xref: /linux/tools/lib/bpf/btf_dump.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include "btf.h"
17 #include "hashmap.h"
18 #include "libbpf.h"
19 #include "libbpf_internal.h"
20 
21 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
22 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
23 
24 static const char *pfx(int lvl)
25 {
26 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
27 }
28 
29 enum btf_dump_type_order_state {
30 	NOT_ORDERED,
31 	ORDERING,
32 	ORDERED,
33 };
34 
35 enum btf_dump_type_emit_state {
36 	NOT_EMITTED,
37 	EMITTING,
38 	EMITTED,
39 };
40 
41 /* per-type auxiliary state */
42 struct btf_dump_type_aux_state {
43 	/* topological sorting state */
44 	enum btf_dump_type_order_state order_state: 2;
45 	/* emitting state used to determine the need for forward declaration */
46 	enum btf_dump_type_emit_state emit_state: 2;
47 	/* whether forward declaration was already emitted */
48 	__u8 fwd_emitted: 1;
49 	/* whether unique non-duplicate name was already assigned */
50 	__u8 name_resolved: 1;
51 };
52 
53 struct btf_dump {
54 	const struct btf *btf;
55 	const struct btf_ext *btf_ext;
56 	btf_dump_printf_fn_t printf_fn;
57 	struct btf_dump_opts opts;
58 
59 	/* per-type auxiliary state */
60 	struct btf_dump_type_aux_state *type_states;
61 	/* per-type optional cached unique name, must be freed, if present */
62 	const char **cached_names;
63 
64 	/* topo-sorted list of dependent type definitions */
65 	__u32 *emit_queue;
66 	int emit_queue_cap;
67 	int emit_queue_cnt;
68 
69 	/*
70 	 * stack of type declarations (e.g., chain of modifiers, arrays,
71 	 * funcs, etc)
72 	 */
73 	__u32 *decl_stack;
74 	int decl_stack_cap;
75 	int decl_stack_cnt;
76 
77 	/* maps struct/union/enum name to a number of name occurrences */
78 	struct hashmap *type_names;
79 	/*
80 	 * maps typedef identifiers and enum value names to a number of such
81 	 * name occurrences
82 	 */
83 	struct hashmap *ident_names;
84 };
85 
86 static size_t str_hash_fn(const void *key, void *ctx)
87 {
88 	const char *s = key;
89 	size_t h = 0;
90 
91 	while (*s) {
92 		h = h * 31 + *s;
93 		s++;
94 	}
95 	return h;
96 }
97 
98 static bool str_equal_fn(const void *a, const void *b, void *ctx)
99 {
100 	return strcmp(a, b) == 0;
101 }
102 
103 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
104 {
105 	return btf__name_by_offset(d->btf, name_off);
106 }
107 
108 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
109 {
110 	va_list args;
111 
112 	va_start(args, fmt);
113 	d->printf_fn(d->opts.ctx, fmt, args);
114 	va_end(args);
115 }
116 
117 struct btf_dump *btf_dump__new(const struct btf *btf,
118 			       const struct btf_ext *btf_ext,
119 			       const struct btf_dump_opts *opts,
120 			       btf_dump_printf_fn_t printf_fn)
121 {
122 	struct btf_dump *d;
123 	int err;
124 
125 	d = calloc(1, sizeof(struct btf_dump));
126 	if (!d)
127 		return ERR_PTR(-ENOMEM);
128 
129 	d->btf = btf;
130 	d->btf_ext = btf_ext;
131 	d->printf_fn = printf_fn;
132 	d->opts.ctx = opts ? opts->ctx : NULL;
133 
134 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
135 	if (IS_ERR(d->type_names)) {
136 		err = PTR_ERR(d->type_names);
137 		d->type_names = NULL;
138 		btf_dump__free(d);
139 		return ERR_PTR(err);
140 	}
141 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
142 	if (IS_ERR(d->ident_names)) {
143 		err = PTR_ERR(d->ident_names);
144 		d->ident_names = NULL;
145 		btf_dump__free(d);
146 		return ERR_PTR(err);
147 	}
148 
149 	return d;
150 }
151 
152 void btf_dump__free(struct btf_dump *d)
153 {
154 	int i, cnt;
155 
156 	if (!d)
157 		return;
158 
159 	free(d->type_states);
160 	if (d->cached_names) {
161 		/* any set cached name is owned by us and should be freed */
162 		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
163 			if (d->cached_names[i])
164 				free((void *)d->cached_names[i]);
165 		}
166 	}
167 	free(d->cached_names);
168 	free(d->emit_queue);
169 	free(d->decl_stack);
170 	hashmap__free(d->type_names);
171 	hashmap__free(d->ident_names);
172 
173 	free(d);
174 }
175 
176 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
177 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
178 
179 /*
180  * Dump BTF type in a compilable C syntax, including all the necessary
181  * dependent types, necessary for compilation. If some of the dependent types
182  * were already emitted as part of previous btf_dump__dump_type() invocation
183  * for another type, they won't be emitted again. This API allows callers to
184  * filter out BTF types according to user-defined criterias and emitted only
185  * minimal subset of types, necessary to compile everything. Full struct/union
186  * definitions will still be emitted, even if the only usage is through
187  * pointer and could be satisfied with just a forward declaration.
