xref: /linux/tools/lib/bpf/libbpf.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64 
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66 
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71 
72 #define __printf(a, b)	__attribute__((format(printf, a, b)))
73 
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 	[BPF_TRACE_KPROBE_SESSION]	= "trace_kprobe_session",
136 };
137 
138 static const char * const link_type_name[] = {
139 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
140 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
141 	[BPF_LINK_TYPE_TRACING]			= "tracing",
142 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
143 	[BPF_LINK_TYPE_ITER]			= "iter",
144 	[BPF_LINK_TYPE_NETNS]			= "netns",
145 	[BPF_LINK_TYPE_XDP]			= "xdp",
146 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
147 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
148 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
149 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
150 	[BPF_LINK_TYPE_TCX]			= "tcx",
151 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
152 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
153 	[BPF_LINK_TYPE_SOCKMAP]			= "sockmap",
154 };
155 
156 static const char * const map_type_name[] = {
157 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
158 	[BPF_MAP_TYPE_HASH]			= "hash",
159 	[BPF_MAP_TYPE_ARRAY]			= "array",
160 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
161 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
162 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
163 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
164 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
165 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
166 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
167 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
168 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
169 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
170 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
171 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
172 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
173 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
174 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
175 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
176 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
177 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
178 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
179 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
180 	[BPF_MAP_TYPE_QUEUE]			= "queue",
181 	[BPF_MAP_TYPE_STACK]			= "stack",
182 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
183 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
184 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
185 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
186 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
187 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
188 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
189 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
190 	[BPF_MAP_TYPE_ARENA]			= "arena",
191 };
192 
193 static const char * const prog_type_name[] = {
194 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
195 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
196 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
197 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
198 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
199 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
200 	[BPF_PROG_TYPE_XDP]			= "xdp",
201 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
202 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
203 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
204 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
205 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
206 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
207 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
208 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
209 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
210 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
211 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
212 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
213 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
214 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
215 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
216 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
217 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
218 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
219 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
220 	[BPF_PROG_TYPE_TRACING]			= "tracing",
221 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
222 	[BPF_PROG_TYPE_EXT]			= "ext",
223 	[BPF_PROG_TYPE_LSM]			= "lsm",
224 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
225 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
226 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
227 };
228 
229 static int __base_pr(enum libbpf_print_level level, const char *format,
230 		     va_list args)
231 {
232 	const char *env_var = "LIBBPF_LOG_LEVEL";
233 	static enum libbpf_print_level min_level = LIBBPF_INFO;
234 	static bool initialized;
235 
236 	if (!initialized) {
237 		char *verbosity;
238 
239 		initialized = true;
240 		verbosity = getenv(env_var);
241 		if (verbosity) {
242 			if (strcasecmp(verbosity, "warn") == 0)
243 				min_level = LIBBPF_WARN;
244 			else if (strcasecmp(verbosity, "debug") == 0)
245 				min_level = LIBBPF_DEBUG;
246 			else if (strcasecmp(verbosity, "info") == 0)
247 				min_level = LIBBPF_INFO;
248 			else
249 				fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
250 					env_var, verbosity);
251 		}
252 	}
253 
254 	/* if too verbose, skip logging  */
255 	if (level > min_level)
256 		return 0;
257 
258 	return vfprintf(stderr, format, args);
259 }
260 
261 static libbpf_print_fn_t __libbpf_pr = __base_pr;
262 
263 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
264 {
265 	libbpf_print_fn_t old_print_fn;
266 
267 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
268 
269 	return old_print_fn;
270 }
271 
272 __printf(2, 3)
273 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
274 {
275 	va_list args;
276 	int old_errno;
277 	libbpf_print_fn_t print_fn;
278 
279 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
280 	if (!print_fn)
281 		return;
282 
283 	old_errno = errno;
284 
285 	va_start(args, format);
286 	__libbpf_pr(level, format, args);
287 	va_end(args);
288 
289 	errno = old_errno;
290 }
291 
292 static void pr_perm_msg(int err)
293 {
294 	struct rlimit limit;
295 	char buf[100];
296 
297 	if (err != -EPERM || geteuid() != 0)
298 		return;
299 
300 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
301 	if (err)
302 		return;
303 
304 	if (limit.rlim_cur == RLIM_INFINITY)
305 		return;
306 
307 	if (limit.rlim_cur < 1024)
308 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
309 	else if (limit.rlim_cur < 1024*1024)
310 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
311 	else
312 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
313 
314 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
315 		buf);
316 }
317 
318 #define STRERR_BUFSIZE  128
319 
320 /* Copied from tools/perf/util/util.h */
321 #ifndef zfree
322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
323 #endif
324 
325 #ifndef zclose
326 # define zclose(fd) ({			\
327 	int ___err = 0;			\
328 	if ((fd) >= 0)			\
329 		___err = close((fd));	\
330 	fd = -1;			\
331 	___err; })
332 #endif
333 
334 static inline __u64 ptr_to_u64(const void *ptr)
335 {
336 	return (__u64) (unsigned long) ptr;
337 }
338 
339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
340 {
341 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
342 	return 0;
343 }
344 
345 __u32 libbpf_major_version(void)
346 {
347 	return LIBBPF_MAJOR_VERSION;
348 }
349 
350 __u32 libbpf_minor_version(void)
351 {
352 	return LIBBPF_MINOR_VERSION;
353 }
354 
355 const char *libbpf_version_string(void)
356 {
357 #define __S(X) #X
358 #define _S(X) __S(X)
359 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
360 #undef _S
361 #undef __S
362 }
363 
364 enum reloc_type {
365 	RELO_LD64,
366 	RELO_CALL,
367 	RELO_DATA,
368 	RELO_EXTERN_LD64,
369 	RELO_EXTERN_CALL,
370 	RELO_SUBPROG_ADDR,
371 	RELO_CORE,
372 };
373 
374 struct reloc_desc {
375 	enum reloc_type type;
376 	int insn_idx;
377 	union {
378 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
379 		struct {
380 			int map_idx;
381 			int sym_off;
382 			int ext_idx;
383 		};
384 	};
385 };
386 
387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
388 enum sec_def_flags {
389 	SEC_NONE = 0,
390 	/* expected_attach_type is optional, if kernel doesn't support that */
391 	SEC_EXP_ATTACH_OPT = 1,
392 	/* legacy, only used by libbpf_get_type_names() and
393 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
394 	 * This used to be associated with cgroup (and few other) BPF programs
395 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
396 	 * meaningless nowadays, though.
397 	 */
398 	SEC_ATTACHABLE = 2,
399 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
400 	/* attachment target is specified through BTF ID in either kernel or
401 	 * other BPF program's BTF object
402 	 */
403 	SEC_ATTACH_BTF = 4,
404 	/* BPF program type allows sleeping/blocking in kernel */
405 	SEC_SLEEPABLE = 8,
406 	/* BPF program support non-linear XDP buffer */
407 	SEC_XDP_FRAGS = 16,
408 	/* Setup proper attach type for usdt probes. */
409 	SEC_USDT = 32,
410 };
411 
412 struct bpf_sec_def {
413 	char *sec;
414 	enum bpf_prog_type prog_type;
415 	enum bpf_attach_type expected_attach_type;
416 	long cookie;
417 	int handler_id;
418 
419 	libbpf_prog_setup_fn_t prog_setup_fn;
420 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
421 	libbpf_prog_attach_fn_t prog_attach_fn;
422 };
423 
424 /*
425  * bpf_prog should be a better name but it has been used in
426  * linux/filter.h.
427  */
428 struct bpf_program {
429 	char *name;
430 	char *sec_name;
431 	size_t sec_idx;
432 	const struct bpf_sec_def *sec_def;
433 	/* this program's instruction offset (in number of instructions)
434 	 * within its containing ELF section
435 	 */
436 	size_t sec_insn_off;
437 	/* number of original instructions in ELF section belonging to this
438 	 * program, not taking into account subprogram instructions possible
439 	 * appended later during relocation
440 	 */
441 	size_t sec_insn_cnt;
442 	/* Offset (in number of instructions) of the start of instruction
443 	 * belonging to this BPF program  within its containing main BPF
444 	 * program. For the entry-point (main) BPF program, this is always
445 	 * zero. For a sub-program, this gets reset before each of main BPF
446 	 * programs are processed and relocated and is used to determined
447 	 * whether sub-program was already appended to the main program, and
448 	 * if yes, at which instruction offset.
449 	 */
450 	size_t sub_insn_off;
451 
452 	/* instructions that belong to BPF program; insns[0] is located at
453 	 * sec_insn_off instruction within its ELF section in ELF file, so
454 	 * when mapping ELF file instruction index to the local instruction,
455 	 * one needs to subtract sec_insn_off; and vice versa.
456 	 */
457 	struct bpf_insn *insns;
458 	/* actual number of instruction in this BPF program's image; for
459 	 * entry-point BPF programs this includes the size of main program
460 	 * itself plus all the used sub-programs, appended at the end
461 	 */
462 	size_t insns_cnt;
463 
464 	struct reloc_desc *reloc_desc;
465 	int nr_reloc;
466 
467 	/* BPF verifier log settings */
468 	char *log_buf;
469 	size_t log_size;
470 	__u32 log_level;
471 
472 	struct bpf_object *obj;
473 
474 	int fd;
475 	bool autoload;
476 	bool autoattach;
477 	bool sym_global;
478 	bool mark_btf_static;
479 	enum bpf_prog_type type;
480 	enum bpf_attach_type expected_attach_type;
481 	int exception_cb_idx;
482 
483 	int prog_ifindex;
484 	__u32 attach_btf_obj_fd;
485 	__u32 attach_btf_id;
486 	__u32 attach_prog_fd;
487 
488 	void *func_info;
489 	__u32 func_info_rec_size;
490 	__u32 func_info_cnt;
491 
492 	void *line_info;
493 	__u32 line_info_rec_size;
494 	__u32 line_info_cnt;
495 	__u32 prog_flags;
496 };
497 
498 struct bpf_struct_ops {
499 	const char *tname;
500 	const struct btf_type *type;
501 	struct bpf_program **progs;
502 	__u32 *kern_func_off;
503 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
504 	void *data;
505 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
506 	 *      btf_vmlinux's format.
507 	 * struct bpf_struct_ops_tcp_congestion_ops {
508 	 *	[... some other kernel fields ...]
509 	 *	struct tcp_congestion_ops data;
510 	 * }
511 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
512 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
513 	 * from "data".
514 	 */
515 	void *kern_vdata;
516 	__u32 type_id;
517 };
518 
519 #define DATA_SEC ".data"
520 #define BSS_SEC ".bss"
521 #define RODATA_SEC ".rodata"
522 #define KCONFIG_SEC ".kconfig"
523 #define KSYMS_SEC ".ksyms"
524 #define STRUCT_OPS_SEC ".struct_ops"
525 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
526 #define ARENA_SEC ".addr_space.1"
527 
528 enum libbpf_map_type {
529 	LIBBPF_MAP_UNSPEC,
530 	LIBBPF_MAP_DATA,
531 	LIBBPF_MAP_BSS,
532 	LIBBPF_MAP_RODATA,
533 	LIBBPF_MAP_KCONFIG,
534 };
535 
536 struct bpf_map_def {
537 	unsigned int type;
538 	unsigned int key_size;
539 	unsigned int value_size;
540 	unsigned int max_entries;
541 	unsigned int map_flags;
542 };
543 
544 struct bpf_map {
545 	struct bpf_object *obj;
546 	char *name;
547 	/* real_name is defined for special internal maps (.rodata*,
548 	 * .data*, .bss, .kconfig) and preserves their original ELF section
549 	 * name. This is important to be able to find corresponding BTF
550 	 * DATASEC information.
551 	 */
552 	char *real_name;
553 	int fd;
554 	int sec_idx;
555 	size_t sec_offset;
556 	int map_ifindex;
557 	int inner_map_fd;
558 	struct bpf_map_def def;
559 	__u32 numa_node;
560 	__u32 btf_var_idx;
561 	int mod_btf_fd;
562 	__u32 btf_key_type_id;
563 	__u32 btf_value_type_id;
564 	__u32 btf_vmlinux_value_type_id;
565 	enum libbpf_map_type libbpf_type;
566 	void *mmaped;
567 	struct bpf_struct_ops *st_ops;
568 	struct bpf_map *inner_map;
569 	void **init_slots;
570 	int init_slots_sz;
571 	char *pin_path;
572 	bool pinned;
573 	bool reused;
574 	bool autocreate;
575 	bool autoattach;
576 	__u64 map_extra;
577 };
578 
579 enum extern_type {
580 	EXT_UNKNOWN,
581 	EXT_KCFG,
582 	EXT_KSYM,
583 };
584 
585 enum kcfg_type {
586 	KCFG_UNKNOWN,
587 	KCFG_CHAR,
588 	KCFG_BOOL,
589 	KCFG_INT,
590 	KCFG_TRISTATE,
591 	KCFG_CHAR_ARR,
592 };
593 
594 struct extern_desc {
595 	enum extern_type type;
596 	int sym_idx;
597 	int btf_id;
598 	int sec_btf_id;
599 	const char *name;
600 	char *essent_name;
601 	bool is_set;
602 	bool is_weak;
603 	union {
604 		struct {
605 			enum kcfg_type type;
606 			int sz;
607 			int align;
608 			int data_off;
609 			bool is_signed;
610 		} kcfg;
611 		struct {
612 			unsigned long long addr;
613 
614 			/* target btf_id of the corresponding kernel var. */
615 			int kernel_btf_obj_fd;
616 			int kernel_btf_id;
617 
618 			/* local btf_id of the ksym extern's type. */
619 			__u32 type_id;
620 			/* BTF fd index to be patched in for insn->off, this is
621 			 * 0 for vmlinux BTF, index in obj->fd_array for module
622 			 * BTF
623 			 */
624 			__s16 btf_fd_idx;
625 		} ksym;
626 	};
627 };
628 
629 struct module_btf {
630 	struct btf *btf;
631 	char *name;
632 	__u32 id;
633 	int fd;
634 	int fd_array_idx;
635 };
636 
637 enum sec_type {
638 	SEC_UNUSED = 0,
639 	SEC_RELO,
640 	SEC_BSS,
641 	SEC_DATA,
642 	SEC_RODATA,
643 	SEC_ST_OPS,
644 };
645 
646 struct elf_sec_desc {
647 	enum sec_type sec_type;
648 	Elf64_Shdr *shdr;
649 	Elf_Data *data;
650 };
651 
652 struct elf_state {
653 	int fd;
654 	const void *obj_buf;
655 	size_t obj_buf_sz;
656 	Elf *elf;
657 	Elf64_Ehdr *ehdr;
658 	Elf_Data *symbols;
659 	Elf_Data *arena_data;
660 	size_t shstrndx; /* section index for section name strings */
661 	size_t strtabidx;
662 	struct elf_sec_desc *secs;
663 	size_t sec_cnt;
664 	int btf_maps_shndx;
665 	__u32 btf_maps_sec_btf_id;
666 	int text_shndx;
667 	int symbols_shndx;
668 	bool has_st_ops;
669 	int arena_data_shndx;
670 };
671 
672 struct usdt_manager;
673 
674 struct bpf_object {
675 	char name[BPF_OBJ_NAME_LEN];
676 	char license[64];
677 	__u32 kern_version;
678 
679 	struct bpf_program *programs;
680 	size_t nr_programs;
681 	struct bpf_map *maps;
682 	size_t nr_maps;
683 	size_t maps_cap;
684 
685 	char *kconfig;
686 	struct extern_desc *externs;
687 	int nr_extern;
688 	int kconfig_map_idx;
689 
690 	bool loaded;
691 	bool has_subcalls;
692 	bool has_rodata;
693 
694 	struct bpf_gen *gen_loader;
695 
696 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
697 	struct elf_state efile;
698 
699 	struct btf *btf;
700 	struct btf_ext *btf_ext;
701 
702 	/* Parse and load BTF vmlinux if any of the programs in the object need
703 	 * it at load time.
704 	 */
705 	struct btf *btf_vmlinux;
706 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
707 	 * override for vmlinux BTF.
708 	 */
709 	char *btf_custom_path;
710 	/* vmlinux BTF override for CO-RE relocations */
711 	struct btf *btf_vmlinux_override;
712 	/* Lazily initialized kernel module BTFs */
713 	struct module_btf *btf_modules;
714 	bool btf_modules_loaded;
715 	size_t btf_module_cnt;
716 	size_t btf_module_cap;
717 
718 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
719 	char *log_buf;
720 	size_t log_size;
721 	__u32 log_level;
722 
723 	int *fd_array;
724 	size_t fd_array_cap;
725 	size_t fd_array_cnt;
726 
727 	struct usdt_manager *usdt_man;
728 
729 	struct bpf_map *arena_map;
730 	void *arena_data;
731 	size_t arena_data_sz;
732 
733 	struct kern_feature_cache *feat_cache;
734 	char *token_path;
735 	int token_fd;
736 
737 	char path[];
738 };
739 
740 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
741 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
742 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
743 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
744 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
745 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
746 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
747 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
748 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
749 
750 void bpf_program__unload(struct bpf_program *prog)
751 {
752 	if (!prog)
753 		return;
754 
755 	zclose(prog->fd);
756 
757 	zfree(&prog->func_info);
758 	zfree(&prog->line_info);
759 }
760 
761 static void bpf_program__exit(struct bpf_program *prog)
762 {
763 	if (!prog)
764 		return;
765 
766 	bpf_program__unload(prog);
767 	zfree(&prog->name);
768 	zfree(&prog->sec_name);
769 	zfree(&prog->insns);
770 	zfree(&prog->reloc_desc);
771 
772 	prog->nr_reloc = 0;
773 	prog->insns_cnt = 0;
774 	prog->sec_idx = -1;
775 }
776 
777 static bool insn_is_subprog_call(const struct bpf_insn *insn)
778 {
779 	return BPF_CLASS(insn->code) == BPF_JMP &&
780 	       BPF_OP(insn->code) == BPF_CALL &&
781 	       BPF_SRC(insn->code) == BPF_K &&
782 	       insn->src_reg == BPF_PSEUDO_CALL &&
783 	       insn->dst_reg == 0 &&
784 	       insn->off == 0;
785 }
786 
787 static bool is_call_insn(const struct bpf_insn *insn)
788 {
789 	return insn->code == (BPF_JMP | BPF_CALL);
790 }
791 
792 static bool insn_is_pseudo_func(struct bpf_insn *insn)
793 {
794 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
795 }
796 
797 static int
798 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
799 		      const char *name, size_t sec_idx, const char *sec_name,
800 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
801 {
802 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
803 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
804 			sec_name, name, sec_off, insn_data_sz);
805 		return -EINVAL;
806 	}
807 
808 	memset(prog, 0, sizeof(*prog));
809 	prog->obj = obj;
810 
811 	prog->sec_idx = sec_idx;
812 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
813 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
814 	/* insns_cnt can later be increased by appending used subprograms */
815 	prog->insns_cnt = prog->sec_insn_cnt;
816 
817 	prog->type = BPF_PROG_TYPE_UNSPEC;
818 	prog->fd = -1;
819 	prog->exception_cb_idx = -1;
820 
821 	/* libbpf's convention for SEC("?abc...") is that it's just like
822 	 * SEC("abc...") but the corresponding bpf_program starts out with
823 	 * autoload set to false.
824 	 */
825 	if (sec_name[0] == '?') {
826 		prog->autoload = false;
827 		/* from now on forget there was ? in section name */
828 		sec_name++;
829 	} else {
830 		prog->autoload = true;
831 	}
832 
833 	prog->autoattach = true;
834 
835 	/* inherit object's log_level */
836 	prog->log_level = obj->log_level;
837 
838 	prog->sec_name = strdup(sec_name);
839 	if (!prog->sec_name)
840 		goto errout;
841 
842 	prog->name = strdup(name);
843 	if (!prog->name)
844 		goto errout;
845 
846 	prog->insns = malloc(insn_data_sz);
847 	if (!prog->insns)
848 		goto errout;
849 	memcpy(prog->insns, insn_data, insn_data_sz);
850 
851 	return 0;
852 errout:
853 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
854 	bpf_program__exit(prog);
855 	return -ENOMEM;
856 }
857 
858 static int
859 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
860 			 const char *sec_name, int sec_idx)
861 {
862 	Elf_Data *symbols = obj->efile.symbols;
863 	struct bpf_program *prog, *progs;
864 	void *data = sec_data->d_buf;
865 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
866 	int nr_progs, err, i;
867 	const char *name;
868 	Elf64_Sym *sym;
869 
870 	progs = obj->programs;
871 	nr_progs = obj->nr_programs;
872 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
873 
874 	for (i = 0; i < nr_syms; i++) {
875 		sym = elf_sym_by_idx(obj, i);
876 
877 		if (sym->st_shndx != sec_idx)
878 			continue;
879 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
880 			continue;
881 
882 		prog_sz = sym->st_size;
883 		sec_off = sym->st_value;
884 
885 		name = elf_sym_str(obj, sym->st_name);
886 		if (!name) {
887 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
888 				sec_name, sec_off);
889 			return -LIBBPF_ERRNO__FORMAT;
890 		}
891 
892 		if (sec_off + prog_sz > sec_sz) {
893 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
894 				sec_name, sec_off);
895 			return -LIBBPF_ERRNO__FORMAT;
896 		}
897 
898 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
899 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
900 			return -ENOTSUP;
901 		}
902 
903 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
904 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
905 
906 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
907 		if (!progs) {
908 			/*
909 			 * In this case the original obj->programs
910 			 * is still valid, so don't need special treat for
911 			 * bpf_close_object().
912 			 */
913 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
914 				sec_name, name);
915 			return -ENOMEM;
916 		}
917 		obj->programs = progs;
918 
919 		prog = &progs[nr_progs];
920 
921 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
922 					    sec_off, data + sec_off, prog_sz);
923 		if (err)
924 			return err;
925 
926 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
927 			prog->sym_global = true;
928 
929 		/* if function is a global/weak symbol, but has restricted
930 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
931 		 * as static to enable more permissive BPF verification mode
932 		 * with more outside context available to BPF verifier
933 		 */
934 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
935 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
936 			prog->mark_btf_static = true;
937 
938 		nr_progs++;
939 		obj->nr_programs = nr_progs;
940 	}
941 
942 	return 0;
943 }
944 
945 static const struct btf_member *
946 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
947 {
948 	struct btf_member *m;
949 	int i;
950 
951 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
952 		if (btf_member_bit_offset(t, i) == bit_offset)
953 			return m;
954 	}
955 
956 	return NULL;
957 }
958 
959 static const struct btf_member *
960 find_member_by_name(const struct btf *btf, const struct btf_type *t,
961 		    const char *name)
962 {
963 	struct btf_member *m;
964 	int i;
965 
966 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
967 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
968 			return m;
969 	}
970 
971 	return NULL;
972 }
973 
974 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
975 			    __u16 kind, struct btf **res_btf,
976 			    struct module_btf **res_mod_btf);
977 
978 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
979 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
980 				   const char *name, __u32 kind);
981 
982 static int
983 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
984 			   struct module_btf **mod_btf,
985 			   const struct btf_type **type, __u32 *type_id,
986 			   const struct btf_type **vtype, __u32 *vtype_id,
987 			   const struct btf_member **data_member)
988 {
989 	const struct btf_type *kern_type, *kern_vtype;
990 	const struct btf_member *kern_data_member;
991 	struct btf *btf;
992 	__s32 kern_vtype_id, kern_type_id;
993 	char tname[256];
994 	__u32 i;
995 
996 	snprintf(tname, sizeof(tname), "%.*s",
997 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
998 
999 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1000 					&btf, mod_btf);
1001 	if (kern_type_id < 0) {
1002 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1003 			tname);
1004 		return kern_type_id;
1005 	}
1006 	kern_type = btf__type_by_id(btf, kern_type_id);
1007 
1008 	/* Find the corresponding "map_value" type that will be used
1009 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
1010 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1011 	 * btf_vmlinux.
1012 	 */
1013 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1014 						tname, BTF_KIND_STRUCT);
1015 	if (kern_vtype_id < 0) {
1016 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1017 			STRUCT_OPS_VALUE_PREFIX, tname);
1018 		return kern_vtype_id;
1019 	}
1020 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1021 
1022 	/* Find "struct tcp_congestion_ops" from
1023 	 * struct bpf_struct_ops_tcp_congestion_ops {
1024 	 *	[ ... ]
1025 	 *	struct tcp_congestion_ops data;
1026 	 * }
1027 	 */
1028 	kern_data_member = btf_members(kern_vtype);
1029 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1030 		if (kern_data_member->type == kern_type_id)
1031 			break;
1032 	}
1033 	if (i == btf_vlen(kern_vtype)) {
1034 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1035 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1036 		return -EINVAL;
1037 	}
1038 
1039 	*type = kern_type;
1040 	*type_id = kern_type_id;
1041 	*vtype = kern_vtype;
1042 	*vtype_id = kern_vtype_id;
1043 	*data_member = kern_data_member;
1044 
1045 	return 0;
1046 }
1047 
1048 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1049 {
1050 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1051 }
1052 
1053 static bool is_valid_st_ops_program(struct bpf_object *obj,
1054 				    const struct bpf_program *prog)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < obj->nr_programs; i++) {
1059 		if (&obj->programs[i] == prog)
1060 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1061 	}
1062 
1063 	return false;
1064 }
1065 
1066 /* For each struct_ops program P, referenced from some struct_ops map M,
1067  * enable P.autoload if there are Ms for which M.autocreate is true,
1068  * disable P.autoload if for all Ms M.autocreate is false.
1069  * Don't change P.autoload for programs that are not referenced from any maps.
1070  */
1071 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1072 {
1073 	struct bpf_program *prog, *slot_prog;
1074 	struct bpf_map *map;
1075 	int i, j, k, vlen;
1076 
1077 	for (i = 0; i < obj->nr_programs; ++i) {
1078 		int should_load = false;
1079 		int use_cnt = 0;
1080 
1081 		prog = &obj->programs[i];
1082 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1083 			continue;
1084 
1085 		for (j = 0; j < obj->nr_maps; ++j) {
1086 			map = &obj->maps[j];
1087 			if (!bpf_map__is_struct_ops(map))
1088 				continue;
1089 
1090 			vlen = btf_vlen(map->st_ops->type);
1091 			for (k = 0; k < vlen; ++k) {
1092 				slot_prog = map->st_ops->progs[k];
1093 				if (prog != slot_prog)
1094 					continue;
1095 
1096 				use_cnt++;
1097 				if (map->autocreate)
1098 					should_load = true;
1099 			}
1100 		}
1101 		if (use_cnt)
1102 			prog->autoload = should_load;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* Init the map's fields that depend on kern_btf */
1109 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1110 {
1111 	const struct btf_member *member, *kern_member, *kern_data_member;
1112 	const struct btf_type *type, *kern_type, *kern_vtype;
1113 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1114 	struct bpf_object *obj = map->obj;
1115 	const struct btf *btf = obj->btf;
1116 	struct bpf_struct_ops *st_ops;
1117 	const struct btf *kern_btf;
1118 	struct module_btf *mod_btf;
1119 	void *data, *kern_data;
1120 	const char *tname;
1121 	int err;
1122 
1123 	st_ops = map->st_ops;
1124 	type = st_ops->type;
1125 	tname = st_ops->tname;
1126 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1127 					 &kern_type, &kern_type_id,
1128 					 &kern_vtype, &kern_vtype_id,
1129 					 &kern_data_member);
1130 	if (err)
1131 		return err;
1132 
1133 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1134 
1135 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1136 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1137 
1138 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1139 	map->def.value_size = kern_vtype->size;
1140 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1141 
1142 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1143 	if (!st_ops->kern_vdata)
1144 		return -ENOMEM;
1145 
1146 	data = st_ops->data;
1147 	kern_data_off = kern_data_member->offset / 8;
1148 	kern_data = st_ops->kern_vdata + kern_data_off;
1149 
1150 	member = btf_members(type);
1151 	for (i = 0; i < btf_vlen(type); i++, member++) {
1152 		const struct btf_type *mtype, *kern_mtype;
1153 		__u32 mtype_id, kern_mtype_id;
1154 		void *mdata, *kern_mdata;
1155 		struct bpf_program *prog;
1156 		__s64 msize, kern_msize;
1157 		__u32 moff, kern_moff;
1158 		__u32 kern_member_idx;
1159 		const char *mname;
1160 
1161 		mname = btf__name_by_offset(btf, member->name_off);
1162 		moff = member->offset / 8;
1163 		mdata = data + moff;
1164 		msize = btf__resolve_size(btf, member->type);
1165 		if (msize < 0) {
1166 			pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1167 				map->name, mname);
1168 			return msize;
1169 		}
1170 
1171 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1172 		if (!kern_member) {
1173 			if (!libbpf_is_mem_zeroed(mdata, msize)) {
1174 				pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1175 					map->name, mname);
1176 				return -ENOTSUP;
1177 			}
1178 
1179 			if (st_ops->progs[i]) {
1180 				/* If we had declaratively set struct_ops callback, we need to
1181 				 * force its autoload to false, because it doesn't have
1182 				 * a chance of succeeding from POV of the current struct_ops map.
1183 				 * If this program is still referenced somewhere else, though,
1184 				 * then bpf_object_adjust_struct_ops_autoload() will update its
1185 				 * autoload accordingly.
1186 				 */
1187 				st_ops->progs[i]->autoload = false;
1188 				st_ops->progs[i] = NULL;
1189 			}
1190 
1191 			/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1192 			pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1193 				map->name, mname);
1194 			continue;
1195 		}
1196 
1197 		kern_member_idx = kern_member - btf_members(kern_type);
1198 		if (btf_member_bitfield_size(type, i) ||
1199 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1200 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1201 				map->name, mname);
1202 			return -ENOTSUP;
1203 		}
1204 
1205 		kern_moff = kern_member->offset / 8;
1206 		kern_mdata = kern_data + kern_moff;
1207 
1208 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1209 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1210 						    &kern_mtype_id);
1211 		if (BTF_INFO_KIND(mtype->info) !=
1212 		    BTF_INFO_KIND(kern_mtype->info)) {
1213 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1214 				map->name, mname, BTF_INFO_KIND(mtype->info),
1215 				BTF_INFO_KIND(kern_mtype->info));
1216 			return -ENOTSUP;
1217 		}
1218 
1219 		if (btf_is_ptr(mtype)) {
1220 			prog = *(void **)mdata;
1221 			/* just like for !kern_member case above, reset declaratively
1222 			 * set (at compile time) program's autload to false,
1223 			 * if user replaced it with another program or NULL
1224 			 */
1225 			if (st_ops->progs[i] && st_ops->progs[i] != prog)
1226 				st_ops->progs[i]->autoload = false;
1227 
1228 			/* Update the value from the shadow type */
1229 			st_ops->progs[i] = prog;
1230 			if (!prog)
1231 				continue;
1232 
1233 			if (!is_valid_st_ops_program(obj, prog)) {
1234 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1235 					map->name, mname);
1236 				return -ENOTSUP;
1237 			}
1238 
1239 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1240 							    kern_mtype->type,
1241 							    &kern_mtype_id);
1242 
1243 			/* mtype->type must be a func_proto which was
1244 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1245 			 * so only check kern_mtype for func_proto here.
1246 			 */
1247 			if (!btf_is_func_proto(kern_mtype)) {
1248 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1249 					map->name, mname);
1250 				return -ENOTSUP;
1251 			}
1252 
1253 			if (mod_btf)
1254 				prog->attach_btf_obj_fd = mod_btf->fd;
1255 
1256 			/* if we haven't yet processed this BPF program, record proper
1257 			 * attach_btf_id and member_idx
1258 			 */
1259 			if (!prog->attach_btf_id) {
1260 				prog->attach_btf_id = kern_type_id;
1261 				prog->expected_attach_type = kern_member_idx;
1262 			}
1263 
1264 			/* struct_ops BPF prog can be re-used between multiple
1265 			 * .struct_ops & .struct_ops.link as long as it's the
1266 			 * same struct_ops struct definition and the same
1267 			 * function pointer field
1268 			 */
1269 			if (prog->attach_btf_id != kern_type_id) {
1270 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1271 					map->name, mname, prog->name, prog->sec_name, prog->type,
1272 					prog->attach_btf_id, kern_type_id);
1273 				return -EINVAL;
1274 			}
1275 			if (prog->expected_attach_type != kern_member_idx) {
1276 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1277 					map->name, mname, prog->name, prog->sec_name, prog->type,
1278 					prog->expected_attach_type, kern_member_idx);
1279 				return -EINVAL;
1280 			}
1281 
1282 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1283 
1284 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1285 				 map->name, mname, prog->name, moff,
1286 				 kern_moff);
1287 
1288 			continue;
1289 		}
1290 
1291 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1292 		if (kern_msize < 0 || msize != kern_msize) {
1293 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1294 				map->name, mname, (ssize_t)msize,
1295 				(ssize_t)kern_msize);
1296 			return -ENOTSUP;
1297 		}
1298 
1299 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1300 			 map->name, mname, (unsigned int)msize,
1301 			 moff, kern_moff);
1302 		memcpy(kern_mdata, mdata, msize);
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1309 {
1310 	struct bpf_map *map;
1311 	size_t i;
1312 	int err;
1313 
1314 	for (i = 0; i < obj->nr_maps; i++) {
1315 		map = &obj->maps[i];
1316 
1317 		if (!bpf_map__is_struct_ops(map))
1318 			continue;
1319 
1320 		if (!map->autocreate)
1321 			continue;
1322 
1323 		err = bpf_map__init_kern_struct_ops(map);
1324 		if (err)
1325 			return err;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1332 				int shndx, Elf_Data *data)
1333 {
1334 	const struct btf_type *type, *datasec;
1335 	const struct btf_var_secinfo *vsi;
1336 	struct bpf_struct_ops *st_ops;
1337 	const char *tname, *var_name;
1338 	__s32 type_id, datasec_id;
1339 	const struct btf *btf;
1340 	struct bpf_map *map;
1341 	__u32 i;
1342 
1343 	if (shndx == -1)
1344 		return 0;
1345 
1346 	btf = obj->btf;
1347 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1348 					    BTF_KIND_DATASEC);
1349 	if (datasec_id < 0) {
1350 		pr_warn("struct_ops init: DATASEC %s not found\n",
1351 			sec_name);
1352 		return -EINVAL;
1353 	}
1354 
1355 	datasec = btf__type_by_id(btf, datasec_id);
1356 	vsi = btf_var_secinfos(datasec);
1357 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1358 		type = btf__type_by_id(obj->btf, vsi->type);
1359 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1360 
1361 		type_id = btf__resolve_type(obj->btf, vsi->type);
1362 		if (type_id < 0) {
1363 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1364 				vsi->type, sec_name);
1365 			return -EINVAL;
1366 		}
1367 
1368 		type = btf__type_by_id(obj->btf, type_id);
1369 		tname = btf__name_by_offset(obj->btf, type->name_off);
1370 		if (!tname[0]) {
1371 			pr_warn("struct_ops init: anonymous type is not supported\n");
1372 			return -ENOTSUP;
1373 		}
1374 		if (!btf_is_struct(type)) {
1375 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1376 			return -EINVAL;
1377 		}
1378 
1379 		map = bpf_object__add_map(obj);
1380 		if (IS_ERR(map))
1381 			return PTR_ERR(map);
1382 
1383 		map->sec_idx = shndx;
1384 		map->sec_offset = vsi->offset;
1385 		map->name = strdup(var_name);
1386 		if (!map->name)
1387 			return -ENOMEM;
1388 		map->btf_value_type_id = type_id;
1389 
1390 		/* Follow same convention as for programs autoload:
1391 		 * SEC("?.struct_ops") means map is not created by default.
1392 		 */
1393 		if (sec_name[0] == '?') {
1394 			map->autocreate = false;
1395 			/* from now on forget there was ? in section name */
1396 			sec_name++;
1397 		}
1398 
1399 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1400 		map->def.key_size = sizeof(int);
1401 		map->def.value_size = type->size;
1402 		map->def.max_entries = 1;
1403 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1404 		map->autoattach = true;
1405 
1406 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1407 		if (!map->st_ops)
1408 			return -ENOMEM;
1409 		st_ops = map->st_ops;
1410 		st_ops->data = malloc(type->size);
1411 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1412 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1413 					       sizeof(*st_ops->kern_func_off));
1414 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1415 			return -ENOMEM;
1416 
1417 		if (vsi->offset + type->size > data->d_size) {
1418 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1419 				var_name, sec_name);
1420 			return -EINVAL;
1421 		}
1422 
1423 		memcpy(st_ops->data,
1424 		       data->d_buf + vsi->offset,
1425 		       type->size);
1426 		st_ops->tname = tname;
1427 		st_ops->type = type;
1428 		st_ops->type_id = type_id;
1429 
1430 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1431 			 tname, type_id, var_name, vsi->offset);
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1438 {
1439 	const char *sec_name;
1440 	int sec_idx, err;
1441 
1442 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1443 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1444 
1445 		if (desc->sec_type != SEC_ST_OPS)
1446 			continue;
1447 
1448 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1449 		if (!sec_name)
1450 			return -LIBBPF_ERRNO__FORMAT;
1451 
1452 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1453 		if (err)
1454 			return err;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static struct bpf_object *bpf_object__new(const char *path,
1461 					  const void *obj_buf,
1462 					  size_t obj_buf_sz,
1463 					  const char *obj_name)
1464 {
1465 	struct bpf_object *obj;
1466 	char *end;
1467 
1468 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1469 	if (!obj) {
1470 		pr_warn("alloc memory failed for %s\n", path);
1471 		return ERR_PTR(-ENOMEM);
1472 	}
1473 
1474 	strcpy(obj->path, path);
1475 	if (obj_name) {
1476 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1477 	} else {
1478 		/* Using basename() GNU version which doesn't modify arg. */
1479 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1480 		end = strchr(obj->name, '.');
1481 		if (end)
1482 			*end = 0;
1483 	}
1484 
1485 	obj->efile.fd = -1;
1486 	/*
1487 	 * Caller of this function should also call
1488 	 * bpf_object__elf_finish() after data collection to return
1489 	 * obj_buf to user. If not, we should duplicate the buffer to
1490 	 * avoid user freeing them before elf finish.
1491 	 */
1492 	obj->efile.obj_buf = obj_buf;
1493 	obj->efile.obj_buf_sz = obj_buf_sz;
1494 	obj->efile.btf_maps_shndx = -1;
1495 	obj->kconfig_map_idx = -1;
1496 
1497 	obj->kern_version = get_kernel_version();
1498 	obj->loaded = false;
1499 
1500 	return obj;
1501 }
1502 
1503 static void bpf_object__elf_finish(struct bpf_object *obj)
1504 {
1505 	if (!obj->efile.elf)
1506 		return;
1507 
1508 	elf_end(obj->efile.elf);
1509 	obj->efile.elf = NULL;
1510 	obj->efile.symbols = NULL;
1511 	obj->efile.arena_data = NULL;
1512 
1513 	zfree(&obj->efile.secs);
1514 	obj->efile.sec_cnt = 0;
1515 	zclose(obj->efile.fd);
1516 	obj->efile.obj_buf = NULL;
1517 	obj->efile.obj_buf_sz = 0;
1518 }
1519 
1520 static int bpf_object__elf_init(struct bpf_object *obj)
1521 {
1522 	Elf64_Ehdr *ehdr;
1523 	int err = 0;
1524 	Elf *elf;
1525 
1526 	if (obj->efile.elf) {
1527 		pr_warn("elf: init internal error\n");
1528 		return -LIBBPF_ERRNO__LIBELF;
1529 	}
1530 
1531 	if (obj->efile.obj_buf_sz > 0) {
1532 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1533 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1534 	} else {
1535 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1536 		if (obj->efile.fd < 0) {
1537 			char errmsg[STRERR_BUFSIZE], *cp;
1538 
1539 			err = -errno;
1540 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1541 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1542 			return err;
1543 		}
1544 
1545 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1546 	}
1547 
1548 	if (!elf) {
1549 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1550 		err = -LIBBPF_ERRNO__LIBELF;
1551 		goto errout;
1552 	}
1553 
1554 	obj->efile.elf = elf;
1555 
1556 	if (elf_kind(elf) != ELF_K_ELF) {
1557 		err = -LIBBPF_ERRNO__FORMAT;
1558 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1559 		goto errout;
1560 	}
1561 
1562 	if (gelf_getclass(elf) != ELFCLASS64) {
1563 		err = -LIBBPF_ERRNO__FORMAT;
1564 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1565 		goto errout;
1566 	}
1567 
1568 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1569 	if (!obj->efile.ehdr) {
1570 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1571 		err = -LIBBPF_ERRNO__FORMAT;
1572 		goto errout;
1573 	}
1574 
1575 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1576 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1577 			obj->path, elf_errmsg(-1));
1578 		err = -LIBBPF_ERRNO__FORMAT;
1579 		goto errout;
1580 	}
1581 
1582 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1583 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1584 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1585 			obj->path, elf_errmsg(-1));
1586 		err = -LIBBPF_ERRNO__FORMAT;
1587 		goto errout;
1588 	}
1589 
1590 	/* Old LLVM set e_machine to EM_NONE */
1591 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1592 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1593 		err = -LIBBPF_ERRNO__FORMAT;
1594 		goto errout;
1595 	}
1596 
1597 	return 0;
1598 errout:
1599 	bpf_object__elf_finish(obj);
1600 	return err;
1601 }
1602 
1603 static int bpf_object__check_endianness(struct bpf_object *obj)
1604 {
1605 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1606 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1607 		return 0;
1608 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1609 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1610 		return 0;
1611 #else
1612 # error "Unrecognized __BYTE_ORDER__"
1613 #endif
1614 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1615 	return -LIBBPF_ERRNO__ENDIAN;
1616 }
1617 
1618 static int
1619 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1620 {
1621 	if (!data) {
1622 		pr_warn("invalid license section in %s\n", obj->path);
1623 		return -LIBBPF_ERRNO__FORMAT;
1624 	}
1625 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1626 	 * go over allowed ELF data section buffer
1627 	 */
1628 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1629 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1630 	return 0;
1631 }
1632 
1633 static int
1634 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1635 {
1636 	__u32 kver;
1637 
1638 	if (!data || size != sizeof(kver)) {
1639 		pr_warn("invalid kver section in %s\n", obj->path);
1640 		return -LIBBPF_ERRNO__FORMAT;
1641 	}
1642 	memcpy(&kver, data, sizeof(kver));
1643 	obj->kern_version = kver;
1644 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1645 	return 0;
1646 }
1647 
1648 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1649 {
1650 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1651 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1652 		return true;
1653 	return false;
1654 }
1655 
1656 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1657 {
1658 	Elf_Data *data;
1659 	Elf_Scn *scn;
1660 
1661 	if (!name)
1662 		return -EINVAL;
1663 
1664 	scn = elf_sec_by_name(obj, name);
1665 	data = elf_sec_data(obj, scn);
1666 	if (data) {
1667 		*size = data->d_size;
1668 		return 0; /* found it */
1669 	}
1670 
1671 	return -ENOENT;
1672 }
1673 
1674 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1675 {
1676 	Elf_Data *symbols = obj->efile.symbols;
1677 	const char *sname;
1678 	size_t si;
1679 
1680 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1681 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1682 
1683 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1684 			continue;
1685 
1686 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1687 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1688 			continue;
1689 
1690 		sname = elf_sym_str(obj, sym->st_name);
1691 		if (!sname) {
1692 			pr_warn("failed to get sym name string for var %s\n", name);
1693 			return ERR_PTR(-EIO);
1694 		}
1695 		if (strcmp(name, sname) == 0)
1696 			return sym;
1697 	}
1698 
1699 	return ERR_PTR(-ENOENT);
1700 }
1701 
1702 /* Some versions of Android don't provide memfd_create() in their libc
1703  * implementation, so avoid complications and just go straight to Linux
1704  * syscall.
1705  */
1706 static int sys_memfd_create(const char *name, unsigned flags)
1707 {
1708 	return syscall(__NR_memfd_create, name, flags);
1709 }
1710 
1711 #ifndef MFD_CLOEXEC
1712 #define MFD_CLOEXEC 0x0001U
1713 #endif
1714 
1715 static int create_placeholder_fd(void)
1716 {
1717 	int fd;
1718 
1719 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1720 	if (fd < 0)
1721 		return -errno;
1722 	return fd;
1723 }
1724 
1725 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1726 {
1727 	struct bpf_map *map;
1728 	int err;
1729 
1730 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1731 				sizeof(*obj->maps), obj->nr_maps + 1);
1732 	if (err)
1733 		return ERR_PTR(err);
1734 
1735 	map = &obj->maps[obj->nr_maps++];
1736 	map->obj = obj;
1737 	/* Preallocate map FD without actually creating BPF map just yet.
1738 	 * These map FD "placeholders" will be reused later without changing
1739 	 * FD value when map is actually created in the kernel.
1740 	 *
1741 	 * This is useful to be able to perform BPF program relocations
1742 	 * without having to create BPF maps before that step. This allows us
1743 	 * to finalize and load BTF very late in BPF object's loading phase,
1744 	 * right before BPF maps have to be created and BPF programs have to
1745 	 * be loaded. By having these map FD placeholders we can perform all
1746 	 * the sanitizations, relocations, and any other adjustments before we
1747 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1748 	 */
1749 	map->fd = create_placeholder_fd();
1750 	if (map->fd < 0)
1751 		return ERR_PTR(map->fd);
1752 	map->inner_map_fd = -1;
1753 	map->autocreate = true;
1754 
1755 	return map;
1756 }
1757 
1758 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1759 {
1760 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1761 	size_t map_sz;
1762 
1763 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1764 	map_sz = roundup(map_sz, page_sz);
1765 	return map_sz;
1766 }
1767 
1768 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1769 {
1770 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1771 
1772 	switch (map->def.type) {
1773 	case BPF_MAP_TYPE_ARRAY:
1774 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1775 	case BPF_MAP_TYPE_ARENA:
1776 		return page_sz * map->def.max_entries;
1777 	default:
1778 		return 0; /* not supported */
1779 	}
1780 }
1781 
1782 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1783 {
1784 	void *mmaped;
1785 
1786 	if (!map->mmaped)
1787 		return -EINVAL;
1788 
1789 	if (old_sz == new_sz)
1790 		return 0;
1791 
1792 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1793 	if (mmaped == MAP_FAILED)
1794 		return -errno;
1795 
1796 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1797 	munmap(map->mmaped, old_sz);
1798 	map->mmaped = mmaped;
1799 	return 0;
1800 }
1801 
1802 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1803 {
1804 	char map_name[BPF_OBJ_NAME_LEN], *p;
1805 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1806 
1807 	/* This is one of the more confusing parts of libbpf for various
1808 	 * reasons, some of which are historical. The original idea for naming
1809 	 * internal names was to include as much of BPF object name prefix as
1810 	 * possible, so that it can be distinguished from similar internal
1811 	 * maps of a different BPF object.
1812 	 * As an example, let's say we have bpf_object named 'my_object_name'
1813 	 * and internal map corresponding to '.rodata' ELF section. The final
1814 	 * map name advertised to user and to the kernel will be
1815 	 * 'my_objec.rodata', taking first 8 characters of object name and
1816 	 * entire 7 characters of '.rodata'.
1817 	 * Somewhat confusingly, if internal map ELF section name is shorter
1818 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1819 	 * for the suffix, even though we only have 4 actual characters, and
1820 	 * resulting map will be called 'my_objec.bss', not even using all 15
1821 	 * characters allowed by the kernel. Oh well, at least the truncated
1822 	 * object name is somewhat consistent in this case. But if the map
1823 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1824 	 * (8 chars) and thus will be left with only first 7 characters of the
1825 	 * object name ('my_obje'). Happy guessing, user, that the final map
1826 	 * name will be "my_obje.kconfig".
1827 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1828 	 * and .data.* data sections, it's possible that ELF section name is
1829 	 * longer than allowed 15 chars, so we now need to be careful to take
1830 	 * only up to 15 first characters of ELF name, taking no BPF object
1831 	 * name characters at all. So '.rodata.abracadabra' will result in
1832 	 * '.rodata.abracad' kernel and user-visible name.
1833 	 * We need to keep this convoluted logic intact for .data, .bss and
1834 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1835 	 * maps we use their ELF names as is, not prepending bpf_object name
1836 	 * in front. We still need to truncate them to 15 characters for the
1837 	 * kernel. Full name can be recovered for such maps by using DATASEC
1838 	 * BTF type associated with such map's value type, though.
1839 	 */
1840 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1841 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1842 
1843 	/* if there are two or more dots in map name, it's a custom dot map */
1844 	if (strchr(real_name + 1, '.') != NULL)
1845 		pfx_len = 0;
1846 	else
1847 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1848 
1849 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1850 		 sfx_len, real_name);
1851 
1852 	/* sanitise map name to characters allowed by kernel */
1853 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1854 		if (!isalnum(*p) && *p != '_' && *p != '.')
1855 			*p = '_';
1856 
1857 	return strdup(map_name);
1858 }
1859 
1860 static int
1861 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1862 
1863 /* Internal BPF map is mmap()'able only if at least one of corresponding
1864  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1865  * variable and it's not marked as __hidden (which turns it into, effectively,
1866  * a STATIC variable).
