xref: /linux/tools/lib/bpf/btf_dump.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <limits.h>
17 #include <linux/err.h>
18 #include <linux/btf.h>
19 #include <linux/kernel.h>
20 #include "btf.h"
21 #include "hashmap.h"
22 #include "libbpf.h"
23 #include "libbpf_internal.h"
24 #include "str_error.h"
25 
26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
28 
29 static const char *pfx(int lvl)
30 {
31 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
32 }
33 
34 enum btf_dump_type_order_state {
35 	NOT_ORDERED,
36 	ORDERING,
37 	ORDERED,
38 };
39 
40 enum btf_dump_type_emit_state {
41 	NOT_EMITTED,
42 	EMITTING,
43 	EMITTED,
44 };
45 
46 /* per-type auxiliary state */
47 struct btf_dump_type_aux_state {
48 	/* topological sorting state */
49 	enum btf_dump_type_order_state order_state: 2;
50 	/* emitting state used to determine the need for forward declaration */
51 	enum btf_dump_type_emit_state emit_state: 2;
52 	/* whether forward declaration was already emitted */
53 	__u8 fwd_emitted: 1;
54 	/* whether unique non-duplicate name was already assigned */
55 	__u8 name_resolved: 1;
56 	/* whether type is referenced from any other type */
57 	__u8 referenced: 1;
58 };
59 
60 /* indent string length; one indent string is added for each indent level */
61 #define BTF_DATA_INDENT_STR_LEN			32
62 
63 /*
64  * Common internal data for BTF type data dump operations.
65  */
66 struct btf_dump_data {
67 	const void *data_end;		/* end of valid data to show */
68 	bool compact;
69 	bool skip_names;
70 	bool emit_zeroes;
71 	__u8 indent_lvl;	/* base indent level */
72 	char indent_str[BTF_DATA_INDENT_STR_LEN];
73 	/* below are used during iteration */
74 	int depth;
75 	bool is_array_member;
76 	bool is_array_terminated;
77 	bool is_array_char;
78 };
79 
80 struct btf_dump {
81 	const struct btf *btf;
82 	btf_dump_printf_fn_t printf_fn;
83 	void *cb_ctx;
84 	int ptr_sz;
85 	bool strip_mods;
86 	bool skip_anon_defs;
87 	int last_id;
88 
89 	/* per-type auxiliary state */
90 	struct btf_dump_type_aux_state *type_states;
91 	size_t type_states_cap;
92 	/* per-type optional cached unique name, must be freed, if present */
93 	const char **cached_names;
94 	size_t cached_names_cap;
95 
96 	/* topo-sorted list of dependent type definitions */
97 	__u32 *emit_queue;
98 	int emit_queue_cap;
99 	int emit_queue_cnt;
100 
101 	/*
102 	 * stack of type declarations (e.g., chain of modifiers, arrays,
103 	 * funcs, etc)
104 	 */
105 	__u32 *decl_stack;
106 	int decl_stack_cap;
107 	int decl_stack_cnt;
108 
109 	/* maps struct/union/enum name to a number of name occurrences */
110 	struct hashmap *type_names;
111 	/*
112 	 * maps typedef identifiers and enum value names to a number of such
113 	 * name occurrences
114 	 */
115 	struct hashmap *ident_names;
116 	/*
117 	 * data for typed display; allocated if needed.
118 	 */
119 	struct btf_dump_data *typed_dump;
120 };
121 
122 static size_t str_hash_fn(long key, void *ctx)
123 {
124 	return str_hash((void *)key);
125 }
126 
127 static bool str_equal_fn(long a, long b, void *ctx)
128 {
129 	return strcmp((void *)a, (void *)b) == 0;
130 }
131 
132 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
133 {
134 	return btf__name_by_offset(d->btf, name_off);
135 }
136 
137 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
138 {
139 	va_list args;
140 
141 	va_start(args, fmt);
142 	d->printf_fn(d->cb_ctx, fmt, args);
143 	va_end(args);
144 }
145 
146 static int btf_dump_mark_referenced(struct btf_dump *d);
147 static int btf_dump_resize(struct btf_dump *d);
148 
149 struct btf_dump *btf_dump__new(const struct btf *btf,
150 			       btf_dump_printf_fn_t printf_fn,
151 			       void *ctx,
152 			       const struct btf_dump_opts *opts)
153 {
154 	struct btf_dump *d;
155 	int err;
156 
157 	if (!OPTS_VALID(opts, btf_dump_opts))
158 		return libbpf_err_ptr(-EINVAL);
159 
160 	if (!printf_fn)
161 		return libbpf_err_ptr(-EINVAL);
162 
163 	d = calloc(1, sizeof(struct btf_dump));
164 	if (!d)
165 		return libbpf_err_ptr(-ENOMEM);
166 
167 	d->btf = btf;
168 	d->printf_fn = printf_fn;
169 	d->cb_ctx = ctx;
170 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
171 
172 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173 	if (IS_ERR(d->type_names)) {
174 		err = PTR_ERR(d->type_names);
175 		d->type_names = NULL;
176 		goto err;
177 	}
178 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
179 	if (IS_ERR(d->ident_names)) {
180 		err = PTR_ERR(d->ident_names);
181 		d->ident_names = NULL;
182 		goto err;
183 	}
184 
185 	err = btf_dump_resize(d);
186 	if (err)
187 		goto err;
188 
189 	return d;
190 err:
191 	btf_dump__free(d);
192 	return libbpf_err_ptr(err);
193 }
194 
195 static int btf_dump_resize(struct btf_dump *d)
196 {
197 	int err, last_id = btf__type_cnt(d->btf) - 1;
198 
199 	if (last_id <= d->last_id)
200 		return 0;
201 
202 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
203 			      sizeof(*d->type_states), last_id + 1))
204 		return -ENOMEM;
205 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
206 			      sizeof(*d->cached_names), last_id + 1))
207 		return -ENOMEM;
208 
209 	if (d->last_id == 0) {
210 		/* VOID is special */
211 		d->type_states[0].order_state = ORDERED;
212 		d->type_states[0].emit_state = EMITTED;
213 	}
214 
215 	/* eagerly determine referenced types for anon enums */
216 	err = btf_dump_mark_referenced(d);
217 	if (err)
218 		return err;
219 
220 	d->last_id = last_id;
221 	return 0;
222 }
223 
224 static void btf_dump_free_names(struct hashmap *map)
225 {
226 	size_t bkt;
227 	struct hashmap_entry *cur;
228 
229 	hashmap__for_each_entry(map, cur, bkt)
230 		free((void *)cur->pkey);
231 
232 	hashmap__free(map);
233 }
234 
235 void btf_dump__free(struct btf_dump *d)
236 {
237 	int i;
238 
239 	if (IS_ERR_OR_NULL(d))
240 		return;
241 
242 	free(d->type_states);
243 	if (d->cached_names) {
244 		/* any set cached name is owned by us and should be freed */
245 		for (i = 0; i <= d->last_id; i++) {
246 			if (d->cached_names[i])
247 				free((void *)d->cached_names[i]);
248 		}
249 	}
250 	free(d->cached_names);
251 	free(d->emit_queue);
252 	free(d->decl_stack);
253 	btf_dump_free_names(d->type_names);
254 	btf_dump_free_names(d->ident_names);
255 
256 	free(d);
257 }
258 
259 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
260 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
261 
262 /*
263  * Dump BTF type in a compilable C syntax, including all the necessary
264  * dependent types, necessary for compilation. If some of the dependent types
265  * were already emitted as part of previous btf_dump__dump_type() invocation
266  * for another type, they won't be emitted again. This API allows callers to
267  * filter out BTF types according to user-defined criterias and emitted only
268  * minimal subset of types, necessary to compile everything. Full struct/union
269  * definitions will still be emitted, even if the only usage is through
270  * pointer and could be satisfied with just a forward declaration.
271  *
272  * Dumping is done in two high-level passes:
273  *   1. Topologically sort type definitions to satisfy C rules of compilation.
274  *   2. Emit type definitions in C syntax.
275  *
276  * Returns 0 on success; <0, otherwise.
277  */
278 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
279 {
280 	int err, i;
281 
282 	if (id >= btf__type_cnt(d->btf))
283 		return libbpf_err(-EINVAL);
284 
285 	err = btf_dump_resize(d);
286 	if (err)
287 		return libbpf_err(err);
288 
289 	d->emit_queue_cnt = 0;
290 	err = btf_dump_order_type(d, id, false);
291 	if (err < 0)
292 		return libbpf_err(err);
293 
294 	for (i = 0; i < d->emit_queue_cnt; i++)
295 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
296 
297 	return 0;
298 }
299 
300 /*
301  * Mark all types that are referenced from any other type. This is used to
302  * determine top-level anonymous enums that need to be emitted as an
303  * independent type declarations.
304  * Anonymous enums come in two flavors: either embedded in a struct's field
305  * definition, in which case they have to be declared inline as part of field
306  * type declaration; or as a top-level anonymous enum, typically used for
307  * declaring global constants. It's impossible to distinguish between two
308  * without knowing whether given enum type was referenced from other type:
309  * top-level anonymous enum won't be referenced by anything, while embedded
310  * one will.
