1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <limits.h> 17 #include <linux/err.h> 18 #include <linux/btf.h> 19 #include <linux/kernel.h> 20 #include "btf.h" 21 #include "hashmap.h" 22 #include "libbpf.h" 23 #include "libbpf_internal.h" 24 #include "str_error.h" 25 26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 28 29 static const char *pfx(int lvl) 30 { 31 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 32 } 33 34 enum btf_dump_type_order_state { 35 NOT_ORDERED, 36 ORDERING, 37 ORDERED, 38 }; 39 40 enum btf_dump_type_emit_state { 41 NOT_EMITTED, 42 EMITTING, 43 EMITTED, 44 }; 45 46 /* per-type auxiliary state */ 47 struct btf_dump_type_aux_state { 48 /* topological sorting state */ 49 enum btf_dump_type_order_state order_state: 2; 50 /* emitting state used to determine the need for forward declaration */ 51 enum btf_dump_type_emit_state emit_state: 2; 52 /* whether forward declaration was already emitted */ 53 __u8 fwd_emitted: 1; 54 /* whether unique non-duplicate name was already assigned */ 55 __u8 name_resolved: 1; 56 /* whether type is referenced from any other type */ 57 __u8 referenced: 1; 58 }; 59 60 /* indent string length; one indent string is added for each indent level */ 61 #define BTF_DATA_INDENT_STR_LEN 32 62 63 /* 64 * Common internal data for BTF type data dump operations. 65 */ 66 struct btf_dump_data { 67 const void *data_end; /* end of valid data to show */ 68 bool compact; 69 bool skip_names; 70 bool emit_zeroes; 71 bool emit_strings; 72 __u8 indent_lvl; /* base indent level */ 73 char indent_str[BTF_DATA_INDENT_STR_LEN]; 74 /* below are used during iteration */ 75 int depth; 76 bool is_array_member; 77 bool is_array_terminated; 78 bool is_array_char; 79 }; 80 81 struct btf_dump { 82 const struct btf *btf; 83 btf_dump_printf_fn_t printf_fn; 84 void *cb_ctx; 85 int ptr_sz; 86 bool strip_mods; 87 bool skip_anon_defs; 88 int last_id; 89 90 /* per-type auxiliary state */ 91 struct btf_dump_type_aux_state *type_states; 92 size_t type_states_cap; 93 /* per-type optional cached unique name, must be freed, if present */ 94 const char **cached_names; 95 size_t cached_names_cap; 96 97 /* topo-sorted list of dependent type definitions */ 98 __u32 *emit_queue; 99 int emit_queue_cap; 100 int emit_queue_cnt; 101 102 /* 103 * stack of type declarations (e.g., chain of modifiers, arrays, 104 * funcs, etc) 105 */ 106 __u32 *decl_stack; 107 int decl_stack_cap; 108 int decl_stack_cnt; 109 110 /* maps struct/union/enum name to a number of name occurrences */ 111 struct hashmap *type_names; 112 /* 113 * maps typedef identifiers and enum value names to a number of such 114 * name occurrences 115 */ 116 struct hashmap *ident_names; 117 /* 118 * data for typed display; allocated if needed. 119 */ 120 struct btf_dump_data *typed_dump; 121 }; 122 123 static size_t str_hash_fn(long key, void *ctx) 124 { 125 return str_hash((void *)key); 126 } 127 128 static bool str_equal_fn(long a, long b, void *ctx) 129 { 130 return strcmp((void *)a, (void *)b) == 0; 131 } 132 133 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 134 { 135 return btf__name_by_offset(d->btf, name_off); 136 } 137 138 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 139 { 140 va_list args; 141 142 va_start(args, fmt); 143 d->printf_fn(d->cb_ctx, fmt, args); 144 va_end(args); 145 } 146 147 static int btf_dump_mark_referenced(struct btf_dump *d); 148 static int btf_dump_resize(struct btf_dump *d); 149 150 struct btf_dump *btf_dump__new(const struct btf *btf, 151 btf_dump_printf_fn_t printf_fn, 152 void *ctx, 153 const struct btf_dump_opts *opts) 154 { 155 struct btf_dump *d; 156 int err; 157 158 if (!OPTS_VALID(opts, btf_dump_opts)) 159 return libbpf_err_ptr(-EINVAL); 160 161 if (!printf_fn) 162 return libbpf_err_ptr(-EINVAL); 163 164 d = calloc(1, sizeof(struct btf_dump)); 165 if (!d) 166 return libbpf_err_ptr(-ENOMEM); 167 168 d->btf = btf; 169 d->printf_fn = printf_fn; 170 d->cb_ctx = ctx; 171 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 172 173 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 174 if (IS_ERR(d->type_names)) { 175 err = PTR_ERR(d->type_names); 176 d->type_names = NULL; 177 goto err; 178 } 179 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 180 if (IS_ERR(d->ident_names)) { 181 err = PTR_ERR(d->ident_names); 182 d->ident_names = NULL; 183 goto err; 184 } 185 186 err = btf_dump_resize(d); 187 if (err) 188 goto err; 189 190 return d; 191 err: 192 btf_dump__free(d); 193 return libbpf_err_ptr(err); 194 } 195 196 static int btf_dump_resize(struct btf_dump *d) 197 { 198 int err, last_id = btf__type_cnt(d->btf) - 1; 199 200 if (last_id <= d->last_id) 201 return 0; 202 203 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 204 sizeof(*d->type_states), last_id + 1)) 205 return -ENOMEM; 206 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 207 sizeof(*d->cached_names), last_id + 1)) 208 return -ENOMEM; 209 210 if (d->last_id == 0) { 211 /* VOID is special */ 212 d->type_states[0].order_state = ORDERED; 213 d->type_states[0].emit_state = EMITTED; 214 } 215 216 /* eagerly determine referenced types for anon enums */ 217 err = btf_dump_mark_referenced(d); 218 if (err) 219 return err; 220 221 d->last_id = last_id; 222 return 0; 223 } 224 225 static void btf_dump_free_names(struct hashmap *map) 226 { 227 size_t bkt; 228 struct hashmap_entry *cur; 229 230 hashmap__for_each_entry(map, cur, bkt) 231 free((void *)cur->pkey); 232 233 hashmap__free(map); 234 } 235 236 void btf_dump__free(struct btf_dump *d) 237 { 238 int i; 239 240 if (IS_ERR_OR_NULL(d)) 241 return; 242 243 free(d->type_states); 244 if (d->cached_names) { 245 /* any set cached name is owned by us and should be freed */ 246 for (i = 0; i <= d->last_id; i++) { 247 if (d->cached_names[i]) 248 free((void *)d->cached_names[i]); 249 } 250 } 251 free(d->cached_names); 252 free(d->emit_queue); 253 free(d->decl_stack); 254 btf_dump_free_names(d->type_names); 255 btf_dump_free_names(d->ident_names); 256 257 free(d); 258 } 259 260 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 261 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 262 263 /* 264 * Dump BTF type in a compilable C syntax, including all the necessary 265 * dependent types, necessary for compilation. If some of the dependent types 266 * were already emitted as part of previous btf_dump__dump_type() invocation 267 * for another type, they won't be emitted again. This API allows callers to 268 * filter out BTF types according to user-defined criterias and emitted only 269 * minimal subset of types, necessary to compile everything. Full struct/union 270 * definitions will still be emitted, even if the only usage is through 271 * pointer and could be satisfied with just a forward declaration. 272 * 273 * Dumping is done in two high-level passes: 274 * 1. Topologically sort type definitions to satisfy C rules of compilation. 275 * 2. Emit type definitions in C syntax. 276 * 277 * Returns 0 on success; <0, otherwise. 278 */ 279 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 280 { 281 int err, i; 282 283 if (id >= btf__type_cnt(d->btf)) 284 return libbpf_err(-EINVAL); 285 286 err = btf_dump_resize(d); 287 if (err) 288 return libbpf_err(err); 289 290 d->emit_queue_cnt = 0; 291 err = btf_dump_order_type(d, id, false); 292 if (err < 0) 293 return libbpf_err(err); 294 295 for (i = 0; i < d->emit_queue_cnt; i++) 296 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 297 298 return 0; 299 } 300 301 /* 302 * Mark all types that are referenced from any other type. This is used to 303 * determine top-level anonymous enums that need to be emitted as an 304 * independent type declarations. 305 * Anonymous enums come in two flavors: either embedded in a struct's field 306 * definition, in which case they have to be declared inline as part of field 307 * type declaration; or as a top-level anonymous enum, typically used for 308 * declaring global constants. It's impossible to distinguish between two 309 * without knowing whether given enum type was referenced from other type: 310 * top-level anonymous enum won't be referenced by anything, while embedded 311 * one will. 312 */ 313 static int btf_dump_mark_referenced(struct btf_dump *d) 314 { 315 int i, j, n = btf__type_cnt(d->btf); 316 const struct btf_type *t; 317 __u16 vlen; 318 319 for (i = d->last_id + 1; i < n; i++) { 320 t = btf__type_by_id(d->btf, i); 321 vlen = btf_vlen(t); 322 323 switch (btf_kind(t)) { 324 case BTF_KIND_INT: 325 case BTF_KIND_ENUM: 326 case BTF_KIND_ENUM64: 327 case BTF_KIND_FWD: 328 case BTF_KIND_FLOAT: 329 break; 330 331 case BTF_KIND_VOLATILE: 332 case BTF_KIND_CONST: 333 case BTF_KIND_RESTRICT: 334 case BTF_KIND_PTR: 335 case BTF_KIND_TYPEDEF: 336 case BTF_KIND_FUNC: 337 case BTF_KIND_VAR: 338 case BTF_KIND_DECL_TAG: 339 case BTF_KIND_TYPE_TAG: 340 d->type_states[t->type].referenced = 1; 341 break; 342 343 case BTF_KIND_ARRAY: { 344 const struct btf_array *a = btf_array(t); 345 346 d->type_states[a->index_type].referenced = 1; 347 d->type_states[a->type].referenced = 1; 348 break; 349 } 350 case BTF_KIND_STRUCT: 351 case BTF_KIND_UNION: { 352 const struct btf_member *m = btf_members(t); 353 354 for (j = 0; j < vlen; j++, m++) 355 d->type_states[m->type].referenced = 1; 356 break; 357 } 358 case BTF_KIND_FUNC_PROTO: { 359 const struct btf_param *p = btf_params(t); 360 361 for (j = 0; j < vlen; j++, p++) 362 d->type_states[p->type].referenced = 1; 363 break; 364 } 365 case BTF_KIND_DATASEC: { 366 const struct btf_var_secinfo *v = btf_var_secinfos(t); 367 368 for (j = 0; j < vlen; j++, v++) 