1867  */
1868 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1869 {
1870 	const struct btf_type *t, *vt;
1871 	struct btf_var_secinfo *vsi;
1872 	int i, n;
1873 
1874 	if (!map->btf_value_type_id)
1875 		return false;
1876 
1877 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1878 	if (!btf_is_datasec(t))
1879 		return false;
1880 
1881 	vsi = btf_var_secinfos(t);
1882 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1883 		vt = btf__type_by_id(obj->btf, vsi->type);
1884 		if (!btf_is_var(vt))
1885 			continue;
1886 
1887 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1888 			return true;
1889 	}
1890 
1891 	return false;
1892 }
1893 
1894 static int
1895 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1896 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1897 {
1898 	struct bpf_map_def *def;
1899 	struct bpf_map *map;
1900 	size_t mmap_sz;
1901 	int err;
1902 
1903 	map = bpf_object__add_map(obj);
1904 	if (IS_ERR(map))
1905 		return PTR_ERR(map);
1906 
1907 	map->libbpf_type = type;
1908 	map->sec_idx = sec_idx;
1909 	map->sec_offset = 0;
1910 	map->real_name = strdup(real_name);
1911 	map->name = internal_map_name(obj, real_name);
1912 	if (!map->real_name || !map->name) {
1913 		zfree(&map->real_name);
1914 		zfree(&map->name);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	def = &map->def;
1919 	def->type = BPF_MAP_TYPE_ARRAY;
1920 	def->key_size = sizeof(int);
1921 	def->value_size = data_sz;
1922 	def->max_entries = 1;
1923 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1924 		? BPF_F_RDONLY_PROG : 0;
1925 
1926 	/* failures are fine because of maps like .rodata.str1.1 */
1927 	(void) map_fill_btf_type_info(obj, map);
1928 
1929 	if (map_is_mmapable(obj, map))
1930 		def->map_flags |= BPF_F_MMAPABLE;
1931 
1932 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1933 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1934 
1935 	mmap_sz = bpf_map_mmap_sz(map);
1936 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1937 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1938 	if (map->mmaped == MAP_FAILED) {
1939 		err = -errno;
1940 		map->mmaped = NULL;
1941 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1942 			map->name, err);
1943 		zfree(&map->real_name);
1944 		zfree(&map->name);
1945 		return err;
1946 	}
1947 
1948 	if (data)
1949 		memcpy(map->mmaped, data, data_sz);
1950 
1951 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1952 	return 0;
1953 }
1954 
1955 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1956 {
1957 	struct elf_sec_desc *sec_desc;
1958 	const char *sec_name;
1959 	int err = 0, sec_idx;
1960 
1961 	/*
1962 	 * Populate obj->maps with libbpf internal maps.
1963 	 */
1964 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1965 		sec_desc = &obj->efile.secs[sec_idx];
1966 
1967 		/* Skip recognized sections with size 0. */
1968 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1969 			continue;
1970 
1971 		switch (sec_desc->sec_type) {
1972 		case SEC_DATA:
1973 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1974 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1975 							    sec_name, sec_idx,
1976 							    sec_desc->data->d_buf,
1977 							    sec_desc->data->d_size);
1978 			break;
1979 		case SEC_RODATA:
1980 			obj->has_rodata = true;
1981 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1982 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1983 							    sec_name, sec_idx,
1984 							    sec_desc->data->d_buf,
1985 							    sec_desc->data->d_size);
1986 			break;
1987 		case SEC_BSS:
1988 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1989 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1990 							    sec_name, sec_idx,
1991 							    NULL,
1992 							    sec_desc->data->d_size);
1993 			break;
1994 		default:
1995 			/* skip */
1996 			break;
1997 		}
1998 		if (err)
1999 			return err;
2000 	}
2001 	return 0;
2002 }
2003 
2004 
2005 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2006 					       const void *name)
2007 {
2008 	int i;
2009 
2010 	for (i = 0; i < obj->nr_extern; i++) {
2011 		if (strcmp(obj->externs[i].name, name) == 0)
2012 			return &obj->externs[i];
2013 	}
2014 	return NULL;
2015 }
2016 
2017 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2018 							const void *name, int len)
2019 {
2020 	const char *ext_name;
2021 	int i;
2022 
2023 	for (i = 0; i < obj->nr_extern; i++) {
2024 		ext_name = obj->externs[i].name;
2025 		if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2026 			return &obj->externs[i];
2027 	}
2028 	return NULL;
2029 }
2030 
2031 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2032 			      char value)
2033 {
2034 	switch (ext->kcfg.type) {
2035 	case KCFG_BOOL:
2036 		if (value == 'm') {
2037 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2038 				ext->name, value);
2039 			return -EINVAL;
2040 		}
2041 		*(bool *)ext_val = value == 'y' ? true : false;
2042 		break;
2043 	case KCFG_TRISTATE:
2044 		if (value == 'y')
2045 			*(enum libbpf_tristate *)ext_val = TRI_YES;
2046 		else if (value == 'm')
2047 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2048 		else /* value == 'n' */
2049 			*(enum libbpf_tristate *)ext_val = TRI_NO;
2050 		break;
2051 	case KCFG_CHAR:
2052 		*(char *)ext_val = value;
2053 		break;
2054 	case KCFG_UNKNOWN:
2055 	case KCFG_INT:
2056 	case KCFG_CHAR_ARR:
2057 	default:
2058 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2059 			ext->name, value);
2060 		return -EINVAL;
2061 	}
2062 	ext->is_set = true;
2063 	return 0;
2064 }
2065 
2066 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2067 			      const char *value)
2068 {
2069 	size_t len;
2070 
2071 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2072 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2073 			ext->name, value);
2074 		return -EINVAL;
2075 	}
2076 
2077 	len = strlen(value);
2078 	if (value[len - 1] != '"') {
2079 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2080 			ext->name, value);
2081 		return -EINVAL;
2082 	}
2083 
2084 	/* strip quotes */
2085 	len -= 2;
2086 	if (len >= ext->kcfg.sz) {
2087 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2088 			ext->name, value, len, ext->kcfg.sz - 1);
2089 		len = ext->kcfg.sz - 1;
2090 	}
2091 	memcpy(ext_val, value + 1, len);
2092 	ext_val[len] = '\0';
2093 	ext->is_set = true;
2094 	return 0;
2095 }
2096 
2097 static int parse_u64(const char *value, __u64 *res)
2098 {
2099 	char *value_end;
2100 	int err;
2101 
2102 	errno = 0;
2103 	*res = strtoull(value, &value_end, 0);
2104 	if (errno) {
2105 		err = -errno;
2106 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2107 		return err;
2108 	}
2109 	if (*value_end) {
2110 		pr_warn("failed to parse '%s' as integer completely\n", value);
2111 		return -EINVAL;
2112 	}
2113 	return 0;
2114 }
2115 
2116 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2117 {
2118 	int bit_sz = ext->kcfg.sz * 8;
2119 
2120 	if (ext->kcfg.sz == 8)
2121 		return true;
2122 
2123 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2124 	 * bytes size without any loss of information. If the target integer
2125 	 * is signed, we rely on the following limits of integer type of
2126 	 * Y bits and subsequent transformation:
2127 	 *
2128 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2129 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2130 	 *            0 <= X + 2^(Y-1) <  2^Y
2131 	 *
2132 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2133 	 *  zero.
2134 	 */
2135 	if (ext->kcfg.is_signed)
2136 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2137 	else
2138 		return (v >> bit_sz) == 0;
2139 }
2140 
2141 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2142 			      __u64 value)
2143 {
2144 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2145 	    ext->kcfg.type != KCFG_BOOL) {
2146 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2147 			ext->name, (unsigned long long)value);
2148 		return -EINVAL;
2149 	}
2150 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2151 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2152 			ext->name, (unsigned long long)value);
2153 		return -EINVAL;
2154 
2155 	}
2156 	if (!is_kcfg_value_in_range(ext, value)) {
2157 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2158 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2159 		return -ERANGE;
2160 	}
2161 	switch (ext->kcfg.sz) {
2162 	case 1:
2163 		*(__u8 *)ext_val = value;
2164 		break;
2165 	case 2:
2166 		*(__u16 *)ext_val = value;
2167 		break;
2168 	case 4:
2169 		*(__u32 *)ext_val = value;
2170 		break;
2171 	case 8:
2172 		*(__u64 *)ext_val = value;
2173 		break;
2174 	default:
2175 		return -EINVAL;
2176 	}
2177 	ext->is_set = true;
2178 	return 0;
2179 }
2180 
2181 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2182 					    char *buf, void *data)
2183 {
2184 	struct extern_desc *ext;
2185 	char *sep, *value;
2186 	int len, err = 0;
2187 	void *ext_val;
2188 	__u64 num;
2189 
2190 	if (!str_has_pfx(buf, "CONFIG_"))
2191 		return 0;
2192 
2193 	sep = strchr(buf, '=');
2194 	if (!sep) {
2195 		pr_warn("failed to parse '%s': no separator\n", buf);
2196 		return -EINVAL;
2197 	}
2198 
2199 	/* Trim ending '\n' */
2200 	len = strlen(buf);
2201 	if (buf[len - 1] == '\n')
2202 		buf[len - 1] = '\0';
2203 	/* Split on '=' and ensure that a value is present. */
2204 	*sep = '\0';
2205 	if (!sep[1]) {
2206 		*sep = '=';
2207 		pr_warn("failed to parse '%s': no value\n", buf);
2208 		return -EINVAL;
2209 	}
2210 
2211 	ext = find_extern_by_name(obj, buf);
2212 	if (!ext || ext->is_set)
2213 		return 0;
2214 
2215 	ext_val = data + ext->kcfg.data_off;
2216 	value = sep + 1;
2217 
2218 	switch (*value) {
2219 	case 'y': case 'n': case 'm':
2220 		err = set_kcfg_value_tri(ext, ext_val, *value);
2221 		break;
2222 	case '"':
2223 		err = set_kcfg_value_str(ext, ext_val, value);
2224 		break;
2225 	default:
2226 		/* assume integer */
2227 		err = parse_u64(value, &num);
2228 		if (err) {
2229 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2230 			return err;
2231 		}
2232 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2233 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2234 			return -EINVAL;
2235 		}
2236 		err = set_kcfg_value_num(ext, ext_val, num);
2237 		break;
2238 	}
2239 	if (err)
2240 		return err;
2241 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2242 	return 0;
2243 }
2244 
2245 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2246 {
2247 	char buf[PATH_MAX];
2248 	struct utsname uts;
2249 	int len, err = 0;
2250 	gzFile file;
2251 
2252 	uname(&uts);
2253 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2254 	if (len < 0)
2255 		return -EINVAL;
2256 	else if (len >= PATH_MAX)
2257 		return -ENAMETOOLONG;
2258 
2259 	/* gzopen also accepts uncompressed files. */
2260 	file = gzopen(buf, "re");
2261 	if (!file)
2262 		file = gzopen("/proc/config.gz", "re");
2263 
2264 	if (!file) {
2265 		pr_warn("failed to open system Kconfig\n");
2266 		return -ENOENT;
2267 	}
2268 
2269 	while (gzgets(file, buf, sizeof(buf))) {
2270 		err = bpf_object__process_kconfig_line(obj, buf, data);
2271 		if (err) {
2272 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2273 				buf, err);
2274 			goto out;
2275 		}
2276 	}
2277 
2278 out:
2279 	gzclose(file);
2280 	return err;
2281 }
2282 
2283 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2284 					const char *config, void *data)
2285 {
2286 	char buf[PATH_MAX];
2287 	int err = 0;
2288 	FILE *file;
2289 
2290 	file = fmemopen((void *)config, strlen(config), "r");
2291 	if (!file) {
2292 		err = -errno;
2293 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2294 		return err;
2295 	}
2296 
2297 	while (fgets(buf, sizeof(buf), file)) {
2298 		err = bpf_object__process_kconfig_line(obj, buf, data);
2299 		if (err) {
2300 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2301 				buf, err);
2302 			break;
2303 		}
2304 	}
2305 
2306 	fclose(file);
2307 	return err;
2308 }
2309 
2310 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2311 {
2312 	struct extern_desc *last_ext = NULL, *ext;
2313 	size_t map_sz;
2314 	int i, err;
2315 
2316 	for (i = 0; i < obj->nr_extern; i++) {
2317 		ext = &obj->externs[i];
2318 		if (ext->type == EXT_KCFG)
2319 			last_ext = ext;
2320 	}
2321 
2322 	if (!last_ext)
2323 		return 0;
2324 
2325 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2326 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2327 					    ".kconfig", obj->efile.symbols_shndx,
2328 					    NULL, map_sz);
2329 	if (err)
2330 		return err;
2331 
2332 	obj->kconfig_map_idx = obj->nr_maps - 1;
2333 
2334 	return 0;
2335 }
2336 
2337 const struct btf_type *
2338 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2339 {
2340 	const struct btf_type *t = btf__type_by_id(btf, id);
2341 
2342 	if (res_id)
2343 		*res_id = id;
2344 
2345 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2346 		if (res_id)
2347 			*res_id = t->type;
2348 		t = btf__type_by_id(btf, t->type);
2349 	}
2350 
2351 	return t;
2352 }
2353 
2354 static const struct btf_type *
2355 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2356 {
2357 	const struct btf_type *t;
2358 
2359 	t = skip_mods_and_typedefs(btf, id, NULL);
2360 	if (!btf_is_ptr(t))
2361 		return NULL;
2362 
2363 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2364 
2365 	return btf_is_func_proto(t) ? t : NULL;
2366 }
2367 
2368 static const char *__btf_kind_str(__u16 kind)
2369 {
2370 	switch (kind) {
2371 	case BTF_KIND_UNKN: return "void";
2372 	case BTF_KIND_INT: return "int";
2373 	case BTF_KIND_PTR: return "ptr";
2374 	case BTF_KIND_ARRAY: return "array";
2375 	case BTF_KIND_STRUCT: return "struct";
2376 	case BTF_KIND_UNION: return "union";
2377 	case BTF_KIND_ENUM: return "enum";
2378 	case BTF_KIND_FWD: return "fwd";
2379 	case BTF_KIND_TYPEDEF: return "typedef";
2380 	case BTF_KIND_VOLATILE: return "volatile";
2381 	case BTF_KIND_CONST: return "const";
2382 	case BTF_KIND_RESTRICT: return "restrict";
2383 	case BTF_KIND_FUNC: return "func";
2384 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2385 	case BTF_KIND_VAR: return "var";
2386 	case BTF_KIND_DATASEC: return "datasec";
2387 	case BTF_KIND_FLOAT: return "float";
2388 	case BTF_KIND_DECL_TAG: return "decl_tag";
2389 	case BTF_KIND_TYPE_TAG: return "type_tag";
2390 	case BTF_KIND_ENUM64: return "enum64";
2391 	default: return "unknown";
2392 	}
2393 }
2394 
2395 const char *btf_kind_str(const struct btf_type *t)
2396 {
2397 	return __btf_kind_str(btf_kind(t));
2398 }
2399 
2400 /*
2401  * Fetch integer attribute of BTF map definition. Such attributes are
2402  * represented using a pointer to an array, in which dimensionality of array
2403  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2404  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2405  * type definition, while using only sizeof(void *) space in ELF data section.
2406  */
2407 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2408 			      const struct btf_member *m, __u32 *res)
2409 {
2410 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2411 	const char *name = btf__name_by_offset(btf, m->name_off);
2412 	const struct btf_array *arr_info;
2413 	const struct btf_type *arr_t;
2414 
2415 	if (!btf_is_ptr(t)) {
2416 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2417 			map_name, name, btf_kind_str(t));
2418 		return false;
2419 	}
2420 
2421 	arr_t = btf__type_by_id(btf, t->type);
2422 	if (!arr_t) {
2423 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2424 			map_name, name, t->type);
2425 		return false;
2426 	}
2427 	if (!btf_is_array(arr_t)) {
2428 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2429 			map_name, name, btf_kind_str(arr_t));
2430 		return false;
2431 	}
2432 	arr_info = btf_array(arr_t);
2433 	*res = arr_info->nelems;
2434 	return true;
2435 }
2436 
2437 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2438 			       const struct btf_member *m, __u64 *res)
2439 {
2440 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2441 	const char *name = btf__name_by_offset(btf, m->name_off);
2442 
2443 	if (btf_is_ptr(t)) {
2444 		__u32 res32;
2445 		bool ret;
2446 
2447 		ret = get_map_field_int(map_name, btf, m, &res32);
2448 		if (ret)
2449 			*res = (__u64)res32;
2450 		return ret;
2451 	}
2452 
2453 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2454 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2455 			map_name, name, btf_kind_str(t));
2456 		return false;
2457 	}
2458 
2459 	if (btf_vlen(t) != 1) {
2460 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2461 			map_name, name);
2462 		return false;
2463 	}
2464 
2465 	if (btf_is_enum(t)) {
2466 		const struct btf_enum *e = btf_enum(t);
2467 
2468 		*res = e->val;
2469 	} else {
2470 		const struct btf_enum64 *e = btf_enum64(t);
2471 
2472 		*res = btf_enum64_value(e);
2473 	}
2474 	return true;
2475 }
2476 
2477 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2478 {
2479 	int len;
2480 
2481 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2482 	if (len < 0)
2483 		return -EINVAL;
2484 	if (len >= buf_sz)
2485 		return -ENAMETOOLONG;
2486 
2487 	return 0;
2488 }
2489 
2490 static int build_map_pin_path(struct bpf_map *map, const char *path)
2491 {
2492 	char buf[PATH_MAX];
2493 	int err;
2494 
2495 	if (!path)
2496 		path = BPF_FS_DEFAULT_PATH;
2497 
2498 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2499 	if (err)
2500 		return err;
2501 
2502 	return bpf_map__set_pin_path(map, buf);
2503 }
2504 
2505 /* should match definition in bpf_helpers.h */
2506 enum libbpf_pin_type {
2507 	LIBBPF_PIN_NONE,
2508 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2509 	LIBBPF_PIN_BY_NAME,
2510 };
2511 
2512 int parse_btf_map_def(const char *map_name, struct btf *btf,
2513 		      const struct btf_type *def_t, bool strict,
2514 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2515 {
2516 	const struct btf_type *t;
2517 	const struct btf_member *m;
2518 	bool is_inner = inner_def == NULL;
2519 	int vlen, i;
2520 
2521 	vlen = btf_vlen(def_t);
2522 	m = btf_members(def_t);
2523 	for (i = 0; i < vlen; i++, m++) {
2524 		const char *name = btf__name_by_offset(btf, m->name_off);
2525 
2526 		if (!name) {
2527 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2528 			return -EINVAL;
2529 		}
2530 		if (strcmp(name, "type") == 0) {
2531 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2532 				return -EINVAL;
2533 			map_def->parts |= MAP_DEF_MAP_TYPE;
2534 		} else if (strcmp(name, "max_entries") == 0) {
2535 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2536 				return -EINVAL;
2537 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2538 		} else if (strcmp(name, "map_flags") == 0) {
2539 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2540 				return -EINVAL;
2541 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2542 		} else if (strcmp(name, "numa_node") == 0) {
2543 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2544 				return -EINVAL;
2545 			map_def->parts |= MAP_DEF_NUMA_NODE;
2546 		} else if (strcmp(name, "key_size") == 0) {
2547 			__u32 sz;
2548 
2549 			if (!get_map_field_int(map_name, btf, m, &sz))
2550 				return -EINVAL;
2551 			if (map_def->key_size && map_def->key_size != sz) {
2552 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2553 					map_name, map_def->key_size, sz);
2554 				return -EINVAL;
2555 			}
2556 			map_def->key_size = sz;
2557 			map_def->parts |= MAP_DEF_KEY_SIZE;
2558 		} else if (strcmp(name, "key") == 0) {
2559 			__s64 sz;
2560 
2561 			t = btf__type_by_id(btf, m->type);
2562 			if (!t) {
2563 				pr_warn("map '%s': key type [%d] not found.\n",
2564 					map_name, m->type);
2565 				return -EINVAL;
2566 			}
2567 			if (!btf_is_ptr(t)) {
2568 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2569 					map_name, btf_kind_str(t));
2570 				return -EINVAL;
2571 			}
2572 			sz = btf__resolve_size(btf, t->type);
2573 			if (sz < 0) {
2574 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2575 					map_name, t->type, (ssize_t)sz);
2576 				return sz;
2577 			}
2578 			if (map_def->key_size && map_def->key_size != sz) {
2579 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2580 					map_name, map_def->key_size, (ssize_t)sz);
2581 				return -EINVAL;
2582 			}
2583 			map_def->key_size = sz;
2584 			map_def->key_type_id = t->type;
2585 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2586 		} else if (strcmp(name, "value_size") == 0) {
2587 			__u32 sz;
2588 
2589 			if (!get_map_field_int(map_name, btf, m, &sz))
2590 				return -EINVAL;
2591 			if (map_def->value_size && map_def->value_size != sz) {
2592 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2593 					map_name, map_def->value_size, sz);
2594 				return -EINVAL;
2595 			}
2596 			map_def->value_size = sz;
2597 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2598 		} else if (strcmp(name, "value") == 0) {
2599 			__s64 sz;
2600 
2601 			t = btf__type_by_id(btf, m->type);
2602 			if (!t) {
2603 				pr_warn("map '%s': value type [%d] not found.\n",
2604 					map_name, m->type);
2605 				return -EINVAL;
2606 			}
2607 			if (!btf_is_ptr(t)) {
2608 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2609 					map_name, btf_kind_str(t));
2610 				return -EINVAL;
2611 			}
2612 			sz = btf__resolve_size(btf, t->type);
2613 			if (sz < 0) {
2614 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2615 					map_name, t->type, (ssize_t)sz);
2616 				return sz;
2617 			}
2618 			if (map_def->value_size && map_def->value_size != sz) {
2619 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2620 					map_name, map_def->value_size, (ssize_t)sz);
2621 				return -EINVAL;
2622 			}
2623 			map_def->value_size = sz;
2624 			map_def->value_type_id = t->type;
2625 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2626 		}
2627 		else if (strcmp(name, "values") == 0) {
2628 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2629 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2630 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2631 			char inner_map_name[128];
2632 			int err;
2633 
2634 			if (is_inner) {
2635 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2636 					map_name);
2637 				return -ENOTSUP;
2638 			}
2639 			if (i != vlen - 1) {
2640 				pr_warn("map '%s': '%s' member should be last.\n",
2641 					map_name, name);
2642 				return -EINVAL;
2643 			}
2644 			if (!is_map_in_map && !is_prog_array) {
2645 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2646 					map_name);
2647 				return -ENOTSUP;
2648 			}
2649 			if (map_def->value_size && map_def->value_size != 4) {
2650 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2651 					map_name, map_def->value_size);
2652 				return -EINVAL;
2653 			}
2654 			map_def->value_size = 4;
2655 			t = btf__type_by_id(btf, m->type);
2656 			if (!t) {
2657 				pr_warn("map '%s': %s type [%d] not found.\n",
2658 					map_name, desc, m->type);
2659 				return -EINVAL;
2660 			}
2661 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2662 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2663 					map_name, desc);
2664 				return -EINVAL;
2665 			}
2666 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2667 			if (!btf_is_ptr(t)) {
2668 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2669 					map_name, desc, btf_kind_str(t));
2670 				return -EINVAL;
2671 			}
2672 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2673 			if (is_prog_array) {
2674 				if (!btf_is_func_proto(t)) {
2675 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2676 						map_name, btf_kind_str(t));
2677 					return -EINVAL;
2678 				}
2679 				continue;
2680 			}
2681 			if (!btf_is_struct(t)) {
2682 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2683 					map_name, btf_kind_str(t));
2684 				return -EINVAL;
2685 			}
2686 
2687 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2688 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2689 			if (err)
2690 				return err;
2691 
2692 			map_def->parts |= MAP_DEF_INNER_MAP;
2693 		} else if (strcmp(name, "pinning") == 0) {
2694 			__u32 val;
2695 
2696 			if (is_inner) {
2697 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2698 				return -EINVAL;
2699 			}
2700 			if (!get_map_field_int(map_name, btf, m, &val))
2701 				return -EINVAL;
2702 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2703 				pr_warn("map '%s': invalid pinning value %u.\n",
2704 					map_name, val);
2705 				return -EINVAL;
2706 			}
2707 			map_def->pinning = val;
2708 			map_def->parts |= MAP_DEF_PINNING;
2709 		} else if (strcmp(name, "map_extra") == 0) {
2710 			__u64 map_extra;
2711 
2712 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2713 				return -EINVAL;
2714 			map_def->map_extra = map_extra;
2715 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2716 		} else {
2717 			if (strict) {
2718 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2719 				return -ENOTSUP;
2720 			}
2721 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2722 		}
2723 	}
2724 
2725 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2726 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2727 		return -EINVAL;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static size_t adjust_ringbuf_sz(size_t sz)
2734 {
2735 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2736 	__u32 mul;
2737 
2738 	/* if user forgot to set any size, make sure they see error */
2739 	if (sz == 0)
2740 		return 0;
2741 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2742 	 * a power-of-2 multiple of kernel's page size. If user diligently
2743 	 * satisified these conditions, pass the size through.
2744 	 */
2745 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2746 		return sz;
2747 
2748 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2749 	 * user-set size to satisfy both user size request and kernel
2750 	 * requirements and substitute correct max_entries for map creation.
2751 	 */
2752 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2753 		if (mul * page_sz > sz)
2754 			return mul * page_sz;
2755 	}
2756 
2757 	/* if it's impossible to satisfy the conditions (i.e., user size is
2758 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2759 	 * page_size) then just return original size and let kernel reject it
2760 	 */
2761 	return sz;
2762 }
2763 
2764 static bool map_is_ringbuf(const struct bpf_map *map)
2765 {
2766 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2767 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2768 }
2769 
2770 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2771 {
2772 	map->def.type = def->map_type;
2773 	map->def.key_size = def->key_size;
2774 	map->def.value_size = def->value_size;
2775 	map->def.max_entries = def->max_entries;
2776 	map->def.map_flags = def->map_flags;
2777 	map->map_extra = def->map_extra;
2778 
2779 	map->numa_node = def->numa_node;
2780 	map->btf_key_type_id = def->key_type_id;
2781 	map->btf_value_type_id = def->value_type_id;
2782 
2783 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2784 	if (map_is_ringbuf(map))
2785 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2786 
2787 	if (def->parts & MAP_DEF_MAP_TYPE)
2788 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2789 
2790 	if (def->parts & MAP_DEF_KEY_TYPE)
2791 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2792 			 map->name, def->key_type_id, def->key_size);
2793 	else if (def->parts & MAP_DEF_KEY_SIZE)
2794 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2795 
2796 	if (def->parts & MAP_DEF_VALUE_TYPE)
2797 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2798 			 map->name, def->value_type_id, def->value_size);
2799 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2800 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2801 
2802 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2803 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2804 	if (def->parts & MAP_DEF_MAP_FLAGS)
2805 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2806 	if (def->parts & MAP_DEF_MAP_EXTRA)
2807 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2808 			 (unsigned long long)def->map_extra);
2809 	if (def->parts & MAP_DEF_PINNING)
2810 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2811 	if (def->parts & MAP_DEF_NUMA_NODE)
2812 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2813 
2814 	if (def->parts & MAP_DEF_INNER_MAP)
2815 		pr_debug("map '%s': found inner map definition.\n", map->name);
2816 }
2817 
2818 static const char *btf_var_linkage_str(__u32 linkage)
2819 {
2820 	switch (linkage) {
2821 	case BTF_VAR_STATIC: return "static";
2822 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2823 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2824 	default: return "unknown";
2825 	}
2826 }
2827 
2828 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2829 					 const struct btf_type *sec,
2830 					 int var_idx, int sec_idx,
2831 					 const Elf_Data *data, bool strict,
2832 					 const char *pin_root_path)
2833 {
2834 	struct btf_map_def map_def = {}, inner_def = {};
2835 	const struct btf_type *var, *def;
2836 	const struct btf_var_secinfo *vi;
2837 	const struct btf_var *var_extra;
2838 	const char *map_name;
2839 	struct bpf_map *map;
2840 	int err;
2841 
2842 	vi = btf_var_secinfos(sec) + var_idx;
2843 	var = btf__type_by_id(obj->btf, vi->type);
2844 	var_extra = btf_var(var);
2845 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2846 
2847 	if (map_name == NULL || map_name[0] == '\0') {
2848 		pr_warn("map #%d: empty name.\n", var_idx);
2849 		return -EINVAL;
2850 	}
2851 	if ((__u64)vi->offset + vi->size > data->d_size) {
2852 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2853 		return -EINVAL;
2854 	}
2855 	if (!btf_is_var(var)) {
2856 		pr_warn("map '%s': unexpected var kind %s.\n",
2857 			map_name, btf_kind_str(var));
2858 		return -EINVAL;
2859 	}
2860 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2861 		pr_warn("map '%s': unsupported map linkage %s.\n",
2862 			map_name, btf_var_linkage_str(var_extra->linkage));
2863 		return -EOPNOTSUPP;
2864 	}
2865 
2866 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2867 	if (!btf_is_struct(def)) {
2868 		pr_warn("map '%s': unexpected def kind %s.\n",
2869 			map_name, btf_kind_str(var));
2870 		return -EINVAL;
2871 	}
2872 	if (def->size > vi->size) {
2873 		pr_warn("map '%s': invalid def size.\n", map_name);
2874 		return -EINVAL;
2875 	}
2876 
2877 	map = bpf_object__add_map(obj);
2878 	if (IS_ERR(map))
2879 		return PTR_ERR(map);
2880 	map->name = strdup(map_name);
2881 	if (!map->name) {
2882 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2883 		return -ENOMEM;
2884 	}
2885 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2886 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2887 	map->sec_idx = sec_idx;
2888 	map->sec_offset = vi->offset;
2889 	map->btf_var_idx = var_idx;
2890 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2891 		 map_name, map->sec_idx, map->sec_offset);
2892 
2893 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2894 	if (err)
2895 		return err;
2896 
2897 	fill_map_from_def(map, &map_def);
2898 
2899 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2900 		err = build_map_pin_path(map, pin_root_path);
2901 		if (err) {
2902 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2903 			return err;
2904 		}
2905 	}
2906 
2907 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2908 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2909 		if (!map->inner_map)
2910 			return -ENOMEM;
2911 		map->inner_map->fd = create_placeholder_fd();
2912 		if (map->inner_map->fd < 0)
2913 			return map->inner_map->fd;
2914 		map->inner_map->sec_idx = sec_idx;
2915 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2916 		if (!map->inner_map->name)
2917 			return -ENOMEM;
2918 		sprintf(map->inner_map->name, "%s.inner", map_name);
2919 
2920 		fill_map_from_def(map->inner_map, &inner_def);
2921 	}
2922 
2923 	err = map_fill_btf_type_info(obj, map);
2924 	if (err)
2925 		return err;
2926 
2927 	return 0;
2928 }
2929 
2930 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2931 			       const char *sec_name, int sec_idx,
2932 			       void *data, size_t data_sz)
2933 {
2934 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2935 	size_t mmap_sz;
2936 
2937 	mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2938 	if (roundup(data_sz, page_sz) > mmap_sz) {
2939 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2940 			sec_name, mmap_sz, data_sz);
2941 		return -E2BIG;
2942 	}
2943 
2944 	obj->arena_data = malloc(data_sz);
2945 	if (!obj->arena_data)
2946 		return -ENOMEM;
2947 	memcpy(obj->arena_data, data, data_sz);
2948 	obj->arena_data_sz = data_sz;
2949 
2950 	/* make bpf_map__init_value() work for ARENA maps */
2951 	map->mmaped = obj->arena_data;
2952 
2953 	return 0;
2954 }
2955 
2956 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2957 					  const char *pin_root_path)
2958 {
2959 	const struct btf_type *sec = NULL;
2960 	int nr_types, i, vlen, err;
2961 	const struct btf_type *t;
2962 	const char *name;
2963 	Elf_Data *data;
2964 	Elf_Scn *scn;
2965 
2966 	if (obj->efile.btf_maps_shndx < 0)
2967 		return 0;
2968 
2969 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2970 	data = elf_sec_data(obj, scn);
2971 	if (!scn || !data) {
2972 		pr_warn("elf: failed to get %s map definitions for %s\n",
2973 			MAPS_ELF_SEC, obj->path);
2974 		return -EINVAL;
2975 	}
2976 
2977 	nr_types = btf__type_cnt(obj->btf);
2978 	for (i = 1; i < nr_types; i++) {
2979 		t = btf__type_by_id(obj->btf, i);
2980 		if (!btf_is_datasec(t))
2981 			continue;
2982 		name = btf__name_by_offset(obj->btf, t->name_off);
2983 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2984 			sec = t;
2985 			obj->efile.btf_maps_sec_btf_id = i;
2986 			break;
2987 		}
2988 	}
2989 
2990 	if (!sec) {
2991 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2992 		return -ENOENT;
2993 	}
2994 
2995 	vlen = btf_vlen(sec);
2996 	for (i = 0; i < vlen; i++) {
2997 		err = bpf_object__init_user_btf_map(obj, sec, i,
2998 						    obj->efile.btf_maps_shndx,
2999 						    data, strict,
3000 						    pin_root_path);
3001 		if (err)
3002 			return err;
3003 	}
3004 
3005 	for (i = 0; i < obj->nr_maps; i++) {
3006 		struct bpf_map *map = &obj->maps[i];
3007 
3008 		if (map->def.type != BPF_MAP_TYPE_ARENA)
3009 			continue;
3010 
3011 		if (obj->arena_map) {
3012 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3013 				map->name, obj->arena_map->name);
3014 			return -EINVAL;
3015 		}
3016 		obj->arena_map = map;
3017 
3018 		if (obj->efile.arena_data) {
3019 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3020 						  obj->efile.arena_data->d_buf,
3021 						  obj->efile.arena_data->d_size);
3022 			if (err)
3023 				return err;
3024 		}
3025 	}
3026 	if (obj->efile.arena_data && !obj->arena_map) {
3027 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3028 			ARENA_SEC);
3029 		return -ENOENT;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 static int bpf_object__init_maps(struct bpf_object *obj,
3036 				 const struct bpf_object_open_opts *opts)
3037 {
3038 	const char *pin_root_path;
3039 	bool strict;
3040 	int err = 0;
3041 
3042 	strict = !OPTS_GET(opts, relaxed_maps, false);
3043 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3044 
3045 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3046 	err = err ?: bpf_object__init_global_data_maps(obj);
3047 	err = err ?: bpf_object__init_kconfig_map(obj);
3048 	err = err ?: bpf_object_init_struct_ops(obj);
3049 
3050 	return err;
3051 }
3052 
3053 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3054 {
3055 	Elf64_Shdr *sh;
3056 
3057 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3058 	if (!sh)
3059 		return false;
3060 
3061 	return sh->sh_flags & SHF_EXECINSTR;
3062 }
3063 
3064 static bool starts_with_qmark(const char *s)
3065 {
3066 	return s && s[0] == '?';
3067 }
3068 
3069 static bool btf_needs_sanitization(struct bpf_object *obj)
3070 {
3071 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3072 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3073 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3074 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3075 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3076 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3077 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3078 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3079 
3080 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3081 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3082 }
3083 
3084 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3085 {
3086 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3087 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3088 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3089 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3090 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3091 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3092 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3093 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3094 	int enum64_placeholder_id = 0;
3095 	struct btf_type *t;
3096 	int i, j, vlen;
3097 
3098 	for (i = 1; i < btf__type_cnt(btf); i++) {
3099 		t = (struct btf_type *)btf__type_by_id(btf, i);
3100 
3101 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3102 			/* replace VAR/DECL_TAG with INT */
3103 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3104 			/*
3105 			 * using size = 1 is the safest choice, 4 will be too
3106 			 * big and cause kernel BTF validation failure if
3107 			 * original variable took less than 4 bytes
3108 			 */
3109 			t->size = 1;
3110 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3111 		} else if (!has_datasec && btf_is_datasec(t)) {
3112 			/* replace DATASEC with STRUCT */
3113 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3114 			struct btf_member *m = btf_members(t);
3115 			struct btf_type *vt;
3116 			char *name;
3117 
3118 			name = (char *)btf__name_by_offset(btf, t->name_off);
3119 			while (*name) {
3120 				if (*name == '.' || *name == '?')
3121 					*name = '_';
3122 				name++;
3123 			}
3124 
3125 			vlen = btf_vlen(t);
3126 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3127 			for (j = 0; j < vlen; j++, v++, m++) {
3128 				/* order of field assignments is important */
3129 				m->offset = v->offset * 8;
3130 				m->type = v->type;
3131 				/* preserve variable name as member name */
3132 				vt = (void *)btf__type_by_id(btf, v->type);
3133 				m->name_off = vt->name_off;
3134 			}
3135 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3136 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3137 			/* replace '?' prefix with '_' for DATASEC names */
3138 			char *name;
3139 
3140 			name = (char *)btf__name_by_offset(btf, t->name_off);
3141 			if (name[0] == '?')
3142 				name[0] = '_';
3143 		} else if (!has_func && btf_is_func_proto(t)) {
3144 			/* replace FUNC_PROTO with ENUM */
3145 			vlen = btf_vlen(t);
3146 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3147 			t->size = sizeof(__u32); /* kernel enforced */
3148 		} else if (!has_func && btf_is_func(t)) {
3149 			/* replace FUNC with TYPEDEF */
3150 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3151 		} else if (!has_func_global && btf_is_func(t)) {
3152 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3153 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3154 		} else if (!has_float && btf_is_float(t)) {
3155 			/* replace FLOAT with an equally-sized empty STRUCT;
3156 			 * since C compilers do not accept e.g. "float" as a
3157 			 * valid struct name, make it anonymous
3158 			 */
3159 			t->name_off = 0;
3160 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3161 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3162 			/* replace TYPE_TAG with a CONST */
3163 			t->name_off = 0;
3164 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3165 		} else if (!has_enum64 && btf_is_enum(t)) {
3166 			/* clear the kflag */
3167 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3168 		} else if (!has_enum64 && btf_is_enum64(t)) {
3169 			/* replace ENUM64 with a union */
3170 			struct btf_member *m;
3171 
3172 			if (enum64_placeholder_id == 0) {
3173 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3174 				if (enum64_placeholder_id < 0)
3175 					return enum64_placeholder_id;
3176 
3177 				t = (struct btf_type *)btf__type_by_id(btf, i);
3178 			}
3179 
3180 			m = btf_members(t);
3181 			vlen = btf_vlen(t);
3182 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3183 			for (j = 0; j < vlen; j++, m++) {
3184 				m->type = enum64_placeholder_id;
3185 				m->offset = 0;
3186 			}
3187 		}
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 static bool libbpf_needs_btf(const struct bpf_object *obj)
3194 {
3195 	return obj->efile.btf_maps_shndx >= 0 ||
3196 	       obj->efile.has_st_ops ||
3197 	       obj->nr_extern > 0;
3198 }
3199 
3200 static bool kernel_needs_btf(const struct bpf_object *obj)
3201 {
3202 	return obj->efile.has_st_ops;
3203 }
3204 
3205 static int bpf_object__init_btf(struct bpf_object *obj,
3206 				Elf_Data *btf_data,
3207 				Elf_Data *btf_ext_data)
3208 {
3209 	int err = -ENOENT;
3210 
3211 	if (btf_data) {
3212 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3213 		err = libbpf_get_error(obj->btf);
3214 		if (err) {
3215 			obj->btf = NULL;
3216 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3217 			goto out;
3218 		}
3219 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3220 		btf__set_pointer_size(obj->btf, 8);
3221 	}
3222 	if (btf_ext_data) {
3223 		struct btf_ext_info *ext_segs[3];
3224 		int seg_num, sec_num;
3225 
3226 		if (!obj->btf) {
3227 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3228 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3229 			goto out;
3230 		}
3231 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3232 		err = libbpf_get_error(obj->btf_ext);
3233 		if (err) {
3234 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3235 				BTF_EXT_ELF_SEC, err);
3236 			obj->btf_ext = NULL;
3237 			goto out;
3238 		}
3239 
3240 		/* setup .BTF.ext to ELF section mapping */
3241 		ext_segs[0] = &obj->btf_ext->func_info;
3242 		ext_segs[1] = &obj->btf_ext->line_info;
3243 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3244 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3245 			struct btf_ext_info *seg = ext_segs[seg_num];
3246 			const struct btf_ext_info_sec *sec;
3247 			const char *sec_name;
3248 			Elf_Scn *scn;
3249 
3250 			if (seg->sec_cnt == 0)
3251 				continue;
3252 
3253 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3254 			if (!seg->sec_idxs) {
3255 				err = -ENOMEM;
3256 				goto out;
3257 			}
3258 
3259 			sec_num = 0;
3260 			for_each_btf_ext_sec(seg, sec) {
3261 				/* preventively increment index to avoid doing
3262 				 * this before every continue below
3263 				 */
3264 				sec_num++;
3265 
3266 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3267 				if (str_is_empty(sec_name))
3268 					continue;
3269 				scn = elf_sec_by_name(obj, sec_name);
3270 				if (!scn)
3271 					continue;
3272 
3273 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3274 			}
3275 		}
3276 	}
3277 out:
3278 	if (err && libbpf_needs_btf(obj)) {
3279 		pr_warn("BTF is required, but is missing or corrupted.\n");
3280 		return err;
3281 	}
3282 	return 0;
3283 }
3284 
3285 static int compare_vsi_off(const void *_a, const void *_b)
3286 {
3287 	const struct btf_var_secinfo *a = _a;
3288 	const struct btf_var_secinfo *b = _b;
3289 
3290 	return a->offset - b->offset;
3291 }
3292 
3293 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3294 			     struct btf_type *t)
3295 {
3296 	__u32 size = 0, i, vars = btf_vlen(t);
3297 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3298 	struct btf_var_secinfo *vsi;
3299 	bool fixup_offsets = false;
3300 	int err;
3301 
3302 	if (!sec_name) {
3303 		pr_debug("No name found in string section for DATASEC kind.\n");
3304 		return -ENOENT;
3305 	}
3306 
3307 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3308 	 * variable offsets set at the previous step. Further, not every
3309 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3310 	 * all fixups altogether for such sections and go straight to sorting
3311 	 * VARs within their DATASEC.
3312 	 */
3313 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3314 		goto sort_vars;
3315 
3316 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3317 	 * fix this up. But BPF static linker already fixes this up and fills
3318 	 * all the sizes and offsets during static linking. So this step has
3319 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3320 	 * non-extern DATASEC, so the variable fixup loop below handles both
3321 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3322 	 * symbol matching just once.
3323 	 */
3324 	if (t->size == 0) {
3325 		err = find_elf_sec_sz(obj, sec_name, &size);
3326 		if (err || !size) {
3327 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3328 				 sec_name, size, err);
3329 			return -ENOENT;
3330 		}
3331 
3332 		t->size = size;
3333 		fixup_offsets = true;
3334 	}
3335 
3336 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3337 		const struct btf_type *t_var;
3338 		struct btf_var *var;
3339 		const char *var_name;
3340 		Elf64_Sym *sym;
3341 
3342 		t_var = btf__type_by_id(btf, vsi->type);
3343 		if (!t_var || !btf_is_var(t_var)) {
3344 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3345 			return -EINVAL;
3346 		}
3347 
3348 		var = btf_var(t_var);
3349 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3350 			continue;
3351 
3352 		var_name = btf__name_by_offset(btf, t_var->name_off);
3353 		if (!var_name) {
3354 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3355 				 sec_name, i);
3356 			return -ENOENT;
3357 		}
3358 
3359 		sym = find_elf_var_sym(obj, var_name);
3360 		if (IS_ERR(sym)) {
3361 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3362 				 sec_name, var_name);
3363 			return -ENOENT;
3364 		}
3365 
3366 		if (fixup_offsets)
3367 			vsi->offset = sym->st_value;
3368 
3369 		/* if variable is a global/weak symbol, but has restricted
3370 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3371 		 * as static. This follows similar logic for functions (BPF
3372 		 * subprogs) and influences libbpf's further decisions about
3373 		 * whether to make global data BPF array maps as
3374 		 * BPF_F_MMAPABLE.
3375 		 */
3376 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3377 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3378 			var->linkage = BTF_VAR_STATIC;
3379 	}
3380 
3381 sort_vars:
3382 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3383 	return 0;
3384 }
3385 
3386 static int bpf_object_fixup_btf(struct bpf_object *obj)
3387 {
3388 	int i, n, err = 0;
3389 
3390 	if (!obj->btf)
3391 		return 0;
3392 
3393 	n = btf__type_cnt(obj->btf);
3394 	for (i = 1; i < n; i++) {
3395 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3396 
3397 		/* Loader needs to fix up some of the things compiler
3398 		 * couldn't get its hands on while emitting BTF. This
3399 		 * is section size and global variable offset. We use
3400 		 * the info from the ELF itself for this purpose.
3401 		 */
3402 		if (btf_is_datasec(t)) {
3403 			err = btf_fixup_datasec(obj, obj->btf, t);
3404 			if (err)
3405 				return err;
3406 		}
3407 	}
3408 
3409 	return 0;
3410 }
3411 
3412 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3413 {
3414 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3415 	    prog->type == BPF_PROG_TYPE_LSM)
3416 		return true;
3417 
3418 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3419 	 * also need vmlinux BTF
3420 	 */
3421 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3422 		return true;
3423 
3424 	return false;
3425 }
3426 
3427 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3428 {
3429 	return bpf_map__is_struct_ops(map);
3430 }
3431 
3432 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3433 {
3434 	struct bpf_program *prog;
3435 	struct bpf_map *map;
3436 	int i;
3437 
3438 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3439 	 * is not specified
3440 	 */
3441 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3442 		return true;
3443 
3444 	/* Support for typed ksyms needs kernel BTF */
3445 	for (i = 0; i < obj->nr_extern; i++) {
3446 		const struct extern_desc *ext;
3447 
3448 		ext = &obj->externs[i];
3449 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3450 			return true;
3451 	}
3452 
3453 	bpf_object__for_each_program(prog, obj) {
3454 		if (!prog->autoload)
3455 			continue;
3456 		if (prog_needs_vmlinux_btf(prog))
3457 			return true;
3458 	}
3459 
3460 	bpf_object__for_each_map(map, obj) {
3461 		if (map_needs_vmlinux_btf(map))
3462 			return true;
3463 	}
3464 
3465 	return false;
3466 }
3467 
3468 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3469 {
3470 	int err;
3471 
3472 	/* btf_vmlinux could be loaded earlier */
3473 	if (obj->btf_vmlinux || obj->gen_loader)
3474 		return 0;
3475 
3476 	if (!force && !obj_needs_vmlinux_btf(obj))
3477 		return 0;
3478 
3479 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3480 	err = libbpf_get_error(obj->btf_vmlinux);
3481 	if (err) {
3482 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3483 		obj->btf_vmlinux = NULL;
3484 		return err;
3485 	}
3486 	return 0;
3487 }
3488 
3489 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3490 {
3491 	struct btf *kern_btf = obj->btf;
3492 	bool btf_mandatory, sanitize;
3493 	int i, err = 0;
3494 
3495 	if (!obj->btf)
3496 		return 0;
3497 
3498 	if (!kernel_supports(obj, FEAT_BTF)) {
3499 		if (kernel_needs_btf(obj)) {
3500 			err = -EOPNOTSUPP;
3501 			goto report;
3502 		}
3503 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3504 		return 0;
3505 	}
3506 
3507 	/* Even though some subprogs are global/weak, user might prefer more
3508 	 * permissive BPF verification process that BPF verifier performs for
3509 	 * static functions, taking into account more context from the caller
3510 	 * functions. In such case, they need to mark such subprogs with
3511 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3512 	 * corresponding FUNC BTF type to be marked as static and trigger more
3513 	 * involved BPF verification process.
3514 	 */
3515 	for (i = 0; i < obj->nr_programs; i++) {
3516 		struct bpf_program *prog = &obj->programs[i];
3517 		struct btf_type *t;
3518 		const char *name;
3519 		int j, n;
3520 
3521 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3522 			continue;
3523 
3524 		n = btf__type_cnt(obj->btf);
3525 		for (j = 1; j < n; j++) {
3526 			t = btf_type_by_id(obj->btf, j);
3527 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3528 				continue;
3529 
3530 			name = btf__str_by_offset(obj->btf, t->name_off);
3531 			if (strcmp(name, prog->name) != 0)
3532 				continue;
3533 
3534 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3535 			break;
3536 		}
3537 	}
3538 
3539 	sanitize = btf_needs_sanitization(obj);
3540 	if (sanitize) {
3541 		const void *raw_data;
3542 		__u32 sz;
3543 
3544 		/* clone BTF to sanitize a copy and leave the original intact */
3545 		raw_data = btf__raw_data(obj->btf, &sz);
3546 		kern_btf = btf__new(raw_data, sz);
3547 		err = libbpf_get_error(kern_btf);
3548 		if (err)
3549 			return err;
3550 
3551 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3552 		btf__set_pointer_size(obj->btf, 8);
3553 		err = bpf_object__sanitize_btf(obj, kern_btf);
3554 		if (err)
3555 			return err;
3556 	}
3557 
3558 	if (obj->gen_loader) {
3559 		__u32 raw_size = 0;
3560 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3561 
3562 		if (!raw_data)
3563 			return -ENOMEM;
3564 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3565 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3566 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3567 		 */
3568 		btf__set_fd(kern_btf, 0);
3569 	} else {
3570 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3571 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3572 					   obj->log_level ? 1 : 0, obj->token_fd);
3573 	}
3574 	if (sanitize) {
3575 		if (!err) {
3576 			/* move fd to libbpf's BTF */
3577 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3578 			btf__set_fd(kern_btf, -1);
3579 		}
3580 		btf__free(kern_btf);
3581 	}
3582 report:
3583 	if (err) {
3584 		btf_mandatory = kernel_needs_btf(obj);
3585 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3586 			btf_mandatory ? "BTF is mandatory, can't proceed."
