1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 25 #define BTF_MAX_NR_TYPES 0x7fffffffU 26 #define BTF_MAX_STR_OFFSET 0x7fffffffU 27 28 static struct btf_type btf_void; 29 30 struct btf { 31 /* raw BTF data in native endianness */ 32 void *raw_data; 33 /* raw BTF data in non-native endianness */ 34 void *raw_data_swapped; 35 __u32 raw_size; 36 /* whether target endianness differs from the native one */ 37 bool swapped_endian; 38 39 /* 40 * When BTF is loaded from an ELF or raw memory it is stored 41 * in a contiguous memory block. The hdr, type_data, and, strs_data 42 * point inside that memory region to their respective parts of BTF 43 * representation: 44 * 45 * +--------------------------------+ 46 * | Header | Types | Strings | 47 * +--------------------------------+ 48 * ^ ^ ^ 49 * | | | 50 * hdr | | 51 * types_data-+ | 52 * strs_data------------+ 53 * 54 * If BTF data is later modified, e.g., due to types added or 55 * removed, BTF deduplication performed, etc, this contiguous 56 * representation is broken up into three independently allocated 57 * memory regions to be able to modify them independently. 58 * raw_data is nulled out at that point, but can be later allocated 59 * and cached again if user calls btf__get_raw_data(), at which point 60 * raw_data will contain a contiguous copy of header, types, and 61 * strings: 62 * 63 * +----------+ +---------+ +-----------+ 64 * | Header | | Types | | Strings | 65 * +----------+ +---------+ +-----------+ 66 * ^ ^ ^ 67 * | | | 68 * hdr | | 69 * types_data----+ | 70 * strs_data------------------+ 71 * 72 * +----------+---------+-----------+ 73 * | Header | Types | Strings | 74 * raw_data----->+----------+---------+-----------+ 75 */ 76 struct btf_header *hdr; 77 78 void *types_data; 79 size_t types_data_cap; /* used size stored in hdr->type_len */ 80 81 /* type ID to `struct btf_type *` lookup index */ 82 __u32 *type_offs; 83 size_t type_offs_cap; 84 __u32 nr_types; 85 86 void *strs_data; 87 size_t strs_data_cap; /* used size stored in hdr->str_len */ 88 89 /* lookup index for each unique string in strings section */ 90 struct hashmap *strs_hash; 91 /* whether strings are already deduplicated */ 92 bool strs_deduped; 93 /* BTF object FD, if loaded into kernel */ 94 int fd; 95 96 /* Pointer size (in bytes) for a target architecture of this BTF */ 97 int ptr_sz; 98 }; 99 100 static inline __u64 ptr_to_u64(const void *ptr) 101 { 102 return (__u64) (unsigned long) ptr; 103 } 104 105 /* Ensure given dynamically allocated memory region pointed to by *data* with 106 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 107 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 108 * are already used. At most *max_cnt* elements can be ever allocated. 109 * If necessary, memory is reallocated and all existing data is copied over, 110 * new pointer to the memory region is stored at *data, new memory region 111 * capacity (in number of elements) is stored in *cap. 112 * On success, memory pointer to the beginning of unused memory is returned. 113 * On error, NULL is returned. 114 */ 115 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 116 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 117 { 118 size_t new_cnt; 119 void *new_data; 120 121 if (cur_cnt + add_cnt <= *cap_cnt) 122 return *data + cur_cnt * elem_sz; 123 124 /* requested more than the set limit */ 125 if (cur_cnt + add_cnt > max_cnt) 126 return NULL; 127 128 new_cnt = *cap_cnt; 129 new_cnt += new_cnt / 4; /* expand by 25% */ 130 if (new_cnt < 16) /* but at least 16 elements */ 131 new_cnt = 16; 132 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 133 new_cnt = max_cnt; 134 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 135 new_cnt = cur_cnt + add_cnt; 136 137 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 138 if (!new_data) 139 return NULL; 140 141 /* zero out newly allocated portion of memory */ 142 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 143 144 *data = new_data; 145 *cap_cnt = new_cnt; 146 return new_data + cur_cnt * elem_sz; 147 } 148 149 /* Ensure given dynamically allocated memory region has enough allocated space 150 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 151 */ 152 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 153 { 154 void *p; 155 156 if (need_cnt <= *cap_cnt) 157 return 0; 158 159 p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 160 if (!p) 161 return -ENOMEM; 162 163 return 0; 164 } 165 166 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 167 { 168 __u32 *p; 169 170 p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 171 btf->nr_types + 1, BTF_MAX_NR_TYPES, 1); 172 if (!p) 173 return -ENOMEM; 174 175 *p = type_off; 176 return 0; 177 } 178 179 static void btf_bswap_hdr(struct btf_header *h) 180 { 181 h->magic = bswap_16(h->magic); 182 h->hdr_len = bswap_32(h->hdr_len); 183 h->type_off = bswap_32(h->type_off); 184 h->type_len = bswap_32(h->type_len); 185 h->str_off = bswap_32(h->str_off); 186 h->str_len = bswap_32(h->str_len); 187 } 188 189 static int btf_parse_hdr(struct btf *btf) 190 { 191 struct btf_header *hdr = btf->hdr; 192 __u32 meta_left; 193 194 if (btf->raw_size < sizeof(struct btf_header)) { 195 pr_debug("BTF header not found\n"); 196 return -EINVAL; 197 } 198 199 if (hdr->magic == bswap_16(BTF_MAGIC)) { 200 btf->swapped_endian = true; 201 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 202 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 203 bswap_32(hdr->hdr_len)); 204 return -ENOTSUP; 205 } 206 btf_bswap_hdr(hdr); 207 } else if (hdr->magic != BTF_MAGIC) { 208 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 209 return -EINVAL; 210 } 211 212 meta_left = btf->raw_size - sizeof(*hdr); 213 if (!meta_left) { 214 pr_debug("BTF has no data\n"); 215 return -EINVAL; 216 } 217 218 if (meta_left < hdr->type_off) { 219 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 220 return -EINVAL; 221 } 222 223 if (meta_left < hdr->str_off) { 224 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 225 return -EINVAL; 226 } 227 228 if (hdr->type_off >= hdr->str_off) { 229 pr_debug("BTF type section offset >= string section offset. No type?\n"); 230 return -EINVAL; 231 } 232 233 if (hdr->type_off & 0x02) { 234 pr_debug("BTF type section is not aligned to 4 bytes\n"); 235 return -EINVAL; 236 } 237 238 return 0; 239 } 240 241 static int btf_parse_str_sec(struct btf *btf) 242 { 243 const struct btf_header *hdr = btf->hdr; 244 const char *start = btf->strs_data; 245 const char *end = start + btf->hdr->str_len; 246 247 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 248 start[0] || end[-1]) { 249 pr_debug("Invalid BTF string section\n"); 250 return -EINVAL; 251 } 252 253 return 0; 254 } 255 256 static int btf_type_size(const struct btf_type *t) 257 { 258 const int base_size = sizeof(struct btf_type); 259 __u16 vlen = btf_vlen(t); 260 261 switch (btf_kind(t)) { 262 case BTF_KIND_FWD: 263 case BTF_KIND_CONST: 264 case BTF_KIND_VOLATILE: 265 case BTF_KIND_RESTRICT: 266 case BTF_KIND_PTR: 267 case BTF_KIND_TYPEDEF: 268 case BTF_KIND_FUNC: 269 return base_size; 270 case BTF_KIND_INT: 271 return base_size + sizeof(__u32); 272 case BTF_KIND_ENUM: 273 return base_size + vlen * sizeof(struct btf_enum); 274 case BTF_KIND_ARRAY: 275 return base_size + sizeof(struct btf_array); 276 case BTF_KIND_STRUCT: 277 case BTF_KIND_UNION: 278 return base_size + vlen * sizeof(struct btf_member); 279 case BTF_KIND_FUNC_PROTO: 280 return base_size + vlen * sizeof(struct btf_param); 281 case BTF_KIND_VAR: 282 return base_size + sizeof(struct btf_var); 283 case BTF_KIND_DATASEC: 284 return base_size + vlen * sizeof(struct btf_var_secinfo); 285 default: 286 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 287 return -EINVAL; 288 } 289 } 290 291 static void btf_bswap_type_base(struct btf_type *t) 292 { 293 t->name_off = bswap_32(t->name_off); 294 t->info = bswap_32(t->info); 295 t->type = bswap_32(t->type); 296 } 297 298 static int btf_bswap_type_rest(struct btf_type *t) 299 { 300 struct btf_var_secinfo *v; 301 struct btf_member *m; 302 struct btf_array *a; 303 struct btf_param *p; 304 struct btf_enum *e; 305 __u16 vlen = btf_vlen(t); 306 int i; 307 308 switch (btf_kind(t)) { 309 case BTF_KIND_FWD: 310 case BTF_KIND_CONST: 311 case BTF_KIND_VOLATILE: 312 case BTF_KIND_RESTRICT: 313 case BTF_KIND_PTR: 314 case BTF_KIND_TYPEDEF: 315 case BTF_KIND_FUNC: 316 return 0; 317 case BTF_KIND_INT: 318 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 319 return 0; 320 case BTF_KIND_ENUM: 321 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 322 e->name_off = bswap_32(e->name_off); 323 e->val = bswap_32(e->val); 324 } 325 return 0; 326 case BTF_KIND_ARRAY: 327 a = btf_array(t); 328 a->type = bswap_32(a->type); 329 a->index_type = bswap_32(a->index_type); 330 a->nelems = bswap_32(a->nelems); 331 return 0; 332 case BTF_KIND_STRUCT: 333 case BTF_KIND_UNION: 334 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 335 m->name_off = bswap_32(m->name_off); 336 m->type = bswap_32(m->type); 337 m->offset = bswap_32(m->offset); 338 } 339 return 0; 340 case BTF_KIND_FUNC_PROTO: 341 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 342 p->name_off = bswap_32(p->name_off); 343 p->type = bswap_32(p->type); 344 } 345 return 0; 346 case BTF_KIND_VAR: 347 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 348 return 0; 349 case BTF_KIND_DATASEC: 350 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 351 v->type = bswap_32(v->type); 352 v->offset = bswap_32(v->offset); 353 v->size = bswap_32(v->size); 354 } 355 return 0; 356 default: 357 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 358 return -EINVAL; 359 } 360 } 361 362 static int btf_parse_type_sec(struct btf *btf) 363 { 364 struct btf_header *hdr = btf->hdr; 365 void *next_type = btf->types_data; 366 void *end_type = next_type + hdr->type_len; 367 int err, i = 0, type_size; 368 369 /* VOID (type_id == 0) is specially handled by btf__get_type_by_id(), 370 * so ensure we can never properly use its offset from index by 371 * setting it to a large value 372 */ 373 err = btf_add_type_idx_entry(btf, UINT_MAX); 374 if (err) 375 return err; 376 377 while (next_type + sizeof(struct btf_type) <= end_type) { 378 i++; 379 380 if (btf->swapped_endian) 381 btf_bswap_type_base(next_type); 382 383 type_size = btf_type_size(next_type); 384 if (type_size < 0) 385 return type_size; 386 if (next_type + type_size > end_type) { 387 pr_warn("BTF type [%d] is malformed\n", i); 388 return -EINVAL; 389 } 390 391 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 392 return -EINVAL; 393 394 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 395 if (err) 396 return err; 397 398 next_type += type_size; 399 btf->nr_types++; 400 } 401 402 if (next_type != end_type) { 403 pr_warn("BTF types data is malformed\n"); 404 return -EINVAL; 405 } 406 407 return 0; 408 } 409 410 __u32 btf__get_nr_types(const struct btf *btf) 411 { 412 return btf->nr_types; 413 } 414 415 /* internal helper returning non-const pointer to a type */ 416 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 417 { 418 if (type_id == 0) 419 return &btf_void; 420 421 return btf->types_data + btf->type_offs[type_id]; 422 } 423 424 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 425 { 426 if (type_id > btf->nr_types) 427 return NULL; 428 return btf_type_by_id((struct btf *)btf, type_id); 429 } 430 431 static int determine_ptr_size(const struct btf *btf) 432 { 433 const struct btf_type *t; 434 const char *name; 435 int i; 436 437 for (i = 1; i <= btf->nr_types; i++) { 438 t = btf__type_by_id(btf, i); 439 if (!btf_is_int(t)) 440 continue; 441 442 name = btf__name_by_offset(btf, t->name_off); 443 if (!name) 444 continue; 445 446 if (strcmp(name, "long int") == 0 || 447 strcmp(name, "long unsigned int") == 0) { 448 if (t->size != 4 && t->size != 8) 449 continue; 450 return t->size; 451 } 452 } 453 454 return -1; 455 } 456 457 static size_t btf_ptr_sz(const struct btf *btf) 458 { 459 if (!btf->ptr_sz) 460 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 461 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 462 } 463 464 /* Return pointer size this BTF instance assumes. The size is heuristically 465 * determined by looking for 'long' or 'unsigned long' integer type and 466 * recording its size in bytes. If BTF type information doesn't have any such 467 * type, this function returns 0. In the latter case, native architecture's 468 * pointer size is assumed, so will be either 4 or 8, depending on 469 * architecture that libbpf was compiled for. It's possible to override 470 * guessed value by using btf__set_pointer_size() API. 471 */ 472 size_t btf__pointer_size(const struct btf *btf) 473 { 474 if (!btf->ptr_sz) 475 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 476 477 if (btf->ptr_sz < 0) 478 /* not enough BTF type info to guess */ 479 return 0; 480 481 return btf->ptr_sz; 482 } 483 484 /* Override or set pointer size in bytes. Only values of 4 and 8 are 485 * supported. 486 */ 487 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 488 { 489 if (ptr_sz != 4 && ptr_sz != 8) 490 return -EINVAL; 491 btf->ptr_sz = ptr_sz; 492 return 0; 493 } 494 495 static bool is_host_big_endian(void) 496 { 497 #if __BYTE_ORDER == __LITTLE_ENDIAN 498 return false; 499 #elif __BYTE_ORDER == __BIG_ENDIAN 500 return true; 501 #else 502 # error "Unrecognized __BYTE_ORDER__" 503 #endif 504 } 505 506 enum btf_endianness btf__endianness(const struct btf *btf) 507 { 508 if (is_host_big_endian()) 509 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 510 else 511 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 512 } 513 514 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 515 { 516 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 517 return -EINVAL; 518 519 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 520 if (!btf->swapped_endian) { 521 free(btf->raw_data_swapped); 522 btf->raw_data_swapped = NULL; 523 } 524 return 0; 525 } 526 527 static bool btf_type_is_void(const struct btf_type *t) 528 { 529 return t == &btf_void || btf_is_fwd(t); 530 } 531 532 static bool btf_type_is_void_or_null(const struct btf_type *t) 533 { 534 return !t || btf_type_is_void(t); 535 } 536 537 #define MAX_RESOLVE_DEPTH 32 538 539 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 540 { 541 const struct btf_array *array; 542 const struct btf_type *t; 543 __u32 nelems = 1; 544 __s64 size = -1; 545 int i; 546 547 t = btf__type_by_id(btf, type_id); 548 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 549 i++) { 550 switch (btf_kind(t)) { 551 case BTF_KIND_INT: 552 case BTF_KIND_STRUCT: 553 case BTF_KIND_UNION: 554 case BTF_KIND_ENUM: 555 case BTF_KIND_DATASEC: 556 size = t->size; 557 goto done; 558 case BTF_KIND_PTR: 559 size = btf_ptr_sz(btf); 560 goto done; 561 case BTF_KIND_TYPEDEF: 562 case BTF_KIND_VOLATILE: 563 case BTF_KIND_CONST: 564 case BTF_KIND_RESTRICT: 565 case BTF_KIND_VAR: 566 type_id = t->type; 567 break; 568 case BTF_KIND_ARRAY: 569 array = btf_array(t); 570 if (nelems && array->nelems > UINT32_MAX / nelems) 571 return -E2BIG; 572 nelems *= array->nelems; 573 type_id = array->type; 574 break; 575 default: 576 return -EINVAL; 577 } 578 579 t = btf__type_by_id(btf, type_id); 580 } 581 582 done: 583 if (size < 0) 584 return -EINVAL; 585 if (nelems && size > UINT32_MAX / nelems) 586 return -E2BIG; 587 588 return nelems * size; 589 } 590 591 int btf__align_of(const struct btf *btf, __u32 id) 592 { 593 const struct btf_type *t = btf__type_by_id(btf, id); 594 __u16 kind = btf_kind(t); 595 596 switch (kind) { 597 case BTF_KIND_INT: 598 case BTF_KIND_ENUM: 599 return min(btf_ptr_sz(btf), (size_t)t->size); 600 case BTF_KIND_PTR: 601 return btf_ptr_sz(btf); 602 case BTF_KIND_TYPEDEF: 603 case BTF_KIND_VOLATILE: 604 case BTF_KIND_CONST: 605 case BTF_KIND_RESTRICT: 606 return btf__align_of(btf, t->type); 