369 d->type_states[v->type].referenced = 1; 370 break; 371 } 372 default: 373 return -EINVAL; 374 } 375 } 376 return 0; 377 } 378 379 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 380 { 381 __u32 *new_queue; 382 size_t new_cap; 383 384 if (d->emit_queue_cnt >= d->emit_queue_cap) { 385 new_cap = max(16, d->emit_queue_cap * 3 / 2); 386 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 387 if (!new_queue) 388 return -ENOMEM; 389 d->emit_queue = new_queue; 390 d->emit_queue_cap = new_cap; 391 } 392 393 d->emit_queue[d->emit_queue_cnt++] = id; 394 return 0; 395 } 396 397 /* 398 * Determine order of emitting dependent types and specified type to satisfy 399 * C compilation rules. This is done through topological sorting with an 400 * additional complication which comes from C rules. The main idea for C is 401 * that if some type is "embedded" into a struct/union, it's size needs to be 402 * known at the time of definition of containing type. E.g., for: 403 * 404 * struct A {}; 405 * struct B { struct A x; } 406 * 407 * struct A *HAS* to be defined before struct B, because it's "embedded", 408 * i.e., it is part of struct B layout. But in the following case: 409 * 410 * struct A; 411 * struct B { struct A *x; } 412 * struct A {}; 413 * 414 * it's enough to just have a forward declaration of struct A at the time of 415 * struct B definition, as struct B has a pointer to struct A, so the size of 416 * field x is known without knowing struct A size: it's sizeof(void *). 417 * 418 * Unfortunately, there are some trickier cases we need to handle, e.g.: 419 * 420 * struct A {}; // if this was forward-declaration: compilation error 421 * struct B { 422 * struct { // anonymous struct 423 * struct A y; 424 * } *x; 425 * }; 426 * 427 * In this case, struct B's field x is a pointer, so it's size is known 428 * regardless of the size of (anonymous) struct it points to. But because this 429 * struct is anonymous and thus defined inline inside struct B, *and* it 430 * embeds struct A, compiler requires full definition of struct A to be known 431 * before struct B can be defined. This creates a transitive dependency 432 * between struct A and struct B. If struct A was forward-declared before 433 * struct B definition and fully defined after struct B definition, that would 434 * trigger compilation error. 435 * 436 * All this means that while we are doing topological sorting on BTF type 437 * graph, we need to determine relationships between different types (graph 438 * nodes): 439 * - weak link (relationship) between X and Y, if Y *CAN* be 440 * forward-declared at the point of X definition; 441 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 442 * 443 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 444 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 445 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 446 * Weak/strong relationship is determined recursively during DFS traversal and 447 * is returned as a result from btf_dump_order_type(). 448 * 449 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 450 * but it is not guaranteeing that no extraneous forward declarations will be 451 * emitted. 452 * 453 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 454 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 455 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 456 * entire graph path, so depending where from one came to that BTF type, it 457 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 458 * once they are processed, there is no need to do it again, so they are 459 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 460 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 461 * in any case, once those are processed, no need to do it again, as the 462 * result won't change. 463 * 464 * Returns: 465 * - 1, if type is part of strong link (so there is strong topological 466 * ordering requirements); 467 * - 0, if type is part of weak link (so can be satisfied through forward 468 * declaration); 469 * - <0, on error (e.g., unsatisfiable type loop detected). 470 */ 471 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 472 { 473 /* 474 * Order state is used to detect strong link cycles, but only for BTF 475 * kinds that are or could be an independent definition (i.e., 476 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 477 * func_protos, modifiers are just means to get to these definitions. 478 * Int/void don't need definitions, they are assumed to be always 479 * properly defined. We also ignore datasec, var, and funcs for now. 480 * So for all non-defining kinds, we never even set ordering state, 481 * for defining kinds we set ORDERING and subsequently ORDERED if it 482 * forms a strong link. 483 */ 484 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 485 const struct btf_type *t; 486 __u16 vlen; 487 int err, i; 488 489 /* return true, letting typedefs know that it's ok to be emitted */ 490 if (tstate->order_state == ORDERED) 491 return 1; 492 493 t = btf__type_by_id(d->btf, id); 494 495 if (tstate->order_state == ORDERING) { 496 /* type loop, but resolvable through fwd declaration */ 497 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 498 return 0; 499 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 500 return -ELOOP; 501 } 502 503 switch (btf_kind(t)) { 504 case BTF_KIND_INT: 505 case BTF_KIND_FLOAT: 506 tstate->order_state = ORDERED; 507 return 0; 508 509 case BTF_KIND_PTR: 510 err = btf_dump_order_type(d, t->type, true); 511 tstate->order_state = ORDERED; 512 return err; 513 514 case BTF_KIND_ARRAY: 515 return btf_dump_order_type(d, btf_array(t)->type, false); 516 517 case BTF_KIND_STRUCT: 518 case BTF_KIND_UNION: { 519 const struct btf_member *m = btf_members(t); 520 /* 521 * struct/union is part of strong link, only if it's embedded 522 * (so no ptr in a path) or it's anonymous (so has to be 523 * defined inline, even if declared through ptr) 524 */ 525 if (through_ptr && t->name_off != 0) 526 return 0; 527 528 tstate->order_state = ORDERING; 529 530 vlen = btf_vlen(t); 531 for (i = 0; i < vlen; i++, m++) { 532 err = btf_dump_order_type(d, m->type, false); 533 if (err < 0) 534 return err; 535 } 536 537 if (t->name_off != 0) { 538 err = btf_dump_add_emit_queue_id(d, id); 539 if (err < 0) 540 return err; 541 } 542 543 tstate->order_state = ORDERED; 544 return 1; 545 } 546 case BTF_KIND_ENUM: 547 case BTF_KIND_ENUM64: 548 case BTF_KIND_FWD: 549 /* 550 * non-anonymous or non-referenced enums are top-level 551 * declarations and should be emitted. Same logic can be 552 * applied to FWDs, it won't hurt anyways. 553 */ 554 if (t->name_off != 0 || !tstate->referenced) { 555 err = btf_dump_add_emit_queue_id(d, id); 556 if (err) 557 return err; 558 } 559 tstate->order_state = ORDERED; 560 return 1; 561 562 case BTF_KIND_TYPEDEF: { 563 int is_strong; 564 565 is_strong = btf_dump_order_type(d, t->type, through_ptr); 566 if (is_strong < 0) 567 return is_strong; 568 569 /* typedef is similar to struct/union w.r.t. fwd-decls */ 570 if (through_ptr && !is_strong) 571 return 0; 572 573 /* typedef is always a named definition */ 574 err = btf_dump_add_emit_queue_id(d, id); 575 if (err) 576 return err; 577 578 d->type_states[id].order_state = ORDERED; 579 return 1; 580 } 581 case BTF_KIND_VOLATILE: 582 case BTF_KIND_CONST: 583 case BTF_KIND_RESTRICT: 584 case BTF_KIND_TYPE_TAG: 585 return btf_dump_order_type(d, t->type, through_ptr); 586 587 case BTF_KIND_FUNC_PROTO: { 588 const struct btf_param *p = btf_params(t); 589 bool is_strong; 590 591 err = btf_dump_order_type(d, t->type, through_ptr); 592 if (err < 0) 593 return err; 594 is_strong = err > 0; 595 596 vlen = btf_vlen(t); 597 for (i = 0; i < vlen; i++, p++) { 598 err = btf_dump_order_type(d, p->type, through_ptr); 599 if (err < 0) 600 return err; 601 if (err > 0) 602 is_strong = true; 603 } 604 return is_strong; 605 } 606 case BTF_KIND_FUNC: 607 case BTF_KIND_VAR: 608 case BTF_KIND_DATASEC: 609 case BTF_KIND_DECL_TAG: 610 d->type_states[id].order_state = ORDERED; 611 return 0; 612 613 default: 614 return -EINVAL; 615 } 616 } 617 618 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 619 const struct btf_type *t); 620 621 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 622 const struct btf_type *t); 623 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 624 const struct btf_type *t, int lvl); 625 626 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 627 const struct btf_type *t); 628 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 629 const struct btf_type *t, int lvl); 630 631 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 632 const struct btf_type *t); 633 634 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 635 const struct btf_type *t, int lvl); 636 637 /* a local view into a shared stack */ 638 struct id_stack { 639 const __u32 *ids; 640 int cnt; 641 }; 642 643 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 644 const char *fname, int lvl); 645 static void btf_dump_emit_type_chain(struct btf_dump *d, 646 struct id_stack *decl_stack, 647 const char *fname, int lvl); 648 649 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 650 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 651 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 652 const char *orig_name); 653 654 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 655 { 656 const struct btf_type *t = btf__type_by_id(d->btf, id); 657 658 /* __builtin_va_list is a compiler built-in, which causes compilation 659 * errors, when compiling w/ different compiler, then used to compile 660 * original code (e.g., GCC to compile kernel, Clang to use generated 661 * C header from BTF). As it is built-in, it should be already defined 662 * properly internally in compiler. 