1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool load; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 char *name; 361 /* real_name is defined for special internal maps (.rodata*, 362 * .data*, .bss, .kconfig) and preserves their original ELF section 363 * name. This is important to be be able to find corresponding BTF 364 * DATASEC information. 365 */ 366 char *real_name; 367 int fd; 368 int sec_idx; 369 size_t sec_offset; 370 int map_ifindex; 371 int inner_map_fd; 372 struct bpf_map_def def; 373 __u32 numa_node; 374 __u32 btf_var_idx; 375 __u32 btf_key_type_id; 376 __u32 btf_value_type_id; 377 __u32 btf_vmlinux_value_type_id; 378 void *priv; 379 bpf_map_clear_priv_t clear_priv; 380 enum libbpf_map_type libbpf_type; 381 void *mmaped; 382 struct bpf_struct_ops *st_ops; 383 struct bpf_map *inner_map; 384 void **init_slots; 385 int init_slots_sz; 386 char *pin_path; 387 bool pinned; 388 bool reused; 389 bool skipped; 390 __u64 map_extra; 391 }; 392 393 enum extern_type { 394 EXT_UNKNOWN, 395 EXT_KCFG, 396 EXT_KSYM, 397 }; 398 399 enum kcfg_type { 400 KCFG_UNKNOWN, 401 KCFG_CHAR, 402 KCFG_BOOL, 403 KCFG_INT, 404 KCFG_TRISTATE, 405 KCFG_CHAR_ARR, 406 }; 407 408 struct extern_desc { 409 enum extern_type type; 410 int sym_idx; 411 int btf_id; 412 int sec_btf_id; 413 const char *name; 414 bool is_set; 415 bool is_weak; 416 union { 417 struct { 418 enum kcfg_type type; 419 int sz; 420 int align; 421 int data_off; 422 bool is_signed; 423 } kcfg; 424 struct { 425 unsigned long long addr; 426 427 /* target btf_id of the corresponding kernel var. */ 428 int kernel_btf_obj_fd; 429 int kernel_btf_id; 430 431 /* local btf_id of the ksym extern's type. */ 432 __u32 type_id; 433 /* BTF fd index to be patched in for insn->off, this is 434 * 0 for vmlinux BTF, index in obj->fd_array for module 435 * BTF 436 */ 437 __s16 btf_fd_idx; 438 } ksym; 439 }; 440 }; 441 442 static LIST_HEAD(bpf_objects_list); 443 444 struct module_btf { 445 struct btf *btf; 446 char *name; 447 __u32 id; 448 int fd; 449 int fd_array_idx; 450 }; 451 452 enum sec_type { 453 SEC_UNUSED = 0, 454 SEC_RELO, 455 SEC_BSS, 456 SEC_DATA, 457 SEC_RODATA, 458 }; 459 460 struct elf_sec_desc { 461 enum sec_type sec_type; 462 Elf64_Shdr *shdr; 463 Elf_Data *data; 464 }; 465 466 struct elf_state { 467 int fd; 468 const void *obj_buf; 469 size_t obj_buf_sz; 470 Elf *elf; 471 Elf64_Ehdr *ehdr; 472 Elf_Data *symbols; 473 Elf_Data *st_ops_data; 474 size_t shstrndx; /* section index for section name strings */ 475 size_t strtabidx; 476 struct elf_sec_desc *secs; 477 int sec_cnt; 478 int maps_shndx; 479 int btf_maps_shndx; 480 __u32 btf_maps_sec_btf_id; 481 int text_shndx; 482 int symbols_shndx; 483 int st_ops_shndx; 484 }; 485 486 struct bpf_object { 487 char name[BPF_OBJ_NAME_LEN]; 488 char license[64]; 489 __u32 kern_version; 490 491 struct bpf_program *programs; 492 size_t nr_programs; 493 struct bpf_map *maps; 494 size_t nr_maps; 495 size_t maps_cap; 496 497 char *kconfig; 498 struct extern_desc *externs; 499 int nr_extern; 500 int kconfig_map_idx; 501 502 bool loaded; 503 bool has_subcalls; 504 bool has_rodata; 505 506 struct bpf_gen *gen_loader; 507 508 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 509 struct elf_state efile; 510 /* 511 * All loaded bpf_object are linked in a list, which is 512 * hidden to caller. bpf_objects__<func> handlers deal with 513 * all objects. 514 */ 515 struct list_head list; 516 517 struct btf *btf; 518 struct btf_ext *btf_ext; 519 520 /* Parse and load BTF vmlinux if any of the programs in the object need 521 * it at load time. 522 */ 523 struct btf *btf_vmlinux; 524 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 525 * override for vmlinux BTF. 526 */ 527 char *btf_custom_path; 528 /* vmlinux BTF override for CO-RE relocations */ 529 struct btf *btf_vmlinux_override; 530 /* Lazily initialized kernel module BTFs */ 531 struct module_btf *btf_modules; 532 bool btf_modules_loaded; 533 size_t btf_module_cnt; 534 size_t btf_module_cap; 535 536 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 537 char *log_buf; 538 size_t log_size; 539 __u32 log_level; 540 541 void *priv; 542 bpf_object_clear_priv_t clear_priv; 543 544 int *fd_array; 545 size_t fd_array_cap; 546 size_t fd_array_cnt; 547 548 char path[]; 549 }; 550 551 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 552 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 553 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 554 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 555 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 556 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 557 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 558 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 560 561 void bpf_program__unload(struct bpf_program *prog) 562 { 563 int i; 564 565 if (!prog) 566 return; 567 568 /* 569 * If the object is opened but the program was never loaded, 570 * it is possible that prog->instances.nr == -1. 571 */ 572 if (prog->instances.nr > 0) { 573 for (i = 0; i < prog->instances.nr; i++) 574 zclose(prog->instances.fds[i]); 575 } else if (prog->instances.nr != -1) { 576 pr_warn("Internal error: instances.nr is %d\n", 577 prog->instances.nr); 578 } 579 580 prog->instances.nr = -1; 581 zfree(&prog->instances.fds); 582 583 zfree(&prog->func_info); 584 zfree(&prog->line_info); 585 } 586 587 static void bpf_program__exit(struct bpf_program *prog) 588 { 589 if (!prog) 590 return; 591 592 if (prog->clear_priv) 593 prog->clear_priv(prog, prog->priv); 594 595 prog->priv = NULL; 596 prog->clear_priv = NULL; 597 598 bpf_program__unload(prog); 599 zfree(&prog->name); 600 zfree(&prog->sec_name); 601 zfree(&prog->pin_name); 602 zfree(&prog->insns); 603 zfree(&prog->reloc_desc); 604 605 prog->nr_reloc = 0; 606 prog->insns_cnt = 0; 607 prog->sec_idx = -1; 608 } 609 610 static char *__bpf_program__pin_name(struct bpf_program *prog) 611 { 612 char *name, *p; 613 614 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 615 name = strdup(prog->name); 616 else 617 name = strdup(prog->sec_name); 618 619 if (!name) 620 return NULL; 621 622 p = name; 623 624 while ((p = strchr(p, '/'))) 625 *p = '_'; 626 627 return name; 628 } 629 630 static bool insn_is_subprog_call(const struct bpf_insn *insn) 631 { 632 return BPF_CLASS(insn->code) == BPF_JMP && 633 BPF_OP(insn->code) == BPF_CALL && 634 BPF_SRC(insn->code) == BPF_K && 635 insn->src_reg == BPF_PSEUDO_CALL && 636 insn->dst_reg == 0 && 637 insn->off == 0; 638 } 639 640 static bool is_call_insn(const struct bpf_insn *insn) 641 { 642 return insn->code == (BPF_JMP | BPF_CALL); 643 } 644 645 static bool insn_is_pseudo_func(struct bpf_insn *insn) 646 { 647 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 648 } 649 650 static int 651 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 652 const char *name, size_t sec_idx, const char *sec_name, 653 size_t sec_off, void *insn_data, size_t insn_data_sz) 654 { 655 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 656 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 657 sec_name, name, sec_off, insn_data_sz); 658 return -EINVAL; 659 } 660 661 memset(prog, 0, sizeof(*prog)); 662 prog->obj = obj; 663 664 prog->sec_idx = sec_idx; 665 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 666 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 667 /* insns_cnt can later be increased by appending used subprograms */ 668 prog->insns_cnt = prog->sec_insn_cnt; 669 670 prog->type = BPF_PROG_TYPE_UNSPEC; 671 prog->load = true; 672 673 prog->instances.fds = NULL; 674 prog->instances.nr = -1; 675 676 /* inherit object's log_level */ 677 prog->log_level = obj->log_level; 678 679 prog->sec_name = strdup(sec_name); 680 if (!prog->sec_name) 681 goto errout; 682 683 prog->name = strdup(name); 684 if (!prog->name) 685 goto errout; 686 687 prog->pin_name = __bpf_program__pin_name(prog); 688 if (!prog->pin_name) 689 goto errout; 690 691 prog->insns = malloc(insn_data_sz); 692 if (!prog->insns) 693 goto errout; 694 memcpy(prog->insns, insn_data, insn_data_sz); 695 696 return 0; 697 errout: 698 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 699 bpf_program__exit(prog); 700 return -ENOMEM; 701 } 702 703 static int 704 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 705 const char *sec_name, int sec_idx) 706 { 707 Elf_Data *symbols = obj->efile.symbols; 708 struct bpf_program *prog, *progs; 709 void *data = sec_data->d_buf; 710 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 711 int nr_progs, err, i; 712 const char *name; 713 Elf64_Sym *sym; 714 715 progs = obj->programs; 716 nr_progs = obj->nr_programs; 717 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 718 sec_off = 0; 719 720 for (i = 0; i < nr_syms; i++) { 721 sym = elf_sym_by_idx(obj, i); 722 723 if (sym->st_shndx != sec_idx) 724 continue; 725 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 726 continue; 727 728 prog_sz = sym->st_size; 729 sec_off = sym->st_value; 730 731 name = elf_sym_str(obj, sym->st_name); 732 if (!name) { 733 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 734 sec_name, sec_off); 735 return -LIBBPF_ERRNO__FORMAT; 736 } 737 738 if (sec_off + prog_sz > sec_sz) { 739 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 740 sec_name, sec_off); 741 return -LIBBPF_ERRNO__FORMAT; 742 } 743 744 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 745 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 746 return -ENOTSUP; 747 } 748 749 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 750 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 751 752 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 753 if (!progs) { 754 /* 755 * In this case the original obj->programs 756 * is still valid, so don't need special treat for 757 * bpf_close_object(). 758 */ 759 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 760 sec_name, name); 761 return -ENOMEM; 762 } 763 obj->programs = progs; 764 765 prog = &progs[nr_progs]; 766 767 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 768 sec_off, data + sec_off, prog_sz); 769 if (err) 770 return err; 771 772 /* if function is a global/weak symbol, but has restricted 773 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 774 * as static to enable more permissive BPF verification mode 775 * with more outside context available to BPF verifier 776 */ 777 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 778 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 779 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 780 prog->mark_btf_static = true; 781 782 nr_progs++; 783 obj->nr_programs = nr_progs; 784 } 785 786 return 0; 787 } 788 789 __u32 get_kernel_version(void) 790 { 791 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 792 * but Ubuntu provides /proc/version_signature file, as described at 793 * https://ubuntu.com/kernel, with an example contents below, which we 794 * can use to get a proper LINUX_VERSION_CODE. 795 * 796 * Ubuntu 5.4.0-12.15-generic 5.4.8 797 * 798 * In the above, 5.4.8 is what kernel is actually expecting, while 799 * uname() call will return 5.4.0 in info.release. 800 */ 801 const char *ubuntu_kver_file = "/proc/version_signature"; 802 __u32 major, minor, patch; 803 struct utsname info; 804 805 if (access(ubuntu_kver_file, R_OK) == 0) { 806 FILE *f; 807 808 f = fopen(ubuntu_kver_file, "r"); 809 if (f) { 810 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 811 fclose(f); 812 return KERNEL_VERSION(major, minor, patch); 813 } 814 fclose(f); 815 } 816 /* something went wrong, fall back to uname() approach */ 817 } 818 819 uname(&info); 820 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 821 return 0; 822 return KERNEL_VERSION(major, minor, patch); 823 } 824 825 static const struct btf_member * 826 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 827 { 828 struct btf_member *m; 829 int i; 830 831 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 832 if (btf_member_bit_offset(t, i) == bit_offset) 833 return m; 834 } 835 836 return NULL; 837 } 838 839 static const struct btf_member * 840 find_member_by_name(const struct btf *btf, const struct btf_type *t, 841 const char *name) 842 { 843 struct btf_member *m; 844 int i; 845 846 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 847 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 848 return m; 849 } 850 851 return NULL; 852 } 853 854 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 855 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 856 const char *name, __u32 kind); 857 858 static int 859 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 860 const struct btf_type **type, __u32 *type_id, 861 const struct btf_type **vtype, __u32 *vtype_id, 862 const struct btf_member **data_member) 863 { 864 const struct btf_type *kern_type, *kern_vtype; 865 const struct btf_member *kern_data_member; 866 __s32 kern_vtype_id, kern_type_id; 867 __u32 i; 868 869 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 870 if (kern_type_id < 0) { 871 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 872 tname); 873 return kern_type_id; 874 } 875 kern_type = btf__type_by_id(btf, kern_type_id); 876 877 /* Find the corresponding "map_value" type that will be used 878 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 879 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 880 * btf_vmlinux. 881 */ 882 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 883 tname, BTF_KIND_STRUCT); 884 if (kern_vtype_id < 0) { 885 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 886 STRUCT_OPS_VALUE_PREFIX, tname); 887 return kern_vtype_id; 888 } 889 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 890 891 /* Find "struct tcp_congestion_ops" from 892 * struct bpf_struct_ops_tcp_congestion_ops { 893 * [ ... ] 894 * struct tcp_congestion_ops data; 895 * } 896 */ 897 kern_data_member = btf_members(kern_vtype); 898 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 899 if (kern_data_member->type == kern_type_id) 900 break; 901 } 902 if (i == btf_vlen(kern_vtype)) { 903 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 904 tname, STRUCT_OPS_VALUE_PREFIX, tname); 905 return -EINVAL; 906 } 907 908 *type = kern_type; 909 *type_id = kern_type_id; 910 *vtype = kern_vtype; 911 *vtype_id = kern_vtype_id; 912 *data_member = kern_data_member; 913 914 return 0; 915 } 916 917 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 918 { 919 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 920 } 921 922 /* Init the map's fields that depend on kern_btf */ 923 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 924 const struct btf *btf, 925 const struct btf *kern_btf) 926 { 927 const struct btf_member *member, *kern_member, *kern_data_member; 928 const struct btf_type *type, *kern_type, *kern_vtype; 929 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 930 struct bpf_struct_ops *st_ops; 931 void *data, *kern_data; 932 const char *tname; 933 int err; 934 935 st_ops = map->st_ops; 936 type = st_ops->type; 937 tname = st_ops->tname; 938 err = find_struct_ops_kern_types(kern_btf, tname, 939 &kern_type, &kern_type_id, 940 &kern_vtype, &kern_vtype_id, 941 &kern_data_member); 942 if (err) 943 return err; 944 945 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 946 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 947 948 map->def.value_size = kern_vtype->size; 949 map->btf_vmlinux_value_type_id = kern_vtype_id; 950 951 st_ops->kern_vdata = calloc(1, kern_vtype->size); 952 if (!st_ops->kern_vdata) 953 return -ENOMEM; 954 955 data = st_ops->data; 956 kern_data_off = kern_data_member->offset / 8; 957 kern_data = st_ops->kern_vdata + kern_data_off; 958 959 member = btf_members(type); 960 for (i = 0; i < btf_vlen(type); i++, member++) { 961 const struct btf_type *mtype, *kern_mtype; 962 __u32 mtype_id, kern_mtype_id; 963 void *mdata, *kern_mdata; 964 __s64 msize, kern_msize; 965 __u32 moff, kern_moff; 966 __u32 kern_member_idx; 967 const char *mname; 968 969 mname = btf__name_by_offset(btf, member->name_off); 970 kern_member = find_member_by_name(kern_btf, kern_type, mname); 971 if (!kern_member) { 972 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 973 map->name, mname); 974 return -ENOTSUP; 975 } 976 977 kern_member_idx = kern_member - btf_members(kern_type); 978 if (btf_member_bitfield_size(type, i) || 979 btf_member_bitfield_size(kern_type, kern_member_idx)) { 980 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 981 map->name, mname); 982 return -ENOTSUP; 983 } 984 985 moff = member->offset / 8; 986 kern_moff = kern_member->offset / 8; 987 988 mdata = data + moff; 989 kern_mdata = kern_data + kern_moff; 990 991 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 992 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 993 &kern_mtype_id); 994 if (BTF_INFO_KIND(mtype->info) != 995 BTF_INFO_KIND(kern_mtype->info)) { 996 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 997 map->name, mname, BTF_INFO_KIND(mtype->info), 998 BTF_INFO_KIND(kern_mtype->info)); 999 return -ENOTSUP; 1000 } 1001 1002 if (btf_is_ptr(mtype)) { 1003 struct bpf_program *prog; 1004 1005 prog = st_ops->progs[i]; 1006 if (!prog) 1007 continue; 1008 1009 kern_mtype = skip_mods_and_typedefs(kern_btf, 1010 kern_mtype->type, 1011 &kern_mtype_id); 1012 1013 /* mtype->type must be a func_proto which was 1014 * guaranteed in bpf_object__collect_st_ops_relos(), 1015 * so only check kern_mtype for func_proto here. 1016 */ 1017 if (!btf_is_func_proto(kern_mtype)) { 1018 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1019 map->name, mname); 1020 return -ENOTSUP; 1021 } 1022 1023 prog->attach_btf_id = kern_type_id; 1024 prog->expected_attach_type = kern_member_idx; 1025 1026 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1027 1028 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1029 map->name, mname, prog->name, moff, 1030 kern_moff); 1031 1032 continue; 1033 } 1034 1035 msize = btf__resolve_size(btf, mtype_id); 1036 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1037 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1038 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1039 map->name, mname, (ssize_t)msize, 1040 (ssize_t)kern_msize); 1041 return -ENOTSUP; 1042 } 1043 1044 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1045 map->name, mname, (unsigned int)msize, 1046 moff, kern_moff); 1047 memcpy(kern_mdata, mdata, msize); 1048 } 1049 1050 return 0; 1051 } 1052 1053 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1054 { 1055 struct bpf_map *map; 1056 size_t i; 1057 int err; 1058 1059 for (i = 0; i < obj->nr_maps; i++) { 1060 map = &obj->maps[i]; 1061 1062 if (!bpf_map__is_struct_ops(map)) 1063 continue; 1064 1065 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1066 obj->btf_vmlinux); 1067 if (err) 1068 return err; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1075 { 1076 const struct btf_type *type, *datasec; 1077 const struct btf_var_secinfo *vsi; 1078 struct bpf_struct_ops *st_ops; 1079 const char *tname, *var_name; 1080 __s32 type_id, datasec_id; 1081 const struct btf *btf; 1082 struct bpf_map *map; 1083 __u32 i; 1084 1085 if (obj->efile.st_ops_shndx == -1) 1086 return 0; 1087 1088 btf = obj->btf; 1089 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1090 BTF_KIND_DATASEC); 1091 if (datasec_id < 0) { 1092 pr_warn("struct_ops init: DATASEC %s not found\n", 1093 STRUCT_OPS_SEC); 1094 return -EINVAL; 1095 } 1096 1097 datasec = btf__type_by_id(btf, datasec_id); 1098 vsi = btf_var_secinfos(datasec); 1099 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1100 type = btf__type_by_id(obj->btf, vsi->type); 1101 var_name = btf__name_by_offset(obj->btf, type->name_off); 1102 1103 type_id = btf__resolve_type(obj->btf, vsi->type); 1104 if (type_id < 0) { 1105 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1106 vsi->type, STRUCT_OPS_SEC); 1107 return -EINVAL; 1108 } 1109 1110 type = btf__type_by_id(obj->btf, type_id); 1111 tname = btf__name_by_offset(obj->btf, type->name_off); 1112 if (!tname[0]) { 1113 pr_warn("struct_ops init: anonymous type is not supported\n"); 1114 return -ENOTSUP; 1115 } 1116 if (!btf_is_struct(type)) { 1117 pr_warn("struct_ops init: %s is not a struct\n", tname); 1118 return -EINVAL; 1119 } 1120 1121 map = bpf_object__add_map(obj); 1122 if (IS_ERR(map)) 1123 return PTR_ERR(map); 1124 1125 map->sec_idx = obj->efile.st_ops_shndx; 1126 map->sec_offset = vsi->offset; 1127 map->name = strdup(var_name); 1128 if (!map->name) 1129 return -ENOMEM; 1130 1131 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1132 map->def.key_size = sizeof(int); 1133 map->def.value_size = type->size; 1134 map->def.max_entries = 1; 1135 1136 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1137 if (!map->st_ops) 1138 return -ENOMEM; 1139 st_ops = map->st_ops; 1140 st_ops->data = malloc(type->size); 1141 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1142 st_ops->kern_func_off = malloc(btf_vlen(type) * 1143 sizeof(*st_ops->kern_func_off)); 1144 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1145 return -ENOMEM; 1146 1147 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1148 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1149 var_name, STRUCT_OPS_SEC); 1150 return -EINVAL; 1151 } 1152 1153 memcpy(st_ops->data, 1154 obj->efile.st_ops_data->d_buf + vsi->offset, 1155 type->size); 1156 st_ops->tname = tname; 1157 st_ops->type = type; 1158 st_ops->type_id = type_id; 1159 1160 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1161 tname, type_id, var_name, vsi->offset); 1162 } 1163 1164 return 0; 1165 } 1166 1167 static struct bpf_object *bpf_object__new(const char *path, 1168 const void *obj_buf, 1169 size_t obj_buf_sz, 1170 const char *obj_name) 1171 { 1172 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1173 struct bpf_object *obj; 1174 char *end; 1175 1176 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1177 if (!obj) { 1178 pr_warn("alloc memory failed for %s\n", path); 1179 return ERR_PTR(-ENOMEM); 1180 } 1181 1182 strcpy(obj->path, path); 1183 if (obj_name) { 1184 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1185 } else { 1186 /* Using basename() GNU version which doesn't modify arg. */ 1187 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1188 end = strchr(obj->name, '.'); 1189 if (end) 1190 *end = 0; 1191 } 1192 1193 obj->efile.fd = -1; 1194 /* 1195 * Caller of this function should also call 1196 * bpf_object__elf_finish() after data collection to return 1197 * obj_buf to user. If not, we should duplicate the buffer to 1198 * avoid user freeing them before elf finish. 1199 */ 1200 obj->efile.obj_buf = obj_buf; 1201 obj->efile.obj_buf_sz = obj_buf_sz; 1202 obj->efile.maps_shndx = -1; 1203 obj->efile.btf_maps_shndx = -1; 1204 obj->efile.st_ops_shndx = -1; 1205 obj->kconfig_map_idx = -1; 1206 1207 obj->kern_version = get_kernel_version(); 1208 obj->loaded = false; 1209 1210 INIT_LIST_HEAD(&obj->list); 1211 if (!strict) 1212 list_add(&obj->list, &bpf_objects_list); 1213 return obj; 1214 } 1215 1216 static void bpf_object__elf_finish(struct bpf_object *obj) 1217 { 1218 if (!obj->efile.elf) 1219 return; 1220 1221 if (obj->efile.elf) { 1222 elf_end(obj->efile.elf); 1223 obj->efile.elf = NULL; 1224 } 1225 obj->efile.symbols = NULL; 1226 obj->efile.st_ops_data = NULL; 1227 1228 zfree(&obj->efile.secs); 1229 obj->efile.sec_cnt = 0; 1230 zclose(obj->efile.fd); 1231 obj->efile.obj_buf = NULL; 1232 obj->efile.obj_buf_sz = 0; 1233 } 1234 1235 static int bpf_object__elf_init(struct bpf_object *obj) 1236 { 1237 Elf64_Ehdr *ehdr; 1238 int err = 0; 1239 Elf *elf; 1240 1241 if (obj->efile.elf) { 1242 pr_warn("elf: init internal error\n"); 1243 return -LIBBPF_ERRNO__LIBELF; 1244 } 1245 1246 if (obj->efile.obj_buf_sz > 0) { 1247 /* 1248 * obj_buf should have been validated by 1249 * bpf_object__open_buffer(). 1250 */ 1251 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1252 } else { 1253 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1254 if (obj->efile.fd < 0) { 1255 char errmsg[STRERR_BUFSIZE], *cp; 1256 1257 err = -errno; 1258 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1259 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1260 return err; 1261 } 1262 1263 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1264 } 1265 1266 if (!elf) { 1267 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1268 err = -LIBBPF_ERRNO__LIBELF; 1269 goto errout; 1270 } 1271 1272 obj->efile.elf = elf; 1273 1274 if (elf_kind(elf) != ELF_K_ELF) { 1275 err = -LIBBPF_ERRNO__FORMAT; 1276 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1277 goto errout; 1278 } 1279 1280 if (gelf_getclass(elf) != ELFCLASS64) { 1281 err = -LIBBPF_ERRNO__FORMAT; 1282 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1283 goto errout; 1284 } 1285 1286 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1287 if (!obj->efile.ehdr) { 1288 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1289 err = -LIBBPF_ERRNO__FORMAT; 1290 goto errout; 1291 } 1292 1293 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1294 pr_warn("elf: failed to get section names section index for %s: %s\n", 1295 obj->path, elf_errmsg(-1)); 1296 err = -LIBBPF_ERRNO__FORMAT; 1297 goto errout; 1298 } 1299 1300 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1301 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1302 pr_warn("elf: failed to get section names strings from %s: %s\n", 1303 obj->path, elf_errmsg(-1)); 1304 err = -LIBBPF_ERRNO__FORMAT; 1305 goto errout; 1306 } 1307 1308 /* Old LLVM set e_machine to EM_NONE */ 1309 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1310 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1311 err = -LIBBPF_ERRNO__FORMAT; 1312 goto errout; 1313 } 1314 1315 return 0; 1316 errout: 1317 bpf_object__elf_finish(obj); 1318 return err; 1319 } 1320 1321 static int bpf_object__check_endianness(struct bpf_object *obj) 1322 { 1323 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1324 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1325 return 0; 1326 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1327 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1328 return 0; 1329 #else 1330 # error "Unrecognized __BYTE_ORDER__" 1331 #endif 1332 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1333 return -LIBBPF_ERRNO__ENDIAN; 1334 } 1335 1336 static int 1337 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1338 { 1339 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1340 * go over allowed ELF data section buffer 1341 */ 1342 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1343 pr_debug("license of %s is %s\n", obj->path, obj->license); 1344 return 0; 1345 } 1346 1347 static int 1348 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1349 { 1350 __u32 kver; 1351 1352 if (size != sizeof(kver)) { 1353 pr_warn("invalid kver section in %s\n", obj->path); 1354 return -LIBBPF_ERRNO__FORMAT; 1355 } 1356 memcpy(&kver, data, sizeof(kver)); 1357 obj->kern_version = kver; 1358 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1359 return 0; 1360 } 1361 1362 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1363 { 1364 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1365 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1366 return true; 1367 return false; 1368 } 1369 1370 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1371 { 1372 Elf_Data *data; 1373 Elf_Scn *scn; 1374 1375 if (!name) 1376 return -EINVAL; 1377 1378 scn = elf_sec_by_name(obj, name); 1379 data = elf_sec_data(obj, scn); 1380 if (data) { 1381 *size = data->d_size; 1382 return 0; /* found it */ 1383 } 1384 1385 return -ENOENT; 1386 } 1387 1388 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1389 { 1390 Elf_Data *symbols = obj->efile.symbols; 1391 const char *sname; 1392 size_t si; 1393 1394 if (!name || !off) 1395 return -EINVAL; 1396 1397 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1398 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1399 1400 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1401 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1402 continue; 1403 1404 sname = elf_sym_str(obj, sym->st_name); 1405 if (!sname) { 1406 pr_warn("failed to get sym name string for var %s\n", name); 1407 return -EIO; 1408 } 1409 if (strcmp(name, sname) == 0) { 1410 *off = sym->st_value; 1411 return 0; 1412 } 1413 } 1414 1415 return -ENOENT; 1416 } 1417 1418 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1419 { 1420 struct bpf_map *new_maps; 1421 size_t new_cap; 1422 int i; 1423 1424 if (obj->nr_maps < obj->maps_cap) 1425 return &obj->maps[obj->nr_maps++]; 1426 1427 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1428 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1429 if (!new_maps) { 1430 pr_warn("alloc maps for object failed\n"); 1431 return ERR_PTR(-ENOMEM); 1432 } 1433 1434 obj->maps_cap = new_cap; 1435 obj->maps = new_maps; 1436 1437 /* zero out new maps */ 1438 memset(obj->maps + obj->nr_maps, 0, 1439 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1440 /* 1441 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1442 * when failure (zclose won't close negative fd)). 1443 */ 1444 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1445 obj->maps[i].fd = -1; 1446 obj->maps[i].inner_map_fd = -1; 1447 } 1448 1449 return &obj->maps[obj->nr_maps++]; 1450 } 1451 1452 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1453 { 1454 long page_sz = sysconf(_SC_PAGE_SIZE); 1455 size_t map_sz; 1456 1457 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1458 map_sz = roundup(map_sz, page_sz); 1459 return map_sz; 1460 } 1461 1462 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1463 { 1464 char map_name[BPF_OBJ_NAME_LEN], *p; 1465 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1466 1467 /* This is one of the more confusing parts of libbpf for various 1468 * reasons, some of which are historical. The original idea for naming 1469 * internal names was to include as much of BPF object name prefix as 1470 * possible, so that it can be distinguished from similar internal 1471 * maps of a different BPF object. 1472 * As an example, let's say we have bpf_object named 'my_object_name' 1473 * and internal map corresponding to '.rodata' ELF section. The final 1474 * map name advertised to user and to the kernel will be 1475 * 'my_objec.rodata', taking first 8 characters of object name and 1476 * entire 7 characters of '.rodata'. 1477 * Somewhat confusingly, if internal map ELF section name is shorter 1478 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1479 * for the suffix, even though we only have 4 actual characters, and 1480 * resulting map will be called 'my_objec.bss', not even using all 15 1481 * characters allowed by the kernel. Oh well, at least the truncated 1482 * object name is somewhat consistent in this case. But if the map 1483 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1484 * (8 chars) and thus will be left with only first 7 characters of the 1485 * object name ('my_obje'). Happy guessing, user, that the final map 1486 * name will be "my_obje.kconfig". 1487 * Now, with libbpf starting to support arbitrarily named .rodata.* 1488 * and .data.* data sections, it's possible that ELF section name is 1489 * longer than allowed 15 chars, so we now need to be careful to take 1490 * only up to 15 first characters of ELF name, taking no BPF object 1491 * name characters at all. So '.rodata.abracadabra' will result in 1492 * '.rodata.abracad' kernel and user-visible name. 1493 * We need to keep this convoluted logic intact for .data, .bss and 1494 * .rodata maps, but for new custom .data.custom and .rodata.custom 1495 * maps we use their ELF names as is, not prepending bpf_object name 1496 * in front. We still need to truncate them to 15 characters for the 1497 * kernel. Full name can be recovered for such maps by using DATASEC 1498 * BTF type associated with such map's value type, though. 1499 */ 1500 if (sfx_len >= BPF_OBJ_NAME_LEN) 1501 sfx_len = BPF_OBJ_NAME_LEN - 1; 1502 1503 /* if there are two or more dots in map name, it's a custom dot map */ 1504 if (strchr(real_name + 1, '.') != NULL) 1505 pfx_len = 0; 1506 else 1507 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1508 1509 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1510 sfx_len, real_name); 1511 1512 /* sanitise map name to characters allowed by kernel */ 1513 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1514 if (!isalnum(*p) && *p != '_' && *p != '.') 1515 *p = '_'; 1516 1517 return strdup(map_name); 1518 } 1519 1520 static int 1521 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1522 1523 static int 1524 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1525 const char *real_name, int sec_idx, void *data, size_t data_sz) 1526 { 1527 struct bpf_map_def *def; 1528 struct bpf_map *map; 1529 int err; 1530 1531 map = bpf_object__add_map(obj); 1532 if (IS_ERR(map)) 1533 return PTR_ERR(map); 1534 1535 map->libbpf_type = type; 1536 map->sec_idx = sec_idx; 1537 map->sec_offset = 0; 1538 map->real_name = strdup(real_name); 1539 map->name = internal_map_name(obj, real_name); 1540 if (!map->real_name || !map->name) { 1541 zfree(&map->real_name); 1542 zfree(&map->name); 1543 return -ENOMEM; 1544 } 1545 1546 def = &map->def; 1547 def->type = BPF_MAP_TYPE_ARRAY; 1548 def->key_size = sizeof(int); 1549 def->value_size = data_sz; 1550 def->max_entries = 1; 1551 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1552 ? BPF_F_RDONLY_PROG : 0; 1553 def->map_flags |= BPF_F_MMAPABLE; 1554 1555 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1556 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1557 1558 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1559 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1560 if (map->mmaped == MAP_FAILED) { 1561 err = -errno; 1562 map->mmaped = NULL; 1563 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1564 map->name, err); 1565 zfree(&map->real_name); 1566 zfree(&map->name); 1567 return err; 1568 } 1569 1570 /* failures are fine because of maps like .rodata.str1.1 */ 1571 (void) bpf_map_find_btf_info(obj, map); 1572 1573 if (data) 1574 memcpy(map->mmaped, data, data_sz); 1575 1576 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1577 return 0; 1578 } 1579 1580 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1581 { 1582 struct elf_sec_desc *sec_desc; 1583 const char *sec_name; 1584 int err = 0, sec_idx; 1585 1586 /* 1587 * Populate obj->maps with libbpf internal maps. 1588 */ 1589 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1590 sec_desc = &obj->efile.secs[sec_idx]; 1591 1592 switch (sec_desc->sec_type) { 1593 case SEC_DATA: 1594 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1595 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1596 sec_name, sec_idx, 1597 sec_desc->data->d_buf, 1598 sec_desc->data->d_size); 1599 break; 1600 case SEC_RODATA: 1601 obj->has_rodata = true; 1602 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1603 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1604 sec_name, sec_idx, 1605 sec_desc->data->d_buf, 1606 sec_desc->data->d_size); 1607 break; 1608 case SEC_BSS: 1609 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1610 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1611 sec_name, sec_idx, 1612 NULL, 1613 sec_desc->data->d_size); 1614 break; 1615 default: 1616 /* skip */ 1617 break; 1618 } 1619 if (err) 1620 return err; 1621 } 1622 return 0; 1623 } 1624 1625 1626 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1627 const void *name) 1628 { 1629 int i; 1630 1631 for (i = 0; i < obj->nr_extern; i++) { 1632 if (strcmp(obj->externs[i].name, name) == 0) 1633 return &obj->externs[i]; 1634 } 1635 return NULL; 1636 } 1637 1638 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1639 char value) 1640 { 1641 switch (ext->kcfg.type) { 1642 case KCFG_BOOL: 1643 if (value == 'm') { 1644 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1645 ext->name, value); 1646 return -EINVAL; 1647 } 1648 *(bool *)ext_val = value == 'y' ? true : false; 1649 break; 1650 case KCFG_TRISTATE: 1651 if (value == 'y') 1652 *(enum libbpf_tristate *)ext_val = TRI_YES; 1653 else if (value == 'm') 1654 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1655 else /* value == 'n' */ 1656 *(enum libbpf_tristate *)ext_val = TRI_NO; 1657 break; 1658 case KCFG_CHAR: 1659 *(char *)ext_val = value; 1660 break; 1661 case KCFG_UNKNOWN: 1662 case KCFG_INT: 1663 case KCFG_CHAR_ARR: 1664 default: 1665 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1666 ext->name, value); 1667 return -EINVAL; 1668 } 1669 ext->is_set = true; 1670 return 0; 1671 } 1672 1673 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1674 const char *value) 1675 { 1676 size_t len; 1677 1678 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1679 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1680 return -EINVAL; 1681 } 1682 1683 len = strlen(value); 1684 if (value[len - 1] != '"') { 1685 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1686 ext->name, value); 1687 return -EINVAL; 1688 } 1689 1690 /* strip quotes */ 1691 len -= 2; 1692 if (len >= ext->kcfg.sz) { 1693 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1694 ext->name, value, len, ext->kcfg.sz - 1); 1695 len = ext->kcfg.sz - 1; 1696 } 1697 memcpy(ext_val, value + 1, len); 1698 ext_val[len] = '\0'; 1699 ext->is_set = true; 1700 return 0; 1701 } 1702 1703 static int parse_u64(const char *value, __u64 *res) 1704 { 1705 char *value_end; 1706 int err; 1707 1708 errno = 0; 1709 *res = strtoull(value, &value_end, 0); 1710 if (errno) { 1711 err = -errno; 1712 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1713 return err; 1714 } 1715 if (*value_end) { 1716 pr_warn("failed to parse '%s' as integer completely\n", value); 1717 return -EINVAL; 1718 } 1719 return 0; 1720 } 1721 1722 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1723 { 1724 int bit_sz = ext->kcfg.sz * 8; 1725 1726 if (ext->kcfg.sz == 8) 1727 return true; 1728 1729 /* Validate that value stored in u64 fits in integer of `ext->sz` 1730 * bytes size without any loss of information. If the target integer 1731 * is signed, we rely on the following limits of integer type of 1732 * Y bits and subsequent transformation: 1733 * 1734 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1735 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1736 * 0 <= X + 2^(Y-1) < 2^Y 1737 * 1738 * For unsigned target integer, check that all the (64 - Y) bits are 1739 * zero. 1740 */ 1741 if (ext->kcfg.is_signed) 1742 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1743 else 1744 return (v >> bit_sz) == 0; 1745 } 1746 1747 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1748 __u64 value) 1749 { 1750 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1751 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1752 ext->name, (unsigned long long)value); 1753 return -EINVAL; 1754 } 1755 if (!is_kcfg_value_in_range(ext, value)) { 1756 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1757 ext->name, (unsigned long long)value, ext->kcfg.sz); 1758 return -ERANGE; 1759 } 1760 switch (ext->kcfg.sz) { 1761 case 1: *(__u8 *)ext_val = value; break; 1762 case 2: *(__u16 *)ext_val = value; break; 1763 case 4: *(__u32 *)ext_val = value; break; 1764 case 8: *(__u64 *)ext_val = value; break; 1765 default: 1766 return -EINVAL; 1767 } 1768 ext->is_set = true; 1769 return 0; 1770 } 1771 1772 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1773 char *buf, void *data) 1774 { 1775 struct extern_desc *ext; 1776 char *sep, *value; 1777 int len, err = 0; 1778 void *ext_val; 1779 __u64 num; 1780 1781 if (!str_has_pfx(buf, "CONFIG_")) 1782 return 0; 1783 1784 sep = strchr(buf, '='); 1785 if (!sep) { 1786 pr_warn("failed to parse '%s': no separator\n", buf); 1787 return -EINVAL; 1788 } 1789 1790 /* Trim ending '\n' */ 1791 len = strlen(buf); 1792 if (buf[len - 1] == '\n') 1793 buf[len - 1] = '\0'; 1794 /* Split on '=' and ensure that a value is present. */ 1795 *sep = '\0'; 1796 if (!sep[1]) { 1797 *sep = '='; 1798 pr_warn("failed to parse '%s': no value\n", buf); 1799 return -EINVAL; 1800 } 1801 1802 ext = find_extern_by_name(obj, buf); 1803 if (!ext || ext->is_set) 1804 return 0; 1805 1806 ext_val = data + ext->kcfg.data_off; 1807 value = sep + 1; 1808 1809 switch (*value) { 1810 case 'y': case 'n': case 'm': 1811 err = set_kcfg_value_tri(ext, ext_val, *value); 1812 break; 1813 case '"': 1814 err = set_kcfg_value_str(ext, ext_val, value); 1815 break; 1816 default: 1817 /* assume integer */ 1818 err = parse_u64(value, &num); 1819 if (err) { 1820 pr_warn("extern (kcfg) %s=%s should be integer\n", 1821 ext->name, value); 1822 return err; 1823 } 1824 err = set_kcfg_value_num(ext, ext_val, num); 1825 break; 1826 } 1827 if (err) 1828 return err; 1829 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1830 return 0; 1831 } 1832 1833 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1834 { 1835 char buf[PATH_MAX]; 1836 struct utsname uts; 1837 int len, err = 0; 1838 gzFile file; 1839 1840 uname(&uts); 1841 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1842 if (len < 0) 1843 return -EINVAL; 1844 else if (len >= PATH_MAX) 1845 return -ENAMETOOLONG; 1846 1847 /* gzopen also accepts uncompressed files. */ 1848 file = gzopen(buf, "r"); 1849 if (!file) 1850 file = gzopen("/proc/config.gz", "r"); 1851 1852 if (!file) { 1853 pr_warn("failed to open system Kconfig\n"); 1854 return -ENOENT; 1855 } 1856 1857 while (gzgets(file, buf, sizeof(buf))) { 1858 err = bpf_object__process_kconfig_line(obj, buf, data); 1859 if (err) { 1860 pr_warn("error parsing system Kconfig line '%s': %d\n", 1861 buf, err); 1862 goto out; 1863 } 1864 } 1865 1866 out: 1867 gzclose(file); 1868 return err; 1869 } 1870 1871 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1872 const char *config, void *data) 1873 { 1874 char buf[PATH_MAX]; 1875 int err = 0; 1876 FILE *file; 1877 1878 file = fmemopen((void *)config, strlen(config), "r"); 1879 if (!file) { 1880 err = -errno; 1881 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1882 return err; 1883 } 1884 1885 while (fgets(buf, sizeof(buf), file)) { 1886 err = bpf_object__process_kconfig_line(obj, buf, data); 1887 if (err) { 1888 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1889 buf, err); 1890 break; 1891 } 1892 } 1893 1894 fclose(file); 1895 return err; 1896 } 1897 1898 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1899 { 1900 struct extern_desc *last_ext = NULL, *ext; 1901 size_t map_sz; 1902 int i, err; 1903 1904 for (i = 0; i < obj->nr_extern; i++) { 1905 ext = &obj->externs[i]; 1906 if (ext->type == EXT_KCFG) 1907 last_ext = ext; 1908 } 1909 1910 if (!last_ext) 1911 return 0; 1912 1913 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1914 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1915 ".kconfig", obj->efile.symbols_shndx, 1916 NULL, map_sz); 1917 if (err) 1918 return err; 1919 1920 obj->kconfig_map_idx = obj->nr_maps - 1; 1921 1922 return 0; 1923 } 1924 1925 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1926 { 1927 Elf_Data *symbols = obj->efile.symbols; 1928 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1929 Elf_Data *data = NULL; 1930 Elf_Scn *scn; 1931 1932 if (obj->efile.maps_shndx < 0) 1933 return 0; 1934 1935 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1936 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1937 return -EOPNOTSUPP; 1938 } 1939 1940 if (!symbols) 1941 return -EINVAL; 1942 1943 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1944 data = elf_sec_data(obj, scn); 1945 if (!scn || !data) { 1946 pr_warn("elf: failed to get legacy map definitions for %s\n", 1947 obj->path); 1948 return -EINVAL; 1949 } 1950 1951 /* 1952 * Count number of maps. Each map has a name. 1953 * Array of maps is not supported: only the first element is 1954 * considered. 