607 case BTF_KIND_ARRAY: 608 return btf__align_of(btf, btf_array(t)->type); 609 case BTF_KIND_STRUCT: 610 case BTF_KIND_UNION: { 611 const struct btf_member *m = btf_members(t); 612 __u16 vlen = btf_vlen(t); 613 int i, max_align = 1, align; 614 615 for (i = 0; i < vlen; i++, m++) { 616 align = btf__align_of(btf, m->type); 617 if (align <= 0) 618 return align; 619 max_align = max(max_align, align); 620 } 621 622 return max_align; 623 } 624 default: 625 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 626 return 0; 627 } 628 } 629 630 int btf__resolve_type(const struct btf *btf, __u32 type_id) 631 { 632 const struct btf_type *t; 633 int depth = 0; 634 635 t = btf__type_by_id(btf, type_id); 636 while (depth < MAX_RESOLVE_DEPTH && 637 !btf_type_is_void_or_null(t) && 638 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 639 type_id = t->type; 640 t = btf__type_by_id(btf, type_id); 641 depth++; 642 } 643 644 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 645 return -EINVAL; 646 647 return type_id; 648 } 649 650 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 651 { 652 __u32 i; 653 654 if (!strcmp(type_name, "void")) 655 return 0; 656 657 for (i = 1; i <= btf->nr_types; i++) { 658 const struct btf_type *t = btf__type_by_id(btf, i); 659 const char *name = btf__name_by_offset(btf, t->name_off); 660 661 if (name && !strcmp(type_name, name)) 662 return i; 663 } 664 665 return -ENOENT; 666 } 667 668 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 669 __u32 kind) 670 { 671 __u32 i; 672 673 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 674 return 0; 675 676 for (i = 1; i <= btf->nr_types; i++) { 677 const struct btf_type *t = btf__type_by_id(btf, i); 678 const char *name; 679 680 if (btf_kind(t) != kind) 681 continue; 682 name = btf__name_by_offset(btf, t->name_off); 683 if (name && !strcmp(type_name, name)) 684 return i; 685 } 686 687 return -ENOENT; 688 } 689 690 static bool btf_is_modifiable(const struct btf *btf) 691 { 692 return (void *)btf->hdr != btf->raw_data; 693 } 694 695 void btf__free(struct btf *btf) 696 { 697 if (IS_ERR_OR_NULL(btf)) 698 return; 699 700 if (btf->fd >= 0) 701 close(btf->fd); 702 703 if (btf_is_modifiable(btf)) { 704 /* if BTF was modified after loading, it will have a split 705 * in-memory representation for header, types, and strings 706 * sections, so we need to free all of them individually. It 707 * might still have a cached contiguous raw data present, 708 * which will be unconditionally freed below. 709 */ 710 free(btf->hdr); 711 free(btf->types_data); 712 free(btf->strs_data); 713 } 714 free(btf->raw_data); 715 free(btf->raw_data_swapped); 716 free(btf->type_offs); 717 free(btf); 718 } 719 720 struct btf *btf__new_empty(void) 721 { 722 struct btf *btf; 723 724 btf = calloc(1, sizeof(*btf)); 725 if (!btf) 726 return ERR_PTR(-ENOMEM); 727 728 btf->fd = -1; 729 btf->ptr_sz = sizeof(void *); 730 btf->swapped_endian = false; 731 732 /* +1 for empty string at offset 0 */ 733 btf->raw_size = sizeof(struct btf_header) + 1; 734 btf->raw_data = calloc(1, btf->raw_size); 735 if (!btf->raw_data) { 736 free(btf); 737 return ERR_PTR(-ENOMEM); 738 } 739 740 btf->hdr = btf->raw_data; 741 btf->hdr->hdr_len = sizeof(struct btf_header); 742 btf->hdr->magic = BTF_MAGIC; 743 btf->hdr->version = BTF_VERSION; 744 745 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 746 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 747 btf->hdr->str_len = 1; /* empty string at offset 0 */ 748 749 return btf; 750 } 751 752 struct btf *btf__new(const void *data, __u32 size) 753 { 754 struct btf *btf; 755 int err; 756 757 btf = calloc(1, sizeof(struct btf)); 758 if (!btf) 759 return ERR_PTR(-ENOMEM); 760 761 btf->raw_data = malloc(size); 762 if (!btf->raw_data) { 763 err = -ENOMEM; 764 goto done; 765 } 766 memcpy(btf->raw_data, data, size); 767 btf->raw_size = size; 768 769 btf->hdr = btf->raw_data; 770 err = btf_parse_hdr(btf); 771 if (err) 772 goto done; 773 774 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 775 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 776 777 err = btf_parse_str_sec(btf); 778 err = err ?: btf_parse_type_sec(btf); 779 if (err) 780 goto done; 781 782 btf->fd = -1; 783 784 done: 785 if (err) { 786 btf__free(btf); 787 return ERR_PTR(err); 788 } 789 790 return btf; 791 } 792 793 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 794 { 795 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 796 int err = 0, fd = -1, idx = 0; 797 struct btf *btf = NULL; 798 Elf_Scn *scn = NULL; 799 Elf *elf = NULL; 800 GElf_Ehdr ehdr; 801 802 if (elf_version(EV_CURRENT) == EV_NONE) { 803 pr_warn("failed to init libelf for %s\n", path); 804 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 805 } 806 807 fd = open(path, O_RDONLY); 808 if (fd < 0) { 809 err = -errno; 810 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 811 return ERR_PTR(err); 812 } 813 814 err = -LIBBPF_ERRNO__FORMAT; 815 816 elf = elf_begin(fd, ELF_C_READ, NULL); 817 if (!elf) { 818 pr_warn("failed to open %s as ELF file\n", path); 819 goto done; 820 } 821 if (!gelf_getehdr(elf, &ehdr)) { 822 pr_warn("failed to get EHDR from %s\n", path); 823 goto done; 824 } 825 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 826 pr_warn("failed to get e_shstrndx from %s\n", path); 827 goto done; 828 } 829 830 while ((scn = elf_nextscn(elf, scn)) != NULL) { 831 GElf_Shdr sh; 832 char *name; 833 834 idx++; 835 if (gelf_getshdr(scn, &sh) != &sh) { 836 pr_warn("failed to get section(%d) header from %s\n", 837 idx, path); 838 goto done; 839 } 840 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 841 if (!name) { 842 pr_warn("failed to get section(%d) name from %s\n", 843 idx, path); 844 goto done; 845 } 846 if (strcmp(name, BTF_ELF_SEC) == 0) { 847 btf_data = elf_getdata(scn, 0); 848 if (!btf_data) { 849 pr_warn("failed to get section(%d, %s) data from %s\n", 850 idx, name, path); 851 goto done; 852 } 853 continue; 854 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 855 btf_ext_data = elf_getdata(scn, 0); 856 if (!btf_ext_data) { 857 pr_warn("failed to get section(%d, %s) data from %s\n", 858 idx, name, path); 859 goto done; 860 } 861 continue; 862 } 863 } 864 865 err = 0; 866 867 if (!btf_data) { 868 err = -ENOENT; 869 goto done; 870 } 871 btf = btf__new(btf_data->d_buf, btf_data->d_size); 872 if (IS_ERR(btf)) 873 goto done; 874 875 switch (gelf_getclass(elf)) { 876 case ELFCLASS32: 877 btf__set_pointer_size(btf, 4); 878 break; 879 case ELFCLASS64: 880 btf__set_pointer_size(btf, 8); 881 break; 882 default: 883 pr_warn("failed to get ELF class (bitness) for %s\n", path); 884 break; 885 } 886 887 if (btf_ext && btf_ext_data) { 888 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 889 btf_ext_data->d_size); 890 if (IS_ERR(*btf_ext)) 891 goto done; 892 } else if (btf_ext) { 893 *btf_ext = NULL; 894 } 895 done: 896 if (elf) 897 elf_end(elf); 898 close(fd); 899 900 if (err) 901 return ERR_PTR(err); 902 /* 903 * btf is always parsed before btf_ext, so no need to clean up 904 * btf_ext, if btf loading failed 905 */ 906 if (IS_ERR(btf)) 907 return btf; 908 if (btf_ext && IS_ERR(*btf_ext)) { 909 btf__free(btf); 910 err = PTR_ERR(*btf_ext); 911 return ERR_PTR(err); 912 } 913 return btf; 914 } 915 916 struct btf *btf__parse_raw(const char *path) 917 { 918 struct btf *btf = NULL; 919 void *data = NULL; 920 FILE *f = NULL; 921 __u16 magic; 922 int err = 0; 923 long sz; 924 925 f = fopen(path, "rb"); 926 if (!f) { 927 err = -errno; 928 goto err_out; 929 } 930 931 /* check BTF magic */ 932 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 933 err = -EIO; 934 goto err_out; 935 } 936 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 937 /* definitely not a raw BTF */ 938 err = -EPROTO; 939 goto err_out; 940 } 941 942 /* get file size */ 943 if (fseek(f, 0, SEEK_END)) { 944 err = -errno; 945 goto err_out; 946 } 947 sz = ftell(f); 948 if (sz < 0) { 949 err = -errno; 950 goto err_out; 951 } 952 /* rewind to the start */ 953 if (fseek(f, 0, SEEK_SET)) { 954 err = -errno; 955 goto err_out; 956 } 957 958 /* pre-alloc memory and read all of BTF data */ 959 data = malloc(sz); 960 if (!data) { 961 err = -ENOMEM; 962 goto err_out; 963 } 964 if (fread(data, 1, sz, f) < sz) { 965 err = -EIO; 966 goto err_out; 967 } 968 969 /* finally parse BTF data */ 970 btf = btf__new(data, sz); 971 972 err_out: 973 free(data); 974 if (f) 975 fclose(f); 976 return err ? ERR_PTR(err) : btf; 977 } 978 979 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 980 { 981 struct btf *btf; 982 983 if (btf_ext) 984 *btf_ext = NULL; 985 986 btf = btf__parse_raw(path); 987 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 988 return btf; 989 990 return btf__parse_elf(path, btf_ext); 991 } 992 993 static int compare_vsi_off(const void *_a, const void *_b) 994 { 995 const struct btf_var_secinfo *a = _a; 996 const struct btf_var_secinfo *b = _b; 997 998 return a->offset - b->offset; 999 } 1000 1001 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1002 struct btf_type *t) 1003 { 1004 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1005 const char *name = btf__name_by_offset(btf, t->name_off); 1006 const struct btf_type *t_var; 1007 struct btf_var_secinfo *vsi; 1008 const struct btf_var *var; 1009 int ret; 1010 1011 if (!name) { 1012 pr_debug("No name found in string section for DATASEC kind.\n"); 1013 return -ENOENT; 1014 } 1015 1016 /* .extern datasec size and var offsets were set correctly during 1017 * extern collection step, so just skip straight to sorting variables 1018 */ 1019 if (t->size) 1020 goto sort_vars; 1021 1022 ret = bpf_object__section_size(obj, name, &size); 1023 if (ret || !size || (t->size && t->size != size)) { 1024 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1025 return -ENOENT; 1026 } 1027 1028 t->size = size; 1029 1030 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1031 t_var = btf__type_by_id(btf, vsi->type); 1032 var = btf_var(t_var); 1033 1034 if (!btf_is_var(t_var)) { 1035 pr_debug("Non-VAR type seen in section %s\n", name); 1036 return -EINVAL; 1037 } 1038 1039 if (var->linkage == BTF_VAR_STATIC) 1040 continue; 1041 1042 name = btf__name_by_offset(btf, t_var->name_off); 1043 if (!name) { 1044 pr_debug("No name found in string section for VAR kind\n"); 1045 return -ENOENT; 1046 } 1047 1048 ret = bpf_object__variable_offset(obj, name, &off); 1049 if (ret) { 1050 pr_debug("No offset found in symbol table for VAR %s\n", 1051 name); 1052 return -ENOENT; 1053 } 1054 1055 vsi->offset = off; 1056 } 1057 1058 sort_vars: 1059 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1060 return 0; 1061 } 1062 1063 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1064 { 1065 int err = 0; 1066 __u32 i; 1067 1068 for (i = 1; i <= btf->nr_types; i++) { 1069 struct btf_type *t = btf_type_by_id(btf, i); 1070 1071 /* Loader needs to fix up some of the things compiler 1072 * couldn't get its hands on while emitting BTF. This 1073 * is section size and global variable offset. We use 1074 * the info from the ELF itself for this purpose. 1075 */ 1076 if (btf_is_datasec(t)) { 1077 err = btf_fixup_datasec(obj, btf, t); 1078 if (err) 1079 break; 1080 } 1081 } 1082 1083 return err; 1084 } 1085 1086 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1087 1088 int btf__load(struct btf *btf) 1089 { 1090 __u32 log_buf_size = 0, raw_size; 1091 char *log_buf = NULL; 1092 void *raw_data; 1093 int err = 0; 1094 1095 if (btf->fd >= 0) 1096 return -EEXIST; 1097 1098 retry_load: 1099 if (log_buf_size) { 1100 log_buf = malloc(log_buf_size); 1101 if (!log_buf) 1102 return -ENOMEM; 1103 1104 *log_buf = 0; 1105 } 1106 1107 raw_data = btf_get_raw_data(btf, &raw_size, false); 1108 if (!raw_data) { 1109 err = -ENOMEM; 1110 goto done; 1111 } 1112 /* cache native raw data representation */ 1113 btf->raw_size = raw_size; 1114 btf->raw_data = raw_data; 1115 1116 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1117 if (btf->fd < 0) { 1118 if (!log_buf || errno == ENOSPC) { 1119 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1120 log_buf_size << 1); 1121 free(log_buf); 1122 goto retry_load; 1123 } 1124 1125 err = -errno; 1126 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1127 if (*log_buf) 1128 pr_warn("%s\n", log_buf); 1129 goto done; 1130 } 1131 1132 done: 1133 free(log_buf); 1134 return err; 1135 } 1136 1137 int btf__fd(const struct btf *btf) 1138 { 1139 return btf->fd; 1140 } 1141 1142 void btf__set_fd(struct btf *btf, int fd) 1143 { 1144 btf->fd = fd; 1145 } 1146 1147 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1148 { 1149 struct btf_header *hdr = btf->hdr; 1150 struct btf_type *t; 1151 void *data, *p; 1152 __u32 data_sz; 1153 int i; 1154 1155 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1156 if (data) { 1157 *size = btf->raw_size; 1158 return data; 1159 } 1160 1161 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1162 data = calloc(1, data_sz); 1163 if (!data) 1164 return NULL; 1165 p = data; 1166 1167 memcpy(p, hdr, hdr->hdr_len); 1168 if (swap_endian) 1169 btf_bswap_hdr(p); 1170 p += hdr->hdr_len; 1171 1172 memcpy(p, btf->types_data, hdr->type_len); 1173 if (swap_endian) { 1174 for (i = 1; i <= btf->nr_types; i++) { 1175 t = p + btf->type_offs[i]; 1176 /* btf_bswap_type_rest() relies on native t->info, so 1177 * we swap base type info after we swapped all the 1178 * additional information 1179 */ 1180 if (btf_bswap_type_rest(t)) 1181 goto err_out; 1182 btf_bswap_type_base(t); 1183 } 1184 } 1185 p += hdr->type_len; 1186 1187 memcpy(p, btf->strs_data, hdr->str_len); 1188 p += hdr->str_len; 1189 1190 *size = data_sz; 1191 return data; 1192 err_out: 1193 free(data); 1194 return NULL; 1195 } 1196 1197 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1198 { 1199 struct btf *btf = (struct btf *)btf_ro; 1200 __u32 data_sz; 1201 void *data; 1202 1203 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1204 if (!data) 1205 return NULL; 1206 1207 btf->raw_size = data_sz; 1208 if (btf->swapped_endian) 1209 btf->raw_data_swapped = data; 1210 else 1211 btf->raw_data = data; 1212 *size = data_sz; 1213 return data; 1214 } 1215 1216 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1217 { 1218 if (offset < btf->hdr->str_len) 1219 return btf->strs_data + offset; 1220 else 1221 return NULL; 1222 } 1223 1224 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1225 { 1226 return btf__str_by_offset(btf, offset); 1227 } 1228 1229 int btf__get_from_id(__u32 id, struct btf **btf) 1230 { 1231 struct bpf_btf_info btf_info = { 0 }; 1232 __u32 len = sizeof(btf_info); 1233 __u32 last_size; 1234 int btf_fd; 1235 void *ptr; 1236 int err; 1237 1238 err = 0; 1239 *btf = NULL; 1240 btf_fd = bpf_btf_get_fd_by_id(id); 1241 if (btf_fd < 0) 1242 return 0; 1243 1244 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1245 * let's start with a sane default - 4KiB here - and resize it only if 1246 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1247 */ 1248 btf_info.btf_size = 4096; 1249 last_size = btf_info.btf_size; 1250 ptr = malloc(last_size); 1251 if (!ptr) { 1252 err = -ENOMEM; 1253 goto exit_free; 1254 } 1255 1256 memset(ptr, 0, last_size); 1257 btf_info.btf = ptr_to_u64(ptr); 1258 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1259 1260 if (!err && btf_info.btf_size > last_size) { 1261 void *temp_ptr; 1262 1263 last_size = btf_info.btf_size; 1264 temp_ptr = realloc(ptr, last_size); 1265 if (!temp_ptr) { 1266 err = -ENOMEM; 1267 goto exit_free; 1268 } 1269 ptr = temp_ptr; 1270 memset(ptr, 0, last_size); 1271 btf_info.btf = ptr_to_u64(ptr); 1272 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1273 } 1274 1275 if (err || btf_info.btf_size > last_size) { 1276 err = errno; 1277 goto exit_free; 1278 } 1279 1280 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 1281 if (IS_ERR(*btf)) { 1282 err = PTR_ERR(*btf); 1283 *btf = NULL; 1284 } 1285 1286 exit_free: 1287 