1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <limits.h> 17 #include <linux/err.h> 18 #include <linux/btf.h> 19 #include <linux/kernel.h> 20 #include "btf.h" 21 #include "hashmap.h" 22 #include "libbpf.h" 23 #include "libbpf_internal.h" 24 #include "str_error.h" 25 26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 28 29 static const char *pfx(int lvl) 30 { 31 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 32 } 33 34 enum btf_dump_type_order_state { 35 NOT_ORDERED, 36 ORDERING, 37 ORDERED, 38 }; 39 40 enum btf_dump_type_emit_state { 41 NOT_EMITTED, 42 EMITTING, 43 EMITTED, 44 }; 45 46 /* per-type auxiliary state */ 47 struct btf_dump_type_aux_state { 48 /* topological sorting state */ 49 enum btf_dump_type_order_state order_state: 2; 50 /* emitting state used to determine the need for forward declaration */ 51 enum btf_dump_type_emit_state emit_state: 2; 52 /* whether forward declaration was already emitted */ 53 __u8 fwd_emitted: 1; 54 /* whether unique non-duplicate name was already assigned */ 55 __u8 name_resolved: 1; 56 /* whether type is referenced from any other type */ 57 __u8 referenced: 1; 58 }; 59 60 /* indent string length; one indent string is added for each indent level */ 61 #define BTF_DATA_INDENT_STR_LEN 32 62 63 /* 64 * Common internal data for BTF type data dump operations. 65 */ 66 struct btf_dump_data { 67 const void *data_end; /* end of valid data to show */ 68 bool compact; 69 bool skip_names; 70 bool emit_zeroes; 71 bool emit_strings; 72 __u8 indent_lvl; /* base indent level */ 73 char indent_str[BTF_DATA_INDENT_STR_LEN]; 74 /* below are used during iteration */ 75 int depth; 76 bool is_array_member; 77 bool is_array_terminated; 78 bool is_array_char; 79 }; 80 81 struct btf_dump { 82 const struct btf *btf; 83 btf_dump_printf_fn_t printf_fn; 84 void *cb_ctx; 85 int ptr_sz; 86 bool strip_mods; 87 bool skip_anon_defs; 88 int last_id; 89 90 /* per-type auxiliary state */ 91 struct btf_dump_type_aux_state *type_states; 92 size_t type_states_cap; 93 /* per-type optional cached unique name, must be freed, if present */ 94 const char **cached_names; 95 size_t cached_names_cap; 96 97 /* topo-sorted list of dependent type definitions */ 98 __u32 *emit_queue; 99 int emit_queue_cap; 100 int emit_queue_cnt; 101 102 /* 103 * stack of type declarations (e.g., chain of modifiers, arrays, 104 * funcs, etc) 105 */ 106 __u32 *decl_stack; 107 int decl_stack_cap; 108 int decl_stack_cnt; 109 110 /* maps struct/union/enum name to a number of name occurrences */ 111 struct hashmap *type_names; 112 /* 113 * maps typedef identifiers and enum value names to a number of such 114 * name occurrences 115 */ 116 struct hashmap *ident_names; 117 /* 118 * data for typed display; allocated if needed. 119 */ 120 struct btf_dump_data *typed_dump; 121 }; 122 123 static size_t str_hash_fn(long key, void *ctx) 124 { 125 return str_hash((void *)key); 126 } 127 128 static bool str_equal_fn(long a, long b, void *ctx) 129 { 130 return strcmp((void *)a, (void *)b) == 0; 131 } 132 133 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 134 { 135 return btf__name_by_offset(d->btf, name_off); 136 } 137 138 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 139 { 140 va_list args; 141 142 va_start(args, fmt); 143 d->printf_fn(d->cb_ctx, fmt, args); 144 va_end(args); 145 } 146 147 static int btf_dump_mark_referenced(struct btf_dump *d); 148 static int btf_dump_resize(struct btf_dump *d); 149 150 struct btf_dump *btf_dump__new(const struct btf *btf, 151 btf_dump_printf_fn_t printf_fn, 152 void *ctx, 153 const struct btf_dump_opts *opts) 154 { 155 struct btf_dump *d; 156 int err; 157 158 if (!OPTS_VALID(opts, btf_dump_opts)) 159 return libbpf_err_ptr(-EINVAL); 160 161 if (!printf_fn) 162 return libbpf_err_ptr(-EINVAL); 163 164 d = calloc(1, sizeof(struct btf_dump)); 165 if (!d) 166 return libbpf_err_ptr(-ENOMEM); 167 168 d->btf = btf; 169 d->printf_fn = printf_fn; 170 d->cb_ctx = ctx; 171 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 172 173 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 174 if (IS_ERR(d->type_names)) { 175 err = PTR_ERR(d->type_names); 176 d->type_names = NULL; 177 goto err; 178 } 179 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 180 if (IS_ERR(d->ident_names)) { 181 err = PTR_ERR(d->ident_names); 182 d->ident_names = NULL; 183 goto err; 184 } 185 186 err = btf_dump_resize(d); 187 if (err) 188 goto err; 189 190 return d; 191 err: 192 btf_dump__free(d); 193 return libbpf_err_ptr(err); 194 } 195 196 static int btf_dump_resize(struct btf_dump *d) 197 { 198 int err, last_id = btf__type_cnt(d->btf) - 1; 199 200 if (last_id <= d->last_id) 201 return 0; 202 203 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 204 sizeof(*d->type_states), last_id + 1)) 205 return -ENOMEM; 206 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 207 sizeof(*d->cached_names), last_id + 1)) 208 return -ENOMEM; 209 210 if (d->last_id == 0) { 211 /* VOID is special */ 212 d->type_states[0].order_state = ORDERED; 213 d->type_states[0].emit_state = EMITTED; 214 } 215 216 /* eagerly determine referenced types for anon enums */ 217 err = btf_dump_mark_referenced(d); 218 if (err) 219 return err; 220 221 d->last_id = last_id; 222 return 0; 223 } 224 225 static void btf_dump_free_names(struct hashmap *map) 226 { 227 size_t bkt; 228 struct hashmap_entry *cur; 229 230 if (!map) 231 return; 232 233 hashmap__for_each_entry(map, cur, bkt) 234 free((void *)cur->pkey); 235 236 hashmap__free(map); 237 } 238 239 void btf_dump__free(struct btf_dump *d) 240 { 241 int i; 242 243 if (IS_ERR_OR_NULL(d)) 244 return; 245 246 free(d->type_states); 247 if (d->cached_names) { 248 /* any set cached name is owned by us and should be freed */ 249 for (i = 0; i <= d->last_id; i++) { 250 if (d->cached_names[i]) 251 free((void *)d->cached_names[i]); 252 } 253 } 254 free(d->cached_names); 255 free(d->emit_queue); 256 free(d->decl_stack); 257 btf_dump_free_names(d->type_names); 258 btf_dump_free_names(d->ident_names); 259 260 free(d); 261 } 262 263 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 264 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 265 266 /* 267 * Dump BTF type in a compilable C syntax, including all the necessary 268 * dependent types, necessary for compilation. If some of the dependent types 269 * were already emitted as part of previous btf_dump__dump_type() invocation 270 * for another type, they won't be emitted again. This API allows callers to 271 * filter out BTF types according to user-defined criterias and emitted only 272 * minimal subset of types, necessary to compile everything. Full struct/union 273 * definitions will still be emitted, even if the only usage is through 274 * pointer and could be satisfied with just a forward declaration. 275 * 276 * Dumping is done in two high-level passes: 277 * 1. Topologically sort type definitions to satisfy C rules of compilation. 278 * 2. Emit type definitions in C syntax. 279 * 280 * Returns 0 on success; <0, otherwise. 281 */ 282 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 283 { 284 int err, i; 285 286 if (id >= btf__type_cnt(d->btf)) 287 return libbpf_err(-EINVAL); 288 289 err = btf_dump_resize(d); 290 if (err) 291 return libbpf_err(err); 292 293 d->emit_queue_cnt = 0; 294 err = btf_dump_order_type(d, id, false); 295 if (err < 0) 296 return libbpf_err(err); 297 298 for (i = 0; i < d->emit_queue_cnt; i++) 299 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 300 301 return 0; 302 } 303 304 /* 305 * Mark all types that are referenced from any other type. This is used to 306 * determine top-level anonymous enums that need to be emitted as an 307 * independent type declarations. 308 * Anonymous enums come in two flavors: either embedded in a struct's field 309 * definition, in which case they have to be declared inline as part of field 310 * type declaration; or as a top-level anonymous enum, typically used for 311 * declaring global constants. It's impossible to distinguish between two 312 * without knowing whether given enum type was referenced from other type: 313 * top-level anonymous enum won't be referenced by anything, while embedded 314 * one will. 315 */ 316 static int btf_dump_mark_referenced(struct btf_dump *d) 317 { 318 int i, j, n = btf__type_cnt(d->btf); 319 const struct btf_type *t; 320 __u16 vlen; 321 322 for (i = d->last_id + 1; i < n; i++) { 323 t = btf__type_by_id(d->btf, i); 324 vlen = btf_vlen(t); 325 326 switch (btf_kind(t)) { 327 case BTF_KIND_INT: 328 case BTF_KIND_ENUM: 329 case BTF_KIND_ENUM64: 330 case BTF_KIND_FWD: 331 case BTF_KIND_FLOAT: 332 break; 333 334 case BTF_KIND_VOLATILE: 335 case BTF_KIND_CONST: 336 case BTF_KIND_RESTRICT: 337 case BTF_KIND_PTR: 338 case BTF_KIND_TYPEDEF: 339 case BTF_KIND_FUNC: 340 case BTF_KIND_VAR: 341 case BTF_KIND_DECL_TAG: 342 case BTF_KIND_TYPE_TAG: 343 d->type_states[t->type].referenced = 1; 344 break; 345 346 case BTF_KIND_ARRAY: { 347 const struct btf_array *a = btf_array(t); 348 349 d->type_states[a->index_type].referenced = 1; 350 d->type_states[a->type].referenced = 1; 351 break; 352 } 353 case BTF_KIND_STRUCT: 354 case BTF_KIND_UNION: { 355 const struct btf_member *m = btf_members(t); 356 357 for (j = 0; j < vlen; j++, m++) 358 d->type_states[m->type].referenced = 1; 359 break; 360 } 361 case BTF_KIND_FUNC_PROTO: { 362 const struct btf_param *p = btf_params(t); 363 364 for (j = 0; j < vlen; j++, p++) 365 d->type_states[p->type].referenced = 1; 366 break; 367 } 368 case BTF_KIND_DATASEC: { 369 const struct btf_var_secinfo *v = btf_var_secinfos(t); 370 371 for (j = 0; j < vlen; j++, v++) 372 d->type_states[v->type].referenced = 1; 373 break; 374 } 375 default: 376 return -EINVAL; 377 } 378 } 379 return 0; 380 } 381 382 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 383 { 384 __u32 *new_queue; 385 size_t new_cap; 386 387 if (d->emit_queue_cnt >= d->emit_queue_cap) { 388 new_cap = max(16, d->emit_queue_cap * 3 / 2); 389 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 390 if (!new_queue) 391 return -ENOMEM; 392 d->emit_queue = new_queue; 393 d->emit_queue_cap = new_cap; 394 } 395 396 d->emit_queue[d->emit_queue_cnt++] = id; 397 return 0; 398 } 399 400 /* 401 * Determine order of emitting dependent types and specified type to satisfy 402 * C compilation rules. This is done through topological sorting with an 403 * additional complication which comes from C rules. The main idea for C is 404 * that if some type is "embedded" into a struct/union, it's size needs to be 405 * known at the time of definition of containing type. E.g., for: 406 * 407 * struct A {}; 408 * struct B { struct A x; } 409 * 410 * struct A *HAS* to be defined before struct B, because it's "embedded", 411 * i.e., it is part of struct B layout. But in the following case: 412 * 413 * struct A; 414 * struct B { struct A *x; } 415 * struct A {}; 416 * 417 * it's enough to just have a forward declaration of struct A at the time of 418 * struct B definition, as struct B has a pointer to struct A, so the size of 419 * field x is known without knowing struct A size: it's sizeof(void *). 420 * 421 * Unfortunately, there are some trickier cases we need to handle, e.g.: 422 * 423 * struct A {}; // if this was forward-declaration: compilation error 424 * struct B { 425 * struct { // anonymous struct 426 * struct A y; 427 * } *x; 428 * }; 429 * 430 * In this case, struct B's field x is a pointer, so it's size is known 431 * regardless of the size of (anonymous) struct it points to. But because this 432 * struct is anonymous and thus defined inline inside struct B, *and* it 433 * embeds struct A, compiler requires full definition of struct A to be known 434 * before struct B can be defined. This creates a transitive dependency 435 * between struct A and struct B. If struct A was forward-declared before 436 * struct B definition and fully defined after struct B definition, that would 437 * trigger compilation error. 438 * 439 * All this means that while we are doing topological sorting on BTF type 440 * graph, we need to determine relationships between different types (graph 441 * nodes): 442 * - weak link (relationship) between X and Y, if Y *CAN* be 443 * forward-declared at the point of X definition; 444 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 445 * 446 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 447 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 448 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 449 * Weak/strong relationship is determined recursively during DFS traversal and 450 * is returned as a result from btf_dump_order_type(). 451 * 452 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 453 * but it is not guaranteeing that no extraneous forward declarations will be 454 * emitted. 455 * 456 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 457 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 458 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 459 * entire graph path, so depending where from one came to that BTF type, it 460 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 461 * once they are processed, there is no need to do it again, so they are 462 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 463 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 464 * in any case, once those are processed, no need to do it again, as the 465 * result won't change. 466 * 467 * Returns: 468 * - 1, if type is part of strong link (so there is strong topological 469 * ordering requirements); 470 * - 0, if type is part of weak link (so can be satisfied through forward 471 * declaration); 472 * - <0, on error (e.g., unsatisfiable type loop detected). 473 */ 474 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 475 { 476 /* 477 * Order state is used to detect strong link cycles, but only for BTF 478 * kinds that are or could be an independent definition (i.e., 479 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 480 * func_protos, modifiers are just means to get to these definitions. 481 * Int/void don't need definitions, they are assumed to be always 482 * properly defined. We also ignore datasec, var, and funcs for now. 483 * So for all non-defining kinds, we never even set ordering state, 484 * for defining kinds we set ORDERING and subsequently ORDERED if it 485 * forms a strong link. 486 */ 487 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 488 const struct btf_type *t; 489 __u16 vlen; 490 int err, i; 491 492 /* return true, letting typedefs know that it's ok to be emitted */ 493 if (tstate->order_state == ORDERED) 494 return 1; 495 496 t = btf__type_by_id(d->btf, id); 497 498 if (tstate->order_state == ORDERING) { 499 /* type loop, but resolvable through fwd declaration */ 500 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 501 return 0; 502 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 503 return -ELOOP; 504 } 505 506 switch (btf_kind(t)) { 507 case BTF_KIND_INT: 508 case BTF_KIND_FLOAT: 509 tstate->order_state = ORDERED; 510 return 0; 511 512 case BTF_KIND_PTR: 513 err = btf_dump_order_type(d, t->type, true); 514 tstate->order_state = ORDERED; 515 return err; 516 517 case BTF_KIND_ARRAY: 518 return btf_dump_order_type(d, btf_array(t)->type, false); 519 520 case BTF_KIND_STRUCT: 521 case BTF_KIND_UNION: { 522 const struct btf_member *m = btf_members(t); 523 /* 524 * struct/union is part of strong link, only if it's embedded 525 * (so no ptr in a path) or it's anonymous (so has to be 526 * defined inline, even if declared through ptr) 527 */ 528 if (through_ptr && t->name_off != 0) 529 return 0; 530 531 tstate->order_state = ORDERING; 532 533 vlen = btf_vlen(t); 534 for (i = 0; i < vlen; i++, m++) { 535 err = btf_dump_order_type(d, m->type, false); 536 if (err < 0) 537 return err; 538 } 539 540 if (t->name_off != 0) { 541 err = btf_dump_add_emit_queue_id(d, id); 542 if (err < 0) 543 return err; 544 } 545 546 tstate->order_state = ORDERED; 547 return 1; 548 } 549 case BTF_KIND_ENUM: 550 case BTF_KIND_ENUM64: 551 case BTF_KIND_FWD: 552 /* 553 * non-anonymous or non-referenced enums are top-level 554 * declarations and should be emitted. Same logic can be 555 * applied to FWDs, it won't hurt anyways. 556 */ 557 if (t->name_off != 0 || !tstate->referenced) { 558 err = btf_dump_add_emit_queue_id(d, id); 559 if (err) 560 return err; 561 } 562 tstate->order_state = ORDERED; 563 return 1; 564 565 case BTF_KIND_TYPEDEF: { 566 int is_strong; 567 568 is_strong = btf_dump_order_type(d, t->type, through_ptr); 569 if (is_strong < 0) 570 return is_strong; 571 572 /* typedef is similar to struct/union w.r.t. fwd-decls */ 573 if (through_ptr && !is_strong) 574 return 0; 575 576 /* typedef is always a named definition */ 577 err = btf_dump_add_emit_queue_id(d, id); 578 if (err) 579 return err; 580 581 d->type_states[id].order_state = ORDERED; 582 return 1; 583 } 584 case BTF_KIND_VOLATILE: 585 case BTF_KIND_CONST: 586 case BTF_KIND_RESTRICT: 587 case BTF_KIND_TYPE_TAG: 588 return btf_dump_order_type(d, t->type, through_ptr); 589 590 case BTF_KIND_FUNC_PROTO: { 591 const struct btf_param *p = btf_params(t); 592 bool is_strong; 593 594 err = btf_dump_order_type(d, t->type, through_ptr); 595 if (err < 0) 596 return err; 597 is_strong = err > 0; 598 599 vlen = btf_vlen(t); 600 for (i = 0; i < vlen; i++, p++) { 601 err = btf_dump_order_type(d, p->type, through_ptr); 602 if (err < 0) 603 return err; 604 if (err > 0) 605 is_strong = true; 606 } 607 return is_strong; 608 } 609 case BTF_KIND_FUNC: 610 case BTF_KIND_VAR: 611 case BTF_KIND_DATASEC: 612 case BTF_KIND_DECL_TAG: 613 d->type_states[id].order_state = ORDERED; 614 return 0; 615 616 default: 617 return -EINVAL; 618 } 619 } 620 621 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 622 const struct btf_type *t); 623 624 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 625 const struct btf_type *t); 626 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 627 const struct btf_type *t, int lvl); 628 629 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 630 const struct btf_type *t); 631 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 632 const struct btf_type *t, int lvl); 633 634 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 635 const struct btf_type *t); 636 637 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 638 const struct btf_type *t, int lvl); 639 640 /* a local view into a shared stack */ 641 struct id_stack { 642 const __u32 *ids; 643 int cnt; 644 }; 645 646 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 647 const char *fname, int lvl); 648 static void btf_dump_emit_type_chain(struct btf_dump *d, 649 struct id_stack *decl_stack, 650 const char *fname, int lvl); 651 652 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 653 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 654 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 655 const char *orig_name); 656 657 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 658 { 659 const struct btf_type *t = btf__type_by_id(d->btf, id); 660 661 /* __builtin_va_list is a compiler built-in, which causes compilation 662 * errors, when compiling w/ different compiler, then used to compile 663 * original code (e.g., GCC to compile kernel, Clang to use generated 664 * C header from BTF). As it is built-in, it should be already defined 665 * properly internally in compiler. 