311  */
312 static int btf_dump_mark_referenced(struct btf_dump *d)
313 {
314 	int i, j, n = btf__type_cnt(d->btf);
315 	const struct btf_type *t;
316 	__u16 vlen;
317 
318 	for (i = d->last_id + 1; i < n; i++) {
319 		t = btf__type_by_id(d->btf, i);
320 		vlen = btf_vlen(t);
321 
322 		switch (btf_kind(t)) {
323 		case BTF_KIND_INT:
324 		case BTF_KIND_ENUM:
325 		case BTF_KIND_ENUM64:
326 		case BTF_KIND_FWD:
327 		case BTF_KIND_FLOAT:
328 			break;
329 
330 		case BTF_KIND_VOLATILE:
331 		case BTF_KIND_CONST:
332 		case BTF_KIND_RESTRICT:
333 		case BTF_KIND_PTR:
334 		case BTF_KIND_TYPEDEF:
335 		case BTF_KIND_FUNC:
336 		case BTF_KIND_VAR:
337 		case BTF_KIND_DECL_TAG:
338 		case BTF_KIND_TYPE_TAG:
339 			d->type_states[t->type].referenced = 1;
340 			break;
341 
342 		case BTF_KIND_ARRAY: {
343 			const struct btf_array *a = btf_array(t);
344 
345 			d->type_states[a->index_type].referenced = 1;
346 			d->type_states[a->type].referenced = 1;
347 			break;
348 		}
349 		case BTF_KIND_STRUCT:
350 		case BTF_KIND_UNION: {
351 			const struct btf_member *m = btf_members(t);
352 
353 			for (j = 0; j < vlen; j++, m++)
354 				d->type_states[m->type].referenced = 1;
355 			break;
356 		}
357 		case BTF_KIND_FUNC_PROTO: {
358 			const struct btf_param *p = btf_params(t);
359 
360 			for (j = 0; j < vlen; j++, p++)
361 				d->type_states[p->type].referenced = 1;
362 			break;
363 		}
364 		case BTF_KIND_DATASEC: {
365 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
366 
367 			for (j = 0; j < vlen; j++, v++)
368 				d->type_states[v->type].referenced = 1;
369 			break;
370 		}
371 		default:
372 			return -EINVAL;
373 		}
374 	}
375 	return 0;
376 }
377 
378 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
379 {
380 	__u32 *new_queue;
381 	size_t new_cap;
382 
383 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
384 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
385 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
386 		if (!new_queue)
387 			return -ENOMEM;
388 		d->emit_queue = new_queue;
389 		d->emit_queue_cap = new_cap;
390 	}
391 
392 	d->emit_queue[d->emit_queue_cnt++] = id;
393 	return 0;
394 }
395 
396 /*
397  * Determine order of emitting dependent types and specified type to satisfy
398  * C compilation rules.  This is done through topological sorting with an
399  * additional complication which comes from C rules. The main idea for C is
400  * that if some type is "embedded" into a struct/union, it's size needs to be
401  * known at the time of definition of containing type. E.g., for:
402  *
403  *	struct A {};
404  *	struct B { struct A x; }
405  *
406  * struct A *HAS* to be defined before struct B, because it's "embedded",
407  * i.e., it is part of struct B layout. But in the following case:
408  *
409  *	struct A;
410  *	struct B { struct A *x; }
411  *	struct A {};
412  *
413  * it's enough to just have a forward declaration of struct A at the time of
414  * struct B definition, as struct B has a pointer to struct A, so the size of
415  * field x is known without knowing struct A size: it's sizeof(void *).
416  *
417  * Unfortunately, there are some trickier cases we need to handle, e.g.:
418  *
419  *	struct A {}; // if this was forward-declaration: compilation error
420  *	struct B {
421  *		struct { // anonymous struct
422  *			struct A y;
423  *		} *x;
424  *	};
425  *
426  * In this case, struct B's field x is a pointer, so it's size is known
427  * regardless of the size of (anonymous) struct it points to. But because this
428  * struct is anonymous and thus defined inline inside struct B, *and* it
429  * embeds struct A, compiler requires full definition of struct A to be known
430  * before struct B can be defined. This creates a transitive dependency
431  * between struct A and struct B. If struct A was forward-declared before
432  * struct B definition and fully defined after struct B definition, that would
433  * trigger compilation error.
434  *
435  * All this means that while we are doing topological sorting on BTF type
436  * graph, we need to determine relationships between different types (graph
437  * nodes):
438  *   - weak link (relationship) between X and Y, if Y *CAN* be
439  *   forward-declared at the point of X definition;
440  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
441  *
442  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
443  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
444  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
445  * Weak/strong relationship is determined recursively during DFS traversal and
446  * is returned as a result from btf_dump_order_type().
447  *
448  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
449  * but it is not guaranteeing that no extraneous forward declarations will be
450  * emitted.
451  *
452  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
453  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
454  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
455  * entire graph path, so depending where from one came to that BTF type, it
456  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
457  * once they are processed, there is no need to do it again, so they are
458  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
459  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
460  * in any case, once those are processed, no need to do it again, as the
461  * result won't change.
462  *
463  * Returns:
464  *   - 1, if type is part of strong link (so there is strong topological
465  *   ordering requirements);
466  *   - 0, if type is part of weak link (so can be satisfied through forward
467  *   declaration);
468  *   - <0, on error (e.g., unsatisfiable type loop detected).
469  */
470 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
471 {
472 	/*
473 	 * Order state is used to detect strong link cycles, but only for BTF
474 	 * kinds that are or could be an independent definition (i.e.,
475 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
476 	 * func_protos, modifiers are just means to get to these definitions.
477 	 * Int/void don't need definitions, they are assumed to be always
478 	 * properly defined.  We also ignore datasec, var, and funcs for now.
479 	 * So for all non-defining kinds, we never even set ordering state,
480 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
481 	 * forms a strong link.
482 	 */
483 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
484 	const struct btf_type *t;
485 	__u16 vlen;
486 	int err, i;
487 
488 	/* return true, letting typedefs know that it's ok to be emitted */
489 	if (tstate->order_state == ORDERED)
490 		return 1;
491 
492 	t = btf__type_by_id(d->btf, id);
493 
494 	if (tstate->order_state == ORDERING) {
495 		/* type loop, but resolvable through fwd declaration */
496 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
497 			return 0;
498 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
499 		return -ELOOP;
500 	}
501 
502 	switch (btf_kind(t)) {
503 	case BTF_KIND_INT:
504 	case BTF_KIND_FLOAT:
505 		tstate->order_state = ORDERED;
506 		return 0;
507 
508 	case BTF_KIND_PTR:
509 		err = btf_dump_order_type(d, t->type, true);
510 		tstate->order_state = ORDERED;
511 		return err;
512 
513 	case BTF_KIND_ARRAY:
514 		return btf_dump_order_type(d, btf_array(t)->type, false);
515 
516 	case BTF_KIND_STRUCT:
517 	case BTF_KIND_UNION: {
518 		const struct btf_member *m = btf_members(t);
519 		/*
520 		 * struct/union is part of strong link, only if it's embedded
521 		 * (so no ptr in a path) or it's anonymous (so has to be
522 		 * defined inline, even if declared through ptr)
523 		 */
524 		if (through_ptr && t->name_off != 0)
525 			return 0;
526 
527 		tstate->order_state = ORDERING;
528 
529 		vlen = btf_vlen(t);
530 		for (i = 0; i < vlen; i++, m++) {
531 			err = btf_dump_order_type(d, m->type, false);
532 			if (err < 0)
533 				return err;
534 		}
535 
536 		if (t->name_off != 0) {
537 			err = btf_dump_add_emit_queue_id(d, id);
538 			if (err < 0)
539 				return err;
540 		}
541 
542 		tstate->order_state = ORDERED;
543 		return 1;
544 	}
545 	case BTF_KIND_ENUM:
546 	case BTF_KIND_ENUM64:
547 	case BTF_KIND_FWD:
548 		/*
549 		 * non-anonymous or non-referenced enums are top-level
550 		 * declarations and should be emitted. Same logic can be
551 		 * applied to FWDs, it won't hurt anyways.
552 		 */
553 		if (t->name_off != 0 || !tstate->referenced) {
554 			err = btf_dump_add_emit_queue_id(d, id);
555 			if (err)
556 				return err;
557 		}
558 		tstate->order_state = ORDERED;
559 		return 1;
560 
561 	case BTF_KIND_TYPEDEF: {
562 		int is_strong;
563 
564 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
565 		if (is_strong < 0)
566 			return is_strong;
567 
568 		/* typedef is similar to struct/union w.r.t. fwd-decls */
569 		if (through_ptr && !is_strong)
570 			return 0;
571 
572 		/* typedef is always a named definition */
573 		err = btf_dump_add_emit_queue_id(d, id);
574 		if (err)
575 			return err;
576 
577 		d->type_states[id].order_state = ORDERED;
578 		return 1;
579 	}
580 	case BTF_KIND_VOLATILE:
581 	case BTF_KIND_CONST:
582 	case BTF_KIND_RESTRICT:
583 	case BTF_KIND_TYPE_TAG:
584 		return btf_dump_order_type(d, t->type, through_ptr);
585 
586 	case BTF_KIND_FUNC_PROTO: {
587 		const struct btf_param *p = btf_params(t);
588 		bool is_strong;
589 
590 		err = btf_dump_order_type(d, t->type, through_ptr);
591 		if (err < 0)
592 			return err;
593 		is_strong = err > 0;
594 
595 		vlen = btf_vlen(t);
596 		for (i = 0; i < vlen; i++, p++) {
597 			err = btf_dump_order_type(d, p->type, through_ptr);
598 			if (err < 0)
599 				return err;
600 			if (err > 0)
601 				is_strong = true;
602 		}
603 		return is_strong;
604 	}
605 	case BTF_KIND_FUNC:
606 	case BTF_KIND_VAR:
607 	case BTF_KIND_DATASEC:
608 	case BTF_KIND_DECL_TAG:
609 		d->type_states[id].order_state = ORDERED;
610 		return 0;
611 
612 	default:
613 		return -EINVAL;
614 	}
615 }
616 
617 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
618 					  const struct btf_type *t);
619 
620 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
621 				     const struct btf_type *t);
622 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
623 				     const struct btf_type *t, int lvl);
624 
625 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
626 				   const struct btf_type *t);
627 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
628 				   const struct btf_type *t, int lvl);
629 
630 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
631 				  const struct btf_type *t);
632 
633 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
634 				      const struct btf_type *t, int lvl);
635 
636 /* a local view into a shared stack */
637 struct id_stack {
638 	const __u32 *ids;
639 	int cnt;
640 };
641 
642 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
643 				    const char *fname, int lvl);
644 static void btf_dump_emit_type_chain(struct btf_dump *d,
645 				     struct id_stack *decl_stack,
646 				     const char *fname, int lvl);
647 
648 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
649 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
650 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
651 				 const char *orig_name);
652 
653 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
654 {
655 	const struct btf_type *t = btf__type_by_id(d->btf, id);
656 
657 	/* __builtin_va_list is a compiler built-in, which causes compilation
658 	 * errors, when compiling w/ different compiler, then used to compile
659 	 * original code (e.g., GCC to compile kernel, Clang to use generated
660 	 * C header from BTF). As it is built-in, it should be already defined
661 	 * properly internally in compiler.
662 	 */
663 	if (t->name_off == 0)
664 		return false;
665 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
666 }
667 
668 /*
669  * Emit C-syntax definitions of types from chains of BTF types.
670  *
671  * High-level handling of determining necessary forward declarations are handled
672  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
673  * declarations/definitions in C syntax  are handled by a combo of
674  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
675  * corresponding btf_dump_emit_*_{def,fwd}() functions.