3587 				      : "BTF is optional, ignoring.");
3588 		if (!btf_mandatory)
3589 			err = 0;
3590 	}
3591 	return err;
3592 }
3593 
3594 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3595 {
3596 	const char *name;
3597 
3598 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3599 	if (!name) {
3600 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3601 			off, obj->path, elf_errmsg(-1));
3602 		return NULL;
3603 	}
3604 
3605 	return name;
3606 }
3607 
3608 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3609 {
3610 	const char *name;
3611 
3612 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3613 	if (!name) {
3614 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3615 			off, obj->path, elf_errmsg(-1));
3616 		return NULL;
3617 	}
3618 
3619 	return name;
3620 }
3621 
3622 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3623 {
3624 	Elf_Scn *scn;
3625 
3626 	scn = elf_getscn(obj->efile.elf, idx);
3627 	if (!scn) {
3628 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3629 			idx, obj->path, elf_errmsg(-1));
3630 		return NULL;
3631 	}
3632 	return scn;
3633 }
3634 
3635 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3636 {
3637 	Elf_Scn *scn = NULL;
3638 	Elf *elf = obj->efile.elf;
3639 	const char *sec_name;
3640 
3641 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3642 		sec_name = elf_sec_name(obj, scn);
3643 		if (!sec_name)
3644 			return NULL;
3645 
3646 		if (strcmp(sec_name, name) != 0)
3647 			continue;
3648 
3649 		return scn;
3650 	}
3651 	return NULL;
3652 }
3653 
3654 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3655 {
3656 	Elf64_Shdr *shdr;
3657 
3658 	if (!scn)
3659 		return NULL;
3660 
3661 	shdr = elf64_getshdr(scn);
3662 	if (!shdr) {
3663 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3664 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3665 		return NULL;
3666 	}
3667 
3668 	return shdr;
3669 }
3670 
3671 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3672 {
3673 	const char *name;
3674 	Elf64_Shdr *sh;
3675 
3676 	if (!scn)
3677 		return NULL;
3678 
3679 	sh = elf_sec_hdr(obj, scn);
3680 	if (!sh)
3681 		return NULL;
3682 
3683 	name = elf_sec_str(obj, sh->sh_name);
3684 	if (!name) {
3685 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3686 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3687 		return NULL;
3688 	}
3689 
3690 	return name;
3691 }
3692 
3693 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3694 {
3695 	Elf_Data *data;
3696 
3697 	if (!scn)
3698 		return NULL;
3699 
3700 	data = elf_getdata(scn, 0);
3701 	if (!data) {
3702 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3703 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3704 			obj->path, elf_errmsg(-1));
3705 		return NULL;
3706 	}
3707 
3708 	return data;
3709 }
3710 
3711 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3712 {
3713 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3714 		return NULL;
3715 
3716 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3717 }
3718 
3719 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3720 {
3721 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3722 		return NULL;
3723 
3724 	return (Elf64_Rel *)data->d_buf + idx;
3725 }
3726 
3727 static bool is_sec_name_dwarf(const char *name)
3728 {
3729 	/* approximation, but the actual list is too long */
3730 	return str_has_pfx(name, ".debug_");
3731 }
3732 
3733 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3734 {
3735 	/* no special handling of .strtab */
3736 	if (hdr->sh_type == SHT_STRTAB)
3737 		return true;
3738 
3739 	/* ignore .llvm_addrsig section as well */
3740 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3741 		return true;
3742 
3743 	/* no subprograms will lead to an empty .text section, ignore it */
3744 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3745 	    strcmp(name, ".text") == 0)
3746 		return true;
3747 
3748 	/* DWARF sections */
3749 	if (is_sec_name_dwarf(name))
3750 		return true;
3751 
3752 	if (str_has_pfx(name, ".rel")) {
3753 		name += sizeof(".rel") - 1;
3754 		/* DWARF section relocations */
3755 		if (is_sec_name_dwarf(name))
3756 			return true;
3757 
3758 		/* .BTF and .BTF.ext don't need relocations */
3759 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3760 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3761 			return true;
3762 	}
3763 
3764 	return false;
3765 }
3766 
3767 static int cmp_progs(const void *_a, const void *_b)
3768 {
3769 	const struct bpf_program *a = _a;
3770 	const struct bpf_program *b = _b;
3771 
3772 	if (a->sec_idx != b->sec_idx)
3773 		return a->sec_idx < b->sec_idx ? -1 : 1;
3774 
3775 	/* sec_insn_off can't be the same within the section */
3776 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3777 }
3778 
3779 static int bpf_object__elf_collect(struct bpf_object *obj)
3780 {
3781 	struct elf_sec_desc *sec_desc;
3782 	Elf *elf = obj->efile.elf;
3783 	Elf_Data *btf_ext_data = NULL;
3784 	Elf_Data *btf_data = NULL;
3785 	int idx = 0, err = 0;
3786 	const char *name;
3787 	Elf_Data *data;
3788 	Elf_Scn *scn;
3789 	Elf64_Shdr *sh;
3790 
3791 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3792 	 * section. Since section count retrieved by elf_getshdrnum() does
3793 	 * include sec #0, it is already the necessary size of an array to keep
3794 	 * all the sections.
3795 	 */
3796 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3797 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3798 			obj->path, elf_errmsg(-1));
3799 		return -LIBBPF_ERRNO__FORMAT;
3800 	}
3801 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3802 	if (!obj->efile.secs)
3803 		return -ENOMEM;
3804 
3805 	/* a bunch of ELF parsing functionality depends on processing symbols,
3806 	 * so do the first pass and find the symbol table
3807 	 */
3808 	scn = NULL;
3809 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3810 		sh = elf_sec_hdr(obj, scn);
3811 		if (!sh)
3812 			return -LIBBPF_ERRNO__FORMAT;
3813 
3814 		if (sh->sh_type == SHT_SYMTAB) {
3815 			if (obj->efile.symbols) {
3816 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3817 				return -LIBBPF_ERRNO__FORMAT;
3818 			}
3819 
3820 			data = elf_sec_data(obj, scn);
3821 			if (!data)
3822 				return -LIBBPF_ERRNO__FORMAT;
3823 
3824 			idx = elf_ndxscn(scn);
3825 
3826 			obj->efile.symbols = data;
3827 			obj->efile.symbols_shndx = idx;
3828 			obj->efile.strtabidx = sh->sh_link;
3829 		}
3830 	}
3831 
3832 	if (!obj->efile.symbols) {
3833 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3834 			obj->path);
3835 		return -ENOENT;
3836 	}
3837 
3838 	scn = NULL;
3839 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3840 		idx = elf_ndxscn(scn);
3841 		sec_desc = &obj->efile.secs[idx];
3842 
3843 		sh = elf_sec_hdr(obj, scn);
3844 		if (!sh)
3845 			return -LIBBPF_ERRNO__FORMAT;
3846 
3847 		name = elf_sec_str(obj, sh->sh_name);
3848 		if (!name)
3849 			return -LIBBPF_ERRNO__FORMAT;
3850 
3851 		if (ignore_elf_section(sh, name))
3852 			continue;
3853 
3854 		data = elf_sec_data(obj, scn);
3855 		if (!data)
3856 			return -LIBBPF_ERRNO__FORMAT;
3857 
3858 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3859 			 idx, name, (unsigned long)data->d_size,
3860 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3861 			 (int)sh->sh_type);
3862 
3863 		if (strcmp(name, "license") == 0) {
3864 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3865 			if (err)
3866 				return err;
3867 		} else if (strcmp(name, "version") == 0) {
3868 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3869 			if (err)
3870 				return err;
3871 		} else if (strcmp(name, "maps") == 0) {
3872 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3873 			return -ENOTSUP;
3874 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3875 			obj->efile.btf_maps_shndx = idx;
3876 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3877 			if (sh->sh_type != SHT_PROGBITS)
3878 				return -LIBBPF_ERRNO__FORMAT;
3879 			btf_data = data;
3880 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3881 			if (sh->sh_type != SHT_PROGBITS)
3882 				return -LIBBPF_ERRNO__FORMAT;
3883 			btf_ext_data = data;
3884 		} else if (sh->sh_type == SHT_SYMTAB) {
3885 			/* already processed during the first pass above */
3886 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3887 			if (sh->sh_flags & SHF_EXECINSTR) {
3888 				if (strcmp(name, ".text") == 0)
3889 					obj->efile.text_shndx = idx;
3890 				err = bpf_object__add_programs(obj, data, name, idx);
3891 				if (err)
3892 					return err;
3893 			} else if (strcmp(name, DATA_SEC) == 0 ||
3894 				   str_has_pfx(name, DATA_SEC ".")) {
3895 				sec_desc->sec_type = SEC_DATA;
3896 				sec_desc->shdr = sh;
3897 				sec_desc->data = data;
3898 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3899 				   str_has_pfx(name, RODATA_SEC ".")) {
3900 				sec_desc->sec_type = SEC_RODATA;
3901 				sec_desc->shdr = sh;
3902 				sec_desc->data = data;
3903 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3904 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3905 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3906 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3907 				sec_desc->sec_type = SEC_ST_OPS;
3908 				sec_desc->shdr = sh;
3909 				sec_desc->data = data;
3910 				obj->efile.has_st_ops = true;
3911 			} else if (strcmp(name, ARENA_SEC) == 0) {
3912 				obj->efile.arena_data = data;
3913 				obj->efile.arena_data_shndx = idx;
3914 			} else {
3915 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3916 					idx, name);
3917 			}
3918 		} else if (sh->sh_type == SHT_REL) {
3919 			int targ_sec_idx = sh->sh_info; /* points to other section */
3920 
3921 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3922 			    targ_sec_idx >= obj->efile.sec_cnt)
3923 				return -LIBBPF_ERRNO__FORMAT;
3924 
3925 			/* Only do relo for section with exec instructions */
3926 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3927 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3928 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3929 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3930 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3931 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3932 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3933 					idx, name, targ_sec_idx,
3934 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3935 				continue;
3936 			}
3937 
3938 			sec_desc->sec_type = SEC_RELO;
3939 			sec_desc->shdr = sh;
3940 			sec_desc->data = data;
3941 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3942 							 str_has_pfx(name, BSS_SEC "."))) {
3943 			sec_desc->sec_type = SEC_BSS;
3944 			sec_desc->shdr = sh;
3945 			sec_desc->data = data;
3946 		} else {
3947 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3948 				(size_t)sh->sh_size);
3949 		}
3950 	}
3951 
3952 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3953 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3954 		return -LIBBPF_ERRNO__FORMAT;
3955 	}
3956 
3957 	/* sort BPF programs by section name and in-section instruction offset
3958 	 * for faster search
3959 	 */
3960 	if (obj->nr_programs)
3961 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3962 
3963 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3964 }
3965 
3966 static bool sym_is_extern(const Elf64_Sym *sym)
3967 {
3968 	int bind = ELF64_ST_BIND(sym->st_info);
3969 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3970 	return sym->st_shndx == SHN_UNDEF &&
3971 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3972 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3973 }
3974 
3975 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3976 {
3977 	int bind = ELF64_ST_BIND(sym->st_info);
3978 	int type = ELF64_ST_TYPE(sym->st_info);
3979 
3980 	/* in .text section */
3981 	if (sym->st_shndx != text_shndx)
3982 		return false;
3983 
3984 	/* local function */
3985 	if (bind == STB_LOCAL && type == STT_SECTION)
3986 		return true;
3987 
3988 	/* global function */
3989 	return bind == STB_GLOBAL && type == STT_FUNC;
3990 }
3991 
3992 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3993 {
3994 	const struct btf_type *t;
3995 	const char *tname;
3996 	int i, n;
3997 
3998 	if (!btf)
3999 		return -ESRCH;
4000 
4001 	n = btf__type_cnt(btf);
4002 	for (i = 1; i < n; i++) {
4003 		t = btf__type_by_id(btf, i);
4004 
4005 		if (!btf_is_var(t) && !btf_is_func(t))
4006 			continue;
4007 
4008 		tname = btf__name_by_offset(btf, t->name_off);
4009 		if (strcmp(tname, ext_name))
4010 			continue;
4011 
4012 		if (btf_is_var(t) &&
4013 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4014 			return -EINVAL;
4015 
4016 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4017 			return -EINVAL;
4018 
4019 		return i;
4020 	}
4021 
4022 	return -ENOENT;
4023 }
4024 
4025 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4026 	const struct btf_var_secinfo *vs;
4027 	const struct btf_type *t;
4028 	int i, j, n;
4029 
4030 	if (!btf)
4031 		return -ESRCH;
4032 
4033 	n = btf__type_cnt(btf);
4034 	for (i = 1; i < n; i++) {
4035 		t = btf__type_by_id(btf, i);
4036 
4037 		if (!btf_is_datasec(t))
4038 			continue;
4039 
4040 		vs = btf_var_secinfos(t);
4041 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4042 			if (vs->type == ext_btf_id)
4043 				return i;
4044 		}
4045 	}
4046 
4047 	return -ENOENT;
4048 }
4049 
4050 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4051 				     bool *is_signed)
4052 {
4053 	const struct btf_type *t;
4054 	const char *name;
4055 
4056 	t = skip_mods_and_typedefs(btf, id, NULL);
4057 	name = btf__name_by_offset(btf, t->name_off);
4058 
4059 	if (is_signed)
4060 		*is_signed = false;
4061 	switch (btf_kind(t)) {
4062 	case BTF_KIND_INT: {
4063 		int enc = btf_int_encoding(t);
4064 
4065 		if (enc & BTF_INT_BOOL)
4066 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4067 		if (is_signed)
4068 			*is_signed = enc & BTF_INT_SIGNED;
4069 		if (t->size == 1)
4070 			return KCFG_CHAR;
4071 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4072 			return KCFG_UNKNOWN;
4073 		return KCFG_INT;
4074 	}
4075 	case BTF_KIND_ENUM:
4076 		if (t->size != 4)
4077 			return KCFG_UNKNOWN;
4078 		if (strcmp(name, "libbpf_tristate"))
4079 			return KCFG_UNKNOWN;
4080 		return KCFG_TRISTATE;
4081 	case BTF_KIND_ENUM64:
4082 		if (strcmp(name, "libbpf_tristate"))
4083 			return KCFG_UNKNOWN;
4084 		return KCFG_TRISTATE;
4085 	case BTF_KIND_ARRAY:
4086 		if (btf_array(t)->nelems == 0)
4087 			return KCFG_UNKNOWN;
4088 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4089 			return KCFG_UNKNOWN;
4090 		return KCFG_CHAR_ARR;
4091 	default:
4092 		return KCFG_UNKNOWN;
4093 	}
4094 }
4095 
4096 static int cmp_externs(const void *_a, const void *_b)
4097 {
4098 	const struct extern_desc *a = _a;
4099 	const struct extern_desc *b = _b;
4100 
4101 	if (a->type != b->type)
4102 		return a->type < b->type ? -1 : 1;
4103 
4104 	if (a->type == EXT_KCFG) {
4105 		/* descending order by alignment requirements */
4106 		if (a->kcfg.align != b->kcfg.align)
4107 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4108 		/* ascending order by size, within same alignment class */
4109 		if (a->kcfg.sz != b->kcfg.sz)
4110 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4111 	}
4112 
4113 	/* resolve ties by name */
4114 	return strcmp(a->name, b->name);
4115 }
4116 
4117 static int find_int_btf_id(const struct btf *btf)
4118 {
4119 	const struct btf_type *t;
4120 	int i, n;
4121 
4122 	n = btf__type_cnt(btf);
4123 	for (i = 1; i < n; i++) {
4124 		t = btf__type_by_id(btf, i);
4125 
4126 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4127 			return i;
4128 	}
4129 
4130 	return 0;
4131 }
4132 
4133 static int add_dummy_ksym_var(struct btf *btf)
4134 {
4135 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4136 	const struct btf_var_secinfo *vs;
4137 	const struct btf_type *sec;
4138 
4139 	if (!btf)
4140 		return 0;
4141 
4142 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4143 					    BTF_KIND_DATASEC);
4144 	if (sec_btf_id < 0)
4145 		return 0;
4146 
4147 	sec = btf__type_by_id(btf, sec_btf_id);
4148 	vs = btf_var_secinfos(sec);
4149 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4150 		const struct btf_type *vt;
4151 
4152 		vt = btf__type_by_id(btf, vs->type);
4153 		if (btf_is_func(vt))
4154 			break;
4155 	}
4156 
4157 	/* No func in ksyms sec.  No need to add dummy var. */
4158 	if (i == btf_vlen(sec))
4159 		return 0;
4160 
4161 	int_btf_id = find_int_btf_id(btf);
4162 	dummy_var_btf_id = btf__add_var(btf,
4163 					"dummy_ksym",
4164 					BTF_VAR_GLOBAL_ALLOCATED,
4165 					int_btf_id);
4166 	if (dummy_var_btf_id < 0)
4167 		pr_warn("cannot create a dummy_ksym var\n");
4168 
4169 	return dummy_var_btf_id;
4170 }
4171 
4172 static int bpf_object__collect_externs(struct bpf_object *obj)
4173 {
4174 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4175 	const struct btf_type *t;
4176 	struct extern_desc *ext;
4177 	int i, n, off, dummy_var_btf_id;
4178 	const char *ext_name, *sec_name;
4179 	size_t ext_essent_len;
4180 	Elf_Scn *scn;
4181 	Elf64_Shdr *sh;
4182 
4183 	if (!obj->efile.symbols)
4184 		return 0;
4185 
4186 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4187 	sh = elf_sec_hdr(obj, scn);
4188 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4189 		return -LIBBPF_ERRNO__FORMAT;
4190 
4191 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4192 	if (dummy_var_btf_id < 0)
4193 		return dummy_var_btf_id;
4194 
4195 	n = sh->sh_size / sh->sh_entsize;
4196 	pr_debug("looking for externs among %d symbols...\n", n);
4197 
4198 	for (i = 0; i < n; i++) {
4199 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4200 
4201 		if (!sym)
4202 			return -LIBBPF_ERRNO__FORMAT;
4203 		if (!sym_is_extern(sym))
4204 			continue;
4205 		ext_name = elf_sym_str(obj, sym->st_name);
4206 		if (!ext_name || !ext_name[0])
4207 			continue;
4208 
4209 		ext = obj->externs;
4210 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4211 		if (!ext)
4212 			return -ENOMEM;
4213 		obj->externs = ext;
4214 		ext = &ext[obj->nr_extern];
4215 		memset(ext, 0, sizeof(*ext));
4216 		obj->nr_extern++;
4217 
4218 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4219 		if (ext->btf_id <= 0) {
4220 			pr_warn("failed to find BTF for extern '%s': %d\n",
4221 				ext_name, ext->btf_id);
4222 			return ext->btf_id;
4223 		}
4224 		t = btf__type_by_id(obj->btf, ext->btf_id);
4225 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4226 		ext->sym_idx = i;
4227 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4228 
4229 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4230 		ext->essent_name = NULL;
4231 		if (ext_essent_len != strlen(ext->name)) {
4232 			ext->essent_name = strndup(ext->name, ext_essent_len);
4233 			if (!ext->essent_name)
4234 				return -ENOMEM;
4235 		}
4236 
4237 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4238 		if (ext->sec_btf_id <= 0) {
4239 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4240 				ext_name, ext->btf_id, ext->sec_btf_id);
4241 			return ext->sec_btf_id;
4242 		}
4243 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4244 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4245 
4246 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4247 			if (btf_is_func(t)) {
4248 				pr_warn("extern function %s is unsupported under %s section\n",
4249 					ext->name, KCONFIG_SEC);
4250 				return -ENOTSUP;
4251 			}
4252 			kcfg_sec = sec;
4253 			ext->type = EXT_KCFG;
4254 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4255 			if (ext->kcfg.sz <= 0) {
4256 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4257 					ext_name, ext->kcfg.sz);
4258 				return ext->kcfg.sz;
4259 			}
4260 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4261 			if (ext->kcfg.align <= 0) {
4262 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4263 					ext_name, ext->kcfg.align);
4264 				return -EINVAL;
4265 			}
4266 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4267 							&ext->kcfg.is_signed);
4268 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4269 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4270 				return -ENOTSUP;
4271 			}
4272 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4273 			ksym_sec = sec;
4274 			ext->type = EXT_KSYM;
4275 			skip_mods_and_typedefs(obj->btf, t->type,
4276 					       &ext->ksym.type_id);
4277 		} else {
4278 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4279 			return -ENOTSUP;
4280 		}
4281 	}
4282 	pr_debug("collected %d externs total\n", obj->nr_extern);
4283 
4284 	if (!obj->nr_extern)
4285 		return 0;
4286 
4287 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4288 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4289 
4290 	/* for .ksyms section, we need to turn all externs into allocated
4291 	 * variables in BTF to pass kernel verification; we do this by
4292 	 * pretending that each extern is a 8-byte variable
4293 	 */
4294 	if (ksym_sec) {
4295 		/* find existing 4-byte integer type in BTF to use for fake
4296 		 * extern variables in DATASEC
4297 		 */
4298 		int int_btf_id = find_int_btf_id(obj->btf);
4299 		/* For extern function, a dummy_var added earlier
4300 		 * will be used to replace the vs->type and
4301 		 * its name string will be used to refill
4302 		 * the missing param's name.
4303 		 */
4304 		const struct btf_type *dummy_var;
4305 
4306 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4307 		for (i = 0; i < obj->nr_extern; i++) {
4308 			ext = &obj->externs[i];
4309 			if (ext->type != EXT_KSYM)
4310 				continue;
4311 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4312 				 i, ext->sym_idx, ext->name);
4313 		}
4314 
4315 		sec = ksym_sec;
4316 		n = btf_vlen(sec);
4317 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4318 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4319 			struct btf_type *vt;
4320 
4321 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4322 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4323 			ext = find_extern_by_name(obj, ext_name);
4324 			if (!ext) {
4325 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4326 					btf_kind_str(vt), ext_name);
4327 				return -ESRCH;
4328 			}
4329 			if (btf_is_func(vt)) {
4330 				const struct btf_type *func_proto;
4331 				struct btf_param *param;
4332 				int j;
4333 
4334 				func_proto = btf__type_by_id(obj->btf,
4335 							     vt->type);
4336 				param = btf_params(func_proto);
4337 				/* Reuse the dummy_var string if the
4338 				 * func proto does not have param name.
4339 				 */
4340 				for (j = 0; j < btf_vlen(func_proto); j++)
4341 					if (param[j].type && !param[j].name_off)
4342 						param[j].name_off =
4343 							dummy_var->name_off;
4344 				vs->type = dummy_var_btf_id;
4345 				vt->info &= ~0xffff;
4346 				vt->info |= BTF_FUNC_GLOBAL;
4347 			} else {
4348 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4349 				vt->type = int_btf_id;
4350 			}
4351 			vs->offset = off;
4352 			vs->size = sizeof(int);
4353 		}
4354 		sec->size = off;
4355 	}
4356 
4357 	if (kcfg_sec) {
4358 		sec = kcfg_sec;
4359 		/* for kcfg externs calculate their offsets within a .kconfig map */
4360 		off = 0;
4361 		for (i = 0; i < obj->nr_extern; i++) {
4362 			ext = &obj->externs[i];
4363 			if (ext->type != EXT_KCFG)
4364 				continue;
4365 
4366 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4367 			off = ext->kcfg.data_off + ext->kcfg.sz;
4368 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4369 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4370 		}
4371 		sec->size = off;
4372 		n = btf_vlen(sec);
4373 		for (i = 0; i < n; i++) {
4374 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4375 
4376 			t = btf__type_by_id(obj->btf, vs->type);
4377 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4378 			ext = find_extern_by_name(obj, ext_name);
4379 			if (!ext) {
4380 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4381 					ext_name);
4382 				return -ESRCH;
4383 			}
4384 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4385 			vs->offset = ext->kcfg.data_off;
4386 		}
4387 	}
4388 	return 0;
4389 }
4390 
4391 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4392 {
4393 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4394 }
4395 
4396 struct bpf_program *
4397 bpf_object__find_program_by_name(const struct bpf_object *obj,
4398 				 const char *name)
4399 {
4400 	struct bpf_program *prog;
4401 
4402 	bpf_object__for_each_program(prog, obj) {
4403 		if (prog_is_subprog(obj, prog))
4404 			continue;
4405 		if (!strcmp(prog->name, name))
4406 			return prog;
4407 	}
4408 	return errno = ENOENT, NULL;
4409 }
4410 
4411 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4412 				      int shndx)
4413 {
4414 	switch (obj->efile.secs[shndx].sec_type) {
4415 	case SEC_BSS:
4416 	case SEC_DATA:
4417 	case SEC_RODATA:
4418 		return true;
4419 	default:
4420 		return false;
4421 	}
4422 }
4423 
4424 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4425 				      int shndx)
4426 {
4427 	return shndx == obj->efile.btf_maps_shndx;
4428 }
4429 
4430 static enum libbpf_map_type
4431 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4432 {
4433 	if (shndx == obj->efile.symbols_shndx)
4434 		return LIBBPF_MAP_KCONFIG;
4435 
4436 	switch (obj->efile.secs[shndx].sec_type) {
4437 	case SEC_BSS:
4438 		return LIBBPF_MAP_BSS;
4439 	case SEC_DATA:
4440 		return LIBBPF_MAP_DATA;
4441 	case SEC_RODATA:
4442 		return LIBBPF_MAP_RODATA;
4443 	default:
4444 		return LIBBPF_MAP_UNSPEC;
4445 	}
4446 }
4447 
4448 static int bpf_program__record_reloc(struct bpf_program *prog,
4449 				     struct reloc_desc *reloc_desc,
4450 				     __u32 insn_idx, const char *sym_name,
4451 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4452 {
4453 	struct bpf_insn *insn = &prog->insns[insn_idx];
4454 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4455 	struct bpf_object *obj = prog->obj;
4456 	__u32 shdr_idx = sym->st_shndx;
4457 	enum libbpf_map_type type;
4458 	const char *sym_sec_name;
4459 	struct bpf_map *map;
4460 
4461 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4462 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4463 			prog->name, sym_name, insn_idx, insn->code);
4464 		return -LIBBPF_ERRNO__RELOC;
4465 	}
4466 
4467 	if (sym_is_extern(sym)) {
4468 		int sym_idx = ELF64_R_SYM(rel->r_info);
4469 		int i, n = obj->nr_extern;
4470 		struct extern_desc *ext;
4471 
4472 		for (i = 0; i < n; i++) {
4473 			ext = &obj->externs[i];
4474 			if (ext->sym_idx == sym_idx)
4475 				break;
4476 		}
4477 		if (i >= n) {
4478 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4479 				prog->name, sym_name, sym_idx);
4480 			return -LIBBPF_ERRNO__RELOC;
4481 		}
4482 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4483 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4484 		if (insn->code == (BPF_JMP | BPF_CALL))
4485 			reloc_desc->type = RELO_EXTERN_CALL;
4486 		else
4487 			reloc_desc->type = RELO_EXTERN_LD64;
4488 		reloc_desc->insn_idx = insn_idx;
4489 		reloc_desc->ext_idx = i;
4490 		return 0;
4491 	}
4492 
4493 	/* sub-program call relocation */
4494 	if (is_call_insn(insn)) {
4495 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4496 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4497 			return -LIBBPF_ERRNO__RELOC;
4498 		}
4499 		/* text_shndx can be 0, if no default "main" program exists */
4500 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4501 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4502 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4503 				prog->name, sym_name, sym_sec_name);
4504 			return -LIBBPF_ERRNO__RELOC;
4505 		}
4506 		if (sym->st_value % BPF_INSN_SZ) {
4507 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4508 				prog->name, sym_name, (size_t)sym->st_value);
4509 			return -LIBBPF_ERRNO__RELOC;
4510 		}
4511 		reloc_desc->type = RELO_CALL;
4512 		reloc_desc->insn_idx = insn_idx;
4513 		reloc_desc->sym_off = sym->st_value;
4514 		return 0;
4515 	}
4516 
4517 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4518 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4519 			prog->name, sym_name, shdr_idx);
4520 		return -LIBBPF_ERRNO__RELOC;
4521 	}
4522 
4523 	/* loading subprog addresses */
4524 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4525 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4526 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4527 		 */
4528 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4529 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4530 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4531 			return -LIBBPF_ERRNO__RELOC;
4532 		}
4533 
4534 		reloc_desc->type = RELO_SUBPROG_ADDR;
4535 		reloc_desc->insn_idx = insn_idx;
4536 		reloc_desc->sym_off = sym->st_value;
4537 		return 0;
4538 	}
4539 
4540 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4541 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4542 
4543 	/* arena data relocation */
4544 	if (shdr_idx == obj->efile.arena_data_shndx) {
4545 		reloc_desc->type = RELO_DATA;
4546 		reloc_desc->insn_idx = insn_idx;
4547 		reloc_desc->map_idx = obj->arena_map - obj->maps;
4548 		reloc_desc->sym_off = sym->st_value;
4549 		return 0;
4550 	}
4551 
4552 	/* generic map reference relocation */
4553 	if (type == LIBBPF_MAP_UNSPEC) {
4554 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4555 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4556 				prog->name, sym_name, sym_sec_name);
4557 			return -LIBBPF_ERRNO__RELOC;
4558 		}
4559 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4560 			map = &obj->maps[map_idx];
4561 			if (map->libbpf_type != type ||
4562 			    map->sec_idx != sym->st_shndx ||
4563 			    map->sec_offset != sym->st_value)
4564 				continue;
4565 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4566 				 prog->name, map_idx, map->name, map->sec_idx,
4567 				 map->sec_offset, insn_idx);
4568 			break;
4569 		}
4570 		if (map_idx >= nr_maps) {
4571 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4572 				prog->name, sym_sec_name, (size_t)sym->st_value);
4573 			return -LIBBPF_ERRNO__RELOC;
4574 		}
4575 		reloc_desc->type = RELO_LD64;
4576 		reloc_desc->insn_idx = insn_idx;
4577 		reloc_desc->map_idx = map_idx;
4578 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4579 		return 0;
4580 	}
4581 
4582 	/* global data map relocation */
4583 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4584 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4585 			prog->name, sym_sec_name);
4586 		return -LIBBPF_ERRNO__RELOC;
4587 	}
4588 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4589 		map = &obj->maps[map_idx];
4590 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4591 			continue;
4592 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4593 			 prog->name, map_idx, map->name, map->sec_idx,
4594 			 map->sec_offset, insn_idx);
4595 		break;
4596 	}
4597 	if (map_idx >= nr_maps) {
4598 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4599 			prog->name, sym_sec_name);
4600 		return -LIBBPF_ERRNO__RELOC;
4601 	}
4602 
4603 	reloc_desc->type = RELO_DATA;
4604 	reloc_desc->insn_idx = insn_idx;
4605 	reloc_desc->map_idx = map_idx;
4606 	reloc_desc->sym_off = sym->st_value;
4607 	return 0;
4608 }
4609 
4610 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4611 {
4612 	return insn_idx >= prog->sec_insn_off &&
4613 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4614 }
4615 
4616 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4617 						 size_t sec_idx, size_t insn_idx)
4618 {
4619 	int l = 0, r = obj->nr_programs - 1, m;
4620 	struct bpf_program *prog;
4621 
4622 	if (!obj->nr_programs)
4623 		return NULL;
4624 
4625 	while (l < r) {
4626 		m = l + (r - l + 1) / 2;
4627 		prog = &obj->programs[m];
4628 
4629 		if (prog->sec_idx < sec_idx ||
4630 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4631 			l = m;
4632 		else
4633 			r = m - 1;
4634 	}
4635 	/* matching program could be at index l, but it still might be the
4636 	 * wrong one, so we need to double check conditions for the last time
4637 	 */
4638 	prog = &obj->programs[l];
4639 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4640 		return prog;
4641 	return NULL;
4642 }
4643 
4644 static int
4645 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4646 {
4647 	const char *relo_sec_name, *sec_name;
4648 	size_t sec_idx = shdr->sh_info, sym_idx;
4649 	struct bpf_program *prog;
4650 	struct reloc_desc *relos;
4651 	int err, i, nrels;
4652 	const char *sym_name;
4653 	__u32 insn_idx;
4654 	Elf_Scn *scn;
4655 	Elf_Data *scn_data;
4656 	Elf64_Sym *sym;
4657 	Elf64_Rel *rel;
4658 
4659 	if (sec_idx >= obj->efile.sec_cnt)
4660 		return -EINVAL;
4661 
4662 	scn = elf_sec_by_idx(obj, sec_idx);
4663 	scn_data = elf_sec_data(obj, scn);
4664 	if (!scn_data)
4665 		return -LIBBPF_ERRNO__FORMAT;
4666 
4667 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4668 	sec_name = elf_sec_name(obj, scn);
4669 	if (!relo_sec_name || !sec_name)
4670 		return -EINVAL;
4671 
4672 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4673 		 relo_sec_name, sec_idx, sec_name);
4674 	nrels = shdr->sh_size / shdr->sh_entsize;
4675 
4676 	for (i = 0; i < nrels; i++) {
4677 		rel = elf_rel_by_idx(data, i);
4678 		if (!rel) {
4679 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4680 			return -LIBBPF_ERRNO__FORMAT;
4681 		}
4682 
4683 		sym_idx = ELF64_R_SYM(rel->r_info);
4684 		sym = elf_sym_by_idx(obj, sym_idx);
4685 		if (!sym) {
4686 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4687 				relo_sec_name, sym_idx, i);
4688 			return -LIBBPF_ERRNO__FORMAT;
4689 		}
4690 
4691 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4692 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4693 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4694 			return -LIBBPF_ERRNO__FORMAT;
4695 		}
4696 
4697 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4698 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4699 				relo_sec_name, (size_t)rel->r_offset, i);
4700 			return -LIBBPF_ERRNO__FORMAT;
4701 		}
4702 
4703 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4704 		/* relocations against static functions are recorded as
4705 		 * relocations against the section that contains a function;
4706 		 * in such case, symbol will be STT_SECTION and sym.st_name
4707 		 * will point to empty string (0), so fetch section name
4708 		 * instead
4709 		 */
4710 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4711 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4712 		else
4713 			sym_name = elf_sym_str(obj, sym->st_name);
4714 		sym_name = sym_name ?: "<?";
4715 
4716 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4717 			 relo_sec_name, i, insn_idx, sym_name);
4718 
4719 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4720 		if (!prog) {
4721 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4722 				relo_sec_name, i, sec_name, insn_idx);
4723 			continue;
4724 		}
4725 
4726 		relos = libbpf_reallocarray(prog->reloc_desc,
4727 					    prog->nr_reloc + 1, sizeof(*relos));
4728 		if (!relos)
4729 			return -ENOMEM;
4730 		prog->reloc_desc = relos;
4731 
4732 		/* adjust insn_idx to local BPF program frame of reference */
4733 		insn_idx -= prog->sec_insn_off;
4734 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4735 						insn_idx, sym_name, sym, rel);
4736 		if (err)
4737 			return err;
4738 
4739 		prog->nr_reloc++;
4740 	}
4741 	return 0;
4742 }
4743 
4744 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4745 {
4746 	int id;
4747 
4748 	if (!obj->btf)
4749 		return -ENOENT;
4750 
4751 	/* if it's BTF-defined map, we don't need to search for type IDs.
4752 	 * For struct_ops map, it does not need btf_key_type_id and
4753 	 * btf_value_type_id.
4754 	 */
4755 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4756 		return 0;
4757 
4758 	/*
4759 	 * LLVM annotates global data differently in BTF, that is,
4760 	 * only as '.data', '.bss' or '.rodata'.
4761 	 */
4762 	if (!bpf_map__is_internal(map))
4763 		return -ENOENT;
4764 
4765 	id = btf__find_by_name(obj->btf, map->real_name);
4766 	if (id < 0)
4767 		return id;
4768 
4769 	map->btf_key_type_id = 0;
4770 	map->btf_value_type_id = id;
4771 	return 0;
4772 }
4773 
4774 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4775 {
4776 	char file[PATH_MAX], buff[4096];
4777 	FILE *fp;
4778 	__u32 val;
4779 	int err;
4780 
4781 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4782 	memset(info, 0, sizeof(*info));
4783 
4784 	fp = fopen(file, "re");
4785 	if (!fp) {
4786 		err = -errno;
4787 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4788 			err);
4789 		return err;
4790 	}
4791 
4792 	while (fgets(buff, sizeof(buff), fp)) {
4793 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4794 			info->type = val;
4795 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4796 			info->key_size = val;
4797 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4798 			info->value_size = val;
4799 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4800 			info->max_entries = val;
4801 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4802 			info->map_flags = val;
4803 	}
4804 
4805 	fclose(fp);
4806 
4807 	return 0;
4808 }
4809 
4810 bool bpf_map__autocreate(const struct bpf_map *map)
4811 {
4812 	return map->autocreate;
4813 }
4814 
4815 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4816 {
4817 	if (map->obj->loaded)
4818 		return libbpf_err(-EBUSY);
4819 
4820 	map->autocreate = autocreate;
4821 	return 0;
4822 }
4823 
4824 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4825 {
4826 	if (!bpf_map__is_struct_ops(map))
4827 		return libbpf_err(-EINVAL);
4828 
4829 	map->autoattach = autoattach;
4830 	return 0;
4831 }
4832 
4833 bool bpf_map__autoattach(const struct bpf_map *map)
4834 {
4835 	return map->autoattach;
4836 }
4837 
4838 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4839 {
4840 	struct bpf_map_info info;
4841 	__u32 len = sizeof(info), name_len;
4842 	int new_fd, err;
4843 	char *new_name;
4844 
4845 	memset(&info, 0, len);
4846 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4847 	if (err && errno == EINVAL)
4848 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4849 	if (err)
4850 		return libbpf_err(err);
4851 
4852 	name_len = strlen(info.name);
4853 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4854 		new_name = strdup(map->name);
4855 	else
4856 		new_name = strdup(info.name);
4857 
4858 	if (!new_name)
4859 		return libbpf_err(-errno);
4860 
4861 	/*
4862 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4863 	 * This is similar to what we do in ensure_good_fd(), but without
4864 	 * closing original FD.
4865 	 */
4866 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4867 	if (new_fd < 0) {
4868 		err = -errno;
4869 		goto err_free_new_name;
4870 	}
4871 
4872 	err = reuse_fd(map->fd, new_fd);
4873 	if (err)
4874 		goto err_free_new_name;
4875 
4876 	free(map->name);
4877 
4878 	map->name = new_name;
4879 	map->def.type = info.type;
4880 	map->def.key_size = info.key_size;
4881 	map->def.value_size = info.value_size;
4882 	map->def.max_entries = info.max_entries;
4883 	map->def.map_flags = info.map_flags;
4884 	map->btf_key_type_id = info.btf_key_type_id;
4885 	map->btf_value_type_id = info.btf_value_type_id;
4886 	map->reused = true;
4887 	map->map_extra = info.map_extra;
4888 
4889 	return 0;
4890 
4891 err_free_new_name:
4892 	free(new_name);
4893 	return libbpf_err(err);
4894 }
4895 
4896 __u32 bpf_map__max_entries(const struct bpf_map *map)
4897 {
4898 	return map->def.max_entries;
4899 }
4900 
4901 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4902 {
4903 	if (!bpf_map_type__is_map_in_map(map->def.type))
4904 		return errno = EINVAL, NULL;
4905 
4906 	return map->inner_map;
4907 }
4908 
4909 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4910 {
4911 	if (map->obj->loaded)
4912 		return libbpf_err(-EBUSY);
4913 
4914 	map->def.max_entries = max_entries;
4915 
4916 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4917 	if (map_is_ringbuf(map))
4918 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4919 
4920 	return 0;
4921 }
4922 
4923 static int bpf_object_prepare_token(struct bpf_object *obj)
4924 {
4925 	const char *bpffs_path;
4926 	int bpffs_fd = -1, token_fd, err;
4927 	bool mandatory;
4928 	enum libbpf_print_level level;
4929 
4930 	/* token is explicitly prevented */
4931 	if (obj->token_path && obj->token_path[0] == '\0') {
4932 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4933 		return 0;
4934 	}
4935 
4936 	mandatory = obj->token_path != NULL;
4937 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4938 
4939 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4940 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4941 	if (bpffs_fd < 0) {
4942 		err = -errno;
4943 		__pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4944 		     obj->name, err, bpffs_path,
4945 		     mandatory ? "" : ", skipping optional step...");
4946 		return mandatory ? err : 0;
4947 	}
4948 
4949 	token_fd = bpf_token_create(bpffs_fd, 0);
4950 	close(bpffs_fd);
4951 	if (token_fd < 0) {
4952 		if (!mandatory && token_fd == -ENOENT) {
4953 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4954 				 obj->name, bpffs_path);
4955 			return 0;
4956 		}
4957 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4958 		     obj->name, token_fd, bpffs_path,
4959 		     mandatory ? "" : ", skipping optional step...");
4960 		return mandatory ? token_fd : 0;
4961 	}
4962 
4963 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4964 	if (!obj->feat_cache) {
4965 		close(token_fd);
4966 		return -ENOMEM;
4967 	}
4968 
4969 	obj->token_fd = token_fd;
4970 	obj->feat_cache->token_fd = token_fd;
4971 
4972 	return 0;
4973 }
4974 
4975 static int
4976 bpf_object__probe_loading(struct bpf_object *obj)
4977 {
4978 	char *cp, errmsg[STRERR_BUFSIZE];
4979 	struct bpf_insn insns[] = {
4980 		BPF_MOV64_IMM(BPF_REG_0, 0),
4981 		BPF_EXIT_INSN(),
4982 	};
4983 	int ret, insn_cnt = ARRAY_SIZE(insns);
4984 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
4985 		.token_fd = obj->token_fd,
4986 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4987 	);
4988 
4989 	if (obj->gen_loader)
4990 		return 0;
4991 
4992 	ret = bump_rlimit_memlock();
4993 	if (ret)
4994 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4995 
4996 	/* make sure basic loading works */
4997 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4998 	if (ret < 0)
4999 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5000 	if (ret < 0) {
5001 		ret = errno;
5002 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
5003 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
5004 			"program. Make sure your kernel supports BPF "
5005 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
5006 			"set to big enough value.\n", __func__, cp, ret);
5007 		return -ret;
5008 	}
5009 	close(ret);
5010 
5011 	return 0;
5012 }
5013 
5014 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5015 {
5016 	if (obj->gen_loader)
5017 		/* To generate loader program assume the latest kernel
5018 		 * to avoid doing extra prog_load, map_create syscalls.
5019 		 */
5020 		return true;
5021 
5022 	if (obj->token_fd)
5023 		return feat_supported(obj->feat_cache, feat_id);
5024 
5025 	return feat_supported(NULL, feat_id);
5026 }
5027 
5028 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5029 {
5030 	struct bpf_map_info map_info;
5031 	char msg[STRERR_BUFSIZE];
5032 	__u32 map_info_len = sizeof(map_info);
5033 	int err;
5034 
5035 	memset(&map_info, 0, map_info_len);
5036 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5037 	if (err && errno == EINVAL)
5038 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5039 	if (err) {
5040 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5041 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5042 		return false;
5043 	}
5044 
5045 	return (map_info.type == map->def.type &&
5046 		map_info.key_size == map->def.key_size &&
5047 		map_info.value_size == map->def.value_size &&
5048 		map_info.max_entries == map->def.max_entries &&
5049 		map_info.map_flags == map->def.map_flags &&
5050 		map_info.map_extra == map->map_extra);
5051 }
5052 
5053 static int
5054 bpf_object__reuse_map(struct bpf_map *map)
5055 {
5056 	char *cp, errmsg[STRERR_BUFSIZE];
5057 	int err, pin_fd;
5058 
5059 	pin_fd = bpf_obj_get(map->pin_path);
5060 	if (pin_fd < 0) {
5061 		err = -errno;
5062 		if (err == -ENOENT) {
5063 			pr_debug("found no pinned map to reuse at '%s'\n",
5064 				 map->pin_path);
5065 			return 0;
5066 		}
5067 
5068 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5069 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5070 			map->pin_path, cp);
5071 		return err;
5072 	}
5073 
5074 	if (!map_is_reuse_compat(map, pin_fd)) {
5075 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5076 			map->pin_path);
5077 		close(pin_fd);
5078 		return -EINVAL;
5079 	}
5080 
5081 	err = bpf_map__reuse_fd(map, pin_fd);
5082 	close(pin_fd);
5083 	if (err)
5084 		return err;
5085 
5086 	map->pinned = true;
5087 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5088 
5089 	return 0;
5090 }
5091 
5092 static int
5093 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5094 {
5095 	enum libbpf_map_type map_type = map->libbpf_type;
5096 	char *cp, errmsg[STRERR_BUFSIZE];
5097 	int err, zero = 0;
5098 
5099 	if (obj->gen_loader) {
5100 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5101 					 map->mmaped, map->def.value_size);
5102 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5103 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5104 		return 0;
5105 	}
5106 
5107 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5108 	if (err) {
5109 		err = -errno;
5110 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5111 		pr_warn("Error setting initial map(%s) contents: %s\n",
5112 			map->name, cp);
5113 		return err;
5114 	}
5115 
5116 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5117 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5118 		err = bpf_map_freeze(map->fd);
5119 		if (err) {
5120 			err = -errno;
5121 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5122 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5123 				map->name, cp);
5124 			return err;
5125 		}
5126 	}
5127 	return 0;
5128 }
5129 
5130 static void bpf_map__destroy(struct bpf_map *map);
5131 
5132 static bool map_is_created(const struct bpf_map *map)
5133 {
5134 	return map->obj->loaded || map->reused;
5135 }
5136 
5137 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5138 {
5139 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5140 	struct bpf_map_def *def = &map->def;
5141 	const char *map_name = NULL;
5142 	int err = 0, map_fd;
5143 
5144 	if (kernel_supports(obj, FEAT_PROG_NAME))
5145 		map_name = map->name;
5146 	create_attr.map_ifindex = map->map_ifindex;
5147 	create_attr.map_flags = def->map_flags;
5148 	create_attr.numa_node = map->numa_node;
5149 	create_attr.map_extra = map->map_extra;
5150 	create_attr.token_fd = obj->token_fd;
5151 	if (obj->token_fd)
5152 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5153 
5154 	if (bpf_map__is_struct_ops(map)) {
5155 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5156 		if (map->mod_btf_fd >= 0) {
5157 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5158 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5159 		}
5160 	}
5161 
5162 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5163 		create_attr.btf_fd = btf__fd(obj->btf);
5164 		create_attr.btf_key_type_id = map->btf_key_type_id;
5165 		create_attr.btf_value_type_id = map->btf_value_type_id;
5166 	}
5167 
5168 	if (bpf_map_type__is_map_in_map(def->type)) {
5169 		if (map->inner_map) {
5170 			err = map_set_def_max_entries(map->inner_map);
5171 			if (err)
5172 				return err;
5173 			err = bpf_object__create_map(obj, map->inner_map, true);
5174 			if (err) {
5175 				pr_warn("map '%s': failed to create inner map: %d\n",
5176 					map->name, err);
5177 				return err;
5178 			}
5179 			map->inner_map_fd = map->inner_map->fd;
5180 		}
5181 		if (map->inner_map_fd >= 0)
5182 			create_attr.inner_map_fd = map->inner_map_fd;
5183 	}
5184 
5185 	switch (def->type) {
5186 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5187 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5188 	case BPF_MAP_TYPE_STACK_TRACE:
5189 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5190 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5191 	case BPF_MAP_TYPE_DEVMAP:
5192 	case BPF_MAP_TYPE_DEVMAP_HASH:
5193 	case BPF_MAP_TYPE_CPUMAP:
5194 	case BPF_MAP_TYPE_XSKMAP:
5195 	case BPF_MAP_TYPE_SOCKMAP:
5196 	case BPF_MAP_TYPE_SOCKHASH:
5197 	case BPF_MAP_TYPE_QUEUE:
5198 	case BPF_MAP_TYPE_STACK:
5199 	case BPF_MAP_TYPE_ARENA:
5200 		create_attr.btf_fd = 0;
5201 		create_attr.btf_key_type_id = 0;
5202 		create_attr.btf_value_type_id = 0;
5203 		map->btf_key_type_id = 0;
5204 		map->btf_value_type_id = 0;
5205 		break;
5206 	case BPF_MAP_TYPE_STRUCT_OPS:
5207 		create_attr.btf_value_type_id = 0;
5208 		break;
5209 	default:
5210 		break;
5211 	}
5212 
5213 	if (obj->gen_loader) {
5214 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5215 				    def->key_size, def->value_size, def->max_entries,
5216 				    &create_attr, is_inner ? -1 : map - obj->maps);
5217 		/* We keep pretenting we have valid FD to pass various fd >= 0
5218 		 * checks by just keeping original placeholder FDs in place.
5219 		 * See bpf_object__add_map() comment.
5220 		 * This placeholder fd will not be used with any syscall and
5221 		 * will be reset to -1 eventually.
5222 		 */
5223 		map_fd = map->fd;
5224 	} else {
5225 		map_fd = bpf_map_create(def->type, map_name,
5226 					def->key_size, def->value_size,
5227 					def->max_entries, &create_attr);
5228 	}
5229 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5230 		char *cp, errmsg[STRERR_BUFSIZE];
5231 
5232 		err = -errno;
5233 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5234 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5235 			map->name, cp, err);
5236 		create_attr.btf_fd = 0;
5237 		create_attr.btf_key_type_id = 0;
5238 		create_attr.btf_value_type_id = 0;
5239 		map->btf_key_type_id = 0;
5240 		map->btf_value_type_id = 0;
5241 		map_fd = bpf_map_create(def->type, map_name,
5242 					def->key_size, def->value_size,
5243 					def->max_entries, &create_attr);
5244 	}
5245 
5246 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5247 		if (obj->gen_loader)
5248 			map->inner_map->fd = -1;
5249 		bpf_map__destroy(map->inner_map);
5250 		zfree(&map->inner_map);
5251 	}
5252 
5253 	if (map_fd < 0)
5254 		return map_fd;
5255 
5256 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5257 	if (map->fd == map_fd)
5258 		return 0;
5259 
5260 	/* Keep placeholder FD value but now point it to the BPF map object.
5261 	 * This way everything that relied on this map's FD (e.g., relocated
5262 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5263 	 * map->fd stays valid but now point to what map_fd points to.