close(btf_fd); 1288 free(ptr); 1289 1290 return err; 1291 } 1292 1293 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1294 __u32 expected_key_size, __u32 expected_value_size, 1295 __u32 *key_type_id, __u32 *value_type_id) 1296 { 1297 const struct btf_type *container_type; 1298 const struct btf_member *key, *value; 1299 const size_t max_name = 256; 1300 char container_name[max_name]; 1301 __s64 key_size, value_size; 1302 __s32 container_id; 1303 1304 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 1305 max_name) { 1306 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1307 map_name, map_name); 1308 return -EINVAL; 1309 } 1310 1311 container_id = btf__find_by_name(btf, container_name); 1312 if (container_id < 0) { 1313 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1314 map_name, container_name); 1315 return container_id; 1316 } 1317 1318 container_type = btf__type_by_id(btf, container_id); 1319 if (!container_type) { 1320 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1321 map_name, container_id); 1322 return -EINVAL; 1323 } 1324 1325 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1326 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1327 map_name, container_name); 1328 return -EINVAL; 1329 } 1330 1331 key = btf_members(container_type); 1332 value = key + 1; 1333 1334 key_size = btf__resolve_size(btf, key->type); 1335 if (key_size < 0) { 1336 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1337 return key_size; 1338 } 1339 1340 if (expected_key_size != key_size) { 1341 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1342 map_name, (__u32)key_size, expected_key_size); 1343 return -EINVAL; 1344 } 1345 1346 value_size = btf__resolve_size(btf, value->type); 1347 if (value_size < 0) { 1348 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1349 return value_size; 1350 } 1351 1352 if (expected_value_size != value_size) { 1353 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1354 map_name, (__u32)value_size, expected_value_size); 1355 return -EINVAL; 1356 } 1357 1358 *key_type_id = key->type; 1359 *value_type_id = value->type; 1360 1361 return 0; 1362 } 1363 1364 static size_t strs_hash_fn(const void *key, void *ctx) 1365 { 1366 struct btf *btf = ctx; 1367 const char *str = btf->strs_data + (long)key; 1368 1369 return str_hash(str); 1370 } 1371 1372 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) 1373 { 1374 struct btf *btf = ctx; 1375 const char *str1 = btf->strs_data + (long)key1; 1376 const char *str2 = btf->strs_data + (long)key2; 1377 1378 return strcmp(str1, str2) == 0; 1379 } 1380 1381 static void btf_invalidate_raw_data(struct btf *btf) 1382 { 1383 if (btf->raw_data) { 1384 free(btf->raw_data); 1385 btf->raw_data = NULL; 1386 } 1387 if (btf->raw_data_swapped) { 1388 free(btf->raw_data_swapped); 1389 btf->raw_data_swapped = NULL; 1390 } 1391 } 1392 1393 /* Ensure BTF is ready to be modified (by splitting into a three memory 1394 * regions for header, types, and strings). Also invalidate cached 1395 * raw_data, if any. 1396 */ 1397 static int btf_ensure_modifiable(struct btf *btf) 1398 { 1399 void *hdr, *types, *strs, *strs_end, *s; 1400 struct hashmap *hash = NULL; 1401 long off; 1402 int err; 1403 1404 if (btf_is_modifiable(btf)) { 1405 /* any BTF modification invalidates raw_data */ 1406 btf_invalidate_raw_data(btf); 1407 return 0; 1408 } 1409 1410 /* split raw data into three memory regions */ 1411 hdr = malloc(btf->hdr->hdr_len); 1412 types = malloc(btf->hdr->type_len); 1413 strs = malloc(btf->hdr->str_len); 1414 if (!hdr || !types || !strs) 1415 goto err_out; 1416 1417 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1418 memcpy(types, btf->types_data, btf->hdr->type_len); 1419 memcpy(strs, btf->strs_data, btf->hdr->str_len); 1420 1421 /* build lookup index for all strings */ 1422 hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); 1423 if (IS_ERR(hash)) { 1424 err = PTR_ERR(hash); 1425 hash = NULL; 1426 goto err_out; 1427 } 1428 1429 strs_end = strs + btf->hdr->str_len; 1430 for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { 1431 /* hashmap__add() returns EEXIST if string with the same 1432 * content already is in the hash map 1433 */ 1434 err = hashmap__add(hash, (void *)off, (void *)off); 1435 if (err == -EEXIST) 1436 continue; /* duplicate */ 1437 if (err) 1438 goto err_out; 1439 } 1440 1441 /* only when everything was successful, update internal state */ 1442 btf->hdr = hdr; 1443 btf->types_data = types; 1444 btf->types_data_cap = btf->hdr->type_len; 1445 btf->strs_data = strs; 1446 btf->strs_data_cap = btf->hdr->str_len; 1447 btf->strs_hash = hash; 1448 /* if BTF was created from scratch, all strings are guaranteed to be 1449 * unique and deduplicated 1450 */ 1451 btf->strs_deduped = btf->hdr->str_len <= 1; 1452 1453 /* invalidate raw_data representation */ 1454 btf_invalidate_raw_data(btf); 1455 1456 return 0; 1457 1458 err_out: 1459 hashmap__free(hash); 1460 free(hdr); 1461 free(types); 1462 free(strs); 1463 return -ENOMEM; 1464 } 1465 1466 static void *btf_add_str_mem(struct btf *btf, size_t add_sz) 1467 { 1468 return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, 1469 btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); 1470 } 1471 1472 /* Find an offset in BTF string section that corresponds to a given string *s*. 1473 * Returns: 1474 * - >0 offset into string section, if string is found; 1475 * - -ENOENT, if string is not in the string section; 1476 * - <0, on any other error. 1477 */ 1478 int btf__find_str(struct btf *btf, const char *s) 1479 { 1480 long old_off, new_off, len; 1481 void *p; 1482 1483 /* BTF needs to be in a modifiable state to build string lookup index */ 1484 if (btf_ensure_modifiable(btf)) 1485 return -ENOMEM; 1486 1487 /* see btf__add_str() for why we do this */ 1488 len = strlen(s) + 1; 1489 p = btf_add_str_mem(btf, len); 1490 if (!p) 1491 return -ENOMEM; 1492 1493 new_off = btf->hdr->str_len; 1494 memcpy(p, s, len); 1495 1496 if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) 1497 return old_off; 1498 1499 return -ENOENT; 1500 } 1501 1502 /* Add a string s to the BTF string section. 1503 * Returns: 1504 * - > 0 offset into string section, on success; 1505 * - < 0, on error. 1506 */ 1507 int btf__add_str(struct btf *btf, const char *s) 1508 { 1509 long old_off, new_off, len; 1510 void *p; 1511 int err; 1512 1513 if (btf_ensure_modifiable(btf)) 1514 return -ENOMEM; 1515 1516 /* Hashmap keys are always offsets within btf->strs_data, so to even 1517 * look up some string from the "outside", we need to first append it 1518 * at the end, so that it can be addressed with an offset. Luckily, 1519 * until btf->hdr->str_len is incremented, that string is just a piece 1520 * of garbage for the rest of BTF code, so no harm, no foul. On the 1521 * other hand, if the string is unique, it's already appended and 1522 * ready to be used, only a simple btf->hdr->str_len increment away. 1523 */ 1524 len = strlen(s) + 1; 1525 p = btf_add_str_mem(btf, len); 1526 if (!p) 1527 return -ENOMEM; 1528 1529 new_off = btf->hdr->str_len; 1530 memcpy(p, s, len); 1531 1532 /* Now attempt to add the string, but only if the string with the same 1533 * contents doesn't exist already (HASHMAP_ADD strategy). If such 1534 * string exists, we'll get its offset in old_off (that's old_key). 1535 */ 1536 err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, 1537 HASHMAP_ADD, (const void **)&old_off, NULL); 1538 if (err == -EEXIST) 1539 return old_off; /* duplicated string, return existing offset */ 1540 if (err) 1541 return err; 1542 1543 btf->hdr->str_len += len; /* new unique string, adjust data length */ 1544 return new_off; 1545 } 1546 1547 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1548 { 1549 return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1550 btf->hdr->type_len, UINT_MAX, add_sz); 1551 } 1552 1553 static __u32 btf_type_info(int kind, int vlen, int kflag) 1554 { 1555 return (kflag << 31) | (kind << 24) | vlen; 1556 } 1557 1558 static void btf_type_inc_vlen(struct btf_type *t) 1559 { 1560 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1561 } 1562 1563 /* 1564 * Append new BTF_KIND_INT type with: 1565 * - *name* - non-empty, non-NULL type name; 1566 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1567 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1568 * Returns: 1569 * - >0, type ID of newly added BTF type; 1570 * - <0, on error. 1571 */ 1572 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1573 { 1574 struct btf_type *t; 1575 int sz, err, name_off; 1576 1577 /* non-empty name */ 1578 if (!name || !name[0]) 1579 return -EINVAL; 1580 /* byte_sz must be power of 2 */ 1581 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1582 return -EINVAL; 1583 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1584 return -EINVAL; 1585 1586 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1587 if (btf_ensure_modifiable(btf)) 1588 return -ENOMEM; 1589 1590 sz = sizeof(struct btf_type) + sizeof(int); 1591 t = btf_add_type_mem(btf, sz); 1592 if (!t) 1593 return -ENOMEM; 1594 1595 /* if something goes wrong later, we might end up with an extra string, 1596 * but that shouldn't be a problem, because BTF can't be constructed 1597 * completely anyway and will most probably be just discarded 1598 */ 1599 name_off = btf__add_str(btf, name); 1600 if (name_off < 0) 1601 return name_off; 1602 1603 t->name_off = name_off; 1604 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1605 t->size = byte_sz; 1606 /* set INT info, we don't allow setting legacy bit offset/size */ 1607 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1608 1609 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1610 if (err) 1611 return err; 1612 1613 btf->hdr->type_len += sz; 1614 btf->hdr->str_off += sz; 1615 btf->nr_types++; 1616 return btf->nr_types; 1617 } 1618 1619 /* it's completely legal to append BTF types with type IDs pointing forward to 1620 * types that haven't been appended yet, so we only make sure that id looks 1621 * sane, we can't guarantee that ID will always be valid 1622 */ 1623 static int validate_type_id(int id) 1624 { 1625 if (id < 0 || id > BTF_MAX_NR_TYPES) 1626 return -EINVAL; 1627 return 0; 1628 } 1629 1630 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1631 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1632 { 1633 struct btf_type *t; 1634 int sz, name_off = 0, err; 1635 1636 if (validate_type_id(ref_type_id)) 1637 return -EINVAL; 1638 1639 if (btf_ensure_modifiable(btf)) 1640 return -ENOMEM; 1641 1642 sz = sizeof(struct btf_type); 1643 t = btf_add_type_mem(btf, sz); 1644 if (!t) 1645 return -ENOMEM; 1646 1647 if (name && name[0]) { 1648 name_off = btf__add_str(btf, name); 1649 if (name_off < 0) 1650 return name_off; 1651 } 1652 1653 t->name_off = name_off; 1654 t->info = btf_type_info(kind, 0, 0); 1655 t->type = ref_type_id; 1656 1657 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1658 if (err) 1659 return err; 1660 1661 btf->hdr->type_len += sz; 1662 btf->hdr->str_off += sz; 1663 btf->nr_types++; 1664 return btf->nr_types; 1665 } 1666 1667 /* 1668 * Append new BTF_KIND_PTR type with: 1669 * - *ref_type_id* - referenced type ID, it might not exist yet; 1670 * Returns: 1671 * - >0, type ID of newly added BTF type; 1672 * - <0, on error. 1673 */ 1674 int btf__add_ptr(struct btf *btf, int ref_type_id) 1675 { 1676 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1677 } 1678 1679 /* 1680 * Append new BTF_KIND_ARRAY type with: 1681 * - *index_type_id* - type ID of the type describing array index; 1682 * - *elem_type_id* - type ID of the type describing array element; 1683 * - *nr_elems* - the size of the array; 1684 * Returns: 1685 * - >0, type ID of newly added BTF type; 1686 * - <0, on error. 1687 */ 1688 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1689 { 1690 struct btf_type *t; 1691 struct btf_array *a; 1692 int sz, err; 1693 1694 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1695 return -EINVAL; 1696 1697 if (btf_ensure_modifiable(btf)) 1698 return -ENOMEM; 1699 1700 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1701 t = btf_add_type_mem(btf, sz); 1702 if (!t) 1703 return -ENOMEM; 1704 1705 t->name_off = 0; 1706 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1707 t->size = 0; 1708 1709 a = btf_array(t); 1710 a->type = elem_type_id; 1711 a->index_type = index_type_id; 1712 a->nelems = nr_elems; 1713 1714 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1715 if (err) 1716 return err; 1717 1718 btf->hdr->type_len += sz; 1719 btf->hdr->str_off += sz; 1720 btf->nr_types++; 1721 return btf->nr_types; 1722 } 1723 1724 /* generic STRUCT/UNION append function */ 1725 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1726 { 1727 struct btf_type *t; 1728 int sz, err, name_off = 0; 1729 1730 if (btf_ensure_modifiable(btf)) 1731 return -ENOMEM; 1732 1733 sz = sizeof(struct btf_type); 1734 t = btf_add_type_mem(btf, sz); 1735 if (!t) 1736 return -ENOMEM; 1737 1738 if (name && name[0]) { 1739 name_off = btf__add_str(btf, name); 1740 if (name_off < 0) 1741 return name_off; 1742 } 1743 1744 /* start out with vlen=0 and no kflag; this will be adjusted when 1745 * adding each member 1746 */ 1747 t->name_off = name_off; 1748 t->info = btf_type_info(kind, 0, 0); 1749 t->size = bytes_sz; 1750 1751 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1752 if (err) 1753 return err; 1754 1755 btf->hdr->type_len += sz; 1756 btf->hdr->str_off += sz; 1757 btf->nr_types++; 1758 return btf->nr_types; 1759 } 1760 1761 /* 1762 * Append new BTF_KIND_STRUCT type with: 1763 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1764 * - *byte_sz* - size of the struct, in bytes; 1765 * 1766 * Struct initially has no fields in it. Fields can be added by 1767 * btf__add_field() right after btf__add_struct() succeeds. 1768 * 1769 * Returns: 1770 * - >0, type ID of newly added BTF type; 1771 * - <0, on error. 1772 */ 1773 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1774 { 1775 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1776 } 1777 1778 /* 1779 * Append new BTF_KIND_UNION type with: 1780 * - *name* - name of the union, can be NULL or empty for anonymous union; 1781 * - *byte_sz* - size of the union, in bytes; 1782 * 1783 * Union initially has no fields in it. Fields can be added by 1784 * btf__add_field() right after btf__add_union() succeeds. All fields 1785 * should have *bit_offset* of 0. 1786 * 1787 * Returns: 1788 * - >0, type ID of newly added BTF type; 1789 * - <0, on error. 1790 */ 1791 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1792 { 1793 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1794 } 1795 1796 /* 1797 * Append new field for the current STRUCT/UNION type with: 1798 * - *name* - name of the field, can be NULL or empty for anonymous field; 1799 * - *type_id* - type ID for the type describing field type; 1800 * - *bit_offset* - bit offset of the start of the field within struct/union; 1801 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1802 * Returns: 1803 * - 0, on success; 1804 * - <0, on error. 