx, 2059 NULL, map_sz); 2060 if (err) 2061 return err; 2062 2063 obj->kconfig_map_idx = obj->nr_maps - 1; 2064 2065 return 0; 2066 } 2067 2068 const struct btf_type * 2069 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2070 { 2071 const struct btf_type *t = btf__type_by_id(btf, id); 2072 2073 if (res_id) 2074 *res_id = id; 2075 2076 while (btf_is_mod(t) || btf_is_typedef(t)) { 2077 if (res_id) 2078 *res_id = t->type; 2079 t = btf__type_by_id(btf, t->type); 2080 } 2081 2082 return t; 2083 } 2084 2085 static const struct btf_type * 2086 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2087 { 2088 const struct btf_type *t; 2089 2090 t = skip_mods_and_typedefs(btf, id, NULL); 2091 if (!btf_is_ptr(t)) 2092 return NULL; 2093 2094 t = skip_mods_and_typedefs(btf, t->type, res_id); 2095 2096 return btf_is_func_proto(t) ? t : NULL; 2097 } 2098 2099 static const char *__btf_kind_str(__u16 kind) 2100 { 2101 switch (kind) { 2102 case BTF_KIND_UNKN: return "void"; 2103 case BTF_KIND_INT: return "int"; 2104 case BTF_KIND_PTR: return "ptr"; 2105 case BTF_KIND_ARRAY: return "array"; 2106 case BTF_KIND_STRUCT: return "struct"; 2107 case BTF_KIND_UNION: return "union"; 2108 case BTF_KIND_ENUM: return "enum"; 2109 case BTF_KIND_FWD: return "fwd"; 2110 case BTF_KIND_TYPEDEF: return "typedef"; 2111 case BTF_KIND_VOLATILE: return "volatile"; 2112 case BTF_KIND_CONST: return "const"; 2113 case BTF_KIND_RESTRICT: return "restrict"; 2114 case BTF_KIND_FUNC: return "func"; 2115 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2116 case BTF_KIND_VAR: return "var"; 2117 case BTF_KIND_DATASEC: return "datasec"; 2118 case BTF_KIND_FLOAT: return "float"; 2119 case BTF_KIND_DECL_TAG: return "decl_tag"; 2120 case BTF_KIND_TYPE_TAG: return "type_tag"; 2121 case BTF_KIND_ENUM64: return "enum64"; 2122 default: return "unknown"; 2123 } 2124 } 2125 2126 const char *btf_kind_str(const struct btf_type *t) 2127 { 2128 return __btf_kind_str(btf_kind(t)); 2129 } 2130 2131 /* 2132 * Fetch integer attribute of BTF map definition. Such attributes are 2133 * represented using a pointer to an array, in which dimensionality of array 2134 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2135 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2136 * type definition, while using only sizeof(void *) space in ELF data section. 2137 */ 2138 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2139 const struct btf_member *m, __u32 *res) 2140 { 2141 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2142 const char *name = btf__name_by_offset(btf, m->name_off); 2143 const struct btf_array *arr_info; 2144 const struct btf_type *arr_t; 2145 2146 if (!btf_is_ptr(t)) { 2147 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2148 map_name, name, btf_kind_str(t)); 2149 return false; 2150 } 2151 2152 arr_t = btf__type_by_id(btf, t->type); 2153 if (!arr_t) { 2154 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2155 map_name, name, t->type); 2156 return false; 2157 } 2158 if (!btf_is_array(arr_t)) { 2159 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2160 map_name, name, btf_kind_str(arr_t)); 2161 return false; 2162 } 2163 arr_info = btf_array(arr_t); 2164 *res = arr_info->nelems; 2165 return true; 2166 } 2167 2168 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2169 { 2170 int len; 2171 2172 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2173 if (len < 0) 2174 return -EINVAL; 2175 if (len >= buf_sz) 2176 return -ENAMETOOLONG; 2177 2178 return 0; 2179 } 2180 2181 static int build_map_pin_path(struct bpf_map *map, const char *path) 2182 { 2183 char buf[PATH_MAX]; 2184 int err; 2185 2186 if (!path) 2187 path = "/sys/fs/bpf"; 2188 2189 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2190 if (err) 2191 return err; 2192 2193 return bpf_map__set_pin_path(map, buf); 2194 } 2195 2196 /* should match definition in bpf_helpers.h */ 2197 enum libbpf_pin_type { 2198 LIBBPF_PIN_NONE, 2199 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2200 LIBBPF_PIN_BY_NAME, 2201 }; 2202 2203 int parse_btf_map_def(const char *map_name, struct btf *btf, 2204 const struct btf_type *def_t, bool strict, 2205 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2206 { 2207 const struct btf_type *t; 2208 const struct btf_member *m; 2209 bool is_inner = inner_def == NULL; 2210 int vlen, i; 2211 2212 vlen = btf_vlen(def_t); 2213 m = btf_members(def_t); 2214 for (i = 0; i < vlen; i++, m++) { 2215 const char *name = btf__name_by_offset(btf, m->name_off); 2216 2217 if (!name) { 2218 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2219 return -EINVAL; 2220 } 2221 if (strcmp(name, "type") == 0) { 2222 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2223 return -EINVAL; 2224 map_def->parts |= MAP_DEF_MAP_TYPE; 2225 } else if (strcmp(name, "max_entries") == 0) { 2226 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2227 return -EINVAL; 2228 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2229 } else if (strcmp(name, "map_flags") == 0) { 2230 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2231 return -EINVAL; 2232 map_def->parts |= MAP_DEF_MAP_FLAGS; 2233 } else if (strcmp(name, "numa_node") == 0) { 2234 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2235 return -EINVAL; 2236 map_def->parts |= MAP_DEF_NUMA_NODE; 2237 } else if (strcmp(name, "key_size") == 0) { 2238 __u32 sz; 2239 2240 if (!get_map_field_int(map_name, btf, m, &sz)) 2241 return -EINVAL; 2242 if (map_def->key_size && map_def->key_size != sz) { 2243 pr_warn("map '%s': conflicting key size %u != %u.\n", 2244 map_name, map_def->key_size, sz); 2245 return -EINVAL; 2246 } 2247 map_def->key_size = sz; 2248 map_def->parts |= MAP_DEF_KEY_SIZE; 2249 } else if (strcmp(name, "key") == 0) { 2250 __s64 sz; 2251 2252 t = btf__type_by_id(btf, m->type); 2253 if (!t) { 2254 pr_warn("map '%s': key type [%d] not found.\n", 2255 map_name, m->type); 2256 return -EINVAL; 2257 } 2258 if (!btf_is_ptr(t)) { 2259 pr_warn("map '%s': key spec is not PTR: %s.\n", 2260 map_name, btf_kind_str(t)); 2261 return -EINVAL; 2262 } 2263 sz = btf__resolve_size(btf, t->type); 2264 if (sz < 0) { 2265 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2266 map_name, t->type, (ssize_t)sz); 2267 return sz; 2268 } 2269 if (map_def->key_size && map_def->key_size != sz) { 2270 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2271 map_name, map_def->key_size, (ssize_t)sz); 2272 return -EINVAL; 2273 } 2274 map_def->key_size = sz; 2275 map_def->key_type_id = t->type; 2276 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2277 } else if (strcmp(name, "value_size") == 0) { 2278 __u32 sz; 2279 2280 if (!get_map_field_int(map_name, btf, m, &sz)) 2281 return -EINVAL; 2282 if (map_def->value_size && map_def->value_size != sz) { 2283 pr_warn("map '%s': conflicting value size %u != %u.\n", 2284 map_name, map_def->value_size, sz); 2285 return -EINVAL; 2286 } 2287 map_def->value_size = sz; 2288 map_def->parts |= MAP_DEF_VALUE_SIZE; 2289 } else if (strcmp(name, "value") == 0) { 2290 __s64 sz; 2291 2292 t = btf__type_by_id(btf, m->type); 2293 if (!t) { 2294 pr_warn("map '%s': value type [%d] not found.\n", 2295 map_name, m->type); 2296 return -EINVAL; 2297 } 2298 if (!btf_is_ptr(t)) { 2299 pr_warn("map '%s': value spec is not PTR: %s.\n", 2300 map_name, btf_kind_str(t)); 2301 return -EINVAL; 2302 } 2303 sz = btf__resolve_size(btf, t->type); 2304 if (sz < 0) { 2305 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2306 map_name, t->type, (ssize_t)sz); 2307 return sz; 2308 } 2309 if (map_def->value_size && map_def->value_size != sz) { 2310 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2311 map_name, map_def->value_size, (ssize_t)sz); 2312 return -EINVAL; 2313 } 2314 map_def->value_size = sz; 2315 map_def->value_type_id = t->type; 2316 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2317 } 2318 else if (strcmp(name, "values") == 0) { 2319 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2320 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2321 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2322 char inner_map_name[128]; 2323 int err; 2324 2325 if (is_inner) { 2326 pr_warn("map '%s': multi-level inner maps not supported.\n", 2327 map_name); 2328 return -ENOTSUP; 2329 } 2330 if (i != vlen - 1) { 2331 pr_warn("map '%s': '%s' member should be last.\n", 2332 map_name, name); 2333 return -EINVAL; 2334 } 2335 if (!is_map_in_map && !is_prog_array) { 2336 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2337 map_name); 2338 return -ENOTSUP; 2339 } 2340 if (map_def->value_size && map_def->value_size != 4) { 2341 pr_warn("map '%s': conflicting value size %u != 4.\n", 2342 map_name, map_def->value_size); 2343 return -EINVAL; 2344 } 2345 map_def->value_size = 4; 2346 t = btf__type_by_id(btf, m->type); 2347 if (!t) { 2348 pr_warn("map '%s': %s type [%d] not found.\n", 2349 map_name, desc, m->type); 2350 return -EINVAL; 2351 } 2352 if (!btf_is_array(t) || btf_array(t)->nelems) { 2353 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2354 map_name, desc); 2355 return -EINVAL; 2356 } 2357 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2358 if (!btf_is_ptr(t)) { 2359 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2360 map_name, desc, btf_kind_str(t)); 2361 return -EINVAL; 2362 } 2363 t = skip_mods_and_typedefs(btf, t->type, NULL); 2364 if (is_prog_array) { 2365 if (!btf_is_func_proto(t)) { 2366 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2367 map_name, btf_kind_str(t)); 2368 return -EINVAL; 2369 } 2370 continue; 2371 } 2372 if (!btf_is_struct(t)) { 2373 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2374 map_name, btf_kind_str(t)); 2375 return -EINVAL; 2376 } 2377 2378 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2379 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2380 if (err) 2381 return err; 2382 2383 map_def->parts |= MAP_DEF_INNER_MAP; 2384 } else if (strcmp(name, "pinning") == 0) { 2385 __u32 val; 2386 2387 if (is_inner) { 2388 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2389 return -EINVAL; 2390 } 2391 if (!get_map_field_int(map_name, btf, m, &val)) 2392 return -EINVAL; 2393 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2394 pr_warn("map '%s': invalid pinning value %u.\n", 2395 map_name, val); 2396 return -EINVAL; 2397 } 2398 map_def->pinning = val; 2399 map_def->parts |= MAP_DEF_PINNING; 2400 } else if (strcmp(name, "map_extra") == 0) { 2401 __u32 map_extra; 2402 2403 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2404 return -EINVAL; 2405 map_def->map_extra = map_extra; 2406 map_def->parts |= MAP_DEF_MAP_EXTRA; 2407 } else { 2408 if (strict) { 2409 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2410 return -ENOTSUP; 2411 } 2412 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2413 } 2414 } 2415 2416 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2417 pr_warn("map '%s': map type isn't specified.\n", map_name); 2418 return -EINVAL; 2419 } 2420 2421 return 0; 2422 } 2423 2424 static size_t adjust_ringbuf_sz(size_t sz) 2425 { 2426 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2427 __u32 mul; 2428 2429 /* if user forgot to set any size, make sure they see error */ 2430 if (sz == 0) 2431 return 0; 2432 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2433 * a power-of-2 multiple of kernel's page size. If user diligently 2434 * satisified these conditions, pass the size through. 2435 */ 2436 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2437 return sz; 2438 2439 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2440 * user-set size to satisfy both user size request and kernel 2441 * requirements and substitute correct max_entries for map creation. 2442 */ 2443 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2444 if (mul * page_sz > sz) 2445 return mul * page_sz; 2446 } 2447 2448 /* if it's impossible to satisfy the conditions (i.e., user size is 2449 * very close to UINT_MAX but is not a power-of-2 multiple of 2450 * page_size) then just return original size and let kernel reject it 2451 */ 2452 return sz; 2453 } 2454 2455 static bool map_is_ringbuf(const struct bpf_map *map) 2456 { 2457 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2458 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2459 } 2460 2461 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2462 { 2463 map->def.type = def->map_type; 2464 map->def.key_size = def->key_size; 2465 map->def.value_size = def->value_size; 2466 map->def.max_entries = def->max_entries; 2467 map->def.map_flags = def->map_flags; 2468 map->map_extra = def->map_extra; 2469 2470 map->numa_node = def->numa_node; 2471 map->btf_key_type_id = def->key_type_id; 2472 map->btf_value_type_id = def->value_type_id; 2473 2474 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2475 if (map_is_ringbuf(map)) 2476 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2477 2478 if (def->parts & MAP_DEF_MAP_TYPE) 2479 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2480 2481 if (def->parts & MAP_DEF_KEY_TYPE) 2482 pr_debug("map '%s': found key [%u], sz = %u.\n", 2483 map->name, def->key_type_id, def->key_size); 2484 else if (def->parts & MAP_DEF_KEY_SIZE) 2485 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2486 2487 if (def->parts & MAP_DEF_VALUE_TYPE) 2488 pr_debug("map '%s': found value [%u], sz = %u.\n", 2489 map->name, def->value_type_id, def->value_size); 2490 else if (def->parts & MAP_DEF_VALUE_SIZE) 2491 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2492 2493 if (def->parts & MAP_DEF_MAX_ENTRIES) 2494 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2495 if (def->parts & MAP_DEF_MAP_FLAGS) 2496 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2497 if (def->parts & MAP_DEF_MAP_EXTRA) 2498 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2499 (unsigned long long)def->map_extra); 2500 if (def->parts & MAP_DEF_PINNING) 2501 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2502 if (def->parts & MAP_DEF_NUMA_NODE) 2503 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2504 2505 if (def->parts & MAP_DEF_INNER_MAP) 2506 pr_debug("map '%s': found inner map definition.\n", map->name); 2507 } 2508 2509 static const char *btf_var_linkage_str(__u32 linkage) 2510 { 2511 switch (linkage) { 2512 case BTF_VAR_STATIC: return "static"; 2513 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2514 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2515 default: return "unknown"; 2516 } 2517 } 2518 2519 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2520 const struct btf_type *sec, 2521 int var_idx, int sec_idx, 2522 const Elf_Data *data, bool strict, 2523 const char *pin_root_path) 2524 { 2525 struct btf_map_def map_def = {}, inner_def = {}; 2526 const struct btf_type *var, *def; 2527 const struct btf_var_secinfo *vi; 2528 const struct btf_var *var_extra; 2529 const char *map_name; 2530 struct bpf_map *map; 2531 int err; 2532 2533 vi = btf_var_secinfos(sec) + var_idx; 2534 var = btf__type_by_id(obj->btf, vi->type); 2535 var_extra = btf_var(var); 2536 map_name = btf__name_by_offset(obj->btf, var->name_off); 2537 2538 if (map_name == NULL || map_name[0] == '\0') { 2539 pr_warn("map #%d: empty name.\n", var_idx); 2540 return -EINVAL; 2541 } 2542 if ((__u64)vi->offset + vi->size > data->d_size) { 2543 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2544 return -EINVAL; 2545 } 2546 if (!btf_is_var(var)) { 2547 pr_warn("map '%s': unexpected var kind %s.\n", 2548 map_name, btf_kind_str(var)); 2549 return -EINVAL; 2550 } 2551 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2552 pr_warn("map '%s': unsupported map linkage %s.\n", 2553 map_name, btf_var_linkage_str(var_extra->linkage)); 2554 return -EOPNOTSUPP; 2555 } 2556 2557 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2558 if (!btf_is_struct(def)) { 2559 pr_warn("map '%s': unexpected def kind %s.\n", 2560 map_name, btf_kind_str(var)); 2561 return -EINVAL; 2562 } 2563 if (def->size > vi->size) { 2564 pr_warn("map '%s': invalid def size.\n", map_name); 2565 return -EINVAL; 2566 } 2567 2568 map = bpf_object__add_map(obj); 2569 if (IS_ERR(map)) 2570 return PTR_ERR(map); 2571 map->name = strdup(map_name); 2572 if (!map->name) { 2573 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2574 return -ENOMEM; 2575 } 2576 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2577 map->def.type = BPF_MAP_TYPE_UNSPEC; 2578 map->sec_idx = sec_idx; 2579 map->sec_offset = vi->offset; 2580 map->btf_var_idx = var_idx; 2581 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2582 map_name, map->sec_idx, map->sec_offset); 2583 2584 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2585 if (err) 2586 return err; 2587 2588 fill_map_from_def(map, &map_def); 2589 2590 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2591 err = build_map_pin_path(map, pin_root_path); 2592 if (err) { 2593 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2594 return err; 2595 } 2596 } 2597 2598 if (map_def.parts & MAP_DEF_INNER_MAP) { 2599 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2600 if (!map->inner_map) 2601 return -ENOMEM; 2602 map->inner_map->fd = -1; 2603 map->inner_map->sec_idx = sec_idx; 2604 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2605 if (!map->inner_map->name) 2606 return -ENOMEM; 2607 sprintf(map->inner_map->name, "%s.inner", map_name); 2608 2609 fill_map_from_def(map->inner_map, &inner_def); 2610 } 2611 2612 err = map_fill_btf_type_info(obj, map); 2613 if (err) 2614 return err; 2615 2616 return 0; 2617 } 2618 2619 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2620 const char *pin_root_path) 2621 { 2622 const struct btf_type *sec = NULL; 2623 int nr_types, i, vlen, err; 2624 const struct btf_type *t; 2625 const char *name; 2626 Elf_Data *data; 2627 Elf_Scn *scn; 2628 2629 if (obj->efile.btf_maps_shndx < 0) 2630 return 0; 2631 2632 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2633 data = elf_sec_data(obj, scn); 2634 if (!scn || !data) { 2635 pr_warn("elf: failed to get %s map definitions for %s\n", 2636 MAPS_ELF_SEC, obj->path); 2637 return -EINVAL; 2638 } 2639 2640 nr_types = btf__type_cnt(obj->btf); 2641 for (i = 1; i < nr_types; i++) { 2642 t = btf__type_by_id(obj->btf, i); 2643 if (!btf_is_datasec(t)) 2644 continue; 2645 name = btf__name_by_offset(obj->btf, t->name_off); 2646 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2647 sec = t; 2648 obj->efile.btf_maps_sec_btf_id = i; 2649 break; 2650 } 2651 } 2652 2653 if (!sec) { 2654 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2655 return -ENOENT; 2656 } 2657 2658 vlen = btf_vlen(sec); 2659 for (i = 0; i < vlen; i++) { 2660 err = bpf_object__init_user_btf_map(obj, sec, i, 2661 obj->efile.btf_maps_shndx, 2662 data, strict, 2663 pin_root_path); 2664 if (err) 2665 return err; 2666 } 2667 2668 return 0; 2669 } 2670 2671 static int bpf_object__init_maps(struct bpf_object *obj, 2672 const struct bpf_object_open_opts *opts) 2673 { 2674 const char *pin_root_path; 2675 bool strict; 2676 int err = 0; 2677 2678 strict = !OPTS_GET(opts, relaxed_maps, false); 2679 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2680 2681 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2682 err = err ?: bpf_object__init_global_data_maps(obj); 2683 err = err ?: bpf_object__init_kconfig_map(obj); 2684 err = err ?: bpf_object_init_struct_ops(obj); 2685 2686 return err; 2687 } 2688 2689 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2690 { 2691 Elf64_Shdr *sh; 2692 2693 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2694 if (!sh) 2695 return false; 2696 2697 return sh->sh_flags & SHF_EXECINSTR; 2698 } 2699 2700 static bool btf_needs_sanitization(struct bpf_object *obj) 2701 { 2702 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2703 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2704 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2705 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2706 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2707 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2708 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2709 2710 return !has_func || !has_datasec || !has_func_global || !has_float || 2711 !has_decl_tag || !has_type_tag || !has_enum64; 2712 } 2713 2714 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2715 { 2716 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2717 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2718 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2719 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2720 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2721 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2722 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2723 int enum64_placeholder_id = 0; 2724 struct btf_type *t; 2725 int i, j, vlen; 2726 2727 for (i = 1; i < btf__type_cnt(btf); i++) { 2728 t = (struct btf_type *)btf__type_by_id(btf, i); 2729 2730 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2731 /* replace VAR/DECL_TAG with INT */ 2732 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2733 /* 2734 * using size = 1 is the safest choice, 4 will be too 2735 * big and cause kernel BTF validation failure if 2736 * original variable took less than 4 bytes 2737 */ 2738 t->size = 1; 2739 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2740 } else if (!has_datasec && btf_is_datasec(t)) { 2741 /* replace DATASEC with STRUCT */ 2742 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2743 struct btf_member *m = btf_members(t); 2744 struct btf_type *vt; 2745 char *name; 2746 2747 name = (char *)btf__name_by_offset(btf, t->name_off); 2748 while (*name) { 2749 if (*name == '.') 2750 *name = '_'; 2751 name++; 2752 } 2753 2754 vlen = btf_vlen(t); 2755 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2756 for (j = 0; j < vlen; j++, v++, m++) { 2757 /* order of field assignments is important */ 2758 m->offset = v->offset * 8; 2759 m->type = v->type; 2760 /* preserve variable name as member name */ 2761 vt = (void *)btf__type_by_id(btf, v->type); 2762 m->name_off = vt->name_off; 2763 } 2764 } else if (!has_func && btf_is_func_proto(t)) { 2765 /* replace FUNC_PROTO with ENUM */ 2766 vlen = btf_vlen(t); 2767 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2768 t->size = sizeof(__u32); /* kernel enforced */ 2769 } else if (!has_func && btf_is_func(t)) { 2770 /* replace FUNC with TYPEDEF */ 2771 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2772 } else if (!has_func_global && btf_is_func(t)) { 2773 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2774 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2775 } else if (!has_float && btf_is_float(t)) { 2776 /* replace FLOAT with an equally-sized empty STRUCT; 2777 * since C compilers do not accept e.g. "float" as a 2778 * valid struct name, make it anonymous 2779 */ 2780 t->name_off = 0; 2781 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2782 } else if (!has_type_tag && btf_is_type_tag(t)) { 2783 /* replace TYPE_TAG with a CONST */ 2784 t->name_off = 0; 2785 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2786 } else if (!has_enum64 && btf_is_enum(t)) { 2787 /* clear the kflag */ 2788 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2789 } else if (!has_enum64 && btf_is_enum64(t)) { 2790 /* replace ENUM64 with a union */ 2791 struct btf_member *m; 2792 2793 if (enum64_placeholder_id == 0) { 2794 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2795 if (enum64_placeholder_id < 0) 2796 return enum64_placeholder_id; 2797 2798 t = (struct btf_type *)btf__type_by_id(btf, i); 2799 } 2800 2801 m = btf_members(t); 2802 vlen = btf_vlen(t); 2803 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2804 for (j = 0; j < vlen; j++, m++) { 2805 m->type = enum64_placeholder_id; 2806 m->offset = 0; 2807 } 2808 } 2809 } 2810 2811 return 0; 2812 } 2813 2814 static bool libbpf_needs_btf(const struct bpf_object *obj) 2815 { 2816 return obj->efile.btf_maps_shndx >= 0 || 2817 obj->efile.st_ops_shndx >= 0 || 2818 obj->efile.st_ops_link_shndx >= 0 || 2819 obj->nr_extern > 0; 2820 } 2821 2822 static bool kernel_needs_btf(const struct bpf_object *obj) 2823 { 2824 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2825 } 2826 2827 static int bpf_object__init_btf(struct bpf_object *obj, 2828 Elf_Data *btf_data, 2829 Elf_Data *btf_ext_data) 2830 { 2831 int err = -ENOENT; 2832 2833 if (btf_data) { 2834 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2835 err = libbpf_get_error(obj->btf); 2836 if (err) { 2837 obj->btf = NULL; 2838 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2839 goto out; 2840 } 2841 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2842 btf__set_pointer_size(obj->btf, 8); 2843 } 2844 if (btf_ext_data) { 2845 struct btf_ext_info *ext_segs[3]; 2846 int seg_num, sec_num; 2847 2848 if (!obj->btf) { 2849 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2850 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2851 goto out; 2852 } 2853 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2854 err = libbpf_get_error(obj->btf_ext); 2855 if (err) { 2856 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2857 BTF_EXT_ELF_SEC, err); 2858 obj->btf_ext = NULL; 2859 goto out; 2860 } 2861 2862 /* setup .BTF.ext to ELF section mapping */ 2863 ext_segs[0] = &obj->btf_ext->func_info; 2864 ext_segs[1] = &obj->btf_ext->line_info; 2865 ext_segs[2] = &obj->btf_ext->core_relo_info; 2866 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2867 struct btf_ext_info *seg = ext_segs[seg_num]; 2868 const struct btf_ext_info_sec *sec; 2869 const char *sec_name; 2870 Elf_Scn *scn; 2871 2872 if (seg->sec_cnt == 0) 2873 continue; 2874 2875 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2876 if (!seg->sec_idxs) { 2877 err = -ENOMEM; 2878 goto out; 2879 } 2880 2881 sec_num = 0; 2882 for_each_btf_ext_sec(seg, sec) { 2883 /* preventively increment index to avoid doing 2884 * this before every continue below 2885 */ 2886 sec_num++; 2887 2888 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2889 if (str_is_empty(sec_name)) 2890 continue; 2891 scn = elf_sec_by_name(obj, sec_name); 2892 if (!scn) 2893 continue; 2894 2895 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2896 } 2897 } 2898 } 2899 out: 2900 if (err && libbpf_needs_btf(obj)) { 2901 pr_warn("BTF is required, but is missing or corrupted.\n"); 2902 return err; 2903 } 2904 return 0; 2905 } 2906 2907 static int compare_vsi_off(const void *_a, const void *_b) 2908 { 2909 const struct btf_var_secinfo *a = _a; 2910 const struct btf_var_secinfo *b = _b; 2911 2912 return a->offset - b->offset; 2913 } 2914 2915 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2916 struct btf_type *t) 2917 { 2918 __u32 size = 0, i, vars = btf_vlen(t); 2919 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2920 struct btf_var_secinfo *vsi; 2921 bool fixup_offsets = false; 2922 int err; 2923 2924 if (!sec_name) { 2925 pr_debug("No name found in string section for DATASEC kind.\n"); 2926 return -ENOENT; 2927 } 2928 2929 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2930 * variable offsets set at the previous step. Further, not every 2931 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2932 * all fixups altogether for such sections and go straight to sorting 2933 * VARs within their DATASEC. 2934 */ 2935 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2936 goto sort_vars; 2937 2938 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2939 * fix this up. But BPF static linker already fixes this up and fills 2940 * all the sizes and offsets during static linking. So this step has 2941 * to be optional. But the STV_HIDDEN handling is non-optional for any 2942 * non-extern DATASEC, so the variable fixup loop below handles both 2943 * functions at the same time, paying the cost of BTF VAR <-> ELF 2944 * symbol matching just once. 2945 */ 2946 if (t->size == 0) { 2947 err = find_elf_sec_sz(obj, sec_name, &size); 2948 if (err || !size) { 2949 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2950 sec_name, size, err); 2951 return -ENOENT; 2952 } 2953 2954 t->size = size; 2955 fixup_offsets = true; 2956 } 2957 2958 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2959 const struct btf_type *t_var; 2960 struct btf_var *var; 2961 const char *var_name; 2962 Elf64_Sym *sym; 2963 2964 t_var = btf__type_by_id(btf, vsi->type); 2965 if (!t_var || !btf_is_var(t_var)) { 2966 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2967 return -EINVAL; 2968 } 2969 2970 var = btf_var(t_var); 2971 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2972 continue; 2973 2974 var_name = btf__name_by_offset(btf, t_var->name_off); 2975 if (!var_name) { 2976 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2977 sec_name, i); 2978 return -ENOENT; 2979 } 2980 2981 sym = find_elf_var_sym(obj, var_name); 2982 if (IS_ERR(sym)) { 2983 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2984 sec_name, var_name); 2985 return -ENOENT; 2986 } 2987 2988 if (fixup_offsets) 2989 vsi->offset = sym->st_value; 2990 2991 /* if variable is a global/weak symbol, but has restricted 2992 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2993 * as static. This follows similar logic for functions (BPF 2994 * subprogs) and influences libbpf's further decisions about 2995 * whether to make global data BPF array maps as 2996 * BPF_F_MMAPABLE. 2997 */ 2998 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2999 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3000 var->linkage = BTF_VAR_STATIC; 3001 } 3002 3003 sort_vars: 3004 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3005 return 0; 3006 } 3007 3008 static int bpf_object_fixup_btf(struct bpf_object *obj) 3009 { 3010 int i, n, err = 0; 3011 3012 if (!obj->btf) 3013 return 0; 3014 3015 n = btf__type_cnt(obj->btf); 3016 for (i = 1; i < n; i++) { 3017 struct btf_type *t = btf_type_by_id(obj->btf, i); 3018 3019 /* Loader needs to fix up some of the things compiler 3020 * couldn't get its hands on while emitting BTF. This 3021 * is section size and global variable offset. We use 3022 * the info from the ELF itself for this purpose. 3023 */ 3024 if (btf_is_datasec(t)) { 3025 err = btf_fixup_datasec(obj, obj->btf, t); 3026 if (err) 3027 return err; 3028 } 3029 } 3030 3031 return 0; 3032 } 3033 3034 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3035 { 3036 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3037 prog->type == BPF_PROG_TYPE_LSM) 3038 return true; 3039 3040 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3041 * also need vmlinux BTF 3042 */ 3043 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3044 return true; 3045 3046 return false; 3047 } 3048 3049 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3050 { 3051 struct bpf_program *prog; 3052 int i; 3053 3054 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3055 * is not specified 3056 */ 3057 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3058 return true; 3059 3060 /* Support for typed ksyms needs kernel BTF */ 3061 for (i = 0; i < obj->nr_extern; i++) { 3062 const struct extern_desc *ext; 3063 3064 ext = &obj->externs[i]; 3065 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3066 return true; 3067 } 3068 3069 bpf_object__for_each_program(prog, obj) { 3070 if (!prog->autoload) 3071 continue; 3072 if (prog_needs_vmlinux_btf(prog)) 3073 return true; 3074 } 3075 3076 return false; 3077 } 3078 3079 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3080 { 3081 int err; 3082 3083 /* btf_vmlinux could be loaded earlier */ 3084 if (obj->btf_vmlinux || obj->gen_loader) 3085 return 0; 3086 3087 if (!force && !obj_needs_vmlinux_btf(obj)) 3088 return 0; 3089 3090 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3091 err = libbpf_get_error(obj->btf_vmlinux); 3092 if (err) { 3093 pr_warn("Error loading vmlinux BTF: %d\n", err); 3094 obj->btf_vmlinux = NULL; 3095 return err; 3096 } 3097 return 0; 3098 } 3099 3100 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3101 { 3102 struct btf *kern_btf = obj->btf; 3103 bool btf_mandatory, sanitize; 3104 int i, err = 0; 3105 3106 if (!obj->btf) 3107 return 0; 3108 3109 if (!kernel_supports(obj, FEAT_BTF)) { 3110 if (kernel_needs_btf(obj)) { 3111 err = -EOPNOTSUPP; 3112 goto report; 3113 } 3114 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3115 return 0; 3116 } 3117 3118 /* Even though some subprogs are global/weak, user might prefer more 3119 * permissive BPF verification process that BPF verifier performs for 3120 * static functions, taking into account more context from the caller 3121 * functions. In such case, they need to mark such subprogs with 3122 * __attribute__((visibility("hidden"))) and libbpf will adjust 3123 * corresponding FUNC BTF type to be marked as static and trigger more 3124 * involved BPF verification process. 3125 */ 3126 for (i = 0; i < obj->nr_programs; i++) { 3127 struct bpf_program *prog = &obj->programs[i]; 3128 struct btf_type *t; 3129 const char *name; 3130 int j, n; 3131 3132 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3133 continue; 3134 3135 n = btf__type_cnt(obj->btf); 3136 for (j = 1; j < n; j++) { 3137 t = btf_type_by_id(obj->btf, j); 3138 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3139 continue; 3140 3141 name = btf__str_by_offset(obj->btf, t->name_off); 3142 if (strcmp(name, prog->name) != 0) 3143 continue; 3144 3145 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3146 break; 3147 } 3148 } 3149 3150 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG)) 3151 goto skip_exception_cb; 3152 for (i = 0; i < obj->nr_programs; i++) { 3153 struct bpf_program *prog = &obj->programs[i]; 3154 int j, k, n; 3155 3156 if (prog_is_subprog(obj, prog)) 3157 continue; 3158 n = btf__type_cnt(obj->btf); 3159 for (j = 1; j < n; j++) { 3160 const char *str = "exception_callback:", *name; 3161 size_t len = strlen(str); 3162 struct btf_type *t; 3163 3164 t = btf_type_by_id(obj->btf, j); 3165 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 3166 continue; 3167 3168 name = btf__str_by_offset(obj->btf, t->name_off); 3169 if (strncmp(name, str, len)) 3170 continue; 3171 3172 t = btf_type_by_id(obj->btf, t->type); 3173 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3174 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 3175 prog->name); 3176 return -EINVAL; 3177 } 3178 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off))) 3179 continue; 3180 /* Multiple callbacks are specified for the same prog, 3181 * the verifier will eventually return an error for this 3182 * case, hence simply skip appending a subprog. 3183 */ 3184 if (prog->exception_cb_idx >= 0) { 3185 prog->exception_cb_idx = -1; 3186 break; 3187 } 3188 3189 name += len; 3190 if (str_is_empty(name)) { 3191 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 3192 prog->name); 3193 return -EINVAL; 3194 } 3195 3196 for (k = 0; k < obj->nr_programs; k++) { 3197 struct bpf_program *subprog = &obj->programs[k]; 3198 3199 if (!prog_is_subprog(obj, subprog)) 3200 continue; 3201 if (strcmp(name, subprog->name)) 3202 continue; 3203 /* Enforce non-hidden, as from verifier point of 3204 * view it expects global functions, whereas the 3205 * mark_btf_static fixes up linkage as static. 3206 */ 3207 if (!subprog->sym_global || subprog->mark_btf_static) { 3208 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 3209 prog->name, subprog->name); 3210 return -EINVAL; 3211 } 3212 /* Let's see if we already saw a static exception callback with the same name */ 3213 if (prog->exception_cb_idx >= 0) { 3214 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 3215 prog->name, subprog->name); 3216 return -EINVAL; 3217 } 3218 prog->exception_cb_idx = k; 3219 break; 3220 } 3221 3222 if (prog->exception_cb_idx >= 0) 3223 continue; 3224 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 3225 return -ENOENT; 3226 } 3227 } 3228 skip_exception_cb: 3229 3230 sanitize = btf_needs_sanitization(obj); 3231 if (sanitize) { 3232 const void *raw_data; 3233 __u32 sz; 3234 3235 /* clone BTF to sanitize a copy and leave the original intact */ 3236 raw_data = btf__raw_data(obj->btf, &sz); 3237 kern_btf = btf__new(raw_data, sz); 3238 err = libbpf_get_error(kern_btf); 3239 if (err) 3240 return err; 3241 3242 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3243 btf__set_pointer_size(obj->btf, 8); 3244 err = bpf_object__sanitize_btf(obj, kern_btf); 3245 if (err) 3246 return err; 3247 } 3248 3249 if (obj->gen_loader) { 3250 __u32 raw_size = 0; 3251 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3252 3253 if (!raw_data) 3254 return -ENOMEM; 3255 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3256 /* Pretend to have valid FD to pass various fd >= 0 checks. 3257 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3258 */ 3259 btf__set_fd(kern_btf, 0); 3260 } else { 3261 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3262 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3263 obj->log_level ? 1 : 0); 3264 } 3265 if (sanitize) { 3266 if (!err) { 3267 /* move fd to libbpf's BTF */ 3268 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3269 btf__set_fd(kern_btf, -1); 3270 } 3271 btf__free(kern_btf); 3272 } 3273 report: 3274 if (err) { 3275 btf_mandatory = kernel_needs_btf(obj); 3276 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3277 btf_mandatory ? "BTF is mandatory, can't proceed." 3278 : "BTF is optional, ignoring."); 3279 if (!btf_mandatory) 3280 err = 0; 3281 } 3282 return err; 3283 } 3284 3285 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3286 { 3287 const char *name; 3288 3289 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3290 if (!name) { 3291 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3292 off, obj->path, elf_errmsg(-1)); 3293 return NULL; 3294 } 3295 3296 return name; 3297 } 3298 3299 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3300 { 3301 const char *name; 3302 3303 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3304 if (!name) { 3305 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3306 off, obj->path, elf_errmsg(-1)); 3307 return NULL; 3308 } 3309 3310 return name; 3311 } 3312 3313 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3314 { 3315 Elf_Scn *scn; 3316 3317 scn = elf_getscn(obj->efile.elf, idx); 3318 if (!scn) { 3319 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3320 idx, obj->path, elf_errmsg(-1)); 3321 return NULL; 3322 } 3323 return scn; 3324 } 3325 3326 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3327 { 3328 Elf_Scn *scn = NULL; 3329 Elf *elf = obj->efile.elf; 3330 const char *sec_name; 3331 3332 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3333 sec_name = elf_sec_name(obj, scn); 3334 if (!sec_name) 3335 return NULL; 3336 3337 if (strcmp(sec_name, name) != 0) 3338 continue; 3339 3340 return scn; 3341 } 3342 return NULL; 3343 } 3344 3345 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3346 { 3347 Elf64_Shdr *shdr; 3348 3349 if (!scn) 3350 return NULL; 3351 3352 shdr = elf64_getshdr(scn); 3353 if (!shdr) { 3354 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3355 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3356 return NULL; 3357 } 3358 3359 return shdr; 3360 } 3361 3362 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3363 { 3364 const char *name; 3365 Elf64_Shdr *sh; 3366 3367 if (!scn) 3368 return NULL; 3369 3370 sh = elf_sec_hdr(obj, scn); 3371 if (!sh) 3372 return NULL; 3373 3374 name = elf_sec_str(obj, sh->sh_name); 3375 if (!name) { 3376 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3377 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3378 return NULL; 3379 } 3380 3381 return name; 3382 } 3383 3384 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3385 { 3386 Elf_Data *data; 3387 3388 if (!scn) 3389 return NULL; 3390 3391 data = elf_getdata(scn, 0); 3392 if (!data) { 3393 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3394 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3395 obj->path, elf_errmsg(-1)); 3396 return NULL; 3397 } 3398 3399 return data; 3400 } 3401 3402 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3403 { 3404 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3405 return NULL; 3406 3407 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3408 } 3409 3410 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3411 { 3412 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3413 return NULL; 3414 3415 return (Elf64_Rel *)data->d_buf + idx; 3416 } 3417 3418 static bool is_sec_name_dwarf(const char *name) 3419 { 3420 /* approximation, but the actual list is too long */ 3421 return str_has_pfx(name, ".debug_"); 3422 } 3423 3424 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3425 { 3426 /* no special handling of .strtab */ 3427 if (hdr->sh_type == SHT_STRTAB) 3428 return true; 3429 3430 /* ignore .llvm_addrsig section as well */ 3431 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3432 return true; 3433 3434 /* no subprograms will lead to an empty .text section, ignore it */ 3435 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3436 strcmp(name, ".text") == 0) 3437 return true; 3438 3439 /* DWARF sections */ 3440 if (is_sec_name_dwarf(name)) 3441 return true; 3442 3443 if (str_has_pfx(name, ".rel")) { 3444 name += sizeof(".rel") - 1; 3445 /* DWARF section relocations */ 3446 if (is_sec_name_dwarf(name)) 3447 return true; 3448 3449 /* .BTF and .BTF.ext don't need relocations */ 3450 if (strcmp(name, BTF_ELF_SEC) == 0 || 3451 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3452 return true; 3453 } 3454 3455 return false; 3456 } 3457 3458 static int cmp_progs(const void *_a, const void *_b) 3459 { 3460 const struct bpf_program *a = _a; 3461 const struct bpf_program *b = _b; 3462 3463 if (a->sec_idx != b->sec_idx) 3464 return a->sec_idx < b->sec_idx ? -1 : 1; 3465 3466 /* sec_insn_off can't be the same within the section */ 3467 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3468 } 3469 3470 static int bpf_object__elf_collect(struct bpf_object *obj) 3471 { 3472 struct elf_sec_desc *sec_desc; 3473 Elf *elf = obj->efile.elf; 3474 Elf_Data *btf_ext_data = NULL; 3475 Elf_Data *btf_data = NULL; 3476 int idx = 0, err = 0; 3477 const char *name; 3478 Elf_Data *data; 3479 Elf_Scn *scn; 3480 Elf64_Shdr *sh; 3481 3482 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3483 * section. Since section count retrieved by elf_getshdrnum() does 3484 * include sec #0, it is already the necessary size of an array to keep 3485 * all the sections. 