xref: /linux/tools/lib/bpf/btf.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index
82 	 * type_offs[0] corresponds to the first non-VOID type:
83 	 *   - for base BTF it's type [1];
84 	 *   - for split BTF it's the first non-base BTF type.
85 	 */
86 	__u32 *type_offs;
87 	size_t type_offs_cap;
88 	/* number of types in this BTF instance:
89 	 *   - doesn't include special [0] void type;
90 	 *   - for split BTF counts number of types added on top of base BTF.
91 	 */
92 	__u32 nr_types;
93 	/* if not NULL, points to the base BTF on top of which the current
94 	 * split BTF is based
95 	 */
96 	struct btf *base_btf;
97 	/* BTF type ID of the first type in this BTF instance:
98 	 *   - for base BTF it's equal to 1;
99 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
100 	 */
101 	int start_id;
102 	/* logical string offset of this BTF instance:
103 	 *   - for base BTF it's equal to 0;
104 	 *   - for split BTF it's equal to total size of base BTF's string section size.
105 	 */
106 	int start_str_off;
107 
108 	void *strs_data;
109 	size_t strs_data_cap; /* used size stored in hdr->str_len */
110 
111 	/* lookup index for each unique string in strings section */
112 	struct hashmap *strs_hash;
113 	/* whether strings are already deduplicated */
114 	bool strs_deduped;
115 	/* extra indirection layer to make strings hashmap work with stable
116 	 * string offsets and ability to transparently choose between
117 	 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 	 * This is used for BTF strings dedup to transfer deduplicated strings
119 	 * data back to struct btf without re-building strings index.
120 	 */
121 	void **strs_data_ptr;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
197 {
198 	__u32 *p;
199 
200 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
201 			btf->nr_types, BTF_MAX_NR_TYPES, 1);
202 	if (!p)
203 		return -ENOMEM;
204 
205 	*p = type_off;
206 	return 0;
207 }
208 
209 static void btf_bswap_hdr(struct btf_header *h)
210 {
211 	h->magic = bswap_16(h->magic);
212 	h->hdr_len = bswap_32(h->hdr_len);
213 	h->type_off = bswap_32(h->type_off);
214 	h->type_len = bswap_32(h->type_len);
215 	h->str_off = bswap_32(h->str_off);
216 	h->str_len = bswap_32(h->str_len);
217 }
218 
219 static int btf_parse_hdr(struct btf *btf)
220 {
221 	struct btf_header *hdr = btf->hdr;
222 	__u32 meta_left;
223 
224 	if (btf->raw_size < sizeof(struct btf_header)) {
225 		pr_debug("BTF header not found\n");
226 		return -EINVAL;
227 	}
228 
229 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
230 		btf->swapped_endian = true;
231 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
232 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 				bswap_32(hdr->hdr_len));
234 			return -ENOTSUP;
235 		}
236 		btf_bswap_hdr(hdr);
237 	} else if (hdr->magic != BTF_MAGIC) {
238 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
239 		return -EINVAL;
240 	}
241 
242 	meta_left = btf->raw_size - sizeof(*hdr);
243 	if (meta_left < hdr->str_off + hdr->str_len) {
244 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
245 		return -EINVAL;
246 	}
247 
248 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
249 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
250 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
251 		return -EINVAL;
252 	}
253 
254 	if (hdr->type_off % 4) {
255 		pr_debug("BTF type section is not aligned to 4 bytes\n");
256 		return -EINVAL;
257 	}
258 
259 	return 0;
260 }
261 
262 static int btf_parse_str_sec(struct btf *btf)
263 {
264 	const struct btf_header *hdr = btf->hdr;
265 	const char *start = btf->strs_data;
266 	const char *end = start + btf->hdr->str_len;
267 
268 	if (btf->base_btf && hdr->str_len == 0)
269 		return 0;
270 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	if (!btf->base_btf && start[0]) {
275 		pr_debug("Invalid BTF string section\n");
276 		return -EINVAL;
277 	}
278 	return 0;
279 }
280 
281 static int btf_type_size(const struct btf_type *t)
282 {
283 	const int base_size = sizeof(struct btf_type);
284 	__u16 vlen = btf_vlen(t);
285 
286 	switch (btf_kind(t)) {
287 	case BTF_KIND_FWD:
288 	case BTF_KIND_CONST:
289 	case BTF_KIND_VOLATILE:
290 	case BTF_KIND_RESTRICT:
291 	case BTF_KIND_PTR:
292 	case BTF_KIND_TYPEDEF:
293 	case BTF_KIND_FUNC:
294 		return base_size;
295 	case BTF_KIND_INT:
296 		return base_size + sizeof(__u32);
297 	case BTF_KIND_ENUM:
298 		return base_size + vlen * sizeof(struct btf_enum);
299 	case BTF_KIND_ARRAY:
300 		return base_size + sizeof(struct btf_array);
301 	case BTF_KIND_STRUCT:
302 	case BTF_KIND_UNION:
303 		return base_size + vlen * sizeof(struct btf_member);
304 	case BTF_KIND_FUNC_PROTO:
305 		return base_size + vlen * sizeof(struct btf_param);
306 	case BTF_KIND_VAR:
307 		return base_size + sizeof(struct btf_var);
308 	case BTF_KIND_DATASEC:
309 		return base_size + vlen * sizeof(struct btf_var_secinfo);
310 	default:
311 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
312 		return -EINVAL;
313 	}
314 }
315 
316 static void btf_bswap_type_base(struct btf_type *t)
317 {
318 	t->name_off = bswap_32(t->name_off);
319 	t->info = bswap_32(t->info);
320 	t->type = bswap_32(t->type);
321 }
322 
323 static int btf_bswap_type_rest(struct btf_type *t)
324 {
325 	struct btf_var_secinfo *v;
326 	struct btf_member *m;
327 	struct btf_array *a;
328 	struct btf_param *p;
329 	struct btf_enum *e;
330 	__u16 vlen = btf_vlen(t);
331 	int i;
332 
333 	switch (btf_kind(t)) {
334 	case BTF_KIND_FWD:
335 	case BTF_KIND_CONST:
336 	case BTF_KIND_VOLATILE:
337 	case BTF_KIND_RESTRICT:
338 	case BTF_KIND_PTR:
339 	case BTF_KIND_TYPEDEF:
340 	case BTF_KIND_FUNC:
341 		return 0;
342 	case BTF_KIND_INT:
343 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
344 		return 0;
345 	case BTF_KIND_ENUM:
346 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
347 			e->name_off = bswap_32(e->name_off);
348 			e->val = bswap_32(e->val);
349 		}
350 		return 0;
351 	case BTF_KIND_ARRAY:
352 		a = btf_array(t);
353 		a->type = bswap_32(a->type);
354 		a->index_type = bswap_32(a->index_type);
355 		a->nelems = bswap_32(a->nelems);
356 		return 0;
357 	case BTF_KIND_STRUCT:
358 	case BTF_KIND_UNION:
359 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
360 			m->name_off = bswap_32(m->name_off);
361 			m->type = bswap_32(m->type);
362 			m->offset = bswap_32(m->offset);
363 		}
364 		return 0;
365 	case BTF_KIND_FUNC_PROTO:
366 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
367 			p->name_off = bswap_32(p->name_off);
368 			p->type = bswap_32(p->type);
369 		}
370 		return 0;
371 	case BTF_KIND_VAR:
372 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
373 		return 0;
374 	case BTF_KIND_DATASEC:
375 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
376 			v->type = bswap_32(v->type);
377 			v->offset = bswap_32(v->offset);
378 			v->size = bswap_32(v->size);
379 		}
380 		return 0;
381 	default:
382 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
383 		return -EINVAL;
384 	}
385 }
386 
387 static int btf_parse_type_sec(struct btf *btf)
388 {
389 	struct btf_header *hdr = btf->hdr;
390 	void *next_type = btf->types_data;
391 	void *end_type = next_type + hdr->type_len;
392 	int err, type_size;
393 
394 	while (next_type + sizeof(struct btf_type) <= end_type) {
395 		if (btf->swapped_endian)
396 			btf_bswap_type_base(next_type);
397 
398 		type_size = btf_type_size(next_type);
399 		if (type_size < 0)
400 			return type_size;
401 		if (next_type + type_size > end_type) {
402 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
403 			return -EINVAL;
404 		}
405 
406 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
407 			return -EINVAL;
408 
409 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
410 		if (err)
411 			return err;
412 
413 		next_type += type_size;
414 		btf->nr_types++;
415 	}
416 
417 	if (next_type != end_type) {
418 		pr_warn("BTF types data is malformed\n");
419 		return -EINVAL;
420 	}
421 
422 	return 0;
423 }
424 
425 __u32 btf__get_nr_types(const struct btf *btf)
426 {
427 	return btf->start_id + btf->nr_types - 1;
428 }
429 
430 const struct btf *btf__base_btf(const struct btf *btf)
431 {
432 	return btf->base_btf;
433 }
434 
435 /* internal helper returning non-const pointer to a type */
436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
437 {
438 	if (type_id == 0)
439 		return &btf_void;
440 	if (type_id < btf->start_id)
441 		return btf_type_by_id(btf->base_btf, type_id);
442 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
443 }
444 
445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
446 {
447 	if (type_id >= btf->start_id + btf->nr_types)
448 		return NULL;
449 	return btf_type_by_id((struct btf *)btf, type_id);
450 }
451 
452 static int determine_ptr_size(const struct btf *btf)
453 {
454 	const struct btf_type *t;
455 	const char *name;
456 	int i, n;
457 
458 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
459 		return btf->base_btf->ptr_sz;
460 
461 	n = btf__get_nr_types(btf);
462 	for (i = 1; i <= n; i++) {
463 		t = btf__type_by_id(btf, i);
464 		if (!btf_is_int(t))
465 			continue;
466 
467 		name = btf__name_by_offset(btf, t->name_off);
468 		if (!name)
469 			continue;
470 
471 		if (strcmp(name, "long int") == 0 ||
472 		    strcmp(name, "long unsigned int") == 0) {
473 			if (t->size != 4 && t->size != 8)
474 				continue;
475 			return t->size;
476 		}
477 	}
478 
479 	return -1;
480 }
481 
482 static size_t btf_ptr_sz(const struct btf *btf)
483 {
484 	if (!btf->ptr_sz)
485 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
486 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
487 }
488 
489 /* Return pointer size this BTF instance assumes. The size is heuristically
490  * determined by looking for 'long' or 'unsigned long' integer type and
491  * recording its size in bytes. If BTF type information doesn't have any such
492  * type, this function returns 0. In the latter case, native architecture's
493  * pointer size is assumed, so will be either 4 or 8, depending on
494  * architecture that libbpf was compiled for. It's possible to override
495  * guessed value by using btf__set_pointer_size() API.
496  */
497 size_t btf__pointer_size(const struct btf *btf)
498 {
499 	if (!btf->ptr_sz)
500 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
501 
502 	if (btf->ptr_sz < 0)
503 		/* not enough BTF type info to guess */
504 		return 0;
505 
506 	return btf->ptr_sz;
507 }
508 
509 /* Override or set pointer size in bytes. Only values of 4 and 8 are
510  * supported.