188  *
189  * Dumping is done in two high-level passes:
190  *   1. Topologically sort type definitions to satisfy C rules of compilation.
191  *   2. Emit type definitions in C syntax.
192  *
193  * Returns 0 on success; <0, otherwise.
194  */
195 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
196 {
197 	int err, i;
198 
199 	if (id > btf__get_nr_types(d->btf))
200 		return -EINVAL;
201 
202 	/* type states are lazily allocated, as they might not be needed */
203 	if (!d->type_states) {
204 		d->type_states = calloc(1 + btf__get_nr_types(d->btf),
205 					sizeof(d->type_states[0]));
206 		if (!d->type_states)
207 			return -ENOMEM;
208 		d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
209 					 sizeof(d->cached_names[0]));
210 		if (!d->cached_names)
211 			return -ENOMEM;
212 
213 		/* VOID is special */
214 		d->type_states[0].order_state = ORDERED;
215 		d->type_states[0].emit_state = EMITTED;
216 	}
217 
218 	d->emit_queue_cnt = 0;
219 	err = btf_dump_order_type(d, id, false);
220 	if (err < 0)
221 		return err;
222 
223 	for (i = 0; i < d->emit_queue_cnt; i++)
224 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
225 
226 	return 0;
227 }
228 
229 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
230 {
231 	__u32 *new_queue;
232 	size_t new_cap;
233 
234 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
235 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
236 		new_queue = realloc(d->emit_queue,
237 				    new_cap * sizeof(new_queue[0]));
238 		if (!new_queue)
239 			return -ENOMEM;
240 		d->emit_queue = new_queue;
241 		d->emit_queue_cap = new_cap;
242 	}
243 
244 	d->emit_queue[d->emit_queue_cnt++] = id;
245 	return 0;
246 }
247 
248 /*
249  * Determine order of emitting dependent types and specified type to satisfy
250  * C compilation rules.  This is done through topological sorting with an
251  * additional complication which comes from C rules. The main idea for C is
252  * that if some type is "embedded" into a struct/union, it's size needs to be
253  * known at the time of definition of containing type. E.g., for:
254  *
255  *	struct A {};
256  *	struct B { struct A x; }
257  *
258  * struct A *HAS* to be defined before struct B, because it's "embedded",
259  * i.e., it is part of struct B layout. But in the following case:
260  *
261  *	struct A;
262  *	struct B { struct A *x; }
263  *	struct A {};
264  *
265  * it's enough to just have a forward declaration of struct A at the time of
266  * struct B definition, as struct B has a pointer to struct A, so the size of
267  * field x is known without knowing struct A size: it's sizeof(void *).
268  *
269  * Unfortunately, there are some trickier cases we need to handle, e.g.:
270  *
271  *	struct A {}; // if this was forward-declaration: compilation error
272  *	struct B {
273  *		struct { // anonymous struct
274  *			struct A y;
275  *		} *x;
276  *	};
277  *
278  * In this case, struct B's field x is a pointer, so it's size is known
279  * regardless of the size of (anonymous) struct it points to. But because this
280  * struct is anonymous and thus defined inline inside struct B, *and* it
281  * embeds struct A, compiler requires full definition of struct A to be known
282  * before struct B can be defined. This creates a transitive dependency
283  * between struct A and struct B. If struct A was forward-declared before
284  * struct B definition and fully defined after struct B definition, that would
285  * trigger compilation error.
286  *
287  * All this means that while we are doing topological sorting on BTF type
288  * graph, we need to determine relationships between different types (graph
289  * nodes):
290  *   - weak link (relationship) between X and Y, if Y *CAN* be
291  *   forward-declared at the point of X definition;
292  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
293  *
294  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
295  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
296  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
297  * Weak/strong relationship is determined recursively during DFS traversal and
298  * is returned as a result from btf_dump_order_type().
299  *
300  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
301  * but it is not guaranteeing that no extraneous forward declarations will be
302  * emitted.
303  *
304  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
305  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
306  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
307  * entire graph path, so depending where from one came to that BTF type, it
308  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
309  * once they are processed, there is no need to do it again, so they are
310  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
311  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
312  * in any case, once those are processed, no need to do it again, as the
313  * result won't change.
314  *
315  * Returns:
316  *   - 1, if type is part of strong link (so there is strong topological
317  *   ordering requirements);
318  *   - 0, if type is part of weak link (so can be satisfied through forward
319  *   declaration);
320  *   - <0, on error (e.g., unsatisfiable type loop detected).
321  */
322 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
323 {
324 	/*
325 	 * Order state is used to detect strong link cycles, but only for BTF
326 	 * kinds that are or could be an independent definition (i.e.,
327 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
328 	 * func_protos, modifiers are just means to get to these definitions.
329 	 * Int/void don't need definitions, they are assumed to be always
330 	 * properly defined.  We also ignore datasec, var, and funcs for now.
331 	 * So for all non-defining kinds, we never even set ordering state,
332 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
333 	 * forms a strong link.