3486 */ 3487 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3488 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3489 obj->path, elf_errmsg(-1)); 3490 return -LIBBPF_ERRNO__FORMAT; 3491 } 3492 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3493 if (!obj->efile.secs) 3494 return -ENOMEM; 3495 3496 /* a bunch of ELF parsing functionality depends on processing symbols, 3497 * so do the first pass and find the symbol table 3498 */ 3499 scn = NULL; 3500 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3501 sh = elf_sec_hdr(obj, scn); 3502 if (!sh) 3503 return -LIBBPF_ERRNO__FORMAT; 3504 3505 if (sh->sh_type == SHT_SYMTAB) { 3506 if (obj->efile.symbols) { 3507 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3508 return -LIBBPF_ERRNO__FORMAT; 3509 } 3510 3511 data = elf_sec_data(obj, scn); 3512 if (!data) 3513 return -LIBBPF_ERRNO__FORMAT; 3514 3515 idx = elf_ndxscn(scn); 3516 3517 obj->efile.symbols = data; 3518 obj->efile.symbols_shndx = idx; 3519 obj->efile.strtabidx = sh->sh_link; 3520 } 3521 } 3522 3523 if (!obj->efile.symbols) { 3524 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3525 obj->path); 3526 return -ENOENT; 3527 } 3528 3529 scn = NULL; 3530 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3531 idx = elf_ndxscn(scn); 3532 sec_desc = &obj->efile.secs[idx]; 3533 3534 sh = elf_sec_hdr(obj, scn); 3535 if (!sh) 3536 return -LIBBPF_ERRNO__FORMAT; 3537 3538 name = elf_sec_str(obj, sh->sh_name); 3539 if (!name) 3540 return -LIBBPF_ERRNO__FORMAT; 3541 3542 if (ignore_elf_section(sh, name)) 3543 continue; 3544 3545 data = elf_sec_data(obj, scn); 3546 if (!data) 3547 return -LIBBPF_ERRNO__FORMAT; 3548 3549 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3550 idx, name, (unsigned long)data->d_size, 3551 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3552 (int)sh->sh_type); 3553 3554 if (strcmp(name, "license") == 0) { 3555 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3556 if (err) 3557 return err; 3558 } else if (strcmp(name, "version") == 0) { 3559 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3560 if (err) 3561 return err; 3562 } else if (strcmp(name, "maps") == 0) { 3563 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3564 return -ENOTSUP; 3565 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3566 obj->efile.btf_maps_shndx = idx; 3567 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3568 if (sh->sh_type != SHT_PROGBITS) 3569 return -LIBBPF_ERRNO__FORMAT; 3570 btf_data = data; 3571 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3572 if (sh->sh_type != SHT_PROGBITS) 3573 return -LIBBPF_ERRNO__FORMAT; 3574 btf_ext_data = data; 3575 } else if (sh->sh_type == SHT_SYMTAB) { 3576 /* already processed during the first pass above */ 3577 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3578 if (sh->sh_flags & SHF_EXECINSTR) { 3579 if (strcmp(name, ".text") == 0) 3580 obj->efile.text_shndx = idx; 3581 err = bpf_object__add_programs(obj, data, name, idx); 3582 if (err) 3583 return err; 3584 } else if (strcmp(name, DATA_SEC) == 0 || 3585 str_has_pfx(name, DATA_SEC ".")) { 3586 sec_desc->sec_type = SEC_DATA; 3587 sec_desc->shdr = sh; 3588 sec_desc->data = data; 3589 } else if (strcmp(name, RODATA_SEC) == 0 || 3590 str_has_pfx(name, RODATA_SEC ".")) { 3591 sec_desc->sec_type = SEC_RODATA; 3592 sec_desc->shdr = sh; 3593 sec_desc->data = data; 3594 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3595 obj->efile.st_ops_data = data; 3596 obj->efile.st_ops_shndx = idx; 3597 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3598 obj->efile.st_ops_link_data = data; 3599 obj->efile.st_ops_link_shndx = idx; 3600 } else { 3601 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3602 idx, name); 3603 } 3604 } else if (sh->sh_type == SHT_REL) { 3605 int targ_sec_idx = sh->sh_info; /* points to other section */ 3606 3607 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3608 targ_sec_idx >= obj->efile.sec_cnt) 3609 return -LIBBPF_ERRNO__FORMAT; 3610 3611 /* Only do relo for section with exec instructions */ 3612 if (!section_have_execinstr(obj, targ_sec_idx) && 3613 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3614 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3615 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3616 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3617 idx, name, targ_sec_idx, 3618 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3619 continue; 3620 } 3621 3622 sec_desc->sec_type = SEC_RELO; 3623 sec_desc->shdr = sh; 3624 sec_desc->data = data; 3625 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3626 str_has_pfx(name, BSS_SEC "."))) { 3627 sec_desc->sec_type = SEC_BSS; 3628 sec_desc->shdr = sh; 3629 sec_desc->data = data; 3630 } else { 3631 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3632 (size_t)sh->sh_size); 3633 } 3634 } 3635 3636 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3637 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3638 return -LIBBPF_ERRNO__FORMAT; 3639 } 3640 3641 /* sort BPF programs by section name and in-section instruction offset 3642 * for faster search 3643 */ 3644 if (obj->nr_programs) 3645 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3646 3647 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3648 } 3649 3650 static bool sym_is_extern(const Elf64_Sym *sym) 3651 { 3652 int bind = ELF64_ST_BIND(sym->st_info); 3653 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3654 return sym->st_shndx == SHN_UNDEF && 3655 (bind == STB_GLOBAL || bind == STB_WEAK) && 3656 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3657 } 3658 3659 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3660 { 3661 int bind = ELF64_ST_BIND(sym->st_info); 3662 int type = ELF64_ST_TYPE(sym->st_info); 3663 3664 /* in .text section */ 3665 if (sym->st_shndx != text_shndx) 3666 return false; 3667 3668 /* local function */ 3669 if (bind == STB_LOCAL && type == STT_SECTION) 3670 return true; 3671 3672 /* global function */ 3673 return bind == STB_GLOBAL && type == STT_FUNC; 3674 } 3675 3676 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3677 { 3678 const struct btf_type *t; 3679 const char *tname; 3680 int i, n; 3681 3682 if (!btf) 3683 return -ESRCH; 3684 3685 n = btf__type_cnt(btf); 3686 for (i = 1; i < n; i++) { 3687 t = btf__type_by_id(btf, i); 3688 3689 if (!btf_is_var(t) && !btf_is_func(t)) 3690 continue; 3691 3692 tname = btf__name_by_offset(btf, t->name_off); 3693 if (strcmp(tname, ext_name)) 3694 continue; 3695 3696 if (btf_is_var(t) && 3697 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3698 return -EINVAL; 3699 3700 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3701 return -EINVAL; 3702 3703 return i; 3704 } 3705 3706 return -ENOENT; 3707 } 3708 3709 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3710 const struct btf_var_secinfo *vs; 3711 const struct btf_type *t; 3712 int i, j, n; 3713 3714 if (!btf) 3715 return -ESRCH; 3716 3717 n = btf__type_cnt(btf); 3718 for (i = 1; i < n; i++) { 3719 t = btf__type_by_id(btf, i); 3720 3721 if (!btf_is_datasec(t)) 3722 continue; 3723 3724 vs = btf_var_secinfos(t); 3725 for (j = 0; j < btf_vlen(t); j++, vs++) { 3726 if (vs->type == ext_btf_id) 3727 return i; 3728 } 3729 } 3730 3731 return -ENOENT; 3732 } 3733 3734 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3735 bool *is_signed) 3736 { 3737 const struct btf_type *t; 3738 const char *name; 3739 3740 t = skip_mods_and_typedefs(btf, id, NULL); 3741 name = btf__name_by_offset(btf, t->name_off); 3742 3743 if (is_signed) 3744 *is_signed = false; 3745 switch (btf_kind(t)) { 3746 case BTF_KIND_INT: { 3747 int enc = btf_int_encoding(t); 3748 3749 if (enc & BTF_INT_BOOL) 3750 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3751 if (is_signed) 3752 *is_signed = enc & BTF_INT_SIGNED; 3753 if (t->size == 1) 3754 return KCFG_CHAR; 3755 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3756 return KCFG_UNKNOWN; 3757 return KCFG_INT; 3758 } 3759 case BTF_KIND_ENUM: 3760 if (t->size != 4) 3761 return KCFG_UNKNOWN; 3762 if (strcmp(name, "libbpf_tristate")) 3763 return KCFG_UNKNOWN; 3764 return KCFG_TRISTATE; 3765 case BTF_KIND_ENUM64: 3766 if (strcmp(name, "libbpf_tristate")) 3767 return KCFG_UNKNOWN; 3768 return KCFG_TRISTATE; 3769 case BTF_KIND_ARRAY: 3770 if (btf_array(t)->nelems == 0) 3771 return KCFG_UNKNOWN; 3772 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3773 return KCFG_UNKNOWN; 3774 return KCFG_CHAR_ARR; 3775 default: 3776 return KCFG_UNKNOWN; 3777 } 3778 } 3779 3780 static int cmp_externs(const void *_a, const void *_b) 3781 { 3782 const struct extern_desc *a = _a; 3783 const struct extern_desc *b = _b; 3784 3785 if (a->type != b->type) 3786 return a->type < b->type ? -1 : 1; 3787 3788 if (a->type == EXT_KCFG) { 3789 /* descending order by alignment requirements */ 3790 if (a->kcfg.align != b->kcfg.align) 3791 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3792 /* ascending order by size, within same alignment class */ 3793 if (a->kcfg.sz != b->kcfg.sz) 3794 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3795 } 3796 3797 /* resolve ties by name */ 3798 return strcmp(a->name, b->name); 3799 } 3800 3801 static int find_int_btf_id(const struct btf *btf) 3802 { 3803 const struct btf_type *t; 3804 int i, n; 3805 3806 n = btf__type_cnt(btf); 3807 for (i = 1; i < n; i++) { 3808 t = btf__type_by_id(btf, i); 3809 3810 if (btf_is_int(t) && btf_int_bits(t) == 32) 3811 return i; 3812 } 3813 3814 return 0; 3815 } 3816 3817 static int add_dummy_ksym_var(struct btf *btf) 3818 { 3819 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3820 const struct btf_var_secinfo *vs; 3821 const struct btf_type *sec; 3822 3823 if (!btf) 3824 return 0; 3825 3826 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3827 BTF_KIND_DATASEC); 3828 if (sec_btf_id < 0) 3829 return 0; 3830 3831 sec = btf__type_by_id(btf, sec_btf_id); 3832 vs = btf_var_secinfos(sec); 3833 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3834 const struct btf_type *vt; 3835 3836 vt = btf__type_by_id(btf, vs->type); 3837 if (btf_is_func(vt)) 3838 break; 3839 } 3840 3841 /* No func in ksyms sec. No need to add dummy var. */ 3842 if (i == btf_vlen(sec)) 3843 return 0; 3844 3845 int_btf_id = find_int_btf_id(btf); 3846 dummy_var_btf_id = btf__add_var(btf, 3847 "dummy_ksym", 3848 BTF_VAR_GLOBAL_ALLOCATED, 3849 int_btf_id); 3850 if (dummy_var_btf_id < 0) 3851 pr_warn("cannot create a dummy_ksym var\n"); 3852 3853 return dummy_var_btf_id; 3854 } 3855 3856 static int bpf_object__collect_externs(struct bpf_object *obj) 3857 { 3858 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3859 const struct btf_type *t; 3860 struct extern_desc *ext; 3861 int i, n, off, dummy_var_btf_id; 3862 const char *ext_name, *sec_name; 3863 size_t ext_essent_len; 3864 Elf_Scn *scn; 3865 Elf64_Shdr *sh; 3866 3867 if (!obj->efile.symbols) 3868 return 0; 3869 3870 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3871 sh = elf_sec_hdr(obj, scn); 3872 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3873 return -LIBBPF_ERRNO__FORMAT; 3874 3875 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3876 if (dummy_var_btf_id < 0) 3877 return dummy_var_btf_id; 3878 3879 n = sh->sh_size / sh->sh_entsize; 3880 pr_debug("looking for externs among %d symbols...\n", n); 3881 3882 for (i = 0; i < n; i++) { 3883 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3884 3885 if (!sym) 3886 return -LIBBPF_ERRNO__FORMAT; 3887 if (!sym_is_extern(sym)) 3888 continue; 3889 ext_name = elf_sym_str(obj, sym->st_name); 3890 if (!ext_name || !ext_name[0]) 3891 continue; 3892 3893 ext = obj->externs; 3894 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3895 if (!ext) 3896 return -ENOMEM; 3897 obj->externs = ext; 3898 ext = &ext[obj->nr_extern]; 3899 memset(ext, 0, sizeof(*ext)); 3900 obj->nr_extern++; 3901 3902 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3903 if (ext->btf_id <= 0) { 3904 pr_warn("failed to find BTF for extern '%s': %d\n", 3905 ext_name, ext->btf_id); 3906 return ext->btf_id; 3907 } 3908 t = btf__type_by_id(obj->btf, ext->btf_id); 3909 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3910 ext->sym_idx = i; 3911 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3912 3913 ext_essent_len = bpf_core_essential_name_len(ext->name); 3914 ext->essent_name = NULL; 3915 if (ext_essent_len != strlen(ext->name)) { 3916 ext->essent_name = strndup(ext->name, ext_essent_len); 3917 if (!ext->essent_name) 3918 return -ENOMEM; 3919 } 3920 3921 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3922 if (ext->sec_btf_id <= 0) { 3923 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3924 ext_name, ext->btf_id, ext->sec_btf_id); 3925 return ext->sec_btf_id; 3926 } 3927 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3928 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3929 3930 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3931 if (btf_is_func(t)) { 3932 pr_warn("extern function %s is unsupported under %s section\n", 3933 ext->name, KCONFIG_SEC); 3934 return -ENOTSUP; 3935 } 3936 kcfg_sec = sec; 3937 ext->type = EXT_KCFG; 3938 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3939 if (ext->kcfg.sz <= 0) { 3940 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3941 ext_name, ext->kcfg.sz); 3942 return ext->kcfg.sz; 3943 } 3944 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3945 if (ext->kcfg.align <= 0) { 3946 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3947 ext_name, ext->kcfg.align); 3948 return -EINVAL; 3949 } 3950 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3951 &ext->kcfg.is_signed); 3952 if (ext->kcfg.type == KCFG_UNKNOWN) { 3953 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3954 return -ENOTSUP; 3955 } 3956 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3957 ksym_sec = sec; 3958 ext->type = EXT_KSYM; 3959 skip_mods_and_typedefs(obj->btf, t->type, 3960 &ext->ksym.type_id); 3961 } else { 3962 pr_warn("unrecognized extern section '%s'\n", sec_name); 3963 return -ENOTSUP; 3964 } 3965 } 3966 pr_debug("collected %d externs total\n", obj->nr_extern); 3967 3968 if (!obj->nr_extern) 3969 return 0; 3970 3971 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3972 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3973 3974 /* for .ksyms section, we need to turn all externs into allocated 3975 * variables in BTF to pass kernel verification; we do this by 3976 * pretending that each extern is a 8-byte variable 3977 */ 3978 if (ksym_sec) { 3979 /* find existing 4-byte integer type in BTF to use for fake 3980 * extern variables in DATASEC 3981 */ 3982 int int_btf_id = find_int_btf_id(obj->btf); 3983 /* For extern function, a dummy_var added earlier 3984 * will be used to replace the vs->type and 3985 * its name string will be used to refill 3986 * the missing param's name. 3987 */ 3988 const struct btf_type *dummy_var; 3989 3990 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3991 for (i = 0; i < obj->nr_extern; i++) { 3992 ext = &obj->externs[i]; 3993 if (ext->type != EXT_KSYM) 3994 continue; 3995 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3996 i, ext->sym_idx, ext->name); 3997 } 3998 3999 sec = ksym_sec; 4000 n = btf_vlen(sec); 4001 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4002 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4003 struct btf_type *vt; 4004 4005 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4006 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4007 ext = find_extern_by_name(obj, ext_name); 4008 if (!ext) { 4009 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4010 btf_kind_str(vt), ext_name); 4011 return -ESRCH; 4012 } 4013 if (btf_is_func(vt)) { 4014 const struct btf_type *func_proto; 4015 struct btf_param *param; 4016 int j; 4017 4018 func_proto = btf__type_by_id(obj->btf, 4019 vt->type); 4020 param = btf_params(func_proto); 4021 /* Reuse the dummy_var string if the 4022 * func proto does not have param name. 4023 */ 4024 for (j = 0; j < btf_vlen(func_proto); j++) 4025 if (param[j].type && !param[j].name_off) 4026 param[j].name_off = 4027 dummy_var->name_off; 4028 vs->type = dummy_var_btf_id; 4029 vt->info &= ~0xffff; 4030 vt->info |= BTF_FUNC_GLOBAL; 4031 } else { 4032 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4033 vt->type = int_btf_id; 4034 } 4035 vs->offset = off; 4036 vs->size = sizeof(int); 4037 } 4038 sec->size = off; 4039 } 4040 4041 if (kcfg_sec) { 4042 sec = kcfg_sec; 4043 /* for kcfg externs calculate their offsets within a .kconfig map */ 4044 off = 0; 4045 for (i = 0; i < obj->nr_extern; i++) { 4046 ext = &obj->externs[i]; 4047 if (ext->type != EXT_KCFG) 4048 continue; 4049 4050 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4051 off = ext->kcfg.data_off + ext->kcfg.sz; 4052 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4053 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4054 } 4055 sec->size = off; 4056 n = btf_vlen(sec); 4057 for (i = 0; i < n; i++) { 4058 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4059 4060 t = btf__type_by_id(obj->btf, vs->type); 4061 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4062 ext = find_extern_by_name(obj, ext_name); 4063 if (!ext) { 4064 pr_warn("failed to find extern definition for BTF var '%s'\n", 4065 ext_name); 4066 return -ESRCH; 4067 } 4068 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4069 vs->offset = ext->kcfg.data_off; 4070 } 4071 } 4072 return 0; 4073 } 4074 4075 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4076 { 4077 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4078 } 4079 4080 struct bpf_program * 4081 bpf_object__find_program_by_name(const struct bpf_object *obj, 4082 const char *name) 4083 { 4084 struct bpf_program *prog; 4085 4086 bpf_object__for_each_program(prog, obj) { 4087 if (prog_is_subprog(obj, prog)) 4088 continue; 4089 if (!strcmp(prog->name, name)) 4090 return prog; 4091 } 4092 return errno = ENOENT, NULL; 4093 } 4094 4095 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4096 int shndx) 4097 { 4098 switch (obj->efile.secs[shndx].sec_type) { 4099 case SEC_BSS: 4100 case SEC_DATA: 4101 case SEC_RODATA: 4102 return true; 4103 default: 4104 return false; 4105 } 4106 } 4107 4108 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4109 int shndx) 4110 { 4111 return shndx == obj->efile.btf_maps_shndx; 4112 } 4113 4114 static enum libbpf_map_type 4115 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4116 { 4117 if (shndx == obj->efile.symbols_shndx) 4118 return LIBBPF_MAP_KCONFIG; 4119 4120 switch (obj->efile.secs[shndx].sec_type) { 4121 case SEC_BSS: 4122 return LIBBPF_MAP_BSS; 4123 case SEC_DATA: 4124 return LIBBPF_MAP_DATA; 4125 case SEC_RODATA: 4126 return LIBBPF_MAP_RODATA; 4127 default: 4128 return LIBBPF_MAP_UNSPEC; 4129 } 4130 } 4131 4132 static int bpf_program__record_reloc(struct bpf_program *prog, 4133 struct reloc_desc *reloc_desc, 4134 __u32 insn_idx, const char *sym_name, 4135 const Elf64_Sym *sym, const Elf64_Rel *rel) 4136 { 4137 struct bpf_insn *insn = &prog->insns[insn_idx]; 4138 size_t map_idx, nr_maps = prog->obj->nr_maps; 4139 struct bpf_object *obj = prog->obj; 4140 __u32 shdr_idx = sym->st_shndx; 4141 enum libbpf_map_type type; 4142 const char *sym_sec_name; 4143 struct bpf_map *map; 4144 4145 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4146 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4147 prog->name, sym_name, insn_idx, insn->code); 4148 return -LIBBPF_ERRNO__RELOC; 4149 } 4150 4151 if (sym_is_extern(sym)) { 4152 int sym_idx = ELF64_R_SYM(rel->r_info); 4153 int i, n = obj->nr_extern; 4154 struct extern_desc *ext; 4155 4156 for (i = 0; i < n; i++) { 4157 ext = &obj->externs[i]; 4158 if (ext->sym_idx == sym_idx) 4159 break; 4160 } 4161 if (i >= n) { 4162 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4163 prog->name, sym_name, sym_idx); 4164 return -LIBBPF_ERRNO__RELOC; 4165 } 4166 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4167 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4168 if (insn->code == (BPF_JMP | BPF_CALL)) 4169 reloc_desc->type = RELO_EXTERN_CALL; 4170 else 4171 reloc_desc->type = RELO_EXTERN_LD64; 4172 reloc_desc->insn_idx = insn_idx; 4173 reloc_desc->ext_idx = i; 4174 return 0; 4175 } 4176 4177 /* sub-program call relocation */ 4178 if (is_call_insn(insn)) { 4179 if (insn->src_reg != BPF_PSEUDO_CALL) { 4180 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4181 return -LIBBPF_ERRNO__RELOC; 4182 } 4183 /* text_shndx can be 0, if no default "main" program exists */ 4184 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4185 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4186 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4187 prog->name, sym_name, sym_sec_name); 4188 return -LIBBPF_ERRNO__RELOC; 4189 } 4190 if (sym->st_value % BPF_INSN_SZ) { 4191 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4192 prog->name, sym_name, (size_t)sym->st_value); 4193 return -LIBBPF_ERRNO__RELOC; 4194 } 4195 reloc_desc->type = RELO_CALL; 4196 reloc_desc->insn_idx = insn_idx; 4197 reloc_desc->sym_off = sym->st_value; 4198 return 0; 4199 } 4200 4201 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4202 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4203 prog->name, sym_name, shdr_idx); 4204 return -LIBBPF_ERRNO__RELOC; 4205 } 4206 4207 /* loading subprog addresses */ 4208 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4209 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4210 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4211 */ 4212 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4213 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4214 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4215 return -LIBBPF_ERRNO__RELOC; 4216 } 4217 4218 reloc_desc->type = RELO_SUBPROG_ADDR; 4219 reloc_desc->insn_idx = insn_idx; 4220 reloc_desc->sym_off = sym->st_value; 4221 return 0; 4222 } 4223 4224 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4225 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4226 4227 /* generic map reference relocation */ 4228 if (type == LIBBPF_MAP_UNSPEC) { 4229 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4230 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4231 prog->name, sym_name, sym_sec_name); 4232 return -LIBBPF_ERRNO__RELOC; 4233 } 4234 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4235 map = &obj->maps[map_idx]; 4236 if (map->libbpf_type != type || 4237 map->sec_idx != sym->st_shndx || 4238 map->sec_offset != sym->st_value) 4239 continue; 4240 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4241 prog->name, map_idx, map->name, map->sec_idx, 4242 map->sec_offset, insn_idx); 4243 break; 4244 } 4245 if (map_idx >= nr_maps) { 4246 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4247 prog->name, sym_sec_name, (size_t)sym->st_value); 4248 return -LIBBPF_ERRNO__RELOC; 4249 } 4250 reloc_desc->type = RELO_LD64; 4251 reloc_desc->insn_idx = insn_idx; 4252 reloc_desc->map_idx = map_idx; 4253 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4254 return 0; 4255 } 4256 4257 /* global data map relocation */ 4258 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4259 pr_warn("prog '%s': bad data relo against section '%s'\n", 4260 prog->name, sym_sec_name); 4261 return -LIBBPF_ERRNO__RELOC; 4262 } 4263 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4264 map = &obj->maps[map_idx]; 4265 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4266 continue; 4267 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4268 prog->name, map_idx, map->name, map->sec_idx, 4269 map->sec_offset, insn_idx); 4270 break; 4271 } 4272 if (map_idx >= nr_maps) { 4273 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4274 prog->name, sym_sec_name); 4275 return -LIBBPF_ERRNO__RELOC; 4276 } 4277 4278 reloc_desc->type = RELO_DATA; 4279 reloc_desc->insn_idx = insn_idx; 4280 reloc_desc->map_idx = map_idx; 4281 reloc_desc->sym_off = sym->st_value; 4282 return 0; 4283 } 4284 4285 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4286 { 4287 return insn_idx >= prog->sec_insn_off && 4288 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4289 } 4290 4291 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4292 size_t sec_idx, size_t insn_idx) 4293 { 4294 int l = 0, r = obj->nr_programs - 1, m; 4295 struct bpf_program *prog; 4296 4297 if (!obj->nr_programs) 4298 return NULL; 4299 4300 while (l < r) { 4301 m = l + (r - l + 1) / 2; 4302 prog = &obj->programs[m]; 4303 4304 if (prog->sec_idx < sec_idx || 4305 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4306 l = m; 4307 else 4308 r = m - 1; 4309 } 4310 /* matching program could be at index l, but it still might be the 4311 * wrong one, so we need to double check conditions for the last time 4312 */ 4313 prog = &obj->programs[l]; 4314 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4315 return prog; 4316 return NULL; 4317 } 4318 4319 static int 4320 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4321 { 4322 const char *relo_sec_name, *sec_name; 4323 size_t sec_idx = shdr->sh_info, sym_idx; 4324 struct bpf_program *prog; 4325 struct reloc_desc *relos; 4326 int err, i, nrels; 4327 const char *sym_name; 4328 __u32 insn_idx; 4329 Elf_Scn *scn; 4330 Elf_Data *scn_data; 4331 Elf64_Sym *sym; 4332 Elf64_Rel *rel; 4333 4334 if (sec_idx >= obj->efile.sec_cnt) 4335 return -EINVAL; 4336 4337 scn = elf_sec_by_idx(obj, sec_idx); 4338 scn_data = elf_sec_data(obj, scn); 4339 4340 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4341 sec_name = elf_sec_name(obj, scn); 4342 if (!relo_sec_name || !sec_name) 4343 return -EINVAL; 4344 4345 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4346 relo_sec_name, sec_idx, sec_name); 4347 nrels = shdr->sh_size / shdr->sh_entsize; 4348 4349 for (i = 0; i < nrels; i++) { 4350 rel = elf_rel_by_idx(data, i); 4351 if (!rel) { 4352 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4353 return -LIBBPF_ERRNO__FORMAT; 4354 } 4355 4356 sym_idx = ELF64_R_SYM(rel->r_info); 4357 sym = elf_sym_by_idx(obj, sym_idx); 4358 if (!sym) { 4359 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4360 relo_sec_name, sym_idx, i); 4361 return -LIBBPF_ERRNO__FORMAT; 4362 } 4363 4364 if (sym->st_shndx >= obj->efile.sec_cnt) { 4365 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4366 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4367 return -LIBBPF_ERRNO__FORMAT; 4368 } 4369 4370 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4371 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4372 relo_sec_name, (size_t)rel->r_offset, i); 4373 return -LIBBPF_ERRNO__FORMAT; 4374 } 4375 4376 insn_idx = rel->r_offset / BPF_INSN_SZ; 4377 /* relocations against static functions are recorded as 4378 * relocations against the section that contains a function; 4379 * in such case, symbol will be STT_SECTION and sym.st_name 4380 * will point to empty string (0), so fetch section name 4381 * instead 4382 */ 4383 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4384 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4385 else 4386 sym_name = elf_sym_str(obj, sym->st_name); 4387 sym_name = sym_name ?: "<?"; 4388 4389 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4390 relo_sec_name, i, insn_idx, sym_name); 4391 4392 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4393 if (!prog) { 4394 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4395 relo_sec_name, i, sec_name, insn_idx); 4396 continue; 4397 } 4398 4399 relos = libbpf_reallocarray(prog->reloc_desc, 4400 prog->nr_reloc + 1, sizeof(*relos)); 4401 if (!relos) 4402 return -ENOMEM; 4403 prog->reloc_desc = relos; 4404 4405 /* adjust insn_idx to local BPF program frame of reference */ 4406 insn_idx -= prog->sec_insn_off; 4407 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4408 insn_idx, sym_name, sym, rel); 4409 if (err) 4410 return err; 4411 4412 prog->nr_reloc++; 4413 } 4414 return 0; 4415 } 4416 4417 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4418 { 4419 int id; 4420 4421 if (!obj->btf) 4422 return -ENOENT; 4423 4424 /* if it's BTF-defined map, we don't need to search for type IDs. 4425 * For struct_ops map, it does not need btf_key_type_id and 4426 * btf_value_type_id. 4427 */ 4428 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4429 return 0; 4430 4431 /* 4432 * LLVM annotates global data differently in BTF, that is, 4433 * only as '.data', '.bss' or '.rodata'. 4434 */ 4435 if (!bpf_map__is_internal(map)) 4436 return -ENOENT; 4437 4438 id = btf__find_by_name(obj->btf, map->real_name); 4439 if (id < 0) 4440 return id; 4441 4442 map->btf_key_type_id = 0; 4443 map->btf_value_type_id = id; 4444 return 0; 4445 } 4446 4447 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4448 { 4449 char file[PATH_MAX], buff[4096]; 4450 FILE *fp; 4451 __u32 val; 4452 int err; 4453 4454 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4455 memset(info, 0, sizeof(*info)); 4456 4457 fp = fopen(file, "re"); 4458 if (!fp) { 4459 err = -errno; 4460 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4461 err); 4462 return err; 4463 } 4464 4465 while (fgets(buff, sizeof(buff), fp)) { 4466 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4467 info->type = val; 4468 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4469 info->key_size = val; 4470 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4471 info->value_size = val; 4472 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4473 info->max_entries = val; 4474 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4475 info->map_flags = val; 4476 } 4477 4478 fclose(fp); 4479 4480 return 0; 4481 } 4482 4483 bool bpf_map__autocreate(const struct bpf_map *map) 4484 { 4485 return map->autocreate; 4486 } 4487 4488 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4489 { 4490 if (map->obj->loaded) 4491 return libbpf_err(-EBUSY); 4492 4493 map->autocreate = autocreate; 4494 return 0; 4495 } 4496 4497 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4498 { 4499 struct bpf_map_info info; 4500 __u32 len = sizeof(info), name_len; 4501 int new_fd, err; 4502 char *new_name; 4503 4504 memset(&info, 0, len); 4505 err = bpf_map_get_info_by_fd(fd, &info, &len); 4506 if (err && errno == EINVAL) 4507 err = bpf_get_map_info_from_fdinfo(fd, &info); 4508 if (err) 4509 return libbpf_err(err); 4510 4511 name_len = strlen(info.name); 4512 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4513 new_name = strdup(map->name); 4514 else 4515 new_name = strdup(info.name); 4516 4517 if (!new_name) 4518 return libbpf_err(-errno); 4519 4520 /* 4521 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4522 * This is similar to what we do in ensure_good_fd(), but without 4523 * closing original FD. 4524 */ 4525 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4526 if (new_fd < 0) { 4527 err = -errno; 4528 goto err_free_new_name; 4529 } 4530 4531 err = zclose(map->fd); 4532 if (err) { 4533 err = -errno; 4534 goto err_close_new_fd; 4535 } 4536 free(map->name); 4537 4538 map->fd = new_fd; 4539 map->name = new_name; 4540 map->def.type = info.type; 4541 map->def.key_size = info.key_size; 4542 map->def.value_size = info.value_size; 4543 map->def.max_entries = info.max_entries; 4544 map->def.map_flags = info.map_flags; 4545 map->btf_key_type_id = info.btf_key_type_id; 4546 map->btf_value_type_id = info.btf_value_type_id; 4547 map->reused = true; 4548 map->map_extra = info.map_extra; 4549 4550 return 0; 4551 4552 err_close_new_fd: 4553 close(new_fd); 4554 err_free_new_name: 4555 free(new_name); 4556 return libbpf_err(err); 4557 } 4558 4559 __u32 bpf_map__max_entries(const struct bpf_map *map) 4560 { 4561 return map->def.max_entries; 4562 } 4563 4564 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4565 { 4566 if (!bpf_map_type__is_map_in_map(map->def.type)) 4567 return errno = EINVAL, NULL; 4568 4569 return map->inner_map; 4570 } 4571 4572 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4573 { 4574 if (map->obj->loaded) 4575 return libbpf_err(-EBUSY); 4576 4577 map->def.max_entries = max_entries; 4578 4579 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4580 if (map_is_ringbuf(map)) 4581 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4582 4583 return 0; 4584 } 4585 4586 static int 4587 bpf_object__probe_loading(struct bpf_object *obj) 4588 { 4589 char *cp, errmsg[STRERR_BUFSIZE]; 4590 struct bpf_insn insns[] = { 4591 BPF_MOV64_IMM(BPF_REG_0, 0), 4592 BPF_EXIT_INSN(), 4593 }; 4594 int ret, insn_cnt = ARRAY_SIZE(insns); 4595 4596 if (obj->gen_loader) 4597 return 0; 4598 4599 ret = bump_rlimit_memlock(); 4600 if (ret) 4601 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4602 4603 /* make sure basic loading works */ 4604 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4605 if (ret < 0) 4606 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4607 if (ret < 0) { 4608 ret = errno; 4609 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4610 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4611 "program. Make sure your kernel supports BPF " 4612 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4613 "set to big enough value.\n", __func__, cp, ret); 4614 return -ret; 4615 } 4616 close(ret); 4617 4618 return 0; 4619 } 4620 4621 static int probe_fd(int fd) 4622 { 4623 if (fd >= 0) 4624 close(fd); 4625 return fd >= 0; 4626 } 4627 4628 static int probe_kern_prog_name(void) 4629 { 4630 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4631 struct bpf_insn insns[] = { 4632 BPF_MOV64_IMM(BPF_REG_0, 0), 4633 BPF_EXIT_INSN(), 4634 }; 4635 union bpf_attr attr; 4636 int ret; 4637 4638 memset(&attr, 0, attr_sz); 4639 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4640 attr.license = ptr_to_u64("GPL"); 4641 attr.insns = ptr_to_u64(insns); 4642 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4643 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4644 4645 /* make sure loading with name works */ 4646 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4647 return probe_fd(ret); 4648 } 4649 4650 static int probe_kern_global_data(void) 4651 { 4652 char *cp, errmsg[STRERR_BUFSIZE]; 4653 struct bpf_insn insns[] = { 4654 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4655 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4656 BPF_MOV64_IMM(BPF_REG_0, 0), 4657 BPF_EXIT_INSN(), 4658 }; 4659 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4660 4661 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4662 if (map < 0) { 4663 ret = -errno; 4664 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4665 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4666 __func__, cp, -ret); 4667 return ret; 4668 } 4669 4670 insns[0].imm = map; 4671 4672 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4673 close(map); 4674 return probe_fd(ret); 4675 } 4676 4677 static int probe_kern_btf(void) 4678 { 4679 static const char strs[] = "\0int"; 4680 __u32 types[] = { 4681 /* int */ 4682 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4683 }; 4684 4685 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4686 strs, sizeof(strs))); 4687 } 4688 4689 static int probe_kern_btf_func(void) 4690 { 4691 static const char strs[] = "\0int\0x\0a"; 4692 /* void x(int a) {} */ 4693 __u32 types[] = { 4694 /* int */ 4695 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4696 /* FUNC_PROTO */ /* [2] */ 4697 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4698 BTF_PARAM_ENC(7, 1), 4699 /* FUNC x */ /* [3] */ 4700 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4701 }; 4702 4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4704 strs, sizeof(strs))); 4705 } 4706 4707 static int probe_kern_btf_func_global(void) 4708 { 4709 static const char strs[] = "\0int\0x\0a"; 4710 /* static void x(int a) {} */ 4711 __u32 types[] = { 4712 /* int */ 4713 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4714 /* FUNC_PROTO */ /* [2] */ 4715 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4716 BTF_PARAM_ENC(7, 1), 4717 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4718 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4719 }; 4720 4721 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4722 strs, sizeof(strs))); 4723 } 4724 4725 static int probe_kern_btf_datasec(void) 4726 { 4727 static const char strs[] = "\0x\0.data"; 4728 /* static int a; */ 4729 __u32 types[] = { 4730 /* int */ 4731 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4732 /* VAR x */ /* [2] */ 4733 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4734 BTF_VAR_STATIC, 4735 /* DATASEC val */ /* [3] */ 4736 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4737 BTF_VAR_SECINFO_ENC(2, 0, 4), 4738 }; 4739 4740 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4741 strs, sizeof(strs))); 4742 } 4743 4744 static int probe_kern_btf_float(void) 4745 { 4746 static const char strs[] = "\0float"; 4747 __u32 types[] = { 4748 /* float */ 4749 BTF_TYPE_FLOAT_ENC(1, 4), 4750 }; 4751 4752 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4753 strs, sizeof(strs))); 4754 } 4755 4756 static int probe_kern_btf_decl_tag(void) 4757 { 4758 static const char strs[] = "\0tag"; 4759 __u32 types[] = { 4760 /* int */ 4761 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4762 /* VAR x */ /* [2] */ 4763 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4764 BTF_VAR_STATIC, 4765 /* attr */ 4766 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4767 }; 4768 4769 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4770 strs, sizeof(strs))); 4771 } 4772 4773 static int probe_kern_btf_type_tag(void) 4774 { 4775 static const char strs[] = "\0tag"; 4776 __u32 types[] = { 4777 /* int */ 4778 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4779 /* attr */ 4780 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4781 /* ptr */ 4782 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4783 }; 4784 4785 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4786 strs, sizeof(strs))); 4787 } 4788 4789 static int probe_kern_array_mmap(void) 4790 { 4791 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4792 int fd; 4793 4794 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4795 return probe_fd(fd); 4796 } 4797 4798 static int probe_kern_exp_attach_type(void) 4799 { 4800 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4801 struct bpf_insn insns[] = { 4802 BPF_MOV64_IMM(BPF_REG_0, 0), 4803 BPF_EXIT_INSN(), 4804 }; 4805 int fd, insn_cnt = ARRAY_SIZE(insns); 4806 4807 /* use any valid combination of program type and (optional) 4808 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4809 * to see if kernel supports expected_attach_type field for 4810 * BPF_PROG_LOAD command 4811 */ 4812 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4813 return probe_fd(fd); 4814 } 4815 4816 static int probe_kern_probe_read_kernel(void) 4817 { 4818 struct bpf_insn insns[] = { 4819 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4820 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4821 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4822 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4823 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4824 BPF_EXIT_INSN(), 4825 }; 4826 int fd, insn_cnt = ARRAY_SIZE(insns); 4827 4828 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4829 return probe_fd(fd); 4830 } 4831 4832 static int probe_prog_bind_map(void) 4833 { 4834 char *cp, errmsg[STRERR_BUFSIZE]; 4835 struct bpf_insn insns[] = { 4836 BPF_MOV64_IMM(BPF_REG_0, 0), 4837 BPF_EXIT_INSN(), 4838 }; 4839 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4840 4841 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4842 if (map < 0) { 4843 ret = -errno; 4844 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4845 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4846 __func__, cp, -ret); 4847 return ret; 4848 } 4849 4850 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4851 if (prog < 0) { 4852 close(map); 4853 return 0; 4854 } 4855 4856 ret = bpf_prog_bind_map(prog, map, NULL); 4857 4858 close(map); 4859 close(prog); 4860 4861 return ret >= 0; 4862 } 4863 4864 static int probe_module_btf(void) 4865 { 4866 static const char strs[] = "\0int"; 4867 __u32 types[] = { 4868 /* int */ 4869 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4870 }; 4871 struct bpf_btf_info info; 4872 __u32 len = sizeof(info); 4873 char name[16]; 4874 int fd, err; 4875 4876 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4877 if (fd < 0) 4878 return 0; /* BTF not supported at all */ 4879 4880 memset(&info, 0, sizeof(info)); 4881 info.name = ptr_to_u64(name); 4882 info.name_len = sizeof(name); 4883 4884 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4885 * kernel's module BTF support coincides with support for 4886 * name/name_len fields in struct bpf_btf_info. 4887 */ 4888 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4889 close(fd); 4890 return !err; 4891 } 4892 4893 static int probe_perf_link(void) 4894 { 4895 struct bpf_insn insns[] = { 4896 BPF_MOV64_IMM(BPF_REG_0, 0), 4897 BPF_EXIT_INSN(), 4898 }; 4899 int prog_fd, link_fd, err; 4900 4901 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4902 insns, ARRAY_SIZE(insns), NULL); 4903 if (prog_fd < 0) 4904 return -errno; 4905 4906 /* use invalid perf_event FD to get EBADF, if link is supported; 4907 * otherwise EINVAL should be returned 4908 */ 4909 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4910 err = -errno; /* close() can clobber errno */ 4911 4912 if (link_fd >= 0) 4913 close(link_fd); 4914 close(prog_fd); 4915 4916 return link_fd < 0 && err == -EBADF; 4917 } 4918 4919 static int probe_uprobe_multi_link(void) 4920 { 4921 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4922 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4923 ); 4924 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4925 struct bpf_insn insns[] = { 4926 BPF_MOV64_IMM(BPF_REG_0, 0), 4927 BPF_EXIT_INSN(), 4928 }; 4929 int prog_fd, link_fd, err; 4930 unsigned long offset = 0; 4931 4932 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4933 insns, ARRAY_SIZE(insns), &load_opts); 4934 if (prog_fd < 0) 4935 return -errno; 4936 4937 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4938 link_opts.uprobe_multi.path = "/"; 4939 link_opts.uprobe_multi.offsets = &offset; 4940 link_opts.uprobe_multi.cnt = 1; 4941 4942 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4943 err = -errno; /* close() can clobber errno */ 4944 4945 if (link_fd >= 0) 4946 close(link_fd); 4947 close(prog_fd); 4948 4949 return link_fd < 0 && err == -EBADF; 4950 } 4951 4952 static int probe_kern_bpf_cookie(void) 4953 { 4954 struct bpf_insn insns[] = { 4955 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4956 BPF_EXIT_INSN(), 4957 }; 4958 int ret, insn_cnt = ARRAY_SIZE(insns); 4959 4960 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4961 return probe_fd(ret); 4962 } 4963 4964 static int probe_kern_btf_enum64(void) 4965 { 4966 static const char strs[] = "\0enum64"; 4967 __u32 types[] = { 4968 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4969 }; 4970 4971 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4972 strs, sizeof(strs))); 4973 } 4974 4975 static int probe_kern_syscall_wrapper(void); 4976 4977 enum kern_feature_result { 4978 FEAT_UNKNOWN = 0, 4979 FEAT_SUPPORTED = 1, 4980 FEAT_MISSING = 2, 4981 }; 4982 4983 typedef int (*feature_probe_fn)(void); 4984 4985 static struct kern_feature_desc { 4986 const char *desc; 4987 feature_probe_fn probe; 4988 enum kern_feature_result res; 4989 } feature_probes[__FEAT_CNT] = { 4990 [FEAT_PROG_NAME] = { 4991 "BPF program name", probe_kern_prog_name, 4992 }, 4993 [FEAT_GLOBAL_DATA] = { 4994 "global variables", probe_kern_global_data, 4995 }, 4996 [FEAT_BTF] = { 4997 "minimal BTF", probe_kern_btf, 4998 }, 4999 [FEAT_BTF_FUNC] = { 5000 "BTF functions", probe_kern_btf_func, 5001 }, 5002 [FEAT_BTF_GLOBAL_FUNC] = { 5003 "BTF global function", probe_kern_btf_func_global, 5004 }, 5005 [FEAT_BTF_DATASEC] = { 5006 "BTF data section and variable", probe_kern_btf_datasec, 5007 }, 5008 [FEAT_ARRAY_MMAP] = { 5009 "ARRAY map mmap()", probe_kern_array_mmap, 5010 }, 5011 [FEAT_EXP_ATTACH_TYPE] = { 5012 "BPF_PROG_LOAD expected_attach_type attribute", 5013 probe_kern_exp_attach_type, 5014 }, 5015 [FEAT_PROBE_READ_KERN] = { 5016 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 5017 }, 5018 [FEAT_PROG_BIND_MAP] = { 5019 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 5020 }, 5021 [FEAT_MODULE_BTF] = { 5022 "module BTF support", probe_module_btf, 5023 }, 5024 [FEAT_BTF_FLOAT] = { 5025 "BTF_KIND_FLOAT support", probe_kern_btf_float, 5026 }, 5027 [FEAT_PERF_LINK] = { 5028 "BPF perf link support", probe_perf_link, 5029 }, 5030 [FEAT_BTF_DECL_TAG] = { 5031 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 5032 }, 5033 [FEAT_BTF_TYPE_TAG] = { 5034 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 5035 }, 5036 [FEAT_MEMCG_ACCOUNT] = { 5037 "memcg-based memory accounting", probe_memcg_account, 5038 }, 5039 [FEAT_BPF_COOKIE] = { 5040 "BPF cookie support", probe_kern_bpf_cookie, 5041 }, 5042 [FEAT_BTF_ENUM64] = { 5043 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5044 }, 5045 [FEAT_SYSCALL_WRAPPER] = { 5046 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5047 }, 5048 [FEAT_UPROBE_MULTI_LINK] = { 5049 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5050 }, 5051 }; 5052 5053 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5054 { 5055 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5056 int ret; 5057 5058 if (obj && obj->gen_loader) 5059 /* To generate loader program assume the latest kernel 5060 * to avoid doing extra prog_load, map_create syscalls. 