511  */
512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
513 {
514 	if (ptr_sz != 4 && ptr_sz != 8)
515 		return -EINVAL;
516 	btf->ptr_sz = ptr_sz;
517 	return 0;
518 }
519 
520 static bool is_host_big_endian(void)
521 {
522 #if __BYTE_ORDER == __LITTLE_ENDIAN
523 	return false;
524 #elif __BYTE_ORDER == __BIG_ENDIAN
525 	return true;
526 #else
527 # error "Unrecognized __BYTE_ORDER__"
528 #endif
529 }
530 
531 enum btf_endianness btf__endianness(const struct btf *btf)
532 {
533 	if (is_host_big_endian())
534 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
535 	else
536 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
537 }
538 
539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
540 {
541 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
542 		return -EINVAL;
543 
544 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
545 	if (!btf->swapped_endian) {
546 		free(btf->raw_data_swapped);
547 		btf->raw_data_swapped = NULL;
548 	}
549 	return 0;
550 }
551 
552 static bool btf_type_is_void(const struct btf_type *t)
553 {
554 	return t == &btf_void || btf_is_fwd(t);
555 }
556 
557 static bool btf_type_is_void_or_null(const struct btf_type *t)
558 {
559 	return !t || btf_type_is_void(t);
560 }
561 
562 #define MAX_RESOLVE_DEPTH 32
563 
564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
565 {
566 	const struct btf_array *array;
567 	const struct btf_type *t;
568 	__u32 nelems = 1;
569 	__s64 size = -1;
570 	int i;
571 
572 	t = btf__type_by_id(btf, type_id);
573 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
574 	     i++) {
575 		switch (btf_kind(t)) {
576 		case BTF_KIND_INT:
577 		case BTF_KIND_STRUCT:
578 		case BTF_KIND_UNION:
579 		case BTF_KIND_ENUM:
580 		case BTF_KIND_DATASEC:
581 			size = t->size;
582 			goto done;
583 		case BTF_KIND_PTR:
584 			size = btf_ptr_sz(btf);
585 			goto done;
586 		case BTF_KIND_TYPEDEF:
587 		case BTF_KIND_VOLATILE:
588 		case BTF_KIND_CONST:
589 		case BTF_KIND_RESTRICT:
590 		case BTF_KIND_VAR:
591 			type_id = t->type;
592 			break;
593 		case BTF_KIND_ARRAY:
594 			array = btf_array(t);
595 			if (nelems && array->nelems > UINT32_MAX / nelems)
596 				return -E2BIG;
597 			nelems *= array->nelems;
598 			type_id = array->type;
599 			break;
600 		default:
601 			return -EINVAL;
602 		}
603 
604 		t = btf__type_by_id(btf, type_id);
605 	}
606 
607 done:
608 	if (size < 0)
609 		return -EINVAL;
610 	if (nelems && size > UINT32_MAX / nelems)
611 		return -E2BIG;
612 
613 	return nelems * size;
614 }
615 
616 int btf__align_of(const struct btf *btf, __u32 id)
617 {
618 	const struct btf_type *t = btf__type_by_id(btf, id);
619 	__u16 kind = btf_kind(t);
620 
621 	switch (kind) {
622 	case BTF_KIND_INT:
623 	case BTF_KIND_ENUM:
624 		return min(btf_ptr_sz(btf), (size_t)t->size);
625 	case BTF_KIND_PTR:
626 		return btf_ptr_sz(btf);
627 	case BTF_KIND_TYPEDEF:
628 	case BTF_KIND_VOLATILE:
629 	case BTF_KIND_CONST:
630 	case BTF_KIND_RESTRICT:
631 		return btf__align_of(btf, t->type);
632 	case BTF_KIND_ARRAY:
633 		return btf__align_of(btf, btf_array(t)->type);
634 	case BTF_KIND_STRUCT:
635 	case BTF_KIND_UNION: {
636 		const struct btf_member *m = btf_members(t);
637 		__u16 vlen = btf_vlen(t);
638 		int i, max_align = 1, align;
639 
640 		for (i = 0; i < vlen; i++, m++) {
641 			align = btf__align_of(btf, m->type);
642 			if (align <= 0)
643 				return align;
644 			max_align = max(max_align, align);
645 		}
646 
647 		return max_align;
648 	}
649 	default:
650 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
651 		return 0;
652 	}
653 }
654 
655 int btf__resolve_type(const struct btf *btf, __u32 type_id)
656 {
657 	const struct btf_type *t;
658 	int depth = 0;
659 
660 	t = btf__type_by_id(btf, type_id);
661 	while (depth < MAX_RESOLVE_DEPTH &&
662 	       !btf_type_is_void_or_null(t) &&
663 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
664 		type_id = t->type;
665 		t = btf__type_by_id(btf, type_id);
666 		depth++;
667 	}
668 
669 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
670 		return -EINVAL;
671 
672 	return type_id;
673 }
674 
675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
676 {
677 	__u32 i, nr_types = btf__get_nr_types(btf);
678 
679 	if (!strcmp(type_name, "void"))
680 		return 0;
681 
682 	for (i = 1; i <= nr_types; i++) {
683 		const struct btf_type *t = btf__type_by_id(btf, i);
684 		const char *name = btf__name_by_offset(btf, t->name_off);
685 
686 		if (name && !strcmp(type_name, name))
687 			return i;
688 	}
689 
690 	return -ENOENT;
691 }
692 
693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
694 			     __u32 kind)
695 {
696 	__u32 i, nr_types = btf__get_nr_types(btf);
697 
698 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
699 		return 0;
700 
701 	for (i = 1; i <= nr_types; i++) {
702 		const struct btf_type *t = btf__type_by_id(btf, i);
703 		const char *name;
704 
705 		if (btf_kind(t) != kind)
706 			continue;
707 		name = btf__name_by_offset(btf, t->name_off);
708 		if (name && !strcmp(type_name, name))
709 			return i;
710 	}
711 
712 	return -ENOENT;
713 }
714 
715 static bool btf_is_modifiable(const struct btf *btf)
716 {
717 	return (void *)btf->hdr != btf->raw_data;
718 }
719 
720 void btf__free(struct btf *btf)
721 {
722 	if (IS_ERR_OR_NULL(btf))
723 		return;
724 
725 	if (btf->fd >= 0)
726 		close(btf->fd);
727 
728 	if (btf_is_modifiable(btf)) {
729 		/* if BTF was modified after loading, it will have a split
730 		 * in-memory representation for header, types, and strings
731 		 * sections, so we need to free all of them individually. It
732 		 * might still have a cached contiguous raw data present,
733 		 * which will be unconditionally freed below.
734 		 */
735 		free(btf->hdr);
736 		free(btf->types_data);
737 		free(btf->strs_data);
738 	}
739 	free(btf->raw_data);
740 	free(btf->raw_data_swapped);
741 	free(btf->type_offs);
742 	free(btf);
743 }
744 
745 static struct btf *btf_new_empty(struct btf *base_btf)
746 {
747 	struct btf *btf;
748 
749 	btf = calloc(1, sizeof(*btf));
750 	if (!btf)
751 		return ERR_PTR(-ENOMEM);
752 
753 	btf->nr_types = 0;
754 	btf->start_id = 1;
755 	btf->start_str_off = 0;
756 	btf->fd = -1;
757 	btf->ptr_sz = sizeof(void *);
758 	btf->swapped_endian = false;
759 
760 	if (base_btf) {
761 		btf->base_btf = base_btf;
762 		btf->start_id = btf__get_nr_types(base_btf) + 1;
763 		btf->start_str_off = base_btf->hdr->str_len;
764 	}
765 
766 	/* +1 for empty string at offset 0 */
767 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
768 	btf->raw_data = calloc(1, btf->raw_size);
769 	if (!btf->raw_data) {
770 		free(btf);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	btf->hdr = btf->raw_data;
775 	btf->hdr->hdr_len = sizeof(struct btf_header);
776 	btf->hdr->magic = BTF_MAGIC;
777 	btf->hdr->version = BTF_VERSION;
778 
779 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
781 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
782 
783 	return btf;
784 }
785 
786 struct btf *btf__new_empty(void)
787 {
788 	return btf_new_empty(NULL);
789 }
790 
791 struct btf *btf__new_empty_split(struct btf *base_btf)
792 {
793 	return btf_new_empty(base_btf);
794 }
795 
796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
797 {
798 	struct btf *btf;
799 	int err;
800 
801 	btf = calloc(1, sizeof(struct btf));
802 	if (!btf)
803 		return ERR_PTR(-ENOMEM);
804 
805 	btf->nr_types = 0;
806 	btf->start_id = 1;
807 	btf->start_str_off = 0;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 	btf->fd = -1;
837 
838 done:
839 	if (err) {
840 		btf__free(btf);
841 		return ERR_PTR(err);
842 	}
843 
844 	return btf;
845 }
846 
847 struct btf *btf__new(const void *data, __u32 size)
848 {
849 	return btf_new(data, size, NULL);
850 }
851 
852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
853 				 struct btf_ext **btf_ext)
854 {
855 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
856 	int err = 0, fd = -1, idx = 0;
857 	struct btf *btf = NULL;
858 	Elf_Scn *scn = NULL;
859 	Elf *elf = NULL;
860 	GElf_Ehdr ehdr;
861 
862 	if (elf_version(EV_CURRENT) == EV_NONE) {
863 		pr_warn("failed to init libelf for %s\n", path);
864 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
865 	}
866 
867 	fd = open(path, O_RDONLY);
868 	if (fd < 0) {
869 		err = -errno;
870 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
871 		return ERR_PTR(err);
872 	}
873 
874 	err = -LIBBPF_ERRNO__FORMAT;
875 
876 	elf = elf_begin(fd, ELF_C_READ, NULL);
877 	if (!elf) {
878 		pr_warn("failed to open %s as ELF file\n", path);
879 		goto done;
880 	}
881 	if (!gelf_getehdr(elf, &ehdr)) {
882 		pr_warn("failed to get EHDR from %s\n", path);
883 		goto done;
884 	}
885 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
886 		pr_warn("failed to get e_shstrndx from %s\n", path);
887 		goto done;
888 	}
889 
890 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
891 		GElf_Shdr sh;
892 		char *name;
893 
894 		idx++;
895 		if (gelf_getshdr(scn, &sh) != &sh) {
896 			pr_warn("failed to get section(%d) header from %s\n",
897 				idx, path);
898 			goto done;
899 		}
900 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
901 		if (!name) {
902 			pr_warn("failed to get section(%d) name from %s\n",
903 				idx, path);
904 			goto done;
905 		}
906 		if (strcmp(name, BTF_ELF_SEC) == 0) {
907 			btf_data = elf_getdata(scn, 0);
908 			if (!btf_data) {
909 				pr_warn("failed to get section(%d, %s) data from %s\n",
910 					idx, name, path);
911 				goto done;
912 			}
913 			continue;
914 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
915 			btf_ext_data = elf_getdata(scn, 0);
916 			if (!btf_ext_data) {
917 				pr_warn("failed to get section(%d, %s) data from %s\n",
918 					idx, name, path);
919 				goto done;
920 			}
921 			continue;