1805 */ 1806 int btf__add_field(struct btf *btf, const char *name, int type_id, 1807 __u32 bit_offset, __u32 bit_size) 1808 { 1809 struct btf_type *t; 1810 struct btf_member *m; 1811 bool is_bitfield; 1812 int sz, name_off = 0; 1813 1814 /* last type should be union/struct */ 1815 if (btf->nr_types == 0) 1816 return -EINVAL; 1817 t = btf_type_by_id(btf, btf->nr_types); 1818 if (!btf_is_composite(t)) 1819 return -EINVAL; 1820 1821 if (validate_type_id(type_id)) 1822 return -EINVAL; 1823 /* best-effort bit field offset/size enforcement */ 1824 is_bitfield = bit_size || (bit_offset % 8 != 0); 1825 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1826 return -EINVAL; 1827 1828 /* only offset 0 is allowed for unions */ 1829 if (btf_is_union(t) && bit_offset) 1830 return -EINVAL; 1831 1832 /* decompose and invalidate raw data */ 1833 if (btf_ensure_modifiable(btf)) 1834 return -ENOMEM; 1835 1836 sz = sizeof(struct btf_member); 1837 m = btf_add_type_mem(btf, sz); 1838 if (!m) 1839 return -ENOMEM; 1840 1841 if (name && name[0]) { 1842 name_off = btf__add_str(btf, name); 1843 if (name_off < 0) 1844 return name_off; 1845 } 1846 1847 m->name_off = name_off; 1848 m->type = type_id; 1849 m->offset = bit_offset | (bit_size << 24); 1850 1851 /* btf_add_type_mem can invalidate t pointer */ 1852 t = btf_type_by_id(btf, btf->nr_types); 1853 /* update parent type's vlen and kflag */ 1854 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1855 1856 btf->hdr->type_len += sz; 1857 btf->hdr->str_off += sz; 1858 return 0; 1859 } 1860 1861 /* 1862 * Append new BTF_KIND_ENUM type with: 1863 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1864 * - *byte_sz* - size of the enum, in bytes. 1865 * 1866 * Enum initially has no enum values in it (and corresponds to enum forward 1867 * declaration). Enumerator values can be added by btf__add_enum_value() 1868 * immediately after btf__add_enum() succeeds. 1869 * 1870 * Returns: 1871 * - >0, type ID of newly added BTF type; 1872 * - <0, on error. 1873 */ 1874 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 1875 { 1876 struct btf_type *t; 1877 int sz, err, name_off = 0; 1878 1879 /* byte_sz must be power of 2 */ 1880 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 1881 return -EINVAL; 1882 1883 if (btf_ensure_modifiable(btf)) 1884 return -ENOMEM; 1885 1886 sz = sizeof(struct btf_type); 1887 t = btf_add_type_mem(btf, sz); 1888 if (!t) 1889 return -ENOMEM; 1890 1891 if (name && name[0]) { 1892 name_off = btf__add_str(btf, name); 1893 if (name_off < 0) 1894 return name_off; 1895 } 1896 1897 /* start out with vlen=0; it will be adjusted when adding enum values */ 1898 t->name_off = name_off; 1899 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 1900 t->size = byte_sz; 1901 1902 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1903 if (err) 1904 return err; 1905 1906 btf->hdr->type_len += sz; 1907 btf->hdr->str_off += sz; 1908 btf->nr_types++; 1909 return btf->nr_types; 1910 } 1911 1912 /* 1913 * Append new enum value for the current ENUM type with: 1914 * - *name* - name of the enumerator value, can't be NULL or empty; 1915 * - *value* - integer value corresponding to enum value *name*; 1916 * Returns: 1917 * - 0, on success; 1918 * - <0, on error. 1919 */ 1920 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 1921 { 1922 struct btf_type *t; 1923 struct btf_enum *v; 1924 int sz, name_off; 1925 1926 /* last type should be BTF_KIND_ENUM */ 1927 if (btf->nr_types == 0) 1928 return -EINVAL; 1929 t = btf_type_by_id(btf, btf->nr_types); 1930 if (!btf_is_enum(t)) 1931 return -EINVAL; 1932 1933 /* non-empty name */ 1934 if (!name || !name[0]) 1935 return -EINVAL; 1936 if (value < INT_MIN || value > UINT_MAX) 1937 return -E2BIG; 1938 1939 /* decompose and invalidate raw data */ 1940 if (btf_ensure_modifiable(btf)) 1941 return -ENOMEM; 1942 1943 sz = sizeof(struct btf_enum); 1944 v = btf_add_type_mem(btf, sz); 1945 if (!v) 1946 return -ENOMEM; 1947 1948 name_off = btf__add_str(btf, name); 1949 if (name_off < 0) 1950 return name_off; 1951 1952 v->name_off = name_off; 1953 v->val = value; 1954 1955 /* update parent type's vlen */ 1956 t = btf_type_by_id(btf, btf->nr_types); 1957 btf_type_inc_vlen(t); 1958 1959 btf->hdr->type_len += sz; 1960 btf->hdr->str_off += sz; 1961 return 0; 1962 } 1963 1964 /* 1965 * Append new BTF_KIND_FWD type with: 1966 * - *name*, non-empty/non-NULL name; 1967 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 1968 * BTF_FWD_UNION, or BTF_FWD_ENUM; 1969 * Returns: 1970 * - >0, type ID of newly added BTF type; 1971 * - <0, on error. 1972 */ 1973 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 1974 { 1975 if (!name || !name[0]) 1976 return -EINVAL; 1977 1978 switch (fwd_kind) { 1979 case BTF_FWD_STRUCT: 1980 case BTF_FWD_UNION: { 1981 struct btf_type *t; 1982 int id; 1983 1984 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 1985 if (id <= 0) 1986 return id; 1987 t = btf_type_by_id(btf, id); 1988 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 1989 return id; 1990 } 1991 case BTF_FWD_ENUM: 1992 /* enum forward in BTF currently is just an enum with no enum 1993 * values; we also assume a standard 4-byte size for it 1994 */ 1995 return btf__add_enum(btf, name, sizeof(int)); 1996 default: 1997 return -EINVAL; 1998 } 1999 } 2000 2001 /* 2002 * Append new BTF_KING_TYPEDEF type with: 2003 * - *name*, non-empty/non-NULL name; 2004 * - *ref_type_id* - referenced type ID, it might not exist yet; 2005 * Returns: 2006 * - >0, type ID of newly added BTF type; 2007 * - <0, on error. 2008 */ 2009 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2010 { 2011 if (!name || !name[0]) 2012 return -EINVAL; 2013 2014 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2015 } 2016 2017 /* 2018 * Append new BTF_KIND_VOLATILE type with: 2019 * - *ref_type_id* - referenced type ID, it might not exist yet; 2020 * Returns: 2021 * - >0, type ID of newly added BTF type; 2022 * - <0, on error. 2023 */ 2024 int btf__add_volatile(struct btf *btf, int ref_type_id) 2025 { 2026 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2027 } 2028 2029 /* 2030 * Append new BTF_KIND_CONST type with: 2031 * - *ref_type_id* - referenced type ID, it might not exist yet; 2032 * Returns: 2033 * - >0, type ID of newly added BTF type; 2034 * - <0, on error. 2035 */ 2036 int btf__add_const(struct btf *btf, int ref_type_id) 2037 { 2038 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2039 } 2040 2041 /* 2042 * Append new BTF_KIND_RESTRICT type with: 2043 * - *ref_type_id* - referenced type ID, it might not exist yet; 2044 * Returns: 2045 * - >0, type ID of newly added BTF type; 2046 * - <0, on error. 2047 */ 2048 int btf__add_restrict(struct btf *btf, int ref_type_id) 2049 { 2050 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2051 } 2052 2053 /* 2054 * Append new BTF_KIND_FUNC type with: 2055 * - *name*, non-empty/non-NULL name; 2056 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2057 * Returns: 2058 * - >0, type ID of newly added BTF type; 2059 * - <0, on error. 2060 */ 2061 int btf__add_func(struct btf *btf, const char *name, 2062 enum btf_func_linkage linkage, int proto_type_id) 2063 { 2064 int id; 2065 2066 if (!name || !name[0]) 2067 return -EINVAL; 2068 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2069 linkage != BTF_FUNC_EXTERN) 2070 return -EINVAL; 2071 2072 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2073 if (id > 0) { 2074 struct btf_type *t = btf_type_by_id(btf, id); 2075 2076 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2077 } 2078 return id; 2079 } 2080 2081 /* 2082 * Append new BTF_KIND_FUNC_PROTO with: 2083 * - *ret_type_id* - type ID for return result of a function. 2084 * 2085 * Function prototype initially has no arguments, but they can be added by 2086 * btf__add_func_param() one by one, immediately after 2087 * btf__add_func_proto() succeeded. 2088 * 2089 * Returns: 2090 * - >0, type ID of newly added BTF type; 2091 * - <0, on error. 2092 */ 2093 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2094 { 2095 struct btf_type *t; 2096 int sz, err; 2097 2098 if (validate_type_id(ret_type_id)) 2099 return -EINVAL; 2100 2101 if (btf_ensure_modifiable(btf)) 2102 return -ENOMEM; 2103 2104 sz = sizeof(struct btf_type); 2105 t = btf_add_type_mem(btf, sz); 2106 if (!t) 2107 return -ENOMEM; 2108 2109 /* start out with vlen=0; this will be adjusted when adding enum 2110 * values, if necessary 2111 */ 2112 t->name_off = 0; 2113 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2114 t->type = ret_type_id; 2115 2116 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 2117 if (err) 2118 return err; 2119 2120 btf->hdr->type_len += sz; 2121 btf->hdr->str_off += sz; 2122 btf->nr_types++; 2123 return btf->nr_types; 2124 } 2125 2126 /* 2127 * Append new function parameter for current FUNC_PROTO type with: 2128 * - *name* - parameter name, can be NULL or empty; 2129 * - *type_id* - type ID describing the type of the parameter. 2130 * Returns: 2131 * - 0, on success; 2132 * - <0, on error. 2133 */ 2134 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2135 { 2136 struct btf_type *t; 2137 struct btf_param *p; 2138 int sz, name_off = 0; 2139 2140 if (validate_type_id(type_id)) 2141 return -EINVAL; 2142 2143 /* last type should be BTF_KIND_FUNC_PROTO */ 2144 if (btf->nr_types == 0) 2145 return -EINVAL; 2146 t = btf_type_by_id(btf, btf->nr_types); 2147 if (!btf_is_func_proto(t)) 2148 return -EINVAL; 2149 2150 /* decompose and invalidate raw data */ 2151 if (btf_ensure_modifiable(btf)) 2152 return -ENOMEM; 2153 2154 sz = sizeof(struct btf_param); 2155 p = btf_add_type_mem(btf, sz); 2156 if (!p) 2157 return -ENOMEM; 2158 2159 if (name && name[0]) { 2160 name_off = btf__add_str(btf, name); 2161 if (name_off < 0) 2162 return name_off; 2163 } 2164 2165 p->name_off = name_off; 2166 p->type = type_id; 2167 2168 /* update parent type's vlen */ 2169 t = btf_type_by_id(btf, btf->nr_types); 2170 btf_type_inc_vlen(t); 2171 2172 btf->hdr->type_len += sz; 2173 btf->hdr->str_off += sz; 2174 return 0; 2175 } 2176 2177 /* 2178 * Append new BTF_KIND_VAR type with: 2179 * - *name* - non-empty/non-NULL name; 2180 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2181 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2182 * - *type_id* - type ID of the type describing the type of the variable. 2183 * Returns: 2184 * - >0, type ID of newly added BTF type; 2185 * - <0, on error. 2186 */ 2187 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2188 { 2189 struct btf_type *t; 2190 struct btf_var *v; 2191 int sz, err, name_off; 2192 2193 /* non-empty name */ 2194 if (!name || !name[0]) 2195 return -EINVAL; 2196 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2197 linkage != BTF_VAR_GLOBAL_EXTERN) 2198 return -EINVAL; 2199 if (validate_type_id(type_id)) 2200 return -EINVAL; 2201 2202 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2203 if (btf_ensure_modifiable(btf)) 2204 return -ENOMEM; 2205 2206 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2207 t = btf_add_type_mem(btf, sz); 2208 if (!t) 2209 return -ENOMEM; 2210 2211 name_off = btf__add_str(btf, name); 2212 if (name_off < 0) 2213 return name_off; 2214 2215 t->name_off = name_off; 2216 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2217 t->type = type_id; 2218 2219 v = btf_var(t); 2220 v->linkage = linkage; 2221 2222 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 2223 if (err) 2224 return err; 2225 2226 btf->hdr->type_len += sz; 2227 btf->hdr->str_off += sz; 2228 btf->nr_types++; 2229 return btf->nr_types; 2230 } 2231 2232 /* 2233 * Append new BTF_KIND_DATASEC type with: 2234 * - *name* - non-empty/non-NULL name; 2235 * - *byte_sz* - data section size, in bytes. 2236 * 2237 * Data section is initially empty. Variables info can be added with 2238 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2239 * 2240 * Returns: 2241 * - >0, type ID of newly added BTF type; 2242 * - <0, on error. 2243 */ 2244 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2245 { 2246 struct btf_type *t; 2247 int sz, err, name_off; 2248 2249 /* non-empty name */ 2250 if (!name || !name[0]) 2251 return -EINVAL; 2252 2253 if (btf_ensure_modifiable(btf)) 2254 return -ENOMEM; 2255 2256 sz = sizeof(struct btf_type); 2257 t = btf_add_type_mem(btf, sz); 2258 if (!t) 2259 return -ENOMEM; 2260 2261 name_off = btf__add_str(btf, name); 2262 if (name_off < 0) 2263 return name_off; 2264 2265 /* start with vlen=0, which will be update as var_secinfos are added */ 2266 t->name_off = name_off; 2267 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2268 t->size = byte_sz; 2269 2270 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 2271 if (err) 2272 return err; 2273 2274 btf->hdr->type_len += sz; 2275 btf->hdr->str_off += sz; 2276 btf->nr_types++; 2277 return btf->nr_types; 2278 } 2279 2280 /* 2281 * Append new data section variable information entry for current DATASEC type: 2282 * - *var_type_id* - type ID, describing type of the variable; 2283 * - *offset* - variable offset within data section, in bytes; 2284 * - *byte_sz* - variable size, in bytes. 2285 * 2286 * Returns: 2287 * - 0, on success; 2288 * - <0, on error. 2289 */ 2290 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2291 { 2292 struct btf_type *t; 2293 struct btf_var_secinfo *v; 2294 int sz; 2295 2296 /* last type should be BTF_KIND_DATASEC */ 2297 if (btf->nr_types == 0) 2298 return -EINVAL; 2299 t = btf_type_by_id(btf, btf->nr_types); 2300 if (!btf_is_datasec(t)) 2301 return -EINVAL; 2302 2303 if (validate_type_id(var_type_id)) 2304 return -EINVAL; 2305 2306 /* decompose and invalidate raw data */ 2307 if (btf_ensure_modifiable(btf)) 2308 return -ENOMEM; 2309 2310 sz = sizeof(struct btf_var_secinfo); 2311 v = btf_add_type_mem(btf, sz); 2312 if (!v) 2313 return -ENOMEM; 2314 2315 v->type = var_type_id; 2316 v->offset = offset; 2317 v->size = byte_sz; 2318 2319 /* update parent type's vlen */ 2320 t = btf_type_by_id(btf, btf->nr_types); 2321 btf_type_inc_vlen(t); 2322 2323 btf->hdr->type_len += sz; 2324 btf->hdr->str_off += sz; 2325 return 0; 2326 } 2327 2328 struct btf_ext_sec_setup_param { 2329 __u32 off; 2330 __u32 len; 2331 __u32 min_rec_size; 2332 struct btf_ext_info *ext_info; 2333 const char *desc; 2334 }; 2335 2336 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2337 struct btf_ext_sec_setup_param *ext_sec) 2338 { 2339 const struct btf_ext_info_sec *sinfo; 2340 struct btf_ext_info *ext_info; 2341 __u32 info_left, record_size; 2342 /* The start of the info sec (including the __u32 record_size). */ 2343 void *info; 2344 2345 if (ext_sec->len == 0) 2346 return 0; 2347 2348 if (ext_sec->off & 0x03) { 2349 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2350 ext_sec->desc); 2351 return -EINVAL; 2352 } 2353 2354 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2355 info_left = ext_sec->len; 2356 2357 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2358 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2359 ext_sec->desc, ext_sec->off, ext_sec->len); 2360 return -EINVAL; 2361 } 2362 2363 /* At least a record size */ 2364 if (info_left < sizeof(__u32)) { 2365 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2366 return -EINVAL; 2367 } 2368 2369 /* The record size needs to meet the minimum standard */ 2370 record_size = *(__u32 *)info; 2371 if (record_size < ext_sec->min_rec_size || 2372 record_size & 0x03) { 2373 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2374 ext_sec->desc, record_size); 2375 return -EINVAL; 2376 } 2377 2378 sinfo = info + sizeof(__u32); 2379 info_left -= sizeof(__u32); 2380 2381 /* If no records, return failure now so .BTF.ext won't be used. */ 2382 if (!info_left) { 2383 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2384 return -EINVAL; 2385 } 2386 2387 while (info_left) { 2388 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2389 __u64 total_record_size; 2390 __u32 num_records; 2391 2392 if (info_left < sec_hdrlen) { 2393 pr_debug("%s section header is not found in .BTF.ext\n", 2394 ext_sec->desc); 2395 return -EINVAL; 2396 } 2397 2398 num_records = sinfo->num_info; 2399 if (num_records == 0) { 2400 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2401 ext_sec->desc); 2402 return -EINVAL; 2403 } 2404 2405 total_record_size = sec_hdrlen + 2406 (__u64)num_records * record_size; 2407 if (info_left < total_record_size) { 2408 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2409 ext_sec->desc); 2410 return -EINVAL; 2411 } 2412 2413 info_left -= total_record_size; 2414 sinfo = (void *)sinfo + total_record_size; 2415 } 2416 2417 ext_info = ext_sec->ext_info; 2418 ext_info->len = ext_sec->len - sizeof(__u32); 2419 