5264 	 */
5265 	return reuse_fd(map->fd, map_fd);
5266 }
5267 
5268 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5269 {
5270 	const struct bpf_map *targ_map;
5271 	unsigned int i;
5272 	int fd, err = 0;
5273 
5274 	for (i = 0; i < map->init_slots_sz; i++) {
5275 		if (!map->init_slots[i])
5276 			continue;
5277 
5278 		targ_map = map->init_slots[i];
5279 		fd = targ_map->fd;
5280 
5281 		if (obj->gen_loader) {
5282 			bpf_gen__populate_outer_map(obj->gen_loader,
5283 						    map - obj->maps, i,
5284 						    targ_map - obj->maps);
5285 		} else {
5286 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5287 		}
5288 		if (err) {
5289 			err = -errno;
5290 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5291 				map->name, i, targ_map->name, fd, err);
5292 			return err;
5293 		}
5294 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5295 			 map->name, i, targ_map->name, fd);
5296 	}
5297 
5298 	zfree(&map->init_slots);
5299 	map->init_slots_sz = 0;
5300 
5301 	return 0;
5302 }
5303 
5304 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5305 {
5306 	const struct bpf_program *targ_prog;
5307 	unsigned int i;
5308 	int fd, err;
5309 
5310 	if (obj->gen_loader)
5311 		return -ENOTSUP;
5312 
5313 	for (i = 0; i < map->init_slots_sz; i++) {
5314 		if (!map->init_slots[i])
5315 			continue;
5316 
5317 		targ_prog = map->init_slots[i];
5318 		fd = bpf_program__fd(targ_prog);
5319 
5320 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5321 		if (err) {
5322 			err = -errno;
5323 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5324 				map->name, i, targ_prog->name, fd, err);
5325 			return err;
5326 		}
5327 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5328 			 map->name, i, targ_prog->name, fd);
5329 	}
5330 
5331 	zfree(&map->init_slots);
5332 	map->init_slots_sz = 0;
5333 
5334 	return 0;
5335 }
5336 
5337 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5338 {
5339 	struct bpf_map *map;
5340 	int i, err;
5341 
5342 	for (i = 0; i < obj->nr_maps; i++) {
5343 		map = &obj->maps[i];
5344 
5345 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5346 			continue;
5347 
5348 		err = init_prog_array_slots(obj, map);
5349 		if (err < 0)
5350 			return err;
5351 	}
5352 	return 0;
5353 }
5354 
5355 static int map_set_def_max_entries(struct bpf_map *map)
5356 {
5357 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5358 		int nr_cpus;
5359 
5360 		nr_cpus = libbpf_num_possible_cpus();
5361 		if (nr_cpus < 0) {
5362 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5363 				map->name, nr_cpus);
5364 			return nr_cpus;
5365 		}
5366 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5367 		map->def.max_entries = nr_cpus;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static int
5374 bpf_object__create_maps(struct bpf_object *obj)
5375 {
5376 	struct bpf_map *map;
5377 	char *cp, errmsg[STRERR_BUFSIZE];
5378 	unsigned int i, j;
5379 	int err;
5380 	bool retried;
5381 
5382 	for (i = 0; i < obj->nr_maps; i++) {
5383 		map = &obj->maps[i];
5384 
5385 		/* To support old kernels, we skip creating global data maps
5386 		 * (.rodata, .data, .kconfig, etc); later on, during program
5387 		 * loading, if we detect that at least one of the to-be-loaded
5388 		 * programs is referencing any global data map, we'll error
5389 		 * out with program name and relocation index logged.
5390 		 * This approach allows to accommodate Clang emitting
5391 		 * unnecessary .rodata.str1.1 sections for string literals,
5392 		 * but also it allows to have CO-RE applications that use
5393 		 * global variables in some of BPF programs, but not others.
5394 		 * If those global variable-using programs are not loaded at
5395 		 * runtime due to bpf_program__set_autoload(prog, false),
5396 		 * bpf_object loading will succeed just fine even on old
5397 		 * kernels.
5398 		 */
5399 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5400 			map->autocreate = false;
5401 
5402 		if (!map->autocreate) {
5403 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5404 			continue;
5405 		}
5406 
5407 		err = map_set_def_max_entries(map);
5408 		if (err)
5409 			goto err_out;
5410 
5411 		retried = false;
5412 retry:
5413 		if (map->pin_path) {
5414 			err = bpf_object__reuse_map(map);
5415 			if (err) {
5416 				pr_warn("map '%s': error reusing pinned map\n",
5417 					map->name);
5418 				goto err_out;
5419 			}
5420 			if (retried && map->fd < 0) {
5421 				pr_warn("map '%s': cannot find pinned map\n",
5422 					map->name);
5423 				err = -ENOENT;
5424 				goto err_out;
5425 			}
5426 		}
5427 
5428 		if (map->reused) {
5429 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5430 				 map->name, map->fd);
5431 		} else {
5432 			err = bpf_object__create_map(obj, map, false);
5433 			if (err)
5434 				goto err_out;
5435 
5436 			pr_debug("map '%s': created successfully, fd=%d\n",
5437 				 map->name, map->fd);
5438 
5439 			if (bpf_map__is_internal(map)) {
5440 				err = bpf_object__populate_internal_map(obj, map);
5441 				if (err < 0)
5442 					goto err_out;
5443 			}
5444 			if (map->def.type == BPF_MAP_TYPE_ARENA) {
5445 				map->mmaped = mmap((void *)(long)map->map_extra,
5446 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5447 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5448 						   map->fd, 0);
5449 				if (map->mmaped == MAP_FAILED) {
5450 					err = -errno;
5451 					map->mmaped = NULL;
5452 					pr_warn("map '%s': failed to mmap arena: %d\n",
5453 						map->name, err);
5454 					return err;
5455 				}
5456 				if (obj->arena_data) {
5457 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5458 					zfree(&obj->arena_data);
5459 				}
5460 			}
5461 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5462 				err = init_map_in_map_slots(obj, map);
5463 				if (err < 0)
5464 					goto err_out;
5465 			}
5466 		}
5467 
5468 		if (map->pin_path && !map->pinned) {
5469 			err = bpf_map__pin(map, NULL);
5470 			if (err) {
5471 				if (!retried && err == -EEXIST) {
5472 					retried = true;
5473 					goto retry;
5474 				}
5475 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5476 					map->name, map->pin_path, err);
5477 				goto err_out;
5478 			}
5479 		}
5480 	}
5481 
5482 	return 0;
5483 
5484 err_out:
5485 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5486 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5487 	pr_perm_msg(err);
5488 	for (j = 0; j < i; j++)
5489 		zclose(obj->maps[j].fd);
5490 	return err;
5491 }
5492 
5493 static bool bpf_core_is_flavor_sep(const char *s)
5494 {
5495 	/* check X___Y name pattern, where X and Y are not underscores */
5496 	return s[0] != '_' &&				      /* X */
5497 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5498 	       s[4] != '_';				      /* Y */
5499 }
5500 
5501 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5502  * before last triple underscore. Struct name part after last triple
5503  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5504  */
5505 size_t bpf_core_essential_name_len(const char *name)
5506 {
5507 	size_t n = strlen(name);
5508 	int i;
5509 
5510 	for (i = n - 5; i >= 0; i--) {
5511 		if (bpf_core_is_flavor_sep(name + i))
5512 			return i + 1;
5513 	}
5514 	return n;
5515 }
5516 
5517 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5518 {
5519 	if (!cands)
5520 		return;
5521 
5522 	free(cands->cands);
5523 	free(cands);
5524 }
5525 
5526 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5527 		       size_t local_essent_len,
5528 		       const struct btf *targ_btf,
5529 		       const char *targ_btf_name,
5530 		       int targ_start_id,
5531 		       struct bpf_core_cand_list *cands)
5532 {
5533 	struct bpf_core_cand *new_cands, *cand;
5534 	const struct btf_type *t, *local_t;
5535 	const char *targ_name, *local_name;
5536 	size_t targ_essent_len;
5537 	int n, i;
5538 
5539 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5540 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5541 
5542 	n = btf__type_cnt(targ_btf);
5543 	for (i = targ_start_id; i < n; i++) {
5544 		t = btf__type_by_id(targ_btf, i);
5545 		if (!btf_kind_core_compat(t, local_t))
5546 			continue;
5547 
5548 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5549 		if (str_is_empty(targ_name))
5550 			continue;
5551 
5552 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5553 		if (targ_essent_len != local_essent_len)
5554 			continue;
5555 
5556 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5557 			continue;
5558 
5559 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5560 			 local_cand->id, btf_kind_str(local_t),
5561 			 local_name, i, btf_kind_str(t), targ_name,
5562 			 targ_btf_name);
5563 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5564 					      sizeof(*cands->cands));
5565 		if (!new_cands)
5566 			return -ENOMEM;
5567 
5568 		cand = &new_cands[cands->len];
5569 		cand->btf = targ_btf;
5570 		cand->id = i;
5571 
5572 		cands->cands = new_cands;
5573 		cands->len++;
5574 	}
5575 	return 0;
5576 }
5577 
5578 static int load_module_btfs(struct bpf_object *obj)
5579 {
5580 	struct bpf_btf_info info;
5581 	struct module_btf *mod_btf;
5582 	struct btf *btf;
5583 	char name[64];
5584 	__u32 id = 0, len;
5585 	int err, fd;
5586 
5587 	if (obj->btf_modules_loaded)
5588 		return 0;
5589 
5590 	if (obj->gen_loader)
5591 		return 0;
5592 
5593 	/* don't do this again, even if we find no module BTFs */
5594 	obj->btf_modules_loaded = true;
5595 
5596 	/* kernel too old to support module BTFs */
5597 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5598 		return 0;
5599 
5600 	while (true) {
5601 		err = bpf_btf_get_next_id(id, &id);
5602 		if (err && errno == ENOENT)
5603 			return 0;
5604 		if (err && errno == EPERM) {
5605 			pr_debug("skipping module BTFs loading, missing privileges\n");
5606 			return 0;
5607 		}
5608 		if (err) {
5609 			err = -errno;
5610 			pr_warn("failed to iterate BTF objects: %d\n", err);
5611 			return err;
5612 		}
5613 
5614 		fd = bpf_btf_get_fd_by_id(id);
5615 		if (fd < 0) {
5616 			if (errno == ENOENT)
5617 				continue; /* expected race: BTF was unloaded */
5618 			err = -errno;
5619 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5620 			return err;
5621 		}
5622 
5623 		len = sizeof(info);
5624 		memset(&info, 0, sizeof(info));
5625 		info.name = ptr_to_u64(name);
5626 		info.name_len = sizeof(name);
5627 
5628 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5629 		if (err) {
5630 			err = -errno;
5631 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5632 			goto err_out;
5633 		}
5634 
5635 		/* ignore non-module BTFs */
5636 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5637 			close(fd);
5638 			continue;
5639 		}
5640 
5641 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5642 		err = libbpf_get_error(btf);
5643 		if (err) {
5644 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5645 				name, id, err);
5646 			goto err_out;
5647 		}
5648 
5649 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5650 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5651 		if (err)
5652 			goto err_out;
5653 
5654 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5655 
5656 		mod_btf->btf = btf;
5657 		mod_btf->id = id;
5658 		mod_btf->fd = fd;
5659 		mod_btf->name = strdup(name);
5660 		if (!mod_btf->name) {
5661 			err = -ENOMEM;
5662 			goto err_out;
5663 		}
5664 		continue;
5665 
5666 err_out:
5667 		close(fd);
5668 		return err;
5669 	}
5670 
5671 	return 0;
5672 }
5673 
5674 static struct bpf_core_cand_list *
5675 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5676 {
5677 	struct bpf_core_cand local_cand = {};
5678 	struct bpf_core_cand_list *cands;
5679 	const struct btf *main_btf;
5680 	const struct btf_type *local_t;
5681 	const char *local_name;
5682 	size_t local_essent_len;
5683 	int err, i;
5684 
5685 	local_cand.btf = local_btf;
5686 	local_cand.id = local_type_id;
5687 	local_t = btf__type_by_id(local_btf, local_type_id);
5688 	if (!local_t)
5689 		return ERR_PTR(-EINVAL);
5690 
5691 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5692 	if (str_is_empty(local_name))
5693 		return ERR_PTR(-EINVAL);
5694 	local_essent_len = bpf_core_essential_name_len(local_name);
5695 
5696 	cands = calloc(1, sizeof(*cands));
5697 	if (!cands)
5698 		return ERR_PTR(-ENOMEM);
5699 
5700 	/* Attempt to find target candidates in vmlinux BTF first */
5701 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5702 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5703 	if (err)
5704 		goto err_out;
5705 
5706 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5707 	if (cands->len)
5708 		return cands;
5709 
5710 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5711 	if (obj->btf_vmlinux_override)
5712 		return cands;
5713 
5714 	/* now look through module BTFs, trying to still find candidates */
5715 	err = load_module_btfs(obj);
5716 	if (err)
5717 		goto err_out;
5718 
5719 	for (i = 0; i < obj->btf_module_cnt; i++) {
5720 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5721 					 obj->btf_modules[i].btf,
5722 					 obj->btf_modules[i].name,
5723 					 btf__type_cnt(obj->btf_vmlinux),
5724 					 cands);
5725 		if (err)
5726 			goto err_out;
5727 	}
5728 
5729 	return cands;
5730 err_out:
5731 	bpf_core_free_cands(cands);
5732 	return ERR_PTR(err);
5733 }
5734 
5735 /* Check local and target types for compatibility. This check is used for
5736  * type-based CO-RE relocations and follow slightly different rules than
5737  * field-based relocations. This function assumes that root types were already
5738  * checked for name match. Beyond that initial root-level name check, names
5739  * are completely ignored. Compatibility rules are as follows:
5740  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5741  *     kind should match for local and target types (i.e., STRUCT is not
5742  *     compatible with UNION);
5743  *   - for ENUMs, the size is ignored;
5744  *   - for INT, size and signedness are ignored;
5745  *   - for ARRAY, dimensionality is ignored, element types are checked for
5746  *     compatibility recursively;
5747  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5748  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5749  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5750  *     number of input args and compatible return and argument types.
5751  * These rules are not set in stone and probably will be adjusted as we get
5752  * more experience with using BPF CO-RE relocations.
5753  */
5754 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5755 			      const struct btf *targ_btf, __u32 targ_id)
5756 {
5757 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5758 }
5759 
5760 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5761 			 const struct btf *targ_btf, __u32 targ_id)
5762 {
5763 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5764 }
5765 
5766 static size_t bpf_core_hash_fn(const long key, void *ctx)
5767 {
5768 	return key;
5769 }
5770 
5771 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5772 {
5773 	return k1 == k2;
5774 }
5775 
5776 static int record_relo_core(struct bpf_program *prog,
5777 			    const struct bpf_core_relo *core_relo, int insn_idx)
5778 {
5779 	struct reloc_desc *relos, *relo;
5780 
5781 	relos = libbpf_reallocarray(prog->reloc_desc,
5782 				    prog->nr_reloc + 1, sizeof(*relos));
5783 	if (!relos)
5784 		return -ENOMEM;
5785 	relo = &relos[prog->nr_reloc];
5786 	relo->type = RELO_CORE;
5787 	relo->insn_idx = insn_idx;
5788 	relo->core_relo = core_relo;
5789 	prog->reloc_desc = relos;
5790 	prog->nr_reloc++;
5791 	return 0;
5792 }
5793 
5794 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5795 {
5796 	struct reloc_desc *relo;
5797 	int i;
5798 
5799 	for (i = 0; i < prog->nr_reloc; i++) {
5800 		relo = &prog->reloc_desc[i];
5801 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5802 			continue;
5803 
5804 		return relo->core_relo;
5805 	}
5806 
5807 	return NULL;
5808 }
5809 
5810 static int bpf_core_resolve_relo(struct bpf_program *prog,
5811 				 const struct bpf_core_relo *relo,
5812 				 int relo_idx,
5813 				 const struct btf *local_btf,
5814 				 struct hashmap *cand_cache,
5815 				 struct bpf_core_relo_res *targ_res)
5816 {
5817 	struct bpf_core_spec specs_scratch[3] = {};
5818 	struct bpf_core_cand_list *cands = NULL;
5819 	const char *prog_name = prog->name;
5820 	const struct btf_type *local_type;
5821 	const char *local_name;
5822 	__u32 local_id = relo->type_id;
5823 	int err;
5824 
5825 	local_type = btf__type_by_id(local_btf, local_id);
5826 	if (!local_type)
5827 		return -EINVAL;
5828 
5829 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5830 	if (!local_name)
5831 		return -EINVAL;
5832 
5833 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5834 	    !hashmap__find(cand_cache, local_id, &cands)) {
5835 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5836 		if (IS_ERR(cands)) {
5837 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5838 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5839 				local_name, PTR_ERR(cands));
5840 			return PTR_ERR(cands);
5841 		}
5842 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5843 		if (err) {
5844 			bpf_core_free_cands(cands);
5845 			return err;
5846 		}
5847 	}
5848 
5849 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5850 				       targ_res);
5851 }
5852 
5853 static int
5854 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5855 {
5856 	const struct btf_ext_info_sec *sec;
5857 	struct bpf_core_relo_res targ_res;
5858 	const struct bpf_core_relo *rec;
5859 	const struct btf_ext_info *seg;
5860 	struct hashmap_entry *entry;
5861 	struct hashmap *cand_cache = NULL;
5862 	struct bpf_program *prog;
5863 	struct bpf_insn *insn;
5864 	const char *sec_name;
5865 	int i, err = 0, insn_idx, sec_idx, sec_num;
5866 
5867 	if (obj->btf_ext->core_relo_info.len == 0)
5868 		return 0;
5869 
5870 	if (targ_btf_path) {
5871 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5872 		err = libbpf_get_error(obj->btf_vmlinux_override);
5873 		if (err) {
5874 			pr_warn("failed to parse target BTF: %d\n", err);
5875 			return err;
5876 		}
5877 	}
5878 
5879 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5880 	if (IS_ERR(cand_cache)) {
5881 		err = PTR_ERR(cand_cache);
5882 		goto out;
5883 	}
5884 
5885 	seg = &obj->btf_ext->core_relo_info;
5886 	sec_num = 0;
5887 	for_each_btf_ext_sec(seg, sec) {
5888 		sec_idx = seg->sec_idxs[sec_num];
5889 		sec_num++;
5890 
5891 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5892 		if (str_is_empty(sec_name)) {
5893 			err = -EINVAL;
5894 			goto out;
5895 		}
5896 
5897 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5898 
5899 		for_each_btf_ext_rec(seg, sec, i, rec) {
5900 			if (rec->insn_off % BPF_INSN_SZ)
5901 				return -EINVAL;
5902 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5903 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5904 			if (!prog) {
5905 				/* When __weak subprog is "overridden" by another instance
5906 				 * of the subprog from a different object file, linker still
5907 				 * appends all the .BTF.ext info that used to belong to that
5908 				 * eliminated subprogram.
5909 				 * This is similar to what x86-64 linker does for relocations.
5910 				 * So just ignore such relocations just like we ignore
5911 				 * subprog instructions when discovering subprograms.
5912 				 */
5913 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5914 					 sec_name, i, insn_idx);
5915 				continue;
5916 			}
5917 			/* no need to apply CO-RE relocation if the program is
5918 			 * not going to be loaded
5919 			 */
5920 			if (!prog->autoload)
5921 				continue;
5922 
5923 			/* adjust insn_idx from section frame of reference to the local
5924 			 * program's frame of reference; (sub-)program code is not yet
5925 			 * relocated, so it's enough to just subtract in-section offset
5926 			 */
5927 			insn_idx = insn_idx - prog->sec_insn_off;
5928 			if (insn_idx >= prog->insns_cnt)
5929 				return -EINVAL;
5930 			insn = &prog->insns[insn_idx];
5931 
5932 			err = record_relo_core(prog, rec, insn_idx);
5933 			if (err) {
5934 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5935 					prog->name, i, err);
5936 				goto out;
5937 			}
5938 
5939 			if (prog->obj->gen_loader)
5940 				continue;
5941 
5942 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5943 			if (err) {
5944 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5945 					prog->name, i, err);
5946 				goto out;
5947 			}
5948 
5949 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5950 			if (err) {
5951 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5952 					prog->name, i, insn_idx, err);
5953 				goto out;
5954 			}
5955 		}
5956 	}
5957 
5958 out:
5959 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5960 	btf__free(obj->btf_vmlinux_override);
5961 	obj->btf_vmlinux_override = NULL;
5962 
5963 	if (!IS_ERR_OR_NULL(cand_cache)) {
5964 		hashmap__for_each_entry(cand_cache, entry, i) {
5965 			bpf_core_free_cands(entry->pvalue);
5966 		}
5967 		hashmap__free(cand_cache);
5968 	}
5969 	return err;
5970 }
5971 
5972 /* base map load ldimm64 special constant, used also for log fixup logic */
5973 #define POISON_LDIMM64_MAP_BASE 2001000000
5974 #define POISON_LDIMM64_MAP_PFX "200100"
5975 
5976 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5977 			       int insn_idx, struct bpf_insn *insn,
5978 			       int map_idx, const struct bpf_map *map)
5979 {
5980 	int i;
5981 
5982 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5983 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5984 
5985 	/* we turn single ldimm64 into two identical invalid calls */
5986 	for (i = 0; i < 2; i++) {
5987 		insn->code = BPF_JMP | BPF_CALL;
5988 		insn->dst_reg = 0;
5989 		insn->src_reg = 0;
5990 		insn->off = 0;
5991 		/* if this instruction is reachable (not a dead code),
5992 		 * verifier will complain with something like:
5993 		 * invalid func unknown#2001000123
5994 		 * where lower 123 is map index into obj->maps[] array
5995 		 */
5996 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5997 
5998 		insn++;
5999 	}
6000 }
6001 
6002 /* unresolved kfunc call special constant, used also for log fixup logic */
6003 #define POISON_CALL_KFUNC_BASE 2002000000
6004 #define POISON_CALL_KFUNC_PFX "2002"
6005 
6006 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6007 			      int insn_idx, struct bpf_insn *insn,
6008 			      int ext_idx, const struct extern_desc *ext)
6009 {
6010 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6011 		 prog->name, relo_idx, insn_idx, ext->name);
6012 
6013 	/* we turn kfunc call into invalid helper call with identifiable constant */
6014 	insn->code = BPF_JMP | BPF_CALL;
6015 	insn->dst_reg = 0;
6016 	insn->src_reg = 0;
6017 	insn->off = 0;
6018 	/* if this instruction is reachable (not a dead code),
6019 	 * verifier will complain with something like:
6020 	 * invalid func unknown#2001000123
6021 	 * where lower 123 is extern index into obj->externs[] array
6022 	 */
6023 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6024 }
6025 
6026 /* Relocate data references within program code:
6027  *  - map references;
6028  *  - global variable references;
6029  *  - extern references.
6030  */
6031 static int
6032 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6033 {
6034 	int i;
6035 
6036 	for (i = 0; i < prog->nr_reloc; i++) {
6037 		struct reloc_desc *relo = &prog->reloc_desc[i];
6038 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6039 		const struct bpf_map *map;
6040 		struct extern_desc *ext;
6041 
6042 		switch (relo->type) {
6043 		case RELO_LD64:
6044 			map = &obj->maps[relo->map_idx];
6045 			if (obj->gen_loader) {
6046 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6047 				insn[0].imm = relo->map_idx;
6048 			} else if (map->autocreate) {
6049 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6050 				insn[0].imm = map->fd;
6051 			} else {
6052 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6053 						   relo->map_idx, map);
6054 			}
6055 			break;
6056 		case RELO_DATA:
6057 			map = &obj->maps[relo->map_idx];
6058 			insn[1].imm = insn[0].imm + relo->sym_off;
6059 			if (obj->gen_loader) {
6060 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6061 				insn[0].imm = relo->map_idx;
6062 			} else if (map->autocreate) {
6063 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6064 				insn[0].imm = map->fd;
6065 			} else {
6066 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6067 						   relo->map_idx, map);
6068 			}
6069 			break;
6070 		case RELO_EXTERN_LD64:
6071 			ext = &obj->externs[relo->ext_idx];
6072 			if (ext->type == EXT_KCFG) {
6073 				if (obj->gen_loader) {
6074 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6075 					insn[0].imm = obj->kconfig_map_idx;
6076 				} else {
6077 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6078 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6079 				}
6080 				insn[1].imm = ext->kcfg.data_off;
6081 			} else /* EXT_KSYM */ {
6082 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6083 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6084 					insn[0].imm = ext->ksym.kernel_btf_id;
6085 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6086 				} else { /* typeless ksyms or unresolved typed ksyms */
6087 					insn[0].imm = (__u32)ext->ksym.addr;
6088 					insn[1].imm = ext->ksym.addr >> 32;
6089 				}
6090 			}
6091 			break;
6092 		case RELO_EXTERN_CALL:
6093 			ext = &obj->externs[relo->ext_idx];
6094 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6095 			if (ext->is_set) {
6096 				insn[0].imm = ext->ksym.kernel_btf_id;
6097 				insn[0].off = ext->ksym.btf_fd_idx;
6098 			} else { /* unresolved weak kfunc call */
6099 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6100 						  relo->ext_idx, ext);
6101 			}
6102 			break;
6103 		case RELO_SUBPROG_ADDR:
6104 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6105 				pr_warn("prog '%s': relo #%d: bad insn\n",
6106 					prog->name, i);
6107 				return -EINVAL;
6108 			}
6109 			/* handled already */
6110 			break;
6111 		case RELO_CALL:
6112 			/* handled already */
6113 			break;
6114 		case RELO_CORE:
6115 			/* will be handled by bpf_program_record_relos() */
6116 			break;
6117 		default:
6118 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6119 				prog->name, i, relo->type);
6120 			return -EINVAL;
6121 		}
6122 	}
6123 
6124 	return 0;
6125 }
6126 
6127 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6128 				    const struct bpf_program *prog,
6129 				    const struct btf_ext_info *ext_info,
6130 				    void **prog_info, __u32 *prog_rec_cnt,
6131 				    __u32 *prog_rec_sz)
6132 {
6133 	void *copy_start = NULL, *copy_end = NULL;
6134 	void *rec, *rec_end, *new_prog_info;
6135 	const struct btf_ext_info_sec *sec;
6136 	size_t old_sz, new_sz;
6137 	int i, sec_num, sec_idx, off_adj;
6138 
6139 	sec_num = 0;
6140 	for_each_btf_ext_sec(ext_info, sec) {
6141 		sec_idx = ext_info->sec_idxs[sec_num];
6142 		sec_num++;
6143 		if (prog->sec_idx != sec_idx)
6144 			continue;
6145 
6146 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6147 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6148 
6149 			if (insn_off < prog->sec_insn_off)
6150 				continue;
6151 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6152 				break;
6153 
6154 			if (!copy_start)
6155 				copy_start = rec;
6156 			copy_end = rec + ext_info->rec_size;
6157 		}
6158 
6159 		if (!copy_start)
6160 			return -ENOENT;
6161 
6162 		/* append func/line info of a given (sub-)program to the main
6163 		 * program func/line info
6164 		 */
6165 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6166 		new_sz = old_sz + (copy_end - copy_start);
6167 		new_prog_info = realloc(*prog_info, new_sz);
6168 		if (!new_prog_info)
6169 			return -ENOMEM;
6170 		*prog_info = new_prog_info;
6171 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6172 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6173 
6174 		/* Kernel instruction offsets are in units of 8-byte
6175 		 * instructions, while .BTF.ext instruction offsets generated
6176 		 * by Clang are in units of bytes. So convert Clang offsets
6177 		 * into kernel offsets and adjust offset according to program
6178 		 * relocated position.
6179 		 */
6180 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6181 		rec = new_prog_info + old_sz;
6182 		rec_end = new_prog_info + new_sz;
6183 		for (; rec < rec_end; rec += ext_info->rec_size) {
6184 			__u32 *insn_off = rec;
6185 
6186 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6187 		}
6188 		*prog_rec_sz = ext_info->rec_size;
6189 		return 0;
6190 	}
6191 
6192 	return -ENOENT;
6193 }
6194 
6195 static int
6196 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6197 			      struct bpf_program *main_prog,
6198 			      const struct bpf_program *prog)
6199 {
6200 	int err;
6201 
6202 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6203 	 * support func/line info
6204 	 */
6205 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6206 		return 0;
6207 
6208 	/* only attempt func info relocation if main program's func_info
6209 	 * relocation was successful
6210 	 */
6211 	if (main_prog != prog && !main_prog->func_info)
6212 		goto line_info;
6213 
6214 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6215 				       &main_prog->func_info,
6216 				       &main_prog->func_info_cnt,
6217 				       &main_prog->func_info_rec_size);
6218 	if (err) {
6219 		if (err != -ENOENT) {
6220 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6221 				prog->name, err);
6222 			return err;
6223 		}
6224 		if (main_prog->func_info) {
6225 			/*
6226 			 * Some info has already been found but has problem
6227 			 * in the last btf_ext reloc. Must have to error out.
6228 			 */
6229 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6230 			return err;
6231 		}
6232 		/* Have problem loading the very first info. Ignore the rest. */
6233 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6234 			prog->name);
6235 	}
6236 
6237 line_info:
6238 	/* don't relocate line info if main program's relocation failed */
6239 	if (main_prog != prog && !main_prog->line_info)
6240 		return 0;
6241 
6242 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6243 				       &main_prog->line_info,
6244 				       &main_prog->line_info_cnt,
6245 				       &main_prog->line_info_rec_size);
6246 	if (err) {
6247 		if (err != -ENOENT) {
6248 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6249 				prog->name, err);
6250 			return err;
6251 		}
6252 		if (main_prog->line_info) {
6253 			/*
6254 			 * Some info has already been found but has problem
6255 			 * in the last btf_ext reloc. Must have to error out.
6256 			 */
6257 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6258 			return err;
6259 		}
6260 		/* Have problem loading the very first info. Ignore the rest. */
6261 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6262 			prog->name);
6263 	}
6264 	return 0;
6265 }
6266 
6267 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6268 {
6269 	size_t insn_idx = *(const size_t *)key;
6270 	const struct reloc_desc *relo = elem;
6271 
6272 	if (insn_idx == relo->insn_idx)
6273 		return 0;
6274 	return insn_idx < relo->insn_idx ? -1 : 1;
6275 }
6276 
6277 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6278 {
6279 	if (!prog->nr_reloc)
6280 		return NULL;
6281 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6282 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6283 }
6284 
6285 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6286 {
6287 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6288 	struct reloc_desc *relos;
6289 	int i;
6290 
6291 	if (main_prog == subprog)
6292 		return 0;
6293 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6294 	/* if new count is zero, reallocarray can return a valid NULL result;
6295 	 * in this case the previous pointer will be freed, so we *have to*
6296 	 * reassign old pointer to the new value (even if it's NULL)
6297 	 */
6298 	if (!relos && new_cnt)
6299 		return -ENOMEM;
6300 	if (subprog->nr_reloc)
6301 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6302 		       sizeof(*relos) * subprog->nr_reloc);
6303 
6304 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6305 		relos[i].insn_idx += subprog->sub_insn_off;
6306 	/* After insn_idx adjustment the 'relos' array is still sorted
6307 	 * by insn_idx and doesn't break bsearch.
6308 	 */
6309 	main_prog->reloc_desc = relos;
6310 	main_prog->nr_reloc = new_cnt;
6311 	return 0;
6312 }
6313 
6314 static int
6315 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6316 				struct bpf_program *subprog)
6317 {
6318        struct bpf_insn *insns;
6319        size_t new_cnt;
6320        int err;
6321 
6322        subprog->sub_insn_off = main_prog->insns_cnt;
6323 
6324        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6325        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6326        if (!insns) {
6327                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6328                return -ENOMEM;
6329        }
6330        main_prog->insns = insns;
6331        main_prog->insns_cnt = new_cnt;
6332 
6333        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6334               subprog->insns_cnt * sizeof(*insns));
6335 
6336        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6337                 main_prog->name, subprog->insns_cnt, subprog->name);
6338 
6339        /* The subprog insns are now appended. Append its relos too. */
6340        err = append_subprog_relos(main_prog, subprog);
6341        if (err)
6342                return err;
6343        return 0;
6344 }
6345 
6346 static int
6347 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6348 		       struct bpf_program *prog)
6349 {
6350 	size_t sub_insn_idx, insn_idx;
6351 	struct bpf_program *subprog;
6352 	struct reloc_desc *relo;
6353 	struct bpf_insn *insn;
6354 	int err;
6355 
6356 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6357 	if (err)
6358 		return err;
6359 
6360 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6361 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6362 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6363 			continue;
6364 
6365 		relo = find_prog_insn_relo(prog, insn_idx);
6366 		if (relo && relo->type == RELO_EXTERN_CALL)
6367 			/* kfunc relocations will be handled later
6368 			 * in bpf_object__relocate_data()
6369 			 */
6370 			continue;
6371 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6372 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6373 				prog->name, insn_idx, relo->type);
6374 			return -LIBBPF_ERRNO__RELOC;
6375 		}
6376 		if (relo) {
6377 			/* sub-program instruction index is a combination of
6378 			 * an offset of a symbol pointed to by relocation and
6379 			 * call instruction's imm field; for global functions,
6380 			 * call always has imm = -1, but for static functions
6381 			 * relocation is against STT_SECTION and insn->imm
6382 			 * points to a start of a static function
6383 			 *
6384 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6385 			 * the byte offset in the corresponding section.
6386 			 */
6387 			if (relo->type == RELO_CALL)
6388 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6389 			else
6390 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6391 		} else if (insn_is_pseudo_func(insn)) {
6392 			/*
6393 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6394 			 * functions are in the same section, so it shouldn't reach here.
6395 			 */
6396 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6397 				prog->name, insn_idx);
6398 			return -LIBBPF_ERRNO__RELOC;
6399 		} else {
6400 			/* if subprogram call is to a static function within
6401 			 * the same ELF section, there won't be any relocation
6402 			 * emitted, but it also means there is no additional
6403 			 * offset necessary, insns->imm is relative to
6404 			 * instruction's original position within the section
6405 			 */
6406 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6407 		}
6408 
6409 		/* we enforce that sub-programs should be in .text section */
6410 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6411 		if (!subprog) {
6412 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6413 				prog->name);
6414 			return -LIBBPF_ERRNO__RELOC;
6415 		}
6416 
6417 		/* if it's the first call instruction calling into this
6418 		 * subprogram (meaning this subprog hasn't been processed
6419 		 * yet) within the context of current main program:
6420 		 *   - append it at the end of main program's instructions blog;
6421 		 *   - process is recursively, while current program is put on hold;
6422 		 *   - if that subprogram calls some other not yet processes
6423 		 *   subprogram, same thing will happen recursively until
6424 		 *   there are no more unprocesses subprograms left to append
6425 		 *   and relocate.
6426 		 */
6427 		if (subprog->sub_insn_off == 0) {
6428 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6429 			if (err)
6430 				return err;
6431 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6432 			if (err)
6433 				return err;
6434 		}
6435 
6436 		/* main_prog->insns memory could have been re-allocated, so
6437 		 * calculate pointer again
6438 		 */
6439 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6440 		/* calculate correct instruction position within current main
6441 		 * prog; each main prog can have a different set of
6442 		 * subprograms appended (potentially in different order as
6443 		 * well), so position of any subprog can be different for
6444 		 * different main programs
6445 		 */
6446 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6447 
6448 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6449 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6450 	}
6451 
6452 	return 0;
6453 }
6454 
6455 /*
6456  * Relocate sub-program calls.
6457  *
6458  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6459  * main prog) is processed separately. For each subprog (non-entry functions,
6460  * that can be called from either entry progs or other subprogs) gets their
6461  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6462  * hasn't been yet appended and relocated within current main prog. Once its
6463  * relocated, sub_insn_off will point at the position within current main prog
6464  * where given subprog was appended. This will further be used to relocate all
6465  * the call instructions jumping into this subprog.
6466  *
6467  * We start with main program and process all call instructions. If the call
6468  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6469  * is zero), subprog instructions are appended at the end of main program's
6470  * instruction array. Then main program is "put on hold" while we recursively
6471  * process newly appended subprogram. If that subprogram calls into another
6472  * subprogram that hasn't been appended, new subprogram is appended again to
6473  * the *main* prog's instructions (subprog's instructions are always left
6474  * untouched, as they need to be in unmodified state for subsequent main progs
6475  * and subprog instructions are always sent only as part of a main prog) and
6476  * the process continues recursively. Once all the subprogs called from a main
6477  * prog or any of its subprogs are appended (and relocated), all their
6478  * positions within finalized instructions array are known, so it's easy to
6479  * rewrite call instructions with correct relative offsets, corresponding to
6480  * desired target subprog.
6481  *
6482  * Its important to realize that some subprogs might not be called from some
6483  * main prog and any of its called/used subprogs. Those will keep their
6484  * subprog->sub_insn_off as zero at all times and won't be appended to current
6485  * main prog and won't be relocated within the context of current main prog.
6486  * They might still be used from other main progs later.
6487  *
6488  * Visually this process can be shown as below. Suppose we have two main
6489  * programs mainA and mainB and BPF object contains three subprogs: subA,
6490  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6491  * subC both call subB:
6492  *
6493  *        +--------+ +-------+
6494  *        |        v v       |
6495  *     +--+---+ +--+-+-+ +---+--+
6496  *     | subA | | subB | | subC |
6497  *     +--+---+ +------+ +---+--+
6498  *        ^                  ^
6499  *        |                  |
6500  *    +---+-------+   +------+----+
6501  *    |   mainA   |   |   mainB   |
6502  *    +-----------+   +-----------+
6503  *
6504  * We'll start relocating mainA, will find subA, append it and start
6505  * processing sub A recursively:
6506  *
6507  *    +-----------+------+
6508  *    |   mainA   | subA |
6509  *    +-----------+------+
6510  *
6511  * At this point we notice that subB is used from subA, so we append it and
6512  * relocate (there are no further subcalls from subB):
6513  *
6514  *    +-----------+------+------+
6515  *    |   mainA   | subA | subB |
6516  *    +-----------+------+------+
6517  *
6518  * At this point, we relocate subA calls, then go one level up and finish with
6519  * relocatin mainA calls. mainA is done.
6520  *
6521  * For mainB process is similar but results in different order. We start with
6522  * mainB and skip subA and subB, as mainB never calls them (at least
6523  * directly), but we see subC is needed, so we append and start processing it:
6524  *
6525  *    +-----------+------+
6526  *    |   mainB   | subC |
6527  *    +-----------+------+
6528  * Now we see subC needs subB, so we go back to it, append and relocate it:
6529  *
6530  *    +-----------+------+------+
6531  *    |   mainB   | subC | subB |
6532  *    +-----------+------+------+
6533  *
6534  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6535  */
6536 static int
6537 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6538 {
6539 	struct bpf_program *subprog;
6540 	int i, err;
6541 
6542 	/* mark all subprogs as not relocated (yet) within the context of
6543 	 * current main program
6544 	 */
6545 	for (i = 0; i < obj->nr_programs; i++) {
6546 		subprog = &obj->programs[i];
6547 		if (!prog_is_subprog(obj, subprog))
6548 			continue;
6549 
6550 		subprog->sub_insn_off = 0;
6551 	}
6552 
6553 	err = bpf_object__reloc_code(obj, prog, prog);
6554 	if (err)
6555 		return err;
6556 
6557 	return 0;
6558 }
6559 
6560 static void
6561 bpf_object__free_relocs(struct bpf_object *obj)
6562 {
6563 	struct bpf_program *prog;
6564 	int i;
6565 
6566 	/* free up relocation descriptors */
6567 	for (i = 0; i < obj->nr_programs; i++) {
6568 		prog = &obj->programs[i];
6569 		zfree(&prog->reloc_desc);
6570 		prog->nr_reloc = 0;
6571 	}
6572 }
6573 
6574 static int cmp_relocs(const void *_a, const void *_b)
6575 {
6576 	const struct reloc_desc *a = _a;
6577 	const struct reloc_desc *b = _b;
6578 
6579 	if (a->insn_idx != b->insn_idx)
6580 		return a->insn_idx < b->insn_idx ? -1 : 1;
6581 
6582 	/* no two relocations should have the same insn_idx, but ... */
6583 	if (a->type != b->type)
6584 		return a->type < b->type ? -1 : 1;
6585 
6586 	return 0;
6587 }
6588 
6589 static void bpf_object__sort_relos(struct bpf_object *obj)
6590 {
6591 	int i;
6592 
6593 	for (i = 0; i < obj->nr_programs; i++) {
6594 		struct bpf_program *p = &obj->programs[i];
6595 
6596 		if (!p->nr_reloc)
6597 			continue;
6598 
6599 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6600 	}
6601 }
6602 
6603 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6604 {
6605 	const char *str = "exception_callback:";
6606 	size_t pfx_len = strlen(str);
6607 	int i, j, n;
6608 
6609 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6610 		return 0;
6611 
6612 	n = btf__type_cnt(obj->btf);
6613 	for (i = 1; i < n; i++) {
6614 		const char *name;
6615 		struct btf_type *t;
6616 
6617 		t = btf_type_by_id(obj->btf, i);
6618 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6619 			continue;
6620 
6621 		name = btf__str_by_offset(obj->btf, t->name_off);
6622 		if (strncmp(name, str, pfx_len) != 0)
6623 			continue;
6624 
6625 		t = btf_type_by_id(obj->btf, t->type);
6626 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6627 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6628 				prog->name);
6629 			return -EINVAL;
6630 		}
6631 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6632 			continue;
6633 		/* Multiple callbacks are specified for the same prog,
6634 		 * the verifier will eventually return an error for this
6635 		 * case, hence simply skip appending a subprog.
6636 		 */
6637 		if (prog->exception_cb_idx >= 0) {
6638 			prog->exception_cb_idx = -1;
6639 			break;
6640 		}
6641 
6642 		name += pfx_len;
6643 		if (str_is_empty(name)) {
6644 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6645 				prog->name);
6646 			return -EINVAL;
6647 		}
6648 
6649 		for (j = 0; j < obj->nr_programs; j++) {
6650 			struct bpf_program *subprog = &obj->programs[j];
6651 
6652 			if (!prog_is_subprog(obj, subprog))
6653 				continue;
6654 			if (strcmp(name, subprog->name) != 0)
6655 				continue;
6656 			/* Enforce non-hidden, as from verifier point of
6657 			 * view it expects global functions, whereas the
6658 			 * mark_btf_static fixes up linkage as static.
6659 			 */
6660 			if (!subprog->sym_global || subprog->mark_btf_static) {
6661 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6662 					prog->name, subprog->name);
6663 				return -EINVAL;
6664 			}
6665 			/* Let's see if we already saw a static exception callback with the same name */
6666 			if (prog->exception_cb_idx >= 0) {
6667 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6668 					prog->name, subprog->name);
6669 				return -EINVAL;
6670 			}
6671 			prog->exception_cb_idx = j;
6672 			break;
6673 		}
6674 
6675 		if (prog->exception_cb_idx >= 0)
6676 			continue;
6677 
6678 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6679 		return -ENOENT;
6680 	}
6681 
6682 	return 0;
6683 }
6684 
6685 static struct {
6686 	enum bpf_prog_type prog_type;
6687 	const char *ctx_name;
6688 } global_ctx_map[] = {
6689 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6690 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6691 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6692 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6693 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6694 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6695 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6696 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6697 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6698 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6699 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6700 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6701 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6702 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6703 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6704 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6705 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6706 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6707 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6708 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6709 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6710 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6711 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6712 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6713 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6714 	/* all other program types don't have "named" context structs */
6715 };
6716 
6717 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6718  * for below __builtin_types_compatible_p() checks;
6719  * with this approach we don't need any extra arch-specific #ifdef guards
6720  */
6721 struct pt_regs;
6722 struct user_pt_regs;
6723 struct user_regs_struct;
6724 
6725 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6726 				     const char *subprog_name, int arg_idx,
6727 				     int arg_type_id, const char *ctx_name)
6728 {
6729 	const struct btf_type *t;
6730 	const char *tname;
6731 
6732 	/* check if existing parameter already matches verifier expectations */
6733 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6734 	if (!btf_is_ptr(t))
6735 		goto out_warn;
6736 
6737 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6738 	 * and perf_event programs, so check this case early on and forget
6739 	 * about it for subsequent checks
6740 	 */
6741 	while (btf_is_mod(t))
6742 		t = btf__type_by_id(btf, t->type);
6743 	if (btf_is_typedef(t) &&
6744 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6745 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6746 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6747 			return false; /* canonical type for kprobe/perf_event */
6748 	}
6749 
6750 	/* now we can ignore typedefs moving forward */
6751 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6752 
6753 	/* if it's `void *`, definitely fix up BTF info */
6754 	if (btf_is_void(t))
6755 		return true;
6756 
6757 	/* if it's already proper canonical type, no need to fix up */
6758 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6759 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6760 		return false;
6761 
6762 	/* special cases */
6763 	switch (prog->type) {
6764 	case BPF_PROG_TYPE_KPROBE:
6765 		/* `struct pt_regs *` is expected, but we need to fix up */
6766 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6767 			return true;
6768 		break;
6769 	case BPF_PROG_TYPE_PERF_EVENT:
6770 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6771 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6772 			return true;
6773 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6774 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6775 			return true;
6776 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6777 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6778 			return true;
6779 		break;
6780 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6781 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6782 		/* allow u64* as ctx */
6783 		if (btf_is_int(t) && t->size == 8)
6784 			return true;
6785 		break;
6786 	default:
6787 		break;
6788 	}
6789 
6790 out_warn:
6791 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6792 		prog->name, subprog_name, arg_idx, ctx_name);
6793 	return false;
6794 }
6795 
6796 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6797 {
6798 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6799 	int i, err, arg_cnt, fn_name_off, linkage;
6800 	struct btf_type *fn_t, *fn_proto_t, *t;
6801 	struct btf_param *p;
6802 
6803 	/* caller already validated FUNC -> FUNC_PROTO validity */
6804 	fn_t = btf_type_by_id(btf, orig_fn_id);
6805 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6806 
6807 	/* Note that each btf__add_xxx() operation invalidates
6808 	 * all btf_type and string pointers, so we need to be
6809 	 * very careful when cloning BTF types. BTF type
6810 	 * pointers have to be always refetched. And to avoid
6811 	 * problems with invalidated string pointers, we
6812 	 * add empty strings initially, then just fix up
6813 	 * name_off offsets in place. Offsets are stable for
6814 	 * existing strings, so that works out.
6815 	 */
6816 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6817 	linkage = btf_func_linkage(fn_t);
6818 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6819 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6820 	arg_cnt = btf_vlen(fn_proto_t);
6821 
6822 	/* clone FUNC_PROTO and its params */
6823 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6824 	if (fn_proto_id < 0)
6825 		return -EINVAL;
6826 
6827 	for (i = 0; i < arg_cnt; i++) {
6828 		int name_off;
6829 
6830 		/* copy original parameter data */
6831 		t = btf_type_by_id(btf, orig_proto_id);
6832 		p = &btf_params(t)[i];
6833 		name_off = p->name_off;
6834 
6835 		err = btf__add_func_param(btf, "", p->type);
6836 		if (err)
6837 			return err;
6838 
6839 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6840 		p = &btf_params(fn_proto_t)[i];
6841 		p->name_off = name_off; /* use remembered str offset */
6842 	}
6843 
6844 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6845 	 * entry program's name as a placeholder, which we replace immediately
6846 	 * with original name_off
6847 	 */
6848 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6849 	if (fn_id < 0)
6850 		return -EINVAL;
6851 
6852 	fn_t = btf_type_by_id(btf, fn_id);
6853 	fn_t->name_off = fn_name_off; /* reuse original string */
6854 
6855 	return fn_id;
6856 }
6857 
6858 /* Check if main program or global subprog's function prototype has `arg:ctx`
6859  * argument tags, and, if necessary, substitute correct type to match what BPF
6860  * verifier would expect, taking into account specific program type. This
6861  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6862  * have a native support for it in the verifier, making user's life much
6863  * easier.
6864  */
6865 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6866 {
6867 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6868 	struct bpf_func_info_min *func_rec;
6869 	struct btf_type *fn_t, *fn_proto_t;
6870 	struct btf *btf = obj->btf;
6871 	const struct btf_type *t;
6872 	struct btf_param *p;
6873 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6874 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6875 	int *orig_ids;
6876 
6877 	/* no .BTF.ext, no problem */
6878 	if (!obj->btf_ext || !prog->func_info)
6879 		return 0;
6880 
6881 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6882 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6883 		return 0;
6884 
6885 	/* some BPF program types just don't have named context structs, so
6886 	 * this fallback mechanism doesn't work for them
6887 	 */
6888 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6889 		if (global_ctx_map[i].prog_type != prog->type)
6890 			continue;
6891 		ctx_name = global_ctx_map[i].ctx_name;
6892 		break;
6893 	}
6894 	if (!ctx_name)
6895 		return 0;
6896 
6897 	/* remember original func BTF IDs to detect if we already cloned them */
6898 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6899 	if (!orig_ids)
6900 		return -ENOMEM;
6901 	for (i = 0; i < prog->func_info_cnt; i++) {
6902 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6903 		orig_ids[i] = func_rec->type_id;
6904 	}
6905 
6906 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6907 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6908 	 * clone and adjust FUNC -> FUNC_PROTO combo
6909 	 */
6910 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6911 		/* only DECL_TAG with "arg:ctx" value are interesting */
6912 		t = btf__type_by_id(btf, i);
6913 		if (!btf_is_decl_tag(t))
6914 			continue;
6915 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6916 			continue;
6917 
6918 		/* only global funcs need adjustment, if at all */
6919 		orig_fn_id = t->type;
6920 		fn_t = btf_type_by_id(btf, orig_fn_id);
6921 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6922 			continue;
6923 
6924 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6925 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6926 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6927 			continue;
6928 
6929 		/* find corresponding func_info record */
6930 		func_rec = NULL;
6931 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6932 			if (orig_ids[rec_idx] == t->type) {
6933 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6934 				break;
6935 			}
6936 		}
6937 		/* current main program doesn't call into this subprog */
6938 		if (!func_rec)
6939 			continue;
6940 
6941 		/* some more sanity checking of DECL_TAG */
6942 		arg_cnt = btf_vlen(fn_proto_t);
6943 		arg_idx = btf_decl_tag(t)->component_idx;
6944 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6945 			continue;
6946 
6947 		/* check if we should fix up argument type */
6948 		p = &btf_params(fn_proto_t)[arg_idx];
6949 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6950 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6951 			continue;
6952 
6953 		/* clone fn/fn_proto, unless we already did it for another arg */
6954 		if (func_rec->type_id == orig_fn_id) {
6955 			int fn_id;
6956 
6957 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6958 			if (fn_id < 0) {
6959 				err = fn_id;
6960 				goto err_out;
6961 			}
6962 
6963 			/* point func_info record to a cloned FUNC type */
6964 			func_rec->type_id = fn_id;
6965 		}
6966 
6967 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6968 		 * we do it just once per main BPF program, as all global
6969 		 * funcs share the same program type, so need only PTR ->
6970 		 * STRUCT type chain
6971 		 */
6972 		if (ptr_id == 0) {
6973 			struct_id = btf__add_struct(btf, ctx_name, 0);
6974 			ptr_id = btf__add_ptr(btf, struct_id);
6975 			if (ptr_id < 0 || struct_id < 0) {
6976 				err = -EINVAL;
6977 				goto err_out;
6978 			}
6979 		}
6980 
6981 		/* for completeness, clone DECL_TAG and point it to cloned param */
6982 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6983 		if (tag_id < 0) {
6984 			err = -EINVAL;
6985 			goto err_out;
6986 		}
6987 
6988 		/* all the BTF manipulations invalidated pointers, refetch them */
6989 		fn_t = btf_type_by_id(btf, func_rec->type_id);
6990 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6991 
6992 		/* fix up type ID pointed to by param */
6993 		p = &btf_params(fn_proto_t)[arg_idx];
6994 		p->type = ptr_id;
6995 	}
6996 
6997 	free(orig_ids);
6998 	return 0;
6999 err_out:
7000 	free(orig_ids);
7001 	return err;
7002 }
7003 
7004 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7005 {
7006 	struct bpf_program *prog;
7007 	size_t i, j;
7008 	int err;
7009 
7010 	if (obj->btf_ext) {
7011 		err = bpf_object__relocate_core(obj, targ_btf_path);
7012 		if (err) {
7013 			pr_warn("failed to perform CO-RE relocations: %d\n",
7014 				err);
7015 			return err;
7016 		}
7017 		bpf_object__sort_relos(obj);
7018 	}
7019 
7020 	/* Before relocating calls pre-process relocations and mark
7021 	 * few ld_imm64 instructions that points to subprogs.