5061 */ 5062 return true; 5063 5064 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5065 ret = feat->probe(); 5066 if (ret > 0) { 5067 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5068 } else if (ret == 0) { 5069 WRITE_ONCE(feat->res, FEAT_MISSING); 5070 } else { 5071 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5072 WRITE_ONCE(feat->res, FEAT_MISSING); 5073 } 5074 } 5075 5076 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5077 } 5078 5079 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5080 { 5081 struct bpf_map_info map_info; 5082 char msg[STRERR_BUFSIZE]; 5083 __u32 map_info_len = sizeof(map_info); 5084 int err; 5085 5086 memset(&map_info, 0, map_info_len); 5087 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5088 if (err && errno == EINVAL) 5089 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5090 if (err) { 5091 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5092 libbpf_strerror_r(errno, msg, sizeof(msg))); 5093 return false; 5094 } 5095 5096 return (map_info.type == map->def.type && 5097 map_info.key_size == map->def.key_size && 5098 map_info.value_size == map->def.value_size && 5099 map_info.max_entries == map->def.max_entries && 5100 map_info.map_flags == map->def.map_flags && 5101 map_info.map_extra == map->map_extra); 5102 } 5103 5104 static int 5105 bpf_object__reuse_map(struct bpf_map *map) 5106 { 5107 char *cp, errmsg[STRERR_BUFSIZE]; 5108 int err, pin_fd; 5109 5110 pin_fd = bpf_obj_get(map->pin_path); 5111 if (pin_fd < 0) { 5112 err = -errno; 5113 if (err == -ENOENT) { 5114 pr_debug("found no pinned map to reuse at '%s'\n", 5115 map->pin_path); 5116 return 0; 5117 } 5118 5119 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5120 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5121 map->pin_path, cp); 5122 return err; 5123 } 5124 5125 if (!map_is_reuse_compat(map, pin_fd)) { 5126 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5127 map->pin_path); 5128 close(pin_fd); 5129 return -EINVAL; 5130 } 5131 5132 err = bpf_map__reuse_fd(map, pin_fd); 5133 close(pin_fd); 5134 if (err) 5135 return err; 5136 5137 map->pinned = true; 5138 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5139 5140 return 0; 5141 } 5142 5143 static int 5144 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5145 { 5146 enum libbpf_map_type map_type = map->libbpf_type; 5147 char *cp, errmsg[STRERR_BUFSIZE]; 5148 int err, zero = 0; 5149 5150 if (obj->gen_loader) { 5151 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5152 map->mmaped, map->def.value_size); 5153 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5154 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5155 return 0; 5156 } 5157 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5158 if (err) { 5159 err = -errno; 5160 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5161 pr_warn("Error setting initial map(%s) contents: %s\n", 5162 map->name, cp); 5163 return err; 5164 } 5165 5166 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5167 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5168 err = bpf_map_freeze(map->fd); 5169 if (err) { 5170 err = -errno; 5171 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5172 pr_warn("Error freezing map(%s) as read-only: %s\n", 5173 map->name, cp); 5174 return err; 5175 } 5176 } 5177 return 0; 5178 } 5179 5180 static void bpf_map__destroy(struct bpf_map *map); 5181 5182 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5183 { 5184 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5185 struct bpf_map_def *def = &map->def; 5186 const char *map_name = NULL; 5187 int err = 0; 5188 5189 if (kernel_supports(obj, FEAT_PROG_NAME)) 5190 map_name = map->name; 5191 create_attr.map_ifindex = map->map_ifindex; 5192 create_attr.map_flags = def->map_flags; 5193 create_attr.numa_node = map->numa_node; 5194 create_attr.map_extra = map->map_extra; 5195 5196 if (bpf_map__is_struct_ops(map)) 5197 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5198 5199 if (obj->btf && btf__fd(obj->btf) >= 0) { 5200 create_attr.btf_fd = btf__fd(obj->btf); 5201 create_attr.btf_key_type_id = map->btf_key_type_id; 5202 create_attr.btf_value_type_id = map->btf_value_type_id; 5203 } 5204 5205 if (bpf_map_type__is_map_in_map(def->type)) { 5206 if (map->inner_map) { 5207 err = bpf_object__create_map(obj, map->inner_map, true); 5208 if (err) { 5209 pr_warn("map '%s': failed to create inner map: %d\n", 5210 map->name, err); 5211 return err; 5212 } 5213 map->inner_map_fd = bpf_map__fd(map->inner_map); 5214 } 5215 if (map->inner_map_fd >= 0) 5216 create_attr.inner_map_fd = map->inner_map_fd; 5217 } 5218 5219 switch (def->type) { 5220 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5221 case BPF_MAP_TYPE_CGROUP_ARRAY: 5222 case BPF_MAP_TYPE_STACK_TRACE: 5223 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5224 case BPF_MAP_TYPE_HASH_OF_MAPS: 5225 case BPF_MAP_TYPE_DEVMAP: 5226 case BPF_MAP_TYPE_DEVMAP_HASH: 5227 case BPF_MAP_TYPE_CPUMAP: 5228 case BPF_MAP_TYPE_XSKMAP: 5229 case BPF_MAP_TYPE_SOCKMAP: 5230 case BPF_MAP_TYPE_SOCKHASH: 5231 case BPF_MAP_TYPE_QUEUE: 5232 case BPF_MAP_TYPE_STACK: 5233 create_attr.btf_fd = 0; 5234 create_attr.btf_key_type_id = 0; 5235 create_attr.btf_value_type_id = 0; 5236 map->btf_key_type_id = 0; 5237 map->btf_value_type_id = 0; 5238 default: 5239 break; 5240 } 5241 5242 if (obj->gen_loader) { 5243 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5244 def->key_size, def->value_size, def->max_entries, 5245 &create_attr, is_inner ? -1 : map - obj->maps); 5246 /* Pretend to have valid FD to pass various fd >= 0 checks. 5247 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5248 */ 5249 map->fd = 0; 5250 } else { 5251 map->fd = bpf_map_create(def->type, map_name, 5252 def->key_size, def->value_size, 5253 def->max_entries, &create_attr); 5254 } 5255 if (map->fd < 0 && (create_attr.btf_key_type_id || 5256 create_attr.btf_value_type_id)) { 5257 char *cp, errmsg[STRERR_BUFSIZE]; 5258 5259 err = -errno; 5260 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5261 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5262 map->name, cp, err); 5263 create_attr.btf_fd = 0; 5264 create_attr.btf_key_type_id = 0; 5265 create_attr.btf_value_type_id = 0; 5266 map->btf_key_type_id = 0; 5267 map->btf_value_type_id = 0; 5268 map->fd = bpf_map_create(def->type, map_name, 5269 def->key_size, def->value_size, 5270 def->max_entries, &create_attr); 5271 } 5272 5273 err = map->fd < 0 ? -errno : 0; 5274 5275 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5276 if (obj->gen_loader) 5277 map->inner_map->fd = -1; 5278 bpf_map__destroy(map->inner_map); 5279 zfree(&map->inner_map); 5280 } 5281 5282 return err; 5283 } 5284 5285 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5286 { 5287 const struct bpf_map *targ_map; 5288 unsigned int i; 5289 int fd, err = 0; 5290 5291 for (i = 0; i < map->init_slots_sz; i++) { 5292 if (!map->init_slots[i]) 5293 continue; 5294 5295 targ_map = map->init_slots[i]; 5296 fd = bpf_map__fd(targ_map); 5297 5298 if (obj->gen_loader) { 5299 bpf_gen__populate_outer_map(obj->gen_loader, 5300 map - obj->maps, i, 5301 targ_map - obj->maps); 5302 } else { 5303 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5304 } 5305 if (err) { 5306 err = -errno; 5307 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5308 map->name, i, targ_map->name, fd, err); 5309 return err; 5310 } 5311 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5312 map->name, i, targ_map->name, fd); 5313 } 5314 5315 zfree(&map->init_slots); 5316 map->init_slots_sz = 0; 5317 5318 return 0; 5319 } 5320 5321 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5322 { 5323 const struct bpf_program *targ_prog; 5324 unsigned int i; 5325 int fd, err; 5326 5327 if (obj->gen_loader) 5328 return -ENOTSUP; 5329 5330 for (i = 0; i < map->init_slots_sz; i++) { 5331 if (!map->init_slots[i]) 5332 continue; 5333 5334 targ_prog = map->init_slots[i]; 5335 fd = bpf_program__fd(targ_prog); 5336 5337 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5338 if (err) { 5339 err = -errno; 5340 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5341 map->name, i, targ_prog->name, fd, err); 5342 return err; 5343 } 5344 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5345 map->name, i, targ_prog->name, fd); 5346 } 5347 5348 zfree(&map->init_slots); 5349 map->init_slots_sz = 0; 5350 5351 return 0; 5352 } 5353 5354 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5355 { 5356 struct bpf_map *map; 5357 int i, err; 5358 5359 for (i = 0; i < obj->nr_maps; i++) { 5360 map = &obj->maps[i]; 5361 5362 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5363 continue; 5364 5365 err = init_prog_array_slots(obj, map); 5366 if (err < 0) { 5367 zclose(map->fd); 5368 return err; 5369 } 5370 } 5371 return 0; 5372 } 5373 5374 static int map_set_def_max_entries(struct bpf_map *map) 5375 { 5376 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5377 int nr_cpus; 5378 5379 nr_cpus = libbpf_num_possible_cpus(); 5380 if (nr_cpus < 0) { 5381 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5382 map->name, nr_cpus); 5383 return nr_cpus; 5384 } 5385 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5386 map->def.max_entries = nr_cpus; 5387 } 5388 5389 return 0; 5390 } 5391 5392 static int 5393 bpf_object__create_maps(struct bpf_object *obj) 5394 { 5395 struct bpf_map *map; 5396 char *cp, errmsg[STRERR_BUFSIZE]; 5397 unsigned int i, j; 5398 int err; 5399 bool retried; 5400 5401 for (i = 0; i < obj->nr_maps; i++) { 5402 map = &obj->maps[i]; 5403 5404 /* To support old kernels, we skip creating global data maps 5405 * (.rodata, .data, .kconfig, etc); later on, during program 5406 * loading, if we detect that at least one of the to-be-loaded 5407 * programs is referencing any global data map, we'll error 5408 * out with program name and relocation index logged. 5409 * This approach allows to accommodate Clang emitting 5410 * unnecessary .rodata.str1.1 sections for string literals, 5411 * but also it allows to have CO-RE applications that use 5412 * global variables in some of BPF programs, but not others. 5413 * If those global variable-using programs are not loaded at 5414 * runtime due to bpf_program__set_autoload(prog, false), 5415 * bpf_object loading will succeed just fine even on old 5416 * kernels. 5417 */ 5418 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5419 map->autocreate = false; 5420 5421 if (!map->autocreate) { 5422 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5423 continue; 5424 } 5425 5426 err = map_set_def_max_entries(map); 5427 if (err) 5428 goto err_out; 5429 5430 retried = false; 5431 retry: 5432 if (map->pin_path) { 5433 err = bpf_object__reuse_map(map); 5434 if (err) { 5435 pr_warn("map '%s': error reusing pinned map\n", 5436 map->name); 5437 goto err_out; 5438 } 5439 if (retried && map->fd < 0) { 5440 pr_warn("map '%s': cannot find pinned map\n", 5441 map->name); 5442 err = -ENOENT; 5443 goto err_out; 5444 } 5445 } 5446 5447 if (map->fd >= 0) { 5448 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5449 map->name, map->fd); 5450 } else { 5451 err = bpf_object__create_map(obj, map, false); 5452 if (err) 5453 goto err_out; 5454 5455 pr_debug("map '%s': created successfully, fd=%d\n", 5456 map->name, map->fd); 5457 5458 if (bpf_map__is_internal(map)) { 5459 err = bpf_object__populate_internal_map(obj, map); 5460 if (err < 0) { 5461 zclose(map->fd); 5462 goto err_out; 5463 } 5464 } 5465 5466 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5467 err = init_map_in_map_slots(obj, map); 5468 if (err < 0) { 5469 zclose(map->fd); 5470 goto err_out; 5471 } 5472 } 5473 } 5474 5475 if (map->pin_path && !map->pinned) { 5476 err = bpf_map__pin(map, NULL); 5477 if (err) { 5478 zclose(map->fd); 5479 if (!retried && err == -EEXIST) { 5480 retried = true; 5481 goto retry; 5482 } 5483 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5484 map->name, map->pin_path, err); 5485 goto err_out; 5486 } 5487 } 5488 } 5489 5490 return 0; 5491 5492 err_out: 5493 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5494 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5495 pr_perm_msg(err); 5496 for (j = 0; j < i; j++) 5497 zclose(obj->maps[j].fd); 5498 return err; 5499 } 5500 5501 static bool bpf_core_is_flavor_sep(const char *s) 5502 { 5503 /* check X___Y name pattern, where X and Y are not underscores */ 5504 return s[0] != '_' && /* X */ 5505 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5506 s[4] != '_'; /* Y */ 5507 } 5508 5509 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5510 * before last triple underscore. Struct name part after last triple 5511 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5512 */ 5513 size_t bpf_core_essential_name_len(const char *name) 5514 { 5515 size_t n = strlen(name); 5516 int i; 5517 5518 for (i = n - 5; i >= 0; i--) { 5519 if (bpf_core_is_flavor_sep(name + i)) 5520 return i + 1; 5521 } 5522 return n; 5523 } 5524 5525 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5526 { 5527 if (!cands) 5528 return; 5529 5530 free(cands->cands); 5531 free(cands); 5532 } 5533 5534 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5535 size_t local_essent_len, 5536 const struct btf *targ_btf, 5537 const char *targ_btf_name, 5538 int targ_start_id, 5539 struct bpf_core_cand_list *cands) 5540 { 5541 struct bpf_core_cand *new_cands, *cand; 5542 const struct btf_type *t, *local_t; 5543 const char *targ_name, *local_name; 5544 size_t targ_essent_len; 5545 int n, i; 5546 5547 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5548 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5549 5550 n = btf__type_cnt(targ_btf); 5551 for (i = targ_start_id; i < n; i++) { 5552 t = btf__type_by_id(targ_btf, i); 5553 if (!btf_kind_core_compat(t, local_t)) 5554 continue; 5555 5556 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5557 if (str_is_empty(targ_name)) 5558 continue; 5559 5560 targ_essent_len = bpf_core_essential_name_len(targ_name); 5561 if (targ_essent_len != local_essent_len) 5562 continue; 5563 5564 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5565 continue; 5566 5567 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5568 local_cand->id, btf_kind_str(local_t), 5569 local_name, i, btf_kind_str(t), targ_name, 5570 targ_btf_name); 5571 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5572 sizeof(*cands->cands)); 5573 if (!new_cands) 5574 return -ENOMEM; 5575 5576 cand = &new_cands[cands->len]; 5577 cand->btf = targ_btf; 5578 cand->id = i; 5579 5580 cands->cands = new_cands; 5581 cands->len++; 5582 } 5583 return 0; 5584 } 5585 5586 static int load_module_btfs(struct bpf_object *obj) 5587 { 5588 struct bpf_btf_info info; 5589 struct module_btf *mod_btf; 5590 struct btf *btf; 5591 char name[64]; 5592 __u32 id = 0, len; 5593 int err, fd; 5594 5595 if (obj->btf_modules_loaded) 5596 return 0; 5597 5598 if (obj->gen_loader) 5599 return 0; 5600 5601 /* don't do this again, even if we find no module BTFs */ 5602 obj->btf_modules_loaded = true; 5603 5604 /* kernel too old to support module BTFs */ 5605 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5606 return 0; 5607 5608 while (true) { 5609 err = bpf_btf_get_next_id(id, &id); 5610 if (err && errno == ENOENT) 5611 return 0; 5612 if (err && errno == EPERM) { 5613 pr_debug("skipping module BTFs loading, missing privileges\n"); 5614 return 0; 5615 } 5616 if (err) { 5617 err = -errno; 5618 pr_warn("failed to iterate BTF objects: %d\n", err); 5619 return err; 5620 } 5621 5622 fd = bpf_btf_get_fd_by_id(id); 5623 if (fd < 0) { 5624 if (errno == ENOENT) 5625 continue; /* expected race: BTF was unloaded */ 5626 err = -errno; 5627 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5628 return err; 5629 } 5630 5631 len = sizeof(info); 5632 memset(&info, 0, sizeof(info)); 5633 info.name = ptr_to_u64(name); 5634 info.name_len = sizeof(name); 5635 5636 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5637 if (err) { 5638 err = -errno; 5639 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5640 goto err_out; 5641 } 5642 5643 /* ignore non-module BTFs */ 5644 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5645 close(fd); 5646 continue; 5647 } 5648 5649 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5650 err = libbpf_get_error(btf); 5651 if (err) { 5652 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5653 name, id, err); 5654 goto err_out; 5655 } 5656 5657 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5658 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5659 if (err) 5660 goto err_out; 5661 5662 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5663 5664 mod_btf->btf = btf; 5665 mod_btf->id = id; 5666 mod_btf->fd = fd; 5667 mod_btf->name = strdup(name); 5668 if (!mod_btf->name) { 5669 err = -ENOMEM; 5670 goto err_out; 5671 } 5672 continue; 5673 5674 err_out: 5675 close(fd); 5676 return err; 5677 } 5678 5679 return 0; 5680 } 5681 5682 static struct bpf_core_cand_list * 5683 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5684 { 5685 struct bpf_core_cand local_cand = {}; 5686 struct bpf_core_cand_list *cands; 5687 const struct btf *main_btf; 5688 const struct btf_type *local_t; 5689 const char *local_name; 5690 size_t local_essent_len; 5691 int err, i; 5692 5693 local_cand.btf = local_btf; 5694 local_cand.id = local_type_id; 5695 local_t = btf__type_by_id(local_btf, local_type_id); 5696 if (!local_t) 5697 return ERR_PTR(-EINVAL); 5698 5699 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5700 if (str_is_empty(local_name)) 5701 return ERR_PTR(-EINVAL); 5702 local_essent_len = bpf_core_essential_name_len(local_name); 5703 5704 cands = calloc(1, sizeof(*cands)); 5705 if (!cands) 5706 return ERR_PTR(-ENOMEM); 5707 5708 /* Attempt to find target candidates in vmlinux BTF first */ 5709 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5710 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5711 if (err) 5712 goto err_out; 5713 5714 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5715 if (cands->len) 5716 return cands; 5717 5718 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5719 if (obj->btf_vmlinux_override) 5720 return cands; 5721 5722 /* now look through module BTFs, trying to still find candidates */ 5723 err = load_module_btfs(obj); 5724 if (err) 5725 goto err_out; 5726 5727 for (i = 0; i < obj->btf_module_cnt; i++) { 5728 err = bpf_core_add_cands(&local_cand, local_essent_len, 5729 obj->btf_modules[i].btf, 5730 obj->btf_modules[i].name, 5731 btf__type_cnt(obj->btf_vmlinux), 5732 cands); 5733 if (err) 5734 goto err_out; 5735 } 5736 5737 return cands; 5738 err_out: 5739 bpf_core_free_cands(cands); 5740 return ERR_PTR(err); 5741 } 5742 5743 /* Check local and target types for compatibility. This check is used for 5744 * type-based CO-RE relocations and follow slightly different rules than 5745 * field-based relocations. This function assumes that root types were already 5746 * checked for name match. Beyond that initial root-level name check, names 5747 * are completely ignored. Compatibility rules are as follows: 5748 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5749 * kind should match for local and target types (i.e., STRUCT is not 5750 * compatible with UNION); 5751 * - for ENUMs, the size is ignored; 5752 * - for INT, size and signedness are ignored; 5753 * - for ARRAY, dimensionality is ignored, element types are checked for 5754 * compatibility recursively; 5755 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5756 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5757 * - FUNC_PROTOs are compatible if they have compatible signature: same 5758 * number of input args and compatible return and argument types. 5759 * These rules are not set in stone and probably will be adjusted as we get 5760 * more experience with using BPF CO-RE relocations. 5761 */ 5762 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5763 const struct btf *targ_btf, __u32 targ_id) 5764 { 5765 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5766 } 5767 5768 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5769 const struct btf *targ_btf, __u32 targ_id) 5770 { 5771 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5772 } 5773 5774 static size_t bpf_core_hash_fn(const long key, void *ctx) 5775 { 5776 return key; 5777 } 5778 5779 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5780 { 5781 return k1 == k2; 5782 } 5783 5784 static int record_relo_core(struct bpf_program *prog, 5785 const struct bpf_core_relo *core_relo, int insn_idx) 5786 { 5787 struct reloc_desc *relos, *relo; 5788 5789 relos = libbpf_reallocarray(prog->reloc_desc, 5790 prog->nr_reloc + 1, sizeof(*relos)); 5791 if (!relos) 5792 return -ENOMEM; 5793 relo = &relos[prog->nr_reloc]; 5794 relo->type = RELO_CORE; 5795 relo->insn_idx = insn_idx; 5796 relo->core_relo = core_relo; 5797 prog->reloc_desc = relos; 5798 prog->nr_reloc++; 5799 return 0; 5800 } 5801 5802 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5803 { 5804 struct reloc_desc *relo; 5805 int i; 5806 5807 for (i = 0; i < prog->nr_reloc; i++) { 5808 relo = &prog->reloc_desc[i]; 5809 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5810 continue; 5811 5812 return relo->core_relo; 5813 } 5814 5815 return NULL; 5816 } 5817 5818 static int bpf_core_resolve_relo(struct bpf_program *prog, 5819 const struct bpf_core_relo *relo, 5820 int relo_idx, 5821 const struct btf *local_btf, 5822 struct hashmap *cand_cache, 5823 struct bpf_core_relo_res *targ_res) 5824 { 5825 struct bpf_core_spec specs_scratch[3] = {}; 5826 struct bpf_core_cand_list *cands = NULL; 5827 const char *prog_name = prog->name; 5828 const struct btf_type *local_type; 5829 const char *local_name; 5830 __u32 local_id = relo->type_id; 5831 int err; 5832 5833 local_type = btf__type_by_id(local_btf, local_id); 5834 if (!local_type) 5835 return -EINVAL; 5836 5837 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5838 if (!local_name) 5839 return -EINVAL; 5840 5841 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5842 !hashmap__find(cand_cache, local_id, &cands)) { 5843 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5844 if (IS_ERR(cands)) { 5845 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5846 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5847 local_name, PTR_ERR(cands)); 5848 return PTR_ERR(cands); 5849 } 5850 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5851 if (err) { 5852 bpf_core_free_cands(cands); 5853 return err; 5854 } 5855 } 5856 5857 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5858 targ_res); 5859 } 5860 5861 static int 5862 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5863 { 5864 const struct btf_ext_info_sec *sec; 5865 struct bpf_core_relo_res targ_res; 5866 const struct bpf_core_relo *rec; 5867 const struct btf_ext_info *seg; 5868 struct hashmap_entry *entry; 5869 struct hashmap *cand_cache = NULL; 5870 struct bpf_program *prog; 5871 struct bpf_insn *insn; 5872 const char *sec_name; 5873 int i, err = 0, insn_idx, sec_idx, sec_num; 5874 5875 if (obj->btf_ext->core_relo_info.len == 0) 5876 return 0; 5877 5878 if (targ_btf_path) { 5879 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5880 err = libbpf_get_error(obj->btf_vmlinux_override); 5881 if (err) { 5882 pr_warn("failed to parse target BTF: %d\n", err); 5883 return err; 5884 } 5885 } 5886 5887 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5888 if (IS_ERR(cand_cache)) { 5889 err = PTR_ERR(cand_cache); 5890 goto out; 5891 } 5892 5893 seg = &obj->btf_ext->core_relo_info; 5894 sec_num = 0; 5895 for_each_btf_ext_sec(seg, sec) { 5896 sec_idx = seg->sec_idxs[sec_num]; 5897 sec_num++; 5898 5899 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5900 if (str_is_empty(sec_name)) { 5901 err = -EINVAL; 5902 goto out; 5903 } 5904 5905 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5906 5907 for_each_btf_ext_rec(seg, sec, i, rec) { 5908 if (rec->insn_off % BPF_INSN_SZ) 5909 return -EINVAL; 5910 insn_idx = rec->insn_off / BPF_INSN_SZ; 5911 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5912 if (!prog) { 5913 /* When __weak subprog is "overridden" by another instance 5914 * of the subprog from a different object file, linker still 5915 * appends all the .BTF.ext info that used to belong to that 5916 * eliminated subprogram. 5917 * This is similar to what x86-64 linker does for relocations. 5918 * So just ignore such relocations just like we ignore 5919 * subprog instructions when discovering subprograms. 5920 */ 5921 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5922 sec_name, i, insn_idx); 5923 continue; 5924 } 5925 /* no need to apply CO-RE relocation if the program is 5926 * not going to be loaded 5927 */ 5928 if (!prog->autoload) 5929 continue; 5930 5931 /* adjust insn_idx from section frame of reference to the local 5932 * program's frame of reference; (sub-)program code is not yet 5933 * relocated, so it's enough to just subtract in-section offset 5934 */ 5935 insn_idx = insn_idx - prog->sec_insn_off; 5936 if (insn_idx >= prog->insns_cnt) 5937 return -EINVAL; 5938 insn = &prog->insns[insn_idx]; 5939 5940 err = record_relo_core(prog, rec, insn_idx); 5941 if (err) { 5942 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5943 prog->name, i, err); 5944 goto out; 5945 } 5946 5947 if (prog->obj->gen_loader) 5948 continue; 5949 5950 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5951 if (err) { 5952 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5953 prog->name, i, err); 5954 goto out; 5955 } 5956 5957 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5958 if (err) { 5959 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5960 prog->name, i, insn_idx, err); 5961 goto out; 5962 } 5963 } 5964 } 5965 5966 out: 5967 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5968 btf__free(obj->btf_vmlinux_override); 5969 obj->btf_vmlinux_override = NULL; 5970 5971 if (!IS_ERR_OR_NULL(cand_cache)) { 5972 hashmap__for_each_entry(cand_cache, entry, i) { 5973 bpf_core_free_cands(entry->pvalue); 5974 } 5975 hashmap__free(cand_cache); 5976 } 5977 return err; 5978 } 5979 5980 /* base map load ldimm64 special constant, used also for log fixup logic */ 5981 #define POISON_LDIMM64_MAP_BASE 2001000000 5982 #define POISON_LDIMM64_MAP_PFX "200100" 5983 5984 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5985 int insn_idx, struct bpf_insn *insn, 5986 int map_idx, const struct bpf_map *map) 5987 { 5988 int i; 5989 5990 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5991 prog->name, relo_idx, insn_idx, map_idx, map->name); 5992 5993 /* we turn single ldimm64 into two identical invalid calls */ 5994 for (i = 0; i < 2; i++) { 5995 insn->code = BPF_JMP | BPF_CALL; 5996 insn->dst_reg = 0; 5997 insn->src_reg = 0; 5998 insn->off = 0; 5999 /* if this instruction is reachable (not a dead code), 6000 * verifier will complain with something like: 6001 * invalid func unknown#2001000123 6002 * where lower 123 is map index into obj->maps[] array 6003 */ 6004 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6005 6006 insn++; 6007 } 6008 } 6009 6010 /* unresolved kfunc call special constant, used also for log fixup logic */ 6011 #define POISON_CALL_KFUNC_BASE 2002000000 6012 #define POISON_CALL_KFUNC_PFX "2002" 6013 6014 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6015 int insn_idx, struct bpf_insn *insn, 6016 int ext_idx, const struct extern_desc *ext) 6017 { 6018 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6019 prog->name, relo_idx, insn_idx, ext->name); 6020 6021 /* we turn kfunc call into invalid helper call with identifiable constant */ 6022 insn->code = BPF_JMP | BPF_CALL; 6023 insn->dst_reg = 0; 6024 insn->src_reg = 0; 6025 insn->off = 0; 6026 /* if this instruction is reachable (not a dead code), 6027 * verifier will complain with something like: 6028 * invalid func unknown#2001000123 6029 * where lower 123 is extern index into obj->externs[] array 6030 */ 6031 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6032 } 6033 6034 /* Relocate data references within program code: 6035 * - map references; 6036 * - global variable references; 6037 * - extern references. 6038 */ 6039 static int 6040 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6041 { 6042 int i; 6043 6044 for (i = 0; i < prog->nr_reloc; i++) { 6045 struct reloc_desc *relo = &prog->reloc_desc[i]; 6046 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6047 const struct bpf_map *map; 6048 struct extern_desc *ext; 6049 6050 switch (relo->type) { 6051 case RELO_LD64: 6052 map = &obj->maps[relo->map_idx]; 6053 if (obj->gen_loader) { 6054 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6055 insn[0].imm = relo->map_idx; 6056 } else if (map->autocreate) { 6057 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6058 insn[0].imm = map->fd; 6059 } else { 6060 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6061 relo->map_idx, map); 6062 } 6063 break; 6064 case RELO_DATA: 6065 map = &obj->maps[relo->map_idx]; 6066 insn[1].imm = insn[0].imm + relo->sym_off; 6067 if (obj->gen_loader) { 6068 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6069 insn[0].imm = relo->map_idx; 6070 } else if (map->autocreate) { 6071 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6072 insn[0].imm = map->fd; 6073 } else { 6074 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6075 relo->map_idx, map); 6076 } 6077 break; 6078 case RELO_EXTERN_LD64: 6079 ext = &obj->externs[relo->ext_idx]; 6080 if (ext->type == EXT_KCFG) { 6081 if (obj->gen_loader) { 6082 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6083 insn[0].imm = obj->kconfig_map_idx; 6084 } else { 6085 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6086 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6087 } 6088 insn[1].imm = ext->kcfg.data_off; 6089 } else /* EXT_KSYM */ { 6090 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6091 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6092 insn[0].imm = ext->ksym.kernel_btf_id; 6093 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6094 } else { /* typeless ksyms or unresolved typed ksyms */ 6095 insn[0].imm = (__u32)ext->ksym.addr; 6096 insn[1].imm = ext->ksym.addr >> 32; 6097 } 6098 } 6099 break; 6100 case RELO_EXTERN_CALL: 6101 ext = &obj->externs[relo->ext_idx]; 6102 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6103 if (ext->is_set) { 6104 insn[0].imm = ext->ksym.kernel_btf_id; 6105 insn[0].off = ext->ksym.btf_fd_idx; 6106 } else { /* unresolved weak kfunc call */ 6107 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6108 relo->ext_idx, ext); 6109 } 6110 break; 6111 case RELO_SUBPROG_ADDR: 6112 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6113 pr_warn("prog '%s': relo #%d: bad insn\n", 6114 prog->name, i); 6115 return -EINVAL; 6116 } 6117 /* handled already */ 6118 break; 6119 case RELO_CALL: 6120 /* handled already */ 6121 break; 6122 case RELO_CORE: 6123 /* will be handled by bpf_program_record_relos() */ 6124 break; 6125 default: 6126 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6127 prog->name, i, relo->type); 6128 return -EINVAL; 6129 } 6130 } 6131 6132 return 0; 6133 } 6134 6135 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6136 const struct bpf_program *prog, 6137 const struct btf_ext_info *ext_info, 6138 void **prog_info, __u32 *prog_rec_cnt, 6139 __u32 *prog_rec_sz) 6140 { 6141 void *copy_start = NULL, *copy_end = NULL; 6142 void *rec, *rec_end, *new_prog_info; 6143 const struct btf_ext_info_sec *sec; 6144 size_t old_sz, new_sz; 6145 int i, sec_num, sec_idx, off_adj; 6146 6147 sec_num = 0; 6148 for_each_btf_ext_sec(ext_info, sec) { 6149 sec_idx = ext_info->sec_idxs[sec_num]; 6150 sec_num++; 6151 if (prog->sec_idx != sec_idx) 6152 continue; 6153 6154 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6155 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6156 6157 if (insn_off < prog->sec_insn_off) 6158 continue; 6159 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6160 break; 6161 6162 if (!copy_start) 6163 copy_start = rec; 6164 copy_end = rec + ext_info->rec_size; 6165 } 6166 6167 if (!copy_start) 6168 return -ENOENT; 6169 6170 /* append func/line info of a given (sub-)program to the main 6171 * program func/line info 6172 */ 6173 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6174 new_sz = old_sz + (copy_end - copy_start); 6175 new_prog_info = realloc(*prog_info, new_sz); 6176 if (!new_prog_info) 6177 return -ENOMEM; 6178 *prog_info = new_prog_info; 6179 *prog_rec_cnt = new_sz / ext_info->rec_size; 6180 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6181 6182 /* Kernel instruction offsets are in units of 8-byte 6183 * instructions, while .BTF.ext instruction offsets generated 6184 * by Clang are in units of bytes. So convert Clang offsets 6185 * into kernel offsets and adjust offset according to program 6186 * relocated position. 6187 */ 6188 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6189 rec = new_prog_info + old_sz; 6190 rec_end = new_prog_info + new_sz; 6191 for (; rec < rec_end; rec += ext_info->rec_size) { 6192 __u32 *insn_off = rec; 6193 6194 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6195 } 6196 *prog_rec_sz = ext_info->rec_size; 6197 return 0; 6198 } 6199 6200 return -ENOENT; 6201 } 6202 6203 static int 6204 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6205 struct bpf_program *main_prog, 6206 const struct bpf_program *prog) 6207 { 6208 int err; 6209 6210 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6211 * supprot func/line info 6212 */ 6213 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6214 return 0; 6215 6216 /* only attempt func info relocation if main program's func_info 6217 * relocation was successful 6218 */ 6219 if (main_prog != prog && !main_prog->func_info) 6220 goto line_info; 6221 6222 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6223 &main_prog->func_info, 6224 &main_prog->func_info_cnt, 6225 &main_prog->func_info_rec_size); 6226 if (err) { 6227 if (err != -ENOENT) { 6228 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6229 prog->name, err); 6230 return err; 6231 } 6232 if (main_prog->func_info) { 6233 /* 6234 * Some info has already been found but has problem 6235 * in the last btf_ext reloc. Must have to error out. 6236 */ 6237 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6238 return err; 6239 } 6240 /* Have problem loading the very first info. Ignore the rest. */ 6241 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6242 prog->name); 6243 } 6244 6245 line_info: 6246 /* don't relocate line info if main program's relocation failed */ 6247 if (main_prog != prog && !main_prog->line_info) 6248 return 0; 6249 6250 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6251 &main_prog->line_info, 6252 &main_prog->line_info_cnt, 6253 &main_prog->line_info_rec_size); 6254 if (err) { 6255 if (err != -ENOENT) { 6256 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6257 prog->name, err); 6258 return err; 6259 } 6260 if (main_prog->line_info) { 6261 /* 6262 * Some info has already been found but has problem 6263 * in the last btf_ext reloc. Must have to error out. 6264 */ 6265 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6266 return err; 6267 } 6268 /* Have problem loading the very first info. Ignore the rest. */ 6269 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6270 prog->name); 6271 } 6272 return 0; 6273 } 6274 6275 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6276 { 6277 size_t insn_idx = *(const size_t *)key; 6278 const struct reloc_desc *relo = elem; 6279 6280 if (insn_idx == relo->insn_idx) 6281 return 0; 6282 return insn_idx < relo->insn_idx ? -1 : 1; 6283 } 6284 6285 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6286 { 6287 if (!prog->nr_reloc) 6288 return NULL; 6289 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6290 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6291 } 6292 6293 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6294 { 6295 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6296 struct reloc_desc *relos; 6297 int i; 6298 6299 if (main_prog == subprog) 6300 return 0; 6301 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6302 /* if new count is zero, reallocarray can return a valid NULL result; 6303 * in this case the previous pointer will be freed, so we *have to* 6304 * reassign old pointer to the new value (even if it's NULL) 6305 */ 6306 if (!relos && new_cnt) 6307 return -ENOMEM; 6308 if (subprog->nr_reloc) 6309 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6310 sizeof(*relos) * subprog->nr_reloc); 6311 6312 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6313 relos[i].insn_idx += subprog->sub_insn_off; 6314 /* After insn_idx adjustment the 'relos' array is still sorted 6315 * by insn_idx and doesn't break bsearch. 