1955 * 1956 * TODO: Detect array of map and report error. 1957 */ 1958 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1959 for (i = 0; i < nr_syms; i++) { 1960 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1961 1962 if (sym->st_shndx != obj->efile.maps_shndx) 1963 continue; 1964 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1965 continue; 1966 nr_maps++; 1967 } 1968 /* Assume equally sized map definitions */ 1969 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1970 nr_maps, data->d_size, obj->path); 1971 1972 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1973 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1974 obj->path); 1975 return -EINVAL; 1976 } 1977 map_def_sz = data->d_size / nr_maps; 1978 1979 /* Fill obj->maps using data in "maps" section. */ 1980 for (i = 0; i < nr_syms; i++) { 1981 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1982 const char *map_name; 1983 struct bpf_map_def *def; 1984 struct bpf_map *map; 1985 1986 if (sym->st_shndx != obj->efile.maps_shndx) 1987 continue; 1988 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1989 continue; 1990 1991 map = bpf_object__add_map(obj); 1992 if (IS_ERR(map)) 1993 return PTR_ERR(map); 1994 1995 map_name = elf_sym_str(obj, sym->st_name); 1996 if (!map_name) { 1997 pr_warn("failed to get map #%d name sym string for obj %s\n", 1998 i, obj->path); 1999 return -LIBBPF_ERRNO__FORMAT; 2000 } 2001 2002 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2003 2004 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2005 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2006 return -ENOTSUP; 2007 } 2008 2009 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2010 map->sec_idx = sym->st_shndx; 2011 map->sec_offset = sym->st_value; 2012 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2013 map_name, map->sec_idx, map->sec_offset); 2014 if (sym->st_value + map_def_sz > data->d_size) { 2015 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2016 obj->path, map_name); 2017 return -EINVAL; 2018 } 2019 2020 map->name = strdup(map_name); 2021 if (!map->name) { 2022 pr_warn("map '%s': failed to alloc map name\n", map_name); 2023 return -ENOMEM; 2024 } 2025 pr_debug("map %d is \"%s\"\n", i, map->name); 2026 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2027 /* 2028 * If the definition of the map in the object file fits in 2029 * bpf_map_def, copy it. Any extra fields in our version 2030 * of bpf_map_def will default to zero as a result of the 2031 * calloc above. 2032 */ 2033 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2034 memcpy(&map->def, def, map_def_sz); 2035 } else { 2036 /* 2037 * Here the map structure being read is bigger than what 2038 * we expect, truncate if the excess bits are all zero. 2039 * If they are not zero, reject this map as 2040 * incompatible. 2041 */ 2042 char *b; 2043 2044 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2045 b < ((char *)def) + map_def_sz; b++) { 2046 if (*b != 0) { 2047 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2048 obj->path, map_name); 2049 if (strict) 2050 return -EINVAL; 2051 } 2052 } 2053 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2054 } 2055 2056 /* btf info may not exist but fill it in if it does exist */ 2057 (void) bpf_map_find_btf_info(obj, map); 2058 } 2059 return 0; 2060 } 2061 2062 const struct btf_type * 2063 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2064 { 2065 const struct btf_type *t = btf__type_by_id(btf, id); 2066 2067 if (res_id) 2068 *res_id = id; 2069 2070 while (btf_is_mod(t) || btf_is_typedef(t)) { 2071 if (res_id) 2072 *res_id = t->type; 2073 t = btf__type_by_id(btf, t->type); 2074 } 2075 2076 return t; 2077 } 2078 2079 static const struct btf_type * 2080 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2081 { 2082 const struct btf_type *t; 2083 2084 t = skip_mods_and_typedefs(btf, id, NULL); 2085 if (!btf_is_ptr(t)) 2086 return NULL; 2087 2088 t = skip_mods_and_typedefs(btf, t->type, res_id); 2089 2090 return btf_is_func_proto(t) ? t : NULL; 2091 } 2092 2093 static const char *__btf_kind_str(__u16 kind) 2094 { 2095 switch (kind) { 2096 case BTF_KIND_UNKN: return "void"; 2097 case BTF_KIND_INT: return "int"; 2098 case BTF_KIND_PTR: return "ptr"; 2099 case BTF_KIND_ARRAY: return "array"; 2100 case BTF_KIND_STRUCT: return "struct"; 2101 case BTF_KIND_UNION: return "union"; 2102 case BTF_KIND_ENUM: return "enum"; 2103 case BTF_KIND_FWD: return "fwd"; 2104 case BTF_KIND_TYPEDEF: return "typedef"; 2105 case BTF_KIND_VOLATILE: return "volatile"; 2106 case BTF_KIND_CONST: return "const"; 2107 case BTF_KIND_RESTRICT: return "restrict"; 2108 case BTF_KIND_FUNC: return "func"; 2109 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2110 case BTF_KIND_VAR: return "var"; 2111 case BTF_KIND_DATASEC: return "datasec"; 2112 case BTF_KIND_FLOAT: return "float"; 2113 case BTF_KIND_DECL_TAG: return "decl_tag"; 2114 case BTF_KIND_TYPE_TAG: return "type_tag"; 2115 default: return "unknown"; 2116 } 2117 } 2118 2119 const char *btf_kind_str(const struct btf_type *t) 2120 { 2121 return __btf_kind_str(btf_kind(t)); 2122 } 2123 2124 /* 2125 * Fetch integer attribute of BTF map definition. Such attributes are 2126 * represented using a pointer to an array, in which dimensionality of array 2127 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2128 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2129 * type definition, while using only sizeof(void *) space in ELF data section. 2130 */ 2131 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2132 const struct btf_member *m, __u32 *res) 2133 { 2134 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2135 const char *name = btf__name_by_offset(btf, m->name_off); 2136 const struct btf_array *arr_info; 2137 const struct btf_type *arr_t; 2138 2139 if (!btf_is_ptr(t)) { 2140 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2141 map_name, name, btf_kind_str(t)); 2142 return false; 2143 } 2144 2145 arr_t = btf__type_by_id(btf, t->type); 2146 if (!arr_t) { 2147 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2148 map_name, name, t->type); 2149 return false; 2150 } 2151 if (!btf_is_array(arr_t)) { 2152 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2153 map_name, name, btf_kind_str(arr_t)); 2154 return false; 2155 } 2156 arr_info = btf_array(arr_t); 2157 *res = arr_info->nelems; 2158 return true; 2159 } 2160 2161 static int build_map_pin_path(struct bpf_map *map, const char *path) 2162 { 2163 char buf[PATH_MAX]; 2164 int len; 2165 2166 if (!path) 2167 path = "/sys/fs/bpf"; 2168 2169 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2170 if (len < 0) 2171 return -EINVAL; 2172 else if (len >= PATH_MAX) 2173 return -ENAMETOOLONG; 2174 2175 return bpf_map__set_pin_path(map, buf); 2176 } 2177 2178 int parse_btf_map_def(const char *map_name, struct btf *btf, 2179 const struct btf_type *def_t, bool strict, 2180 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2181 { 2182 const struct btf_type *t; 2183 const struct btf_member *m; 2184 bool is_inner = inner_def == NULL; 2185 int vlen, i; 2186 2187 vlen = btf_vlen(def_t); 2188 m = btf_members(def_t); 2189 for (i = 0; i < vlen; i++, m++) { 2190 const char *name = btf__name_by_offset(btf, m->name_off); 2191 2192 if (!name) { 2193 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2194 return -EINVAL; 2195 } 2196 if (strcmp(name, "type") == 0) { 2197 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2198 return -EINVAL; 2199 map_def->parts |= MAP_DEF_MAP_TYPE; 2200 } else if (strcmp(name, "max_entries") == 0) { 2201 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2202 return -EINVAL; 2203 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2204 } else if (strcmp(name, "map_flags") == 0) { 2205 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2206 return -EINVAL; 2207 map_def->parts |= MAP_DEF_MAP_FLAGS; 2208 } else if (strcmp(name, "numa_node") == 0) { 2209 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2210 return -EINVAL; 2211 map_def->parts |= MAP_DEF_NUMA_NODE; 2212 } else if (strcmp(name, "key_size") == 0) { 2213 __u32 sz; 2214 2215 if (!get_map_field_int(map_name, btf, m, &sz)) 2216 return -EINVAL; 2217 if (map_def->key_size && map_def->key_size != sz) { 2218 pr_warn("map '%s': conflicting key size %u != %u.\n", 2219 map_name, map_def->key_size, sz); 2220 return -EINVAL; 2221 } 2222 map_def->key_size = sz; 2223 map_def->parts |= MAP_DEF_KEY_SIZE; 2224 } else if (strcmp(name, "key") == 0) { 2225 __s64 sz; 2226 2227 t = btf__type_by_id(btf, m->type); 2228 if (!t) { 2229 pr_warn("map '%s': key type [%d] not found.\n", 2230 map_name, m->type); 2231 return -EINVAL; 2232 } 2233 if (!btf_is_ptr(t)) { 2234 pr_warn("map '%s': key spec is not PTR: %s.\n", 2235 map_name, btf_kind_str(t)); 2236 return -EINVAL; 2237 } 2238 sz = btf__resolve_size(btf, t->type); 2239 if (sz < 0) { 2240 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2241 map_name, t->type, (ssize_t)sz); 2242 return sz; 2243 } 2244 if (map_def->key_size && map_def->key_size != sz) { 2245 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2246 map_name, map_def->key_size, (ssize_t)sz); 2247 return -EINVAL; 2248 } 2249 map_def->key_size = sz; 2250 map_def->key_type_id = t->type; 2251 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2252 } else if (strcmp(name, "value_size") == 0) { 2253 __u32 sz; 2254 2255 if (!get_map_field_int(map_name, btf, m, &sz)) 2256 return -EINVAL; 2257 if (map_def->value_size && map_def->value_size != sz) { 2258 pr_warn("map '%s': conflicting value size %u != %u.\n", 2259 map_name, map_def->value_size, sz); 2260 return -EINVAL; 2261 } 2262 map_def->value_size = sz; 2263 map_def->parts |= MAP_DEF_VALUE_SIZE; 2264 } else if (strcmp(name, "value") == 0) { 2265 __s64 sz; 2266 2267 t = btf__type_by_id(btf, m->type); 2268 if (!t) { 2269 pr_warn("map '%s': value type [%d] not found.\n", 2270 map_name, m->type); 2271 return -EINVAL; 2272 } 2273 if (!btf_is_ptr(t)) { 2274 pr_warn("map '%s': value spec is not PTR: %s.\n", 2275 map_name, btf_kind_str(t)); 2276 return -EINVAL; 2277 } 2278 sz = btf__resolve_size(btf, t->type); 2279 if (sz < 0) { 2280 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2281 map_name, t->type, (ssize_t)sz); 2282 return sz; 2283 } 2284 if (map_def->value_size && map_def->value_size != sz) { 2285 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2286 map_name, map_def->value_size, (ssize_t)sz); 2287 return -EINVAL; 2288 } 2289 map_def->value_size = sz; 2290 map_def->value_type_id = t->type; 2291 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2292 } 2293 else if (strcmp(name, "values") == 0) { 2294 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2295 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2296 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2297 char inner_map_name[128]; 2298 int err; 2299 2300 if (is_inner) { 2301 pr_warn("map '%s': multi-level inner maps not supported.\n", 2302 map_name); 2303 return -ENOTSUP; 2304 } 2305 if (i != vlen - 1) { 2306 pr_warn("map '%s': '%s' member should be last.\n", 2307 map_name, name); 2308 return -EINVAL; 2309 } 2310 if (!is_map_in_map && !is_prog_array) { 2311 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2312 map_name); 2313 return -ENOTSUP; 2314 } 2315 if (map_def->value_size && map_def->value_size != 4) { 2316 pr_warn("map '%s': conflicting value size %u != 4.\n", 2317 map_name, map_def->value_size); 2318 return -EINVAL; 2319 } 2320 map_def->value_size = 4; 2321 t = btf__type_by_id(btf, m->type); 2322 if (!t) { 2323 pr_warn("map '%s': %s type [%d] not found.\n", 2324 map_name, desc, m->type); 2325 return -EINVAL; 2326 } 2327 if (!btf_is_array(t) || btf_array(t)->nelems) { 2328 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2329 map_name, desc); 2330 return -EINVAL; 2331 } 2332 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2333 if (!btf_is_ptr(t)) { 2334 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2335 map_name, desc, btf_kind_str(t)); 2336 return -EINVAL; 2337 } 2338 t = skip_mods_and_typedefs(btf, t->type, NULL); 2339 if (is_prog_array) { 2340 if (!btf_is_func_proto(t)) { 2341 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2342 map_name, btf_kind_str(t)); 2343 return -EINVAL; 2344 } 2345 continue; 2346 } 2347 if (!btf_is_struct(t)) { 2348 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2349 map_name, btf_kind_str(t)); 2350 return -EINVAL; 2351 } 2352 2353 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2354 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2355 if (err) 2356 return err; 2357 2358 map_def->parts |= MAP_DEF_INNER_MAP; 2359 } else if (strcmp(name, "pinning") == 0) { 2360 __u32 val; 2361 2362 if (is_inner) { 2363 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2364 return -EINVAL; 2365 } 2366 if (!get_map_field_int(map_name, btf, m, &val)) 2367 return -EINVAL; 2368 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2369 pr_warn("map '%s': invalid pinning value %u.\n", 2370 map_name, val); 2371 return -EINVAL; 2372 } 2373 map_def->pinning = val; 2374 map_def->parts |= MAP_DEF_PINNING; 2375 } else if (strcmp(name, "map_extra") == 0) { 2376 __u32 map_extra; 2377 2378 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2379 return -EINVAL; 2380 map_def->map_extra = map_extra; 2381 map_def->parts |= MAP_DEF_MAP_EXTRA; 2382 } else { 2383 if (strict) { 2384 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2385 return -ENOTSUP; 2386 } 2387 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2388 } 2389 } 2390 2391 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2392 pr_warn("map '%s': map type isn't specified.\n", map_name); 2393 return -EINVAL; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2400 { 2401 map->def.type = def->map_type; 2402 map->def.key_size = def->key_size; 2403 map->def.value_size = def->value_size; 2404 map->def.max_entries = def->max_entries; 2405 map->def.map_flags = def->map_flags; 2406 map->map_extra = def->map_extra; 2407 2408 map->numa_node = def->numa_node; 2409 map->btf_key_type_id = def->key_type_id; 2410 map->btf_value_type_id = def->value_type_id; 2411 2412 if (def->parts & MAP_DEF_MAP_TYPE) 2413 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2414 2415 if (def->parts & MAP_DEF_KEY_TYPE) 2416 pr_debug("map '%s': found key [%u], sz = %u.\n", 2417 map->name, def->key_type_id, def->key_size); 2418 else if (def->parts & MAP_DEF_KEY_SIZE) 2419 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2420 2421 if (def->parts & MAP_DEF_VALUE_TYPE) 2422 pr_debug("map '%s': found value [%u], sz = %u.\n", 2423 map->name, def->value_type_id, def->value_size); 2424 else if (def->parts & MAP_DEF_VALUE_SIZE) 2425 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2426 2427 if (def->parts & MAP_DEF_MAX_ENTRIES) 2428 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2429 if (def->parts & MAP_DEF_MAP_FLAGS) 2430 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2431 if (def->parts & MAP_DEF_MAP_EXTRA) 2432 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2433 (unsigned long long)def->map_extra); 2434 if (def->parts & MAP_DEF_PINNING) 2435 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2436 if (def->parts & MAP_DEF_NUMA_NODE) 2437 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2438 2439 if (def->parts & MAP_DEF_INNER_MAP) 2440 pr_debug("map '%s': found inner map definition.\n", map->name); 2441 } 2442 2443 static const char *btf_var_linkage_str(__u32 linkage) 2444 { 2445 switch (linkage) { 2446 case BTF_VAR_STATIC: return "static"; 2447 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2448 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2449 default: return "unknown"; 2450 } 2451 } 2452 2453 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2454 const struct btf_type *sec, 2455 int var_idx, int sec_idx, 2456 const Elf_Data *data, bool strict, 2457 const char *pin_root_path) 2458 { 2459 struct btf_map_def map_def = {}, inner_def = {}; 2460 const struct btf_type *var, *def; 2461 const struct btf_var_secinfo *vi; 2462 const struct btf_var *var_extra; 2463 const char *map_name; 2464 struct bpf_map *map; 2465 int err; 2466 2467 vi = btf_var_secinfos(sec) + var_idx; 2468 var = btf__type_by_id(obj->btf, vi->type); 2469 var_extra = btf_var(var); 2470 map_name = btf__name_by_offset(obj->btf, var->name_off); 2471 2472 if (map_name == NULL || map_name[0] == '\0') { 2473 pr_warn("map #%d: empty name.\n", var_idx); 2474 return -EINVAL; 2475 } 2476 if ((__u64)vi->offset + vi->size > data->d_size) { 2477 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2478 return -EINVAL; 2479 } 2480 if (!btf_is_var(var)) { 2481 pr_warn("map '%s': unexpected var kind %s.\n", 2482 map_name, btf_kind_str(var)); 2483 return -EINVAL; 2484 } 2485 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2486 pr_warn("map '%s': unsupported map linkage %s.\n", 2487 map_name, btf_var_linkage_str(var_extra->linkage)); 2488 return -EOPNOTSUPP; 2489 } 2490 2491 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2492 if (!btf_is_struct(def)) { 2493 pr_warn("map '%s': unexpected def kind %s.\n", 2494 map_name, btf_kind_str(var)); 2495 return -EINVAL; 2496 } 2497 if (def->size > vi->size) { 2498 pr_warn("map '%s': invalid def size.\n", map_name); 2499 return -EINVAL; 2500 } 2501 2502 map = bpf_object__add_map(obj); 2503 if (IS_ERR(map)) 2504 return PTR_ERR(map); 2505 map->name = strdup(map_name); 2506 if (!map->name) { 2507 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2508 return -ENOMEM; 2509 } 2510 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2511 map->def.type = BPF_MAP_TYPE_UNSPEC; 2512 map->sec_idx = sec_idx; 2513 map->sec_offset = vi->offset; 2514 map->btf_var_idx = var_idx; 2515 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2516 map_name, map->sec_idx, map->sec_offset); 2517 2518 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2519 if (err) 2520 return err; 2521 2522 fill_map_from_def(map, &map_def); 2523 2524 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2525 err = build_map_pin_path(map, pin_root_path); 2526 if (err) { 2527 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2528 return err; 2529 } 2530 } 2531 2532 if (map_def.parts & MAP_DEF_INNER_MAP) { 2533 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2534 if (!map->inner_map) 2535 return -ENOMEM; 2536 map->inner_map->fd = -1; 2537 map->inner_map->sec_idx = sec_idx; 2538 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2539 if (!map->inner_map->name) 2540 return -ENOMEM; 2541 sprintf(map->inner_map->name, "%s.inner", map_name); 2542 2543 fill_map_from_def(map->inner_map, &inner_def); 2544 } 2545 2546 err = bpf_map_find_btf_info(obj, map); 2547 if (err) 2548 return err; 2549 2550 return 0; 2551 } 2552 2553 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2554 const char *pin_root_path) 2555 { 2556 const struct btf_type *sec = NULL; 2557 int nr_types, i, vlen, err; 2558 const struct btf_type *t; 2559 const char *name; 2560 Elf_Data *data; 2561 Elf_Scn *scn; 2562 2563 if (obj->efile.btf_maps_shndx < 0) 2564 return 0; 2565 2566 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2567 data = elf_sec_data(obj, scn); 2568 if (!scn || !data) { 2569 pr_warn("elf: failed to get %s map definitions for %s\n", 2570 MAPS_ELF_SEC, obj->path); 2571 return -EINVAL; 2572 } 2573 2574 nr_types = btf__type_cnt(obj->btf); 2575 for (i = 1; i < nr_types; i++) { 2576 t = btf__type_by_id(obj->btf, i); 2577 if (!btf_is_datasec(t)) 2578 continue; 2579 name = btf__name_by_offset(obj->btf, t->name_off); 2580 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2581 sec = t; 2582 obj->efile.btf_maps_sec_btf_id = i; 2583 break; 2584 } 2585 } 2586 2587 if (!sec) { 2588 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2589 return -ENOENT; 2590 } 2591 2592 vlen = btf_vlen(sec); 2593 for (i = 0; i < vlen; i++) { 2594 err = bpf_object__init_user_btf_map(obj, sec, i, 2595 obj->efile.btf_maps_shndx, 2596 data, strict, 2597 pin_root_path); 2598 if (err) 2599 return err; 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int bpf_object__init_maps(struct bpf_object *obj, 2606 const struct bpf_object_open_opts *opts) 2607 { 2608 const char *pin_root_path; 2609 bool strict; 2610 int err; 2611 2612 strict = !OPTS_GET(opts, relaxed_maps, false); 2613 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2614 2615 err = bpf_object__init_user_maps(obj, strict); 2616 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2617 err = err ?: bpf_object__init_global_data_maps(obj); 2618 err = err ?: bpf_object__init_kconfig_map(obj); 2619 err = err ?: bpf_object__init_struct_ops_maps(obj); 2620 2621 return err; 2622 } 2623 2624 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2625 { 2626 Elf64_Shdr *sh; 2627 2628 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2629 if (!sh) 2630 return false; 2631 2632 return sh->sh_flags & SHF_EXECINSTR; 2633 } 2634 2635 static bool btf_needs_sanitization(struct bpf_object *obj) 2636 { 2637 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2638 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2639 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2640 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2641 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2642 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2643 2644 return !has_func || !has_datasec || !has_func_global || !has_float || 2645 !has_decl_tag || !has_type_tag; 2646 } 2647 2648 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2649 { 2650 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2651 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2652 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2653 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2654 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2655 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2656 struct btf_type *t; 2657 int i, j, vlen; 2658 2659 for (i = 1; i < btf__type_cnt(btf); i++) { 2660 t = (struct btf_type *)btf__type_by_id(btf, i); 2661 2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2663 /* replace VAR/DECL_TAG with INT */ 2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2665 /* 2666 * using size = 1 is the safest choice, 4 will be too 2667 * big and cause kernel BTF validation failure if 2668 * original variable took less than 4 bytes 2669 */ 2670 t->size = 1; 2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2672 } else if (!has_datasec && btf_is_datasec(t)) { 2673 /* replace DATASEC with STRUCT */ 2674 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2675 struct btf_member *m = btf_members(t); 2676 struct btf_type *vt; 2677 char *name; 2678 2679 name = (char *)btf__name_by_offset(btf, t->name_off); 2680 while (*name) { 2681 if (*name == '.') 2682 *name = '_'; 2683 name++; 2684 } 2685 2686 vlen = btf_vlen(t); 2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2688 for (j = 0; j < vlen; j++, v++, m++) { 2689 /* order of field assignments is important */ 2690 m->offset = v->offset * 8; 2691 m->type = v->type; 2692 /* preserve variable name as member name */ 2693 vt = (void *)btf__type_by_id(btf, v->type); 2694 m->name_off = vt->name_off; 2695 } 2696 } else if (!has_func && btf_is_func_proto(t)) { 2697 /* replace FUNC_PROTO with ENUM */ 2698 vlen = btf_vlen(t); 2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2700 t->size = sizeof(__u32); /* kernel enforced */ 2701 } else if (!has_func && btf_is_func(t)) { 2702 /* replace FUNC with TYPEDEF */ 2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2704 } else if (!has_func_global && btf_is_func(t)) { 2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2707 } else if (!has_float && btf_is_float(t)) { 2708 /* replace FLOAT with an equally-sized empty STRUCT; 2709 * since C compilers do not accept e.g. "float" as a 2710 * valid struct name, make it anonymous 2711 */ 2712 t->name_off = 0; 2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2714 } else if (!has_type_tag && btf_is_type_tag(t)) { 2715 /* replace TYPE_TAG with a CONST */ 2716 t->name_off = 0; 2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2718 } 2719 } 2720 } 2721 2722 static bool libbpf_needs_btf(const struct bpf_object *obj) 2723 { 2724 return obj->efile.btf_maps_shndx >= 0 || 2725 obj->efile.st_ops_shndx >= 0 || 2726 obj->nr_extern > 0; 2727 } 2728 2729 static bool kernel_needs_btf(const struct bpf_object *obj) 2730 { 2731 return obj->efile.st_ops_shndx >= 0; 2732 } 2733 2734 static int bpf_object__init_btf(struct bpf_object *obj, 2735 Elf_Data *btf_data, 2736 Elf_Data *btf_ext_data) 2737 { 2738 int err = -ENOENT; 2739 2740 if (btf_data) { 2741 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2742 err = libbpf_get_error(obj->btf); 2743 if (err) { 2744 obj->btf = NULL; 2745 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2746 goto out; 2747 } 2748 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2749 btf__set_pointer_size(obj->btf, 8); 2750 } 2751 if (btf_ext_data) { 2752 if (!obj->btf) { 2753 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2754 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2755 goto out; 2756 } 2757 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2758 err = libbpf_get_error(obj->btf_ext); 2759 if (err) { 2760 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2761 BTF_EXT_ELF_SEC, err); 2762 obj->btf_ext = NULL; 2763 goto out; 2764 } 2765 } 2766 out: 2767 if (err && libbpf_needs_btf(obj)) { 2768 pr_warn("BTF is required, but is missing or corrupted.\n"); 2769 return err; 2770 } 2771 return 0; 2772 } 2773 2774 static int compare_vsi_off(const void *_a, const void *_b) 2775 { 2776 const struct btf_var_secinfo *a = _a; 2777 const struct btf_var_secinfo *b = _b; 2778 2779 return a->offset - b->offset; 2780 } 2781 2782 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2783 struct btf_type *t) 2784 { 2785 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2786 const char *name = btf__name_by_offset(btf, t->name_off); 2787 const struct btf_type *t_var; 2788 struct btf_var_secinfo *vsi; 2789 const struct btf_var *var; 2790 int ret; 2791 2792 if (!name) { 2793 pr_debug("No name found in string section for DATASEC kind.\n"); 2794 return -ENOENT; 2795 } 2796 2797 /* .extern datasec size and var offsets were set correctly during 2798 * extern collection step, so just skip straight to sorting variables 2799 */ 2800 if (t->size) 2801 goto sort_vars; 2802 2803 ret = find_elf_sec_sz(obj, name, &size); 2804 if (ret || !size) { 2805 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2806 return -ENOENT; 2807 } 2808 2809 t->size = size; 2810 2811 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2812 t_var = btf__type_by_id(btf, vsi->type); 2813 if (!t_var || !btf_is_var(t_var)) { 2814 pr_debug("Non-VAR type seen in section %s\n", name); 2815 return -EINVAL; 2816 } 2817 2818 var = btf_var(t_var); 2819 if (var->linkage == BTF_VAR_STATIC) 2820 continue; 2821 2822 name = btf__name_by_offset(btf, t_var->name_off); 2823 if (!name) { 2824 pr_debug("No name found in string section for VAR kind\n"); 2825 return -ENOENT; 2826 } 2827 2828 ret = find_elf_var_offset(obj, name, &off); 2829 if (ret) { 2830 pr_debug("No offset found in symbol table for VAR %s\n", 2831 name); 2832 return -ENOENT; 2833 } 2834 2835 vsi->offset = off; 2836 } 2837 2838 sort_vars: 2839 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2840 return 0; 2841 } 2842 2843 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2844 { 2845 int err = 0; 2846 __u32 i, n = btf__type_cnt(btf); 2847 2848 for (i = 1; i < n; i++) { 2849 struct btf_type *t = btf_type_by_id(btf, i); 2850 2851 /* Loader needs to fix up some of the things compiler 2852 * couldn't get its hands on while emitting BTF. This 2853 * is section size and global variable offset. We use 2854 * the info from the ELF itself for this purpose. 2855 */ 2856 if (btf_is_datasec(t)) { 2857 err = btf_fixup_datasec(obj, btf, t); 2858 if (err) 2859 break; 2860 } 2861 } 2862 2863 return libbpf_err(err); 2864 } 2865 2866 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2867 { 2868 return btf_finalize_data(obj, btf); 2869 } 2870 2871 static int bpf_object__finalize_btf(struct bpf_object *obj) 2872 { 2873 int err; 2874 2875 if (!obj->btf) 2876 return 0; 2877 2878 err = btf_finalize_data(obj, obj->btf); 2879 if (err) { 2880 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2881 return err; 2882 } 2883 2884 return 0; 2885 } 2886 2887 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2888 { 2889 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2890 prog->type == BPF_PROG_TYPE_LSM) 2891 return true; 2892 2893 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2894 * also need vmlinux BTF 2895 */ 2896 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2897 return true; 2898 2899 return false; 2900 } 2901 2902 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2903 { 2904 struct bpf_program *prog; 2905 int i; 2906 2907 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2908 * is not specified 2909 */ 2910 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2911 return true; 2912 2913 /* Support for typed ksyms needs kernel BTF */ 2914 for (i = 0; i < obj->nr_extern; i++) { 2915 const struct extern_desc *ext; 2916 2917 ext = &obj->externs[i]; 2918 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2919 return true; 2920 } 2921 2922 bpf_object__for_each_program(prog, obj) { 2923 if (!prog->load) 2924 continue; 2925 if (prog_needs_vmlinux_btf(prog)) 2926 return true; 2927 } 2928 2929 return false; 2930 } 2931 2932 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2933 { 2934 int err; 2935 2936 /* btf_vmlinux could be loaded earlier */ 2937 if (obj->btf_vmlinux || obj->gen_loader) 2938 return 0; 2939 2940 if (!force && !obj_needs_vmlinux_btf(obj)) 2941 return 0; 2942 2943 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2944 err = libbpf_get_error(obj->btf_vmlinux); 2945 if (err) { 2946 pr_warn("Error loading vmlinux BTF: %d\n", err); 2947 obj->btf_vmlinux = NULL; 2948 return err; 2949 } 2950 return 0; 2951 } 2952 2953 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2954 { 2955 struct btf *kern_btf = obj->btf; 2956 bool btf_mandatory, sanitize; 2957 int i, err = 0; 2958 2959 if (!obj->btf) 2960 return 0; 2961 2962 if (!kernel_supports(obj, FEAT_BTF)) { 2963 if (kernel_needs_btf(obj)) { 2964 err = -EOPNOTSUPP; 2965 goto report; 2966 } 2967 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2968 return 0; 2969 } 2970 2971 /* Even though some subprogs are global/weak, user might prefer more 2972 * permissive BPF verification process that BPF verifier performs for 2973 * static functions, taking into account more context from the caller 2974 * functions. In such case, they need to mark such subprogs with 2975 * __attribute__((visibility("hidden"))) and libbpf will adjust 2976 * corresponding FUNC BTF type to be marked as static and trigger more 2977 * involved BPF verification process. 2978 */ 2979 for (i = 0; i < obj->nr_programs; i++) { 2980 struct bpf_program *prog = &obj->programs[i]; 2981 struct btf_type *t; 2982 const char *name; 2983 int j, n; 2984 2985 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2986 continue; 2987 2988 n = btf__type_cnt(obj->btf); 2989 for (j = 1; j < n; j++) { 2990 t = btf_type_by_id(obj->btf, j); 2991 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2992 continue; 2993 2994 name = btf__str_by_offset(obj->btf, t->name_off); 2995 if (strcmp(name, prog->name) != 0) 2996 continue; 2997 2998 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2999 break; 3000 } 3001 } 3002 3003 sanitize = btf_needs_sanitization(obj); 3004 if (sanitize) { 3005 const void *raw_data; 3006 __u32 sz; 3007 3008 /* clone BTF to sanitize a copy and leave the original intact */ 3009 raw_data = btf__raw_data(obj->btf, &sz); 3010 kern_btf = btf__new(raw_data, sz); 3011 err = libbpf_get_error(kern_btf); 3012 if (err) 3013 return err; 3014 3015 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3016 btf__set_pointer_size(obj->btf, 8); 3017 bpf_object__sanitize_btf(obj, kern_btf); 3018 } 3019 3020 if (obj->gen_loader) { 3021 __u32 raw_size = 0; 3022 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3023 3024 if (!raw_data) 3025 return -ENOMEM; 3026 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3027 /* Pretend to have valid FD to pass various fd >= 0 checks. 3028 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3029 */ 3030 btf__set_fd(kern_btf, 0); 3031 } else { 3032 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3033 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3034 obj->log_level ? 1 : 0); 3035 } 3036 if (sanitize) { 3037 if (!err) { 3038 /* move fd to libbpf's BTF */ 3039 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3040 btf__set_fd(kern_btf, -1); 3041 } 3042 btf__free(kern_btf); 3043 } 3044 report: 3045 if (err) { 3046 btf_mandatory = kernel_needs_btf(obj); 3047 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3048 btf_mandatory ? "BTF is mandatory, can't proceed." 3049 : "BTF is optional, ignoring."); 3050 if (!btf_mandatory) 3051 err = 0; 3052 } 3053 return err; 3054 } 3055 3056 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3057 { 3058 const char *name; 3059 3060 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3061 if (!name) { 3062 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3063 off, obj->path, elf_errmsg(-1)); 3064 return NULL; 3065 } 3066 3067 return name; 3068 } 3069 3070 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3071 { 3072 const char *name; 3073 3074 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3075 if (!name) { 3076 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3077 off, obj->path, elf_errmsg(-1)); 3078 return NULL; 3079 } 3080 3081 return name; 3082 } 3083 3084 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3085 { 3086 Elf_Scn *scn; 3087 3088 scn = elf_getscn(obj->efile.elf, idx); 3089 if (!scn) { 3090 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3091 idx, obj->path, elf_errmsg(-1)); 3092 return NULL; 3093 } 3094 return scn; 3095 } 3096 3097 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3098 { 3099 Elf_Scn *scn = NULL; 3100 Elf *elf = obj->efile.elf; 3101 const char *sec_name; 3102 3103 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3104 sec_name = elf_sec_name(obj, scn); 3105 if (!sec_name) 3106 return NULL; 3107 3108 if (strcmp(sec_name, name) != 0) 3109 continue; 3110 3111 return scn; 3112 } 3113 return NULL; 3114 } 3115 3116 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3117 { 3118 Elf64_Shdr *shdr; 3119 3120 if (!scn) 3121 return NULL; 3122 3123 shdr = elf64_getshdr(scn); 3124 if (!shdr) { 3125 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3126 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3127 return NULL; 3128 } 3129 3130 return shdr; 3131 } 3132 3133 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3134 { 3135 const char *name; 3136 Elf64_Shdr *sh; 3137 3138 if (!scn) 3139 return NULL; 3140 3141 sh = elf_sec_hdr(obj, scn); 3142 if (!sh) 3143 return NULL; 3144 3145 name = elf_sec_str(obj, sh->sh_name); 3146 if (!name) { 3147 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3148 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3149 return NULL; 3150 } 3151 3152 return name; 3153 } 3154 3155 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3156 { 3157 Elf_Data *data; 3158 3159 if (!scn) 3160 return NULL; 3161 3162 data = elf_getdata(scn, 0); 3163 if (!data) { 3164 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3165 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3166 obj->path, elf_errmsg(-1)); 3167 return NULL; 3168 } 3169 3170 return data; 3171 } 3172 3173 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3174 { 3175 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3176 return NULL; 3177 3178 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3179 } 3180 3181 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3182 { 3183 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3184 return NULL; 3185 3186 return (Elf64_Rel *)data->d_buf + idx; 3187 } 3188 3189 static bool is_sec_name_dwarf(const char *name) 3190 { 3191 /* approximation, but the actual list is too long */ 3192 return str_has_pfx(name, ".debug_"); 3193 } 3194 3195 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3196 { 3197 /* no special handling of .strtab */ 3198 if (hdr->sh_type == SHT_STRTAB) 3199 return true; 3200 3201 /* ignore .llvm_addrsig section as well */ 3202 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3203 return true; 3204 3205 /* no subprograms will lead to an empty .text section, ignore it */ 3206 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3207 strcmp(name, ".text") == 0) 3208 return true; 3209 3210 /* DWARF sections */ 3211 if (is_sec_name_dwarf(name)) 3212 return true; 3213 3214 if (str_has_pfx(name, ".rel")) { 3215 name += sizeof(".rel") - 1; 3216 /* DWARF section relocations */ 3217 if (is_sec_name_dwarf(name)) 3218 return true; 3219 3220 /* .BTF and .BTF.ext don't need relocations */ 3221 if (strcmp(name, BTF_ELF_SEC) == 0 || 3222 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 static int cmp_progs(const void *_a, const void *_b) 3230 { 3231 const struct bpf_program *a = _a; 3232 const struct bpf_program *b = _b; 3233 3234 if (a->sec_idx != b->sec_idx) 3235 return a->sec_idx < b->sec_idx ? -1 : 1; 3236 3237 /* sec_insn_off can't be the same within the section */ 3238 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3239 } 3240 3241 static int bpf_object__elf_collect(struct bpf_object *obj) 3242 { 3243 struct elf_sec_desc *sec_desc; 3244 Elf *elf = obj->efile.elf; 3245 Elf_Data *btf_ext_data = NULL; 3246 Elf_Data *btf_data = NULL; 3247 int idx = 0, err = 0; 3248 const char *name; 3249 Elf_Data *data; 3250 Elf_Scn *scn; 3251 Elf64_Shdr *sh; 3252 3253 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3254 * section. e_shnum does include sec #0, so e_shnum is the necessary 3255 * size of an array to keep all the sections. 