676  *
677  * We also keep track of "containing struct/union type ID" to determine when
678  * we reference it from inside and thus can avoid emitting unnecessary forward
679  * declaration.
680  *
681  * This algorithm is designed in such a way, that even if some error occurs
682  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
683  * that doesn't comply to C rules completely), algorithm will try to proceed
684  * and produce as much meaningful output as possible.
685  */
686 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
687 {
688 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
689 	bool top_level_def = cont_id == 0;
690 	const struct btf_type *t;
691 	__u16 kind;
692 
693 	if (tstate->emit_state == EMITTED)
694 		return;
695 
696 	t = btf__type_by_id(d->btf, id);
697 	kind = btf_kind(t);
698 
699 	if (tstate->emit_state == EMITTING) {
700 		if (tstate->fwd_emitted)
701 			return;
702 
703 		switch (kind) {
704 		case BTF_KIND_STRUCT:
705 		case BTF_KIND_UNION:
706 			/*
707 			 * if we are referencing a struct/union that we are
708 			 * part of - then no need for fwd declaration
709 			 */
710 			if (id == cont_id)
711 				return;
712 			if (t->name_off == 0) {
713 				pr_warn("anonymous struct/union loop, id:[%u]\n",
714 					id);
715 				return;
716 			}
717 			btf_dump_emit_struct_fwd(d, id, t);
718 			btf_dump_printf(d, ";\n\n");
719 			tstate->fwd_emitted = 1;
720 			break;
721 		case BTF_KIND_TYPEDEF:
722 			/*
723 			 * for typedef fwd_emitted means typedef definition
724 			 * was emitted, but it can be used only for "weak"
725 			 * references through pointer only, not for embedding
726 			 */
727 			if (!btf_dump_is_blacklisted(d, id)) {
728 				btf_dump_emit_typedef_def(d, id, t, 0);
729 				btf_dump_printf(d, ";\n\n");
730 			}
731 			tstate->fwd_emitted = 1;
732 			break;
733 		default:
734 			break;
735 		}
736 
737 		return;
738 	}
739 
740 	switch (kind) {
741 	case BTF_KIND_INT:
742 		/* Emit type alias definitions if necessary */
743 		btf_dump_emit_missing_aliases(d, id, t);
744 
745 		tstate->emit_state = EMITTED;
746 		break;
747 	case BTF_KIND_ENUM:
748 	case BTF_KIND_ENUM64:
749 		if (top_level_def) {
750 			btf_dump_emit_enum_def(d, id, t, 0);
751 			btf_dump_printf(d, ";\n\n");
752 		}
753 		tstate->emit_state = EMITTED;
754 		break;
755 	case BTF_KIND_PTR:
756 	case BTF_KIND_VOLATILE:
757 	case BTF_KIND_CONST:
758 	case BTF_KIND_RESTRICT:
759 	case BTF_KIND_TYPE_TAG:
760 		btf_dump_emit_type(d, t->type, cont_id);
761 		break;
762 	case BTF_KIND_ARRAY:
763 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
764 		break;
765 	case BTF_KIND_FWD:
766 		btf_dump_emit_fwd_def(d, id, t);
767 		btf_dump_printf(d, ";\n\n");
768 		tstate->emit_state = EMITTED;
769 		break;
770 	case BTF_KIND_TYPEDEF:
771 		tstate->emit_state = EMITTING;
772 		btf_dump_emit_type(d, t->type, id);
773 		/*
774 		 * typedef can server as both definition and forward
775 		 * declaration; at this stage someone depends on
776 		 * typedef as a forward declaration (refers to it
777 		 * through pointer), so unless we already did it,
778 		 * emit typedef as a forward declaration
779 		 */
780 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
781 			btf_dump_emit_typedef_def(d, id, t, 0);
782 			btf_dump_printf(d, ";\n\n");
783 		}
784 		tstate->emit_state = EMITTED;
785 		break;
786 	case BTF_KIND_STRUCT:
787 	case BTF_KIND_UNION:
788 		tstate->emit_state = EMITTING;
789 		/* if it's a top-level struct/union definition or struct/union
790 		 * is anonymous, then in C we'll be emitting all fields and
791 		 * their types (as opposed to just `struct X`), so we need to
792 		 * make sure that all types, referenced from struct/union
793 		 * members have necessary forward-declarations, where
794 		 * applicable
795 		 */
796 		if (top_level_def || t->name_off == 0) {
797 			const struct btf_member *m = btf_members(t);
798 			__u16 vlen = btf_vlen(t);
799 			int i, new_cont_id;
800 
801 			new_cont_id = t->name_off == 0 ? cont_id : id;
802 			for (i = 0; i < vlen; i++, m++)
803 				btf_dump_emit_type(d, m->type, new_cont_id);
804 		} else if (!tstate->fwd_emitted && id != cont_id) {
805 			btf_dump_emit_struct_fwd(d, id, t);
806 			btf_dump_printf(d, ";\n\n");
807 			tstate->fwd_emitted = 1;
808 		}
809 
810 		if (top_level_def) {
811 			btf_dump_emit_struct_def(d, id, t, 0);
812 			btf_dump_printf(d, ";\n\n");
813 			tstate->emit_state = EMITTED;
814 		} else {
815 			tstate->emit_state = NOT_EMITTED;
816 		}
817 		break;
818 	case BTF_KIND_FUNC_PROTO: {
819 		const struct btf_param *p = btf_params(t);
820 		__u16 n = btf_vlen(t);
821 		int i;
822 
823 		btf_dump_emit_type(d, t->type, cont_id);
824 		for (i = 0; i < n; i++, p++)
825 			btf_dump_emit_type(d, p->type, cont_id);
826 
827 		break;
828 	}
829 	default:
830 		break;
831 	}
832 }
833 
834 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
835 				 const struct btf_type *t)
836 {
837 	const struct btf_member *m;
838 	int max_align = 1, align, i, bit_sz;
839 	__u16 vlen;
840 
841 	m = btf_members(t);
842 	vlen = btf_vlen(t);
843 	/* all non-bitfield fields have to be naturally aligned */
844 	for (i = 0; i < vlen; i++, m++) {
845 		align = btf__align_of(btf, m->type);
846 		bit_sz = btf_member_bitfield_size(t, i);
847 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
848 			return true;
849 		max_align = max(align, max_align);
850 	}
851 	/* size of a non-packed struct has to be a multiple of its alignment */
852 	if (t->size % max_align != 0)
853 		return true;
854 	/*
855 	 * if original struct was marked as packed, but its layout is
856 	 * naturally aligned, we'll detect that it's not packed
857 	 */
858 	return false;
859 }
860 
861 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
862 				      int cur_off, int next_off, int next_align,
863 				      bool in_bitfield, int lvl)
864 {
865 	const struct {
866 		const char *name;
867 		int bits;
868 	} pads[] = {
869 		{"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
870 	};
871 	int new_off = 0, pad_bits = 0, bits, i;
872 	const char *pad_type = NULL;
873 
874 	if (cur_off >= next_off)
875 		return; /* no gap */
876 
877 	/* For filling out padding we want to take advantage of
878 	 * natural alignment rules to minimize unnecessary explicit
879 	 * padding. First, we find the largest type (among long, int,
880 	 * short, or char) that can be used to force naturally aligned
881 	 * boundary. Once determined, we'll use such type to fill in
882 	 * the remaining padding gap. In some cases we can rely on
883 	 * compiler filling some gaps, but sometimes we need to force
884 	 * alignment to close natural alignment with markers like
885 	 * `long: 0` (this is always the case for bitfields).  Note
886 	 * that even if struct itself has, let's say 4-byte alignment
887 	 * (i.e., it only uses up to int-aligned types), using `long:
888 	 * X;` explicit padding doesn't actually change struct's
889 	 * overall alignment requirements, but compiler does take into
890 	 * account that type's (long, in this example) natural
891 	 * alignment requirements when adding implicit padding. We use
892 	 * this fact heavily and don't worry about ruining correct
893 	 * struct alignment requirement.
894 	 */
895 	for (i = 0; i < ARRAY_SIZE(pads); i++) {
896 		pad_bits = pads[i].bits;
897 		pad_type = pads[i].name;
898 
899 		new_off = roundup(cur_off, pad_bits);
900 		if (new_off <= next_off)
901 			break;
902 	}
903 
904 	if (new_off > cur_off && new_off <= next_off) {
905 		/* We need explicit `<type>: 0` aligning mark if next
906 		 * field is right on alignment offset and its
907 		 * alignment requirement is less strict than <type>'s
908 		 * alignment (so compiler won't naturally align to the
909 		 * offset we expect), or if subsequent `<type>: X`,
910 		 * will actually completely fit in the remaining hole,
911 		 * making compiler basically ignore `<type>: X`
912 		 * completely.
913 		 */
914 		if (in_bitfield ||
915 		    (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
916 		    (new_off != next_off && next_off - new_off <= new_off - cur_off))
917 			/* but for bitfields we'll emit explicit bit count */
918 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
919 					in_bitfield ? new_off - cur_off : 0);
920 		cur_off = new_off;
921 	}
922 
923 	/* Now we know we start at naturally aligned offset for a chosen
924 	 * padding type (long, int, short, or char), and so the rest is just
925 	 * a straightforward filling of remaining padding gap with full
926 	 * `<type>: sizeof(<type>);` markers, except for the last one, which
927 	 * might need smaller than sizeof(<type>) padding.
928 	 */
929 	while (cur_off != next_off) {
930 		bits = min(next_off - cur_off, pad_bits);
931 		if (bits == pad_bits) {
932 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
933 			cur_off += bits;
934 			continue;
935 		}
936 		/* For the remainder padding that doesn't cover entire
937 		 * pad_type bit length, we pick the smallest necessary type.
938 		 * This is pure aesthetics, we could have just used `long`,
939 		 * but having smallest necessary one communicates better the
940 		 * scale of the padding gap.
