1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <limits.h> 17 #include <linux/err.h> 18 #include <linux/btf.h> 19 #include <linux/kernel.h> 20 #include "btf.h" 21 #include "hashmap.h" 22 #include "libbpf.h" 23 #include "libbpf_internal.h" 24 #include "str_error.h" 25 26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 28 29 static const char *pfx(int lvl) 30 { 31 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 32 } 33 34 enum btf_dump_type_order_state { 35 NOT_ORDERED, 36 ORDERING, 37 ORDERED, 38 }; 39 40 enum btf_dump_type_emit_state { 41 NOT_EMITTED, 42 EMITTING, 43 EMITTED, 44 }; 45 46 /* per-type auxiliary state */ 47 struct btf_dump_type_aux_state { 48 /* topological sorting state */ 49 enum btf_dump_type_order_state order_state: 2; 50 /* emitting state used to determine the need for forward declaration */ 51 enum btf_dump_type_emit_state emit_state: 2; 52 /* whether forward declaration was already emitted */ 53 __u8 fwd_emitted: 1; 54 /* whether unique non-duplicate name was already assigned */ 55 __u8 name_resolved: 1; 56 /* whether type is referenced from any other type */ 57 __u8 referenced: 1; 58 }; 59 60 /* indent string length; one indent string is added for each indent level */ 61 #define BTF_DATA_INDENT_STR_LEN 32 62 63 /* 64 * Common internal data for BTF type data dump operations. 65 */ 66 struct btf_dump_data { 67 const void *data_end; /* end of valid data to show */ 68 bool compact; 69 bool skip_names; 70 bool emit_zeroes; 71 __u8 indent_lvl; /* base indent level */ 72 char indent_str[BTF_DATA_INDENT_STR_LEN]; 73 /* below are used during iteration */ 74 int depth; 75 bool is_array_member; 76 bool is_array_terminated; 77 bool is_array_char; 78 }; 79 80 struct btf_dump { 81 const struct btf *btf; 82 btf_dump_printf_fn_t printf_fn; 83 void *cb_ctx; 84 int ptr_sz; 85 bool strip_mods; 86 bool skip_anon_defs; 87 int last_id; 88 89 /* per-type auxiliary state */ 90 struct btf_dump_type_aux_state *type_states; 91 size_t type_states_cap; 92 /* per-type optional cached unique name, must be freed, if present */ 93 const char **cached_names; 94 size_t cached_names_cap; 95 96 /* topo-sorted list of dependent type definitions */ 97 __u32 *emit_queue; 98 int emit_queue_cap; 99 int emit_queue_cnt; 100 101 /* 102 * stack of type declarations (e.g., chain of modifiers, arrays, 103 * funcs, etc) 104 */ 105 __u32 *decl_stack; 106 int decl_stack_cap; 107 int decl_stack_cnt; 108 109 /* maps struct/union/enum name to a number of name occurrences */ 110 struct hashmap *type_names; 111 /* 112 * maps typedef identifiers and enum value names to a number of such 113 * name occurrences 114 */ 115 struct hashmap *ident_names; 116 /* 117 * data for typed display; allocated if needed. 118 */ 119 struct btf_dump_data *typed_dump; 120 }; 121 122 static size_t str_hash_fn(long key, void *ctx) 123 { 124 return str_hash((void *)key); 125 } 126 127 static bool str_equal_fn(long a, long b, void *ctx) 128 { 129 return strcmp((void *)a, (void *)b) == 0; 130 } 131 132 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 133 { 134 return btf__name_by_offset(d->btf, name_off); 135 } 136 137 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 138 { 139 va_list args; 140 141 va_start(args, fmt); 142 d->printf_fn(d->cb_ctx, fmt, args); 143 va_end(args); 144 } 145 146 static int btf_dump_mark_referenced(struct btf_dump *d); 147 static int btf_dump_resize(struct btf_dump *d); 148 149 struct btf_dump *btf_dump__new(const struct btf *btf, 150 btf_dump_printf_fn_t printf_fn, 151 void *ctx, 152 const struct btf_dump_opts *opts) 153 { 154 struct btf_dump *d; 155 int err; 156 157 if (!OPTS_VALID(opts, btf_dump_opts)) 158 return libbpf_err_ptr(-EINVAL); 159 160 if (!printf_fn) 161 return libbpf_err_ptr(-EINVAL); 162 163 d = calloc(1, sizeof(struct btf_dump)); 164 if (!d) 165 return libbpf_err_ptr(-ENOMEM); 166 167 d->btf = btf; 168 d->printf_fn = printf_fn; 169 d->cb_ctx = ctx; 170 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 171 172 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 173 if (IS_ERR(d->type_names)) { 174 err = PTR_ERR(d->type_names); 175 d->type_names = NULL; 176 goto err; 177 } 178 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 179 if (IS_ERR(d->ident_names)) { 180 err = PTR_ERR(d->ident_names); 181 d->ident_names = NULL; 182 goto err; 183 } 184 185 err = btf_dump_resize(d); 186 if (err) 187 goto err; 188 189 return d; 190 err: 191 btf_dump__free(d); 192 return libbpf_err_ptr(err); 193 } 194 195 static int btf_dump_resize(struct btf_dump *d) 196 { 197 int err, last_id = btf__type_cnt(d->btf) - 1; 198 199 if (last_id <= d->last_id) 200 return 0; 201 202 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 203 sizeof(*d->type_states), last_id + 1)) 204 return -ENOMEM; 205 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 206 sizeof(*d->cached_names), last_id + 1)) 207 return -ENOMEM; 208 209 if (d->last_id == 0) { 210 /* VOID is special */ 211 d->type_states[0].order_state = ORDERED; 212 d->type_states[0].emit_state = EMITTED; 213 } 214 215 /* eagerly determine referenced types for anon enums */ 216 err = btf_dump_mark_referenced(d); 217 if (err) 218 return err; 219 220 d->last_id = last_id; 221 return 0; 222 } 223 224 static void btf_dump_free_names(struct hashmap *map) 225 { 226 size_t bkt; 227 struct hashmap_entry *cur; 228 229 if (!map) 230 return; 231 232 hashmap__for_each_entry(map, cur, bkt) 233 free((void *)cur->pkey); 234 235 hashmap__free(map); 236 } 237 238 void btf_dump__free(struct btf_dump *d) 239 { 240 int i; 241 242 if (IS_ERR_OR_NULL(d)) 243 return; 244 245 free(d->type_states); 246 if (d->cached_names) { 247 /* any set cached name is owned by us and should be freed */ 248 for (i = 0; i <= d->last_id; i++) { 249 if (d->cached_names[i]) 250 free((void *)d->cached_names[i]); 251 } 252 } 253 free(d->cached_names); 254 free(d->emit_queue); 255 free(d->decl_stack); 256 btf_dump_free_names(d->type_names); 257 btf_dump_free_names(d->ident_names); 258 259 free(d); 260 } 261 262 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 263 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 264 265 /* 266 * Dump BTF type in a compilable C syntax, including all the necessary 267 * dependent types, necessary for compilation. If some of the dependent types 268 * were already emitted as part of previous btf_dump__dump_type() invocation 269 * for another type, they won't be emitted again. This API allows callers to 270 * filter out BTF types according to user-defined criterias and emitted only 271 * minimal subset of types, necessary to compile everything. Full struct/union 272 * definitions will still be emitted, even if the only usage is through 273 * pointer and could be satisfied with just a forward declaration. 274 * 275 * Dumping is done in two high-level passes: 276 * 1. Topologically sort type definitions to satisfy C rules of compilation. 277 * 2. Emit type definitions in C syntax. 278 * 279 * Returns 0 on success; <0, otherwise. 280 */ 281 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 282 { 283 int err, i; 284 285 if (id >= btf__type_cnt(d->btf)) 286 return libbpf_err(-EINVAL); 287 288 err = btf_dump_resize(d); 289 if (err) 290 return libbpf_err(err); 291 292 d->emit_queue_cnt = 0; 293 err = btf_dump_order_type(d, id, false); 294 if (err < 0) 295 return libbpf_err(err); 296 297 for (i = 0; i < d->emit_queue_cnt; i++) 298 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 299 300 return 0; 301 } 302 303 /* 304 * Mark all types that are referenced from any other type. This is used to 305 * determine top-level anonymous enums that need to be emitted as an 306 * independent type declarations. 307 * Anonymous enums come in two flavors: either embedded in a struct's field 308 * definition, in which case they have to be declared inline as part of field 309 * type declaration; or as a top-level anonymous enum, typically used for 310 * declaring global constants. It's impossible to distinguish between two 311 * without knowing whether given enum type was referenced from other type: 312 * top-level anonymous enum won't be referenced by anything, while embedded 313 * one will. 314 */ 315 static int btf_dump_mark_referenced(struct btf_dump *d) 316 { 317 int i, j, n = btf__type_cnt(d->btf); 318 const struct btf_type *t; 319 __u16 vlen; 320 321 for (i = d->last_id + 1; i < n; i++) { 322 t = btf__type_by_id(d->btf, i); 323 vlen = btf_vlen(t); 324 325 switch (btf_kind(t)) { 326 case BTF_KIND_INT: 327 case BTF_KIND_ENUM: 328 case BTF_KIND_ENUM64: 329 case BTF_KIND_FWD: 330 case BTF_KIND_FLOAT: 331 break; 332 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_CONST: 335 case BTF_KIND_RESTRICT: 336 case BTF_KIND_PTR: 337 case BTF_KIND_TYPEDEF: 338 case BTF_KIND_FUNC: 339 case BTF_KIND_VAR: 340 case BTF_KIND_DECL_TAG: 341 case BTF_KIND_TYPE_TAG: 342 d->type_states[t->type].referenced = 1; 343 break; 344 345 case BTF_KIND_ARRAY: { 346 const struct btf_array *a = btf_array(t); 347 348 d->type_states[a->index_type].referenced = 1; 349 d->type_states[a->type].referenced = 1; 350 break; 351 } 352 case BTF_KIND_STRUCT: 353 case BTF_KIND_UNION: { 354 const struct btf_member *m = btf_members(t); 355 356 for (j = 0; j < vlen; j++, m++) 357 d->type_states[m->type].referenced = 1; 358 break; 359 } 360 case BTF_KIND_FUNC_PROTO: { 361 const struct btf_param *p = btf_params(t); 362 363 for (j = 0; j < vlen; j++, p++) 364 