3256 */ 3257 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3258 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3259 if (!obj->efile.secs) 3260 return -ENOMEM; 3261 3262 /* a bunch of ELF parsing functionality depends on processing symbols, 3263 * so do the first pass and find the symbol table 3264 */ 3265 scn = NULL; 3266 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3267 sh = elf_sec_hdr(obj, scn); 3268 if (!sh) 3269 return -LIBBPF_ERRNO__FORMAT; 3270 3271 if (sh->sh_type == SHT_SYMTAB) { 3272 if (obj->efile.symbols) { 3273 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3274 return -LIBBPF_ERRNO__FORMAT; 3275 } 3276 3277 data = elf_sec_data(obj, scn); 3278 if (!data) 3279 return -LIBBPF_ERRNO__FORMAT; 3280 3281 idx = elf_ndxscn(scn); 3282 3283 obj->efile.symbols = data; 3284 obj->efile.symbols_shndx = idx; 3285 obj->efile.strtabidx = sh->sh_link; 3286 } 3287 } 3288 3289 if (!obj->efile.symbols) { 3290 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3291 obj->path); 3292 return -ENOENT; 3293 } 3294 3295 scn = NULL; 3296 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3297 idx = elf_ndxscn(scn); 3298 sec_desc = &obj->efile.secs[idx]; 3299 3300 sh = elf_sec_hdr(obj, scn); 3301 if (!sh) 3302 return -LIBBPF_ERRNO__FORMAT; 3303 3304 name = elf_sec_str(obj, sh->sh_name); 3305 if (!name) 3306 return -LIBBPF_ERRNO__FORMAT; 3307 3308 if (ignore_elf_section(sh, name)) 3309 continue; 3310 3311 data = elf_sec_data(obj, scn); 3312 if (!data) 3313 return -LIBBPF_ERRNO__FORMAT; 3314 3315 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3316 idx, name, (unsigned long)data->d_size, 3317 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3318 (int)sh->sh_type); 3319 3320 if (strcmp(name, "license") == 0) { 3321 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3322 if (err) 3323 return err; 3324 } else if (strcmp(name, "version") == 0) { 3325 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3326 if (err) 3327 return err; 3328 } else if (strcmp(name, "maps") == 0) { 3329 obj->efile.maps_shndx = idx; 3330 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3331 obj->efile.btf_maps_shndx = idx; 3332 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3333 if (sh->sh_type != SHT_PROGBITS) 3334 return -LIBBPF_ERRNO__FORMAT; 3335 btf_data = data; 3336 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3337 if (sh->sh_type != SHT_PROGBITS) 3338 return -LIBBPF_ERRNO__FORMAT; 3339 btf_ext_data = data; 3340 } else if (sh->sh_type == SHT_SYMTAB) { 3341 /* already processed during the first pass above */ 3342 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3343 if (sh->sh_flags & SHF_EXECINSTR) { 3344 if (strcmp(name, ".text") == 0) 3345 obj->efile.text_shndx = idx; 3346 err = bpf_object__add_programs(obj, data, name, idx); 3347 if (err) 3348 return err; 3349 } else if (strcmp(name, DATA_SEC) == 0 || 3350 str_has_pfx(name, DATA_SEC ".")) { 3351 sec_desc->sec_type = SEC_DATA; 3352 sec_desc->shdr = sh; 3353 sec_desc->data = data; 3354 } else if (strcmp(name, RODATA_SEC) == 0 || 3355 str_has_pfx(name, RODATA_SEC ".")) { 3356 sec_desc->sec_type = SEC_RODATA; 3357 sec_desc->shdr = sh; 3358 sec_desc->data = data; 3359 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3360 obj->efile.st_ops_data = data; 3361 obj->efile.st_ops_shndx = idx; 3362 } else { 3363 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3364 idx, name); 3365 } 3366 } else if (sh->sh_type == SHT_REL) { 3367 int targ_sec_idx = sh->sh_info; /* points to other section */ 3368 3369 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3370 targ_sec_idx >= obj->efile.sec_cnt) 3371 return -LIBBPF_ERRNO__FORMAT; 3372 3373 /* Only do relo for section with exec instructions */ 3374 if (!section_have_execinstr(obj, targ_sec_idx) && 3375 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3376 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3377 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3378 idx, name, targ_sec_idx, 3379 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3380 continue; 3381 } 3382 3383 sec_desc->sec_type = SEC_RELO; 3384 sec_desc->shdr = sh; 3385 sec_desc->data = data; 3386 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3387 sec_desc->sec_type = SEC_BSS; 3388 sec_desc->shdr = sh; 3389 sec_desc->data = data; 3390 } else { 3391 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3392 (size_t)sh->sh_size); 3393 } 3394 } 3395 3396 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3397 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3398 return -LIBBPF_ERRNO__FORMAT; 3399 } 3400 3401 /* sort BPF programs by section name and in-section instruction offset 3402 * for faster search */ 3403 if (obj->nr_programs) 3404 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3405 3406 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3407 } 3408 3409 static bool sym_is_extern(const Elf64_Sym *sym) 3410 { 3411 int bind = ELF64_ST_BIND(sym->st_info); 3412 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3413 return sym->st_shndx == SHN_UNDEF && 3414 (bind == STB_GLOBAL || bind == STB_WEAK) && 3415 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3416 } 3417 3418 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3419 { 3420 int bind = ELF64_ST_BIND(sym->st_info); 3421 int type = ELF64_ST_TYPE(sym->st_info); 3422 3423 /* in .text section */ 3424 if (sym->st_shndx != text_shndx) 3425 return false; 3426 3427 /* local function */ 3428 if (bind == STB_LOCAL && type == STT_SECTION) 3429 return true; 3430 3431 /* global function */ 3432 return bind == STB_GLOBAL && type == STT_FUNC; 3433 } 3434 3435 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3436 { 3437 const struct btf_type *t; 3438 const char *tname; 3439 int i, n; 3440 3441 if (!btf) 3442 return -ESRCH; 3443 3444 n = btf__type_cnt(btf); 3445 for (i = 1; i < n; i++) { 3446 t = btf__type_by_id(btf, i); 3447 3448 if (!btf_is_var(t) && !btf_is_func(t)) 3449 continue; 3450 3451 tname = btf__name_by_offset(btf, t->name_off); 3452 if (strcmp(tname, ext_name)) 3453 continue; 3454 3455 if (btf_is_var(t) && 3456 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3457 return -EINVAL; 3458 3459 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3460 return -EINVAL; 3461 3462 return i; 3463 } 3464 3465 return -ENOENT; 3466 } 3467 3468 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3469 const struct btf_var_secinfo *vs; 3470 const struct btf_type *t; 3471 int i, j, n; 3472 3473 if (!btf) 3474 return -ESRCH; 3475 3476 n = btf__type_cnt(btf); 3477 for (i = 1; i < n; i++) { 3478 t = btf__type_by_id(btf, i); 3479 3480 if (!btf_is_datasec(t)) 3481 continue; 3482 3483 vs = btf_var_secinfos(t); 3484 for (j = 0; j < btf_vlen(t); j++, vs++) { 3485 if (vs->type == ext_btf_id) 3486 return i; 3487 } 3488 } 3489 3490 return -ENOENT; 3491 } 3492 3493 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3494 bool *is_signed) 3495 { 3496 const struct btf_type *t; 3497 const char *name; 3498 3499 t = skip_mods_and_typedefs(btf, id, NULL); 3500 name = btf__name_by_offset(btf, t->name_off); 3501 3502 if (is_signed) 3503 *is_signed = false; 3504 switch (btf_kind(t)) { 3505 case BTF_KIND_INT: { 3506 int enc = btf_int_encoding(t); 3507 3508 if (enc & BTF_INT_BOOL) 3509 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3510 if (is_signed) 3511 *is_signed = enc & BTF_INT_SIGNED; 3512 if (t->size == 1) 3513 return KCFG_CHAR; 3514 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3515 return KCFG_UNKNOWN; 3516 return KCFG_INT; 3517 } 3518 case BTF_KIND_ENUM: 3519 if (t->size != 4) 3520 return KCFG_UNKNOWN; 3521 if (strcmp(name, "libbpf_tristate")) 3522 return KCFG_UNKNOWN; 3523 return KCFG_TRISTATE; 3524 case BTF_KIND_ARRAY: 3525 if (btf_array(t)->nelems == 0) 3526 return KCFG_UNKNOWN; 3527 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3528 return KCFG_UNKNOWN; 3529 return KCFG_CHAR_ARR; 3530 default: 3531 return KCFG_UNKNOWN; 3532 } 3533 } 3534 3535 static int cmp_externs(const void *_a, const void *_b) 3536 { 3537 const struct extern_desc *a = _a; 3538 const struct extern_desc *b = _b; 3539 3540 if (a->type != b->type) 3541 return a->type < b->type ? -1 : 1; 3542 3543 if (a->type == EXT_KCFG) { 3544 /* descending order by alignment requirements */ 3545 if (a->kcfg.align != b->kcfg.align) 3546 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3547 /* ascending order by size, within same alignment class */ 3548 if (a->kcfg.sz != b->kcfg.sz) 3549 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3550 } 3551 3552 /* resolve ties by name */ 3553 return strcmp(a->name, b->name); 3554 } 3555 3556 static int find_int_btf_id(const struct btf *btf) 3557 { 3558 const struct btf_type *t; 3559 int i, n; 3560 3561 n = btf__type_cnt(btf); 3562 for (i = 1; i < n; i++) { 3563 t = btf__type_by_id(btf, i); 3564 3565 if (btf_is_int(t) && btf_int_bits(t) == 32) 3566 return i; 3567 } 3568 3569 return 0; 3570 } 3571 3572 static int add_dummy_ksym_var(struct btf *btf) 3573 { 3574 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3575 const struct btf_var_secinfo *vs; 3576 const struct btf_type *sec; 3577 3578 if (!btf) 3579 return 0; 3580 3581 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3582 BTF_KIND_DATASEC); 3583 if (sec_btf_id < 0) 3584 return 0; 3585 3586 sec = btf__type_by_id(btf, sec_btf_id); 3587 vs = btf_var_secinfos(sec); 3588 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3589 const struct btf_type *vt; 3590 3591 vt = btf__type_by_id(btf, vs->type); 3592 if (btf_is_func(vt)) 3593 break; 3594 } 3595 3596 /* No func in ksyms sec. No need to add dummy var. */ 3597 if (i == btf_vlen(sec)) 3598 return 0; 3599 3600 int_btf_id = find_int_btf_id(btf); 3601 dummy_var_btf_id = btf__add_var(btf, 3602 "dummy_ksym", 3603 BTF_VAR_GLOBAL_ALLOCATED, 3604 int_btf_id); 3605 if (dummy_var_btf_id < 0) 3606 pr_warn("cannot create a dummy_ksym var\n"); 3607 3608 return dummy_var_btf_id; 3609 } 3610 3611 static int bpf_object__collect_externs(struct bpf_object *obj) 3612 { 3613 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3614 const struct btf_type *t; 3615 struct extern_desc *ext; 3616 int i, n, off, dummy_var_btf_id; 3617 const char *ext_name, *sec_name; 3618 Elf_Scn *scn; 3619 Elf64_Shdr *sh; 3620 3621 if (!obj->efile.symbols) 3622 return 0; 3623 3624 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3625 sh = elf_sec_hdr(obj, scn); 3626 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3627 return -LIBBPF_ERRNO__FORMAT; 3628 3629 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3630 if (dummy_var_btf_id < 0) 3631 return dummy_var_btf_id; 3632 3633 n = sh->sh_size / sh->sh_entsize; 3634 pr_debug("looking for externs among %d symbols...\n", n); 3635 3636 for (i = 0; i < n; i++) { 3637 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3638 3639 if (!sym) 3640 return -LIBBPF_ERRNO__FORMAT; 3641 if (!sym_is_extern(sym)) 3642 continue; 3643 ext_name = elf_sym_str(obj, sym->st_name); 3644 if (!ext_name || !ext_name[0]) 3645 continue; 3646 3647 ext = obj->externs; 3648 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3649 if (!ext) 3650 return -ENOMEM; 3651 obj->externs = ext; 3652 ext = &ext[obj->nr_extern]; 3653 memset(ext, 0, sizeof(*ext)); 3654 obj->nr_extern++; 3655 3656 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3657 if (ext->btf_id <= 0) { 3658 pr_warn("failed to find BTF for extern '%s': %d\n", 3659 ext_name, ext->btf_id); 3660 return ext->btf_id; 3661 } 3662 t = btf__type_by_id(obj->btf, ext->btf_id); 3663 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3664 ext->sym_idx = i; 3665 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3666 3667 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3668 if (ext->sec_btf_id <= 0) { 3669 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3670 ext_name, ext->btf_id, ext->sec_btf_id); 3671 return ext->sec_btf_id; 3672 } 3673 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3674 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3675 3676 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3677 if (btf_is_func(t)) { 3678 pr_warn("extern function %s is unsupported under %s section\n", 3679 ext->name, KCONFIG_SEC); 3680 return -ENOTSUP; 3681 } 3682 kcfg_sec = sec; 3683 ext->type = EXT_KCFG; 3684 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3685 if (ext->kcfg.sz <= 0) { 3686 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3687 ext_name, ext->kcfg.sz); 3688 return ext->kcfg.sz; 3689 } 3690 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3691 if (ext->kcfg.align <= 0) { 3692 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3693 ext_name, ext->kcfg.align); 3694 return -EINVAL; 3695 } 3696 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3697 &ext->kcfg.is_signed); 3698 if (ext->kcfg.type == KCFG_UNKNOWN) { 3699 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3700 return -ENOTSUP; 3701 } 3702 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3703 ksym_sec = sec; 3704 ext->type = EXT_KSYM; 3705 skip_mods_and_typedefs(obj->btf, t->type, 3706 &ext->ksym.type_id); 3707 } else { 3708 pr_warn("unrecognized extern section '%s'\n", sec_name); 3709 return -ENOTSUP; 3710 } 3711 } 3712 pr_debug("collected %d externs total\n", obj->nr_extern); 3713 3714 if (!obj->nr_extern) 3715 return 0; 3716 3717 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3718 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3719 3720 /* for .ksyms section, we need to turn all externs into allocated 3721 * variables in BTF to pass kernel verification; we do this by 3722 * pretending that each extern is a 8-byte variable 3723 */ 3724 if (ksym_sec) { 3725 /* find existing 4-byte integer type in BTF to use for fake 3726 * extern variables in DATASEC 3727 */ 3728 int int_btf_id = find_int_btf_id(obj->btf); 3729 /* For extern function, a dummy_var added earlier 3730 * will be used to replace the vs->type and 3731 * its name string will be used to refill 3732 * the missing param's name. 3733 */ 3734 const struct btf_type *dummy_var; 3735 3736 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3737 for (i = 0; i < obj->nr_extern; i++) { 3738 ext = &obj->externs[i]; 3739 if (ext->type != EXT_KSYM) 3740 continue; 3741 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3742 i, ext->sym_idx, ext->name); 3743 } 3744 3745 sec = ksym_sec; 3746 n = btf_vlen(sec); 3747 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3748 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3749 struct btf_type *vt; 3750 3751 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3752 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3753 ext = find_extern_by_name(obj, ext_name); 3754 if (!ext) { 3755 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3756 btf_kind_str(vt), ext_name); 3757 return -ESRCH; 3758 } 3759 if (btf_is_func(vt)) { 3760 const struct btf_type *func_proto; 3761 struct btf_param *param; 3762 int j; 3763 3764 func_proto = btf__type_by_id(obj->btf, 3765 vt->type); 3766 param = btf_params(func_proto); 3767 /* Reuse the dummy_var string if the 3768 * func proto does not have param name. 3769 */ 3770 for (j = 0; j < btf_vlen(func_proto); j++) 3771 if (param[j].type && !param[j].name_off) 3772 param[j].name_off = 3773 dummy_var->name_off; 3774 vs->type = dummy_var_btf_id; 3775 vt->info &= ~0xffff; 3776 vt->info |= BTF_FUNC_GLOBAL; 3777 } else { 3778 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3779 vt->type = int_btf_id; 3780 } 3781 vs->offset = off; 3782 vs->size = sizeof(int); 3783 } 3784 sec->size = off; 3785 } 3786 3787 if (kcfg_sec) { 3788 sec = kcfg_sec; 3789 /* for kcfg externs calculate their offsets within a .kconfig map */ 3790 off = 0; 3791 for (i = 0; i < obj->nr_extern; i++) { 3792 ext = &obj->externs[i]; 3793 if (ext->type != EXT_KCFG) 3794 continue; 3795 3796 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3797 off = ext->kcfg.data_off + ext->kcfg.sz; 3798 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3799 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3800 } 3801 sec->size = off; 3802 n = btf_vlen(sec); 3803 for (i = 0; i < n; i++) { 3804 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3805 3806 t = btf__type_by_id(obj->btf, vs->type); 3807 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3808 ext = find_extern_by_name(obj, ext_name); 3809 if (!ext) { 3810 pr_warn("failed to find extern definition for BTF var '%s'\n", 3811 ext_name); 3812 return -ESRCH; 3813 } 3814 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3815 vs->offset = ext->kcfg.data_off; 3816 } 3817 } 3818 return 0; 3819 } 3820 3821 struct bpf_program * 3822 bpf_object__find_program_by_title(const struct bpf_object *obj, 3823 const char *title) 3824 { 3825 struct bpf_program *pos; 3826 3827 bpf_object__for_each_program(pos, obj) { 3828 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3829 return pos; 3830 } 3831 return errno = ENOENT, NULL; 3832 } 3833 3834 static bool prog_is_subprog(const struct bpf_object *obj, 3835 const struct bpf_program *prog) 3836 { 3837 /* For legacy reasons, libbpf supports an entry-point BPF programs 3838 * without SEC() attribute, i.e., those in the .text section. But if 3839 * there are 2 or more such programs in the .text section, they all 3840 * must be subprograms called from entry-point BPF programs in 3841 * designated SEC()'tions, otherwise there is no way to distinguish 3842 * which of those programs should be loaded vs which are a subprogram. 3843 * Similarly, if there is a function/program in .text and at least one 3844 * other BPF program with custom SEC() attribute, then we just assume 3845 * .text programs are subprograms (even if they are not called from 3846 * other programs), because libbpf never explicitly supported mixing 3847 * SEC()-designated BPF programs and .text entry-point BPF programs. 3848 * 3849 * In libbpf 1.0 strict mode, we always consider .text 3850 * programs to be subprograms. 3851 */ 3852 3853 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 3854 return prog->sec_idx == obj->efile.text_shndx; 3855 3856 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3857 } 3858 3859 struct bpf_program * 3860 bpf_object__find_program_by_name(const struct bpf_object *obj, 3861 const char *name) 3862 { 3863 struct bpf_program *prog; 3864 3865 bpf_object__for_each_program(prog, obj) { 3866 if (prog_is_subprog(obj, prog)) 3867 continue; 3868 if (!strcmp(prog->name, name)) 3869 return prog; 3870 } 3871 return errno = ENOENT, NULL; 3872 } 3873 3874 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3875 int shndx) 3876 { 3877 switch (obj->efile.secs[shndx].sec_type) { 3878 case SEC_BSS: 3879 case SEC_DATA: 3880 case SEC_RODATA: 3881 return true; 3882 default: 3883 return false; 3884 } 3885 } 3886 3887 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3888 int shndx) 3889 { 3890 return shndx == obj->efile.maps_shndx || 3891 shndx == obj->efile.btf_maps_shndx; 3892 } 3893 3894 static enum libbpf_map_type 3895 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3896 { 3897 if (shndx == obj->efile.symbols_shndx) 3898 return LIBBPF_MAP_KCONFIG; 3899 3900 switch (obj->efile.secs[shndx].sec_type) { 3901 case SEC_BSS: 3902 return LIBBPF_MAP_BSS; 3903 case SEC_DATA: 3904 return LIBBPF_MAP_DATA; 3905 case SEC_RODATA: 3906 return LIBBPF_MAP_RODATA; 3907 default: 3908 return LIBBPF_MAP_UNSPEC; 3909 } 3910 } 3911 3912 static int bpf_program__record_reloc(struct bpf_program *prog, 3913 struct reloc_desc *reloc_desc, 3914 __u32 insn_idx, const char *sym_name, 3915 const Elf64_Sym *sym, const Elf64_Rel *rel) 3916 { 3917 struct bpf_insn *insn = &prog->insns[insn_idx]; 3918 size_t map_idx, nr_maps = prog->obj->nr_maps; 3919 struct bpf_object *obj = prog->obj; 3920 __u32 shdr_idx = sym->st_shndx; 3921 enum libbpf_map_type type; 3922 const char *sym_sec_name; 3923 struct bpf_map *map; 3924 3925 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3926 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3927 prog->name, sym_name, insn_idx, insn->code); 3928 return -LIBBPF_ERRNO__RELOC; 3929 } 3930 3931 if (sym_is_extern(sym)) { 3932 int sym_idx = ELF64_R_SYM(rel->r_info); 3933 int i, n = obj->nr_extern; 3934 struct extern_desc *ext; 3935 3936 for (i = 0; i < n; i++) { 3937 ext = &obj->externs[i]; 3938 if (ext->sym_idx == sym_idx) 3939 break; 3940 } 3941 if (i >= n) { 3942 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3943 prog->name, sym_name, sym_idx); 3944 return -LIBBPF_ERRNO__RELOC; 3945 } 3946 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3947 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3948 if (insn->code == (BPF_JMP | BPF_CALL)) 3949 reloc_desc->type = RELO_EXTERN_FUNC; 3950 else 3951 reloc_desc->type = RELO_EXTERN_VAR; 3952 reloc_desc->insn_idx = insn_idx; 3953 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3954 return 0; 3955 } 3956 3957 /* sub-program call relocation */ 3958 if (is_call_insn(insn)) { 3959 if (insn->src_reg != BPF_PSEUDO_CALL) { 3960 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3961 return -LIBBPF_ERRNO__RELOC; 3962 } 3963 /* text_shndx can be 0, if no default "main" program exists */ 3964 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3965 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3966 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3967 prog->name, sym_name, sym_sec_name); 3968 return -LIBBPF_ERRNO__RELOC; 3969 } 3970 if (sym->st_value % BPF_INSN_SZ) { 3971 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3972 prog->name, sym_name, (size_t)sym->st_value); 3973 return -LIBBPF_ERRNO__RELOC; 3974 } 3975 reloc_desc->type = RELO_CALL; 3976 reloc_desc->insn_idx = insn_idx; 3977 reloc_desc->sym_off = sym->st_value; 3978 return 0; 3979 } 3980 3981 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3982 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3983 prog->name, sym_name, shdr_idx); 3984 return -LIBBPF_ERRNO__RELOC; 3985 } 3986 3987 /* loading subprog addresses */ 3988 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3989 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3990 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3991 */ 3992 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3993 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3994 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3995 return -LIBBPF_ERRNO__RELOC; 3996 } 3997 3998 reloc_desc->type = RELO_SUBPROG_ADDR; 3999 reloc_desc->insn_idx = insn_idx; 4000 reloc_desc->sym_off = sym->st_value; 4001 return 0; 4002 } 4003 4004 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4005 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4006 4007 /* generic map reference relocation */ 4008 if (type == LIBBPF_MAP_UNSPEC) { 4009 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4010 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4011 prog->name, sym_name, sym_sec_name); 4012 return -LIBBPF_ERRNO__RELOC; 4013 } 4014 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4015 map = &obj->maps[map_idx]; 4016 if (map->libbpf_type != type || 4017 map->sec_idx != sym->st_shndx || 4018 map->sec_offset != sym->st_value) 4019 continue; 4020 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4021 prog->name, map_idx, map->name, map->sec_idx, 4022 map->sec_offset, insn_idx); 4023 break; 4024 } 4025 if (map_idx >= nr_maps) { 4026 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4027 prog->name, sym_sec_name, (size_t)sym->st_value); 4028 return -LIBBPF_ERRNO__RELOC; 4029 } 4030 reloc_desc->type = RELO_LD64; 4031 reloc_desc->insn_idx = insn_idx; 4032 reloc_desc->map_idx = map_idx; 4033 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4034 return 0; 4035 } 4036 4037 /* global data map relocation */ 4038 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4039 pr_warn("prog '%s': bad data relo against section '%s'\n", 4040 prog->name, sym_sec_name); 4041 return -LIBBPF_ERRNO__RELOC; 4042 } 4043 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4044 map = &obj->maps[map_idx]; 4045 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4046 continue; 4047 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4048 prog->name, map_idx, map->name, map->sec_idx, 4049 map->sec_offset, insn_idx); 4050 break; 4051 } 4052 if (map_idx >= nr_maps) { 4053 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4054 prog->name, sym_sec_name); 4055 return -LIBBPF_ERRNO__RELOC; 4056 } 4057 4058 reloc_desc->type = RELO_DATA; 4059 reloc_desc->insn_idx = insn_idx; 4060 reloc_desc->map_idx = map_idx; 4061 reloc_desc->sym_off = sym->st_value; 4062 return 0; 4063 } 4064 4065 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4066 { 4067 return insn_idx >= prog->sec_insn_off && 4068 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4069 } 4070 4071 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4072 size_t sec_idx, size_t insn_idx) 4073 { 4074 int l = 0, r = obj->nr_programs - 1, m; 4075 struct bpf_program *prog; 4076 4077 while (l < r) { 4078 m = l + (r - l + 1) / 2; 4079 prog = &obj->programs[m]; 4080 4081 if (prog->sec_idx < sec_idx || 4082 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4083 l = m; 4084 else 4085 r = m - 1; 4086 } 4087 /* matching program could be at index l, but it still might be the 4088 * wrong one, so we need to double check conditions for the last time 4089 */ 4090 prog = &obj->programs[l]; 4091 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4092 return prog; 4093 return NULL; 4094 } 4095 4096 static int 4097 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4098 { 4099 const char *relo_sec_name, *sec_name; 4100 size_t sec_idx = shdr->sh_info, sym_idx; 4101 struct bpf_program *prog; 4102 struct reloc_desc *relos; 4103 int err, i, nrels; 4104 const char *sym_name; 4105 __u32 insn_idx; 4106 Elf_Scn *scn; 4107 Elf_Data *scn_data; 4108 Elf64_Sym *sym; 4109 Elf64_Rel *rel; 4110 4111 if (sec_idx >= obj->efile.sec_cnt) 4112 return -EINVAL; 4113 4114 scn = elf_sec_by_idx(obj, sec_idx); 4115 scn_data = elf_sec_data(obj, scn); 4116 4117 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4118 sec_name = elf_sec_name(obj, scn); 4119 if (!relo_sec_name || !sec_name) 4120 return -EINVAL; 4121 4122 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4123 relo_sec_name, sec_idx, sec_name); 4124 nrels = shdr->sh_size / shdr->sh_entsize; 4125 4126 for (i = 0; i < nrels; i++) { 4127 rel = elf_rel_by_idx(data, i); 4128 if (!rel) { 4129 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4130 return -LIBBPF_ERRNO__FORMAT; 4131 } 4132 4133 sym_idx = ELF64_R_SYM(rel->r_info); 4134 sym = elf_sym_by_idx(obj, sym_idx); 4135 if (!sym) { 4136 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4137 relo_sec_name, sym_idx, i); 4138 return -LIBBPF_ERRNO__FORMAT; 4139 } 4140 4141 if (sym->st_shndx >= obj->efile.sec_cnt) { 4142 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4143 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4144 return -LIBBPF_ERRNO__FORMAT; 4145 } 4146 4147 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4148 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4149 relo_sec_name, (size_t)rel->r_offset, i); 4150 return -LIBBPF_ERRNO__FORMAT; 4151 } 4152 4153 insn_idx = rel->r_offset / BPF_INSN_SZ; 4154 /* relocations against static functions are recorded as 4155 * relocations against the section that contains a function; 4156 * in such case, symbol will be STT_SECTION and sym.st_name 4157 * will point to empty string (0), so fetch section name 4158 * instead 4159 */ 4160 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4161 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4162 else 4163 sym_name = elf_sym_str(obj, sym->st_name); 4164 sym_name = sym_name ?: "<?"; 4165 4166 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4167 relo_sec_name, i, insn_idx, sym_name); 4168 4169 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4170 if (!prog) { 4171 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4172 relo_sec_name, i, sec_name, insn_idx); 4173 continue; 4174 } 4175 4176 relos = libbpf_reallocarray(prog->reloc_desc, 4177 prog->nr_reloc + 1, sizeof(*relos)); 4178 if (!relos) 4179 return -ENOMEM; 4180 prog->reloc_desc = relos; 4181 4182 /* adjust insn_idx to local BPF program frame of reference */ 4183 insn_idx -= prog->sec_insn_off; 4184 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4185 insn_idx, sym_name, sym, rel); 4186 if (err) 4187 return err; 4188 4189 prog->nr_reloc++; 4190 } 4191 return 0; 4192 } 4193 4194 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4195 { 4196 struct bpf_map_def *def = &map->def; 4197 __u32 key_type_id = 0, value_type_id = 0; 4198 int ret; 4199 4200 /* if it's BTF-defined map, we don't need to search for type IDs. 4201 * For struct_ops map, it does not need btf_key_type_id and 4202 * btf_value_type_id. 4203 */ 4204 if (map->sec_idx == obj->efile.btf_maps_shndx || 4205 bpf_map__is_struct_ops(map)) 4206 return 0; 4207 4208 if (!bpf_map__is_internal(map)) { 4209 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4210 #pragma GCC diagnostic push 4211 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4212 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4213 def->value_size, &key_type_id, 4214 &value_type_id); 4215 #pragma GCC diagnostic pop 4216 } else { 4217 /* 4218 * LLVM annotates global data differently in BTF, that is, 4219 * only as '.data', '.bss' or '.rodata'. 4220 */ 4221 ret = btf__find_by_name(obj->btf, map->real_name); 4222 } 4223 if (ret < 0) 4224 return ret; 4225 4226 map->btf_key_type_id = key_type_id; 4227 map->btf_value_type_id = bpf_map__is_internal(map) ? 4228 ret : value_type_id; 4229 return 0; 4230 } 4231 4232 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4233 { 4234 char file[PATH_MAX], buff[4096]; 4235 FILE *fp; 4236 __u32 val; 4237 int err; 4238 4239 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4240 memset(info, 0, sizeof(*info)); 4241 4242 fp = fopen(file, "r"); 4243 if (!fp) { 4244 err = -errno; 4245 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4246 err); 4247 return err; 4248 } 4249 4250 while (fgets(buff, sizeof(buff), fp)) { 4251 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4252 info->type = val; 4253 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4254 info->key_size = val; 4255 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4256 info->value_size = val; 4257 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4258 info->max_entries = val; 4259 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4260 info->map_flags = val; 4261 } 4262 4263 fclose(fp); 4264 4265 return 0; 4266 } 4267 4268 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4269 { 4270 struct bpf_map_info info = {}; 4271 __u32 len = sizeof(info); 4272 int new_fd, err; 4273 char *new_name; 4274 4275 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4276 if (err && errno == EINVAL) 4277 err = bpf_get_map_info_from_fdinfo(fd, &info); 4278 if (err) 4279 return libbpf_err(err); 4280 4281 new_name = strdup(info.name); 4282 if (!new_name) 4283 return libbpf_err(-errno); 4284 4285 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4286 if (new_fd < 0) { 4287 err = -errno; 4288 goto err_free_new_name; 4289 } 4290 4291 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4292 if (new_fd < 0) { 4293 err = -errno; 4294 goto err_close_new_fd; 4295 } 4296 4297 err = zclose(map->fd); 4298 if (err) { 4299 err = -errno; 4300 goto err_close_new_fd; 4301 } 4302 free(map->name); 4303 4304 map->fd = new_fd; 4305 map->name = new_name; 4306 map->def.type = info.type; 4307 map->def.key_size = info.key_size; 4308 map->def.value_size = info.value_size; 4309 map->def.max_entries = info.max_entries; 4310 map->def.map_flags = info.map_flags; 4311 map->btf_key_type_id = info.btf_key_type_id; 4312 map->btf_value_type_id = info.btf_value_type_id; 4313 map->reused = true; 4314 map->map_extra = info.map_extra; 4315 4316 return 0; 4317 4318 err_close_new_fd: 4319 close(new_fd); 4320 err_free_new_name: 4321 free(new_name); 4322 return libbpf_err(err); 4323 } 4324 4325 __u32 bpf_map__max_entries(const struct bpf_map *map) 4326 { 4327 return map->def.max_entries; 4328 } 4329 4330 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4331 { 4332 if (!bpf_map_type__is_map_in_map(map->def.type)) 4333 return errno = EINVAL, NULL; 4334 4335 return map->inner_map; 4336 } 4337 4338 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4339 { 4340 if (map->fd >= 0) 4341 return libbpf_err(-EBUSY); 4342 map->def.max_entries = max_entries; 4343 return 0; 4344 } 4345 4346 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4347 { 4348 if (!map || !max_entries) 4349 return libbpf_err(-EINVAL); 4350 4351 return bpf_map__set_max_entries(map, max_entries); 4352 } 4353 4354 static int 4355 bpf_object__probe_loading(struct bpf_object *obj) 4356 { 4357 char *cp, errmsg[STRERR_BUFSIZE]; 4358 struct bpf_insn insns[] = { 4359 BPF_MOV64_IMM(BPF_REG_0, 0), 4360 BPF_EXIT_INSN(), 4361 }; 4362 int ret, insn_cnt = ARRAY_SIZE(insns); 4363 4364 if (obj->gen_loader) 4365 return 0; 4366 4367 ret = bump_rlimit_memlock(); 4368 if (ret) 4369 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4370 4371 /* make sure basic loading works */ 4372 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4373 if (ret < 0) 4374 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4375 if (ret < 0) { 4376 ret = errno; 4377 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4378 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4379 "program. Make sure your kernel supports BPF " 4380 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4381 "set to big enough value.\n", __func__, cp, ret); 4382 return -ret; 4383 } 4384 close(ret); 4385 4386 return 0; 4387 } 4388 4389 static int probe_fd(int fd) 4390 { 4391 if (fd >= 0) 4392 close(fd); 4393 return fd >= 0; 4394 } 4395 4396 static int probe_kern_prog_name(void) 4397 { 4398 struct bpf_insn insns[] = { 4399 BPF_MOV64_IMM(BPF_REG_0, 0), 4400 BPF_EXIT_INSN(), 4401 }; 4402 int ret, insn_cnt = ARRAY_SIZE(insns); 4403 4404 /* make sure loading with name works */ 4405 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4406 return probe_fd(ret); 4407 } 4408 4409 static int probe_kern_global_data(void) 4410 { 4411 char *cp, errmsg[STRERR_BUFSIZE]; 4412 struct bpf_insn insns[] = { 4413 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4414 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4415 BPF_MOV64_IMM(BPF_REG_0, 0), 4416 BPF_EXIT_INSN(), 4417 }; 4418 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4419 4420 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4421 if (map < 0) { 4422 ret = -errno; 4423 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4424 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4425 __func__, cp, -ret); 4426 return ret; 4427 } 4428 4429 insns[0].imm = map; 4430 4431 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4432 close(map); 4433 return probe_fd(ret); 4434 } 4435 4436 static int probe_kern_btf(void) 4437 { 4438 static const char strs[] = "\0int"; 4439 __u32 types[] = { 4440 /* int */ 4441 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4442 }; 4443 4444 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4445 strs, sizeof(strs))); 4446 } 4447 4448 static int probe_kern_btf_func(void) 4449 { 4450 static const char strs[] = "\0int\0x\0a"; 4451 /* void x(int a) {} */ 4452 __u32 types[] = { 4453 /* int */ 4454 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4455 /* FUNC_PROTO */ /* [2] */ 4456 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4457 BTF_PARAM_ENC(7, 1), 4458 /* FUNC x */ /* [3] */ 4459 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4460 }; 4461 4462 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4463 strs, sizeof(strs))); 4464 } 4465 4466 static int probe_kern_btf_func_global(void) 4467 { 4468 static const char strs[] = "\0int\0x\0a"; 4469 /* static void x(int a) {} */ 4470 __u32 types[] = { 4471 /* int */ 4472 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4473 /* FUNC_PROTO */ /* [2] */ 4474 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4475 BTF_PARAM_ENC(7, 1), 4476 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4477 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4478 }; 4479 4480 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4481 strs, sizeof(strs))); 4482 } 4483 4484 static int probe_kern_btf_datasec(void) 4485 { 4486 static const char strs[] = "\0x\0.data"; 4487 /* static int a; */ 4488 __u32 types[] = { 4489 /* int */ 4490 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4491 /* VAR x */ /* [2] */ 4492 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4493 BTF_VAR_STATIC, 4494 /* DATASEC val */ /* [3] */ 4495 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4496 BTF_VAR_SECINFO_ENC(2, 0, 4), 4497 }; 4498 4499 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4500 strs, sizeof(strs))); 4501 } 4502 4503 static int probe_kern_btf_float(void) 4504 { 4505 static const char strs[] = "\0float"; 4506 __u32 types[] = { 4507 /* float */ 4508 BTF_TYPE_FLOAT_ENC(1, 4), 4509 }; 4510 4511 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4512 strs, sizeof(strs))); 4513 } 4514 4515 static int probe_kern_btf_decl_tag(void) 4516 { 4517 static const char strs[] = "\0tag"; 4518 __u32 types[] = { 4519 /* int */ 4520 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4521 /* VAR x */ /* [2] */ 4522 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4523 BTF_VAR_STATIC, 4524 /* attr */ 4525 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4526 }; 4527 4528 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4529 strs, sizeof(strs))); 4530 } 4531 4532 static int probe_kern_btf_type_tag(void) 4533 { 4534 static const char strs[] = "\0tag"; 4535 __u32 types[] = { 4536 /* int */ 4537 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4538 /* attr */ 4539 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4540 /* ptr */ 4541 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4542 }; 4543 4544 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4545 strs, sizeof(strs))); 4546 } 4547 4548 static int probe_kern_array_mmap(void) 4549 { 4550 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4551 int fd; 4552 4553 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4554 return probe_fd(fd); 4555 } 4556 4557 static int probe_kern_exp_attach_type(void) 4558 { 4559 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4560 struct bpf_insn insns[] = { 4561 BPF_MOV64_IMM(BPF_REG_0, 0), 4562 BPF_EXIT_INSN(), 4563 }; 4564 int fd, insn_cnt = ARRAY_SIZE(insns); 4565 4566 /* use any valid combination of program type and (optional) 4567 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4568 * to see if kernel supports expected_attach_type field for 4569 * BPF_PROG_LOAD command 4570 */ 4571 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4572 return probe_fd(fd); 4573 } 4574 4575 static int probe_kern_probe_read_kernel(void) 4576 { 4577 struct bpf_insn insns[] = { 4578 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4579 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4580 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4581 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4582 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4583 BPF_EXIT_INSN(), 4584 }; 4585 int fd, insn_cnt = ARRAY_SIZE(insns); 4586 4587 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4588 return probe_fd(fd); 4589 } 4590 4591 static int probe_prog_bind_map(void) 4592 { 4593 char *cp, errmsg[STRERR_BUFSIZE]; 4594 struct bpf_insn insns[] = { 4595 BPF_MOV64_IMM(BPF_REG_0, 0), 4596 BPF_EXIT_INSN(), 4597 }; 4598 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4599 4600 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4601 if (map < 0) { 4602 ret = -errno; 4603 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4604 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4605 __func__, cp, -ret); 4606 return ret; 4607 } 4608 4609 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4610 if (prog < 0) { 4611 close(map); 4612 return 0; 4613 } 4614 4615 ret = bpf_prog_bind_map(prog, map, NULL); 4616 4617 close(map); 4618 close(prog); 4619 4620 return ret >= 0; 4621 } 4622 4623 static int probe_module_btf(void) 4624 { 4625 static const char strs[] = "\0int"; 4626 __u32 types[] = { 4627 /* int */ 4628 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4629 }; 4630 struct bpf_btf_info info; 4631 __u32 len = sizeof(info); 4632 char name[16]; 4633 int fd, err; 4634 4635 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4636 if (fd < 0) 4637 return 0; /* BTF not supported at all */ 4638 4639 memset(&info, 0, sizeof(info)); 4640 info.name = ptr_to_u64(name); 4641 info.name_len = sizeof(name); 4642 4643 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4644 * kernel's module BTF support coincides with support for 4645 * name/name_len fields in struct bpf_btf_info. 4646 */ 4647 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4648 close(fd); 4649 return !err; 4650 } 4651 4652 static int probe_perf_link(void) 4653 { 4654 struct bpf_insn insns[] = { 4655 BPF_MOV64_IMM(BPF_REG_0, 0), 4656 BPF_EXIT_INSN(), 4657 }; 4658 int prog_fd, link_fd, err; 4659 4660 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4661 insns, ARRAY_SIZE(insns), NULL); 4662 if (prog_fd < 0) 4663 return -errno; 4664 4665 /* use invalid perf_event FD to get EBADF, if link is supported; 4666 * otherwise EINVAL should be returned 4667 */ 4668 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4669 err = -errno; /* close() can clobber errno */ 4670 4671 if (link_fd >= 0) 4672 close(link_fd); 4673 close(prog_fd); 4674 4675 return link_fd < 0 && err == -EBADF; 4676 } 4677 4678 enum kern_feature_result { 4679 FEAT_UNKNOWN = 0, 4680 FEAT_SUPPORTED = 1, 4681 FEAT_MISSING = 2, 4682 }; 4683 4684 typedef int (*feature_probe_fn)(void); 4685 4686 static struct kern_feature_desc { 4687 const char *desc; 4688 feature_probe_fn probe; 4689 enum kern_feature_result res; 4690 } feature_probes[__FEAT_CNT] = { 4691 [FEAT_PROG_NAME] = { 4692 "BPF program name", probe_kern_prog_name, 4693 }, 4694 [FEAT_GLOBAL_DATA] = { 4695 "global variables", probe_kern_global_data, 4696 }, 4697 [FEAT_BTF] = { 4698 "minimal BTF", probe_kern_btf, 4699 }, 4700 [FEAT_BTF_FUNC] = { 4701 "BTF functions", probe_kern_btf_func, 4702 }, 4703 [FEAT_BTF_GLOBAL_FUNC] = { 4704 "BTF global function", probe_kern_btf_func_global, 4705 }, 4706 [FEAT_BTF_DATASEC] = { 4707 "BTF data section and variable", probe_kern_btf_datasec, 4708 }, 4709 [FEAT_ARRAY_MMAP] = { 4710 "ARRAY map mmap()", probe_kern_array_mmap, 4711 }, 4712 [FEAT_EXP_ATTACH_TYPE] = { 4713 "BPF_PROG_LOAD expected_attach_type attribute", 4714 probe_kern_exp_attach_type, 4715 }, 4716 [FEAT_PROBE_READ_KERN] = { 4717 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4718 }, 4719 [FEAT_PROG_BIND_MAP] = { 4720 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4721 }, 4722 [FEAT_MODULE_BTF] = { 4723 "module BTF support", probe_module_btf, 4724 }, 4725 [FEAT_BTF_FLOAT] = { 4726 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4727 }, 4728 [FEAT_PERF_LINK] = { 4729 "BPF perf link support", probe_perf_link, 4730 }, 4731 [FEAT_BTF_DECL_TAG] = { 4732 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4733 }, 4734 [FEAT_BTF_TYPE_TAG] = { 4735 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4736 }, 4737 [FEAT_MEMCG_ACCOUNT] = { 4738 "memcg-based memory accounting", probe_memcg_account, 4739 }, 4740 }; 4741 4742 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4743 { 4744 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4745 int ret; 4746 4747 if (obj && obj->gen_loader) 4748 /* To generate loader program assume the latest kernel 4749 * to avoid doing extra prog_load, map_create syscalls. 