663 */ 664 if (t->name_off == 0) 665 return false; 666 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 667 } 668 669 /* 670 * Emit C-syntax definitions of types from chains of BTF types. 671 * 672 * High-level handling of determining necessary forward declarations are handled 673 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 674 * declarations/definitions in C syntax are handled by a combo of 675 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 676 * corresponding btf_dump_emit_*_{def,fwd}() functions. 677 * 678 * We also keep track of "containing struct/union type ID" to determine when 679 * we reference it from inside and thus can avoid emitting unnecessary forward 680 * declaration. 681 * 682 * This algorithm is designed in such a way, that even if some error occurs 683 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 684 * that doesn't comply to C rules completely), algorithm will try to proceed 685 * and produce as much meaningful output as possible. 686 */ 687 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 688 { 689 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 690 bool top_level_def = cont_id == 0; 691 const struct btf_type *t; 692 __u16 kind; 693 694 if (tstate->emit_state == EMITTED) 695 return; 696 697 t = btf__type_by_id(d->btf, id); 698 kind = btf_kind(t); 699 700 if (tstate->emit_state == EMITTING) { 701 if (tstate->fwd_emitted) 702 return; 703 704 switch (kind) { 705 case BTF_KIND_STRUCT: 706 case BTF_KIND_UNION: 707 /* 708 * if we are referencing a struct/union that we are 709 * part of - then no need for fwd declaration 710 */ 711 if (id == cont_id) 712 return; 713 if (t->name_off == 0) { 714 pr_warn("anonymous struct/union loop, id:[%u]\n", 715 id); 716 return; 717 } 718 btf_dump_emit_struct_fwd(d, id, t); 719 btf_dump_printf(d, ";\n\n"); 720 tstate->fwd_emitted = 1; 721 break; 722 case BTF_KIND_TYPEDEF: 723 /* 724 * for typedef fwd_emitted means typedef definition 725 * was emitted, but it can be used only for "weak" 726 * references through pointer only, not for embedding 727 */ 728 if (!btf_dump_is_blacklisted(d, id)) { 729 btf_dump_emit_typedef_def(d, id, t, 0); 730 btf_dump_printf(d, ";\n\n"); 731 } 732 tstate->fwd_emitted = 1; 733 break; 734 default: 735 break; 736 } 737 738 return; 739 } 740 741 switch (kind) { 742 case BTF_KIND_INT: 743 /* Emit type alias definitions if necessary */ 744 btf_dump_emit_missing_aliases(d, id, t); 745 746 tstate->emit_state = EMITTED; 747 break; 748 case BTF_KIND_ENUM: 749 case BTF_KIND_ENUM64: 750 if (top_level_def) { 751 btf_dump_emit_enum_def(d, id, t, 0); 752 btf_dump_printf(d, ";\n\n"); 753 } 754 tstate->emit_state = EMITTED; 755 break; 756 case BTF_KIND_PTR: 757 case BTF_KIND_VOLATILE: 758 case BTF_KIND_CONST: 759 case BTF_KIND_RESTRICT: 760 case BTF_KIND_TYPE_TAG: 761 btf_dump_emit_type(d, t->type, cont_id); 762 break; 763 case BTF_KIND_ARRAY: 764 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 765 break; 766 case BTF_KIND_FWD: 767 btf_dump_emit_fwd_def(d, id, t); 768 btf_dump_printf(d, ";\n\n"); 769 tstate->emit_state = EMITTED; 770 break; 771 case BTF_KIND_TYPEDEF: 772 tstate->emit_state = EMITTING; 773 btf_dump_emit_type(d, t->type, id); 774 /* 775 * typedef can server as both definition and forward 776 * declaration; at this stage someone depends on 777 * typedef as a forward declaration (refers to it 778 * through pointer), so unless we already did it, 779 * emit typedef as a forward declaration 780 */ 781 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 782 btf_dump_emit_typedef_def(d, id, t, 0); 783 btf_dump_printf(d, ";\n\n"); 784 } 785 tstate->emit_state = EMITTED; 786 break; 787 case BTF_KIND_STRUCT: 788 case BTF_KIND_UNION: 789 tstate->emit_state = EMITTING; 790 /* if it's a top-level struct/union definition or struct/union 791 * is anonymous, then in C we'll be emitting all fields and 792 * their types (as opposed to just `struct X`), so we need to 793 * make sure that all types, referenced from struct/union 794 * members have necessary forward-declarations, where 795 * applicable 796 */ 797 if (top_level_def || t->name_off == 0) { 798 const struct btf_member *m = btf_members(t); 799 __u16 vlen = btf_vlen(t); 800 int i, new_cont_id; 801 802 new_cont_id = t->name_off == 0 ? cont_id : id; 803 for (i = 0; i < vlen; i++, m++) 804 btf_dump_emit_type(d, m->type, new_cont_id); 805 } else if (!tstate->fwd_emitted && id != cont_id) { 806 btf_dump_emit_struct_fwd(d, id, t); 807 btf_dump_printf(d, ";\n\n"); 808 tstate->fwd_emitted = 1; 809 } 810 811 if (top_level_def) { 812 btf_dump_emit_struct_def(d, id, t, 0); 813 btf_dump_printf(d, ";\n\n"); 814 tstate->emit_state = EMITTED; 815 } else { 816 tstate->emit_state = NOT_EMITTED; 817 } 818 break; 819 case BTF_KIND_FUNC_PROTO: { 820 const struct btf_param *p = btf_params(t); 821 __u16 n = btf_vlen(t); 822 int i; 823 824 btf_dump_emit_type(d, t->type, cont_id); 825 for (i = 0; i < n; i++, p++) 826 btf_dump_emit_type(d, p->type, cont_id); 827 828 break; 829 } 830 default: 831 break; 832 } 833 } 834 835 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 836 const struct btf_type *t) 837 { 838 const struct btf_member *m; 839 int max_align = 1, align, i, bit_sz; 840 __u16 vlen; 841 842 m = btf_members(t); 843 vlen = btf_vlen(t); 844 /* all non-bitfield fields have to be naturally aligned */ 845 for (i = 0; i < vlen; i++, m++) { 846 align = btf__align_of(btf, m->type); 847 bit_sz = btf_member_bitfield_size(t, i); 848 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 849 return true; 850 max_align = max(align, max_align); 851 } 852 /* size of a non-packed struct has to be a multiple of its alignment */ 853 if (t->size % max_align != 0) 854 return true; 855 /* 856 * if original struct was marked as packed, but its layout is 857 * naturally aligned, we'll detect that it's not packed 858 */ 859 return false; 860 } 861 862 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 863 int cur_off, int next_off, int next_align, 864 bool in_bitfield, int lvl) 865 { 866 const struct { 867 const char *name; 868 int bits; 869 } pads[] = { 870 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8} 871 }; 872 int new_off = 0, pad_bits = 0, bits, i; 873 const char *pad_type = NULL; 874 875 if (cur_off >= next_off) 876 return; /* no gap */ 877 878 /* For filling out padding we want to take advantage of 879 * natural alignment rules to minimize unnecessary explicit 880 * padding. First, we find the largest type (among long, int, 881 * short, or char) that can be used to force naturally aligned 882 * boundary. Once determined, we'll use such type to fill in 883 * the remaining padding gap. In some cases we can rely on 884 * compiler filling some gaps, but sometimes we need to force 885 * alignment to close natural alignment with markers like 886 * `long: 0` (this is always the case for bitfields). Note 887 * that even if struct itself has, let's say 4-byte alignment 888 * (i.e., it only uses up to int-aligned types), using `long: 889 * X;` explicit padding doesn't actually change struct's 890 * overall alignment requirements, but compiler does take into 891 * account that type's (long, in this example) natural 892 * alignment requirements when adding implicit padding. We use 893 * this fact heavily and don't worry about ruining correct 894 * struct alignment requirement. 895 */ 896 for (i = 0; i < ARRAY_SIZE(pads); i++) { 897 pad_bits = pads[i].bits; 898 pad_type = pads[i].name; 899 900 new_off = roundup(cur_off, pad_bits); 901 if (new_off <= next_off) 902 break; 903 } 904 905 if (new_off > cur_off && new_off <= next_off) { 906 /* We need explicit `<type>: 0` aligning mark if next 907 * field is right on alignment offset and its 908 * alignment requirement is less strict than <type>'s 909 * alignment (so compiler won't naturally align to the 910 * offset we expect), or if subsequent `<type>: X`, 911 * will actually completely fit in the remaining hole, 912 * making compiler basically ignore `<type>: X` 913 * completely. 914 */ 915 if (in_bitfield || 916 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) || 917 (new_off != next_off && next_off - new_off <= new_off - cur_off)) 918 /* but for bitfields we'll emit explicit bit count */ 919 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, 920 in_bitfield ? new_off - cur_off : 0); 921 cur_off = new_off; 922 } 923 924 /* Now we know we start at naturally aligned offset for a chosen 925 * padding type (long, int, short, or char), and so the rest is just 926 * a straightforward filling of remaining padding gap with full 927 * `<type>: sizeof(<type>);` markers, except for the last one, which 928 * might need smaller than sizeof(<type>) padding. 