666 */ 667 if (t->name_off == 0) 668 return false; 669 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 670 } 671 672 /* 673 * Emit C-syntax definitions of types from chains of BTF types. 674 * 675 * High-level handling of determining necessary forward declarations are handled 676 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 677 * declarations/definitions in C syntax are handled by a combo of 678 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 679 * corresponding btf_dump_emit_*_{def,fwd}() functions. 680 * 681 * We also keep track of "containing struct/union type ID" to determine when 682 * we reference it from inside and thus can avoid emitting unnecessary forward 683 * declaration. 684 * 685 * This algorithm is designed in such a way, that even if some error occurs 686 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 687 * that doesn't comply to C rules completely), algorithm will try to proceed 688 * and produce as much meaningful output as possible. 689 */ 690 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 691 { 692 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 693 bool top_level_def = cont_id == 0; 694 const struct btf_type *t; 695 __u16 kind; 696 697 if (tstate->emit_state == EMITTED) 698 return; 699 700 t = btf__type_by_id(d->btf, id); 701 kind = btf_kind(t); 702 703 if (tstate->emit_state == EMITTING) { 704 if (tstate->fwd_emitted) 705 return; 706 707 switch (kind) { 708 case BTF_KIND_STRUCT: 709 case BTF_KIND_UNION: 710 /* 711 * if we are referencing a struct/union that we are 712 * part of - then no need for fwd declaration 713 */ 714 if (id == cont_id) 715 return; 716 if (t->name_off == 0) { 717 pr_warn("anonymous struct/union loop, id:[%u]\n", 718 id); 719 return; 720 } 721 btf_dump_emit_struct_fwd(d, id, t); 722 btf_dump_printf(d, ";\n\n"); 723 tstate->fwd_emitted = 1; 724 break; 725 case BTF_KIND_TYPEDEF: 726 /* 727 * for typedef fwd_emitted means typedef definition 728 * was emitted, but it can be used only for "weak" 729 * references through pointer only, not for embedding 730 */ 731 if (!btf_dump_is_blacklisted(d, id)) { 732 btf_dump_emit_typedef_def(d, id, t, 0); 733 btf_dump_printf(d, ";\n\n"); 734 } 735 tstate->fwd_emitted = 1; 736 break; 737 default: 738 break; 739 } 740 741 return; 742 } 743 744 switch (kind) { 745 case BTF_KIND_INT: 746 /* Emit type alias definitions if necessary */ 747 btf_dump_emit_missing_aliases(d, id, t); 748 749 tstate->emit_state = EMITTED; 750 break; 751 case BTF_KIND_ENUM: 752 case BTF_KIND_ENUM64: 753 if (top_level_def) { 754 btf_dump_emit_enum_def(d, id, t, 0); 755 btf_dump_printf(d, ";\n\n"); 756 } 757 tstate->emit_state = EMITTED; 758 break; 759 case BTF_KIND_PTR: 760 case BTF_KIND_VOLATILE: 761 case BTF_KIND_CONST: 762 case BTF_KIND_RESTRICT: 763 case BTF_KIND_TYPE_TAG: 764 btf_dump_emit_type(d, t->type, cont_id); 765 break; 766 case BTF_KIND_ARRAY: 767 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 768 break; 769 case BTF_KIND_FWD: 770 btf_dump_emit_fwd_def(d, id, t); 771 btf_dump_printf(d, ";\n\n"); 772 tstate->emit_state = EMITTED; 773 break; 774 case BTF_KIND_TYPEDEF: 775 tstate->emit_state = EMITTING; 776 btf_dump_emit_type(d, t->type, id); 777 /* 778 * typedef can server as both definition and forward 779 * declaration; at this stage someone depends on 780 * typedef as a forward declaration (refers to it 781 * through pointer), so unless we already did it, 782 * emit typedef as a forward declaration 783 */ 784 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 785 btf_dump_emit_typedef_def(d, id, t, 0); 786 btf_dump_printf(d, ";\n\n"); 787 } 788 tstate->emit_state = EMITTED; 789 break; 790 case BTF_KIND_STRUCT: 791 case BTF_KIND_UNION: 792 tstate->emit_state = EMITTING; 793 /* if it's a top-level struct/union definition or struct/union 794 * is anonymous, then in C we'll be emitting all fields and 795 * their types (as opposed to just `struct X`), so we need to 796 * make sure that all types, referenced from struct/union 797 * members have necessary forward-declarations, where 798 * applicable 799 */ 800 if (top_level_def || t->name_off == 0) { 801 const struct btf_member *m = btf_members(t); 802 __u16 vlen = btf_vlen(t); 803 int i, new_cont_id; 804 805 new_cont_id = t->name_off == 0 ? cont_id : id; 806 for (i = 0; i < vlen; i++, m++) 807 btf_dump_emit_type(d, m->type, new_cont_id); 808 } else if (!tstate->fwd_emitted && id != cont_id) { 809 btf_dump_emit_struct_fwd(d, id, t); 810 btf_dump_printf(d, ";\n\n"); 811 tstate->fwd_emitted = 1; 812 } 813 814 if (top_level_def) { 815 btf_dump_emit_struct_def(d, id, t, 0); 816 btf_dump_printf(d, ";\n\n"); 817 tstate->emit_state = EMITTED; 818 } else { 819 tstate->emit_state = NOT_EMITTED; 820 } 821 break; 822 case BTF_KIND_FUNC_PROTO: { 823 const struct btf_param *p = btf_params(t); 824 __u16 n = btf_vlen(t); 825 int i; 826 827 btf_dump_emit_type(d, t->type, cont_id); 828 for (i = 0; i < n; i++, p++) 829 btf_dump_emit_type(d, p->type, cont_id); 830 831 break; 832 } 833 default: 834 break; 835 } 836 } 837 838 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 839 const struct btf_type *t) 840 { 841 const struct btf_member *m; 842 int max_align = 1, align, i, bit_sz; 843 __u16 vlen; 844 845 m = btf_members(t); 846 vlen = btf_vlen(t); 847 /* all non-bitfield fields have to be naturally aligned */ 848 for (i = 0; i < vlen; i++, m++) { 849 align = btf__align_of(btf, m->type); 850 bit_sz = btf_member_bitfield_size(t, i); 851 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 852 return true; 853 max_align = max(align, max_align); 854 } 855 /* size of a non-packed struct has to be a multiple of its alignment */ 856 if (t->size % max_align != 0) 857 return true; 858 /* 859 * if original struct was marked as packed, but its layout is 860 * naturally aligned, we'll detect that it's not packed 861 */ 862 return false; 863 } 864 865 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 866 int cur_off, int next_off, int next_align, 867 bool in_bitfield, int lvl) 868 { 869 const struct { 870 const char *name; 871 int bits; 872 } pads[] = { 873 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8} 874 }; 875 int new_off = 0, pad_bits = 0, bits, i; 876 const char *pad_type = NULL; 877 878 if (cur_off >= next_off) 879 return; /* no gap */ 880 881 /* For filling out padding we want to take advantage of 882 * natural alignment rules to minimize unnecessary explicit 883 * padding. First, we find the largest type (among long, int, 884 * short, or char) that can be used to force naturally aligned 885 * boundary. Once determined, we'll use such type to fill in 886 * the remaining padding gap. In some cases we can rely on 887 * compiler filling some gaps, but sometimes we need to force 888 * alignment to close natural alignment with markers like 889 * `long: 0` (this is always the case for bitfields). Note 890 * that even if struct itself has, let's say 4-byte alignment 891 * (i.e., it only uses up to int-aligned types), using `long: 892 * X;` explicit padding doesn't actually change struct's 893 * overall alignment requirements, but compiler does take into 894 * account that type's (long, in this example) natural 895 * alignment requirements when adding implicit padding. We use 896 * this fact heavily and don't worry about ruining correct 897 * struct alignment requirement. 898 */ 899 for (i = 0; i < ARRAY_SIZE(pads); i++) { 900 pad_bits = pads[i].bits; 901 pad_type = pads[i].name; 902 903 new_off = roundup(cur_off, pad_bits); 904 if (new_off <= next_off) 905 break; 906 } 907 908 if (new_off > cur_off && new_off <= next_off) { 909 /* We need explicit `<type>: 0` aligning mark if next 910 * field is right on alignment offset and its 911 * alignment requirement is less strict than <type>'s 912 * alignment (so compiler won't naturally align to the 913 * offset we expect), or if subsequent `<type>: X`, 914 * will actually completely fit in the remaining hole, 915 * making compiler basically ignore `<type>: X` 916 * completely. 917 */ 918 if (in_bitfield || 919 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) || 920 (new_off != next_off && next_off - new_off <= new_off - cur_off)) 921 /* but for bitfields we'll emit explicit bit count */ 922 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, 923 in_bitfield ? new_off - cur_off : 0); 924 cur_off = new_off; 925 } 926 927 /* Now we know we start at naturally aligned offset for a chosen 928 * padding type (long, int, short, or char), and so the rest is just 929 * a straightforward filling of remaining padding gap with full 930 * `<type>: sizeof(<type>);` markers, except for the last one, which 931 * might need smaller than sizeof(<type>) padding. 