ext_info->rec_size = record_size; 2420 ext_info->info = info + sizeof(__u32); 2421 2422 return 0; 2423 } 2424 2425 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2426 { 2427 struct btf_ext_sec_setup_param param = { 2428 .off = btf_ext->hdr->func_info_off, 2429 .len = btf_ext->hdr->func_info_len, 2430 .min_rec_size = sizeof(struct bpf_func_info_min), 2431 .ext_info = &btf_ext->func_info, 2432 .desc = "func_info" 2433 }; 2434 2435 return btf_ext_setup_info(btf_ext, ¶m); 2436 } 2437 2438 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2439 { 2440 struct btf_ext_sec_setup_param param = { 2441 .off = btf_ext->hdr->line_info_off, 2442 .len = btf_ext->hdr->line_info_len, 2443 .min_rec_size = sizeof(struct bpf_line_info_min), 2444 .ext_info = &btf_ext->line_info, 2445 .desc = "line_info", 2446 }; 2447 2448 return btf_ext_setup_info(btf_ext, ¶m); 2449 } 2450 2451 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2452 { 2453 struct btf_ext_sec_setup_param param = { 2454 .off = btf_ext->hdr->core_relo_off, 2455 .len = btf_ext->hdr->core_relo_len, 2456 .min_rec_size = sizeof(struct bpf_core_relo), 2457 .ext_info = &btf_ext->core_relo_info, 2458 .desc = "core_relo", 2459 }; 2460 2461 return btf_ext_setup_info(btf_ext, ¶m); 2462 } 2463 2464 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2465 { 2466 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2467 2468 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2469 data_size < hdr->hdr_len) { 2470 pr_debug("BTF.ext header not found"); 2471 return -EINVAL; 2472 } 2473 2474 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2475 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2476 return -ENOTSUP; 2477 } else if (hdr->magic != BTF_MAGIC) { 2478 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2479 return -EINVAL; 2480 } 2481 2482 if (hdr->version != BTF_VERSION) { 2483 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2484 return -ENOTSUP; 2485 } 2486 2487 if (hdr->flags) { 2488 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2489 return -ENOTSUP; 2490 } 2491 2492 if (data_size == hdr->hdr_len) { 2493 pr_debug("BTF.ext has no data\n"); 2494 return -EINVAL; 2495 } 2496 2497 return 0; 2498 } 2499 2500 void btf_ext__free(struct btf_ext *btf_ext) 2501 { 2502 if (IS_ERR_OR_NULL(btf_ext)) 2503 return; 2504 free(btf_ext->data); 2505 free(btf_ext); 2506 } 2507 2508 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2509 { 2510 struct btf_ext *btf_ext; 2511 int err; 2512 2513 err = btf_ext_parse_hdr(data, size); 2514 if (err) 2515 return ERR_PTR(err); 2516 2517 btf_ext = calloc(1, sizeof(struct btf_ext)); 2518 if (!btf_ext) 2519 return ERR_PTR(-ENOMEM); 2520 2521 btf_ext->data_size = size; 2522 btf_ext->data = malloc(size); 2523 if (!btf_ext->data) { 2524 err = -ENOMEM; 2525 goto done; 2526 } 2527 memcpy(btf_ext->data, data, size); 2528 2529 if (btf_ext->hdr->hdr_len < 2530 offsetofend(struct btf_ext_header, line_info_len)) 2531 goto done; 2532 err = btf_ext_setup_func_info(btf_ext); 2533 if (err) 2534 goto done; 2535 2536 err = btf_ext_setup_line_info(btf_ext); 2537 if (err) 2538 goto done; 2539 2540 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2541 goto done; 2542 err = btf_ext_setup_core_relos(btf_ext); 2543 if (err) 2544 goto done; 2545 2546 done: 2547 if (err) { 2548 btf_ext__free(btf_ext); 2549 return ERR_PTR(err); 2550 } 2551 2552 return btf_ext; 2553 } 2554 2555 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2556 { 2557 *size = btf_ext->data_size; 2558 return btf_ext->data; 2559 } 2560 2561 static int btf_ext_reloc_info(const struct btf *btf, 2562 const struct btf_ext_info *ext_info, 2563 const char *sec_name, __u32 insns_cnt, 2564 void **info, __u32 *cnt) 2565 { 2566 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2567 __u32 i, record_size, existing_len, records_len; 2568 struct btf_ext_info_sec *sinfo; 2569 const char *info_sec_name; 2570 __u64 remain_len; 2571 void *data; 2572 2573 record_size = ext_info->rec_size; 2574 sinfo = ext_info->info; 2575 remain_len = ext_info->len; 2576 while (remain_len > 0) { 2577 records_len = sinfo->num_info * record_size; 2578 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2579 if (strcmp(info_sec_name, sec_name)) { 2580 remain_len -= sec_hdrlen + records_len; 2581 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2582 continue; 2583 } 2584 2585 existing_len = (*cnt) * record_size; 2586 data = realloc(*info, existing_len + records_len); 2587 if (!data) 2588 return -ENOMEM; 2589 2590 memcpy(data + existing_len, sinfo->data, records_len); 2591 /* adjust insn_off only, the rest data will be passed 2592 * to the kernel. 2593 */ 2594 for (i = 0; i < sinfo->num_info; i++) { 2595 __u32 *insn_off; 2596 2597 insn_off = data + existing_len + (i * record_size); 2598 *insn_off = *insn_off / sizeof(struct bpf_insn) + 2599 insns_cnt; 2600 } 2601 *info = data; 2602 *cnt += sinfo->num_info; 2603 return 0; 2604 } 2605 2606 return -ENOENT; 2607 } 2608 2609 int btf_ext__reloc_func_info(const struct btf *btf, 2610 const struct btf_ext *btf_ext, 2611 const char *sec_name, __u32 insns_cnt, 2612 void **func_info, __u32 *cnt) 2613 { 2614 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2615 insns_cnt, func_info, cnt); 2616 } 2617 2618 int btf_ext__reloc_line_info(const struct btf *btf, 2619 const struct btf_ext *btf_ext, 2620 const char *sec_name, __u32 insns_cnt, 2621 void **line_info, __u32 *cnt) 2622 { 2623 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2624 insns_cnt, line_info, cnt); 2625 } 2626 2627 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2628 { 2629 return btf_ext->func_info.rec_size; 2630 } 2631 2632 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2633 { 2634 return btf_ext->line_info.rec_size; 2635 } 2636 2637 struct btf_dedup; 2638 2639 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2640 const struct btf_dedup_opts *opts); 2641 static void btf_dedup_free(struct btf_dedup *d); 2642 static int btf_dedup_strings(struct btf_dedup *d); 2643 static int btf_dedup_prim_types(struct btf_dedup *d); 2644 static int btf_dedup_struct_types(struct btf_dedup *d); 2645 static int btf_dedup_ref_types(struct btf_dedup *d); 2646 static int btf_dedup_compact_types(struct btf_dedup *d); 2647 static int btf_dedup_remap_types(struct btf_dedup *d); 2648 2649 /* 2650 * Deduplicate BTF types and strings. 2651 * 2652 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2653 * section with all BTF type descriptors and string data. It overwrites that 2654 * memory in-place with deduplicated types and strings without any loss of 2655 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2656 * is provided, all the strings referenced from .BTF.ext section are honored 2657 * and updated to point to the right offsets after deduplication. 2658 * 2659 * If function returns with error, type/string data might be garbled and should 2660 * be discarded. 2661 * 2662 * More verbose and detailed description of both problem btf_dedup is solving, 2663 * as well as solution could be found at: 2664 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2665 * 2666 * Problem description and justification 2667 * ===================================== 2668 * 2669 * BTF type information is typically emitted either as a result of conversion 2670 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2671 * unit contains information about a subset of all the types that are used 2672 * in an application. These subsets are frequently overlapping and contain a lot 2673 * of duplicated information when later concatenated together into a single 2674 * binary. This algorithm ensures that each unique type is represented by single 2675 * BTF type descriptor, greatly reducing resulting size of BTF data. 2676 * 2677 * Compilation unit isolation and subsequent duplication of data is not the only 2678 * problem. The same type hierarchy (e.g., struct and all the type that struct 2679 * references) in different compilation units can be represented in BTF to 2680 * various degrees of completeness (or, rather, incompleteness) due to 2681 * struct/union forward declarations. 2682 * 2683 * Let's take a look at an example, that we'll use to better understand the 2684 * problem (and solution). Suppose we have two compilation units, each using 2685 * same `struct S`, but each of them having incomplete type information about 2686 * struct's fields: 2687 * 2688 * // CU #1: 2689 * struct S; 2690 * struct A { 2691 * int a; 2692 * struct A* self; 2693 * struct S* parent; 2694 * }; 2695 * struct B; 2696 * struct S { 2697 * struct A* a_ptr; 2698 * struct B* b_ptr; 2699 * }; 2700 * 2701 * // CU #2: 2702 * struct S; 2703 * struct A; 2704 * struct B { 2705 * int b; 2706 * struct B* self; 2707 * struct S* parent; 2708 * }; 2709 * struct S { 2710 * struct A* a_ptr; 2711 * struct B* b_ptr; 2712 * }; 2713 * 2714 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2715 * more), but will know the complete type information about `struct A`. While 2716 * for CU #2, it will know full type information about `struct B`, but will 2717 * only know about forward declaration of `struct A` (in BTF terms, it will 2718 * have `BTF_KIND_FWD` type descriptor with name `B`). 2719 * 2720 * This compilation unit isolation means that it's possible that there is no 2721 * single CU with complete type information describing structs `S`, `A`, and 2722 * `B`. Also, we might get tons of duplicated and redundant type information. 2723 * 2724 * Additional complication we need to keep in mind comes from the fact that 2725 * types, in general, can form graphs containing cycles, not just DAGs. 2726 * 2727 * While algorithm does deduplication, it also merges and resolves type 2728 * information (unless disabled throught `struct btf_opts`), whenever possible. 2729 * E.g., in the example above with two compilation units having partial type 2730 * information for structs `A` and `B`, the output of algorithm will emit 2731 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2732 * (as well as type information for `int` and pointers), as if they were defined 2733 * in a single compilation unit as: 2734 * 2735 * struct A { 2736 * int a; 2737 * struct A* self; 2738 * struct S* parent; 2739 * }; 2740 * struct B { 2741 * int b; 2742 * struct B* self; 2743 * struct S* parent; 2744 * }; 2745 * struct S { 2746 * struct A* a_ptr; 2747 * struct B* b_ptr; 2748 * }; 2749 * 2750 * Algorithm summary 2751 * ================= 2752 * 2753 * Algorithm completes its work in 6 separate passes: 2754 * 2755 * 1. Strings deduplication. 2756 * 2. Primitive types deduplication (int, enum, fwd). 2757 * 3. Struct/union types deduplication. 2758 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2759 * protos, and const/volatile/restrict modifiers). 2760 * 5. Types compaction. 2761 * 6. Types remapping. 2762 * 2763 * Algorithm determines canonical type descriptor, which is a single 2764 * representative type for each truly unique type. This canonical type is the 2765 * one that will go into final deduplicated BTF type information. For 2766 * struct/unions, it is also the type that algorithm will merge additional type 2767 * information into (while resolving FWDs), as it discovers it from data in 2768 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2769 * that type is canonical, or to some other type, if that type is equivalent 2770 * and was chosen as canonical representative. This mapping is stored in 2771 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2772 * FWD type got resolved to. 2773 * 2774 * To facilitate fast discovery of canonical types, we also maintain canonical 2775 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2776 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2777 * that match that signature. With sufficiently good choice of type signature 2778 * hashing function, we can limit number of canonical types for each unique type 2779 * signature to a very small number, allowing to find canonical type for any 2780 * duplicated type very quickly. 2781 * 2782 * Struct/union deduplication is the most critical part and algorithm for 2783 * deduplicating structs/unions is described in greater details in comments for 2784 * `btf_dedup_is_equiv` function. 2785 */ 2786 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2787 const struct btf_dedup_opts *opts) 2788 { 2789 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2790 int err; 2791 2792 if (IS_ERR(d)) { 2793 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2794 return -EINVAL; 2795 } 2796 2797 if (btf_ensure_modifiable(btf)) 2798 return -ENOMEM; 2799 2800 err = btf_dedup_strings(d); 2801 if (err < 0) { 2802 pr_debug("btf_dedup_strings failed:%d\n", err); 2803 goto done; 2804 } 2805 err = btf_dedup_prim_types(d); 2806 if (err < 0) { 2807 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2808 goto done; 2809 } 2810 err = btf_dedup_struct_types(d); 2811 if (err < 0) { 2812 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2813 goto done; 2814 } 2815 err = btf_dedup_ref_types(d); 2816 if (err < 0) { 2817 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2818 goto done; 2819 } 2820 err = btf_dedup_compact_types(d); 2821 if (err < 0) { 2822 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2823 goto done; 2824 } 2825 err = btf_dedup_remap_types(d); 2826 if (err < 0) { 2827 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2828 goto done; 2829 } 2830 2831 done: 2832 btf_dedup_free(d); 2833 return err; 2834 } 2835 2836 #define BTF_UNPROCESSED_ID ((__u32)-1) 2837 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2838 2839 struct btf_dedup { 2840 /* .BTF section to be deduped in-place */ 2841 struct btf *btf; 2842 /* 2843 * Optional .BTF.ext section. When provided, any strings referenced 2844 * from it will be taken into account when deduping strings 2845 */ 2846 struct btf_ext *btf_ext; 2847 /* 2848 * This is a map from any type's signature hash to a list of possible 2849 * canonical representative type candidates. Hash collisions are 2850 * ignored, so even types of various kinds can share same list of 2851 * candidates, which is fine because we rely on subsequent 2852 * btf_xxx_equal() checks to authoritatively verify type equality. 