7022 	 * Otherwise bpf_object__reloc_code() later would have to consider
7023 	 * all ld_imm64 insns as relocation candidates. That would
7024 	 * reduce relocation speed, since amount of find_prog_insn_relo()
7025 	 * would increase and most of them will fail to find a relo.
7026 	 */
7027 	for (i = 0; i < obj->nr_programs; i++) {
7028 		prog = &obj->programs[i];
7029 		for (j = 0; j < prog->nr_reloc; j++) {
7030 			struct reloc_desc *relo = &prog->reloc_desc[j];
7031 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7032 
7033 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7034 			if (relo->type == RELO_SUBPROG_ADDR)
7035 				insn[0].src_reg = BPF_PSEUDO_FUNC;
7036 		}
7037 	}
7038 
7039 	/* relocate subprogram calls and append used subprograms to main
7040 	 * programs; each copy of subprogram code needs to be relocated
7041 	 * differently for each main program, because its code location might
7042 	 * have changed.
7043 	 * Append subprog relos to main programs to allow data relos to be
7044 	 * processed after text is completely relocated.
7045 	 */
7046 	for (i = 0; i < obj->nr_programs; i++) {
7047 		prog = &obj->programs[i];
7048 		/* sub-program's sub-calls are relocated within the context of
7049 		 * its main program only
7050 		 */
7051 		if (prog_is_subprog(obj, prog))
7052 			continue;
7053 		if (!prog->autoload)
7054 			continue;
7055 
7056 		err = bpf_object__relocate_calls(obj, prog);
7057 		if (err) {
7058 			pr_warn("prog '%s': failed to relocate calls: %d\n",
7059 				prog->name, err);
7060 			return err;
7061 		}
7062 
7063 		err = bpf_prog_assign_exc_cb(obj, prog);
7064 		if (err)
7065 			return err;
7066 		/* Now, also append exception callback if it has not been done already. */
7067 		if (prog->exception_cb_idx >= 0) {
7068 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7069 
7070 			/* Calling exception callback directly is disallowed, which the
7071 			 * verifier will reject later. In case it was processed already,
7072 			 * we can skip this step, otherwise for all other valid cases we
7073 			 * have to append exception callback now.
7074 			 */
7075 			if (subprog->sub_insn_off == 0) {
7076 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7077 				if (err)
7078 					return err;
7079 				err = bpf_object__reloc_code(obj, prog, subprog);
7080 				if (err)
7081 					return err;
7082 			}
7083 		}
7084 	}
7085 	for (i = 0; i < obj->nr_programs; i++) {
7086 		prog = &obj->programs[i];
7087 		if (prog_is_subprog(obj, prog))
7088 			continue;
7089 		if (!prog->autoload)
7090 			continue;
7091 
7092 		/* Process data relos for main programs */
7093 		err = bpf_object__relocate_data(obj, prog);
7094 		if (err) {
7095 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7096 				prog->name, err);
7097 			return err;
7098 		}
7099 
7100 		/* Fix up .BTF.ext information, if necessary */
7101 		err = bpf_program_fixup_func_info(obj, prog);
7102 		if (err) {
7103 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7104 				prog->name, err);
7105 			return err;
7106 		}
7107 	}
7108 
7109 	return 0;
7110 }
7111 
7112 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7113 					    Elf64_Shdr *shdr, Elf_Data *data);
7114 
7115 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7116 					 Elf64_Shdr *shdr, Elf_Data *data)
7117 {
7118 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7119 	int i, j, nrels, new_sz;
7120 	const struct btf_var_secinfo *vi = NULL;
7121 	const struct btf_type *sec, *var, *def;
7122 	struct bpf_map *map = NULL, *targ_map = NULL;
7123 	struct bpf_program *targ_prog = NULL;
7124 	bool is_prog_array, is_map_in_map;
7125 	const struct btf_member *member;
7126 	const char *name, *mname, *type;
7127 	unsigned int moff;
7128 	Elf64_Sym *sym;
7129 	Elf64_Rel *rel;
7130 	void *tmp;
7131 
7132 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7133 		return -EINVAL;
7134 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7135 	if (!sec)
7136 		return -EINVAL;
7137 
7138 	nrels = shdr->sh_size / shdr->sh_entsize;
7139 	for (i = 0; i < nrels; i++) {
7140 		rel = elf_rel_by_idx(data, i);
7141 		if (!rel) {
7142 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7143 			return -LIBBPF_ERRNO__FORMAT;
7144 		}
7145 
7146 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7147 		if (!sym) {
7148 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7149 				i, (size_t)ELF64_R_SYM(rel->r_info));
7150 			return -LIBBPF_ERRNO__FORMAT;
7151 		}
7152 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7153 
7154 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7155 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7156 			 (size_t)rel->r_offset, sym->st_name, name);
7157 
7158 		for (j = 0; j < obj->nr_maps; j++) {
7159 			map = &obj->maps[j];
7160 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7161 				continue;
7162 
7163 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7164 			if (vi->offset <= rel->r_offset &&
7165 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7166 				break;
7167 		}
7168 		if (j == obj->nr_maps) {
7169 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7170 				i, name, (size_t)rel->r_offset);
7171 			return -EINVAL;
7172 		}
7173 
7174 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7175 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7176 		type = is_map_in_map ? "map" : "prog";
7177 		if (is_map_in_map) {
7178 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7179 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7180 					i, name);
7181 				return -LIBBPF_ERRNO__RELOC;
7182 			}
7183 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7184 			    map->def.key_size != sizeof(int)) {
7185 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7186 					i, map->name, sizeof(int));
7187 				return -EINVAL;
7188 			}
7189 			targ_map = bpf_object__find_map_by_name(obj, name);
7190 			if (!targ_map) {
7191 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7192 					i, name);
7193 				return -ESRCH;
7194 			}
7195 		} else if (is_prog_array) {
7196 			targ_prog = bpf_object__find_program_by_name(obj, name);
7197 			if (!targ_prog) {
7198 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7199 					i, name);
7200 				return -ESRCH;
7201 			}
7202 			if (targ_prog->sec_idx != sym->st_shndx ||
7203 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7204 			    prog_is_subprog(obj, targ_prog)) {
7205 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7206 					i, name);
7207 				return -LIBBPF_ERRNO__RELOC;
7208 			}
7209 		} else {
7210 			return -EINVAL;
7211 		}
7212 
7213 		var = btf__type_by_id(obj->btf, vi->type);
7214 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7215 		if (btf_vlen(def) == 0)
7216 			return -EINVAL;
7217 		member = btf_members(def) + btf_vlen(def) - 1;
7218 		mname = btf__name_by_offset(obj->btf, member->name_off);
7219 		if (strcmp(mname, "values"))
7220 			return -EINVAL;
7221 
7222 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7223 		if (rel->r_offset - vi->offset < moff)
7224 			return -EINVAL;
7225 
7226 		moff = rel->r_offset - vi->offset - moff;
7227 		/* here we use BPF pointer size, which is always 64 bit, as we
7228 		 * are parsing ELF that was built for BPF target
7229 		 */
7230 		if (moff % bpf_ptr_sz)
7231 			return -EINVAL;
7232 		moff /= bpf_ptr_sz;
7233 		if (moff >= map->init_slots_sz) {
7234 			new_sz = moff + 1;
7235 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7236 			if (!tmp)
7237 				return -ENOMEM;
7238 			map->init_slots = tmp;
7239 			memset(map->init_slots + map->init_slots_sz, 0,
7240 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7241 			map->init_slots_sz = new_sz;
7242 		}
7243 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7244 
7245 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7246 			 i, map->name, moff, type, name);
7247 	}
7248 
7249 	return 0;
7250 }
7251 
7252 static int bpf_object__collect_relos(struct bpf_object *obj)
7253 {
7254 	int i, err;
7255 
7256 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7257 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7258 		Elf64_Shdr *shdr;
7259 		Elf_Data *data;
7260 		int idx;
7261 
7262 		if (sec_desc->sec_type != SEC_RELO)
7263 			continue;
7264 
7265 		shdr = sec_desc->shdr;
7266 		data = sec_desc->data;
7267 		idx = shdr->sh_info;
7268 
7269 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7270 			pr_warn("internal error at %d\n", __LINE__);
7271 			return -LIBBPF_ERRNO__INTERNAL;
7272 		}
7273 
7274 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7275 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7276 		else if (idx == obj->efile.btf_maps_shndx)
7277 			err = bpf_object__collect_map_relos(obj, shdr, data);
7278 		else
7279 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7280 		if (err)
7281 			return err;
7282 	}
7283 
7284 	bpf_object__sort_relos(obj);
7285 	return 0;
7286 }
7287 
7288 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7289 {
7290 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7291 	    BPF_OP(insn->code) == BPF_CALL &&
7292 	    BPF_SRC(insn->code) == BPF_K &&
7293 	    insn->src_reg == 0 &&
7294 	    insn->dst_reg == 0) {
7295 		    *func_id = insn->imm;
7296 		    return true;
7297 	}
7298 	return false;
7299 }
7300 
7301 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7302 {
7303 	struct bpf_insn *insn = prog->insns;
7304 	enum bpf_func_id func_id;
7305 	int i;
7306 
7307 	if (obj->gen_loader)
7308 		return 0;
7309 
7310 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7311 		if (!insn_is_helper_call(insn, &func_id))
7312 			continue;
7313 
7314 		/* on kernels that don't yet support
7315 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7316 		 * to bpf_probe_read() which works well for old kernels
7317 		 */
7318 		switch (func_id) {
7319 		case BPF_FUNC_probe_read_kernel:
7320 		case BPF_FUNC_probe_read_user:
7321 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7322 				insn->imm = BPF_FUNC_probe_read;
7323 			break;
7324 		case BPF_FUNC_probe_read_kernel_str:
7325 		case BPF_FUNC_probe_read_user_str:
7326 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7327 				insn->imm = BPF_FUNC_probe_read_str;
7328 			break;
7329 		default:
7330 			break;
7331 		}
7332 	}
7333 	return 0;
7334 }
7335 
7336 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7337 				     int *btf_obj_fd, int *btf_type_id);
7338 
7339 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7340 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7341 				    struct bpf_prog_load_opts *opts, long cookie)
7342 {
7343 	enum sec_def_flags def = cookie;
7344 
7345 	/* old kernels might not support specifying expected_attach_type */
7346 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7347 		opts->expected_attach_type = 0;
7348 
7349 	if (def & SEC_SLEEPABLE)
7350 		opts->prog_flags |= BPF_F_SLEEPABLE;
7351 
7352 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7353 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7354 
7355 	/* special check for usdt to use uprobe_multi link */
7356 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7357 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7358 
7359 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7360 		int btf_obj_fd = 0, btf_type_id = 0, err;
7361 		const char *attach_name;
7362 
7363 		attach_name = strchr(prog->sec_name, '/');
7364 		if (!attach_name) {
7365 			/* if BPF program is annotated with just SEC("fentry")
7366 			 * (or similar) without declaratively specifying
7367 			 * target, then it is expected that target will be
7368 			 * specified with bpf_program__set_attach_target() at
7369 			 * runtime before BPF object load step. If not, then
7370 			 * there is nothing to load into the kernel as BPF
7371 			 * verifier won't be able to validate BPF program
7372 			 * correctness anyways.
7373 			 */
7374 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7375 				prog->name);
7376 			return -EINVAL;
7377 		}
7378 		attach_name++; /* skip over / */
7379 
7380 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7381 		if (err)
7382 			return err;
7383 
7384 		/* cache resolved BTF FD and BTF type ID in the prog */
7385 		prog->attach_btf_obj_fd = btf_obj_fd;
7386 		prog->attach_btf_id = btf_type_id;
7387 
7388 		/* but by now libbpf common logic is not utilizing
7389 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7390 		 * this callback is called after opts were populated by
7391 		 * libbpf, so this callback has to update opts explicitly here
7392 		 */
7393 		opts->attach_btf_obj_fd = btf_obj_fd;
7394 		opts->attach_btf_id = btf_type_id;
7395 	}
7396 	return 0;
7397 }
7398 
7399 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7400 
7401 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7402 				struct bpf_insn *insns, int insns_cnt,
7403 				const char *license, __u32 kern_version, int *prog_fd)
7404 {
7405 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7406 	const char *prog_name = NULL;
7407 	char *cp, errmsg[STRERR_BUFSIZE];
7408 	size_t log_buf_size = 0;
7409 	char *log_buf = NULL, *tmp;
7410 	bool own_log_buf = true;
7411 	__u32 log_level = prog->log_level;
7412 	int ret, err;
7413 
7414 	/* Be more helpful by rejecting programs that can't be validated early
7415 	 * with more meaningful and actionable error message.
7416 	 */
7417 	switch (prog->type) {
7418 	case BPF_PROG_TYPE_UNSPEC:
7419 		/*
7420 		 * The program type must be set.  Most likely we couldn't find a proper
7421 		 * section definition at load time, and thus we didn't infer the type.
7422 		 */
7423 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7424 			prog->name, prog->sec_name);
7425 		return -EINVAL;
7426 	case BPF_PROG_TYPE_STRUCT_OPS:
7427 		if (prog->attach_btf_id == 0) {
7428 			pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7429 				prog->name);
7430 			return -EINVAL;
7431 		}
7432 		break;
7433 	default:
7434 		break;
7435 	}
7436 
7437 	if (!insns || !insns_cnt)
7438 		return -EINVAL;
7439 
7440 	if (kernel_supports(obj, FEAT_PROG_NAME))
7441 		prog_name = prog->name;
7442 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7443 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7444 	load_attr.attach_btf_id = prog->attach_btf_id;
7445 	load_attr.kern_version = kern_version;
7446 	load_attr.prog_ifindex = prog->prog_ifindex;
7447 
7448 	/* specify func_info/line_info only if kernel supports them */
7449 	if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7450 		load_attr.prog_btf_fd = btf__fd(obj->btf);
7451 		load_attr.func_info = prog->func_info;
7452 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7453 		load_attr.func_info_cnt = prog->func_info_cnt;
7454 		load_attr.line_info = prog->line_info;
7455 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7456 		load_attr.line_info_cnt = prog->line_info_cnt;
7457 	}
7458 	load_attr.log_level = log_level;
7459 	load_attr.prog_flags = prog->prog_flags;
7460 	load_attr.fd_array = obj->fd_array;
7461 
7462 	load_attr.token_fd = obj->token_fd;
7463 	if (obj->token_fd)
7464 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7465 
7466 	/* adjust load_attr if sec_def provides custom preload callback */
7467 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7468 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7469 		if (err < 0) {
7470 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7471 				prog->name, err);
7472 			return err;
7473 		}
7474 		insns = prog->insns;
7475 		insns_cnt = prog->insns_cnt;
7476 	}
7477 
7478 	/* allow prog_prepare_load_fn to change expected_attach_type */
7479 	load_attr.expected_attach_type = prog->expected_attach_type;
7480 
7481 	if (obj->gen_loader) {
7482 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7483 				   license, insns, insns_cnt, &load_attr,
7484 				   prog - obj->programs);
7485 		*prog_fd = -1;
7486 		return 0;
7487 	}
7488 
7489 retry_load:
7490 	/* if log_level is zero, we don't request logs initially even if
7491 	 * custom log_buf is specified; if the program load fails, then we'll
7492 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7493 	 * our own and retry the load to get details on what failed
7494 	 */
7495 	if (log_level) {
7496 		if (prog->log_buf) {
7497 			log_buf = prog->log_buf;
7498 			log_buf_size = prog->log_size;
7499 			own_log_buf = false;
7500 		} else if (obj->log_buf) {
7501 			log_buf = obj->log_buf;
7502 			log_buf_size = obj->log_size;
7503 			own_log_buf = false;
7504 		} else {
7505 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7506 			tmp = realloc(log_buf, log_buf_size);
7507 			if (!tmp) {
7508 				ret = -ENOMEM;
7509 				goto out;
7510 			}
7511 			log_buf = tmp;
7512 			log_buf[0] = '\0';
7513 			own_log_buf = true;
7514 		}
7515 	}
7516 
7517 	load_attr.log_buf = log_buf;
7518 	load_attr.log_size = log_buf_size;
7519 	load_attr.log_level = log_level;
7520 
7521 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7522 	if (ret >= 0) {
7523 		if (log_level && own_log_buf) {
7524 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7525 				 prog->name, log_buf);
7526 		}
7527 
7528 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7529 			struct bpf_map *map;
7530 			int i;
7531 
7532 			for (i = 0; i < obj->nr_maps; i++) {
7533 				map = &prog->obj->maps[i];
7534 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7535 					continue;
7536 
7537 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7538 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7539 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7540 						prog->name, map->real_name, cp);
7541 					/* Don't fail hard if can't bind rodata. */
7542 				}
7543 			}
7544 		}
7545 
7546 		*prog_fd = ret;
7547 		ret = 0;
7548 		goto out;
7549 	}
7550 
7551 	if (log_level == 0) {
7552 		log_level = 1;
7553 		goto retry_load;
7554 	}
7555 	/* On ENOSPC, increase log buffer size and retry, unless custom
7556 	 * log_buf is specified.
7557 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7558 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7559 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7560 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7561 	 */
7562 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7563 		goto retry_load;
7564 
7565 	ret = -errno;
7566 
7567 	/* post-process verifier log to improve error descriptions */
7568 	fixup_verifier_log(prog, log_buf, log_buf_size);
7569 
7570 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7571 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7572 	pr_perm_msg(ret);
7573 
7574 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7575 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7576 			prog->name, log_buf);
7577 	}
7578 
7579 out:
7580 	if (own_log_buf)
7581 		free(log_buf);
7582 	return ret;
7583 }
7584 
7585 static char *find_prev_line(char *buf, char *cur)
7586 {
7587 	char *p;
7588 
7589 	if (cur == buf) /* end of a log buf */
7590 		return NULL;
7591 
7592 	p = cur - 1;
7593 	while (p - 1 >= buf && *(p - 1) != '\n')
7594 		p--;
7595 
7596 	return p;
7597 }
7598 
7599 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7600 		      char *orig, size_t orig_sz, const char *patch)
7601 {
7602 	/* size of the remaining log content to the right from the to-be-replaced part */
7603 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7604 	size_t patch_sz = strlen(patch);
7605 
7606 	if (patch_sz != orig_sz) {
7607 		/* If patch line(s) are longer than original piece of verifier log,
7608 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7609 		 * starting from after to-be-replaced part of the log.
7610 		 *
7611 		 * If patch line(s) are shorter than original piece of verifier log,
7612 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7613 		 * starting from after to-be-replaced part of the log
7614 		 *
7615 		 * We need to be careful about not overflowing available
7616 		 * buf_sz capacity. If that's the case, we'll truncate the end
7617 		 * of the original log, as necessary.
7618 		 */
7619 		if (patch_sz > orig_sz) {
7620 			if (orig + patch_sz >= buf + buf_sz) {
7621 				/* patch is big enough to cover remaining space completely */
7622 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7623 				rem_sz = 0;
7624 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7625 				/* patch causes part of remaining log to be truncated */
7626 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7627 			}
7628 		}
7629 		/* shift remaining log to the right by calculated amount */
7630 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7631 	}
7632 
7633 	memcpy(orig, patch, patch_sz);
7634 }
7635 
7636 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7637 				       char *buf, size_t buf_sz, size_t log_sz,
7638 				       char *line1, char *line2, char *line3)
7639 {
7640 	/* Expected log for failed and not properly guarded CO-RE relocation:
7641 	 * line1 -> 123: (85) call unknown#195896080
7642 	 * line2 -> invalid func unknown#195896080
7643 	 * line3 -> <anything else or end of buffer>
7644 	 *
7645 	 * "123" is the index of the instruction that was poisoned. We extract
7646 	 * instruction index to find corresponding CO-RE relocation and
7647 	 * replace this part of the log with more relevant information about
7648 	 * failed CO-RE relocation.
7649 	 */
7650 	const struct bpf_core_relo *relo;
7651 	struct bpf_core_spec spec;
7652 	char patch[512], spec_buf[256];
7653 	int insn_idx, err, spec_len;
7654 
7655 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7656 		return;
7657 
7658 	relo = find_relo_core(prog, insn_idx);
7659 	if (!relo)
7660 		return;
7661 
7662 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7663 	if (err)
7664 		return;
7665 
7666 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7667 	snprintf(patch, sizeof(patch),
7668 		 "%d: <invalid CO-RE relocation>\n"
7669 		 "failed to resolve CO-RE relocation %s%s\n",
7670 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7671 
7672 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7673 }
7674 
7675 static void fixup_log_missing_map_load(struct bpf_program *prog,
7676 				       char *buf, size_t buf_sz, size_t log_sz,
7677 				       char *line1, char *line2, char *line3)
7678 {
7679 	/* Expected log for failed and not properly guarded map reference:
7680 	 * line1 -> 123: (85) call unknown#2001000345
7681 	 * line2 -> invalid func unknown#2001000345
7682 	 * line3 -> <anything else or end of buffer>
7683 	 *
7684 	 * "123" is the index of the instruction that was poisoned.
7685 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7686 	 */
7687 	struct bpf_object *obj = prog->obj;
7688 	const struct bpf_map *map;
7689 	int insn_idx, map_idx;
7690 	char patch[128];
7691 
7692 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7693 		return;
7694 
7695 	map_idx -= POISON_LDIMM64_MAP_BASE;
7696 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7697 		return;
7698 	map = &obj->maps[map_idx];
7699 
7700 	snprintf(patch, sizeof(patch),
7701 		 "%d: <invalid BPF map reference>\n"
7702 		 "BPF map '%s' is referenced but wasn't created\n",
7703 		 insn_idx, map->name);
7704 
7705 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7706 }
7707 
7708 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7709 					 char *buf, size_t buf_sz, size_t log_sz,
7710 					 char *line1, char *line2, char *line3)
7711 {
7712 	/* Expected log for failed and not properly guarded kfunc call:
7713 	 * line1 -> 123: (85) call unknown#2002000345
7714 	 * line2 -> invalid func unknown#2002000345
7715 	 * line3 -> <anything else or end of buffer>
7716 	 *
7717 	 * "123" is the index of the instruction that was poisoned.
7718 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7719 	 */
7720 	struct bpf_object *obj = prog->obj;
7721 	const struct extern_desc *ext;
7722 	int insn_idx, ext_idx;
7723 	char patch[128];
7724 
7725 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7726 		return;
7727 
7728 	ext_idx -= POISON_CALL_KFUNC_BASE;
7729 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7730 		return;
7731 	ext = &obj->externs[ext_idx];
7732 
7733 	snprintf(patch, sizeof(patch),
7734 		 "%d: <invalid kfunc call>\n"
7735 		 "kfunc '%s' is referenced but wasn't resolved\n",
7736 		 insn_idx, ext->name);
7737 
7738 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7739 }
7740 
7741 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7742 {
7743 	/* look for familiar error patterns in last N lines of the log */
7744 	const size_t max_last_line_cnt = 10;
7745 	char *prev_line, *cur_line, *next_line;
7746 	size_t log_sz;
7747 	int i;
7748 
7749 	if (!buf)
7750 		return;
7751 
7752 	log_sz = strlen(buf) + 1;
7753 	next_line = buf + log_sz - 1;
7754 
7755 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7756 		cur_line = find_prev_line(buf, next_line);
7757 		if (!cur_line)
7758 			return;
7759 
7760 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7761 			prev_line = find_prev_line(buf, cur_line);
7762 			if (!prev_line)
7763 				continue;
7764 
7765 			/* failed CO-RE relocation case */
7766 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7767 						   prev_line, cur_line, next_line);
7768 			return;
7769 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7770 			prev_line = find_prev_line(buf, cur_line);
7771 			if (!prev_line)
7772 				continue;
7773 
7774 			/* reference to uncreated BPF map */
7775 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7776 						   prev_line, cur_line, next_line);
7777 			return;
7778 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7779 			prev_line = find_prev_line(buf, cur_line);
7780 			if (!prev_line)
7781 				continue;
7782 
7783 			/* reference to unresolved kfunc */
7784 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7785 						     prev_line, cur_line, next_line);
7786 			return;
7787 		}
7788 	}
7789 }
7790 
7791 static int bpf_program_record_relos(struct bpf_program *prog)
7792 {
7793 	struct bpf_object *obj = prog->obj;
7794 	int i;
7795 
7796 	for (i = 0; i < prog->nr_reloc; i++) {
7797 		struct reloc_desc *relo = &prog->reloc_desc[i];
7798 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7799 		int kind;
7800 
7801 		switch (relo->type) {
7802 		case RELO_EXTERN_LD64:
7803 			if (ext->type != EXT_KSYM)
7804 				continue;
7805 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7806 				BTF_KIND_VAR : BTF_KIND_FUNC;
7807 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7808 					       ext->is_weak, !ext->ksym.type_id,
7809 					       true, kind, relo->insn_idx);
7810 			break;
7811 		case RELO_EXTERN_CALL:
7812 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7813 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7814 					       relo->insn_idx);
7815 			break;
7816 		case RELO_CORE: {
7817 			struct bpf_core_relo cr = {
7818 				.insn_off = relo->insn_idx * 8,
7819 				.type_id = relo->core_relo->type_id,
7820 				.access_str_off = relo->core_relo->access_str_off,
7821 				.kind = relo->core_relo->kind,
7822 			};
7823 
7824 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7825 			break;
7826 		}
7827 		default:
7828 			continue;
7829 		}
7830 	}
7831 	return 0;
7832 }
7833 
7834 static int
7835 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7836 {
7837 	struct bpf_program *prog;
7838 	size_t i;
7839 	int err;
7840 
7841 	for (i = 0; i < obj->nr_programs; i++) {
7842 		prog = &obj->programs[i];
7843 		err = bpf_object__sanitize_prog(obj, prog);
7844 		if (err)
7845 			return err;
7846 	}
7847 
7848 	for (i = 0; i < obj->nr_programs; i++) {
7849 		prog = &obj->programs[i];
7850 		if (prog_is_subprog(obj, prog))
7851 			continue;
7852 		if (!prog->autoload) {
7853 			pr_debug("prog '%s': skipped loading\n", prog->name);
7854 			continue;
7855 		}
7856 		prog->log_level |= log_level;
7857 
7858 		if (obj->gen_loader)
7859 			bpf_program_record_relos(prog);
7860 
7861 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7862 					   obj->license, obj->kern_version, &prog->fd);
7863 		if (err) {
7864 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7865 			return err;
7866 		}
7867 	}
7868 
7869 	bpf_object__free_relocs(obj);
7870 	return 0;
7871 }
7872 
7873 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7874 
7875 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7876 {
7877 	struct bpf_program *prog;
7878 	int err;
7879 
7880 	bpf_object__for_each_program(prog, obj) {
7881 		prog->sec_def = find_sec_def(prog->sec_name);
7882 		if (!prog->sec_def) {
7883 			/* couldn't guess, but user might manually specify */
7884 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7885 				prog->name, prog->sec_name);
7886 			continue;
7887 		}
7888 
7889 		prog->type = prog->sec_def->prog_type;
7890 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7891 
7892 		/* sec_def can have custom callback which should be called
7893 		 * after bpf_program is initialized to adjust its properties
7894 		 */
7895 		if (prog->sec_def->prog_setup_fn) {
7896 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7897 			if (err < 0) {
7898 				pr_warn("prog '%s': failed to initialize: %d\n",
7899 					prog->name, err);
7900 				return err;
7901 			}
7902 		}
7903 	}
7904 
7905 	return 0;
7906 }
7907 
7908 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7909 					  const struct bpf_object_open_opts *opts)
7910 {
7911 	const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7912 	struct bpf_object *obj;
7913 	char tmp_name[64];
7914 	int err;
7915 	char *log_buf;
7916 	size_t log_size;
7917 	__u32 log_level;
7918 
7919 	if (elf_version(EV_CURRENT) == EV_NONE) {
7920 		pr_warn("failed to init libelf for %s\n",
7921 			path ? : "(mem buf)");
7922 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7923 	}
7924 
7925 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7926 		return ERR_PTR(-EINVAL);
7927 
7928 	obj_name = OPTS_GET(opts, object_name, NULL);
7929 	if (obj_buf) {
7930 		if (!obj_name) {
7931 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7932 				 (unsigned long)obj_buf,
7933 				 (unsigned long)obj_buf_sz);
7934 			obj_name = tmp_name;
7935 		}
7936 		path = obj_name;
7937 		pr_debug("loading object '%s' from buffer\n", obj_name);
7938 	}
7939 
7940 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7941 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7942 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7943 	if (log_size > UINT_MAX)
7944 		return ERR_PTR(-EINVAL);
7945 	if (log_size && !log_buf)
7946 		return ERR_PTR(-EINVAL);
7947 
7948 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7949 	/* if user didn't specify bpf_token_path explicitly, check if
7950 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7951 	 * option
7952 	 */
7953 	if (!token_path)
7954 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7955 	if (token_path && strlen(token_path) >= PATH_MAX)
7956 		return ERR_PTR(-ENAMETOOLONG);
7957 
7958 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7959 	if (IS_ERR(obj))
7960 		return obj;
7961 
7962 	obj->log_buf = log_buf;
7963 	obj->log_size = log_size;
7964 	obj->log_level = log_level;
7965 
7966 	if (token_path) {
7967 		obj->token_path = strdup(token_path);
7968 		if (!obj->token_path) {
7969 			err = -ENOMEM;
7970 			goto out;
7971 		}
7972 	}
7973 
7974 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7975 	if (btf_tmp_path) {
7976 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7977 			err = -ENAMETOOLONG;
7978 			goto out;
7979 		}
7980 		obj->btf_custom_path = strdup(btf_tmp_path);
7981 		if (!obj->btf_custom_path) {
7982 			err = -ENOMEM;
7983 			goto out;
7984 		}
7985 	}
7986 
7987 	kconfig = OPTS_GET(opts, kconfig, NULL);
7988 	if (kconfig) {
7989 		obj->kconfig = strdup(kconfig);
7990 		if (!obj->kconfig) {
7991 			err = -ENOMEM;
7992 			goto out;
7993 		}
7994 	}
7995 
7996 	err = bpf_object__elf_init(obj);
7997 	err = err ? : bpf_object__check_endianness(obj);
7998 	err = err ? : bpf_object__elf_collect(obj);
7999 	err = err ? : bpf_object__collect_externs(obj);
8000 	err = err ? : bpf_object_fixup_btf(obj);
8001 	err = err ? : bpf_object__init_maps(obj, opts);
8002 	err = err ? : bpf_object_init_progs(obj, opts);
8003 	err = err ? : bpf_object__collect_relos(obj);
8004 	if (err)
8005 		goto out;
8006 
8007 	bpf_object__elf_finish(obj);
8008 
8009 	return obj;
8010 out:
8011 	bpf_object__close(obj);
8012 	return ERR_PTR(err);
8013 }
8014 
8015 struct bpf_object *
8016 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8017 {
8018 	if (!path)
8019 		return libbpf_err_ptr(-EINVAL);
8020 
8021 	pr_debug("loading %s\n", path);
8022 
8023 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
8024 }
8025 
8026 struct bpf_object *bpf_object__open(const char *path)
8027 {
8028 	return bpf_object__open_file(path, NULL);
8029 }
8030 
8031 struct bpf_object *
8032 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8033 		     const struct bpf_object_open_opts *opts)
8034 {
8035 	if (!obj_buf || obj_buf_sz == 0)
8036 		return libbpf_err_ptr(-EINVAL);
8037 
8038 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
8039 }
8040 
8041 static int bpf_object_unload(struct bpf_object *obj)
8042 {
8043 	size_t i;
8044 
8045 	if (!obj)
8046 		return libbpf_err(-EINVAL);
8047 
8048 	for (i = 0; i < obj->nr_maps; i++) {
8049 		zclose(obj->maps[i].fd);
8050 		if (obj->maps[i].st_ops)
8051 			zfree(&obj->maps[i].st_ops->kern_vdata);
8052 	}
8053 
8054 	for (i = 0; i < obj->nr_programs; i++)
8055 		bpf_program__unload(&obj->programs[i]);
8056 
8057 	return 0;
8058 }
8059 
8060 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8061 {
8062 	struct bpf_map *m;
8063 
8064 	bpf_object__for_each_map(m, obj) {
8065 		if (!bpf_map__is_internal(m))
8066 			continue;
8067 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8068 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8069 	}
8070 
8071 	return 0;
8072 }
8073 
8074 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8075 			     const char *sym_name, void *ctx);
8076 
8077 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8078 {
8079 	char sym_type, sym_name[500];
8080 	unsigned long long sym_addr;
8081 	int ret, err = 0;
8082 	FILE *f;
8083 
8084 	f = fopen("/proc/kallsyms", "re");
8085 	if (!f) {
8086 		err = -errno;
8087 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
8088 		return err;
8089 	}
8090 
8091 	while (true) {
8092 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8093 			     &sym_addr, &sym_type, sym_name);
8094 		if (ret == EOF && feof(f))
8095 			break;
8096 		if (ret != 3) {
8097 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8098 			err = -EINVAL;
8099 			break;
8100 		}
8101 
8102 		err = cb(sym_addr, sym_type, sym_name, ctx);
8103 		if (err)
8104 			break;
8105 	}
8106 
8107 	fclose(f);
8108 	return err;
8109 }
8110 
8111 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8112 		       const char *sym_name, void *ctx)
8113 {
8114 	struct bpf_object *obj = ctx;
8115 	const struct btf_type *t;
8116 	struct extern_desc *ext;
8117 	char *res;
8118 
8119 	res = strstr(sym_name, ".llvm.");
8120 	if (sym_type == 'd' && res)
8121 		ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8122 	else
8123 		ext = find_extern_by_name(obj, sym_name);
8124 	if (!ext || ext->type != EXT_KSYM)
8125 		return 0;
8126 
8127 	t = btf__type_by_id(obj->btf, ext->btf_id);
8128 	if (!btf_is_var(t))
8129 		return 0;
8130 
8131 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8132 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8133 			sym_name, ext->ksym.addr, sym_addr);
8134 		return -EINVAL;
8135 	}
8136 	if (!ext->is_set) {
8137 		ext->is_set = true;
8138 		ext->ksym.addr = sym_addr;
8139 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8140 	}
8141 	return 0;
8142 }
8143 
8144 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8145 {
8146 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8147 }
8148 
8149 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8150 			    __u16 kind, struct btf **res_btf,
8151 			    struct module_btf **res_mod_btf)
8152 {
8153 	struct module_btf *mod_btf;
8154 	struct btf *btf;
8155 	int i, id, err;
8156 
8157 	btf = obj->btf_vmlinux;
8158 	mod_btf = NULL;
8159 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8160 
8161 	if (id == -ENOENT) {
8162 		err = load_module_btfs(obj);
8163 		if (err)
8164 			return err;
8165 
8166 		for (i = 0; i < obj->btf_module_cnt; i++) {
8167 			/* we assume module_btf's BTF FD is always >0 */
8168 			mod_btf = &obj->btf_modules[i];
8169 			btf = mod_btf->btf;
8170 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8171 			if (id != -ENOENT)
8172 				break;
8173 		}
8174 	}
8175 	if (id <= 0)
8176 		return -ESRCH;
8177 
8178 	*res_btf = btf;
8179 	*res_mod_btf = mod_btf;
8180 	return id;
8181 }
8182 
8183 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8184 					       struct extern_desc *ext)
8185 {
8186 	const struct btf_type *targ_var, *targ_type;
8187 	__u32 targ_type_id, local_type_id;
8188 	struct module_btf *mod_btf = NULL;
8189 	const char *targ_var_name;
8190 	struct btf *btf = NULL;
8191 	int id, err;
8192 
8193 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8194 	if (id < 0) {
8195 		if (id == -ESRCH && ext->is_weak)
8196 			return 0;
8197 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8198 			ext->name);
8199 		return id;
8200 	}
8201 
8202 	/* find local type_id */
8203 	local_type_id = ext->ksym.type_id;
8204 
8205 	/* find target type_id */
8206 	targ_var = btf__type_by_id(btf, id);
8207 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8208 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8209 
8210 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8211 					btf, targ_type_id);
8212 	if (err <= 0) {
8213 		const struct btf_type *local_type;
8214 		const char *targ_name, *local_name;
8215 
8216 		local_type = btf__type_by_id(obj->btf, local_type_id);
8217 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8218 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8219 
8220 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8221 			ext->name, local_type_id,
8222 			btf_kind_str(local_type), local_name, targ_type_id,
8223 			btf_kind_str(targ_type), targ_name);
8224 		return -EINVAL;
8225 	}
8226 
8227 	ext->is_set = true;
8228 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8229 	ext->ksym.kernel_btf_id = id;
8230 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8231 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8232 
8233 	return 0;
8234 }
8235 
8236 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8237 						struct extern_desc *ext)
8238 {
8239 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8240 	struct module_btf *mod_btf = NULL;
8241 	const struct btf_type *kern_func;
8242 	struct btf *kern_btf = NULL;
8243 	int ret;
8244 
8245 	local_func_proto_id = ext->ksym.type_id;
8246 
8247 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8248 				    &mod_btf);
8249 	if (kfunc_id < 0) {
8250 		if (kfunc_id == -ESRCH && ext->is_weak)
8251 			return 0;
8252 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8253 			ext->name);
8254 		return kfunc_id;
8255 	}
8256 
8257 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8258 	kfunc_proto_id = kern_func->type;
8259 
8260 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8261 					kern_btf, kfunc_proto_id);
8262 	if (ret <= 0) {
8263 		if (ext->is_weak)
8264 			return 0;
8265 
8266 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8267 			ext->name, local_func_proto_id,
8268 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8269 		return -EINVAL;
8270 	}
8271 
8272 	/* set index for module BTF fd in fd_array, if unset */
8273 	if (mod_btf && !mod_btf->fd_array_idx) {
8274 		/* insn->off is s16 */
8275 		if (obj->fd_array_cnt == INT16_MAX) {
8276 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8277 				ext->name, mod_btf->fd_array_idx);
8278 			return -E2BIG;
8279 		}
8280 		/* Cannot use index 0 for module BTF fd */
8281 		if (!obj->fd_array_cnt)
8282 			obj->fd_array_cnt = 1;
8283 
8284 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8285 					obj->fd_array_cnt + 1);
8286 		if (ret)
8287 			return ret;
8288 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8289 		/* we assume module BTF FD is always >0 */
8290 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8291 	}
8292 
8293 	ext->is_set = true;
8294 	ext->ksym.kernel_btf_id = kfunc_id;
8295 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8296 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8297 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8298 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8299 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8300 	 */
8301 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8302 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8303 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8304 
8305 	return 0;
8306 }
8307 
8308 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8309 {
8310 	const struct btf_type *t;
8311 	struct extern_desc *ext;
8312 	int i, err;
8313 
8314 	for (i = 0; i < obj->nr_extern; i++) {
8315 		ext = &obj->externs[i];
8316 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8317 			continue;
8318 
8319 		if (obj->gen_loader) {
8320 			ext->is_set = true;
8321 			ext->ksym.kernel_btf_obj_fd = 0;
8322 			ext->ksym.kernel_btf_id = 0;
8323 			continue;
8324 		}
8325 		t = btf__type_by_id(obj->btf, ext->btf_id);
8326 		if (btf_is_var(t))
8327 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8328 		else
8329 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8330 		if (err)
8331 			return err;
8332 	}
8333 	return 0;
8334 }
8335 
8336 static int bpf_object__resolve_externs(struct bpf_object *obj,
8337 				       const char *extra_kconfig)
8338 {
8339 	bool need_config = false, need_kallsyms = false;
8340 	bool need_vmlinux_btf = false;
8341 	struct extern_desc *ext;
8342 	void *kcfg_data = NULL;
8343 	int err, i;
8344 
8345 	if (obj->nr_extern == 0)
8346 		return 0;
8347 
8348 	if (obj->kconfig_map_idx >= 0)
8349 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8350 
8351 	for (i = 0; i < obj->nr_extern; i++) {
8352 		ext = &obj->externs[i];
8353 
8354 		if (ext->type == EXT_KSYM) {
8355 			if (ext->ksym.type_id)
8356 				need_vmlinux_btf = true;
8357 			else
8358 				need_kallsyms = true;
8359 			continue;
8360 		} else if (ext->type == EXT_KCFG) {
8361 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8362 			__u64 value = 0;
8363 
8364 			/* Kconfig externs need actual /proc/config.gz */
8365 			if (str_has_pfx(ext->name, "CONFIG_")) {
8366 				need_config = true;
8367 				continue;
8368 			}
8369 
8370 			/* Virtual kcfg externs are customly handled by libbpf */
8371 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8372 				value = get_kernel_version();
8373 				if (!value) {
8374 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8375 					return -EINVAL;
8376 				}
8377 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8378 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8379 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8380 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8381 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8382 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8383 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8384 				 * customly by libbpf (their values don't come from Kconfig).
8385 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8386 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8387 				 * externs.
8388 				 */
8389 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8390 				return -EINVAL;
8391 			}
8392 
8393 			err = set_kcfg_value_num(ext, ext_ptr, value);
8394 			if (err)
8395 				return err;
8396 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8397 				 ext->name, (long long)value);
8398 		} else {
8399 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8400 			return -EINVAL;
8401 		}
8402 	}
8403 	if (need_config && extra_kconfig) {
8404 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8405 		if (err)
8406 			return -EINVAL;
8407 		need_config = false;
8408 		for (i = 0; i < obj->nr_extern; i++) {
8409 			ext = &obj->externs[i];
8410 			if (ext->type == EXT_KCFG && !ext->is_set) {
8411 				need_config = true;
8412 				break;
8413 			}
8414 		}
8415 	}
8416 	if (need_config) {
8417 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8418 		if (err)
8419 			return -EINVAL;
8420 	}
8421 	if (need_kallsyms) {
8422 		err = bpf_object__read_kallsyms_file(obj);
8423 		if (err)
8424 			return -EINVAL;
8425 	}
8426 	if (need_vmlinux_btf) {
8427 		err = bpf_object__resolve_ksyms_btf_id(obj);
8428 		if (err)
8429 			return -EINVAL;
8430 	}
8431 	for (i = 0; i < obj->nr_extern; i++) {
8432 		ext = &obj->externs[i];
8433 
8434 		if (!ext->is_set && !ext->is_weak) {
8435 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8436 			return -ESRCH;
8437 		} else if (!ext->is_set) {
8438 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8439 				 ext->name);
8440 		}
8441 	}
8442 
8443 	return 0;
8444 }
8445 
8446 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8447 {
8448 	struct bpf_struct_ops *st_ops;
8449 	__u32 i;
8450 
8451 	st_ops = map->st_ops;
8452 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8453 		struct bpf_program *prog = st_ops->progs[i];
8454 		void *kern_data;
8455 		int prog_fd;
8456 
8457 		if (!prog)
8458 			continue;
8459 
8460 		prog_fd = bpf_program__fd(prog);
8461 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8462 		*(unsigned long *)kern_data = prog_fd;
8463 	}
8464 }
8465 
8466 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8467 {
8468 	struct bpf_map *map;
8469 	int i;
8470 
8471 	for (i = 0; i < obj->nr_maps; i++) {
8472 		map = &obj->maps[i];
8473 
8474 		if (!bpf_map__is_struct_ops(map))
8475 			continue;
8476 
8477 		if (!map->autocreate)
8478 			continue;
8479 
8480 		bpf_map_prepare_vdata(map);
8481 	}
8482 
8483 	return 0;
8484 }
8485 
8486 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8487 {
8488 	int err, i;
8489 
8490 	if (!obj)
8491 		return libbpf_err(-EINVAL);
8492 
8493 	if (obj->loaded) {
8494 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8495 		return libbpf_err(-EINVAL);
8496 	}
8497 
8498 	if (obj->gen_loader)
8499 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8500 
8501 	err = bpf_object_prepare_token(obj);
8502 	err = err ? : bpf_object__probe_loading(obj);
8503 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8504 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8505 	err = err ? : bpf_object__sanitize_maps(obj);
8506 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8507 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8508 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8509 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8510 	err = err ? : bpf_object__create_maps(obj);
8511 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8512 	err = err ? : bpf_object_init_prog_arrays(obj);
8513 	err = err ? : bpf_object_prepare_struct_ops(obj);
8514 
8515 	if (obj->gen_loader) {
8516 		/* reset FDs */
8517 		if (obj->btf)
8518 			btf__set_fd(obj->btf, -1);
8519 		if (!err)
8520 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8521 	}
8522 
8523 	/* clean up fd_array */
8524 	zfree(&obj->fd_array);
8525 
8526 	/* clean up module BTFs */
8527 	for (i = 0; i < obj->btf_module_cnt; i++) {
8528 		close(obj->btf_modules[i].fd);
8529 		btf__free(obj->btf_modules[i].btf);
8530 		free(obj->btf_modules[i].name);
8531 	}
8532 	free(obj->btf_modules);
8533 
8534 	/* clean up vmlinux BTF */
8535 	btf__free(obj->btf_vmlinux);
8536 	obj->btf_vmlinux = NULL;
8537 
8538 	obj->loaded = true; /* doesn't matter if successfully or not */
8539 
8540 	if (err)
8541 		goto out;
8542 
8543 	return 0;
8544 out:
8545 	/* unpin any maps that were auto-pinned during load */
8546 	for (i = 0; i < obj->nr_maps; i++)
8547 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8548 			bpf_map__unpin(&obj->maps[i], NULL);
8549 
8550 	bpf_object_unload(obj);
8551 	pr_warn("failed to load object '%s'\n", obj->path);
8552 	return libbpf_err(err);
8553 }
8554 
8555 int bpf_object__load(struct bpf_object *obj)
8556 {
8557 	return bpf_object_load(obj, 0, NULL);
8558 }
8559 
8560 static int make_parent_dir(const char *path)
8561 {
8562 	char *cp, errmsg[STRERR_BUFSIZE];
8563 	char *dname, *dir;
8564 	int err = 0;
8565 
8566 	dname = strdup(path);
8567 	if (dname == NULL)
8568 		return -ENOMEM;
8569 
8570 	dir = dirname(dname);
8571 	if (mkdir(dir, 0700) && errno != EEXIST)
8572 		err = -errno;
8573 
8574 	free(dname);
8575 	if (err) {
8576 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8577 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8578 	}
8579 	return err;
8580 }
8581 
8582 static int check_path(const char *path)
8583 {
8584 	char *cp, errmsg[STRERR_BUFSIZE];
8585 	struct statfs st_fs;
8586 	char *dname, *dir;
8587 	int err = 0;
8588 
8589 	if (path == NULL)
8590 		return -EINVAL;
8591 
8592 	dname = strdup(path);
8593 	if (dname == NULL)
8594 		return -ENOMEM;
8595 
8596 	dir = dirname(dname);
8597 	if (statfs(dir, &st_fs)) {
8598 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8599 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8600 		err = -errno;
8601 	}
8602 	free(dname);
8603 
8604 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8605 		pr_warn("specified path %s is not on BPF FS\n", path);
8606 		err = -EINVAL;
8607 	}
8608 
8609 	return err;
8610 }
8611 
8612 int bpf_program__pin(struct bpf_program *prog, const char *path)
8613 {
8614 	char *cp, errmsg[STRERR_BUFSIZE];
8615 	int err;
8616 
8617 	if (prog->fd < 0) {
8618 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8619 		return libbpf_err(-EINVAL);
8620 	}
8621 
8622 	err = make_parent_dir(path);
8623 	if (err)
8624 		return libbpf_err(err);
8625 
8626 	err = check_path(path);
8627 	if (err)
8628 		return libbpf_err(err);
8629 
8630 	if (bpf_obj_pin(prog->fd, path)) {
8631 		err = -errno;
8632 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8633 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8634 		return libbpf_err(err);
8635 	}
8636 
8637 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8638 	return 0;
8639 }
8640 
8641 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8642 {
8643 	int err;
8644 
8645 	if (prog->fd < 0) {
8646 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8647 		return libbpf_err(-EINVAL);
8648 	}
8649 
8650 	err = check_path(path);
8651 	if (err)
8652 		return libbpf_err(err);
8653 
8654 	err = unlink(path);
8655 	if (err)
8656 		return libbpf_err(-errno);
8657 
8658 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8659 	return 0;
8660 }
8661 
8662 int bpf_map__pin(struct bpf_map *map, const char *path)
8663 {
8664 	char *cp, errmsg[STRERR_BUFSIZE];
8665 	int err;
8666 
8667 	if (map == NULL) {
8668 		pr_warn("invalid map pointer\n");
8669 		return libbpf_err(-EINVAL);
8670 	}
8671 
8672 	if (map->fd < 0) {
8673 		pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8674 		return libbpf_err(-EINVAL);
8675 	}
8676 
8677 	if (map->pin_path) {
8678 		if (path && strcmp(path, map->pin_path)) {
8679 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8680 				bpf_map__name(map), map->pin_path, path);
8681 			return libbpf_err(-EINVAL);
8682 		} else if (map->pinned) {
8683 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8684 				 bpf_map__name(map), map->pin_path);
8685 			return 0;
8686 		}
8687 	} else {
8688 		if (!path) {
8689 			pr_warn("missing a path to pin map '%s' at\n",
8690 				bpf_map__name(map));
8691 			return libbpf_err(-EINVAL);
8692 		} else if (map->pinned) {
8693 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8694 			return libbpf_err(-EEXIST);
8695 		}
8696 
8697 		map->pin_path = strdup(path);
8698 		if (!map->pin_path) {
8699 			err = -errno;
8700 			goto out_err;
8701 		}
8702 	}
8703 
8704 	err = make_parent_dir(map->pin_path);
8705 	if (err)
8706 		return libbpf_err(err);
8707 
8708 	err = check_path(map->pin_path);
8709 	if (err)
8710 		return libbpf_err(err);
8711 
8712 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8713 		err = -errno;
8714 		goto out_err;
8715 	}
8716 
8717 	map->pinned = true;
8718 	pr_debug("pinned map '%s'\n", map->pin_path);
8719 
8720 	return 0;
8721 
8722 out_err:
8723 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8724 	pr_warn("failed to pin map: %s\n", cp);
8725 	return libbpf_err(err);
8726 }
8727 
8728 int bpf_map__unpin(struct bpf_map *map, const char *path)
8729 {
8730 	int err;
8731 
8732 	if (map == NULL) {
8733 		pr_warn("invalid map pointer\n");
8734 		return libbpf_err(-EINVAL);
8735 	}
8736 
8737 	if (map->pin_path) {
8738 		if (path && strcmp(path, map->pin_path)) {
8739 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8740 				bpf_map__name(map), map->pin_path, path);
8741 			return libbpf_err(-EINVAL);
8742 		}
8743 		path = map->pin_path;
8744 	} else if (!path) {
8745 		pr_warn("no path to unpin map '%s' from\n",
8746 			bpf_map__name(map));
8747 		return libbpf_err(-EINVAL);
8748 	}
8749 
8750 	err = check_path(path);
8751 	if (err)
8752 		return libbpf_err(err);
8753 
8754 	err = unlink(path);
8755 	if (err != 0)
8756 		return libbpf_err(-errno);
8757 
8758 	map->pinned = false;
8759 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8760 
8761 	return 0;
8762 }
8763 
8764 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8765 {
8766 	char *new = NULL;
8767 
8768 	if (path) {
8769 		new = strdup(path);
8770 		if (!new)
8771 			return libbpf_err(-errno);
8772 	}
8773 
8774 	free(map->pin_path);
8775 	map->pin_path = new;
8776 	return 0;
8777 }
8778 
8779 __alias(bpf_map__pin_path)
8780 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8781 
8782 const char *bpf_map__pin_path(const struct bpf_map *map)
8783 {
8784 	return map->pin_path;
8785 }
8786 
8787 bool bpf_map__is_pinned(const struct bpf_map *map)
8788 {
8789 	return map->pinned;
8790 }
8791 
8792 static void sanitize_pin_path(char *s)
8793 {
8794 	/* bpffs disallows periods in path names */
8795 	while (*s) {
8796 		if (*s == '.')