922 		}
923 	}
924 
925 	err = 0;
926 
927 	if (!btf_data) {
928 		err = -ENOENT;
929 		goto done;
930 	}
931 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
932 	if (IS_ERR(btf))
933 		goto done;
934 
935 	switch (gelf_getclass(elf)) {
936 	case ELFCLASS32:
937 		btf__set_pointer_size(btf, 4);
938 		break;
939 	case ELFCLASS64:
940 		btf__set_pointer_size(btf, 8);
941 		break;
942 	default:
943 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
944 		break;
945 	}
946 
947 	if (btf_ext && btf_ext_data) {
948 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
949 					btf_ext_data->d_size);
950 		if (IS_ERR(*btf_ext))
951 			goto done;
952 	} else if (btf_ext) {
953 		*btf_ext = NULL;
954 	}
955 done:
956 	if (elf)
957 		elf_end(elf);
958 	close(fd);
959 
960 	if (err)
961 		return ERR_PTR(err);
962 	/*
963 	 * btf is always parsed before btf_ext, so no need to clean up
964 	 * btf_ext, if btf loading failed
965 	 */
966 	if (IS_ERR(btf))
967 		return btf;
968 	if (btf_ext && IS_ERR(*btf_ext)) {
969 		btf__free(btf);
970 		err = PTR_ERR(*btf_ext);
971 		return ERR_PTR(err);
972 	}
973 	return btf;
974 }
975 
976 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
977 {
978 	return btf_parse_elf(path, NULL, btf_ext);
979 }
980 
981 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
982 {
983 	return btf_parse_elf(path, base_btf, NULL);
984 }
985 
986 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
987 {
988 	struct btf *btf = NULL;
989 	void *data = NULL;
990 	FILE *f = NULL;
991 	__u16 magic;
992 	int err = 0;
993 	long sz;
994 
995 	f = fopen(path, "rb");
996 	if (!f) {
997 		err = -errno;
998 		goto err_out;
999 	}
1000 
1001 	/* check BTF magic */
1002 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1003 		err = -EIO;
1004 		goto err_out;
1005 	}
1006 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1007 		/* definitely not a raw BTF */
1008 		err = -EPROTO;
1009 		goto err_out;
1010 	}
1011 
1012 	/* get file size */
1013 	if (fseek(f, 0, SEEK_END)) {
1014 		err = -errno;
1015 		goto err_out;
1016 	}
1017 	sz = ftell(f);
1018 	if (sz < 0) {
1019 		err = -errno;
1020 		goto err_out;
1021 	}
1022 	/* rewind to the start */
1023 	if (fseek(f, 0, SEEK_SET)) {
1024 		err = -errno;
1025 		goto err_out;
1026 	}
1027 
1028 	/* pre-alloc memory and read all of BTF data */
1029 	data = malloc(sz);
1030 	if (!data) {
1031 		err = -ENOMEM;
1032 		goto err_out;
1033 	}
1034 	if (fread(data, 1, sz, f) < sz) {
1035 		err = -EIO;
1036 		goto err_out;
1037 	}
1038 
1039 	/* finally parse BTF data */
1040 	btf = btf_new(data, sz, base_btf);
1041 
1042 err_out:
1043 	free(data);
1044 	if (f)
1045 		fclose(f);
1046 	return err ? ERR_PTR(err) : btf;
1047 }
1048 
1049 struct btf *btf__parse_raw(const char *path)
1050 {
1051 	return btf_parse_raw(path, NULL);
1052 }
1053 
1054 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1055 {
1056 	return btf_parse_raw(path, base_btf);
1057 }
1058 
1059 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1060 {
1061 	struct btf *btf;
1062 
1063 	if (btf_ext)
1064 		*btf_ext = NULL;
1065 
1066 	btf = btf_parse_raw(path, base_btf);
1067 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1068 		return btf;
1069 
1070 	return btf_parse_elf(path, base_btf, btf_ext);
1071 }
1072 
1073 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1074 {
1075 	return btf_parse(path, NULL, btf_ext);
1076 }
1077 
1078 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1079 {
1080 	return btf_parse(path, base_btf, NULL);
1081 }
1082 
1083 static int compare_vsi_off(const void *_a, const void *_b)
1084 {
1085 	const struct btf_var_secinfo *a = _a;
1086 	const struct btf_var_secinfo *b = _b;
1087 
1088 	return a->offset - b->offset;
1089 }
1090 
1091 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1092 			     struct btf_type *t)
1093 {
1094 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1095 	const char *name = btf__name_by_offset(btf, t->name_off);
1096 	const struct btf_type *t_var;
1097 	struct btf_var_secinfo *vsi;
1098 	const struct btf_var *var;
1099 	int ret;
1100 
1101 	if (!name) {
1102 		pr_debug("No name found in string section for DATASEC kind.\n");
1103 		return -ENOENT;
1104 	}
1105 
1106 	/* .extern datasec size and var offsets were set correctly during
1107 	 * extern collection step, so just skip straight to sorting variables
1108 	 */
1109 	if (t->size)
1110 		goto sort_vars;
1111 
1112 	ret = bpf_object__section_size(obj, name, &size);
1113 	if (ret || !size || (t->size && t->size != size)) {
1114 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1115 		return -ENOENT;
1116 	}
1117 
1118 	t->size = size;
1119 
1120 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1121 		t_var = btf__type_by_id(btf, vsi->type);
1122 		var = btf_var(t_var);
1123 
1124 		if (!btf_is_var(t_var)) {
1125 			pr_debug("Non-VAR type seen in section %s\n", name);
1126 			return -EINVAL;
1127 		}
1128 
1129 		if (var->linkage == BTF_VAR_STATIC)
1130 			continue;
1131 
1132 		name = btf__name_by_offset(btf, t_var->name_off);
1133 		if (!name) {
1134 			pr_debug("No name found in string section for VAR kind\n");
1135 			return -ENOENT;
1136 		}
1137 
1138 		ret = bpf_object__variable_offset(obj, name, &off);
1139 		if (ret) {
1140 			pr_debug("No offset found in symbol table for VAR %s\n",
1141 				 name);
1142 			return -ENOENT;
1143 		}
1144 
1145 		vsi->offset = off;
1146 	}
1147 
1148 sort_vars:
1149 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1150 	return 0;
1151 }
1152 
1153 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1154 {
1155 	int err = 0;
1156 	__u32 i;
1157 
1158 	for (i = 1; i <= btf->nr_types; i++) {
1159 		struct btf_type *t = btf_type_by_id(btf, i);
1160 
1161 		/* Loader needs to fix up some of the things compiler
1162 		 * couldn't get its hands on while emitting BTF. This
1163 		 * is section size and global variable offset. We use
1164 		 * the info from the ELF itself for this purpose.
1165 		 */
1166 		if (btf_is_datasec(t)) {
1167 			err = btf_fixup_datasec(obj, btf, t);
1168 			if (err)
1169 				break;
1170 		}
1171 	}
1172 
1173 	return err;
1174 }
1175 
1176 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1177 
1178 int btf__load(struct btf *btf)
1179 {
1180 	__u32 log_buf_size = 0, raw_size;
1181 	char *log_buf = NULL;
1182 	void *raw_data;
1183 	int err = 0;
1184 
1185 	if (btf->fd >= 0)
1186 		return -EEXIST;
1187 
1188 retry_load:
1189 	if (log_buf_size) {
1190 		log_buf = malloc(log_buf_size);
1191 		if (!log_buf)
1192 			return -ENOMEM;
1193 
1194 		*log_buf = 0;
1195 	}
1196 
1197 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1198 	if (!raw_data) {
1199 		err = -ENOMEM;
1200 		goto done;
1201 	}
1202 	/* cache native raw data representation */
1203 	btf->raw_size = raw_size;
1204 	btf->raw_data = raw_data;
1205 
1206 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1207 	if (btf->fd < 0) {
1208 		if (!log_buf || errno == ENOSPC) {
1209 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1210 					   log_buf_size << 1);
1211 			free(log_buf);
1212 			goto retry_load;
1213 		}
1214 
1215 		err = -errno;
1216 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1217 		if (*log_buf)
1218 			pr_warn("%s\n", log_buf);
1219 		goto done;
1220 	}
1221 
1222 done:
1223 	free(log_buf);
1224 	return err;
1225 }
1226 
1227 int btf__fd(const struct btf *btf)
1228 {
1229 	return btf->fd;
1230 }
1231 
1232 void btf__set_fd(struct btf *btf, int fd)
1233 {
1234 	btf->fd = fd;
1235 }
1236 
1237 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1238 {
1239 	struct btf_header *hdr = btf->hdr;
1240 	struct btf_type *t;
1241 	void *data, *p;
1242 	__u32 data_sz;
1243 	int i;
1244 
1245 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1246 	if (data) {
1247 		*size = btf->raw_size;
1248 		return data;
1249 	}
1250 
1251 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1252 	data = calloc(1, data_sz);
1253 	if (!data)
1254 		return NULL;
1255 	p = data;
1256 
1257 	memcpy(p, hdr, hdr->hdr_len);
1258 	if (swap_endian)
1259 		btf_bswap_hdr(p);
1260 	p += hdr->hdr_len;
1261 
1262 	memcpy(p, btf->types_data, hdr->type_len);
1263 	if (swap_endian) {
1264 		for (i = 0; i < btf->nr_types; i++) {
1265 			t = p + btf->type_offs[i];
1266 			/* btf_bswap_type_rest() relies on native t->info, so
1267 			 * we swap base type info after we swapped all the
1268 			 * additional information
1269 			 */
1270 			if (btf_bswap_type_rest(t))
1271 				goto err_out;
1272 			btf_bswap_type_base(t);
1273 		}
1274 	}
1275 	p += hdr->type_len;
1276 
1277 	memcpy(p, btf->strs_data, hdr->str_len);
1278 	p += hdr->str_len;
1279 
1280 	*size = data_sz;
1281 	return data;
1282 err_out:
1283 	free(data);
1284 	return NULL;
1285 }
1286 
1287 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1288 {
1289 	struct btf *btf = (struct btf *)btf_ro;
1290 	__u32 data_sz;
1291 	void *data;
1292 
1293 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1294 	if (!data)
1295 		return NULL;
1296 
1297 	btf->raw_size = data_sz;
1298 	if (btf->swapped_endian)
1299 		btf->raw_data_swapped = data;
1300 	else
1301 		btf->raw_data = data;
1302 	*size = data_sz;
1303 	return data;
1304 }
1305 
1306 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1307 {
1308 	if (offset < btf->start_str_off)
1309 		return btf__str_by_offset(btf->base_btf, offset);
1310 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1311 		return btf->strs_data + (offset - btf->start_str_off);
1312 	else
1313 		return NULL;
1314 }
1315 
1316 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1317 {
1318 	return btf__str_by_offset(btf, offset);
1319 }
1320 
1321 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1322 {
1323 	struct bpf_btf_info btf_info;