941 		 */
942 		for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
943 			pad_type = pads[i].name;
944 			pad_bits = pads[i].bits;
945 			if (pad_bits < bits)
946 				continue;
947 
948 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
949 			cur_off += bits;
950 			break;
951 		}
952 	}
953 }
954 
955 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
956 				     const struct btf_type *t)
957 {
958 	btf_dump_printf(d, "%s%s%s",
959 			btf_is_struct(t) ? "struct" : "union",
960 			t->name_off ? " " : "",
961 			btf_dump_type_name(d, id));
962 }
963 
964 static void btf_dump_emit_struct_def(struct btf_dump *d,
965 				     __u32 id,
966 				     const struct btf_type *t,
967 				     int lvl)
968 {
969 	const struct btf_member *m = btf_members(t);
970 	bool is_struct = btf_is_struct(t);
971 	bool packed, prev_bitfield = false;
972 	int align, i, off = 0;
973 	__u16 vlen = btf_vlen(t);
974 
975 	align = btf__align_of(d->btf, id);
976 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
977 
978 	btf_dump_printf(d, "%s%s%s {",
979 			is_struct ? "struct" : "union",
980 			t->name_off ? " " : "",
981 			btf_dump_type_name(d, id));
982 
983 	for (i = 0; i < vlen; i++, m++) {
984 		const char *fname;
985 		int m_off, m_sz, m_align;
986 		bool in_bitfield;
987 
988 		fname = btf_name_of(d, m->name_off);
989 		m_sz = btf_member_bitfield_size(t, i);
990 		m_off = btf_member_bit_offset(t, i);
991 		m_align = packed ? 1 : btf__align_of(d->btf, m->type);
992 
993 		in_bitfield = prev_bitfield && m_sz != 0;
994 
995 		btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
996 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
997 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
998 
999 		if (m_sz) {
1000 			btf_dump_printf(d, ": %d", m_sz);
1001 			off = m_off + m_sz;
1002 			prev_bitfield = true;
1003 		} else {
1004 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1005 			off = m_off + m_sz * 8;
1006 			prev_bitfield = false;
1007 		}
1008 
1009 		btf_dump_printf(d, ";");
1010 	}
1011 
1012 	/* pad at the end, if necessary */
1013 	if (is_struct)
1014 		btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1015 
1016 	/*
1017 	 * Keep `struct empty {}` on a single line,
1018 	 * only print newline when there are regular or padding fields.
1019 	 */
1020 	if (vlen || t->size) {
1021 		btf_dump_printf(d, "\n");
1022 		btf_dump_printf(d, "%s}", pfx(lvl));
1023 	} else {
1024 		btf_dump_printf(d, "}");
1025 	}
1026 	if (packed)
1027 		btf_dump_printf(d, " __attribute__((packed))");
1028 }
1029 
1030 static const char *missing_base_types[][2] = {
1031 	/*
1032 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1033 	 * SIMD intrinsics. Alias them to standard base types.
1034 	 */
1035 	{ "__Poly8_t",		"unsigned char" },
1036 	{ "__Poly16_t",		"unsigned short" },
1037 	{ "__Poly64_t",		"unsigned long long" },
1038 	{ "__Poly128_t",	"unsigned __int128" },
1039 };
1040 
1041 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1042 					  const struct btf_type *t)
1043 {
1044 	const char *name = btf_dump_type_name(d, id);
1045 	int i;
1046 
1047 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1048 		if (strcmp(name, missing_base_types[i][0]) == 0) {
1049 			btf_dump_printf(d, "typedef %s %s;\n\n",
1050 					missing_base_types[i][1], name);
1051 			break;
1052 		}
1053 	}
1054 }
1055 
1056 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1057 				   const struct btf_type *t)
1058 {
1059 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1060 }
1061 
1062 static void btf_dump_emit_enum32_val(struct btf_dump *d,
1063 				     const struct btf_type *t,
1064 				     int lvl, __u16 vlen)
1065 {
1066 	const struct btf_enum *v = btf_enum(t);
1067 	bool is_signed = btf_kflag(t);
1068 	const char *fmt_str;
1069 	const char *name;
1070 	size_t dup_cnt;
1071 	int i;
1072 
1073 	for (i = 0; i < vlen; i++, v++) {
1074 		name = btf_name_of(d, v->name_off);
1075 		/* enumerators share namespace with typedef idents */
1076 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1077 		if (dup_cnt > 1) {
1078 			fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1079 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1080 		} else {
1081 			fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1082 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1083 		}
1084 	}
1085 }
1086 
1087 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1088 				     const struct btf_type *t,
1089 				     int lvl, __u16 vlen)
1090 {
1091 	const struct btf_enum64 *v = btf_enum64(t);
1092 	bool is_signed = btf_kflag(t);
1093 	const char *fmt_str;
1094 	const char *name;
1095 	size_t dup_cnt;
1096 	__u64 val;
1097 	int i;
1098 
1099 	for (i = 0; i < vlen; i++, v++) {
1100 		name = btf_name_of(d, v->name_off);
1101 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1102 		val = btf_enum64_value(v);
1103 		if (dup_cnt > 1) {
1104 			fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1105 					    : "\n%s%s___%zd = %lluULL,";
1106 			btf_dump_printf(d, fmt_str,
1107 					pfx(lvl + 1), name, dup_cnt,
1108 					(unsigned long long)val);
1109 		} else {
1110 			fmt_str = is_signed ? "\n%s%s = %lldLL,"
1111 					    : "\n%s%s = %lluULL,";
1112 			btf_dump_printf(d, fmt_str,
1113 					pfx(lvl + 1), name,
1114 					(unsigned long long)val);
1115 		}
1116 	}
1117 }
1118 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1119 				   const struct btf_type *t,
1120 				   int lvl)
1121 {
1122 	__u16 vlen = btf_vlen(t);
1123 
1124 	btf_dump_printf(d, "enum%s%s",
1125 			t->name_off ? " " : "",
1126 			btf_dump_type_name(d, id));
1127 
1128 	if (!vlen)
1129 		return;
1130 
1131 	btf_dump_printf(d, " {");
1132 	if (btf_is_enum(t))
1133 		btf_dump_emit_enum32_val(d, t, lvl, vlen);
1134 	else
1135 		btf_dump_emit_enum64_val(d, t, lvl, vlen);
1136 	btf_dump_printf(d, "\n%s}", pfx(lvl));
1137 
1138 	/* special case enums with special sizes */
1139 	if (t->size == 1) {
1140 		/* one-byte enums can be forced with mode(byte) attribute */
1141 		btf_dump_printf(d, " __attribute__((mode(byte)))");
1142 	} else if (t->size == 8 && d->ptr_sz == 8) {
1143 		/* enum can be 8-byte sized if one of the enumerator values
1144 		 * doesn't fit in 32-bit integer, or by adding mode(word)
1145 		 * attribute (but probably only on 64-bit architectures); do
1146 		 * our best here to try to satisfy the contract without adding
1147 		 * unnecessary attributes
1148 		 */
1149 		bool needs_word_mode;
1150 
1151 		if (btf_is_enum(t)) {
1152 			/* enum can't represent 64-bit values, so we need word mode */
1153 			needs_word_mode = true;
1154 		} else {
1155 			/* enum64 needs mode(word) if none of its values has
1156 			 * non-zero upper 32-bits (which means that all values
1157 			 * fit in 32-bit integers and won't cause compiler to
1158 			 * bump enum to be 64-bit naturally
1159 			 */
1160 			int i;
1161 
1162 			needs_word_mode = true;
1163 			for (i = 0; i < vlen; i++) {
1164 				if (btf_enum64(t)[i].val_hi32 != 0) {
1165 					needs_word_mode = false;
1166 					break;
1167 				}
1168 			}
1169 		}
1170 		if (needs_word_mode)
1171 			btf_dump_printf(d, " __attribute__((mode(word)))");
1172 	}
1173 
1174 }
1175 
1176 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1177 				  const struct btf_type *t)
1178 {
1179 	const char *name = btf_dump_type_name(d, id);
1180 
1181 	if (btf_kflag(t))
1182 		btf_dump_printf(d, "union %s", name);
1183 	else
1184 		btf_dump_printf(d, "struct %s", name);
1185 }
1186 
1187 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1188 				     const struct btf_type *t, int lvl)
1189 {
1190 	const char *name = btf_dump_ident_name(d, id);
1191 
1192 	/*
1193 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1194 	 * pointing to VOID. This generates warnings from btf_dump() and
1195 	 * results in uncompilable header file, so we are fixing it up here
1196 	 * with valid typedef into __builtin_va_list.
1197 	 */
1198 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1199 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1200 		return;
1201 	}
1202 
1203 	btf_dump_printf(d, "typedef ");
1204 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1205 }
1206 
1207 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1208 {
1209 	__u32 *new_stack;
1210 	size_t new_cap;
1211 
1212 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1213 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1214 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1215 		if (!new_stack)
1216 			return -ENOMEM;
1217 		d->decl_stack = new_stack;
1218 		d->decl_stack_cap = new_cap;
1219 	}
1220 
1221 	d->decl_stack[d->decl_stack_cnt++] = id;
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Emit type declaration (e.g., field type declaration in a struct or argument
1228  * declaration in function prototype) in correct C syntax.
1229  *
1230  * For most types it's trivial, but there are few quirky type declaration
1231  * cases worth mentioning:
1232  *   - function prototypes (especially nesting of function prototypes);
1233  *   - arrays;
1234  *   - const/volatile/restrict for pointers vs other types.
1235  *
1236  * For a good discussion of *PARSING* C syntax (as a human), see
1237  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1238  * Ch.3 "Unscrambling Declarations in C".
1239  *
1240  * It won't help with BTF to C conversion much, though, as it's an opposite
1241  * problem. So we came up with this algorithm in reverse to van der Linden's
1242  * parsing algorithm. It goes from structured BTF representation of type
1243  * declaration to a valid compilable C syntax.
1244  *
1245  * For instance, consider this C typedef:
1246  *	typedef const int * const * arr[10] arr_t;
1247  * It will be represented in BTF with this chain of BTF types:
1248  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1249  *
1250  * Notice how [const] modifier always goes before type it modifies in BTF type
1251  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1252  * the right of pointers, but to the left of other types. There are also other
1253  * quirks, like function pointers, arrays of them, functions returning other
1254  * functions, etc.
1255  *
1256  * We handle that by pushing all the types to a stack, until we hit "terminal"
1257  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1258  * top of a stack, modifiers are handled differently. Array/function pointers
1259  * have also wildly different syntax and how nesting of them are done. See
1260  * code for authoritative definition.
1261  *
1262  * To avoid allocating new stack for each independent chain of BTF types, we
1263  * share one bigger stack, with each chain working only on its own local view
1264  * of a stack frame. Some care is required to "pop" stack frames after
1265  * processing type declaration chain.