932 */ 933 while (cur_off != next_off) { 934 bits = min(next_off - cur_off, pad_bits); 935 if (bits == pad_bits) { 936 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 937 cur_off += bits; 938 continue; 939 } 940 /* For the remainder padding that doesn't cover entire 941 * pad_type bit length, we pick the smallest necessary type. 942 * This is pure aesthetics, we could have just used `long`, 943 * but having smallest necessary one communicates better the 944 * scale of the padding gap. 945 */ 946 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) { 947 pad_type = pads[i].name; 948 pad_bits = pads[i].bits; 949 if (pad_bits < bits) 950 continue; 951 952 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits); 953 cur_off += bits; 954 break; 955 } 956 } 957 } 958 959 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 960 const struct btf_type *t) 961 { 962 btf_dump_printf(d, "%s%s%s", 963 btf_is_struct(t) ? "struct" : "union", 964 t->name_off ? " " : "", 965 btf_dump_type_name(d, id)); 966 } 967 968 static void btf_dump_emit_struct_def(struct btf_dump *d, 969 __u32 id, 970 const struct btf_type *t, 971 int lvl) 972 { 973 const struct btf_member *m = btf_members(t); 974 bool is_struct = btf_is_struct(t); 975 bool packed, prev_bitfield = false; 976 int align, i, off = 0; 977 __u16 vlen = btf_vlen(t); 978 979 align = btf__align_of(d->btf, id); 980 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 981 982 btf_dump_printf(d, "%s%s%s {", 983 is_struct ? "struct" : "union", 984 t->name_off ? " " : "", 985 btf_dump_type_name(d, id)); 986 987 for (i = 0; i < vlen; i++, m++) { 988 const char *fname; 989 int m_off, m_sz, m_align; 990 bool in_bitfield; 991 992 fname = btf_name_of(d, m->name_off); 993 m_sz = btf_member_bitfield_size(t, i); 994 m_off = btf_member_bit_offset(t, i); 995 m_align = packed ? 1 : btf__align_of(d->btf, m->type); 996 997 in_bitfield = prev_bitfield && m_sz != 0; 998 999 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1); 1000 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 1001 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 1002 1003 if (m_sz) { 1004 btf_dump_printf(d, ": %d", m_sz); 1005 off = m_off + m_sz; 1006 prev_bitfield = true; 1007 } else { 1008 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 1009 off = m_off + m_sz * 8; 1010 prev_bitfield = false; 1011 } 1012 1013 btf_dump_printf(d, ";"); 1014 } 1015 1016 /* pad at the end, if necessary */ 1017 if (is_struct) 1018 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1); 1019 1020 /* 1021 * Keep `struct empty {}` on a single line, 1022 * only print newline when there are regular or padding fields. 1023 */ 1024 if (vlen || t->size) { 1025 btf_dump_printf(d, "\n"); 1026 btf_dump_printf(d, "%s}", pfx(lvl)); 1027 } else { 1028 btf_dump_printf(d, "}"); 1029 } 1030 if (packed) 1031 btf_dump_printf(d, " __attribute__((packed))"); 1032 } 1033 1034 static const char *missing_base_types[][2] = { 1035 /* 1036 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 1037 * SIMD intrinsics. Alias them to standard base types. 1038 */ 1039 { "__Poly8_t", "unsigned char" }, 1040 { "__Poly16_t", "unsigned short" }, 1041 { "__Poly64_t", "unsigned long long" }, 1042 { "__Poly128_t", "unsigned __int128" }, 1043 }; 1044 1045 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 1046 const struct btf_type *t) 1047 { 1048 const char *name = btf_dump_type_name(d, id); 1049 int i; 1050 1051 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 1052 if (strcmp(name, missing_base_types[i][0]) == 0) { 1053 btf_dump_printf(d, "typedef %s %s;\n\n", 1054 missing_base_types[i][1], name); 1055 break; 1056 } 1057 } 1058 } 1059 1060 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 1061 const struct btf_type *t) 1062 { 1063 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 1064 } 1065 1066 static void btf_dump_emit_enum32_val(struct btf_dump *d, 1067 const struct btf_type *t, 1068 int lvl, __u16 vlen) 1069 { 1070 const struct btf_enum *v = btf_enum(t); 1071 bool is_signed = btf_kflag(t); 1072 const char *fmt_str; 1073 const char *name; 1074 size_t dup_cnt; 1075 int i; 1076 1077 for (i = 0; i < vlen; i++, v++) { 1078 name = btf_name_of(d, v->name_off); 1079 /* enumerators share namespace with typedef idents */ 1080 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1081 if (dup_cnt > 1) { 1082 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1083 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1084 } else { 1085 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1086 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1087 } 1088 } 1089 } 1090 1091 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1092 const struct btf_type *t, 1093 int lvl, __u16 vlen) 1094 { 1095 const struct btf_enum64 *v = btf_enum64(t); 1096 bool is_signed = btf_kflag(t); 1097 const char *fmt_str; 1098 const char *name; 1099 size_t dup_cnt; 1100 __u64 val; 1101 int i; 1102 1103 for (i = 0; i < vlen; i++, v++) { 1104 name = btf_name_of(d, v->name_off); 1105 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1106 val = btf_enum64_value(v); 1107 if (dup_cnt > 1) { 1108 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1109 : "\n%s%s___%zd = %lluULL,"; 1110 btf_dump_printf(d, fmt_str, 1111 pfx(lvl + 1), name, dup_cnt, 1112 (unsigned long long)val); 1113 } else { 1114 fmt_str = is_signed ? "\n%s%s = %lldLL," 1115 : "\n%s%s = %lluULL,"; 1116 btf_dump_printf(d, fmt_str, 1117 pfx(lvl + 1), name, 1118 (unsigned long long)val); 1119 } 1120 } 1121 } 1122 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1123 const struct btf_type *t, 1124 int lvl) 1125 { 1126 __u16 vlen = btf_vlen(t); 1127 1128 btf_dump_printf(d, "enum%s%s", 1129 t->name_off ? " " : "", 1130 btf_dump_type_name(d, id)); 1131 1132 if (!vlen) 1133 return; 1134 1135 btf_dump_printf(d, " {"); 1136 if (btf_is_enum(t)) 1137 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1138 else 1139 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1140 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1141 1142 /* special case enums with special sizes */ 1143 if (t->size == 1) { 1144 /* one-byte enums can be forced with mode(byte) attribute */ 1145 btf_dump_printf(d, " __attribute__((mode(byte)))"); 1146 } else if (t->size == 8 && d->ptr_sz == 8) { 1147 /* enum can be 8-byte sized if one of the enumerator values 1148 * doesn't fit in 32-bit integer, or by adding mode(word) 1149 * attribute (but probably only on 64-bit architectures); do 1150 * our best here to try to satisfy the contract without adding 1151 * unnecessary attributes 1152 */ 1153 bool needs_word_mode; 1154 1155 if (btf_is_enum(t)) { 1156 /* enum can't represent 64-bit values, so we need word mode */ 1157 needs_word_mode = true; 1158 } else { 1159 /* enum64 needs mode(word) if none of its values has 1160 * non-zero upper 32-bits (which means that all values 1161 * fit in 32-bit integers and won't cause compiler to 1162 * bump enum to be 64-bit naturally 1163 */ 1164 int i; 1165 1166 needs_word_mode = true; 1167 for (i = 0; i < vlen; i++) { 1168 if (btf_enum64(t)[i].val_hi32 != 0) { 1169 needs_word_mode = false; 1170 break; 1171 } 1172 } 1173 } 1174 if (needs_word_mode) 1175 btf_dump_printf(d, " __attribute__((mode(word)))"); 1176 } 1177 1178 } 1179 1180 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1181 const struct btf_type *t) 1182 { 1183 const char *name = btf_dump_type_name(d, id); 1184 1185 if (btf_kflag(t)) 1186 btf_dump_printf(d, "union %s", name); 1187 else 1188 btf_dump_printf(d, "struct %s", name); 1189 } 1190 1191 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1192 const struct btf_type *t, int lvl) 1193 { 1194 const char *name = btf_dump_ident_name(d, id); 1195 1196 /* 1197 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1198 * pointing to VOID. This generates warnings from btf_dump() and 1199 * results in uncompilable header file, so we are fixing it up here 1200 * with valid typedef into __builtin_va_list. 1201 */ 1202 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1203 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1204 return; 1205 } 1206 1207 btf_dump_printf(d, "typedef "); 1208 btf_dump_emit_type_decl(d, t->type, name, lvl); 1209 } 1210 1211 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1212 { 1213 __u32 *new_stack; 1214 size_t new_cap; 1215 1216 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1217 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1218 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1219 if (!new_stack) 1220 return -ENOMEM; 1221 d->decl_stack = new_stack; 1222 d->decl_stack_cap = new_cap; 1223 } 1224 1225 d->decl_stack[d->decl_stack_cnt++] = id; 1226 1227 return 0; 1228 } 1229 1230 /* 1231 * Emit type declaration (e.g., field type declaration in a struct or argument 1232 * declaration in function prototype) in correct C syntax. 1233 * 1234 * For most types it's trivial, but there are few quirky type declaration 1235 * cases worth mentioning: 1236 * - function prototypes (especially nesting of function prototypes); 1237 * - arrays; 1238 * - const/volatile/restrict for pointers vs other types. 1239 * 1240 * For a good discussion of *PARSING* C syntax (as a human), see 1241 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1242 * Ch.3 "Unscrambling Declarations in C". 1243 * 1244 * It won't help with BTF to C conversion much, though, as it's an opposite 1245 * problem. So we came up with this algorithm in reverse to van der Linden's 1246 * parsing algorithm. It goes from structured BTF representation of type 1247 * declaration to a valid compilable C syntax. 1248 * 1249 * For instance, consider this C typedef: 1250 * typedef const int * const * arr[10] arr_t; 1251 * It will be represented in BTF with this chain of BTF types: 1252 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1253 * 1254 * Notice how [const] modifier always goes before type it modifies in BTF type 1255 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1256 * the right of pointers, but to the left of other types. There are also other 1257 * quirks, like function pointers, arrays of them, functions returning other 1258 * functions, etc. 1259 * 1260 * We handle that by pushing all the types to a stack, until we hit "terminal" 1261 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1262 * top of a stack, modifiers are handled differently. Array/function pointers 1263 * have also wildly different syntax and how nesting of them are done. See 1264 * code for authoritative definition. 