4750 */ 4751 return true; 4752 4753 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4754 ret = feat->probe(); 4755 if (ret > 0) { 4756 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4757 } else if (ret == 0) { 4758 WRITE_ONCE(feat->res, FEAT_MISSING); 4759 } else { 4760 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4761 WRITE_ONCE(feat->res, FEAT_MISSING); 4762 } 4763 } 4764 4765 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4766 } 4767 4768 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4769 { 4770 struct bpf_map_info map_info = {}; 4771 char msg[STRERR_BUFSIZE]; 4772 __u32 map_info_len; 4773 int err; 4774 4775 map_info_len = sizeof(map_info); 4776 4777 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4778 if (err && errno == EINVAL) 4779 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4780 if (err) { 4781 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4782 libbpf_strerror_r(errno, msg, sizeof(msg))); 4783 return false; 4784 } 4785 4786 return (map_info.type == map->def.type && 4787 map_info.key_size == map->def.key_size && 4788 map_info.value_size == map->def.value_size && 4789 map_info.max_entries == map->def.max_entries && 4790 map_info.map_flags == map->def.map_flags && 4791 map_info.map_extra == map->map_extra); 4792 } 4793 4794 static int 4795 bpf_object__reuse_map(struct bpf_map *map) 4796 { 4797 char *cp, errmsg[STRERR_BUFSIZE]; 4798 int err, pin_fd; 4799 4800 pin_fd = bpf_obj_get(map->pin_path); 4801 if (pin_fd < 0) { 4802 err = -errno; 4803 if (err == -ENOENT) { 4804 pr_debug("found no pinned map to reuse at '%s'\n", 4805 map->pin_path); 4806 return 0; 4807 } 4808 4809 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4810 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4811 map->pin_path, cp); 4812 return err; 4813 } 4814 4815 if (!map_is_reuse_compat(map, pin_fd)) { 4816 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4817 map->pin_path); 4818 close(pin_fd); 4819 return -EINVAL; 4820 } 4821 4822 err = bpf_map__reuse_fd(map, pin_fd); 4823 if (err) { 4824 close(pin_fd); 4825 return err; 4826 } 4827 map->pinned = true; 4828 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4829 4830 return 0; 4831 } 4832 4833 static int 4834 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4835 { 4836 enum libbpf_map_type map_type = map->libbpf_type; 4837 char *cp, errmsg[STRERR_BUFSIZE]; 4838 int err, zero = 0; 4839 4840 if (obj->gen_loader) { 4841 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4842 map->mmaped, map->def.value_size); 4843 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4844 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4845 return 0; 4846 } 4847 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4848 if (err) { 4849 err = -errno; 4850 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4851 pr_warn("Error setting initial map(%s) contents: %s\n", 4852 map->name, cp); 4853 return err; 4854 } 4855 4856 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4857 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4858 err = bpf_map_freeze(map->fd); 4859 if (err) { 4860 err = -errno; 4861 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4862 pr_warn("Error freezing map(%s) as read-only: %s\n", 4863 map->name, cp); 4864 return err; 4865 } 4866 } 4867 return 0; 4868 } 4869 4870 static void bpf_map__destroy(struct bpf_map *map); 4871 4872 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4873 { 4874 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4875 struct bpf_map_def *def = &map->def; 4876 const char *map_name = NULL; 4877 int err = 0; 4878 4879 if (kernel_supports(obj, FEAT_PROG_NAME)) 4880 map_name = map->name; 4881 create_attr.map_ifindex = map->map_ifindex; 4882 create_attr.map_flags = def->map_flags; 4883 create_attr.numa_node = map->numa_node; 4884 create_attr.map_extra = map->map_extra; 4885 4886 if (bpf_map__is_struct_ops(map)) 4887 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4888 4889 if (obj->btf && btf__fd(obj->btf) >= 0) { 4890 create_attr.btf_fd = btf__fd(obj->btf); 4891 create_attr.btf_key_type_id = map->btf_key_type_id; 4892 create_attr.btf_value_type_id = map->btf_value_type_id; 4893 } 4894 4895 if (bpf_map_type__is_map_in_map(def->type)) { 4896 if (map->inner_map) { 4897 err = bpf_object__create_map(obj, map->inner_map, true); 4898 if (err) { 4899 pr_warn("map '%s': failed to create inner map: %d\n", 4900 map->name, err); 4901 return err; 4902 } 4903 map->inner_map_fd = bpf_map__fd(map->inner_map); 4904 } 4905 if (map->inner_map_fd >= 0) 4906 create_attr.inner_map_fd = map->inner_map_fd; 4907 } 4908 4909 switch (def->type) { 4910 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4911 case BPF_MAP_TYPE_CGROUP_ARRAY: 4912 case BPF_MAP_TYPE_STACK_TRACE: 4913 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4914 case BPF_MAP_TYPE_HASH_OF_MAPS: 4915 case BPF_MAP_TYPE_DEVMAP: 4916 case BPF_MAP_TYPE_DEVMAP_HASH: 4917 case BPF_MAP_TYPE_CPUMAP: 4918 case BPF_MAP_TYPE_XSKMAP: 4919 case BPF_MAP_TYPE_SOCKMAP: 4920 case BPF_MAP_TYPE_SOCKHASH: 4921 case BPF_MAP_TYPE_QUEUE: 4922 case BPF_MAP_TYPE_STACK: 4923 case BPF_MAP_TYPE_RINGBUF: 4924 create_attr.btf_fd = 0; 4925 create_attr.btf_key_type_id = 0; 4926 create_attr.btf_value_type_id = 0; 4927 map->btf_key_type_id = 0; 4928 map->btf_value_type_id = 0; 4929 default: 4930 break; 4931 } 4932 4933 if (obj->gen_loader) { 4934 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4935 def->key_size, def->value_size, def->max_entries, 4936 &create_attr, is_inner ? -1 : map - obj->maps); 4937 /* Pretend to have valid FD to pass various fd >= 0 checks. 4938 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4939 */ 4940 map->fd = 0; 4941 } else { 4942 map->fd = bpf_map_create(def->type, map_name, 4943 def->key_size, def->value_size, 4944 def->max_entries, &create_attr); 4945 } 4946 if (map->fd < 0 && (create_attr.btf_key_type_id || 4947 create_attr.btf_value_type_id)) { 4948 char *cp, errmsg[STRERR_BUFSIZE]; 4949 4950 err = -errno; 4951 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4952 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4953 map->name, cp, err); 4954 create_attr.btf_fd = 0; 4955 create_attr.btf_key_type_id = 0; 4956 create_attr.btf_value_type_id = 0; 4957 map->btf_key_type_id = 0; 4958 map->btf_value_type_id = 0; 4959 map->fd = bpf_map_create(def->type, map_name, 4960 def->key_size, def->value_size, 4961 def->max_entries, &create_attr); 4962 } 4963 4964 err = map->fd < 0 ? -errno : 0; 4965 4966 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4967 if (obj->gen_loader) 4968 map->inner_map->fd = -1; 4969 bpf_map__destroy(map->inner_map); 4970 zfree(&map->inner_map); 4971 } 4972 4973 return err; 4974 } 4975 4976 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4977 { 4978 const struct bpf_map *targ_map; 4979 unsigned int i; 4980 int fd, err = 0; 4981 4982 for (i = 0; i < map->init_slots_sz; i++) { 4983 if (!map->init_slots[i]) 4984 continue; 4985 4986 targ_map = map->init_slots[i]; 4987 fd = bpf_map__fd(targ_map); 4988 4989 if (obj->gen_loader) { 4990 bpf_gen__populate_outer_map(obj->gen_loader, 4991 map - obj->maps, i, 4992 targ_map - obj->maps); 4993 } else { 4994 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4995 } 4996 if (err) { 4997 err = -errno; 4998 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4999 map->name, i, targ_map->name, fd, err); 5000 return err; 5001 } 5002 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5003 map->name, i, targ_map->name, fd); 5004 } 5005 5006 zfree(&map->init_slots); 5007 map->init_slots_sz = 0; 5008 5009 return 0; 5010 } 5011 5012 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5013 { 5014 const struct bpf_program *targ_prog; 5015 unsigned int i; 5016 int fd, err; 5017 5018 if (obj->gen_loader) 5019 return -ENOTSUP; 5020 5021 for (i = 0; i < map->init_slots_sz; i++) { 5022 if (!map->init_slots[i]) 5023 continue; 5024 5025 targ_prog = map->init_slots[i]; 5026 fd = bpf_program__fd(targ_prog); 5027 5028 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5029 if (err) { 5030 err = -errno; 5031 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5032 map->name, i, targ_prog->name, fd, err); 5033 return err; 5034 } 5035 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5036 map->name, i, targ_prog->name, fd); 5037 } 5038 5039 zfree(&map->init_slots); 5040 map->init_slots_sz = 0; 5041 5042 return 0; 5043 } 5044 5045 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5046 { 5047 struct bpf_map *map; 5048 int i, err; 5049 5050 for (i = 0; i < obj->nr_maps; i++) { 5051 map = &obj->maps[i]; 5052 5053 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5054 continue; 5055 5056 err = init_prog_array_slots(obj, map); 5057 if (err < 0) { 5058 zclose(map->fd); 5059 return err; 5060 } 5061 } 5062 return 0; 5063 } 5064 5065 static int map_set_def_max_entries(struct bpf_map *map) 5066 { 5067 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5068 int nr_cpus; 5069 5070 nr_cpus = libbpf_num_possible_cpus(); 5071 if (nr_cpus < 0) { 5072 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5073 map->name, nr_cpus); 5074 return nr_cpus; 5075 } 5076 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5077 map->def.max_entries = nr_cpus; 5078 } 5079 5080 return 0; 5081 } 5082 5083 static int 5084 bpf_object__create_maps(struct bpf_object *obj) 5085 { 5086 struct bpf_map *map; 5087 char *cp, errmsg[STRERR_BUFSIZE]; 5088 unsigned int i, j; 5089 int err; 5090 bool retried; 5091 5092 for (i = 0; i < obj->nr_maps; i++) { 5093 map = &obj->maps[i]; 5094 5095 /* To support old kernels, we skip creating global data maps 5096 * (.rodata, .data, .kconfig, etc); later on, during program 5097 * loading, if we detect that at least one of the to-be-loaded 5098 * programs is referencing any global data map, we'll error 5099 * out with program name and relocation index logged. 5100 * This approach allows to accommodate Clang emitting 5101 * unnecessary .rodata.str1.1 sections for string literals, 5102 * but also it allows to have CO-RE applications that use 5103 * global variables in some of BPF programs, but not others. 5104 * If those global variable-using programs are not loaded at 5105 * runtime due to bpf_program__set_autoload(prog, false), 5106 * bpf_object loading will succeed just fine even on old 5107 * kernels. 5108 */ 5109 if (bpf_map__is_internal(map) && 5110 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5111 map->skipped = true; 5112 continue; 5113 } 5114 5115 err = map_set_def_max_entries(map); 5116 if (err) 5117 goto err_out; 5118 5119 retried = false; 5120 retry: 5121 if (map->pin_path) { 5122 err = bpf_object__reuse_map(map); 5123 if (err) { 5124 pr_warn("map '%s': error reusing pinned map\n", 5125 map->name); 5126 goto err_out; 5127 } 5128 if (retried && map->fd < 0) { 5129 pr_warn("map '%s': cannot find pinned map\n", 5130 map->name); 5131 err = -ENOENT; 5132 goto err_out; 5133 } 5134 } 5135 5136 if (map->fd >= 0) { 5137 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5138 map->name, map->fd); 5139 } else { 5140 err = bpf_object__create_map(obj, map, false); 5141 if (err) 5142 goto err_out; 5143 5144 pr_debug("map '%s': created successfully, fd=%d\n", 5145 map->name, map->fd); 5146 5147 if (bpf_map__is_internal(map)) { 5148 err = bpf_object__populate_internal_map(obj, map); 5149 if (err < 0) { 5150 zclose(map->fd); 5151 goto err_out; 5152 } 5153 } 5154 5155 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5156 err = init_map_in_map_slots(obj, map); 5157 if (err < 0) { 5158 zclose(map->fd); 5159 goto err_out; 5160 } 5161 } 5162 } 5163 5164 if (map->pin_path && !map->pinned) { 5165 err = bpf_map__pin(map, NULL); 5166 if (err) { 5167 zclose(map->fd); 5168 if (!retried && err == -EEXIST) { 5169 retried = true; 5170 goto retry; 5171 } 5172 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5173 map->name, map->pin_path, err); 5174 goto err_out; 5175 } 5176 } 5177 } 5178 5179 return 0; 5180 5181 err_out: 5182 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5183 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5184 pr_perm_msg(err); 5185 for (j = 0; j < i; j++) 5186 zclose(obj->maps[j].fd); 5187 return err; 5188 } 5189 5190 static bool bpf_core_is_flavor_sep(const char *s) 5191 { 5192 /* check X___Y name pattern, where X and Y are not underscores */ 5193 return s[0] != '_' && /* X */ 5194 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5195 s[4] != '_'; /* Y */ 5196 } 5197 5198 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5199 * before last triple underscore. Struct name part after last triple 5200 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5201 */ 5202 size_t bpf_core_essential_name_len(const char *name) 5203 { 5204 size_t n = strlen(name); 5205 int i; 5206 5207 for (i = n - 5; i >= 0; i--) { 5208 if (bpf_core_is_flavor_sep(name + i)) 5209 return i + 1; 5210 } 5211 return n; 5212 } 5213 5214 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5215 { 5216 if (!cands) 5217 return; 5218 5219 free(cands->cands); 5220 free(cands); 5221 } 5222 5223 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5224 size_t local_essent_len, 5225 const struct btf *targ_btf, 5226 const char *targ_btf_name, 5227 int targ_start_id, 5228 struct bpf_core_cand_list *cands) 5229 { 5230 struct bpf_core_cand *new_cands, *cand; 5231 const struct btf_type *t, *local_t; 5232 const char *targ_name, *local_name; 5233 size_t targ_essent_len; 5234 int n, i; 5235 5236 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5237 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5238 5239 n = btf__type_cnt(targ_btf); 5240 for (i = targ_start_id; i < n; i++) { 5241 t = btf__type_by_id(targ_btf, i); 5242 if (btf_kind(t) != btf_kind(local_t)) 5243 continue; 5244 5245 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5246 if (str_is_empty(targ_name)) 5247 continue; 5248 5249 targ_essent_len = bpf_core_essential_name_len(targ_name); 5250 if (targ_essent_len != local_essent_len) 5251 continue; 5252 5253 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5254 continue; 5255 5256 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5257 local_cand->id, btf_kind_str(local_t), 5258 local_name, i, btf_kind_str(t), targ_name, 5259 targ_btf_name); 5260 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5261 sizeof(*cands->cands)); 5262 if (!new_cands) 5263 return -ENOMEM; 5264 5265 cand = &new_cands[cands->len]; 5266 cand->btf = targ_btf; 5267 cand->id = i; 5268 5269 cands->cands = new_cands; 5270 cands->len++; 5271 } 5272 return 0; 5273 } 5274 5275 static int load_module_btfs(struct bpf_object *obj) 5276 { 5277 struct bpf_btf_info info; 5278 struct module_btf *mod_btf; 5279 struct btf *btf; 5280 char name[64]; 5281 __u32 id = 0, len; 5282 int err, fd; 5283 5284 if (obj->btf_modules_loaded) 5285 return 0; 5286 5287 if (obj->gen_loader) 5288 return 0; 5289 5290 /* don't do this again, even if we find no module BTFs */ 5291 obj->btf_modules_loaded = true; 5292 5293 /* kernel too old to support module BTFs */ 5294 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5295 return 0; 5296 5297 while (true) { 5298 err = bpf_btf_get_next_id(id, &id); 5299 if (err && errno == ENOENT) 5300 return 0; 5301 if (err) { 5302 err = -errno; 5303 pr_warn("failed to iterate BTF objects: %d\n", err); 5304 return err; 5305 } 5306 5307 fd = bpf_btf_get_fd_by_id(id); 5308 if (fd < 0) { 5309 if (errno == ENOENT) 5310 continue; /* expected race: BTF was unloaded */ 5311 err = -errno; 5312 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5313 return err; 5314 } 5315 5316 len = sizeof(info); 5317 memset(&info, 0, sizeof(info)); 5318 info.name = ptr_to_u64(name); 5319 info.name_len = sizeof(name); 5320 5321 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5322 if (err) { 5323 err = -errno; 5324 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5325 goto err_out; 5326 } 5327 5328 /* ignore non-module BTFs */ 5329 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5330 close(fd); 5331 continue; 5332 } 5333 5334 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5335 err = libbpf_get_error(btf); 5336 if (err) { 5337 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5338 name, id, err); 5339 goto err_out; 5340 } 5341 5342 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5343 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5344 if (err) 5345 goto err_out; 5346 5347 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5348 5349 mod_btf->btf = btf; 5350 mod_btf->id = id; 5351 mod_btf->fd = fd; 5352 mod_btf->name = strdup(name); 5353 if (!mod_btf->name) { 5354 err = -ENOMEM; 5355 goto err_out; 5356 } 5357 continue; 5358 5359 err_out: 5360 close(fd); 5361 return err; 5362 } 5363 5364 return 0; 5365 } 5366 5367 static struct bpf_core_cand_list * 5368 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5369 { 5370 struct bpf_core_cand local_cand = {}; 5371 struct bpf_core_cand_list *cands; 5372 const struct btf *main_btf; 5373 const struct btf_type *local_t; 5374 const char *local_name; 5375 size_t local_essent_len; 5376 int err, i; 5377 5378 local_cand.btf = local_btf; 5379 local_cand.id = local_type_id; 5380 local_t = btf__type_by_id(local_btf, local_type_id); 5381 if (!local_t) 5382 return ERR_PTR(-EINVAL); 5383 5384 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5385 if (str_is_empty(local_name)) 5386 return ERR_PTR(-EINVAL); 5387 local_essent_len = bpf_core_essential_name_len(local_name); 5388 5389 cands = calloc(1, sizeof(*cands)); 5390 if (!cands) 5391 return ERR_PTR(-ENOMEM); 5392 5393 /* Attempt to find target candidates in vmlinux BTF first */ 5394 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5395 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5396 if (err) 5397 goto err_out; 5398 5399 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5400 if (cands->len) 5401 return cands; 5402 5403 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5404 if (obj->btf_vmlinux_override) 5405 return cands; 5406 5407 /* now look through module BTFs, trying to still find candidates */ 5408 err = load_module_btfs(obj); 5409 if (err) 5410 goto err_out; 5411 5412 for (i = 0; i < obj->btf_module_cnt; i++) { 5413 err = bpf_core_add_cands(&local_cand, local_essent_len, 5414 obj->btf_modules[i].btf, 5415 obj->btf_modules[i].name, 5416 btf__type_cnt(obj->btf_vmlinux), 5417 cands); 5418 if (err) 5419 goto err_out; 5420 } 5421 5422 return cands; 5423 err_out: 5424 bpf_core_free_cands(cands); 5425 return ERR_PTR(err); 5426 } 5427 5428 /* Check local and target types for compatibility. This check is used for 5429 * type-based CO-RE relocations and follow slightly different rules than 5430 * field-based relocations. This function assumes that root types were already 5431 * checked for name match. Beyond that initial root-level name check, names 5432 * are completely ignored. Compatibility rules are as follows: 5433 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5434 * kind should match for local and target types (i.e., STRUCT is not 5435 * compatible with UNION); 5436 * - for ENUMs, the size is ignored; 5437 * - for INT, size and signedness are ignored; 5438 * - for ARRAY, dimensionality is ignored, element types are checked for 5439 * compatibility recursively; 5440 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5441 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5442 * - FUNC_PROTOs are compatible if they have compatible signature: same 5443 * number of input args and compatible return and argument types. 5444 * These rules are not set in stone and probably will be adjusted as we get 5445 * more experience with using BPF CO-RE relocations. 5446 */ 5447 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5448 const struct btf *targ_btf, __u32 targ_id) 5449 { 5450 const struct btf_type *local_type, *targ_type; 5451 int depth = 32; /* max recursion depth */ 5452 5453 /* caller made sure that names match (ignoring flavor suffix) */ 5454 local_type = btf__type_by_id(local_btf, local_id); 5455 targ_type = btf__type_by_id(targ_btf, targ_id); 5456 if (btf_kind(local_type) != btf_kind(targ_type)) 5457 return 0; 5458 5459 recur: 5460 depth--; 5461 if (depth < 0) 5462 return -EINVAL; 5463 5464 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5465 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5466 if (!local_type || !targ_type) 5467 return -EINVAL; 5468 5469 if (btf_kind(local_type) != btf_kind(targ_type)) 5470 return 0; 5471 5472 switch (btf_kind(local_type)) { 5473 case BTF_KIND_UNKN: 5474 case BTF_KIND_STRUCT: 5475 case BTF_KIND_UNION: 5476 case BTF_KIND_ENUM: 5477 case BTF_KIND_FWD: 5478 return 1; 5479 case BTF_KIND_INT: 5480 /* just reject deprecated bitfield-like integers; all other 5481 * integers are by default compatible between each other 5482 */ 5483 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5484 case BTF_KIND_PTR: 5485 local_id = local_type->type; 5486 targ_id = targ_type->type; 5487 goto recur; 5488 case BTF_KIND_ARRAY: 5489 local_id = btf_array(local_type)->type; 5490 targ_id = btf_array(targ_type)->type; 5491 goto recur; 5492 case BTF_KIND_FUNC_PROTO: { 5493 struct btf_param *local_p = btf_params(local_type); 5494 struct btf_param *targ_p = btf_params(targ_type); 5495 __u16 local_vlen = btf_vlen(local_type); 5496 __u16 targ_vlen = btf_vlen(targ_type); 5497 int i, err; 5498 5499 if (local_vlen != targ_vlen) 5500 return 0; 5501 5502 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5503 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5504 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5505 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5506 if (err <= 0) 5507 return err; 5508 } 5509 5510 /* tail recurse for return type check */ 5511 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5512 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5513 goto recur; 5514 } 5515 default: 5516 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5517 btf_kind_str(local_type), local_id, targ_id); 5518 return 0; 5519 } 5520 } 5521 5522 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5523 { 5524 return (size_t)key; 5525 } 5526 5527 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5528 { 5529 return k1 == k2; 5530 } 5531 5532 static void *u32_as_hash_key(__u32 x) 5533 { 5534 return (void *)(uintptr_t)x; 5535 } 5536 5537 static int record_relo_core(struct bpf_program *prog, 5538 const struct bpf_core_relo *core_relo, int insn_idx) 5539 { 5540 struct reloc_desc *relos, *relo; 5541 5542 relos = libbpf_reallocarray(prog->reloc_desc, 5543 prog->nr_reloc + 1, sizeof(*relos)); 5544 if (!relos) 5545 return -ENOMEM; 5546 relo = &relos[prog->nr_reloc]; 5547 relo->type = RELO_CORE; 5548 relo->insn_idx = insn_idx; 5549 relo->core_relo = core_relo; 5550 prog->reloc_desc = relos; 5551 prog->nr_reloc++; 5552 return 0; 5553 } 5554 5555 static int bpf_core_resolve_relo(struct bpf_program *prog, 5556 const struct bpf_core_relo *relo, 5557 int relo_idx, 5558 const struct btf *local_btf, 5559 struct hashmap *cand_cache, 5560 struct bpf_core_relo_res *targ_res) 5561 { 5562 struct bpf_core_spec specs_scratch[3] = {}; 5563 const void *type_key = u32_as_hash_key(relo->type_id); 5564 struct bpf_core_cand_list *cands = NULL; 5565 const char *prog_name = prog->name; 5566 const struct btf_type *local_type; 5567 const char *local_name; 5568 __u32 local_id = relo->type_id; 5569 int err; 5570 5571 local_type = btf__type_by_id(local_btf, local_id); 5572 if (!local_type) 5573 return -EINVAL; 5574 5575 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5576 if (!local_name) 5577 return -EINVAL; 5578 5579 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5580 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5581 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5582 if (IS_ERR(cands)) { 5583 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5584 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5585 local_name, PTR_ERR(cands)); 5586 return PTR_ERR(cands); 5587 } 5588 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5589 if (err) { 5590 bpf_core_free_cands(cands); 5591 return err; 5592 } 5593 } 5594 5595 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5596 targ_res); 5597 } 5598 5599 static int 5600 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5601 { 5602 const struct btf_ext_info_sec *sec; 5603 struct bpf_core_relo_res targ_res; 5604 const struct bpf_core_relo *rec; 5605 const struct btf_ext_info *seg; 5606 struct hashmap_entry *entry; 5607 struct hashmap *cand_cache = NULL; 5608 struct bpf_program *prog; 5609 struct bpf_insn *insn; 5610 const char *sec_name; 5611 int i, err = 0, insn_idx, sec_idx; 5612 5613 if (obj->btf_ext->core_relo_info.len == 0) 5614 return 0; 5615 5616 if (targ_btf_path) { 5617 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5618 err = libbpf_get_error(obj->btf_vmlinux_override); 5619 if (err) { 5620 pr_warn("failed to parse target BTF: %d\n", err); 5621 return err; 5622 } 5623 } 5624 5625 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5626 if (IS_ERR(cand_cache)) { 5627 err = PTR_ERR(cand_cache); 5628 goto out; 5629 } 5630 5631 seg = &obj->btf_ext->core_relo_info; 5632 for_each_btf_ext_sec(seg, sec) { 5633 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5634 if (str_is_empty(sec_name)) { 5635 err = -EINVAL; 5636 goto out; 5637 } 5638 /* bpf_object's ELF is gone by now so it's not easy to find 5639 * section index by section name, but we can find *any* 5640 * bpf_program within desired section name and use it's 5641 * prog->sec_idx to do a proper search by section index and 5642 * instruction offset 5643 */ 5644 prog = NULL; 5645 for (i = 0; i < obj->nr_programs; i++) { 5646 prog = &obj->programs[i]; 5647 if (strcmp(prog->sec_name, sec_name) == 0) 5648 break; 5649 } 5650 if (!prog) { 5651 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5652 return -ENOENT; 5653 } 5654 sec_idx = prog->sec_idx; 5655 5656 pr_debug("sec '%s': found %d CO-RE relocations\n", 5657 sec_name, sec->num_info); 5658 5659 for_each_btf_ext_rec(seg, sec, i, rec) { 5660 if (rec->insn_off % BPF_INSN_SZ) 5661 return -EINVAL; 5662 insn_idx = rec->insn_off / BPF_INSN_SZ; 5663 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5664 if (!prog) { 5665 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5666 sec_name, insn_idx, i); 5667 err = -EINVAL; 5668 goto out; 5669 } 5670 /* no need to apply CO-RE relocation if the program is 5671 * not going to be loaded 5672 */ 5673 if (!prog->load) 5674 continue; 5675 5676 /* adjust insn_idx from section frame of reference to the local 5677 * program's frame of reference; (sub-)program code is not yet 5678 * relocated, so it's enough to just subtract in-section offset 5679 */ 5680 insn_idx = insn_idx - prog->sec_insn_off; 5681 if (insn_idx >= prog->insns_cnt) 5682 return -EINVAL; 5683 insn = &prog->insns[insn_idx]; 5684 5685 if (prog->obj->gen_loader) { 5686 err = record_relo_core(prog, rec, insn_idx); 5687 if (err) { 5688 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5689 prog->name, i, err); 5690 goto out; 5691 } 5692 continue; 5693 } 5694 5695 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5696 if (err) { 5697 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5698 prog->name, i, err); 5699 goto out; 5700 } 5701 5702 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5703 if (err) { 5704 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5705 prog->name, i, insn_idx, err); 5706 goto out; 5707 } 5708 } 5709 } 5710 5711 out: 5712 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5713 btf__free(obj->btf_vmlinux_override); 5714 obj->btf_vmlinux_override = NULL; 5715 5716 if (!IS_ERR_OR_NULL(cand_cache)) { 5717 hashmap__for_each_entry(cand_cache, entry, i) { 5718 bpf_core_free_cands(entry->value); 5719 } 5720 hashmap__free(cand_cache); 5721 } 5722 return err; 5723 } 5724 5725 /* Relocate data references within program code: 5726 * - map references; 5727 * - global variable references; 5728 * - extern references. 5729 */ 5730 static int 5731 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5732 { 5733 int i; 5734 5735 for (i = 0; i < prog->nr_reloc; i++) { 5736 struct reloc_desc *relo = &prog->reloc_desc[i]; 5737 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5738 struct extern_desc *ext; 5739 5740 switch (relo->type) { 5741 case RELO_LD64: 5742 if (obj->gen_loader) { 5743 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5744 insn[0].imm = relo->map_idx; 5745 } else { 5746 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5747 insn[0].imm = obj->maps[relo->map_idx].fd; 5748 } 5749 break; 5750 case RELO_DATA: 5751 insn[1].imm = insn[0].imm + relo->sym_off; 5752 if (obj->gen_loader) { 5753 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5754 insn[0].imm = relo->map_idx; 5755 } else { 5756 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5757 5758 if (map->skipped) { 5759 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5760 prog->name, i); 5761 return -ENOTSUP; 5762 } 5763 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5764 insn[0].imm = obj->maps[relo->map_idx].fd; 5765 } 5766 break; 5767 case RELO_EXTERN_VAR: 5768 ext = &obj->externs[relo->sym_off]; 5769 if (ext->type == EXT_KCFG) { 5770 if (obj->gen_loader) { 5771 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5772 insn[0].imm = obj->kconfig_map_idx; 5773 } else { 5774 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5775 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5776 } 5777 insn[1].imm = ext->kcfg.data_off; 5778 } else /* EXT_KSYM */ { 5779 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5780 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5781 insn[0].imm = ext->ksym.kernel_btf_id; 5782 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5783 } else { /* typeless ksyms or unresolved typed ksyms */ 5784 insn[0].imm = (__u32)ext->ksym.addr; 5785 insn[1].imm = ext->ksym.addr >> 32; 5786 } 5787 } 5788 break; 5789 case RELO_EXTERN_FUNC: 5790 ext = &obj->externs[relo->sym_off]; 5791 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5792 if (ext->is_set) { 5793 insn[0].imm = ext->ksym.kernel_btf_id; 5794 insn[0].off = ext->ksym.btf_fd_idx; 5795 } else { /* unresolved weak kfunc */ 5796 insn[0].imm = 0; 5797 insn[0].off = 0; 5798 } 5799 break; 5800 case RELO_SUBPROG_ADDR: 5801 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5802 pr_warn("prog '%s': relo #%d: bad insn\n", 5803 prog->name, i); 5804 return -EINVAL; 5805 } 5806 /* handled already */ 5807 break; 5808 case RELO_CALL: 5809 /* handled already */ 5810 break; 5811 case RELO_CORE: 5812 /* will be handled by bpf_program_record_relos() */ 5813 break; 5814 default: 5815 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5816 prog->name, i, relo->type); 5817 return -EINVAL; 5818 } 5819 } 5820 5821 return 0; 5822 } 5823 5824 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5825 const struct bpf_program *prog, 5826 const struct btf_ext_info *ext_info, 5827 void **prog_info, __u32 *prog_rec_cnt, 5828 __u32 *prog_rec_sz) 5829 { 5830 void *copy_start = NULL, *copy_end = NULL; 5831 void *rec, *rec_end, *new_prog_info; 5832 const struct btf_ext_info_sec *sec; 5833 size_t old_sz, new_sz; 5834 const char *sec_name; 5835 int i, off_adj; 5836 5837 for_each_btf_ext_sec(ext_info, sec) { 5838 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5839 if (!sec_name) 5840 return -EINVAL; 5841 if (strcmp(sec_name, prog->sec_name) != 0) 5842 continue; 5843 5844 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5845 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5846 5847 if (insn_off < prog->sec_insn_off) 5848 continue; 5849 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5850 break; 5851 5852 if (!copy_start) 5853 copy_start = rec; 5854 copy_end = rec + ext_info->rec_size; 5855 } 5856 5857 if (!copy_start) 5858 return -ENOENT; 5859 5860 /* append func/line info of a given (sub-)program to the main 5861 * program func/line info 5862 */ 5863 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5864 new_sz = old_sz + (copy_end - copy_start); 5865 new_prog_info = realloc(*prog_info, new_sz); 5866 if (!new_prog_info) 5867 return -ENOMEM; 5868 *prog_info = new_prog_info; 5869 *prog_rec_cnt = new_sz / ext_info->rec_size; 5870 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5871 5872 /* Kernel instruction offsets are in units of 8-byte 5873 * instructions, while .BTF.ext instruction offsets generated 5874 * by Clang are in units of bytes. So convert Clang offsets 5875 * into kernel offsets and adjust offset according to program 5876 * relocated position. 5877 */ 5878 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5879 rec = new_prog_info + old_sz; 5880 rec_end = new_prog_info + new_sz; 5881 for (; rec < rec_end; rec += ext_info->rec_size) { 5882 __u32 *insn_off = rec; 5883 5884 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5885 } 5886 *prog_rec_sz = ext_info->rec_size; 5887 return 0; 5888 } 5889 5890 return -ENOENT; 5891 } 5892 5893 static int 5894 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5895 struct bpf_program *main_prog, 5896 const struct bpf_program *prog) 5897 { 5898 int err; 5899 5900 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5901 * supprot func/line info 5902 */ 5903 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5904 return 0; 5905 5906 /* only attempt func info relocation if main program's func_info 5907 * relocation was successful 5908 */ 5909 if (main_prog != prog && !main_prog->func_info) 5910 goto line_info; 5911 5912 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5913 &main_prog->func_info, 5914 &main_prog->func_info_cnt, 5915 &main_prog->func_info_rec_size); 5916 if (err) { 5917 if (err != -ENOENT) { 5918 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5919 prog->name, err); 5920 return err; 5921 } 5922 if (main_prog->func_info) { 5923 /* 5924 * Some info has already been found but has problem 5925 * in the last btf_ext reloc. Must have to error out. 5926 */ 5927 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5928 return err; 5929 } 5930 /* Have problem loading the very first info. Ignore the rest. */ 5931 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5932 prog->name); 5933 } 5934 5935 line_info: 5936 /* don't relocate line info if main program's relocation failed */ 5937 if (main_prog != prog && !main_prog->line_info) 5938 return 0; 5939 5940 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5941 &main_prog->line_info, 5942 &main_prog->line_info_cnt, 5943 &main_prog->line_info_rec_size); 5944 if (err) { 5945 if (err != -ENOENT) { 5946 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5947 prog->name, err); 5948 return err; 5949 } 5950 if (main_prog->line_info) { 5951 /* 5952 * Some info has already been found but has problem 5953 * in the last btf_ext reloc. Must have to error out. 5954 */ 5955 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5956 return err; 5957 } 5958 /* Have problem loading the very first info. Ignore the rest. */ 5959 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5960 prog->name); 5961 } 5962 return 0; 5963 } 5964 5965 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5966 { 5967 size_t insn_idx = *(const size_t *)key; 5968 const struct reloc_desc *relo = elem; 5969 5970 if (insn_idx == relo->insn_idx) 5971 return 0; 5972 return insn_idx < relo->insn_idx ? -1 : 1; 5973 } 5974 5975 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5976 { 5977 if (!prog->nr_reloc) 5978 return NULL; 5979 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5980 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5981 } 5982 5983 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5984 { 5985 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5986 struct reloc_desc *relos; 5987 int i; 5988 5989 if (main_prog == subprog) 5990 return 0; 5991 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5992 if (!relos) 5993 return -ENOMEM; 5994 if (subprog->nr_reloc) 5995 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5996 sizeof(*relos) * subprog->nr_reloc); 5997 5998 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5999 relos[i].insn_idx += subprog->sub_insn_off; 6000 /* After insn_idx adjustment the 'relos' array is still sorted 6001 * by insn_idx and doesn't break bsearch. 6002 */ 6003 main_prog->reloc_desc = relos; 6004 main_prog->nr_reloc = new_cnt; 6005 return 0; 6006 } 6007 6008 static int 6009 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6010 struct bpf_program *prog) 6011 { 6012 size_t sub_insn_idx, insn_idx, new_cnt; 6013 struct bpf_program *subprog; 6014 struct bpf_insn *insns, *insn; 6015 struct reloc_desc *relo; 6016 int err; 6017 6018 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6019 if (err) 6020 return err; 6021 6022 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6023 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6024 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6025 continue; 6026 6027 relo = find_prog_insn_relo(prog, insn_idx); 6028 if (relo && relo->type == RELO_EXTERN_FUNC) 6029 /* kfunc relocations will be handled later 6030 * in bpf_object__relocate_data() 6031 */ 6032 continue; 6033 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6034 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6035 prog->name, insn_idx, relo->type); 6036 return -LIBBPF_ERRNO__RELOC; 6037 } 6038 if (relo) { 6039 /* sub-program instruction index is a combination of 6040 * an offset of a symbol pointed to by relocation and 6041 * call instruction's imm field; for global functions, 6042 * call always has imm = -1, but for static functions 6043 * relocation is against STT_SECTION and insn->imm 6044 * points to a start of a static function 6045 * 6046 * for subprog addr relocation, the relo->sym_off + insn->imm is 6047 * the byte offset in the corresponding section. 6048 */ 6049 if (relo->type == RELO_CALL) 6050 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6051 else 6052 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6053 } else if (insn_is_pseudo_func(insn)) { 6054 /* 6055 * RELO_SUBPROG_ADDR relo is always emitted even if both 6056 * functions are in the same section, so it shouldn't reach here. 6057 */ 6058 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6059 prog->name, insn_idx); 6060 return -LIBBPF_ERRNO__RELOC; 6061 } else { 6062 /* if subprogram call is to a static function within 6063 * the same ELF section, there won't be any relocation 6064 * emitted, but it also means there is no additional 6065 * offset necessary, insns->imm is relative to 6066 * instruction's original position within the section 6067 */ 6068 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6069 } 6070 6071 /* we enforce that sub-programs should be in .text section */ 6072 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6073 if (!subprog) { 6074 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6075 prog->name); 6076 return -LIBBPF_ERRNO__RELOC; 6077 } 6078 6079 /* if it's the first call instruction calling into this 6080 * subprogram (meaning this subprog hasn't been processed 6081 * yet) within the context of current main program: 6082 * - append it at the end of main program's instructions blog; 6083 * - process is recursively, while current program is put on hold; 6084 * - if that subprogram calls some other not yet processes 6085 * subprogram, same thing will happen recursively until 6086 * there are no more unprocesses subprograms left to append 6087 * and relocate. 6088 */ 6089 if (subprog->sub_insn_off == 0) { 6090 subprog->sub_insn_off = main_prog->insns_cnt; 6091 6092 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6093 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6094 if (!insns) { 6095 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6096 return -ENOMEM; 6097 } 6098 main_prog->insns = insns; 6099 main_prog->insns_cnt = new_cnt; 6100 6101 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6102 subprog->insns_cnt * sizeof(*insns)); 6103 6104 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6105 main_prog->name, subprog->insns_cnt, subprog->name); 6106 6107 /* The subprog insns are now appended. Append its relos too. */ 6108 err = append_subprog_relos(main_prog, subprog); 6109 if (err) 6110 return err; 6111 err = bpf_object__reloc_code(obj, main_prog, subprog); 6112 if (err) 6113 return err; 6114 } 6115 6116 /* main_prog->insns memory could have been re-allocated, so 6117 * calculate pointer again 6118 */ 6119 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6120 /* calculate correct instruction position within current main 6121 * prog; each main prog can have a different set of 6122 * subprograms appended (potentially in different order as 6123 * well), so position of any subprog can be different for 6124 * different main programs */ 6125 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6126 6127 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6128 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6129 } 6130 6131 return 0; 6132 } 6133 6134 /* 6135 * Relocate sub-program calls. 6136 * 6137 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6138 * main prog) is processed separately. For each subprog (non-entry functions, 6139 * that can be called from either entry progs or other subprogs) gets their 6140 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6141 * hasn't been yet appended and relocated within current main prog. Once its 6142 * relocated, sub_insn_off will point at the position within current main prog 6143 * where given subprog was appended. This will further be used to relocate all 6144 * the call instructions jumping into this subprog. 6145 * 6146 * We start with main program and process all call instructions. If the call 6147 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6148 * is zero), subprog instructions are appended at the end of main program's 6149 * instruction array. Then main program is "put on hold" while we recursively 6150 * process newly appended subprogram. If that subprogram calls into another 6151 * subprogram that hasn't been appended, new subprogram is appended again to 6152 * the *main* prog's instructions (subprog's instructions are always left 6153 * untouched, as they need to be in unmodified state for subsequent main progs 6154 * and subprog instructions are always sent only as part of a main prog) and 6155 * the process continues recursively. Once all the subprogs called from a main 6156 * prog or any of its subprogs are appended (and relocated), all their 6157 * positions within finalized instructions array are known, so it's easy to 6158 * rewrite call instructions with correct relative offsets, corresponding to 6159 * desired target subprog. 6160 * 6161 * Its important to realize that some subprogs might not be called from some 6162 * main prog and any of its called/used subprogs. Those will keep their 6163 * subprog->sub_insn_off as zero at all times and won't be appended to current 6164 * main prog and won't be relocated within the context of current main prog. 6165 * They might still be used from other main progs later. 