d->type_states[p->type].referenced = 1; 365 break; 366 } 367 case BTF_KIND_DATASEC: { 368 const struct btf_var_secinfo *v = btf_var_secinfos(t); 369 370 for (j = 0; j < vlen; j++, v++) 371 d->type_states[v->type].referenced = 1; 372 break; 373 } 374 default: 375 return -EINVAL; 376 } 377 } 378 return 0; 379 } 380 381 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 382 { 383 __u32 *new_queue; 384 size_t new_cap; 385 386 if (d->emit_queue_cnt >= d->emit_queue_cap) { 387 new_cap = max(16, d->emit_queue_cap * 3 / 2); 388 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 389 if (!new_queue) 390 return -ENOMEM; 391 d->emit_queue = new_queue; 392 d->emit_queue_cap = new_cap; 393 } 394 395 d->emit_queue[d->emit_queue_cnt++] = id; 396 return 0; 397 } 398 399 /* 400 * Determine order of emitting dependent types and specified type to satisfy 401 * C compilation rules. This is done through topological sorting with an 402 * additional complication which comes from C rules. The main idea for C is 403 * that if some type is "embedded" into a struct/union, it's size needs to be 404 * known at the time of definition of containing type. E.g., for: 405 * 406 * struct A {}; 407 * struct B { struct A x; } 408 * 409 * struct A *HAS* to be defined before struct B, because it's "embedded", 410 * i.e., it is part of struct B layout. But in the following case: 411 * 412 * struct A; 413 * struct B { struct A *x; } 414 * struct A {}; 415 * 416 * it's enough to just have a forward declaration of struct A at the time of 417 * struct B definition, as struct B has a pointer to struct A, so the size of 418 * field x is known without knowing struct A size: it's sizeof(void *). 419 * 420 * Unfortunately, there are some trickier cases we need to handle, e.g.: 421 * 422 * struct A {}; // if this was forward-declaration: compilation error 423 * struct B { 424 * struct { // anonymous struct 425 * struct A y; 426 * } *x; 427 * }; 428 * 429 * In this case, struct B's field x is a pointer, so it's size is known 430 * regardless of the size of (anonymous) struct it points to. But because this 431 * struct is anonymous and thus defined inline inside struct B, *and* it 432 * embeds struct A, compiler requires full definition of struct A to be known 433 * before struct B can be defined. This creates a transitive dependency 434 * between struct A and struct B. If struct A was forward-declared before 435 * struct B definition and fully defined after struct B definition, that would 436 * trigger compilation error. 437 * 438 * All this means that while we are doing topological sorting on BTF type 439 * graph, we need to determine relationships between different types (graph 440 * nodes): 441 * - weak link (relationship) between X and Y, if Y *CAN* be 442 * forward-declared at the point of X definition; 443 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 444 * 445 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 446 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 447 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 448 * Weak/strong relationship is determined recursively during DFS traversal and 449 * is returned as a result from btf_dump_order_type(). 450 * 451 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 452 * but it is not guaranteeing that no extraneous forward declarations will be 453 * emitted. 454 * 455 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 456 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 457 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 458 * entire graph path, so depending where from one came to that BTF type, it 459 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 460 * once they are processed, there is no need to do it again, so they are 461 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 462 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 463 * in any case, once those are processed, no need to do it again, as the 464 * result won't change. 465 * 466 * Returns: 467 * - 1, if type is part of strong link (so there is strong topological 468 * ordering requirements); 469 * - 0, if type is part of weak link (so can be satisfied through forward 470 * declaration); 471 * - <0, on error (e.g., unsatisfiable type loop detected). 472 */ 473 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 474 { 475 /* 476 * Order state is used to detect strong link cycles, but only for BTF 477 * kinds that are or could be an independent definition (i.e., 478 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 479 * func_protos, modifiers are just means to get to these definitions. 480 * Int/void don't need definitions, they are assumed to be always 481 * properly defined. We also ignore datasec, var, and funcs for now. 482 * So for all non-defining kinds, we never even set ordering state, 483 * for defining kinds we set ORDERING and subsequently ORDERED if it 484 * forms a strong link. 485 */ 486 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 487 const struct btf_type *t; 488 __u16 vlen; 489 int err, i; 490 491 /* return true, letting typedefs know that it's ok to be emitted */ 492 if (tstate->order_state == ORDERED) 493 return 1; 494 495 t = btf__type_by_id(d->btf, id); 496 497 if (tstate->order_state == ORDERING) { 498 /* type loop, but resolvable through fwd declaration */ 499 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 500 return 0; 501 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 502 return -ELOOP; 503 } 504 505 switch (btf_kind(t)) { 506 case BTF_KIND_INT: 507 case BTF_KIND_FLOAT: 508 tstate->order_state = ORDERED; 509 return 0; 510 511 case BTF_KIND_PTR: 512 err = btf_dump_order_type(d, t->type, true); 513 tstate->order_state = ORDERED; 514 return err; 515 516 case BTF_KIND_ARRAY: 517 return btf_dump_order_type(d, btf_array(t)->type, false); 518 519 case BTF_KIND_STRUCT: 520 case BTF_KIND_UNION: { 521 const struct btf_member *m = btf_members(t); 522 /* 523 * struct/union is part of strong link, only if it's embedded 524 * (so no ptr in a path) or it's anonymous (so has to be 525 * defined inline, even if declared through ptr) 526 */ 527 if (through_ptr && t->name_off != 0) 528 return 0; 529 530 tstate->order_state = ORDERING; 531 532 vlen = btf_vlen(t); 533 for (i = 0; i < vlen; i++, m++) { 534 err = btf_dump_order_type(d, m->type, false); 535 if (err < 0) 536 return err; 537 } 538 539 if (t->name_off != 0) { 540 err = btf_dump_add_emit_queue_id(d, id); 541 if (err < 0) 542 return err; 543 } 544 545 tstate->order_state = ORDERED; 546 return 1; 547 } 548 case BTF_KIND_ENUM: 549 case BTF_KIND_ENUM64: 550 case BTF_KIND_FWD: 551 /* 552 * non-anonymous or non-referenced enums are top-level 553 * declarations and should be emitted. Same logic can be 554 * applied to FWDs, it won't hurt anyways. 555 */ 556 if (t->name_off != 0 || !tstate->referenced) { 557 err = btf_dump_add_emit_queue_id(d, id); 558 if (err) 559 return err; 560 } 561 tstate->order_state = ORDERED; 562 return 1; 563 564 case BTF_KIND_TYPEDEF: { 565 int is_strong; 566 567 is_strong = btf_dump_order_type(d, t->type, through_ptr); 568 if (is_strong < 0) 569 return is_strong; 570 571 /* typedef is similar to struct/union w.r.t. fwd-decls */ 572 if (through_ptr && !is_strong) 573 return 0; 574 575 /* typedef is always a named definition */ 576 err = btf_dump_add_emit_queue_id(d, id); 577 if (err) 578 return err; 579 580 d->type_states[id].order_state = ORDERED; 581 return 1; 582 } 583 case BTF_KIND_VOLATILE: 584 case BTF_KIND_CONST: 585 case BTF_KIND_RESTRICT: 586 case BTF_KIND_TYPE_TAG: 587 return btf_dump_order_type(d, t->type, through_ptr); 588 589 case BTF_KIND_FUNC_PROTO: { 590 const struct btf_param *p = btf_params(t); 591 bool is_strong; 592 593 err = btf_dump_order_type(d, t->type, through_ptr); 594 if (err < 0) 595 return err; 596 is_strong = err > 0; 597 598 vlen = btf_vlen(t); 599 for (i = 0; i < vlen; i++, p++) { 600 err = btf_dump_order_type(d, p->type, through_ptr); 601 if (err < 0) 602 return err; 603 if (err > 0) 604 is_strong = true; 605 } 606 return is_strong; 607 } 608 case BTF_KIND_FUNC: 609 case BTF_KIND_VAR: 610 case BTF_KIND_DATASEC: 611 case BTF_KIND_DECL_TAG: 612 d->type_states[id].order_state = ORDERED; 613 return 0; 614 615 default: 616 return -EINVAL; 617 } 618 } 619 620 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 621 const struct btf_type *t); 622 623 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 624 const struct btf_type *t); 625 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 626 const struct btf_type *t, int lvl); 627 628 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 629 const struct btf_type *t); 630 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 631 const struct btf_type *t, int lvl); 632 633 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 634 const struct btf_type *t); 635 636 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 637 const struct btf_type *t, int lvl); 638 639 /* a local view into a shared stack */ 640 struct id_stack { 641 const __u32 *ids; 642 int cnt; 643 }; 644 645 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 646 const char *fname, int lvl); 647 static void btf_dump_emit_type_chain(struct btf_dump *d, 648 struct id_stack *decl_stack, 649 const char *fname, int lvl); 650 651 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 652 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 653 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 654 const char *orig_name); 655 656 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 657 { 658 const struct btf_type *t = btf__type_by_id(d->btf, id); 659 660 /* __builtin_va_list is a compiler built-in, which causes compilation 661 * errors, when compiling w/ different compiler, then used to compile 662 * original code (e.g., GCC to compile kernel, Clang to use generated 663 * C header from BTF). As it is built-in, it should be already defined 664 * properly internally in compiler. 