6316 */ 6317 main_prog->reloc_desc = relos; 6318 main_prog->nr_reloc = new_cnt; 6319 return 0; 6320 } 6321 6322 static int 6323 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6324 struct bpf_program *subprog) 6325 { 6326 struct bpf_insn *insns; 6327 size_t new_cnt; 6328 int err; 6329 6330 subprog->sub_insn_off = main_prog->insns_cnt; 6331 6332 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6333 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6334 if (!insns) { 6335 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6336 return -ENOMEM; 6337 } 6338 main_prog->insns = insns; 6339 main_prog->insns_cnt = new_cnt; 6340 6341 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6342 subprog->insns_cnt * sizeof(*insns)); 6343 6344 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6345 main_prog->name, subprog->insns_cnt, subprog->name); 6346 6347 /* The subprog insns are now appended. Append its relos too. */ 6348 err = append_subprog_relos(main_prog, subprog); 6349 if (err) 6350 return err; 6351 return 0; 6352 } 6353 6354 static int 6355 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6356 struct bpf_program *prog) 6357 { 6358 size_t sub_insn_idx, insn_idx; 6359 struct bpf_program *subprog; 6360 struct reloc_desc *relo; 6361 struct bpf_insn *insn; 6362 int err; 6363 6364 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6365 if (err) 6366 return err; 6367 6368 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6369 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6370 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6371 continue; 6372 6373 relo = find_prog_insn_relo(prog, insn_idx); 6374 if (relo && relo->type == RELO_EXTERN_CALL) 6375 /* kfunc relocations will be handled later 6376 * in bpf_object__relocate_data() 6377 */ 6378 continue; 6379 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6380 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6381 prog->name, insn_idx, relo->type); 6382 return -LIBBPF_ERRNO__RELOC; 6383 } 6384 if (relo) { 6385 /* sub-program instruction index is a combination of 6386 * an offset of a symbol pointed to by relocation and 6387 * call instruction's imm field; for global functions, 6388 * call always has imm = -1, but for static functions 6389 * relocation is against STT_SECTION and insn->imm 6390 * points to a start of a static function 6391 * 6392 * for subprog addr relocation, the relo->sym_off + insn->imm is 6393 * the byte offset in the corresponding section. 6394 */ 6395 if (relo->type == RELO_CALL) 6396 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6397 else 6398 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6399 } else if (insn_is_pseudo_func(insn)) { 6400 /* 6401 * RELO_SUBPROG_ADDR relo is always emitted even if both 6402 * functions are in the same section, so it shouldn't reach here. 6403 */ 6404 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6405 prog->name, insn_idx); 6406 return -LIBBPF_ERRNO__RELOC; 6407 } else { 6408 /* if subprogram call is to a static function within 6409 * the same ELF section, there won't be any relocation 6410 * emitted, but it also means there is no additional 6411 * offset necessary, insns->imm is relative to 6412 * instruction's original position within the section 6413 */ 6414 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6415 } 6416 6417 /* we enforce that sub-programs should be in .text section */ 6418 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6419 if (!subprog) { 6420 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6421 prog->name); 6422 return -LIBBPF_ERRNO__RELOC; 6423 } 6424 6425 /* if it's the first call instruction calling into this 6426 * subprogram (meaning this subprog hasn't been processed 6427 * yet) within the context of current main program: 6428 * - append it at the end of main program's instructions blog; 6429 * - process is recursively, while current program is put on hold; 6430 * - if that subprogram calls some other not yet processes 6431 * subprogram, same thing will happen recursively until 6432 * there are no more unprocesses subprograms left to append 6433 * and relocate. 6434 */ 6435 if (subprog->sub_insn_off == 0) { 6436 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6437 if (err) 6438 return err; 6439 err = bpf_object__reloc_code(obj, main_prog, subprog); 6440 if (err) 6441 return err; 6442 } 6443 6444 /* main_prog->insns memory could have been re-allocated, so 6445 * calculate pointer again 6446 */ 6447 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6448 /* calculate correct instruction position within current main 6449 * prog; each main prog can have a different set of 6450 * subprograms appended (potentially in different order as 6451 * well), so position of any subprog can be different for 6452 * different main programs 6453 */ 6454 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6455 6456 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6457 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6458 } 6459 6460 return 0; 6461 } 6462 6463 /* 6464 * Relocate sub-program calls. 6465 * 6466 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6467 * main prog) is processed separately. For each subprog (non-entry functions, 6468 * that can be called from either entry progs or other subprogs) gets their 6469 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6470 * hasn't been yet appended and relocated within current main prog. Once its 6471 * relocated, sub_insn_off will point at the position within current main prog 6472 * where given subprog was appended. This will further be used to relocate all 6473 * the call instructions jumping into this subprog. 6474 * 6475 * We start with main program and process all call instructions. If the call 6476 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6477 * is zero), subprog instructions are appended at the end of main program's 6478 * instruction array. Then main program is "put on hold" while we recursively 6479 * process newly appended subprogram. If that subprogram calls into another 6480 * subprogram that hasn't been appended, new subprogram is appended again to 6481 * the *main* prog's instructions (subprog's instructions are always left 6482 * untouched, as they need to be in unmodified state for subsequent main progs 6483 * and subprog instructions are always sent only as part of a main prog) and 6484 * the process continues recursively. Once all the subprogs called from a main 6485 * prog or any of its subprogs are appended (and relocated), all their 6486 * positions within finalized instructions array are known, so it's easy to 6487 * rewrite call instructions with correct relative offsets, corresponding to 6488 * desired target subprog. 6489 * 6490 * Its important to realize that some subprogs might not be called from some 6491 * main prog and any of its called/used subprogs. Those will keep their 6492 * subprog->sub_insn_off as zero at all times and won't be appended to current 6493 * main prog and won't be relocated within the context of current main prog. 6494 * They might still be used from other main progs later. 6495 * 6496 * Visually this process can be shown as below. Suppose we have two main 6497 * programs mainA and mainB and BPF object contains three subprogs: subA, 6498 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6499 * subC both call subB: 6500 * 6501 * +--------+ +-------+ 6502 * | v v | 6503 * +--+---+ +--+-+-+ +---+--+ 6504 * | subA | | subB | | subC | 6505 * +--+---+ +------+ +---+--+ 6506 * ^ ^ 6507 * | | 6508 * +---+-------+ +------+----+ 6509 * | mainA | | mainB | 6510 * +-----------+ +-----------+ 6511 * 6512 * We'll start relocating mainA, will find subA, append it and start 6513 * processing sub A recursively: 6514 * 6515 * +-----------+------+ 6516 * | mainA | subA | 6517 * +-----------+------+ 6518 * 6519 * At this point we notice that subB is used from subA, so we append it and 6520 * relocate (there are no further subcalls from subB): 6521 * 6522 * +-----------+------+------+ 6523 * | mainA | subA | subB | 6524 * +-----------+------+------+ 6525 * 6526 * At this point, we relocate subA calls, then go one level up and finish with 6527 * relocatin mainA calls. mainA is done. 6528 * 6529 * For mainB process is similar but results in different order. We start with 6530 * mainB and skip subA and subB, as mainB never calls them (at least 6531 * directly), but we see subC is needed, so we append and start processing it: 6532 * 6533 * +-----------+------+ 6534 * | mainB | subC | 6535 * +-----------+------+ 6536 * Now we see subC needs subB, so we go back to it, append and relocate it: 6537 * 6538 * +-----------+------+------+ 6539 * | mainB | subC | subB | 6540 * +-----------+------+------+ 6541 * 6542 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6543 */ 6544 static int 6545 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6546 { 6547 struct bpf_program *subprog; 6548 int i, err; 6549 6550 /* mark all subprogs as not relocated (yet) within the context of 6551 * current main program 6552 */ 6553 for (i = 0; i < obj->nr_programs; i++) { 6554 subprog = &obj->programs[i]; 6555 if (!prog_is_subprog(obj, subprog)) 6556 continue; 6557 6558 subprog->sub_insn_off = 0; 6559 } 6560 6561 err = bpf_object__reloc_code(obj, prog, prog); 6562 if (err) 6563 return err; 6564 6565 return 0; 6566 } 6567 6568 static void 6569 bpf_object__free_relocs(struct bpf_object *obj) 6570 { 6571 struct bpf_program *prog; 6572 int i; 6573 6574 /* free up relocation descriptors */ 6575 for (i = 0; i < obj->nr_programs; i++) { 6576 prog = &obj->programs[i]; 6577 zfree(&prog->reloc_desc); 6578 prog->nr_reloc = 0; 6579 } 6580 } 6581 6582 static int cmp_relocs(const void *_a, const void *_b) 6583 { 6584 const struct reloc_desc *a = _a; 6585 const struct reloc_desc *b = _b; 6586 6587 if (a->insn_idx != b->insn_idx) 6588 return a->insn_idx < b->insn_idx ? -1 : 1; 6589 6590 /* no two relocations should have the same insn_idx, but ... */ 6591 if (a->type != b->type) 6592 return a->type < b->type ? -1 : 1; 6593 6594 return 0; 6595 } 6596 6597 static void bpf_object__sort_relos(struct bpf_object *obj) 6598 { 6599 int i; 6600 6601 for (i = 0; i < obj->nr_programs; i++) { 6602 struct bpf_program *p = &obj->programs[i]; 6603 6604 if (!p->nr_reloc) 6605 continue; 6606 6607 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6608 } 6609 } 6610 6611 static int 6612 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6613 { 6614 struct bpf_program *prog; 6615 size_t i, j; 6616 int err; 6617 6618 if (obj->btf_ext) { 6619 err = bpf_object__relocate_core(obj, targ_btf_path); 6620 if (err) { 6621 pr_warn("failed to perform CO-RE relocations: %d\n", 6622 err); 6623 return err; 6624 } 6625 bpf_object__sort_relos(obj); 6626 } 6627 6628 /* Before relocating calls pre-process relocations and mark 6629 * few ld_imm64 instructions that points to subprogs. 6630 * Otherwise bpf_object__reloc_code() later would have to consider 6631 * all ld_imm64 insns as relocation candidates. That would 6632 * reduce relocation speed, since amount of find_prog_insn_relo() 6633 * would increase and most of them will fail to find a relo. 6634 */ 6635 for (i = 0; i < obj->nr_programs; i++) { 6636 prog = &obj->programs[i]; 6637 for (j = 0; j < prog->nr_reloc; j++) { 6638 struct reloc_desc *relo = &prog->reloc_desc[j]; 6639 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6640 6641 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6642 if (relo->type == RELO_SUBPROG_ADDR) 6643 insn[0].src_reg = BPF_PSEUDO_FUNC; 6644 } 6645 } 6646 6647 /* relocate subprogram calls and append used subprograms to main 6648 * programs; each copy of subprogram code needs to be relocated 6649 * differently for each main program, because its code location might 6650 * have changed. 6651 * Append subprog relos to main programs to allow data relos to be 6652 * processed after text is completely relocated. 6653 */ 6654 for (i = 0; i < obj->nr_programs; i++) { 6655 prog = &obj->programs[i]; 6656 /* sub-program's sub-calls are relocated within the context of 6657 * its main program only 6658 */ 6659 if (prog_is_subprog(obj, prog)) 6660 continue; 6661 if (!prog->autoload) 6662 continue; 6663 6664 err = bpf_object__relocate_calls(obj, prog); 6665 if (err) { 6666 pr_warn("prog '%s': failed to relocate calls: %d\n", 6667 prog->name, err); 6668 return err; 6669 } 6670 6671 /* Now, also append exception callback if it has not been done already. */ 6672 if (prog->exception_cb_idx >= 0) { 6673 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6674 6675 /* Calling exception callback directly is disallowed, which the 6676 * verifier will reject later. In case it was processed already, 6677 * we can skip this step, otherwise for all other valid cases we 6678 * have to append exception callback now. 6679 */ 6680 if (subprog->sub_insn_off == 0) { 6681 err = bpf_object__append_subprog_code(obj, prog, subprog); 6682 if (err) 6683 return err; 6684 err = bpf_object__reloc_code(obj, prog, subprog); 6685 if (err) 6686 return err; 6687 } 6688 } 6689 } 6690 /* Process data relos for main programs */ 6691 for (i = 0; i < obj->nr_programs; i++) { 6692 prog = &obj->programs[i]; 6693 if (prog_is_subprog(obj, prog)) 6694 continue; 6695 if (!prog->autoload) 6696 continue; 6697 err = bpf_object__relocate_data(obj, prog); 6698 if (err) { 6699 pr_warn("prog '%s': failed to relocate data references: %d\n", 6700 prog->name, err); 6701 return err; 6702 } 6703 } 6704 6705 return 0; 6706 } 6707 6708 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6709 Elf64_Shdr *shdr, Elf_Data *data); 6710 6711 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6712 Elf64_Shdr *shdr, Elf_Data *data) 6713 { 6714 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6715 int i, j, nrels, new_sz; 6716 const struct btf_var_secinfo *vi = NULL; 6717 const struct btf_type *sec, *var, *def; 6718 struct bpf_map *map = NULL, *targ_map = NULL; 6719 struct bpf_program *targ_prog = NULL; 6720 bool is_prog_array, is_map_in_map; 6721 const struct btf_member *member; 6722 const char *name, *mname, *type; 6723 unsigned int moff; 6724 Elf64_Sym *sym; 6725 Elf64_Rel *rel; 6726 void *tmp; 6727 6728 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6729 return -EINVAL; 6730 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6731 if (!sec) 6732 return -EINVAL; 6733 6734 nrels = shdr->sh_size / shdr->sh_entsize; 6735 for (i = 0; i < nrels; i++) { 6736 rel = elf_rel_by_idx(data, i); 6737 if (!rel) { 6738 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6739 return -LIBBPF_ERRNO__FORMAT; 6740 } 6741 6742 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6743 if (!sym) { 6744 pr_warn(".maps relo #%d: symbol %zx not found\n", 6745 i, (size_t)ELF64_R_SYM(rel->r_info)); 6746 return -LIBBPF_ERRNO__FORMAT; 6747 } 6748 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6749 6750 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6751 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6752 (size_t)rel->r_offset, sym->st_name, name); 6753 6754 for (j = 0; j < obj->nr_maps; j++) { 6755 map = &obj->maps[j]; 6756 if (map->sec_idx != obj->efile.btf_maps_shndx) 6757 continue; 6758 6759 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6760 if (vi->offset <= rel->r_offset && 6761 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6762 break; 6763 } 6764 if (j == obj->nr_maps) { 6765 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6766 i, name, (size_t)rel->r_offset); 6767 return -EINVAL; 6768 } 6769 6770 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6771 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6772 type = is_map_in_map ? "map" : "prog"; 6773 if (is_map_in_map) { 6774 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6775 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6776 i, name); 6777 return -LIBBPF_ERRNO__RELOC; 6778 } 6779 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6780 map->def.key_size != sizeof(int)) { 6781 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6782 i, map->name, sizeof(int)); 6783 return -EINVAL; 6784 } 6785 targ_map = bpf_object__find_map_by_name(obj, name); 6786 if (!targ_map) { 6787 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6788 i, name); 6789 return -ESRCH; 6790 } 6791 } else if (is_prog_array) { 6792 targ_prog = bpf_object__find_program_by_name(obj, name); 6793 if (!targ_prog) { 6794 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6795 i, name); 6796 return -ESRCH; 6797 } 6798 if (targ_prog->sec_idx != sym->st_shndx || 6799 targ_prog->sec_insn_off * 8 != sym->st_value || 6800 prog_is_subprog(obj, targ_prog)) { 6801 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6802 i, name); 6803 return -LIBBPF_ERRNO__RELOC; 6804 } 6805 } else { 6806 return -EINVAL; 6807 } 6808 6809 var = btf__type_by_id(obj->btf, vi->type); 6810 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6811 if (btf_vlen(def) == 0) 6812 return -EINVAL; 6813 member = btf_members(def) + btf_vlen(def) - 1; 6814 mname = btf__name_by_offset(obj->btf, member->name_off); 6815 if (strcmp(mname, "values")) 6816 return -EINVAL; 6817 6818 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6819 if (rel->r_offset - vi->offset < moff) 6820 return -EINVAL; 6821 6822 moff = rel->r_offset - vi->offset - moff; 6823 /* here we use BPF pointer size, which is always 64 bit, as we 6824 * are parsing ELF that was built for BPF target 6825 */ 6826 if (moff % bpf_ptr_sz) 6827 return -EINVAL; 6828 moff /= bpf_ptr_sz; 6829 if (moff >= map->init_slots_sz) { 6830 new_sz = moff + 1; 6831 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6832 if (!tmp) 6833 return -ENOMEM; 6834 map->init_slots = tmp; 6835 memset(map->init_slots + map->init_slots_sz, 0, 6836 (new_sz - map->init_slots_sz) * host_ptr_sz); 6837 map->init_slots_sz = new_sz; 6838 } 6839 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6840 6841 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6842 i, map->name, moff, type, name); 6843 } 6844 6845 return 0; 6846 } 6847 6848 static int bpf_object__collect_relos(struct bpf_object *obj) 6849 { 6850 int i, err; 6851 6852 for (i = 0; i < obj->efile.sec_cnt; i++) { 6853 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6854 Elf64_Shdr *shdr; 6855 Elf_Data *data; 6856 int idx; 6857 6858 if (sec_desc->sec_type != SEC_RELO) 6859 continue; 6860 6861 shdr = sec_desc->shdr; 6862 data = sec_desc->data; 6863 idx = shdr->sh_info; 6864 6865 if (shdr->sh_type != SHT_REL) { 6866 pr_warn("internal error at %d\n", __LINE__); 6867 return -LIBBPF_ERRNO__INTERNAL; 6868 } 6869 6870 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6871 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6872 else if (idx == obj->efile.btf_maps_shndx) 6873 err = bpf_object__collect_map_relos(obj, shdr, data); 6874 else 6875 err = bpf_object__collect_prog_relos(obj, shdr, data); 6876 if (err) 6877 return err; 6878 } 6879 6880 bpf_object__sort_relos(obj); 6881 return 0; 6882 } 6883 6884 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6885 { 6886 if (BPF_CLASS(insn->code) == BPF_JMP && 6887 BPF_OP(insn->code) == BPF_CALL && 6888 BPF_SRC(insn->code) == BPF_K && 6889 insn->src_reg == 0 && 6890 insn->dst_reg == 0) { 6891 *func_id = insn->imm; 6892 return true; 6893 } 6894 return false; 6895 } 6896 6897 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6898 { 6899 struct bpf_insn *insn = prog->insns; 6900 enum bpf_func_id func_id; 6901 int i; 6902 6903 if (obj->gen_loader) 6904 return 0; 6905 6906 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6907 if (!insn_is_helper_call(insn, &func_id)) 6908 continue; 6909 6910 /* on kernels that don't yet support 6911 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6912 * to bpf_probe_read() which works well for old kernels 6913 */ 6914 switch (func_id) { 6915 case BPF_FUNC_probe_read_kernel: 6916 case BPF_FUNC_probe_read_user: 6917 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6918 insn->imm = BPF_FUNC_probe_read; 6919 break; 6920 case BPF_FUNC_probe_read_kernel_str: 6921 case BPF_FUNC_probe_read_user_str: 6922 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6923 insn->imm = BPF_FUNC_probe_read_str; 6924 break; 6925 default: 6926 break; 6927 } 6928 } 6929 return 0; 6930 } 6931 6932 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6933 int *btf_obj_fd, int *btf_type_id); 6934 6935 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6936 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6937 struct bpf_prog_load_opts *opts, long cookie) 6938 { 6939 enum sec_def_flags def = cookie; 6940 6941 /* old kernels might not support specifying expected_attach_type */ 6942 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6943 opts->expected_attach_type = 0; 6944 6945 if (def & SEC_SLEEPABLE) 6946 opts->prog_flags |= BPF_F_SLEEPABLE; 6947 6948 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6949 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6950 6951 /* special check for usdt to use uprobe_multi link */ 6952 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6953 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6954 6955 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6956 int btf_obj_fd = 0, btf_type_id = 0, err; 6957 const char *attach_name; 6958 6959 attach_name = strchr(prog->sec_name, '/'); 6960 if (!attach_name) { 6961 /* if BPF program is annotated with just SEC("fentry") 6962 * (or similar) without declaratively specifying 6963 * target, then it is expected that target will be 6964 * specified with bpf_program__set_attach_target() at 6965 * runtime before BPF object load step. If not, then 6966 * there is nothing to load into the kernel as BPF 6967 * verifier won't be able to validate BPF program 6968 * correctness anyways. 6969 */ 6970 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6971 prog->name); 6972 return -EINVAL; 6973 } 6974 attach_name++; /* skip over / */ 6975 6976 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6977 if (err) 6978 return err; 6979 6980 /* cache resolved BTF FD and BTF type ID in the prog */ 6981 prog->attach_btf_obj_fd = btf_obj_fd; 6982 prog->attach_btf_id = btf_type_id; 6983 6984 /* but by now libbpf common logic is not utilizing 6985 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6986 * this callback is called after opts were populated by 6987 * libbpf, so this callback has to update opts explicitly here 6988 */ 6989 opts->attach_btf_obj_fd = btf_obj_fd; 6990 opts->attach_btf_id = btf_type_id; 6991 } 6992 return 0; 6993 } 6994 6995 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6996 6997 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6998 struct bpf_insn *insns, int insns_cnt, 6999 const char *license, __u32 kern_version, int *prog_fd) 7000 { 7001 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7002 const char *prog_name = NULL; 7003 char *cp, errmsg[STRERR_BUFSIZE]; 7004 size_t log_buf_size = 0; 7005 char *log_buf = NULL, *tmp; 7006 int btf_fd, ret, err; 7007 bool own_log_buf = true; 7008 __u32 log_level = prog->log_level; 7009 7010 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7011 /* 7012 * The program type must be set. Most likely we couldn't find a proper 7013 * section definition at load time, and thus we didn't infer the type. 7014 */ 7015 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7016 prog->name, prog->sec_name); 7017 return -EINVAL; 7018 } 7019 7020 if (!insns || !insns_cnt) 7021 return -EINVAL; 7022 7023 if (kernel_supports(obj, FEAT_PROG_NAME)) 7024 prog_name = prog->name; 7025 load_attr.attach_prog_fd = prog->attach_prog_fd; 7026 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7027 load_attr.attach_btf_id = prog->attach_btf_id; 7028 load_attr.kern_version = kern_version; 7029 load_attr.prog_ifindex = prog->prog_ifindex; 7030 7031 /* specify func_info/line_info only if kernel supports them */ 7032 btf_fd = bpf_object__btf_fd(obj); 7033 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7034 load_attr.prog_btf_fd = btf_fd; 7035 load_attr.func_info = prog->func_info; 7036 load_attr.func_info_rec_size = prog->func_info_rec_size; 7037 load_attr.func_info_cnt = prog->func_info_cnt; 7038 load_attr.line_info = prog->line_info; 7039 load_attr.line_info_rec_size = prog->line_info_rec_size; 7040 load_attr.line_info_cnt = prog->line_info_cnt; 7041 } 7042 load_attr.log_level = log_level; 7043 load_attr.prog_flags = prog->prog_flags; 7044 load_attr.fd_array = obj->fd_array; 7045 7046 /* adjust load_attr if sec_def provides custom preload callback */ 7047 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7048 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7049 if (err < 0) { 7050 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7051 prog->name, err); 7052 return err; 7053 } 7054 insns = prog->insns; 7055 insns_cnt = prog->insns_cnt; 7056 } 7057 7058 /* allow prog_prepare_load_fn to change expected_attach_type */ 7059 load_attr.expected_attach_type = prog->expected_attach_type; 7060 7061 if (obj->gen_loader) { 7062 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7063 license, insns, insns_cnt, &load_attr, 7064 prog - obj->programs); 7065 *prog_fd = -1; 7066 return 0; 7067 } 7068 7069 retry_load: 7070 /* if log_level is zero, we don't request logs initially even if 7071 * custom log_buf is specified; if the program load fails, then we'll 7072 * bump log_level to 1 and use either custom log_buf or we'll allocate 7073 * our own and retry the load to get details on what failed 7074 */ 7075 if (log_level) { 7076 if (prog->log_buf) { 7077 log_buf = prog->log_buf; 7078 log_buf_size = prog->log_size; 7079 own_log_buf = false; 7080 } else if (obj->log_buf) { 7081 log_buf = obj->log_buf; 7082 log_buf_size = obj->log_size; 7083 own_log_buf = false; 7084 } else { 7085 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7086 tmp = realloc(log_buf, log_buf_size); 7087 if (!tmp) { 7088 ret = -ENOMEM; 7089 goto out; 7090 } 7091 log_buf = tmp; 7092 log_buf[0] = '\0'; 7093 own_log_buf = true; 7094 } 7095 } 7096 7097 load_attr.log_buf = log_buf; 7098 load_attr.log_size = log_buf_size; 7099 load_attr.log_level = log_level; 7100 7101 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7102 if (ret >= 0) { 7103 if (log_level && own_log_buf) { 7104 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7105 prog->name, log_buf); 7106 } 7107 7108 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7109 struct bpf_map *map; 7110 int i; 7111 7112 for (i = 0; i < obj->nr_maps; i++) { 7113 map = &prog->obj->maps[i]; 7114 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7115 continue; 7116 7117 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7118 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7119 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7120 prog->name, map->real_name, cp); 7121 /* Don't fail hard if can't bind rodata. */ 7122 } 7123 } 7124 } 7125 7126 *prog_fd = ret; 7127 ret = 0; 7128 goto out; 7129 } 7130 7131 if (log_level == 0) { 7132 log_level = 1; 7133 goto retry_load; 7134 } 7135 /* On ENOSPC, increase log buffer size and retry, unless custom 7136 * log_buf is specified. 7137 * Be careful to not overflow u32, though. Kernel's log buf size limit 7138 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7139 * multiply by 2 unless we are sure we'll fit within 32 bits. 7140 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7141 */ 7142 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7143 goto retry_load; 7144 7145 ret = -errno; 7146 7147 /* post-process verifier log to improve error descriptions */ 7148 fixup_verifier_log(prog, log_buf, log_buf_size); 7149 7150 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7151 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7152 pr_perm_msg(ret); 7153 7154 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7155 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7156 prog->name, log_buf); 7157 } 7158 7159 out: 7160 if (own_log_buf) 7161 free(log_buf); 7162 return ret; 7163 } 7164 7165 static char *find_prev_line(char *buf, char *cur) 7166 { 7167 char *p; 7168 7169 if (cur == buf) /* end of a log buf */ 7170 return NULL; 7171 7172 p = cur - 1; 7173 while (p - 1 >= buf && *(p - 1) != '\n') 7174 p--; 7175 7176 return p; 7177 } 7178 7179 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7180 char *orig, size_t orig_sz, const char *patch) 7181 { 7182 /* size of the remaining log content to the right from the to-be-replaced part */ 7183 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7184 size_t patch_sz = strlen(patch); 7185 7186 if (patch_sz != orig_sz) { 7187 /* If patch line(s) are longer than original piece of verifier log, 7188 * shift log contents by (patch_sz - orig_sz) bytes to the right 7189 * starting from after to-be-replaced part of the log. 7190 * 7191 * If patch line(s) are shorter than original piece of verifier log, 7192 * shift log contents by (orig_sz - patch_sz) bytes to the left 7193 * starting from after to-be-replaced part of the log 7194 * 7195 * We need to be careful about not overflowing available 7196 * buf_sz capacity. If that's the case, we'll truncate the end 7197 * of the original log, as necessary. 7198 */ 7199 if (patch_sz > orig_sz) { 7200 if (orig + patch_sz >= buf + buf_sz) { 7201 /* patch is big enough to cover remaining space completely */ 7202 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7203 rem_sz = 0; 7204 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7205 /* patch causes part of remaining log to be truncated */ 7206 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7207 } 7208 } 7209 /* shift remaining log to the right by calculated amount */ 7210 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7211 } 7212 7213 memcpy(orig, patch, patch_sz); 7214 } 7215 7216 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7217 char *buf, size_t buf_sz, size_t log_sz, 7218 char *line1, char *line2, char *line3) 7219 { 7220 /* Expected log for failed and not properly guarded CO-RE relocation: 7221 * line1 -> 123: (85) call unknown#195896080 7222 * line2 -> invalid func unknown#195896080 7223 * line3 -> <anything else or end of buffer> 7224 * 7225 * "123" is the index of the instruction that was poisoned. We extract 7226 * instruction index to find corresponding CO-RE relocation and 7227 * replace this part of the log with more relevant information about 7228 * failed CO-RE relocation. 7229 */ 7230 const struct bpf_core_relo *relo; 7231 struct bpf_core_spec spec; 7232 char patch[512], spec_buf[256]; 7233 int insn_idx, err, spec_len; 7234 7235 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7236 return; 7237 7238 relo = find_relo_core(prog, insn_idx); 7239 if (!relo) 7240 return; 7241 7242 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7243 if (err) 7244 return; 7245 7246 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7247 snprintf(patch, sizeof(patch), 7248 "%d: <invalid CO-RE relocation>\n" 7249 "failed to resolve CO-RE relocation %s%s\n", 7250 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7251 7252 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7253 } 7254 7255 static void fixup_log_missing_map_load(struct bpf_program *prog, 7256 char *buf, size_t buf_sz, size_t log_sz, 7257 char *line1, char *line2, char *line3) 7258 { 7259 /* Expected log for failed and not properly guarded map reference: 7260 * line1 -> 123: (85) call unknown#2001000345 7261 * line2 -> invalid func unknown#2001000345 7262 * line3 -> <anything else or end of buffer> 7263 * 7264 * "123" is the index of the instruction that was poisoned. 7265 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7266 */ 7267 struct bpf_object *obj = prog->obj; 7268 const struct bpf_map *map; 7269 int insn_idx, map_idx; 7270 char patch[128]; 7271 7272 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7273 return; 7274 7275 map_idx -= POISON_LDIMM64_MAP_BASE; 7276 if (map_idx < 0 || map_idx >= obj->nr_maps) 7277 return; 7278 map = &obj->maps[map_idx]; 7279 7280 snprintf(patch, sizeof(patch), 7281 "%d: <invalid BPF map reference>\n" 7282 "BPF map '%s' is referenced but wasn't created\n", 7283 insn_idx, map->name); 7284 7285 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7286 } 7287 7288 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7289 char *buf, size_t buf_sz, size_t log_sz, 7290 char *line1, char *line2, char *line3) 7291 { 7292 /* Expected log for failed and not properly guarded kfunc call: 7293 * line1 -> 123: (85) call unknown#2002000345 7294 * line2 -> invalid func unknown#2002000345 7295 * line3 -> <anything else or end of buffer> 7296 * 7297 * "123" is the index of the instruction that was poisoned. 7298 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7299 */ 7300 struct bpf_object *obj = prog->obj; 7301 const struct extern_desc *ext; 7302 int insn_idx, ext_idx; 7303 char patch[128]; 7304 7305 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7306 return; 7307 7308 ext_idx -= POISON_CALL_KFUNC_BASE; 7309 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7310 return; 7311 ext = &obj->externs[ext_idx]; 7312 7313 snprintf(patch, sizeof(patch), 7314 "%d: <invalid kfunc call>\n" 7315 "kfunc '%s' is referenced but wasn't resolved\n", 7316 insn_idx, ext->name); 7317 7318 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7319 } 7320 7321 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7322 { 7323 /* look for familiar error patterns in last N lines of the log */ 7324 const size_t max_last_line_cnt = 10; 7325 char *prev_line, *cur_line, *next_line; 7326 size_t log_sz; 7327 int i; 7328 7329 if (!buf) 7330 return; 7331 7332 log_sz = strlen(buf) + 1; 7333 next_line = buf + log_sz - 1; 7334 7335 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7336 cur_line = find_prev_line(buf, next_line); 7337 if (!cur_line) 7338 return; 7339 7340 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7341 prev_line = find_prev_line(buf, cur_line); 7342 if (!prev_line) 7343 continue; 7344 7345 /* failed CO-RE relocation case */ 7346 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7347 prev_line, cur_line, next_line); 7348 return; 7349 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7350 prev_line = find_prev_line(buf, cur_line); 7351 if (!prev_line) 7352 continue; 7353 7354 /* reference to uncreated BPF map */ 7355 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7356 prev_line, cur_line, next_line); 7357 return; 7358 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7359 prev_line = find_prev_line(buf, cur_line); 7360 if (!prev_line) 7361 continue; 7362 7363 /* reference to unresolved kfunc */ 7364 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7365 prev_line, cur_line, next_line); 7366 return; 7367 } 7368 } 7369 } 7370 7371 static int bpf_program_record_relos(struct bpf_program *prog) 7372 { 7373 struct bpf_object *obj = prog->obj; 7374 int i; 7375 7376 for (i = 0; i < prog->nr_reloc; i++) { 7377 struct reloc_desc *relo = &prog->reloc_desc[i]; 7378 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7379 int kind; 7380 7381 switch (relo->type) { 7382 case RELO_EXTERN_LD64: 7383 if (ext->type != EXT_KSYM) 7384 continue; 7385 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7386 BTF_KIND_VAR : BTF_KIND_FUNC; 7387 bpf_gen__record_extern(obj->gen_loader, ext->name, 7388 ext->is_weak, !ext->ksym.type_id, 7389 true, kind, relo->insn_idx); 7390 break; 7391 case RELO_EXTERN_CALL: 7392 bpf_gen__record_extern(obj->gen_loader, ext->name, 7393 ext->is_weak, false, false, BTF_KIND_FUNC, 7394 relo->insn_idx); 7395 break; 7396 case RELO_CORE: { 7397 struct bpf_core_relo cr = { 7398 .insn_off = relo->insn_idx * 8, 7399 .type_id = relo->core_relo->type_id, 7400 .access_str_off = relo->core_relo->access_str_off, 7401 .kind = relo->core_relo->kind, 7402 }; 7403 7404 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7405 break; 7406 } 7407 default: 7408 continue; 7409 } 7410 } 7411 return 0; 7412 } 7413 7414 static int 7415 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7416 { 7417 struct bpf_program *prog; 7418 size_t i; 7419 int err; 7420 7421 for (i = 0; i < obj->nr_programs; i++) { 7422 prog = &obj->programs[i]; 7423 err = bpf_object__sanitize_prog(obj, prog); 7424 if (err) 7425 return err; 7426 } 7427 7428 for (i = 0; i < obj->nr_programs; i++) { 7429 prog = &obj->programs[i]; 7430 if (prog_is_subprog(obj, prog)) 7431 continue; 7432 if (!prog->autoload) { 7433 pr_debug("prog '%s': skipped loading\n", prog->name); 7434 continue; 7435 } 7436 prog->log_level |= log_level; 7437 7438 if (obj->gen_loader) 7439 bpf_program_record_relos(prog); 7440 7441 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7442 obj->license, obj->kern_version, &prog->fd); 7443 if (err) { 7444 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7445 return err; 7446 } 7447 } 7448 7449 bpf_object__free_relocs(obj); 7450 return 0; 7451 } 7452 7453 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7454 7455 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7456 { 7457 struct bpf_program *prog; 7458 int err; 7459 7460 bpf_object__for_each_program(prog, obj) { 7461 prog->sec_def = find_sec_def(prog->sec_name); 7462 if (!prog->sec_def) { 7463 /* couldn't guess, but user might manually specify */ 7464 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7465 prog->name, prog->sec_name); 7466 continue; 7467 } 7468 7469 prog->type = prog->sec_def->prog_type; 7470 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7471 7472 /* sec_def can have custom callback which should be called 7473 * after bpf_program is initialized to adjust its properties 7474 */ 7475 if (prog->sec_def->prog_setup_fn) { 7476 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7477 if (err < 0) { 7478 pr_warn("prog '%s': failed to initialize: %d\n", 7479 prog->name, err); 7480 return err; 7481 } 7482 } 7483 } 7484 7485 return 0; 7486 } 7487 7488 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7489 const struct bpf_object_open_opts *opts) 7490 { 7491 const char *obj_name, *kconfig, *btf_tmp_path; 7492 struct bpf_object *obj; 7493 char tmp_name[64]; 7494 int err; 7495 char *log_buf; 7496 size_t log_size; 7497 __u32 log_level; 7498 7499 if (elf_version(EV_CURRENT) == EV_NONE) { 7500 pr_warn("failed to init libelf for %s\n", 7501 path ? : "(mem buf)"); 7502 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7503 } 7504 7505 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7506 return ERR_PTR(-EINVAL); 7507 7508 obj_name = OPTS_GET(opts, object_name, NULL); 7509 if (obj_buf) { 7510 if (!obj_name) { 7511 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7512 (unsigned long)obj_buf, 7513 (unsigned long)obj_buf_sz); 7514 obj_name = tmp_name; 7515 } 7516 path = obj_name; 7517 pr_debug("loading object '%s' from buffer\n", obj_name); 7518 } 7519 7520 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7521 log_size = OPTS_GET(opts, kernel_log_size, 0); 7522 log_level = OPTS_GET(opts, kernel_log_level, 0); 7523 if (log_size > UINT_MAX) 7524 return ERR_PTR(-EINVAL); 7525 if (log_size && !log_buf) 7526 return ERR_PTR(-EINVAL); 7527 7528 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7529 if (IS_ERR(obj)) 7530 