1324 	__u32 len = sizeof(btf_info);
1325 	__u32 last_size;
1326 	struct btf *btf;
1327 	void *ptr;
1328 	int err;
1329 
1330 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1331 	 * let's start with a sane default - 4KiB here - and resize it only if
1332 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1333 	 */
1334 	last_size = 4096;
1335 	ptr = malloc(last_size);
1336 	if (!ptr)
1337 		return ERR_PTR(-ENOMEM);
1338 
1339 	memset(&btf_info, 0, sizeof(btf_info));
1340 	btf_info.btf = ptr_to_u64(ptr);
1341 	btf_info.btf_size = last_size;
1342 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1343 
1344 	if (!err && btf_info.btf_size > last_size) {
1345 		void *temp_ptr;
1346 
1347 		last_size = btf_info.btf_size;
1348 		temp_ptr = realloc(ptr, last_size);
1349 		if (!temp_ptr) {
1350 			btf = ERR_PTR(-ENOMEM);
1351 			goto exit_free;
1352 		}
1353 		ptr = temp_ptr;
1354 
1355 		len = sizeof(btf_info);
1356 		memset(&btf_info, 0, sizeof(btf_info));
1357 		btf_info.btf = ptr_to_u64(ptr);
1358 		btf_info.btf_size = last_size;
1359 
1360 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1361 	}
1362 
1363 	if (err || btf_info.btf_size > last_size) {
1364 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1365 		goto exit_free;
1366 	}
1367 
1368 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1369 
1370 exit_free:
1371 	free(ptr);
1372 	return btf;
1373 }
1374 
1375 int btf__get_from_id(__u32 id, struct btf **btf)
1376 {
1377 	struct btf *res;
1378 	int btf_fd;
1379 
1380 	*btf = NULL;
1381 	btf_fd = bpf_btf_get_fd_by_id(id);
1382 	if (btf_fd < 0)
1383 		return -errno;
1384 
1385 	res = btf_get_from_fd(btf_fd, NULL);
1386 	close(btf_fd);
1387 	if (IS_ERR(res))
1388 		return PTR_ERR(res);
1389 
1390 	*btf = res;
1391 	return 0;
1392 }
1393 
1394 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1395 			 __u32 expected_key_size, __u32 expected_value_size,
1396 			 __u32 *key_type_id, __u32 *value_type_id)
1397 {
1398 	const struct btf_type *container_type;
1399 	const struct btf_member *key, *value;
1400 	const size_t max_name = 256;
1401 	char container_name[max_name];
1402 	__s64 key_size, value_size;
1403 	__s32 container_id;
1404 
1405 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1406 	    max_name) {
1407 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1408 			map_name, map_name);
1409 		return -EINVAL;
1410 	}
1411 
1412 	container_id = btf__find_by_name(btf, container_name);
1413 	if (container_id < 0) {
1414 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1415 			 map_name, container_name);
1416 		return container_id;
1417 	}
1418 
1419 	container_type = btf__type_by_id(btf, container_id);
1420 	if (!container_type) {
1421 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1422 			map_name, container_id);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1427 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1428 			map_name, container_name);
1429 		return -EINVAL;
1430 	}
1431 
1432 	key = btf_members(container_type);
1433 	value = key + 1;
1434 
1435 	key_size = btf__resolve_size(btf, key->type);
1436 	if (key_size < 0) {
1437 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1438 		return key_size;
1439 	}
1440 
1441 	if (expected_key_size != key_size) {
1442 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1443 			map_name, (__u32)key_size, expected_key_size);
1444 		return -EINVAL;
1445 	}
1446 
1447 	value_size = btf__resolve_size(btf, value->type);
1448 	if (value_size < 0) {
1449 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1450 		return value_size;
1451 	}
1452 
1453 	if (expected_value_size != value_size) {
1454 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1455 			map_name, (__u32)value_size, expected_value_size);
1456 		return -EINVAL;
1457 	}
1458 
1459 	*key_type_id = key->type;
1460 	*value_type_id = value->type;
1461 
1462 	return 0;
1463 }
1464 
1465 static size_t strs_hash_fn(const void *key, void *ctx)
1466 {
1467 	const struct btf *btf = ctx;
1468 	const char *strs = *btf->strs_data_ptr;
1469 	const char *str = strs + (long)key;
1470 
1471 	return str_hash(str);
1472 }
1473 
1474 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1475 {
1476 	const struct btf *btf = ctx;
1477 	const char *strs = *btf->strs_data_ptr;
1478 	const char *str1 = strs + (long)key1;
1479 	const char *str2 = strs + (long)key2;
1480 
1481 	return strcmp(str1, str2) == 0;
1482 }
1483 
1484 static void btf_invalidate_raw_data(struct btf *btf)
1485 {
1486 	if (btf->raw_data) {
1487 		free(btf->raw_data);
1488 		btf->raw_data = NULL;
1489 	}
1490 	if (btf->raw_data_swapped) {
1491 		free(btf->raw_data_swapped);
1492 		btf->raw_data_swapped = NULL;
1493 	}
1494 }
1495 
1496 /* Ensure BTF is ready to be modified (by splitting into a three memory
1497  * regions for header, types, and strings). Also invalidate cached
1498  * raw_data, if any.
1499  */
1500 static int btf_ensure_modifiable(struct btf *btf)
1501 {
1502 	void *hdr, *types, *strs, *strs_end, *s;
1503 	struct hashmap *hash = NULL;
1504 	long off;
1505 	int err;
1506 
1507 	if (btf_is_modifiable(btf)) {
1508 		/* any BTF modification invalidates raw_data */
1509 		btf_invalidate_raw_data(btf);
1510 		return 0;
1511 	}
1512 
1513 	/* split raw data into three memory regions */
1514 	hdr = malloc(btf->hdr->hdr_len);
1515 	types = malloc(btf->hdr->type_len);
1516 	strs = malloc(btf->hdr->str_len);
1517 	if (!hdr || !types || !strs)
1518 		goto err_out;
1519 
1520 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1521 	memcpy(types, btf->types_data, btf->hdr->type_len);
1522 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1523 
1524 	/* make hashmap below use btf->strs_data as a source of strings */
1525 	btf->strs_data_ptr = &btf->strs_data;
1526 
1527 	/* build lookup index for all strings */
1528 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1529 	if (IS_ERR(hash)) {
1530 		err = PTR_ERR(hash);
1531 		hash = NULL;
1532 		goto err_out;
1533 	}
1534 
1535 	strs_end = strs + btf->hdr->str_len;
1536 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1537 		/* hashmap__add() returns EEXIST if string with the same
1538 		 * content already is in the hash map
1539 		 */
1540 		err = hashmap__add(hash, (void *)off, (void *)off);
1541 		if (err == -EEXIST)
1542 			continue; /* duplicate */
1543 		if (err)
1544 			goto err_out;
1545 	}
1546 
1547 	/* only when everything was successful, update internal state */
1548 	btf->hdr = hdr;
1549 	btf->types_data = types;
1550 	btf->types_data_cap = btf->hdr->type_len;
1551 	btf->strs_data = strs;
1552 	btf->strs_data_cap = btf->hdr->str_len;
1553 	btf->strs_hash = hash;
1554 	/* if BTF was created from scratch, all strings are guaranteed to be
1555 	 * unique and deduplicated
1556 	 */
1557 	if (btf->hdr->str_len == 0)
1558 		btf->strs_deduped = true;
1559 	if (!btf->base_btf && btf->hdr->str_len == 1)
1560 		btf->strs_deduped = true;
1561 
1562 	/* invalidate raw_data representation */
1563 	btf_invalidate_raw_data(btf);
1564 
1565 	return 0;
1566 
1567 err_out:
1568 	hashmap__free(hash);
1569 	free(hdr);
1570 	free(types);
1571 	free(strs);
1572 	return -ENOMEM;
1573 }
1574 
1575 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1576 {
1577 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1578 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1579 }
1580 
1581 /* Find an offset in BTF string section that corresponds to a given string *s*.
1582  * Returns:
1583  *   - >0 offset into string section, if string is found;
1584  *   - -ENOENT, if string is not in the string section;
1585  *   - <0, on any other error.
1586  */
1587 int btf__find_str(struct btf *btf, const char *s)
1588 {
1589 	long old_off, new_off, len;
1590 	void *p;
1591 
1592 	if (btf->base_btf) {
1593 		int ret;
1594 
1595 		ret = btf__find_str(btf->base_btf, s);
1596 		if (ret != -ENOENT)
1597 			return ret;
1598 	}
1599 
1600 	/* BTF needs to be in a modifiable state to build string lookup index */
1601 	if (btf_ensure_modifiable(btf))
1602 		return -ENOMEM;
1603 
1604 	/* see btf__add_str() for why we do this */
1605 	len = strlen(s) + 1;
1606 	p = btf_add_str_mem(btf, len);
1607 	if (!p)
1608 		return -ENOMEM;
1609 
1610 	new_off = btf->hdr->str_len;
1611 	memcpy(p, s, len);
1612 
1613 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1614 		return btf->start_str_off + old_off;
1615 
1616 	return -ENOENT;
1617 }
1618 
1619 /* Add a string s to the BTF string section.
1620  * Returns:
1621  *   - > 0 offset into string section, on success;
1622  *   - < 0, on error.
1623  */
1624 int btf__add_str(struct btf *btf, const char *s)
1625 {
1626 	long old_off, new_off, len;
1627 	void *p;
1628 	int err;
1629 
1630 	if (btf->base_btf) {
1631 		int ret;
1632 
1633 		ret = btf__find_str(btf->base_btf, s);
1634 		if (ret != -ENOENT)
1635 			return ret;
1636 	}
1637 
1638 	if (btf_ensure_modifiable(btf))
1639 		return -ENOMEM;
1640 
1641 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1642 	 * look up some string from the "outside", we need to first append it
1643 	 * at the end, so that it can be addressed with an offset. Luckily,
1644 	 * until btf->hdr->str_len is incremented, that string is just a piece
1645 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1646 	 * other hand, if the string is unique, it's already appended and
1647 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1648 	 */
1649 	len = strlen(s) + 1;
1650 	p = btf_add_str_mem(btf, len);
1651 	if (!p)
1652 		return -ENOMEM;
1653 
1654 	new_off = btf->hdr->str_len;
1655 	memcpy(p, s, len);
1656 
1657 	/* Now attempt to add the string, but only if the string with the same
1658 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1659 	 * string exists, we'll get its offset in old_off (that's old_key).