665 */ 666 if (t->name_off == 0) 667 return false; 668 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 669 } 670 671 /* 672 * Emit C-syntax definitions of types from chains of BTF types. 673 * 674 * High-level handling of determining necessary forward declarations are handled 675 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 676 * declarations/definitions in C syntax are handled by a combo of 677 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 678 * corresponding btf_dump_emit_*_{def,fwd}() functions. 679 * 680 * We also keep track of "containing struct/union type ID" to determine when 681 * we reference it from inside and thus can avoid emitting unnecessary forward 682 * declaration. 683 * 684 * This algorithm is designed in such a way, that even if some error occurs 685 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 686 * that doesn't comply to C rules completely), algorithm will try to proceed 687 * and produce as much meaningful output as possible. 688 */ 689 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 690 { 691 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 692 bool top_level_def = cont_id == 0; 693 const struct btf_type *t; 694 __u16 kind; 695 696 if (tstate->emit_state == EMITTED) 697 return; 698 699 t = btf__type_by_id(d->btf, id); 700 kind = btf_kind(t); 701 702 if (tstate->emit_state == EMITTING) { 703 if (tstate->fwd_emitted) 704 return; 705 706 switch (kind) { 707 case BTF_KIND_STRUCT: 708 case BTF_KIND_UNION: 709 /* 710 * if we are referencing a struct/union that we are 711 * part of - then no need for fwd declaration 712 */ 713 if (id == cont_id) 714 return; 715 if (t->name_off == 0) { 716 pr_warn("anonymous struct/union loop, id:[%u]\n", 717 id); 718 return; 719 } 720 btf_dump_emit_struct_fwd(d, id, t); 721 btf_dump_printf(d, ";\n\n"); 722 tstate->fwd_emitted = 1; 723 break; 724 case BTF_KIND_TYPEDEF: 725 /* 726 * for typedef fwd_emitted means typedef definition 727 * was emitted, but it can be used only for "weak" 728 * references through pointer only, not for embedding 729 */ 730 if (!btf_dump_is_blacklisted(d, id)) { 731 btf_dump_emit_typedef_def(d, id, t, 0); 732 btf_dump_printf(d, ";\n\n"); 733 } 734 tstate->fwd_emitted = 1; 735 break; 736 default: 737 break; 738 } 739 740 return; 741 } 742 743 switch (kind) { 744 case BTF_KIND_INT: 745 /* Emit type alias definitions if necessary */ 746 btf_dump_emit_missing_aliases(d, id, t); 747 748 tstate->emit_state = EMITTED; 749 break; 750 case BTF_KIND_ENUM: 751 case BTF_KIND_ENUM64: 752 if (top_level_def) { 753 btf_dump_emit_enum_def(d, id, t, 0); 754 btf_dump_printf(d, ";\n\n"); 755 } 756 tstate->emit_state = EMITTED; 757 break; 758 case BTF_KIND_PTR: 759 case BTF_KIND_VOLATILE: 760 case BTF_KIND_CONST: 761 case BTF_KIND_RESTRICT: 762 case BTF_KIND_TYPE_TAG: 763 btf_dump_emit_type(d, t->type, cont_id); 764 break; 765 case BTF_KIND_ARRAY: 766 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 767 break; 768 case BTF_KIND_FWD: 769 btf_dump_emit_fwd_def(d, id, t); 770 btf_dump_printf(d, ";\n\n"); 771 tstate->emit_state = EMITTED; 772 break; 773 case BTF_KIND_TYPEDEF: 774 tstate->emit_state = EMITTING; 775 btf_dump_emit_type(d, t->type, id); 776 /* 777 * typedef can server as both definition and forward 778 * declaration; at this stage someone depends on 779 * typedef as a forward declaration (refers to it 780 * through pointer), so unless we already did it, 781 * emit typedef as a forward declaration 782 */ 783 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 784 btf_dump_emit_typedef_def(d, id, t, 0); 785 btf_dump_printf(d, ";\n\n"); 786 } 787 tstate->emit_state = EMITTED; 788 break; 789 case BTF_KIND_STRUCT: 790 case BTF_KIND_UNION: 791 tstate->emit_state = EMITTING; 792 /* if it's a top-level struct/union definition or struct/union 793 * is anonymous, then in C we'll be emitting all fields and 794 * their types (as opposed to just `struct X`), so we need to 795 * make sure that all types, referenced from struct/union 796 * members have necessary forward-declarations, where 797 * applicable 798 */ 799 if (top_level_def || t->name_off == 0) { 800 const struct btf_member *m = btf_members(t); 801 __u16 vlen = btf_vlen(t); 802 int i, new_cont_id; 803 804 new_cont_id = t->name_off == 0 ? cont_id : id; 805 for (i = 0; i < vlen; i++, m++) 806 btf_dump_emit_type(d, m->type, new_cont_id); 807 } else if (!tstate->fwd_emitted && id != cont_id) { 808 btf_dump_emit_struct_fwd(d, id, t); 809 btf_dump_printf(d, ";\n\n"); 810 tstate->fwd_emitted = 1; 811 } 812 813 if (top_level_def) { 814 btf_dump_emit_struct_def(d, id, t, 0); 815 btf_dump_printf(d, ";\n\n"); 816 tstate->emit_state = EMITTED; 817 } else { 818 tstate->emit_state = NOT_EMITTED; 819 } 820 break; 821 case BTF_KIND_FUNC_PROTO: { 822 const struct btf_param *p = btf_params(t); 823 __u16 n = btf_vlen(t); 824 int i; 825 826 btf_dump_emit_type(d, t->type, cont_id); 827 for (i = 0; i < n; i++, p++) 828 btf_dump_emit_type(d, p->type, cont_id); 829 830 break; 831 } 832 default: 833 break; 834 } 835 } 836 837 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 838 const struct btf_type *t) 839 { 840 const struct btf_member *m; 841 int max_align = 1, align, i, bit_sz; 842 __u16 vlen; 843 844 m = btf_members(t); 845 vlen = btf_vlen(t); 846 /* all non-bitfield fields have to be naturally aligned */ 847 for (i = 0; i < vlen; i++, m++) { 848 align = btf__align_of(btf, m->type); 849 bit_sz = btf_member_bitfield_size(t, i); 850 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 851 return true; 852 max_align = max(align, max_align); 853 } 854 /* size of a non-packed struct has to be a multiple of its alignment */ 855 if (t->size % max_align != 0) 856 return true; 857 /* 858 * if original struct was marked as packed, but its layout is 859 * naturally aligned, we'll detect that it's not packed 860 */ 861 return false; 862 } 863 864 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 865 int cur_off, int next_off, int next_align, 866 bool in_bitfield, int lvl) 867 { 868 const struct { 869 const char *name; 870 int bits; 871 } pads[] = { 872 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8} 873 }; 874 int new_off = 0, pad_bits = 0, bits, i; 875 const char *pad_type = NULL; 876 877 if (cur_off >= next_off) 878 return; /* no gap */ 879 880 /* For filling out padding we want to take advantage of 881 * natural alignment rules to minimize unnecessary explicit 882 * padding. First, we find the largest type (among long, int, 883 * short, or char) that can be used to force naturally aligned 884 * boundary. Once determined, we'll use such type to fill in 885 * the remaining padding gap. In some cases we can rely on 886 * compiler filling some gaps, but sometimes we need to force 887 * alignment to close natural alignment with markers like 888 * `long: 0` (this is always the case for bitfields). Note 889 * that even if struct itself has, let's say 4-byte alignment 890 * (i.e., it only uses up to int-aligned types), using `long: 891 * X;` explicit padding doesn't actually change struct's 892 * overall alignment requirements, but compiler does take into 893 * account that type's (long, in this example) natural 894 * alignment requirements when adding implicit padding. We use 895 * this fact heavily and don't worry about ruining correct 896 * struct alignment requirement. 897 */ 898 for (i = 0; i < ARRAY_SIZE(pads); i++) { 899 pad_bits = pads[i].bits; 900 pad_type = pads[i].name; 901 902 new_off = roundup(cur_off, pad_bits); 903 if (new_off <= next_off) 904 break; 905 } 906 907 if (new_off > cur_off && new_off <= next_off) { 908 /* We need explicit `<type>: 0` aligning mark if next 909 * field is right on alignment offset and its 910 * alignment requirement is less strict than <type>'s 911 * alignment (so compiler won't naturally align to the 912 * offset we expect), or if subsequent `<type>: X`, 913 * will actually completely fit in the remaining hole, 914 * making compiler basically ignore `<type>: X` 915 * completely. 916 */ 917 if (in_bitfield || 918 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) || 919 (new_off != next_off && next_off - new_off <= new_off - cur_off)) 920 /* but for bitfields we'll emit explicit bit count */ 921 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, 922 in_bitfield ? new_off - cur_off : 0); 923 cur_off = new_off; 924 } 925 926 /* Now we know we start at naturally aligned offset for a chosen 927 * padding type (long, int, short, or char), and so the rest is just 928 * a straightforward filling of remaining padding gap with full 929 * `<type>: sizeof(<type>);` markers, except for the last one, which 930 * might need smaller than sizeof(<type>) padding. 