6166 * 6167 * Visually this process can be shown as below. Suppose we have two main 6168 * programs mainA and mainB and BPF object contains three subprogs: subA, 6169 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6170 * subC both call subB: 6171 * 6172 * +--------+ +-------+ 6173 * | v v | 6174 * +--+---+ +--+-+-+ +---+--+ 6175 * | subA | | subB | | subC | 6176 * +--+---+ +------+ +---+--+ 6177 * ^ ^ 6178 * | | 6179 * +---+-------+ +------+----+ 6180 * | mainA | | mainB | 6181 * +-----------+ +-----------+ 6182 * 6183 * We'll start relocating mainA, will find subA, append it and start 6184 * processing sub A recursively: 6185 * 6186 * +-----------+------+ 6187 * | mainA | subA | 6188 * +-----------+------+ 6189 * 6190 * At this point we notice that subB is used from subA, so we append it and 6191 * relocate (there are no further subcalls from subB): 6192 * 6193 * +-----------+------+------+ 6194 * | mainA | subA | subB | 6195 * +-----------+------+------+ 6196 * 6197 * At this point, we relocate subA calls, then go one level up and finish with 6198 * relocatin mainA calls. mainA is done. 6199 * 6200 * For mainB process is similar but results in different order. We start with 6201 * mainB and skip subA and subB, as mainB never calls them (at least 6202 * directly), but we see subC is needed, so we append and start processing it: 6203 * 6204 * +-----------+------+ 6205 * | mainB | subC | 6206 * +-----------+------+ 6207 * Now we see subC needs subB, so we go back to it, append and relocate it: 6208 * 6209 * +-----------+------+------+ 6210 * | mainB | subC | subB | 6211 * +-----------+------+------+ 6212 * 6213 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6214 */ 6215 static int 6216 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6217 { 6218 struct bpf_program *subprog; 6219 int i, err; 6220 6221 /* mark all subprogs as not relocated (yet) within the context of 6222 * current main program 6223 */ 6224 for (i = 0; i < obj->nr_programs; i++) { 6225 subprog = &obj->programs[i]; 6226 if (!prog_is_subprog(obj, subprog)) 6227 continue; 6228 6229 subprog->sub_insn_off = 0; 6230 } 6231 6232 err = bpf_object__reloc_code(obj, prog, prog); 6233 if (err) 6234 return err; 6235 6236 6237 return 0; 6238 } 6239 6240 static void 6241 bpf_object__free_relocs(struct bpf_object *obj) 6242 { 6243 struct bpf_program *prog; 6244 int i; 6245 6246 /* free up relocation descriptors */ 6247 for (i = 0; i < obj->nr_programs; i++) { 6248 prog = &obj->programs[i]; 6249 zfree(&prog->reloc_desc); 6250 prog->nr_reloc = 0; 6251 } 6252 } 6253 6254 static int cmp_relocs(const void *_a, const void *_b) 6255 { 6256 const struct reloc_desc *a = _a; 6257 const struct reloc_desc *b = _b; 6258 6259 if (a->insn_idx != b->insn_idx) 6260 return a->insn_idx < b->insn_idx ? -1 : 1; 6261 6262 /* no two relocations should have the same insn_idx, but ... */ 6263 if (a->type != b->type) 6264 return a->type < b->type ? -1 : 1; 6265 6266 return 0; 6267 } 6268 6269 static void bpf_object__sort_relos(struct bpf_object *obj) 6270 { 6271 int i; 6272 6273 for (i = 0; i < obj->nr_programs; i++) { 6274 struct bpf_program *p = &obj->programs[i]; 6275 6276 if (!p->nr_reloc) 6277 continue; 6278 6279 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6280 } 6281 } 6282 6283 static int 6284 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6285 { 6286 struct bpf_program *prog; 6287 size_t i, j; 6288 int err; 6289 6290 if (obj->btf_ext) { 6291 err = bpf_object__relocate_core(obj, targ_btf_path); 6292 if (err) { 6293 pr_warn("failed to perform CO-RE relocations: %d\n", 6294 err); 6295 return err; 6296 } 6297 if (obj->gen_loader) 6298 bpf_object__sort_relos(obj); 6299 } 6300 6301 /* Before relocating calls pre-process relocations and mark 6302 * few ld_imm64 instructions that points to subprogs. 6303 * Otherwise bpf_object__reloc_code() later would have to consider 6304 * all ld_imm64 insns as relocation candidates. That would 6305 * reduce relocation speed, since amount of find_prog_insn_relo() 6306 * would increase and most of them will fail to find a relo. 6307 */ 6308 for (i = 0; i < obj->nr_programs; i++) { 6309 prog = &obj->programs[i]; 6310 for (j = 0; j < prog->nr_reloc; j++) { 6311 struct reloc_desc *relo = &prog->reloc_desc[j]; 6312 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6313 6314 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6315 if (relo->type == RELO_SUBPROG_ADDR) 6316 insn[0].src_reg = BPF_PSEUDO_FUNC; 6317 } 6318 } 6319 6320 /* relocate subprogram calls and append used subprograms to main 6321 * programs; each copy of subprogram code needs to be relocated 6322 * differently for each main program, because its code location might 6323 * have changed. 6324 * Append subprog relos to main programs to allow data relos to be 6325 * processed after text is completely relocated. 6326 */ 6327 for (i = 0; i < obj->nr_programs; i++) { 6328 prog = &obj->programs[i]; 6329 /* sub-program's sub-calls are relocated within the context of 6330 * its main program only 6331 */ 6332 if (prog_is_subprog(obj, prog)) 6333 continue; 6334 if (!prog->load) 6335 continue; 6336 6337 err = bpf_object__relocate_calls(obj, prog); 6338 if (err) { 6339 pr_warn("prog '%s': failed to relocate calls: %d\n", 6340 prog->name, err); 6341 return err; 6342 } 6343 } 6344 /* Process data relos for main programs */ 6345 for (i = 0; i < obj->nr_programs; i++) { 6346 prog = &obj->programs[i]; 6347 if (prog_is_subprog(obj, prog)) 6348 continue; 6349 if (!prog->load) 6350 continue; 6351 err = bpf_object__relocate_data(obj, prog); 6352 if (err) { 6353 pr_warn("prog '%s': failed to relocate data references: %d\n", 6354 prog->name, err); 6355 return err; 6356 } 6357 } 6358 if (!obj->gen_loader) 6359 bpf_object__free_relocs(obj); 6360 return 0; 6361 } 6362 6363 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6364 Elf64_Shdr *shdr, Elf_Data *data); 6365 6366 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6367 Elf64_Shdr *shdr, Elf_Data *data) 6368 { 6369 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6370 int i, j, nrels, new_sz; 6371 const struct btf_var_secinfo *vi = NULL; 6372 const struct btf_type *sec, *var, *def; 6373 struct bpf_map *map = NULL, *targ_map = NULL; 6374 struct bpf_program *targ_prog = NULL; 6375 bool is_prog_array, is_map_in_map; 6376 const struct btf_member *member; 6377 const char *name, *mname, *type; 6378 unsigned int moff; 6379 Elf64_Sym *sym; 6380 Elf64_Rel *rel; 6381 void *tmp; 6382 6383 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6384 return -EINVAL; 6385 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6386 if (!sec) 6387 return -EINVAL; 6388 6389 nrels = shdr->sh_size / shdr->sh_entsize; 6390 for (i = 0; i < nrels; i++) { 6391 rel = elf_rel_by_idx(data, i); 6392 if (!rel) { 6393 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6394 return -LIBBPF_ERRNO__FORMAT; 6395 } 6396 6397 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6398 if (!sym) { 6399 pr_warn(".maps relo #%d: symbol %zx not found\n", 6400 i, (size_t)ELF64_R_SYM(rel->r_info)); 6401 return -LIBBPF_ERRNO__FORMAT; 6402 } 6403 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6404 6405 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6406 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6407 (size_t)rel->r_offset, sym->st_name, name); 6408 6409 for (j = 0; j < obj->nr_maps; j++) { 6410 map = &obj->maps[j]; 6411 if (map->sec_idx != obj->efile.btf_maps_shndx) 6412 continue; 6413 6414 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6415 if (vi->offset <= rel->r_offset && 6416 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6417 break; 6418 } 6419 if (j == obj->nr_maps) { 6420 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6421 i, name, (size_t)rel->r_offset); 6422 return -EINVAL; 6423 } 6424 6425 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6426 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6427 type = is_map_in_map ? "map" : "prog"; 6428 if (is_map_in_map) { 6429 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6430 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6431 i, name); 6432 return -LIBBPF_ERRNO__RELOC; 6433 } 6434 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6435 map->def.key_size != sizeof(int)) { 6436 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6437 i, map->name, sizeof(int)); 6438 return -EINVAL; 6439 } 6440 targ_map = bpf_object__find_map_by_name(obj, name); 6441 if (!targ_map) { 6442 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6443 i, name); 6444 return -ESRCH; 6445 } 6446 } else if (is_prog_array) { 6447 targ_prog = bpf_object__find_program_by_name(obj, name); 6448 if (!targ_prog) { 6449 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6450 i, name); 6451 return -ESRCH; 6452 } 6453 if (targ_prog->sec_idx != sym->st_shndx || 6454 targ_prog->sec_insn_off * 8 != sym->st_value || 6455 prog_is_subprog(obj, targ_prog)) { 6456 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6457 i, name); 6458 return -LIBBPF_ERRNO__RELOC; 6459 } 6460 } else { 6461 return -EINVAL; 6462 } 6463 6464 var = btf__type_by_id(obj->btf, vi->type); 6465 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6466 if (btf_vlen(def) == 0) 6467 return -EINVAL; 6468 member = btf_members(def) + btf_vlen(def) - 1; 6469 mname = btf__name_by_offset(obj->btf, member->name_off); 6470 if (strcmp(mname, "values")) 6471 return -EINVAL; 6472 6473 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6474 if (rel->r_offset - vi->offset < moff) 6475 return -EINVAL; 6476 6477 moff = rel->r_offset - vi->offset - moff; 6478 /* here we use BPF pointer size, which is always 64 bit, as we 6479 * are parsing ELF that was built for BPF target 6480 */ 6481 if (moff % bpf_ptr_sz) 6482 return -EINVAL; 6483 moff /= bpf_ptr_sz; 6484 if (moff >= map->init_slots_sz) { 6485 new_sz = moff + 1; 6486 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6487 if (!tmp) 6488 return -ENOMEM; 6489 map->init_slots = tmp; 6490 memset(map->init_slots + map->init_slots_sz, 0, 6491 (new_sz - map->init_slots_sz) * host_ptr_sz); 6492 map->init_slots_sz = new_sz; 6493 } 6494 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6495 6496 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6497 i, map->name, moff, type, name); 6498 } 6499 6500 return 0; 6501 } 6502 6503 static int bpf_object__collect_relos(struct bpf_object *obj) 6504 { 6505 int i, err; 6506 6507 for (i = 0; i < obj->efile.sec_cnt; i++) { 6508 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6509 Elf64_Shdr *shdr; 6510 Elf_Data *data; 6511 int idx; 6512 6513 if (sec_desc->sec_type != SEC_RELO) 6514 continue; 6515 6516 shdr = sec_desc->shdr; 6517 data = sec_desc->data; 6518 idx = shdr->sh_info; 6519 6520 if (shdr->sh_type != SHT_REL) { 6521 pr_warn("internal error at %d\n", __LINE__); 6522 return -LIBBPF_ERRNO__INTERNAL; 6523 } 6524 6525 if (idx == obj->efile.st_ops_shndx) 6526 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6527 else if (idx == obj->efile.btf_maps_shndx) 6528 err = bpf_object__collect_map_relos(obj, shdr, data); 6529 else 6530 err = bpf_object__collect_prog_relos(obj, shdr, data); 6531 if (err) 6532 return err; 6533 } 6534 6535 bpf_object__sort_relos(obj); 6536 return 0; 6537 } 6538 6539 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6540 { 6541 if (BPF_CLASS(insn->code) == BPF_JMP && 6542 BPF_OP(insn->code) == BPF_CALL && 6543 BPF_SRC(insn->code) == BPF_K && 6544 insn->src_reg == 0 && 6545 insn->dst_reg == 0) { 6546 *func_id = insn->imm; 6547 return true; 6548 } 6549 return false; 6550 } 6551 6552 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6553 { 6554 struct bpf_insn *insn = prog->insns; 6555 enum bpf_func_id func_id; 6556 int i; 6557 6558 if (obj->gen_loader) 6559 return 0; 6560 6561 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6562 if (!insn_is_helper_call(insn, &func_id)) 6563 continue; 6564 6565 /* on kernels that don't yet support 6566 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6567 * to bpf_probe_read() which works well for old kernels 6568 */ 6569 switch (func_id) { 6570 case BPF_FUNC_probe_read_kernel: 6571 case BPF_FUNC_probe_read_user: 6572 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6573 insn->imm = BPF_FUNC_probe_read; 6574 break; 6575 case BPF_FUNC_probe_read_kernel_str: 6576 case BPF_FUNC_probe_read_user_str: 6577 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6578 insn->imm = BPF_FUNC_probe_read_str; 6579 break; 6580 default: 6581 break; 6582 } 6583 } 6584 return 0; 6585 } 6586 6587 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6588 int *btf_obj_fd, int *btf_type_id); 6589 6590 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6591 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6592 struct bpf_prog_load_opts *opts, long cookie) 6593 { 6594 enum sec_def_flags def = cookie; 6595 6596 /* old kernels might not support specifying expected_attach_type */ 6597 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6598 opts->expected_attach_type = 0; 6599 6600 if (def & SEC_SLEEPABLE) 6601 opts->prog_flags |= BPF_F_SLEEPABLE; 6602 6603 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6604 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6605 6606 if (def & SEC_DEPRECATED) 6607 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6608 prog->sec_name); 6609 6610 if ((prog->type == BPF_PROG_TYPE_TRACING || 6611 prog->type == BPF_PROG_TYPE_LSM || 6612 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6613 int btf_obj_fd = 0, btf_type_id = 0, err; 6614 const char *attach_name; 6615 6616 attach_name = strchr(prog->sec_name, '/') + 1; 6617 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6618 if (err) 6619 return err; 6620 6621 /* cache resolved BTF FD and BTF type ID in the prog */ 6622 prog->attach_btf_obj_fd = btf_obj_fd; 6623 prog->attach_btf_id = btf_type_id; 6624 6625 /* but by now libbpf common logic is not utilizing 6626 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6627 * this callback is called after opts were populated by 6628 * libbpf, so this callback has to update opts explicitly here 6629 */ 6630 opts->attach_btf_obj_fd = btf_obj_fd; 6631 opts->attach_btf_id = btf_type_id; 6632 } 6633 return 0; 6634 } 6635 6636 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6637 struct bpf_insn *insns, int insns_cnt, 6638 const char *license, __u32 kern_version, 6639 int *prog_fd) 6640 { 6641 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6642 const char *prog_name = NULL; 6643 char *cp, errmsg[STRERR_BUFSIZE]; 6644 size_t log_buf_size = 0; 6645 char *log_buf = NULL, *tmp; 6646 int btf_fd, ret, err; 6647 bool own_log_buf = true; 6648 __u32 log_level = prog->log_level; 6649 6650 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6651 /* 6652 * The program type must be set. Most likely we couldn't find a proper 6653 * section definition at load time, and thus we didn't infer the type. 6654 */ 6655 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6656 prog->name, prog->sec_name); 6657 return -EINVAL; 6658 } 6659 6660 if (!insns || !insns_cnt) 6661 return -EINVAL; 6662 6663 load_attr.expected_attach_type = prog->expected_attach_type; 6664 if (kernel_supports(obj, FEAT_PROG_NAME)) 6665 prog_name = prog->name; 6666 load_attr.attach_prog_fd = prog->attach_prog_fd; 6667 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6668 load_attr.attach_btf_id = prog->attach_btf_id; 6669 load_attr.kern_version = kern_version; 6670 load_attr.prog_ifindex = prog->prog_ifindex; 6671 6672 /* specify func_info/line_info only if kernel supports them */ 6673 btf_fd = bpf_object__btf_fd(obj); 6674 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6675 load_attr.prog_btf_fd = btf_fd; 6676 load_attr.func_info = prog->func_info; 6677 load_attr.func_info_rec_size = prog->func_info_rec_size; 6678 load_attr.func_info_cnt = prog->func_info_cnt; 6679 load_attr.line_info = prog->line_info; 6680 load_attr.line_info_rec_size = prog->line_info_rec_size; 6681 load_attr.line_info_cnt = prog->line_info_cnt; 6682 } 6683 load_attr.log_level = log_level; 6684 load_attr.prog_flags = prog->prog_flags; 6685 load_attr.fd_array = obj->fd_array; 6686 6687 /* adjust load_attr if sec_def provides custom preload callback */ 6688 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6689 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6690 if (err < 0) { 6691 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6692 prog->name, err); 6693 return err; 6694 } 6695 } 6696 6697 if (obj->gen_loader) { 6698 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6699 license, insns, insns_cnt, &load_attr, 6700 prog - obj->programs); 6701 *prog_fd = -1; 6702 return 0; 6703 } 6704 6705 retry_load: 6706 /* if log_level is zero, we don't request logs initiallly even if 6707 * custom log_buf is specified; if the program load fails, then we'll 6708 * bump log_level to 1 and use either custom log_buf or we'll allocate 6709 * our own and retry the load to get details on what failed 6710 */ 6711 if (log_level) { 6712 if (prog->log_buf) { 6713 log_buf = prog->log_buf; 6714 log_buf_size = prog->log_size; 6715 own_log_buf = false; 6716 } else if (obj->log_buf) { 6717 log_buf = obj->log_buf; 6718 log_buf_size = obj->log_size; 6719 own_log_buf = false; 6720 } else { 6721 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6722 tmp = realloc(log_buf, log_buf_size); 6723 if (!tmp) { 6724 ret = -ENOMEM; 6725 goto out; 6726 } 6727 log_buf = tmp; 6728 log_buf[0] = '\0'; 6729 own_log_buf = true; 6730 } 6731 } 6732 6733 load_attr.log_buf = log_buf; 6734 load_attr.log_size = log_buf_size; 6735 load_attr.log_level = log_level; 6736 6737 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6738 if (ret >= 0) { 6739 if (log_level && own_log_buf) { 6740 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6741 prog->name, log_buf); 6742 } 6743 6744 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6745 struct bpf_map *map; 6746 int i; 6747 6748 for (i = 0; i < obj->nr_maps; i++) { 6749 map = &prog->obj->maps[i]; 6750 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6751 continue; 6752 6753 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6754 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6755 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6756 prog->name, map->real_name, cp); 6757 /* Don't fail hard if can't bind rodata. */ 6758 } 6759 } 6760 } 6761 6762 *prog_fd = ret; 6763 ret = 0; 6764 goto out; 6765 } 6766 6767 if (log_level == 0) { 6768 log_level = 1; 6769 goto retry_load; 6770 } 6771 /* On ENOSPC, increase log buffer size and retry, unless custom 6772 * log_buf is specified. 6773 * Be careful to not overflow u32, though. Kernel's log buf size limit 6774 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6775 * multiply by 2 unless we are sure we'll fit within 32 bits. 6776 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6777 */ 6778 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6779 goto retry_load; 6780 6781 ret = -errno; 6782 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6783 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6784 pr_perm_msg(ret); 6785 6786 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6787 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6788 prog->name, log_buf); 6789 } 6790 if (insns_cnt >= BPF_MAXINSNS) { 6791 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6792 prog->name, insns_cnt, BPF_MAXINSNS); 6793 } 6794 6795 out: 6796 if (own_log_buf) 6797 free(log_buf); 6798 return ret; 6799 } 6800 6801 static int bpf_program_record_relos(struct bpf_program *prog) 6802 { 6803 struct bpf_object *obj = prog->obj; 6804 int i; 6805 6806 for (i = 0; i < prog->nr_reloc; i++) { 6807 struct reloc_desc *relo = &prog->reloc_desc[i]; 6808 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6809 6810 switch (relo->type) { 6811 case RELO_EXTERN_VAR: 6812 if (ext->type != EXT_KSYM) 6813 continue; 6814 bpf_gen__record_extern(obj->gen_loader, ext->name, 6815 ext->is_weak, !ext->ksym.type_id, 6816 BTF_KIND_VAR, relo->insn_idx); 6817 break; 6818 case RELO_EXTERN_FUNC: 6819 bpf_gen__record_extern(obj->gen_loader, ext->name, 6820 ext->is_weak, false, BTF_KIND_FUNC, 6821 relo->insn_idx); 6822 break; 6823 case RELO_CORE: { 6824 struct bpf_core_relo cr = { 6825 .insn_off = relo->insn_idx * 8, 6826 .type_id = relo->core_relo->type_id, 6827 .access_str_off = relo->core_relo->access_str_off, 6828 .kind = relo->core_relo->kind, 6829 }; 6830 6831 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6832 break; 6833 } 6834 default: 6835 continue; 6836 } 6837 } 6838 return 0; 6839 } 6840 6841 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6842 const char *license, __u32 kern_ver) 6843 { 6844 int err = 0, fd, i; 6845 6846 if (obj->loaded) { 6847 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6848 return libbpf_err(-EINVAL); 6849 } 6850 6851 if (prog->instances.nr < 0 || !prog->instances.fds) { 6852 if (prog->preprocessor) { 6853 pr_warn("Internal error: can't load program '%s'\n", 6854 prog->name); 6855 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6856 } 6857 6858 prog->instances.fds = malloc(sizeof(int)); 6859 if (!prog->instances.fds) { 6860 pr_warn("Not enough memory for BPF fds\n"); 6861 return libbpf_err(-ENOMEM); 6862 } 6863 prog->instances.nr = 1; 6864 prog->instances.fds[0] = -1; 6865 } 6866 6867 if (!prog->preprocessor) { 6868 if (prog->instances.nr != 1) { 6869 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6870 prog->name, prog->instances.nr); 6871 } 6872 if (obj->gen_loader) 6873 bpf_program_record_relos(prog); 6874 err = bpf_object_load_prog_instance(obj, prog, 6875 prog->insns, prog->insns_cnt, 6876 license, kern_ver, &fd); 6877 if (!err) 6878 prog->instances.fds[0] = fd; 6879 goto out; 6880 } 6881 6882 for (i = 0; i < prog->instances.nr; i++) { 6883 struct bpf_prog_prep_result result; 6884 bpf_program_prep_t preprocessor = prog->preprocessor; 6885 6886 memset(&result, 0, sizeof(result)); 6887 err = preprocessor(prog, i, prog->insns, 6888 prog->insns_cnt, &result); 6889 if (err) { 6890 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6891 i, prog->name); 6892 goto out; 6893 } 6894 6895 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6896 pr_debug("Skip loading the %dth instance of program '%s'\n", 6897 i, prog->name); 6898 prog->instances.fds[i] = -1; 6899 if (result.pfd) 6900 *result.pfd = -1; 6901 continue; 6902 } 6903 6904 err = bpf_object_load_prog_instance(obj, prog, 6905 result.new_insn_ptr, result.new_insn_cnt, 6906 license, kern_ver, &fd); 6907 if (err) { 6908 pr_warn("Loading the %dth instance of program '%s' failed\n", 6909 i, prog->name); 6910 goto out; 6911 } 6912 6913 if (result.pfd) 6914 *result.pfd = fd; 6915 prog->instances.fds[i] = fd; 6916 } 6917 out: 6918 if (err) 6919 pr_warn("failed to load program '%s'\n", prog->name); 6920 return libbpf_err(err); 6921 } 6922 6923 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6924 { 6925 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6926 } 6927 6928 static int 6929 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6930 { 6931 struct bpf_program *prog; 6932 size_t i; 6933 int err; 6934 6935 for (i = 0; i < obj->nr_programs; i++) { 6936 prog = &obj->programs[i]; 6937 err = bpf_object__sanitize_prog(obj, prog); 6938 if (err) 6939 return err; 6940 } 6941 6942 for (i = 0; i < obj->nr_programs; i++) { 6943 prog = &obj->programs[i]; 6944 if (prog_is_subprog(obj, prog)) 6945 continue; 6946 if (!prog->load) { 6947 pr_debug("prog '%s': skipped loading\n", prog->name); 6948 continue; 6949 } 6950 prog->log_level |= log_level; 6951 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6952 if (err) 6953 return err; 6954 } 6955 if (obj->gen_loader) 6956 bpf_object__free_relocs(obj); 6957 return 0; 6958 } 6959 6960 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6961 6962 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6963 { 6964 struct bpf_program *prog; 6965 int err; 6966 6967 bpf_object__for_each_program(prog, obj) { 6968 prog->sec_def = find_sec_def(prog->sec_name); 6969 if (!prog->sec_def) { 6970 /* couldn't guess, but user might manually specify */ 6971 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6972 prog->name, prog->sec_name); 6973 continue; 6974 } 6975 6976 bpf_program__set_type(prog, prog->sec_def->prog_type); 6977 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6978 6979 #pragma GCC diagnostic push 6980 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6981 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6982 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6983 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6984 #pragma GCC diagnostic pop 6985 6986 /* sec_def can have custom callback which should be called 6987 * after bpf_program is initialized to adjust its properties 6988 */ 6989 if (prog->sec_def->prog_setup_fn) { 6990 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 6991 if (err < 0) { 6992 pr_warn("prog '%s': failed to initialize: %d\n", 6993 prog->name, err); 6994 return err; 6995 } 6996 } 6997 } 6998 6999 return 0; 7000 } 7001 7002 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7003 const struct bpf_object_open_opts *opts) 7004 { 7005 const char *obj_name, *kconfig, *btf_tmp_path; 7006 struct bpf_object *obj; 7007 char tmp_name[64]; 7008 int err; 7009 char *log_buf; 7010 size_t log_size; 7011 __u32 log_level; 7012 7013 if (elf_version(EV_CURRENT) == EV_NONE) { 7014 pr_warn("failed to init libelf for %s\n", 7015 path ? : "(mem buf)"); 7016 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7017 } 7018 7019 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7020 return ERR_PTR(-EINVAL); 7021 7022 obj_name = OPTS_GET(opts, object_name, NULL); 7023 if (obj_buf) { 7024 if (!obj_name) { 7025 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7026 (unsigned long)obj_buf, 7027 (unsigned long)obj_buf_sz); 7028 obj_name = tmp_name; 7029 } 7030 path = obj_name; 7031 pr_debug("loading object '%s' from buffer\n", obj_name); 7032 } 7033 7034 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7035 log_size = OPTS_GET(opts, kernel_log_size, 0); 7036 log_level = OPTS_GET(opts, kernel_log_level, 0); 7037 if (log_size > UINT_MAX) 7038 return ERR_PTR(-EINVAL); 7039 if (log_size && !log_buf) 7040 return ERR_PTR(-EINVAL); 7041 7042 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7043 if (IS_ERR(obj)) 7044 return obj; 7045 7046 obj->log_buf = log_buf; 7047 obj->log_size = log_size; 7048 obj->log_level = log_level; 7049 7050 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7051 if (btf_tmp_path) { 7052 if (strlen(btf_tmp_path) >= PATH_MAX) { 7053 err = -ENAMETOOLONG; 7054 goto out; 7055 } 7056 obj->btf_custom_path = strdup(btf_tmp_path); 7057 if (!obj->btf_custom_path) { 7058 err = -ENOMEM; 7059 goto out; 7060 } 7061 } 7062 7063 kconfig = OPTS_GET(opts, kconfig, NULL); 7064 if (kconfig) { 7065 obj->kconfig = strdup(kconfig); 7066 if (!obj->kconfig) { 7067 err = -ENOMEM; 7068 goto out; 7069 } 7070 } 7071 7072 err = bpf_object__elf_init(obj); 7073 err = err ? : bpf_object__check_endianness(obj); 7074 err = err ? : bpf_object__elf_collect(obj); 7075 err = err ? : bpf_object__collect_externs(obj); 7076 err = err ? : bpf_object__finalize_btf(obj); 7077 err = err ? : bpf_object__init_maps(obj, opts); 7078 err = err ? : bpf_object_init_progs(obj, opts); 7079 err = err ? : bpf_object__collect_relos(obj); 7080 if (err) 7081 goto out; 7082 7083 bpf_object__elf_finish(obj); 7084 7085 return obj; 7086 out: 7087 bpf_object__close(obj); 7088 return ERR_PTR(err); 7089 } 7090 7091 static struct bpf_object * 7092 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7093 { 7094 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7095 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7096 ); 7097 7098 /* param validation */ 7099 if (!attr->file) 7100 return NULL; 7101 7102 pr_debug("loading %s\n", attr->file); 7103 return bpf_object_open(attr->file, NULL, 0, &opts); 7104 } 7105 7106 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7107 { 7108 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7109 } 7110 7111 struct bpf_object *bpf_object__open(const char *path) 7112 { 7113 struct bpf_object_open_attr attr = { 7114 .file = path, 7115 .prog_type = BPF_PROG_TYPE_UNSPEC, 7116 }; 7117 7118 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7119 } 7120 7121 struct bpf_object * 7122 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7123 { 7124 if (!path) 7125 return libbpf_err_ptr(-EINVAL); 7126 7127 pr_debug("loading %s\n", path); 7128 7129 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7130 } 7131 7132 struct bpf_object * 7133 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7134 const struct bpf_object_open_opts *opts) 7135 { 7136 if (!obj_buf || obj_buf_sz == 0) 7137 return libbpf_err_ptr(-EINVAL); 7138 7139 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7140 } 7141 7142 struct bpf_object * 7143 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7144 const char *name) 7145 { 7146 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7147 .object_name = name, 7148 /* wrong default, but backwards-compatible */ 7149 .relaxed_maps = true, 7150 ); 7151 7152 /* returning NULL is wrong, but backwards-compatible */ 7153 if (!obj_buf || obj_buf_sz == 0) 7154 return errno = EINVAL, NULL; 7155 7156 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7157 } 7158 7159 static int bpf_object_unload(struct bpf_object *obj) 7160 { 7161 size_t i; 7162 7163 if (!obj) 7164 return libbpf_err(-EINVAL); 7165 7166 for (i = 0; i < obj->nr_maps; i++) { 7167 zclose(obj->maps[i].fd); 7168 if (obj->maps[i].st_ops) 7169 zfree(&obj->maps[i].st_ops->kern_vdata); 7170 } 7171 7172 for (i = 0; i < obj->nr_programs; i++) 7173 bpf_program__unload(&obj->programs[i]); 7174 7175 return 0; 7176 } 7177 7178 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7179 7180 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7181 { 7182 struct bpf_map *m; 7183 7184 bpf_object__for_each_map(m, obj) { 7185 if (!bpf_map__is_internal(m)) 7186 continue; 7187 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7188 m->def.map_flags ^= BPF_F_MMAPABLE; 7189 } 7190 7191 return 0; 7192 } 7193 7194 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7195 { 7196 char sym_type, sym_name[500]; 7197 unsigned long long sym_addr; 7198 int ret, err = 0; 7199 FILE *f; 7200 7201 f = fopen("/proc/kallsyms", "r"); 7202 if (!f) { 7203 err = -errno; 7204 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7205 return err; 7206 } 7207 7208 while (true) { 7209 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7210 &sym_addr, &sym_type, sym_name); 7211 if (ret == EOF && feof(f)) 7212 break; 7213 if (ret != 3) { 7214 pr_warn("failed to read kallsyms entry: %d\n", ret); 7215 err = -EINVAL; 7216 break; 7217 } 7218 7219 err = cb(sym_addr, sym_type, sym_name, ctx); 7220 if (err) 7221 break; 7222 } 7223 7224 fclose(f); 7225 return err; 7226 } 7227 7228 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7229 const char *sym_name, void *ctx) 7230 { 7231 struct bpf_object *obj = ctx; 7232 const struct btf_type *t; 7233 struct extern_desc *ext; 7234 7235 ext = find_extern_by_name(obj, sym_name); 7236 if (!ext || ext->type != EXT_KSYM) 7237 return 0; 7238 7239 t = btf__type_by_id(obj->btf, ext->btf_id); 7240 if (!btf_is_var(t)) 7241 return 0; 7242 7243 if (ext->is_set && ext->ksym.addr != sym_addr) { 7244 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7245 sym_name, ext->ksym.addr, sym_addr); 7246 return -EINVAL; 7247 } 7248 if (!ext->is_set) { 7249 ext->is_set = true; 7250 ext->ksym.addr = sym_addr; 7251 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7252 } 7253 return 0; 7254 } 7255 7256 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7257 { 7258 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7259 } 7260 7261 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7262 __u16 kind, struct btf **res_btf, 7263 struct module_btf **res_mod_btf) 7264 { 7265 struct module_btf *mod_btf; 7266 struct btf *btf; 7267 int i, id, err; 7268 7269 btf = obj->btf_vmlinux; 7270 mod_btf = NULL; 7271 id = btf__find_by_name_kind(btf, ksym_name, kind); 7272 7273 if (id == -ENOENT) { 7274 err = load_module_btfs(obj); 7275 if (err) 7276 return err; 7277 7278 for (i = 0; i < obj->btf_module_cnt; i++) { 7279 /* we assume module_btf's BTF FD is always >0 */ 7280 mod_btf = &obj->btf_modules[i]; 7281 btf = mod_btf->btf; 7282 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7283 if (id != -ENOENT) 7284 break; 7285 } 7286 } 7287 if (id <= 0) 7288 return -ESRCH; 7289 7290 *res_btf = btf; 7291 *res_mod_btf = mod_btf; 7292 return id; 7293 } 7294 7295 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7296 struct extern_desc *ext) 7297 { 7298 const struct btf_type *targ_var, *targ_type; 7299 __u32 targ_type_id, local_type_id; 7300 struct module_btf *mod_btf = NULL; 7301 const char *targ_var_name; 7302 struct btf *btf = NULL; 7303 int id, err; 7304 7305 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7306 if (id < 0) { 7307 if (id == -ESRCH && ext->is_weak) 7308 return 0; 7309 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7310 ext->name); 7311 return id; 7312 } 7313 7314 /* find local type_id */ 7315 local_type_id = ext->ksym.type_id; 7316 7317 /* find target type_id */ 7318 targ_var = btf__type_by_id(btf, id); 7319 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7320 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7321 7322 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7323 btf, targ_type_id); 7324 if (err <= 0) { 7325 const struct btf_type *local_type; 7326 const char *targ_name, *local_name; 7327 7328 local_type = btf__type_by_id(obj->btf, local_type_id); 7329 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7330 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7331 7332 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7333 ext->name, local_type_id, 7334 btf_kind_str(local_type), local_name, targ_type_id, 7335 btf_kind_str(targ_type), targ_name); 7336 return -EINVAL; 7337 } 7338 7339 ext->is_set = true; 7340 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7341 ext->ksym.kernel_btf_id = id; 7342 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7343 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7344 7345 return 0; 7346 } 7347 7348 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7349 struct extern_desc *ext) 7350 { 7351 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7352 struct module_btf *mod_btf = NULL; 7353 const struct btf_type *kern_func; 7354 struct btf *kern_btf = NULL; 7355 int ret; 7356 7357 local_func_proto_id = ext->ksym.type_id; 7358 7359 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7360 if (kfunc_id < 0) { 7361 if (kfunc_id == -ESRCH && ext->is_weak) 7362 return 0; 7363 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7364 ext->name); 7365 return kfunc_id; 7366 } 7367 7368 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7369 kfunc_proto_id = kern_func->type; 7370 7371 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7372 kern_btf, kfunc_proto_id); 7373 if (ret <= 0) { 7374 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7375 ext->name, local_func_proto_id, kfunc_proto_id); 7376 return -EINVAL; 7377 } 7378 7379 /* set index for module BTF fd in fd_array, if unset */ 7380 if (mod_btf && !mod_btf->fd_array_idx) { 7381 /* insn->off is s16 */ 7382 if (obj->fd_array_cnt == INT16_MAX) { 7383 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7384 ext->name, mod_btf->fd_array_idx); 7385 return -E2BIG; 7386 } 7387 /* Cannot use index 0 for module BTF fd */ 7388 if (!obj->fd_array_cnt) 7389 obj->fd_array_cnt = 1; 7390 7391 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7392 obj->fd_array_cnt + 1); 7393 if (ret) 7394 return ret; 7395 mod_btf->fd_array_idx = obj->fd_array_cnt; 7396 /* we assume module BTF FD is always >0 */ 7397 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7398 } 7399 7400 ext->is_set = true; 7401 ext->ksym.kernel_btf_id = kfunc_id; 7402 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7403 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7404 ext->name, kfunc_id); 7405 7406 return 0; 7407 } 7408 7409 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7410 { 7411 const struct btf_type *t; 7412 struct extern_desc *ext; 7413 int i, err; 7414 7415 for (i = 0; i < obj->nr_extern; i++) { 7416 ext = &obj->externs[i]; 7417 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7418 continue; 7419 7420 if (obj->gen_loader) { 7421 ext->is_set = true; 7422 ext->ksym.kernel_btf_obj_fd = 0; 7423 ext->ksym.kernel_btf_id = 0; 7424 continue; 7425 } 7426 t = btf__type_by_id(obj->btf, ext->btf_id); 7427 if (btf_is_var(t)) 7428 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7429 else 7430 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7431 if (err) 7432 return err; 7433 } 7434 return 0; 7435 } 7436 7437 static int bpf_object__resolve_externs(struct bpf_object *obj, 7438 const char *extra_kconfig) 7439 { 7440 bool need_config = false, need_kallsyms = false; 7441 bool need_vmlinux_btf = false; 7442 struct extern_desc *ext; 7443 void *kcfg_data = NULL; 7444 int err, i; 7445 7446 if (obj->nr_extern == 0) 7447 return 0; 7448 7449 if (obj->kconfig_map_idx >= 0) 7450 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7451 7452 for (i = 0; i < obj->nr_extern; i++) { 7453 ext = &obj->externs[i]; 7454 7455 if (ext->type == EXT_KCFG && 7456 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7457 void *ext_val = kcfg_data + ext->kcfg.data_off; 7458 __u32 kver = get_kernel_version(); 7459 7460 if (!kver) { 7461 pr_warn("failed to get kernel version\n"); 7462 return -EINVAL; 7463 } 7464 err = set_kcfg_value_num(ext, ext_val, kver); 7465 if (err) 7466 return err; 7467 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7468 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7469 need_config = true; 7470 } else if (ext->type == EXT_KSYM) { 7471 if (ext->ksym.type_id) 7472 need_vmlinux_btf = true; 7473 else 7474 need_kallsyms = true; 7475 } else { 7476 pr_warn("unrecognized extern '%s'\n", ext->name); 7477 return -EINVAL; 7478 } 7479 } 7480 if (need_config && extra_kconfig) { 7481 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7482 if (err) 7483 return -EINVAL; 7484 need_config = false; 7485 for (i = 0; i < obj->nr_extern; i++) { 7486 ext = &obj->externs[i]; 7487 if (ext->type == EXT_KCFG && !ext->is_set) { 7488 need_config = true; 7489 break; 7490 } 7491 } 7492 } 7493 if (need_config) { 7494 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7495 if (err) 7496 return -EINVAL; 7497 } 7498 if (need_kallsyms) { 7499 err = bpf_object__read_kallsyms_file(obj); 7500 if (err) 7501 return -EINVAL; 7502 } 7503 if (need_vmlinux_btf) { 7504 err = bpf_object__resolve_ksyms_btf_id(obj); 7505 if (err) 7506 return -EINVAL; 7507 } 7508 for (i = 0; i < obj->nr_extern; i++) { 7509 ext = &obj->externs[i]; 7510 7511 if (!ext->is_set && !ext->is_weak) { 7512 pr_warn("extern %s (strong) not resolved\n", ext->name); 7513 return -ESRCH; 7514 } else if (!ext->is_set) { 7515 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7516 ext->name); 7517 } 7518 } 7519 7520 return 0; 7521 } 7522 7523 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7524 { 7525 int err, i; 7526 7527 if (!obj) 7528 return libbpf_err(-EINVAL); 7529 7530 if (obj->loaded) { 7531 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7532 return libbpf_err(-EINVAL); 7533 } 7534 7535 if (obj->gen_loader) 7536 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7537 7538 err = bpf_object__probe_loading(obj); 7539 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7540 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7541 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7542 err = err ? : bpf_object__sanitize_maps(obj); 7543 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7544 err = err ? : bpf_object__create_maps(obj); 7545 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7546 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7547 err = err ? : bpf_object_init_prog_arrays(obj); 7548 7549 if (obj->gen_loader) { 7550 /* reset FDs */ 7551 if (obj->btf) 7552 btf__set_fd(obj->btf, -1); 7553 for (i = 0; i < obj->nr_maps; i++) 7554 obj->maps[i].fd = -1; 7555 if (!err) 7556 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7557 } 7558 7559 /* clean up fd_array */ 7560 zfree(&obj->fd_array); 7561 7562 /* clean up module BTFs */ 7563 for (i = 0; i < obj->btf_module_cnt; i++) { 7564 close(obj->btf_modules[i].fd); 7565 btf__free(obj->btf_modules[i].btf); 7566 free(obj->btf_modules[i].name); 7567 } 7568 free(obj->btf_modules); 7569 7570 /* clean up vmlinux BTF */ 7571 btf__free(obj->btf_vmlinux); 7572 obj->btf_vmlinux = NULL; 7573 7574 obj->loaded = true; /* doesn't matter if successfully or not */ 7575 7576 if (err) 7577 goto out; 7578 7579 return 0; 7580 out: 7581 /* unpin any maps that were auto-pinned during load */ 7582 for (i = 0; i < obj->nr_maps; i++) 7583 if (obj->maps[i].pinned && !obj->maps[i].reused) 7584 bpf_map__unpin(&obj->maps[i], NULL); 7585 7586 bpf_object_unload(obj); 7587 pr_warn("failed to load object '%s'\n", obj->path); 7588 return libbpf_err(err); 7589 } 7590 7591 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7592 { 7593 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7594 } 7595 7596 int bpf_object__load(struct bpf_object *obj) 7597 { 7598 return bpf_object_load(obj, 0, NULL); 7599 } 7600 7601 static int make_parent_dir(const char *path) 7602 { 7603 char *cp, errmsg[STRERR_BUFSIZE]; 7604 char *dname, *dir; 7605 int err = 0; 7606 7607 dname = strdup(path); 7608 if (dname == NULL) 7609 return -ENOMEM; 7610 7611 dir = dirname(dname); 7612 if (mkdir(dir, 0700) && errno != EEXIST) 7613 err = -errno; 7614 7615 free(dname); 7616 if (err) { 7617 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7618 pr_warn("failed to mkdir %s: %s\n", path, cp); 7619 } 7620 return err; 7621 } 7622 7623 static int check_path(const char *path) 7624 { 7625 char *cp, errmsg[STRERR_BUFSIZE]; 7626 struct statfs st_fs; 7627 char *dname, *dir; 7628 int err = 0; 7629 7630 if (path == NULL) 7631 return -EINVAL; 7632 7633 dname = strdup(path); 7634 if (dname == NULL) 7635 return -ENOMEM; 7636 7637 dir = dirname(dname); 7638 if (statfs(dir, &st_fs)) { 7639 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7640 pr_warn("failed to statfs %s: %s\n", dir, cp); 7641 err = -errno; 7642 } 7643 free(dname); 7644 7645 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7646 pr_warn("specified path %s is not on BPF FS\n", path); 7647 err = -EINVAL; 7648 } 7649 7650 return err; 7651 } 7652 7653 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7654 { 7655 char *cp, errmsg[STRERR_BUFSIZE]; 7656 int err; 7657 7658 err = make_parent_dir(path); 7659 if (err) 7660 return libbpf_err(err); 7661 7662 err = check_path(path); 7663 if (err) 7664 return libbpf_err(err); 7665 7666 if (prog == NULL) { 7667 pr_warn("invalid program pointer\n"); 7668 return libbpf_err(-EINVAL); 7669 } 7670 7671 if (instance < 0 || instance >= prog->instances.nr) { 7672 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7673 instance, prog->name, prog->instances.nr); 7674 return libbpf_err(-EINVAL); 7675 } 7676 7677 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7678 err = -errno; 7679 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7680 pr_warn("failed to pin program: %s\n", cp); 7681 return libbpf_err(err); 7682 } 7683 pr_debug("pinned program '%s'\n", path); 7684 7685 return 0; 7686 } 7687 7688 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7689 { 7690 int err; 7691 7692 err = check_path(path); 7693 if (err) 7694 return libbpf_err(err); 7695 7696 if (prog == NULL) { 7697 pr_warn("invalid program pointer\n"); 7698 return libbpf_err(-EINVAL); 7699 } 7700 7701 if (instance < 0 || instance >= prog->instances.nr) { 7702 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7703 instance, prog->name, prog->instances.nr); 7704 return libbpf_err(-EINVAL); 7705 } 7706 7707 err = unlink(path); 7708 if (err != 0) 7709 return libbpf_err(-errno); 7710 7711 pr_debug("unpinned program '%s'\n", path); 7712 7713 return 0; 7714 } 7715 7716 __attribute__((alias("bpf_program_pin_instance"))) 7717 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7718 7719 __attribute__((alias("bpf_program_unpin_instance"))) 7720 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7721 7722 int bpf_program__pin(struct bpf_program *prog, const char *path) 7723 { 7724 int i, err; 7725 7726 err = make_parent_dir(path); 7727 if (err) 7728 return libbpf_err(err); 7729 7730 err = check_path(path); 7731 if (err) 7732 return libbpf_err(err); 7733 7734 if (prog == NULL) { 7735 pr_warn("invalid program pointer\n"); 7736 return libbpf_err(-EINVAL); 7737 } 7738 7739 if (prog->instances.nr <= 0) { 7740 pr_warn("no instances of prog %s to pin\n", prog->name); 7741 return libbpf_err(-EINVAL); 7742 } 7743 7744 if (prog->instances.nr == 1) { 7745 /* don't create subdirs when pinning single instance */ 7746 return bpf_program_pin_instance(prog, path, 0); 7747 } 7748 7749 for (i = 0; i < prog->instances.nr; i++) { 7750 char buf[PATH_MAX]; 7751 int len; 7752 7753 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7754 if (len < 0) { 7755 err = -EINVAL; 7756 goto err_unpin; 7757 } else if (len >= PATH_MAX) { 7758 err = -ENAMETOOLONG; 7759 goto err_unpin; 7760 } 7761 7762 err = bpf_program_pin_instance(prog, buf, i); 7763 if (err) 7764 goto err_unpin; 7765 } 7766 7767 return 0; 7768 7769 err_unpin: 7770 for (i = i - 1; i >= 0; i--) { 7771 char buf[PATH_MAX]; 7772 int len; 7773 7774 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7775 if (len < 0) 7776 continue; 7777 else if (len >= PATH_MAX) 7778 continue; 7779 7780 bpf_program_unpin_instance(prog, buf, i); 7781 } 7782 7783 rmdir(path); 7784 7785 return libbpf_err(err); 7786 } 7787 7788 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7789 { 7790 int i, err; 7791 7792 err = check_path(path); 7793 if (err) 7794 return libbpf_err(err); 7795 7796 if (prog == NULL) { 7797 pr_warn("invalid program pointer\n"); 7798 return libbpf_err(-EINVAL); 7799 } 7800 7801 if (prog->instances.nr <= 0) { 7802 pr_warn("no instances of prog %s to pin\n", prog->name); 7803 return libbpf_err(-EINVAL); 7804 } 7805 7806 if (prog->instances.nr == 1) { 7807 /* don't create subdirs when pinning single instance */ 7808 return bpf_program_unpin_instance(prog, path, 0); 7809 } 7810 7811 for (i = 0; i < prog->instances.nr; i++) { 7812 char buf[PATH_MAX]; 7813 int len; 7814 7815 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7816 if (len < 0) 7817 return libbpf_err(-EINVAL); 7818 else if (len >= PATH_MAX) 7819 return libbpf_err(-ENAMETOOLONG); 7820 7821 err = bpf_program_unpin_instance(prog, buf, i); 7822 if (err) 7823 return err; 7824 } 7825 7826 err = rmdir(path); 7827 if (err) 7828 return libbpf_err(-errno); 7829 7830 return 0; 7831 } 7832 7833 int bpf_map__pin(struct bpf_map *map, const char *path) 7834 { 7835 char *cp, errmsg[STRERR_BUFSIZE]; 7836 int err; 7837 7838 if (map == NULL) { 7839 pr_warn("invalid map pointer\n"); 7840 return libbpf_err(-EINVAL); 7841 } 7842 7843 if (map->pin_path) { 7844 if (path && strcmp(path, map->pin_path)) { 7845 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7846 bpf_map__name(map), map->pin_path, path); 7847 return libbpf_err(-EINVAL); 7848 } else if (map->pinned) { 7849 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7850 bpf_map__name(map), map->pin_path); 7851 return 0; 7852 } 7853 } else { 7854 if (!path) { 7855 pr_warn("missing a path to pin map '%s' at\n", 7856 bpf_map__name(map)); 7857 return libbpf_err(-EINVAL); 7858 } else if (map->pinned) { 7859 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7860 return libbpf_err(-EEXIST); 7861 } 7862 7863 map->pin_path = strdup(path); 7864 if (!map->pin_path) { 7865 err = -errno; 7866 goto out_err; 7867 } 7868 } 7869 7870 err = make_parent_dir(map->pin_path); 7871 if (err) 7872 return libbpf_err(err); 7873 7874 err = check_path(map->pin_path); 7875 if (err) 7876 return libbpf_err(err); 7877 7878 if (bpf_obj_pin(map->fd, map->pin_path)) { 7879 err = -errno; 7880 goto out_err; 7881 } 7882 7883 map->pinned = true; 7884 pr_debug("pinned map '%s'\n", map->pin_path); 7885 7886 return 0; 7887 7888 out_err: 7889 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7890 pr_warn("failed to pin map: %s\n", cp); 7891 return libbpf_err(err); 7892 } 7893 7894 int bpf_map__unpin(struct bpf_map *map, const char *path) 7895 { 7896 int err; 7897 7898 if (map == NULL) { 7899 pr_warn("invalid map pointer\n"); 7900 return libbpf_err(-EINVAL); 7901 } 7902 7903 if (map->pin_path) { 7904 if (path && strcmp(path, map->pin_path)) { 7905 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7906 bpf_map__name(map), map->pin_path, path); 7907 return libbpf_err(-EINVAL); 7908 } 7909 path = map->pin_path; 7910 } else if (!path) { 7911 pr_warn("no path to unpin map '%s' from\n", 7912 bpf_map__name(map)); 7913 return libbpf_err(-EINVAL); 7914 } 7915 7916 err = check_path(path); 7917 if (err) 7918 return libbpf_err(err); 7919 7920 err = unlink(path); 7921 if (err != 0) 7922 return libbpf_err(-errno); 7923 7924 map->pinned = false; 7925 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7926 7927 return 0; 7928 } 7929 7930 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7931 { 7932 char *new = NULL; 7933 7934 if (path) { 7935 new = strdup(path); 7936 if (!new) 7937 return libbpf_err(-errno); 7938 } 7939 7940 free(map->pin_path); 7941 map->pin_path = new; 7942 return 0; 7943 } 7944 7945 __alias(bpf_map__pin_path) 7946 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7947 7948 const char *bpf_map__pin_path(const struct bpf_map *map) 7949 { 7950 return map->pin_path; 7951 } 7952 7953 bool bpf_map__is_pinned(const struct bpf_map *map) 7954 { 7955 return map->pinned; 7956 } 7957 7958 static void sanitize_pin_path(char *s) 7959 { 7960 /* bpffs disallows periods in path names */ 7961 while (*s) { 7962 if (*s == '.') 