334 	 */
335 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
336 	const struct btf_type *t;
337 	__u16 vlen;
338 	int err, i;
339 
340 	/* return true, letting typedefs know that it's ok to be emitted */
341 	if (tstate->order_state == ORDERED)
342 		return 1;
343 
344 	t = btf__type_by_id(d->btf, id);
345 
346 	if (tstate->order_state == ORDERING) {
347 		/* type loop, but resolvable through fwd declaration */
348 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
349 			return 0;
350 		pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
351 		return -ELOOP;
352 	}
353 
354 	switch (btf_kind(t)) {
355 	case BTF_KIND_INT:
356 		tstate->order_state = ORDERED;
357 		return 0;
358 
359 	case BTF_KIND_PTR:
360 		err = btf_dump_order_type(d, t->type, true);
361 		tstate->order_state = ORDERED;
362 		return err;
363 
364 	case BTF_KIND_ARRAY:
365 		return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
366 
367 	case BTF_KIND_STRUCT:
368 	case BTF_KIND_UNION: {
369 		const struct btf_member *m = btf_members(t);
370 		/*
371 		 * struct/union is part of strong link, only if it's embedded
372 		 * (so no ptr in a path) or it's anonymous (so has to be
373 		 * defined inline, even if declared through ptr)
374 		 */
375 		if (through_ptr && t->name_off != 0)
376 			return 0;
377 
378 		tstate->order_state = ORDERING;
379 
380 		vlen = btf_vlen(t);
381 		for (i = 0; i < vlen; i++, m++) {
382 			err = btf_dump_order_type(d, m->type, false);
383 			if (err < 0)
384 				return err;
385 		}
386 
387 		if (t->name_off != 0) {
388 			err = btf_dump_add_emit_queue_id(d, id);
389 			if (err < 0)
390 				return err;
391 		}
392 
393 		tstate->order_state = ORDERED;
394 		return 1;
395 	}
396 	case BTF_KIND_ENUM:
397 	case BTF_KIND_FWD:
398 		if (t->name_off != 0) {
399 			err = btf_dump_add_emit_queue_id(d, id);
400 			if (err)
401 				return err;
402 		}
403 		tstate->order_state = ORDERED;
404 		return 1;
405 
406 	case BTF_KIND_TYPEDEF: {
407 		int is_strong;
408 
409 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
410 		if (is_strong < 0)
411 			return is_strong;
412 
413 		/* typedef is similar to struct/union w.r.t. fwd-decls */
414 		if (through_ptr && !is_strong)
415 			return 0;
416 
417 		/* typedef is always a named definition */
418 		err = btf_dump_add_emit_queue_id(d, id);
419 		if (err)
420 			return err;
421 
422 		d->type_states[id].order_state = ORDERED;
423 		return 1;
424 	}
425 	case BTF_KIND_VOLATILE:
426 	case BTF_KIND_CONST:
427 	case BTF_KIND_RESTRICT:
428 		return btf_dump_order_type(d, t->type, through_ptr);
429 
430 	case BTF_KIND_FUNC_PROTO: {
431 		const struct btf_param *p = btf_params(t);
432 		bool is_strong;
433 
434 		err = btf_dump_order_type(d, t->type, through_ptr);
435 		if (err < 0)
436 			return err;
437 		is_strong = err > 0;
438 
439 		vlen = btf_vlen(t);
440 		for (i = 0; i < vlen; i++, p++) {
441 			err = btf_dump_order_type(d, p->type, through_ptr);
442 			if (err < 0)
443 				return err;
444 			if (err > 0)
445 				is_strong = true;
446 		}
447 		return is_strong;
448 	}
449 	case BTF_KIND_FUNC:
450 	case BTF_KIND_VAR:
451 	case BTF_KIND_DATASEC:
452 		d->type_states[id].order_state = ORDERED;
453 		return 0;
454 
455 	default:
456 		return -EINVAL;
457 	}
458 }
459 
460 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
461 				     const struct btf_type *t);
462 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
463 				     const struct btf_type *t, int lvl);
464 
465 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
466 				   const struct btf_type *t);
467 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
468 				   const struct btf_type *t, int lvl);
469 
470 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
471 				  const struct btf_type *t);
472 
473 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
474 				      const struct btf_type *t, int lvl);
475 
476 /* a local view into a shared stack */
477 struct id_stack {
478 	const __u32 *ids;
479 	int cnt;
480 };
481 
482 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
483 				    const char *fname, int lvl);
484 static void btf_dump_emit_type_chain(struct btf_dump *d,
485 				     struct id_stack *decl_stack,
486 				     const char *fname, int lvl);
487 
488 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
489 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
490 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
491 				 const char *orig_name);
492 
493 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
494 {
495 	const struct btf_type *t = btf__type_by_id(d->btf, id);
496 
497 	/* __builtin_va_list is a compiler built-in, which causes compilation
498 	 * errors, when compiling w/ different compiler, then used to compile
499 	 * original code (e.g., GCC to compile kernel, Clang to use generated
500 	 * C header from BTF). As it is built-in, it should be already defined
501 	 * properly internally in compiler.
502 	 */
503 	if (t->name_off == 0)
504 		return false;
505 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
506 }
507 
508 /*
509  * Emit C-syntax definitions of types from chains of BTF types.
510  *
511  * High-level handling of determining necessary forward declarations are handled
512  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
513  * declarations/definitions in C syntax  are handled by a combo of
514  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
515  * corresponding btf_dump_emit_*_{def,fwd}() functions.
516  *
517  * We also keep track of "containing struct/union type ID" to determine when
518  * we reference it from inside and thus can avoid emitting unnecessary forward
519  * declaration.