return obj; 7531 7532 obj->log_buf = log_buf; 7533 obj->log_size = log_size; 7534 obj->log_level = log_level; 7535 7536 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7537 if (btf_tmp_path) { 7538 if (strlen(btf_tmp_path) >= PATH_MAX) { 7539 err = -ENAMETOOLONG; 7540 goto out; 7541 } 7542 obj->btf_custom_path = strdup(btf_tmp_path); 7543 if (!obj->btf_custom_path) { 7544 err = -ENOMEM; 7545 goto out; 7546 } 7547 } 7548 7549 kconfig = OPTS_GET(opts, kconfig, NULL); 7550 if (kconfig) { 7551 obj->kconfig = strdup(kconfig); 7552 if (!obj->kconfig) { 7553 err = -ENOMEM; 7554 goto out; 7555 } 7556 } 7557 7558 err = bpf_object__elf_init(obj); 7559 err = err ? : bpf_object__check_endianness(obj); 7560 err = err ? : bpf_object__elf_collect(obj); 7561 err = err ? : bpf_object__collect_externs(obj); 7562 err = err ? : bpf_object_fixup_btf(obj); 7563 err = err ? : bpf_object__init_maps(obj, opts); 7564 err = err ? : bpf_object_init_progs(obj, opts); 7565 err = err ? : bpf_object__collect_relos(obj); 7566 if (err) 7567 goto out; 7568 7569 bpf_object__elf_finish(obj); 7570 7571 return obj; 7572 out: 7573 bpf_object__close(obj); 7574 return ERR_PTR(err); 7575 } 7576 7577 struct bpf_object * 7578 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7579 { 7580 if (!path) 7581 return libbpf_err_ptr(-EINVAL); 7582 7583 pr_debug("loading %s\n", path); 7584 7585 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7586 } 7587 7588 struct bpf_object *bpf_object__open(const char *path) 7589 { 7590 return bpf_object__open_file(path, NULL); 7591 } 7592 7593 struct bpf_object * 7594 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7595 const struct bpf_object_open_opts *opts) 7596 { 7597 if (!obj_buf || obj_buf_sz == 0) 7598 return libbpf_err_ptr(-EINVAL); 7599 7600 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7601 } 7602 7603 static int bpf_object_unload(struct bpf_object *obj) 7604 { 7605 size_t i; 7606 7607 if (!obj) 7608 return libbpf_err(-EINVAL); 7609 7610 for (i = 0; i < obj->nr_maps; i++) { 7611 zclose(obj->maps[i].fd); 7612 if (obj->maps[i].st_ops) 7613 zfree(&obj->maps[i].st_ops->kern_vdata); 7614 } 7615 7616 for (i = 0; i < obj->nr_programs; i++) 7617 bpf_program__unload(&obj->programs[i]); 7618 7619 return 0; 7620 } 7621 7622 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7623 { 7624 struct bpf_map *m; 7625 7626 bpf_object__for_each_map(m, obj) { 7627 if (!bpf_map__is_internal(m)) 7628 continue; 7629 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7630 m->def.map_flags &= ~BPF_F_MMAPABLE; 7631 } 7632 7633 return 0; 7634 } 7635 7636 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7637 { 7638 char sym_type, sym_name[500]; 7639 unsigned long long sym_addr; 7640 int ret, err = 0; 7641 FILE *f; 7642 7643 f = fopen("/proc/kallsyms", "re"); 7644 if (!f) { 7645 err = -errno; 7646 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7647 return err; 7648 } 7649 7650 while (true) { 7651 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7652 &sym_addr, &sym_type, sym_name); 7653 if (ret == EOF && feof(f)) 7654 break; 7655 if (ret != 3) { 7656 pr_warn("failed to read kallsyms entry: %d\n", ret); 7657 err = -EINVAL; 7658 break; 7659 } 7660 7661 err = cb(sym_addr, sym_type, sym_name, ctx); 7662 if (err) 7663 break; 7664 } 7665 7666 fclose(f); 7667 return err; 7668 } 7669 7670 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7671 const char *sym_name, void *ctx) 7672 { 7673 struct bpf_object *obj = ctx; 7674 const struct btf_type *t; 7675 struct extern_desc *ext; 7676 7677 ext = find_extern_by_name(obj, sym_name); 7678 if (!ext || ext->type != EXT_KSYM) 7679 return 0; 7680 7681 t = btf__type_by_id(obj->btf, ext->btf_id); 7682 if (!btf_is_var(t)) 7683 return 0; 7684 7685 if (ext->is_set && ext->ksym.addr != sym_addr) { 7686 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7687 sym_name, ext->ksym.addr, sym_addr); 7688 return -EINVAL; 7689 } 7690 if (!ext->is_set) { 7691 ext->is_set = true; 7692 ext->ksym.addr = sym_addr; 7693 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7694 } 7695 return 0; 7696 } 7697 7698 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7699 { 7700 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7701 } 7702 7703 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7704 __u16 kind, struct btf **res_btf, 7705 struct module_btf **res_mod_btf) 7706 { 7707 struct module_btf *mod_btf; 7708 struct btf *btf; 7709 int i, id, err; 7710 7711 btf = obj->btf_vmlinux; 7712 mod_btf = NULL; 7713 id = btf__find_by_name_kind(btf, ksym_name, kind); 7714 7715 if (id == -ENOENT) { 7716 err = load_module_btfs(obj); 7717 if (err) 7718 return err; 7719 7720 for (i = 0; i < obj->btf_module_cnt; i++) { 7721 /* we assume module_btf's BTF FD is always >0 */ 7722 mod_btf = &obj->btf_modules[i]; 7723 btf = mod_btf->btf; 7724 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7725 if (id != -ENOENT) 7726 break; 7727 } 7728 } 7729 if (id <= 0) 7730 return -ESRCH; 7731 7732 *res_btf = btf; 7733 *res_mod_btf = mod_btf; 7734 return id; 7735 } 7736 7737 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7738 struct extern_desc *ext) 7739 { 7740 const struct btf_type *targ_var, *targ_type; 7741 __u32 targ_type_id, local_type_id; 7742 struct module_btf *mod_btf = NULL; 7743 const char *targ_var_name; 7744 struct btf *btf = NULL; 7745 int id, err; 7746 7747 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7748 if (id < 0) { 7749 if (id == -ESRCH && ext->is_weak) 7750 return 0; 7751 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7752 ext->name); 7753 return id; 7754 } 7755 7756 /* find local type_id */ 7757 local_type_id = ext->ksym.type_id; 7758 7759 /* find target type_id */ 7760 targ_var = btf__type_by_id(btf, id); 7761 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7762 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7763 7764 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7765 btf, targ_type_id); 7766 if (err <= 0) { 7767 const struct btf_type *local_type; 7768 const char *targ_name, *local_name; 7769 7770 local_type = btf__type_by_id(obj->btf, local_type_id); 7771 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7772 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7773 7774 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7775 ext->name, local_type_id, 7776 btf_kind_str(local_type), local_name, targ_type_id, 7777 btf_kind_str(targ_type), targ_name); 7778 return -EINVAL; 7779 } 7780 7781 ext->is_set = true; 7782 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7783 ext->ksym.kernel_btf_id = id; 7784 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7785 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7786 7787 return 0; 7788 } 7789 7790 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7791 struct extern_desc *ext) 7792 { 7793 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7794 struct module_btf *mod_btf = NULL; 7795 const struct btf_type *kern_func; 7796 struct btf *kern_btf = NULL; 7797 int ret; 7798 7799 local_func_proto_id = ext->ksym.type_id; 7800 7801 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7802 &mod_btf); 7803 if (kfunc_id < 0) { 7804 if (kfunc_id == -ESRCH && ext->is_weak) 7805 return 0; 7806 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7807 ext->name); 7808 return kfunc_id; 7809 } 7810 7811 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7812 kfunc_proto_id = kern_func->type; 7813 7814 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7815 kern_btf, kfunc_proto_id); 7816 if (ret <= 0) { 7817 if (ext->is_weak) 7818 return 0; 7819 7820 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7821 ext->name, local_func_proto_id, 7822 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7823 return -EINVAL; 7824 } 7825 7826 /* set index for module BTF fd in fd_array, if unset */ 7827 if (mod_btf && !mod_btf->fd_array_idx) { 7828 /* insn->off is s16 */ 7829 if (obj->fd_array_cnt == INT16_MAX) { 7830 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7831 ext->name, mod_btf->fd_array_idx); 7832 return -E2BIG; 7833 } 7834 /* Cannot use index 0 for module BTF fd */ 7835 if (!obj->fd_array_cnt) 7836 obj->fd_array_cnt = 1; 7837 7838 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7839 obj->fd_array_cnt + 1); 7840 if (ret) 7841 return ret; 7842 mod_btf->fd_array_idx = obj->fd_array_cnt; 7843 /* we assume module BTF FD is always >0 */ 7844 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7845 } 7846 7847 ext->is_set = true; 7848 ext->ksym.kernel_btf_id = kfunc_id; 7849 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7850 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7851 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7852 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7853 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7854 */ 7855 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7856 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7857 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7858 7859 return 0; 7860 } 7861 7862 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7863 { 7864 const struct btf_type *t; 7865 struct extern_desc *ext; 7866 int i, err; 7867 7868 for (i = 0; i < obj->nr_extern; i++) { 7869 ext = &obj->externs[i]; 7870 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7871 continue; 7872 7873 if (obj->gen_loader) { 7874 ext->is_set = true; 7875 ext->ksym.kernel_btf_obj_fd = 0; 7876 ext->ksym.kernel_btf_id = 0; 7877 continue; 7878 } 7879 t = btf__type_by_id(obj->btf, ext->btf_id); 7880 if (btf_is_var(t)) 7881 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7882 else 7883 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7884 if (err) 7885 return err; 7886 } 7887 return 0; 7888 } 7889 7890 static int bpf_object__resolve_externs(struct bpf_object *obj, 7891 const char *extra_kconfig) 7892 { 7893 bool need_config = false, need_kallsyms = false; 7894 bool need_vmlinux_btf = false; 7895 struct extern_desc *ext; 7896 void *kcfg_data = NULL; 7897 int err, i; 7898 7899 if (obj->nr_extern == 0) 7900 return 0; 7901 7902 if (obj->kconfig_map_idx >= 0) 7903 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7904 7905 for (i = 0; i < obj->nr_extern; i++) { 7906 ext = &obj->externs[i]; 7907 7908 if (ext->type == EXT_KSYM) { 7909 if (ext->ksym.type_id) 7910 need_vmlinux_btf = true; 7911 else 7912 need_kallsyms = true; 7913 continue; 7914 } else if (ext->type == EXT_KCFG) { 7915 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7916 __u64 value = 0; 7917 7918 /* Kconfig externs need actual /proc/config.gz */ 7919 if (str_has_pfx(ext->name, "CONFIG_")) { 7920 need_config = true; 7921 continue; 7922 } 7923 7924 /* Virtual kcfg externs are customly handled by libbpf */ 7925 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7926 value = get_kernel_version(); 7927 if (!value) { 7928 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7929 return -EINVAL; 7930 } 7931 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7932 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7933 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7934 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7935 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7936 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7937 * __kconfig externs, where LINUX_ ones are virtual and filled out 7938 * customly by libbpf (their values don't come from Kconfig). 7939 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7940 * __weak, it defaults to zero value, just like for CONFIG_xxx 7941 * externs. 7942 */ 7943 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7944 return -EINVAL; 7945 } 7946 7947 err = set_kcfg_value_num(ext, ext_ptr, value); 7948 if (err) 7949 return err; 7950 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7951 ext->name, (long long)value); 7952 } else { 7953 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7954 return -EINVAL; 7955 } 7956 } 7957 if (need_config && extra_kconfig) { 7958 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7959 if (err) 7960 return -EINVAL; 7961 need_config = false; 7962 for (i = 0; i < obj->nr_extern; i++) { 7963 ext = &obj->externs[i]; 7964 if (ext->type == EXT_KCFG && !ext->is_set) { 7965 need_config = true; 7966 break; 7967 } 7968 } 7969 } 7970 if (need_config) { 7971 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7972 if (err) 7973 return -EINVAL; 7974 } 7975 if (need_kallsyms) { 7976 err = bpf_object__read_kallsyms_file(obj); 7977 if (err) 7978 return -EINVAL; 7979 } 7980 if (need_vmlinux_btf) { 7981 err = bpf_object__resolve_ksyms_btf_id(obj); 7982 if (err) 7983 return -EINVAL; 7984 } 7985 for (i = 0; i < obj->nr_extern; i++) { 7986 ext = &obj->externs[i]; 7987 7988 if (!ext->is_set && !ext->is_weak) { 7989 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7990 return -ESRCH; 7991 } else if (!ext->is_set) { 7992 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7993 ext->name); 7994 } 7995 } 7996 7997 return 0; 7998 } 7999 8000 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8001 { 8002 struct bpf_struct_ops *st_ops; 8003 __u32 i; 8004 8005 st_ops = map->st_ops; 8006 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8007 struct bpf_program *prog = st_ops->progs[i]; 8008 void *kern_data; 8009 int prog_fd; 8010 8011 if (!prog) 8012 continue; 8013 8014 prog_fd = bpf_program__fd(prog); 8015 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8016 *(unsigned long *)kern_data = prog_fd; 8017 } 8018 } 8019 8020 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8021 { 8022 int i; 8023 8024 for (i = 0; i < obj->nr_maps; i++) 8025 if (bpf_map__is_struct_ops(&obj->maps[i])) 8026 bpf_map_prepare_vdata(&obj->maps[i]); 8027 8028 return 0; 8029 } 8030 8031 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8032 { 8033 int err, i; 8034 8035 if (!obj) 8036 return libbpf_err(-EINVAL); 8037 8038 if (obj->loaded) { 8039 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8040 return libbpf_err(-EINVAL); 8041 } 8042 8043 if (obj->gen_loader) 8044 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8045 8046 err = bpf_object__probe_loading(obj); 8047 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8048 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8049 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8050 err = err ? : bpf_object__sanitize_maps(obj); 8051 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8052 err = err ? : bpf_object__create_maps(obj); 8053 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8054 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8055 err = err ? : bpf_object_init_prog_arrays(obj); 8056 err = err ? : bpf_object_prepare_struct_ops(obj); 8057 8058 if (obj->gen_loader) { 8059 /* reset FDs */ 8060 if (obj->btf) 8061 btf__set_fd(obj->btf, -1); 8062 for (i = 0; i < obj->nr_maps; i++) 8063 obj->maps[i].fd = -1; 8064 if (!err) 8065 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8066 } 8067 8068 /* clean up fd_array */ 8069 zfree(&obj->fd_array); 8070 8071 /* clean up module BTFs */ 8072 for (i = 0; i < obj->btf_module_cnt; i++) { 8073 close(obj->btf_modules[i].fd); 8074 btf__free(obj->btf_modules[i].btf); 8075 free(obj->btf_modules[i].name); 8076 } 8077 free(obj->btf_modules); 8078 8079 /* clean up vmlinux BTF */ 8080 btf__free(obj->btf_vmlinux); 8081 obj->btf_vmlinux = NULL; 8082 8083 obj->loaded = true; /* doesn't matter if successfully or not */ 8084 8085 if (err) 8086 goto out; 8087 8088 return 0; 8089 out: 8090 /* unpin any maps that were auto-pinned during load */ 8091 for (i = 0; i < obj->nr_maps; i++) 8092 if (obj->maps[i].pinned && !obj->maps[i].reused) 8093 bpf_map__unpin(&obj->maps[i], NULL); 8094 8095 bpf_object_unload(obj); 8096 pr_warn("failed to load object '%s'\n", obj->path); 8097 return libbpf_err(err); 8098 } 8099 8100 int bpf_object__load(struct bpf_object *obj) 8101 { 8102 return bpf_object_load(obj, 0, NULL); 8103 } 8104 8105 static int make_parent_dir(const char *path) 8106 { 8107 char *cp, errmsg[STRERR_BUFSIZE]; 8108 char *dname, *dir; 8109 int err = 0; 8110 8111 dname = strdup(path); 8112 if (dname == NULL) 8113 return -ENOMEM; 8114 8115 dir = dirname(dname); 8116 if (mkdir(dir, 0700) && errno != EEXIST) 8117 err = -errno; 8118 8119 free(dname); 8120 if (err) { 8121 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8122 pr_warn("failed to mkdir %s: %s\n", path, cp); 8123 } 8124 return err; 8125 } 8126 8127 static int check_path(const char *path) 8128 { 8129 char *cp, errmsg[STRERR_BUFSIZE]; 8130 struct statfs st_fs; 8131 char *dname, *dir; 8132 int err = 0; 8133 8134 if (path == NULL) 8135 return -EINVAL; 8136 8137 dname = strdup(path); 8138 if (dname == NULL) 8139 return -ENOMEM; 8140 8141 dir = dirname(dname); 8142 if (statfs(dir, &st_fs)) { 8143 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8144 pr_warn("failed to statfs %s: %s\n", dir, cp); 8145 err = -errno; 8146 } 8147 free(dname); 8148 8149 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8150 pr_warn("specified path %s is not on BPF FS\n", path); 8151 err = -EINVAL; 8152 } 8153 8154 return err; 8155 } 8156 8157 int bpf_program__pin(struct bpf_program *prog, const char *path) 8158 { 8159 char *cp, errmsg[STRERR_BUFSIZE]; 8160 int err; 8161 8162 if (prog->fd < 0) { 8163 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8164 return libbpf_err(-EINVAL); 8165 } 8166 8167 err = make_parent_dir(path); 8168 if (err) 8169 return libbpf_err(err); 8170 8171 err = check_path(path); 8172 if (err) 8173 return libbpf_err(err); 8174 8175 if (bpf_obj_pin(prog->fd, path)) { 8176 err = -errno; 8177 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8178 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8179 return libbpf_err(err); 8180 } 8181 8182 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8183 return 0; 8184 } 8185 8186 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8187 { 8188 int err; 8189 8190 if (prog->fd < 0) { 8191 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8192 return libbpf_err(-EINVAL); 8193 } 8194 8195 err = check_path(path); 8196 if (err) 8197 return libbpf_err(err); 8198 8199 err = unlink(path); 8200 if (err) 8201 return libbpf_err(-errno); 8202 8203 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8204 return 0; 8205 } 8206 8207 int bpf_map__pin(struct bpf_map *map, const char *path) 8208 { 8209 char *cp, errmsg[STRERR_BUFSIZE]; 8210 int err; 8211 8212 if (map == NULL) { 8213 pr_warn("invalid map pointer\n"); 8214 return libbpf_err(-EINVAL); 8215 } 8216 8217 if (map->pin_path) { 8218 if (path && strcmp(path, map->pin_path)) { 8219 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8220 bpf_map__name(map), map->pin_path, path); 8221 return libbpf_err(-EINVAL); 8222 } else if (map->pinned) { 8223 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8224 bpf_map__name(map), map->pin_path); 8225 return 0; 8226 } 8227 } else { 8228 if (!path) { 8229 pr_warn("missing a path to pin map '%s' at\n", 8230 bpf_map__name(map)); 8231 return libbpf_err(-EINVAL); 8232 } else if (map->pinned) { 8233 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8234 return libbpf_err(-EEXIST); 8235 } 8236 8237 map->pin_path = strdup(path); 8238 if (!map->pin_path) { 8239 err = -errno; 8240 goto out_err; 8241 } 8242 } 8243 8244 err = make_parent_dir(map->pin_path); 8245 if (err) 8246 return libbpf_err(err); 8247 8248 err = check_path(map->pin_path); 8249 if (err) 8250 return libbpf_err(err); 8251 8252 if (bpf_obj_pin(map->fd, map->pin_path)) { 8253 err = -errno; 8254 goto out_err; 8255 } 8256 8257 map->pinned = true; 8258 pr_debug("pinned map '%s'\n", map->pin_path); 8259 8260 return 0; 8261 8262 out_err: 8263 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8264 pr_warn("failed to pin map: %s\n", cp); 8265 return libbpf_err(err); 8266 } 8267 8268 int bpf_map__unpin(struct bpf_map *map, const char *path) 8269 { 8270 int err; 8271 8272 if (map == NULL) { 8273 pr_warn("invalid map pointer\n"); 8274 return libbpf_err(-EINVAL); 8275 } 8276 8277 if (map->pin_path) { 8278 if (path && strcmp(path, map->pin_path)) { 8279 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8280 bpf_map__name(map), map->pin_path, path); 8281 return libbpf_err(-EINVAL); 8282 } 8283 path = map->pin_path; 8284 } else if (!path) { 8285 pr_warn("no path to unpin map '%s' from\n", 8286 bpf_map__name(map)); 8287 return libbpf_err(-EINVAL); 8288 } 8289 8290 err = check_path(path); 8291 if (err) 8292 return libbpf_err(err); 8293 8294 err = unlink(path); 8295 if (err != 0) 8296 return libbpf_err(-errno); 8297 8298 map->pinned = false; 8299 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8300 8301 return 0; 8302 } 8303 8304 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8305 { 8306 char *new = NULL; 8307 8308 if (path) { 8309 new = strdup(path); 8310 if (!new) 8311 return libbpf_err(-errno); 8312 } 8313 8314 free(map->pin_path); 8315 map->pin_path = new; 8316 return 0; 8317 } 8318 8319 __alias(bpf_map__pin_path) 8320 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8321 8322 const char *bpf_map__pin_path(const struct bpf_map *map) 8323 { 8324 return map->pin_path; 8325 } 8326 8327 bool bpf_map__is_pinned(const struct bpf_map *map) 8328 { 8329 return map->pinned; 8330 } 8331 8332 static void sanitize_pin_path(char *s) 8333 { 8334 /* bpffs disallows periods in path names */ 8335 while (*s) { 8336 if (*s == '.') 8337 *s = '_'; 8338 s++; 8339 } 8340 } 8341 8342 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8343 { 8344 struct bpf_map *map; 8345 int err; 8346 8347 if (!obj) 8348 return libbpf_err(-ENOENT); 8349 8350 if (!obj->loaded) { 8351 pr_warn("object not yet loaded; load it first\n"); 8352 return libbpf_err(-ENOENT); 8353 } 8354 8355 bpf_object__for_each_map(map, obj) { 8356 char *pin_path = NULL; 8357 char buf[PATH_MAX]; 8358 8359 if (!map->autocreate) 8360 continue; 8361 8362 if (path) { 8363 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8364 if (err) 8365 goto err_unpin_maps; 8366 sanitize_pin_path(buf); 8367 pin_path = buf; 8368 } else if (!map->pin_path) { 8369 continue; 8370 } 8371 8372 err = bpf_map__pin(map, pin_path); 8373 if (err) 8374 goto err_unpin_maps; 8375 } 8376 8377 return 0; 8378 8379 err_unpin_maps: 8380 while ((map = bpf_object__prev_map(obj, map))) { 8381 if (!map->pin_path) 8382 continue; 8383 8384 bpf_map__unpin(map, NULL); 8385 } 8386 8387 return libbpf_err(err); 8388 } 8389 8390 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8391 { 8392 struct bpf_map *map; 8393 int err; 8394 8395 if (!obj) 8396 return libbpf_err(-ENOENT); 8397 8398 bpf_object__for_each_map(map, obj) { 8399 char *pin_path = NULL; 8400 char buf[PATH_MAX]; 8401 8402 if (path) { 8403 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8404 if (err) 8405 return libbpf_err(err); 8406 sanitize_pin_path(buf); 8407 pin_path = buf; 8408 } else if (!map->pin_path) { 8409 continue; 8410 } 8411 8412 err = bpf_map__unpin(map, pin_path); 8413 if (err) 8414 return libbpf_err(err); 8415 } 8416 8417 return 0; 8418 } 8419 8420 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8421 { 8422 struct bpf_program *prog; 8423 char buf[PATH_MAX]; 8424 int err; 8425 8426 if (!obj) 8427 return libbpf_err(-ENOENT); 8428 8429 if (!obj->loaded) { 8430 pr_warn("object not yet loaded; load it first\n"); 8431 return libbpf_err(-ENOENT); 8432 } 8433 8434 bpf_object__for_each_program(prog, obj) { 8435 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8436 if (err) 8437 goto err_unpin_programs; 8438 8439 err = bpf_program__pin(prog, buf); 8440 if (err) 8441 goto err_unpin_programs; 8442 } 8443 8444 return 0; 8445 8446 err_unpin_programs: 8447 while ((prog = bpf_object__prev_program(obj, prog))) { 8448 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8449 continue; 8450 8451 bpf_program__unpin(prog, buf); 8452 } 8453 8454 return libbpf_err(err); 8455 } 8456 8457 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8458 { 8459 struct bpf_program *prog; 8460 int err; 8461 8462 if (!obj) 8463 return libbpf_err(-ENOENT); 8464 8465 bpf_object__for_each_program(prog, obj) { 8466 char buf[PATH_MAX]; 8467 8468 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8469 if (err) 8470 return libbpf_err(err); 8471 8472 err = bpf_program__unpin(prog, buf); 8473 if (err) 8474 return libbpf_err(err); 8475 } 8476 8477 return 0; 8478 } 8479 8480 int bpf_object__pin(struct bpf_object *obj, const char *path) 8481 { 8482 int err; 8483 8484 err = bpf_object__pin_maps(obj, path); 8485 if (err) 8486 return libbpf_err(err); 8487 8488 err = bpf_object__pin_programs(obj, path); 8489 if (err) { 8490 bpf_object__unpin_maps(obj, path); 8491 return libbpf_err(err); 8492 } 8493 8494 return 0; 8495 } 8496 8497 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8498 { 8499 int err; 8500 8501 err = bpf_object__unpin_programs(obj, path); 8502 if (err) 8503 return libbpf_err(err); 8504 8505 err = bpf_object__unpin_maps(obj, path); 8506 if (err) 8507 return libbpf_err(err); 8508 8509 return 0; 8510 } 8511 8512 static void bpf_map__destroy(struct bpf_map *map) 8513 { 8514 if (map->inner_map) { 8515 bpf_map__destroy(map->inner_map); 8516 zfree(&map->inner_map); 8517 } 8518 8519 zfree(&map->init_slots); 8520 map->init_slots_sz = 0; 8521 8522 if (map->mmaped) { 8523 size_t mmap_sz; 8524 8525 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8526 munmap(map->mmaped, mmap_sz); 8527 map->mmaped = NULL; 8528 } 8529 8530 if (map->st_ops) { 8531 zfree(&map->st_ops->data); 8532 zfree(&map->st_ops->progs); 8533 zfree(&map->st_ops->kern_func_off); 8534 zfree(&map->st_ops); 8535 } 8536 8537 zfree(&map->name); 8538 zfree(&map->real_name); 8539 zfree(&map->pin_path); 8540 8541 if (map->fd >= 0) 8542 zclose(map->fd); 8543 } 8544 8545 void bpf_object__close(struct bpf_object *obj) 8546 { 8547 size_t i; 8548 8549 if (IS_ERR_OR_NULL(obj)) 8550 return; 8551 8552 usdt_manager_free(obj->usdt_man); 8553 obj->usdt_man = NULL; 8554 8555 bpf_gen__free(obj->gen_loader); 8556 bpf_object__elf_finish(obj); 8557 bpf_object_unload(obj); 8558 btf__free(obj->btf); 8559 btf__free(obj->btf_vmlinux); 8560 btf_ext__free(obj->btf_ext); 8561 8562 for (i = 0; i < obj->nr_maps; i++) 8563 bpf_map__destroy(&obj->maps[i]); 8564 8565 zfree(&obj->btf_custom_path); 8566 zfree(&obj->kconfig); 8567 8568 for (i = 0; i < obj->nr_extern; i++) 8569 zfree(&obj->externs[i].essent_name); 8570 8571 zfree(&obj->externs); 8572 obj->nr_extern = 0; 8573 8574 zfree(&obj->maps); 8575 obj->nr_maps = 0; 8576 8577 if (obj->programs && obj->nr_programs) { 8578 for (i = 0; i < obj->nr_programs; i++) 8579 bpf_program__exit(&obj->programs[i]); 8580 } 8581 zfree(&obj->programs); 8582 8583 free(obj); 8584 } 8585 8586 const char *bpf_object__name(const struct bpf_object *obj) 8587 { 8588 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8589 } 8590 8591 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8592 { 8593 return obj ? obj->kern_version : 0; 8594 } 8595 8596 struct btf *bpf_object__btf(const struct bpf_object *obj) 8597 { 8598 return obj ? obj->btf : NULL; 8599 } 8600 8601 int bpf_object__btf_fd(const struct bpf_object *obj) 8602 { 8603 return obj->btf ? btf__fd(obj->btf) : -1; 8604 } 8605 8606 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8607 { 8608 if (obj->loaded) 8609 return libbpf_err(-EINVAL); 8610 8611 obj->kern_version = kern_version; 8612 8613 return 0; 8614 } 8615 8616 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8617 { 8618 struct bpf_gen *gen; 8619 8620 if (!opts) 8621 return -EFAULT; 8622 if (!OPTS_VALID(opts, gen_loader_opts)) 8623 return -EINVAL; 8624 gen = calloc(sizeof(*gen), 1); 8625 if (!gen) 8626 return -ENOMEM; 8627 gen->opts = opts; 8628 obj->gen_loader = gen; 8629 return 0; 8630 } 8631 8632 static struct bpf_program * 8633 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8634 bool forward) 8635 { 8636 size_t nr_programs = obj->nr_programs; 8637 ssize_t idx; 8638 8639 if (!nr_programs) 8640 return NULL; 8641 8642 if (!p) 8643 /* Iter from the beginning */ 8644 return forward ? &obj->programs[0] : 8645 &obj->programs[nr_programs - 1]; 8646 8647 if (p->obj != obj) { 8648 pr_warn("error: program handler doesn't match object\n"); 8649 return errno = EINVAL, NULL; 8650 } 8651 8652 idx = (p - obj->programs) + (forward ? 1 : -1); 8653 if (idx >= obj->nr_programs || idx < 0) 8654 return NULL; 8655 return &obj->programs[idx]; 8656 } 8657 8658 struct bpf_program * 8659 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8660 { 8661 struct bpf_program *prog = prev; 8662 8663 do { 8664 prog = __bpf_program__iter(prog, obj, true); 8665 } while (prog && prog_is_subprog(obj, prog)); 8666 8667 return prog; 8668 } 8669 8670 struct bpf_program * 8671 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8672 { 8673 struct bpf_program *prog = next; 8674 8675 do { 8676 prog = __bpf_program__iter(prog, obj, false); 8677 } while (prog && prog_is_subprog(obj, prog)); 8678 8679 return prog; 8680 } 8681 8682 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8683 { 8684 prog->prog_ifindex = ifindex; 8685 } 8686 8687 const char *bpf_program__name(const struct bpf_program *prog) 8688 { 8689 return prog->name; 8690 } 8691 8692 const char *bpf_program__section_name(const struct bpf_program *prog) 8693 { 8694 return prog->sec_name; 8695 } 8696 8697 bool bpf_program__autoload(const struct bpf_program *prog) 8698 { 8699 return prog->autoload; 8700 } 8701 8702 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8703 { 8704 if (prog->obj->loaded) 8705 return libbpf_err(-EINVAL); 8706 8707 prog->autoload = autoload; 8708 return 0; 8709 } 8710 8711 bool bpf_program__autoattach(const struct bpf_program *prog) 8712 { 8713 return prog->autoattach; 8714 } 8715 8716 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8717 { 8718 prog->autoattach = autoattach; 8719 } 8720 8721 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8722 { 8723 return prog->insns; 8724 } 8725 8726 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8727 { 8728 return prog->insns_cnt; 8729 } 8730 8731 int bpf_program__set_insns(struct bpf_program *prog, 8732 struct bpf_insn *new_insns, size_t new_insn_cnt) 8733 { 8734 struct bpf_insn *insns; 8735 8736 if (prog->obj->loaded) 8737 return -EBUSY; 8738 8739 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8740 /* NULL is a valid return from reallocarray if the new count is zero */ 8741 if (!insns && new_insn_cnt) { 8742 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8743 return -ENOMEM; 8744 } 8745 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8746 8747 prog->insns = insns; 8748 prog->insns_cnt = new_insn_cnt; 8749 return 0; 8750 } 8751 8752 int bpf_program__fd(const struct bpf_program *prog) 8753 { 8754 if (!prog) 8755 return libbpf_err(-EINVAL); 8756 8757 if (prog->fd < 0) 8758 return libbpf_err(-ENOENT); 8759 8760 return prog->fd; 8761 } 8762 8763 __alias(bpf_program__type) 8764 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8765 8766 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8767 { 8768 return prog->type; 8769 } 8770 8771 static size_t custom_sec_def_cnt; 8772 static struct bpf_sec_def *custom_sec_defs; 8773 static struct bpf_sec_def custom_fallback_def; 8774 static bool has_custom_fallback_def; 8775 static int last_custom_sec_def_handler_id; 8776 8777 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8778 { 8779 if (prog->obj->loaded) 8780 return libbpf_err(-EBUSY); 8781 8782 /* if type is not changed, do nothing */ 8783 if (prog->type == type) 8784 return 0; 8785 8786 prog->type = type; 8787 8788 /* If a program type was changed, we need to reset associated SEC() 8789 * handler, as it will be invalid now. The only exception is a generic 8790 * fallback handler, which by definition is program type-agnostic and 8791 * is a catch-all custom handler, optionally set by the application, 8792 * so should be able to handle any type of BPF program. 8793 */ 8794 if (prog->sec_def != &custom_fallback_def) 8795 prog->sec_def = NULL; 8796 return 0; 8797 } 8798 8799 __alias(bpf_program__expected_attach_type) 8800 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8801 8802 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8803 { 8804 return prog->expected_attach_type; 8805 } 8806 8807 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8808 enum bpf_attach_type type) 8809 { 8810 if (prog->obj->loaded) 8811 return libbpf_err(-EBUSY); 8812 8813 prog->expected_attach_type = type; 8814 return 0; 8815 } 8816 8817 __u32 bpf_program__flags(const struct bpf_program *prog) 8818 { 8819 return prog->prog_flags; 8820 } 8821 8822 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8823 { 8824 if (prog->obj->loaded) 8825 return libbpf_err(-EBUSY); 8826 8827 prog->prog_flags = flags; 8828 return 0; 8829 } 8830 8831 __u32 bpf_program__log_level(const struct bpf_program *prog) 8832 { 8833 return prog->log_level; 8834 } 8835 8836 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8837 { 8838 if (prog->obj->loaded) 8839 return libbpf_err(-EBUSY); 8840 8841 prog->log_level = log_level; 8842 return 0; 8843 } 8844 8845 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8846 { 8847 *log_size = prog->log_size; 8848 return prog->log_buf; 8849 } 8850 8851 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8852 { 8853 if (log_size && !log_buf) 8854 return -EINVAL; 8855 if (prog->log_size > UINT_MAX) 8856 return -EINVAL; 8857 if (prog->obj->loaded) 8858 return -EBUSY; 8859 8860 prog->log_buf = log_buf; 8861 prog->log_size = log_size; 8862 return 0; 8863 } 8864 8865 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8866 .sec = (char *)sec_pfx, \ 8867 .prog_type = BPF_PROG_TYPE_##ptype, \ 8868 .expected_attach_type = atype, \ 8869 .cookie = (long)(flags), \ 8870 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8871 __VA_ARGS__ \ 8872 } 8873 8874 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8875 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8876 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8877 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8878 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8879 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8880 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8881 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8882 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8883 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8884 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8885 8886 static const struct bpf_sec_def section_defs[] = { 8887 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8888 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8889 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8890 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8891 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8892 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8893 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8894 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8895 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8896 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8897 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8898 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8899 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8900 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8901 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8902 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8903 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8904 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8905 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8906 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8907 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8908 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8909 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8910 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8911 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8912 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8913 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8914 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8915 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8916 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8917 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8918 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8919 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8920 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8921 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8922 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8923 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8924 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8925 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8926 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8927 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8928 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8929 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8930 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8931 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8932 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8933 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8934 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8935 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8936 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8937 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8938 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8939 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8940 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8941 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8942 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8943 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8944 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8945 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8946 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8947 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8948 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8949 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8950 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8951 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8952 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8953 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8954 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8955 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8956 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8957 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8958 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8959 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8960 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8961 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8962 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8963 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8964 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8965 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8966 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8967 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8968 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8969 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8970 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8971 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8972 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8973 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8974 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8975 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8976 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8977 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8978 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8979 }; 8980 8981 int libbpf_register_prog_handler(const char *sec, 8982 enum bpf_prog_type prog_type, 8983 enum bpf_attach_type exp_attach_type, 8984 const struct libbpf_prog_handler_opts *opts) 8985 { 8986 struct bpf_sec_def *sec_def; 8987 8988 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8989 return libbpf_err(-EINVAL); 8990 8991 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8992 return libbpf_err(-E2BIG); 8993 8994 if (sec) { 8995 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8996 sizeof(*sec_def)); 8997 if (!sec_def) 8998 return libbpf_err(-ENOMEM); 8999 9000 custom_sec_defs = sec_def; 9001 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9002 } else { 9003 if (has_custom_fallback_def) 9004 return libbpf_err(-EBUSY); 9005 9006 sec_def = &custom_fallback_def; 9007 } 9008 9009 sec_def->sec = sec ? strdup(sec) : NULL; 9010 if (sec && !sec_def->sec) 9011 return libbpf_err(-ENOMEM); 9012 9013 sec_def->prog_type = prog_type; 9014 sec_def->expected_attach_type = exp_attach_type; 9015 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9016 9017 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9018 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9019 