931 */ 932 while (cur_off != next_off) { 933 bits = min(next_off - cur_off, pad_bits); 934 if (bits == pad_bits) { 935 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 936 cur_off += bits; 937 continue; 938 } 939 /* For the remainder padding that doesn't cover entire 940 * pad_type bit length, we pick the smallest necessary type. 941 * This is pure aesthetics, we could have just used `long`, 942 * but having smallest necessary one communicates better the 943 * scale of the padding gap. 944 */ 945 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) { 946 pad_type = pads[i].name; 947 pad_bits = pads[i].bits; 948 if (pad_bits < bits) 949 continue; 950 951 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits); 952 cur_off += bits; 953 break; 954 } 955 } 956 } 957 958 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 959 const struct btf_type *t) 960 { 961 btf_dump_printf(d, "%s%s%s", 962 btf_is_struct(t) ? "struct" : "union", 963 t->name_off ? " " : "", 964 btf_dump_type_name(d, id)); 965 } 966 967 static void btf_dump_emit_struct_def(struct btf_dump *d, 968 __u32 id, 969 const struct btf_type *t, 970 int lvl) 971 { 972 const struct btf_member *m = btf_members(t); 973 bool is_struct = btf_is_struct(t); 974 bool packed, prev_bitfield = false; 975 int align, i, off = 0; 976 __u16 vlen = btf_vlen(t); 977 978 align = btf__align_of(d->btf, id); 979 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 980 981 btf_dump_printf(d, "%s%s%s {", 982 is_struct ? "struct" : "union", 983 t->name_off ? " " : "", 984 btf_dump_type_name(d, id)); 985 986 for (i = 0; i < vlen; i++, m++) { 987 const char *fname; 988 int m_off, m_sz, m_align; 989 bool in_bitfield; 990 991 fname = btf_name_of(d, m->name_off); 992 m_sz = btf_member_bitfield_size(t, i); 993 m_off = btf_member_bit_offset(t, i); 994 m_align = packed ? 1 : btf__align_of(d->btf, m->type); 995 996 in_bitfield = prev_bitfield && m_sz != 0; 997 998 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1); 999 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 1000 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 1001 1002 if (m_sz) { 1003 btf_dump_printf(d, ": %d", m_sz); 1004 off = m_off + m_sz; 1005 prev_bitfield = true; 1006 } else { 1007 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 1008 off = m_off + m_sz * 8; 1009 prev_bitfield = false; 1010 } 1011 1012 btf_dump_printf(d, ";"); 1013 } 1014 1015 /* pad at the end, if necessary */ 1016 if (is_struct) 1017 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1); 1018 1019 /* 1020 * Keep `struct empty {}` on a single line, 1021 * only print newline when there are regular or padding fields. 1022 */ 1023 if (vlen || t->size) { 1024 btf_dump_printf(d, "\n"); 1025 btf_dump_printf(d, "%s}", pfx(lvl)); 1026 } else { 1027 btf_dump_printf(d, "}"); 1028 } 1029 if (packed) 1030 btf_dump_printf(d, " __attribute__((packed))"); 1031 } 1032 1033 static const char *missing_base_types[][2] = { 1034 /* 1035 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 1036 * SIMD intrinsics. Alias them to standard base types. 1037 */ 1038 { "__Poly8_t", "unsigned char" }, 1039 { "__Poly16_t", "unsigned short" }, 1040 { "__Poly64_t", "unsigned long long" }, 1041 { "__Poly128_t", "unsigned __int128" }, 1042 }; 1043 1044 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 1045 const struct btf_type *t) 1046 { 1047 const char *name = btf_dump_type_name(d, id); 1048 int i; 1049 1050 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 1051 if (strcmp(name, missing_base_types[i][0]) == 0) { 1052 btf_dump_printf(d, "typedef %s %s;\n\n", 1053 missing_base_types[i][1], name); 1054 break; 1055 } 1056 } 1057 } 1058 1059 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 1060 const struct btf_type *t) 1061 { 1062 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 1063 } 1064 1065 static void btf_dump_emit_enum32_val(struct btf_dump *d, 1066 const struct btf_type *t, 1067 int lvl, __u16 vlen) 1068 { 1069 const struct btf_enum *v = btf_enum(t); 1070 bool is_signed = btf_kflag(t); 1071 const char *fmt_str; 1072 const char *name; 1073 size_t dup_cnt; 1074 int i; 1075 1076 for (i = 0; i < vlen; i++, v++) { 1077 name = btf_name_of(d, v->name_off); 1078 /* enumerators share namespace with typedef idents */ 1079 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1080 if (dup_cnt > 1) { 1081 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1082 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1083 } else { 1084 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1085 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1086 } 1087 } 1088 } 1089 1090 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1091 const struct btf_type *t, 1092 int lvl, __u16 vlen) 1093 { 1094 const struct btf_enum64 *v = btf_enum64(t); 1095 bool is_signed = btf_kflag(t); 1096 const char *fmt_str; 1097 const char *name; 1098 size_t dup_cnt; 1099 __u64 val; 1100 int i; 1101 1102 for (i = 0; i < vlen; i++, v++) { 1103 name = btf_name_of(d, v->name_off); 1104 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1105 val = btf_enum64_value(v); 1106 if (dup_cnt > 1) { 1107 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1108 : "\n%s%s___%zd = %lluULL,"; 1109 btf_dump_printf(d, fmt_str, 1110 pfx(lvl + 1), name, dup_cnt, 1111 (unsigned long long)val); 1112 } else { 1113 fmt_str = is_signed ? "\n%s%s = %lldLL," 1114 : "\n%s%s = %lluULL,"; 1115 btf_dump_printf(d, fmt_str, 1116 pfx(lvl + 1), name, 1117 (unsigned long long)val); 1118 } 1119 } 1120 } 1121 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1122 const struct btf_type *t, 1123 int lvl) 1124 { 1125 __u16 vlen = btf_vlen(t); 1126 1127 btf_dump_printf(d, "enum%s%s", 1128 t->name_off ? " " : "", 1129 btf_dump_type_name(d, id)); 1130 1131 if (!vlen) 1132 return; 1133 1134 btf_dump_printf(d, " {"); 1135 if (btf_is_enum(t)) 1136 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1137 else 1138 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1139 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1140 1141 /* special case enums with special sizes */ 1142 if (t->size == 1) { 1143 /* one-byte enums can be forced with mode(byte) attribute */ 1144 btf_dump_printf(d, " __attribute__((mode(byte)))"); 1145 } else if (t->size == 8 && d->ptr_sz == 8) { 1146 /* enum can be 8-byte sized if one of the enumerator values 1147 * doesn't fit in 32-bit integer, or by adding mode(word) 1148 * attribute (but probably only on 64-bit architectures); do 1149 * our best here to try to satisfy the contract without adding 1150 * unnecessary attributes 1151 */ 1152 bool needs_word_mode; 1153 1154 if (btf_is_enum(t)) { 1155 /* enum can't represent 64-bit values, so we need word mode */ 1156 needs_word_mode = true; 1157 } else { 1158 /* enum64 needs mode(word) if none of its values has 1159 * non-zero upper 32-bits (which means that all values 1160 * fit in 32-bit integers and won't cause compiler to 1161 * bump enum to be 64-bit naturally 1162 */ 1163 int i; 1164 1165 needs_word_mode = true; 1166 for (i = 0; i < vlen; i++) { 1167 if (btf_enum64(t)[i].val_hi32 != 0) { 1168 needs_word_mode = false; 1169 break; 1170 } 1171 } 1172 } 1173 if (needs_word_mode) 1174 btf_dump_printf(d, " __attribute__((mode(word)))"); 1175 } 1176 1177 } 1178 1179 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1180 const struct btf_type *t) 1181 { 1182 const char *name = btf_dump_type_name(d, id); 1183 1184 if (btf_kflag(t)) 1185 btf_dump_printf(d, "union %s", name); 1186 else 1187 btf_dump_printf(d, "struct %s", name); 1188 } 1189 1190 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1191 const struct btf_type *t, int lvl) 1192 { 1193 const char *name = btf_dump_ident_name(d, id); 1194 1195 /* 1196 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1197 * pointing to VOID. This generates warnings from btf_dump() and 1198 * results in uncompilable header file, so we are fixing it up here 1199 * with valid typedef into __builtin_va_list. 1200 */ 1201 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1202 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1203 return; 1204 } 1205 1206 btf_dump_printf(d, "typedef "); 1207 btf_dump_emit_type_decl(d, t->type, name, lvl); 1208 } 1209 1210 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1211 { 1212 __u32 *new_stack; 1213 size_t new_cap; 1214 1215 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1216 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1217 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1218 if (!new_stack) 1219 return -ENOMEM; 1220 d->decl_stack = new_stack; 1221 d->decl_stack_cap = new_cap; 1222 } 1223 1224 d->decl_stack[d->decl_stack_cnt++] = id; 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * Emit type declaration (e.g., field type declaration in a struct or argument 1231 * declaration in function prototype) in correct C syntax. 1232 * 1233 * For most types it's trivial, but there are few quirky type declaration 1234 * cases worth mentioning: 1235 * - function prototypes (especially nesting of function prototypes); 1236 * - arrays; 1237 * - const/volatile/restrict for pointers vs other types. 1238 * 1239 * For a good discussion of *PARSING* C syntax (as a human), see 1240 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1241 * Ch.3 "Unscrambling Declarations in C". 1242 * 1243 * It won't help with BTF to C conversion much, though, as it's an opposite 1244 * problem. So we came up with this algorithm in reverse to van der Linden's 1245 * parsing algorithm. It goes from structured BTF representation of type 1246 * declaration to a valid compilable C syntax. 