1265 * 1266 * To avoid allocating new stack for each independent chain of BTF types, we 1267 * share one bigger stack, with each chain working only on its own local view 1268 * of a stack frame. Some care is required to "pop" stack frames after 1269 * processing type declaration chain. 1270 */ 1271 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1272 const struct btf_dump_emit_type_decl_opts *opts) 1273 { 1274 const char *fname; 1275 int lvl, err; 1276 1277 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1278 return libbpf_err(-EINVAL); 1279 1280 err = btf_dump_resize(d); 1281 if (err) 1282 return libbpf_err(err); 1283 1284 fname = OPTS_GET(opts, field_name, ""); 1285 lvl = OPTS_GET(opts, indent_level, 0); 1286 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1287 btf_dump_emit_type_decl(d, id, fname, lvl); 1288 d->strip_mods = false; 1289 return 0; 1290 } 1291 1292 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1293 const char *fname, int lvl) 1294 { 1295 struct id_stack decl_stack; 1296 const struct btf_type *t; 1297 int err, stack_start; 1298 1299 stack_start = d->decl_stack_cnt; 1300 for (;;) { 1301 t = btf__type_by_id(d->btf, id); 1302 if (d->strip_mods && btf_is_mod(t)) 1303 goto skip_mod; 1304 1305 err = btf_dump_push_decl_stack_id(d, id); 1306 if (err < 0) { 1307 /* 1308 * if we don't have enough memory for entire type decl 1309 * chain, restore stack, emit warning, and try to 1310 * proceed nevertheless 1311 */ 1312 pr_warn("not enough memory for decl stack: %s\n", errstr(err)); 1313 d->decl_stack_cnt = stack_start; 1314 return; 1315 } 1316 skip_mod: 1317 /* VOID */ 1318 if (id == 0) 1319 break; 1320 1321 switch (btf_kind(t)) { 1322 case BTF_KIND_PTR: 1323 case BTF_KIND_VOLATILE: 1324 case BTF_KIND_CONST: 1325 case BTF_KIND_RESTRICT: 1326 case BTF_KIND_FUNC_PROTO: 1327 case BTF_KIND_TYPE_TAG: 1328 id = t->type; 1329 break; 1330 case BTF_KIND_ARRAY: 1331 id = btf_array(t)->type; 1332 break; 1333 case BTF_KIND_INT: 1334 case BTF_KIND_ENUM: 1335 case BTF_KIND_ENUM64: 1336 case BTF_KIND_FWD: 1337 case BTF_KIND_STRUCT: 1338 case BTF_KIND_UNION: 1339 case BTF_KIND_TYPEDEF: 1340 case BTF_KIND_FLOAT: 1341 goto done; 1342 default: 1343 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1344 btf_kind(t), id); 1345 goto done; 1346 } 1347 } 1348 done: 1349 /* 1350 * We might be inside a chain of declarations (e.g., array of function 1351 * pointers returning anonymous (so inlined) structs, having another 1352 * array field). Each of those needs its own "stack frame" to handle 1353 * emitting of declarations. Those stack frames are non-overlapping 1354 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1355 * handle this set of nested stacks, we create a view corresponding to 1356 * our own "stack frame" and work with it as an independent stack. 1357 * We'll need to clean up after emit_type_chain() returns, though. 1358 */ 1359 decl_stack.ids = d->decl_stack + stack_start; 1360 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1361 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1362 /* 1363 * emit_type_chain() guarantees that it will pop its entire decl_stack 1364 * frame before returning. But it works with a read-only view into 1365 * decl_stack, so it doesn't actually pop anything from the 1366 * perspective of shared btf_dump->decl_stack, per se. We need to 1367 * reset decl_stack state to how it was before us to avoid it growing 1368 * all the time. 1369 */ 1370 d->decl_stack_cnt = stack_start; 1371 } 1372 1373 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1374 { 1375 const struct btf_type *t; 1376 __u32 id; 1377 1378 while (decl_stack->cnt) { 1379 id = decl_stack->ids[decl_stack->cnt - 1]; 1380 t = btf__type_by_id(d->btf, id); 1381 1382 switch (btf_kind(t)) { 1383 case BTF_KIND_VOLATILE: 1384 btf_dump_printf(d, "volatile "); 1385 break; 1386 case BTF_KIND_CONST: 1387 btf_dump_printf(d, "const "); 1388 break; 1389 case BTF_KIND_RESTRICT: 1390 btf_dump_printf(d, "restrict "); 1391 break; 1392 default: 1393 return; 1394 } 1395 decl_stack->cnt--; 1396 } 1397 } 1398 1399 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1400 { 1401 const struct btf_type *t; 1402 __u32 id; 1403 1404 while (decl_stack->cnt) { 1405 id = decl_stack->ids[decl_stack->cnt - 1]; 1406 t = btf__type_by_id(d->btf, id); 1407 if (!btf_is_mod(t)) 1408 return; 1409 decl_stack->cnt--; 1410 } 1411 } 1412 1413 static void btf_dump_emit_name(const struct btf_dump *d, 1414 const char *name, bool last_was_ptr) 1415 { 1416 bool separate = name[0] && !last_was_ptr; 1417 1418 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1419 } 1420 1421 static void btf_dump_emit_type_chain(struct btf_dump *d, 1422 struct id_stack *decls, 1423 const char *fname, int lvl) 1424 { 1425 /* 1426 * last_was_ptr is used to determine if we need to separate pointer 1427 * asterisk (*) from previous part of type signature with space, so 1428 * that we get `int ***`, instead of `int * * *`. We default to true 1429 * for cases where we have single pointer in a chain. E.g., in ptr -> 1430 * func_proto case. func_proto will start a new emit_type_chain call 1431 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1432 * don't want to prepend space for that last pointer. 1433 */ 1434 bool last_was_ptr = true; 1435 const struct btf_type *t; 1436 const char *name; 1437 __u16 kind; 1438 __u32 id; 1439 1440 while (decls->cnt) { 1441 id = decls->ids[--decls->cnt]; 1442 if (id == 0) { 1443 /* VOID is a special snowflake */ 1444 btf_dump_emit_mods(d, decls); 1445 btf_dump_printf(d, "void"); 1446 last_was_ptr = false; 1447 continue; 1448 } 1449 1450 t = btf__type_by_id(d->btf, id); 1451 kind = btf_kind(t); 1452 1453 switch (kind) { 1454 case BTF_KIND_INT: 1455 case BTF_KIND_FLOAT: 1456 btf_dump_emit_mods(d, decls); 1457 name = btf_name_of(d, t->name_off); 1458 btf_dump_printf(d, "%s", name); 1459 break; 1460 case BTF_KIND_STRUCT: 1461 case BTF_KIND_UNION: 1462 btf_dump_emit_mods(d, decls); 1463 /* inline anonymous struct/union */ 1464 if (t->name_off == 0 && !d->skip_anon_defs) 1465 btf_dump_emit_struct_def(d, id, t, lvl); 1466 else 1467 btf_dump_emit_struct_fwd(d, id, t); 1468 break; 1469 case BTF_KIND_ENUM: 1470 case BTF_KIND_ENUM64: 1471 btf_dump_emit_mods(d, decls); 1472 /* inline anonymous enum */ 1473 if (t->name_off == 0 && !d->skip_anon_defs) 1474 btf_dump_emit_enum_def(d, id, t, lvl); 1475 else 1476 btf_dump_emit_enum_fwd(d, id, t); 1477 break; 1478 case BTF_KIND_FWD: 1479 btf_dump_emit_mods(d, decls); 1480 btf_dump_emit_fwd_def(d, id, t); 1481 break; 1482 case BTF_KIND_TYPEDEF: 1483 btf_dump_emit_mods(d, decls); 1484 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1485 break; 1486 case BTF_KIND_PTR: 1487 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1488 break; 1489 case BTF_KIND_VOLATILE: 1490 btf_dump_printf(d, " volatile"); 1491 break; 1492 case BTF_KIND_CONST: 1493 btf_dump_printf(d, " const"); 1494 break; 1495 case BTF_KIND_RESTRICT: 1496 btf_dump_printf(d, " restrict"); 1497 break; 1498 case BTF_KIND_TYPE_TAG: 1499 btf_dump_emit_mods(d, decls); 1500 name = btf_name_of(d, t->name_off); 1501 if (btf_kflag(t)) 1502 btf_dump_printf(d, " __attribute__((%s))", name); 1503 else 1504 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1505 break; 1506 case BTF_KIND_ARRAY: { 1507 const struct btf_array *a = btf_array(t); 1508 const struct btf_type *next_t; 1509 __u32 next_id; 1510 bool multidim; 1511 /* 1512 * GCC has a bug 1513 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1514 * which causes it to emit extra const/volatile 1515 * modifiers for an array, if array's element type has 1516 * const/volatile modifiers. Clang doesn't do that. 1517 * In general, it doesn't seem very meaningful to have 1518 * a const/volatile modifier for array, so we are 1519 * going to silently skip them here. 1520 */ 1521 btf_dump_drop_mods(d, decls); 1522 1523 if (decls->cnt == 0) { 1524 btf_dump_emit_name(d, fname, last_was_ptr); 1525 btf_dump_printf(d, "[%u]", a->nelems); 1526 return; 1527 } 1528 1529 next_id = decls->ids[decls->cnt - 1]; 1530 next_t = btf__type_by_id(d->btf, next_id); 1531 multidim = btf_is_array(next_t); 1532 /* we need space if we have named non-pointer */ 1533 if (fname[0] && !last_was_ptr) 1534 btf_dump_printf(d, " "); 1535 /* no parentheses for multi-dimensional array */ 1536 if (!multidim) 1537 btf_dump_printf(d, "("); 1538 btf_dump_emit_type_chain(d, decls, fname, lvl); 1539 if (!multidim) 1540 btf_dump_printf(d, ")"); 1541 btf_dump_printf(d, "[%u]", a->nelems); 1542 return; 1543 } 1544 case BTF_KIND_FUNC_PROTO: { 1545 const struct btf_param *p = btf_params(t); 1546 __u16 vlen = btf_vlen(t); 1547 int i; 1548 1549 /* 1550 * GCC emits extra volatile qualifier for 1551 * __attribute__((noreturn)) function pointers. Clang 1552 * doesn't do it. It's a GCC quirk for backwards 1553 * compatibility with code written for GCC <2.5. So, 1554 * similarly to extra qualifiers for array, just drop 1555 * them, instead of handling them. 1556 */ 1557 btf_dump_drop_mods(d, decls); 1558 if (decls->cnt) { 1559 btf_dump_printf(d, " ("); 1560 btf_dump_emit_type_chain(d, decls, fname, lvl); 1561 btf_dump_printf(d, ")"); 1562 } else { 1563 btf_dump_emit_name(d, fname, last_was_ptr); 1564 } 1565 btf_dump_printf(d, "("); 1566 /* 1567 * Clang for BPF target generates func_proto