1266  */
1267 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1268 			     const struct btf_dump_emit_type_decl_opts *opts)
1269 {
1270 	const char *fname;
1271 	int lvl, err;
1272 
1273 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1274 		return libbpf_err(-EINVAL);
1275 
1276 	err = btf_dump_resize(d);
1277 	if (err)
1278 		return libbpf_err(err);
1279 
1280 	fname = OPTS_GET(opts, field_name, "");
1281 	lvl = OPTS_GET(opts, indent_level, 0);
1282 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1283 	btf_dump_emit_type_decl(d, id, fname, lvl);
1284 	d->strip_mods = false;
1285 	return 0;
1286 }
1287 
1288 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1289 				    const char *fname, int lvl)
1290 {
1291 	struct id_stack decl_stack;
1292 	const struct btf_type *t;
1293 	int err, stack_start;
1294 
1295 	stack_start = d->decl_stack_cnt;
1296 	for (;;) {
1297 		t = btf__type_by_id(d->btf, id);
1298 		if (d->strip_mods && btf_is_mod(t))
1299 			goto skip_mod;
1300 
1301 		err = btf_dump_push_decl_stack_id(d, id);
1302 		if (err < 0) {
1303 			/*
1304 			 * if we don't have enough memory for entire type decl
1305 			 * chain, restore stack, emit warning, and try to
1306 			 * proceed nevertheless
1307 			 */
1308 			pr_warn("not enough memory for decl stack: %s\n", errstr(err));
1309 			d->decl_stack_cnt = stack_start;
1310 			return;
1311 		}
1312 skip_mod:
1313 		/* VOID */
1314 		if (id == 0)
1315 			break;
1316 
1317 		switch (btf_kind(t)) {
1318 		case BTF_KIND_PTR:
1319 		case BTF_KIND_VOLATILE:
1320 		case BTF_KIND_CONST:
1321 		case BTF_KIND_RESTRICT:
1322 		case BTF_KIND_FUNC_PROTO:
1323 		case BTF_KIND_TYPE_TAG:
1324 			id = t->type;
1325 			break;
1326 		case BTF_KIND_ARRAY:
1327 			id = btf_array(t)->type;
1328 			break;
1329 		case BTF_KIND_INT:
1330 		case BTF_KIND_ENUM:
1331 		case BTF_KIND_ENUM64:
1332 		case BTF_KIND_FWD:
1333 		case BTF_KIND_STRUCT:
1334 		case BTF_KIND_UNION:
1335 		case BTF_KIND_TYPEDEF:
1336 		case BTF_KIND_FLOAT:
1337 			goto done;
1338 		default:
1339 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1340 				btf_kind(t), id);
1341 			goto done;
1342 		}
1343 	}
1344 done:
1345 	/*
1346 	 * We might be inside a chain of declarations (e.g., array of function
1347 	 * pointers returning anonymous (so inlined) structs, having another
1348 	 * array field). Each of those needs its own "stack frame" to handle
1349 	 * emitting of declarations. Those stack frames are non-overlapping
1350 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1351 	 * handle this set of nested stacks, we create a view corresponding to
1352 	 * our own "stack frame" and work with it as an independent stack.
1353 	 * We'll need to clean up after emit_type_chain() returns, though.
1354 	 */
1355 	decl_stack.ids = d->decl_stack + stack_start;
1356 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1357 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1358 	/*
1359 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1360 	 * frame before returning. But it works with a read-only view into
1361 	 * decl_stack, so it doesn't actually pop anything from the
1362 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1363 	 * reset decl_stack state to how it was before us to avoid it growing
1364 	 * all the time.
1365 	 */
1366 	d->decl_stack_cnt = stack_start;
1367 }
1368 
1369 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1370 {
1371 	const struct btf_type *t;
1372 	__u32 id;
1373 
1374 	while (decl_stack->cnt) {
1375 		id = decl_stack->ids[decl_stack->cnt - 1];
1376 		t = btf__type_by_id(d->btf, id);
1377 
1378 		switch (btf_kind(t)) {
1379 		case BTF_KIND_VOLATILE:
1380 			btf_dump_printf(d, "volatile ");
1381 			break;
1382 		case BTF_KIND_CONST:
1383 			btf_dump_printf(d, "const ");
1384 			break;
1385 		case BTF_KIND_RESTRICT:
1386 			btf_dump_printf(d, "restrict ");
1387 			break;
1388 		default:
1389 			return;
1390 		}
1391 		decl_stack->cnt--;
1392 	}
1393 }
1394 
1395 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1396 {
1397 	const struct btf_type *t;
1398 	__u32 id;
1399 
1400 	while (decl_stack->cnt) {
1401 		id = decl_stack->ids[decl_stack->cnt - 1];
1402 		t = btf__type_by_id(d->btf, id);
1403 		if (!btf_is_mod(t))
1404 			return;
1405 		decl_stack->cnt--;
1406 	}
1407 }
1408 
1409 static void btf_dump_emit_name(const struct btf_dump *d,
1410 			       const char *name, bool last_was_ptr)
1411 {
1412 	bool separate = name[0] && !last_was_ptr;
1413 
1414 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1415 }
1416 
1417 static void btf_dump_emit_type_chain(struct btf_dump *d,
1418 				     struct id_stack *decls,
1419 				     const char *fname, int lvl)
1420 {
1421 	/*
1422 	 * last_was_ptr is used to determine if we need to separate pointer
1423 	 * asterisk (*) from previous part of type signature with space, so
1424 	 * that we get `int ***`, instead of `int * * *`. We default to true
1425 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1426 	 * func_proto case. func_proto will start a new emit_type_chain call
1427 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1428 	 * don't want to prepend space for that last pointer.
1429 	 */
1430 	bool last_was_ptr = true;
1431 	const struct btf_type *t;
1432 	const char *name;
1433 	__u16 kind;
1434 	__u32 id;
1435 
1436 	while (decls->cnt) {
1437 		id = decls->ids[--decls->cnt];
1438 		if (id == 0) {
1439 			/* VOID is a special snowflake */
1440 			btf_dump_emit_mods(d, decls);
1441 			btf_dump_printf(d, "void");
1442 			last_was_ptr = false;
1443 			continue;
1444 		}
1445 
1446 		t = btf__type_by_id(d->btf, id);
1447 		kind = btf_kind(t);
1448 
1449 		switch (kind) {
1450 		case BTF_KIND_INT:
1451 		case BTF_KIND_FLOAT:
1452 			btf_dump_emit_mods(d, decls);
1453 			name = btf_name_of(d, t->name_off);
1454 			btf_dump_printf(d, "%s", name);
1455 			break;
1456 		case BTF_KIND_STRUCT:
1457 		case BTF_KIND_UNION:
1458 			btf_dump_emit_mods(d, decls);
1459 			/* inline anonymous struct/union */
1460 			if (t->name_off == 0 && !d->skip_anon_defs)
1461 				btf_dump_emit_struct_def(d, id, t, lvl);
1462 			else
1463 				btf_dump_emit_struct_fwd(d, id, t);
1464 			break;
1465 		case BTF_KIND_ENUM:
1466 		case BTF_KIND_ENUM64:
1467 			btf_dump_emit_mods(d, decls);
1468 			/* inline anonymous enum */
1469 			if (t->name_off == 0 && !d->skip_anon_defs)
1470 				btf_dump_emit_enum_def(d, id, t, lvl);
1471 			else
1472 				btf_dump_emit_enum_fwd(d, id, t);
1473 			break;
1474 		case BTF_KIND_FWD:
1475 			btf_dump_emit_mods(d, decls);
1476 			btf_dump_emit_fwd_def(d, id, t);
1477 			break;
1478 		case BTF_KIND_TYPEDEF:
1479 			btf_dump_emit_mods(d, decls);
1480 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1481 			break;
1482 		case BTF_KIND_PTR:
1483 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1484 			break;
1485 		case BTF_KIND_VOLATILE:
1486 			btf_dump_printf(d, " volatile");
1487 			break;
1488 		case BTF_KIND_CONST:
1489 			btf_dump_printf(d, " const");
1490 			break;
1491 		case BTF_KIND_RESTRICT:
1492 			btf_dump_printf(d, " restrict");
1493 			break;
1494 		case BTF_KIND_TYPE_TAG:
1495 			btf_dump_emit_mods(d, decls);
1496 			name = btf_name_of(d, t->name_off);
1497 			btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1498 			break;
1499 		case BTF_KIND_ARRAY: {
1500 			const struct btf_array *a = btf_array(t);
1501 			const struct btf_type *next_t;
1502 			__u32 next_id;
1503 			bool multidim;
1504 			/*
1505 			 * GCC has a bug
1506 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1507 			 * which causes it to emit extra const/volatile
1508 			 * modifiers for an array, if array's element type has
1509 			 * const/volatile modifiers. Clang doesn't do that.
1510 			 * In general, it doesn't seem very meaningful to have
1511 			 * a const/volatile modifier for array, so we are
1512 			 * going to silently skip them here.
1513 			 */
1514 			btf_dump_drop_mods(d, decls);
1515 
1516 			if (decls->cnt == 0) {
1517 				btf_dump_emit_name(d, fname, last_was_ptr);
1518 				btf_dump_printf(d, "[%u]", a->nelems);
1519 				return;
1520 			}
1521 
1522 			next_id = decls->ids[decls->cnt - 1];
1523 			next_t = btf__type_by_id(d->btf, next_id);
1524 			multidim = btf_is_array(next_t);
1525 			/* we need space if we have named non-pointer */
1526 			if (fname[0] && !last_was_ptr)
1527 				btf_dump_printf(d, " ");
1528 			/* no parentheses for multi-dimensional array */
1529 			if (!multidim)
1530 				btf_dump_printf(d, "(");
1531 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1532 			if (!multidim)
1533 				btf_dump_printf(d, ")");
1534 			btf_dump_printf(d, "[%u]", a->nelems);
1535 			return;
1536 		}
1537 		case BTF_KIND_FUNC_PROTO: {
1538 			const struct btf_param *p = btf_params(t);
1539 			__u16 vlen = btf_vlen(t);
1540 			int i;
1541 
1542 			/*
1543 			 * GCC emits extra volatile qualifier for
1544 			 * __attribute__((noreturn)) function pointers. Clang
1545 			 * doesn't do it. It's a GCC quirk for backwards
1546 			 * compatibility with code written for GCC <2.5. So,
1547 			 * similarly to extra qualifiers for array, just drop
1548 			 * them, instead of handling them.
1549 			 */
1550 			btf_dump_drop_mods(d, decls);
1551 			if (decls->cnt) {
1552 				btf_dump_printf(d, " (");
1553 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1554 				btf_dump_printf(d, ")");
1555 			} else {
1556 				btf_dump_emit_name(d, fname, last_was_ptr);
1557 			}
1558 			btf_dump_printf(d, "(");
1559 			/*
1560 			 * Clang for BPF target generates func_proto with no
1561 			 * args as a func_proto with a single void arg (e.g.,
1562 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1563 			 * going to emit valid empty args (void) syntax for
1564 			 * such case. Similarly and conveniently, valid
1565 			 * no args case can be special-cased here as well.