1247 * 1248 * For instance, consider this C typedef: 1249 * typedef const int * const * arr[10] arr_t; 1250 * It will be represented in BTF with this chain of BTF types: 1251 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1252 * 1253 * Notice how [const] modifier always goes before type it modifies in BTF type 1254 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1255 * the right of pointers, but to the left of other types. There are also other 1256 * quirks, like function pointers, arrays of them, functions returning other 1257 * functions, etc. 1258 * 1259 * We handle that by pushing all the types to a stack, until we hit "terminal" 1260 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1261 * top of a stack, modifiers are handled differently. Array/function pointers 1262 * have also wildly different syntax and how nesting of them are done. See 1263 * code for authoritative definition. 1264 * 1265 * To avoid allocating new stack for each independent chain of BTF types, we 1266 * share one bigger stack, with each chain working only on its own local view 1267 * of a stack frame. Some care is required to "pop" stack frames after 1268 * processing type declaration chain. 1269 */ 1270 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1271 const struct btf_dump_emit_type_decl_opts *opts) 1272 { 1273 const char *fname; 1274 int lvl, err; 1275 1276 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1277 return libbpf_err(-EINVAL); 1278 1279 err = btf_dump_resize(d); 1280 if (err) 1281 return libbpf_err(err); 1282 1283 fname = OPTS_GET(opts, field_name, ""); 1284 lvl = OPTS_GET(opts, indent_level, 0); 1285 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1286 btf_dump_emit_type_decl(d, id, fname, lvl); 1287 d->strip_mods = false; 1288 return 0; 1289 } 1290 1291 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1292 const char *fname, int lvl) 1293 { 1294 struct id_stack decl_stack; 1295 const struct btf_type *t; 1296 int err, stack_start; 1297 1298 stack_start = d->decl_stack_cnt; 1299 for (;;) { 1300 t = btf__type_by_id(d->btf, id); 1301 if (d->strip_mods && btf_is_mod(t)) 1302 goto skip_mod; 1303 1304 err = btf_dump_push_decl_stack_id(d, id); 1305 if (err < 0) { 1306 /* 1307 * if we don't have enough memory for entire type decl 1308 * chain, restore stack, emit warning, and try to 1309 * proceed nevertheless 1310 */ 1311 pr_warn("not enough memory for decl stack: %s\n", errstr(err)); 1312 d->decl_stack_cnt = stack_start; 1313 return; 1314 } 1315 skip_mod: 1316 /* VOID */ 1317 if (id == 0) 1318 break; 1319 1320 switch (btf_kind(t)) { 1321 case BTF_KIND_PTR: 1322 case BTF_KIND_VOLATILE: 1323 case BTF_KIND_CONST: 1324 case BTF_KIND_RESTRICT: 1325 case BTF_KIND_FUNC_PROTO: 1326 case BTF_KIND_TYPE_TAG: 1327 id = t->type; 1328 break; 1329 case BTF_KIND_ARRAY: 1330 id = btf_array(t)->type; 1331 break; 1332 case BTF_KIND_INT: 1333 case BTF_KIND_ENUM: 1334 case BTF_KIND_ENUM64: 1335 case BTF_KIND_FWD: 1336 case BTF_KIND_STRUCT: 1337 case BTF_KIND_UNION: 1338 case BTF_KIND_TYPEDEF: 1339 case BTF_KIND_FLOAT: 1340 goto done; 1341 default: 1342 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1343 btf_kind(t), id); 1344 goto done; 1345 } 1346 } 1347 done: 1348 /* 1349 * We might be inside a chain of declarations (e.g., array of function 1350 * pointers returning anonymous (so inlined) structs, having another 1351 * array field). Each of those needs its own "stack frame" to handle 1352 * emitting of declarations. Those stack frames are non-overlapping 1353 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1354 * handle this set of nested stacks, we create a view corresponding to 1355 * our own "stack frame" and work with it as an independent stack. 1356 * We'll need to clean up after emit_type_chain() returns, though. 1357 */ 1358 decl_stack.ids = d->decl_stack + stack_start; 1359 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1360 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1361 /* 1362 * emit_type_chain() guarantees that it will pop its entire decl_stack 1363 * frame before returning. But it works with a read-only view into 1364 * decl_stack, so it doesn't actually pop anything from the 1365 * perspective of shared btf_dump->decl_stack, per se. We need to 1366 * reset decl_stack state to how it was before us to avoid it growing 1367 * all the time. 1368 */ 1369 d->decl_stack_cnt = stack_start; 1370 } 1371 1372 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1373 { 1374 const struct btf_type *t; 1375 __u32 id; 1376 1377 while (decl_stack->cnt) { 1378 id = decl_stack->ids[decl_stack->cnt - 1]; 1379 t = btf__type_by_id(d->btf, id); 1380 1381 switch (btf_kind(t)) { 1382 case BTF_KIND_VOLATILE: 1383 btf_dump_printf(d, "volatile "); 1384 break; 1385 case BTF_KIND_CONST: 1386 btf_dump_printf(d, "const "); 1387 break; 1388 case BTF_KIND_RESTRICT: 1389 btf_dump_printf(d, "restrict "); 1390 break; 1391 default: 1392 return; 1393 } 1394 decl_stack->cnt--; 1395 } 1396 } 1397 1398 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1399 { 1400 const struct btf_type *t; 1401 __u32 id; 1402 1403 while (decl_stack->cnt) { 1404 id = decl_stack->ids[decl_stack->cnt - 1]; 1405 t = btf__type_by_id(d->btf, id); 1406 if (!btf_is_mod(t)) 1407 return; 1408 decl_stack->cnt--; 1409 } 1410 } 1411 1412 static void btf_dump_emit_name(const struct btf_dump *d, 1413 const char *name, bool last_was_ptr) 1414 { 1415 bool separate = name[0] && !last_was_ptr; 1416 1417 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1418 } 1419 1420 static void btf_dump_emit_type_chain(struct btf_dump *d, 1421 struct id_stack *decls, 1422 const char *fname, int lvl) 1423 { 1424 /* 1425 * last_was_ptr is used to determine if we need to separate pointer 1426 * asterisk (*) from previous part of type signature with space, so 1427 * that we get `int ***`, instead of `int * * *`. We default to true 1428 * for cases where we have single pointer in a chain. E.g., in ptr -> 1429 * func_proto case. func_proto will start a new emit_type_chain call 1430 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1431 * don't want to prepend space for that last pointer. 1432 */ 1433 bool last_was_ptr = true; 1434 const struct btf_type *t; 1435 const char *name; 1436 __u16 kind; 1437 __u32 id; 1438 1439 while (decls->cnt) { 1440 id = decls->ids[--decls->cnt]; 1441 if (id == 0) { 1442 /* VOID is a special snowflake */ 1443 btf_dump_emit_mods(d, decls); 1444 btf_dump_printf(d, "void"); 1445 last_was_ptr = false; 1446 continue; 1447 } 1448 1449 t = btf__type_by_id(d->btf, id); 1450 kind = btf_kind(t); 1451 1452 switch (kind) { 1453 case BTF_KIND_INT: 1454 case BTF_KIND_FLOAT: 1455 btf_dump_emit_mods(d, decls); 1456 name = btf_name_of(d, t->name_off); 1457 btf_dump_printf(d, "%s", name); 1458 break; 1459 case BTF_KIND_STRUCT: 1460 case BTF_KIND_UNION: 1461 btf_dump_emit_mods(d, decls); 1462 /* inline anonymous struct/union */ 1463 if (t->name_off == 0 && !d->skip_anon_defs) 1464 btf_dump_emit_struct_def(d, id, t, lvl); 1465 else 1466 btf_dump_emit_struct_fwd(d, id, t); 1467 break; 1468 case BTF_KIND_ENUM: 1469 case BTF_KIND_ENUM64: 1470 btf_dump_emit_mods(d, decls); 1471 /* inline anonymous enum */ 1472 if (t->name_off == 0 && !d->skip_anon_defs) 1473 btf_dump_emit_enum_def(d, id, t, lvl); 1474 else 1475 btf_dump_emit_enum_fwd(d, id, t); 1476 break; 1477 case BTF_KIND_FWD: 1478 btf_dump_emit_mods(d, decls); 1479 btf_dump_emit_fwd_def(d, id, t); 1480 break; 1481 case BTF_KIND_TYPEDEF: 1482 btf_dump_emit_mods(d, decls); 1483 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1484 break; 1485 case BTF_KIND_PTR: 1486 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1487 break; 1488 case BTF_KIND_VOLATILE: 1489 btf_dump_printf(d, " volatile"); 1490 break; 1491 case BTF_KIND_CONST: 1492 btf_dump_printf(d, " const"); 1493 break; 1494 case BTF_KIND_RESTRICT: 1495 btf_dump_printf(d, " restrict"); 1496 break; 1497 case BTF_KIND_TYPE_TAG: 1498 btf_dump_emit_mods(d, decls); 1499 name = btf_name_of(d, t->name_off); 1500 if (btf_kflag(t)) 1501 btf_dump_printf(d, " __attribute__((%s))", name); 1502 else 1503 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1504 break; 1505 case BTF_KIND_ARRAY: { 1506 const struct btf_array *a = btf_array(t); 1507 const struct btf_type *next_t; 1508 __u32 next_id; 1509 bool multidim; 1510 /* 1511 * GCC has a bug 1512 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1513 * which causes it to emit extra const/volatile 1514 * modifiers for an array, if array's element type has 1515 * const/volatile modifiers. Clang doesn't do that. 1516 * In general, it doesn't seem very meaningful to have 1517 * a const/volatile modifier for array, so we are 1518 * going to silently skip them here. 1519 */ 1520 btf_dump_drop_mods(d, decls); 1521 1522 if (decls->cnt == 0) { 1523 btf_dump_emit_name(d, fname, last_was_ptr); 1524 btf_dump_printf(d, "[%u]", a->nelems); 1525 return; 1526 } 1527 1528 next_id = decls->ids[decls->cnt - 1]; 1529 next_t = btf__type_by_id(d->btf, next_id); 1530 multidim = btf_is_array(next_t); 1531 /* we need space if we have named non-pointer */ 1532 if (fname[0] && !last_was_ptr) 1533 btf_dump_printf(d, " "); 1534 /* no parentheses for multi-dimensional array */ 1535 if (!multidim) 1536 btf_dump_printf(d, "("); 1537 btf_dump_emit_type_chain(d, decls, fname, lvl); 1538 if (!multidim) 1539 btf_dump_printf(d, ")"); 1540 btf_dump_printf(d, "[%u]", a->nelems); 1541 