with no 1568 * args as a func_proto with a single void arg (e.g., 1569 * `int (*f)(void)` vs just `int (*f)()`). We are 1570 * going to emit valid empty args (void) syntax for 1571 * such case. Similarly and conveniently, valid 1572 * no args case can be special-cased here as well. 1573 */ 1574 if (vlen == 0 || (vlen == 1 && p->type == 0)) { 1575 btf_dump_printf(d, "void)"); 1576 return; 1577 } 1578 1579 for (i = 0; i < vlen; i++, p++) { 1580 if (i > 0) 1581 btf_dump_printf(d, ", "); 1582 1583 /* last arg of type void is vararg */ 1584 if (i == vlen - 1 && p->type == 0) { 1585 btf_dump_printf(d, "..."); 1586 break; 1587 } 1588 1589 name = btf_name_of(d, p->name_off); 1590 btf_dump_emit_type_decl(d, p->type, name, lvl); 1591 } 1592 1593 btf_dump_printf(d, ")"); 1594 return; 1595 } 1596 default: 1597 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1598 kind, id); 1599 return; 1600 } 1601 1602 last_was_ptr = kind == BTF_KIND_PTR; 1603 } 1604 1605 btf_dump_emit_name(d, fname, last_was_ptr); 1606 } 1607 1608 /* show type name as (type_name) */ 1609 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1610 bool top_level) 1611 { 1612 const struct btf_type *t; 1613 1614 /* for array members, we don't bother emitting type name for each 1615 * member to avoid the redundancy of 1616 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1617 */ 1618 if (d->typed_dump->is_array_member) 1619 return; 1620 1621 /* avoid type name specification for variable/section; it will be done 1622 * for the associated variable value(s). 1623 */ 1624 t = btf__type_by_id(d->btf, id); 1625 if (btf_is_var(t) || btf_is_datasec(t)) 1626 return; 1627 1628 if (top_level) 1629 btf_dump_printf(d, "("); 1630 1631 d->skip_anon_defs = true; 1632 d->strip_mods = true; 1633 btf_dump_emit_type_decl(d, id, "", 0); 1634 d->strip_mods = false; 1635 d->skip_anon_defs = false; 1636 1637 if (top_level) 1638 btf_dump_printf(d, ")"); 1639 } 1640 1641 /* return number of duplicates (occurrences) of a given name */ 1642 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1643 const char *orig_name) 1644 { 1645 char *old_name, *new_name; 1646 size_t dup_cnt = 0; 1647 int err; 1648 1649 new_name = strdup(orig_name); 1650 if (!new_name) 1651 return 1; 1652 1653 (void)hashmap__find(name_map, orig_name, &dup_cnt); 1654 dup_cnt++; 1655 1656 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL); 1657 if (err) 1658 free(new_name); 1659 1660 free(old_name); 1661 1662 return dup_cnt; 1663 } 1664 1665 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1666 struct hashmap *name_map) 1667 { 1668 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1669 const struct btf_type *t = btf__type_by_id(d->btf, id); 1670 const char *orig_name = btf_name_of(d, t->name_off); 1671 const char **cached_name = &d->cached_names[id]; 1672 size_t dup_cnt; 1673 1674 if (t->name_off == 0) 1675 return ""; 1676 1677 if (s->name_resolved) 1678 return *cached_name ? *cached_name : orig_name; 1679 1680 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1681 s->name_resolved = 1; 1682 return orig_name; 1683 } 1684 1685 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1686 if (dup_cnt > 1) { 1687 const size_t max_len = 256; 1688 char new_name[max_len]; 1689 1690 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1691 *cached_name = strdup(new_name); 1692 } 1693 1694 s->name_resolved = 1; 1695 return *cached_name ? *cached_name : orig_name; 1696 } 1697 1698 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1699 { 1700 return btf_dump_resolve_name(d, id, d->type_names); 1701 } 1702 1703 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1704 { 1705 return btf_dump_resolve_name(d, id, d->ident_names); 1706 } 1707 1708 static int btf_dump_dump_type_data(struct btf_dump *d, 1709 const char *fname, 1710 const struct btf_type *t, 1711 __u32 id, 1712 const void *data, 1713 __u8 bits_offset, 1714 __u8 bit_sz); 1715 1716 static const char *btf_dump_data_newline(struct btf_dump *d) 1717 { 1718 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1719 } 1720 1721 static const char *btf_dump_data_delim(struct btf_dump *d) 1722 { 1723 return d->typed_dump->depth == 0 ? "" : ","; 1724 } 1725 1726 static void btf_dump_data_pfx(struct btf_dump *d) 1727 { 1728 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1729 1730 if (d->typed_dump->compact) 1731 return; 1732 1733 for (i = 0; i < lvl; i++) 1734 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1735 } 1736 1737 /* A macro is used here as btf_type_value[s]() appends format specifiers 1738 * to the format specifier passed in; these do the work of appending 1739 * delimiters etc while the caller simply has to specify the type values 1740 * in the format specifier + value(s). 1741 */ 1742 #define btf_dump_type_values(d, fmt, ...) \ 1743 btf_dump_printf(d, fmt "%s%s", \ 1744 ##__VA_ARGS__, \ 1745 btf_dump_data_delim(d), \ 1746 btf_dump_data_newline(d)) 1747 1748 static int btf_dump_unsupported_data(struct btf_dump *d, 1749 const struct btf_type *t, 1750 __u32 id) 1751 { 1752 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1753 return -ENOTSUP; 1754 } 1755 1756 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1757 const struct btf_type *t, 1758 const void *data, 1759 __u8 bits_offset, 1760 __u8 bit_sz, 1761 __u64 *value) 1762 { 1763 __u16 left_shift_bits, right_shift_bits; 1764 const __u8 *bytes = data; 1765 __u8 nr_copy_bits; 1766 __u64 num = 0; 1767 int i; 1768 1769 /* Maximum supported bitfield size is 64 bits */ 1770 if (t->size > 8) { 1771 pr_warn("unexpected bitfield size %d\n", t->size); 1772 return -EINVAL; 1773 } 1774 1775 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1776 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1777 */ 1778 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1779 for (i = t->size - 1; i >= 0; i--) 1780 num = num * 256 + bytes[i]; 1781 nr_copy_bits = bit_sz + bits_offset; 1782 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1783 for (i = 0; i < t->size; i++) 1784 num = num * 256 + bytes[i]; 1785 nr_copy_bits = t->size * 8 - bits_offset; 1786 #else 1787 # error "Unrecognized __BYTE_ORDER__" 1788 #endif 1789 left_shift_bits = 64 - nr_copy_bits; 1790 right_shift_bits = 64 - bit_sz; 1791 1792 *value = (num << left_shift_bits) >> right_shift_bits; 1793 1794 return 0; 1795 } 1796 1797 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1798 const struct btf_type *t, 1799 const void *data, 1800 __u8 bits_offset, 1801 __u8 bit_sz) 1802 { 1803 __u64 check_num; 1804 int err; 1805 1806 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1807 if (err) 1808 return err; 1809 if (check_num == 0) 1810 return -ENODATA; 1811 return 0; 1812 } 1813 1814 static int btf_dump_bitfield_data(struct btf_dump *d, 1815 const struct btf_type *t, 1816 const void *data, 1817 __u8 bits_offset, 1818 __u8 bit_sz) 1819 { 1820 __u64 print_num; 1821 int err; 1822 1823 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1824 if (err) 1825 return err; 1826 1827 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1828 1829 return 0; 1830 } 1831 1832 /* ints, floats and ptrs */ 1833 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1834 const struct btf_type *t, 1835 __u32 id, 1836 const void *data) 1837 { 1838 static __u8 bytecmp[16] = {}; 1839 int nr_bytes; 1840 1841 /* For pointer types, pointer size is not defined on a per-type basis. 1842 * On dump creation however, we store the pointer size. 1843 */ 1844 if (btf_kind(t) == BTF_KIND_PTR) 1845 nr_bytes = d->ptr_sz; 1846 else 1847 nr_bytes = t->size; 1848 1849 if (nr_bytes < 1 || nr_bytes > 16) { 1850 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1851 return -EINVAL; 1852 } 1853 1854 if (memcmp(data, bytecmp, nr_bytes) == 0) 1855 return -ENODATA; 1856 return 0; 1857 } 1858 1859 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1860 const void *data) 1861 { 1862 int alignment = btf__align_of(btf, type_id); 1863 1864 if (alignment == 0) 1865 return false; 1866 1867 return ((uintptr_t)data) % alignment == 0; 1868 } 1869 1870 static int btf_dump_int_data(struct btf_dump *d, 1871 const struct btf_type *t, 1872 __u32 type_id, 1873 const void *data, 1874 __u8 bits_offset) 1875 { 1876 __u8 encoding = btf_int_encoding(t); 1877 bool sign = encoding & BTF_INT_SIGNED; 1878 char buf[16] __attribute__((aligned(16))); 1879 int sz = t->size; 1880 1881 if (sz == 0 || sz > sizeof(buf)) { 1882 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1883 return -EINVAL; 1884 } 1885 1886 /* handle packed int data - accesses of integers not aligned on 1887 * int boundaries can cause problems on some platforms. 