1660 	 */
1661 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1662 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1663 	if (err == -EEXIST)
1664 		return btf->start_str_off + old_off; /* duplicated string, return existing offset */
1665 	if (err)
1666 		return err;
1667 
1668 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1669 	return btf->start_str_off + new_off;
1670 }
1671 
1672 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1673 {
1674 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1675 			   btf->hdr->type_len, UINT_MAX, add_sz);
1676 }
1677 
1678 static __u32 btf_type_info(int kind, int vlen, int kflag)
1679 {
1680 	return (kflag << 31) | (kind << 24) | vlen;
1681 }
1682 
1683 static void btf_type_inc_vlen(struct btf_type *t)
1684 {
1685 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1686 }
1687 
1688 static int btf_commit_type(struct btf *btf, int data_sz)
1689 {
1690 	int err;
1691 
1692 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1693 	if (err)
1694 		return err;
1695 
1696 	btf->hdr->type_len += data_sz;
1697 	btf->hdr->str_off += data_sz;
1698 	btf->nr_types++;
1699 	return btf->start_id + btf->nr_types - 1;
1700 }
1701 
1702 /*
1703  * Append new BTF_KIND_INT type with:
1704  *   - *name* - non-empty, non-NULL type name;
1705  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1706  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1707  * Returns:
1708  *   - >0, type ID of newly added BTF type;
1709  *   - <0, on error.
1710  */
1711 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1712 {
1713 	struct btf_type *t;
1714 	int sz, name_off;
1715 
1716 	/* non-empty name */
1717 	if (!name || !name[0])
1718 		return -EINVAL;
1719 	/* byte_sz must be power of 2 */
1720 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1721 		return -EINVAL;
1722 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1723 		return -EINVAL;
1724 
1725 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1726 	if (btf_ensure_modifiable(btf))
1727 		return -ENOMEM;
1728 
1729 	sz = sizeof(struct btf_type) + sizeof(int);
1730 	t = btf_add_type_mem(btf, sz);
1731 	if (!t)
1732 		return -ENOMEM;
1733 
1734 	/* if something goes wrong later, we might end up with an extra string,
1735 	 * but that shouldn't be a problem, because BTF can't be constructed
1736 	 * completely anyway and will most probably be just discarded
1737 	 */
1738 	name_off = btf__add_str(btf, name);
1739 	if (name_off < 0)
1740 		return name_off;
1741 
1742 	t->name_off = name_off;
1743 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1744 	t->size = byte_sz;
1745 	/* set INT info, we don't allow setting legacy bit offset/size */
1746 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1747 
1748 	return btf_commit_type(btf, sz);
1749 }
1750 
1751 /* it's completely legal to append BTF types with type IDs pointing forward to
1752  * types that haven't been appended yet, so we only make sure that id looks
1753  * sane, we can't guarantee that ID will always be valid
1754  */
1755 static int validate_type_id(int id)
1756 {
1757 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1758 		return -EINVAL;
1759 	return 0;
1760 }
1761 
1762 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1763 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1764 {
1765 	struct btf_type *t;
1766 	int sz, name_off = 0;
1767 
1768 	if (validate_type_id(ref_type_id))
1769 		return -EINVAL;
1770 
1771 	if (btf_ensure_modifiable(btf))
1772 		return -ENOMEM;
1773 
1774 	sz = sizeof(struct btf_type);
1775 	t = btf_add_type_mem(btf, sz);
1776 	if (!t)
1777 		return -ENOMEM;
1778 
1779 	if (name && name[0]) {
1780 		name_off = btf__add_str(btf, name);
1781 		if (name_off < 0)
1782 			return name_off;
1783 	}
1784 
1785 	t->name_off = name_off;
1786 	t->info = btf_type_info(kind, 0, 0);
1787 	t->type = ref_type_id;
1788 
1789 	return btf_commit_type(btf, sz);
1790 }
1791 
1792 /*
1793  * Append new BTF_KIND_PTR type with:
1794  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1795  * Returns:
1796  *   - >0, type ID of newly added BTF type;
1797  *   - <0, on error.
1798  */
1799 int btf__add_ptr(struct btf *btf, int ref_type_id)
1800 {
1801 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1802 }
1803 
1804 /*
1805  * Append new BTF_KIND_ARRAY type with:
1806  *   - *index_type_id* - type ID of the type describing array index;
1807  *   - *elem_type_id* - type ID of the type describing array element;
1808  *   - *nr_elems* - the size of the array;
1809  * Returns:
1810  *   - >0, type ID of newly added BTF type;
1811  *   - <0, on error.
1812  */
1813 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1814 {
1815 	struct btf_type *t;
1816 	struct btf_array *a;
1817 	int sz;
1818 
1819 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1820 		return -EINVAL;
1821 
1822 	if (btf_ensure_modifiable(btf))
1823 		return -ENOMEM;
1824 
1825 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1826 	t = btf_add_type_mem(btf, sz);
1827 	if (!t)
1828 		return -ENOMEM;
1829 
1830 	t->name_off = 0;
1831 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1832 	t->size = 0;
1833 
1834 	a = btf_array(t);
1835 	a->type = elem_type_id;
1836 	a->index_type = index_type_id;
1837 	a->nelems = nr_elems;
1838 
1839 	return btf_commit_type(btf, sz);
1840 }
1841 
1842 /* generic STRUCT/UNION append function */
1843 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1844 {
1845 	struct btf_type *t;
1846 	int sz, name_off = 0;
1847 
1848 	if (btf_ensure_modifiable(btf))
1849 		return -ENOMEM;
1850 
1851 	sz = sizeof(struct btf_type);
1852 	t = btf_add_type_mem(btf, sz);
1853 	if (!t)
1854 		return -ENOMEM;
1855 
1856 	if (name && name[0]) {
1857 		name_off = btf__add_str(btf, name);
1858 		if (name_off < 0)
1859 			return name_off;
1860 	}
1861 
1862 	/* start out with vlen=0 and no kflag; this will be adjusted when
1863 	 * adding each member
1864 	 */
1865 	t->name_off = name_off;
1866 	t->info = btf_type_info(kind, 0, 0);
1867 	t->size = bytes_sz;
1868 
1869 	return btf_commit_type(btf, sz);
1870 }
1871 
1872 /*
1873  * Append new BTF_KIND_STRUCT type with:
1874  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1875  *   - *byte_sz* - size of the struct, in bytes;
1876  *
1877  * Struct initially has no fields in it. Fields can be added by
1878  * btf__add_field() right after btf__add_struct() succeeds.
1879  *
1880  * Returns:
1881  *   - >0, type ID of newly added BTF type;
1882  *   - <0, on error.
1883  */
1884 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1885 {
1886 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1887 }
1888 
1889 /*
1890  * Append new BTF_KIND_UNION type with:
1891  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1892  *   - *byte_sz* - size of the union, in bytes;
1893  *
1894  * Union initially has no fields in it. Fields can be added by
1895  * btf__add_field() right after btf__add_union() succeeds. All fields
1896  * should have *bit_offset* of 0.
1897  *
1898  * Returns:
1899  *   - >0, type ID of newly added BTF type;
1900  *   - <0, on error.
1901  */
1902 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1903 {
1904 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1905 }
1906 
1907 static struct btf_type *btf_last_type(struct btf *btf)
1908 {
1909 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1910 }
1911 
1912 /*
1913  * Append new field for the current STRUCT/UNION type with:
1914  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1915  *   - *type_id* - type ID for the type describing field type;
1916  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1917  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1918  * Returns:
1919  *   -  0, on success;
1920  *   - <0, on error.
1921  */
1922 int btf__add_field(struct btf *btf, const char *name, int type_id,
1923 		   __u32 bit_offset, __u32 bit_size)
1924 {
1925 	struct btf_type *t;
1926 	struct btf_member *m;
1927 	bool is_bitfield;
1928 	int sz, name_off = 0;
1929 
1930 	/* last type should be union/struct */
1931 	if (btf->nr_types == 0)
1932 		return -EINVAL;
1933 	t = btf_last_type(btf);
1934 	if (!btf_is_composite(t))
1935 		return -EINVAL;
1936 
1937 	if (validate_type_id(type_id))
1938 		return -EINVAL;
1939 	/* best-effort bit field offset/size enforcement */
1940 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1941 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1942 		return -EINVAL;
1943 
1944 	/* only offset 0 is allowed for unions */
1945 	if (btf_is_union(t) && bit_offset)
1946 		return -EINVAL;
1947 
1948 	/* decompose and invalidate raw data */
1949 	if (btf_ensure_modifiable(btf))
1950 		return -ENOMEM;
1951 
1952 	sz = sizeof(struct btf_member);
1953 	m = btf_add_type_mem(btf, sz);
1954 	if (!m)
1955 		return -ENOMEM;
1956 
1957 	if (name && name[0]) {
1958 		name_off = btf__add_str(btf, name);
1959 		if (name_off < 0)
1960 			return name_off;
1961 	}
1962 
1963 	m->name_off = name_off;
1964 	m->type = type_id;
1965 	m->offset = bit_offset | (bit_size << 24);
1966 
1967 	/* btf_add_type_mem can invalidate t pointer */
1968 	t = btf_last_type(btf);
1969 	/* update parent type's vlen and kflag */
1970 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1971 
1972 	btf->hdr->type_len += sz;
1973 	btf->hdr->str_off += sz;
1974 	return 0;
1975 }
1976 
1977 /*
1978  * Append new BTF_KIND_ENUM type with:
1979  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1980  *   - *byte_sz* - size of the enum, in bytes.
1981  *
1982  * Enum initially has no enum values in it (and corresponds to enum forward
1983  * declaration). Enumerator values can be added by btf__add_enum_value()
1984  * immediately after btf__add_enum() succeeds.
1985  *
1986  * Returns:
1987  *   - >0, type ID of newly added BTF type;
1988  *   - <0, on error.
1989  */
1990 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1991 {
1992 	struct btf_type *t;
1993 	int sz, name_off = 0;
1994 
1995 	/* byte_sz must be power of 2 */
1996 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
1997 		return -EINVAL;
1998 
1999 	if (btf_ensure_modifiable(btf))
2000 		return -ENOMEM;
2001 
2002 	sz = sizeof(struct btf_type);
2003 	t = btf_add_type_mem(btf, sz);
2004 	if (!t)
2005 		return -ENOMEM;
2006 
2007 	if (name && name[0]) {
2008 		name_off = btf__add_str(btf, name);
2009 		if (name_off < 0)
2010 			return name_off;
2011 	}
2012 
2013 	/* start out with vlen=0; it will be adjusted when adding enum values */
2014 	t->name_off = name_off;
2015 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2016 	t->size = byte_sz;
2017 
2018 	return btf_commit_type(btf, sz);
2019 }
2020 
2021 /*
2022  * Append new enum value for the current ENUM type with:
2023  *   - *name* - name of the enumerator value, can't be NULL or empty;
2024  *   - *value* - integer value corresponding to enum value *name*;
2025  * Returns:
2026  *   -  0, on success;
2027  *   - <0, on error.