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9020 9021 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9022 9023 if (sec) 9024 custom_sec_def_cnt++; 9025 else 9026 has_custom_fallback_def = true; 9027 9028 return sec_def->handler_id; 9029 } 9030 9031 int libbpf_unregister_prog_handler(int handler_id) 9032 { 9033 struct bpf_sec_def *sec_defs; 9034 int i; 9035 9036 if (handler_id <= 0) 9037 return libbpf_err(-EINVAL); 9038 9039 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9040 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9041 has_custom_fallback_def = false; 9042 return 0; 9043 } 9044 9045 for (i = 0; i < custom_sec_def_cnt; i++) { 9046 if (custom_sec_defs[i].handler_id == handler_id) 9047 break; 9048 } 9049 9050 if (i == custom_sec_def_cnt) 9051 return libbpf_err(-ENOENT); 9052 9053 free(custom_sec_defs[i].sec); 9054 for (i = i + 1; i < custom_sec_def_cnt; i++) 9055 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9056 custom_sec_def_cnt--; 9057 9058 /* try to shrink the array, but it's ok if we couldn't */ 9059 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9060 /* if new count is zero, reallocarray can return a valid NULL result; 9061 * in this case the previous pointer will be freed, so we *have to* 9062 * reassign old pointer to the new value (even if it's NULL) 9063 */ 9064 if (sec_defs || custom_sec_def_cnt == 0) 9065 custom_sec_defs = sec_defs; 9066 9067 return 0; 9068 } 9069 9070 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9071 { 9072 size_t len = strlen(sec_def->sec); 9073 9074 /* "type/" always has to have proper SEC("type/extras") form */ 9075 if (sec_def->sec[len - 1] == '/') { 9076 if (str_has_pfx(sec_name, sec_def->sec)) 9077 return true; 9078 return false; 9079 } 9080 9081 /* "type+" means it can be either exact SEC("type") or 9082 * well-formed SEC("type/extras") with proper '/' separator 9083 */ 9084 if (sec_def->sec[len - 1] == '+') { 9085 len--; 9086 /* not even a prefix */ 9087 if (strncmp(sec_name, sec_def->sec, len) != 0) 9088 return false; 9089 /* exact match or has '/' separator */ 9090 if (sec_name[len] == '\0' || sec_name[len] == '/') 9091 return true; 9092 return false; 9093 } 9094 9095 return strcmp(sec_name, sec_def->sec) == 0; 9096 } 9097 9098 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9099 { 9100 const struct bpf_sec_def *sec_def; 9101 int i, n; 9102 9103 n = custom_sec_def_cnt; 9104 for (i = 0; i < n; i++) { 9105 sec_def = &custom_sec_defs[i]; 9106 if (sec_def_matches(sec_def, sec_name)) 9107 return sec_def; 9108 } 9109 9110 n = ARRAY_SIZE(section_defs); 9111 for (i = 0; i < n; i++) { 9112 sec_def = §ion_defs[i]; 9113 if (sec_def_matches(sec_def, sec_name)) 9114 return sec_def; 9115 } 9116 9117 if (has_custom_fallback_def) 9118 return &custom_fallback_def; 9119 9120 return NULL; 9121 } 9122 9123 #define MAX_TYPE_NAME_SIZE 32 9124 9125 static char *libbpf_get_type_names(bool attach_type) 9126 { 9127 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9128 char *buf; 9129 9130 buf = malloc(len); 9131 if (!buf) 9132 return NULL; 9133 9134 buf[0] = '\0'; 9135 /* Forge string buf with all available names */ 9136 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9137 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9138 9139 if (attach_type) { 9140 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9141 continue; 9142 9143 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9144 continue; 9145 } 9146 9147 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9148 free(buf); 9149 return NULL; 9150 } 9151 strcat(buf, " "); 9152 strcat(buf, section_defs[i].sec); 9153 } 9154 9155 return buf; 9156 } 9157 9158 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9159 enum bpf_attach_type *expected_attach_type) 9160 { 9161 const struct bpf_sec_def *sec_def; 9162 char *type_names; 9163 9164 if (!name) 9165 return libbpf_err(-EINVAL); 9166 9167 sec_def = find_sec_def(name); 9168 if (sec_def) { 9169 *prog_type = sec_def->prog_type; 9170 *expected_attach_type = sec_def->expected_attach_type; 9171 return 0; 9172 } 9173 9174 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9175 type_names = libbpf_get_type_names(false); 9176 if (type_names != NULL) { 9177 pr_debug("supported section(type) names are:%s\n", type_names); 9178 free(type_names); 9179 } 9180 9181 return libbpf_err(-ESRCH); 9182 } 9183 9184 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9185 { 9186 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9187 return NULL; 9188 9189 return attach_type_name[t]; 9190 } 9191 9192 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9193 { 9194 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9195 return NULL; 9196 9197 return link_type_name[t]; 9198 } 9199 9200 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9201 { 9202 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9203 return NULL; 9204 9205 return map_type_name[t]; 9206 } 9207 9208 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9209 { 9210 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9211 return NULL; 9212 9213 return prog_type_name[t]; 9214 } 9215 9216 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9217 int sec_idx, 9218 size_t offset) 9219 { 9220 struct bpf_map *map; 9221 size_t i; 9222 9223 for (i = 0; i < obj->nr_maps; i++) { 9224 map = &obj->maps[i]; 9225 if (!bpf_map__is_struct_ops(map)) 9226 continue; 9227 if (map->sec_idx == sec_idx && 9228 map->sec_offset <= offset && 9229 offset - map->sec_offset < map->def.value_size) 9230 return map; 9231 } 9232 9233 return NULL; 9234 } 9235 9236 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9237 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9238 Elf64_Shdr *shdr, Elf_Data *data) 9239 { 9240 const struct btf_member *member; 9241 struct bpf_struct_ops *st_ops; 9242 struct bpf_program *prog; 9243 unsigned int shdr_idx; 9244 const struct btf *btf; 9245 struct bpf_map *map; 9246 unsigned int moff, insn_idx; 9247 const char *name; 9248 __u32 member_idx; 9249 Elf64_Sym *sym; 9250 Elf64_Rel *rel; 9251 int i, nrels; 9252 9253 btf = obj->btf; 9254 nrels = shdr->sh_size / shdr->sh_entsize; 9255 for (i = 0; i < nrels; i++) { 9256 rel = elf_rel_by_idx(data, i); 9257 if (!rel) { 9258 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9259 return -LIBBPF_ERRNO__FORMAT; 9260 } 9261 9262 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9263 if (!sym) { 9264 pr_warn("struct_ops reloc: symbol %zx not found\n", 9265 (size_t)ELF64_R_SYM(rel->r_info)); 9266 return -LIBBPF_ERRNO__FORMAT; 9267 } 9268 9269 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9270 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9271 if (!map) { 9272 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9273 (size_t)rel->r_offset); 9274 return -EINVAL; 9275 } 9276 9277 moff = rel->r_offset - map->sec_offset; 9278 shdr_idx = sym->st_shndx; 9279 st_ops = map->st_ops; 9280 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9281 map->name, 9282 (long long)(rel->r_info >> 32), 9283 (long long)sym->st_value, 9284 shdr_idx, (size_t)rel->r_offset, 9285 map->sec_offset, sym->st_name, name); 9286 9287 if (shdr_idx >= SHN_LORESERVE) { 9288 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9289 map->name, (size_t)rel->r_offset, shdr_idx); 9290 return -LIBBPF_ERRNO__RELOC; 9291 } 9292 if (sym->st_value % BPF_INSN_SZ) { 9293 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9294 map->name, (unsigned long long)sym->st_value); 9295 return -LIBBPF_ERRNO__FORMAT; 9296 } 9297 insn_idx = sym->st_value / BPF_INSN_SZ; 9298 9299 member = find_member_by_offset(st_ops->type, moff * 8); 9300 if (!member) { 9301 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9302 map->name, moff); 9303 return -EINVAL; 9304 } 9305 member_idx = member - btf_members(st_ops->type); 9306 name = btf__name_by_offset(btf, member->name_off); 9307 9308 if (!resolve_func_ptr(btf, member->type, NULL)) { 9309 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9310 map->name, name); 9311 return -EINVAL; 9312 } 9313 9314 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9315 if (!prog) { 9316 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9317 map->name, shdr_idx, name); 9318 return -EINVAL; 9319 } 9320 9321 /* prevent the use of BPF prog with invalid type */ 9322 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9323 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9324 map->name, prog->name); 9325 return -EINVAL; 9326 } 9327 9328 /* if we haven't yet processed this BPF program, record proper 9329 * attach_btf_id and member_idx 9330 */ 9331 if (!prog->attach_btf_id) { 9332 prog->attach_btf_id = st_ops->type_id; 9333 prog->expected_attach_type = member_idx; 9334 } 9335 9336 /* struct_ops BPF prog can be re-used between multiple 9337 * .struct_ops & .struct_ops.link as long as it's the 9338 * same struct_ops struct definition and the same 9339 * function pointer field 9340 */ 9341 if (prog->attach_btf_id != st_ops->type_id || 9342 prog->expected_attach_type != member_idx) { 9343 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9344 map->name, prog->name, prog->sec_name, prog->type, 9345 prog->attach_btf_id, prog->expected_attach_type, name); 9346 return -EINVAL; 9347 } 9348 9349 st_ops->progs[member_idx] = prog; 9350 } 9351 9352 return 0; 9353 } 9354 9355 #define BTF_TRACE_PREFIX "btf_trace_" 9356 #define BTF_LSM_PREFIX "bpf_lsm_" 9357 #define BTF_ITER_PREFIX "bpf_iter_" 9358 #define BTF_MAX_NAME_SIZE 128 9359 9360 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9361 const char **prefix, int *kind) 9362 { 9363 switch (attach_type) { 9364 case BPF_TRACE_RAW_TP: 9365 *prefix = BTF_TRACE_PREFIX; 9366 *kind = BTF_KIND_TYPEDEF; 9367 break; 9368 case BPF_LSM_MAC: 9369 case BPF_LSM_CGROUP: 9370 *prefix = BTF_LSM_PREFIX; 9371 *kind = BTF_KIND_FUNC; 9372 break; 9373 case BPF_TRACE_ITER: 9374 *prefix = BTF_ITER_PREFIX; 9375 *kind = BTF_KIND_FUNC; 9376 break; 9377 default: 9378 *prefix = ""; 9379 *kind = BTF_KIND_FUNC; 9380 } 9381 } 9382 9383 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9384 const char *name, __u32 kind) 9385 { 9386 char btf_type_name[BTF_MAX_NAME_SIZE]; 9387 int ret; 9388 9389 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9390 "%s%s", prefix, name); 9391 /* snprintf returns the number of characters written excluding the 9392 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9393 * indicates truncation. 9394 */ 9395 if (ret < 0 || ret >= sizeof(btf_type_name)) 9396 return -ENAMETOOLONG; 9397 return btf__find_by_name_kind(btf, btf_type_name, kind); 9398 } 9399 9400 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9401 enum bpf_attach_type attach_type) 9402 { 9403 const char *prefix; 9404 int kind; 9405 9406 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9407 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9408 } 9409 9410 int libbpf_find_vmlinux_btf_id(const char *name, 9411 enum bpf_attach_type attach_type) 9412 { 9413 struct btf *btf; 9414 int err; 9415 9416 btf = btf__load_vmlinux_btf(); 9417 err = libbpf_get_error(btf); 9418 if (err) { 9419 pr_warn("vmlinux BTF is not found\n"); 9420 return libbpf_err(err); 9421 } 9422 9423 err = find_attach_btf_id(btf, name, attach_type); 9424 if (err <= 0) 9425 pr_warn("%s is not found in vmlinux BTF\n", name); 9426 9427 btf__free(btf); 9428 return libbpf_err(err); 9429 } 9430 9431 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9432 { 9433 struct bpf_prog_info info; 9434 __u32 info_len = sizeof(info); 9435 struct btf *btf; 9436 int err; 9437 9438 memset(&info, 0, info_len); 9439 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9440 if (err) { 9441 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9442 attach_prog_fd, err); 9443 return err; 9444 } 9445 9446 err = -EINVAL; 9447 if (!info.btf_id) { 9448 pr_warn("The target program doesn't have BTF\n"); 9449 goto out; 9450 } 9451 btf = btf__load_from_kernel_by_id(info.btf_id); 9452 err = libbpf_get_error(btf); 9453 if (err) { 9454 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9455 goto out; 9456 } 9457 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9458 btf__free(btf); 9459 if (err <= 0) { 9460 pr_warn("%s is not found in prog's BTF\n", name); 9461 goto out; 9462 } 9463 out: 9464 return err; 9465 } 9466 9467 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9468 enum bpf_attach_type attach_type, 9469 int *btf_obj_fd, int *btf_type_id) 9470 { 9471 int ret, i; 9472 9473 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9474 if (ret > 0) { 9475 *btf_obj_fd = 0; /* vmlinux BTF */ 9476 *btf_type_id = ret; 9477 return 0; 9478 } 9479 if (ret != -ENOENT) 9480 return ret; 9481 9482 ret = load_module_btfs(obj); 9483 if (ret) 9484 return ret; 9485 9486 for (i = 0; i < obj->btf_module_cnt; i++) { 9487 const struct module_btf *mod = &obj->btf_modules[i]; 9488 9489 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9490 if (ret > 0) { 9491 *btf_obj_fd = mod->fd; 9492 *btf_type_id = ret; 9493 return 0; 9494 } 9495 if (ret == -ENOENT) 9496 continue; 9497 9498 return ret; 9499 } 9500 9501 return -ESRCH; 9502 } 9503 9504 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9505 int *btf_obj_fd, int *btf_type_id) 9506 { 9507 enum bpf_attach_type attach_type = prog->expected_attach_type; 9508 __u32 attach_prog_fd = prog->attach_prog_fd; 9509 int err = 0; 9510 9511 /* BPF program's BTF ID */ 9512 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9513 if (!attach_prog_fd) { 9514 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9515 return -EINVAL; 9516 } 9517 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9518 if (err < 0) { 9519 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9520 prog->name, attach_prog_fd, attach_name, err); 9521 return err; 9522 } 9523 *btf_obj_fd = 0; 9524 *btf_type_id = err; 9525 return 0; 9526 } 9527 9528 /* kernel/module BTF ID */ 9529 if (prog->obj->gen_loader) { 9530 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9531 *btf_obj_fd = 0; 9532 *btf_type_id = 1; 9533 } else { 9534 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9535 } 9536 if (err) { 9537 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9538 prog->name, attach_name, err); 9539 return err; 9540 } 9541 return 0; 9542 } 9543 9544 int libbpf_attach_type_by_name(const char *name, 9545 enum bpf_attach_type *attach_type) 9546 { 9547 char *type_names; 9548 const struct bpf_sec_def *sec_def; 9549 9550 if (!name) 9551 return libbpf_err(-EINVAL); 9552 9553 sec_def = find_sec_def(name); 9554 if (!sec_def) { 9555 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9556 type_names = libbpf_get_type_names(true); 9557 if (type_names != NULL) { 9558 pr_debug("attachable section(type) names are:%s\n", type_names); 9559 free(type_names); 9560 } 9561 9562 return libbpf_err(-EINVAL); 9563 } 9564 9565 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9566 return libbpf_err(-EINVAL); 9567 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9568 return libbpf_err(-EINVAL); 9569 9570 *attach_type = sec_def->expected_attach_type; 9571 return 0; 9572 } 9573 9574 int bpf_map__fd(const struct bpf_map *map) 9575 { 9576 return map ? map->fd : libbpf_err(-EINVAL); 9577 } 9578 9579 static bool map_uses_real_name(const struct bpf_map *map) 9580 { 9581 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9582 * their user-visible name differs from kernel-visible name. Users see 9583 * such map's corresponding ELF section name as a map name. 9584 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9585 * maps to know which name has to be returned to the user. 9586 */ 9587 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9588 return true; 9589 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9590 return true; 9591 return false; 9592 } 9593 9594 const char *bpf_map__name(const struct bpf_map *map) 9595 { 9596 if (!map) 9597 return NULL; 9598 9599 if (map_uses_real_name(map)) 9600 return map->real_name; 9601 9602 return map->name; 9603 } 9604 9605 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9606 { 9607 return map->def.type; 9608 } 9609 9610 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9611 { 9612 if (map->fd >= 0) 9613 return libbpf_err(-EBUSY); 9614 map->def.type = type; 9615 return 0; 9616 } 9617 9618 __u32 bpf_map__map_flags(const struct bpf_map *map) 9619 { 9620 return map->def.map_flags; 9621 } 9622 9623 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9624 { 9625 if (map->fd >= 0) 9626 return libbpf_err(-EBUSY); 9627 map->def.map_flags = flags; 9628 return 0; 9629 } 9630 9631 __u64 bpf_map__map_extra(const struct bpf_map *map) 9632 { 9633 return map->map_extra; 9634 } 9635 9636 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9637 { 9638 if (map->fd >= 0) 9639 return libbpf_err(-EBUSY); 9640 map->map_extra = map_extra; 9641 return 0; 9642 } 9643 9644 __u32 bpf_map__numa_node(const struct bpf_map *map) 9645 { 9646 return map->numa_node; 9647 } 9648 9649 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9650 { 9651 if (map->fd >= 0) 9652 return libbpf_err(-EBUSY); 9653 map->numa_node = numa_node; 9654 return 0; 9655 } 9656 9657 __u32 bpf_map__key_size(const struct bpf_map *map) 9658 { 9659 return map->def.key_size; 9660 } 9661 9662 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9663 { 9664 if (map->fd >= 0) 9665 return libbpf_err(-EBUSY); 9666 map->def.key_size = size; 9667 return 0; 9668 } 9669 9670 __u32 bpf_map__value_size(const struct bpf_map *map) 9671 { 9672 return map->def.value_size; 9673 } 9674 9675 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9676 { 9677 struct btf *btf; 9678 struct btf_type *datasec_type, *var_type; 9679 struct btf_var_secinfo *var; 9680 const struct btf_type *array_type; 9681 const struct btf_array *array; 9682 int vlen, element_sz, new_array_id; 9683 __u32 nr_elements; 9684 9685 /* check btf existence */ 9686 btf = bpf_object__btf(map->obj); 9687 if (!btf) 9688 return -ENOENT; 9689 9690 /* verify map is datasec */ 9691 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9692 if (!btf_is_datasec(datasec_type)) { 9693 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9694 bpf_map__name(map)); 9695 return -EINVAL; 9696 } 9697 9698 /* verify datasec has at least one var */ 9699 vlen = btf_vlen(datasec_type); 9700 if (vlen == 0) { 9701 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9702 bpf_map__name(map)); 9703 return -EINVAL; 9704 } 9705 9706 /* verify last var in the datasec is an array */ 9707 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9708 var_type = btf_type_by_id(btf, var->type); 9709 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9710 if (!btf_is_array(array_type)) { 9711 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9712 bpf_map__name(map)); 9713 return -EINVAL; 9714 } 9715 9716 /* verify request size aligns with array */ 9717 array = btf_array(array_type); 9718 element_sz = btf__resolve_size(btf, array->type); 9719 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9720 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9721 bpf_map__name(map), element_sz, size); 9722 return -EINVAL; 9723 } 9724 9725 /* create a new array based on the existing array, but with new length */ 9726 nr_elements = (size - var->offset) / element_sz; 9727 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9728 if (new_array_id < 0) 9729 return new_array_id; 9730 9731 /* adding a new btf type invalidates existing pointers to btf objects, 9732 * so refresh pointers before proceeding 9733 */ 9734 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9735 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9736 var_type = btf_type_by_id(btf, var->type); 9737 9738 /* finally update btf info */ 9739 datasec_type->size = size; 9740 var->size = size - var->offset; 9741 var_type->type = new_array_id; 9742 9743 return 0; 9744 } 9745 9746 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9747 { 9748 if (map->fd >= 0) 9749 return libbpf_err(-EBUSY); 9750 9751 if (map->mmaped) { 9752 int err; 9753 size_t mmap_old_sz, mmap_new_sz; 9754 9755 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9756 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9757 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9758 if (err) { 9759 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9760 bpf_map__name(map), err); 9761 return err; 9762 } 9763 err = map_btf_datasec_resize(map, size); 9764 if (err && err != -ENOENT) { 9765 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9766 bpf_map__name(map), err); 9767 map->btf_value_type_id = 0; 9768 map->btf_key_type_id = 0; 9769 } 9770 } 9771 9772 map->def.value_size = size; 9773 return 0; 9774 } 9775 9776 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9777 { 9778 return map ? map->btf_key_type_id : 0; 9779 } 9780 9781 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9782 { 9783 return map ? map->btf_value_type_id : 0; 9784 } 9785 9786 int bpf_map__set_initial_value(struct bpf_map *map, 9787 const void *data, size_t size) 9788 { 9789 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9790 size != map->def.value_size || map->fd >= 0) 9791 return libbpf_err(-EINVAL); 9792 9793 memcpy(map->mmaped, data, size); 9794 return 0; 9795 } 9796 9797 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9798 { 9799 if (!map->mmaped) 9800 return NULL; 9801 *psize = map->def.value_size; 9802 return map->mmaped; 9803 } 9804 9805 bool bpf_map__is_internal(const struct bpf_map *map) 9806 { 9807 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9808 } 9809 9810 __u32 bpf_map__ifindex(const struct bpf_map *map) 9811 { 9812 return map->map_ifindex; 9813 } 9814 9815 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9816 { 9817 if (map->fd >= 0) 9818 return libbpf_err(-EBUSY); 9819 map->map_ifindex = ifindex; 9820 return 0; 9821 } 9822 9823 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9824 { 9825 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9826 pr_warn("error: unsupported map type\n"); 9827 return libbpf_err(-EINVAL); 9828 } 9829 if (map->inner_map_fd != -1) { 9830 pr_warn("error: inner_map_fd already specified\n"); 9831 return libbpf_err(-EINVAL); 9832 } 9833 if (map->inner_map) { 9834 bpf_map__destroy(map->inner_map); 9835 zfree(&map->inner_map); 9836 } 9837 map->inner_map_fd = fd; 9838 return 0; 9839 } 9840 9841 static struct bpf_map * 9842 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9843 { 9844 ssize_t idx; 9845 struct bpf_map *s, *e; 9846 9847 if (!obj || !obj->maps) 9848 return errno = EINVAL, NULL; 9849 9850 s = obj->maps; 9851 e = obj->maps + obj->nr_maps; 9852 9853 if ((m < s) || (m >= e)) { 9854 pr_warn("error in %s: map handler doesn't belong to object\n", 9855 __func__); 9856 return errno = EINVAL, NULL; 9857 } 9858 9859 idx = (m - obj->maps) + i; 9860 if (idx >= obj->nr_maps || idx < 0) 9861 return NULL; 9862 return &obj->maps[idx]; 9863 } 9864 9865 struct bpf_map * 9866 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9867 { 9868 if (prev == NULL) 9869 return obj->maps; 9870 9871 return __bpf_map__iter(prev, obj, 1); 9872 } 9873 9874 struct bpf_map * 9875 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9876 { 9877 if (next == NULL) { 9878 if (!obj->nr_maps) 9879 return NULL; 9880 return obj->maps + obj->nr_maps - 1; 9881 } 9882 9883 return __bpf_map__iter(next, obj, -1); 9884 } 9885 9886 struct bpf_map * 9887 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9888 { 9889 struct bpf_map *pos; 9890 9891 bpf_object__for_each_map(pos, obj) { 9892 /* if it's a special internal map name (which always starts 9893 * with dot) then check if that special name matches the 9894 * real map name (ELF section name) 9895 */ 9896 if (name[0] == '.') { 9897 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9898 return pos; 9899 continue; 9900 } 9901 /* otherwise map name has to be an exact match */ 9902 if (map_uses_real_name(pos)) { 9903 if (strcmp(pos->real_name, name) == 0) 9904 return pos; 9905 continue; 9906 } 9907 if (strcmp(pos->name, name) == 0) 9908 return pos; 9909 } 9910 return errno = ENOENT, NULL; 9911 } 9912 9913 int 9914 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9915 { 9916 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9917 } 9918 9919 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9920 size_t value_sz, bool check_value_sz) 9921 { 9922 if (map->fd <= 0) 9923 return -ENOENT; 9924 9925 if (map->def.key_size != key_sz) { 9926 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9927 map->name, key_sz, map->def.key_size); 9928 return -EINVAL; 9929 } 9930 9931 if (!check_value_sz) 9932 return 0; 9933 9934 switch (map->def.type) { 9935 case BPF_MAP_TYPE_PERCPU_ARRAY: 9936 case BPF_MAP_TYPE_PERCPU_HASH: 9937 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9938 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9939 int num_cpu = libbpf_num_possible_cpus(); 9940 size_t elem_sz = roundup(map->def.value_size, 8); 9941 9942 if (value_sz != num_cpu * elem_sz) { 9943 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9944 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9945 return -EINVAL; 9946 } 9947 break; 9948 } 9949 default: 9950 if (map->def.value_size != value_sz) { 9951 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9952 map->name, value_sz, map->def.value_size); 9953 return -EINVAL; 9954 } 9955 break; 9956 } 9957 return 0; 9958 } 9959 9960 int bpf_map__lookup_elem(const struct bpf_map *map, 9961 const void *key, size_t key_sz, 9962 void *value, size_t value_sz, __u64 flags) 9963 { 9964 int err; 9965 9966 err = validate_map_op(map, key_sz, value_sz, true); 9967 if (err) 9968 return libbpf_err(err); 9969 9970 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9971 } 9972 9973 int bpf_map__update_elem(const struct bpf_map *map, 9974 const void *key, size_t key_sz, 9975 const void *value, size_t value_sz, __u64 flags) 9976 { 9977 int err; 9978 9979 err = validate_map_op(map, key_sz, value_sz, true); 9980 if (err) 9981 return libbpf_err(err); 9982 9983 return bpf_map_update_elem(map->fd, key, value, flags); 9984 } 9985 9986 int bpf_map__delete_elem(const struct bpf_map *map, 9987 const void *key, size_t key_sz, __u64 flags) 9988 { 9989 int err; 9990 9991 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9992 if (err) 9993 return libbpf_err(err); 9994 9995 return bpf_map_delete_elem_flags(map->fd, key, flags); 9996 } 9997 9998 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9999 const void *key, size_t key_sz, 10000 void *value, size_t value_sz, __u64 flags) 10001 { 10002 int err; 10003 10004 err = validate_map_op(map, key_sz, value_sz, true); 10005 if (err) 10006 return libbpf_err(err); 10007 10008 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10009 } 10010 10011 int bpf_map__get_next_key(const struct bpf_map *map, 10012 const void *cur_key, void *next_key, size_t key_sz) 10013 { 10014 int err; 10015 10016 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10017 if (err) 10018 return libbpf_err(err); 10019 10020 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10021 } 10022 10023 long libbpf_get_error(const void *ptr) 10024 { 10025 if (!IS_ERR_OR_NULL(ptr)) 10026 return 0; 10027 10028 if (IS_ERR(ptr)) 10029 errno = -PTR_ERR(ptr); 10030 10031 /* If ptr == NULL, then errno should be already set by the failing 10032 * API, because libbpf never returns NULL on success and it now always 10033 * sets errno on error. So no extra errno handling for ptr == NULL 10034 * case. 10035 */ 10036 return -errno; 10037 } 10038 10039 /* Replace link's underlying BPF program with the new one */ 10040 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10041 { 10042 int ret; 10043 10044 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10045 return libbpf_err_errno(ret); 10046 } 10047 10048 /* Release "ownership" of underlying BPF resource (typically, BPF program 10049 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10050 * link, when destructed through bpf_link__destroy() call won't attempt to 10051 * detach/unregisted that BPF resource. This is useful in situations where, 10052 * say, attached BPF program has to outlive userspace program that attached it 10053 * in the system. Depending on type of BPF program, though, there might be 10054 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10055 * exit of userspace program doesn't trigger automatic detachment and clean up 10056 * inside the kernel. 10057 */ 10058 void bpf_link__disconnect(struct bpf_link *link) 10059 { 10060 link->disconnected = true; 10061 } 10062 10063 int bpf_link__destroy(struct bpf_link *link) 10064 { 10065 int err = 0; 10066 10067 if (IS_ERR_OR_NULL(link)) 10068 return 0; 10069 10070 if (!link->disconnected && link->detach) 10071 err = link->detach(link); 10072 if (link->pin_path) 10073 free(link->pin_path); 10074 if (link->dealloc) 10075 link->dealloc(link); 10076 else 10077 free(link); 10078 10079 return libbpf_err(err); 10080 } 10081 10082 int bpf_link__fd(const struct bpf_link *link) 10083 { 10084 return link->fd; 10085 } 10086 10087 const char *bpf_link__pin_path(const struct bpf_link *link) 10088 { 10089 return link->pin_path; 10090 } 10091 10092 static int bpf_link__detach_fd(struct bpf_link *link) 10093 { 10094 return libbpf_err_errno(close(link->fd)); 10095 } 10096 10097 struct bpf_link *bpf_link__open(const char *path) 10098 { 10099 struct bpf_link *link; 10100 int fd; 10101 10102 fd = bpf_obj_get(path); 10103 if (fd < 0) { 10104 fd = -errno; 10105 pr_warn("failed to open link at %s: %d\n", path, fd); 10106 return libbpf_err_ptr(fd); 10107 } 10108 10109 link = calloc(1, sizeof(*link)); 10110 if (!link) { 10111 close(fd); 10112 return libbpf_err_ptr(-ENOMEM); 10113 } 10114 link->detach = &bpf_link__detach_fd; 10115 link->fd = fd; 10116 10117 link->pin_path = strdup(path); 10118 if (!link->pin_path) { 10119 bpf_link__destroy(link); 10120 return libbpf_err_ptr(-ENOMEM); 10121 } 10122 10123 return link; 10124 } 10125 10126 int bpf_link__detach(struct bpf_link *link) 10127 { 10128 return bpf_link_detach(link->fd) ? -errno : 0; 10129 } 10130 10131 int bpf_link__pin(struct bpf_link *link, const char *path) 10132 { 10133 int err; 10134 10135 if (link->pin_path) 10136 return libbpf_err(-EBUSY); 10137 err = make_parent_dir(path); 10138 if (err) 10139 return libbpf_err(err); 10140 err = check_path(path); 10141 if (err) 10142 return libbpf_err(err); 10143 10144 link->pin_path = strdup(path); 10145 if (!link->pin_path) 10146 return libbpf_err(-ENOMEM); 10147 10148 if (bpf_obj_pin(link->fd, link->pin_path)) { 10149 err = -errno; 10150 zfree(&link->pin_path); 10151 return libbpf_err(err); 10152 } 10153 10154 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10155 return 0; 10156 } 10157 10158 int bpf_link__unpin(struct bpf_link *link) 10159 { 10160 int err; 10161 10162 if (!link->pin_path) 10163 return libbpf_err(-EINVAL); 10164 10165 err = unlink(link->pin_path); 10166 if (err != 0) 10167 return -errno; 10168 10169 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10170 zfree(&link->pin_path); 10171 return 0; 10172 } 10173 10174 struct bpf_link_perf { 10175 struct bpf_link link; 10176 int perf_event_fd; 10177 /* legacy kprobe support: keep track of probe identifier and type */ 10178 char *legacy_probe_name; 10179 bool legacy_is_kprobe; 10180 bool legacy_is_retprobe; 10181 }; 10182 10183 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10184 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10185 10186 static int bpf_link_perf_detach(struct bpf_link *link) 10187 { 10188 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10189 int err = 0; 10190 10191 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10192 err = -errno; 10193 10194 if (perf_link->perf_event_fd != link->fd) 10195 close(perf_link->perf_event_fd); 10196 close(link->fd); 10197 10198 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10199 if (perf_link->legacy_probe_name) { 10200 if (perf_link->legacy_is_kprobe) { 10201 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10202 perf_link->legacy_is_retprobe); 10203 } else { 10204 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10205 perf_link->legacy_is_retprobe); 10206 } 10207 } 10208 10209 return err; 10210 } 10211 10212 static void bpf_link_perf_dealloc(struct bpf_link *link) 10213 { 10214 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10215 10216 free(perf_link->legacy_probe_name); 10217 free(perf_link); 10218 } 10219 10220 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10221 const struct bpf_perf_event_opts *opts) 10222 { 10223 char errmsg[STRERR_BUFSIZE]; 10224 struct bpf_link_perf *link; 10225 int prog_fd, link_fd = -1, err; 10226 bool force_ioctl_attach; 10227 10228 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10229 return libbpf_err_ptr(-EINVAL); 10230 10231 if (pfd < 0) { 10232 pr_warn("prog '%s': invalid perf event FD %d\n", 10233 prog->name, pfd); 10234 return libbpf_err_ptr(-EINVAL); 10235 } 10236 prog_fd = bpf_program__fd(prog); 10237 if (prog_fd < 0) { 10238 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10239 prog->name); 10240 return libbpf_err_ptr(-EINVAL); 10241 } 10242 10243 link = calloc(1, sizeof(*link)); 10244 if (!link) 10245 return libbpf_err_ptr(-ENOMEM); 10246 link->link.detach = &bpf_link_perf_detach; 10247 link->link.dealloc = &bpf_link_perf_dealloc; 10248 link->perf_event_fd = pfd; 10249 10250 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10251 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10252 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10253 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10254 10255 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10256 if (link_fd < 0) { 10257 err = -errno; 10258 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10259 prog->name, pfd, 10260 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10261 goto err_out; 10262 } 10263 link->link.fd = link_fd; 10264 } else { 10265 if (OPTS_GET(opts, bpf_cookie, 0)) { 10266 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10267 err = -EOPNOTSUPP; 10268 goto err_out; 10269 } 10270 10271 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10272 err = -errno; 10273 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10274 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10275 if (err == -EPROTO) 10276 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10277 prog->name, pfd); 10278 goto err_out; 10279 } 10280 link->link.fd = pfd; 10281 } 10282 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10283 err = -errno; 10284 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10285 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10286 goto err_out; 10287 } 10288 10289 return &link->link; 10290 err_out: 10291 if (link_fd >= 0) 10292 close(link_fd); 10293 free(link); 10294 return libbpf_err_ptr(err); 10295 } 10296 10297 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10298 { 10299 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10300 } 10301 10302 /* 10303 * this function is expected to parse integer in the range of [0, 2^31-1] from 10304 * given file using scanf format string fmt. If actual parsed value is 10305 * negative, the result might be indistinguishable from error 10306 */ 10307 static int parse_uint_from_file(const char *file, const char *fmt) 10308 { 10309 char buf[STRERR_BUFSIZE]; 10310 int err, ret; 10311 FILE *f; 10312 10313 f = fopen(file, "re"); 10314 if (!f) { 10315 err = -errno; 10316 pr_debug("failed to open '%s': %s\n", file, 10317 libbpf_strerror_r(err, buf, sizeof(buf))); 10318 return err; 10319 } 10320 err = fscanf(f, fmt, &ret); 10321 if (err != 1) { 10322 err = err == EOF ? -EIO : -errno; 10323 pr_debug("failed to parse '%s': %s\n", file, 10324 libbpf_strerror_r(err, buf, sizeof(buf))); 10325 fclose(f); 10326 return err; 10327 } 10328 fclose(f); 10329 return ret; 10330 } 10331 10332 static int determine_kprobe_perf_type(void) 10333 { 10334 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10335 10336 return parse_uint_from_file(file, "%d\n"); 10337 } 10338 10339 static int determine_uprobe_perf_type(void) 10340 { 10341 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10342 10343 return parse_uint_from_file(file, "%d\n"); 10344 } 10345 10346 static int determine_kprobe_retprobe_bit(void) 10347 { 10348 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10349 10350 return parse_uint_from_file(file, "config:%d\n"); 10351 } 10352 10353 static int determine_uprobe_retprobe_bit(void) 10354 { 10355 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10356 10357 return parse_uint_from_file(file, "config:%d\n"); 10358 } 10359 10360 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10361 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10362 10363 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10364 uint64_t offset, int pid, size_t ref_ctr_off) 10365 { 10366 const size_t attr_sz = sizeof(struct perf_event_attr); 10367 struct perf_event_attr attr; 10368 char errmsg[STRERR_BUFSIZE]; 10369 int type, pfd; 10370 10371 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10372 return -EINVAL; 10373 10374 memset(&attr, 0, attr_sz); 10375 10376 type = uprobe ? determine_uprobe_perf_type() 10377 : determine_kprobe_perf_type(); 10378 if (type < 0) { 10379 pr_warn("failed to determine %s perf type: %s\n", 10380 uprobe ? "uprobe" : "kprobe", 10381 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10382 return type; 10383 } 10384 if (retprobe) { 10385 int bit = uprobe ? determine_uprobe_retprobe_bit() 10386 : determine_kprobe_retprobe_bit(); 10387 10388 if (bit < 0) { 10389 pr_warn("failed to determine %s retprobe bit: %s\n", 10390 uprobe ? "uprobe" : "kprobe", 10391 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10392 return bit; 10393 } 10394 attr.config |= 1 << bit; 10395 } 10396 attr.size = attr_sz; 10397 attr.type = type; 10398 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10399 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10400 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10401 10402 /* pid filter is meaningful only for uprobes */ 10403 pfd = syscall(__NR_perf_event_open, &attr, 10404 pid < 0 ? -1 : pid /* pid */, 10405 pid == -1 ? 0 : -1 /* cpu */, 10406 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10407 return pfd >= 0 ? pfd : -errno; 10408 } 10409 10410 static int append_to_file(const char *file, const char *fmt, ...) 10411 { 10412 int fd, n, err = 0; 10413 va_list ap; 10414 char buf[1024]; 10415 10416 va_start(ap, fmt); 10417 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10418 va_end(ap); 10419 10420 if (n < 0 || n >= sizeof(buf)) 10421 return -EINVAL; 10422 10423 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10424 if (fd < 0) 10425 return -errno; 10426 10427 if (write(fd, buf, n) < 0) 10428 err = -errno; 10429 10430 close(fd); 10431 return err; 10432 } 10433 10434 #define DEBUGFS "/sys/kernel/debug/tracing" 10435 #define TRACEFS "/sys/kernel/tracing" 10436 10437 static bool use_debugfs(void) 10438 { 10439 static int has_debugfs = -1; 10440 10441 if (has_debugfs < 0) 10442 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10443 10444 return has_debugfs == 1; 10445 } 10446 10447 static const char *tracefs_path(void) 10448 { 10449 return use_debugfs() ? DEBUGFS : TRACEFS; 10450 } 10451 10452 static const char *tracefs_kprobe_events(void) 10453 { 10454 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10455 } 10456 10457 static const char *tracefs_uprobe_events(void) 10458 { 10459 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10460 } 10461 10462 static const char *tracefs_available_filter_functions(void) 10463 { 10464 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10465 : TRACEFS"/available_filter_functions"; 10466 } 10467 10468 static const char *tracefs_available_filter_functions_addrs(void) 10469 { 10470 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10471 : TRACEFS"/available_filter_functions_addrs"; 10472 } 10473 10474 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10475 const char *kfunc_name, size_t offset) 10476 { 10477 static int index = 0; 10478 int i; 10479 10480 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10481 __sync_fetch_and_add(&index, 1)); 10482 10483 /* sanitize binary_path in the probe name */ 10484 for (i = 0; buf[i]; i++) { 10485 if (!isalnum(buf[i])) 10486 buf[i] = '_'; 10487 } 10488 } 10489 10490 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10491 const char *kfunc_name, size_t offset) 10492 { 10493 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10494 retprobe ? 