520  *
521  * This algorithm is designed in such a way, that even if some error occurs
522  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
523  * that doesn't comply to C rules completely), algorithm will try to proceed
524  * and produce as much meaningful output as possible.
525  */
526 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
527 {
528 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
529 	bool top_level_def = cont_id == 0;
530 	const struct btf_type *t;
531 	__u16 kind;
532 
533 	if (tstate->emit_state == EMITTED)
534 		return;
535 
536 	t = btf__type_by_id(d->btf, id);
537 	kind = btf_kind(t);
538 
539 	if (top_level_def && t->name_off == 0) {
540 		pr_warning("unexpected nameless definition, id:[%u]\n", id);
541 		return;
542 	}
543 
544 	if (tstate->emit_state == EMITTING) {
545 		if (tstate->fwd_emitted)
546 			return;
547 
548 		switch (kind) {
549 		case BTF_KIND_STRUCT:
550 		case BTF_KIND_UNION:
551 			/*
552 			 * if we are referencing a struct/union that we are
553 			 * part of - then no need for fwd declaration
554 			 */
555 			if (id == cont_id)
556 				return;
557 			if (t->name_off == 0) {
558 				pr_warning("anonymous struct/union loop, id:[%u]\n",
559 					   id);
560 				return;
561 			}
562 			btf_dump_emit_struct_fwd(d, id, t);
563 			btf_dump_printf(d, ";\n\n");
564 			tstate->fwd_emitted = 1;
565 			break;
566 		case BTF_KIND_TYPEDEF:
567 			/*
568 			 * for typedef fwd_emitted means typedef definition
569 			 * was emitted, but it can be used only for "weak"
570 			 * references through pointer only, not for embedding
571 			 */
572 			if (!btf_dump_is_blacklisted(d, id)) {
573 				btf_dump_emit_typedef_def(d, id, t, 0);
574 				btf_dump_printf(d, ";\n\n");
575 			};
576 			tstate->fwd_emitted = 1;
577 			break;
578 		default:
579 			break;
580 		}
581 
582 		return;
583 	}
584 
585 	switch (kind) {
586 	case BTF_KIND_INT:
587 		tstate->emit_state = EMITTED;
588 		break;
589 	case BTF_KIND_ENUM:
590 		if (top_level_def) {
591 			btf_dump_emit_enum_def(d, id, t, 0);
592 			btf_dump_printf(d, ";\n\n");
593 		}
594 		tstate->emit_state = EMITTED;
595 		break;
596 	case BTF_KIND_PTR:
597 	case BTF_KIND_VOLATILE:
598 	case BTF_KIND_CONST:
599 	case BTF_KIND_RESTRICT:
600 		btf_dump_emit_type(d, t->type, cont_id);
601 		break;
602 	case BTF_KIND_ARRAY:
603 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
604 		break;
605 	case BTF_KIND_FWD:
606 		btf_dump_emit_fwd_def(d, id, t);
607 		btf_dump_printf(d, ";\n\n");
608 		tstate->emit_state = EMITTED;
609 		break;
610 	case BTF_KIND_TYPEDEF:
611 		tstate->emit_state = EMITTING;
612 		btf_dump_emit_type(d, t->type, id);
613 		/*
614 		 * typedef can server as both definition and forward
615 		 * declaration; at this stage someone depends on
616 		 * typedef as a forward declaration (refers to it
617 		 * through pointer), so unless we already did it,
618 		 * emit typedef as a forward declaration
619 		 */
620 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
621 			btf_dump_emit_typedef_def(d, id, t, 0);
622 			btf_dump_printf(d, ";\n\n");
623 		}
624 		tstate->emit_state = EMITTED;
625 		break;
626 	case BTF_KIND_STRUCT:
627 	case BTF_KIND_UNION:
628 		tstate->emit_state = EMITTING;
629 		/* if it's a top-level struct/union definition or struct/union
630 		 * is anonymous, then in C we'll be emitting all fields and
631 		 * their types (as opposed to just `struct X`), so we need to
632 		 * make sure that all types, referenced from struct/union
633 		 * members have necessary forward-declarations, where
634 		 * applicable
635 		 */
636 		if (top_level_def || t->name_off == 0) {
637 			const struct btf_member *m = btf_members(t);
638 			__u16 vlen = btf_vlen(t);
639 			int i, new_cont_id;
640 
641 			new_cont_id = t->name_off == 0 ? cont_id : id;
642 			for (i = 0; i < vlen; i++, m++)
643 				btf_dump_emit_type(d, m->type, new_cont_id);
644 		} else if (!tstate->fwd_emitted && id != cont_id) {
645 			btf_dump_emit_struct_fwd(d, id, t);
646 			btf_dump_printf(d, ";\n\n");
647 			tstate->fwd_emitted = 1;
648 		}
649 
650 		if (top_level_def) {
651 			btf_dump_emit_struct_def(d, id, t, 0);
652 			btf_dump_printf(d, ";\n\n");
653 			tstate->emit_state = EMITTED;
654 		} else {
655 			tstate->emit_state = NOT_EMITTED;
656 		}
657 		break;
658 	case BTF_KIND_FUNC_PROTO: {
659 		const struct btf_param *p = btf_params(t);
660 		__u16 vlen = btf_vlen(t);
661 		int i;
662 
663 		btf_dump_emit_type(d, t->type, cont_id);
664 		for (i = 0; i < vlen; i++, p++)