2028  */
2029 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2030 {
2031 	struct btf_type *t;
2032 	struct btf_enum *v;
2033 	int sz, name_off;
2034 
2035 	/* last type should be BTF_KIND_ENUM */
2036 	if (btf->nr_types == 0)
2037 		return -EINVAL;
2038 	t = btf_last_type(btf);
2039 	if (!btf_is_enum(t))
2040 		return -EINVAL;
2041 
2042 	/* non-empty name */
2043 	if (!name || !name[0])
2044 		return -EINVAL;
2045 	if (value < INT_MIN || value > UINT_MAX)
2046 		return -E2BIG;
2047 
2048 	/* decompose and invalidate raw data */
2049 	if (btf_ensure_modifiable(btf))
2050 		return -ENOMEM;
2051 
2052 	sz = sizeof(struct btf_enum);
2053 	v = btf_add_type_mem(btf, sz);
2054 	if (!v)
2055 		return -ENOMEM;
2056 
2057 	name_off = btf__add_str(btf, name);
2058 	if (name_off < 0)
2059 		return name_off;
2060 
2061 	v->name_off = name_off;
2062 	v->val = value;
2063 
2064 	/* update parent type's vlen */
2065 	t = btf_last_type(btf);
2066 	btf_type_inc_vlen(t);
2067 
2068 	btf->hdr->type_len += sz;
2069 	btf->hdr->str_off += sz;
2070 	return 0;
2071 }
2072 
2073 /*
2074  * Append new BTF_KIND_FWD type with:
2075  *   - *name*, non-empty/non-NULL name;
2076  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2077  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2078  * Returns:
2079  *   - >0, type ID of newly added BTF type;
2080  *   - <0, on error.
2081  */
2082 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2083 {
2084 	if (!name || !name[0])
2085 		return -EINVAL;
2086 
2087 	switch (fwd_kind) {
2088 	case BTF_FWD_STRUCT:
2089 	case BTF_FWD_UNION: {
2090 		struct btf_type *t;
2091 		int id;
2092 
2093 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2094 		if (id <= 0)
2095 			return id;
2096 		t = btf_type_by_id(btf, id);
2097 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2098 		return id;
2099 	}
2100 	case BTF_FWD_ENUM:
2101 		/* enum forward in BTF currently is just an enum with no enum
2102 		 * values; we also assume a standard 4-byte size for it
2103 		 */
2104 		return btf__add_enum(btf, name, sizeof(int));
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 }
2109 
2110 /*
2111  * Append new BTF_KING_TYPEDEF type with:
2112  *   - *name*, non-empty/non-NULL name;
2113  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2114  * Returns:
2115  *   - >0, type ID of newly added BTF type;
2116  *   - <0, on error.
2117  */
2118 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2119 {
2120 	if (!name || !name[0])
2121 		return -EINVAL;
2122 
2123 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2124 }
2125 
2126 /*
2127  * Append new BTF_KIND_VOLATILE type with:
2128  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2129  * Returns:
2130  *   - >0, type ID of newly added BTF type;
2131  *   - <0, on error.
2132  */
2133 int btf__add_volatile(struct btf *btf, int ref_type_id)
2134 {
2135 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2136 }
2137 
2138 /*
2139  * Append new BTF_KIND_CONST type with:
2140  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141  * Returns:
2142  *   - >0, type ID of newly added BTF type;
2143  *   - <0, on error.
2144  */
2145 int btf__add_const(struct btf *btf, int ref_type_id)
2146 {
2147 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2148 }
2149 
2150 /*
2151  * Append new BTF_KIND_RESTRICT type with:
2152  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2153  * Returns:
2154  *   - >0, type ID of newly added BTF type;
2155  *   - <0, on error.
2156  */
2157 int btf__add_restrict(struct btf *btf, int ref_type_id)
2158 {
2159 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2160 }
2161 
2162 /*
2163  * Append new BTF_KIND_FUNC type with:
2164  *   - *name*, non-empty/non-NULL name;
2165  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2166  * Returns:
2167  *   - >0, type ID of newly added BTF type;
2168  *   - <0, on error.
2169  */
2170 int btf__add_func(struct btf *btf, const char *name,
2171 		  enum btf_func_linkage linkage, int proto_type_id)
2172 {
2173 	int id;
2174 
2175 	if (!name || !name[0])
2176 		return -EINVAL;
2177 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2178 	    linkage != BTF_FUNC_EXTERN)
2179 		return -EINVAL;
2180 
2181 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2182 	if (id > 0) {
2183 		struct btf_type *t = btf_type_by_id(btf, id);
2184 
2185 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2186 	}
2187 	return id;
2188 }
2189 
2190 /*
2191  * Append new BTF_KIND_FUNC_PROTO with:
2192  *   - *ret_type_id* - type ID for return result of a function.
2193  *
2194  * Function prototype initially has no arguments, but they can be added by
2195  * btf__add_func_param() one by one, immediately after
2196  * btf__add_func_proto() succeeded.
2197  *
2198  * Returns:
2199  *   - >0, type ID of newly added BTF type;
2200  *   - <0, on error.
2201  */
2202 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2203 {
2204 	struct btf_type *t;
2205 	int sz;
2206 
2207 	if (validate_type_id(ret_type_id))
2208 		return -EINVAL;
2209 
2210 	if (btf_ensure_modifiable(btf))
2211 		return -ENOMEM;
2212 
2213 	sz = sizeof(struct btf_type);
2214 	t = btf_add_type_mem(btf, sz);
2215 	if (!t)
2216 		return -ENOMEM;
2217 
2218 	/* start out with vlen=0; this will be adjusted when adding enum
2219 	 * values, if necessary
2220 	 */
2221 	t->name_off = 0;
2222 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2223 	t->type = ret_type_id;
2224 
2225 	return btf_commit_type(btf, sz);
2226 }
2227 
2228 /*
2229  * Append new function parameter for current FUNC_PROTO type with:
2230  *   - *name* - parameter name, can be NULL or empty;
2231  *   - *type_id* - type ID describing the type of the parameter.
2232  * Returns:
2233  *   -  0, on success;
2234  *   - <0, on error.
2235  */
2236 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2237 {
2238 	struct btf_type *t;
2239 	struct btf_param *p;
2240 	int sz, name_off = 0;
2241 
2242 	if (validate_type_id(type_id))
2243 		return -EINVAL;
2244 
2245 	/* last type should be BTF_KIND_FUNC_PROTO */
2246 	if (btf->nr_types == 0)
2247 		return -EINVAL;
2248 	t = btf_last_type(btf);
2249 	if (!btf_is_func_proto(t))
2250 		return -EINVAL;
2251 
2252 	/* decompose and invalidate raw data */
2253 	if (btf_ensure_modifiable(btf))
2254 		return -ENOMEM;
2255 
2256 	sz = sizeof(struct btf_param);
2257 	p = btf_add_type_mem(btf, sz);
2258 	if (!p)
2259 		return -ENOMEM;
2260 
2261 	if (name && name[0]) {
2262 		name_off = btf__add_str(btf, name);
2263 		if (name_off < 0)
2264 			return name_off;
2265 	}
2266 
2267 	p->name_off = name_off;
2268 	p->type = type_id;
2269 
2270 	/* update parent type's vlen */
2271 	t = btf_last_type(btf);
2272 	btf_type_inc_vlen(t);
2273 
2274 	btf->hdr->type_len += sz;
2275 	btf->hdr->str_off += sz;
2276 	return 0;
2277 }
2278 
2279 /*
2280  * Append new BTF_KIND_VAR type with:
2281  *   - *name* - non-empty/non-NULL name;
2282  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2283  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2284  *   - *type_id* - type ID of the type describing the type of the variable.
2285  * Returns:
2286  *   - >0, type ID of newly added BTF type;
2287  *   - <0, on error.
2288  */
2289 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2290 {
2291 	struct btf_type *t;
2292 	struct btf_var *v;
2293 	int sz, name_off;
2294 
2295 	/* non-empty name */
2296 	if (!name || !name[0])
2297 		return -EINVAL;
2298 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2299 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2300 		return -EINVAL;
2301 	if (validate_type_id(type_id))
2302 		return -EINVAL;
2303 
2304 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2305 	if (btf_ensure_modifiable(btf))
2306 		return -ENOMEM;
2307 
2308 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2309 	t = btf_add_type_mem(btf, sz);
2310 	if (!t)
2311 		return -ENOMEM;
2312 
2313 	name_off = btf__add_str(btf, name);
2314 	if (name_off < 0)
2315 		return name_off;
2316 
2317 	t->name_off = name_off;
2318 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2319 	t->type = type_id;
2320 
2321 	v = btf_var(t);
2322 	v->linkage = linkage;
2323 
2324 	return btf_commit_type(btf, sz);
2325 }
2326 
2327 /*
2328  * Append new BTF_KIND_DATASEC type with:
2329  *   - *name* - non-empty/non-NULL name;
2330  *   - *byte_sz* - data section size, in bytes.
2331  *
2332  * Data section is initially empty. Variables info can be added with
2333  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2334  *
2335  * Returns:
2336  *   - >0, type ID of newly added BTF type;
2337  *   - <0, on error.
2338  */
2339 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2340 {
2341 	struct btf_type *t;
2342 	int sz, name_off;
2343 
2344 	/* non-empty name */
2345 	if (!name || !name[0])
2346 		return -EINVAL;
2347 
2348 	if (btf_ensure_modifiable(btf))
2349 		return -ENOMEM;
2350 
2351 	sz = sizeof(struct btf_type);
2352 	t = btf_add_type_mem(btf, sz);
2353 	if (!t)
2354 		return -ENOMEM;
2355 
2356 	name_off = btf__add_str(btf, name);
2357 	if (name_off < 0)
2358 		return name_off;
2359 
2360 	/* start with vlen=0, which will be update as var_secinfos are added */
2361 	t->name_off = name_off;
2362 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2363 	t->size = byte_sz;
2364 
2365 	return btf_commit_type(btf, sz);
2366 }
2367 
2368 /*
2369  * Append new data section variable information entry for current DATASEC type:
2370  *   - *var_type_id* - type ID, describing type of the variable;
2371  *   - *offset* - variable offset within data section, in bytes;
2372  *   - *byte_sz* - variable size, in bytes.
2373  *
2374  * Returns:
2375  *   -  0, on success;
2376  *   - <0, on error.