929 */ 930 while (cur_off != next_off) { 931 bits = min(next_off - cur_off, pad_bits); 932 if (bits == pad_bits) { 933 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 934 cur_off += bits; 935 continue; 936 } 937 /* For the remainder padding that doesn't cover entire 938 * pad_type bit length, we pick the smallest necessary type. 939 * This is pure aesthetics, we could have just used `long`, 940 * but having smallest necessary one communicates better the 941 * scale of the padding gap. 942 */ 943 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) { 944 pad_type = pads[i].name; 945 pad_bits = pads[i].bits; 946 if (pad_bits < bits) 947 continue; 948 949 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits); 950 cur_off += bits; 951 break; 952 } 953 } 954 } 955 956 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 957 const struct btf_type *t) 958 { 959 btf_dump_printf(d, "%s%s%s", 960 btf_is_struct(t) ? "struct" : "union", 961 t->name_off ? " " : "", 962 btf_dump_type_name(d, id)); 963 } 964 965 static void btf_dump_emit_struct_def(struct btf_dump *d, 966 __u32 id, 967 const struct btf_type *t, 968 int lvl) 969 { 970 const struct btf_member *m = btf_members(t); 971 bool is_struct = btf_is_struct(t); 972 bool packed, prev_bitfield = false; 973 int align, i, off = 0; 974 __u16 vlen = btf_vlen(t); 975 976 align = btf__align_of(d->btf, id); 977 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 978 979 btf_dump_printf(d, "%s%s%s {", 980 is_struct ? "struct" : "union", 981 t->name_off ? " " : "", 982 btf_dump_type_name(d, id)); 983 984 for (i = 0; i < vlen; i++, m++) { 985 const char *fname; 986 int m_off, m_sz, m_align; 987 bool in_bitfield; 988 989 fname = btf_name_of(d, m->name_off); 990 m_sz = btf_member_bitfield_size(t, i); 991 m_off = btf_member_bit_offset(t, i); 992 m_align = packed ? 1 : btf__align_of(d->btf, m->type); 993 994 in_bitfield = prev_bitfield && m_sz != 0; 995 996 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1); 997 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 998 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 999 1000 if (m_sz) { 1001 btf_dump_printf(d, ": %d", m_sz); 1002 off = m_off + m_sz; 1003 prev_bitfield = true; 1004 } else { 1005 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 1006 off = m_off + m_sz * 8; 1007 prev_bitfield = false; 1008 } 1009 1010 btf_dump_printf(d, ";"); 1011 } 1012 1013 /* pad at the end, if necessary */ 1014 if (is_struct) 1015 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1); 1016 1017 /* 1018 * Keep `struct empty {}` on a single line, 1019 * only print newline when there are regular or padding fields. 1020 */ 1021 if (vlen || t->size) { 1022 btf_dump_printf(d, "\n"); 1023 btf_dump_printf(d, "%s}", pfx(lvl)); 1024 } else { 1025 btf_dump_printf(d, "}"); 1026 } 1027 if (packed) 1028 btf_dump_printf(d, " __attribute__((packed))"); 1029 } 1030 1031 static const char *missing_base_types[][2] = { 1032 /* 1033 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 1034 * SIMD intrinsics. Alias them to standard base types. 1035 */ 1036 { "__Poly8_t", "unsigned char" }, 1037 { "__Poly16_t", "unsigned short" }, 1038 { "__Poly64_t", "unsigned long long" }, 1039 { "__Poly128_t", "unsigned __int128" }, 1040 }; 1041 1042 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 1043 const struct btf_type *t) 1044 { 1045 const char *name = btf_dump_type_name(d, id); 1046 int i; 1047 1048 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 1049 if (strcmp(name, missing_base_types[i][0]) == 0) { 1050 btf_dump_printf(d, "typedef %s %s;\n\n", 1051 missing_base_types[i][1], name); 1052 break; 1053 } 1054 } 1055 } 1056 1057 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 1058 const struct btf_type *t) 1059 { 1060 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 1061 } 1062 1063 static void btf_dump_emit_enum32_val(struct btf_dump *d, 1064 const struct btf_type *t, 1065 int lvl, __u16 vlen) 1066 { 1067 const struct btf_enum *v = btf_enum(t); 1068 bool is_signed = btf_kflag(t); 1069 const char *fmt_str; 1070 const char *name; 1071 size_t dup_cnt; 1072 int i; 1073 1074 for (i = 0; i < vlen; i++, v++) { 1075 name = btf_name_of(d, v->name_off); 1076 /* enumerators share namespace with typedef idents */ 1077 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1078 if (dup_cnt > 1) { 1079 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1080 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1081 } else { 1082 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1083 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1084 } 1085 } 1086 } 1087 1088 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1089 const struct btf_type *t, 1090 int lvl, __u16 vlen) 1091 { 1092 const struct btf_enum64 *v = btf_enum64(t); 1093 bool is_signed = btf_kflag(t); 1094 const char *fmt_str; 1095 const char *name; 1096 size_t dup_cnt; 1097 __u64 val; 1098 int i; 1099 1100 for (i = 0; i < vlen; i++, v++) { 1101 name = btf_name_of(d, v->name_off); 1102 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1103 val = btf_enum64_value(v); 1104 if (dup_cnt > 1) { 1105 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1106 : "\n%s%s___%zd = %lluULL,"; 1107 btf_dump_printf(d, fmt_str, 1108 pfx(lvl + 1), name, dup_cnt, 1109 (unsigned long long)val); 1110 } else { 1111 fmt_str = is_signed ? "\n%s%s = %lldLL," 1112 : "\n%s%s = %lluULL,"; 1113 btf_dump_printf(d, fmt_str, 1114 pfx(lvl + 1), name, 1115 (unsigned long long)val); 1116 } 1117 } 1118 } 1119 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1120 const struct btf_type *t, 1121 int lvl) 1122 { 1123 __u16 vlen = btf_vlen(t); 1124 1125 btf_dump_printf(d, "enum%s%s", 1126 t->name_off ? " " : "", 1127 btf_dump_type_name(d, id)); 1128 1129 if (!vlen) 1130 return; 1131 1132 btf_dump_printf(d, " {"); 1133 if (btf_is_enum(t)) 1134 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1135 else 1136 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1137 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1138 1139 /* special case enums with special sizes */ 1140 if (t->size == 1) { 1141 /* one-byte enums can be forced with mode(byte) attribute */ 1142 btf_dump_printf(d, " __attribute__((mode(byte)))"); 1143 } else if (t->size == 8 && d->ptr_sz == 8) { 1144 /* enum can be 8-byte sized if one of the enumerator values 1145 * doesn't fit in 32-bit integer, or by adding mode(word) 1146 * attribute (but probably only on 64-bit architectures); do 1147 * our best here to try to satisfy the contract without adding 1148 * unnecessary attributes 1149 */ 1150 bool needs_word_mode; 1151 1152 if (btf_is_enum(t)) { 1153 /* enum can't represent 64-bit values, so we need word mode */ 1154 needs_word_mode = true; 1155 } else { 1156 /* enum64 needs mode(word) if none of its values has 1157 * non-zero upper 32-bits (which means that all values 1158 * fit in 32-bit integers and won't cause compiler to 1159 * bump enum to be 64-bit naturally 1160 */ 1161 int i; 1162 1163 needs_word_mode = true; 1164 for (i = 0; i < vlen; i++) { 1165 if (btf_enum64(t)[i].val_hi32 != 0) { 1166 needs_word_mode = false; 1167 break; 1168 } 1169 } 1170 } 1171 if (needs_word_mode) 1172 btf_dump_printf(d, " __attribute__((mode(word)))"); 1173 } 1174 1175 } 1176 1177 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1178 const struct btf_type *t) 1179 { 1180 const char *name = btf_dump_type_name(d, id); 1181 1182 if (btf_kflag(t)) 1183 btf_dump_printf(d, "union %s", name); 1184 else 1185 btf_dump_printf(d, "struct %s", name); 1186 } 1187 1188 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1189 const struct btf_type *t, int lvl) 1190 { 1191 const char *name = btf_dump_ident_name(d, id); 1192 1193 /* 1194 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1195 * pointing to VOID. This generates warnings from btf_dump() and 1196 * results in uncompilable header file, so we are fixing it up here 1197 * with valid typedef into __builtin_va_list. 1198 */ 1199 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1200 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1201 return; 1202 } 1203 1204 btf_dump_printf(d, "typedef "); 1205 btf_dump_emit_type_decl(d, t->type, name, lvl); 1206 } 1207 1208 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1209 { 1210 __u32 *new_stack; 1211 size_t new_cap; 1212 1213 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1214 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1215 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1216 if (!new_stack) 1217 return -ENOMEM; 1218 d->decl_stack = new_stack; 1219 d->decl_stack_cap = new_cap; 1220 } 1221 1222 d->decl_stack[d->decl_stack_cnt++] = id; 1223 1224 return 0; 1225 } 1226 1227 /* 1228 * Emit type declaration (e.g., field type declaration in a struct or argument 1229 * declaration in function prototype) in correct C syntax. 1230 * 1231 * For most types it's trivial, but there are few quirky type declaration 1232 * cases worth mentioning: 1233 * - function prototypes (especially nesting of function prototypes); 1234 * - arrays; 1235 * - const/volatile/restrict for pointers vs other types. 1236 * 1237 * For a good discussion of *PARSING* C syntax (as a human), see 1238 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1239 * Ch.3 "Unscrambling Declarations in C". 1240 * 1241 * It won't help with BTF to C conversion much, though, as it's an opposite 1242 * problem. So we came up with this algorithm in reverse to van der Linden's 1243 * parsing algorithm. It goes from structured BTF representation of type 1244 * declaration to a valid compilable C syntax. 1245 * 1246 * For instance, consider this C typedef: 1247 * typedef const int * const * arr[10] arr_t; 1248 * It will be represented in BTF with this chain of BTF types: 1249 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1250 * 1251 * Notice how [const] modifier always goes before type it modifies in BTF type 1252 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1253 * the right of pointers, but to the left of other types. There are also other 1254 * quirks, like function pointers, arrays of them, functions returning other 1255 * functions, etc. 1256 * 1257 * We handle that by pushing all the types to a stack, until we hit "terminal" 1258 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1259 * top of a stack, modifiers are handled differently. Array/function pointers 1260 * have also wildly different syntax and how nesting of them are done. See 1261 * code for authoritative definition. 