8797 			*s = '_';
8798 		s++;
8799 	}
8800 }
8801 
8802 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8803 {
8804 	struct bpf_map *map;
8805 	int err;
8806 
8807 	if (!obj)
8808 		return libbpf_err(-ENOENT);
8809 
8810 	if (!obj->loaded) {
8811 		pr_warn("object not yet loaded; load it first\n");
8812 		return libbpf_err(-ENOENT);
8813 	}
8814 
8815 	bpf_object__for_each_map(map, obj) {
8816 		char *pin_path = NULL;
8817 		char buf[PATH_MAX];
8818 
8819 		if (!map->autocreate)
8820 			continue;
8821 
8822 		if (path) {
8823 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8824 			if (err)
8825 				goto err_unpin_maps;
8826 			sanitize_pin_path(buf);
8827 			pin_path = buf;
8828 		} else if (!map->pin_path) {
8829 			continue;
8830 		}
8831 
8832 		err = bpf_map__pin(map, pin_path);
8833 		if (err)
8834 			goto err_unpin_maps;
8835 	}
8836 
8837 	return 0;
8838 
8839 err_unpin_maps:
8840 	while ((map = bpf_object__prev_map(obj, map))) {
8841 		if (!map->pin_path)
8842 			continue;
8843 
8844 		bpf_map__unpin(map, NULL);
8845 	}
8846 
8847 	return libbpf_err(err);
8848 }
8849 
8850 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8851 {
8852 	struct bpf_map *map;
8853 	int err;
8854 
8855 	if (!obj)
8856 		return libbpf_err(-ENOENT);
8857 
8858 	bpf_object__for_each_map(map, obj) {
8859 		char *pin_path = NULL;
8860 		char buf[PATH_MAX];
8861 
8862 		if (path) {
8863 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8864 			if (err)
8865 				return libbpf_err(err);
8866 			sanitize_pin_path(buf);
8867 			pin_path = buf;
8868 		} else if (!map->pin_path) {
8869 			continue;
8870 		}
8871 
8872 		err = bpf_map__unpin(map, pin_path);
8873 		if (err)
8874 			return libbpf_err(err);
8875 	}
8876 
8877 	return 0;
8878 }
8879 
8880 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8881 {
8882 	struct bpf_program *prog;
8883 	char buf[PATH_MAX];
8884 	int err;
8885 
8886 	if (!obj)
8887 		return libbpf_err(-ENOENT);
8888 
8889 	if (!obj->loaded) {
8890 		pr_warn("object not yet loaded; load it first\n");
8891 		return libbpf_err(-ENOENT);
8892 	}
8893 
8894 	bpf_object__for_each_program(prog, obj) {
8895 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8896 		if (err)
8897 			goto err_unpin_programs;
8898 
8899 		err = bpf_program__pin(prog, buf);
8900 		if (err)
8901 			goto err_unpin_programs;
8902 	}
8903 
8904 	return 0;
8905 
8906 err_unpin_programs:
8907 	while ((prog = bpf_object__prev_program(obj, prog))) {
8908 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8909 			continue;
8910 
8911 		bpf_program__unpin(prog, buf);
8912 	}
8913 
8914 	return libbpf_err(err);
8915 }
8916 
8917 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8918 {
8919 	struct bpf_program *prog;
8920 	int err;
8921 
8922 	if (!obj)
8923 		return libbpf_err(-ENOENT);
8924 
8925 	bpf_object__for_each_program(prog, obj) {
8926 		char buf[PATH_MAX];
8927 
8928 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8929 		if (err)
8930 			return libbpf_err(err);
8931 
8932 		err = bpf_program__unpin(prog, buf);
8933 		if (err)
8934 			return libbpf_err(err);
8935 	}
8936 
8937 	return 0;
8938 }
8939 
8940 int bpf_object__pin(struct bpf_object *obj, const char *path)
8941 {
8942 	int err;
8943 
8944 	err = bpf_object__pin_maps(obj, path);
8945 	if (err)
8946 		return libbpf_err(err);
8947 
8948 	err = bpf_object__pin_programs(obj, path);
8949 	if (err) {
8950 		bpf_object__unpin_maps(obj, path);
8951 		return libbpf_err(err);
8952 	}
8953 
8954 	return 0;
8955 }
8956 
8957 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8958 {
8959 	int err;
8960 
8961 	err = bpf_object__unpin_programs(obj, path);
8962 	if (err)
8963 		return libbpf_err(err);
8964 
8965 	err = bpf_object__unpin_maps(obj, path);
8966 	if (err)
8967 		return libbpf_err(err);
8968 
8969 	return 0;
8970 }
8971 
8972 static void bpf_map__destroy(struct bpf_map *map)
8973 {
8974 	if (map->inner_map) {
8975 		bpf_map__destroy(map->inner_map);
8976 		zfree(&map->inner_map);
8977 	}
8978 
8979 	zfree(&map->init_slots);
8980 	map->init_slots_sz = 0;
8981 
8982 	if (map->mmaped && map->mmaped != map->obj->arena_data)
8983 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8984 	map->mmaped = NULL;
8985 
8986 	if (map->st_ops) {
8987 		zfree(&map->st_ops->data);
8988 		zfree(&map->st_ops->progs);
8989 		zfree(&map->st_ops->kern_func_off);
8990 		zfree(&map->st_ops);
8991 	}
8992 
8993 	zfree(&map->name);
8994 	zfree(&map->real_name);
8995 	zfree(&map->pin_path);
8996 
8997 	if (map->fd >= 0)
8998 		zclose(map->fd);
8999 }
9000 
9001 void bpf_object__close(struct bpf_object *obj)
9002 {
9003 	size_t i;
9004 
9005 	if (IS_ERR_OR_NULL(obj))
9006 		return;
9007 
9008 	usdt_manager_free(obj->usdt_man);
9009 	obj->usdt_man = NULL;
9010 
9011 	bpf_gen__free(obj->gen_loader);
9012 	bpf_object__elf_finish(obj);
9013 	bpf_object_unload(obj);
9014 	btf__free(obj->btf);
9015 	btf__free(obj->btf_vmlinux);
9016 	btf_ext__free(obj->btf_ext);
9017 
9018 	for (i = 0; i < obj->nr_maps; i++)
9019 		bpf_map__destroy(&obj->maps[i]);
9020 
9021 	zfree(&obj->btf_custom_path);
9022 	zfree(&obj->kconfig);
9023 
9024 	for (i = 0; i < obj->nr_extern; i++)
9025 		zfree(&obj->externs[i].essent_name);
9026 
9027 	zfree(&obj->externs);
9028 	obj->nr_extern = 0;
9029 
9030 	zfree(&obj->maps);
9031 	obj->nr_maps = 0;
9032 
9033 	if (obj->programs && obj->nr_programs) {
9034 		for (i = 0; i < obj->nr_programs; i++)
9035 			bpf_program__exit(&obj->programs[i]);
9036 	}
9037 	zfree(&obj->programs);
9038 
9039 	zfree(&obj->feat_cache);
9040 	zfree(&obj->token_path);
9041 	if (obj->token_fd > 0)
9042 		close(obj->token_fd);
9043 
9044 	zfree(&obj->arena_data);
9045 
9046 	free(obj);
9047 }
9048 
9049 const char *bpf_object__name(const struct bpf_object *obj)
9050 {
9051 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9052 }
9053 
9054 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9055 {
9056 	return obj ? obj->kern_version : 0;
9057 }
9058 
9059 struct btf *bpf_object__btf(const struct bpf_object *obj)
9060 {
9061 	return obj ? obj->btf : NULL;
9062 }
9063 
9064 int bpf_object__btf_fd(const struct bpf_object *obj)
9065 {
9066 	return obj->btf ? btf__fd(obj->btf) : -1;
9067 }
9068 
9069 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9070 {
9071 	if (obj->loaded)
9072 		return libbpf_err(-EINVAL);
9073 
9074 	obj->kern_version = kern_version;
9075 
9076 	return 0;
9077 }
9078 
9079 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9080 {
9081 	struct bpf_gen *gen;
9082 
9083 	if (!opts)
9084 		return -EFAULT;
9085 	if (!OPTS_VALID(opts, gen_loader_opts))
9086 		return -EINVAL;
9087 	gen = calloc(sizeof(*gen), 1);
9088 	if (!gen)
9089 		return -ENOMEM;
9090 	gen->opts = opts;
9091 	obj->gen_loader = gen;
9092 	return 0;
9093 }
9094 
9095 static struct bpf_program *
9096 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9097 		    bool forward)
9098 {
9099 	size_t nr_programs = obj->nr_programs;
9100 	ssize_t idx;
9101 
9102 	if (!nr_programs)
9103 		return NULL;
9104 
9105 	if (!p)
9106 		/* Iter from the beginning */
9107 		return forward ? &obj->programs[0] :
9108 			&obj->programs[nr_programs - 1];
9109 
9110 	if (p->obj != obj) {
9111 		pr_warn("error: program handler doesn't match object\n");
9112 		return errno = EINVAL, NULL;
9113 	}
9114 
9115 	idx = (p - obj->programs) + (forward ? 1 : -1);
9116 	if (idx >= obj->nr_programs || idx < 0)
9117 		return NULL;
9118 	return &obj->programs[idx];
9119 }
9120 
9121 struct bpf_program *
9122 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9123 {
9124 	struct bpf_program *prog = prev;
9125 
9126 	do {
9127 		prog = __bpf_program__iter(prog, obj, true);
9128 	} while (prog && prog_is_subprog(obj, prog));
9129 
9130 	return prog;
9131 }
9132 
9133 struct bpf_program *
9134 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9135 {
9136 	struct bpf_program *prog = next;
9137 
9138 	do {
9139 		prog = __bpf_program__iter(prog, obj, false);
9140 	} while (prog && prog_is_subprog(obj, prog));
9141 
9142 	return prog;
9143 }
9144 
9145 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9146 {
9147 	prog->prog_ifindex = ifindex;
9148 }
9149 
9150 const char *bpf_program__name(const struct bpf_program *prog)
9151 {
9152 	return prog->name;
9153 }
9154 
9155 const char *bpf_program__section_name(const struct bpf_program *prog)
9156 {
9157 	return prog->sec_name;
9158 }
9159 
9160 bool bpf_program__autoload(const struct bpf_program *prog)
9161 {
9162 	return prog->autoload;
9163 }
9164 
9165 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9166 {
9167 	if (prog->obj->loaded)
9168 		return libbpf_err(-EINVAL);
9169 
9170 	prog->autoload = autoload;
9171 	return 0;
9172 }
9173 
9174 bool bpf_program__autoattach(const struct bpf_program *prog)
9175 {
9176 	return prog->autoattach;
9177 }
9178 
9179 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9180 {
9181 	prog->autoattach = autoattach;
9182 }
9183 
9184 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9185 {
9186 	return prog->insns;
9187 }
9188 
9189 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9190 {
9191 	return prog->insns_cnt;
9192 }
9193 
9194 int bpf_program__set_insns(struct bpf_program *prog,
9195 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9196 {
9197 	struct bpf_insn *insns;
9198 
9199 	if (prog->obj->loaded)
9200 		return -EBUSY;
9201 
9202 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9203 	/* NULL is a valid return from reallocarray if the new count is zero */
9204 	if (!insns && new_insn_cnt) {
9205 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9206 		return -ENOMEM;
9207 	}
9208 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9209 
9210 	prog->insns = insns;
9211 	prog->insns_cnt = new_insn_cnt;
9212 	return 0;
9213 }
9214 
9215 int bpf_program__fd(const struct bpf_program *prog)
9216 {
9217 	if (!prog)
9218 		return libbpf_err(-EINVAL);
9219 
9220 	if (prog->fd < 0)
9221 		return libbpf_err(-ENOENT);
9222 
9223 	return prog->fd;
9224 }
9225 
9226 __alias(bpf_program__type)
9227 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9228 
9229 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9230 {
9231 	return prog->type;
9232 }
9233 
9234 static size_t custom_sec_def_cnt;
9235 static struct bpf_sec_def *custom_sec_defs;
9236 static struct bpf_sec_def custom_fallback_def;
9237 static bool has_custom_fallback_def;
9238 static int last_custom_sec_def_handler_id;
9239 
9240 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9241 {
9242 	if (prog->obj->loaded)
9243 		return libbpf_err(-EBUSY);
9244 
9245 	/* if type is not changed, do nothing */
9246 	if (prog->type == type)
9247 		return 0;
9248 
9249 	prog->type = type;
9250 
9251 	/* If a program type was changed, we need to reset associated SEC()
9252 	 * handler, as it will be invalid now. The only exception is a generic
9253 	 * fallback handler, which by definition is program type-agnostic and
9254 	 * is a catch-all custom handler, optionally set by the application,
9255 	 * so should be able to handle any type of BPF program.
9256 	 */
9257 	if (prog->sec_def != &custom_fallback_def)
9258 		prog->sec_def = NULL;
9259 	return 0;
9260 }
9261 
9262 __alias(bpf_program__expected_attach_type)
9263 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9264 
9265 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9266 {
9267 	return prog->expected_attach_type;
9268 }
9269 
9270 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9271 					   enum bpf_attach_type type)
9272 {
9273 	if (prog->obj->loaded)
9274 		return libbpf_err(-EBUSY);
9275 
9276 	prog->expected_attach_type = type;
9277 	return 0;
9278 }
9279 
9280 __u32 bpf_program__flags(const struct bpf_program *prog)
9281 {
9282 	return prog->prog_flags;
9283 }
9284 
9285 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9286 {
9287 	if (prog->obj->loaded)
9288 		return libbpf_err(-EBUSY);
9289 
9290 	prog->prog_flags = flags;
9291 	return 0;
9292 }
9293 
9294 __u32 bpf_program__log_level(const struct bpf_program *prog)
9295 {
9296 	return prog->log_level;
9297 }
9298 
9299 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9300 {
9301 	if (prog->obj->loaded)
9302 		return libbpf_err(-EBUSY);
9303 
9304 	prog->log_level = log_level;
9305 	return 0;
9306 }
9307 
9308 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9309 {
9310 	*log_size = prog->log_size;
9311 	return prog->log_buf;
9312 }
9313 
9314 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9315 {
9316 	if (log_size && !log_buf)
9317 		return -EINVAL;
9318 	if (prog->log_size > UINT_MAX)
9319 		return -EINVAL;
9320 	if (prog->obj->loaded)
9321 		return -EBUSY;
9322 
9323 	prog->log_buf = log_buf;
9324 	prog->log_size = log_size;
9325 	return 0;
9326 }
9327 
9328 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9329 	.sec = (char *)sec_pfx,						    \
9330 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9331 	.expected_attach_type = atype,					    \
9332 	.cookie = (long)(flags),					    \
9333 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9334 	__VA_ARGS__							    \
9335 }
9336 
9337 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9338 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9339 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9340 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9341 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9342 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9343 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9344 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9345 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9346 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9347 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9348 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9349 
9350 static const struct bpf_sec_def section_defs[] = {
9351 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9352 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9353 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9354 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9355 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9356 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9357 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9358 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9359 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9360 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9361 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9362 	SEC_DEF("kprobe.session+",	KPROBE,	BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9363 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9364 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9365 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9366 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9367 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9368 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9369 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9370 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9371 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9372 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9373 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9374 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9375 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9376 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9377 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9378 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9379 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9380 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9381 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9382 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9383 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9384 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9385 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9386 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9387 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9388 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9389 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9390 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9391 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9392 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9393 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9394 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9395 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9396 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9397 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9398 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9399 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9400 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9401 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9402 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9403 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9404 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9405 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9406 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9407 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9408 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9409 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9410 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9411 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9412 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9413 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9414 	SEC_DEF("sk_skb/verdict",	SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9415 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9416 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9417 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9418 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9419 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9420 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9421 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9422 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9423 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9424 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9425 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9426 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9427 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9428 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9429 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9430 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9431 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9432 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9433 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9434 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9435 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9436 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9437 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9438 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9439 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9440 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9441 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9442 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9443 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9444 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9445 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9446 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9447 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9448 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9449 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9450 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9451 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9452 };
9453 
9454 int libbpf_register_prog_handler(const char *sec,
9455 				 enum bpf_prog_type prog_type,
9456 				 enum bpf_attach_type exp_attach_type,
9457 				 const struct libbpf_prog_handler_opts *opts)
9458 {
9459 	struct bpf_sec_def *sec_def;
9460 
9461 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9462 		return libbpf_err(-EINVAL);
9463 
9464 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9465 		return libbpf_err(-E2BIG);
9466 
9467 	if (sec) {
9468 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9469 					      sizeof(*sec_def));
9470 		if (!sec_def)
9471 			return libbpf_err(-ENOMEM);
9472 
9473 		custom_sec_defs = sec_def;
9474 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9475 	} else {
9476 		if (has_custom_fallback_def)
9477 			return libbpf_err(-EBUSY);
9478 
9479 		sec_def = &custom_fallback_def;
9480 	}
9481 
9482 	sec_def->sec = sec ? strdup(sec) : NULL;
9483 	if (sec && !sec_def->sec)
9484 		return libbpf_err(-ENOMEM);
9485 
9486 	sec_def->prog_type = prog_type;
9487 	sec_def->expected_attach_type = exp_attach_type;
9488 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9489 
9490 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9491 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9492 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9493 
9494 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9495 
9496 	if (sec)
9497 		custom_sec_def_cnt++;
9498 	else
9499 		has_custom_fallback_def = true;
9500 
9501 	return sec_def->handler_id;
9502 }
9503 
9504 int libbpf_unregister_prog_handler(int handler_id)
9505 {
9506 	struct bpf_sec_def *sec_defs;
9507 	int i;
9508 
9509 	if (handler_id <= 0)
9510 		return libbpf_err(-EINVAL);
9511 
9512 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9513 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9514 		has_custom_fallback_def = false;
9515 		return 0;
9516 	}
9517 
9518 	for (i = 0; i < custom_sec_def_cnt; i++) {
9519 		if (custom_sec_defs[i].handler_id == handler_id)
9520 			break;
9521 	}
9522 
9523 	if (i == custom_sec_def_cnt)
9524 		return libbpf_err(-ENOENT);
9525 
9526 	free(custom_sec_defs[i].sec);
9527 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9528 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9529 	custom_sec_def_cnt--;
9530 
9531 	/* try to shrink the array, but it's ok if we couldn't */
9532 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9533 	/* if new count is zero, reallocarray can return a valid NULL result;
9534 	 * in this case the previous pointer will be freed, so we *have to*
9535 	 * reassign old pointer to the new value (even if it's NULL)
9536 	 */
9537 	if (sec_defs || custom_sec_def_cnt == 0)
9538 		custom_sec_defs = sec_defs;
9539 
9540 	return 0;
9541 }
9542 
9543 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9544 {
9545 	size_t len = strlen(sec_def->sec);
9546 
9547 	/* "type/" always has to have proper SEC("type/extras") form */
9548 	if (sec_def->sec[len - 1] == '/') {
9549 		if (str_has_pfx(sec_name, sec_def->sec))
9550 			return true;
9551 		return false;
9552 	}
9553 
9554 	/* "type+" means it can be either exact SEC("type") or
9555 	 * well-formed SEC("type/extras") with proper '/' separator
9556 	 */
9557 	if (sec_def->sec[len - 1] == '+') {
9558 		len--;
9559 		/* not even a prefix */
9560 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9561 			return false;
9562 		/* exact match or has '/' separator */
9563 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9564 			return true;
9565 		return false;
9566 	}
9567 
9568 	return strcmp(sec_name, sec_def->sec) == 0;
9569 }
9570 
9571 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9572 {
9573 	const struct bpf_sec_def *sec_def;
9574 	int i, n;
9575 
9576 	n = custom_sec_def_cnt;
9577 	for (i = 0; i < n; i++) {
9578 		sec_def = &custom_sec_defs[i];
9579 		if (sec_def_matches(sec_def, sec_name))
9580 			return sec_def;
9581 	}
9582 
9583 	n = ARRAY_SIZE(section_defs);
9584 	for (i = 0; i < n; i++) {
9585 		sec_def = &section_defs[i];
9586 		if (sec_def_matches(sec_def, sec_name))
9587 			return sec_def;
9588 	}
9589 
9590 	if (has_custom_fallback_def)
9591 		return &custom_fallback_def;
9592 
9593 	return NULL;
9594 }
9595 
9596 #define MAX_TYPE_NAME_SIZE 32
9597 
9598 static char *libbpf_get_type_names(bool attach_type)
9599 {
9600 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9601 	char *buf;
9602 
9603 	buf = malloc(len);
9604 	if (!buf)
9605 		return NULL;
9606 
9607 	buf[0] = '\0';
9608 	/* Forge string buf with all available names */
9609 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9610 		const struct bpf_sec_def *sec_def = &section_defs[i];
9611 
9612 		if (attach_type) {
9613 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9614 				continue;
9615 
9616 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9617 				continue;
9618 		}
9619 
9620 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9621 			free(buf);
9622 			return NULL;
9623 		}
9624 		strcat(buf, " ");
9625 		strcat(buf, section_defs[i].sec);
9626 	}
9627 
9628 	return buf;
9629 }
9630 
9631 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9632 			     enum bpf_attach_type *expected_attach_type)
9633 {
9634 	const struct bpf_sec_def *sec_def;
9635 	char *type_names;
9636 
9637 	if (!name)
9638 		return libbpf_err(-EINVAL);
9639 
9640 	sec_def = find_sec_def(name);
9641 	if (sec_def) {
9642 		*prog_type = sec_def->prog_type;
9643 		*expected_attach_type = sec_def->expected_attach_type;
9644 		return 0;
9645 	}
9646 
9647 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9648 	type_names = libbpf_get_type_names(false);
9649 	if (type_names != NULL) {
9650 		pr_debug("supported section(type) names are:%s\n", type_names);
9651 		free(type_names);
9652 	}
9653 
9654 	return libbpf_err(-ESRCH);
9655 }
9656 
9657 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9658 {
9659 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9660 		return NULL;
9661 
9662 	return attach_type_name[t];
9663 }
9664 
9665 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9666 {
9667 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9668 		return NULL;
9669 
9670 	return link_type_name[t];
9671 }
9672 
9673 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9674 {
9675 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9676 		return NULL;
9677 
9678 	return map_type_name[t];
9679 }
9680 
9681 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9682 {
9683 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9684 		return NULL;
9685 
9686 	return prog_type_name[t];
9687 }
9688 
9689 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9690 						     int sec_idx,
9691 						     size_t offset)
9692 {
9693 	struct bpf_map *map;
9694 	size_t i;
9695 
9696 	for (i = 0; i < obj->nr_maps; i++) {
9697 		map = &obj->maps[i];
9698 		if (!bpf_map__is_struct_ops(map))
9699 			continue;
9700 		if (map->sec_idx == sec_idx &&
9701 		    map->sec_offset <= offset &&
9702 		    offset - map->sec_offset < map->def.value_size)
9703 			return map;
9704 	}
9705 
9706 	return NULL;
9707 }
9708 
9709 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9710  * st_ops->data for shadow type.
9711  */
9712 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9713 					    Elf64_Shdr *shdr, Elf_Data *data)
9714 {
9715 	const struct btf_member *member;
9716 	struct bpf_struct_ops *st_ops;
9717 	struct bpf_program *prog;
9718 	unsigned int shdr_idx;
9719 	const struct btf *btf;
9720 	struct bpf_map *map;
9721 	unsigned int moff, insn_idx;
9722 	const char *name;
9723 	__u32 member_idx;
9724 	Elf64_Sym *sym;
9725 	Elf64_Rel *rel;
9726 	int i, nrels;
9727 
9728 	btf = obj->btf;
9729 	nrels = shdr->sh_size / shdr->sh_entsize;
9730 	for (i = 0; i < nrels; i++) {
9731 		rel = elf_rel_by_idx(data, i);
9732 		if (!rel) {
9733 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9734 			return -LIBBPF_ERRNO__FORMAT;
9735 		}
9736 
9737 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9738 		if (!sym) {
9739 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9740 				(size_t)ELF64_R_SYM(rel->r_info));
9741 			return -LIBBPF_ERRNO__FORMAT;
9742 		}
9743 
9744 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9745 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9746 		if (!map) {
9747 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9748 				(size_t)rel->r_offset);
9749 			return -EINVAL;
9750 		}
9751 
9752 		moff = rel->r_offset - map->sec_offset;
9753 		shdr_idx = sym->st_shndx;
9754 		st_ops = map->st_ops;
9755 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9756 			 map->name,
9757 			 (long long)(rel->r_info >> 32),
9758 			 (long long)sym->st_value,
9759 			 shdr_idx, (size_t)rel->r_offset,
9760 			 map->sec_offset, sym->st_name, name);
9761 
9762 		if (shdr_idx >= SHN_LORESERVE) {
9763 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9764 				map->name, (size_t)rel->r_offset, shdr_idx);
9765 			return -LIBBPF_ERRNO__RELOC;
9766 		}
9767 		if (sym->st_value % BPF_INSN_SZ) {
9768 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9769 				map->name, (unsigned long long)sym->st_value);
9770 			return -LIBBPF_ERRNO__FORMAT;
9771 		}
9772 		insn_idx = sym->st_value / BPF_INSN_SZ;
9773 
9774 		member = find_member_by_offset(st_ops->type, moff * 8);
9775 		if (!member) {
9776 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9777 				map->name, moff);
9778 			return -EINVAL;
9779 		}
9780 		member_idx = member - btf_members(st_ops->type);
9781 		name = btf__name_by_offset(btf, member->name_off);
9782 
9783 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9784 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9785 				map->name, name);
9786 			return -EINVAL;
9787 		}
9788 
9789 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9790 		if (!prog) {
9791 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9792 				map->name, shdr_idx, name);
9793 			return -EINVAL;
9794 		}
9795 
9796 		/* prevent the use of BPF prog with invalid type */
9797 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9798 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9799 				map->name, prog->name);
9800 			return -EINVAL;
9801 		}
9802 
9803 		st_ops->progs[member_idx] = prog;
9804 
9805 		/* st_ops->data will be exposed to users, being returned by
9806 		 * bpf_map__initial_value() as a pointer to the shadow
9807 		 * type. All function pointers in the original struct type
9808 		 * should be converted to a pointer to struct bpf_program
9809 		 * in the shadow type.
9810 		 */
9811 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9812 	}
9813 
9814 	return 0;
9815 }
9816 
9817 #define BTF_TRACE_PREFIX "btf_trace_"
9818 #define BTF_LSM_PREFIX "bpf_lsm_"
9819 #define BTF_ITER_PREFIX "bpf_iter_"
9820 #define BTF_MAX_NAME_SIZE 128
9821 
9822 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9823 				const char **prefix, int *kind)
9824 {
9825 	switch (attach_type) {
9826 	case BPF_TRACE_RAW_TP:
9827 		*prefix = BTF_TRACE_PREFIX;
9828 		*kind = BTF_KIND_TYPEDEF;
9829 		break;
9830 	case BPF_LSM_MAC:
9831 	case BPF_LSM_CGROUP:
9832 		*prefix = BTF_LSM_PREFIX;
9833 		*kind = BTF_KIND_FUNC;
9834 		break;
9835 	case BPF_TRACE_ITER:
9836 		*prefix = BTF_ITER_PREFIX;
9837 		*kind = BTF_KIND_FUNC;
9838 		break;
9839 	default:
9840 		*prefix = "";
9841 		*kind = BTF_KIND_FUNC;
9842 	}
9843 }
9844 
9845 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9846 				   const char *name, __u32 kind)
9847 {
9848 	char btf_type_name[BTF_MAX_NAME_SIZE];
9849 	int ret;
9850 
9851 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9852 		       "%s%s", prefix, name);
9853 	/* snprintf returns the number of characters written excluding the
9854 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9855 	 * indicates truncation.
9856 	 */
9857 	if (ret < 0 || ret >= sizeof(btf_type_name))
9858 		return -ENAMETOOLONG;
9859 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9860 }
9861 
9862 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9863 				     enum bpf_attach_type attach_type)
9864 {
9865 	const char *prefix;
9866 	int kind;
9867 
9868 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9869 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9870 }
9871 
9872 int libbpf_find_vmlinux_btf_id(const char *name,
9873 			       enum bpf_attach_type attach_type)
9874 {
9875 	struct btf *btf;
9876 	int err;
9877 
9878 	btf = btf__load_vmlinux_btf();
9879 	err = libbpf_get_error(btf);
9880 	if (err) {
9881 		pr_warn("vmlinux BTF is not found\n");
9882 		return libbpf_err(err);
9883 	}
9884 
9885 	err = find_attach_btf_id(btf, name, attach_type);
9886 	if (err <= 0)
9887 		pr_warn("%s is not found in vmlinux BTF\n", name);
9888 
9889 	btf__free(btf);
9890 	return libbpf_err(err);
9891 }
9892 
9893 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9894 {
9895 	struct bpf_prog_info info;
9896 	__u32 info_len = sizeof(info);
9897 	struct btf *btf;
9898 	int err;
9899 
9900 	memset(&info, 0, info_len);
9901 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9902 	if (err) {
9903 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9904 			attach_prog_fd, err);
9905 		return err;
9906 	}
9907 
9908 	err = -EINVAL;
9909 	if (!info.btf_id) {
9910 		pr_warn("The target program doesn't have BTF\n");
9911 		goto out;
9912 	}
9913 	btf = btf__load_from_kernel_by_id(info.btf_id);
9914 	err = libbpf_get_error(btf);
9915 	if (err) {
9916 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9917 		goto out;
9918 	}
9919 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9920 	btf__free(btf);
9921 	if (err <= 0) {
9922 		pr_warn("%s is not found in prog's BTF\n", name);
9923 		goto out;
9924 	}
9925 out:
9926 	return err;
9927 }
9928 
9929 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9930 			      enum bpf_attach_type attach_type,
9931 			      int *btf_obj_fd, int *btf_type_id)
9932 {
9933 	int ret, i, mod_len;
9934 	const char *fn_name, *mod_name = NULL;
9935 
9936 	fn_name = strchr(attach_name, ':');
9937 	if (fn_name) {
9938 		mod_name = attach_name;
9939 		mod_len = fn_name - mod_name;
9940 		fn_name++;
9941 	}
9942 
9943 	if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
9944 		ret = find_attach_btf_id(obj->btf_vmlinux,
9945 					 mod_name ? fn_name : attach_name,
9946 					 attach_type);
9947 		if (ret > 0) {
9948 			*btf_obj_fd = 0; /* vmlinux BTF */
9949 			*btf_type_id = ret;
9950 			return 0;
9951 		}
9952 		if (ret != -ENOENT)
9953 			return ret;
9954 	}
9955 
9956 	ret = load_module_btfs(obj);
9957 	if (ret)
9958 		return ret;
9959 
9960 	for (i = 0; i < obj->btf_module_cnt; i++) {
9961 		const struct module_btf *mod = &obj->btf_modules[i];
9962 
9963 		if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
9964 			continue;
9965 
9966 		ret = find_attach_btf_id(mod->btf,
9967 					 mod_name ? fn_name : attach_name,
9968 					 attach_type);
9969 		if (ret > 0) {
9970 			*btf_obj_fd = mod->fd;
9971 			*btf_type_id = ret;
9972 			return 0;
9973 		}
9974 		if (ret == -ENOENT)
9975 			continue;
9976 
9977 		return ret;
9978 	}
9979 
9980 	return -ESRCH;
9981 }
9982 
9983 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9984 				     int *btf_obj_fd, int *btf_type_id)
9985 {
9986 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9987 	__u32 attach_prog_fd = prog->attach_prog_fd;
9988 	int err = 0;
9989 
9990 	/* BPF program's BTF ID */
9991 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9992 		if (!attach_prog_fd) {
9993 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9994 			return -EINVAL;
9995 		}
9996 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9997 		if (err < 0) {
9998 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9999 				 prog->name, attach_prog_fd, attach_name, err);
10000 			return err;
10001 		}
10002 		*btf_obj_fd = 0;
10003 		*btf_type_id = err;
10004 		return 0;
10005 	}
10006 
10007 	/* kernel/module BTF ID */
10008 	if (prog->obj->gen_loader) {
10009 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10010 		*btf_obj_fd = 0;
10011 		*btf_type_id = 1;
10012 	} else {
10013 		err = find_kernel_btf_id(prog->obj, attach_name,
10014 					 attach_type, btf_obj_fd,
10015 					 btf_type_id);
10016 	}
10017 	if (err) {
10018 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
10019 			prog->name, attach_name, err);
10020 		return err;
10021 	}
10022 	return 0;
10023 }
10024 
10025 int libbpf_attach_type_by_name(const char *name,
10026 			       enum bpf_attach_type *attach_type)
10027 {
10028 	char *type_names;
10029 	const struct bpf_sec_def *sec_def;
10030 
10031 	if (!name)
10032 		return libbpf_err(-EINVAL);
10033 
10034 	sec_def = find_sec_def(name);
10035 	if (!sec_def) {
10036 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10037 		type_names = libbpf_get_type_names(true);
10038 		if (type_names != NULL) {
10039 			pr_debug("attachable section(type) names are:%s\n", type_names);
10040 			free(type_names);
10041 		}
10042 
10043 		return libbpf_err(-EINVAL);
10044 	}
10045 
10046 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10047 		return libbpf_err(-EINVAL);
10048 	if (!(sec_def->cookie & SEC_ATTACHABLE))
10049 		return libbpf_err(-EINVAL);
10050 
10051 	*attach_type = sec_def->expected_attach_type;
10052 	return 0;
10053 }
10054 
10055 int bpf_map__fd(const struct bpf_map *map)
10056 {
10057 	if (!map)
10058 		return libbpf_err(-EINVAL);
10059 	if (!map_is_created(map))
10060 		return -1;
10061 	return map->fd;
10062 }
10063 
10064 static bool map_uses_real_name(const struct bpf_map *map)
10065 {
10066 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
10067 	 * their user-visible name differs from kernel-visible name. Users see
10068 	 * such map's corresponding ELF section name as a map name.
10069 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10070 	 * maps to know which name has to be returned to the user.
10071 	 */
10072 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10073 		return true;
10074 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10075 		return true;
10076 	return false;
10077 }
10078 
10079 const char *bpf_map__name(const struct bpf_map *map)
10080 {
10081 	if (!map)
10082 		return NULL;
10083 
10084 	if (map_uses_real_name(map))
10085 		return map->real_name;
10086 
10087 	return map->name;
10088 }
10089 
10090 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10091 {
10092 	return map->def.type;
10093 }
10094 
10095 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10096 {
10097 	if (map_is_created(map))
10098 		return libbpf_err(-EBUSY);
10099 	map->def.type = type;
10100 	return 0;
10101 }
10102 
10103 __u32 bpf_map__map_flags(const struct bpf_map *map)
10104 {
10105 	return map->def.map_flags;
10106 }
10107 
10108 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10109 {
10110 	if (map_is_created(map))
10111 		return libbpf_err(-EBUSY);
10112 	map->def.map_flags = flags;
10113 	return 0;
10114 }
10115 
10116 __u64 bpf_map__map_extra(const struct bpf_map *map)
10117 {
10118 	return map->map_extra;
10119 }
10120 
10121 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10122 {
10123 	if (map_is_created(map))
10124 		return libbpf_err(-EBUSY);
10125 	map->map_extra = map_extra;
10126 	return 0;
10127 }
10128 
10129 __u32 bpf_map__numa_node(const struct bpf_map *map)
10130 {
10131 	return map->numa_node;
10132 }
10133 
10134 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10135 {
10136 	if (map_is_created(map))
10137 		return libbpf_err(-EBUSY);
10138 	map->numa_node = numa_node;
10139 	return 0;
10140 }
10141 
10142 __u32 bpf_map__key_size(const struct bpf_map *map)
10143 {
10144 	return map->def.key_size;
10145 }
10146 
10147 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10148 {
10149 	if (map_is_created(map))
10150 		return libbpf_err(-EBUSY);
10151 	map->def.key_size = size;
10152 	return 0;
10153 }
10154 
10155 __u32 bpf_map__value_size(const struct bpf_map *map)
10156 {
10157 	return map->def.value_size;
10158 }
10159 
10160 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10161 {
10162 	struct btf *btf;
10163 	struct btf_type *datasec_type, *var_type;
10164 	struct btf_var_secinfo *var;
10165 	const struct btf_type *array_type;
10166 	const struct btf_array *array;
10167 	int vlen, element_sz, new_array_id;
10168 	__u32 nr_elements;
10169 
10170 	/* check btf existence */
10171 	btf = bpf_object__btf(map->obj);
10172 	if (!btf)
10173 		return -ENOENT;
10174 
10175 	/* verify map is datasec */
10176 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10177 	if (!btf_is_datasec(datasec_type)) {
10178 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10179 			bpf_map__name(map));
10180 		return -EINVAL;
10181 	}
10182 
10183 	/* verify datasec has at least one var */
10184 	vlen = btf_vlen(datasec_type);
10185 	if (vlen == 0) {
10186 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10187 			bpf_map__name(map));
10188 		return -EINVAL;
10189 	}
10190 
10191 	/* verify last var in the datasec is an array */
10192 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10193 	var_type = btf_type_by_id(btf, var->type);
10194 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10195 	if (!btf_is_array(array_type)) {
10196 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10197 			bpf_map__name(map));
10198 		return -EINVAL;
10199 	}
10200 
10201 	/* verify request size aligns with array */
10202 	array = btf_array(array_type);
10203 	element_sz = btf__resolve_size(btf, array->type);
10204 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10205 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10206 			bpf_map__name(map), element_sz, size);
10207 		return -EINVAL;
10208 	}
10209 
10210 	/* create a new array based on the existing array, but with new length */
10211 	nr_elements = (size - var->offset) / element_sz;
10212 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10213 	if (new_array_id < 0)
10214 		return new_array_id;
10215 
10216 	/* adding a new btf type invalidates existing pointers to btf objects,
10217 	 * so refresh pointers before proceeding
10218 	 */
10219 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10220 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10221 	var_type = btf_type_by_id(btf, var->type);
10222 
10223 	/* finally update btf info */
10224 	datasec_type->size = size;
10225 	var->size = size - var->offset;
10226 	var_type->type = new_array_id;
10227 
10228 	return 0;
10229 }
10230 
10231 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10232 {
10233 	if (map->obj->loaded || map->reused)
10234 		return libbpf_err(-EBUSY);
10235 
10236 	if (map->mmaped) {
10237 		size_t mmap_old_sz, mmap_new_sz;
10238 		int err;
10239 
10240 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10241 			return -EOPNOTSUPP;
10242 
10243 		mmap_old_sz = bpf_map_mmap_sz(map);
10244 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10245 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10246 		if (err) {
10247 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10248 				bpf_map__name(map), err);
10249 			return err;
10250 		}
10251 		err = map_btf_datasec_resize(map, size);
10252 		if (err && err != -ENOENT) {
10253 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10254 				bpf_map__name(map), err);
10255 			map->btf_value_type_id = 0;
10256 			map->btf_key_type_id = 0;
10257 		}
10258 	}
10259 
10260 	map->def.value_size = size;
10261 	return 0;
10262 }
10263 
10264 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10265 {
10266 	return map ? map->btf_key_type_id : 0;
10267 }
10268 
10269 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10270 {
10271 	return map ? map->btf_value_type_id : 0;
10272 }
10273 
10274 int bpf_map__set_initial_value(struct bpf_map *map,
10275 			       const void *data, size_t size)
10276 {
10277 	size_t actual_sz;
10278 
10279 	if (map->obj->loaded || map->reused)
10280 		return libbpf_err(-EBUSY);
10281 
10282 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10283 		return libbpf_err(-EINVAL);
10284 
10285 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10286 		actual_sz = map->obj->arena_data_sz;
10287 	else
10288 		actual_sz = map->def.value_size;
10289 	if (size != actual_sz)
10290 		return libbpf_err(-EINVAL);
10291 
10292 	memcpy(map->mmaped, data, size);
10293 	return 0;
10294 }
10295 
10296 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10297 {
10298 	if (bpf_map__is_struct_ops(map)) {
10299 		if (psize)
10300 			*psize = map->def.value_size;
10301 		return map->st_ops->data;
10302 	}
10303 
10304 	if (!map->mmaped)
10305 		return NULL;
10306 
10307 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10308 		*psize = map->obj->arena_data_sz;
10309 	else
10310 		*psize = map->def.value_size;
10311 
10312 	return map->mmaped;
10313 }
10314 
10315 bool bpf_map__is_internal(const struct bpf_map *map)
10316 {
10317 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10318 }
10319 
10320 __u32 bpf_map__ifindex(const struct bpf_map *map)
10321 {
10322 	return map->map_ifindex;
10323 }
10324 
10325 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10326 {
10327 	if (map_is_created(map))
10328 		return libbpf_err(-EBUSY);
10329 	map->map_ifindex = ifindex;
10330 	return 0;
10331 }
10332 
10333 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10334 {
10335 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10336 		pr_warn("error: unsupported map type\n");
10337 		return libbpf_err(-EINVAL);
10338 	}
10339 	if (map->inner_map_fd != -1) {
10340 		pr_warn("error: inner_map_fd already specified\n");
10341 		return libbpf_err(-EINVAL);
10342 	}
10343 	if (map->inner_map) {
10344 		bpf_map__destroy(map->inner_map);
10345 		zfree(&map->inner_map);
10346 	}
10347 	map->inner_map_fd = fd;
10348 	return 0;
10349 }
10350 
10351 static struct bpf_map *
10352 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10353 {
10354 	ssize_t idx;
10355 	struct bpf_map *s, *e;
10356 
10357 	if (!obj || !obj->maps)
10358 		return errno = EINVAL, NULL;
10359 
10360 	s = obj->maps;
10361 	e = obj->maps + obj->nr_maps;
10362 
10363 	if ((m < s) || (m >= e)) {
10364 		pr_warn("error in %s: map handler doesn't belong to object\n",
10365 			 __func__);
10366 		return errno = EINVAL, NULL;
10367 	}
10368 
10369 	idx = (m - obj->maps) + i;
10370 	if (idx >= obj->nr_maps || idx < 0)
10371 		return NULL;
10372 	return &obj->maps[idx];
10373 }
10374 
10375 struct bpf_map *
10376 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10377 {
10378 	if (prev == NULL && obj != NULL)
10379 		return obj->maps;
10380 
10381 	return __bpf_map__iter(prev, obj, 1);
10382 }
10383 
10384 struct bpf_map *
10385 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10386 {
10387 	if (next == NULL && obj != NULL) {
10388 		if (!obj->nr_maps)
10389 			return NULL;
10390 		return obj->maps + obj->nr_maps - 1;
10391 	}
10392 
10393 	return __bpf_map__iter(next, obj, -1);
10394 }
10395 
10396 struct bpf_map *
10397 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10398 {
10399 	struct bpf_map *pos;
10400 
10401 	bpf_object__for_each_map(pos, obj) {
10402 		/* if it's a special internal map name (which always starts
10403 		 * with dot) then check if that special name matches the
10404 		 * real map name (ELF section name)
10405 		 */
10406 		if (name[0] == '.') {
10407 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10408 				return pos;
10409 			continue;
10410 		}
10411 		/* otherwise map name has to be an exact match */
10412 		if (map_uses_real_name(pos)) {
10413 			if (strcmp(pos->real_name, name) == 0)
10414 				return pos;
10415 			continue;
10416 		}
10417 		if (strcmp(pos->name, name) == 0)
10418 			return pos;
10419 	}
10420 	return errno = ENOENT, NULL;
10421 }
10422 
10423 int
10424 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10425 {
10426 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10427 }
10428 
10429 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10430 			   size_t value_sz, bool check_value_sz)
10431 {
10432 	if (!map_is_created(map)) /* map is not yet created */
10433 		return -ENOENT;
10434 
10435 	if (map->def.key_size != key_sz) {
10436 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10437 			map->name, key_sz, map->def.key_size);
10438 		return -EINVAL;
10439 	}
10440 
10441 	if (map->fd < 0) {
10442 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10443 		return -EINVAL;
10444 	}
10445 
10446 	if (!check_value_sz)
10447 		return 0;
10448 
10449 	switch (map->def.type) {
10450 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10451 	case BPF_MAP_TYPE_PERCPU_HASH:
10452 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10453 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10454 		int num_cpu = libbpf_num_possible_cpus();
10455 		size_t elem_sz = roundup(map->def.value_size, 8);
10456 
10457 		if (value_sz != num_cpu * elem_sz) {
10458 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10459 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10460 			return -EINVAL;
10461 		}
10462 		break;
10463 	}
10464 	default:
10465 		if (map->def.value_size != value_sz) {
10466 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10467 				map->name, value_sz, map->def.value_size);
10468 			return -EINVAL;
10469 		}
10470 		break;
10471 	}
10472 	return 0;
10473 }
10474 
10475 int bpf_map__lookup_elem(const struct bpf_map *map,
10476 			 const void *key, size_t key_sz,
10477 			 void *value, size_t value_sz, __u64 flags)
10478 {
10479 	int err;
10480 
10481 	err = validate_map_op(map, key_sz, value_sz, true);
10482 	if (err)
10483 		return libbpf_err(err);
10484 
10485 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10486 }
10487 
10488 int bpf_map__update_elem(const struct bpf_map *map,
10489 			 const void *key, size_t key_sz,
10490 			 const void *value, size_t value_sz, __u64 flags)
10491 {
10492 	int err;
10493 
10494 	err = validate_map_op(map, key_sz, value_sz, true);
10495 	if (err)
10496 		return libbpf_err(err);
10497 
10498 	return bpf_map_update_elem(map->fd, key, value, flags);
10499 }
10500 
10501 int bpf_map__delete_elem(const struct bpf_map *map,
10502 			 const void *key, size_t key_sz, __u64 flags)
10503 {
10504 	int err;
10505 
10506 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10507 	if (err)
10508 		return libbpf_err(err);
10509 
10510 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10511 }
10512 
10513 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10514 				    const void *key, size_t key_sz,
10515 				    void *value, size_t value_sz, __u64 flags)
10516 {
10517 	int err;
10518 
10519 	err = validate_map_op(map, key_sz, value_sz, true);
10520 	if (err)
10521 		return libbpf_err(err);
10522 
10523 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10524 }
10525 
10526 int bpf_map__get_next_key(const struct bpf_map *map,
10527 			  const void *cur_key, void *next_key, size_t key_sz)
10528 {
10529 	int err;
10530 
10531 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10532 	if (err)
10533 		return libbpf_err(err);
10534 
10535 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10536 }
10537 
10538 long libbpf_get_error(const void *ptr)
10539 {
10540 	if (!IS_ERR_OR_NULL(ptr))
10541 		return 0;
10542 
10543 	if (IS_ERR(ptr))
10544 		errno = -PTR_ERR(ptr);
10545 
10546 	/* If ptr == NULL, then errno should be already set by the failing
10547 	 * API, because libbpf never returns NULL on success and it now always
10548 	 * sets errno on error. So no extra errno handling for ptr == NULL
10549 	 * case.