665 			btf_dump_emit_type(d, p->type, cont_id);
666 
667 		break;
668 	}
669 	default:
670 		break;
671 	}
672 }
673 
674 static int btf_align_of(const struct btf *btf, __u32 id)
675 {
676 	const struct btf_type *t = btf__type_by_id(btf, id);
677 	__u16 kind = btf_kind(t);
678 
679 	switch (kind) {
680 	case BTF_KIND_INT:
681 	case BTF_KIND_ENUM:
682 		return min(sizeof(void *), t->size);
683 	case BTF_KIND_PTR:
684 		return sizeof(void *);
685 	case BTF_KIND_TYPEDEF:
686 	case BTF_KIND_VOLATILE:
687 	case BTF_KIND_CONST:
688 	case BTF_KIND_RESTRICT:
689 		return btf_align_of(btf, t->type);
690 	case BTF_KIND_ARRAY:
691 		return btf_align_of(btf, btf_array(t)->type);
692 	case BTF_KIND_STRUCT:
693 	case BTF_KIND_UNION: {
694 		const struct btf_member *m = btf_members(t);
695 		__u16 vlen = btf_vlen(t);
696 		int i, align = 1;
697 
698 		for (i = 0; i < vlen; i++, m++)
699 			align = max(align, btf_align_of(btf, m->type));
700 
701 		return align;
702 	}
703 	default:
704 		pr_warning("unsupported BTF_KIND:%u\n", btf_kind(t));
705 		return 1;
706 	}
707 }
708 
709 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
710 				 const struct btf_type *t)
711 {
712 	const struct btf_member *m;
713 	int align, i, bit_sz;
714 	__u16 vlen;
715 
716 	align = btf_align_of(btf, id);
717 	/* size of a non-packed struct has to be a multiple of its alignment*/
718 	if (t->size % align)
719 		return true;
720 
721 	m = btf_members(t);
722 	vlen = btf_vlen(t);
723 	/* all non-bitfield fields have to be naturally aligned */
724 	for (i = 0; i < vlen; i++, m++) {
725 		align = btf_align_of(btf, m->type);
726 		bit_sz = btf_member_bitfield_size(t, i);
727 		if (bit_sz == 0 && m->offset % (8 * align) != 0)
728 			return true;
729 	}
730 
731 	/*
732 	 * if original struct was marked as packed, but its layout is
733 	 * naturally aligned, we'll detect that it's not packed
734 	 */
735 	return false;
736 }
737 
738 static int chip_away_bits(int total, int at_most)
739 {
740 	return total % at_most ? : at_most;
741 }
742 
743 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
744 				      int cur_off, int m_off, int m_bit_sz,
745 				      int align, int lvl)
746 {
747 	int off_diff = m_off - cur_off;
748 	int ptr_bits = sizeof(void *) * 8;
749 
750 	if (off_diff <= 0)
751 		/* no gap */
752 		return;
753 	if (m_bit_sz == 0 && off_diff < align * 8)
754 		/* natural padding will take care of a gap */
755 		return;
756 
757 	while (off_diff > 0) {
758 		const char *pad_type;
759 		int pad_bits;
760 
761 		if (ptr_bits > 32 && off_diff > 32) {
762 			pad_type = "long";
763 			pad_bits = chip_away_bits(off_diff, ptr_bits);
764 		} else if (off_diff > 16) {
765 			pad_type = "int";
766 			pad_bits = chip_away_bits(off_diff, 32);
767 		} else if (off_diff > 8) {
768 			pad_type = "short";
769 			pad_bits = chip_away_bits(off_diff, 16);
770 		} else {
771 			pad_type = "char";
772 			pad_bits = chip_away_bits(off_diff, 8);
773 		}
774 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
775 		off_diff -= pad_bits;
776 	}
777 }
778 
779 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
780 				     const struct btf_type *t)
781 {
782 	btf_dump_printf(d, "%s %s",
783 			btf_is_struct(t) ? "struct" : "union",
784 			btf_dump_type_name(d, id));
785 }
786 
787 static void btf_dump_emit_struct_def(struct btf_dump *d,
788 				     __u32 id,
789 				     const struct btf_type *t,
790 				     int lvl)
791 {
792 	const struct btf_member *m = btf_members(t);
793 	bool is_struct = btf_is_struct(t);
794 	int align, i, packed, off = 0;
795 	__u16 vlen = btf_vlen(t);
796 
797 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
798 	align = packed ? 1 : btf_align_of(d->btf, id);
799 
800 	btf_dump_printf(d, "%s%s%s {",
801 			is_struct ? "struct" : "union",
802 			t->name_off ? " " : "",
803 			btf_dump_type_name(d, id));
804 
805 	for (i = 0; i < vlen; i++, m++) {
806 		const char *fname;
807 		int m_off, m_sz;
808 
809 		fname = btf_name_of(d, m->name_off);
810 		m_sz = btf_member_bitfield_size(t, i);
811 		m_off = btf_member_bit_offset(t, i);
812 		align = packed ? 1 : btf_align_of(d->btf, m->type);
813 
814 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
815 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
816 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
817 
818 		if (m_sz) {
819 			btf_dump_printf(d, ": %d", m_sz);
820 			off = m_off + m_sz;
821 		} else {
822 			m_sz = max(0, btf__resolve_size(d->btf, m->type));
823 			off = m_off + m_sz * 8;
824 		}