2377  */
2378 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2379 {
2380 	struct btf_type *t;
2381 	struct btf_var_secinfo *v;
2382 	int sz;
2383 
2384 	/* last type should be BTF_KIND_DATASEC */
2385 	if (btf->nr_types == 0)
2386 		return -EINVAL;
2387 	t = btf_last_type(btf);
2388 	if (!btf_is_datasec(t))
2389 		return -EINVAL;
2390 
2391 	if (validate_type_id(var_type_id))
2392 		return -EINVAL;
2393 
2394 	/* decompose and invalidate raw data */
2395 	if (btf_ensure_modifiable(btf))
2396 		return -ENOMEM;
2397 
2398 	sz = sizeof(struct btf_var_secinfo);
2399 	v = btf_add_type_mem(btf, sz);
2400 	if (!v)
2401 		return -ENOMEM;
2402 
2403 	v->type = var_type_id;
2404 	v->offset = offset;
2405 	v->size = byte_sz;
2406 
2407 	/* update parent type's vlen */
2408 	t = btf_last_type(btf);
2409 	btf_type_inc_vlen(t);
2410 
2411 	btf->hdr->type_len += sz;
2412 	btf->hdr->str_off += sz;
2413 	return 0;
2414 }
2415 
2416 struct btf_ext_sec_setup_param {
2417 	__u32 off;
2418 	__u32 len;
2419 	__u32 min_rec_size;
2420 	struct btf_ext_info *ext_info;
2421 	const char *desc;
2422 };
2423 
2424 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2425 			      struct btf_ext_sec_setup_param *ext_sec)
2426 {
2427 	const struct btf_ext_info_sec *sinfo;
2428 	struct btf_ext_info *ext_info;
2429 	__u32 info_left, record_size;
2430 	/* The start of the info sec (including the __u32 record_size). */
2431 	void *info;
2432 
2433 	if (ext_sec->len == 0)
2434 		return 0;
2435 
2436 	if (ext_sec->off & 0x03) {
2437 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2438 		     ext_sec->desc);
2439 		return -EINVAL;
2440 	}
2441 
2442 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2443 	info_left = ext_sec->len;
2444 
2445 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2446 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2447 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2448 		return -EINVAL;
2449 	}
2450 
2451 	/* At least a record size */
2452 	if (info_left < sizeof(__u32)) {
2453 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2454 		return -EINVAL;
2455 	}
2456 
2457 	/* The record size needs to meet the minimum standard */
2458 	record_size = *(__u32 *)info;
2459 	if (record_size < ext_sec->min_rec_size ||
2460 	    record_size & 0x03) {
2461 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2462 			 ext_sec->desc, record_size);
2463 		return -EINVAL;
2464 	}
2465 
2466 	sinfo = info + sizeof(__u32);
2467 	info_left -= sizeof(__u32);
2468 
2469 	/* If no records, return failure now so .BTF.ext won't be used. */
2470 	if (!info_left) {
2471 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2472 		return -EINVAL;
2473 	}
2474 
2475 	while (info_left) {
2476 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2477 		__u64 total_record_size;
2478 		__u32 num_records;
2479 
2480 		if (info_left < sec_hdrlen) {
2481 			pr_debug("%s section header is not found in .BTF.ext\n",
2482 			     ext_sec->desc);
2483 			return -EINVAL;
2484 		}
2485 
2486 		num_records = sinfo->num_info;
2487 		if (num_records == 0) {
2488 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2489 			     ext_sec->desc);
2490 			return -EINVAL;
2491 		}
2492 
2493 		total_record_size = sec_hdrlen +
2494 				    (__u64)num_records * record_size;
2495 		if (info_left < total_record_size) {
2496 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2497 			     ext_sec->desc);
2498 			return -EINVAL;
2499 		}
2500 
2501 		info_left -= total_record_size;
2502 		sinfo = (void *)sinfo + total_record_size;
2503 	}
2504 
2505 	ext_info = ext_sec->ext_info;
2506 	ext_info->len = ext_sec->len - sizeof(__u32);
2507 	ext_info->rec_size = record_size;
2508 	ext_info->info = info + sizeof(__u32);
2509 
2510 	return 0;
2511 }
2512 
2513 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2514 {
2515 	struct btf_ext_sec_setup_param param = {
2516 		.off = btf_ext->hdr->func_info_off,
2517 		.len = btf_ext->hdr->func_info_len,
2518 		.min_rec_size = sizeof(struct bpf_func_info_min),
2519 		.ext_info = &btf_ext->func_info,
2520 		.desc = "func_info"
2521 	};
2522 
2523 	return btf_ext_setup_info(btf_ext, &param);
2524 }
2525 
2526 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2527 {
2528 	struct btf_ext_sec_setup_param param = {
2529 		.off = btf_ext->hdr->line_info_off,
2530 		.len = btf_ext->hdr->line_info_len,
2531 		.min_rec_size = sizeof(struct bpf_line_info_min),
2532 		.ext_info = &btf_ext->line_info,
2533 		.desc = "line_info",
2534 	};
2535 
2536 	return btf_ext_setup_info(btf_ext, &param);
2537 }
2538 
2539 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2540 {
2541 	struct btf_ext_sec_setup_param param = {
2542 		.off = btf_ext->hdr->core_relo_off,
2543 		.len = btf_ext->hdr->core_relo_len,
2544 		.min_rec_size = sizeof(struct bpf_core_relo),
2545 		.ext_info = &btf_ext->core_relo_info,
2546 		.desc = "core_relo",
2547 	};
2548 
2549 	return btf_ext_setup_info(btf_ext, &param);
2550 }
2551 
2552 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2553 {
2554 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2555 
2556 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2557 	    data_size < hdr->hdr_len) {
2558 		pr_debug("BTF.ext header not found");
2559 		return -EINVAL;
2560 	}
2561 
2562 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2563 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2564 		return -ENOTSUP;
2565 	} else if (hdr->magic != BTF_MAGIC) {
2566 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (hdr->version != BTF_VERSION) {
2571 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2572 		return -ENOTSUP;
2573 	}
2574 
2575 	if (hdr->flags) {
2576 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2577 		return -ENOTSUP;
2578 	}
2579 
2580 	if (data_size == hdr->hdr_len) {
2581 		pr_debug("BTF.ext has no data\n");
2582 		return -EINVAL;
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 void btf_ext__free(struct btf_ext *btf_ext)
2589 {
2590 	if (IS_ERR_OR_NULL(btf_ext))
2591 		return;
2592 	free(btf_ext->data);
2593 	free(btf_ext);
2594 }
2595 
2596 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2597 {
2598 	struct btf_ext *btf_ext;
2599 	int err;
2600 
2601 	err = btf_ext_parse_hdr(data, size);
2602 	if (err)
2603 		return ERR_PTR(err);
2604 
2605 	btf_ext = calloc(1, sizeof(struct btf_ext));
2606 	if (!btf_ext)
2607 		return ERR_PTR(-ENOMEM);
2608 
2609 	btf_ext->data_size = size;
2610 	btf_ext->data = malloc(size);
2611 	if (!btf_ext->data) {
2612 		err = -ENOMEM;
2613 		goto done;
2614 	}
2615 	memcpy(btf_ext->data, data, size);
2616 
2617 	if (btf_ext->hdr->hdr_len <
2618 	    offsetofend(struct btf_ext_header, line_info_len))
2619 		goto done;
2620 	err = btf_ext_setup_func_info(btf_ext);
2621 	if (err)
2622 		goto done;
2623 
2624 	err = btf_ext_setup_line_info(btf_ext);
2625 	if (err)
2626 		goto done;
2627 
2628 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2629 		goto done;
2630 	err = btf_ext_setup_core_relos(btf_ext);
2631 	if (err)
2632 		goto done;
2633 
2634 done:
2635 	if (err) {
2636 		btf_ext__free(btf_ext);
2637 		return ERR_PTR(err);
2638 	}
2639 
2640 	return btf_ext;
2641 }
2642 
2643 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2644 {
2645 	*size = btf_ext->data_size;
2646 	return btf_ext->data;
2647 }
2648 
2649 static int btf_ext_reloc_info(const struct btf *btf,
2650 			      const struct btf_ext_info *ext_info,
2651 			      const char *sec_name, __u32 insns_cnt,
2652 			      void **info, __u32 *cnt)
2653 {
2654 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2655 	__u32 i, record_size, existing_len, records_len;
2656 	struct btf_ext_info_sec *sinfo;
2657 	const char *info_sec_name;
2658 	__u64 remain_len;
2659 	void *data;
2660 
2661 	record_size = ext_info->rec_size;
2662 	sinfo = ext_info->info;
2663 	remain_len = ext_info->len;
2664 	while (remain_len > 0) {
2665 		records_len = sinfo->num_info * record_size;
2666 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2667 		if (strcmp(info_sec_name, sec_name)) {
2668 			remain_len -= sec_hdrlen + records_len;
2669 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2670 			continue;
2671 		}
2672 
2673 		existing_len = (*cnt) * record_size;
2674 		data = realloc(*info, existing_len + records_len);
2675 		if (!data)
2676 			return -ENOMEM;
2677 
2678 		memcpy(data + existing_len, sinfo->data, records_len);
2679 		/* adjust insn_off only, the rest data will be passed
2680 		 * to the kernel.
2681 		 */
2682 		for (i = 0; i < sinfo->num_info; i++) {
2683 			__u32 *insn_off;
2684 
2685 			insn_off = data + existing_len + (i * record_size);
2686 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2687 				insns_cnt;
2688 		}
2689 		*info = data;
2690 		*cnt += sinfo->num_info;
2691 		return 0;
2692 	}
2693 
2694 	return -ENOENT;
2695 }
2696 
2697 int btf_ext__reloc_func_info(const struct btf *btf,
2698 			     const struct btf_ext *btf_ext,
2699 			     const char *sec_name, __u32 insns_cnt,
2700 			     void **func_info, __u32 *cnt)
2701 {
2702 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2703 				  insns_cnt, func_info, cnt);
2704 }
2705 
2706 int btf_ext__reloc_line_info(const struct btf *btf,
2707 			     const struct btf_ext *btf_ext,
2708 			     const char *sec_name, __u32 insns_cnt,
2709 			     void **line_info, __u32 *cnt)
2710 {
2711 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2712 				  insns_cnt, line_info, cnt);
2713 }
2714 
2715 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2716 {
2717 	return btf_ext->func_info.rec_size;
2718 }
2719 
2720 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2721 {
2722 	return btf_ext->line_info.rec_size;
2723 }
2724 
2725 struct btf_dedup;
2726 
2727 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2728 				       const struct btf_dedup_opts *opts);
2729 static void btf_dedup_free(struct btf_dedup *d);
2730 static int btf_dedup_prep(struct btf_dedup *d);
2731 static int btf_dedup_strings(struct btf_dedup *d);
2732 static int btf_dedup_prim_types(struct btf_dedup *d);
2733 static int btf_dedup_struct_types(struct btf_dedup *d);
2734 static int btf_dedup_ref_types(struct btf_dedup *d);
2735 static int btf_dedup_compact_types(struct btf_dedup *d);
2736 static int btf_dedup_remap_types(struct btf_dedup *d);
2737 
2738 /*
2739  * Deduplicate BTF types and strings.
2740  *
2741  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2742  * section with all BTF type descriptors and string data. It overwrites that
2743  * memory in-place with deduplicated types and strings without any loss of
2744  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2745  * is provided, all the strings referenced from .BTF.ext section are honored
2746  * and updated to point to the right offsets after deduplication.
2747  *
2748  * If function returns with error, type/string data might be garbled and should
2749  * be discarded.
2750  *
2751  * More verbose and detailed description of both problem btf_dedup is solving,
2752  * as well as solution could be found at:
2753  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2754  *
2755  * Problem description and justification
2756  * =====================================
2757  *
2758  * BTF type information is typically emitted either as a result of conversion
2759  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2760  * unit contains information about a subset of all the types that are used
2761  * in an application. These subsets are frequently overlapping and contain a lot
2762  * of duplicated information when later concatenated together into a single
2763  * binary. This algorithm ensures that each unique type is represented by single
2764  * BTF type descriptor, greatly reducing resulting size of BTF data.
2765  *
2766  * Compilation unit isolation and subsequent duplication of data is not the only
2767  * problem. The same type hierarchy (e.g., struct and all the type that struct
2768  * references) in different compilation units can be represented in BTF to
2769  * various degrees of completeness (or, rather, incompleteness) due to
2770  * struct/union forward declarations.