1262 * 1263 * To avoid allocating new stack for each independent chain of BTF types, we 1264 * share one bigger stack, with each chain working only on its own local view 1265 * of a stack frame. Some care is required to "pop" stack frames after 1266 * processing type declaration chain. 1267 */ 1268 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1269 const struct btf_dump_emit_type_decl_opts *opts) 1270 { 1271 const char *fname; 1272 int lvl, err; 1273 1274 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1275 return libbpf_err(-EINVAL); 1276 1277 err = btf_dump_resize(d); 1278 if (err) 1279 return libbpf_err(err); 1280 1281 fname = OPTS_GET(opts, field_name, ""); 1282 lvl = OPTS_GET(opts, indent_level, 0); 1283 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1284 btf_dump_emit_type_decl(d, id, fname, lvl); 1285 d->strip_mods = false; 1286 return 0; 1287 } 1288 1289 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1290 const char *fname, int lvl) 1291 { 1292 struct id_stack decl_stack; 1293 const struct btf_type *t; 1294 int err, stack_start; 1295 1296 stack_start = d->decl_stack_cnt; 1297 for (;;) { 1298 t = btf__type_by_id(d->btf, id); 1299 if (d->strip_mods && btf_is_mod(t)) 1300 goto skip_mod; 1301 1302 err = btf_dump_push_decl_stack_id(d, id); 1303 if (err < 0) { 1304 /* 1305 * if we don't have enough memory for entire type decl 1306 * chain, restore stack, emit warning, and try to 1307 * proceed nevertheless 1308 */ 1309 pr_warn("not enough memory for decl stack: %s\n", errstr(err)); 1310 d->decl_stack_cnt = stack_start; 1311 return; 1312 } 1313 skip_mod: 1314 /* VOID */ 1315 if (id == 0) 1316 break; 1317 1318 switch (btf_kind(t)) { 1319 case BTF_KIND_PTR: 1320 case BTF_KIND_VOLATILE: 1321 case BTF_KIND_CONST: 1322 case BTF_KIND_RESTRICT: 1323 case BTF_KIND_FUNC_PROTO: 1324 case BTF_KIND_TYPE_TAG: 1325 id = t->type; 1326 break; 1327 case BTF_KIND_ARRAY: 1328 id = btf_array(t)->type; 1329 break; 1330 case BTF_KIND_INT: 1331 case BTF_KIND_ENUM: 1332 case BTF_KIND_ENUM64: 1333 case BTF_KIND_FWD: 1334 case BTF_KIND_STRUCT: 1335 case BTF_KIND_UNION: 1336 case BTF_KIND_TYPEDEF: 1337 case BTF_KIND_FLOAT: 1338 goto done; 1339 default: 1340 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1341 btf_kind(t), id); 1342 goto done; 1343 } 1344 } 1345 done: 1346 /* 1347 * We might be inside a chain of declarations (e.g., array of function 1348 * pointers returning anonymous (so inlined) structs, having another 1349 * array field). Each of those needs its own "stack frame" to handle 1350 * emitting of declarations. Those stack frames are non-overlapping 1351 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1352 * handle this set of nested stacks, we create a view corresponding to 1353 * our own "stack frame" and work with it as an independent stack. 1354 * We'll need to clean up after emit_type_chain() returns, though. 1355 */ 1356 decl_stack.ids = d->decl_stack + stack_start; 1357 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1358 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1359 /* 1360 * emit_type_chain() guarantees that it will pop its entire decl_stack 1361 * frame before returning. But it works with a read-only view into 1362 * decl_stack, so it doesn't actually pop anything from the 1363 * perspective of shared btf_dump->decl_stack, per se. We need to 1364 * reset decl_stack state to how it was before us to avoid it growing 1365 * all the time. 1366 */ 1367 d->decl_stack_cnt = stack_start; 1368 } 1369 1370 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1371 { 1372 const struct btf_type *t; 1373 __u32 id; 1374 1375 while (decl_stack->cnt) { 1376 id = decl_stack->ids[decl_stack->cnt - 1]; 1377 t = btf__type_by_id(d->btf, id); 1378 1379 switch (btf_kind(t)) { 1380 case BTF_KIND_VOLATILE: 1381 btf_dump_printf(d, "volatile "); 1382 break; 1383 case BTF_KIND_CONST: 1384 btf_dump_printf(d, "const "); 1385 break; 1386 case BTF_KIND_RESTRICT: 1387 btf_dump_printf(d, "restrict "); 1388 break; 1389 default: 1390 return; 1391 } 1392 decl_stack->cnt--; 1393 } 1394 } 1395 1396 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1397 { 1398 const struct btf_type *t; 1399 __u32 id; 1400 1401 while (decl_stack->cnt) { 1402 id = decl_stack->ids[decl_stack->cnt - 1]; 1403 t = btf__type_by_id(d->btf, id); 1404 if (!btf_is_mod(t)) 1405 return; 1406 decl_stack->cnt--; 1407 } 1408 } 1409 1410 static void btf_dump_emit_name(const struct btf_dump *d, 1411 const char *name, bool last_was_ptr) 1412 { 1413 bool separate = name[0] && !last_was_ptr; 1414 1415 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1416 } 1417 1418 static void btf_dump_emit_type_chain(struct btf_dump *d, 1419 struct id_stack *decls, 1420 const char *fname, int lvl) 1421 { 1422 /* 1423 * last_was_ptr is used to determine if we need to separate pointer 1424 * asterisk (*) from previous part of type signature with space, so 1425 * that we get `int ***`, instead of `int * * *`. We default to true 1426 * for cases where we have single pointer in a chain. E.g., in ptr -> 1427 * func_proto case. func_proto will start a new emit_type_chain call 1428 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1429 * don't want to prepend space for that last pointer. 1430 */ 1431 bool last_was_ptr = true; 1432 const struct btf_type *t; 1433 const char *name; 1434 __u16 kind; 1435 __u32 id; 1436 1437 while (decls->cnt) { 1438 id = decls->ids[--decls->cnt]; 1439 if (id == 0) { 1440 /* VOID is a special snowflake */ 1441 btf_dump_emit_mods(d, decls); 1442 btf_dump_printf(d, "void"); 1443 last_was_ptr = false; 1444 continue; 1445 } 1446 1447 t = btf__type_by_id(d->btf, id); 1448 kind = btf_kind(t); 1449 1450 switch (kind) { 1451 case BTF_KIND_INT: 1452 case BTF_KIND_FLOAT: 1453 btf_dump_emit_mods(d, decls); 1454 name = btf_name_of(d, t->name_off); 1455 btf_dump_printf(d, "%s", name); 1456 break; 1457 case BTF_KIND_STRUCT: 1458 case BTF_KIND_UNION: 1459 btf_dump_emit_mods(d, decls); 1460 /* inline anonymous struct/union */ 1461 if (t->name_off == 0 && !d->skip_anon_defs) 1462 btf_dump_emit_struct_def(d, id, t, lvl); 1463 else 1464 btf_dump_emit_struct_fwd(d, id, t); 1465 break; 1466 case BTF_KIND_ENUM: 1467 case BTF_KIND_ENUM64: 1468 btf_dump_emit_mods(d, decls); 1469 /* inline anonymous enum */ 1470 if (t->name_off == 0 && !d->skip_anon_defs) 1471 btf_dump_emit_enum_def(d, id, t, lvl); 1472 else 1473 btf_dump_emit_enum_fwd(d, id, t); 1474 break; 1475 case BTF_KIND_FWD: 1476 btf_dump_emit_mods(d, decls); 1477 btf_dump_emit_fwd_def(d, id, t); 1478 break; 1479 case BTF_KIND_TYPEDEF: 1480 btf_dump_emit_mods(d, decls); 1481 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1482 break; 1483 case BTF_KIND_PTR: 1484 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1485 break; 1486 case BTF_KIND_VOLATILE: 1487 btf_dump_printf(d, " volatile"); 1488 break; 1489 case BTF_KIND_CONST: 1490 btf_dump_printf(d, " const"); 1491 break; 1492 case BTF_KIND_RESTRICT: 1493 btf_dump_printf(d, " restrict"); 1494 break; 1495 case BTF_KIND_TYPE_TAG: 1496 btf_dump_emit_mods(d, decls); 1497 name = btf_name_of(d, t->name_off); 1498 if (btf_kflag(t)) 1499 btf_dump_printf(d, " __attribute__((%s))", name); 1500 else 1501 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1502 break; 1503 case BTF_KIND_ARRAY: { 1504 const struct btf_array *a = btf_array(t); 1505 const struct btf_type *next_t; 1506 __u32 next_id; 1507 bool multidim; 1508 /* 1509 * GCC has a bug 1510 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1511 * which causes it to emit extra const/volatile 1512 * modifiers for an array, if array's element type has 1513 * const/volatile modifiers. Clang doesn't do that. 1514 * In general, it doesn't seem very meaningful to have 1515 * a const/volatile modifier for array, so we are 1516 * going to silently skip them here. 1517 */ 1518 btf_dump_drop_mods(d, decls); 1519 1520 if (decls->cnt == 0) { 1521 btf_dump_emit_name(d, fname, last_was_ptr); 1522 btf_dump_printf(d, "[%u]", a->nelems); 1523 return; 1524 } 1525 1526 next_id = decls->ids[decls->cnt - 1]; 1527 next_t = btf__type_by_id(d->btf, next_id); 1528 multidim = btf_is_array(next_t); 1529 /* we need space if we have named non-pointer */ 1530 if (fname[0] && !last_was_ptr) 1531 btf_dump_printf(d, " "); 1532 /* no parentheses for multi-dimensional array */ 1533 if (!multidim) 1534 btf_dump_printf(d, "("); 1535 btf_dump_emit_type_chain(d, decls, fname, lvl); 1536 if (!multidim) 1537 btf_dump_printf(d, ")"); 1538 btf_dump_printf(d, "[%u]", a->nelems); 1539 return; 1540 } 1541 case BTF_KIND_FUNC_PROTO: { 1542 const struct btf_param *p = btf_params(t); 1543 __u16 vlen = btf_vlen(t); 1544 int i; 1545 1546 /* 1547 * GCC emits extra volatile qualifier for 1548 * __attribute__((noreturn)) function pointers. Clang 1549 * doesn't do it. It's a GCC quirk for backwards 1550 * compatibility with code written for GCC <2.5. So, 1551 * similarly to extra qualifiers for array, just drop 1552 * them, instead of handling them. 1553 */ 1554 btf_dump_drop_mods(d, decls); 1555 if (decls->cnt) { 1556 btf_dump_printf(d, " ("); 1557 btf_dump_emit_type_chain(d, decls, fname, lvl); 1558 btf_dump_printf(d, ")"); 1559 } else { 1560 btf_dump_emit_name(d, fname, last_was_ptr); 1561 } 1562 btf_dump_printf(d, "("); 1563 /* 1564 * Clang for BPF target generates func_proto with no 1565 * args as a func_proto with a single void arg (e.g., 1566 * `int (*f)(void)` vs just `int (*f)()`). We are 1567 * going to emit valid empty args (void) syntax for 1568 * such case. Similarly and conveniently, valid 1569 * no args case can be special-cased here as well. 1570 */ 1571 if (vlen == 0 || (vlen == 1 && p->type == 0)) { 1572 btf_dump_printf(d, "void)"); 1573 return; 1574 } 1575 1576 for (i = 0; i < vlen; i++, p++) { 1577 if (i > 0) 1578 btf_dump_printf(d, ", "); 1579 1580 /* last arg of type void is vararg */ 1581 if (i == vlen - 1 && p->type == 0) { 1582 btf_dump_printf(d, "..."); 1583 break; 1584 } 1585 1586 name = btf_name_of(d, p->name_off); 1587 btf_dump_emit_type_decl(d, p->type, name, lvl); 1588 } 1589 1590 btf_dump_printf(d, ")"); 1591 return; 1592 } 1593 default: 1594 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1595 kind, id); 1596 return; 1597 } 1598 1599 last_was_ptr = kind == BTF_KIND_PTR; 1600 } 1601 1602 btf_dump_emit_name(d, fname, last_was_ptr); 1603 } 1604 1605 /* show type name as (type_name) */ 1606 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1607 bool top_level) 1608 { 1609 const struct btf_type *t; 1610 1611 /* for array members, we don't bother emitting type name for each 1612 * member to avoid the redundancy of 1613 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1614 */ 1615 if (d->typed_dump->is_array_member) 1616 return; 1617 1618 /* avoid type name specification for variable/section; it will be done 1619 * for the associated variable value(s). 1620 */ 1621 t = btf__type_by_id(d->btf, id); 1622 if (btf_is_var(t) || btf_is_datasec(t)) 1623 return; 1624 1625 if (top_level) 1626 btf_dump_printf(d, "("); 1627 1628 d->skip_anon_defs = true; 1629 d->strip_mods = true; 1630 btf_dump_emit_type_decl(d, id, "", 0); 1631 d->strip_mods = false; 1632 d->skip_anon_defs = false; 1633 1634 if (top_level) 1635 btf_dump_printf(d, ")"); 1636 } 1637 1638 /* return number of duplicates (occurrences) of a given name */ 1639 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1640 const char *orig_name) 1641 { 1642 char *old_name, *new_name; 1643 size_t dup_cnt = 0; 1644 int err; 1645 1646 new_name = strdup(orig_name); 1647 if (!new_name) 1648 return 1; 1649 1650 (void)hashmap__find(name_map, orig_name, &dup_cnt); 1651 dup_cnt++; 1652 1653 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL); 1654 if (err) 1655 free(new_name); 1656 1657 free(old_name); 1658 1659 return dup_cnt; 1660 } 1661 1662 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1663 struct hashmap *name_map) 1664 { 1665 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1666 const struct btf_type *t = btf__type_by_id(d->btf, id); 1667 const char *orig_name = btf_name_of(d, t->name_off); 1668 const char **cached_name = &d->cached_names[id]; 1669 size_t dup_cnt; 1670 1671 if (t->name_off == 0) 1672 return ""; 1673 1674 if (s->name_resolved) 1675 return *cached_name ? *cached_name : orig_name; 1676 1677 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1678 s->name_resolved = 1; 1679 return orig_name; 1680 } 1681 1682 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1683 if (dup_cnt > 1) { 1684 const size_t max_len = 256; 1685 char new_name[max_len]; 1686 1687 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1688 *cached_name = strdup(new_name); 1689 } 1690 1691 s->name_resolved = 1; 1692 return *cached_name ? *cached_name : orig_name; 1693 } 1694 1695 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1696 { 1697 return btf_dump_resolve_name(d, id, d->type_names); 1698 } 1699 1700 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1701 { 1702 return btf_dump_resolve_name(d, id, d->ident_names); 1703 } 1704 1705 static int btf_dump_dump_type_data(struct btf_dump *d, 1706 const char *fname, 1707 const struct btf_type *t, 1708 __u32 id, 1709 const void *data, 1710 __u8 bits_offset, 1711 __u8 bit_sz); 1712 1713 static const char *btf_dump_data_newline(struct btf_dump *d) 1714 { 1715 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1716 } 1717 1718 static const char *btf_dump_data_delim(struct btf_dump *d) 1719 { 1720 return d->typed_dump->depth == 0 ? "" : ","; 1721 } 1722 1723 static void btf_dump_data_pfx(struct btf_dump *d) 1724 { 1725 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1726 1727 if (d->typed_dump->compact) 1728 return; 1729 1730 for (i = 0; i < lvl; i++) 1731 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1732 } 1733 1734 /* A macro is used here as btf_type_value[s]() appends format specifiers 1735 * to the format specifier passed in; these do the work of appending 1736 * delimiters etc while the caller simply has to specify the type values 1737 * in the format specifier + value(s). 1738 */ 1739 #define btf_dump_type_values(d, fmt, ...) \ 1740 btf_dump_printf(d, fmt "%s%s", \ 1741 ##__VA_ARGS__, \ 1742 btf_dump_data_delim(d), \ 1743 btf_dump_data_newline(d)) 1744 1745 static int btf_dump_unsupported_data(struct btf_dump *d, 1746 const struct btf_type *t, 1747 __u32 id) 1748 { 1749 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1750 return -ENOTSUP; 1751 } 1752 1753 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1754 const struct btf_type *t, 1755 const void *data, 1756 __u8 bits_offset, 1757 __u8 bit_sz, 1758 __u64 *value) 1759 { 1760 __u16 left_shift_bits, right_shift_bits; 1761 const __u8 *bytes = data; 1762 __u8 nr_copy_bits; 1763 __u64 num = 0; 1764 int i; 1765 1766 /* Maximum supported bitfield size is 64 bits */ 1767 if (t->size > 8) { 1768 pr_warn("unexpected bitfield size %d\n", t->size); 1769 return -EINVAL; 1770 } 1771 1772 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1773 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1774 */ 1775 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1776 for (i = t->size - 1; i >= 0; i--) 1777 num = num * 256 + bytes[i]; 1778 nr_copy_bits = bit_sz + bits_offset; 1779 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1780 for (i = 0; i < t->size; i++) 1781 num = num * 256 + bytes[i]; 1782 nr_copy_bits = t->size * 8 - bits_offset; 1783 #else 1784 # error "Unrecognized __BYTE_ORDER__" 1785 #endif 1786 left_shift_bits = 64 - nr_copy_bits; 1787 right_shift_bits = 64 - bit_sz; 1788 1789 *value = (num << left_shift_bits) >> right_shift_bits; 1790 1791 return 0; 1792 } 1793 1794 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1795 const struct btf_type *t, 1796 const void *data, 1797 __u8 bits_offset, 1798 __u8 bit_sz) 1799 { 1800 __u64 check_num; 1801 int err; 1802 1803 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1804 if (err) 1805 return err; 1806 if (check_num == 0) 1807 return -ENODATA; 1808 return 0; 1809 } 1810 1811 static int btf_dump_bitfield_data(struct btf_dump *d, 1812 const struct btf_type *t, 1813 const void *data, 1814 __u8 bits_offset, 1815 __u8 bit_sz) 1816 { 1817 __u64 print_num; 1818 int err; 1819 1820 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1821 if (err) 1822 return err; 1823 1824 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1825 1826 return 0; 1827 } 1828 1829 /* ints, floats and ptrs */ 1830 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1831 const struct btf_type *t, 1832 __u32 id, 1833 const void *data) 1834 { 1835 static __u8 bytecmp[16] = {}; 1836 int nr_bytes; 1837 1838 /* For pointer types, pointer size is not defined on a per-type basis. 1839 * On dump creation however, we store the pointer size. 1840 */ 1841 if (btf_kind(t) == BTF_KIND_PTR) 1842 nr_bytes = d->ptr_sz; 1843 else 1844 nr_bytes = t->size; 1845 1846 if (nr_bytes < 1 || nr_bytes > 16) { 1847 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1848 return -EINVAL; 1849 } 1850 1851 if (memcmp(data, bytecmp, nr_bytes) == 0) 1852 return -ENODATA; 1853 return 0; 1854 } 1855 1856 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1857 const void *data) 1858 { 1859 int alignment = btf__align_of(btf, type_id); 1860 1861 if (alignment == 0) 1862 return false; 1863 1864 return ((uintptr_t)data) % alignment == 0; 1865 } 1866 1867 static int btf_dump_int_data(struct btf_dump *d, 1868 const struct btf_type *t, 1869 __u32 type_id, 1870 const void *data, 1871 __u8 bits_offset) 1872 { 1873 __u8 encoding = btf_int_encoding(t); 1874 bool sign = encoding & BTF_INT_SIGNED; 1875 char buf[16] __attribute__((aligned(16))); 1876 int sz = t->size; 1877 1878 if (sz == 0 || sz > sizeof(buf)) { 1879 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1880 return -EINVAL; 1881 } 1882 1883 /* handle packed int data - accesses of integers not aligned on 1884 * int boundaries can cause problems on some platforms. 