825 		btf_dump_printf(d, ";");
826 	}
827 
828 	if (vlen)
829 		btf_dump_printf(d, "\n");
830 	btf_dump_printf(d, "%s}", pfx(lvl));
831 	if (packed)
832 		btf_dump_printf(d, " __attribute__((packed))");
833 }
834 
835 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
836 				   const struct btf_type *t)
837 {
838 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
839 }
840 
841 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
842 				   const struct btf_type *t,
843 				   int lvl)
844 {
845 	const struct btf_enum *v = btf_enum(t);
846 	__u16 vlen = btf_vlen(t);
847 	const char *name;
848 	size_t dup_cnt;
849 	int i;
850 
851 	btf_dump_printf(d, "enum%s%s",
852 			t->name_off ? " " : "",
853 			btf_dump_type_name(d, id));
854 
855 	if (vlen) {
856 		btf_dump_printf(d, " {");
857 		for (i = 0; i < vlen; i++, v++) {
858 			name = btf_name_of(d, v->name_off);
859 			/* enumerators share namespace with typedef idents */
860 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
861 			if (dup_cnt > 1) {
862 				btf_dump_printf(d, "\n%s%s___%zu = %d,",
863 						pfx(lvl + 1), name, dup_cnt,
864 						(__s32)v->val);
865 			} else {
866 				btf_dump_printf(d, "\n%s%s = %d,",
867 						pfx(lvl + 1), name,
868 						(__s32)v->val);
869 			}
870 		}
871 		btf_dump_printf(d, "\n%s}", pfx(lvl));
872 	}
873 }
874 
875 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
876 				  const struct btf_type *t)
877 {
878 	const char *name = btf_dump_type_name(d, id);
879 
880 	if (btf_kflag(t))
881 		btf_dump_printf(d, "union %s", name);
882 	else
883 		btf_dump_printf(d, "struct %s", name);
884 }
885 
886 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
887 				     const struct btf_type *t, int lvl)
888 {
889 	const char *name = btf_dump_ident_name(d, id);
890 
891 	btf_dump_printf(d, "typedef ");
892 	btf_dump_emit_type_decl(d, t->type, name, lvl);
893 }
894 
895 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
896 {
897 	__u32 *new_stack;
898 	size_t new_cap;
899 
900 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
901 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
902 		new_stack = realloc(d->decl_stack,
903 				    new_cap * sizeof(new_stack[0]));
904 		if (!new_stack)
905 			return -ENOMEM;
906 		d->decl_stack = new_stack;
907 		d->decl_stack_cap = new_cap;
908 	}
909 
910 	d->decl_stack[d->decl_stack_cnt++] = id;
911 
912 	return 0;
913 }
914 
915 /*
916  * Emit type declaration (e.g., field type declaration in a struct or argument
917  * declaration in function prototype) in correct C syntax.
918  *
919  * For most types it's trivial, but there are few quirky type declaration
920  * cases worth mentioning:
921  *   - function prototypes (especially nesting of function prototypes);
922  *   - arrays;
923  *   - const/volatile/restrict for pointers vs other types.
924  *
925  * For a good discussion of *PARSING* C syntax (as a human), see
926  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
927  * Ch.3 "Unscrambling Declarations in C".
928  *
929  * It won't help with BTF to C conversion much, though, as it's an opposite
930  * problem. So we came up with this algorithm in reverse to van der Linden's
931  * parsing algorithm. It goes from structured BTF representation of type
932  * declaration to a valid compilable C syntax.
933  *
934  * For instance, consider this C typedef:
935  *	typedef const int * const * arr[10] arr_t;
936  * It will be represented in BTF with this chain of BTF types:
937  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
938  *
939  * Notice how [const] modifier always goes before type it modifies in BTF type
940  * graph, but in C syntax, const/volatile/restrict modifiers are written to
941  * the right of pointers, but to the left of other types. There are also other
942  * quirks, like function pointers, arrays of them, functions returning other
943  * functions, etc.
944  *
945  * We handle that by pushing all the types to a stack, until we hit "terminal"
946  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
947  * top of a stack, modifiers are handled differently. Array/function pointers
948  * have also wildly different syntax and how nesting of them are done. See
949  * code for authoritative definition.
950  *
951  * To avoid allocating new stack for each independent chain of BTF types, we
952  * share one bigger stack, with each chain working only on its own local view
953  * of a stack frame. Some care is required to "pop" stack frames after
954  * processing type declaration chain.