2853 */ 2854 struct hashmap *dedup_table; 2855 /* Canonical types map */ 2856 __u32 *map; 2857 /* Hypothetical mapping, used during type graph equivalence checks */ 2858 __u32 *hypot_map; 2859 __u32 *hypot_list; 2860 size_t hypot_cnt; 2861 size_t hypot_cap; 2862 /* Various option modifying behavior of algorithm */ 2863 struct btf_dedup_opts opts; 2864 }; 2865 2866 struct btf_str_ptr { 2867 const char *str; 2868 __u32 new_off; 2869 bool used; 2870 }; 2871 2872 struct btf_str_ptrs { 2873 struct btf_str_ptr *ptrs; 2874 const char *data; 2875 __u32 cnt; 2876 __u32 cap; 2877 }; 2878 2879 static long hash_combine(long h, long value) 2880 { 2881 return h * 31 + value; 2882 } 2883 2884 #define for_each_dedup_cand(d, node, hash) \ 2885 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2886 2887 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2888 { 2889 return hashmap__append(d->dedup_table, 2890 (void *)hash, (void *)(long)type_id); 2891 } 2892 2893 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 2894 __u32 from_id, __u32 to_id) 2895 { 2896 if (d->hypot_cnt == d->hypot_cap) { 2897 __u32 *new_list; 2898 2899 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 2900 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 2901 if (!new_list) 2902 return -ENOMEM; 2903 d->hypot_list = new_list; 2904 } 2905 d->hypot_list[d->hypot_cnt++] = from_id; 2906 d->hypot_map[from_id] = to_id; 2907 return 0; 2908 } 2909 2910 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 2911 { 2912 int i; 2913 2914 for (i = 0; i < d->hypot_cnt; i++) 2915 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 2916 d->hypot_cnt = 0; 2917 } 2918 2919 static void btf_dedup_free(struct btf_dedup *d) 2920 { 2921 hashmap__free(d->dedup_table); 2922 d->dedup_table = NULL; 2923 2924 free(d->map); 2925 d->map = NULL; 2926 2927 free(d->hypot_map); 2928 d->hypot_map = NULL; 2929 2930 free(d->hypot_list); 2931 d->hypot_list = NULL; 2932 2933 free(d); 2934 } 2935 2936 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 2937 { 2938 return (size_t)key; 2939 } 2940 2941 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 2942 { 2943 return 0; 2944 } 2945 2946 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 2947 { 2948 return k1 == k2; 2949 } 2950 2951 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2952 const struct btf_dedup_opts *opts) 2953 { 2954 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 2955 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 2956 int i, err = 0; 2957 2958 if (!d) 2959 return ERR_PTR(-ENOMEM); 2960 2961 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 2962 /* dedup_table_size is now used only to force collisions in tests */ 2963 if (opts && opts->dedup_table_size == 1) 2964 hash_fn = btf_dedup_collision_hash_fn; 2965 2966 d->btf = btf; 2967 d->btf_ext = btf_ext; 2968 2969 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 2970 if (IS_ERR(d->dedup_table)) { 2971 err = PTR_ERR(d->dedup_table); 2972 d->dedup_table = NULL; 2973 goto done; 2974 } 2975 2976 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 2977 if (!d->map) { 2978 err = -ENOMEM; 2979 goto done; 2980 } 2981 /* special BTF "void" type is made canonical immediately */ 2982 d->map[0] = 0; 2983 for (i = 1; i <= btf->nr_types; i++) { 2984 struct btf_type *t = btf_type_by_id(d->btf, i); 2985 2986 /* VAR and DATASEC are never deduped and are self-canonical */ 2987 if (btf_is_var(t) || btf_is_datasec(t)) 2988 d->map[i] = i; 2989 else 2990 d->map[i] = BTF_UNPROCESSED_ID; 2991 } 2992 2993 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 2994 if (!d->hypot_map) { 2995 err = -ENOMEM; 2996 goto done; 2997 } 2998 for (i = 0; i <= btf->nr_types; i++) 2999 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3000 3001 done: 3002 if (err) { 3003 btf_dedup_free(d); 3004 return ERR_PTR(err); 3005 } 3006 3007 return d; 3008 } 3009 3010 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 3011 3012 /* 3013 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3014 * string and pass pointer to it to a provided callback `fn`. 3015 */ 3016 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 3017 { 3018 void *line_data_cur, *line_data_end; 3019 int i, j, r, rec_size; 3020 struct btf_type *t; 3021 3022 for (i = 1; i <= d->btf->nr_types; i++) { 3023 t = btf_type_by_id(d->btf, i); 3024 r = fn(&t->name_off, ctx); 3025 if (r) 3026 return r; 3027 3028 switch (btf_kind(t)) { 3029 case BTF_KIND_STRUCT: 3030 case BTF_KIND_UNION: { 3031 struct btf_member *m = btf_members(t); 3032 __u16 vlen = btf_vlen(t); 3033 3034 for (j = 0; j < vlen; j++) { 3035 r = fn(&m->name_off, ctx); 3036 if (r) 3037 return r; 3038 m++; 3039 } 3040 break; 3041 } 3042 case BTF_KIND_ENUM: { 3043 struct btf_enum *m = btf_enum(t); 3044 __u16 vlen = btf_vlen(t); 3045 3046 for (j = 0; j < vlen; j++) { 3047 r = fn(&m->name_off, ctx); 3048 if (r) 3049 return r; 3050 m++; 3051 } 3052 break; 3053 } 3054 case BTF_KIND_FUNC_PROTO: { 3055 struct btf_param *m = btf_params(t); 3056 __u16 vlen = btf_vlen(t); 3057 3058 for (j = 0; j < vlen; j++) { 3059 r = fn(&m->name_off, ctx); 3060 if (r) 3061 return r; 3062 m++; 3063 } 3064 break; 3065 } 3066 default: 3067 break; 3068 } 3069 } 3070 3071 if (!d->btf_ext) 3072 return 0; 3073 3074 line_data_cur = d->btf_ext->line_info.info; 3075 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 3076 rec_size = d->btf_ext->line_info.rec_size; 3077 3078 while (line_data_cur < line_data_end) { 3079 struct btf_ext_info_sec *sec = line_data_cur; 3080 struct bpf_line_info_min *line_info; 3081 __u32 num_info = sec->num_info; 3082 3083 r = fn(&sec->sec_name_off, ctx); 3084 if (r) 3085 return r; 3086 3087 line_data_cur += sizeof(struct btf_ext_info_sec); 3088 for (i = 0; i < num_info; i++) { 3089 line_info = line_data_cur; 3090 r = fn(&line_info->file_name_off, ctx); 3091 if (r) 3092 return r; 3093 r = fn(&line_info->line_off, ctx); 3094 if (r) 3095 return r; 3096 line_data_cur += rec_size; 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 static int str_sort_by_content(const void *a1, const void *a2) 3104 { 3105 const struct btf_str_ptr *p1 = a1; 3106 const struct btf_str_ptr *p2 = a2; 3107 3108 return strcmp(p1->str, p2->str); 3109 } 3110 3111 static int str_sort_by_offset(const void *a1, const void *a2) 3112 { 3113 const struct btf_str_ptr *p1 = a1; 3114 const struct btf_str_ptr *p2 = a2; 3115 3116 if (p1->str != p2->str) 3117 return p1->str < p2->str ? -1 : 1; 3118 return 0; 3119 } 3120 3121 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 3122 { 3123 const struct btf_str_ptr *p = pelem; 3124 3125 if (str_ptr != p->str) 3126 return (const char *)str_ptr < p->str ? -1 : 1; 3127 return 0; 3128 } 3129 3130 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 3131 { 3132 struct btf_str_ptrs *strs; 3133 struct btf_str_ptr *s; 3134 3135 if (*str_off_ptr == 0) 3136 return 0; 3137 3138 strs = ctx; 3139 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 3140 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 3141 if (!s) 3142 return -EINVAL; 3143 s->used = true; 3144 return 0; 3145 } 3146 3147 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 3148 { 3149 struct btf_str_ptrs *strs; 3150 struct btf_str_ptr *s; 3151 3152 if (*str_off_ptr == 0) 3153 return 0; 3154 3155 strs = ctx; 3156 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 3157 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 3158 if (!s) 3159 return -EINVAL; 3160 *str_off_ptr = s->new_off; 3161 return 0; 3162 } 3163 3164 /* 3165 * Dedup string and filter out those that are not referenced from either .BTF 3166 * or .BTF.ext (if provided) sections. 3167 * 3168 * This is done by building index of all strings in BTF's string section, 3169 * then iterating over all entities that can reference strings (e.g., type 3170 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3171 * strings as used. After that all used strings are deduped and compacted into 3172 * sequential blob of memory and new offsets are calculated. Then all the string 3173 * references are iterated again and rewritten using new offsets. 3174 */ 3175 static int btf_dedup_strings(struct btf_dedup *d) 3176 { 3177 char *start = d->btf->strs_data; 3178 char *end = start + d->btf->hdr->str_len; 3179 char *p = start, *tmp_strs = NULL; 3180 struct btf_str_ptrs strs = { 3181 .cnt = 0, 3182 .cap = 0, 3183 .ptrs = NULL, 3184 .data = start, 3185 }; 3186 int i, j, err = 0, grp_idx; 3187 bool grp_used; 3188 3189 if (d->btf->strs_deduped) 3190 return 0; 3191 3192 /* build index of all strings */ 3193 while (p < end) { 3194 if (strs.cnt + 1 > strs.cap) { 3195 struct btf_str_ptr *new_ptrs; 3196 3197 strs.cap += max(strs.cnt / 2, 16U); 3198 new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0])); 3199 if (!new_ptrs) { 3200 err = -ENOMEM; 3201 goto done; 3202 } 3203 strs.ptrs = new_ptrs; 3204 } 3205 3206 strs.ptrs[strs.cnt].str = p; 3207 strs.ptrs[strs.cnt].used = false; 3208 3209 p += strlen(p) + 1; 3210 strs.cnt++; 3211 } 3212 3213 /* temporary storage for deduplicated strings */ 3214 tmp_strs = malloc(d->btf->hdr->str_len); 3215 if (!tmp_strs) { 3216 err = -ENOMEM; 3217 goto done; 3218 } 3219 3220 /* mark all used strings */ 3221 strs.ptrs[0].used = true; 3222 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 3223 if (err) 3224 goto done; 3225 3226 /* sort strings by context, so that we can identify duplicates */ 3227 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 3228 3229 /* 3230 * iterate groups of equal strings and if any instance in a group was 3231 * referenced, emit single instance and remember new offset 3232 */ 3233 p = tmp_strs; 3234 grp_idx = 0; 3235 grp_used = strs.ptrs[0].used; 3236 /* iterate past end to avoid code duplication after loop */ 3237 for (i = 1; i <= strs.cnt; i++) { 3238 /* 3239 * when i == strs.cnt, we want to skip string comparison and go 3240 * straight to handling last group of strings (otherwise we'd 3241 * need to handle last group after the loop w/ duplicated code) 3242 */ 3243 if (i < strs.cnt && 3244 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 3245 grp_used = grp_used || strs.ptrs[i].used; 3246 continue; 3247 } 3248 3249 /* 3250 * this check would have been required after the loop to handle 3251 * last group of strings, but due to <= condition in a loop 3252 * we avoid that duplication 3253 */ 3254 if (grp_used) { 3255 int new_off = p - tmp_strs; 3256 __u32 len = strlen(strs.ptrs[grp_idx].str); 3257 3258 memmove(p, strs.ptrs[grp_idx].str, len + 1); 3259 for (j = grp_idx; j < i; j++) 3260 strs.ptrs[j].new_off = new_off; 3261 p += len + 1; 3262 } 3263 3264 if (i < strs.cnt) { 3265 grp_idx = i; 3266 grp_used = strs.ptrs[i].used; 3267 } 3268 } 3269 3270 /* replace original strings with deduped ones */ 3271 d->btf->hdr->str_len = p - tmp_strs; 3272 memmove(start, tmp_strs, d->btf->hdr->str_len); 3273 end = start + d->btf->hdr->str_len; 3274 3275 /* restore original order for further binary search lookups */ 3276 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 3277 3278 /* remap string offsets */ 3279 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 3280 if (err) 3281 goto done; 3282 3283 d->btf->hdr->str_len = end - start; 3284 d->btf->strs_deduped = true; 3285 3286 done: 3287 free(tmp_strs); 3288 free(strs.ptrs); 3289 return err; 3290 } 3291 3292 static long btf_hash_common(struct btf_type *t) 3293 { 3294 long h; 3295 3296 h = hash_combine(0, t->name_off); 3297 h = hash_combine(h, t->info); 3298 h = hash_combine(h, t->size); 3299 return h; 3300 } 3301 3302 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3303 { 3304 return t1->name_off == t2->name_off && 3305 t1->info == t2->info && 3306 t1->size == t2->size; 3307 } 3308 3309 /* Calculate type signature hash of INT. */ 3310 static long btf_hash_int(struct btf_type *t) 3311 { 3312 __u32 info = *(__u32 *)(t + 1); 3313 long h; 3314 3315 h = btf_hash_common(t); 3316 h = hash_combine(h, info); 3317 return h; 3318 } 3319 3320 /* Check structural equality of two INTs. */ 3321 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3322 { 3323 __u32 info1, info2; 3324 3325 if (!btf_equal_common(t1, t2)) 3326 return false; 3327 info1 = *(__u32 *)(t1 + 1); 3328 info2 = *(__u32 *)(t2 + 1); 3329 return info1 == info2; 3330 } 3331 3332 /* Calculate type signature hash of ENUM. */ 3333 static long btf_hash_enum(struct btf_type *t) 3334 { 3335 long h; 3336 3337 /* don't hash vlen and enum members to support enum fwd resolving */ 3338 h = hash_combine(0, t->name_off); 3339 h = hash_combine(h, t->info & ~0xffff); 3340 h = hash_combine(h, t->size); 3341 return h; 3342 } 3343 3344 /* Check structural equality of two ENUMs. */ 3345 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3346 { 3347 const struct btf_enum *m1, *m2; 3348 __u16 vlen; 3349 int i; 3350 3351 if (!btf_equal_common(t1, t2)) 3352 return false; 3353 3354 vlen = btf_vlen(t1); 3355 m1 = btf_enum(t1); 3356 m2 = btf_enum(t2); 3357 for (i = 0; i < vlen; i++) { 3358 if (m1->name_off != m2->name_off || m1->val != m2->val) 3359 return false; 3360 m1++; 3361 m2++; 3362 } 3363 return true; 3364 } 3365 3366 static inline bool btf_is_enum_fwd(struct btf_type *t) 3367 { 3368 return btf_is_enum(t) && btf_vlen(t) == 0; 3369 } 3370 3371 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3372 { 3373 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3374 return btf_equal_enum(t1, t2); 3375 /* ignore vlen when comparing */ 3376 return t1->name_off == t2->name_off && 3377 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3378 t1->size == t2->size; 3379 } 3380 3381 /* 3382 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3383 * as referenced type IDs equivalence is established separately during type 3384 * graph equivalence check algorithm. 3385 */ 3386 static long btf_hash_struct(struct btf_type *t) 3387 { 3388 const struct btf_member *member = btf_members(t); 3389 __u32 vlen = btf_vlen(t); 3390 long h = btf_hash_common(t); 3391 int i; 3392 3393 for (i = 0; i < vlen; i++) { 3394 h = hash_combine(h, member->name_off); 3395 h = hash_combine(h, member->offset); 3396 /* no hashing of referenced type ID, it can be unresolved yet */ 3397 member++; 3398 } 3399 return h; 3400 } 3401 3402 /* 3403 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3404 * IDs. This check is performed during type graph equivalence check and 3405 * referenced types equivalence is checked separately. 3406 */ 3407 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3408 { 3409 const struct btf_member *m1, *m2; 3410 __u16 vlen; 3411 int i; 3412 3413 if (!btf_equal_common(t1, t2)) 3414 return false; 3415 3416 vlen = btf_vlen(t1); 3417 m1 = btf_members(t1); 3418 m2 = btf_members(t2); 3419 for (i = 0; i < vlen; i++) { 3420 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3421 return false; 3422 m1++; 3423 m2++; 3424 } 3425 return true; 3426 } 3427 3428 /* 3429 * Calculate type signature hash of ARRAY, including referenced type IDs, 3430 * under assumption that they were already resolved to canonical type IDs and 3431 * are not going to change. 3432 */ 3433 static long btf_hash_array(struct btf_type *t) 3434 { 3435 const struct btf_array *info = btf_array(t); 3436 long h = btf_hash_common(t); 3437 3438 h = hash_combine(h, info->type); 3439 h = hash_combine(h, info->index_type); 3440 h = hash_combine(h, info->nelems); 3441 return h; 3442 } 3443 3444 /* 3445 * Check exact equality of two ARRAYs, taking into account referenced 3446 * type IDs, under assumption that they were already resolved to canonical 3447 * type IDs and are not going to change. 3448 * This function is called during reference types deduplication to compare 3449 * ARRAY to potential canonical representative. 3450 */ 3451 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3452 { 3453 const struct btf_array *info1, *info2; 3454 3455 if (!btf_equal_common(t1, t2)) 3456 return false; 3457 3458 info1 = btf_array(t1); 3459 info2 = btf_array(t2); 3460 return info1->type == info2->type && 3461 info1->index_type == info2->index_type && 3462 info1->nelems == info2->nelems; 3463 } 3464 3465 /* 3466 * Check structural compatibility of two ARRAYs, ignoring referenced type 3467 * IDs. This check is performed during type graph equivalence check and 3468 * referenced types equivalence is checked separately. 3469 */ 3470 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3471 { 3472 if (!btf_equal_common(t1, t2)) 3473 return false; 3474 3475 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3476 } 3477 3478 /* 3479 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3480 * under assumption that they were already resolved to canonical type IDs and 3481 * are not going to change. 3482 */ 3483 static long btf_hash_fnproto(struct btf_type *t) 3484 { 3485 const struct btf_param *member = btf_params(t); 3486 __u16 vlen = btf_vlen(t); 3487 long h = btf_hash_common(t); 3488 int i; 3489 3490 for (i = 0; i < vlen; i++) { 3491 h = hash_combine(h, member->name_off); 3492 h = hash_combine(h, member->type); 3493 member++; 3494 } 3495 return h; 3496 } 3497 3498 /* 3499 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3500 * type IDs, under assumption that they were already resolved to canonical 3501 * type IDs and are not going to change. 3502 * This function is called during reference types deduplication to compare 3503 * FUNC_PROTO to potential canonical representative. 