1888 */ 1889 if (!ptr_is_aligned(d->btf, type_id, data)) { 1890 memcpy(buf, data, sz); 1891 data = buf; 1892 } 1893 1894 switch (sz) { 1895 case 16: { 1896 const __u64 *ints = data; 1897 __u64 lsi, msi; 1898 1899 /* avoid use of __int128 as some 32-bit platforms do not 1900 * support it. 1901 */ 1902 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1903 lsi = ints[0]; 1904 msi = ints[1]; 1905 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1906 lsi = ints[1]; 1907 msi = ints[0]; 1908 #else 1909 # error "Unrecognized __BYTE_ORDER__" 1910 #endif 1911 if (msi == 0) 1912 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1913 else 1914 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1915 (unsigned long long)lsi); 1916 break; 1917 } 1918 case 8: 1919 if (sign) 1920 btf_dump_type_values(d, "%lld", *(long long *)data); 1921 else 1922 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1923 break; 1924 case 4: 1925 if (sign) 1926 btf_dump_type_values(d, "%d", *(__s32 *)data); 1927 else 1928 btf_dump_type_values(d, "%u", *(__u32 *)data); 1929 break; 1930 case 2: 1931 if (sign) 1932 btf_dump_type_values(d, "%d", *(__s16 *)data); 1933 else 1934 btf_dump_type_values(d, "%u", *(__u16 *)data); 1935 break; 1936 case 1: 1937 if (d->typed_dump->is_array_char) { 1938 /* check for null terminator */ 1939 if (d->typed_dump->is_array_terminated) 1940 break; 1941 if (*(char *)data == '\0') { 1942 btf_dump_type_values(d, "'\\0'"); 1943 d->typed_dump->is_array_terminated = true; 1944 break; 1945 } 1946 if (isprint(*(char *)data)) { 1947 btf_dump_type_values(d, "'%c'", *(char *)data); 1948 break; 1949 } 1950 } 1951 if (sign) 1952 btf_dump_type_values(d, "%d", *(__s8 *)data); 1953 else 1954 btf_dump_type_values(d, "%u", *(__u8 *)data); 1955 break; 1956 default: 1957 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1958 return -EINVAL; 1959 } 1960 return 0; 1961 } 1962 1963 union float_data { 1964 long double ld; 1965 double d; 1966 float f; 1967 }; 1968 1969 static int btf_dump_float_data(struct btf_dump *d, 1970 const struct btf_type *t, 1971 __u32 type_id, 1972 const void *data) 1973 { 1974 const union float_data *flp = data; 1975 union float_data fl; 1976 int sz = t->size; 1977 1978 /* handle unaligned data; copy to local union */ 1979 if (!ptr_is_aligned(d->btf, type_id, data)) { 1980 memcpy(&fl, data, sz); 1981 flp = &fl; 1982 } 1983 1984 switch (sz) { 1985 case 16: 1986 btf_dump_type_values(d, "%Lf", flp->ld); 1987 break; 1988 case 8: 1989 btf_dump_type_values(d, "%lf", flp->d); 1990 break; 1991 case 4: 1992 btf_dump_type_values(d, "%f", flp->f); 1993 break; 1994 default: 1995 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1996 return -EINVAL; 1997 } 1998 return 0; 1999 } 2000 2001 static int btf_dump_var_data(struct btf_dump *d, 2002 const struct btf_type *v, 2003 __u32 id, 2004 const void *data) 2005 { 2006 enum btf_func_linkage linkage = btf_var(v)->linkage; 2007 const struct btf_type *t; 2008 const char *l; 2009 __u32 type_id; 2010 2011 switch (linkage) { 2012 case BTF_FUNC_STATIC: 2013 l = "static "; 2014 break; 2015 case BTF_FUNC_EXTERN: 2016 l = "extern "; 2017 break; 2018 case BTF_FUNC_GLOBAL: 2019 default: 2020 l = ""; 2021 break; 2022 } 2023 2024 /* format of output here is [linkage] [type] [varname] = (type)value, 2025 * for example "static int cpu_profile_flip = (int)1" 2026 */ 2027 btf_dump_printf(d, "%s", l); 2028 type_id = v->type; 2029 t = btf__type_by_id(d->btf, type_id); 2030 btf_dump_emit_type_cast(d, type_id, false); 2031 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 2032 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 2033 } 2034 2035 static int btf_dump_string_data(struct btf_dump *d, 2036 const struct btf_type *t, 2037 __u32 id, 2038 const void *data) 2039 { 2040 const struct btf_array *array = btf_array(t); 2041 const char *chars = data; 2042 __u32 i; 2043 2044 /* Make sure it is a NUL-terminated string. */ 2045 for (i = 0; i < array->nelems; i++) { 2046 if ((void *)(chars + i) >= d->typed_dump->data_end) 2047 return -E2BIG; 2048 if (chars[i] == '\0') 2049 break; 2050 } 2051 if (i == array->nelems) { 2052 /* The caller will print this as a regular array. */ 2053 return -EINVAL; 2054 } 2055 2056 btf_dump_data_pfx(d); 2057 btf_dump_printf(d, "\""); 2058 2059 for (i = 0; i < array->nelems; i++) { 2060 char c = chars[i]; 2061 2062 if (c == '\0') { 2063 /* 2064 * When printing character arrays as strings, NUL bytes 2065 * are always treated as string terminators; they are 2066 * never printed. 2067 */ 2068 break; 2069 } 2070 if (isprint(c)) 2071 btf_dump_printf(d, "%c", c); 2072 else 2073 btf_dump_printf(d, "\\x%02x", (__u8)c); 2074 } 2075 2076 btf_dump_printf(d, "\""); 2077 2078 return 0; 2079 } 2080 2081 static int btf_dump_array_data(struct btf_dump *d, 2082 const struct btf_type *t, 2083 __u32 id, 2084 const void *data) 2085 { 2086 const struct btf_array *array = btf_array(t); 2087 const struct btf_type *elem_type; 2088 __u32 i, elem_type_id; 2089 __s64 elem_size; 2090 bool is_array_member; 2091 bool is_array_terminated; 2092 2093 elem_type_id = array->type; 2094 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2095 elem_size = btf__resolve_size(d->btf, elem_type_id); 2096 if (elem_size <= 0) { 2097 pr_warn("unexpected elem size %zd for array type [%u]\n", 2098 (ssize_t)elem_size, id); 2099 return -EINVAL; 2100 } 2101 2102 if (btf_is_int(elem_type)) { 2103 /* 2104 * BTF_INT_CHAR encoding never seems to be set for 2105 * char arrays, so if size is 1 and element is 2106 * printable as a char, we'll do that. 2107 */ 2108 if (elem_size == 1) { 2109 if (d->typed_dump->emit_strings && 2110 btf_dump_string_data(d, t, id, data) == 0) { 2111 return 0; 2112 } 2113 d->typed_dump->is_array_char = true; 2114 } 2115 } 2116 2117 /* note that we increment depth before calling btf_dump_print() below; 2118 * this is intentional. btf_dump_data_newline() will not print a 2119 * newline for depth 0 (since this leaves us with trailing newlines 2120 * at the end of typed display), so depth is incremented first. 2121 * For similar reasons, we decrement depth before showing the closing 2122 * parenthesis. 2123 */ 2124 d->typed_dump->depth++; 2125 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 2126 2127 /* may be a multidimensional array, so store current "is array member" 2128 * status so we can restore it correctly later. 2129 */ 2130 is_array_member = d->typed_dump->is_array_member; 2131 d->typed_dump->is_array_member = true; 2132 is_array_terminated = d->typed_dump->is_array_terminated; 2133 d->typed_dump->is_array_terminated = false; 2134 for (i = 0; i < array->nelems; i++, data += elem_size) { 2135 if (d->typed_dump->is_array_terminated) 2136 break; 2137 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 2138 } 2139 d->typed_dump->is_array_member = is_array_member; 2140 d->typed_dump->is_array_terminated = is_array_terminated; 2141 d->typed_dump->depth--; 2142 btf_dump_data_pfx(d); 2143 btf_dump_type_values(d, "]"); 2144 2145 return 0; 2146 } 2147 2148 static int btf_dump_struct_data(struct btf_dump *d, 2149 const struct btf_type *t, 2150 __u32 id, 2151 const void *data) 2152 { 2153 const struct btf_member *m = btf_members(t); 2154 __u16 n = btf_vlen(t); 2155 int i, err = 0; 2156 2157 /* note that we increment depth before calling btf_dump_print() below; 2158 * this is intentional. btf_dump_data_newline() will not print a 2159 * newline for depth 0 (since this leaves us with trailing newlines 2160 * at the end of typed display), so depth is incremented first. 2161 * For similar reasons, we decrement depth before showing the closing 2162 * parenthesis. 2163 */ 2164 d->typed_dump->depth++; 2165 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 2166 2167 for (i = 0; i < n; i++, m++) { 2168 const struct btf_type *mtype; 2169 const char *mname; 2170 __u32 moffset; 2171 __u8 bit_sz; 2172 2173 mtype = btf__type_by_id(d->btf, m->type); 2174 mname = btf_name_of(d, m->name_off); 2175 moffset = btf_member_bit_offset(t, i); 2176 2177 bit_sz = btf_member_bitfield_size(t, i); 2178 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 2179 moffset % 8, bit_sz); 2180 if (err < 0) 2181 return err; 2182 } 2183 d->typed_dump->depth--; 2184 btf_dump_data_pfx(d); 2185 btf_dump_type_values(d, "}"); 2186 return err; 2187 } 2188 2189 union ptr_data { 2190 unsigned int p; 2191 unsigned long long lp; 2192 }; 2193 2194 static int btf_dump_ptr_data(struct btf_dump *d, 2195 const struct btf_type *t, 2196 __u32 id, 2197 const void *data) 2198 { 2199 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2200 btf_dump_type_values(d, "%p", *(void **)data); 2201 } else { 2202 union ptr_data pt; 2203 2204 memcpy(&pt, data, d->ptr_sz); 2205 if (d->ptr_sz == 4) 2206 btf_dump_type_values(d, "0x%x", pt.p); 2207 else 2208 btf_dump_type_values(d, "0x%llx", pt.lp); 2209 } 2210 return 0; 2211 } 2212 2213 static int btf_dump_get_enum_value(struct btf_dump *d, 2214 const struct btf_type *t, 2215 const void *data, 2216 __u32 id, 2217 __s64 *value) 2218 { 2219 bool is_signed = btf_kflag(t); 2220 2221 if (!ptr_is_aligned(d->btf, id, data)) { 2222 __u64 val; 2223 int err; 2224 2225 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2226 if (err) 2227 return err; 2228 *value = (__s64)val; 2229 return 0; 2230 } 2231 2232 switch (t->size) { 2233 case 8: 2234 *value = *(__s64 *)data; 2235 return 0; 2236 case 4: 2237 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2238 return 0; 2239 case 2: 2240 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2241 return 0; 2242 case 1: 2243 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2244 return 0; 2245 default: 2246 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2247 return -EINVAL; 2248 } 2249 } 2250 2251 static int btf_dump_enum_data(struct btf_dump *d, 2252 const struct btf_type *t, 2253 __u32 id, 2254 const void *data) 2255 { 2256 bool is_signed; 2257 __s64 value; 2258 int i, err; 2259 2260 err = btf_dump_get_enum_value(d, t, data, id, &value); 2261 if (err) 2262 return err; 2263 2264 is_signed = btf_kflag(t); 2265 if (btf_is_enum(t)) { 2266 const struct btf_enum *e; 2267 2268 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2269 if (value != e->val) 2270 continue; 2271 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2272 return 0; 2273 } 2274 2275 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2276 } else { 2277 const struct btf_enum64 *e; 2278 2279 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2280 if (value != btf_enum64_value(e)) 2281 continue; 2282 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2283 return 0; 2284 } 2285 2286 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2287 (unsigned long long)value); 2288 } 2289 return 0; 2290 } 2291 2292 static int btf_dump_datasec_data(struct btf_dump *d, 2293 const struct btf_type *t, 2294 __u32 id, 2295 const void *data) 2296 { 2297 const struct btf_var_secinfo *vsi; 2298 const struct btf_type *var; 2299 __u32 i; 2300 int err; 2301 2302 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2303 2304 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2305 var = btf__type_by_id(d->btf, vsi->type); 2306 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2307 if (err < 0) 2308 return err; 2309 btf_dump_printf(d, ";"); 2310 } 2311 return 0; 2312 } 2313 2314 /* return size of type, or if base type overflows, return -E2BIG. */ 2315 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2316 const struct btf_type *t, 2317 __u32 id, 2318 const void *data, 2319 __u8 bits_offset, 2320 __u8 bit_sz) 2321 { 2322 __s64 size; 2323 2324 if (bit_sz) { 2325 /* bits_offset is at most 7. bit_sz is at most 128. */ 2326 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8; 2327 2328 /* When bit_sz is non zero, it is called from 2329 * btf_dump_struct_data() where it only cares about 2330 * negative error value. 