7963 *s = '_'; 7964 s++; 7965 } 7966 } 7967 7968 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7969 { 7970 struct bpf_map *map; 7971 int err; 7972 7973 if (!obj) 7974 return libbpf_err(-ENOENT); 7975 7976 if (!obj->loaded) { 7977 pr_warn("object not yet loaded; load it first\n"); 7978 return libbpf_err(-ENOENT); 7979 } 7980 7981 bpf_object__for_each_map(map, obj) { 7982 char *pin_path = NULL; 7983 char buf[PATH_MAX]; 7984 7985 if (map->skipped) 7986 continue; 7987 7988 if (path) { 7989 int len; 7990 7991 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7992 bpf_map__name(map)); 7993 if (len < 0) { 7994 err = -EINVAL; 7995 goto err_unpin_maps; 7996 } else if (len >= PATH_MAX) { 7997 err = -ENAMETOOLONG; 7998 goto err_unpin_maps; 7999 } 8000 sanitize_pin_path(buf); 8001 pin_path = buf; 8002 } else if (!map->pin_path) { 8003 continue; 8004 } 8005 8006 err = bpf_map__pin(map, pin_path); 8007 if (err) 8008 goto err_unpin_maps; 8009 } 8010 8011 return 0; 8012 8013 err_unpin_maps: 8014 while ((map = bpf_object__prev_map(obj, map))) { 8015 if (!map->pin_path) 8016 continue; 8017 8018 bpf_map__unpin(map, NULL); 8019 } 8020 8021 return libbpf_err(err); 8022 } 8023 8024 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8025 { 8026 struct bpf_map *map; 8027 int err; 8028 8029 if (!obj) 8030 return libbpf_err(-ENOENT); 8031 8032 bpf_object__for_each_map(map, obj) { 8033 char *pin_path = NULL; 8034 char buf[PATH_MAX]; 8035 8036 if (path) { 8037 int len; 8038 8039 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8040 bpf_map__name(map)); 8041 if (len < 0) 8042 return libbpf_err(-EINVAL); 8043 else if (len >= PATH_MAX) 8044 return libbpf_err(-ENAMETOOLONG); 8045 sanitize_pin_path(buf); 8046 pin_path = buf; 8047 } else if (!map->pin_path) { 8048 continue; 8049 } 8050 8051 err = bpf_map__unpin(map, pin_path); 8052 if (err) 8053 return libbpf_err(err); 8054 } 8055 8056 return 0; 8057 } 8058 8059 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8060 { 8061 struct bpf_program *prog; 8062 int err; 8063 8064 if (!obj) 8065 return libbpf_err(-ENOENT); 8066 8067 if (!obj->loaded) { 8068 pr_warn("object not yet loaded; load it first\n"); 8069 return libbpf_err(-ENOENT); 8070 } 8071 8072 bpf_object__for_each_program(prog, obj) { 8073 char buf[PATH_MAX]; 8074 int len; 8075 8076 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8077 prog->pin_name); 8078 if (len < 0) { 8079 err = -EINVAL; 8080 goto err_unpin_programs; 8081 } else if (len >= PATH_MAX) { 8082 err = -ENAMETOOLONG; 8083 goto err_unpin_programs; 8084 } 8085 8086 err = bpf_program__pin(prog, buf); 8087 if (err) 8088 goto err_unpin_programs; 8089 } 8090 8091 return 0; 8092 8093 err_unpin_programs: 8094 while ((prog = bpf_object__prev_program(obj, prog))) { 8095 char buf[PATH_MAX]; 8096 int len; 8097 8098 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8099 prog->pin_name); 8100 if (len < 0) 8101 continue; 8102 else if (len >= PATH_MAX) 8103 continue; 8104 8105 bpf_program__unpin(prog, buf); 8106 } 8107 8108 return libbpf_err(err); 8109 } 8110 8111 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8112 { 8113 struct bpf_program *prog; 8114 int err; 8115 8116 if (!obj) 8117 return libbpf_err(-ENOENT); 8118 8119 bpf_object__for_each_program(prog, obj) { 8120 char buf[PATH_MAX]; 8121 int len; 8122 8123 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8124 prog->pin_name); 8125 if (len < 0) 8126 return libbpf_err(-EINVAL); 8127 else if (len >= PATH_MAX) 8128 return libbpf_err(-ENAMETOOLONG); 8129 8130 err = bpf_program__unpin(prog, buf); 8131 if (err) 8132 return libbpf_err(err); 8133 } 8134 8135 return 0; 8136 } 8137 8138 int bpf_object__pin(struct bpf_object *obj, const char *path) 8139 { 8140 int err; 8141 8142 err = bpf_object__pin_maps(obj, path); 8143 if (err) 8144 return libbpf_err(err); 8145 8146 err = bpf_object__pin_programs(obj, path); 8147 if (err) { 8148 bpf_object__unpin_maps(obj, path); 8149 return libbpf_err(err); 8150 } 8151 8152 return 0; 8153 } 8154 8155 static void bpf_map__destroy(struct bpf_map *map) 8156 { 8157 if (map->clear_priv) 8158 map->clear_priv(map, map->priv); 8159 map->priv = NULL; 8160 map->clear_priv = NULL; 8161 8162 if (map->inner_map) { 8163 bpf_map__destroy(map->inner_map); 8164 zfree(&map->inner_map); 8165 } 8166 8167 zfree(&map->init_slots); 8168 map->init_slots_sz = 0; 8169 8170 if (map->mmaped) { 8171 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8172 map->mmaped = NULL; 8173 } 8174 8175 if (map->st_ops) { 8176 zfree(&map->st_ops->data); 8177 zfree(&map->st_ops->progs); 8178 zfree(&map->st_ops->kern_func_off); 8179 zfree(&map->st_ops); 8180 } 8181 8182 zfree(&map->name); 8183 zfree(&map->real_name); 8184 zfree(&map->pin_path); 8185 8186 if (map->fd >= 0) 8187 zclose(map->fd); 8188 } 8189 8190 void bpf_object__close(struct bpf_object *obj) 8191 { 8192 size_t i; 8193 8194 if (IS_ERR_OR_NULL(obj)) 8195 return; 8196 8197 if (obj->clear_priv) 8198 obj->clear_priv(obj, obj->priv); 8199 8200 bpf_gen__free(obj->gen_loader); 8201 bpf_object__elf_finish(obj); 8202 bpf_object_unload(obj); 8203 btf__free(obj->btf); 8204 btf_ext__free(obj->btf_ext); 8205 8206 for (i = 0; i < obj->nr_maps; i++) 8207 bpf_map__destroy(&obj->maps[i]); 8208 8209 zfree(&obj->btf_custom_path); 8210 zfree(&obj->kconfig); 8211 zfree(&obj->externs); 8212 obj->nr_extern = 0; 8213 8214 zfree(&obj->maps); 8215 obj->nr_maps = 0; 8216 8217 if (obj->programs && obj->nr_programs) { 8218 for (i = 0; i < obj->nr_programs; i++) 8219 bpf_program__exit(&obj->programs[i]); 8220 } 8221 zfree(&obj->programs); 8222 8223 list_del(&obj->list); 8224 free(obj); 8225 } 8226 8227 struct bpf_object * 8228 bpf_object__next(struct bpf_object *prev) 8229 { 8230 struct bpf_object *next; 8231 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8232 8233 if (strict) 8234 return NULL; 8235 8236 if (!prev) 8237 next = list_first_entry(&bpf_objects_list, 8238 struct bpf_object, 8239 list); 8240 else 8241 next = list_next_entry(prev, list); 8242 8243 /* Empty list is noticed here so don't need checking on entry. */ 8244 if (&next->list == &bpf_objects_list) 8245 return NULL; 8246 8247 return next; 8248 } 8249 8250 const char *bpf_object__name(const struct bpf_object *obj) 8251 { 8252 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8253 } 8254 8255 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8256 { 8257 return obj ? obj->kern_version : 0; 8258 } 8259 8260 struct btf *bpf_object__btf(const struct bpf_object *obj) 8261 { 8262 return obj ? obj->btf : NULL; 8263 } 8264 8265 int bpf_object__btf_fd(const struct bpf_object *obj) 8266 { 8267 return obj->btf ? btf__fd(obj->btf) : -1; 8268 } 8269 8270 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8271 { 8272 if (obj->loaded) 8273 return libbpf_err(-EINVAL); 8274 8275 obj->kern_version = kern_version; 8276 8277 return 0; 8278 } 8279 8280 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8281 bpf_object_clear_priv_t clear_priv) 8282 { 8283 if (obj->priv && obj->clear_priv) 8284 obj->clear_priv(obj, obj->priv); 8285 8286 obj->priv = priv; 8287 obj->clear_priv = clear_priv; 8288 return 0; 8289 } 8290 8291 void *bpf_object__priv(const struct bpf_object *obj) 8292 { 8293 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8294 } 8295 8296 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8297 { 8298 struct bpf_gen *gen; 8299 8300 if (!opts) 8301 return -EFAULT; 8302 if (!OPTS_VALID(opts, gen_loader_opts)) 8303 return -EINVAL; 8304 gen = calloc(sizeof(*gen), 1); 8305 if (!gen) 8306 return -ENOMEM; 8307 gen->opts = opts; 8308 obj->gen_loader = gen; 8309 return 0; 8310 } 8311 8312 static struct bpf_program * 8313 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8314 bool forward) 8315 { 8316 size_t nr_programs = obj->nr_programs; 8317 ssize_t idx; 8318 8319 if (!nr_programs) 8320 return NULL; 8321 8322 if (!p) 8323 /* Iter from the beginning */ 8324 return forward ? &obj->programs[0] : 8325 &obj->programs[nr_programs - 1]; 8326 8327 if (p->obj != obj) { 8328 pr_warn("error: program handler doesn't match object\n"); 8329 return errno = EINVAL, NULL; 8330 } 8331 8332 idx = (p - obj->programs) + (forward ? 1 : -1); 8333 if (idx >= obj->nr_programs || idx < 0) 8334 return NULL; 8335 return &obj->programs[idx]; 8336 } 8337 8338 struct bpf_program * 8339 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8340 { 8341 return bpf_object__next_program(obj, prev); 8342 } 8343 8344 struct bpf_program * 8345 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8346 { 8347 struct bpf_program *prog = prev; 8348 8349 do { 8350 prog = __bpf_program__iter(prog, obj, true); 8351 } while (prog && prog_is_subprog(obj, prog)); 8352 8353 return prog; 8354 } 8355 8356 struct bpf_program * 8357 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8358 { 8359 return bpf_object__prev_program(obj, next); 8360 } 8361 8362 struct bpf_program * 8363 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8364 { 8365 struct bpf_program *prog = next; 8366 8367 do { 8368 prog = __bpf_program__iter(prog, obj, false); 8369 } while (prog && prog_is_subprog(obj, prog)); 8370 8371 return prog; 8372 } 8373 8374 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8375 bpf_program_clear_priv_t clear_priv) 8376 { 8377 if (prog->priv && prog->clear_priv) 8378 prog->clear_priv(prog, prog->priv); 8379 8380 prog->priv = priv; 8381 prog->clear_priv = clear_priv; 8382 return 0; 8383 } 8384 8385 void *bpf_program__priv(const struct bpf_program *prog) 8386 { 8387 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8388 } 8389 8390 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8391 { 8392 prog->prog_ifindex = ifindex; 8393 } 8394 8395 const char *bpf_program__name(const struct bpf_program *prog) 8396 { 8397 return prog->name; 8398 } 8399 8400 const char *bpf_program__section_name(const struct bpf_program *prog) 8401 { 8402 return prog->sec_name; 8403 } 8404 8405 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8406 { 8407 const char *title; 8408 8409 title = prog->sec_name; 8410 if (needs_copy) { 8411 title = strdup(title); 8412 if (!title) { 8413 pr_warn("failed to strdup program title\n"); 8414 return libbpf_err_ptr(-ENOMEM); 8415 } 8416 } 8417 8418 return title; 8419 } 8420 8421 bool bpf_program__autoload(const struct bpf_program *prog) 8422 { 8423 return prog->load; 8424 } 8425 8426 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8427 { 8428 if (prog->obj->loaded) 8429 return libbpf_err(-EINVAL); 8430 8431 prog->load = autoload; 8432 return 0; 8433 } 8434 8435 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8436 8437 int bpf_program__fd(const struct bpf_program *prog) 8438 { 8439 return bpf_program_nth_fd(prog, 0); 8440 } 8441 8442 size_t bpf_program__size(const struct bpf_program *prog) 8443 { 8444 return prog->insns_cnt * BPF_INSN_SZ; 8445 } 8446 8447 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8448 { 8449 return prog->insns; 8450 } 8451 8452 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8453 { 8454 return prog->insns_cnt; 8455 } 8456 8457 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8458 bpf_program_prep_t prep) 8459 { 8460 int *instances_fds; 8461 8462 if (nr_instances <= 0 || !prep) 8463 return libbpf_err(-EINVAL); 8464 8465 if (prog->instances.nr > 0 || prog->instances.fds) { 8466 pr_warn("Can't set pre-processor after loading\n"); 8467 return libbpf_err(-EINVAL); 8468 } 8469 8470 instances_fds = malloc(sizeof(int) * nr_instances); 8471 if (!instances_fds) { 8472 pr_warn("alloc memory failed for fds\n"); 8473 return libbpf_err(-ENOMEM); 8474 } 8475 8476 /* fill all fd with -1 */ 8477 memset(instances_fds, -1, sizeof(int) * nr_instances); 8478 8479 prog->instances.nr = nr_instances; 8480 prog->instances.fds = instances_fds; 8481 prog->preprocessor = prep; 8482 return 0; 8483 } 8484 8485 __attribute__((alias("bpf_program_nth_fd"))) 8486 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8487 8488 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8489 { 8490 int fd; 8491 8492 if (!prog) 8493 return libbpf_err(-EINVAL); 8494 8495 if (n >= prog->instances.nr || n < 0) { 8496 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8497 n, prog->name, prog->instances.nr); 8498 return libbpf_err(-EINVAL); 8499 } 8500 8501 fd = prog->instances.fds[n]; 8502 if (fd < 0) { 8503 pr_warn("%dth instance of program '%s' is invalid\n", 8504 n, prog->name); 8505 return libbpf_err(-ENOENT); 8506 } 8507 8508 return fd; 8509 } 8510 8511 __alias(bpf_program__type) 8512 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8513 8514 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8515 { 8516 return prog->type; 8517 } 8518 8519 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8520 { 8521 prog->type = type; 8522 } 8523 8524 static bool bpf_program__is_type(const struct bpf_program *prog, 8525 enum bpf_prog_type type) 8526 { 8527 return prog ? (prog->type == type) : false; 8528 } 8529 8530 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8531 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8532 { \ 8533 if (!prog) \ 8534 return libbpf_err(-EINVAL); \ 8535 bpf_program__set_type(prog, TYPE); \ 8536 return 0; \ 8537 } \ 8538 \ 8539 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8540 { \ 8541 return bpf_program__is_type(prog, TYPE); \ 8542 } \ 8543 8544 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8545 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8546 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8547 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8548 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8549 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8550 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8551 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8552 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8553 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8554 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8555 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8556 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8557 8558 __alias(bpf_program__expected_attach_type) 8559 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8560 8561 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8562 { 8563 return prog->expected_attach_type; 8564 } 8565 8566 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8567 enum bpf_attach_type type) 8568 { 8569 prog->expected_attach_type = type; 8570 } 8571 8572 __u32 bpf_program__flags(const struct bpf_program *prog) 8573 { 8574 return prog->prog_flags; 8575 } 8576 8577 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8578 { 8579 if (prog->obj->loaded) 8580 return libbpf_err(-EBUSY); 8581 8582 prog->prog_flags = flags; 8583 return 0; 8584 } 8585 8586 __u32 bpf_program__log_level(const struct bpf_program *prog) 8587 { 8588 return prog->log_level; 8589 } 8590 8591 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8592 { 8593 if (prog->obj->loaded) 8594 return libbpf_err(-EBUSY); 8595 8596 prog->log_level = log_level; 8597 return 0; 8598 } 8599 8600 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8601 { 8602 *log_size = prog->log_size; 8603 return prog->log_buf; 8604 } 8605 8606 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8607 { 8608 if (log_size && !log_buf) 8609 return -EINVAL; 8610 if (prog->log_size > UINT_MAX) 8611 return -EINVAL; 8612 if (prog->obj->loaded) 8613 return -EBUSY; 8614 8615 prog->log_buf = log_buf; 8616 prog->log_size = log_size; 8617 return 0; 8618 } 8619 8620 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8621 .sec = (char *)sec_pfx, \ 8622 .prog_type = BPF_PROG_TYPE_##ptype, \ 8623 .expected_attach_type = atype, \ 8624 .cookie = (long)(flags), \ 8625 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8626 __VA_ARGS__ \ 8627 } 8628 8629 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8630 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8631 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8632 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8633 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8634 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8635 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8636 8637 static const struct bpf_sec_def section_defs[] = { 8638 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8639 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8640 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8641 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8642 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8643 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8644 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8645 SEC_DEF("kprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8646 SEC_DEF("kretprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8647 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8648 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8649 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8650 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8651 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8652 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8653 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8654 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8655 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8656 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8657 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8658 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8659 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8660 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8661 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8662 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8663 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8664 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8665 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8666 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8667 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8668 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8669 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8670 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8671 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8672 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8673 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8674 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8675 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8676 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8677 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8678 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8679 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8680 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8681 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8682 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8683 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8684 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8685 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8686 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8687 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8688 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8689 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8690 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8691 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8692 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8693 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8694 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8695 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8696 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8697 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8698 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8699 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8700 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8701 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8702 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8703 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8704 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8705 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8706 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8707 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8708 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8709 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8710 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8711 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8712 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8713 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8714 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8715 }; 8716 8717 static size_t custom_sec_def_cnt; 8718 static struct bpf_sec_def *custom_sec_defs; 8719 static struct bpf_sec_def custom_fallback_def; 8720 static bool has_custom_fallback_def; 8721 8722 static int last_custom_sec_def_handler_id; 8723 8724 int libbpf_register_prog_handler(const char *sec, 8725 enum bpf_prog_type prog_type, 8726 enum bpf_attach_type exp_attach_type, 8727 const struct libbpf_prog_handler_opts *opts) 8728 { 8729 struct bpf_sec_def *sec_def; 8730 8731 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8732 return libbpf_err(-EINVAL); 8733 8734 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8735 return libbpf_err(-E2BIG); 8736 8737 if (sec) { 8738 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8739 sizeof(*sec_def)); 8740 if (!sec_def) 8741 return libbpf_err(-ENOMEM); 8742 8743 custom_sec_defs = sec_def; 8744 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8745 } else { 8746 if (has_custom_fallback_def) 8747 return libbpf_err(-EBUSY); 8748 8749 sec_def = &custom_fallback_def; 8750 } 8751 8752 sec_def->sec = sec ? strdup(sec) : NULL; 8753 if (sec && !sec_def->sec) 8754 return libbpf_err(-ENOMEM); 8755 8756 sec_def->prog_type = prog_type; 8757 sec_def->expected_attach_type = exp_attach_type; 8758 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8759 8760 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8761 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8762 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8763 8764 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8765 8766 if (sec) 8767 custom_sec_def_cnt++; 8768 else 8769 has_custom_fallback_def = true; 8770 8771 return sec_def->handler_id; 8772 } 8773 8774 int libbpf_unregister_prog_handler(int handler_id) 8775 { 8776 struct bpf_sec_def *sec_defs; 8777 int i; 8778 8779 if (handler_id <= 0) 8780 return libbpf_err(-EINVAL); 8781 8782 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8783 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8784 has_custom_fallback_def = false; 8785 return 0; 8786 } 8787 8788 for (i = 0; i < custom_sec_def_cnt; i++) { 8789 if (custom_sec_defs[i].handler_id == handler_id) 8790 break; 8791 } 8792 8793 if (i == custom_sec_def_cnt) 8794 return libbpf_err(-ENOENT); 8795 8796 free(custom_sec_defs[i].sec); 8797 for (i = i + 1; i < custom_sec_def_cnt; i++) 8798 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8799 custom_sec_def_cnt--; 8800 8801 /* try to shrink the array, but it's ok if we couldn't */ 8802 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8803 if (sec_defs) 8804 custom_sec_defs = sec_defs; 8805 8806 return 0; 8807 } 8808 8809 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 8810 bool allow_sloppy) 8811 { 8812 size_t len = strlen(sec_def->sec); 8813 8814 /* "type/" always has to have proper SEC("type/extras") form */ 8815 if (sec_def->sec[len - 1] == '/') { 8816 if (str_has_pfx(sec_name, sec_def->sec)) 8817 return true; 8818 return false; 8819 } 8820 8821 /* "type+" means it can be either exact SEC("type") or 8822 * well-formed SEC("type/extras") with proper '/' separator 8823 */ 8824 if (sec_def->sec[len - 1] == '+') { 8825 len--; 8826 /* not even a prefix */ 8827 if (strncmp(sec_name, sec_def->sec, len) != 0) 8828 return false; 8829 /* exact match or has '/' separator */ 8830 if (sec_name[len] == '\0' || sec_name[len] == '/') 8831 return true; 8832 return false; 8833 } 8834 8835 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8836 * matches, unless strict section name mode 8837 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8838 * match has to be exact. 8839 */ 8840 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 8841 return true; 8842 8843 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8844 * SEC("syscall")) are exact matches in both modes. 8845 */ 8846 return strcmp(sec_name, sec_def->sec) == 0; 8847 } 8848 8849 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8850 { 8851 const struct bpf_sec_def *sec_def; 8852 int i, n; 8853 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 8854 8855 n = custom_sec_def_cnt; 8856 for (i = 0; i < n; i++) { 8857 sec_def = &custom_sec_defs[i]; 8858 if (sec_def_matches(sec_def, sec_name, false)) 8859 return sec_def; 8860 } 8861 8862 n = ARRAY_SIZE(section_defs); 8863 for (i = 0; i < n; i++) { 8864 sec_def = §ion_defs[i]; 8865 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 8866 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 8867 return sec_def; 8868 } 8869 8870 if (has_custom_fallback_def) 8871 return &custom_fallback_def; 8872 8873 return NULL; 8874 } 8875 8876 #define MAX_TYPE_NAME_SIZE 32 8877 8878 static char *libbpf_get_type_names(bool attach_type) 8879 { 8880 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8881 char *buf; 8882 8883 buf = malloc(len); 8884 if (!buf) 8885 return NULL; 8886 8887 buf[0] = '\0'; 8888 /* Forge string buf with all available names */ 8889 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8890 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8891 8892 if (attach_type) { 8893 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8894 continue; 8895 8896 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8897 continue; 8898 } 8899 8900 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8901 free(buf); 8902 return NULL; 8903 } 8904 strcat(buf, " "); 8905 strcat(buf, section_defs[i].sec); 8906 } 8907 8908 return buf; 8909 } 8910 8911 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8912 enum bpf_attach_type *expected_attach_type) 8913 { 8914 const struct bpf_sec_def *sec_def; 8915 char *type_names; 8916 8917 if (!name) 8918 return libbpf_err(-EINVAL); 8919 8920 sec_def = find_sec_def(name); 8921 if (sec_def) { 8922 *prog_type = sec_def->prog_type; 8923 *expected_attach_type = sec_def->expected_attach_type; 8924 return 0; 8925 } 8926 8927 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8928 type_names = libbpf_get_type_names(false); 8929 if (type_names != NULL) { 8930 pr_debug("supported section(type) names are:%s\n", type_names); 8931 free(type_names); 8932 } 8933 8934 return libbpf_err(-ESRCH); 8935 } 8936 8937 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8938 size_t offset) 8939 { 8940 struct bpf_map *map; 8941 size_t i; 8942 8943 for (i = 0; i < obj->nr_maps; i++) { 8944 map = &obj->maps[i]; 8945 if (!bpf_map__is_struct_ops(map)) 8946 continue; 8947 if (map->sec_offset <= offset && 8948 offset - map->sec_offset < map->def.value_size) 8949 return map; 8950 } 8951 8952 return NULL; 8953 } 8954 8955 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8956 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8957 Elf64_Shdr *shdr, Elf_Data *data) 8958 { 8959 const struct btf_member *member; 8960 struct bpf_struct_ops *st_ops; 8961 struct bpf_program *prog; 8962 unsigned int shdr_idx; 8963 const struct btf *btf; 8964 struct bpf_map *map; 8965 unsigned int moff, insn_idx; 8966 const char *name; 8967 __u32 member_idx; 8968 Elf64_Sym *sym; 8969 Elf64_Rel *rel; 8970 int i, nrels; 8971 8972 btf = obj->btf; 8973 nrels = shdr->sh_size / shdr->sh_entsize; 8974 for (i = 0; i < nrels; i++) { 8975 rel = elf_rel_by_idx(data, i); 8976 if (!rel) { 8977 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8978 return -LIBBPF_ERRNO__FORMAT; 8979 } 8980 8981 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8982 if (!sym) { 8983 pr_warn("struct_ops reloc: symbol %zx not found\n", 8984 (size_t)ELF64_R_SYM(rel->r_info)); 8985 return -LIBBPF_ERRNO__FORMAT; 8986 } 8987 8988 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8989 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8990 if (!map) { 8991 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8992 (size_t)rel->r_offset); 8993 return -EINVAL; 8994 } 8995 8996 moff = rel->r_offset - map->sec_offset; 8997 shdr_idx = sym->st_shndx; 8998 st_ops = map->st_ops; 8999 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9000 map->name, 9001 (long long)(rel->r_info >> 32), 9002 (long long)sym->st_value, 9003 shdr_idx, (size_t)rel->r_offset, 9004 map->sec_offset, sym->st_name, name); 9005 9006 if (shdr_idx >= SHN_LORESERVE) { 9007 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9008 map->name, (size_t)rel->r_offset, shdr_idx); 9009 return -LIBBPF_ERRNO__RELOC; 9010 } 9011 if (sym->st_value % BPF_INSN_SZ) { 9012 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9013 map->name, (unsigned long long)sym->st_value); 9014 return -LIBBPF_ERRNO__FORMAT; 9015 } 9016 insn_idx = sym->st_value / BPF_INSN_SZ; 9017 9018 member = find_member_by_offset(st_ops->type, moff * 8); 9019 if (!member) { 9020 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9021 map->name, moff); 9022 return -EINVAL; 9023 } 9024 member_idx = member - btf_members(st_ops->type); 9025 name = btf__name_by_offset(btf, member->name_off); 9026 9027 if (!resolve_func_ptr(btf, member->type, NULL)) { 9028 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9029 map->name, name); 9030 return -EINVAL; 9031 } 9032 9033 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9034 if (!prog) { 9035 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9036 map->name, shdr_idx, name); 9037 return -EINVAL; 9038 } 9039 9040 /* prevent the use of BPF prog with invalid type */ 9041 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9042 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9043 map->name, prog->name); 9044 return -EINVAL; 9045 } 9046 9047 /* if we haven't yet processed this BPF program, record proper 9048 * attach_btf_id and member_idx 9049 */ 9050 if (!prog->attach_btf_id) { 9051 prog->attach_btf_id = st_ops->type_id; 9052 prog->expected_attach_type = member_idx; 9053 } 9054 9055 /* struct_ops BPF prog can be re-used between multiple 9056 * .struct_ops as long as it's the same struct_ops struct 9057 * definition and the same function pointer field 9058 */ 9059 if (prog->attach_btf_id != st_ops->type_id || 9060 prog->expected_attach_type != member_idx) { 9061 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9062 map->name, prog->name, prog->sec_name, prog->type, 9063 prog->attach_btf_id, prog->expected_attach_type, name); 9064 return -EINVAL; 9065 } 9066 9067 st_ops->progs[member_idx] = prog; 9068 } 9069 9070 return 0; 9071 } 9072 9073 #define BTF_TRACE_PREFIX "btf_trace_" 9074 #define BTF_LSM_PREFIX "bpf_lsm_" 9075 #define BTF_ITER_PREFIX "bpf_iter_" 9076 #define BTF_MAX_NAME_SIZE 128 9077 9078 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9079 const char **prefix, int *kind) 9080 { 9081 switch (attach_type) { 9082 case BPF_TRACE_RAW_TP: 9083 *prefix = BTF_TRACE_PREFIX; 9084 *kind = BTF_KIND_TYPEDEF; 9085 break; 9086 case BPF_LSM_MAC: 9087 *prefix = BTF_LSM_PREFIX; 9088 *kind = BTF_KIND_FUNC; 9089 break; 9090 case BPF_TRACE_ITER: 9091 *prefix = BTF_ITER_PREFIX; 9092 *kind = BTF_KIND_FUNC; 9093 break; 9094 default: 9095 *prefix = ""; 9096 *kind = BTF_KIND_FUNC; 9097 } 9098 } 9099 9100 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9101 const char *name, __u32 kind) 9102 { 9103 char btf_type_name[BTF_MAX_NAME_SIZE]; 9104 int ret; 9105 9106 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9107 "%s%s", prefix, name); 9108 /* snprintf returns the number of characters written excluding the 9109 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9110 * indicates truncation. 