3504 */ 3505 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3506 { 3507 const struct btf_param *m1, *m2; 3508 __u16 vlen; 3509 int i; 3510 3511 if (!btf_equal_common(t1, t2)) 3512 return false; 3513 3514 vlen = btf_vlen(t1); 3515 m1 = btf_params(t1); 3516 m2 = btf_params(t2); 3517 for (i = 0; i < vlen; i++) { 3518 if (m1->name_off != m2->name_off || m1->type != m2->type) 3519 return false; 3520 m1++; 3521 m2++; 3522 } 3523 return true; 3524 } 3525 3526 /* 3527 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3528 * IDs. This check is performed during type graph equivalence check and 3529 * referenced types equivalence is checked separately. 3530 */ 3531 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3532 { 3533 const struct btf_param *m1, *m2; 3534 __u16 vlen; 3535 int i; 3536 3537 /* skip return type ID */ 3538 if (t1->name_off != t2->name_off || t1->info != t2->info) 3539 return false; 3540 3541 vlen = btf_vlen(t1); 3542 m1 = btf_params(t1); 3543 m2 = btf_params(t2); 3544 for (i = 0; i < vlen; i++) { 3545 if (m1->name_off != m2->name_off) 3546 return false; 3547 m1++; 3548 m2++; 3549 } 3550 return true; 3551 } 3552 3553 /* 3554 * Deduplicate primitive types, that can't reference other types, by calculating 3555 * their type signature hash and comparing them with any possible canonical 3556 * candidate. If no canonical candidate matches, type itself is marked as 3557 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3558 */ 3559 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3560 { 3561 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3562 struct hashmap_entry *hash_entry; 3563 struct btf_type *cand; 3564 /* if we don't find equivalent type, then we are canonical */ 3565 __u32 new_id = type_id; 3566 __u32 cand_id; 3567 long h; 3568 3569 switch (btf_kind(t)) { 3570 case BTF_KIND_CONST: 3571 case BTF_KIND_VOLATILE: 3572 case BTF_KIND_RESTRICT: 3573 case BTF_KIND_PTR: 3574 case BTF_KIND_TYPEDEF: 3575 case BTF_KIND_ARRAY: 3576 case BTF_KIND_STRUCT: 3577 case BTF_KIND_UNION: 3578 case BTF_KIND_FUNC: 3579 case BTF_KIND_FUNC_PROTO: 3580 case BTF_KIND_VAR: 3581 case BTF_KIND_DATASEC: 3582 return 0; 3583 3584 case BTF_KIND_INT: 3585 h = btf_hash_int(t); 3586 for_each_dedup_cand(d, hash_entry, h) { 3587 cand_id = (__u32)(long)hash_entry->value; 3588 cand = btf_type_by_id(d->btf, cand_id); 3589 if (btf_equal_int(t, cand)) { 3590 new_id = cand_id; 3591 break; 3592 } 3593 } 3594 break; 3595 3596 case BTF_KIND_ENUM: 3597 h = btf_hash_enum(t); 3598 for_each_dedup_cand(d, hash_entry, h) { 3599 cand_id = (__u32)(long)hash_entry->value; 3600 cand = btf_type_by_id(d->btf, cand_id); 3601 if (btf_equal_enum(t, cand)) { 3602 new_id = cand_id; 3603 break; 3604 } 3605 if (d->opts.dont_resolve_fwds) 3606 continue; 3607 if (btf_compat_enum(t, cand)) { 3608 if (btf_is_enum_fwd(t)) { 3609 /* resolve fwd to full enum */ 3610 new_id = cand_id; 3611 break; 3612 } 3613 /* resolve canonical enum fwd to full enum */ 3614 d->map[cand_id] = type_id; 3615 } 3616 } 3617 break; 3618 3619 case BTF_KIND_FWD: 3620 h = btf_hash_common(t); 3621 for_each_dedup_cand(d, hash_entry, h) { 3622 cand_id = (__u32)(long)hash_entry->value; 3623 cand = btf_type_by_id(d->btf, cand_id); 3624 if (btf_equal_common(t, cand)) { 3625 new_id = cand_id; 3626 break; 3627 } 3628 } 3629 break; 3630 3631 default: 3632 return -EINVAL; 3633 } 3634 3635 d->map[type_id] = new_id; 3636 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3637 return -ENOMEM; 3638 3639 return 0; 3640 } 3641 3642 static int btf_dedup_prim_types(struct btf_dedup *d) 3643 { 3644 int i, err; 3645 3646 for (i = 1; i <= d->btf->nr_types; i++) { 3647 err = btf_dedup_prim_type(d, i); 3648 if (err) 3649 return err; 3650 } 3651 return 0; 3652 } 3653 3654 /* 3655 * Check whether type is already mapped into canonical one (could be to itself). 3656 */ 3657 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3658 { 3659 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3660 } 3661 3662 /* 3663 * Resolve type ID into its canonical type ID, if any; otherwise return original 3664 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3665 * STRUCT/UNION link and resolve it into canonical type ID as well. 3666 */ 3667 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3668 { 3669 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3670 type_id = d->map[type_id]; 3671 return type_id; 3672 } 3673 3674 /* 3675 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3676 * type ID. 3677 */ 3678 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3679 { 3680 __u32 orig_type_id = type_id; 3681 3682 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3683 return type_id; 3684 3685 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3686 type_id = d->map[type_id]; 3687 3688 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3689 return type_id; 3690 3691 return orig_type_id; 3692 } 3693 3694 3695 static inline __u16 btf_fwd_kind(struct btf_type *t) 3696 { 3697 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3698 } 3699 3700 /* 3701 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3702 * call it "candidate graph" in this description for brevity) to a type graph 3703 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3704 * here, though keep in mind that not all types in canonical graph are 3705 * necessarily canonical representatives themselves, some of them might be 3706 * duplicates or its uniqueness might not have been established yet). 3707 * Returns: 3708 * - >0, if type graphs are equivalent; 3709 * - 0, if not equivalent; 3710 * - <0, on error. 3711 * 3712 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3713 * equivalence of BTF types at each step. If at any point BTF types in candidate 3714 * and canonical graphs are not compatible structurally, whole graphs are 3715 * incompatible. If types are structurally equivalent (i.e., all information 3716 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3717 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3718 * If a type references other types, then those referenced types are checked 3719 * for equivalence recursively. 3720 * 3721 * During DFS traversal, if we find that for current `canon_id` type we 3722 * already have some mapping in hypothetical map, we check for two possible 3723 * situations: 3724 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3725 * happen when type graphs have cycles. In this case we assume those two 3726 * types are equivalent. 3727 * - `canon_id` is mapped to different type. This is contradiction in our 3728 * hypothetical mapping, because same graph in canonical graph corresponds 3729 * to two different types in candidate graph, which for equivalent type 3730 * graphs shouldn't happen. This condition terminates equivalence check 3731 * with negative result. 3732 * 3733 * If type graphs traversal exhausts types to check and find no contradiction, 3734 * then type graphs are equivalent. 3735 * 3736 * When checking types for equivalence, there is one special case: FWD types. 3737 * If FWD type resolution is allowed and one of the types (either from canonical 3738 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3739 * flag) and their names match, hypothetical mapping is updated to point from 3740 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3741 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3742 * 3743 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3744 * if there are two exactly named (or anonymous) structs/unions that are 3745 * compatible structurally, one of which has FWD field, while other is concrete 3746 * STRUCT/UNION, but according to C sources they are different structs/unions 3747 * that are referencing different types with the same name. This is extremely 3748 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3749 * this logic is causing problems. 3750 * 3751 * Doing FWD resolution means that both candidate and/or canonical graphs can 3752 * consists of portions of the graph that come from multiple compilation units. 3753 * This is due to the fact that types within single compilation unit are always 3754 * deduplicated and FWDs are already resolved, if referenced struct/union 3755 * definiton is available. So, if we had unresolved FWD and found corresponding 3756 * STRUCT/UNION, they will be from different compilation units. This 3757 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3758 * type graph will likely have at least two different BTF types that describe 3759 * same type (e.g., most probably there will be two different BTF types for the 3760 * same 'int' primitive type) and could even have "overlapping" parts of type 3761 * graph that describe same subset of types. 3762 * 3763 * This in turn means that our assumption that each type in canonical graph 3764 * must correspond to exactly one type in candidate graph might not hold 3765 * anymore and will make it harder to detect contradictions using hypothetical 3766 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3767 * resolution only in canonical graph. FWDs in candidate graphs are never 3768 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3769 * that can occur: 3770 * - Both types in canonical and candidate graphs are FWDs. If they are 3771 * structurally equivalent, then they can either be both resolved to the 3772 * same STRUCT/UNION or not resolved at all. In both cases they are 3773 * equivalent and there is no need to resolve FWD on candidate side. 3774 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3775 * so nothing to resolve as well, algorithm will check equivalence anyway. 3776 * - Type in canonical graph is FWD, while type in candidate is concrete 3777 * STRUCT/UNION. In this case candidate graph comes from single compilation 3778 * unit, so there is exactly one BTF type for each unique C type. After 3779 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3780 * in canonical graph mapping to single BTF type in candidate graph, but 3781 * because hypothetical mapping maps from canonical to candidate types, it's 3782 * alright, and we still maintain the property of having single `canon_id` 3783 * mapping to single `cand_id` (there could be two different `canon_id` 3784 * mapped to the same `cand_id`, but it's not contradictory). 3785 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3786 * graph is FWD. In this case we are just going to check compatibility of 3787 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3788 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3789 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3790 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3791 * canonical graph. 3792 */ 3793 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3794 __u32 canon_id) 3795 { 3796 struct btf_type *cand_type; 3797 struct btf_type *canon_type; 3798 __u32 hypot_type_id; 3799 __u16 cand_kind; 3800 __u16 canon_kind; 3801 int i, eq; 3802 3803 /* if both resolve to the same canonical, they must be equivalent */ 3804 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3805 return 1; 3806 3807 canon_id = resolve_fwd_id(d, canon_id); 3808 3809 hypot_type_id = d->hypot_map[canon_id]; 3810 if (hypot_type_id <= BTF_MAX_NR_TYPES) 3811 return hypot_type_id == cand_id; 3812 3813 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3814 return -ENOMEM; 3815 3816 cand_type = btf_type_by_id(d->btf, cand_id); 3817 canon_type = btf_type_by_id(d->btf, canon_id); 3818 cand_kind = btf_kind(cand_type); 3819 canon_kind = btf_kind(canon_type); 3820 3821 if (cand_type->name_off != canon_type->name_off) 3822 return 0; 3823 3824 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3825 if (!d->opts.dont_resolve_fwds 3826 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3827 && cand_kind != canon_kind) { 3828 __u16 real_kind; 3829 __u16 fwd_kind; 3830 3831 if (cand_kind == BTF_KIND_FWD) { 3832 real_kind = canon_kind; 3833 fwd_kind = btf_fwd_kind(cand_type); 3834 } else { 3835 real_kind = cand_kind; 3836 fwd_kind = btf_fwd_kind(canon_type); 3837 } 3838 return fwd_kind == real_kind; 3839 } 3840 3841 if (cand_kind != canon_kind) 3842 return 0; 3843 3844 switch (cand_kind) { 3845 case BTF_KIND_INT: 3846 return btf_equal_int(cand_type, canon_type); 3847 3848 case BTF_KIND_ENUM: 3849 if (d->opts.dont_resolve_fwds) 3850 return btf_equal_enum(cand_type, canon_type); 3851 else 3852 return btf_compat_enum(cand_type, canon_type); 3853 3854 case BTF_KIND_FWD: 3855 return btf_equal_common(cand_type, canon_type); 3856 3857 case BTF_KIND_CONST: 3858 case BTF_KIND_VOLATILE: 3859 case BTF_KIND_RESTRICT: 3860 case BTF_KIND_PTR: 3861 case BTF_KIND_TYPEDEF: 3862 case BTF_KIND_FUNC: 3863 if (cand_type->info != canon_type->info) 3864 return 0; 3865 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3866 3867 case BTF_KIND_ARRAY: { 3868 const struct btf_array *cand_arr, *canon_arr; 3869 3870 if (!btf_compat_array(cand_type, canon_type)) 3871 return 0; 3872 cand_arr = btf_array(cand_type); 3873 canon_arr = btf_array(canon_type); 3874 eq = btf_dedup_is_equiv(d, 3875 cand_arr->index_type, canon_arr->index_type); 3876 if (eq <= 0) 3877 return eq; 3878 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3879 } 3880 3881 case BTF_KIND_STRUCT: 3882 case BTF_KIND_UNION: { 3883 const struct btf_member *cand_m, *canon_m; 3884 __u16 vlen; 3885 3886 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3887 return 0; 3888 vlen = btf_vlen(cand_type); 3889 cand_m = btf_members(cand_type); 3890 canon_m = btf_members(canon_type); 3891 for (i = 0; i < vlen; i++) { 3892 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3893 if (eq <= 0) 3894 return eq; 3895 cand_m++; 3896 canon_m++; 3897 } 3898 3899 return 1; 3900 } 3901 3902 case BTF_KIND_FUNC_PROTO: { 3903 const struct btf_param *cand_p, *canon_p; 3904 __u16 vlen; 3905 3906 if (!btf_compat_fnproto(cand_type, canon_type)) 3907 return 0; 3908 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3909 if (eq <= 0) 3910 return eq; 3911 vlen = btf_vlen(cand_type); 3912 cand_p = btf_params(cand_type); 3913 canon_p = btf_params(canon_type); 3914 for (i = 0; i < vlen; i++) { 3915 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3916 if (eq <= 0) 3917 return eq; 3918 cand_p++; 3919 canon_p++; 3920 } 3921 return 1; 3922 } 3923 3924 default: 3925 return -EINVAL; 3926 } 3927 return 0; 3928 } 3929 3930 /* 3931 * Use hypothetical mapping, produced by successful type graph equivalence 3932 * check, to augment existing struct/union canonical mapping, where possible. 3933 * 3934 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3935 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3936 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3937 * we are recording the mapping anyway. As opposed to carefulness required 3938 * for struct/union correspondence mapping (described below), for FWD resolution 3939 * it's not important, as by the time that FWD type (reference type) will be 3940 * deduplicated all structs/unions will be deduped already anyway. 3941 * 3942 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3943 * not required for correctness. It needs to be done carefully to ensure that 3944 * struct/union from candidate's type graph is not mapped into corresponding 3945 * struct/union from canonical type graph that itself hasn't been resolved into 3946 * canonical representative. The only guarantee we have is that canonical 3947 * struct/union was determined as canonical and that won't change. But any 3948 * types referenced through that struct/union fields could have been not yet 3949 * resolved, so in case like that it's too early to establish any kind of 3950 * correspondence between structs/unions. 3951 * 3952 * No canonical correspondence is derived for primitive types (they are already 3953 * deduplicated completely already anyway) or reference types (they rely on 3954 * stability of struct/union canonical relationship for equivalence checks). 