1566 			 */
1567 			if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1568 				btf_dump_printf(d, "void)");
1569 				return;
1570 			}
1571 
1572 			for (i = 0; i < vlen; i++, p++) {
1573 				if (i > 0)
1574 					btf_dump_printf(d, ", ");
1575 
1576 				/* last arg of type void is vararg */
1577 				if (i == vlen - 1 && p->type == 0) {
1578 					btf_dump_printf(d, "...");
1579 					break;
1580 				}
1581 
1582 				name = btf_name_of(d, p->name_off);
1583 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1584 			}
1585 
1586 			btf_dump_printf(d, ")");
1587 			return;
1588 		}
1589 		default:
1590 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1591 				kind, id);
1592 			return;
1593 		}
1594 
1595 		last_was_ptr = kind == BTF_KIND_PTR;
1596 	}
1597 
1598 	btf_dump_emit_name(d, fname, last_was_ptr);
1599 }
1600 
1601 /* show type name as (type_name) */
1602 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1603 				    bool top_level)
1604 {
1605 	const struct btf_type *t;
1606 
1607 	/* for array members, we don't bother emitting type name for each
1608 	 * member to avoid the redundancy of
1609 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1610 	 */
1611 	if (d->typed_dump->is_array_member)
1612 		return;
1613 
1614 	/* avoid type name specification for variable/section; it will be done
1615 	 * for the associated variable value(s).
1616 	 */
1617 	t = btf__type_by_id(d->btf, id);
1618 	if (btf_is_var(t) || btf_is_datasec(t))
1619 		return;
1620 
1621 	if (top_level)
1622 		btf_dump_printf(d, "(");
1623 
1624 	d->skip_anon_defs = true;
1625 	d->strip_mods = true;
1626 	btf_dump_emit_type_decl(d, id, "", 0);
1627 	d->strip_mods = false;
1628 	d->skip_anon_defs = false;
1629 
1630 	if (top_level)
1631 		btf_dump_printf(d, ")");
1632 }
1633 
1634 /* return number of duplicates (occurrences) of a given name */
1635 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1636 				 const char *orig_name)
1637 {
1638 	char *old_name, *new_name;
1639 	size_t dup_cnt = 0;
1640 	int err;
1641 
1642 	new_name = strdup(orig_name);
1643 	if (!new_name)
1644 		return 1;
1645 
1646 	(void)hashmap__find(name_map, orig_name, &dup_cnt);
1647 	dup_cnt++;
1648 
1649 	err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1650 	if (err)
1651 		free(new_name);
1652 
1653 	free(old_name);
1654 
1655 	return dup_cnt;
1656 }
1657 
1658 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1659 					 struct hashmap *name_map)
1660 {
1661 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1662 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1663 	const char *orig_name = btf_name_of(d, t->name_off);
1664 	const char **cached_name = &d->cached_names[id];
1665 	size_t dup_cnt;
1666 
1667 	if (t->name_off == 0)
1668 		return "";
1669 
1670 	if (s->name_resolved)
1671 		return *cached_name ? *cached_name : orig_name;
1672 
1673 	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1674 		s->name_resolved = 1;
1675 		return orig_name;
1676 	}
1677 
1678 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1679 	if (dup_cnt > 1) {
1680 		const size_t max_len = 256;
1681 		char new_name[max_len];
1682 
1683 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1684 		*cached_name = strdup(new_name);
1685 	}
1686 
1687 	s->name_resolved = 1;
1688 	return *cached_name ? *cached_name : orig_name;
1689 }
1690 
1691 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1692 {
1693 	return btf_dump_resolve_name(d, id, d->type_names);
1694 }
1695 
1696 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1697 {
1698 	return btf_dump_resolve_name(d, id, d->ident_names);
1699 }
1700 
1701 static int btf_dump_dump_type_data(struct btf_dump *d,
1702 				   const char *fname,
1703 				   const struct btf_type *t,
1704 				   __u32 id,
1705 				   const void *data,
1706 				   __u8 bits_offset,
1707 				   __u8 bit_sz);
1708 
1709 static const char *btf_dump_data_newline(struct btf_dump *d)
1710 {
1711 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1712 }
1713 
1714 static const char *btf_dump_data_delim(struct btf_dump *d)
1715 {
1716 	return d->typed_dump->depth == 0 ? "" : ",";
1717 }
1718 
1719 static void btf_dump_data_pfx(struct btf_dump *d)
1720 {
1721 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1722 
1723 	if (d->typed_dump->compact)
1724 		return;
1725 
1726 	for (i = 0; i < lvl; i++)
1727 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1728 }
1729 
1730 /* A macro is used here as btf_type_value[s]() appends format specifiers
1731  * to the format specifier passed in; these do the work of appending
1732  * delimiters etc while the caller simply has to specify the type values
1733  * in the format specifier + value(s).
1734  */
1735 #define btf_dump_type_values(d, fmt, ...)				\
1736 	btf_dump_printf(d, fmt "%s%s",					\
1737 			##__VA_ARGS__,					\
1738 			btf_dump_data_delim(d),				\
1739 			btf_dump_data_newline(d))
1740 
1741 static int btf_dump_unsupported_data(struct btf_dump *d,
1742 				     const struct btf_type *t,
1743 				     __u32 id)
1744 {
1745 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1746 	return -ENOTSUP;
1747 }
1748 
1749 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1750 				       const struct btf_type *t,
1751 				       const void *data,
1752 				       __u8 bits_offset,
1753 				       __u8 bit_sz,
1754 				       __u64 *value)
1755 {
1756 	__u16 left_shift_bits, right_shift_bits;
1757 	const __u8 *bytes = data;
1758 	__u8 nr_copy_bits;
1759 	__u64 num = 0;
1760 	int i;
1761 
1762 	/* Maximum supported bitfield size is 64 bits */
1763 	if (t->size > 8) {
1764 		pr_warn("unexpected bitfield size %d\n", t->size);
1765 		return -EINVAL;
1766 	}
1767 
1768 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
1769 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1770 	 */
1771 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1772 	for (i = t->size - 1; i >= 0; i--)
1773 		num = num * 256 + bytes[i];
1774 	nr_copy_bits = bit_sz + bits_offset;
1775 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1776 	for (i = 0; i < t->size; i++)
1777 		num = num * 256 + bytes[i];
1778 	nr_copy_bits = t->size * 8 - bits_offset;
1779 #else
1780 # error "Unrecognized __BYTE_ORDER__"
1781 #endif
1782 	left_shift_bits = 64 - nr_copy_bits;
1783 	right_shift_bits = 64 - bit_sz;
1784 
1785 	*value = (num << left_shift_bits) >> right_shift_bits;
1786 
1787 	return 0;
1788 }
1789 
1790 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1791 					const struct btf_type *t,
1792 					const void *data,
1793 					__u8 bits_offset,
1794 					__u8 bit_sz)
1795 {
1796 	__u64 check_num;
1797 	int err;
1798 
1799 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1800 	if (err)
1801 		return err;
1802 	if (check_num == 0)
1803 		return -ENODATA;
1804 	return 0;
1805 }
1806 
1807 static int btf_dump_bitfield_data(struct btf_dump *d,
1808 				  const struct btf_type *t,
1809 				  const void *data,
1810 				  __u8 bits_offset,
1811 				  __u8 bit_sz)
1812 {
1813 	__u64 print_num;
1814 	int err;
1815 
1816 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1817 	if (err)
1818 		return err;
1819 
1820 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1821 
1822 	return 0;
1823 }
1824 
1825 /* ints, floats and ptrs */
1826 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1827 					 const struct btf_type *t,
1828 					 __u32 id,
1829 					 const void *data)
1830 {
1831 	static __u8 bytecmp[16] = {};
1832 	int nr_bytes;
1833 
1834 	/* For pointer types, pointer size is not defined on a per-type basis.
1835 	 * On dump creation however, we store the pointer size.
1836 	 */
1837 	if (btf_kind(t) == BTF_KIND_PTR)
1838 		nr_bytes = d->ptr_sz;
1839 	else
1840 		nr_bytes = t->size;
1841 
1842 	if (nr_bytes < 1 || nr_bytes > 16) {
1843 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1844 		return -EINVAL;
1845 	}
1846 
1847 	if (memcmp(data, bytecmp, nr_bytes) == 0)
1848 		return -ENODATA;
1849 	return 0;
1850 }
1851 
1852 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1853 			   const void *data)
1854 {
1855 	int alignment = btf__align_of(btf, type_id);
1856 
1857 	if (alignment == 0)
1858 		return false;
1859 
1860 	return ((uintptr_t)data) % alignment == 0;
1861 }
1862 
1863 static int btf_dump_int_data(struct btf_dump *d,
1864 			     const struct btf_type *t,
1865 			     __u32 type_id,
1866 			     const void *data,
1867 			     __u8 bits_offset)
1868 {
1869 	__u8 encoding = btf_int_encoding(t);
1870 	bool sign = encoding & BTF_INT_SIGNED;
1871 	char buf[16] __attribute__((aligned(16)));
1872 	int sz = t->size;
1873 
1874 	if (sz == 0 || sz > sizeof(buf)) {
1875 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1876 		return -EINVAL;
1877 	}
1878 
1879 	/* handle packed int data - accesses of integers not aligned on
1880 	 * int boundaries can cause problems on some platforms.
1881 	 */
1882 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1883 		memcpy(buf, data, sz);
1884 		data = buf;
1885 	}
1886 
1887 	switch (sz) {
1888 	case 16: {
1889 		const __u64 *ints = data;
1890 		__u64 lsi, msi;
1891 
1892 		/* avoid use of __int128 as some 32-bit platforms do not
1893 		 * support it.