2331 * Return nr_bytes in success case to make it 2332 * consistent as the regular integer case below. 2333 */ 2334 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes; 2335 } 2336 2337 size = btf__resolve_size(d->btf, id); 2338 2339 if (size < 0 || size >= INT_MAX) { 2340 pr_warn("unexpected size [%zu] for id [%u]\n", 2341 (size_t)size, id); 2342 return -EINVAL; 2343 } 2344 2345 /* Only do overflow checking for base types; we do not want to 2346 * avoid showing part of a struct, union or array, even if we 2347 * do not have enough data to show the full object. By 2348 * restricting overflow checking to base types we can ensure 2349 * that partial display succeeds, while avoiding overflowing 2350 * and using bogus data for display. 2351 */ 2352 t = skip_mods_and_typedefs(d->btf, id, NULL); 2353 if (!t) { 2354 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2355 id); 2356 return -EINVAL; 2357 } 2358 2359 switch (btf_kind(t)) { 2360 case BTF_KIND_INT: 2361 case BTF_KIND_FLOAT: 2362 case BTF_KIND_PTR: 2363 case BTF_KIND_ENUM: 2364 case BTF_KIND_ENUM64: 2365 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2366 return -E2BIG; 2367 break; 2368 default: 2369 break; 2370 } 2371 return (int)size; 2372 } 2373 2374 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2375 const struct btf_type *t, 2376 __u32 id, 2377 const void *data, 2378 __u8 bits_offset, 2379 __u8 bit_sz) 2380 { 2381 __s64 value; 2382 int i, err; 2383 2384 /* toplevel exceptions; we show zero values if 2385 * - we ask for them (emit_zeros) 2386 * - if we are at top-level so we see "struct empty { }" 2387 * - or if we are an array member and the array is non-empty and 2388 * not a char array; we don't want to be in a situation where we 2389 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2390 * If the array contains zeroes only, or is a char array starting 2391 * with a '\0', the array-level check_zero() will prevent showing it; 2392 * we are concerned with determining zero value at the array member 2393 * level here. 2394 */ 2395 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2396 (d->typed_dump->is_array_member && 2397 !d->typed_dump->is_array_char)) 2398 return 0; 2399 2400 t = skip_mods_and_typedefs(d->btf, id, NULL); 2401 2402 switch (btf_kind(t)) { 2403 case BTF_KIND_INT: 2404 if (bit_sz) 2405 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2406 return btf_dump_base_type_check_zero(d, t, id, data); 2407 case BTF_KIND_FLOAT: 2408 case BTF_KIND_PTR: 2409 return btf_dump_base_type_check_zero(d, t, id, data); 2410 case BTF_KIND_ARRAY: { 2411 const struct btf_array *array = btf_array(t); 2412 const struct btf_type *elem_type; 2413 __u32 elem_type_id, elem_size; 2414 bool ischar; 2415 2416 elem_type_id = array->type; 2417 elem_size = btf__resolve_size(d->btf, elem_type_id); 2418 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2419 2420 ischar = btf_is_int(elem_type) && elem_size == 1; 2421 2422 /* check all elements; if _any_ element is nonzero, all 2423 * of array is displayed. We make an exception however 2424 * for char arrays where the first element is 0; these 2425 * are considered zeroed also, even if later elements are 2426 * non-zero because the string is terminated. 2427 */ 2428 for (i = 0; i < array->nelems; i++) { 2429 if (i == 0 && ischar && *(char *)data == 0) 2430 return -ENODATA; 2431 err = btf_dump_type_data_check_zero(d, elem_type, 2432 elem_type_id, 2433 data + 2434 (i * elem_size), 2435 bits_offset, 0); 2436 if (err != -ENODATA) 2437 return err; 2438 } 2439 return -ENODATA; 2440 } 2441 case BTF_KIND_STRUCT: 2442 case BTF_KIND_UNION: { 2443 const struct btf_member *m = btf_members(t); 2444 __u16 n = btf_vlen(t); 2445 2446 /* if any struct/union member is non-zero, the struct/union 2447 * is considered non-zero and dumped. 2448 */ 2449 for (i = 0; i < n; i++, m++) { 2450 const struct btf_type *mtype; 2451 __u32 moffset; 2452 2453 mtype = btf__type_by_id(d->btf, m->type); 2454 moffset = btf_member_bit_offset(t, i); 2455 2456 /* btf_int_bits() does not store member bitfield size; 2457 * bitfield size needs to be stored here so int display 2458 * of member can retrieve it. 2459 */ 2460 bit_sz = btf_member_bitfield_size(t, i); 2461 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2462 moffset % 8, bit_sz); 2463 if (err != ENODATA) 2464 return err; 2465 } 2466 return -ENODATA; 2467 } 2468 case BTF_KIND_ENUM: 2469 case BTF_KIND_ENUM64: 2470 err = btf_dump_get_enum_value(d, t, data, id, &value); 2471 if (err) 2472 return err; 2473 if (value == 0) 2474 return -ENODATA; 2475 return 0; 2476 default: 2477 return 0; 2478 } 2479 } 2480 2481 /* returns size of data dumped, or error. */ 2482 static int btf_dump_dump_type_data(struct btf_dump *d, 2483 const char *fname, 2484 const struct btf_type *t, 2485 __u32 id, 2486 const void *data, 2487 __u8 bits_offset, 2488 __u8 bit_sz) 2489 { 2490 int size, err = 0; 2491 2492 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz); 2493 if (size < 0) 2494 return size; 2495 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2496 if (err) { 2497 /* zeroed data is expected and not an error, so simply skip 2498 * dumping such data. Record other errors however. 2499 */ 2500 if (err == -ENODATA) 2501 return size; 2502 return err; 2503 } 2504 btf_dump_data_pfx(d); 2505 2506 if (!d->typed_dump->skip_names) { 2507 if (fname && strlen(fname) > 0) 2508 btf_dump_printf(d, ".%s = ", fname); 2509 btf_dump_emit_type_cast(d, id, true); 2510 } 2511 2512 t = skip_mods_and_typedefs(d->btf, id, NULL); 2513 2514 switch (btf_kind(t)) { 2515 case BTF_KIND_UNKN: 2516 case BTF_KIND_FWD: 2517 case BTF_KIND_FUNC: 2518 case BTF_KIND_FUNC_PROTO: 2519 case BTF_KIND_DECL_TAG: 2520 err = btf_dump_unsupported_data(d, t, id); 2521 break; 2522 case BTF_KIND_INT: 2523 if (bit_sz) 2524 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2525 else 2526 err = btf_dump_int_data(d, t, id, data, bits_offset); 2527 break; 2528 case BTF_KIND_FLOAT: 2529 err = btf_dump_float_data(d, t, id, data); 2530 break; 2531 case BTF_KIND_PTR: 2532 err = btf_dump_ptr_data(d, t, id, data); 2533 break; 2534 case BTF_KIND_ARRAY: 2535 err = btf_dump_array_data(d, t, id, data); 2536 break; 2537 case BTF_KIND_STRUCT: 2538 case BTF_KIND_UNION: 2539 err = btf_dump_struct_data(d, t, id, data); 2540 break; 2541 case BTF_KIND_ENUM: 2542 case BTF_KIND_ENUM64: 2543 /* handle bitfield and int enum values */ 2544 if (bit_sz) { 2545 __u64 print_num; 2546 __s64 enum_val; 2547 2548 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2549 &print_num); 2550 if (err) 2551 break; 2552 enum_val = (__s64)print_num; 2553 err = btf_dump_enum_data(d, t, id, &enum_val); 2554 } else 2555 err = btf_dump_enum_data(d, t, id, data); 2556 break; 2557 case BTF_KIND_VAR: 2558 err = btf_dump_var_data(d, t, id, data); 2559 break; 2560 case BTF_KIND_DATASEC: 2561 err = btf_dump_datasec_data(d, t, id, data); 2562 break; 2563 default: 2564 pr_warn("unexpected kind [%u] for id [%u]\n", 2565 BTF_INFO_KIND(t->info), id); 2566 return -EINVAL; 2567 } 2568 if (err < 0) 2569 return err; 2570 return size; 2571 } 2572 2573 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2574 const void *data, size_t data_sz, 2575 const struct btf_dump_type_data_opts *opts) 2576 { 2577 struct btf_dump_data typed_dump = {}; 2578 const struct btf_type *t; 2579 int ret; 2580 2581 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2582 return libbpf_err(-EINVAL); 2583 2584 t = btf__type_by_id(d->btf, id); 2585 if (!t) 2586 return libbpf_err(-ENOENT); 2587 2588 d->typed_dump = &typed_dump; 2589 d->typed_dump->data_end = data + data_sz; 2590 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2591 2592 /* default indent string is a tab */ 2593 if (!OPTS_GET(opts, indent_str, NULL)) 2594 d->typed_dump->indent_str[0] = '\t'; 2595 else 2596 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2597 sizeof(d->typed_dump->indent_str)); 2598 2599 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2600 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2601 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2602 d->typed_dump->emit_strings = OPTS_GET(opts, emit_strings, false); 2603 2604 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2605 2606 d->typed_dump = NULL; 2607 2608 return libbpf_err(ret); 2609 } 2610