1885 */ 1886 if (!ptr_is_aligned(d->btf, type_id, data)) { 1887 memcpy(buf, data, sz); 1888 data = buf; 1889 } 1890 1891 switch (sz) { 1892 case 16: { 1893 const __u64 *ints = data; 1894 __u64 lsi, msi; 1895 1896 /* avoid use of __int128 as some 32-bit platforms do not 1897 * support it. 1898 */ 1899 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1900 lsi = ints[0]; 1901 msi = ints[1]; 1902 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1903 lsi = ints[1]; 1904 msi = ints[0]; 1905 #else 1906 # error "Unrecognized __BYTE_ORDER__" 1907 #endif 1908 if (msi == 0) 1909 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1910 else 1911 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1912 (unsigned long long)lsi); 1913 break; 1914 } 1915 case 8: 1916 if (sign) 1917 btf_dump_type_values(d, "%lld", *(long long *)data); 1918 else 1919 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1920 break; 1921 case 4: 1922 if (sign) 1923 btf_dump_type_values(d, "%d", *(__s32 *)data); 1924 else 1925 btf_dump_type_values(d, "%u", *(__u32 *)data); 1926 break; 1927 case 2: 1928 if (sign) 1929 btf_dump_type_values(d, "%d", *(__s16 *)data); 1930 else 1931 btf_dump_type_values(d, "%u", *(__u16 *)data); 1932 break; 1933 case 1: 1934 if (d->typed_dump->is_array_char) { 1935 /* check for null terminator */ 1936 if (d->typed_dump->is_array_terminated) 1937 break; 1938 if (*(char *)data == '\0') { 1939 btf_dump_type_values(d, "'\\0'"); 1940 d->typed_dump->is_array_terminated = true; 1941 break; 1942 } 1943 if (isprint(*(char *)data)) { 1944 btf_dump_type_values(d, "'%c'", *(char *)data); 1945 break; 1946 } 1947 } 1948 if (sign) 1949 btf_dump_type_values(d, "%d", *(__s8 *)data); 1950 else 1951 btf_dump_type_values(d, "%u", *(__u8 *)data); 1952 break; 1953 default: 1954 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1955 return -EINVAL; 1956 } 1957 return 0; 1958 } 1959 1960 union float_data { 1961 long double ld; 1962 double d; 1963 float f; 1964 }; 1965 1966 static int btf_dump_float_data(struct btf_dump *d, 1967 const struct btf_type *t, 1968 __u32 type_id, 1969 const void *data) 1970 { 1971 const union float_data *flp = data; 1972 union float_data fl; 1973 int sz = t->size; 1974 1975 /* handle unaligned data; copy to local union */ 1976 if (!ptr_is_aligned(d->btf, type_id, data)) { 1977 memcpy(&fl, data, sz); 1978 flp = &fl; 1979 } 1980 1981 switch (sz) { 1982 case 16: 1983 btf_dump_type_values(d, "%Lf", flp->ld); 1984 break; 1985 case 8: 1986 btf_dump_type_values(d, "%lf", flp->d); 1987 break; 1988 case 4: 1989 btf_dump_type_values(d, "%f", flp->f); 1990 break; 1991 default: 1992 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1993 return -EINVAL; 1994 } 1995 return 0; 1996 } 1997 1998 static int btf_dump_var_data(struct btf_dump *d, 1999 const struct btf_type *v, 2000 __u32 id, 2001 const void *data) 2002 { 2003 enum btf_func_linkage linkage = btf_var(v)->linkage; 2004 const struct btf_type *t; 2005 const char *l; 2006 __u32 type_id; 2007 2008 switch (linkage) { 2009 case BTF_FUNC_STATIC: 2010 l = "static "; 2011 break; 2012 case BTF_FUNC_EXTERN: 2013 l = "extern "; 2014 break; 2015 case BTF_FUNC_GLOBAL: 2016 default: 2017 l = ""; 2018 break; 2019 } 2020 2021 /* format of output here is [linkage] [type] [varname] = (type)value, 2022 * for example "static int cpu_profile_flip = (int)1" 2023 */ 2024 btf_dump_printf(d, "%s", l); 2025 type_id = v->type; 2026 t = btf__type_by_id(d->btf, type_id); 2027 btf_dump_emit_type_cast(d, type_id, false); 2028 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 2029 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 2030 } 2031 2032 static int btf_dump_string_data(struct btf_dump *d, 2033 const struct btf_type *t, 2034 __u32 id, 2035 const void *data) 2036 { 2037 const struct btf_array *array = btf_array(t); 2038 const char *chars = data; 2039 __u32 i; 2040 2041 /* Make sure it is a NUL-terminated string. */ 2042 for (i = 0; i < array->nelems; i++) { 2043 if ((void *)(chars + i) >= d->typed_dump->data_end) 2044 return -E2BIG; 2045 if (chars[i] == '\0') 2046 break; 2047 } 2048 if (i == array->nelems) { 2049 /* The caller will print this as a regular array. */ 2050 return -EINVAL; 2051 } 2052 2053 btf_dump_data_pfx(d); 2054 btf_dump_printf(d, "\""); 2055 2056 for (i = 0; i < array->nelems; i++) { 2057 char c = chars[i]; 2058 2059 if (c == '\0') { 2060 /* 2061 * When printing character arrays as strings, NUL bytes 2062 * are always treated as string terminators; they are 2063 * never printed. 2064 */ 2065 break; 2066 } 2067 if (isprint(c)) 2068 btf_dump_printf(d, "%c", c); 2069 else 2070 btf_dump_printf(d, "\\x%02x", (__u8)c); 2071 } 2072 2073 btf_dump_printf(d, "\""); 2074 2075 return 0; 2076 } 2077 2078 static int btf_dump_array_data(struct btf_dump *d, 2079 const struct btf_type *t, 2080 __u32 id, 2081 const void *data) 2082 { 2083 const struct btf_array *array = btf_array(t); 2084 const struct btf_type *elem_type; 2085 __u32 i, elem_type_id; 2086 __s64 elem_size; 2087 bool is_array_member; 2088 bool is_array_terminated; 2089 2090 elem_type_id = array->type; 2091 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2092 elem_size = btf__resolve_size(d->btf, elem_type_id); 2093 if (elem_size <= 0) { 2094 pr_warn("unexpected elem size %zd for array type [%u]\n", 2095 (ssize_t)elem_size, id); 2096 return -EINVAL; 2097 } 2098 2099 if (btf_is_int(elem_type)) { 2100 /* 2101 * BTF_INT_CHAR encoding never seems to be set for 2102 * char arrays, so if size is 1 and element is 2103 * printable as a char, we'll do that. 2104 */ 2105 if (elem_size == 1) { 2106 if (d->typed_dump->emit_strings && 2107 btf_dump_string_data(d, t, id, data) == 0) { 2108 return 0; 2109 } 2110 d->typed_dump->is_array_char = true; 2111 } 2112 } 2113 2114 /* note that we increment depth before calling btf_dump_print() below; 2115 * this is intentional. btf_dump_data_newline() will not print a 2116 * newline for depth 0 (since this leaves us with trailing newlines 2117 * at the end of typed display), so depth is incremented first. 2118 * For similar reasons, we decrement depth before showing the closing 2119 * parenthesis. 2120 */ 2121 d->typed_dump->depth++; 2122 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 2123 2124 /* may be a multidimensional array, so store current "is array member" 2125 * status so we can restore it correctly later. 2126 */ 2127 is_array_member = d->typed_dump->is_array_member; 2128 d->typed_dump->is_array_member = true; 2129 is_array_terminated = d->typed_dump->is_array_terminated; 2130 d->typed_dump->is_array_terminated = false; 2131 for (i = 0; i < array->nelems; i++, data += elem_size) { 2132 if (d->typed_dump->is_array_terminated) 2133 break; 2134 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 2135 } 2136 d->typed_dump->is_array_member = is_array_member; 2137 d->typed_dump->is_array_terminated = is_array_terminated; 2138 d->typed_dump->depth--; 2139 btf_dump_data_pfx(d); 2140 btf_dump_type_values(d, "]"); 2141 2142 return 0; 2143 } 2144 2145 static int btf_dump_struct_data(struct btf_dump *d, 2146 const struct btf_type *t, 2147 __u32 id, 2148 const void *data) 2149 { 2150 const struct btf_member *m = btf_members(t); 2151 __u16 n = btf_vlen(t); 2152 int i, err = 0; 2153 2154 /* note that we increment depth before calling btf_dump_print() below; 2155 * this is intentional. btf_dump_data_newline() will not print a 2156 * newline for depth 0 (since this leaves us with trailing newlines 2157 * at the end of typed display), so depth is incremented first. 2158 * For similar reasons, we decrement depth before showing the closing 2159 * parenthesis. 2160 */ 2161 d->typed_dump->depth++; 2162 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 2163 2164 for (i = 0; i < n; i++, m++) { 2165 const struct btf_type *mtype; 2166 const char *mname; 2167 __u32 moffset; 2168 __u8 bit_sz; 2169 2170 mtype = btf__type_by_id(d->btf, m->type); 2171 mname = btf_name_of(d, m->name_off); 2172 moffset = btf_member_bit_offset(t, i); 2173 2174 bit_sz = btf_member_bitfield_size(t, i); 2175 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 2176 moffset % 8, bit_sz); 2177 if (err < 0) 2178 return err; 2179 } 2180 d->typed_dump->depth--; 2181 btf_dump_data_pfx(d); 2182 btf_dump_type_values(d, "}"); 2183 return err; 2184 } 2185 2186 union ptr_data { 2187 unsigned int p; 2188 unsigned long long lp; 2189 }; 2190 2191 static int btf_dump_ptr_data(struct btf_dump *d, 2192 const struct btf_type *t, 2193 __u32 id, 2194 const void *data) 2195 { 2196 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2197 btf_dump_type_values(d, "%p", *(void **)data); 2198 } else { 2199 union ptr_data pt; 2200 2201 memcpy(&pt, data, d->ptr_sz); 2202 if (d->ptr_sz == 4) 2203 btf_dump_type_values(d, "0x%x", pt.p); 2204 else 2205 btf_dump_type_values(d, "0x%llx", pt.lp); 2206 } 2207 return 0; 2208 } 2209 2210 static int btf_dump_get_enum_value(struct btf_dump *d, 2211 const struct btf_type *t, 2212 const void *data, 2213 __u32 id, 2214 __s64 *value) 2215 { 2216 bool is_signed = btf_kflag(t); 2217 2218 if (!ptr_is_aligned(d->btf, id, data)) { 2219 __u64 val; 2220 int err; 2221 2222 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2223 if (err) 2224 return err; 2225 *value = (__s64)val; 2226 return 0; 2227 } 2228 2229 switch (t->size) { 2230 case 8: 2231 *value = *(__s64 *)data; 2232 return 0; 2233 case 4: 2234 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2235 return 0; 2236 case 2: 2237 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2238 return 0; 2239 case 1: 2240 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2241 return 0; 2242 default: 2243 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2244 return -EINVAL; 2245 } 2246 } 2247 2248 static int btf_dump_enum_data(struct btf_dump *d, 2249 const struct btf_type *t, 2250 __u32 id, 2251 const void *data) 2252 { 2253 bool is_signed; 2254 __s64 value; 2255 int i, err; 2256 2257 err = btf_dump_get_enum_value(d, t, data, id, &value); 2258 if (err) 2259 return err; 2260 2261 is_signed = btf_kflag(t); 2262 if (btf_is_enum(t)) { 2263 const struct btf_enum *e; 2264 2265 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2266 if (value != e->val) 2267 continue; 2268 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2269 return 0; 2270 } 2271 2272 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2273 } else { 2274 const struct btf_enum64 *e; 2275 2276 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2277 if (value != btf_enum64_value(e)) 2278 continue; 2279 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2280 return 0; 2281 } 2282 2283 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2284 (unsigned long long)value); 2285 } 2286 return 0; 2287 } 2288 2289 static int btf_dump_datasec_data(struct btf_dump *d, 2290 const struct btf_type *t, 2291 __u32 id, 2292 const void *data) 2293 { 2294 const struct btf_var_secinfo *vsi; 2295 const struct btf_type *var; 2296 __u32 i; 2297 int err; 2298 2299 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2300 2301 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2302 var = btf__type_by_id(d->btf, vsi->type); 2303 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2304 if (err < 0) 2305 return err; 2306 btf_dump_printf(d, ";"); 2307 } 2308 return 0; 2309 } 2310 2311 /* return size of type, or if base type overflows, return -E2BIG. */ 2312 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2313 const struct btf_type *t, 2314 __u32 id, 2315 const void *data, 2316 __u8 bits_offset, 2317 __u8 bit_sz) 2318 { 2319 __s64 size; 2320 2321 if (bit_sz) { 2322 /* bits_offset is at most 7. bit_sz is at most 128. */ 2323 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8; 2324 2325 /* When bit_sz is non zero, it is called from 2326 * btf_dump_struct_data() where it only cares about 2327 * negative error value. 