955  */
956 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
957 				    const char *fname, int lvl)
958 {
959 	struct id_stack decl_stack;
960 	const struct btf_type *t;
961 	int err, stack_start;
962 
963 	stack_start = d->decl_stack_cnt;
964 	for (;;) {
965 		err = btf_dump_push_decl_stack_id(d, id);
966 		if (err < 0) {
967 			/*
968 			 * if we don't have enough memory for entire type decl
969 			 * chain, restore stack, emit warning, and try to
970 			 * proceed nevertheless
971 			 */
972 			pr_warning("not enough memory for decl stack:%d", err);
973 			d->decl_stack_cnt = stack_start;
974 			return;
975 		}
976 
977 		/* VOID */
978 		if (id == 0)
979 			break;
980 
981 		t = btf__type_by_id(d->btf, id);
982 		switch (btf_kind(t)) {
983 		case BTF_KIND_PTR:
984 		case BTF_KIND_VOLATILE:
985 		case BTF_KIND_CONST:
986 		case BTF_KIND_RESTRICT:
987 		case BTF_KIND_FUNC_PROTO:
988 			id = t->type;
989 			break;
990 		case BTF_KIND_ARRAY:
991 			id = btf_array(t)->type;
992 			break;
993 		case BTF_KIND_INT:
994 		case BTF_KIND_ENUM:
995 		case BTF_KIND_FWD:
996 		case BTF_KIND_STRUCT:
997 		case BTF_KIND_UNION:
998 		case BTF_KIND_TYPEDEF:
999 			goto done;
1000 		default:
1001 			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1002 				   btf_kind(t), id);
1003 			goto done;
1004 		}
1005 	}
1006 done:
1007 	/*
1008 	 * We might be inside a chain of declarations (e.g., array of function
1009 	 * pointers returning anonymous (so inlined) structs, having another
1010 	 * array field). Each of those needs its own "stack frame" to handle
1011 	 * emitting of declarations. Those stack frames are non-overlapping
1012 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1013 	 * handle this set of nested stacks, we create a view corresponding to
1014 	 * our own "stack frame" and work with it as an independent stack.
1015 	 * We'll need to clean up after emit_type_chain() returns, though.
1016 	 */
1017 	decl_stack.ids = d->decl_stack + stack_start;
1018 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1019 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1020 	/*
1021 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1022 	 * frame before returning. But it works with a read-only view into
1023 	 * decl_stack, so it doesn't actually pop anything from the
1024 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1025 	 * reset decl_stack state to how it was before us to avoid it growing
1026 	 * all the time.
1027 	 */
1028 	d->decl_stack_cnt = stack_start;
1029 }
1030 
1031 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1032 {
1033 	const struct btf_type *t;
1034 	__u32 id;
1035 
1036 	while (decl_stack->cnt) {
1037 		id = decl_stack->ids[decl_stack->cnt - 1];
1038 		t = btf__type_by_id(d->btf, id);
1039 
1040 		switch (btf_kind(t)) {
1041 		case BTF_KIND_VOLATILE:
1042 			btf_dump_printf(d, "volatile ");
1043 			break;
1044 		case BTF_KIND_CONST:
1045 			btf_dump_printf(d, "const ");
1046 			break;
1047 		case BTF_KIND_RESTRICT:
1048 			btf_dump_printf(d, "restrict ");
1049 			break;
1050 		default:
1051 			return;
1052 		}
1053 		decl_stack->cnt--;
1054 	}
1055 }
1056 
1057 static void btf_dump_emit_name(const struct btf_dump *d,
1058 			       const char *name, bool last_was_ptr)
1059 {
1060 	bool separate = name[0] && !last_was_ptr;
1061 
1062 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1063 }
1064 
1065 static void btf_dump_emit_type_chain(struct btf_dump *d,
1066 				     struct id_stack *decls,
1067 				     const char *fname, int lvl)
1068 {
1069 	/*
1070 	 * last_was_ptr is used to determine if we need to separate pointer
1071 	 * asterisk (*) from previous part of type signature with space, so
1072 	 * that we get `int ***`, instead of `int * * *`. We default to true
1073 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1074 	 * func_proto case. func_proto will start a new emit_type_chain call
1075 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1076 	 * don't want to prepend space for that last pointer.
1077 	 */
1078 	bool last_was_ptr = true;
1079 	const struct btf_type *t;
1080 	const char *name;
1081 	__u16 kind;
1082 	__u32 id;
1083 
1084 	while (decls->cnt) {
1085 		id = decls->ids[--decls->cnt];
1086 		if (id == 0) {
1087 			/* VOID is a special snowflake */
1088 			btf_dump_emit_mods(d, decls);
1089 			btf_dump_printf(d, "void");
1090 			last_was_ptr = false;
1091 			continue;
1092 		}
1093 
1094 		t = btf__type_by_id(d->btf, id);
1095 		kind = btf_kind(t);
1096 
1097 		switch (kind) {
1098 		case BTF_KIND_INT:
1099 			btf_dump_emit_mods(d, decls);
1100 			name = btf_name_of(d, t->name_off);
1101 			btf_dump_printf(d, "%s", name);
1102 			break;
1103 		case BTF_KIND_STRUCT:
1104 		case BTF_KIND_UNION:
1105 			btf_dump_emit_mods(d, decls);
1106 			/* inline anonymous struct/union */
1107 			if (t->name_off == 0)
1108 				btf_dump_emit_struct_def(d, id, t, lvl);
1109 			else
1110 				btf_dump_emit_struct_fwd(d, id, t);
1111 			break;
1112 		case BTF_KIND_ENUM:
1113 			btf_dump_emit_mods(d, decls);
1114 			/* inline anonymous enum */
1115 			if (t->name_off == 0)
1116 				btf_dump_emit_enum_def(d, id, t, lvl);
1117 			else
1118 				btf_dump_emit_enum_fwd(d, id, t);
1119 			break;
1120 		case BTF_KIND_FWD:
1121 			btf_dump_emit_mods(d, decls);
1122 			btf_dump_emit_fwd_def(d, id, t);
1123 			break;
1124 		case BTF_KIND_TYPEDEF:
1125 			btf_dump_emit_mods(d, decls);
1126 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1127 			break;
1128 		case BTF_KIND_PTR:
1129 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1130 			break;
1131 		case BTF_KIND_VOLATILE:
1132 			btf_dump_printf(d, " volatile");
1133 			break;
1134 		case BTF_KIND_CONST:
1135 			btf_dump_printf(d, " const");
1136 			break;
1137 		case BTF_KIND_RESTRICT:
1138 			btf_dump_printf(d, " restrict");
1139 			break;
1140 		case BTF_KIND_ARRAY: {
1141 			const struct btf_array *a = btf_array(t);
1142 			const struct btf_type *next_t;
1143 			__u32 next_id;
1144 			bool multidim;
1145 			/*
1146 			 * GCC has a bug
1147 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1148 			 * which causes it to emit extra const/volatile
1149 			 * modifiers for an array, if array's element type has
1150 			 * const/volatile modifiers. Clang doesn't do that.