3955 */ 3956 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3957 { 3958 __u32 cand_type_id, targ_type_id; 3959 __u16 t_kind, c_kind; 3960 __u32 t_id, c_id; 3961 int i; 3962 3963 for (i = 0; i < d->hypot_cnt; i++) { 3964 cand_type_id = d->hypot_list[i]; 3965 targ_type_id = d->hypot_map[cand_type_id]; 3966 t_id = resolve_type_id(d, targ_type_id); 3967 c_id = resolve_type_id(d, cand_type_id); 3968 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 3969 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 3970 /* 3971 * Resolve FWD into STRUCT/UNION. 3972 * It's ok to resolve FWD into STRUCT/UNION that's not yet 3973 * mapped to canonical representative (as opposed to 3974 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 3975 * eventually that struct is going to be mapped and all resolved 3976 * FWDs will automatically resolve to correct canonical 3977 * representative. This will happen before ref type deduping, 3978 * which critically depends on stability of these mapping. This 3979 * stability is not a requirement for STRUCT/UNION equivalence 3980 * checks, though. 3981 */ 3982 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 3983 d->map[c_id] = t_id; 3984 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 3985 d->map[t_id] = c_id; 3986 3987 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 3988 c_kind != BTF_KIND_FWD && 3989 is_type_mapped(d, c_id) && 3990 !is_type_mapped(d, t_id)) { 3991 /* 3992 * as a perf optimization, we can map struct/union 3993 * that's part of type graph we just verified for 3994 * equivalence. We can do that for struct/union that has 3995 * canonical representative only, though. 3996 */ 3997 d->map[t_id] = c_id; 3998 } 3999 } 4000 } 4001 4002 /* 4003 * Deduplicate struct/union types. 4004 * 4005 * For each struct/union type its type signature hash is calculated, taking 4006 * into account type's name, size, number, order and names of fields, but 4007 * ignoring type ID's referenced from fields, because they might not be deduped 4008 * completely until after reference types deduplication phase. This type hash 4009 * is used to iterate over all potential canonical types, sharing same hash. 4010 * For each canonical candidate we check whether type graphs that they form 4011 * (through referenced types in fields and so on) are equivalent using algorithm 4012 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4013 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4014 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4015 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4016 * potentially map other structs/unions to their canonical representatives, 4017 * if such relationship hasn't yet been established. This speeds up algorithm 4018 * by eliminating some of the duplicate work. 4019 * 4020 * If no matching canonical representative was found, struct/union is marked 4021 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4022 * for further look ups. 4023 */ 4024 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4025 { 4026 struct btf_type *cand_type, *t; 4027 struct hashmap_entry *hash_entry; 4028 /* if we don't find equivalent type, then we are canonical */ 4029 __u32 new_id = type_id; 4030 __u16 kind; 4031 long h; 4032 4033 /* already deduped or is in process of deduping (loop detected) */ 4034 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4035 return 0; 4036 4037 t = btf_type_by_id(d->btf, type_id); 4038 kind = btf_kind(t); 4039 4040 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4041 return 0; 4042 4043 h = btf_hash_struct(t); 4044 for_each_dedup_cand(d, hash_entry, h) { 4045 __u32 cand_id = (__u32)(long)hash_entry->value; 4046 int eq; 4047 4048 /* 4049 * Even though btf_dedup_is_equiv() checks for 4050 * btf_shallow_equal_struct() internally when checking two 4051 * structs (unions) for equivalence, we need to guard here 4052 * from picking matching FWD type as a dedup candidate. 4053 * This can happen due to hash collision. In such case just 4054 * relying on btf_dedup_is_equiv() would lead to potentially 4055 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4056 * FWD and compatible STRUCT/UNION are considered equivalent. 4057 */ 4058 cand_type = btf_type_by_id(d->btf, cand_id); 4059 if (!btf_shallow_equal_struct(t, cand_type)) 4060 continue; 4061 4062 btf_dedup_clear_hypot_map(d); 4063 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4064 if (eq < 0) 4065 return eq; 4066 if (!eq) 4067 continue; 4068 new_id = cand_id; 4069 btf_dedup_merge_hypot_map(d); 4070 break; 4071 } 4072 4073 d->map[type_id] = new_id; 4074 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4075 return -ENOMEM; 4076 4077 return 0; 4078 } 4079 4080 static int btf_dedup_struct_types(struct btf_dedup *d) 4081 { 4082 int i, err; 4083 4084 for (i = 1; i <= d->btf->nr_types; i++) { 4085 err = btf_dedup_struct_type(d, i); 4086 if (err) 4087 return err; 4088 } 4089 return 0; 4090 } 4091 4092 /* 4093 * Deduplicate reference type. 4094 * 4095 * Once all primitive and struct/union types got deduplicated, we can easily 4096 * deduplicate all other (reference) BTF types. This is done in two steps: 4097 * 4098 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4099 * resolution can be done either immediately for primitive or struct/union types 4100 * (because they were deduped in previous two phases) or recursively for 4101 * reference types. Recursion will always terminate at either primitive or 4102 * struct/union type, at which point we can "unwind" chain of reference types 4103 * one by one. There is no danger of encountering cycles because in C type 4104 * system the only way to form type cycle is through struct/union, so any chain 4105 * of reference types, even those taking part in a type cycle, will inevitably 4106 * reach struct/union at some point. 4107 * 4108 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4109 * becomes "stable", in the sense that no further deduplication will cause 4110 * any changes to it. With that, it's now possible to calculate type's signature 4111 * hash (this time taking into account referenced type IDs) and loop over all 4112 * potential canonical representatives. If no match was found, current type 4113 * will become canonical representative of itself and will be added into 4114 * btf_dedup->dedup_table as another possible canonical representative. 4115 */ 4116 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4117 { 4118 struct hashmap_entry *hash_entry; 4119 __u32 new_id = type_id, cand_id; 4120 struct btf_type *t, *cand; 4121 /* if we don't find equivalent type, then we are representative type */ 4122 int ref_type_id; 4123 long h; 4124 4125 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4126 return -ELOOP; 4127 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4128 return resolve_type_id(d, type_id); 4129 4130 t = btf_type_by_id(d->btf, type_id); 4131 d->map[type_id] = BTF_IN_PROGRESS_ID; 4132 4133 switch (btf_kind(t)) { 4134 case BTF_KIND_CONST: 4135 case BTF_KIND_VOLATILE: 4136 case BTF_KIND_RESTRICT: 4137 case BTF_KIND_PTR: 4138 case BTF_KIND_TYPEDEF: 4139 case BTF_KIND_FUNC: 4140 ref_type_id = btf_dedup_ref_type(d, t->type); 4141 if (ref_type_id < 0) 4142 return ref_type_id; 4143 t->type = ref_type_id; 4144 4145 h = btf_hash_common(t); 4146 for_each_dedup_cand(d, hash_entry, h) { 4147 cand_id = (__u32)(long)hash_entry->value; 4148 cand = btf_type_by_id(d->btf, cand_id); 4149 if (btf_equal_common(t, cand)) { 4150 new_id = cand_id; 4151 break; 4152 } 4153 } 4154 break; 4155 4156 case BTF_KIND_ARRAY: { 4157 struct btf_array *info = btf_array(t); 4158 4159 ref_type_id = btf_dedup_ref_type(d, info->type); 4160 if (ref_type_id < 0) 4161 return ref_type_id; 4162 info->type = ref_type_id; 4163 4164 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4165 if (ref_type_id < 0) 4166 return ref_type_id; 4167 info->index_type = ref_type_id; 4168 4169 h = btf_hash_array(t); 4170 for_each_dedup_cand(d, hash_entry, h) { 4171 cand_id = (__u32)(long)hash_entry->value; 4172 cand = btf_type_by_id(d->btf, cand_id); 4173 if (btf_equal_array(t, cand)) { 4174 new_id = cand_id; 4175 break; 4176 } 4177 } 4178 break; 4179 } 4180 4181 case BTF_KIND_FUNC_PROTO: { 4182 struct btf_param *param; 4183 __u16 vlen; 4184 int i; 4185 4186 ref_type_id = btf_dedup_ref_type(d, t->type); 4187 if (ref_type_id < 0) 4188 return ref_type_id; 4189 t->type = ref_type_id; 4190 4191 vlen = btf_vlen(t); 4192 param = btf_params(t); 4193 for (i = 0; i < vlen; i++) { 4194 ref_type_id = btf_dedup_ref_type(d, param->type); 4195 if (ref_type_id < 0) 4196 return ref_type_id; 4197 param->type = ref_type_id; 4198 param++; 4199 } 4200 4201 h = btf_hash_fnproto(t); 4202 for_each_dedup_cand(d, hash_entry, h) { 4203 cand_id = (__u32)(long)hash_entry->value; 4204 cand = btf_type_by_id(d->btf, cand_id); 4205 if (btf_equal_fnproto(t, cand)) { 4206 new_id = cand_id; 4207 break; 4208 } 4209 } 4210 break; 4211 } 4212 4213 default: 4214 return -EINVAL; 4215 } 4216 4217 d->map[type_id] = new_id; 4218 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4219 return -ENOMEM; 4220 4221 return new_id; 4222 } 4223 4224 static int btf_dedup_ref_types(struct btf_dedup *d) 4225 { 4226 int i, err; 4227 4228 for (i = 1; i <= d->btf->nr_types; i++) { 4229 err = btf_dedup_ref_type(d, i); 4230 if (err < 0) 4231 return err; 4232 } 4233 /* we won't need d->dedup_table anymore */ 4234 hashmap__free(d->dedup_table); 4235 d->dedup_table = NULL; 4236 return 0; 4237 } 4238 4239 /* 4240 * Compact types. 4241 * 4242 * After we established for each type its corresponding canonical representative 4243 * type, we now can eliminate types that are not canonical and leave only 4244 * canonical ones layed out sequentially in memory by copying them over 4245 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4246 * a map from original type ID to a new compacted type ID, which will be used 4247 * during next phase to "fix up" type IDs, referenced from struct/union and 4248 * reference types. 4249 */ 4250 static int btf_dedup_compact_types(struct btf_dedup *d) 4251 { 4252 __u32 *new_offs; 4253 __u32 next_type_id = 1; 4254 void *p; 4255 int i, len; 4256 4257 /* we are going to reuse hypot_map to store compaction remapping */ 4258 d->hypot_map[0] = 0; 4259 for (i = 1; i <= d->btf->nr_types; i++) 4260 d->hypot_map[i] = BTF_UNPROCESSED_ID; 4261 4262 p = d->btf->types_data; 4263 4264 for (i = 1; i <= d->btf->nr_types; i++) { 4265 if (d->map[i] != i) 4266 continue; 4267 4268 len = btf_type_size(btf__type_by_id(d->btf, i)); 4269 if (len < 0) 4270 return len; 4271 4272 memmove(p, btf__type_by_id(d->btf, i), len); 4273 d->hypot_map[i] = next_type_id; 4274 d->btf->type_offs[next_type_id] = p - d->btf->types_data; 4275 p += len; 4276 next_type_id++; 4277 } 4278 4279 /* shrink struct btf's internal types index and update btf_header */ 4280 d->btf->nr_types = next_type_id - 1; 4281 d->btf->type_offs_cap = d->btf->nr_types + 1; 4282 d->btf->hdr->type_len = p - d->btf->types_data; 4283 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4284 sizeof(*new_offs)); 4285 if (!new_offs) 4286 return -ENOMEM; 4287 d->btf->type_offs = new_offs; 4288 d->btf->hdr->str_off = d->btf->hdr->type_len; 4289 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4290 return 0; 4291 } 4292 4293 /* 4294 * Figure out final (deduplicated and compacted) type ID for provided original 4295 * `type_id` by first resolving it into corresponding canonical type ID and 4296 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4297 * which is populated during compaction phase. 4298 */ 4299 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 4300 { 4301 __u32 resolved_type_id, new_type_id; 4302 4303 resolved_type_id = resolve_type_id(d, type_id); 4304 new_type_id = d->hypot_map[resolved_type_id]; 4305 if (new_type_id > BTF_MAX_NR_TYPES) 4306 return -EINVAL; 4307 return new_type_id; 4308 } 4309 4310 /* 4311 * Remap referenced type IDs into deduped type IDs. 4312 * 4313 * After BTF types are deduplicated and compacted, their final type IDs may 4314 * differ from original ones. The map from original to a corresponding 4315 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4316 * compaction phase. During remapping phase we are rewriting all type IDs 4317 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4318 * their final deduped type IDs. 4319 */ 4320 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 4321 { 4322 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4323 int i, r; 4324 4325 switch (btf_kind(t)) { 4326 case BTF_KIND_INT: 4327 case BTF_KIND_ENUM: 4328 break; 4329 4330 case BTF_KIND_FWD: 4331 case BTF_KIND_CONST: 4332 case BTF_KIND_VOLATILE: 4333 case BTF_KIND_RESTRICT: 4334 case BTF_KIND_PTR: 4335 case BTF_KIND_TYPEDEF: 4336 case BTF_KIND_FUNC: 4337 case BTF_KIND_VAR: 4338 r = btf_dedup_remap_type_id(d, t->type); 4339 if (r < 0) 4340 return r; 4341 t->type = r; 4342 break; 4343 4344 case BTF_KIND_ARRAY: { 4345 struct btf_array *arr_info = btf_array(t); 4346 4347 r = btf_dedup_remap_type_id(d, arr_info->type); 4348 if (r < 0) 4349 return r; 4350 arr_info->type = r; 4351 r = btf_dedup_remap_type_id(d, arr_info->index_type); 4352 if (r < 0) 4353 return r; 4354 arr_info->index_type = r; 4355 break; 4356 } 4357 4358 case BTF_KIND_STRUCT: 4359 case BTF_KIND_UNION: { 4360 struct btf_member *member = btf_members(t); 4361 __u16 vlen = btf_vlen(t); 4362 4363 for (i = 0; i < vlen; i++) { 4364 r = btf_dedup_remap_type_id(d, member->type); 4365 if (r < 0) 4366 return r; 4367 member->type = r; 4368 member++; 4369 } 4370 break; 4371 } 4372 4373 case BTF_KIND_FUNC_PROTO: { 4374 struct btf_param *param = btf_params(t); 4375 __u16 vlen = btf_vlen(t); 4376 4377 r = btf_dedup_remap_type_id(d, t->type); 4378 if (r < 0) 4379 return r; 4380 t->type = r; 4381 4382 for (i = 0; i < vlen; i++) { 4383 r = btf_dedup_remap_type_id(d, param->type); 4384 if (r < 0) 4385 return r; 4386 param->type = r; 4387 param++; 4388 } 4389 break; 4390 } 4391 4392 case BTF_KIND_DATASEC: { 4393 struct btf_var_secinfo *var = btf_var_secinfos(t); 4394 __u16 vlen = btf_vlen(t); 4395 4396 for (i = 0; i < vlen; i++) { 4397 r = btf_dedup_remap_type_id(d, var->type); 4398 if (r < 0) 4399 return r; 4400 var->type = r; 4401 var++; 4402 } 4403 break; 4404 } 4405 4406 default: 4407 return -EINVAL; 4408 } 4409 4410 return 0; 4411 } 4412 4413 static int btf_dedup_remap_types(struct btf_dedup *d) 4414 { 4415 int i, r; 4416 4417 for (i = 1; i <= d->btf->nr_types; i++) { 4418 r = btf_dedup_remap_type(d, i); 4419 if (r < 0) 4420 return r; 4421 } 4422 return 0; 4423 } 4424 4425 /* 4426 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4427 * data out of it to use for target BTF. 4428 */ 4429 struct btf *libbpf_find_kernel_btf(void) 4430 { 4431 struct { 4432 const char *path_fmt; 4433 bool raw_btf; 4434 } locations[] = { 4435 /* try canonical vmlinux BTF through sysfs first */ 4436 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4437 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4438 { "/boot/vmlinux-%1$s" }, 4439 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4440 { "/lib/modules/%1$s/build/vmlinux" }, 4441 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4442 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4443 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4444 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4445 }; 4446 char path[PATH_MAX + 1]; 4447 struct utsname buf; 4448 struct btf *btf; 4449 int i; 4450 4451 uname(&buf); 4452 4453 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4454 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4455 4456 if (access(path, R_OK)) 4457 continue; 4458 4459 if (locations[i].raw_btf) 4460 btf = btf__parse_raw(path); 4461 else 4462 btf = btf__parse_elf(path, NULL); 4463 4464 pr_debug("loading kernel BTF '%s': %ld\n", 4465 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 4466 if (IS_ERR(btf)) 4467 continue; 4468 4469 return btf; 4470 } 4471 4472 pr_warn("failed to find valid kernel BTF\n"); 4473 return ERR_PTR(-ESRCH); 4474 } 4475