10550 	 */
10551 	return -errno;
10552 }
10553 
10554 /* Replace link's underlying BPF program with the new one */
10555 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10556 {
10557 	int ret;
10558 	int prog_fd = bpf_program__fd(prog);
10559 
10560 	if (prog_fd < 0) {
10561 		pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10562 			prog->name);
10563 		return libbpf_err(-EINVAL);
10564 	}
10565 
10566 	ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10567 	return libbpf_err_errno(ret);
10568 }
10569 
10570 /* Release "ownership" of underlying BPF resource (typically, BPF program
10571  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10572  * link, when destructed through bpf_link__destroy() call won't attempt to
10573  * detach/unregisted that BPF resource. This is useful in situations where,
10574  * say, attached BPF program has to outlive userspace program that attached it
10575  * in the system. Depending on type of BPF program, though, there might be
10576  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10577  * exit of userspace program doesn't trigger automatic detachment and clean up
10578  * inside the kernel.
10579  */
10580 void bpf_link__disconnect(struct bpf_link *link)
10581 {
10582 	link->disconnected = true;
10583 }
10584 
10585 int bpf_link__destroy(struct bpf_link *link)
10586 {
10587 	int err = 0;
10588 
10589 	if (IS_ERR_OR_NULL(link))
10590 		return 0;
10591 
10592 	if (!link->disconnected && link->detach)
10593 		err = link->detach(link);
10594 	if (link->pin_path)
10595 		free(link->pin_path);
10596 	if (link->dealloc)
10597 		link->dealloc(link);
10598 	else
10599 		free(link);
10600 
10601 	return libbpf_err(err);
10602 }
10603 
10604 int bpf_link__fd(const struct bpf_link *link)
10605 {
10606 	return link->fd;
10607 }
10608 
10609 const char *bpf_link__pin_path(const struct bpf_link *link)
10610 {
10611 	return link->pin_path;
10612 }
10613 
10614 static int bpf_link__detach_fd(struct bpf_link *link)
10615 {
10616 	return libbpf_err_errno(close(link->fd));
10617 }
10618 
10619 struct bpf_link *bpf_link__open(const char *path)
10620 {
10621 	struct bpf_link *link;
10622 	int fd;
10623 
10624 	fd = bpf_obj_get(path);
10625 	if (fd < 0) {
10626 		fd = -errno;
10627 		pr_warn("failed to open link at %s: %d\n", path, fd);
10628 		return libbpf_err_ptr(fd);
10629 	}
10630 
10631 	link = calloc(1, sizeof(*link));
10632 	if (!link) {
10633 		close(fd);
10634 		return libbpf_err_ptr(-ENOMEM);
10635 	}
10636 	link->detach = &bpf_link__detach_fd;
10637 	link->fd = fd;
10638 
10639 	link->pin_path = strdup(path);
10640 	if (!link->pin_path) {
10641 		bpf_link__destroy(link);
10642 		return libbpf_err_ptr(-ENOMEM);
10643 	}
10644 
10645 	return link;
10646 }
10647 
10648 int bpf_link__detach(struct bpf_link *link)
10649 {
10650 	return bpf_link_detach(link->fd) ? -errno : 0;
10651 }
10652 
10653 int bpf_link__pin(struct bpf_link *link, const char *path)
10654 {
10655 	int err;
10656 
10657 	if (link->pin_path)
10658 		return libbpf_err(-EBUSY);
10659 	err = make_parent_dir(path);
10660 	if (err)
10661 		return libbpf_err(err);
10662 	err = check_path(path);
10663 	if (err)
10664 		return libbpf_err(err);
10665 
10666 	link->pin_path = strdup(path);
10667 	if (!link->pin_path)
10668 		return libbpf_err(-ENOMEM);
10669 
10670 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10671 		err = -errno;
10672 		zfree(&link->pin_path);
10673 		return libbpf_err(err);
10674 	}
10675 
10676 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10677 	return 0;
10678 }
10679 
10680 int bpf_link__unpin(struct bpf_link *link)
10681 {
10682 	int err;
10683 
10684 	if (!link->pin_path)
10685 		return libbpf_err(-EINVAL);
10686 
10687 	err = unlink(link->pin_path);
10688 	if (err != 0)
10689 		return -errno;
10690 
10691 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10692 	zfree(&link->pin_path);
10693 	return 0;
10694 }
10695 
10696 struct bpf_link_perf {
10697 	struct bpf_link link;
10698 	int perf_event_fd;
10699 	/* legacy kprobe support: keep track of probe identifier and type */
10700 	char *legacy_probe_name;
10701 	bool legacy_is_kprobe;
10702 	bool legacy_is_retprobe;
10703 };
10704 
10705 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10706 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10707 
10708 static int bpf_link_perf_detach(struct bpf_link *link)
10709 {
10710 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10711 	int err = 0;
10712 
10713 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10714 		err = -errno;
10715 
10716 	if (perf_link->perf_event_fd != link->fd)
10717 		close(perf_link->perf_event_fd);
10718 	close(link->fd);
10719 
10720 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10721 	if (perf_link->legacy_probe_name) {
10722 		if (perf_link->legacy_is_kprobe) {
10723 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10724 							 perf_link->legacy_is_retprobe);
10725 		} else {
10726 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10727 							 perf_link->legacy_is_retprobe);
10728 		}
10729 	}
10730 
10731 	return err;
10732 }
10733 
10734 static void bpf_link_perf_dealloc(struct bpf_link *link)
10735 {
10736 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10737 
10738 	free(perf_link->legacy_probe_name);
10739 	free(perf_link);
10740 }
10741 
10742 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10743 						     const struct bpf_perf_event_opts *opts)
10744 {
10745 	char errmsg[STRERR_BUFSIZE];
10746 	struct bpf_link_perf *link;
10747 	int prog_fd, link_fd = -1, err;
10748 	bool force_ioctl_attach;
10749 
10750 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10751 		return libbpf_err_ptr(-EINVAL);
10752 
10753 	if (pfd < 0) {
10754 		pr_warn("prog '%s': invalid perf event FD %d\n",
10755 			prog->name, pfd);
10756 		return libbpf_err_ptr(-EINVAL);
10757 	}
10758 	prog_fd = bpf_program__fd(prog);
10759 	if (prog_fd < 0) {
10760 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10761 			prog->name);
10762 		return libbpf_err_ptr(-EINVAL);
10763 	}
10764 
10765 	link = calloc(1, sizeof(*link));
10766 	if (!link)
10767 		return libbpf_err_ptr(-ENOMEM);
10768 	link->link.detach = &bpf_link_perf_detach;
10769 	link->link.dealloc = &bpf_link_perf_dealloc;
10770 	link->perf_event_fd = pfd;
10771 
10772 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10773 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10774 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10775 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10776 
10777 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10778 		if (link_fd < 0) {
10779 			err = -errno;
10780 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10781 				prog->name, pfd,
10782 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10783 			goto err_out;
10784 		}
10785 		link->link.fd = link_fd;
10786 	} else {
10787 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10788 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10789 			err = -EOPNOTSUPP;
10790 			goto err_out;
10791 		}
10792 
10793 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10794 			err = -errno;
10795 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10796 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10797 			if (err == -EPROTO)
10798 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10799 					prog->name, pfd);
10800 			goto err_out;
10801 		}
10802 		link->link.fd = pfd;
10803 	}
10804 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10805 		err = -errno;
10806 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10807 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10808 		goto err_out;
10809 	}
10810 
10811 	return &link->link;
10812 err_out:
10813 	if (link_fd >= 0)
10814 		close(link_fd);
10815 	free(link);
10816 	return libbpf_err_ptr(err);
10817 }
10818 
10819 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10820 {
10821 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10822 }
10823 
10824 /*
10825  * this function is expected to parse integer in the range of [0, 2^31-1] from
10826  * given file using scanf format string fmt. If actual parsed value is
10827  * negative, the result might be indistinguishable from error
10828  */
10829 static int parse_uint_from_file(const char *file, const char *fmt)
10830 {
10831 	char buf[STRERR_BUFSIZE];
10832 	int err, ret;
10833 	FILE *f;
10834 
10835 	f = fopen(file, "re");
10836 	if (!f) {
10837 		err = -errno;
10838 		pr_debug("failed to open '%s': %s\n", file,
10839 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10840 		return err;
10841 	}
10842 	err = fscanf(f, fmt, &ret);
10843 	if (err != 1) {
10844 		err = err == EOF ? -EIO : -errno;
10845 		pr_debug("failed to parse '%s': %s\n", file,
10846 			libbpf_strerror_r(err, buf, sizeof(buf)));
10847 		fclose(f);
10848 		return err;
10849 	}
10850 	fclose(f);
10851 	return ret;
10852 }
10853 
10854 static int determine_kprobe_perf_type(void)
10855 {
10856 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10857 
10858 	return parse_uint_from_file(file, "%d\n");
10859 }
10860 
10861 static int determine_uprobe_perf_type(void)
10862 {
10863 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10864 
10865 	return parse_uint_from_file(file, "%d\n");
10866 }
10867 
10868 static int determine_kprobe_retprobe_bit(void)
10869 {
10870 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10871 
10872 	return parse_uint_from_file(file, "config:%d\n");
10873 }
10874 
10875 static int determine_uprobe_retprobe_bit(void)
10876 {
10877 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10878 
10879 	return parse_uint_from_file(file, "config:%d\n");
10880 }
10881 
10882 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10883 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10884 
10885 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10886 				 uint64_t offset, int pid, size_t ref_ctr_off)
10887 {
10888 	const size_t attr_sz = sizeof(struct perf_event_attr);
10889 	struct perf_event_attr attr;
10890 	char errmsg[STRERR_BUFSIZE];
10891 	int type, pfd;
10892 
10893 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10894 		return -EINVAL;
10895 
10896 	memset(&attr, 0, attr_sz);
10897 
10898 	type = uprobe ? determine_uprobe_perf_type()
10899 		      : determine_kprobe_perf_type();
10900 	if (type < 0) {
10901 		pr_warn("failed to determine %s perf type: %s\n",
10902 			uprobe ? "uprobe" : "kprobe",
10903 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10904 		return type;
10905 	}
10906 	if (retprobe) {
10907 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10908 				 : determine_kprobe_retprobe_bit();
10909 
10910 		if (bit < 0) {
10911 			pr_warn("failed to determine %s retprobe bit: %s\n",
10912 				uprobe ? "uprobe" : "kprobe",
10913 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10914 			return bit;
10915 		}
10916 		attr.config |= 1 << bit;
10917 	}
10918 	attr.size = attr_sz;
10919 	attr.type = type;
10920 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10921 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10922 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10923 
10924 	/* pid filter is meaningful only for uprobes */
10925 	pfd = syscall(__NR_perf_event_open, &attr,
10926 		      pid < 0 ? -1 : pid /* pid */,
10927 		      pid == -1 ? 0 : -1 /* cpu */,
10928 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10929 	return pfd >= 0 ? pfd : -errno;
10930 }
10931 
10932 static int append_to_file(const char *file, const char *fmt, ...)
10933 {
10934 	int fd, n, err = 0;
10935 	va_list ap;
10936 	char buf[1024];
10937 
10938 	va_start(ap, fmt);
10939 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10940 	va_end(ap);
10941 
10942 	if (n < 0 || n >= sizeof(buf))
10943 		return -EINVAL;
10944 
10945 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10946 	if (fd < 0)
10947 		return -errno;
10948 
10949 	if (write(fd, buf, n) < 0)
10950 		err = -errno;
10951 
10952 	close(fd);
10953 	return err;
10954 }
10955 
10956 #define DEBUGFS "/sys/kernel/debug/tracing"
10957 #define TRACEFS "/sys/kernel/tracing"
10958 
10959 static bool use_debugfs(void)
10960 {
10961 	static int has_debugfs = -1;
10962 
10963 	if (has_debugfs < 0)
10964 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10965 
10966 	return has_debugfs == 1;
10967 }
10968 
10969 static const char *tracefs_path(void)
10970 {
10971 	return use_debugfs() ? DEBUGFS : TRACEFS;
10972 }
10973 
10974 static const char *tracefs_kprobe_events(void)
10975 {
10976 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10977 }
10978 
10979 static const char *tracefs_uprobe_events(void)
10980 {
10981 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10982 }
10983 
10984 static const char *tracefs_available_filter_functions(void)
10985 {
10986 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10987 			     : TRACEFS"/available_filter_functions";
10988 }
10989 
10990 static const char *tracefs_available_filter_functions_addrs(void)
10991 {
10992 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10993 			     : TRACEFS"/available_filter_functions_addrs";
10994 }
10995 
10996 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10997 					 const char *kfunc_name, size_t offset)
10998 {
10999 	static int index = 0;
11000 	int i;
11001 
11002 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
11003 		 __sync_fetch_and_add(&index, 1));
11004 
11005 	/* sanitize binary_path in the probe name */
11006 	for (i = 0; buf[i]; i++) {
11007 		if (!isalnum(buf[i]))
11008 			buf[i] = '_';
11009 	}
11010 }
11011 
11012 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11013 				   const char *kfunc_name, size_t offset)
11014 {
11015 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11016 			      retprobe ? 'r' : 'p',
11017 			      retprobe ? "kretprobes" : "kprobes",
11018 			      probe_name, kfunc_name, offset);
11019 }
11020 
11021 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11022 {
11023 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11024 			      retprobe ? "kretprobes" : "kprobes", probe_name);
11025 }
11026 
11027 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11028 {
11029 	char file[256];
11030 
11031 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11032 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11033 
11034 	return parse_uint_from_file(file, "%d\n");
11035 }
11036 
11037 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11038 					 const char *kfunc_name, size_t offset, int pid)
11039 {
11040 	const size_t attr_sz = sizeof(struct perf_event_attr);
11041 	struct perf_event_attr attr;
11042 	char errmsg[STRERR_BUFSIZE];
11043 	int type, pfd, err;
11044 
11045 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11046 	if (err < 0) {
11047 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11048 			kfunc_name, offset,
11049 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11050 		return err;
11051 	}
11052 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11053 	if (type < 0) {
11054 		err = type;
11055 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11056 			kfunc_name, offset,
11057 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11058 		goto err_clean_legacy;
11059 	}
11060 
11061 	memset(&attr, 0, attr_sz);
11062 	attr.size = attr_sz;
11063 	attr.config = type;
11064 	attr.type = PERF_TYPE_TRACEPOINT;
11065 
11066 	pfd = syscall(__NR_perf_event_open, &attr,
11067 		      pid < 0 ? -1 : pid, /* pid */
11068 		      pid == -1 ? 0 : -1, /* cpu */
11069 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11070 	if (pfd < 0) {
11071 		err = -errno;
11072 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11073 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11074 		goto err_clean_legacy;
11075 	}
11076 	return pfd;
11077 
11078 err_clean_legacy:
11079 	/* Clear the newly added legacy kprobe_event */
11080 	remove_kprobe_event_legacy(probe_name, retprobe);
11081 	return err;
11082 }
11083 
11084 static const char *arch_specific_syscall_pfx(void)
11085 {
11086 #if defined(__x86_64__)
11087 	return "x64";
11088 #elif defined(__i386__)
11089 	return "ia32";
11090 #elif defined(__s390x__)
11091 	return "s390x";
11092 #elif defined(__s390__)
11093 	return "s390";
11094 #elif defined(__arm__)
11095 	return "arm";
11096 #elif defined(__aarch64__)
11097 	return "arm64";
11098 #elif defined(__mips__)
11099 	return "mips";
11100 #elif defined(__riscv)
11101 	return "riscv";
11102 #elif defined(__powerpc__)
11103 	return "powerpc";
11104 #elif defined(__powerpc64__)
11105 	return "powerpc64";
11106 #else
11107 	return NULL;
11108 #endif
11109 }
11110 
11111 int probe_kern_syscall_wrapper(int token_fd)
11112 {
11113 	char syscall_name[64];
11114 	const char *ksys_pfx;
11115 
11116 	ksys_pfx = arch_specific_syscall_pfx();
11117 	if (!ksys_pfx)
11118 		return 0;
11119 
11120 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11121 
11122 	if (determine_kprobe_perf_type() >= 0) {
11123 		int pfd;
11124 
11125 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11126 		if (pfd >= 0)
11127 			close(pfd);
11128 
11129 		return pfd >= 0 ? 1 : 0;
11130 	} else { /* legacy mode */
11131 		char probe_name[128];
11132 
11133 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11134 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11135 			return 0;
11136 
11137 		(void)remove_kprobe_event_legacy(probe_name, false);
11138 		return 1;
11139 	}
11140 }
11141 
11142 struct bpf_link *
11143 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11144 				const char *func_name,
11145 				const struct bpf_kprobe_opts *opts)
11146 {
11147 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11148 	enum probe_attach_mode attach_mode;
11149 	char errmsg[STRERR_BUFSIZE];
11150 	char *legacy_probe = NULL;
11151 	struct bpf_link *link;
11152 	size_t offset;
11153 	bool retprobe, legacy;
11154 	int pfd, err;
11155 
11156 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11157 		return libbpf_err_ptr(-EINVAL);
11158 
11159 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11160 	retprobe = OPTS_GET(opts, retprobe, false);
11161 	offset = OPTS_GET(opts, offset, 0);
11162 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11163 
11164 	legacy = determine_kprobe_perf_type() < 0;
11165 	switch (attach_mode) {
11166 	case PROBE_ATTACH_MODE_LEGACY:
11167 		legacy = true;
11168 		pe_opts.force_ioctl_attach = true;
11169 		break;
11170 	case PROBE_ATTACH_MODE_PERF:
11171 		if (legacy)
11172 			return libbpf_err_ptr(-ENOTSUP);
11173 		pe_opts.force_ioctl_attach = true;
11174 		break;
11175 	case PROBE_ATTACH_MODE_LINK:
11176 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11177 			return libbpf_err_ptr(-ENOTSUP);
11178 		break;
11179 	case PROBE_ATTACH_MODE_DEFAULT:
11180 		break;
11181 	default:
11182 		return libbpf_err_ptr(-EINVAL);
11183 	}
11184 
11185 	if (!legacy) {
11186 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11187 					    func_name, offset,
11188 					    -1 /* pid */, 0 /* ref_ctr_off */);
11189 	} else {
11190 		char probe_name[256];
11191 
11192 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11193 					     func_name, offset);
11194 
11195 		legacy_probe = strdup(probe_name);
11196 		if (!legacy_probe)
11197 			return libbpf_err_ptr(-ENOMEM);
11198 
11199 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11200 						    offset, -1 /* pid */);
11201 	}
11202 	if (pfd < 0) {
11203 		err = -errno;
11204 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11205 			prog->name, retprobe ? "kretprobe" : "kprobe",
11206 			func_name, offset,
11207 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11208 		goto err_out;
11209 	}
11210 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11211 	err = libbpf_get_error(link);
11212 	if (err) {
11213 		close(pfd);
11214 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11215 			prog->name, retprobe ? "kretprobe" : "kprobe",
11216 			func_name, offset,
11217 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11218 		goto err_clean_legacy;
11219 	}
11220 	if (legacy) {
11221 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11222 
11223 		perf_link->legacy_probe_name = legacy_probe;
11224 		perf_link->legacy_is_kprobe = true;
11225 		perf_link->legacy_is_retprobe = retprobe;
11226 	}
11227 
11228 	return link;
11229 
11230 err_clean_legacy:
11231 	if (legacy)
11232 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11233 err_out:
11234 	free(legacy_probe);
11235 	return libbpf_err_ptr(err);
11236 }
11237 
11238 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11239 					    bool retprobe,
11240 					    const char *func_name)
11241 {
11242 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11243 		.retprobe = retprobe,
11244 	);
11245 
11246 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11247 }
11248 
11249 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11250 					      const char *syscall_name,
11251 					      const struct bpf_ksyscall_opts *opts)
11252 {
11253 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11254 	char func_name[128];
11255 
11256 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11257 		return libbpf_err_ptr(-EINVAL);
11258 
11259 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11260 		/* arch_specific_syscall_pfx() should never return NULL here
11261 		 * because it is guarded by kernel_supports(). However, since
11262 		 * compiler does not know that we have an explicit conditional
11263 		 * as well.
11264 		 */
11265 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11266 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11267 	} else {
11268 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11269 	}
11270 
11271 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11272 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11273 
11274 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11275 }
11276 
11277 /* Adapted from perf/util/string.c */
11278 bool glob_match(const char *str, const char *pat)
11279 {
11280 	while (*str && *pat && *pat != '*') {
11281 		if (*pat == '?') {      /* Matches any single character */
11282 			str++;
11283 			pat++;
11284 			continue;
11285 		}
11286 		if (*str != *pat)
11287 			return false;
11288 		str++;
11289 		pat++;
11290 	}
11291 	/* Check wild card */
11292 	if (*pat == '*') {
11293 		while (*pat == '*')
11294 			pat++;
11295 		if (!*pat) /* Tail wild card matches all */
11296 			return true;
11297 		while (*str)
11298 			if (glob_match(str++, pat))
11299 				return true;
11300 	}
11301 	return !*str && !*pat;
11302 }
11303 
11304 struct kprobe_multi_resolve {
11305 	const char *pattern;
11306 	unsigned long *addrs;
11307 	size_t cap;
11308 	size_t cnt;
11309 };
11310 
11311 struct avail_kallsyms_data {
11312 	char **syms;
11313 	size_t cnt;
11314 	struct kprobe_multi_resolve *res;
11315 };
11316 
11317 static int avail_func_cmp(const void *a, const void *b)
11318 {
11319 	return strcmp(*(const char **)a, *(const char **)b);
11320 }
11321 
11322 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11323 			     const char *sym_name, void *ctx)
11324 {
11325 	struct avail_kallsyms_data *data = ctx;
11326 	struct kprobe_multi_resolve *res = data->res;
11327 	int err;
11328 
11329 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11330 		return 0;
11331 
11332 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11333 	if (err)
11334 		return err;
11335 
11336 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11337 	return 0;
11338 }
11339 
11340 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11341 {
11342 	const char *available_functions_file = tracefs_available_filter_functions();
11343 	struct avail_kallsyms_data data;
11344 	char sym_name[500];
11345 	FILE *f;
11346 	int err = 0, ret, i;
11347 	char **syms = NULL;
11348 	size_t cap = 0, cnt = 0;
11349 
11350 	f = fopen(available_functions_file, "re");
11351 	if (!f) {
11352 		err = -errno;
11353 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11354 		return err;
11355 	}
11356 
11357 	while (true) {
11358 		char *name;
11359 
11360 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11361 		if (ret == EOF && feof(f))
11362 			break;
11363 
11364 		if (ret != 1) {
11365 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11366 			err = -EINVAL;
11367 			goto cleanup;
11368 		}
11369 
11370 		if (!glob_match(sym_name, res->pattern))
11371 			continue;
11372 
11373 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11374 		if (err)
11375 			goto cleanup;
11376 
11377 		name = strdup(sym_name);
11378 		if (!name) {
11379 			err = -errno;
11380 			goto cleanup;
11381 		}
11382 
11383 		syms[cnt++] = name;
11384 	}
11385 
11386 	/* no entries found, bail out */
11387 	if (cnt == 0) {
11388 		err = -ENOENT;
11389 		goto cleanup;
11390 	}
11391 
11392 	/* sort available functions */
11393 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11394 
11395 	data.syms = syms;
11396 	data.res = res;
11397 	data.cnt = cnt;
11398 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11399 
11400 	if (res->cnt == 0)
11401 		err = -ENOENT;
11402 
11403 cleanup:
11404 	for (i = 0; i < cnt; i++)
11405 		free((char *)syms[i]);
11406 	free(syms);
11407 
11408 	fclose(f);
11409 	return err;
11410 }
11411 
11412 static bool has_available_filter_functions_addrs(void)
11413 {
11414 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11415 }
11416 
11417 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11418 {
11419 	const char *available_path = tracefs_available_filter_functions_addrs();
11420 	char sym_name[500];
11421 	FILE *f;
11422 	int ret, err = 0;
11423 	unsigned long long sym_addr;
11424 
11425 	f = fopen(available_path, "re");
11426 	if (!f) {
11427 		err = -errno;
11428 		pr_warn("failed to open %s: %d\n", available_path, err);
11429 		return err;
11430 	}
11431 
11432 	while (true) {
11433 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11434 		if (ret == EOF && feof(f))
11435 			break;
11436 
11437 		if (ret != 2) {
11438 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11439 				ret);
11440 			err = -EINVAL;
11441 			goto cleanup;
11442 		}
11443 
11444 		if (!glob_match(sym_name, res->pattern))
11445 			continue;
11446 
11447 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11448 					sizeof(*res->addrs), res->cnt + 1);
11449 		if (err)
11450 			goto cleanup;
11451 
11452 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11453 	}
11454 
11455 	if (res->cnt == 0)
11456 		err = -ENOENT;
11457 
11458 cleanup:
11459 	fclose(f);
11460 	return err;
11461 }
11462 
11463 struct bpf_link *
11464 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11465 				      const char *pattern,
11466 				      const struct bpf_kprobe_multi_opts *opts)
11467 {
11468 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11469 	struct kprobe_multi_resolve res = {
11470 		.pattern = pattern,
11471 	};
11472 	enum bpf_attach_type attach_type;
11473 	struct bpf_link *link = NULL;
11474 	char errmsg[STRERR_BUFSIZE];
11475 	const unsigned long *addrs;
11476 	int err, link_fd, prog_fd;
11477 	bool retprobe, session;
11478 	const __u64 *cookies;
11479 	const char **syms;
11480 	size_t cnt;
11481 
11482 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11483 		return libbpf_err_ptr(-EINVAL);
11484 
11485 	prog_fd = bpf_program__fd(prog);
11486 	if (prog_fd < 0) {
11487 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11488 			prog->name);
11489 		return libbpf_err_ptr(-EINVAL);
11490 	}
11491 
11492 	syms    = OPTS_GET(opts, syms, false);
11493 	addrs   = OPTS_GET(opts, addrs, false);
11494 	cnt     = OPTS_GET(opts, cnt, false);
11495 	cookies = OPTS_GET(opts, cookies, false);
11496 
11497 	if (!pattern && !addrs && !syms)
11498 		return libbpf_err_ptr(-EINVAL);
11499 	if (pattern && (addrs || syms || cookies || cnt))
11500 		return libbpf_err_ptr(-EINVAL);
11501 	if (!pattern && !cnt)
11502 		return libbpf_err_ptr(-EINVAL);
11503 	if (addrs && syms)
11504 		return libbpf_err_ptr(-EINVAL);
11505 
11506 	if (pattern) {
11507 		if (has_available_filter_functions_addrs())
11508 			err = libbpf_available_kprobes_parse(&res);
11509 		else
11510 			err = libbpf_available_kallsyms_parse(&res);
11511 		if (err)
11512 			goto error;
11513 		addrs = res.addrs;
11514 		cnt = res.cnt;
11515 	}
11516 
11517 	retprobe = OPTS_GET(opts, retprobe, false);
11518 	session  = OPTS_GET(opts, session, false);
11519 
11520 	if (retprobe && session)
11521 		return libbpf_err_ptr(-EINVAL);
11522 
11523 	attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11524 
11525 	lopts.kprobe_multi.syms = syms;
11526 	lopts.kprobe_multi.addrs = addrs;
11527 	lopts.kprobe_multi.cookies = cookies;
11528 	lopts.kprobe_multi.cnt = cnt;
11529 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11530 
11531 	link = calloc(1, sizeof(*link));
11532 	if (!link) {
11533 		err = -ENOMEM;
11534 		goto error;
11535 	}
11536 	link->detach = &bpf_link__detach_fd;
11537 
11538 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11539 	if (link_fd < 0) {
11540 		err = -errno;
11541 		pr_warn("prog '%s': failed to attach: %s\n",
11542 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11543 		goto error;
11544 	}
11545 	link->fd = link_fd;
11546 	free(res.addrs);
11547 	return link;
11548 
11549 error:
11550 	free(link);
11551 	free(res.addrs);
11552 	return libbpf_err_ptr(err);
11553 }
11554 
11555 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11556 {
11557 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11558 	unsigned long offset = 0;
11559 	const char *func_name;
11560 	char *func;
11561 	int n;
11562 
11563 	*link = NULL;
11564 
11565 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11566 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11567 		return 0;
11568 
11569 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11570 	if (opts.retprobe)
11571 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11572 	else
11573 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11574 
11575 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11576 	if (n < 1) {
11577 		pr_warn("kprobe name is invalid: %s\n", func_name);
11578 		return -EINVAL;
11579 	}
11580 	if (opts.retprobe && offset != 0) {
11581 		free(func);
11582 		pr_warn("kretprobes do not support offset specification\n");
11583 		return -EINVAL;
11584 	}
11585 
11586 	opts.offset = offset;
11587 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11588 	free(func);
11589 	return libbpf_get_error(*link);
11590 }
11591 
11592 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11593 {
11594 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11595 	const char *syscall_name;
11596 
11597 	*link = NULL;
11598 
11599 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11600 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11601 		return 0;
11602 
11603 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11604 	if (opts.retprobe)
11605 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11606 	else
11607 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11608 
11609 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11610 	return *link ? 0 : -errno;
11611 }
11612 
11613 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11614 {
11615 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11616 	const char *spec;
11617 	char *pattern;
11618 	int n;
11619 
11620 	*link = NULL;
11621 
11622 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11623 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11624 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11625 		return 0;
11626 
11627 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11628 	if (opts.retprobe)
11629 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11630 	else
11631 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11632 
11633 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11634 	if (n < 1) {
11635 		pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11636 		return -EINVAL;
11637 	}
11638 
11639 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11640 	free(pattern);
11641 	return libbpf_get_error(*link);
11642 }
11643 
11644 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11645 				 struct bpf_link **link)
11646 {
11647 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11648 	const char *spec;
11649 	char *pattern;
11650 	int n;
11651 
11652 	*link = NULL;
11653 
11654 	/* no auto-attach for SEC("kprobe.session") */
11655 	if (strcmp(prog->sec_name, "kprobe.session") == 0)
11656 		return 0;
11657 
11658 	spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11659 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11660 	if (n < 1) {
11661 		pr_warn("kprobe session pattern is invalid: %s\n", spec);
11662 		return -EINVAL;
11663 	}
11664 
11665 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11666 	free(pattern);
11667 	return *link ? 0 : -errno;
11668 }
11669 
11670 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11671 {
11672 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11673 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11674 	int n, ret = -EINVAL;
11675 
11676 	*link = NULL;
11677 
11678 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11679 		   &probe_type, &binary_path, &func_name);
11680 	switch (n) {
11681 	case 1:
11682 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11683 		ret = 0;
11684 		break;
11685 	case 3:
11686 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11687 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11688 		ret = libbpf_get_error(*link);
11689 		break;
11690 	default:
11691 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11692 			prog->sec_name);
11693 		break;
11694 	}
11695 	free(probe_type);
11696 	free(binary_path);
11697 	free(func_name);
11698 	return ret;
11699 }
11700 
11701 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11702 					 const char *binary_path, uint64_t offset)
11703 {
11704 	int i;
11705 
11706 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11707 
11708 	/* sanitize binary_path in the probe name */
11709 	for (i = 0; buf[i]; i++) {
11710 		if (!isalnum(buf[i]))
11711 			buf[i] = '_';
11712 	}
11713 }
11714 
11715 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11716 					  const char *binary_path, size_t offset)
11717 {
11718 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11719 			      retprobe ? 'r' : 'p',
11720 			      retprobe ? "uretprobes" : "uprobes",
11721 			      probe_name, binary_path, offset);
11722 }
11723 
11724 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11725 {
11726 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11727 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11728 }
11729 
11730 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11731 {
11732 	char file[512];
11733 
11734 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11735 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11736 
11737 	return parse_uint_from_file(file, "%d\n");
11738 }
11739 
11740 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11741 					 const char *binary_path, size_t offset, int pid)
11742 {
11743 	const size_t attr_sz = sizeof(struct perf_event_attr);
11744 	struct perf_event_attr attr;
11745 	int type, pfd, err;
11746 
11747 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11748 	if (err < 0) {
11749 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11750 			binary_path, (size_t)offset, err);
11751 		return err;
11752 	}
11753 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11754 	if (type < 0) {
11755 		err = type;
11756 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11757 			binary_path, offset, err);
11758 		goto err_clean_legacy;
11759 	}
11760 
11761 	memset(&attr, 0, attr_sz);
11762 	attr.size = attr_sz;
11763 	attr.config = type;
11764 	attr.type = PERF_TYPE_TRACEPOINT;
11765 
11766 	pfd = syscall(__NR_perf_event_open, &attr,
11767 		      pid < 0 ? -1 : pid, /* pid */
11768 		      pid == -1 ? 0 : -1, /* cpu */
11769 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11770 	if (pfd < 0) {
11771 		err = -errno;
11772 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11773 		goto err_clean_legacy;
11774 	}
11775 	return pfd;
11776 
11777 err_clean_legacy:
11778 	/* Clear the newly added legacy uprobe_event */
11779 	remove_uprobe_event_legacy(probe_name, retprobe);
11780 	return err;
11781 }
11782 
11783 /* Find offset of function name in archive specified by path. Currently
11784  * supported are .zip files that do not compress their contents, as used on
11785  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11786  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11787  * library functions.
11788  *
11789  * An overview of the APK format specifically provided here:
11790  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11791  */
11792 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11793 					      const char *func_name)
11794 {
11795 	struct zip_archive *archive;
11796 	struct zip_entry entry;
11797 	long ret;
11798 	Elf *elf;
11799 
11800 	archive = zip_archive_open(archive_path);
11801 	if (IS_ERR(archive)) {
11802 		ret = PTR_ERR(archive);
11803 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11804 		return ret;
11805 	}
11806 
11807 	ret = zip_archive_find_entry(archive, file_name, &entry);
11808 	if (ret) {
11809 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11810 			archive_path, ret);
11811 		goto out;
11812 	}
11813 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11814 		 (unsigned long)entry.data_offset);
11815 
11816 	if (entry.compression) {
11817 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11818 			archive_path);
11819 		ret = -LIBBPF_ERRNO__FORMAT;
11820 		goto out;
11821 	}
11822 
11823 	elf = elf_memory((void *)entry.data, entry.data_length);
11824 	if (!elf) {
11825 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11826 			elf_errmsg(-1));
11827 		ret = -LIBBPF_ERRNO__LIBELF;
11828 		goto out;
11829 	}
11830 
11831 	ret = elf_find_func_offset(elf, file_name, func_name);
11832 	if (ret > 0) {
11833 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11834 			 func_name, file_name, archive_path, entry.data_offset, ret,
11835 			 ret + entry.data_offset);
11836 		ret += entry.data_offset;
11837 	}
11838 	elf_end(elf);
11839 
11840 out:
11841 	zip_archive_close(archive);
11842 	return ret;
11843 }
11844 
11845 static const char *arch_specific_lib_paths(void)
11846 {
11847 	/*
11848 	 * Based on https://packages.debian.org/sid/libc6.
11849 	 *
11850 	 * Assume that the traced program is built for the same architecture
11851 	 * as libbpf, which should cover the vast majority of cases.
11852 	 */
11853 #if defined(__x86_64__)
11854 	return "/lib/x86_64-linux-gnu";
11855 #elif defined(__i386__)
11856 	return "/lib/i386-linux-gnu";
11857 #elif defined(__s390x__)
11858 	return "/lib/s390x-linux-gnu";
11859 #elif defined(__s390__)
11860 	return "/lib/s390-linux-gnu";
11861 #elif defined(__arm__) && defined(__SOFTFP__)
11862 	return "/lib/arm-linux-gnueabi";
11863 #elif defined(__arm__) && !defined(__SOFTFP__)
11864 	return "/lib/arm-linux-gnueabihf";
11865 #elif defined(__aarch64__)
11866 	return "/lib/aarch64-linux-gnu";
11867 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11868 	return "/lib/mips64el-linux-gnuabi64";
11869 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11870 	return "/lib/mipsel-linux-gnu";
11871 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11872 	return "/lib/powerpc64le-linux-gnu";
11873 #elif defined(__sparc__) && defined(__arch64__)
11874 	return "/lib/sparc64-linux-gnu";
11875 #elif defined(__riscv) && __riscv_xlen == 64
11876 	return "/lib/riscv64-linux-gnu";
11877 #else
11878 	return NULL;
11879 #endif
11880 }
11881 
11882 /* Get full path to program/shared library. */
11883 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11884 {
11885 	const char *search_paths[3] = {};
11886 	int i, perm;
11887 
11888 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11889 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11890 		search_paths[1] = "/usr/lib64:/usr/lib";
11891 		search_paths[2] = arch_specific_lib_paths();
11892 		perm = R_OK;
11893 	} else {
11894 		search_paths[0] = getenv("PATH");
11895 		search_paths[1] = "/usr/bin:/usr/sbin";
11896 		perm = R_OK | X_OK;
11897 	}
11898 
11899 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11900 		const char *s;
11901 
11902 		if (!search_paths[i])
11903 			continue;
11904 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11905 			char *next_path;
11906 			int seg_len;
11907 
11908 			if (s[0] == ':')
11909 				s++;
11910 			next_path = strchr(s, ':');
11911 			seg_len = next_path ? next_path - s : strlen(s);
11912 			if (!seg_len)
11913 				continue;
11914 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11915 			/* ensure it has required permissions */
11916 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11917 				continue;
11918 			pr_debug("resolved '%s' to '%s'\n", file, result);
11919 			return 0;
11920 		}
11921 	}
11922 	return -ENOENT;
11923 }
11924 
11925 struct bpf_link *
11926 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11927 				 pid_t pid,
11928 				 const char *path,
11929 				 const char *func_pattern,
11930 				 const struct bpf_uprobe_multi_opts *opts)
11931 {
11932 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11933 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11934 	unsigned long *resolved_offsets = NULL;
11935 	int err = 0, link_fd, prog_fd;
11936 	struct bpf_link *link = NULL;
11937 	char errmsg[STRERR_BUFSIZE];
11938 	char full_path[PATH_MAX];
11939 	const __u64 *cookies;
11940 	const char **syms;
11941 	size_t cnt;
11942 
11943 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11944 		return libbpf_err_ptr(-EINVAL);
11945 
11946 	prog_fd = bpf_program__fd(prog);
11947 	if (prog_fd < 0) {
11948 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11949 			prog->name);
11950 		return libbpf_err_ptr(-EINVAL);
11951 	}
11952 
11953 	syms = OPTS_GET(opts, syms, NULL);
11954 	offsets = OPTS_GET(opts, offsets, NULL);
11955 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11956 	cookies = OPTS_GET(opts, cookies, NULL);
11957 	cnt = OPTS_GET(opts, cnt, 0);
11958 
11959 	/*
11960 	 * User can specify 2 mutually exclusive set of inputs:
11961 	 *
11962 	 * 1) use only path/func_pattern/pid arguments
11963 	 *
11964 	 * 2) use path/pid with allowed combinations of:
11965 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11966 	 *
11967 	 *    - syms and offsets are mutually exclusive
11968 	 *    - ref_ctr_offsets and cookies are optional
11969 	 *
11970 	 * Any other usage results in error.
11971 	 */
11972 
11973 	if (!path)
11974 		return libbpf_err_ptr(-EINVAL);
11975 	if (!func_pattern && cnt == 0)
11976 		return libbpf_err_ptr(-EINVAL);
11977 
11978 	if (func_pattern) {
11979 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11980 			return libbpf_err_ptr(-EINVAL);
11981 	} else {
11982 		if (!!syms == !!offsets)
11983 			return libbpf_err_ptr(-EINVAL);
11984 	}
11985 
11986 	if (func_pattern) {
11987 		if (!strchr(path, '/')) {
11988 			err = resolve_full_path(path, full_path, sizeof(full_path));
11989 			if (err) {
11990 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11991 					prog->name, path, err);
11992 				return libbpf_err_ptr(err);
11993 			}
11994 			path = full_path;
11995 		}
11996 
11997 		err = elf_resolve_pattern_offsets(path, func_pattern,
11998 						  &resolved_offsets, &cnt);
11999 		if (err < 0)
12000 			return libbpf_err_ptr(err);
12001 		offsets = resolved_offsets;
12002 	} else if (syms) {
12003 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12004 		if (err < 0)
12005 			return libbpf_err_ptr(err);
12006 		offsets = resolved_offsets;
12007 	}
12008 
12009 	lopts.uprobe_multi.path = path;
12010 	lopts.uprobe_multi.offsets = offsets;
12011 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12012 	lopts.uprobe_multi.cookies = cookies;
12013 	lopts.uprobe_multi.cnt = cnt;
12014 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
12015 
12016 	if (pid == 0)
12017 		pid = getpid();
12018 	if (pid > 0)
12019 		lopts.uprobe_multi.pid = pid;
12020 
12021 	link = calloc(1, sizeof(*link));
12022 	if (!link) {
12023 		err = -ENOMEM;
12024 		goto error;
12025 	}
12026 	link->detach = &bpf_link__detach_fd;
12027 
12028 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
12029 	if (link_fd < 0) {
12030 		err = -errno;
12031 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12032 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12033 		goto error;
12034 	}
12035 	link->fd = link_fd;
12036 	free(resolved_offsets);
12037 	return link;
12038 
12039 error:
12040 	free(resolved_offsets);
12041 	free(link);
12042 	return libbpf_err_ptr(err);
12043 }
12044 
12045 LIBBPF_API struct bpf_link *
12046 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12047 				const char *binary_path, size_t func_offset,
12048 				const struct bpf_uprobe_opts *opts)
12049 {
12050 	const char *archive_path = NULL, *archive_sep = NULL;
12051 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
12052 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12053 	enum probe_attach_mode attach_mode;
12054 	char full_path[PATH_MAX];
12055 	struct bpf_link *link;
12056 	size_t ref_ctr_off;
12057 	int pfd, err;
12058 	bool retprobe, legacy;
12059 	const char *func_name;
12060 
12061 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12062 		return libbpf_err_ptr(-EINVAL);
12063 
12064 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12065 	retprobe = OPTS_GET(opts, retprobe, false);
12066 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12067 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12068 
12069 	if (!binary_path)
12070 		return libbpf_err_ptr(-EINVAL);
12071 
12072 	/* Check if "binary_path" refers to an archive. */
12073 	archive_sep = strstr(binary_path, "!/");
12074 	if (archive_sep) {
12075 		full_path[0] = '\0';
12076 		libbpf_strlcpy(full_path, binary_path,
12077 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12078 		archive_path = full_path;
12079 		binary_path = archive_sep + 2;
12080 	} else if (!strchr(binary_path, '/')) {
12081 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12082 		if (err) {
12083 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12084 				prog->name, binary_path, err);
12085 			return libbpf_err_ptr(err);
12086 		}
12087 		binary_path = full_path;
12088 	}
12089 	func_name = OPTS_GET(opts, func_name, NULL);
12090 	if (func_name) {
12091 		long sym_off;
12092 
12093 		if (archive_path) {
12094 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12095 								    func_name);
12096 			binary_path = archive_path;
12097 		} else {
12098 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12099 		}
12100 		if (sym_off < 0)
12101 			return libbpf_err_ptr(sym_off);
12102 		func_offset += sym_off;
12103 	}
12104 
12105 	legacy = determine_uprobe_perf_type() < 0;
12106 	switch (attach_mode) {
12107 	case PROBE_ATTACH_MODE_LEGACY:
12108 		legacy = true;
12109 		pe_opts.force_ioctl_attach = true;
12110 		break;
12111 	case PROBE_ATTACH_MODE_PERF:
12112 		if (legacy)
12113 			return libbpf_err_ptr(-ENOTSUP);
12114 		pe_opts.force_ioctl_attach = true;
12115 		break;
12116 	case PROBE_ATTACH_MODE_LINK:
12117 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12118 			return libbpf_err_ptr(-ENOTSUP);
12119 		break;
12120 	case PROBE_ATTACH_MODE_DEFAULT:
12121 		break;
12122 	default:
12123 		return libbpf_err_ptr(-EINVAL);
12124 	}
12125 
12126 	if (!legacy) {
12127 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12128 					    func_offset, pid, ref_ctr_off);
12129 	} else {
12130 		char probe_name[PATH_MAX + 64];
12131 
12132 		if (ref_ctr_off)
12133 			return libbpf_err_ptr(-EINVAL);
12134 
12135 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12136 					     binary_path, func_offset);
12137 
12138 		legacy_probe = strdup(probe_name);
12139 		if (!legacy_probe)
12140 			return libbpf_err_ptr(-ENOMEM);
12141 
12142 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12143 						    binary_path, func_offset, pid);
12144 	}
12145 	if (pfd < 0) {
12146 		err = -errno;
12147 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12148 			prog->name, retprobe ? "uretprobe" : "uprobe",
12149 			binary_path, func_offset,
12150 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12151 		goto err_out;
12152 	}
12153 
12154 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12155 	err = libbpf_get_error(link);
12156 	if (err) {
12157 		close(pfd);
12158 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12159 			prog->name, retprobe ? "uretprobe" : "uprobe",
12160 			binary_path, func_offset,
12161 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12162 		goto err_clean_legacy;
12163 	}
12164 	if (legacy) {
12165 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12166 
12167 		perf_link->legacy_probe_name = legacy_probe;
12168 		perf_link->legacy_is_kprobe = false;
12169 		perf_link->legacy_is_retprobe = retprobe;
12170 	}
12171 	return link;
12172 
12173 err_clean_legacy:
12174 	if (legacy)
12175 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12176 err_out:
12177 	free(legacy_probe);
12178 	return libbpf_err_ptr(err);
12179 }
12180 
12181 /* Format of u[ret]probe section definition supporting auto-attach:
12182  * u[ret]probe/binary:function[+offset]
12183  *
12184  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12185  * full binary path via bpf_program__attach_uprobe_opts.
12186  *
12187  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12188  * specified (and auto-attach is not possible) or the above format is specified for
12189  * auto-attach.
12190  */
12191 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12192 {
12193 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12194 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12195 	int n, c, ret = -EINVAL;
12196 	long offset = 0;
12197 
12198 	*link = NULL;
12199 
12200 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12201 		   &probe_type, &binary_path, &func_name);
12202 	switch (n) {
12203 	case 1:
12204 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12205 		ret = 0;
12206 		break;
12207 	case 2:
12208 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12209 			prog->name, prog->sec_name);
12210 		break;
12211 	case 3:
12212 		/* check if user specifies `+offset`, if yes, this should be
12213 		 * the last part of the string, make sure sscanf read to EOL
12214 		 */
12215 		func_off = strrchr(func_name, '+');
12216 		if (func_off) {
12217 			n = sscanf(func_off, "+%li%n", &offset, &c);
12218 			if (n == 1 && *(func_off + c) == '\0')
12219 				func_off[0] = '\0';
12220 			else
12221 				offset = 0;
12222 		}
12223 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12224 				strcmp(probe_type, "uretprobe.s") == 0;
12225 		if (opts.retprobe && offset != 0) {
12226 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12227 				prog->name);
12228 			break;
12229 		}
12230 		opts.func_name = func_name;
12231 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12232 		ret = libbpf_get_error(*link);
12233 		break;
12234 	default:
12235 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12236 			prog->sec_name);
12237 		break;
12238 	}
12239 	free(probe_type);
12240 	free(binary_path);
12241 	free(func_name);
12242 
12243 	return ret;
12244 }
12245 
12246 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12247 					    bool retprobe, pid_t pid,
12248 					    const char *binary_path,
12249 					    size_t func_offset)
12250 {
12251 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12252 
12253 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12254 }
12255 
12256 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12257 					  pid_t pid, const char *binary_path,
12258 					  const char *usdt_provider, const char *usdt_name,
12259 					  const struct bpf_usdt_opts *opts)
12260 {
12261 	char resolved_path[512];
12262 	struct bpf_object *obj = prog->obj;
12263 	struct bpf_link *link;
12264 	__u64 usdt_cookie;
12265 	int err;
12266 
12267 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12268 		return libbpf_err_ptr(-EINVAL);
12269 
12270 	if (bpf_program__fd(prog) < 0) {
12271 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12272 			prog->name);
12273 		return libbpf_err_ptr(-EINVAL);
12274 	}
12275 
12276 	if (!binary_path)
12277 		return libbpf_err_ptr(-EINVAL);
12278 
12279 	if (!strchr(binary_path, '/')) {
12280 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12281 		if (err) {
12282 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12283 				prog->name, binary_path, err);
12284 			return libbpf_err_ptr(err);
12285 		}
12286 		binary_path = resolved_path;
12287 	}
12288 
12289 	/* USDT manager is instantiated lazily on first USDT attach. It will
12290 	 * be destroyed together with BPF object in bpf_object__close().