'r' : 'p', 10495 retprobe ? "kretprobes" : "kprobes", 10496 probe_name, kfunc_name, offset); 10497 } 10498 10499 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10500 { 10501 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10502 retprobe ? "kretprobes" : "kprobes", probe_name); 10503 } 10504 10505 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10506 { 10507 char file[256]; 10508 10509 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10510 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10511 10512 return parse_uint_from_file(file, "%d\n"); 10513 } 10514 10515 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10516 const char *kfunc_name, size_t offset, int pid) 10517 { 10518 const size_t attr_sz = sizeof(struct perf_event_attr); 10519 struct perf_event_attr attr; 10520 char errmsg[STRERR_BUFSIZE]; 10521 int type, pfd, err; 10522 10523 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10524 if (err < 0) { 10525 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10526 kfunc_name, offset, 10527 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10528 return err; 10529 } 10530 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10531 if (type < 0) { 10532 err = type; 10533 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10534 kfunc_name, offset, 10535 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10536 goto err_clean_legacy; 10537 } 10538 10539 memset(&attr, 0, attr_sz); 10540 attr.size = attr_sz; 10541 attr.config = type; 10542 attr.type = PERF_TYPE_TRACEPOINT; 10543 10544 pfd = syscall(__NR_perf_event_open, &attr, 10545 pid < 0 ? -1 : pid, /* pid */ 10546 pid == -1 ? 0 : -1, /* cpu */ 10547 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10548 if (pfd < 0) { 10549 err = -errno; 10550 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10551 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10552 goto err_clean_legacy; 10553 } 10554 return pfd; 10555 10556 err_clean_legacy: 10557 /* Clear the newly added legacy kprobe_event */ 10558 remove_kprobe_event_legacy(probe_name, retprobe); 10559 return err; 10560 } 10561 10562 static const char *arch_specific_syscall_pfx(void) 10563 { 10564 #if defined(__x86_64__) 10565 return "x64"; 10566 #elif defined(__i386__) 10567 return "ia32"; 10568 #elif defined(__s390x__) 10569 return "s390x"; 10570 #elif defined(__s390__) 10571 return "s390"; 10572 #elif defined(__arm__) 10573 return "arm"; 10574 #elif defined(__aarch64__) 10575 return "arm64"; 10576 #elif defined(__mips__) 10577 return "mips"; 10578 #elif defined(__riscv) 10579 return "riscv"; 10580 #elif defined(__powerpc__) 10581 return "powerpc"; 10582 #elif defined(__powerpc64__) 10583 return "powerpc64"; 10584 #else 10585 return NULL; 10586 #endif 10587 } 10588 10589 static int probe_kern_syscall_wrapper(void) 10590 { 10591 char syscall_name[64]; 10592 const char *ksys_pfx; 10593 10594 ksys_pfx = arch_specific_syscall_pfx(); 10595 if (!ksys_pfx) 10596 return 0; 10597 10598 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10599 10600 if (determine_kprobe_perf_type() >= 0) { 10601 int pfd; 10602 10603 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10604 if (pfd >= 0) 10605 close(pfd); 10606 10607 return pfd >= 0 ? 1 : 0; 10608 } else { /* legacy mode */ 10609 char probe_name[128]; 10610 10611 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10612 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10613 return 0; 10614 10615 (void)remove_kprobe_event_legacy(probe_name, false); 10616 return 1; 10617 } 10618 } 10619 10620 struct bpf_link * 10621 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10622 const char *func_name, 10623 const struct bpf_kprobe_opts *opts) 10624 { 10625 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10626 enum probe_attach_mode attach_mode; 10627 char errmsg[STRERR_BUFSIZE]; 10628 char *legacy_probe = NULL; 10629 struct bpf_link *link; 10630 size_t offset; 10631 bool retprobe, legacy; 10632 int pfd, err; 10633 10634 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10635 return libbpf_err_ptr(-EINVAL); 10636 10637 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10638 retprobe = OPTS_GET(opts, retprobe, false); 10639 offset = OPTS_GET(opts, offset, 0); 10640 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10641 10642 legacy = determine_kprobe_perf_type() < 0; 10643 switch (attach_mode) { 10644 case PROBE_ATTACH_MODE_LEGACY: 10645 legacy = true; 10646 pe_opts.force_ioctl_attach = true; 10647 break; 10648 case PROBE_ATTACH_MODE_PERF: 10649 if (legacy) 10650 return libbpf_err_ptr(-ENOTSUP); 10651 pe_opts.force_ioctl_attach = true; 10652 break; 10653 case PROBE_ATTACH_MODE_LINK: 10654 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10655 return libbpf_err_ptr(-ENOTSUP); 10656 break; 10657 case PROBE_ATTACH_MODE_DEFAULT: 10658 break; 10659 default: 10660 return libbpf_err_ptr(-EINVAL); 10661 } 10662 10663 if (!legacy) { 10664 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10665 func_name, offset, 10666 -1 /* pid */, 0 /* ref_ctr_off */); 10667 } else { 10668 char probe_name[256]; 10669 10670 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10671 func_name, offset); 10672 10673 legacy_probe = strdup(probe_name); 10674 if (!legacy_probe) 10675 return libbpf_err_ptr(-ENOMEM); 10676 10677 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10678 offset, -1 /* pid */); 10679 } 10680 if (pfd < 0) { 10681 err = -errno; 10682 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10683 prog->name, retprobe ? "kretprobe" : "kprobe", 10684 func_name, offset, 10685 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10686 goto err_out; 10687 } 10688 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10689 err = libbpf_get_error(link); 10690 if (err) { 10691 close(pfd); 10692 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10693 prog->name, retprobe ? "kretprobe" : "kprobe", 10694 func_name, offset, 10695 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10696 goto err_clean_legacy; 10697 } 10698 if (legacy) { 10699 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10700 10701 perf_link->legacy_probe_name = legacy_probe; 10702 perf_link->legacy_is_kprobe = true; 10703 perf_link->legacy_is_retprobe = retprobe; 10704 } 10705 10706 return link; 10707 10708 err_clean_legacy: 10709 if (legacy) 10710 remove_kprobe_event_legacy(legacy_probe, retprobe); 10711 err_out: 10712 free(legacy_probe); 10713 return libbpf_err_ptr(err); 10714 } 10715 10716 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10717 bool retprobe, 10718 const char *func_name) 10719 { 10720 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10721 .retprobe = retprobe, 10722 ); 10723 10724 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10725 } 10726 10727 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10728 const char *syscall_name, 10729 const struct bpf_ksyscall_opts *opts) 10730 { 10731 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10732 char func_name[128]; 10733 10734 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10735 return libbpf_err_ptr(-EINVAL); 10736 10737 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10738 /* arch_specific_syscall_pfx() should never return NULL here 10739 * because it is guarded by kernel_supports(). However, since 10740 * compiler does not know that we have an explicit conditional 10741 * as well. 10742 */ 10743 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10744 arch_specific_syscall_pfx() ? : "", syscall_name); 10745 } else { 10746 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10747 } 10748 10749 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10750 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10751 10752 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10753 } 10754 10755 /* Adapted from perf/util/string.c */ 10756 bool glob_match(const char *str, const char *pat) 10757 { 10758 while (*str && *pat && *pat != '*') { 10759 if (*pat == '?') { /* Matches any single character */ 10760 str++; 10761 pat++; 10762 continue; 10763 } 10764 if (*str != *pat) 10765 return false; 10766 str++; 10767 pat++; 10768 } 10769 /* Check wild card */ 10770 if (*pat == '*') { 10771 while (*pat == '*') 10772 pat++; 10773 if (!*pat) /* Tail wild card matches all */ 10774 return true; 10775 while (*str) 10776 if (glob_match(str++, pat)) 10777 return true; 10778 } 10779 return !*str && !*pat; 10780 } 10781 10782 struct kprobe_multi_resolve { 10783 const char *pattern; 10784 unsigned long *addrs; 10785 size_t cap; 10786 size_t cnt; 10787 }; 10788 10789 struct avail_kallsyms_data { 10790 char **syms; 10791 size_t cnt; 10792 struct kprobe_multi_resolve *res; 10793 }; 10794 10795 static int avail_func_cmp(const void *a, const void *b) 10796 { 10797 return strcmp(*(const char **)a, *(const char **)b); 10798 } 10799 10800 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10801 const char *sym_name, void *ctx) 10802 { 10803 struct avail_kallsyms_data *data = ctx; 10804 struct kprobe_multi_resolve *res = data->res; 10805 int err; 10806 10807 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10808 return 0; 10809 10810 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10811 if (err) 10812 return err; 10813 10814 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10815 return 0; 10816 } 10817 10818 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10819 { 10820 const char *available_functions_file = tracefs_available_filter_functions(); 10821 struct avail_kallsyms_data data; 10822 char sym_name[500]; 10823 FILE *f; 10824 int err = 0, ret, i; 10825 char **syms = NULL; 10826 size_t cap = 0, cnt = 0; 10827 10828 f = fopen(available_functions_file, "re"); 10829 if (!f) { 10830 err = -errno; 10831 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10832 return err; 10833 } 10834 10835 while (true) { 10836 char *name; 10837 10838 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10839 if (ret == EOF && feof(f)) 10840 break; 10841 10842 if (ret != 1) { 10843 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10844 err = -EINVAL; 10845 goto cleanup; 10846 } 10847 10848 if (!glob_match(sym_name, res->pattern)) 10849 continue; 10850 10851 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10852 if (err) 10853 goto cleanup; 10854 10855 name = strdup(sym_name); 10856 if (!name) { 10857 err = -errno; 10858 goto cleanup; 10859 } 10860 10861 syms[cnt++] = name; 10862 } 10863 10864 /* no entries found, bail out */ 10865 if (cnt == 0) { 10866 err = -ENOENT; 10867 goto cleanup; 10868 } 10869 10870 /* sort available functions */ 10871 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10872 10873 data.syms = syms; 10874 data.res = res; 10875 data.cnt = cnt; 10876 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10877 10878 if (res->cnt == 0) 10879 err = -ENOENT; 10880 10881 cleanup: 10882 for (i = 0; i < cnt; i++) 10883 free((char *)syms[i]); 10884 free(syms); 10885 10886 fclose(f); 10887 return err; 10888 } 10889 10890 static bool has_available_filter_functions_addrs(void) 10891 { 10892 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10893 } 10894 10895 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10896 { 10897 const char *available_path = tracefs_available_filter_functions_addrs(); 10898 char sym_name[500]; 10899 FILE *f; 10900 int ret, err = 0; 10901 unsigned long long sym_addr; 10902 10903 f = fopen(available_path, "re"); 10904 if (!f) { 10905 err = -errno; 10906 pr_warn("failed to open %s: %d\n", available_path, err); 10907 return err; 10908 } 10909 10910 while (true) { 10911 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10912 if (ret == EOF && feof(f)) 10913 break; 10914 10915 if (ret != 2) { 10916 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10917 ret); 10918 err = -EINVAL; 10919 goto cleanup; 10920 } 10921 10922 if (!glob_match(sym_name, res->pattern)) 10923 continue; 10924 10925 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10926 sizeof(*res->addrs), res->cnt + 1); 10927 if (err) 10928 goto cleanup; 10929 10930 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10931 } 10932 10933 if (res->cnt == 0) 10934 err = -ENOENT; 10935 10936 cleanup: 10937 fclose(f); 10938 return err; 10939 } 10940 10941 struct bpf_link * 10942 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10943 const char *pattern, 10944 const struct bpf_kprobe_multi_opts *opts) 10945 { 10946 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10947 struct kprobe_multi_resolve res = { 10948 .pattern = pattern, 10949 }; 10950 struct bpf_link *link = NULL; 10951 char errmsg[STRERR_BUFSIZE]; 10952 const unsigned long *addrs; 10953 int err, link_fd, prog_fd; 10954 const __u64 *cookies; 10955 const char **syms; 10956 bool retprobe; 10957 size_t cnt; 10958 10959 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10960 return libbpf_err_ptr(-EINVAL); 10961 10962 syms = OPTS_GET(opts, syms, false); 10963 addrs = OPTS_GET(opts, addrs, false); 10964 cnt = OPTS_GET(opts, cnt, false); 10965 cookies = OPTS_GET(opts, cookies, false); 10966 10967 if (!pattern && !addrs && !syms) 10968 return libbpf_err_ptr(-EINVAL); 10969 if (pattern && (addrs || syms || cookies || cnt)) 10970 return libbpf_err_ptr(-EINVAL); 10971 if (!pattern && !cnt) 10972 return libbpf_err_ptr(-EINVAL); 10973 if (addrs && syms) 10974 return libbpf_err_ptr(-EINVAL); 10975 10976 if (pattern) { 10977 if (has_available_filter_functions_addrs()) 10978 err = libbpf_available_kprobes_parse(&res); 10979 else 10980 err = libbpf_available_kallsyms_parse(&res); 10981 if (err) 10982 goto error; 10983 addrs = res.addrs; 10984 cnt = res.cnt; 10985 } 10986 10987 retprobe = OPTS_GET(opts, retprobe, false); 10988 10989 lopts.kprobe_multi.syms = syms; 10990 lopts.kprobe_multi.addrs = addrs; 10991 lopts.kprobe_multi.cookies = cookies; 10992 lopts.kprobe_multi.cnt = cnt; 10993 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10994 10995 link = calloc(1, sizeof(*link)); 10996 if (!link) { 10997 err = -ENOMEM; 10998 goto error; 10999 } 11000 link->detach = &bpf_link__detach_fd; 11001 11002 prog_fd = bpf_program__fd(prog); 11003 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11004 if (link_fd < 0) { 11005 err = -errno; 11006 pr_warn("prog '%s': failed to attach: %s\n", 11007 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11008 goto error; 11009 } 11010 link->fd = link_fd; 11011 free(res.addrs); 11012 return link; 11013 11014 error: 11015 free(link); 11016 free(res.addrs); 11017 return libbpf_err_ptr(err); 11018 } 11019 11020 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11021 { 11022 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11023 unsigned long offset = 0; 11024 const char *func_name; 11025 char *func; 11026 int n; 11027 11028 *link = NULL; 11029 11030 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11031 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11032 return 0; 11033 11034 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11035 if (opts.retprobe) 11036 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11037 else 11038 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11039 11040 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11041 if (n < 1) { 11042 pr_warn("kprobe name is invalid: %s\n", func_name); 11043 return -EINVAL; 11044 } 11045 if (opts.retprobe && offset != 0) { 11046 free(func); 11047 pr_warn("kretprobes do not support offset specification\n"); 11048 return -EINVAL; 11049 } 11050 11051 opts.offset = offset; 11052 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11053 free(func); 11054 return libbpf_get_error(*link); 11055 } 11056 11057 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11058 { 11059 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11060 const char *syscall_name; 11061 11062 *link = NULL; 11063 11064 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11065 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11066 return 0; 11067 11068 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11069 if (opts.retprobe) 11070 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11071 else 11072 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11073 11074 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11075 return *link ? 0 : -errno; 11076 } 11077 11078 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11079 { 11080 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11081 const char *spec; 11082 char *pattern; 11083 int n; 11084 11085 *link = NULL; 11086 11087 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11088 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11089 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11090 return 0; 11091 11092 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11093 if (opts.retprobe) 11094 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11095 else 11096 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11097 11098 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11099 if (n < 1) { 11100 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11101 return -EINVAL; 11102 } 11103 11104 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11105 free(pattern); 11106 return libbpf_get_error(*link); 11107 } 11108 11109 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11110 { 11111 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11112 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11113 int n, ret = -EINVAL; 11114 11115 *link = NULL; 11116 11117 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms", 11118 &probe_type, &binary_path, &func_name); 11119 switch (n) { 11120 case 1: 11121 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11122 ret = 0; 11123 break; 11124 case 3: 11125 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11126 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11127 ret = libbpf_get_error(*link); 11128 break; 11129 default: 11130 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11131 prog->sec_name); 11132 break; 11133 } 11134 free(probe_type); 11135 free(binary_path); 11136 free(func_name); 11137 return ret; 11138 } 11139 11140 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11141 const char *binary_path, uint64_t offset) 11142 { 11143 int i; 11144 11145 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11146 11147 /* sanitize binary_path in the probe name */ 11148 for (i = 0; buf[i]; i++) { 11149 if (!isalnum(buf[i])) 11150 buf[i] = '_'; 11151 } 11152 } 11153 11154 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11155 const char *binary_path, size_t offset) 11156 { 11157 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11158 retprobe ? 'r' : 'p', 11159 retprobe ? "uretprobes" : "uprobes", 11160 probe_name, binary_path, offset); 11161 } 11162 11163 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11164 { 11165 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11166 retprobe ? "uretprobes" : "uprobes", probe_name); 11167 } 11168 11169 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11170 { 11171 char file[512]; 11172 11173 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11174 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11175 11176 return parse_uint_from_file(file, "%d\n"); 11177 } 11178 11179 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11180 const char *binary_path, size_t offset, int pid) 11181 { 11182 const size_t attr_sz = sizeof(struct perf_event_attr); 11183 struct perf_event_attr attr; 11184 int type, pfd, err; 11185 11186 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11187 if (err < 0) { 11188 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11189 binary_path, (size_t)offset, err); 11190 return err; 11191 } 11192 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11193 if (type < 0) { 11194 err = type; 11195 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11196 binary_path, offset, err); 11197 goto err_clean_legacy; 11198 } 11199 11200 memset(&attr, 0, attr_sz); 11201 attr.size = attr_sz; 11202 attr.config = type; 11203 attr.type = PERF_TYPE_TRACEPOINT; 11204 11205 pfd = syscall(__NR_perf_event_open, &attr, 11206 pid < 0 ? -1 : pid, /* pid */ 11207 pid == -1 ? 0 : -1, /* cpu */ 11208 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11209 if (pfd < 0) { 11210 err = -errno; 11211 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11212 goto err_clean_legacy; 11213 } 11214 return pfd; 11215 11216 err_clean_legacy: 11217 /* Clear the newly added legacy uprobe_event */ 11218 remove_uprobe_event_legacy(probe_name, retprobe); 11219 return err; 11220 } 11221 11222 /* Find offset of function name in archive specified by path. Currently 11223 * supported are .zip files that do not compress their contents, as used on 11224 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11225 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11226 * library functions. 11227 * 11228 * An overview of the APK format specifically provided here: 11229 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11230 */ 11231 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11232 const char *func_name) 11233 { 11234 struct zip_archive *archive; 11235 struct zip_entry entry; 11236 long ret; 11237 Elf *elf; 11238 11239 archive = zip_archive_open(archive_path); 11240 if (IS_ERR(archive)) { 11241 ret = PTR_ERR(archive); 11242 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11243 return ret; 11244 } 11245 11246 ret = zip_archive_find_entry(archive, file_name, &entry); 11247 if (ret) { 11248 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11249 archive_path, ret); 11250 goto out; 11251 } 11252 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11253 (unsigned long)entry.data_offset); 11254 11255 if (entry.compression) { 11256 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11257 archive_path); 11258 ret = -LIBBPF_ERRNO__FORMAT; 11259 goto out; 11260 } 11261 11262 elf = elf_memory((void *)entry.data, entry.data_length); 11263 if (!elf) { 11264 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11265 elf_errmsg(-1)); 11266 ret = -LIBBPF_ERRNO__LIBELF; 11267 goto out; 11268 } 11269 11270 ret = elf_find_func_offset(elf, file_name, func_name); 11271 if (ret > 0) { 11272 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11273 func_name, file_name, archive_path, entry.data_offset, ret, 11274 ret + entry.data_offset); 11275 ret += entry.data_offset; 11276 } 11277 elf_end(elf); 11278 11279 out: 11280 zip_archive_close(archive); 11281 return ret; 11282 } 11283 11284 static const char *arch_specific_lib_paths(void) 11285 { 11286 /* 11287 * Based on https://packages.debian.org/sid/libc6. 11288 * 11289 * Assume that the traced program is built for the same architecture 11290 * as libbpf, which should cover the vast majority of cases. 11291 */ 11292 #if defined(__x86_64__) 11293 return "/lib/x86_64-linux-gnu"; 11294 #elif defined(__i386__) 11295 return "/lib/i386-linux-gnu"; 11296 #elif defined(__s390x__) 11297 return "/lib/s390x-linux-gnu"; 11298 #elif defined(__s390__) 11299 return "/lib/s390-linux-gnu"; 11300 #elif defined(__arm__) && defined(__SOFTFP__) 11301 return "/lib/arm-linux-gnueabi"; 11302 #elif defined(__arm__) && !defined(__SOFTFP__) 11303 return "/lib/arm-linux-gnueabihf"; 11304 #elif defined(__aarch64__) 11305 return "/lib/aarch64-linux-gnu"; 11306 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11307 return "/lib/mips64el-linux-gnuabi64"; 11308 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11309 return "/lib/mipsel-linux-gnu"; 11310 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11311 return "/lib/powerpc64le-linux-gnu"; 11312 #elif defined(__sparc__) && defined(__arch64__) 11313 return "/lib/sparc64-linux-gnu"; 11314 #elif defined(__riscv) && __riscv_xlen == 64 11315 return "/lib/riscv64-linux-gnu"; 11316 #else 11317 return NULL; 11318 #endif 11319 } 11320 11321 /* Get full path to program/shared library. */ 11322 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11323 { 11324 const char *search_paths[3] = {}; 11325 int i, perm; 11326 11327 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11328 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11329 search_paths[1] = "/usr/lib64:/usr/lib"; 11330 search_paths[2] = arch_specific_lib_paths(); 11331 perm = R_OK; 11332 } else { 11333 search_paths[0] = getenv("PATH"); 11334 search_paths[1] = "/usr/bin:/usr/sbin"; 11335 perm = R_OK | X_OK; 11336 } 11337 11338 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11339 const char *s; 11340 11341 if (!search_paths[i]) 11342 continue; 11343 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11344 char *next_path; 11345 int seg_len; 11346 11347 if (s[0] == ':') 11348 s++; 11349 next_path = strchr(s, ':'); 11350 seg_len = next_path ? next_path - s : strlen(s); 11351 if (!seg_len) 11352 continue; 11353 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11354 /* ensure it has required permissions */ 11355 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11356 continue; 11357 pr_debug("resolved '%s' to '%s'\n", file, result); 11358 return 0; 11359 } 11360 } 11361 return -ENOENT; 11362 } 11363 11364 struct bpf_link * 11365 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11366 pid_t pid, 11367 const char *path, 11368 const char *func_pattern, 11369 const struct bpf_uprobe_multi_opts *opts) 11370 { 11371 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11372 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11373 unsigned long *resolved_offsets = NULL; 11374 int err = 0, link_fd, prog_fd; 11375 struct bpf_link *link = NULL; 11376 char errmsg[STRERR_BUFSIZE]; 11377 char full_path[PATH_MAX]; 11378 const __u64 *cookies; 11379 const char **syms; 11380 size_t cnt; 11381 11382 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11383 return libbpf_err_ptr(-EINVAL); 11384 11385 syms = OPTS_GET(opts, syms, NULL); 11386 offsets = OPTS_GET(opts, offsets, NULL); 11387 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11388 cookies = OPTS_GET(opts, cookies, NULL); 11389 cnt = OPTS_GET(opts, cnt, 0); 11390 11391 /* 11392 * User can specify 2 mutually exclusive set of inputs: 11393 * 11394 * 1) use only path/func_pattern/pid arguments 11395 * 11396 * 2) use path/pid with allowed combinations of: 11397 * syms/offsets/ref_ctr_offsets/cookies/cnt 11398 * 11399 * - syms and offsets are mutually exclusive 11400 * - ref_ctr_offsets and cookies are optional 11401 * 11402 * Any other usage results in error. 11403 */ 11404 11405 if (!path) 11406 return libbpf_err_ptr(-EINVAL); 11407 if (!func_pattern && cnt == 0) 11408 return libbpf_err_ptr(-EINVAL); 11409 11410 if (func_pattern) { 11411 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11412 return libbpf_err_ptr(-EINVAL); 11413 } else { 11414 if (!!syms == !!offsets) 11415 return libbpf_err_ptr(-EINVAL); 11416 } 11417 11418 if (func_pattern) { 11419 if (!strchr(path, '/')) { 11420 err = resolve_full_path(path, full_path, sizeof(full_path)); 11421 if (err) { 11422 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11423 prog->name, path, err); 11424 return libbpf_err_ptr(err); 11425 } 11426 path = full_path; 11427 } 11428 11429 err = elf_resolve_pattern_offsets(path, func_pattern, 11430 &resolved_offsets, &cnt); 11431 if (err < 0) 11432 return libbpf_err_ptr(err); 11433 offsets = resolved_offsets; 11434 } else if (syms) { 11435 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets); 11436 if (err < 0) 11437 return libbpf_err_ptr(err); 11438 offsets = resolved_offsets; 11439 } 11440 11441 lopts.uprobe_multi.path = path; 11442 lopts.uprobe_multi.offsets = offsets; 11443 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11444 lopts.uprobe_multi.cookies = cookies; 11445 lopts.uprobe_multi.cnt = cnt; 11446 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11447 11448 if (pid == 0) 11449 pid = getpid(); 11450 if (pid > 0) 11451 lopts.uprobe_multi.pid = pid; 11452 11453 link = calloc(1, sizeof(*link)); 11454 if (!link) { 11455 err = -ENOMEM; 11456 goto error; 11457 } 11458 link->detach = &bpf_link__detach_fd; 11459 11460 prog_fd = bpf_program__fd(prog); 11461 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11462 if (link_fd < 0) { 11463 err = -errno; 11464 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11465 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11466 goto error; 11467 } 11468 link->fd = link_fd; 11469 free(resolved_offsets); 11470 return link; 11471 11472 error: 11473 free(resolved_offsets); 11474 free(link); 11475 return libbpf_err_ptr(err); 11476 } 11477 11478 LIBBPF_API struct bpf_link * 11479 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11480 const char *binary_path, size_t func_offset, 11481 const struct bpf_uprobe_opts *opts) 11482 { 11483 const char *archive_path = NULL, *archive_sep = NULL; 11484 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11485 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11486 enum probe_attach_mode attach_mode; 11487 char full_path[PATH_MAX]; 11488 struct bpf_link *link; 11489 size_t ref_ctr_off; 11490 int pfd, err; 11491 bool retprobe, legacy; 11492 const char *func_name; 11493 11494 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11495 return libbpf_err_ptr(-EINVAL); 11496 11497 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11498 retprobe = OPTS_GET(opts, retprobe, false); 11499 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11500 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11501 11502 if (!binary_path) 11503 return libbpf_err_ptr(-EINVAL); 11504 11505 /* Check if "binary_path" refers to an archive. */ 11506 archive_sep = strstr(binary_path, "!/"); 11507 if (archive_sep) { 11508 full_path[0] = '\0'; 11509 libbpf_strlcpy(full_path, binary_path, 11510 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11511 archive_path = full_path; 11512 binary_path = archive_sep + 2; 11513 } else if (!strchr(binary_path, '/')) { 11514 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11515 if (err) { 11516 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11517 prog->name, binary_path, err); 11518 return libbpf_err_ptr(err); 11519 } 11520 binary_path = full_path; 11521 } 11522 func_name = OPTS_GET(opts, func_name, NULL); 11523 if (func_name) { 11524 long sym_off; 11525 11526 if (archive_path) { 11527 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11528 func_name); 11529 binary_path = archive_path; 11530 } else { 11531 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11532 } 11533 if (sym_off < 0) 11534 return libbpf_err_ptr(sym_off); 11535 func_offset += sym_off; 11536 } 11537 11538 legacy = determine_uprobe_perf_type() < 0; 11539 switch (attach_mode) { 11540 case PROBE_ATTACH_MODE_LEGACY: 11541 legacy = true; 11542 pe_opts.force_ioctl_attach = true; 11543 break; 11544 case PROBE_ATTACH_MODE_PERF: 11545 if (legacy) 11546 return libbpf_err_ptr(-ENOTSUP); 11547 pe_opts.force_ioctl_attach = true; 11548 break; 11549 case PROBE_ATTACH_MODE_LINK: 11550 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11551 return libbpf_err_ptr(-ENOTSUP); 11552 break; 11553 case PROBE_ATTACH_MODE_DEFAULT: 11554 break; 11555 default: 11556 return libbpf_err_ptr(-EINVAL); 11557 } 11558 11559 if (!legacy) { 11560 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11561 func_offset, pid, ref_ctr_off); 11562 } else { 11563 char probe_name[PATH_MAX + 64]; 11564 11565 if (ref_ctr_off) 11566 return libbpf_err_ptr(-EINVAL); 11567 11568 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11569 binary_path, func_offset); 11570 11571 legacy_probe = strdup(probe_name); 11572 if (!legacy_probe) 11573 return libbpf_err_ptr(-ENOMEM); 11574 11575 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11576 binary_path, func_offset, pid); 11577 } 11578 if (pfd < 0) { 11579 err = -errno; 11580 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11581 prog->name, retprobe ? "uretprobe" : "uprobe", 11582 binary_path, func_offset, 11583 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11584 goto err_out; 11585 } 11586 11587 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11588 err = libbpf_get_error(link); 11589 if (err) { 11590 close(pfd); 11591 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11592 prog->name, retprobe ? "uretprobe" : "uprobe", 11593 binary_path, func_offset, 11594 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11595 goto err_clean_legacy; 11596 } 11597 if (legacy) { 11598 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11599 11600 perf_link->legacy_probe_name = legacy_probe; 11601 perf_link->legacy_is_kprobe = false; 11602 perf_link->legacy_is_retprobe = retprobe; 11603 } 11604 return link; 11605 11606 err_clean_legacy: 11607 if (legacy) 11608 remove_uprobe_event_legacy(legacy_probe, retprobe); 11609 err_out: 11610 free(legacy_probe); 11611 return libbpf_err_ptr(err); 11612 } 11613 11614 /* Format of u[ret]probe section definition supporting auto-attach: 11615 * u[ret]probe/binary:function[+offset] 11616 * 11617 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11618 * full binary path via bpf_program__attach_uprobe_opts. 11619 * 11620 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11621 * specified (and auto-attach is not possible) or the above format is specified for 11622 * auto-attach. 11623 */ 11624 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11625 { 11626 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11627 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11628 int n, ret = -EINVAL; 11629 long offset = 0; 11630 11631 *link = NULL; 11632 11633 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11634 &probe_type, &binary_path, &func_name, &offset); 11635 switch (n) { 11636 case 1: 11637 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11638 ret = 0; 11639 break; 11640 case 2: 11641 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11642 prog->name, prog->sec_name); 11643 break; 11644 case 3: 11645 case 4: 11646 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11647 strcmp(probe_type, "uretprobe.s") == 0; 11648 if (opts.retprobe && offset != 0) { 11649 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11650 prog->name); 11651 break; 11652 } 11653 opts.func_name = func_name; 11654 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11655 ret = libbpf_get_error(*link); 11656 break; 11657 default: 11658 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11659 prog->sec_name); 11660 break; 11661 } 11662 free(probe_type); 11663 free(binary_path); 11664 free(func_name); 11665 11666 return ret; 11667 } 11668 11669 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11670 bool retprobe, pid_t pid, 11671 const char *binary_path, 11672 size_t func_offset) 11673 { 11674 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11675 11676 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11677 } 11678 11679 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11680 pid_t pid, const char *binary_path, 11681 const char *usdt_provider, const char *usdt_name, 11682 const struct bpf_usdt_opts *opts) 11683 { 11684 char resolved_path[512]; 11685 struct bpf_object *obj = prog->obj; 11686 struct bpf_link *link; 11687 __u64 usdt_cookie; 11688 int err; 11689 11690 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11691 return libbpf_err_ptr(-EINVAL); 11692 11693 if (bpf_program__fd(prog) < 0) { 11694 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11695 prog->name); 11696 return libbpf_err_ptr(-EINVAL); 11697 } 11698 11699 if (!binary_path) 11700 return libbpf_err_ptr(-EINVAL); 11701 11702 if (!strchr(binary_path, '/')) { 11703 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11704 if (err) { 11705 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11706 prog->name, binary_path, err); 11707 return libbpf_err_ptr(err); 11708 } 11709 binary_path = resolved_path; 11710 } 11711 11712 /* USDT manager is instantiated lazily on first USDT attach. It will 11713 * be destroyed together with BPF object in bpf_object__close(). 