9111 */ 9112 if (ret < 0 || ret >= sizeof(btf_type_name)) 9113 return -ENAMETOOLONG; 9114 return btf__find_by_name_kind(btf, btf_type_name, kind); 9115 } 9116 9117 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9118 enum bpf_attach_type attach_type) 9119 { 9120 const char *prefix; 9121 int kind; 9122 9123 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9124 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9125 } 9126 9127 int libbpf_find_vmlinux_btf_id(const char *name, 9128 enum bpf_attach_type attach_type) 9129 { 9130 struct btf *btf; 9131 int err; 9132 9133 btf = btf__load_vmlinux_btf(); 9134 err = libbpf_get_error(btf); 9135 if (err) { 9136 pr_warn("vmlinux BTF is not found\n"); 9137 return libbpf_err(err); 9138 } 9139 9140 err = find_attach_btf_id(btf, name, attach_type); 9141 if (err <= 0) 9142 pr_warn("%s is not found in vmlinux BTF\n", name); 9143 9144 btf__free(btf); 9145 return libbpf_err(err); 9146 } 9147 9148 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9149 { 9150 struct bpf_prog_info info = {}; 9151 __u32 info_len = sizeof(info); 9152 struct btf *btf; 9153 int err; 9154 9155 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9156 if (err) { 9157 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9158 attach_prog_fd, err); 9159 return err; 9160 } 9161 9162 err = -EINVAL; 9163 if (!info.btf_id) { 9164 pr_warn("The target program doesn't have BTF\n"); 9165 goto out; 9166 } 9167 btf = btf__load_from_kernel_by_id(info.btf_id); 9168 err = libbpf_get_error(btf); 9169 if (err) { 9170 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9171 goto out; 9172 } 9173 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9174 btf__free(btf); 9175 if (err <= 0) { 9176 pr_warn("%s is not found in prog's BTF\n", name); 9177 goto out; 9178 } 9179 out: 9180 return err; 9181 } 9182 9183 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9184 enum bpf_attach_type attach_type, 9185 int *btf_obj_fd, int *btf_type_id) 9186 { 9187 int ret, i; 9188 9189 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9190 if (ret > 0) { 9191 *btf_obj_fd = 0; /* vmlinux BTF */ 9192 *btf_type_id = ret; 9193 return 0; 9194 } 9195 if (ret != -ENOENT) 9196 return ret; 9197 9198 ret = load_module_btfs(obj); 9199 if (ret) 9200 return ret; 9201 9202 for (i = 0; i < obj->btf_module_cnt; i++) { 9203 const struct module_btf *mod = &obj->btf_modules[i]; 9204 9205 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9206 if (ret > 0) { 9207 *btf_obj_fd = mod->fd; 9208 *btf_type_id = ret; 9209 return 0; 9210 } 9211 if (ret == -ENOENT) 9212 continue; 9213 9214 return ret; 9215 } 9216 9217 return -ESRCH; 9218 } 9219 9220 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9221 int *btf_obj_fd, int *btf_type_id) 9222 { 9223 enum bpf_attach_type attach_type = prog->expected_attach_type; 9224 __u32 attach_prog_fd = prog->attach_prog_fd; 9225 int err = 0; 9226 9227 /* BPF program's BTF ID */ 9228 if (attach_prog_fd) { 9229 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9230 if (err < 0) { 9231 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9232 attach_prog_fd, attach_name, err); 9233 return err; 9234 } 9235 *btf_obj_fd = 0; 9236 *btf_type_id = err; 9237 return 0; 9238 } 9239 9240 /* kernel/module BTF ID */ 9241 if (prog->obj->gen_loader) { 9242 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9243 *btf_obj_fd = 0; 9244 *btf_type_id = 1; 9245 } else { 9246 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9247 } 9248 if (err) { 9249 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9250 return err; 9251 } 9252 return 0; 9253 } 9254 9255 int libbpf_attach_type_by_name(const char *name, 9256 enum bpf_attach_type *attach_type) 9257 { 9258 char *type_names; 9259 const struct bpf_sec_def *sec_def; 9260 9261 if (!name) 9262 return libbpf_err(-EINVAL); 9263 9264 sec_def = find_sec_def(name); 9265 if (!sec_def) { 9266 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9267 type_names = libbpf_get_type_names(true); 9268 if (type_names != NULL) { 9269 pr_debug("attachable section(type) names are:%s\n", type_names); 9270 free(type_names); 9271 } 9272 9273 return libbpf_err(-EINVAL); 9274 } 9275 9276 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9277 return libbpf_err(-EINVAL); 9278 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9279 return libbpf_err(-EINVAL); 9280 9281 *attach_type = sec_def->expected_attach_type; 9282 return 0; 9283 } 9284 9285 int bpf_map__fd(const struct bpf_map *map) 9286 { 9287 return map ? map->fd : libbpf_err(-EINVAL); 9288 } 9289 9290 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9291 { 9292 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9293 } 9294 9295 static bool map_uses_real_name(const struct bpf_map *map) 9296 { 9297 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9298 * their user-visible name differs from kernel-visible name. Users see 9299 * such map's corresponding ELF section name as a map name. 9300 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9301 * maps to know which name has to be returned to the user. 9302 */ 9303 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9304 return true; 9305 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9306 return true; 9307 return false; 9308 } 9309 9310 const char *bpf_map__name(const struct bpf_map *map) 9311 { 9312 if (!map) 9313 return NULL; 9314 9315 if (map_uses_real_name(map)) 9316 return map->real_name; 9317 9318 return map->name; 9319 } 9320 9321 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9322 { 9323 return map->def.type; 9324 } 9325 9326 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9327 { 9328 if (map->fd >= 0) 9329 return libbpf_err(-EBUSY); 9330 map->def.type = type; 9331 return 0; 9332 } 9333 9334 __u32 bpf_map__map_flags(const struct bpf_map *map) 9335 { 9336 return map->def.map_flags; 9337 } 9338 9339 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9340 { 9341 if (map->fd >= 0) 9342 return libbpf_err(-EBUSY); 9343 map->def.map_flags = flags; 9344 return 0; 9345 } 9346 9347 __u64 bpf_map__map_extra(const struct bpf_map *map) 9348 { 9349 return map->map_extra; 9350 } 9351 9352 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9353 { 9354 if (map->fd >= 0) 9355 return libbpf_err(-EBUSY); 9356 map->map_extra = map_extra; 9357 return 0; 9358 } 9359 9360 __u32 bpf_map__numa_node(const struct bpf_map *map) 9361 { 9362 return map->numa_node; 9363 } 9364 9365 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9366 { 9367 if (map->fd >= 0) 9368 return libbpf_err(-EBUSY); 9369 map->numa_node = numa_node; 9370 return 0; 9371 } 9372 9373 __u32 bpf_map__key_size(const struct bpf_map *map) 9374 { 9375 return map->def.key_size; 9376 } 9377 9378 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9379 { 9380 if (map->fd >= 0) 9381 return libbpf_err(-EBUSY); 9382 map->def.key_size = size; 9383 return 0; 9384 } 9385 9386 __u32 bpf_map__value_size(const struct bpf_map *map) 9387 { 9388 return map->def.value_size; 9389 } 9390 9391 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9392 { 9393 if (map->fd >= 0) 9394 return libbpf_err(-EBUSY); 9395 map->def.value_size = size; 9396 return 0; 9397 } 9398 9399 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9400 { 9401 return map ? map->btf_key_type_id : 0; 9402 } 9403 9404 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9405 { 9406 return map ? map->btf_value_type_id : 0; 9407 } 9408 9409 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9410 bpf_map_clear_priv_t clear_priv) 9411 { 9412 if (!map) 9413 return libbpf_err(-EINVAL); 9414 9415 if (map->priv) { 9416 if (map->clear_priv) 9417 map->clear_priv(map, map->priv); 9418 } 9419 9420 map->priv = priv; 9421 map->clear_priv = clear_priv; 9422 return 0; 9423 } 9424 9425 void *bpf_map__priv(const struct bpf_map *map) 9426 { 9427 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9428 } 9429 9430 int bpf_map__set_initial_value(struct bpf_map *map, 9431 const void *data, size_t size) 9432 { 9433 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9434 size != map->def.value_size || map->fd >= 0) 9435 return libbpf_err(-EINVAL); 9436 9437 memcpy(map->mmaped, data, size); 9438 return 0; 9439 } 9440 9441 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9442 { 9443 if (!map->mmaped) 9444 return NULL; 9445 *psize = map->def.value_size; 9446 return map->mmaped; 9447 } 9448 9449 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9450 { 9451 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9452 } 9453 9454 bool bpf_map__is_internal(const struct bpf_map *map) 9455 { 9456 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9457 } 9458 9459 __u32 bpf_map__ifindex(const struct bpf_map *map) 9460 { 9461 return map->map_ifindex; 9462 } 9463 9464 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9465 { 9466 if (map->fd >= 0) 9467 return libbpf_err(-EBUSY); 9468 map->map_ifindex = ifindex; 9469 return 0; 9470 } 9471 9472 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9473 { 9474 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9475 pr_warn("error: unsupported map type\n"); 9476 return libbpf_err(-EINVAL); 9477 } 9478 if (map->inner_map_fd != -1) { 9479 pr_warn("error: inner_map_fd already specified\n"); 9480 return libbpf_err(-EINVAL); 9481 } 9482 if (map->inner_map) { 9483 bpf_map__destroy(map->inner_map); 9484 zfree(&map->inner_map); 9485 } 9486 map->inner_map_fd = fd; 9487 return 0; 9488 } 9489 9490 static struct bpf_map * 9491 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9492 { 9493 ssize_t idx; 9494 struct bpf_map *s, *e; 9495 9496 if (!obj || !obj->maps) 9497 return errno = EINVAL, NULL; 9498 9499 s = obj->maps; 9500 e = obj->maps + obj->nr_maps; 9501 9502 if ((m < s) || (m >= e)) { 9503 pr_warn("error in %s: map handler doesn't belong to object\n", 9504 __func__); 9505 return errno = EINVAL, NULL; 9506 } 9507 9508 idx = (m - obj->maps) + i; 9509 if (idx >= obj->nr_maps || idx < 0) 9510 return NULL; 9511 return &obj->maps[idx]; 9512 } 9513 9514 struct bpf_map * 9515 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9516 { 9517 return bpf_object__next_map(obj, prev); 9518 } 9519 9520 struct bpf_map * 9521 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9522 { 9523 if (prev == NULL) 9524 return obj->maps; 9525 9526 return __bpf_map__iter(prev, obj, 1); 9527 } 9528 9529 struct bpf_map * 9530 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9531 { 9532 return bpf_object__prev_map(obj, next); 9533 } 9534 9535 struct bpf_map * 9536 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9537 { 9538 if (next == NULL) { 9539 if (!obj->nr_maps) 9540 return NULL; 9541 return obj->maps + obj->nr_maps - 1; 9542 } 9543 9544 return __bpf_map__iter(next, obj, -1); 9545 } 9546 9547 struct bpf_map * 9548 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9549 { 9550 struct bpf_map *pos; 9551 9552 bpf_object__for_each_map(pos, obj) { 9553 /* if it's a special internal map name (which always starts 9554 * with dot) then check if that special name matches the 9555 * real map name (ELF section name) 9556 */ 9557 if (name[0] == '.') { 9558 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9559 return pos; 9560 continue; 9561 } 9562 /* otherwise map name has to be an exact match */ 9563 if (map_uses_real_name(pos)) { 9564 if (strcmp(pos->real_name, name) == 0) 9565 return pos; 9566 continue; 9567 } 9568 if (strcmp(pos->name, name) == 0) 9569 return pos; 9570 } 9571 return errno = ENOENT, NULL; 9572 } 9573 9574 int 9575 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9576 { 9577 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9578 } 9579 9580 struct bpf_map * 9581 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9582 { 9583 return libbpf_err_ptr(-ENOTSUP); 9584 } 9585 9586 long libbpf_get_error(const void *ptr) 9587 { 9588 if (!IS_ERR_OR_NULL(ptr)) 9589 return 0; 9590 9591 if (IS_ERR(ptr)) 9592 errno = -PTR_ERR(ptr); 9593 9594 /* If ptr == NULL, then errno should be already set by the failing 9595 * API, because libbpf never returns NULL on success and it now always 9596 * sets errno on error. So no extra errno handling for ptr == NULL 9597 * case. 9598 */ 9599 return -errno; 9600 } 9601 9602 __attribute__((alias("bpf_prog_load_xattr2"))) 9603 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9604 struct bpf_object **pobj, int *prog_fd); 9605 9606 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9607 struct bpf_object **pobj, int *prog_fd) 9608 { 9609 struct bpf_object_open_attr open_attr = {}; 9610 struct bpf_program *prog, *first_prog = NULL; 9611 struct bpf_object *obj; 9612 struct bpf_map *map; 9613 int err; 9614 9615 if (!attr) 9616 return libbpf_err(-EINVAL); 9617 if (!attr->file) 9618 return libbpf_err(-EINVAL); 9619 9620 open_attr.file = attr->file; 9621 open_attr.prog_type = attr->prog_type; 9622 9623 obj = __bpf_object__open_xattr(&open_attr, 0); 9624 err = libbpf_get_error(obj); 9625 if (err) 9626 return libbpf_err(-ENOENT); 9627 9628 bpf_object__for_each_program(prog, obj) { 9629 enum bpf_attach_type attach_type = attr->expected_attach_type; 9630 /* 9631 * to preserve backwards compatibility, bpf_prog_load treats 9632 * attr->prog_type, if specified, as an override to whatever 9633 * bpf_object__open guessed 9634 */ 9635 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9636 bpf_program__set_type(prog, attr->prog_type); 9637 bpf_program__set_expected_attach_type(prog, 9638 attach_type); 9639 } 9640 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9641 /* 9642 * we haven't guessed from section name and user 9643 * didn't provide a fallback type, too bad... 9644 */ 9645 bpf_object__close(obj); 9646 return libbpf_err(-EINVAL); 9647 } 9648 9649 prog->prog_ifindex = attr->ifindex; 9650 prog->log_level = attr->log_level; 9651 prog->prog_flags |= attr->prog_flags; 9652 if (!first_prog) 9653 first_prog = prog; 9654 } 9655 9656 bpf_object__for_each_map(map, obj) { 9657 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9658 map->map_ifindex = attr->ifindex; 9659 } 9660 9661 if (!first_prog) { 9662 pr_warn("object file doesn't contain bpf program\n"); 9663 bpf_object__close(obj); 9664 return libbpf_err(-ENOENT); 9665 } 9666 9667 err = bpf_object__load(obj); 9668 if (err) { 9669 bpf_object__close(obj); 9670 return libbpf_err(err); 9671 } 9672 9673 *pobj = obj; 9674 *prog_fd = bpf_program__fd(first_prog); 9675 return 0; 9676 } 9677 9678 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9679 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9680 struct bpf_object **pobj, int *prog_fd) 9681 { 9682 struct bpf_prog_load_attr attr; 9683 9684 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9685 attr.file = file; 9686 attr.prog_type = type; 9687 attr.expected_attach_type = 0; 9688 9689 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9690 } 9691 9692 struct bpf_link { 9693 int (*detach)(struct bpf_link *link); 9694 void (*dealloc)(struct bpf_link *link); 9695 char *pin_path; /* NULL, if not pinned */ 9696 int fd; /* hook FD, -1 if not applicable */ 9697 bool disconnected; 9698 }; 9699 9700 /* Replace link's underlying BPF program with the new one */ 9701 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9702 { 9703 int ret; 9704 9705 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9706 return libbpf_err_errno(ret); 9707 } 9708 9709 /* Release "ownership" of underlying BPF resource (typically, BPF program 9710 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9711 * link, when destructed through bpf_link__destroy() call won't attempt to 9712 * detach/unregisted that BPF resource. This is useful in situations where, 9713 * say, attached BPF program has to outlive userspace program that attached it 9714 * in the system. Depending on type of BPF program, though, there might be 9715 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9716 * exit of userspace program doesn't trigger automatic detachment and clean up 9717 * inside the kernel. 9718 */ 9719 void bpf_link__disconnect(struct bpf_link *link) 9720 { 9721 link->disconnected = true; 9722 } 9723 9724 int bpf_link__destroy(struct bpf_link *link) 9725 { 9726 int err = 0; 9727 9728 if (IS_ERR_OR_NULL(link)) 9729 return 0; 9730 9731 if (!link->disconnected && link->detach) 9732 err = link->detach(link); 9733 if (link->pin_path) 9734 free(link->pin_path); 9735 if (link->dealloc) 9736 link->dealloc(link); 9737 else 9738 free(link); 9739 9740 return libbpf_err(err); 9741 } 9742 9743 int bpf_link__fd(const struct bpf_link *link) 9744 { 9745 return link->fd; 9746 } 9747 9748 const char *bpf_link__pin_path(const struct bpf_link *link) 9749 { 9750 return link->pin_path; 9751 } 9752 9753 static int bpf_link__detach_fd(struct bpf_link *link) 9754 { 9755 return libbpf_err_errno(close(link->fd)); 9756 } 9757 9758 struct bpf_link *bpf_link__open(const char *path) 9759 { 9760 struct bpf_link *link; 9761 int fd; 9762 9763 fd = bpf_obj_get(path); 9764 if (fd < 0) { 9765 fd = -errno; 9766 pr_warn("failed to open link at %s: %d\n", path, fd); 9767 return libbpf_err_ptr(fd); 9768 } 9769 9770 link = calloc(1, sizeof(*link)); 9771 if (!link) { 9772 close(fd); 9773 return libbpf_err_ptr(-ENOMEM); 9774 } 9775 link->detach = &bpf_link__detach_fd; 9776 link->fd = fd; 9777 9778 link->pin_path = strdup(path); 9779 if (!link->pin_path) { 9780 bpf_link__destroy(link); 9781 return libbpf_err_ptr(-ENOMEM); 9782 } 9783 9784 return link; 9785 } 9786 9787 int bpf_link__detach(struct bpf_link *link) 9788 { 9789 return bpf_link_detach(link->fd) ? -errno : 0; 9790 } 9791 9792 int bpf_link__pin(struct bpf_link *link, const char *path) 9793 { 9794 int err; 9795 9796 if (link->pin_path) 9797 return libbpf_err(-EBUSY); 9798 err = make_parent_dir(path); 9799 if (err) 9800 return libbpf_err(err); 9801 err = check_path(path); 9802 if (err) 9803 return libbpf_err(err); 9804 9805 link->pin_path = strdup(path); 9806 if (!link->pin_path) 9807 return libbpf_err(-ENOMEM); 9808 9809 if (bpf_obj_pin(link->fd, link->pin_path)) { 9810 err = -errno; 9811 zfree(&link->pin_path); 9812 return libbpf_err(err); 9813 } 9814 9815 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9816 return 0; 9817 } 9818 9819 int bpf_link__unpin(struct bpf_link *link) 9820 { 9821 int err; 9822 9823 if (!link->pin_path) 9824 return libbpf_err(-EINVAL); 9825 9826 err = unlink(link->pin_path); 9827 if (err != 0) 9828 return -errno; 9829 9830 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9831 zfree(&link->pin_path); 9832 return 0; 9833 } 9834 9835 struct bpf_link_perf { 9836 struct bpf_link link; 9837 int perf_event_fd; 9838 /* legacy kprobe support: keep track of probe identifier and type */ 9839 char *legacy_probe_name; 9840 bool legacy_is_kprobe; 9841 bool legacy_is_retprobe; 9842 }; 9843 9844 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9845 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9846 9847 static int bpf_link_perf_detach(struct bpf_link *link) 9848 { 9849 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9850 int err = 0; 9851 9852 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9853 err = -errno; 9854 9855 if (perf_link->perf_event_fd != link->fd) 9856 close(perf_link->perf_event_fd); 9857 close(link->fd); 9858 9859 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9860 if (perf_link->legacy_probe_name) { 9861 if (perf_link->legacy_is_kprobe) { 9862 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9863 perf_link->legacy_is_retprobe); 9864 } else { 9865 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9866 perf_link->legacy_is_retprobe); 9867 } 9868 } 9869 9870 return err; 9871 } 9872 9873 static void bpf_link_perf_dealloc(struct bpf_link *link) 9874 { 9875 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9876 9877 free(perf_link->legacy_probe_name); 9878 free(perf_link); 9879 } 9880 9881 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9882 const struct bpf_perf_event_opts *opts) 9883 { 9884 char errmsg[STRERR_BUFSIZE]; 9885 struct bpf_link_perf *link; 9886 int prog_fd, link_fd = -1, err; 9887 9888 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9889 return libbpf_err_ptr(-EINVAL); 9890 9891 if (pfd < 0) { 9892 pr_warn("prog '%s': invalid perf event FD %d\n", 9893 prog->name, pfd); 9894 return libbpf_err_ptr(-EINVAL); 9895 } 9896 prog_fd = bpf_program__fd(prog); 9897 if (prog_fd < 0) { 9898 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9899 prog->name); 9900 return libbpf_err_ptr(-EINVAL); 9901 } 9902 9903 link = calloc(1, sizeof(*link)); 9904 if (!link) 9905 return libbpf_err_ptr(-ENOMEM); 9906 link->link.detach = &bpf_link_perf_detach; 9907 link->link.dealloc = &bpf_link_perf_dealloc; 9908 link->perf_event_fd = pfd; 9909 9910 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9911 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9912 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9913 9914 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9915 if (link_fd < 0) { 9916 err = -errno; 9917 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9918 prog->name, pfd, 9919 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9920 goto err_out; 9921 } 9922 link->link.fd = link_fd; 9923 } else { 9924 if (OPTS_GET(opts, bpf_cookie, 0)) { 9925 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9926 err = -EOPNOTSUPP; 9927 goto err_out; 9928 } 9929 9930 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9931 err = -errno; 9932 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9933 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9934 if (err == -EPROTO) 9935 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9936 prog->name, pfd); 9937 goto err_out; 9938 } 9939 link->link.fd = pfd; 9940 } 9941 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9942 err = -errno; 9943 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9944 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9945 goto err_out; 9946 } 9947 9948 return &link->link; 9949 err_out: 9950 if (link_fd >= 0) 9951 close(link_fd); 9952 free(link); 9953 return libbpf_err_ptr(err); 9954 } 9955 9956 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9957 { 9958 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9959 } 9960 9961 /* 9962 * this function is expected to parse integer in the range of [0, 2^31-1] from 9963 * given file using scanf format string fmt. If actual parsed value is 9964 * negative, the result might be indistinguishable from error 9965 */ 9966 static int parse_uint_from_file(const char *file, const char *fmt) 9967 { 9968 char buf[STRERR_BUFSIZE]; 9969 int err, ret; 9970 FILE *f; 9971 9972 f = fopen(file, "r"); 9973 if (!f) { 9974 err = -errno; 9975 pr_debug("failed to open '%s': %s\n", file, 9976 libbpf_strerror_r(err, buf, sizeof(buf))); 9977 return err; 9978 } 9979 err = fscanf(f, fmt, &ret); 9980 if (err != 1) { 9981 err = err == EOF ? -EIO : -errno; 9982 pr_debug("failed to parse '%s': %s\n", file, 9983 libbpf_strerror_r(err, buf, sizeof(buf))); 9984 fclose(f); 9985 return err; 9986 } 9987 fclose(f); 9988 return ret; 9989 } 9990 9991 static int determine_kprobe_perf_type(void) 9992 { 9993 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9994 9995 return parse_uint_from_file(file, "%d\n"); 9996 } 9997 9998 static int determine_uprobe_perf_type(void) 9999 { 10000 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10001 10002 return parse_uint_from_file(file, "%d\n"); 10003 } 10004 10005 static int determine_kprobe_retprobe_bit(void) 10006 { 10007 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10008 10009 return parse_uint_from_file(file, "config:%d\n"); 10010 } 10011 10012 static int determine_uprobe_retprobe_bit(void) 10013 { 10014 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10015 10016 return parse_uint_from_file(file, "config:%d\n"); 10017 } 10018 10019 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10020 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10021 10022 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10023 uint64_t offset, int pid, size_t ref_ctr_off) 10024 { 10025 struct perf_event_attr attr = {}; 10026 char errmsg[STRERR_BUFSIZE]; 10027 int type, pfd, err; 10028 10029 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10030 return -EINVAL; 10031 10032 type = uprobe ? determine_uprobe_perf_type() 10033 : determine_kprobe_perf_type(); 10034 if (type < 0) { 10035 pr_warn("failed to determine %s perf type: %s\n", 10036 uprobe ? "uprobe" : "kprobe", 10037 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10038 return type; 10039 } 10040 if (retprobe) { 10041 int bit = uprobe ? determine_uprobe_retprobe_bit() 10042 : determine_kprobe_retprobe_bit(); 10043 10044 if (bit < 0) { 10045 pr_warn("failed to determine %s retprobe bit: %s\n", 10046 uprobe ? "uprobe" : "kprobe", 10047 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10048 return bit; 10049 } 10050 attr.config |= 1 << bit; 10051 } 10052 attr.size = sizeof(attr); 10053 attr.type = type; 10054 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10055 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10056 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10057 10058 /* pid filter is meaningful only for uprobes */ 10059 pfd = syscall(__NR_perf_event_open, &attr, 10060 pid < 0 ? -1 : pid /* pid */, 10061 pid == -1 ? 0 : -1 /* cpu */, 10062 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10063 if (pfd < 0) { 10064 err = -errno; 10065 pr_warn("%s perf_event_open() failed: %s\n", 10066 uprobe ? "uprobe" : "kprobe", 10067 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10068 return err; 10069 } 10070 return pfd; 10071 } 10072 10073 static int append_to_file(const char *file, const char *fmt, ...) 10074 { 10075 int fd, n, err = 0; 10076 va_list ap; 10077 10078 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10079 if (fd < 0) 10080 return -errno; 10081 10082 va_start(ap, fmt); 10083 n = vdprintf(fd, fmt, ap); 10084 va_end(ap); 10085 10086 if (n < 0) 10087 err = -errno; 10088 10089 close(fd); 10090 return err; 10091 } 10092 10093 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10094 const char *kfunc_name, size_t offset) 10095 { 10096 static int index = 0; 10097 10098 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10099 __sync_fetch_and_add(&index, 1)); 10100 } 10101 10102 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10103 const char *kfunc_name, size_t offset) 10104 { 10105 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10106 10107 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10108 retprobe ? 'r' : 'p', 10109 retprobe ? "kretprobes" : "kprobes", 10110 probe_name, kfunc_name, offset); 10111 } 10112 10113 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10114 { 10115 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10116 10117 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10118 } 10119 10120 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10121 { 10122 char file[256]; 10123 10124 snprintf(file, sizeof(file), 10125 "/sys/kernel/debug/tracing/events/%s/%s/id", 10126 retprobe ? "kretprobes" : "kprobes", probe_name); 10127 10128 return parse_uint_from_file(file, "%d\n"); 10129 } 10130 10131 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10132 const char *kfunc_name, size_t offset, int pid) 10133 { 10134 struct perf_event_attr attr = {}; 10135 char errmsg[STRERR_BUFSIZE]; 10136 int type, pfd, err; 10137 10138 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10139 if (err < 0) { 10140 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10141 kfunc_name, offset, 10142 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10143 return err; 10144 } 10145 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10146 if (type < 0) { 10147 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10148 kfunc_name, offset, 10149 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10150 return type; 10151 } 10152 attr.size = sizeof(attr); 10153 attr.config = type; 10154 attr.type = PERF_TYPE_TRACEPOINT; 10155 10156 pfd = syscall(__NR_perf_event_open, &attr, 10157 pid < 0 ? -1 : pid, /* pid */ 10158 pid == -1 ? 0 : -1, /* cpu */ 10159 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10160 if (pfd < 0) { 10161 err = -errno; 10162 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10163 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10164 return err; 10165 } 10166 return pfd; 10167 } 10168 10169 struct bpf_link * 10170 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10171 const char *func_name, 10172 const struct bpf_kprobe_opts *opts) 10173 { 10174 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10175 char errmsg[STRERR_BUFSIZE]; 10176 char *legacy_probe = NULL; 10177 struct bpf_link *link; 10178 size_t offset; 10179 bool retprobe, legacy; 10180 int pfd, err; 10181 10182 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10183 return libbpf_err_ptr(-EINVAL); 10184 10185 retprobe = OPTS_GET(opts, retprobe, false); 10186 offset = OPTS_GET(opts, offset, 0); 10187 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10188 10189 legacy = determine_kprobe_perf_type() < 0; 10190 if (!legacy) { 10191 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10192 func_name, offset, 10193 -1 /* pid */, 0 /* ref_ctr_off */); 10194 } else { 10195 char probe_name[256]; 10196 10197 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10198 func_name, offset); 10199 10200 legacy_probe = strdup(probe_name); 10201 if (!legacy_probe) 10202 return libbpf_err_ptr(-ENOMEM); 10203 10204 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10205 offset, -1 /* pid */); 10206 } 10207 if (pfd < 0) { 10208 err = -errno; 10209 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10210 prog->name, retprobe ? "kretprobe" : "kprobe", 10211 func_name, offset, 10212 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10213 goto err_out; 10214 } 10215 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10216 err = libbpf_get_error(link); 10217 if (err) { 10218 close(pfd); 10219 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10220 prog->name, retprobe ? "kretprobe" : "kprobe", 10221 func_name, offset, 10222 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10223 goto err_out; 10224 } 10225 if (legacy) { 10226 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10227 10228 perf_link->legacy_probe_name = legacy_probe; 10229 perf_link->legacy_is_kprobe = true; 10230 perf_link->legacy_is_retprobe = retprobe; 10231 } 10232 10233 return link; 10234 err_out: 10235 free(legacy_probe); 10236 return libbpf_err_ptr(err); 10237 } 10238 10239 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10240 bool retprobe, 10241 const char *func_name) 10242 { 10243 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10244 .retprobe = retprobe, 10245 ); 10246 10247 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10248 } 10249 10250 /* Adapted from perf/util/string.c */ 10251 static bool glob_match(const char *str, const char *pat) 10252 { 10253 while (*str && *pat && *pat != '*') { 10254 if (*pat == '?') { /* Matches any single character */ 10255 str++; 10256 pat++; 10257 continue; 10258 } 10259 if (*str != *pat) 10260 return false; 10261 str++; 10262 pat++; 10263 } 10264 /* Check wild card */ 10265 if (*pat == '*') { 10266 while (*pat == '*') 10267 pat++; 10268 if (!*pat) /* Tail wild card matches all */ 10269 return true; 10270 while (*str) 10271 if (glob_match(str++, pat)) 10272 return true; 10273 } 10274 return !*str && !*pat; 10275 } 10276 10277 struct kprobe_multi_resolve { 10278 const char *pattern; 10279 unsigned long *addrs; 10280 size_t cap; 10281 size_t cnt; 10282 }; 10283 10284 static int 10285 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10286 const char *sym_name, void *ctx) 10287 { 10288 struct kprobe_multi_resolve *res = ctx; 10289 int err; 10290 10291 if (!glob_match(sym_name, res->pattern)) 10292 return 0; 10293 10294 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10295 res->cnt + 1); 10296 if (err) 10297 return err; 10298 10299 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10300 return 0; 10301 } 10302 10303 struct bpf_link * 10304 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10305 const char *pattern, 10306 const struct bpf_kprobe_multi_opts *opts) 10307 { 10308 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10309 struct kprobe_multi_resolve res = { 10310 .pattern = pattern, 10311 }; 10312 struct bpf_link *link = NULL; 10313 char errmsg[STRERR_BUFSIZE]; 10314 const unsigned long *addrs; 10315 int err, link_fd, prog_fd; 10316 const __u64 *cookies; 10317 const char **syms; 10318 bool retprobe; 10319 size_t cnt; 10320 10321 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10322 return libbpf_err_ptr(-EINVAL); 10323 10324 syms = OPTS_GET(opts, syms, false); 10325 addrs = OPTS_GET(opts, addrs, false); 10326 cnt = OPTS_GET(opts, cnt, false); 10327 cookies = OPTS_GET(opts, cookies, false); 10328 10329 if (!pattern && !addrs && !syms) 10330 return libbpf_err_ptr(-EINVAL); 10331 if (pattern && (addrs || syms || cookies || cnt)) 10332 return libbpf_err_ptr(-EINVAL); 10333 if (!pattern && !cnt) 10334 return libbpf_err_ptr(-EINVAL); 10335 if (addrs && syms) 10336 return libbpf_err_ptr(-EINVAL); 10337 10338 if (pattern) { 10339 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10340 if (err) 10341 goto error; 10342 if (!res.cnt) { 10343 err = -ENOENT; 10344 goto error; 10345 } 10346 addrs = res.addrs; 10347 cnt = res.cnt; 10348 } 10349 10350 retprobe = OPTS_GET(opts, retprobe, false); 10351 10352 lopts.kprobe_multi.syms = syms; 10353 lopts.kprobe_multi.addrs = addrs; 10354 lopts.kprobe_multi.cookies = cookies; 10355 lopts.kprobe_multi.cnt = cnt; 10356 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10357 10358 link = calloc(1, sizeof(*link)); 10359 if (!link) { 10360 err = -ENOMEM; 10361 goto error; 10362 } 10363 link->detach = &bpf_link__detach_fd; 10364 10365 prog_fd = bpf_program__fd(prog); 10366 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10367 if (link_fd < 0) { 10368 err = -errno; 10369 pr_warn("prog '%s': failed to attach: %s\n", 10370 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10371 goto error; 10372 } 10373 link->fd = link_fd; 10374 free(res.addrs); 10375 return link; 10376 10377 error: 10378 free(link); 10379 free(res.addrs); 10380 return libbpf_err_ptr(err); 10381 } 10382 10383 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10384 { 10385 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10386 unsigned long offset = 0; 10387 const char *func_name; 10388 char *func; 10389 int n; 10390 10391 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10392 if (opts.retprobe) 10393 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10394 else 10395 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10396 10397 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10398 if (n < 1) { 10399 pr_warn("kprobe name is invalid: %s\n", func_name); 10400 return -EINVAL; 10401 } 10402 if (opts.retprobe && offset != 0) { 10403 free(func); 10404 pr_warn("kretprobes do not support offset specification\n"); 10405 return -EINVAL; 10406 } 10407 10408 opts.offset = offset; 10409 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10410 free(func); 10411 return libbpf_get_error(*link); 10412 } 10413 10414 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10415 { 10416 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10417 const char *spec; 10418 char *pattern; 10419 int n; 10420 10421 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10422 if (opts.retprobe) 10423 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10424 else 10425 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10426 10427 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10428 if (n < 1) { 10429 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10430 return -EINVAL; 10431 } 10432 10433 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10434 free(pattern); 10435 return libbpf_get_error(*link); 10436 } 10437 10438 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10439 const char *binary_path, uint64_t offset) 10440 { 10441 int i; 10442 10443 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10444 10445 /* sanitize binary_path in the probe name */ 10446 for (i = 0; buf[i]; i++) { 10447 if (!isalnum(buf[i])) 10448 buf[i] = '_'; 10449 } 10450 } 10451 10452 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10453 const char *binary_path, size_t offset) 10454 { 10455 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10456 10457 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10458 retprobe ? 'r' : 'p', 10459 retprobe ? "uretprobes" : "uprobes", 10460 probe_name, binary_path, offset); 10461 } 10462 10463 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10464 { 10465 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10466 10467 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10468 } 10469 10470 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10471 { 10472 char file[512]; 10473 10474 snprintf(file, sizeof(file), 10475 "/sys/kernel/debug/tracing/events/%s/%s/id", 10476 retprobe ? "uretprobes" : "uprobes", probe_name); 10477 10478 return parse_uint_from_file(file, "%d\n"); 10479 } 10480 10481 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10482 const char *binary_path, size_t offset, int pid) 10483 { 10484 struct perf_event_attr attr; 10485 int type, pfd, err; 10486 10487 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10488 if (err < 0) { 10489 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10490 binary_path, (size_t)offset, err); 10491 return err; 10492 } 10493 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10494 if (type < 0) { 10495 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10496 binary_path, offset, err); 10497 return type; 10498 } 10499 10500 memset(&attr, 0, sizeof(attr)); 10501 attr.size = sizeof(attr); 10502 attr.config = type; 10503 attr.type = PERF_TYPE_TRACEPOINT; 10504 10505 pfd = syscall(__NR_perf_event_open, &attr, 10506 pid < 0 ? -1 : pid, /* pid */ 10507 pid == -1 ? 0 : -1, /* cpu */ 10508 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10509 if (pfd < 0) { 10510 err = -errno; 10511 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10512 return err; 10513 } 10514 return pfd; 10515 } 10516 10517 LIBBPF_API struct bpf_link * 10518 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10519 const char *binary_path, size_t func_offset, 10520 const struct bpf_uprobe_opts *opts) 10521 { 10522 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10523 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10524 struct bpf_link *link; 10525 size_t ref_ctr_off; 10526 int pfd, err; 10527 bool retprobe, legacy; 10528 10529 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10530 return libbpf_err_ptr(-EINVAL); 10531 10532 retprobe = OPTS_GET(opts, retprobe, false); 10533 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10534 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10535 10536 legacy = determine_uprobe_perf_type() < 0; 10537 if (!legacy) { 10538 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10539 func_offset, pid, ref_ctr_off); 10540 } else { 10541 char probe_name[512]; 10542 10543 if (ref_ctr_off) 10544 return libbpf_err_ptr(-EINVAL); 10545 10546 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10547 binary_path, func_offset); 10548 10549 legacy_probe = strdup(probe_name); 10550 if (!legacy_probe) 10551 return libbpf_err_ptr(-ENOMEM); 10552 10553 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10554 binary_path, func_offset, pid); 10555 } 10556 if (pfd < 0) { 10557 err = -errno; 10558 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10559 prog->name, retprobe ? "uretprobe" : "uprobe", 10560 binary_path, func_offset, 10561 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10562 goto err_out; 10563 } 10564 10565 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10566 err = libbpf_get_error(link); 10567 if (err) { 10568 close(pfd); 10569 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10570 prog->name, retprobe ? "uretprobe" : "uprobe", 10571 binary_path, func_offset, 10572 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10573 goto err_out; 10574 } 10575 if (legacy) { 10576 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10577 10578 perf_link->legacy_probe_name = legacy_probe; 10579 perf_link->legacy_is_kprobe = false; 10580 perf_link->legacy_is_retprobe = retprobe; 10581 } 10582 return link; 10583 err_out: 10584 free(legacy_probe); 10585 return libbpf_err_ptr(err); 10586 10587 } 10588 10589 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10590 bool retprobe, pid_t pid, 10591 const char *binary_path, 10592 size_t func_offset) 10593 { 10594 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10595 10596 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10597 } 10598 10599 static int determine_tracepoint_id(const char *tp_category, 10600 const char *tp_name) 10601 { 10602 char file[PATH_MAX]; 10603 int ret; 10604 10605 ret = snprintf(file, sizeof(file), 10606 "/sys/kernel/debug/tracing/events/%s/%s/id", 10607 tp_category, tp_name); 10608 if (ret < 0) 10609 return -errno; 10610 if (ret >= sizeof(file)) { 10611 pr_debug("tracepoint %s/%s path is too long\n", 10612 tp_category, tp_name); 10613 return -E2BIG; 10614 } 10615 return parse_uint_from_file(file, "%d\n"); 10616 } 10617 10618 static int perf_event_open_tracepoint(const char *tp_category, 10619 const char *tp_name) 10620 { 10621 struct perf_event_attr attr = {}; 10622 char errmsg[STRERR_BUFSIZE]; 10623 int tp_id, pfd, err; 10624 10625 tp_id = determine_tracepoint_id(tp_category, tp_name); 10626 if (tp_id < 0) { 10627 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10628 tp_category, tp_name, 10629 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10630 return tp_id; 10631 } 10632 10633 attr.type = PERF_TYPE_TRACEPOINT; 10634 attr.size = sizeof(attr); 10635 attr.config = tp_id; 10636 10637 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10638 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10639 if (pfd < 0) { 10640 err = -errno; 10641 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10642 tp_category, tp_name, 10643 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10644 return err; 10645 } 10646 return pfd; 10647 } 10648 10649 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10650 const char *tp_category, 10651 const char *tp_name, 10652 const struct bpf_tracepoint_opts *opts) 10653 { 10654 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10655 char errmsg[STRERR_BUFSIZE]; 10656 struct bpf_link *link; 10657 int pfd, err; 10658 10659 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10660 return libbpf_err_ptr(-EINVAL); 10661 10662 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10663 10664 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10665 if (pfd < 0) { 10666 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10667 prog->name, tp_category, tp_name, 10668 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10669 return libbpf_err_ptr(pfd); 10670 } 10671 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10672 err = libbpf_get_error(link); 10673 if (err) { 10674 close(pfd); 10675 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10676 prog->name, tp_category, tp_name, 10677 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10678 return libbpf_err_ptr(err); 10679 } 10680 return link; 10681 } 10682 10683 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10684 const char *tp_category, 10685 const char *tp_name) 10686 { 10687 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10688 } 10689 10690 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10691 { 10692 char *sec_name, *tp_cat, *tp_name; 10693 10694 sec_name = strdup(prog->sec_name); 10695 if (!sec_name) 10696 return -ENOMEM; 10697 10698 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10699 if (str_has_pfx(prog->sec_name, "tp/")) 10700 tp_cat = sec_name + sizeof("tp/") - 1; 10701 else 10702 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10703 tp_name = strchr(tp_cat, '/'); 10704 if (!tp_name) { 10705 free(sec_name); 10706 return -EINVAL; 10707 } 10708 *tp_name = '\0'; 10709 tp_name++; 10710 10711 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10712 free(sec_name); 10713 return libbpf_get_error(*link); 10714 } 10715 10716 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10717 const char *tp_name) 10718 { 10719 char errmsg[STRERR_BUFSIZE]; 10720 struct bpf_link *link; 10721 int prog_fd, pfd; 10722 10723 prog_fd = bpf_program__fd(prog); 10724 if (prog_fd < 0) { 10725 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10726 return libbpf_err_ptr(-EINVAL); 10727 } 10728 10729 link = calloc(1, sizeof(*link)); 10730 if (!link) 10731 return libbpf_err_ptr(-ENOMEM); 10732 link->detach = &bpf_link__detach_fd; 10733 10734 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10735 if (pfd < 0) { 10736 pfd = -errno; 10737 free(link); 10738 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10739 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10740 return libbpf_err_ptr(pfd); 10741 } 10742 link->fd = pfd; 10743 return link; 10744 } 10745 10746 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10747 { 10748 static const char *const prefixes[] = { 10749 "raw_tp/", 10750 "raw_tracepoint/", 10751 "raw_tp.w/", 10752 "raw_tracepoint.w/", 10753 }; 10754 size_t i; 10755 const char *tp_name = NULL; 10756 10757 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10758 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10759 tp_name = prog->sec_name + strlen(prefixes[i]); 10760 break; 10761 } 10762 } 10763 if (!tp_name) { 10764 pr_warn("prog '%s': invalid section name '%s'\n", 10765 prog->name, prog->sec_name); 10766 return -EINVAL; 10767 } 10768 10769 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 10770 return libbpf_get_error(link); 10771 } 10772 10773 /* Common logic for all BPF program types that attach to a btf_id */ 10774 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10775 { 10776 char errmsg[STRERR_BUFSIZE]; 10777 struct bpf_link *link; 10778 int prog_fd, pfd; 10779 10780 prog_fd = bpf_program__fd(prog); 10781 if (prog_fd < 0) { 10782 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10783 return libbpf_err_ptr(-EINVAL); 10784 } 10785 10786 link = calloc(1, sizeof(*link)); 10787 if (!link) 10788 return libbpf_err_ptr(-ENOMEM); 10789 link->detach = &bpf_link__detach_fd; 10790 10791 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10792 if (pfd < 0) { 10793 pfd = -errno; 10794 free(link); 10795 pr_warn("prog '%s': failed to attach: %s\n", 10796 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10797 return libbpf_err_ptr(pfd); 10798 } 10799 link->fd = pfd; 10800 return (struct bpf_link *)link; 10801 } 10802 10803 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10804 { 10805 return bpf_program__attach_btf_id(prog); 10806 } 10807 10808 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10809 { 10810 return bpf_program__attach_btf_id(prog); 10811 } 10812 10813 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10814 { 10815 *link = bpf_program__attach_trace(prog); 10816 return libbpf_get_error(*link); 10817 } 10818 10819 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10820 { 10821 *link = bpf_program__attach_lsm(prog); 10822 return libbpf_get_error(*link); 10823 } 10824 10825 static struct bpf_link * 10826 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10827 const char *target_name) 10828 { 10829 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10830 .target_btf_id = btf_id); 10831 enum bpf_attach_type attach_type; 10832 char errmsg[STRERR_BUFSIZE]; 10833 struct bpf_link *link; 10834 int prog_fd, link_fd; 10835 10836 prog_fd = bpf_program__fd(prog); 10837 if (prog_fd < 0) { 10838 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10839 return libbpf_err_ptr(-EINVAL); 10840 } 10841 10842 link = calloc(1, sizeof(*link)); 10843 if (!link) 10844 return libbpf_err_ptr(-ENOMEM); 10845 link->detach = &bpf_link__detach_fd; 10846 10847 attach_type = bpf_program__expected_attach_type(prog); 10848 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10849 if (link_fd < 0) { 10850 link_fd = -errno; 10851 free(link); 10852 pr_warn("prog '%s': failed to attach to %s: %s\n", 10853 prog->name, target_name, 10854 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10855 return libbpf_err_ptr(link_fd); 10856 } 10857 link->fd = link_fd; 10858 return link; 10859 } 10860 10861 struct bpf_link * 10862 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10863 { 10864 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10865 } 10866 10867 struct bpf_link * 10868 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10869 { 10870 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10871 } 10872 10873 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10874 { 10875 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10876 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10877 } 10878 10879 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10880 int target_fd, 10881 const char *attach_func_name) 10882 { 10883 int btf_id; 10884 10885 if (!!target_fd != !!attach_func_name) { 10886 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10887 prog->name); 10888 return libbpf_err_ptr(-EINVAL); 10889 } 10890 10891 if (prog->type != BPF_PROG_TYPE_EXT) { 10892 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10893 prog->name); 10894 return libbpf_err_ptr(-EINVAL); 10895 } 10896 10897 if (target_fd) { 10898 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10899 if (btf_id < 0) 10900 return libbpf_err_ptr(btf_id); 10901 10902 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10903 } else { 10904 /* no target, so use raw_tracepoint_open for compatibility 10905 * with old kernels 10906 */ 10907 return bpf_program__attach_trace(prog); 10908 } 10909 } 10910 10911 struct bpf_link * 10912 bpf_program__attach_iter(const struct bpf_program *prog, 10913 const struct bpf_iter_attach_opts *opts) 10914 { 10915 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10916 char errmsg[STRERR_BUFSIZE]; 10917 struct bpf_link *link; 10918 int prog_fd, link_fd; 10919 __u32 target_fd = 0; 10920 10921 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10922 return libbpf_err_ptr(-EINVAL); 10923 10924 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10925 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10926 10927 prog_fd = bpf_program__fd(prog); 10928 if (prog_fd < 0) { 10929 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10930 return libbpf_err_ptr(-EINVAL); 10931 } 10932 10933 link = calloc(1, sizeof(*link)); 10934 if (!link) 10935 return libbpf_err_ptr(-ENOMEM); 10936 link->detach = &bpf_link__detach_fd; 10937 10938 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10939 &link_create_opts); 10940 if (link_fd < 0) { 10941 link_fd = -errno; 10942 free(link); 10943 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10944 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10945 return libbpf_err_ptr(link_fd); 10946 } 10947 link->fd = link_fd; 10948 return link; 10949 } 10950 10951 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10952 { 10953 *link = bpf_program__attach_iter(prog, NULL); 10954 return libbpf_get_error(*link); 10955 } 10956 10957 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10958 { 10959 struct bpf_link *link = NULL; 10960 int err; 10961 10962 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 10963 return libbpf_err_ptr(-EOPNOTSUPP); 10964 10965 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 10966 if (err) 10967 return libbpf_err_ptr(err); 10968 10969 /* When calling bpf_program__attach() explicitly, auto-attach support 10970 * is expected to work, so NULL returned link is considered an error. 