12291 	 */
12292 	if (IS_ERR(obj->usdt_man))
12293 		return libbpf_ptr(obj->usdt_man);
12294 	if (!obj->usdt_man) {
12295 		obj->usdt_man = usdt_manager_new(obj);
12296 		if (IS_ERR(obj->usdt_man))
12297 			return libbpf_ptr(obj->usdt_man);
12298 	}
12299 
12300 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12301 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12302 					usdt_provider, usdt_name, usdt_cookie);
12303 	err = libbpf_get_error(link);
12304 	if (err)
12305 		return libbpf_err_ptr(err);
12306 	return link;
12307 }
12308 
12309 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12310 {
12311 	char *path = NULL, *provider = NULL, *name = NULL;
12312 	const char *sec_name;
12313 	int n, err;
12314 
12315 	sec_name = bpf_program__section_name(prog);
12316 	if (strcmp(sec_name, "usdt") == 0) {
12317 		/* no auto-attach for just SEC("usdt") */
12318 		*link = NULL;
12319 		return 0;
12320 	}
12321 
12322 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12323 	if (n != 3) {
12324 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12325 			sec_name);
12326 		err = -EINVAL;
12327 	} else {
12328 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12329 						 provider, name, NULL);
12330 		err = libbpf_get_error(*link);
12331 	}
12332 	free(path);
12333 	free(provider);
12334 	free(name);
12335 	return err;
12336 }
12337 
12338 static int determine_tracepoint_id(const char *tp_category,
12339 				   const char *tp_name)
12340 {
12341 	char file[PATH_MAX];
12342 	int ret;
12343 
12344 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12345 		       tracefs_path(), tp_category, tp_name);
12346 	if (ret < 0)
12347 		return -errno;
12348 	if (ret >= sizeof(file)) {
12349 		pr_debug("tracepoint %s/%s path is too long\n",
12350 			 tp_category, tp_name);
12351 		return -E2BIG;
12352 	}
12353 	return parse_uint_from_file(file, "%d\n");
12354 }
12355 
12356 static int perf_event_open_tracepoint(const char *tp_category,
12357 				      const char *tp_name)
12358 {
12359 	const size_t attr_sz = sizeof(struct perf_event_attr);
12360 	struct perf_event_attr attr;
12361 	char errmsg[STRERR_BUFSIZE];
12362 	int tp_id, pfd, err;
12363 
12364 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12365 	if (tp_id < 0) {
12366 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12367 			tp_category, tp_name,
12368 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12369 		return tp_id;
12370 	}
12371 
12372 	memset(&attr, 0, attr_sz);
12373 	attr.type = PERF_TYPE_TRACEPOINT;
12374 	attr.size = attr_sz;
12375 	attr.config = tp_id;
12376 
12377 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12378 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12379 	if (pfd < 0) {
12380 		err = -errno;
12381 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12382 			tp_category, tp_name,
12383 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12384 		return err;
12385 	}
12386 	return pfd;
12387 }
12388 
12389 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12390 						     const char *tp_category,
12391 						     const char *tp_name,
12392 						     const struct bpf_tracepoint_opts *opts)
12393 {
12394 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12395 	char errmsg[STRERR_BUFSIZE];
12396 	struct bpf_link *link;
12397 	int pfd, err;
12398 
12399 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12400 		return libbpf_err_ptr(-EINVAL);
12401 
12402 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12403 
12404 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12405 	if (pfd < 0) {
12406 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12407 			prog->name, tp_category, tp_name,
12408 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12409 		return libbpf_err_ptr(pfd);
12410 	}
12411 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12412 	err = libbpf_get_error(link);
12413 	if (err) {
12414 		close(pfd);
12415 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12416 			prog->name, tp_category, tp_name,
12417 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12418 		return libbpf_err_ptr(err);
12419 	}
12420 	return link;
12421 }
12422 
12423 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12424 						const char *tp_category,
12425 						const char *tp_name)
12426 {
12427 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12428 }
12429 
12430 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12431 {
12432 	char *sec_name, *tp_cat, *tp_name;
12433 
12434 	*link = NULL;
12435 
12436 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12437 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12438 		return 0;
12439 
12440 	sec_name = strdup(prog->sec_name);
12441 	if (!sec_name)
12442 		return -ENOMEM;
12443 
12444 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12445 	if (str_has_pfx(prog->sec_name, "tp/"))
12446 		tp_cat = sec_name + sizeof("tp/") - 1;
12447 	else
12448 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12449 	tp_name = strchr(tp_cat, '/');
12450 	if (!tp_name) {
12451 		free(sec_name);
12452 		return -EINVAL;
12453 	}
12454 	*tp_name = '\0';
12455 	tp_name++;
12456 
12457 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12458 	free(sec_name);
12459 	return libbpf_get_error(*link);
12460 }
12461 
12462 struct bpf_link *
12463 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12464 					const char *tp_name,
12465 					struct bpf_raw_tracepoint_opts *opts)
12466 {
12467 	LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12468 	char errmsg[STRERR_BUFSIZE];
12469 	struct bpf_link *link;
12470 	int prog_fd, pfd;
12471 
12472 	if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12473 		return libbpf_err_ptr(-EINVAL);
12474 
12475 	prog_fd = bpf_program__fd(prog);
12476 	if (prog_fd < 0) {
12477 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12478 		return libbpf_err_ptr(-EINVAL);
12479 	}
12480 
12481 	link = calloc(1, sizeof(*link));
12482 	if (!link)
12483 		return libbpf_err_ptr(-ENOMEM);
12484 	link->detach = &bpf_link__detach_fd;
12485 
12486 	raw_opts.tp_name = tp_name;
12487 	raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12488 	pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12489 	if (pfd < 0) {
12490 		pfd = -errno;
12491 		free(link);
12492 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12493 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12494 		return libbpf_err_ptr(pfd);
12495 	}
12496 	link->fd = pfd;
12497 	return link;
12498 }
12499 
12500 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12501 						    const char *tp_name)
12502 {
12503 	return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12504 }
12505 
12506 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12507 {
12508 	static const char *const prefixes[] = {
12509 		"raw_tp",
12510 		"raw_tracepoint",
12511 		"raw_tp.w",
12512 		"raw_tracepoint.w",
12513 	};
12514 	size_t i;
12515 	const char *tp_name = NULL;
12516 
12517 	*link = NULL;
12518 
12519 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12520 		size_t pfx_len;
12521 
12522 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12523 			continue;
12524 
12525 		pfx_len = strlen(prefixes[i]);
12526 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12527 		if (prog->sec_name[pfx_len] == '\0')
12528 			return 0;
12529 
12530 		if (prog->sec_name[pfx_len] != '/')
12531 			continue;
12532 
12533 		tp_name = prog->sec_name + pfx_len + 1;
12534 		break;
12535 	}
12536 
12537 	if (!tp_name) {
12538 		pr_warn("prog '%s': invalid section name '%s'\n",
12539 			prog->name, prog->sec_name);
12540 		return -EINVAL;
12541 	}
12542 
12543 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12544 	return libbpf_get_error(*link);
12545 }
12546 
12547 /* Common logic for all BPF program types that attach to a btf_id */
12548 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12549 						   const struct bpf_trace_opts *opts)
12550 {
12551 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12552 	char errmsg[STRERR_BUFSIZE];
12553 	struct bpf_link *link;
12554 	int prog_fd, pfd;
12555 
12556 	if (!OPTS_VALID(opts, bpf_trace_opts))
12557 		return libbpf_err_ptr(-EINVAL);
12558 
12559 	prog_fd = bpf_program__fd(prog);
12560 	if (prog_fd < 0) {
12561 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12562 		return libbpf_err_ptr(-EINVAL);
12563 	}
12564 
12565 	link = calloc(1, sizeof(*link));
12566 	if (!link)
12567 		return libbpf_err_ptr(-ENOMEM);
12568 	link->detach = &bpf_link__detach_fd;
12569 
12570 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12571 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12572 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12573 	if (pfd < 0) {
12574 		pfd = -errno;
12575 		free(link);
12576 		pr_warn("prog '%s': failed to attach: %s\n",
12577 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12578 		return libbpf_err_ptr(pfd);
12579 	}
12580 	link->fd = pfd;
12581 	return link;
12582 }
12583 
12584 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12585 {
12586 	return bpf_program__attach_btf_id(prog, NULL);
12587 }
12588 
12589 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12590 						const struct bpf_trace_opts *opts)
12591 {
12592 	return bpf_program__attach_btf_id(prog, opts);
12593 }
12594 
12595 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12596 {
12597 	return bpf_program__attach_btf_id(prog, NULL);
12598 }
12599 
12600 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12601 {
12602 	*link = bpf_program__attach_trace(prog);
12603 	return libbpf_get_error(*link);
12604 }
12605 
12606 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12607 {
12608 	*link = bpf_program__attach_lsm(prog);
12609 	return libbpf_get_error(*link);
12610 }
12611 
12612 static struct bpf_link *
12613 bpf_program_attach_fd(const struct bpf_program *prog,
12614 		      int target_fd, const char *target_name,
12615 		      const struct bpf_link_create_opts *opts)
12616 {
12617 	enum bpf_attach_type attach_type;
12618 	char errmsg[STRERR_BUFSIZE];
12619 	struct bpf_link *link;
12620 	int prog_fd, link_fd;
12621 
12622 	prog_fd = bpf_program__fd(prog);
12623 	if (prog_fd < 0) {
12624 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12625 		return libbpf_err_ptr(-EINVAL);
12626 	}
12627 
12628 	link = calloc(1, sizeof(*link));
12629 	if (!link)
12630 		return libbpf_err_ptr(-ENOMEM);
12631 	link->detach = &bpf_link__detach_fd;
12632 
12633 	attach_type = bpf_program__expected_attach_type(prog);
12634 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12635 	if (link_fd < 0) {
12636 		link_fd = -errno;
12637 		free(link);
12638 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12639 			prog->name, target_name,
12640 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12641 		return libbpf_err_ptr(link_fd);
12642 	}
12643 	link->fd = link_fd;
12644 	return link;
12645 }
12646 
12647 struct bpf_link *
12648 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12649 {
12650 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12651 }
12652 
12653 struct bpf_link *
12654 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12655 {
12656 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12657 }
12658 
12659 struct bpf_link *
12660 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12661 {
12662 	return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12663 }
12664 
12665 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12666 {
12667 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12668 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12669 }
12670 
12671 struct bpf_link *
12672 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12673 			const struct bpf_tcx_opts *opts)
12674 {
12675 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12676 	__u32 relative_id;
12677 	int relative_fd;
12678 
12679 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12680 		return libbpf_err_ptr(-EINVAL);
12681 
12682 	relative_id = OPTS_GET(opts, relative_id, 0);
12683 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12684 
12685 	/* validate we don't have unexpected combinations of non-zero fields */
12686 	if (!ifindex) {
12687 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12688 			prog->name);
12689 		return libbpf_err_ptr(-EINVAL);
12690 	}
12691 	if (relative_fd && relative_id) {
12692 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12693 			prog->name);
12694 		return libbpf_err_ptr(-EINVAL);
12695 	}
12696 
12697 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12698 	link_create_opts.tcx.relative_fd = relative_fd;
12699 	link_create_opts.tcx.relative_id = relative_id;
12700 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12701 
12702 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12703 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12704 }
12705 
12706 struct bpf_link *
12707 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12708 			   const struct bpf_netkit_opts *opts)
12709 {
12710 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12711 	__u32 relative_id;
12712 	int relative_fd;
12713 
12714 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12715 		return libbpf_err_ptr(-EINVAL);
12716 
12717 	relative_id = OPTS_GET(opts, relative_id, 0);
12718 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12719 
12720 	/* validate we don't have unexpected combinations of non-zero fields */
12721 	if (!ifindex) {
12722 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12723 			prog->name);
12724 		return libbpf_err_ptr(-EINVAL);
12725 	}
12726 	if (relative_fd && relative_id) {
12727 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12728 			prog->name);
12729 		return libbpf_err_ptr(-EINVAL);
12730 	}
12731 
12732 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12733 	link_create_opts.netkit.relative_fd = relative_fd;
12734 	link_create_opts.netkit.relative_id = relative_id;
12735 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12736 
12737 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12738 }
12739 
12740 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12741 					      int target_fd,
12742 					      const char *attach_func_name)
12743 {
12744 	int btf_id;
12745 
12746 	if (!!target_fd != !!attach_func_name) {
12747 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12748 			prog->name);
12749 		return libbpf_err_ptr(-EINVAL);
12750 	}
12751 
12752 	if (prog->type != BPF_PROG_TYPE_EXT) {
12753 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12754 			prog->name);
12755 		return libbpf_err_ptr(-EINVAL);
12756 	}
12757 
12758 	if (target_fd) {
12759 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12760 
12761 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12762 		if (btf_id < 0)
12763 			return libbpf_err_ptr(btf_id);
12764 
12765 		target_opts.target_btf_id = btf_id;
12766 
12767 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12768 					     &target_opts);
12769 	} else {
12770 		/* no target, so use raw_tracepoint_open for compatibility
12771 		 * with old kernels
12772 		 */
12773 		return bpf_program__attach_trace(prog);
12774 	}
12775 }
12776 
12777 struct bpf_link *
12778 bpf_program__attach_iter(const struct bpf_program *prog,
12779 			 const struct bpf_iter_attach_opts *opts)
12780 {
12781 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12782 	char errmsg[STRERR_BUFSIZE];
12783 	struct bpf_link *link;
12784 	int prog_fd, link_fd;
12785 	__u32 target_fd = 0;
12786 
12787 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12788 		return libbpf_err_ptr(-EINVAL);
12789 
12790 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12791 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12792 
12793 	prog_fd = bpf_program__fd(prog);
12794 	if (prog_fd < 0) {
12795 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12796 		return libbpf_err_ptr(-EINVAL);
12797 	}
12798 
12799 	link = calloc(1, sizeof(*link));
12800 	if (!link)
12801 		return libbpf_err_ptr(-ENOMEM);
12802 	link->detach = &bpf_link__detach_fd;
12803 
12804 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12805 				  &link_create_opts);
12806 	if (link_fd < 0) {
12807 		link_fd = -errno;
12808 		free(link);
12809 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12810 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12811 		return libbpf_err_ptr(link_fd);
12812 	}
12813 	link->fd = link_fd;
12814 	return link;
12815 }
12816 
12817 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12818 {
12819 	*link = bpf_program__attach_iter(prog, NULL);
12820 	return libbpf_get_error(*link);
12821 }
12822 
12823 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12824 					       const struct bpf_netfilter_opts *opts)
12825 {
12826 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12827 	struct bpf_link *link;
12828 	int prog_fd, link_fd;
12829 
12830 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12831 		return libbpf_err_ptr(-EINVAL);
12832 
12833 	prog_fd = bpf_program__fd(prog);
12834 	if (prog_fd < 0) {
12835 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12836 		return libbpf_err_ptr(-EINVAL);
12837 	}
12838 
12839 	link = calloc(1, sizeof(*link));
12840 	if (!link)
12841 		return libbpf_err_ptr(-ENOMEM);
12842 
12843 	link->detach = &bpf_link__detach_fd;
12844 
12845 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12846 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12847 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12848 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12849 
12850 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12851 	if (link_fd < 0) {
12852 		char errmsg[STRERR_BUFSIZE];
12853 
12854 		link_fd = -errno;
12855 		free(link);
12856 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12857 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12858 		return libbpf_err_ptr(link_fd);
12859 	}
12860 	link->fd = link_fd;
12861 
12862 	return link;
12863 }
12864 
12865 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12866 {
12867 	struct bpf_link *link = NULL;
12868 	int err;
12869 
12870 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12871 		return libbpf_err_ptr(-EOPNOTSUPP);
12872 
12873 	if (bpf_program__fd(prog) < 0) {
12874 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12875 			prog->name);
12876 		return libbpf_err_ptr(-EINVAL);
12877 	}
12878 
12879 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12880 	if (err)
12881 		return libbpf_err_ptr(err);
12882 
12883 	/* When calling bpf_program__attach() explicitly, auto-attach support
12884 	 * is expected to work, so NULL returned link is considered an error.
12885 	 * This is different for skeleton's attach, see comment in
12886 	 * bpf_object__attach_skeleton().
12887 	 */
12888 	if (!link)
12889 		return libbpf_err_ptr(-EOPNOTSUPP);
12890 
12891 	return link;
12892 }
12893 
12894 struct bpf_link_struct_ops {
12895 	struct bpf_link link;
12896 	int map_fd;
12897 };
12898 
12899 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12900 {
12901 	struct bpf_link_struct_ops *st_link;
12902 	__u32 zero = 0;
12903 
12904 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12905 
12906 	if (st_link->map_fd < 0)
12907 		/* w/o a real link */
12908 		return bpf_map_delete_elem(link->fd, &zero);
12909 
12910 	return close(link->fd);
12911 }
12912 
12913 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12914 {
12915 	struct bpf_link_struct_ops *link;
12916 	__u32 zero = 0;
12917 	int err, fd;
12918 
12919 	if (!bpf_map__is_struct_ops(map)) {
12920 		pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
12921 		return libbpf_err_ptr(-EINVAL);
12922 	}
12923 
12924 	if (map->fd < 0) {
12925 		pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
12926 		return libbpf_err_ptr(-EINVAL);
12927 	}
12928 
12929 	link = calloc(1, sizeof(*link));
12930 	if (!link)
12931 		return libbpf_err_ptr(-EINVAL);
12932 
12933 	/* kern_vdata should be prepared during the loading phase. */
12934 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12935 	/* It can be EBUSY if the map has been used to create or
12936 	 * update a link before.  We don't allow updating the value of
12937 	 * a struct_ops once it is set.  That ensures that the value
12938 	 * never changed.  So, it is safe to skip EBUSY.
12939 	 */
12940 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12941 		free(link);
12942 		return libbpf_err_ptr(err);
12943 	}
12944 
12945 	link->link.detach = bpf_link__detach_struct_ops;
12946 
12947 	if (!(map->def.map_flags & BPF_F_LINK)) {
12948 		/* w/o a real link */
12949 		link->link.fd = map->fd;
12950 		link->map_fd = -1;
12951 		return &link->link;
12952 	}
12953 
12954 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12955 	if (fd < 0) {
12956 		free(link);
12957 		return libbpf_err_ptr(fd);
12958 	}
12959 
12960 	link->link.fd = fd;
12961 	link->map_fd = map->fd;
12962 
12963 	return &link->link;
12964 }
12965 
12966 /*
12967  * Swap the back struct_ops of a link with a new struct_ops map.
12968  */
12969 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12970 {
12971 	struct bpf_link_struct_ops *st_ops_link;
12972 	__u32 zero = 0;
12973 	int err;
12974 
12975 	if (!bpf_map__is_struct_ops(map))
12976 		return -EINVAL;
12977 
12978 	if (map->fd < 0) {
12979 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
12980 		return -EINVAL;
12981 	}
12982 
12983 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12984 	/* Ensure the type of a link is correct */
12985 	if (st_ops_link->map_fd < 0)
12986 		return -EINVAL;
12987 
12988 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12989 	/* It can be EBUSY if the map has been used to create or
12990 	 * update a link before.  We don't allow updating the value of
12991 	 * a struct_ops once it is set.  That ensures that the value
12992 	 * never changed.  So, it is safe to skip EBUSY.
12993 	 */
12994 	if (err && err != -EBUSY)
12995 		return err;
12996 
12997 	err = bpf_link_update(link->fd, map->fd, NULL);
12998 	if (err < 0)
12999 		return err;
13000 
13001 	st_ops_link->map_fd = map->fd;
13002 
13003 	return 0;
13004 }
13005 
13006 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13007 							  void *private_data);
13008 
13009 static enum bpf_perf_event_ret
13010 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13011 		       void **copy_mem, size_t *copy_size,
13012 		       bpf_perf_event_print_t fn, void *private_data)
13013 {
13014 	struct perf_event_mmap_page *header = mmap_mem;
13015 	__u64 data_head = ring_buffer_read_head(header);
13016 	__u64 data_tail = header->data_tail;
13017 	void *base = ((__u8 *)header) + page_size;
13018 	int ret = LIBBPF_PERF_EVENT_CONT;
13019 	struct perf_event_header *ehdr;
13020 	size_t ehdr_size;
13021 
13022 	while (data_head != data_tail) {
13023 		ehdr = base + (data_tail & (mmap_size - 1));
13024 		ehdr_size = ehdr->size;
13025 
13026 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13027 			void *copy_start = ehdr;
13028 			size_t len_first = base + mmap_size - copy_start;
13029 			size_t len_secnd = ehdr_size - len_first;
13030 
13031 			if (*copy_size < ehdr_size) {
13032 				free(*copy_mem);
13033 				*copy_mem = malloc(ehdr_size);
13034 				if (!*copy_mem) {
13035 					*copy_size = 0;
13036 					ret = LIBBPF_PERF_EVENT_ERROR;
13037 					break;
13038 				}
13039 				*copy_size = ehdr_size;
13040 			}
13041 
13042 			memcpy(*copy_mem, copy_start, len_first);
13043 			memcpy(*copy_mem + len_first, base, len_secnd);
13044 			ehdr = *copy_mem;
13045 		}
13046 
13047 		ret = fn(ehdr, private_data);
13048 		data_tail += ehdr_size;
13049 		if (ret != LIBBPF_PERF_EVENT_CONT)
13050 			break;
13051 	}
13052 
13053 	ring_buffer_write_tail(header, data_tail);
13054 	return libbpf_err(ret);
13055 }
13056 
13057 struct perf_buffer;
13058 
13059 struct perf_buffer_params {
13060 	struct perf_event_attr *attr;
13061 	/* if event_cb is specified, it takes precendence */
13062 	perf_buffer_event_fn event_cb;
13063 	/* sample_cb and lost_cb are higher-level common-case callbacks */
13064 	perf_buffer_sample_fn sample_cb;
13065 	perf_buffer_lost_fn lost_cb;
13066 	void *ctx;
13067 	int cpu_cnt;
13068 	int *cpus;
13069 	int *map_keys;
13070 };
13071 
13072 struct perf_cpu_buf {
13073 	struct perf_buffer *pb;
13074 	void *base; /* mmap()'ed memory */
13075 	void *buf; /* for reconstructing segmented data */
13076 	size_t buf_size;
13077 	int fd;
13078 	int cpu;
13079 	int map_key;
13080 };
13081 
13082 struct perf_buffer {
13083 	perf_buffer_event_fn event_cb;
13084 	perf_buffer_sample_fn sample_cb;
13085 	perf_buffer_lost_fn lost_cb;
13086 	void *ctx; /* passed into callbacks */
13087 
13088 	size_t page_size;
13089 	size_t mmap_size;
13090 	struct perf_cpu_buf **cpu_bufs;
13091 	struct epoll_event *events;
13092 	int cpu_cnt; /* number of allocated CPU buffers */
13093 	int epoll_fd; /* perf event FD */
13094 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13095 };
13096 
13097 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13098 				      struct perf_cpu_buf *cpu_buf)
13099 {
13100 	if (!cpu_buf)
13101 		return;
13102 	if (cpu_buf->base &&
13103 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13104 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13105 	if (cpu_buf->fd >= 0) {
13106 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13107 		close(cpu_buf->fd);
13108 	}
13109 	free(cpu_buf->buf);
13110 	free(cpu_buf);
13111 }
13112 
13113 void perf_buffer__free(struct perf_buffer *pb)
13114 {
13115 	int i;
13116 
13117 	if (IS_ERR_OR_NULL(pb))
13118 		return;
13119 	if (pb->cpu_bufs) {
13120 		for (i = 0; i < pb->cpu_cnt; i++) {
13121 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13122 
13123 			if (!cpu_buf)
13124 				continue;
13125 
13126 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13127 			perf_buffer__free_cpu_buf(pb, cpu_buf);
13128 		}
13129 		free(pb->cpu_bufs);
13130 	}
13131 	if (pb->epoll_fd >= 0)
13132 		close(pb->epoll_fd);
13133 	free(pb->events);
13134 	free(pb);
13135 }
13136 
13137 static struct perf_cpu_buf *
13138 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13139 			  int cpu, int map_key)
13140 {
13141 	struct perf_cpu_buf *cpu_buf;
13142 	char msg[STRERR_BUFSIZE];
13143 	int err;
13144 
13145 	cpu_buf = calloc(1, sizeof(*cpu_buf));
13146 	if (!cpu_buf)
13147 		return ERR_PTR(-ENOMEM);
13148 
13149 	cpu_buf->pb = pb;
13150 	cpu_buf->cpu = cpu;
13151 	cpu_buf->map_key = map_key;
13152 
13153 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13154 			      -1, PERF_FLAG_FD_CLOEXEC);
13155 	if (cpu_buf->fd < 0) {
13156 		err = -errno;
13157 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13158 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13159 		goto error;
13160 	}
13161 
13162 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13163 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13164 			     cpu_buf->fd, 0);
13165 	if (cpu_buf->base == MAP_FAILED) {
13166 		cpu_buf->base = NULL;
13167 		err = -errno;
13168 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13169 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13170 		goto error;
13171 	}
13172 
13173 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13174 		err = -errno;
13175 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13176 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13177 		goto error;
13178 	}
13179 
13180 	return cpu_buf;
13181 
13182 error:
13183 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13184 	return (struct perf_cpu_buf *)ERR_PTR(err);
13185 }
13186 
13187 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13188 					      struct perf_buffer_params *p);
13189 
13190 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13191 				     perf_buffer_sample_fn sample_cb,
13192 				     perf_buffer_lost_fn lost_cb,
13193 				     void *ctx,
13194 				     const struct perf_buffer_opts *opts)
13195 {
13196 	const size_t attr_sz = sizeof(struct perf_event_attr);
13197 	struct perf_buffer_params p = {};
13198 	struct perf_event_attr attr;
13199 	__u32 sample_period;
13200 
13201 	if (!OPTS_VALID(opts, perf_buffer_opts))
13202 		return libbpf_err_ptr(-EINVAL);
13203 
13204 	sample_period = OPTS_GET(opts, sample_period, 1);
13205 	if (!sample_period)
13206 		sample_period = 1;
13207 
13208 	memset(&attr, 0, attr_sz);
13209 	attr.size = attr_sz;
13210 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13211 	attr.type = PERF_TYPE_SOFTWARE;
13212 	attr.sample_type = PERF_SAMPLE_RAW;
13213 	attr.sample_period = sample_period;
13214 	attr.wakeup_events = sample_period;
13215 
13216 	p.attr = &attr;
13217 	p.sample_cb = sample_cb;
13218 	p.lost_cb = lost_cb;
13219 	p.ctx = ctx;
13220 
13221 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13222 }
13223 
13224 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13225 					 struct perf_event_attr *attr,
13226 					 perf_buffer_event_fn event_cb, void *ctx,
13227 					 const struct perf_buffer_raw_opts *opts)
13228 {
13229 	struct perf_buffer_params p = {};
13230 
13231 	if (!attr)
13232 		return libbpf_err_ptr(-EINVAL);
13233 
13234 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13235 		return libbpf_err_ptr(-EINVAL);
13236 
13237 	p.attr = attr;
13238 	p.event_cb = event_cb;
13239 	p.ctx = ctx;
13240 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13241 	p.cpus = OPTS_GET(opts, cpus, NULL);
13242 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13243 
13244 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13245 }
13246 
13247 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13248 					      struct perf_buffer_params *p)
13249 {
13250 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13251 	struct bpf_map_info map;
13252 	char msg[STRERR_BUFSIZE];
13253 	struct perf_buffer *pb;
13254 	bool *online = NULL;
13255 	__u32 map_info_len;
13256 	int err, i, j, n;
13257 
13258 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13259 		pr_warn("page count should be power of two, but is %zu\n",
13260 			page_cnt);
13261 		return ERR_PTR(-EINVAL);
13262 	}
13263 
13264 	/* best-effort sanity checks */
13265 	memset(&map, 0, sizeof(map));
13266 	map_info_len = sizeof(map);
13267 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13268 	if (err) {
13269 		err = -errno;
13270 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13271 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13272 		 */
13273 		if (err != -EINVAL) {
13274 			pr_warn("failed to get map info for map FD %d: %s\n",
13275 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13276 			return ERR_PTR(err);
13277 		}
13278 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13279 			 map_fd);
13280 	} else {
13281 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13282 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13283 				map.name);
13284 			return ERR_PTR(-EINVAL);
13285 		}
13286 	}
13287 
13288 	pb = calloc(1, sizeof(*pb));
13289 	if (!pb)
13290 		return ERR_PTR(-ENOMEM);
13291 
13292 	pb->event_cb = p->event_cb;
13293 	pb->sample_cb = p->sample_cb;
13294 	pb->lost_cb = p->lost_cb;
13295 	pb->ctx = p->ctx;
13296 
13297 	pb->page_size = getpagesize();
13298 	pb->mmap_size = pb->page_size * page_cnt;
13299 	pb->map_fd = map_fd;
13300 
13301 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13302 	if (pb->epoll_fd < 0) {
13303 		err = -errno;
13304 		pr_warn("failed to create epoll instance: %s\n",
13305 			libbpf_strerror_r(err, msg, sizeof(msg)));
13306 		goto error;
13307 	}
13308 
13309 	if (p->cpu_cnt > 0) {
13310 		pb->cpu_cnt = p->cpu_cnt;
13311 	} else {
13312 		pb->cpu_cnt = libbpf_num_possible_cpus();
13313 		if (pb->cpu_cnt < 0) {
13314 			err = pb->cpu_cnt;
13315 			goto error;
13316 		}
13317 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13318 			pb->cpu_cnt = map.max_entries;
13319 	}
13320 
13321 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13322 	if (!pb->events) {
13323 		err = -ENOMEM;
13324 		pr_warn("failed to allocate events: out of memory\n");
13325 		goto error;
13326 	}
13327 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13328 	if (!pb->cpu_bufs) {
13329 		err = -ENOMEM;
13330 		pr_warn("failed to allocate buffers: out of memory\n");
13331 		goto error;
13332 	}
13333 
13334 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13335 	if (err) {
13336 		pr_warn("failed to get online CPU mask: %d\n", err);
13337 		goto error;
13338 	}
13339 
13340 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13341 		struct perf_cpu_buf *cpu_buf;
13342 		int cpu, map_key;
13343 
13344 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13345 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13346 
13347 		/* in case user didn't explicitly requested particular CPUs to
13348 		 * be attached to, skip offline/not present CPUs
13349 		 */
13350 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13351 			continue;
13352 
13353 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13354 		if (IS_ERR(cpu_buf)) {
13355 			err = PTR_ERR(cpu_buf);
13356 			goto error;
13357 		}
13358 
13359 		pb->cpu_bufs[j] = cpu_buf;
13360 
13361 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13362 					  &cpu_buf->fd, 0);
13363 		if (err) {
13364 			err = -errno;
13365 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13366 				cpu, map_key, cpu_buf->fd,
13367 				libbpf_strerror_r(err, msg, sizeof(msg)));
13368 			goto error;
13369 		}
13370 
13371 		pb->events[j].events = EPOLLIN;
13372 		pb->events[j].data.ptr = cpu_buf;
13373 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13374 			      &pb->events[j]) < 0) {
13375 			err = -errno;
13376 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13377 				cpu, cpu_buf->fd,
13378 				libbpf_strerror_r(err, msg, sizeof(msg)));
13379 			goto error;
13380 		}
13381 		j++;
13382 	}
13383 	pb->cpu_cnt = j;
13384 	free(online);
13385 
13386 	return pb;
13387 
13388 error:
13389 	free(online);
13390 	if (pb)
13391 		perf_buffer__free(pb);
13392 	return ERR_PTR(err);
13393 }
13394 
13395 struct perf_sample_raw {
13396 	struct perf_event_header header;
13397 	uint32_t size;
13398 	char data[];
13399 };
13400 
13401 struct perf_sample_lost {
13402 	struct perf_event_header header;
13403 	uint64_t id;
13404 	uint64_t lost;
13405 	uint64_t sample_id;
13406 };
13407 
13408 static enum bpf_perf_event_ret
13409 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13410 {
13411 	struct perf_cpu_buf *cpu_buf = ctx;
13412 	struct perf_buffer *pb = cpu_buf->pb;
13413 	void *data = e;
13414 
13415 	/* user wants full control over parsing perf event */
13416 	if (pb->event_cb)
13417 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13418 
13419 	switch (e->type) {
13420 	case PERF_RECORD_SAMPLE: {
13421 		struct perf_sample_raw *s = data;
13422 
13423 		if (pb->sample_cb)
13424 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13425 		break;
13426 	}
13427 	case PERF_RECORD_LOST: {
13428 		struct perf_sample_lost *s = data;
13429 
13430 		if (pb->lost_cb)
13431 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13432 		break;
13433 	}
13434 	default:
13435 		pr_warn("unknown perf sample type %d\n", e->type);
13436 		return LIBBPF_PERF_EVENT_ERROR;
13437 	}
13438 	return LIBBPF_PERF_EVENT_CONT;
13439 }
13440 
13441 static int perf_buffer__process_records(struct perf_buffer *pb,
13442 					struct perf_cpu_buf *cpu_buf)
13443 {
13444 	enum bpf_perf_event_ret ret;
13445 
13446 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13447 				     pb->page_size, &cpu_buf->buf,
13448 				     &cpu_buf->buf_size,
13449 				     perf_buffer__process_record, cpu_buf);
13450 	if (ret != LIBBPF_PERF_EVENT_CONT)
13451 		return ret;
13452 	return 0;
13453 }
13454 
13455 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13456 {
13457 	return pb->epoll_fd;
13458 }
13459 
13460 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13461 {
13462 	int i, cnt, err;
13463 
13464 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13465 	if (cnt < 0)
13466 		return -errno;
13467 
13468 	for (i = 0; i < cnt; i++) {
13469 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13470 
13471 		err = perf_buffer__process_records(pb, cpu_buf);
13472 		if (err) {
13473 			pr_warn("error while processing records: %d\n", err);
13474 			return libbpf_err(err);
13475 		}
13476 	}
13477 	return cnt;
13478 }
13479 
13480 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13481  * manager.
13482  */
13483 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13484 {
13485 	return pb->cpu_cnt;
13486 }
13487 
13488 /*
13489  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13490  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13491  * select()/poll()/epoll() Linux syscalls.
13492  */
13493 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13494 {
13495 	struct perf_cpu_buf *cpu_buf;
13496 
13497 	if (buf_idx >= pb->cpu_cnt)
13498 		return libbpf_err(-EINVAL);
13499 
13500 	cpu_buf = pb->cpu_bufs[buf_idx];
13501 	if (!cpu_buf)
13502 		return libbpf_err(-ENOENT);
13503 
13504 	return cpu_buf->fd;
13505 }
13506 
13507 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13508 {
13509 	struct perf_cpu_buf *cpu_buf;
13510 
13511 	if (buf_idx >= pb->cpu_cnt)
13512 		return libbpf_err(-EINVAL);
13513 
13514 	cpu_buf = pb->cpu_bufs[buf_idx];
13515 	if (!cpu_buf)
13516 		return libbpf_err(-ENOENT);
13517 
13518 	*buf = cpu_buf->base;
13519 	*buf_size = pb->mmap_size;
13520 	return 0;
13521 }
13522 
13523 /*
13524  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13525  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13526  * consume, do nothing and return success.
13527  * Returns:
13528  *   - 0 on success;
13529  *   - <0 on failure.
13530  */
13531 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13532 {
13533 	struct perf_cpu_buf *cpu_buf;
13534 
13535 	if (buf_idx >= pb->cpu_cnt)
13536 		return libbpf_err(-EINVAL);
13537 
13538 	cpu_buf = pb->cpu_bufs[buf_idx];
13539 	if (!cpu_buf)
13540 		return libbpf_err(-ENOENT);
13541 
13542 	return perf_buffer__process_records(pb, cpu_buf);
13543 }
13544 
13545 int perf_buffer__consume(struct perf_buffer *pb)
13546 {
13547 	int i, err;
13548 
13549 	for (i = 0; i < pb->cpu_cnt; i++) {
13550 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13551 
13552 		if (!cpu_buf)
13553 			continue;
13554 
13555 		err = perf_buffer__process_records(pb, cpu_buf);
13556 		if (err) {
13557 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13558 			return libbpf_err(err);
13559 		}
13560 	}
13561 	return 0;
13562 }
13563 
13564 int bpf_program__set_attach_target(struct bpf_program *prog,
13565 				   int attach_prog_fd,
13566 				   const char *attach_func_name)
13567 {
13568 	int btf_obj_fd = 0, btf_id = 0, err;
13569 
13570 	if (!prog || attach_prog_fd < 0)
13571 		return libbpf_err(-EINVAL);
13572 
13573 	if (prog->obj->loaded)
13574 		return libbpf_err(-EINVAL);
13575 
13576 	if (attach_prog_fd && !attach_func_name) {
13577 		/* remember attach_prog_fd and let bpf_program__load() find
13578 		 * BTF ID during the program load
13579 		 */
13580 		prog->attach_prog_fd = attach_prog_fd;
13581 		return 0;
13582 	}
13583 
13584 	if (attach_prog_fd) {
13585 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13586 						 attach_prog_fd);
13587 		if (btf_id < 0)
13588 			return libbpf_err(btf_id);
13589 	} else {
13590 		if (!attach_func_name)
13591 			return libbpf_err(-EINVAL);
13592 
13593 		/* load btf_vmlinux, if not yet */
13594 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13595 		if (err)
13596 			return libbpf_err(err);
13597 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13598 					 prog->expected_attach_type,
13599 					 &btf_obj_fd, &btf_id);
13600 		if (err)
13601 			return libbpf_err(err);
13602 	}
13603 
13604 	prog->attach_btf_id = btf_id;
13605 	prog->attach_btf_obj_fd = btf_obj_fd;
13606 	prog->attach_prog_fd = attach_prog_fd;
13607 	return 0;
13608 }
13609 
13610 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13611 {
13612 	int err = 0, n, len, start, end = -1;
13613 	bool *tmp;
13614 
13615 	*mask = NULL;
13616 	*mask_sz = 0;
13617 
13618 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13619 	while (*s) {
13620 		if (*s == ',' || *s == '\n') {
13621 			s++;
13622 			continue;
13623 		}
13624 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13625 		if (n <= 0 || n > 2) {
13626 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13627 			err = -EINVAL;
13628 			goto cleanup;
13629 		} else if (n == 1) {
13630 			end = start;
13631 		}
13632 		if (start < 0 || start > end) {
13633 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13634 				start, end, s);
13635 			err = -EINVAL;
13636 			goto cleanup;
13637 		}
13638 		tmp = realloc(*mask, end + 1);
13639 		if (!tmp) {
13640 			err = -ENOMEM;
13641 			goto cleanup;
13642 		}
13643 		*mask = tmp;
13644 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13645 		memset(tmp + start, 1, end - start + 1);
13646 		*mask_sz = end + 1;
13647 		s += len;
13648 	}
13649 	if (!*mask_sz) {
13650 		pr_warn("Empty CPU range\n");
13651 		return -EINVAL;
13652 	}
13653 	return 0;
13654 cleanup:
13655 	free(*mask);
13656 	*mask = NULL;
13657 	return err;
13658 }
13659 
13660 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13661 {
13662 	int fd, err = 0, len;
13663 	char buf[128];
13664 
13665 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13666 	if (fd < 0) {
13667 		err = -errno;
13668 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13669 		return err;
13670 	}
13671 	len = read(fd, buf, sizeof(buf));
13672 	close(fd);
13673 	if (len <= 0) {
13674 		err = len ? -errno : -EINVAL;
13675 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13676 		return err;
13677 	}
13678 	if (len >= sizeof(buf)) {
13679 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13680 		return -E2BIG;
13681 	}
13682 	buf[len] = '\0';
13683 
13684 	return parse_cpu_mask_str(buf, mask, mask_sz);
13685 }
13686 
13687 int libbpf_num_possible_cpus(void)
13688 {
13689 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13690 	static int cpus;
13691 	int err, n, i, tmp_cpus;
13692 	bool *mask;
13693 
13694 	tmp_cpus = READ_ONCE(cpus);
13695 	if (tmp_cpus > 0)
13696 		return tmp_cpus;
13697 
13698 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13699 	if (err)
13700 		return libbpf_err(err);
13701 
13702 	tmp_cpus = 0;
13703 	for (i = 0; i < n; i++) {
13704 		if (mask[i])
13705 			tmp_cpus++;
13706 	}
13707 	free(mask);
13708 
13709 	WRITE_ONCE(cpus, tmp_cpus);
13710 	return tmp_cpus;
13711 }
13712 
13713 static int populate_skeleton_maps(const struct bpf_object *obj,
13714 				  struct bpf_map_skeleton *maps,
13715 				  size_t map_cnt, size_t map_skel_sz)
13716 {
13717 	int i;
13718 
13719 	for (i = 0; i < map_cnt; i++) {
13720 		struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13721 		struct bpf_map **map = map_skel->map;
13722 		const char *name = map_skel->name;
13723 		void **mmaped = map_skel->mmaped;
13724 
13725 		*map = bpf_object__find_map_by_name(obj, name);
13726 		if (!*map) {
13727 			pr_warn("failed to find skeleton map '%s'\n", name);
13728 			return -ESRCH;
13729 		}
13730 
13731 		/* externs shouldn't be pre-setup from user code */
13732 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13733 			*mmaped = (*map)->mmaped;
13734 	}
13735 	return 0;
13736 }
13737 
13738 static int populate_skeleton_progs(const struct bpf_object *obj,
13739 				   struct bpf_prog_skeleton *progs,
13740 				   size_t prog_cnt, size_t prog_skel_sz)
13741 {
13742 	int i;
13743 
13744 	for (i = 0; i < prog_cnt; i++) {
13745 		struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13746 		struct bpf_program **prog = prog_skel->prog;
13747 		const char *name = prog_skel->name;
13748 
13749 		*prog = bpf_object__find_program_by_name(obj, name);
13750 		if (!*prog) {
13751 			pr_warn("failed to find skeleton program '%s'\n", name);
13752 			return -ESRCH;
13753 		}
13754 	}
13755 	return 0;
13756 }
13757 
13758 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13759 			      const struct bpf_object_open_opts *opts)
13760 {
13761 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13762 		.object_name = s->name,
13763 	);
13764 	struct bpf_object *obj;
13765 	int err;
13766 
13767 	/* Attempt to preserve opts->object_name, unless overriden by user
13768 	 * explicitly. Overwriting object name for skeletons is discouraged,
13769 	 * as it breaks global data maps, because they contain object name
13770 	 * prefix as their own map name prefix. When skeleton is generated,
13771 	 * bpftool is making an assumption that this name will stay the same.
13772 	 */
13773 	if (opts) {
13774 		memcpy(&skel_opts, opts, sizeof(*opts));
13775 		if (!opts->object_name)
13776 			skel_opts.object_name = s->name;
13777 	}
13778 
13779 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13780 	err = libbpf_get_error(obj);
13781 	if (err) {
13782 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13783 			s->name, err);
13784 		return libbpf_err(err);
13785 	}
13786 
13787 	*s->obj = obj;
13788 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13789 	if (err) {
13790 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13791 		return libbpf_err(err);
13792 	}
13793 
13794 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13795 	if (err) {
13796 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13797 		return libbpf_err(err);
13798 	}
13799 
13800 	return 0;
13801 }
13802 
13803 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13804 {
13805 	int err, len, var_idx, i;
13806 	const char *var_name;
13807 	const struct bpf_map *map;
13808 	struct btf *btf;
13809 	__u32 map_type_id;
13810 	const struct btf_type *map_type, *var_type;
13811 	const struct bpf_var_skeleton *var_skel;
13812 	struct btf_var_secinfo *var;
13813 
13814 	if (!s->obj)
13815 		return libbpf_err(-EINVAL);
13816 
13817 	btf = bpf_object__btf(s->obj);
13818 	if (!btf) {
13819 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13820 			bpf_object__name(s->obj));
13821 		return libbpf_err(-errno);
13822 	}
13823 
13824 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13825 	if (err) {
13826 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13827 		return libbpf_err(err);
13828 	}
13829 
13830 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13831 	if (err) {
13832 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13833 		return libbpf_err(err);
13834 	}
13835 
13836 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13837 		var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13838 		map = *var_skel->map;
13839 		map_type_id = bpf_map__btf_value_type_id(map);
13840 		map_type = btf__type_by_id(btf, map_type_id);
13841 
13842 		if (!btf_is_datasec(map_type)) {
13843 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13844 				bpf_map__name(map),
13845 				__btf_kind_str(btf_kind(map_type)));
13846 			return libbpf_err(-EINVAL);
13847 		}
13848 
13849 		len = btf_vlen(map_type);
13850 		var = btf_var_secinfos(map_type);
13851 		for (i = 0; i < len; i++, var++) {
13852 			var_type = btf__type_by_id(btf, var->type);
13853 			var_name = btf__name_by_offset(btf, var_type->name_off);
13854 			if (strcmp(var_name, var_skel->name) == 0) {
13855 				*var_skel->addr = map->mmaped + var->offset;
13856 				break;
13857 			}
13858 		}
13859 	}
13860 	return 0;
13861 }
13862 
13863 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13864 {
13865 	if (!s)
13866 		return;
13867 	free(s->maps);
13868 	free(s->progs);
13869 	free(s->vars);
13870 	free(s);
13871 }
13872 
13873 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13874 {
13875 	int i, err;
13876 
13877 	err = bpf_object__load(*s->obj);
13878 	if (err) {
13879 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13880 		return libbpf_err(err);
13881 	}
13882 
13883 	for (i = 0; i < s->map_cnt; i++) {
13884 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13885 		struct bpf_map *map = *map_skel->map;
13886 		size_t mmap_sz = bpf_map_mmap_sz(map);
13887 		int prot, map_fd = map->fd;
13888 		void **mmaped = map_skel->mmaped;
13889 
13890 		if (!mmaped)
13891 			continue;
13892 
13893 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13894 			*mmaped = NULL;
13895 			continue;
13896 		}
13897 
13898 		if (map->def.type == BPF_MAP_TYPE_ARENA) {
13899 			*mmaped = map->mmaped;
13900 			continue;
13901 		}
13902 
13903 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13904 			prot = PROT_READ;
13905 		else
13906 			prot = PROT_READ | PROT_WRITE;
13907 
13908 		/* Remap anonymous mmap()-ed "map initialization image" as
13909 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13910 		 * memory address. This will cause kernel to change process'
13911 		 * page table to point to a different piece of kernel memory,
13912 		 * but from userspace point of view memory address (and its
13913 		 * contents, being identical at this point) will stay the
13914 		 * same. This mapping will be released by bpf_object__close()
13915 		 * as per normal clean up procedure, so we don't need to worry
13916 		 * about it from skeleton's clean up perspective.
13917 		 */
13918 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13919 		if (*mmaped == MAP_FAILED) {
13920 			err = -errno;
13921 			*mmaped = NULL;
13922 			pr_warn("failed to re-mmap() map '%s': %d\n",
13923 				 bpf_map__name(map), err);
13924 			return libbpf_err(err);
13925 		}
13926 	}
13927 
13928 	return 0;
13929 }
13930 
13931 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13932 {
13933 	int i, err;
13934 
13935 	for (i = 0; i < s->prog_cnt; i++) {
13936 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
13937 		struct bpf_program *prog = *prog_skel->prog;
13938 		struct bpf_link **link = prog_skel->link;
13939 
13940 		if (!prog->autoload || !prog->autoattach)
13941 			continue;
13942 
13943 		/* auto-attaching not supported for this program */
13944 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13945 			continue;
13946 
13947 		/* if user already set the link manually, don't attempt auto-attach */
13948 		if (*link)
13949 			continue;
13950 
13951 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13952 		if (err) {
13953 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13954 				bpf_program__name(prog), err);
13955 			return libbpf_err(err);
13956 		}
13957 
13958 		/* It's possible that for some SEC() definitions auto-attach
13959 		 * is supported in some cases (e.g., if definition completely
13960 		 * specifies target information), but is not in other cases.
13961 		 * SEC("uprobe") is one such case. If user specified target
13962 		 * binary and function name, such BPF program can be
13963 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13964 		 * attach to fail. It should just be skipped.
13965 		 * attach_fn signals such case with returning 0 (no error) and
13966 		 * setting link to NULL.
13967 		 */
13968 	}
13969 
13970 
13971 	for (i = 0; i < s->map_cnt; i++) {
13972 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
13973 		struct bpf_map *map = *map_skel->map;
13974 		struct bpf_link **link;
13975 
13976 		if (!map->autocreate || !map->autoattach)
13977 			continue;
13978 
13979 		/* only struct_ops maps can be attached */
13980 		if (!bpf_map__is_struct_ops(map))
13981 			continue;
13982 
13983 		/* skeleton is created with earlier version of bpftool, notify user */
13984 		if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
13985 			pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
13986 				bpf_map__name(map));
13987 			continue;
13988 		}
13989 
13990 		link = map_skel->link;
13991 		if (*link)
13992 			continue;
13993 
13994 		*link = bpf_map__attach_struct_ops(map);
13995 		if (!*link) {
13996 			err = -errno;
13997 			pr_warn("map '%s': failed to auto-attach: %d\n", bpf_map__name(map), err);
13998 			return libbpf_err(err);
13999 		}
14000 	}
14001 
14002 	return 0;
14003 }
14004 
14005 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14006 {
14007 	int i;
14008 
14009 	for (i = 0; i < s->prog_cnt; i++) {
14010 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14011 		struct bpf_link **link = prog_skel->link;
14012 
14013 		bpf_link__destroy(*link);
14014 		*link = NULL;
14015 	}
14016 
14017 	if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14018 		return;
14019 
14020 	for (i = 0; i < s->map_cnt; i++) {
14021 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14022 		struct bpf_link **link = map_skel->link;
14023 
14024 		if (link) {
14025 			bpf_link__destroy(*link);
14026 			*link = NULL;
14027 		}
14028 	}
14029 }
14030 
14031 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14032 {
14033 	if (!s)
14034 		return;
14035 
14036 	bpf_object__detach_skeleton(s);
14037 	if (s->obj)
14038 		bpf_object__close(*s->obj);
14039 	free(s->maps);
14040 	free(s->progs);
14041 	free(s);
14042 }
14043