return; 1542 } 1543 case BTF_KIND_FUNC_PROTO: { 1544 const struct btf_param *p = btf_params(t); 1545 __u16 vlen = btf_vlen(t); 1546 int i; 1547 1548 /* 1549 * GCC emits extra volatile qualifier for 1550 * __attribute__((noreturn)) function pointers. Clang 1551 * doesn't do it. It's a GCC quirk for backwards 1552 * compatibility with code written for GCC <2.5. So, 1553 * similarly to extra qualifiers for array, just drop 1554 * them, instead of handling them. 1555 */ 1556 btf_dump_drop_mods(d, decls); 1557 if (decls->cnt) { 1558 btf_dump_printf(d, " ("); 1559 btf_dump_emit_type_chain(d, decls, fname, lvl); 1560 btf_dump_printf(d, ")"); 1561 } else { 1562 btf_dump_emit_name(d, fname, last_was_ptr); 1563 } 1564 btf_dump_printf(d, "("); 1565 /* 1566 * Clang for BPF target generates func_proto with no 1567 * args as a func_proto with a single void arg (e.g., 1568 * `int (*f)(void)` vs just `int (*f)()`). We are 1569 * going to emit valid empty args (void) syntax for 1570 * such case. Similarly and conveniently, valid 1571 * no args case can be special-cased here as well. 1572 */ 1573 if (vlen == 0 || (vlen == 1 && p->type == 0)) { 1574 btf_dump_printf(d, "void)"); 1575 return; 1576 } 1577 1578 for (i = 0; i < vlen; i++, p++) { 1579 if (i > 0) 1580 btf_dump_printf(d, ", "); 1581 1582 /* last arg of type void is vararg */ 1583 if (i == vlen - 1 && p->type == 0) { 1584 btf_dump_printf(d, "..."); 1585 break; 1586 } 1587 1588 name = btf_name_of(d, p->name_off); 1589 btf_dump_emit_type_decl(d, p->type, name, lvl); 1590 } 1591 1592 btf_dump_printf(d, ")"); 1593 return; 1594 } 1595 default: 1596 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1597 kind, id); 1598 return; 1599 } 1600 1601 last_was_ptr = kind == BTF_KIND_PTR; 1602 } 1603 1604 btf_dump_emit_name(d, fname, last_was_ptr); 1605 } 1606 1607 /* show type name as (type_name) */ 1608 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1609 bool top_level) 1610 { 1611 const struct btf_type *t; 1612 1613 /* for array members, we don't bother emitting type name for each 1614 * member to avoid the redundancy of 1615 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1616 */ 1617 if (d->typed_dump->is_array_member) 1618 return; 1619 1620 /* avoid type name specification for variable/section; it will be done 1621 * for the associated variable value(s). 1622 */ 1623 t = btf__type_by_id(d->btf, id); 1624 if (btf_is_var(t) || btf_is_datasec(t)) 1625 return; 1626 1627 if (top_level) 1628 btf_dump_printf(d, "("); 1629 1630 d->skip_anon_defs = true; 1631 d->strip_mods = true; 1632 btf_dump_emit_type_decl(d, id, "", 0); 1633 d->strip_mods = false; 1634 d->skip_anon_defs = false; 1635 1636 if (top_level) 1637 btf_dump_printf(d, ")"); 1638 } 1639 1640 /* return number of duplicates (occurrences) of a given name */ 1641 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1642 const char *orig_name) 1643 { 1644 char *old_name, *new_name; 1645 size_t dup_cnt = 0; 1646 int err; 1647 1648 new_name = strdup(orig_name); 1649 if (!new_name) 1650 return 1; 1651 1652 (void)hashmap__find(name_map, orig_name, &dup_cnt); 1653 dup_cnt++; 1654 1655 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL); 1656 if (err) 1657 free(new_name); 1658 1659 free(old_name); 1660 1661 return dup_cnt; 1662 } 1663 1664 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1665 struct hashmap *name_map) 1666 { 1667 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1668 const struct btf_type *t = btf__type_by_id(d->btf, id); 1669 const char *orig_name = btf_name_of(d, t->name_off); 1670 const char **cached_name = &d->cached_names[id]; 1671 size_t dup_cnt; 1672 1673 if (t->name_off == 0) 1674 return ""; 1675 1676 if (s->name_resolved) 1677 return *cached_name ? *cached_name : orig_name; 1678 1679 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1680 s->name_resolved = 1; 1681 return orig_name; 1682 } 1683 1684 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1685 if (dup_cnt > 1) { 1686 const size_t max_len = 256; 1687 char new_name[max_len]; 1688 1689 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1690 *cached_name = strdup(new_name); 1691 } 1692 1693 s->name_resolved = 1; 1694 return *cached_name ? *cached_name : orig_name; 1695 } 1696 1697 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1698 { 1699 return btf_dump_resolve_name(d, id, d->type_names); 1700 } 1701 1702 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1703 { 1704 return btf_dump_resolve_name(d, id, d->ident_names); 1705 } 1706 1707 static int btf_dump_dump_type_data(struct btf_dump *d, 1708 const char *fname, 1709 const struct btf_type *t, 1710 __u32 id, 1711 const void *data, 1712 __u8 bits_offset, 1713 __u8 bit_sz); 1714 1715 static const char *btf_dump_data_newline(struct btf_dump *d) 1716 { 1717 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1718 } 1719 1720 static const char *btf_dump_data_delim(struct btf_dump *d) 1721 { 1722 return d->typed_dump->depth == 0 ? "" : ","; 1723 } 1724 1725 static void btf_dump_data_pfx(struct btf_dump *d) 1726 { 1727 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1728 1729 if (d->typed_dump->compact) 1730 return; 1731 1732 for (i = 0; i < lvl; i++) 1733 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1734 } 1735 1736 /* A macro is used here as btf_type_value[s]() appends format specifiers 1737 * to the format specifier passed in; these do the work of appending 1738 * delimiters etc while the caller simply has to specify the type values 1739 * in the format specifier + value(s). 1740 */ 1741 #define btf_dump_type_values(d, fmt, ...) \ 1742 btf_dump_printf(d, fmt "%s%s", \ 1743 ##__VA_ARGS__, \ 1744 btf_dump_data_delim(d), \ 1745 btf_dump_data_newline(d)) 1746 1747 static int btf_dump_unsupported_data(struct btf_dump *d, 1748 const struct btf_type *t, 1749 __u32 id) 1750 { 1751 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1752 return -ENOTSUP; 1753 } 1754 1755 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1756 const struct btf_type *t, 1757 const void *data, 1758 __u8 bits_offset, 1759 __u8 bit_sz, 1760 __u64 *value) 1761 { 1762 __u16 left_shift_bits, right_shift_bits; 1763 const __u8 *bytes = data; 1764 __u8 nr_copy_bits; 1765 __u64 num = 0; 1766 int i; 1767 1768 /* Maximum supported bitfield size is 64 bits */ 1769 if (t->size > 8) { 1770 pr_warn("unexpected bitfield size %d\n", t->size); 1771 return -EINVAL; 1772 } 1773 1774 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1775 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1776 */ 1777 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1778 for (i = t->size - 1; i >= 0; i--) 1779 num = num * 256 + bytes[i]; 1780 nr_copy_bits = bit_sz + bits_offset; 1781 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1782 for (i = 0; i < t->size; i++) 1783 num = num * 256 + bytes[i]; 1784 nr_copy_bits = t->size * 8 - bits_offset; 1785 #else 1786 # error "Unrecognized __BYTE_ORDER__" 1787 #endif 1788 left_shift_bits = 64 - nr_copy_bits; 1789 right_shift_bits = 64 - bit_sz; 1790 1791 *value = (num << left_shift_bits) >> right_shift_bits; 1792 1793 return 0; 1794 } 1795 1796 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1797 const struct btf_type *t, 1798 const void *data, 1799 __u8 bits_offset, 1800 __u8 bit_sz) 1801 { 1802 __u64 check_num; 1803 int err; 1804 1805 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1806 if (err) 1807 return err; 1808 if (check_num == 0) 1809 return -ENODATA; 1810 return 0; 1811 } 1812 1813 static int btf_dump_bitfield_data(struct btf_dump *d, 1814 const struct btf_type *t, 1815 const void *data, 1816 __u8 bits_offset, 1817 __u8 bit_sz) 1818 { 1819 __u64 print_num; 1820 int err; 1821 1822 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1823 if (err) 1824 return err; 1825 1826 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1827 1828 return 0; 1829 } 1830 1831 /* ints, floats and ptrs */ 1832 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1833 const struct btf_type *t, 1834 __u32 id, 1835 const void *data) 1836 { 1837 static __u8 bytecmp[16] = {}; 1838 int nr_bytes; 1839 1840 /* For pointer types, pointer size is not defined on a per-type basis. 1841 * On dump creation however, we store the pointer size. 1842 */ 1843 if (btf_kind(t) == BTF_KIND_PTR) 1844 nr_bytes = d->ptr_sz; 1845 else 1846 nr_bytes = t->size; 1847 1848 if (nr_bytes < 1 || nr_bytes > 16) { 1849 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1850 return -EINVAL; 1851 } 1852 1853 if (memcmp(data, bytecmp, nr_bytes) == 0) 1854 return -ENODATA; 1855 return 0; 1856 } 1857 1858 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1859 const void *data) 1860 { 1861 int alignment = btf__align_of(btf, type_id); 1862 1863 if (alignment == 0) 1864 return false; 1865 1866 return ((uintptr_t)data) % alignment == 0; 1867 } 1868 1869 static int btf_dump_int_data(struct btf_dump *d, 1870 const struct btf_type *t, 1871 __u32 type_id, 1872 const void *data, 1873 __u8 bits_offset) 1874 { 1875 __u8 encoding = btf_int_encoding(t); 1876 bool sign = encoding & BTF_INT_SIGNED; 1877 char buf[16] __attribute__((aligned(16))); 1878 int sz = t->size; 1879 1880 if (sz == 0 || sz > sizeof(buf)) { 1881 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1882 return -EINVAL; 1883 } 1884 1885 /* handle packed int data - accesses of integers not aligned on 1886 * int boundaries can cause problems on some platforms. 