10971 * This is different for skeleton's attach, see comment in 10972 * bpf_object__attach_skeleton(). 10973 */ 10974 if (!link) 10975 return libbpf_err_ptr(-EOPNOTSUPP); 10976 10977 return link; 10978 } 10979 10980 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10981 { 10982 __u32 zero = 0; 10983 10984 if (bpf_map_delete_elem(link->fd, &zero)) 10985 return -errno; 10986 10987 return 0; 10988 } 10989 10990 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10991 { 10992 struct bpf_struct_ops *st_ops; 10993 struct bpf_link *link; 10994 __u32 i, zero = 0; 10995 int err; 10996 10997 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10998 return libbpf_err_ptr(-EINVAL); 10999 11000 link = calloc(1, sizeof(*link)); 11001 if (!link) 11002 return libbpf_err_ptr(-EINVAL); 11003 11004 st_ops = map->st_ops; 11005 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11006 struct bpf_program *prog = st_ops->progs[i]; 11007 void *kern_data; 11008 int prog_fd; 11009 11010 if (!prog) 11011 continue; 11012 11013 prog_fd = bpf_program__fd(prog); 11014 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11015 *(unsigned long *)kern_data = prog_fd; 11016 } 11017 11018 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11019 if (err) { 11020 err = -errno; 11021 free(link); 11022 return libbpf_err_ptr(err); 11023 } 11024 11025 link->detach = bpf_link__detach_struct_ops; 11026 link->fd = map->fd; 11027 11028 return link; 11029 } 11030 11031 static enum bpf_perf_event_ret 11032 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11033 void **copy_mem, size_t *copy_size, 11034 bpf_perf_event_print_t fn, void *private_data) 11035 { 11036 struct perf_event_mmap_page *header = mmap_mem; 11037 __u64 data_head = ring_buffer_read_head(header); 11038 __u64 data_tail = header->data_tail; 11039 void *base = ((__u8 *)header) + page_size; 11040 int ret = LIBBPF_PERF_EVENT_CONT; 11041 struct perf_event_header *ehdr; 11042 size_t ehdr_size; 11043 11044 while (data_head != data_tail) { 11045 ehdr = base + (data_tail & (mmap_size - 1)); 11046 ehdr_size = ehdr->size; 11047 11048 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11049 void *copy_start = ehdr; 11050 size_t len_first = base + mmap_size - copy_start; 11051 size_t len_secnd = ehdr_size - len_first; 11052 11053 if (*copy_size < ehdr_size) { 11054 free(*copy_mem); 11055 *copy_mem = malloc(ehdr_size); 11056 if (!*copy_mem) { 11057 *copy_size = 0; 11058 ret = LIBBPF_PERF_EVENT_ERROR; 11059 break; 11060 } 11061 *copy_size = ehdr_size; 11062 } 11063 11064 memcpy(*copy_mem, copy_start, len_first); 11065 memcpy(*copy_mem + len_first, base, len_secnd); 11066 ehdr = *copy_mem; 11067 } 11068 11069 ret = fn(ehdr, private_data); 11070 data_tail += ehdr_size; 11071 if (ret != LIBBPF_PERF_EVENT_CONT) 11072 break; 11073 } 11074 11075 ring_buffer_write_tail(header, data_tail); 11076 return libbpf_err(ret); 11077 } 11078 11079 __attribute__((alias("perf_event_read_simple"))) 11080 enum bpf_perf_event_ret 11081 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11082 void **copy_mem, size_t *copy_size, 11083 bpf_perf_event_print_t fn, void *private_data); 11084 11085 struct perf_buffer; 11086 11087 struct perf_buffer_params { 11088 struct perf_event_attr *attr; 11089 /* if event_cb is specified, it takes precendence */ 11090 perf_buffer_event_fn event_cb; 11091 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11092 perf_buffer_sample_fn sample_cb; 11093 perf_buffer_lost_fn lost_cb; 11094 void *ctx; 11095 int cpu_cnt; 11096 int *cpus; 11097 int *map_keys; 11098 }; 11099 11100 struct perf_cpu_buf { 11101 struct perf_buffer *pb; 11102 void *base; /* mmap()'ed memory */ 11103 void *buf; /* for reconstructing segmented data */ 11104 size_t buf_size; 11105 int fd; 11106 int cpu; 11107 int map_key; 11108 }; 11109 11110 struct perf_buffer { 11111 perf_buffer_event_fn event_cb; 11112 perf_buffer_sample_fn sample_cb; 11113 perf_buffer_lost_fn lost_cb; 11114 void *ctx; /* passed into callbacks */ 11115 11116 size_t page_size; 11117 size_t mmap_size; 11118 struct perf_cpu_buf **cpu_bufs; 11119 struct epoll_event *events; 11120 int cpu_cnt; /* number of allocated CPU buffers */ 11121 int epoll_fd; /* perf event FD */ 11122 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11123 }; 11124 11125 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11126 struct perf_cpu_buf *cpu_buf) 11127 { 11128 if (!cpu_buf) 11129 return; 11130 if (cpu_buf->base && 11131 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11132 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11133 if (cpu_buf->fd >= 0) { 11134 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11135 close(cpu_buf->fd); 11136 } 11137 free(cpu_buf->buf); 11138 free(cpu_buf); 11139 } 11140 11141 void perf_buffer__free(struct perf_buffer *pb) 11142 { 11143 int i; 11144 11145 if (IS_ERR_OR_NULL(pb)) 11146 return; 11147 if (pb->cpu_bufs) { 11148 for (i = 0; i < pb->cpu_cnt; i++) { 11149 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11150 11151 if (!cpu_buf) 11152 continue; 11153 11154 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11155 perf_buffer__free_cpu_buf(pb, cpu_buf); 11156 } 11157 free(pb->cpu_bufs); 11158 } 11159 if (pb->epoll_fd >= 0) 11160 close(pb->epoll_fd); 11161 free(pb->events); 11162 free(pb); 11163 } 11164 11165 static struct perf_cpu_buf * 11166 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11167 int cpu, int map_key) 11168 { 11169 struct perf_cpu_buf *cpu_buf; 11170 char msg[STRERR_BUFSIZE]; 11171 int err; 11172 11173 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11174 if (!cpu_buf) 11175 return ERR_PTR(-ENOMEM); 11176 11177 cpu_buf->pb = pb; 11178 cpu_buf->cpu = cpu; 11179 cpu_buf->map_key = map_key; 11180 11181 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11182 -1, PERF_FLAG_FD_CLOEXEC); 11183 if (cpu_buf->fd < 0) { 11184 err = -errno; 11185 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11186 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11187 goto error; 11188 } 11189 11190 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11191 PROT_READ | PROT_WRITE, MAP_SHARED, 11192 cpu_buf->fd, 0); 11193 if (cpu_buf->base == MAP_FAILED) { 11194 cpu_buf->base = NULL; 11195 err = -errno; 11196 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11197 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11198 goto error; 11199 } 11200 11201 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11202 err = -errno; 11203 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11204 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11205 goto error; 11206 } 11207 11208 return cpu_buf; 11209 11210 error: 11211 perf_buffer__free_cpu_buf(pb, cpu_buf); 11212 return (struct perf_cpu_buf *)ERR_PTR(err); 11213 } 11214 11215 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11216 struct perf_buffer_params *p); 11217 11218 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 11219 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 11220 perf_buffer_sample_fn sample_cb, 11221 perf_buffer_lost_fn lost_cb, 11222 void *ctx, 11223 const struct perf_buffer_opts *opts) 11224 { 11225 struct perf_buffer_params p = {}; 11226 struct perf_event_attr attr = {}; 11227 11228 if (!OPTS_VALID(opts, perf_buffer_opts)) 11229 return libbpf_err_ptr(-EINVAL); 11230 11231 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11232 attr.type = PERF_TYPE_SOFTWARE; 11233 attr.sample_type = PERF_SAMPLE_RAW; 11234 attr.sample_period = 1; 11235 attr.wakeup_events = 1; 11236 11237 p.attr = &attr; 11238 p.sample_cb = sample_cb; 11239 p.lost_cb = lost_cb; 11240 p.ctx = ctx; 11241 11242 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11243 } 11244 11245 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 11246 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 11247 const struct perf_buffer_opts *opts) 11248 { 11249 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 11250 opts ? opts->sample_cb : NULL, 11251 opts ? opts->lost_cb : NULL, 11252 opts ? opts->ctx : NULL, 11253 NULL); 11254 } 11255 11256 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 11257 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 11258 struct perf_event_attr *attr, 11259 perf_buffer_event_fn event_cb, void *ctx, 11260 const struct perf_buffer_raw_opts *opts) 11261 { 11262 struct perf_buffer_params p = {}; 11263 11264 if (!attr) 11265 return libbpf_err_ptr(-EINVAL); 11266 11267 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11268 return libbpf_err_ptr(-EINVAL); 11269 11270 p.attr = attr; 11271 p.event_cb = event_cb; 11272 p.ctx = ctx; 11273 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11274 p.cpus = OPTS_GET(opts, cpus, NULL); 11275 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11276 11277 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11278 } 11279 11280 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 11281 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 11282 const struct perf_buffer_raw_opts *opts) 11283 { 11284 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 11285 .cpu_cnt = opts->cpu_cnt, 11286 .cpus = opts->cpus, 11287 .map_keys = opts->map_keys, 11288 ); 11289 11290 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 11291 opts->event_cb, opts->ctx, &inner_opts); 11292 } 11293 11294 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11295 struct perf_buffer_params *p) 11296 { 11297 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11298 struct bpf_map_info map; 11299 char msg[STRERR_BUFSIZE]; 11300 struct perf_buffer *pb; 11301 bool *online = NULL; 11302 __u32 map_info_len; 11303 int err, i, j, n; 11304 11305 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11306 pr_warn("page count should be power of two, but is %zu\n", 11307 page_cnt); 11308 return ERR_PTR(-EINVAL); 11309 } 11310 11311 /* best-effort sanity checks */ 11312 memset(&map, 0, sizeof(map)); 11313 map_info_len = sizeof(map); 11314 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11315 if (err) { 11316 err = -errno; 11317 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11318 * -EBADFD, -EFAULT, or -E2BIG on real error 11319 */ 11320 if (err != -EINVAL) { 11321 pr_warn("failed to get map info for map FD %d: %s\n", 11322 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11323 return ERR_PTR(err); 11324 } 11325 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11326 map_fd); 11327 } else { 11328 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11329 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11330 map.name); 11331 return ERR_PTR(-EINVAL); 11332 } 11333 } 11334 11335 pb = calloc(1, sizeof(*pb)); 11336 if (!pb) 11337 return ERR_PTR(-ENOMEM); 11338 11339 pb->event_cb = p->event_cb; 11340 pb->sample_cb = p->sample_cb; 11341 pb->lost_cb = p->lost_cb; 11342 pb->ctx = p->ctx; 11343 11344 pb->page_size = getpagesize(); 11345 pb->mmap_size = pb->page_size * page_cnt; 11346 pb->map_fd = map_fd; 11347 11348 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11349 if (pb->epoll_fd < 0) { 11350 err = -errno; 11351 pr_warn("failed to create epoll instance: %s\n", 11352 libbpf_strerror_r(err, msg, sizeof(msg))); 11353 goto error; 11354 } 11355 11356 if (p->cpu_cnt > 0) { 11357 pb->cpu_cnt = p->cpu_cnt; 11358 } else { 11359 pb->cpu_cnt = libbpf_num_possible_cpus(); 11360 if (pb->cpu_cnt < 0) { 11361 err = pb->cpu_cnt; 11362 goto error; 11363 } 11364 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11365 pb->cpu_cnt = map.max_entries; 11366 } 11367 11368 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11369 if (!pb->events) { 11370 err = -ENOMEM; 11371 pr_warn("failed to allocate events: out of memory\n"); 11372 goto error; 11373 } 11374 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11375 if (!pb->cpu_bufs) { 11376 err = -ENOMEM; 11377 pr_warn("failed to allocate buffers: out of memory\n"); 11378 goto error; 11379 } 11380 11381 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11382 if (err) { 11383 pr_warn("failed to get online CPU mask: %d\n", err); 11384 goto error; 11385 } 11386 11387 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11388 struct perf_cpu_buf *cpu_buf; 11389 int cpu, map_key; 11390 11391 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11392 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11393 11394 /* in case user didn't explicitly requested particular CPUs to 11395 * be attached to, skip offline/not present CPUs 11396 */ 11397 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11398 continue; 11399 11400 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11401 if (IS_ERR(cpu_buf)) { 11402 err = PTR_ERR(cpu_buf); 11403 goto error; 11404 } 11405 11406 pb->cpu_bufs[j] = cpu_buf; 11407 11408 err = bpf_map_update_elem(pb->map_fd, &map_key, 11409 &cpu_buf->fd, 0); 11410 if (err) { 11411 err = -errno; 11412 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11413 cpu, map_key, cpu_buf->fd, 11414 libbpf_strerror_r(err, msg, sizeof(msg))); 11415 goto error; 11416 } 11417 11418 pb->events[j].events = EPOLLIN; 11419 pb->events[j].data.ptr = cpu_buf; 11420 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11421 &pb->events[j]) < 0) { 11422 err = -errno; 11423 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11424 cpu, cpu_buf->fd, 11425 libbpf_strerror_r(err, msg, sizeof(msg))); 11426 goto error; 11427 } 11428 j++; 11429 } 11430 pb->cpu_cnt = j; 11431 free(online); 11432 11433 return pb; 11434 11435 error: 11436 free(online); 11437 if (pb) 11438 perf_buffer__free(pb); 11439 return ERR_PTR(err); 11440 } 11441 11442 struct perf_sample_raw { 11443 struct perf_event_header header; 11444 uint32_t size; 11445 char data[]; 11446 }; 11447 11448 struct perf_sample_lost { 11449 struct perf_event_header header; 11450 uint64_t id; 11451 uint64_t lost; 11452 uint64_t sample_id; 11453 }; 11454 11455 static enum bpf_perf_event_ret 11456 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11457 { 11458 struct perf_cpu_buf *cpu_buf = ctx; 11459 struct perf_buffer *pb = cpu_buf->pb; 11460 void *data = e; 11461 11462 /* user wants full control over parsing perf event */ 11463 if (pb->event_cb) 11464 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11465 11466 switch (e->type) { 11467 case PERF_RECORD_SAMPLE: { 11468 struct perf_sample_raw *s = data; 11469 11470 if (pb->sample_cb) 11471 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11472 break; 11473 } 11474 case PERF_RECORD_LOST: { 11475 struct perf_sample_lost *s = data; 11476 11477 if (pb->lost_cb) 11478 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11479 break; 11480 } 11481 default: 11482 pr_warn("unknown perf sample type %d\n", e->type); 11483 return LIBBPF_PERF_EVENT_ERROR; 11484 } 11485 return LIBBPF_PERF_EVENT_CONT; 11486 } 11487 11488 static int perf_buffer__process_records(struct perf_buffer *pb, 11489 struct perf_cpu_buf *cpu_buf) 11490 { 11491 enum bpf_perf_event_ret ret; 11492 11493 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11494 pb->page_size, &cpu_buf->buf, 11495 &cpu_buf->buf_size, 11496 perf_buffer__process_record, cpu_buf); 11497 if (ret != LIBBPF_PERF_EVENT_CONT) 11498 return ret; 11499 return 0; 11500 } 11501 11502 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11503 { 11504 return pb->epoll_fd; 11505 } 11506 11507 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11508 { 11509 int i, cnt, err; 11510 11511 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11512 if (cnt < 0) 11513 return -errno; 11514 11515 for (i = 0; i < cnt; i++) { 11516 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11517 11518 err = perf_buffer__process_records(pb, cpu_buf); 11519 if (err) { 11520 pr_warn("error while processing records: %d\n", err); 11521 return libbpf_err(err); 11522 } 11523 } 11524 return cnt; 11525 } 11526 11527 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11528 * manager. 11529 */ 11530 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11531 { 11532 return pb->cpu_cnt; 11533 } 11534 11535 /* 11536 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11537 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11538 * select()/poll()/epoll() Linux syscalls. 11539 */ 11540 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11541 { 11542 struct perf_cpu_buf *cpu_buf; 11543 11544 if (buf_idx >= pb->cpu_cnt) 11545 return libbpf_err(-EINVAL); 11546 11547 cpu_buf = pb->cpu_bufs[buf_idx]; 11548 if (!cpu_buf) 11549 return libbpf_err(-ENOENT); 11550 11551 return cpu_buf->fd; 11552 } 11553 11554 /* 11555 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11556 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11557 * consume, do nothing and return success. 11558 * Returns: 11559 * - 0 on success; 11560 * - <0 on failure. 11561 */ 11562 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11563 { 11564 struct perf_cpu_buf *cpu_buf; 11565 11566 if (buf_idx >= pb->cpu_cnt) 11567 return libbpf_err(-EINVAL); 11568 11569 cpu_buf = pb->cpu_bufs[buf_idx]; 11570 if (!cpu_buf) 11571 return libbpf_err(-ENOENT); 11572 11573 return perf_buffer__process_records(pb, cpu_buf); 11574 } 11575 11576 int perf_buffer__consume(struct perf_buffer *pb) 11577 { 11578 int i, err; 11579 11580 for (i = 0; i < pb->cpu_cnt; i++) { 11581 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11582 11583 if (!cpu_buf) 11584 continue; 11585 11586 err = perf_buffer__process_records(pb, cpu_buf); 11587 if (err) { 11588 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11589 return libbpf_err(err); 11590 } 11591 } 11592 return 0; 11593 } 11594 11595 struct bpf_prog_info_array_desc { 11596 int array_offset; /* e.g. offset of jited_prog_insns */ 11597 int count_offset; /* e.g. offset of jited_prog_len */ 11598 int size_offset; /* > 0: offset of rec size, 11599 * < 0: fix size of -size_offset 11600 */ 11601 }; 11602 11603 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11604 [BPF_PROG_INFO_JITED_INSNS] = { 11605 offsetof(struct bpf_prog_info, jited_prog_insns), 11606 offsetof(struct bpf_prog_info, jited_prog_len), 11607 -1, 11608 }, 11609 [BPF_PROG_INFO_XLATED_INSNS] = { 11610 offsetof(struct bpf_prog_info, xlated_prog_insns), 11611 offsetof(struct bpf_prog_info, xlated_prog_len), 11612 -1, 11613 }, 11614 [BPF_PROG_INFO_MAP_IDS] = { 11615 offsetof(struct bpf_prog_info, map_ids), 11616 offsetof(struct bpf_prog_info, nr_map_ids), 11617 -(int)sizeof(__u32), 11618 }, 11619 [BPF_PROG_INFO_JITED_KSYMS] = { 11620 offsetof(struct bpf_prog_info, jited_ksyms), 11621 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11622 -(int)sizeof(__u64), 11623 }, 11624 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11625 offsetof(struct bpf_prog_info, jited_func_lens), 11626 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11627 -(int)sizeof(__u32), 11628 }, 11629 [BPF_PROG_INFO_FUNC_INFO] = { 11630 offsetof(struct bpf_prog_info, func_info), 11631 offsetof(struct bpf_prog_info, nr_func_info), 11632 offsetof(struct bpf_prog_info, func_info_rec_size), 11633 }, 11634 [BPF_PROG_INFO_LINE_INFO] = { 11635 offsetof(struct bpf_prog_info, line_info), 11636 offsetof(struct bpf_prog_info, nr_line_info), 11637 offsetof(struct bpf_prog_info, line_info_rec_size), 11638 }, 11639 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11640 offsetof(struct bpf_prog_info, jited_line_info), 11641 offsetof(struct bpf_prog_info, nr_jited_line_info), 11642 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11643 }, 11644 [BPF_PROG_INFO_PROG_TAGS] = { 11645 offsetof(struct bpf_prog_info, prog_tags), 11646 offsetof(struct bpf_prog_info, nr_prog_tags), 11647 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11648 }, 11649 11650 }; 11651 11652 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11653 int offset) 11654 { 11655 __u32 *array = (__u32 *)info; 11656 11657 if (offset >= 0) 11658 return array[offset / sizeof(__u32)]; 11659 return -(int)offset; 11660 } 11661 11662 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11663 int offset) 11664 { 11665 __u64 *array = (__u64 *)info; 11666 11667 if (offset >= 0) 11668 return array[offset / sizeof(__u64)]; 11669 return -(int)offset; 11670 } 11671 11672 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11673 __u32 val) 11674 { 11675 __u32 *array = (__u32 *)info; 11676 11677 if (offset >= 0) 11678 array[offset / sizeof(__u32)] = val; 11679 } 11680 11681 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11682 __u64 val) 11683 { 11684 __u64 *array = (__u64 *)info; 11685 11686 if (offset >= 0) 11687 array[offset / sizeof(__u64)] = val; 11688 } 11689 11690 struct bpf_prog_info_linear * 11691 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11692 { 11693 struct bpf_prog_info_linear *info_linear; 11694 struct bpf_prog_info info = {}; 11695 __u32 info_len = sizeof(info); 11696 __u32 data_len = 0; 11697 int i, err; 11698 void *ptr; 11699 11700 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11701 return libbpf_err_ptr(-EINVAL); 11702 11703 /* step 1: get array dimensions */ 11704 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11705 if (err) { 11706 pr_debug("can't get prog info: %s", strerror(errno)); 11707 return libbpf_err_ptr(-EFAULT); 11708 } 11709 11710 /* step 2: calculate total size of all arrays */ 11711 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11712 bool include_array = (arrays & (1UL << i)) > 0; 11713 struct bpf_prog_info_array_desc *desc; 11714 __u32 count, size; 11715 11716 desc = bpf_prog_info_array_desc + i; 11717 11718 /* kernel is too old to support this field */ 11719 if (info_len < desc->array_offset + sizeof(__u32) || 11720 info_len < desc->count_offset + sizeof(__u32) || 11721 (desc->size_offset > 0 && info_len < desc->size_offset)) 11722 include_array = false; 11723 11724 if (!include_array) { 11725 arrays &= ~(1UL << i); /* clear the bit */ 11726 continue; 11727 } 11728 11729 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11730 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11731 11732 data_len += count * size; 11733 } 11734 11735 /* step 3: allocate continuous memory */ 11736 data_len = roundup(data_len, sizeof(__u64)); 11737 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11738 if (!info_linear) 11739 return libbpf_err_ptr(-ENOMEM); 11740 11741 /* step 4: fill data to info_linear->info */ 11742 info_linear->arrays = arrays; 11743 memset(&info_linear->info, 0, sizeof(info)); 11744 ptr = info_linear->data; 11745 11746 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11747 struct bpf_prog_info_array_desc *desc; 11748 __u32 count, size; 11749 11750 if ((arrays & (1UL << i)) == 0) 11751 continue; 11752 11753 desc = bpf_prog_info_array_desc + i; 11754 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11755 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11756 bpf_prog_info_set_offset_u32(&info_linear->info, 11757 desc->count_offset, count); 11758 bpf_prog_info_set_offset_u32(&info_linear->info, 11759 desc->size_offset, size); 11760 bpf_prog_info_set_offset_u64(&info_linear->info, 11761 desc->array_offset, 11762 ptr_to_u64(ptr)); 11763 ptr += count * size; 11764 } 11765 11766 /* step 5: call syscall again to get required arrays */ 11767 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11768 if (err) { 11769 pr_debug("can't get prog info: %s", strerror(errno)); 11770 free(info_linear); 11771 return libbpf_err_ptr(-EFAULT); 11772 } 11773 11774 /* step 6: verify the data */ 11775 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11776 struct bpf_prog_info_array_desc *desc; 11777 __u32 v1, v2; 11778 11779 if ((arrays & (1UL << i)) == 0) 11780 continue; 11781 11782 desc = bpf_prog_info_array_desc + i; 11783 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11784 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11785 desc->count_offset); 11786 if (v1 != v2) 11787 pr_warn("%s: mismatch in element count\n", __func__); 11788 11789 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11790 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11791 desc->size_offset); 11792 if (v1 != v2) 11793 pr_warn("%s: mismatch in rec size\n", __func__); 11794 } 11795 11796 /* step 7: update info_len and data_len */ 11797 info_linear->info_len = sizeof(struct bpf_prog_info); 11798 info_linear->data_len = data_len; 11799 11800 return info_linear; 11801 } 11802 11803 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11804 { 11805 int i; 11806 11807 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11808 struct bpf_prog_info_array_desc *desc; 11809 __u64 addr, offs; 11810 11811 if ((info_linear->arrays & (1UL << i)) == 0) 11812 continue; 11813 11814 desc = bpf_prog_info_array_desc + i; 11815 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11816 desc->array_offset); 11817 offs = addr - ptr_to_u64(info_linear->data); 11818 bpf_prog_info_set_offset_u64(&info_linear->info, 11819 desc->array_offset, offs); 11820 } 11821 } 11822 11823 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11824 { 11825 int i; 11826 11827 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11828 struct bpf_prog_info_array_desc *desc; 11829 __u64 addr, offs; 11830 11831 if ((info_linear->arrays & (1UL << i)) == 0) 11832 continue; 11833 11834 desc = bpf_prog_info_array_desc + i; 11835 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11836 desc->array_offset); 11837 addr = offs + ptr_to_u64(info_linear->data); 11838 bpf_prog_info_set_offset_u64(&info_linear->info, 11839 desc->array_offset, addr); 11840 } 11841 } 11842 11843 int bpf_program__set_attach_target(struct bpf_program *prog, 11844 int attach_prog_fd, 11845 const char *attach_func_name) 11846 { 11847 int btf_obj_fd = 0, btf_id = 0, err; 11848 11849 if (!prog || attach_prog_fd < 0) 11850 return libbpf_err(-EINVAL); 11851 11852 if (prog->obj->loaded) 11853 return libbpf_err(-EINVAL); 11854 11855 if (attach_prog_fd && !attach_func_name) { 11856 /* remember attach_prog_fd and let bpf_program__load() find 11857 * BTF ID during the program load 11858 */ 11859 prog->attach_prog_fd = attach_prog_fd; 11860 return 0; 11861 } 11862 11863 if (attach_prog_fd) { 11864 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11865 attach_prog_fd); 11866 if (btf_id < 0) 11867 return libbpf_err(btf_id); 11868 } else { 11869 if (!attach_func_name) 11870 return libbpf_err(-EINVAL); 11871 11872 /* load btf_vmlinux, if not yet */ 11873 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11874 if (err) 11875 return libbpf_err(err); 11876 err = find_kernel_btf_id(prog->obj, attach_func_name, 11877 prog->expected_attach_type, 11878 &btf_obj_fd, &btf_id); 11879 if (err) 11880 return libbpf_err(err); 11881 } 11882 11883 prog->attach_btf_id = btf_id; 11884 prog->attach_btf_obj_fd = btf_obj_fd; 11885 prog->attach_prog_fd = attach_prog_fd; 11886 return 0; 11887 } 11888 11889 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11890 { 11891 int err = 0, n, len, start, end = -1; 11892 bool *tmp; 11893 11894 *mask = NULL; 11895 *mask_sz = 0; 11896 11897 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11898 while (*s) { 11899 if (*s == ',' || *s == '\n') { 11900 s++; 11901 continue; 11902 } 11903 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11904 if (n <= 0 || n > 2) { 11905 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11906 err = -EINVAL; 11907 goto cleanup; 11908 } else if (n == 1) { 11909 end = start; 11910 } 11911 if (start < 0 || start > end) { 11912 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11913 start, end, s); 11914 err = -EINVAL; 11915 goto cleanup; 11916 } 11917 tmp = realloc(*mask, end + 1); 11918 if (!tmp) { 11919 err = -ENOMEM; 11920 goto cleanup; 11921 } 11922 *mask = tmp; 11923 memset(tmp + *mask_sz, 0, start - *mask_sz); 11924 memset(tmp + start, 1, end - start + 1); 11925 *mask_sz = end + 1; 11926 s += len; 11927 } 11928 if (!*mask_sz) { 11929 pr_warn("Empty CPU range\n"); 11930 return -EINVAL; 11931 } 11932 return 0; 11933 cleanup: 11934 free(*mask); 11935 *mask = NULL; 11936 return err; 11937 } 11938 11939 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11940 { 11941 int fd, err = 0, len; 11942 char buf[128]; 11943 11944 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11945 if (fd < 0) { 11946 err = -errno; 11947 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11948 return err; 11949 } 11950 len = read(fd, buf, sizeof(buf)); 11951 close(fd); 11952 if (len <= 0) { 11953 err = len ? -errno : -EINVAL; 11954 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11955 return err; 11956 } 11957 if (len >= sizeof(buf)) { 11958 pr_warn("CPU mask is too big in file %s\n", fcpu); 11959 return -E2BIG; 11960 } 11961 buf[len] = '\0'; 11962 11963 return parse_cpu_mask_str(buf, mask, mask_sz); 11964 } 11965 11966 int libbpf_num_possible_cpus(void) 11967 { 11968 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11969 static int cpus; 11970 int err, n, i, tmp_cpus; 11971 bool *mask; 11972 11973 tmp_cpus = READ_ONCE(cpus); 11974 if (tmp_cpus > 0) 11975 return tmp_cpus; 11976 11977 err = parse_cpu_mask_file(fcpu, &mask, &n); 11978 if (err) 11979 return libbpf_err(err); 11980 11981 tmp_cpus = 0; 11982 for (i = 0; i < n; i++) { 11983 if (mask[i]) 11984 tmp_cpus++; 11985 } 11986 free(mask); 11987 11988 WRITE_ONCE(cpus, tmp_cpus); 11989 return tmp_cpus; 11990 } 11991 11992 static int populate_skeleton_maps(const struct bpf_object *obj, 11993 struct bpf_map_skeleton *maps, 11994 size_t map_cnt) 11995 { 11996 int i; 11997 11998 for (i = 0; i < map_cnt; i++) { 11999 struct bpf_map **map = maps[i].map; 12000 const char *name = maps[i].name; 12001 void **mmaped = maps[i].mmaped; 12002 12003 *map = bpf_object__find_map_by_name(obj, name); 12004 if (!*map) { 12005 pr_warn("failed to find skeleton map '%s'\n", name); 12006 return -ESRCH; 12007 } 12008 12009 /* externs shouldn't be pre-setup from user code */ 12010 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12011 *mmaped = (*map)->mmaped; 12012 } 12013 return 0; 12014 } 12015 12016 static int populate_skeleton_progs(const struct bpf_object *obj, 12017 struct bpf_prog_skeleton *progs, 12018 size_t prog_cnt) 12019 { 12020 int i; 12021 12022 for (i = 0; i < prog_cnt; i++) { 12023 struct bpf_program **prog = progs[i].prog; 12024 const char *name = progs[i].name; 12025 12026 *prog = bpf_object__find_program_by_name(obj, name); 12027 if (!*prog) { 12028 pr_warn("failed to find skeleton program '%s'\n", name); 12029 return -ESRCH; 12030 } 12031 } 12032 return 0; 12033 } 12034 12035 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12036 const struct bpf_object_open_opts *opts) 12037 { 12038 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12039 .object_name = s->name, 12040 ); 12041 struct bpf_object *obj; 12042 int err; 12043 12044 /* Attempt to preserve opts->object_name, unless overriden by user 12045 * explicitly. Overwriting object name for skeletons is discouraged, 12046 * as it breaks global data maps, because they contain object name 12047 * prefix as their own map name prefix. When skeleton is generated, 12048 * bpftool is making an assumption that this name will stay the same. 12049 */ 12050 if (opts) { 12051 memcpy(&skel_opts, opts, sizeof(*opts)); 12052 if (!opts->object_name) 12053 skel_opts.object_name = s->name; 12054 } 12055 12056 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12057 err = libbpf_get_error(obj); 12058 if (err) { 12059 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12060 s->name, err); 12061 return libbpf_err(err); 12062 } 12063 12064 *s->obj = obj; 12065 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12066 if (err) { 12067 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12068 return libbpf_err(err); 12069 } 12070 12071 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12072 if (err) { 12073 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12074 return libbpf_err(err); 12075 } 12076 12077 return 0; 12078 } 12079 12080 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12081 { 12082 int err, len, var_idx, i; 12083 const char *var_name; 12084 const struct bpf_map *map; 12085 struct btf *btf; 12086 __u32 map_type_id; 12087 const struct btf_type *map_type, *var_type; 12088 const struct bpf_var_skeleton *var_skel; 12089 struct btf_var_secinfo *var; 12090 12091 if (!s->obj) 12092 return libbpf_err(-EINVAL); 12093 12094 btf = bpf_object__btf(s->obj); 12095 if (!btf) { 12096 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12097 bpf_object__name(s->obj)); 12098 return libbpf_err(-errno); 12099 } 12100 12101 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12102 if (err) { 12103 pr_warn("failed to populate subskeleton maps: %d\n", err); 12104 return libbpf_err(err); 12105 } 12106 12107 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12108 if (err) { 12109 pr_warn("failed to populate subskeleton maps: %d\n", err); 12110 return libbpf_err(err); 12111 } 12112 12113 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12114 var_skel = &s->vars[var_idx]; 12115 map = *var_skel->map; 12116 map_type_id = bpf_map__btf_value_type_id(map); 12117 map_type = btf__type_by_id(btf, map_type_id); 12118 12119 if (!btf_is_datasec(map_type)) { 12120 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12121 bpf_map__name(map), 12122 __btf_kind_str(btf_kind(map_type))); 12123 return libbpf_err(-EINVAL); 12124 } 12125 12126 len = btf_vlen(map_type); 12127 var = btf_var_secinfos(map_type); 12128 for (i = 0; i < len; i++, var++) { 12129 var_type = btf__type_by_id(btf, var->type); 12130 var_name = btf__name_by_offset(btf, var_type->name_off); 12131 if (strcmp(var_name, var_skel->name) == 0) { 12132 *var_skel->addr = map->mmaped + var->offset; 12133 break; 12134 } 12135 } 12136 } 12137 return 0; 12138 } 12139 12140 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12141 { 12142 if (!s) 12143 return; 12144 free(s->maps); 12145 free(s->progs); 12146 free(s->vars); 12147 free(s); 12148 } 12149 12150 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12151 { 12152 int i, err; 12153 12154 err = bpf_object__load(*s->obj); 12155 if (err) { 12156 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12157 return libbpf_err(err); 12158 } 12159 12160 for (i = 0; i < s->map_cnt; i++) { 12161 struct bpf_map *map = *s->maps[i].map; 12162 size_t mmap_sz = bpf_map_mmap_sz(map); 12163 int prot, map_fd = bpf_map__fd(map); 12164 void **mmaped = s->maps[i].mmaped; 12165 12166 if (!mmaped) 12167 continue; 12168 12169 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12170 *mmaped = NULL; 12171 continue; 12172 } 12173 12174 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12175 prot = PROT_READ; 12176 else 12177 prot = PROT_READ | PROT_WRITE; 12178 12179 /* Remap anonymous mmap()-ed "map initialization image" as 12180 * a BPF map-backed mmap()-ed memory, but preserving the same 12181 * memory address. This will cause kernel to change process' 12182 * page table to point to a different piece of kernel memory, 12183 * but from userspace point of view memory address (and its 12184 * contents, being identical at this point) will stay the 12185 * same. This mapping will be released by bpf_object__close() 12186 * as per normal clean up procedure, so we don't need to worry 12187 * about it from skeleton's clean up perspective. 12188 */ 12189 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12190 MAP_SHARED | MAP_FIXED, map_fd, 0); 12191 if (*mmaped == MAP_FAILED) { 12192 err = -errno; 12193 *mmaped = NULL; 12194 pr_warn("failed to re-mmap() map '%s': %d\n", 12195 bpf_map__name(map), err); 12196 return libbpf_err(err); 12197 } 12198 } 12199 12200 return 0; 12201 } 12202 12203 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12204 { 12205 int i, err; 12206 12207 for (i = 0; i < s->prog_cnt; i++) { 12208 struct bpf_program *prog = *s->progs[i].prog; 12209 struct bpf_link **link = s->progs[i].link; 12210 12211 if (!prog->load) 12212 continue; 12213 12214 /* auto-attaching not supported for this program */ 12215 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12216 continue; 12217 12218 /* if user already set the link manually, don't attempt auto-attach */ 12219 if (*link) 12220 continue; 12221 12222 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12223 if (err) { 12224 pr_warn("prog '%s': failed to auto-attach: %d\n", 12225 bpf_program__name(prog), err); 12226 return libbpf_err(err); 12227 } 12228 12229 /* It's possible that for some SEC() definitions auto-attach 12230 * is supported in some cases (e.g., if definition completely 12231 * specifies target information), but is not in other cases. 12232 * SEC("uprobe") is one such case. If user specified target 12233 * binary and function name, such BPF program can be 12234 * auto-attached. But if not, it shouldn't trigger skeleton's 12235 * attach to fail. It should just be skipped. 12236 * attach_fn signals such case with returning 0 (no error) and 12237 * setting link to NULL. 12238 */ 12239 } 12240 12241 return 0; 12242 } 12243 12244 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12245 { 12246 int i; 12247 12248 for (i = 0; i < s->prog_cnt; i++) { 12249 struct bpf_link **link = s->progs[i].link; 12250 12251 bpf_link__destroy(*link); 12252 *link = NULL; 12253 } 12254 } 12255 12256 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12257 { 12258 if (!s) 12259 return; 12260 12261 if (s->progs) 12262 bpf_object__detach_skeleton(s); 12263 if (s->obj) 12264 bpf_object__close(*s->obj); 12265 free(s->maps); 12266 free(s->progs); 12267 free(s); 12268 } 12269