11714 */ 11715 if (IS_ERR(obj->usdt_man)) 11716 return libbpf_ptr(obj->usdt_man); 11717 if (!obj->usdt_man) { 11718 obj->usdt_man = usdt_manager_new(obj); 11719 if (IS_ERR(obj->usdt_man)) 11720 return libbpf_ptr(obj->usdt_man); 11721 } 11722 11723 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11724 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11725 usdt_provider, usdt_name, usdt_cookie); 11726 err = libbpf_get_error(link); 11727 if (err) 11728 return libbpf_err_ptr(err); 11729 return link; 11730 } 11731 11732 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11733 { 11734 char *path = NULL, *provider = NULL, *name = NULL; 11735 const char *sec_name; 11736 int n, err; 11737 11738 sec_name = bpf_program__section_name(prog); 11739 if (strcmp(sec_name, "usdt") == 0) { 11740 /* no auto-attach for just SEC("usdt") */ 11741 *link = NULL; 11742 return 0; 11743 } 11744 11745 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11746 if (n != 3) { 11747 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11748 sec_name); 11749 err = -EINVAL; 11750 } else { 11751 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11752 provider, name, NULL); 11753 err = libbpf_get_error(*link); 11754 } 11755 free(path); 11756 free(provider); 11757 free(name); 11758 return err; 11759 } 11760 11761 static int determine_tracepoint_id(const char *tp_category, 11762 const char *tp_name) 11763 { 11764 char file[PATH_MAX]; 11765 int ret; 11766 11767 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11768 tracefs_path(), tp_category, tp_name); 11769 if (ret < 0) 11770 return -errno; 11771 if (ret >= sizeof(file)) { 11772 pr_debug("tracepoint %s/%s path is too long\n", 11773 tp_category, tp_name); 11774 return -E2BIG; 11775 } 11776 return parse_uint_from_file(file, "%d\n"); 11777 } 11778 11779 static int perf_event_open_tracepoint(const char *tp_category, 11780 const char *tp_name) 11781 { 11782 const size_t attr_sz = sizeof(struct perf_event_attr); 11783 struct perf_event_attr attr; 11784 char errmsg[STRERR_BUFSIZE]; 11785 int tp_id, pfd, err; 11786 11787 tp_id = determine_tracepoint_id(tp_category, tp_name); 11788 if (tp_id < 0) { 11789 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11790 tp_category, tp_name, 11791 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11792 return tp_id; 11793 } 11794 11795 memset(&attr, 0, attr_sz); 11796 attr.type = PERF_TYPE_TRACEPOINT; 11797 attr.size = attr_sz; 11798 attr.config = tp_id; 11799 11800 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11801 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11802 if (pfd < 0) { 11803 err = -errno; 11804 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11805 tp_category, tp_name, 11806 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11807 return err; 11808 } 11809 return pfd; 11810 } 11811 11812 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11813 const char *tp_category, 11814 const char *tp_name, 11815 const struct bpf_tracepoint_opts *opts) 11816 { 11817 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11818 char errmsg[STRERR_BUFSIZE]; 11819 struct bpf_link *link; 11820 int pfd, err; 11821 11822 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11823 return libbpf_err_ptr(-EINVAL); 11824 11825 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11826 11827 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11828 if (pfd < 0) { 11829 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11830 prog->name, tp_category, tp_name, 11831 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11832 return libbpf_err_ptr(pfd); 11833 } 11834 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11835 err = libbpf_get_error(link); 11836 if (err) { 11837 close(pfd); 11838 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11839 prog->name, tp_category, tp_name, 11840 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11841 return libbpf_err_ptr(err); 11842 } 11843 return link; 11844 } 11845 11846 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11847 const char *tp_category, 11848 const char *tp_name) 11849 { 11850 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11851 } 11852 11853 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11854 { 11855 char *sec_name, *tp_cat, *tp_name; 11856 11857 *link = NULL; 11858 11859 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11860 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11861 return 0; 11862 11863 sec_name = strdup(prog->sec_name); 11864 if (!sec_name) 11865 return -ENOMEM; 11866 11867 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11868 if (str_has_pfx(prog->sec_name, "tp/")) 11869 tp_cat = sec_name + sizeof("tp/") - 1; 11870 else 11871 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11872 tp_name = strchr(tp_cat, '/'); 11873 if (!tp_name) { 11874 free(sec_name); 11875 return -EINVAL; 11876 } 11877 *tp_name = '\0'; 11878 tp_name++; 11879 11880 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11881 free(sec_name); 11882 return libbpf_get_error(*link); 11883 } 11884 11885 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11886 const char *tp_name) 11887 { 11888 char errmsg[STRERR_BUFSIZE]; 11889 struct bpf_link *link; 11890 int prog_fd, pfd; 11891 11892 prog_fd = bpf_program__fd(prog); 11893 if (prog_fd < 0) { 11894 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11895 return libbpf_err_ptr(-EINVAL); 11896 } 11897 11898 link = calloc(1, sizeof(*link)); 11899 if (!link) 11900 return libbpf_err_ptr(-ENOMEM); 11901 link->detach = &bpf_link__detach_fd; 11902 11903 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11904 if (pfd < 0) { 11905 pfd = -errno; 11906 free(link); 11907 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11908 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11909 return libbpf_err_ptr(pfd); 11910 } 11911 link->fd = pfd; 11912 return link; 11913 } 11914 11915 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11916 { 11917 static const char *const prefixes[] = { 11918 "raw_tp", 11919 "raw_tracepoint", 11920 "raw_tp.w", 11921 "raw_tracepoint.w", 11922 }; 11923 size_t i; 11924 const char *tp_name = NULL; 11925 11926 *link = NULL; 11927 11928 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11929 size_t pfx_len; 11930 11931 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11932 continue; 11933 11934 pfx_len = strlen(prefixes[i]); 11935 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11936 if (prog->sec_name[pfx_len] == '\0') 11937 return 0; 11938 11939 if (prog->sec_name[pfx_len] != '/') 11940 continue; 11941 11942 tp_name = prog->sec_name + pfx_len + 1; 11943 break; 11944 } 11945 11946 if (!tp_name) { 11947 pr_warn("prog '%s': invalid section name '%s'\n", 11948 prog->name, prog->sec_name); 11949 return -EINVAL; 11950 } 11951 11952 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11953 return libbpf_get_error(*link); 11954 } 11955 11956 /* Common logic for all BPF program types that attach to a btf_id */ 11957 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11958 const struct bpf_trace_opts *opts) 11959 { 11960 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11961 char errmsg[STRERR_BUFSIZE]; 11962 struct bpf_link *link; 11963 int prog_fd, pfd; 11964 11965 if (!OPTS_VALID(opts, bpf_trace_opts)) 11966 return libbpf_err_ptr(-EINVAL); 11967 11968 prog_fd = bpf_program__fd(prog); 11969 if (prog_fd < 0) { 11970 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11971 return libbpf_err_ptr(-EINVAL); 11972 } 11973 11974 link = calloc(1, sizeof(*link)); 11975 if (!link) 11976 return libbpf_err_ptr(-ENOMEM); 11977 link->detach = &bpf_link__detach_fd; 11978 11979 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11980 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11981 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11982 if (pfd < 0) { 11983 pfd = -errno; 11984 free(link); 11985 pr_warn("prog '%s': failed to attach: %s\n", 11986 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11987 return libbpf_err_ptr(pfd); 11988 } 11989 link->fd = pfd; 11990 return link; 11991 } 11992 11993 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11994 { 11995 return bpf_program__attach_btf_id(prog, NULL); 11996 } 11997 11998 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11999 const struct bpf_trace_opts *opts) 12000 { 12001 return bpf_program__attach_btf_id(prog, opts); 12002 } 12003 12004 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12005 { 12006 return bpf_program__attach_btf_id(prog, NULL); 12007 } 12008 12009 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12010 { 12011 *link = bpf_program__attach_trace(prog); 12012 return libbpf_get_error(*link); 12013 } 12014 12015 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12016 { 12017 *link = bpf_program__attach_lsm(prog); 12018 return libbpf_get_error(*link); 12019 } 12020 12021 static struct bpf_link * 12022 bpf_program_attach_fd(const struct bpf_program *prog, 12023 int target_fd, const char *target_name, 12024 const struct bpf_link_create_opts *opts) 12025 { 12026 enum bpf_attach_type attach_type; 12027 char errmsg[STRERR_BUFSIZE]; 12028 struct bpf_link *link; 12029 int prog_fd, link_fd; 12030 12031 prog_fd = bpf_program__fd(prog); 12032 if (prog_fd < 0) { 12033 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12034 return libbpf_err_ptr(-EINVAL); 12035 } 12036 12037 link = calloc(1, sizeof(*link)); 12038 if (!link) 12039 return libbpf_err_ptr(-ENOMEM); 12040 link->detach = &bpf_link__detach_fd; 12041 12042 attach_type = bpf_program__expected_attach_type(prog); 12043 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12044 if (link_fd < 0) { 12045 link_fd = -errno; 12046 free(link); 12047 pr_warn("prog '%s': failed to attach to %s: %s\n", 12048 prog->name, target_name, 12049 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12050 return libbpf_err_ptr(link_fd); 12051 } 12052 link->fd = link_fd; 12053 return link; 12054 } 12055 12056 struct bpf_link * 12057 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12058 { 12059 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12060 } 12061 12062 struct bpf_link * 12063 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12064 { 12065 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12066 } 12067 12068 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12069 { 12070 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12071 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12072 } 12073 12074 struct bpf_link * 12075 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12076 const struct bpf_tcx_opts *opts) 12077 { 12078 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12079 __u32 relative_id; 12080 int relative_fd; 12081 12082 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12083 return libbpf_err_ptr(-EINVAL); 12084 12085 relative_id = OPTS_GET(opts, relative_id, 0); 12086 relative_fd = OPTS_GET(opts, relative_fd, 0); 12087 12088 /* validate we don't have unexpected combinations of non-zero fields */ 12089 if (!ifindex) { 12090 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12091 prog->name); 12092 return libbpf_err_ptr(-EINVAL); 12093 } 12094 if (relative_fd && relative_id) { 12095 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12096 prog->name); 12097 return libbpf_err_ptr(-EINVAL); 12098 } 12099 12100 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12101 link_create_opts.tcx.relative_fd = relative_fd; 12102 link_create_opts.tcx.relative_id = relative_id; 12103 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12104 12105 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12106 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12107 } 12108 12109 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12110 int target_fd, 12111 const char *attach_func_name) 12112 { 12113 int btf_id; 12114 12115 if (!!target_fd != !!attach_func_name) { 12116 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12117 prog->name); 12118 return libbpf_err_ptr(-EINVAL); 12119 } 12120 12121 if (prog->type != BPF_PROG_TYPE_EXT) { 12122 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12123 prog->name); 12124 return libbpf_err_ptr(-EINVAL); 12125 } 12126 12127 if (target_fd) { 12128 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12129 12130 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12131 if (btf_id < 0) 12132 return libbpf_err_ptr(btf_id); 12133 12134 target_opts.target_btf_id = btf_id; 12135 12136 return bpf_program_attach_fd(prog, target_fd, "freplace", 12137 &target_opts); 12138 } else { 12139 /* no target, so use raw_tracepoint_open for compatibility 12140 * with old kernels 12141 */ 12142 return bpf_program__attach_trace(prog); 12143 } 12144 } 12145 12146 struct bpf_link * 12147 bpf_program__attach_iter(const struct bpf_program *prog, 12148 const struct bpf_iter_attach_opts *opts) 12149 { 12150 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12151 char errmsg[STRERR_BUFSIZE]; 12152 struct bpf_link *link; 12153 int prog_fd, link_fd; 12154 __u32 target_fd = 0; 12155 12156 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12157 return libbpf_err_ptr(-EINVAL); 12158 12159 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12160 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12161 12162 prog_fd = bpf_program__fd(prog); 12163 if (prog_fd < 0) { 12164 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12165 return libbpf_err_ptr(-EINVAL); 12166 } 12167 12168 link = calloc(1, sizeof(*link)); 12169 if (!link) 12170 return libbpf_err_ptr(-ENOMEM); 12171 link->detach = &bpf_link__detach_fd; 12172 12173 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12174 &link_create_opts); 12175 if (link_fd < 0) { 12176 link_fd = -errno; 12177 free(link); 12178 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12179 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12180 return libbpf_err_ptr(link_fd); 12181 } 12182 link->fd = link_fd; 12183 return link; 12184 } 12185 12186 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12187 { 12188 *link = bpf_program__attach_iter(prog, NULL); 12189 return libbpf_get_error(*link); 12190 } 12191 12192 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12193 const struct bpf_netfilter_opts *opts) 12194 { 12195 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12196 struct bpf_link *link; 12197 int prog_fd, link_fd; 12198 12199 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12200 return libbpf_err_ptr(-EINVAL); 12201 12202 prog_fd = bpf_program__fd(prog); 12203 if (prog_fd < 0) { 12204 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12205 return libbpf_err_ptr(-EINVAL); 12206 } 12207 12208 link = calloc(1, sizeof(*link)); 12209 if (!link) 12210 return libbpf_err_ptr(-ENOMEM); 12211 12212 link->detach = &bpf_link__detach_fd; 12213 12214 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12215 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12216 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12217 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12218 12219 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12220 if (link_fd < 0) { 12221 char errmsg[STRERR_BUFSIZE]; 12222 12223 link_fd = -errno; 12224 free(link); 12225 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12226 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12227 return libbpf_err_ptr(link_fd); 12228 } 12229 link->fd = link_fd; 12230 12231 return link; 12232 } 12233 12234 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12235 { 12236 struct bpf_link *link = NULL; 12237 int err; 12238 12239 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12240 return libbpf_err_ptr(-EOPNOTSUPP); 12241 12242 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12243 if (err) 12244 return libbpf_err_ptr(err); 12245 12246 /* When calling bpf_program__attach() explicitly, auto-attach support 12247 * is expected to work, so NULL returned link is considered an error. 12248 * This is different for skeleton's attach, see comment in 12249 * bpf_object__attach_skeleton(). 12250 */ 12251 if (!link) 12252 return libbpf_err_ptr(-EOPNOTSUPP); 12253 12254 return link; 12255 } 12256 12257 struct bpf_link_struct_ops { 12258 struct bpf_link link; 12259 int map_fd; 12260 }; 12261 12262 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12263 { 12264 struct bpf_link_struct_ops *st_link; 12265 __u32 zero = 0; 12266 12267 st_link = container_of(link, struct bpf_link_struct_ops, link); 12268 12269 if (st_link->map_fd < 0) 12270 /* w/o a real link */ 12271 return bpf_map_delete_elem(link->fd, &zero); 12272 12273 return close(link->fd); 12274 } 12275 12276 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12277 { 12278 struct bpf_link_struct_ops *link; 12279 __u32 zero = 0; 12280 int err, fd; 12281 12282 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12283 return libbpf_err_ptr(-EINVAL); 12284 12285 link = calloc(1, sizeof(*link)); 12286 if (!link) 12287 return libbpf_err_ptr(-EINVAL); 12288 12289 /* kern_vdata should be prepared during the loading phase. */ 12290 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12291 /* It can be EBUSY if the map has been used to create or 12292 * update a link before. We don't allow updating the value of 12293 * a struct_ops once it is set. That ensures that the value 12294 * never changed. So, it is safe to skip EBUSY. 12295 */ 12296 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12297 free(link); 12298 return libbpf_err_ptr(err); 12299 } 12300 12301 link->link.detach = bpf_link__detach_struct_ops; 12302 12303 if (!(map->def.map_flags & BPF_F_LINK)) { 12304 /* w/o a real link */ 12305 link->link.fd = map->fd; 12306 link->map_fd = -1; 12307 return &link->link; 12308 } 12309 12310 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12311 if (fd < 0) { 12312 free(link); 12313 return libbpf_err_ptr(fd); 12314 } 12315 12316 link->link.fd = fd; 12317 link->map_fd = map->fd; 12318 12319 return &link->link; 12320 } 12321 12322 /* 12323 * Swap the back struct_ops of a link with a new struct_ops map. 12324 */ 12325 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12326 { 12327 struct bpf_link_struct_ops *st_ops_link; 12328 __u32 zero = 0; 12329 int err; 12330 12331 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12332 return -EINVAL; 12333 12334 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12335 /* Ensure the type of a link is correct */ 12336 if (st_ops_link->map_fd < 0) 12337 return -EINVAL; 12338 12339 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12340 /* It can be EBUSY if the map has been used to create or 12341 * update a link before. We don't allow updating the value of 12342 * a struct_ops once it is set. That ensures that the value 12343 * never changed. So, it is safe to skip EBUSY. 12344 */ 12345 if (err && err != -EBUSY) 12346 return err; 12347 12348 err = bpf_link_update(link->fd, map->fd, NULL); 12349 if (err < 0) 12350 return err; 12351 12352 st_ops_link->map_fd = map->fd; 12353 12354 return 0; 12355 } 12356 12357 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12358 void *private_data); 12359 12360 static enum bpf_perf_event_ret 12361 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12362 void **copy_mem, size_t *copy_size, 12363 bpf_perf_event_print_t fn, void *private_data) 12364 { 12365 struct perf_event_mmap_page *header = mmap_mem; 12366 __u64 data_head = ring_buffer_read_head(header); 12367 __u64 data_tail = header->data_tail; 12368 void *base = ((__u8 *)header) + page_size; 12369 int ret = LIBBPF_PERF_EVENT_CONT; 12370 struct perf_event_header *ehdr; 12371 size_t ehdr_size; 12372 12373 while (data_head != data_tail) { 12374 ehdr = base + (data_tail & (mmap_size - 1)); 12375 ehdr_size = ehdr->size; 12376 12377 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12378 void *copy_start = ehdr; 12379 size_t len_first = base + mmap_size - copy_start; 12380 size_t len_secnd = ehdr_size - len_first; 12381 12382 if (*copy_size < ehdr_size) { 12383 free(*copy_mem); 12384 *copy_mem = malloc(ehdr_size); 12385 if (!*copy_mem) { 12386 *copy_size = 0; 12387 ret = LIBBPF_PERF_EVENT_ERROR; 12388 break; 12389 } 12390 *copy_size = ehdr_size; 12391 } 12392 12393 memcpy(*copy_mem, copy_start, len_first); 12394 memcpy(*copy_mem + len_first, base, len_secnd); 12395 ehdr = *copy_mem; 12396 } 12397 12398 ret = fn(ehdr, private_data); 12399 data_tail += ehdr_size; 12400 if (ret != LIBBPF_PERF_EVENT_CONT) 12401 break; 12402 } 12403 12404 ring_buffer_write_tail(header, data_tail); 12405 return libbpf_err(ret); 12406 } 12407 12408 struct perf_buffer; 12409 12410 struct perf_buffer_params { 12411 struct perf_event_attr *attr; 12412 /* if event_cb is specified, it takes precendence */ 12413 perf_buffer_event_fn event_cb; 12414 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12415 perf_buffer_sample_fn sample_cb; 12416 perf_buffer_lost_fn lost_cb; 12417 void *ctx; 12418 int cpu_cnt; 12419 int *cpus; 12420 int *map_keys; 12421 }; 12422 12423 struct perf_cpu_buf { 12424 struct perf_buffer *pb; 12425 void *base; /* mmap()'ed memory */ 12426 void *buf; /* for reconstructing segmented data */ 12427 size_t buf_size; 12428 int fd; 12429 int cpu; 12430 int map_key; 12431 }; 12432 12433 struct perf_buffer { 12434 perf_buffer_event_fn event_cb; 12435 perf_buffer_sample_fn sample_cb; 12436 perf_buffer_lost_fn lost_cb; 12437 void *ctx; /* passed into callbacks */ 12438 12439 size_t page_size; 12440 size_t mmap_size; 12441 struct perf_cpu_buf **cpu_bufs; 12442 struct epoll_event *events; 12443 int cpu_cnt; /* number of allocated CPU buffers */ 12444 int epoll_fd; /* perf event FD */ 12445 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12446 }; 12447 12448 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12449 struct perf_cpu_buf *cpu_buf) 12450 { 12451 if (!cpu_buf) 12452 return; 12453 if (cpu_buf->base && 12454 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12455 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12456 if (cpu_buf->fd >= 0) { 12457 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12458 close(cpu_buf->fd); 12459 } 12460 free(cpu_buf->buf); 12461 free(cpu_buf); 12462 } 12463 12464 void perf_buffer__free(struct perf_buffer *pb) 12465 { 12466 int i; 12467 12468 if (IS_ERR_OR_NULL(pb)) 12469 return; 12470 if (pb->cpu_bufs) { 12471 for (i = 0; i < pb->cpu_cnt; i++) { 12472 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12473 12474 if (!cpu_buf) 12475 continue; 12476 12477 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12478 perf_buffer__free_cpu_buf(pb, cpu_buf); 12479 } 12480 free(pb->cpu_bufs); 12481 } 12482 if (pb->epoll_fd >= 0) 12483 close(pb->epoll_fd); 12484 free(pb->events); 12485 free(pb); 12486 } 12487 12488 static struct perf_cpu_buf * 12489 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12490 int cpu, int map_key) 12491 { 12492 struct perf_cpu_buf *cpu_buf; 12493 char msg[STRERR_BUFSIZE]; 12494 int err; 12495 12496 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12497 if (!cpu_buf) 12498 return ERR_PTR(-ENOMEM); 12499 12500 cpu_buf->pb = pb; 12501 cpu_buf->cpu = cpu; 12502 cpu_buf->map_key = map_key; 12503 12504 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12505 -1, PERF_FLAG_FD_CLOEXEC); 12506 if (cpu_buf->fd < 0) { 12507 err = -errno; 12508 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12509 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12510 goto error; 12511 } 12512 12513 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12514 PROT_READ | PROT_WRITE, MAP_SHARED, 12515 cpu_buf->fd, 0); 12516 if (cpu_buf->base == MAP_FAILED) { 12517 cpu_buf->base = NULL; 12518 err = -errno; 12519 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12520 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12521 goto error; 12522 } 12523 12524 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12525 err = -errno; 12526 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12527 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12528 goto error; 12529 } 12530 12531 return cpu_buf; 12532 12533 error: 12534 perf_buffer__free_cpu_buf(pb, cpu_buf); 12535 return (struct perf_cpu_buf *)ERR_PTR(err); 12536 } 12537 12538 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12539 struct perf_buffer_params *p); 12540 12541 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12542 perf_buffer_sample_fn sample_cb, 12543 perf_buffer_lost_fn lost_cb, 12544 void *ctx, 12545 const struct perf_buffer_opts *opts) 12546 { 12547 const size_t attr_sz = sizeof(struct perf_event_attr); 12548 struct perf_buffer_params p = {}; 12549 struct perf_event_attr attr; 12550 __u32 sample_period; 12551 12552 if (!OPTS_VALID(opts, perf_buffer_opts)) 12553 return libbpf_err_ptr(-EINVAL); 12554 12555 sample_period = OPTS_GET(opts, sample_period, 1); 12556 if (!sample_period) 12557 sample_period = 1; 12558 12559 memset(&attr, 0, attr_sz); 12560 attr.size = attr_sz; 12561 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12562 attr.type = PERF_TYPE_SOFTWARE; 12563 attr.sample_type = PERF_SAMPLE_RAW; 12564 attr.sample_period = sample_period; 12565 attr.wakeup_events = sample_period; 12566 12567 p.attr = &attr; 12568 p.sample_cb = sample_cb; 12569 p.lost_cb = lost_cb; 12570 p.ctx = ctx; 12571 12572 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12573 } 12574 12575 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12576 struct perf_event_attr *attr, 12577 perf_buffer_event_fn event_cb, void *ctx, 12578 const struct perf_buffer_raw_opts *opts) 12579 { 12580 struct perf_buffer_params p = {}; 12581 12582 if (!attr) 12583 return libbpf_err_ptr(-EINVAL); 12584 12585 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12586 return libbpf_err_ptr(-EINVAL); 12587 12588 p.attr = attr; 12589 p.event_cb = event_cb; 12590 p.ctx = ctx; 12591 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12592 p.cpus = OPTS_GET(opts, cpus, NULL); 12593 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12594 12595 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12596 } 12597 12598 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12599 struct perf_buffer_params *p) 12600 { 12601 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12602 struct bpf_map_info map; 12603 char msg[STRERR_BUFSIZE]; 12604 struct perf_buffer *pb; 12605 bool *online = NULL; 12606 __u32 map_info_len; 12607 int err, i, j, n; 12608 12609 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12610 pr_warn("page count should be power of two, but is %zu\n", 12611 page_cnt); 12612 return ERR_PTR(-EINVAL); 12613 } 12614 12615 /* best-effort sanity checks */ 12616 memset(&map, 0, sizeof(map)); 12617 map_info_len = sizeof(map); 12618 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12619 if (err) { 12620 err = -errno; 12621 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12622 * -EBADFD, -EFAULT, or -E2BIG on real error 12623 */ 12624 if (err != -EINVAL) { 12625 pr_warn("failed to get map info for map FD %d: %s\n", 12626 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12627 return ERR_PTR(err); 12628 } 12629 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12630 map_fd); 12631 } else { 12632 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12633 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12634 map.name); 12635 return ERR_PTR(-EINVAL); 12636 } 12637 } 12638 12639 pb = calloc(1, sizeof(*pb)); 12640 if (!pb) 12641 return ERR_PTR(-ENOMEM); 12642 12643 pb->event_cb = p->event_cb; 12644 pb->sample_cb = p->sample_cb; 12645 pb->lost_cb = p->lost_cb; 12646 pb->ctx = p->ctx; 12647 12648 pb->page_size = getpagesize(); 12649 pb->mmap_size = pb->page_size * page_cnt; 12650 pb->map_fd = map_fd; 12651 12652 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12653 if (pb->epoll_fd < 0) { 12654 err = -errno; 12655 pr_warn("failed to create epoll instance: %s\n", 12656 libbpf_strerror_r(err, msg, sizeof(msg))); 12657 goto error; 12658 } 12659 12660 if (p->cpu_cnt > 0) { 12661 pb->cpu_cnt = p->cpu_cnt; 12662 } else { 12663 pb->cpu_cnt = libbpf_num_possible_cpus(); 12664 if (pb->cpu_cnt < 0) { 12665 err = pb->cpu_cnt; 12666 goto error; 12667 } 12668 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12669 pb->cpu_cnt = map.max_entries; 12670 } 12671 12672 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12673 if (!pb->events) { 12674 err = -ENOMEM; 12675 pr_warn("failed to allocate events: out of memory\n"); 12676 goto error; 12677 } 12678 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12679 if (!pb->cpu_bufs) { 12680 err = -ENOMEM; 12681 pr_warn("failed to allocate buffers: out of memory\n"); 12682 goto error; 12683 } 12684 12685 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12686 if (err) { 12687 pr_warn("failed to get online CPU mask: %d\n", err); 12688 goto error; 12689 } 12690 12691 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12692 struct perf_cpu_buf *cpu_buf; 12693 int cpu, map_key; 12694 12695 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12696 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12697 12698 /* in case user didn't explicitly requested particular CPUs to 12699 * be attached to, skip offline/not present CPUs 12700 */ 12701 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12702 continue; 12703 12704 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12705 if (IS_ERR(cpu_buf)) { 12706 err = PTR_ERR(cpu_buf); 12707 goto error; 12708 } 12709 12710 pb->cpu_bufs[j] = cpu_buf; 12711 12712 err = bpf_map_update_elem(pb->map_fd, &map_key, 12713 &cpu_buf->fd, 0); 12714 if (err) { 12715 err = -errno; 12716 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12717 cpu, map_key, cpu_buf->fd, 12718 libbpf_strerror_r(err, msg, sizeof(msg))); 12719 goto error; 12720 } 12721 12722 pb->events[j].events = EPOLLIN; 12723 pb->events[j].data.ptr = cpu_buf; 12724 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12725 &pb->events[j]) < 0) { 12726 err = -errno; 12727 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12728 cpu, cpu_buf->fd, 12729 libbpf_strerror_r(err, msg, sizeof(msg))); 12730 goto error; 12731 } 12732 j++; 12733 } 12734 pb->cpu_cnt = j; 12735 free(online); 12736 12737 return pb; 12738 12739 error: 12740 free(online); 12741 if (pb) 12742 perf_buffer__free(pb); 12743 return ERR_PTR(err); 12744 } 12745 12746 struct perf_sample_raw { 12747 struct perf_event_header header; 12748 uint32_t size; 12749 char data[]; 12750 }; 12751 12752 struct perf_sample_lost { 12753 struct perf_event_header header; 12754 uint64_t id; 12755 uint64_t lost; 12756 uint64_t sample_id; 12757 }; 12758 12759 static enum bpf_perf_event_ret 12760 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12761 { 12762 struct perf_cpu_buf *cpu_buf = ctx; 12763 struct perf_buffer *pb = cpu_buf->pb; 12764 void *data = e; 12765 12766 /* user wants full control over parsing perf event */ 12767 if (pb->event_cb) 12768 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12769 12770 switch (e->type) { 12771 case PERF_RECORD_SAMPLE: { 12772 struct perf_sample_raw *s = data; 12773 12774 if (pb->sample_cb) 12775 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12776 break; 12777 } 12778 case PERF_RECORD_LOST: { 12779 struct perf_sample_lost *s = data; 12780 12781 if (pb->lost_cb) 12782 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12783 break; 12784 } 12785 default: 12786 pr_warn("unknown perf sample type %d\n", e->type); 12787 return LIBBPF_PERF_EVENT_ERROR; 12788 } 12789 return LIBBPF_PERF_EVENT_CONT; 12790 } 12791 12792 static int perf_buffer__process_records(struct perf_buffer *pb, 12793 struct perf_cpu_buf *cpu_buf) 12794 { 12795 enum bpf_perf_event_ret ret; 12796 12797 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12798 pb->page_size, &cpu_buf->buf, 12799 &cpu_buf->buf_size, 12800 perf_buffer__process_record, cpu_buf); 12801 if (ret != LIBBPF_PERF_EVENT_CONT) 12802 return ret; 12803 return 0; 12804 } 12805 12806 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12807 { 12808 return pb->epoll_fd; 12809 } 12810 12811 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12812 { 12813 int i, cnt, err; 12814 12815 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12816 if (cnt < 0) 12817 return -errno; 12818 12819 for (i = 0; i < cnt; i++) { 12820 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12821 12822 err = perf_buffer__process_records(pb, cpu_buf); 12823 if (err) { 12824 pr_warn("error while processing records: %d\n", err); 12825 return libbpf_err(err); 12826 } 12827 } 12828 return cnt; 12829 } 12830 12831 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12832 * manager. 12833 */ 12834 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12835 { 12836 return pb->cpu_cnt; 12837 } 12838 12839 /* 12840 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12841 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12842 * select()/poll()/epoll() Linux syscalls. 12843 */ 12844 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12845 { 12846 struct perf_cpu_buf *cpu_buf; 12847 12848 if (buf_idx >= pb->cpu_cnt) 12849 return libbpf_err(-EINVAL); 12850 12851 cpu_buf = pb->cpu_bufs[buf_idx]; 12852 if (!cpu_buf) 12853 return libbpf_err(-ENOENT); 12854 12855 return cpu_buf->fd; 12856 } 12857 12858 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12859 { 12860 struct perf_cpu_buf *cpu_buf; 12861 12862 if (buf_idx >= pb->cpu_cnt) 12863 return libbpf_err(-EINVAL); 12864 12865 cpu_buf = pb->cpu_bufs[buf_idx]; 12866 if (!cpu_buf) 12867 return libbpf_err(-ENOENT); 12868 12869 *buf = cpu_buf->base; 12870 *buf_size = pb->mmap_size; 12871 return 0; 12872 } 12873 12874 /* 12875 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12876 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12877 * consume, do nothing and return success. 12878 * Returns: 12879 * - 0 on success; 12880 * - <0 on failure. 12881 */ 12882 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12883 { 12884 struct perf_cpu_buf *cpu_buf; 12885 12886 if (buf_idx >= pb->cpu_cnt) 12887 return libbpf_err(-EINVAL); 12888 12889 cpu_buf = pb->cpu_bufs[buf_idx]; 12890 if (!cpu_buf) 12891 return libbpf_err(-ENOENT); 12892 12893 return perf_buffer__process_records(pb, cpu_buf); 12894 } 12895 12896 int perf_buffer__consume(struct perf_buffer *pb) 12897 { 12898 int i, err; 12899 12900 for (i = 0; i < pb->cpu_cnt; i++) { 12901 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12902 12903 if (!cpu_buf) 12904 continue; 12905 12906 err = perf_buffer__process_records(pb, cpu_buf); 12907 if (err) { 12908 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12909 return libbpf_err(err); 12910 } 12911 } 12912 return 0; 12913 } 12914 12915 int bpf_program__set_attach_target(struct bpf_program *prog, 12916 int attach_prog_fd, 12917 const char *attach_func_name) 12918 { 12919 int btf_obj_fd = 0, btf_id = 0, err; 12920 12921 if (!prog || attach_prog_fd < 0) 12922 return libbpf_err(-EINVAL); 12923 12924 if (prog->obj->loaded) 12925 return libbpf_err(-EINVAL); 12926 12927 if (attach_prog_fd && !attach_func_name) { 12928 /* remember attach_prog_fd and let bpf_program__load() find 12929 * BTF ID during the program load 12930 */ 12931 prog->attach_prog_fd = attach_prog_fd; 12932 return 0; 12933 } 12934 12935 if (attach_prog_fd) { 12936 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12937 attach_prog_fd); 12938 if (btf_id < 0) 12939 return libbpf_err(btf_id); 12940 } else { 12941 if (!attach_func_name) 12942 return libbpf_err(-EINVAL); 12943 12944 /* load btf_vmlinux, if not yet */ 12945 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12946 if (err) 12947 return libbpf_err(err); 12948 err = find_kernel_btf_id(prog->obj, attach_func_name, 12949 prog->expected_attach_type, 12950 &btf_obj_fd, &btf_id); 12951 if (err) 12952 return libbpf_err(err); 12953 } 12954 12955 prog->attach_btf_id = btf_id; 12956 prog->attach_btf_obj_fd = btf_obj_fd; 12957 prog->attach_prog_fd = attach_prog_fd; 12958 return 0; 12959 } 12960 12961 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12962 { 12963 int err = 0, n, len, start, end = -1; 12964 bool *tmp; 12965 12966 *mask = NULL; 12967 *mask_sz = 0; 12968 12969 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12970 while (*s) { 12971 if (*s == ',' || *s == '\n') { 12972 s++; 12973 continue; 12974 } 12975 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12976 if (n <= 0 || n > 2) { 12977 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12978 err = -EINVAL; 12979 goto cleanup; 12980 } else if (n == 1) { 12981 end = start; 12982 } 12983 if (start < 0 || start > end) { 12984 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12985 start, end, s); 12986 err = -EINVAL; 12987 goto cleanup; 12988 } 12989 tmp = realloc(*mask, end + 1); 12990 if (!tmp) { 12991 err = -ENOMEM; 12992 goto cleanup; 12993 } 12994 *mask = tmp; 12995 memset(tmp + *mask_sz, 0, start - *mask_sz); 12996 memset(tmp + start, 1, end - start + 1); 12997 *mask_sz = end + 1; 12998 s += len; 12999 } 13000 if (!*mask_sz) { 13001 pr_warn("Empty CPU range\n"); 13002 return -EINVAL; 13003 } 13004 return 0; 13005 cleanup: 13006 free(*mask); 13007 *mask = NULL; 13008 return err; 13009 } 13010 13011 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13012 { 13013 int fd, err = 0, len; 13014 char buf[128]; 13015 13016 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13017 if (fd < 0) { 13018 err = -errno; 13019 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13020 return err; 13021 } 13022 len = read(fd, buf, sizeof(buf)); 13023 close(fd); 13024 if (len <= 0) { 13025 err = len ? -errno : -EINVAL; 13026 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13027 return err; 13028 } 13029 if (len >= sizeof(buf)) { 13030 pr_warn("CPU mask is too big in file %s\n", fcpu); 13031 return -E2BIG; 13032 } 13033 buf[len] = '\0'; 13034 13035 return parse_cpu_mask_str(buf, mask, mask_sz); 13036 } 13037 13038 int libbpf_num_possible_cpus(void) 13039 { 13040 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13041 static int cpus; 13042 int err, n, i, tmp_cpus; 13043 bool *mask; 13044 13045 tmp_cpus = READ_ONCE(cpus); 13046 if (tmp_cpus > 0) 13047 return tmp_cpus; 13048 13049 err = parse_cpu_mask_file(fcpu, &mask, &n); 13050 if (err) 13051 return libbpf_err(err); 13052 13053 tmp_cpus = 0; 13054 for (i = 0; i < n; i++) { 13055 if (mask[i]) 13056 tmp_cpus++; 13057 } 13058 free(mask); 13059 13060 WRITE_ONCE(cpus, tmp_cpus); 13061 return tmp_cpus; 13062 } 13063 13064 static int populate_skeleton_maps(const struct bpf_object *obj, 13065 struct bpf_map_skeleton *maps, 13066 size_t map_cnt) 13067 { 13068 int i; 13069 13070 for (i = 0; i < map_cnt; i++) { 13071 struct bpf_map **map = maps[i].map; 13072 const char *name = maps[i].name; 13073 void **mmaped = maps[i].mmaped; 13074 13075 *map = bpf_object__find_map_by_name(obj, name); 13076 if (!*map) { 13077 pr_warn("failed to find skeleton map '%s'\n", name); 13078 return -ESRCH; 13079 } 13080 13081 /* externs shouldn't be pre-setup from user code */ 13082 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13083 *mmaped = (*map)->mmaped; 13084 } 13085 return 0; 13086 } 13087 13088 static int populate_skeleton_progs(const struct bpf_object *obj, 13089 struct bpf_prog_skeleton *progs, 13090 size_t prog_cnt) 13091 { 13092 int i; 13093 13094 for (i = 0; i < prog_cnt; i++) { 13095 struct bpf_program **prog = progs[i].prog; 13096 const char *name = progs[i].name; 13097 13098 *prog = bpf_object__find_program_by_name(obj, name); 13099 if (!*prog) { 13100 pr_warn("failed to find skeleton program '%s'\n", name); 13101 return -ESRCH; 13102 } 13103 } 13104 return 0; 13105 } 13106 13107 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13108 const struct bpf_object_open_opts *opts) 13109 { 13110 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13111 .object_name = s->name, 13112 ); 13113 struct bpf_object *obj; 13114 int err; 13115 13116 /* Attempt to preserve opts->object_name, unless overriden by user 13117 * explicitly. Overwriting object name for skeletons is discouraged, 13118 * as it breaks global data maps, because they contain object name 13119 * prefix as their own map name prefix. When skeleton is generated, 13120 * bpftool is making an assumption that this name will stay the same. 13121 */ 13122 if (opts) { 13123 memcpy(&skel_opts, opts, sizeof(*opts)); 13124 if (!opts->object_name) 13125 skel_opts.object_name = s->name; 13126 } 13127 13128 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13129 err = libbpf_get_error(obj); 13130 if (err) { 13131 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13132 s->name, err); 13133 return libbpf_err(err); 13134 } 13135 13136 *s->obj = obj; 13137 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13138 if (err) { 13139 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13140 return libbpf_err(err); 13141 } 13142 13143 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13144 if (err) { 13145 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13146 return libbpf_err(err); 13147 } 13148 13149 return 0; 13150 } 13151 13152 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13153 { 13154 int err, len, var_idx, i; 13155 const char *var_name; 13156 const struct bpf_map *map; 13157 struct btf *btf; 13158 __u32 map_type_id; 13159 const struct btf_type *map_type, *var_type; 13160 const struct bpf_var_skeleton *var_skel; 13161 struct btf_var_secinfo *var; 13162 13163 if (!s->obj) 13164 return libbpf_err(-EINVAL); 13165 13166 btf = bpf_object__btf(s->obj); 13167 if (!btf) { 13168 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13169 bpf_object__name(s->obj)); 13170 return libbpf_err(-errno); 13171 } 13172 13173 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13174 if (err) { 13175 pr_warn("failed to populate subskeleton maps: %d\n", err); 13176 return libbpf_err(err); 13177 } 13178 13179 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13180 if (err) { 13181 pr_warn("failed to populate subskeleton maps: %d\n", err); 13182 return libbpf_err(err); 13183 } 13184 13185 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13186 var_skel = &s->vars[var_idx]; 13187 map = *var_skel->map; 13188 map_type_id = bpf_map__btf_value_type_id(map); 13189 map_type = btf__type_by_id(btf, map_type_id); 13190 13191 if (!btf_is_datasec(map_type)) { 13192 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13193 bpf_map__name(map), 13194 __btf_kind_str(btf_kind(map_type))); 13195 return libbpf_err(-EINVAL); 13196 } 13197 13198 len = btf_vlen(map_type); 13199 var = btf_var_secinfos(map_type); 13200 for (i = 0; i < len; i++, var++) { 13201 var_type = btf__type_by_id(btf, var->type); 13202 var_name = btf__name_by_offset(btf, var_type->name_off); 13203 if (strcmp(var_name, var_skel->name) == 0) { 13204 *var_skel->addr = map->mmaped + var->offset; 13205 break; 13206 } 13207 } 13208 } 13209 return 0; 13210 } 13211 13212 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13213 { 13214 if (!s) 13215 return; 13216 free(s->maps); 13217 free(s->progs); 13218 free(s->vars); 13219 free(s); 13220 } 13221 13222 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13223 { 13224 int i, err; 13225 13226 err = bpf_object__load(*s->obj); 13227 if (err) { 13228 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13229 return libbpf_err(err); 13230 } 13231 13232 for (i = 0; i < s->map_cnt; i++) { 13233 struct bpf_map *map = *s->maps[i].map; 13234 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13235 int prot, map_fd = bpf_map__fd(map); 13236 void **mmaped = s->maps[i].mmaped; 13237 13238 if (!mmaped) 13239 continue; 13240 13241 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13242 *mmaped = NULL; 13243 continue; 13244 } 13245 13246 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13247 prot = PROT_READ; 13248 else 13249 prot = PROT_READ | PROT_WRITE; 13250 13251 /* Remap anonymous mmap()-ed "map initialization image" as 13252 * a BPF map-backed mmap()-ed memory, but preserving the same 13253 * memory address. This will cause kernel to change process' 13254 * page table to point to a different piece of kernel memory, 13255 * but from userspace point of view memory address (and its 13256 * contents, being identical at this point) will stay the 13257 * same. This mapping will be released by bpf_object__close() 13258 * as per normal clean up procedure, so we don't need to worry 13259 * about it from skeleton's clean up perspective. 13260 */ 13261 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13262 if (*mmaped == MAP_FAILED) { 13263 err = -errno; 13264 *mmaped = NULL; 13265 pr_warn("failed to re-mmap() map '%s': %d\n", 13266 bpf_map__name(map), err); 13267 return libbpf_err(err); 13268 } 13269 } 13270 13271 return 0; 13272 } 13273 13274 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13275 { 13276 int i, err; 13277 13278 for (i = 0; i < s->prog_cnt; i++) { 13279 struct bpf_program *prog = *s->progs[i].prog; 13280 struct bpf_link **link = s->progs[i].link; 13281 13282 if (!prog->autoload || !prog->autoattach) 13283 continue; 13284 13285 /* auto-attaching not supported for this program */ 13286 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13287 continue; 13288 13289 /* if user already set the link manually, don't attempt auto-attach */ 13290 if (*link) 13291 continue; 13292 13293 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13294 if (err) { 13295 pr_warn("prog '%s': failed to auto-attach: %d\n", 13296 bpf_program__name(prog), err); 13297 return libbpf_err(err); 13298 } 13299 13300 /* It's possible that for some SEC() definitions auto-attach 13301 * is supported in some cases (e.g., if definition completely 13302 * specifies target information), but is not in other cases. 13303 * SEC("uprobe") is one such case. If user specified target 13304 * binary and function name, such BPF program can be 13305 * auto-attached. But if not, it shouldn't trigger skeleton's 13306 * attach to fail. It should just be skipped. 13307 * attach_fn signals such case with returning 0 (no error) and 13308 * setting link to NULL. 13309 */ 13310 } 13311 13312 return 0; 13313 } 13314 13315 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13316 { 13317 int i; 13318 13319 for (i = 0; i < s->prog_cnt; i++) { 13320 struct bpf_link **link = s->progs[i].link; 13321 13322 bpf_link__destroy(*link); 13323 *link = NULL; 13324 } 13325 } 13326 13327 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13328 { 13329 if (!s) 13330 return; 13331 13332 if (s->progs) 13333 bpf_object__detach_skeleton(s); 13334 if (s->obj) 13335 bpf_object__close(*s->obj); 13336 free(s->maps); 13337 free(s->progs); 13338 free(s); 13339 } 13340