1887 */ 1888 if (!ptr_is_aligned(d->btf, type_id, data)) { 1889 memcpy(buf, data, sz); 1890 data = buf; 1891 } 1892 1893 switch (sz) { 1894 case 16: { 1895 const __u64 *ints = data; 1896 __u64 lsi, msi; 1897 1898 /* avoid use of __int128 as some 32-bit platforms do not 1899 * support it. 1900 */ 1901 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1902 lsi = ints[0]; 1903 msi = ints[1]; 1904 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1905 lsi = ints[1]; 1906 msi = ints[0]; 1907 #else 1908 # error "Unrecognized __BYTE_ORDER__" 1909 #endif 1910 if (msi == 0) 1911 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1912 else 1913 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1914 (unsigned long long)lsi); 1915 break; 1916 } 1917 case 8: 1918 if (sign) 1919 btf_dump_type_values(d, "%lld", *(long long *)data); 1920 else 1921 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1922 break; 1923 case 4: 1924 if (sign) 1925 btf_dump_type_values(d, "%d", *(__s32 *)data); 1926 else 1927 btf_dump_type_values(d, "%u", *(__u32 *)data); 1928 break; 1929 case 2: 1930 if (sign) 1931 btf_dump_type_values(d, "%d", *(__s16 *)data); 1932 else 1933 btf_dump_type_values(d, "%u", *(__u16 *)data); 1934 break; 1935 case 1: 1936 if (d->typed_dump->is_array_char) { 1937 /* check for null terminator */ 1938 if (d->typed_dump->is_array_terminated) 1939 break; 1940 if (*(char *)data == '\0') { 1941 btf_dump_type_values(d, "'\\0'"); 1942 d->typed_dump->is_array_terminated = true; 1943 break; 1944 } 1945 if (isprint(*(char *)data)) { 1946 btf_dump_type_values(d, "'%c'", *(char *)data); 1947 break; 1948 } 1949 } 1950 if (sign) 1951 btf_dump_type_values(d, "%d", *(__s8 *)data); 1952 else 1953 btf_dump_type_values(d, "%u", *(__u8 *)data); 1954 break; 1955 default: 1956 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1957 return -EINVAL; 1958 } 1959 return 0; 1960 } 1961 1962 union float_data { 1963 long double ld; 1964 double d; 1965 float f; 1966 }; 1967 1968 static int btf_dump_float_data(struct btf_dump *d, 1969 const struct btf_type *t, 1970 __u32 type_id, 1971 const void *data) 1972 { 1973 const union float_data *flp = data; 1974 union float_data fl; 1975 int sz = t->size; 1976 1977 /* handle unaligned data; copy to local union */ 1978 if (!ptr_is_aligned(d->btf, type_id, data)) { 1979 memcpy(&fl, data, sz); 1980 flp = &fl; 1981 } 1982 1983 switch (sz) { 1984 case 16: 1985 btf_dump_type_values(d, "%Lf", flp->ld); 1986 break; 1987 case 8: 1988 btf_dump_type_values(d, "%lf", flp->d); 1989 break; 1990 case 4: 1991 btf_dump_type_values(d, "%f", flp->f); 1992 break; 1993 default: 1994 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1995 return -EINVAL; 1996 } 1997 return 0; 1998 } 1999 2000 static int btf_dump_var_data(struct btf_dump *d, 2001 const struct btf_type *v, 2002 __u32 id, 2003 const void *data) 2004 { 2005 enum btf_func_linkage linkage = btf_var(v)->linkage; 2006 const struct btf_type *t; 2007 const char *l; 2008 __u32 type_id; 2009 2010 switch (linkage) { 2011 case BTF_FUNC_STATIC: 2012 l = "static "; 2013 break; 2014 case BTF_FUNC_EXTERN: 2015 l = "extern "; 2016 break; 2017 case BTF_FUNC_GLOBAL: 2018 default: 2019 l = ""; 2020 break; 2021 } 2022 2023 /* format of output here is [linkage] [type] [varname] = (type)value, 2024 * for example "static int cpu_profile_flip = (int)1" 2025 */ 2026 btf_dump_printf(d, "%s", l); 2027 type_id = v->type; 2028 t = btf__type_by_id(d->btf, type_id); 2029 btf_dump_emit_type_cast(d, type_id, false); 2030 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 2031 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 2032 } 2033 2034 static int btf_dump_array_data(struct btf_dump *d, 2035 const struct btf_type *t, 2036 __u32 id, 2037 const void *data) 2038 { 2039 const struct btf_array *array = btf_array(t); 2040 const struct btf_type *elem_type; 2041 __u32 i, elem_type_id; 2042 __s64 elem_size; 2043 bool is_array_member; 2044 bool is_array_terminated; 2045 2046 elem_type_id = array->type; 2047 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2048 elem_size = btf__resolve_size(d->btf, elem_type_id); 2049 if (elem_size <= 0) { 2050 pr_warn("unexpected elem size %zd for array type [%u]\n", 2051 (ssize_t)elem_size, id); 2052 return -EINVAL; 2053 } 2054 2055 if (btf_is_int(elem_type)) { 2056 /* 2057 * BTF_INT_CHAR encoding never seems to be set for 2058 * char arrays, so if size is 1 and element is 2059 * printable as a char, we'll do that. 2060 */ 2061 if (elem_size == 1) 2062 d->typed_dump->is_array_char = true; 2063 } 2064 2065 /* note that we increment depth before calling btf_dump_print() below; 2066 * this is intentional. btf_dump_data_newline() will not print a 2067 * newline for depth 0 (since this leaves us with trailing newlines 2068 * at the end of typed display), so depth is incremented first. 2069 * For similar reasons, we decrement depth before showing the closing 2070 * parenthesis. 2071 */ 2072 d->typed_dump->depth++; 2073 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 2074 2075 /* may be a multidimensional array, so store current "is array member" 2076 * status so we can restore it correctly later. 2077 */ 2078 is_array_member = d->typed_dump->is_array_member; 2079 d->typed_dump->is_array_member = true; 2080 is_array_terminated = d->typed_dump->is_array_terminated; 2081 d->typed_dump->is_array_terminated = false; 2082 for (i = 0; i < array->nelems; i++, data += elem_size) { 2083 if (d->typed_dump->is_array_terminated) 2084 break; 2085 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 2086 } 2087 d->typed_dump->is_array_member = is_array_member; 2088 d->typed_dump->is_array_terminated = is_array_terminated; 2089 d->typed_dump->depth--; 2090 btf_dump_data_pfx(d); 2091 btf_dump_type_values(d, "]"); 2092 2093 return 0; 2094 } 2095 2096 static int btf_dump_struct_data(struct btf_dump *d, 2097 const struct btf_type *t, 2098 __u32 id, 2099 const void *data) 2100 { 2101 const struct btf_member *m = btf_members(t); 2102 __u16 n = btf_vlen(t); 2103 int i, err = 0; 2104 2105 /* note that we increment depth before calling btf_dump_print() below; 2106 * this is intentional. btf_dump_data_newline() will not print a 2107 * newline for depth 0 (since this leaves us with trailing newlines 2108 * at the end of typed display), so depth is incremented first. 2109 * For similar reasons, we decrement depth before showing the closing 2110 * parenthesis. 2111 */ 2112 d->typed_dump->depth++; 2113 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 2114 2115 for (i = 0; i < n; i++, m++) { 2116 const struct btf_type *mtype; 2117 const char *mname; 2118 __u32 moffset; 2119 __u8 bit_sz; 2120 2121 mtype = btf__type_by_id(d->btf, m->type); 2122 mname = btf_name_of(d, m->name_off); 2123 moffset = btf_member_bit_offset(t, i); 2124 2125 bit_sz = btf_member_bitfield_size(t, i); 2126 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 2127 moffset % 8, bit_sz); 2128 if (err < 0) 2129 return err; 2130 } 2131 d->typed_dump->depth--; 2132 btf_dump_data_pfx(d); 2133 btf_dump_type_values(d, "}"); 2134 return err; 2135 } 2136 2137 union ptr_data { 2138 unsigned int p; 2139 unsigned long long lp; 2140 }; 2141 2142 static int btf_dump_ptr_data(struct btf_dump *d, 2143 const struct btf_type *t, 2144 __u32 id, 2145 const void *data) 2146 { 2147 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2148 btf_dump_type_values(d, "%p", *(void **)data); 2149 } else { 2150 union ptr_data pt; 2151 2152 memcpy(&pt, data, d->ptr_sz); 2153 if (d->ptr_sz == 4) 2154 btf_dump_type_values(d, "0x%x", pt.p); 2155 else 2156 btf_dump_type_values(d, "0x%llx", pt.lp); 2157 } 2158 return 0; 2159 } 2160 2161 static int btf_dump_get_enum_value(struct btf_dump *d, 2162 const struct btf_type *t, 2163 const void *data, 2164 __u32 id, 2165 __s64 *value) 2166 { 2167 bool is_signed = btf_kflag(t); 2168 2169 if (!ptr_is_aligned(d->btf, id, data)) { 2170 __u64 val; 2171 int err; 2172 2173 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2174 if (err) 2175 return err; 2176 *value = (__s64)val; 2177 return 0; 2178 } 2179 2180 switch (t->size) { 2181 case 8: 2182 *value = *(__s64 *)data; 2183 return 0; 2184 case 4: 2185 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2186 return 0; 2187 case 2: 2188 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2189 return 0; 2190 case 1: 2191 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2192 return 0; 2193 default: 2194 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2195 return -EINVAL; 2196 } 2197 } 2198 2199 static int btf_dump_enum_data(struct btf_dump *d, 2200 const struct btf_type *t, 2201 __u32 id, 2202 const void *data) 2203 { 2204 bool is_signed; 2205 __s64 value; 2206 int i, err; 2207 2208 err = btf_dump_get_enum_value(d, t, data, id, &value); 2209 if (err) 2210 return err; 2211 2212 is_signed = btf_kflag(t); 2213 if (btf_is_enum(t)) { 2214 const struct btf_enum *e; 2215 2216 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2217 if (value != e->val) 2218 continue; 2219 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2220 return 0; 2221 } 2222 2223 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2224 } else { 2225 const struct btf_enum64 *e; 2226 2227 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2228 if (value != btf_enum64_value(e)) 2229 continue; 2230 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2231 return 0; 2232 } 2233 2234 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2235 (unsigned long long)value); 2236 } 2237 return 0; 2238 } 2239 2240 static int btf_dump_datasec_data(struct btf_dump *d, 2241 const struct btf_type *t, 2242 __u32 id, 2243 const void *data) 2244 { 2245 const struct btf_var_secinfo *vsi; 2246 const struct btf_type *var; 2247 __u32 i; 2248 int err; 2249 2250 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2251 2252 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2253 var = btf__type_by_id(d->btf, vsi->type); 2254 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2255 if (err < 0) 2256 return err; 2257 btf_dump_printf(d, ";"); 2258 } 2259 return 0; 2260 } 2261 2262 /* return size of type, or if base type overflows, return -E2BIG. */ 2263 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2264 const struct btf_type *t, 2265 __u32 id, 2266 const void *data, 2267 __u8 bits_offset, 2268 __u8 bit_sz) 2269 { 2270 __s64 size; 2271 2272 if (bit_sz) { 2273 /* bits_offset is at most 7. bit_sz is at most 128. */ 2274 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8; 2275 2276 /* When bit_sz is non zero, it is called from 2277 * btf_dump_struct_data() where it only cares about 2278 * negative error value. 