2328 * Return nr_bytes in success case to make it 2329 * consistent as the regular integer case below. 2330 */ 2331 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes; 2332 } 2333 2334 size = btf__resolve_size(d->btf, id); 2335 2336 if (size < 0 || size >= INT_MAX) { 2337 pr_warn("unexpected size [%zu] for id [%u]\n", 2338 (size_t)size, id); 2339 return -EINVAL; 2340 } 2341 2342 /* Only do overflow checking for base types; we do not want to 2343 * avoid showing part of a struct, union or array, even if we 2344 * do not have enough data to show the full object. By 2345 * restricting overflow checking to base types we can ensure 2346 * that partial display succeeds, while avoiding overflowing 2347 * and using bogus data for display. 2348 */ 2349 t = skip_mods_and_typedefs(d->btf, id, NULL); 2350 if (!t) { 2351 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2352 id); 2353 return -EINVAL; 2354 } 2355 2356 switch (btf_kind(t)) { 2357 case BTF_KIND_INT: 2358 case BTF_KIND_FLOAT: 2359 case BTF_KIND_PTR: 2360 case BTF_KIND_ENUM: 2361 case BTF_KIND_ENUM64: 2362 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2363 return -E2BIG; 2364 break; 2365 default: 2366 break; 2367 } 2368 return (int)size; 2369 } 2370 2371 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2372 const struct btf_type *t, 2373 __u32 id, 2374 const void *data, 2375 __u8 bits_offset, 2376 __u8 bit_sz) 2377 { 2378 __s64 value; 2379 int i, err; 2380 2381 /* toplevel exceptions; we show zero values if 2382 * - we ask for them (emit_zeros) 2383 * - if we are at top-level so we see "struct empty { }" 2384 * - or if we are an array member and the array is non-empty and 2385 * not a char array; we don't want to be in a situation where we 2386 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2387 * If the array contains zeroes only, or is a char array starting 2388 * with a '\0', the array-level check_zero() will prevent showing it; 2389 * we are concerned with determining zero value at the array member 2390 * level here. 2391 */ 2392 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2393 (d->typed_dump->is_array_member && 2394 !d->typed_dump->is_array_char)) 2395 return 0; 2396 2397 t = skip_mods_and_typedefs(d->btf, id, NULL); 2398 2399 switch (btf_kind(t)) { 2400 case BTF_KIND_INT: 2401 if (bit_sz) 2402 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2403 return btf_dump_base_type_check_zero(d, t, id, data); 2404 case BTF_KIND_FLOAT: 2405 case BTF_KIND_PTR: 2406 return btf_dump_base_type_check_zero(d, t, id, data); 2407 case BTF_KIND_ARRAY: { 2408 const struct btf_array *array = btf_array(t); 2409 const struct btf_type *elem_type; 2410 __u32 elem_type_id, elem_size; 2411 bool ischar; 2412 2413 elem_type_id = array->type; 2414 elem_size = btf__resolve_size(d->btf, elem_type_id); 2415 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2416 2417 ischar = btf_is_int(elem_type) && elem_size == 1; 2418 2419 /* check all elements; if _any_ element is nonzero, all 2420 * of array is displayed. We make an exception however 2421 * for char arrays where the first element is 0; these 2422 * are considered zeroed also, even if later elements are 2423 * non-zero because the string is terminated. 2424 */ 2425 for (i = 0; i < array->nelems; i++) { 2426 if (i == 0 && ischar && *(char *)data == 0) 2427 return -ENODATA; 2428 err = btf_dump_type_data_check_zero(d, elem_type, 2429 elem_type_id, 2430 data + 2431 (i * elem_size), 2432 bits_offset, 0); 2433 if (err != -ENODATA) 2434 return err; 2435 } 2436 return -ENODATA; 2437 } 2438 case BTF_KIND_STRUCT: 2439 case BTF_KIND_UNION: { 2440 const struct btf_member *m = btf_members(t); 2441 __u16 n = btf_vlen(t); 2442 2443 /* if any struct/union member is non-zero, the struct/union 2444 * is considered non-zero and dumped. 2445 */ 2446 for (i = 0; i < n; i++, m++) { 2447 const struct btf_type *mtype; 2448 __u32 moffset; 2449 2450 mtype = btf__type_by_id(d->btf, m->type); 2451 moffset = btf_member_bit_offset(t, i); 2452 2453 /* btf_int_bits() does not store member bitfield size; 2454 * bitfield size needs to be stored here so int display 2455 * of member can retrieve it. 2456 */ 2457 bit_sz = btf_member_bitfield_size(t, i); 2458 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2459 moffset % 8, bit_sz); 2460 if (err != ENODATA) 2461 return err; 2462 } 2463 return -ENODATA; 2464 } 2465 case BTF_KIND_ENUM: 2466 case BTF_KIND_ENUM64: 2467 err = btf_dump_get_enum_value(d, t, data, id, &value); 2468 if (err) 2469 return err; 2470 if (value == 0) 2471 return -ENODATA; 2472 return 0; 2473 default: 2474 return 0; 2475 } 2476 } 2477 2478 /* returns size of data dumped, or error. */ 2479 static int btf_dump_dump_type_data(struct btf_dump *d, 2480 const char *fname, 2481 const struct btf_type *t, 2482 __u32 id, 2483 const void *data, 2484 __u8 bits_offset, 2485 __u8 bit_sz) 2486 { 2487 int size, err = 0; 2488 2489 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz); 2490 if (size < 0) 2491 return size; 2492 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2493 if (err) { 2494 /* zeroed data is expected and not an error, so simply skip 2495 * dumping such data. Record other errors however. 2496 */ 2497 if (err == -ENODATA) 2498 return size; 2499 return err; 2500 } 2501 btf_dump_data_pfx(d); 2502 2503 if (!d->typed_dump->skip_names) { 2504 if (fname && strlen(fname) > 0) 2505 btf_dump_printf(d, ".%s = ", fname); 2506 btf_dump_emit_type_cast(d, id, true); 2507 } 2508 2509 t = skip_mods_and_typedefs(d->btf, id, NULL); 2510 2511 switch (btf_kind(t)) { 2512 case BTF_KIND_UNKN: 2513 case BTF_KIND_FWD: 2514 case BTF_KIND_FUNC: 2515 case BTF_KIND_FUNC_PROTO: 2516 case BTF_KIND_DECL_TAG: 2517 err = btf_dump_unsupported_data(d, t, id); 2518 break; 2519 case BTF_KIND_INT: 2520 if (bit_sz) 2521 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2522 else 2523 err = btf_dump_int_data(d, t, id, data, bits_offset); 2524 break; 2525 case BTF_KIND_FLOAT: 2526 err = btf_dump_float_data(d, t, id, data); 2527 break; 2528 case BTF_KIND_PTR: 2529 err = btf_dump_ptr_data(d, t, id, data); 2530 break; 2531 case BTF_KIND_ARRAY: 2532 err = btf_dump_array_data(d, t, id, data); 2533 break; 2534 case BTF_KIND_STRUCT: 2535 case BTF_KIND_UNION: 2536 err = btf_dump_struct_data(d, t, id, data); 2537 break; 2538 case BTF_KIND_ENUM: 2539 case BTF_KIND_ENUM64: 2540 /* handle bitfield and int enum values */ 2541 if (bit_sz) { 2542 __u64 print_num; 2543 __s64 enum_val; 2544 2545 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2546 &print_num); 2547 if (err) 2548 break; 2549 enum_val = (__s64)print_num; 2550 err = btf_dump_enum_data(d, t, id, &enum_val); 2551 } else 2552 err = btf_dump_enum_data(d, t, id, data); 2553 break; 2554 case BTF_KIND_VAR: 2555 err = btf_dump_var_data(d, t, id, data); 2556 break; 2557 case BTF_KIND_DATASEC: 2558 err = btf_dump_datasec_data(d, t, id, data); 2559 break; 2560 default: 2561 pr_warn("unexpected kind [%u] for id [%u]\n", 2562 BTF_INFO_KIND(t->info), id); 2563 return -EINVAL; 2564 } 2565 if (err < 0) 2566 return err; 2567 return size; 2568 } 2569 2570 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2571 const void *data, size_t data_sz, 2572 const struct btf_dump_type_data_opts *opts) 2573 { 2574 struct btf_dump_data typed_dump = {}; 2575 const struct btf_type *t; 2576 int ret; 2577 2578 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2579 return libbpf_err(-EINVAL); 2580 2581 t = btf__type_by_id(d->btf, id); 2582 if (!t) 2583 return libbpf_err(-ENOENT); 2584 2585 d->typed_dump = &typed_dump; 2586 d->typed_dump->data_end = data + data_sz; 2587 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2588 2589 /* default indent string is a tab */ 2590 if (!OPTS_GET(opts, indent_str, NULL)) 2591 d->typed_dump->indent_str[0] = '\t'; 2592 else 2593 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2594 sizeof(d->typed_dump->indent_str)); 2595 2596 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2597 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2598 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2599 d->typed_dump->emit_strings = OPTS_GET(opts, emit_strings, false); 2600 2601 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2602 2603 d->typed_dump = NULL; 2604 2605 return libbpf_err(ret); 2606 } 2607