1151 			 * In general, it doesn't seem very meaningful to have
1152 			 * a const/volatile modifier for array, so we are
1153 			 * going to silently skip them here.
1154 			 */
1155 			while (decls->cnt) {
1156 				next_id = decls->ids[decls->cnt - 1];
1157 				next_t = btf__type_by_id(d->btf, next_id);
1158 				if (btf_is_mod(next_t))
1159 					decls->cnt--;
1160 				else
1161 					break;
1162 			}
1163 
1164 			if (decls->cnt == 0) {
1165 				btf_dump_emit_name(d, fname, last_was_ptr);
1166 				btf_dump_printf(d, "[%u]", a->nelems);
1167 				return;
1168 			}
1169 
1170 			next_t = btf__type_by_id(d->btf, next_id);
1171 			multidim = btf_is_array(next_t);
1172 			/* we need space if we have named non-pointer */
1173 			if (fname[0] && !last_was_ptr)
1174 				btf_dump_printf(d, " ");
1175 			/* no parentheses for multi-dimensional array */
1176 			if (!multidim)
1177 				btf_dump_printf(d, "(");
1178 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1179 			if (!multidim)
1180 				btf_dump_printf(d, ")");
1181 			btf_dump_printf(d, "[%u]", a->nelems);
1182 			return;
1183 		}
1184 		case BTF_KIND_FUNC_PROTO: {
1185 			const struct btf_param *p = btf_params(t);
1186 			__u16 vlen = btf_vlen(t);
1187 			int i;
1188 
1189 			btf_dump_emit_mods(d, decls);
1190 			if (decls->cnt) {
1191 				btf_dump_printf(d, " (");
1192 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1193 				btf_dump_printf(d, ")");
1194 			} else {
1195 				btf_dump_emit_name(d, fname, last_was_ptr);
1196 			}
1197 			btf_dump_printf(d, "(");
1198 			/*
1199 			 * Clang for BPF target generates func_proto with no
1200 			 * args as a func_proto with a single void arg (e.g.,
1201 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1202 			 * going to pretend there are no args for such case.
1203 			 */
1204 			if (vlen == 1 && p->type == 0) {
1205 				btf_dump_printf(d, ")");
1206 				return;
1207 			}
1208 
1209 			for (i = 0; i < vlen; i++, p++) {
1210 				if (i > 0)
1211 					btf_dump_printf(d, ", ");
1212 
1213 				/* last arg of type void is vararg */
1214 				if (i == vlen - 1 && p->type == 0) {
1215 					btf_dump_printf(d, "...");
1216 					break;
1217 				}
1218 
1219 				name = btf_name_of(d, p->name_off);
1220 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1221 			}
1222 
1223 			btf_dump_printf(d, ")");
1224 			return;
1225 		}
1226 		default:
1227 			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1228 				   kind, id);
1229 			return;
1230 		}
1231 
1232 		last_was_ptr = kind == BTF_KIND_PTR;
1233 	}
1234 
1235 	btf_dump_emit_name(d, fname, last_was_ptr);
1236 }
1237 
1238 /* return number of duplicates (occurrences) of a given name */
1239 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1240 				 const char *orig_name)
1241 {
1242 	size_t dup_cnt = 0;
1243 
1244 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1245 	dup_cnt++;
1246 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1247 
1248 	return dup_cnt;
1249 }
1250 
1251 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1252 					 struct hashmap *name_map)
1253 {
1254 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1255 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1256 	const char *orig_name = btf_name_of(d, t->name_off);
1257 	const char **cached_name = &d->cached_names[id];
1258 	size_t dup_cnt;
1259 
1260 	if (t->name_off == 0)
1261 		return "";
1262 
1263 	if (s->name_resolved)
1264 		return *cached_name ? *cached_name : orig_name;
1265 
1266 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1267 	if (dup_cnt > 1) {
1268 		const size_t max_len = 256;
1269 		char new_name[max_len];
1270 
1271 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1272 		*cached_name = strdup(new_name);
1273 	}
1274 
1275 	s->name_resolved = 1;
1276 	return *cached_name ? *cached_name : orig_name;
1277 }
1278 
1279 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1280 {
1281 	return btf_dump_resolve_name(d, id, d->type_names);
1282 }
1283 
1284 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1285 {
1286 	return btf_dump_resolve_name(d, id, d->ident_names);
1287 }
1288