1894 		 */
1895 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1896 		lsi = ints[0];
1897 		msi = ints[1];
1898 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1899 		lsi = ints[1];
1900 		msi = ints[0];
1901 #else
1902 # error "Unrecognized __BYTE_ORDER__"
1903 #endif
1904 		if (msi == 0)
1905 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1906 		else
1907 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1908 					     (unsigned long long)lsi);
1909 		break;
1910 	}
1911 	case 8:
1912 		if (sign)
1913 			btf_dump_type_values(d, "%lld", *(long long *)data);
1914 		else
1915 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1916 		break;
1917 	case 4:
1918 		if (sign)
1919 			btf_dump_type_values(d, "%d", *(__s32 *)data);
1920 		else
1921 			btf_dump_type_values(d, "%u", *(__u32 *)data);
1922 		break;
1923 	case 2:
1924 		if (sign)
1925 			btf_dump_type_values(d, "%d", *(__s16 *)data);
1926 		else
1927 			btf_dump_type_values(d, "%u", *(__u16 *)data);
1928 		break;
1929 	case 1:
1930 		if (d->typed_dump->is_array_char) {
1931 			/* check for null terminator */
1932 			if (d->typed_dump->is_array_terminated)
1933 				break;
1934 			if (*(char *)data == '\0') {
1935 				btf_dump_type_values(d, "'\\0'");
1936 				d->typed_dump->is_array_terminated = true;
1937 				break;
1938 			}
1939 			if (isprint(*(char *)data)) {
1940 				btf_dump_type_values(d, "'%c'", *(char *)data);
1941 				break;
1942 			}
1943 		}
1944 		if (sign)
1945 			btf_dump_type_values(d, "%d", *(__s8 *)data);
1946 		else
1947 			btf_dump_type_values(d, "%u", *(__u8 *)data);
1948 		break;
1949 	default:
1950 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1951 		return -EINVAL;
1952 	}
1953 	return 0;
1954 }
1955 
1956 union float_data {
1957 	long double ld;
1958 	double d;
1959 	float f;
1960 };
1961 
1962 static int btf_dump_float_data(struct btf_dump *d,
1963 			       const struct btf_type *t,
1964 			       __u32 type_id,
1965 			       const void *data)
1966 {
1967 	const union float_data *flp = data;
1968 	union float_data fl;
1969 	int sz = t->size;
1970 
1971 	/* handle unaligned data; copy to local union */
1972 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1973 		memcpy(&fl, data, sz);
1974 		flp = &fl;
1975 	}
1976 
1977 	switch (sz) {
1978 	case 16:
1979 		btf_dump_type_values(d, "%Lf", flp->ld);
1980 		break;
1981 	case 8:
1982 		btf_dump_type_values(d, "%lf", flp->d);
1983 		break;
1984 	case 4:
1985 		btf_dump_type_values(d, "%f", flp->f);
1986 		break;
1987 	default:
1988 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1989 		return -EINVAL;
1990 	}
1991 	return 0;
1992 }
1993 
1994 static int btf_dump_var_data(struct btf_dump *d,
1995 			     const struct btf_type *v,
1996 			     __u32 id,
1997 			     const void *data)
1998 {
1999 	enum btf_func_linkage linkage = btf_var(v)->linkage;
2000 	const struct btf_type *t;
2001 	const char *l;
2002 	__u32 type_id;
2003 
2004 	switch (linkage) {
2005 	case BTF_FUNC_STATIC:
2006 		l = "static ";
2007 		break;
2008 	case BTF_FUNC_EXTERN:
2009 		l = "extern ";
2010 		break;
2011 	case BTF_FUNC_GLOBAL:
2012 	default:
2013 		l = "";
2014 		break;
2015 	}
2016 
2017 	/* format of output here is [linkage] [type] [varname] = (type)value,
2018 	 * for example "static int cpu_profile_flip = (int)1"
2019 	 */
2020 	btf_dump_printf(d, "%s", l);
2021 	type_id = v->type;
2022 	t = btf__type_by_id(d->btf, type_id);
2023 	btf_dump_emit_type_cast(d, type_id, false);
2024 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2025 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2026 }
2027 
2028 static int btf_dump_array_data(struct btf_dump *d,
2029 			       const struct btf_type *t,
2030 			       __u32 id,
2031 			       const void *data)
2032 {
2033 	const struct btf_array *array = btf_array(t);
2034 	const struct btf_type *elem_type;
2035 	__u32 i, elem_type_id;
2036 	__s64 elem_size;
2037 	bool is_array_member;
2038 	bool is_array_terminated;
2039 
2040 	elem_type_id = array->type;
2041 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2042 	elem_size = btf__resolve_size(d->btf, elem_type_id);
2043 	if (elem_size <= 0) {
2044 		pr_warn("unexpected elem size %zd for array type [%u]\n",
2045 			(ssize_t)elem_size, id);
2046 		return -EINVAL;
2047 	}
2048 
2049 	if (btf_is_int(elem_type)) {
2050 		/*
2051 		 * BTF_INT_CHAR encoding never seems to be set for
2052 		 * char arrays, so if size is 1 and element is
2053 		 * printable as a char, we'll do that.
2054 		 */
2055 		if (elem_size == 1)
2056 			d->typed_dump->is_array_char = true;
2057 	}
2058 
2059 	/* note that we increment depth before calling btf_dump_print() below;
2060 	 * this is intentional.  btf_dump_data_newline() will not print a
2061 	 * newline for depth 0 (since this leaves us with trailing newlines
2062 	 * at the end of typed display), so depth is incremented first.
2063 	 * For similar reasons, we decrement depth before showing the closing
2064 	 * parenthesis.
2065 	 */
2066 	d->typed_dump->depth++;
2067 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2068 
2069 	/* may be a multidimensional array, so store current "is array member"
2070 	 * status so we can restore it correctly later.
2071 	 */
2072 	is_array_member = d->typed_dump->is_array_member;
2073 	d->typed_dump->is_array_member = true;
2074 	is_array_terminated = d->typed_dump->is_array_terminated;
2075 	d->typed_dump->is_array_terminated = false;
2076 	for (i = 0; i < array->nelems; i++, data += elem_size) {
2077 		if (d->typed_dump->is_array_terminated)
2078 			break;
2079 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2080 	}
2081 	d->typed_dump->is_array_member = is_array_member;
2082 	d->typed_dump->is_array_terminated = is_array_terminated;
2083 	d->typed_dump->depth--;
2084 	btf_dump_data_pfx(d);
2085 	btf_dump_type_values(d, "]");
2086 
2087 	return 0;
2088 }
2089 
2090 static int btf_dump_struct_data(struct btf_dump *d,
2091 				const struct btf_type *t,
2092 				__u32 id,
2093 				const void *data)
2094 {
2095 	const struct btf_member *m = btf_members(t);
2096 	__u16 n = btf_vlen(t);
2097 	int i, err = 0;
2098 
2099 	/* note that we increment depth before calling btf_dump_print() below;
2100 	 * this is intentional.  btf_dump_data_newline() will not print a
2101 	 * newline for depth 0 (since this leaves us with trailing newlines
2102 	 * at the end of typed display), so depth is incremented first.
2103 	 * For similar reasons, we decrement depth before showing the closing
2104 	 * parenthesis.
2105 	 */
2106 	d->typed_dump->depth++;
2107 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2108 
2109 	for (i = 0; i < n; i++, m++) {
2110 		const struct btf_type *mtype;
2111 		const char *mname;
2112 		__u32 moffset;
2113 		__u8 bit_sz;
2114 
2115 		mtype = btf__type_by_id(d->btf, m->type);
2116 		mname = btf_name_of(d, m->name_off);
2117 		moffset = btf_member_bit_offset(t, i);
2118 
2119 		bit_sz = btf_member_bitfield_size(t, i);
2120 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2121 					      moffset % 8, bit_sz);
2122 		if (err < 0)
2123 			return err;
2124 	}
2125 	d->typed_dump->depth--;
2126 	btf_dump_data_pfx(d);
2127 	btf_dump_type_values(d, "}");
2128 	return err;
2129 }
2130 
2131 union ptr_data {
2132 	unsigned int p;
2133 	unsigned long long lp;
2134 };
2135 
2136 static int btf_dump_ptr_data(struct btf_dump *d,
2137 			      const struct btf_type *t,
2138 			      __u32 id,
2139 			      const void *data)
2140 {
2141 	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2142 		btf_dump_type_values(d, "%p", *(void **)data);
2143 	} else {
2144 		union ptr_data pt;
2145 
2146 		memcpy(&pt, data, d->ptr_sz);
2147 		if (d->ptr_sz == 4)
2148 			btf_dump_type_values(d, "0x%x", pt.p);
2149 		else
2150 			btf_dump_type_values(d, "0x%llx", pt.lp);
2151 	}
2152 	return 0;
2153 }
2154 
2155 static int btf_dump_get_enum_value(struct btf_dump *d,
2156 				   const struct btf_type *t,
2157 				   const void *data,
2158 				   __u32 id,
2159 				   __s64 *value)
2160 {
2161 	bool is_signed = btf_kflag(t);
2162 
2163 	if (!ptr_is_aligned(d->btf, id, data)) {
2164 		__u64 val;
2165 		int err;
2166 
2167 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2168 		if (err)
2169 			return err;
2170 		*value = (__s64)val;
2171 		return 0;
2172 	}
2173 
2174 	switch (t->size) {
2175 	case 8:
2176 		*value = *(__s64 *)data;
2177 		return 0;
2178 	case 4:
2179 		*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2180 		return 0;
2181 	case 2:
2182 		*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2183 		return 0;
2184 	case 1:
2185 		*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2186 		return 0;
2187 	default:
2188 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2189 		return -EINVAL;
2190 	}
2191 }
2192 
2193 static int btf_dump_enum_data(struct btf_dump *d,
2194 			      const struct btf_type *t,
2195 			      __u32 id,
2196 			      const void *data)
2197 {
2198 	bool is_signed;
2199 	__s64 value;
2200 	int i, err;
2201 
2202 	err = btf_dump_get_enum_value(d, t, data, id, &value);
2203 	if (err)
2204 		return err;
2205 
2206 	is_signed = btf_kflag(t);
2207 	if (btf_is_enum(t)) {
2208 		const struct btf_enum *e;
2209 
2210 		for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2211 			if (value != e->val)
2212 				continue;
2213 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2214 			return 0;
2215 		}
2216 
2217 		btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2218 	} else {
2219 		const struct btf_enum64 *e;
2220 
2221 		for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2222 			if (value != btf_enum64_value(e))
2223 				continue;
2224 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2225 			return 0;
2226 		}
2227 
2228 		btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2229 				     (unsigned long long)value);
2230 	}
2231 	return 0;
2232 }
2233 
2234 static int btf_dump_datasec_data(struct btf_dump *d,
2235 				 const struct btf_type *t,
2236 				 __u32 id,
2237 				 const void *data)
2238 {
2239 	const struct btf_var_secinfo *vsi;
2240 	const struct btf_type *var;
2241 	__u32 i;
2242 	int err;
2243 
2244 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2245 
2246 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2247 		var = btf__type_by_id(d->btf, vsi->type);
2248 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2249 		if (err < 0)
2250 			return err;
2251 		btf_dump_printf(d, ";");
2252 	}
2253 	return 0;
2254 }
2255 
2256 /* return size of type, or if base type overflows, return -E2BIG. */
2257 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2258 					     const struct btf_type *t,
2259 					     __u32 id,
2260 					     const void *data,
2261 					     __u8 bits_offset,
2262 					     __u8 bit_sz)
2263 {
2264 	__s64 size;
2265 
2266 	if (bit_sz) {
2267 		/* bits_offset is at most 7. bit_sz is at most 128. */
2268 		__u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2269 
2270 		/* When bit_sz is non zero, it is called from
2271 		 * btf_dump_struct_data() where it only cares about
2272 		 * negative error value.