2279 * Return nr_bytes in success case to make it 2280 * consistent as the regular integer case below. 2281 */ 2282 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes; 2283 } 2284 2285 size = btf__resolve_size(d->btf, id); 2286 2287 if (size < 0 || size >= INT_MAX) { 2288 pr_warn("unexpected size [%zu] for id [%u]\n", 2289 (size_t)size, id); 2290 return -EINVAL; 2291 } 2292 2293 /* Only do overflow checking for base types; we do not want to 2294 * avoid showing part of a struct, union or array, even if we 2295 * do not have enough data to show the full object. By 2296 * restricting overflow checking to base types we can ensure 2297 * that partial display succeeds, while avoiding overflowing 2298 * and using bogus data for display. 2299 */ 2300 t = skip_mods_and_typedefs(d->btf, id, NULL); 2301 if (!t) { 2302 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2303 id); 2304 return -EINVAL; 2305 } 2306 2307 switch (btf_kind(t)) { 2308 case BTF_KIND_INT: 2309 case BTF_KIND_FLOAT: 2310 case BTF_KIND_PTR: 2311 case BTF_KIND_ENUM: 2312 case BTF_KIND_ENUM64: 2313 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2314 return -E2BIG; 2315 break; 2316 default: 2317 break; 2318 } 2319 return (int)size; 2320 } 2321 2322 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2323 const struct btf_type *t, 2324 __u32 id, 2325 const void *data, 2326 __u8 bits_offset, 2327 __u8 bit_sz) 2328 { 2329 __s64 value; 2330 int i, err; 2331 2332 /* toplevel exceptions; we show zero values if 2333 * - we ask for them (emit_zeros) 2334 * - if we are at top-level so we see "struct empty { }" 2335 * - or if we are an array member and the array is non-empty and 2336 * not a char array; we don't want to be in a situation where we 2337 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2338 * If the array contains zeroes only, or is a char array starting 2339 * with a '\0', the array-level check_zero() will prevent showing it; 2340 * we are concerned with determining zero value at the array member 2341 * level here. 2342 */ 2343 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2344 (d->typed_dump->is_array_member && 2345 !d->typed_dump->is_array_char)) 2346 return 0; 2347 2348 t = skip_mods_and_typedefs(d->btf, id, NULL); 2349 2350 switch (btf_kind(t)) { 2351 case BTF_KIND_INT: 2352 if (bit_sz) 2353 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2354 return btf_dump_base_type_check_zero(d, t, id, data); 2355 case BTF_KIND_FLOAT: 2356 case BTF_KIND_PTR: 2357 return btf_dump_base_type_check_zero(d, t, id, data); 2358 case BTF_KIND_ARRAY: { 2359 const struct btf_array *array = btf_array(t); 2360 const struct btf_type *elem_type; 2361 __u32 elem_type_id, elem_size; 2362 bool ischar; 2363 2364 elem_type_id = array->type; 2365 elem_size = btf__resolve_size(d->btf, elem_type_id); 2366 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2367 2368 ischar = btf_is_int(elem_type) && elem_size == 1; 2369 2370 /* check all elements; if _any_ element is nonzero, all 2371 * of array is displayed. We make an exception however 2372 * for char arrays where the first element is 0; these 2373 * are considered zeroed also, even if later elements are 2374 * non-zero because the string is terminated. 2375 */ 2376 for (i = 0; i < array->nelems; i++) { 2377 if (i == 0 && ischar && *(char *)data == 0) 2378 return -ENODATA; 2379 err = btf_dump_type_data_check_zero(d, elem_type, 2380 elem_type_id, 2381 data + 2382 (i * elem_size), 2383 bits_offset, 0); 2384 if (err != -ENODATA) 2385 return err; 2386 } 2387 return -ENODATA; 2388 } 2389 case BTF_KIND_STRUCT: 2390 case BTF_KIND_UNION: { 2391 const struct btf_member *m = btf_members(t); 2392 __u16 n = btf_vlen(t); 2393 2394 /* if any struct/union member is non-zero, the struct/union 2395 * is considered non-zero and dumped. 2396 */ 2397 for (i = 0; i < n; i++, m++) { 2398 const struct btf_type *mtype; 2399 __u32 moffset; 2400 2401 mtype = btf__type_by_id(d->btf, m->type); 2402 moffset = btf_member_bit_offset(t, i); 2403 2404 /* btf_int_bits() does not store member bitfield size; 2405 * bitfield size needs to be stored here so int display 2406 * of member can retrieve it. 2407 */ 2408 bit_sz = btf_member_bitfield_size(t, i); 2409 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2410 moffset % 8, bit_sz); 2411 if (err != ENODATA) 2412 return err; 2413 } 2414 return -ENODATA; 2415 } 2416 case BTF_KIND_ENUM: 2417 case BTF_KIND_ENUM64: 2418 err = btf_dump_get_enum_value(d, t, data, id, &value); 2419 if (err) 2420 return err; 2421 if (value == 0) 2422 return -ENODATA; 2423 return 0; 2424 default: 2425 return 0; 2426 } 2427 } 2428 2429 /* returns size of data dumped, or error. */ 2430 static int btf_dump_dump_type_data(struct btf_dump *d, 2431 const char *fname, 2432 const struct btf_type *t, 2433 __u32 id, 2434 const void *data, 2435 __u8 bits_offset, 2436 __u8 bit_sz) 2437 { 2438 int size, err = 0; 2439 2440 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz); 2441 if (size < 0) 2442 return size; 2443 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2444 if (err) { 2445 /* zeroed data is expected and not an error, so simply skip 2446 * dumping such data. Record other errors however. 2447 */ 2448 if (err == -ENODATA) 2449 return size; 2450 return err; 2451 } 2452 btf_dump_data_pfx(d); 2453 2454 if (!d->typed_dump->skip_names) { 2455 if (fname && strlen(fname) > 0) 2456 btf_dump_printf(d, ".%s = ", fname); 2457 btf_dump_emit_type_cast(d, id, true); 2458 } 2459 2460 t = skip_mods_and_typedefs(d->btf, id, NULL); 2461 2462 switch (btf_kind(t)) { 2463 case BTF_KIND_UNKN: 2464 case BTF_KIND_FWD: 2465 case BTF_KIND_FUNC: 2466 case BTF_KIND_FUNC_PROTO: 2467 case BTF_KIND_DECL_TAG: 2468 err = btf_dump_unsupported_data(d, t, id); 2469 break; 2470 case BTF_KIND_INT: 2471 if (bit_sz) 2472 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2473 else 2474 err = btf_dump_int_data(d, t, id, data, bits_offset); 2475 break; 2476 case BTF_KIND_FLOAT: 2477 err = btf_dump_float_data(d, t, id, data); 2478 break; 2479 case BTF_KIND_PTR: 2480 err = btf_dump_ptr_data(d, t, id, data); 2481 break; 2482 case BTF_KIND_ARRAY: 2483 err = btf_dump_array_data(d, t, id, data); 2484 break; 2485 case BTF_KIND_STRUCT: 2486 case BTF_KIND_UNION: 2487 err = btf_dump_struct_data(d, t, id, data); 2488 break; 2489 case BTF_KIND_ENUM: 2490 case BTF_KIND_ENUM64: 2491 /* handle bitfield and int enum values */ 2492 if (bit_sz) { 2493 __u64 print_num; 2494 __s64 enum_val; 2495 2496 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2497 &print_num); 2498 if (err) 2499 break; 2500 enum_val = (__s64)print_num; 2501 err = btf_dump_enum_data(d, t, id, &enum_val); 2502 } else 2503 err = btf_dump_enum_data(d, t, id, data); 2504 break; 2505 case BTF_KIND_VAR: 2506 err = btf_dump_var_data(d, t, id, data); 2507 break; 2508 case BTF_KIND_DATASEC: 2509 err = btf_dump_datasec_data(d, t, id, data); 2510 break; 2511 default: 2512 pr_warn("unexpected kind [%u] for id [%u]\n", 2513 BTF_INFO_KIND(t->info), id); 2514 return -EINVAL; 2515 } 2516 if (err < 0) 2517 return err; 2518 return size; 2519 } 2520 2521 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2522 const void *data, size_t data_sz, 2523 const struct btf_dump_type_data_opts *opts) 2524 { 2525 struct btf_dump_data typed_dump = {}; 2526 const struct btf_type *t; 2527 int ret; 2528 2529 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2530 return libbpf_err(-EINVAL); 2531 2532 t = btf__type_by_id(d->btf, id); 2533 if (!t) 2534 return libbpf_err(-ENOENT); 2535 2536 d->typed_dump = &typed_dump; 2537 d->typed_dump->data_end = data + data_sz; 2538 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2539 2540 /* default indent string is a tab */ 2541 if (!OPTS_GET(opts, indent_str, NULL)) 2542 d->typed_dump->indent_str[0] = '\t'; 2543 else 2544 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2545 sizeof(d->typed_dump->indent_str)); 2546 2547 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2548 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2549 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2550 2551 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2552 2553 d->typed_dump = NULL; 2554 2555 return libbpf_err(ret); 2556 } 2557