2273 		 * Return nr_bytes in success case to make it
2274 		 * consistent as the regular integer case below.
2275 		 */
2276 		return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2277 	}
2278 
2279 	size = btf__resolve_size(d->btf, id);
2280 
2281 	if (size < 0 || size >= INT_MAX) {
2282 		pr_warn("unexpected size [%zu] for id [%u]\n",
2283 			(size_t)size, id);
2284 		return -EINVAL;
2285 	}
2286 
2287 	/* Only do overflow checking for base types; we do not want to
2288 	 * avoid showing part of a struct, union or array, even if we
2289 	 * do not have enough data to show the full object.  By
2290 	 * restricting overflow checking to base types we can ensure
2291 	 * that partial display succeeds, while avoiding overflowing
2292 	 * and using bogus data for display.
2293 	 */
2294 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2295 	if (!t) {
2296 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2297 			id);
2298 		return -EINVAL;
2299 	}
2300 
2301 	switch (btf_kind(t)) {
2302 	case BTF_KIND_INT:
2303 	case BTF_KIND_FLOAT:
2304 	case BTF_KIND_PTR:
2305 	case BTF_KIND_ENUM:
2306 	case BTF_KIND_ENUM64:
2307 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2308 			return -E2BIG;
2309 		break;
2310 	default:
2311 		break;
2312 	}
2313 	return (int)size;
2314 }
2315 
2316 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2317 					 const struct btf_type *t,
2318 					 __u32 id,
2319 					 const void *data,
2320 					 __u8 bits_offset,
2321 					 __u8 bit_sz)
2322 {
2323 	__s64 value;
2324 	int i, err;
2325 
2326 	/* toplevel exceptions; we show zero values if
2327 	 * - we ask for them (emit_zeros)
2328 	 * - if we are at top-level so we see "struct empty { }"
2329 	 * - or if we are an array member and the array is non-empty and
2330 	 *   not a char array; we don't want to be in a situation where we
2331 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2332 	 *   If the array contains zeroes only, or is a char array starting
2333 	 *   with a '\0', the array-level check_zero() will prevent showing it;
2334 	 *   we are concerned with determining zero value at the array member
2335 	 *   level here.
2336 	 */
2337 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2338 	    (d->typed_dump->is_array_member &&
2339 	     !d->typed_dump->is_array_char))
2340 		return 0;
2341 
2342 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2343 
2344 	switch (btf_kind(t)) {
2345 	case BTF_KIND_INT:
2346 		if (bit_sz)
2347 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2348 		return btf_dump_base_type_check_zero(d, t, id, data);
2349 	case BTF_KIND_FLOAT:
2350 	case BTF_KIND_PTR:
2351 		return btf_dump_base_type_check_zero(d, t, id, data);
2352 	case BTF_KIND_ARRAY: {
2353 		const struct btf_array *array = btf_array(t);
2354 		const struct btf_type *elem_type;
2355 		__u32 elem_type_id, elem_size;
2356 		bool ischar;
2357 
2358 		elem_type_id = array->type;
2359 		elem_size = btf__resolve_size(d->btf, elem_type_id);
2360 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2361 
2362 		ischar = btf_is_int(elem_type) && elem_size == 1;
2363 
2364 		/* check all elements; if _any_ element is nonzero, all
2365 		 * of array is displayed.  We make an exception however
2366 		 * for char arrays where the first element is 0; these
2367 		 * are considered zeroed also, even if later elements are
2368 		 * non-zero because the string is terminated.
2369 		 */
2370 		for (i = 0; i < array->nelems; i++) {
2371 			if (i == 0 && ischar && *(char *)data == 0)
2372 				return -ENODATA;
2373 			err = btf_dump_type_data_check_zero(d, elem_type,
2374 							    elem_type_id,
2375 							    data +
2376 							    (i * elem_size),
2377 							    bits_offset, 0);
2378 			if (err != -ENODATA)
2379 				return err;
2380 		}
2381 		return -ENODATA;
2382 	}
2383 	case BTF_KIND_STRUCT:
2384 	case BTF_KIND_UNION: {
2385 		const struct btf_member *m = btf_members(t);
2386 		__u16 n = btf_vlen(t);
2387 
2388 		/* if any struct/union member is non-zero, the struct/union
2389 		 * is considered non-zero and dumped.
2390 		 */
2391 		for (i = 0; i < n; i++, m++) {
2392 			const struct btf_type *mtype;
2393 			__u32 moffset;
2394 
2395 			mtype = btf__type_by_id(d->btf, m->type);
2396 			moffset = btf_member_bit_offset(t, i);
2397 
2398 			/* btf_int_bits() does not store member bitfield size;
2399 			 * bitfield size needs to be stored here so int display
2400 			 * of member can retrieve it.
2401 			 */
2402 			bit_sz = btf_member_bitfield_size(t, i);
2403 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2404 							    moffset % 8, bit_sz);
2405 			if (err != ENODATA)
2406 				return err;
2407 		}
2408 		return -ENODATA;
2409 	}
2410 	case BTF_KIND_ENUM:
2411 	case BTF_KIND_ENUM64:
2412 		err = btf_dump_get_enum_value(d, t, data, id, &value);
2413 		if (err)
2414 			return err;
2415 		if (value == 0)
2416 			return -ENODATA;
2417 		return 0;
2418 	default:
2419 		return 0;
2420 	}
2421 }
2422 
2423 /* returns size of data dumped, or error. */
2424 static int btf_dump_dump_type_data(struct btf_dump *d,
2425 				   const char *fname,
2426 				   const struct btf_type *t,
2427 				   __u32 id,
2428 				   const void *data,
2429 				   __u8 bits_offset,
2430 				   __u8 bit_sz)
2431 {
2432 	int size, err = 0;
2433 
2434 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2435 	if (size < 0)
2436 		return size;
2437 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2438 	if (err) {
2439 		/* zeroed data is expected and not an error, so simply skip
2440 		 * dumping such data.  Record other errors however.
2441 		 */
2442 		if (err == -ENODATA)
2443 			return size;
2444 		return err;
2445 	}
2446 	btf_dump_data_pfx(d);
2447 
2448 	if (!d->typed_dump->skip_names) {
2449 		if (fname && strlen(fname) > 0)
2450 			btf_dump_printf(d, ".%s = ", fname);
2451 		btf_dump_emit_type_cast(d, id, true);
2452 	}
2453 
2454 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2455 
2456 	switch (btf_kind(t)) {
2457 	case BTF_KIND_UNKN:
2458 	case BTF_KIND_FWD:
2459 	case BTF_KIND_FUNC:
2460 	case BTF_KIND_FUNC_PROTO:
2461 	case BTF_KIND_DECL_TAG:
2462 		err = btf_dump_unsupported_data(d, t, id);
2463 		break;
2464 	case BTF_KIND_INT:
2465 		if (bit_sz)
2466 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2467 		else
2468 			err = btf_dump_int_data(d, t, id, data, bits_offset);
2469 		break;
2470 	case BTF_KIND_FLOAT:
2471 		err = btf_dump_float_data(d, t, id, data);
2472 		break;
2473 	case BTF_KIND_PTR:
2474 		err = btf_dump_ptr_data(d, t, id, data);
2475 		break;
2476 	case BTF_KIND_ARRAY:
2477 		err = btf_dump_array_data(d, t, id, data);
2478 		break;
2479 	case BTF_KIND_STRUCT:
2480 	case BTF_KIND_UNION:
2481 		err = btf_dump_struct_data(d, t, id, data);
2482 		break;
2483 	case BTF_KIND_ENUM:
2484 	case BTF_KIND_ENUM64:
2485 		/* handle bitfield and int enum values */
2486 		if (bit_sz) {
2487 			__u64 print_num;
2488 			__s64 enum_val;
2489 
2490 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2491 							  &print_num);
2492 			if (err)
2493 				break;
2494 			enum_val = (__s64)print_num;
2495 			err = btf_dump_enum_data(d, t, id, &enum_val);
2496 		} else
2497 			err = btf_dump_enum_data(d, t, id, data);
2498 		break;
2499 	case BTF_KIND_VAR:
2500 		err = btf_dump_var_data(d, t, id, data);
2501 		break;
2502 	case BTF_KIND_DATASEC:
2503 		err = btf_dump_datasec_data(d, t, id, data);
2504 		break;
2505 	default:
2506 		pr_warn("unexpected kind [%u] for id [%u]\n",
2507 			BTF_INFO_KIND(t->info), id);
2508 		return -EINVAL;
2509 	}
2510 	if (err < 0)
2511 		return err;
2512 	return size;
2513 }
2514 
2515 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2516 			     const void *data, size_t data_sz,
2517 			     const struct btf_dump_type_data_opts *opts)
2518 {
2519 	struct btf_dump_data typed_dump = {};
2520 	const struct btf_type *t;
2521 	int ret;
2522 
2523 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2524 		return libbpf_err(-EINVAL);
2525 
2526 	t = btf__type_by_id(d->btf, id);
2527 	if (!t)
2528 		return libbpf_err(-ENOENT);
2529 
2530 	d->typed_dump = &typed_dump;
2531 	d->typed_dump->data_end = data + data_sz;
2532 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2533 
2534 	/* default indent string is a tab */
2535 	if (!OPTS_GET(opts, indent_str, NULL))
2536 		d->typed_dump->indent_str[0] = '\t';
2537 	else
2538 		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2539 			       sizeof(d->typed_dump->indent_str));
2540 
2541 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
2542 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2543 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2544 
2545 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2546 
2547 	d->typed_dump = NULL;
2548 
2549 	return libbpf_err(ret);
2550 }
2551