2771  *
2772  * Let's take a look at an example, that we'll use to better understand the
2773  * problem (and solution). Suppose we have two compilation units, each using
2774  * same `struct S`, but each of them having incomplete type information about
2775  * struct's fields:
2776  *
2777  * // CU #1:
2778  * struct S;
2779  * struct A {
2780  *	int a;
2781  *	struct A* self;
2782  *	struct S* parent;
2783  * };
2784  * struct B;
2785  * struct S {
2786  *	struct A* a_ptr;
2787  *	struct B* b_ptr;
2788  * };
2789  *
2790  * // CU #2:
2791  * struct S;
2792  * struct A;
2793  * struct B {
2794  *	int b;
2795  *	struct B* self;
2796  *	struct S* parent;
2797  * };
2798  * struct S {
2799  *	struct A* a_ptr;
2800  *	struct B* b_ptr;
2801  * };
2802  *
2803  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2804  * more), but will know the complete type information about `struct A`. While
2805  * for CU #2, it will know full type information about `struct B`, but will
2806  * only know about forward declaration of `struct A` (in BTF terms, it will
2807  * have `BTF_KIND_FWD` type descriptor with name `B`).
2808  *
2809  * This compilation unit isolation means that it's possible that there is no
2810  * single CU with complete type information describing structs `S`, `A`, and
2811  * `B`. Also, we might get tons of duplicated and redundant type information.
2812  *
2813  * Additional complication we need to keep in mind comes from the fact that
2814  * types, in general, can form graphs containing cycles, not just DAGs.
2815  *
2816  * While algorithm does deduplication, it also merges and resolves type
2817  * information (unless disabled throught `struct btf_opts`), whenever possible.
2818  * E.g., in the example above with two compilation units having partial type
2819  * information for structs `A` and `B`, the output of algorithm will emit
2820  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2821  * (as well as type information for `int` and pointers), as if they were defined
2822  * in a single compilation unit as:
2823  *
2824  * struct A {
2825  *	int a;
2826  *	struct A* self;
2827  *	struct S* parent;
2828  * };
2829  * struct B {
2830  *	int b;
2831  *	struct B* self;
2832  *	struct S* parent;
2833  * };
2834  * struct S {
2835  *	struct A* a_ptr;
2836  *	struct B* b_ptr;
2837  * };
2838  *
2839  * Algorithm summary
2840  * =================
2841  *
2842  * Algorithm completes its work in 6 separate passes:
2843  *
2844  * 1. Strings deduplication.
2845  * 2. Primitive types deduplication (int, enum, fwd).
2846  * 3. Struct/union types deduplication.
2847  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2848  *    protos, and const/volatile/restrict modifiers).
2849  * 5. Types compaction.
2850  * 6. Types remapping.
2851  *
2852  * Algorithm determines canonical type descriptor, which is a single
2853  * representative type for each truly unique type. This canonical type is the
2854  * one that will go into final deduplicated BTF type information. For
2855  * struct/unions, it is also the type that algorithm will merge additional type
2856  * information into (while resolving FWDs), as it discovers it from data in
2857  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2858  * that type is canonical, or to some other type, if that type is equivalent
2859  * and was chosen as canonical representative. This mapping is stored in
2860  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2861  * FWD type got resolved to.
2862  *
2863  * To facilitate fast discovery of canonical types, we also maintain canonical
2864  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2865  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2866  * that match that signature. With sufficiently good choice of type signature
2867  * hashing function, we can limit number of canonical types for each unique type
2868  * signature to a very small number, allowing to find canonical type for any
2869  * duplicated type very quickly.
2870  *
2871  * Struct/union deduplication is the most critical part and algorithm for
2872  * deduplicating structs/unions is described in greater details in comments for
2873  * `btf_dedup_is_equiv` function.
2874  */
2875 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2876 	       const struct btf_dedup_opts *opts)
2877 {
2878 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2879 	int err;
2880 
2881 	if (IS_ERR(d)) {
2882 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2883 		return -EINVAL;
2884 	}
2885 
2886 	if (btf_ensure_modifiable(btf))
2887 		return -ENOMEM;
2888 
2889 	err = btf_dedup_prep(d);
2890 	if (err) {
2891 		pr_debug("btf_dedup_prep failed:%d\n", err);
2892 		goto done;
2893 	}
2894 	err = btf_dedup_strings(d);
2895 	if (err < 0) {
2896 		pr_debug("btf_dedup_strings failed:%d\n", err);
2897 		goto done;
2898 	}
2899 	err = btf_dedup_prim_types(d);
2900 	if (err < 0) {
2901 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2902 		goto done;
2903 	}
2904 	err = btf_dedup_struct_types(d);
2905 	if (err < 0) {
2906 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2907 		goto done;
2908 	}
2909 	err = btf_dedup_ref_types(d);
2910 	if (err < 0) {
2911 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2912 		goto done;
2913 	}
2914 	err = btf_dedup_compact_types(d);
2915 	if (err < 0) {
2916 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2917 		goto done;
2918 	}
2919 	err = btf_dedup_remap_types(d);
2920 	if (err < 0) {
2921 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2922 		goto done;
2923 	}
2924 
2925 done:
2926 	btf_dedup_free(d);
2927 	return err;
2928 }
2929 
2930 #define BTF_UNPROCESSED_ID ((__u32)-1)
2931 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2932 
2933 struct btf_dedup {
2934 	/* .BTF section to be deduped in-place */
2935 	struct btf *btf;
2936 	/*
2937 	 * Optional .BTF.ext section. When provided, any strings referenced
2938 	 * from it will be taken into account when deduping strings
2939 	 */
2940 	struct btf_ext *btf_ext;
2941 	/*
2942 	 * This is a map from any type's signature hash to a list of possible
2943 	 * canonical representative type candidates. Hash collisions are
2944 	 * ignored, so even types of various kinds can share same list of
2945 	 * candidates, which is fine because we rely on subsequent
2946 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2947 	 */
2948 	struct hashmap *dedup_table;
2949 	/* Canonical types map */
2950 	__u32 *map;
2951 	/* Hypothetical mapping, used during type graph equivalence checks */
2952 	__u32 *hypot_map;
2953 	__u32 *hypot_list;
2954 	size_t hypot_cnt;
2955 	size_t hypot_cap;
2956 	/* Whether hypothetical mapping, if successful, would need to adjust
2957 	 * already canonicalized types (due to a new forward declaration to
2958 	 * concrete type resolution). In such case, during split BTF dedup
2959 	 * candidate type would still be considered as different, because base
2960 	 * BTF is considered to be immutable.
2961 	 */
2962 	bool hypot_adjust_canon;
2963 	/* Various option modifying behavior of algorithm */
2964 	struct btf_dedup_opts opts;
2965 	/* temporary strings deduplication state */
2966 	void *strs_data;
2967 	size_t strs_cap;
2968 	size_t strs_len;
2969 	struct hashmap* strs_hash;
2970 };
2971 
2972 static long hash_combine(long h, long value)
2973 {
2974 	return h * 31 + value;
2975 }
2976 
2977 #define for_each_dedup_cand(d, node, hash) \
2978 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2979 
2980 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2981 {
2982 	return hashmap__append(d->dedup_table,
2983 			       (void *)hash, (void *)(long)type_id);
2984 }
2985 
2986 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2987 				   __u32 from_id, __u32 to_id)
2988 {
2989 	if (d->hypot_cnt == d->hypot_cap) {
2990 		__u32 *new_list;
2991 
2992 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2993 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2994 		if (!new_list)
2995 			return -ENOMEM;
2996 		d->hypot_list = new_list;
2997 	}
2998 	d->hypot_list[d->hypot_cnt++] = from_id;
2999 	d->hypot_map[from_id] = to_id;
3000 	return 0;
3001 }
3002 
3003 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3004 {
3005 	int i;
3006 
3007 	for (i = 0; i < d->hypot_cnt; i++)
3008 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3009 	d->hypot_cnt = 0;
3010 	d->hypot_adjust_canon = false;
3011 }
3012 
3013 static void btf_dedup_free(struct btf_dedup *d)
3014 {
3015 	hashmap__free(d->dedup_table);
3016 	d->dedup_table = NULL;
3017 
3018 	free(d->map);
3019 	d->map = NULL;
3020 
3021 	free(d->hypot_map);
3022 	d->hypot_map = NULL;
3023 
3024 	free(d->hypot_list);
3025 	d->hypot_list = NULL;
3026 
3027 	free(d);
3028 }
3029 
3030 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3031 {
3032 	return (size_t)key;
3033 }
3034 
3035 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3036 {
3037 	return 0;
3038 }
3039 
3040 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3041 {
3042 	return k1 == k2;
3043 }
3044 
3045 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3046 				       const struct btf_dedup_opts *opts)
3047 {
3048 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3049 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3050 	int i, err = 0, type_cnt;
3051 
3052 	if (!d)
3053 		return ERR_PTR(-ENOMEM);
3054 
3055 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3056 	/* dedup_table_size is now used only to force collisions in tests */
3057 	if (opts && opts->dedup_table_size == 1)
3058 		hash_fn = btf_dedup_collision_hash_fn;
3059 
3060 	d->btf = btf;
3061 	d->btf_ext = btf_ext;
3062 
3063 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3064 	if (IS_ERR(d->dedup_table)) {
3065 		err = PTR_ERR(d->dedup_table);
3066 		d->dedup_table = NULL;
3067 		goto done;
3068 	}
3069 
3070 	type_cnt = btf__get_nr_types(btf) + 1;
3071 	d->map = malloc(sizeof(__u32) * type_cnt);
3072 	if (!d->map) {
3073 		err = -ENOMEM;
3074 		goto done;
3075 	}
3076 	/* special BTF "void" type is made canonical immediately */
3077 	d->map[0] = 0;
3078 	for (i = 1; i < type_cnt; i++) {
3079 		struct btf_type *t = btf_type_by_id(d->btf, i);
3080 
3081 		/* VAR and DATASEC are never deduped and are self-canonical */
3082 		if (btf_is_var(t) || btf_is_datasec(t))
3083 			d->map[i] = i;
3084 		else
3085 			d->map[i] = BTF_UNPROCESSED_ID;
3086 	}
3087 
3088 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3089 	if (!d->hypot_map) {
3090 		err = -ENOMEM;
3091 		goto done;
3092 	}
3093 	for (i = 0; i < type_cnt; i++)
3094 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3095 
3096 done:
3097 	if (err) {
3098 		btf_dedup_free(d);
3099 		return ERR_PTR(err);
3100 	}
3101 
3102 	return d;
3103 }
3104 
3105 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3106 
3107 /*
3108  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3109  * string and pass pointer to it to a provided callback `fn`.
3110  */
3111 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3112 {
3113 	void *line_data_cur, *line_data_end;
3114 	int i, j, r, rec_size;
3115 	struct btf_type *t;
3116 
3117 	for (i = 0; i < d->btf->nr_types; i++) {
3118 		t = btf_type_by_id(d->btf, d->btf->start_id + i);
3119 		r = fn(&t->name_off, ctx);
3120 		if (r)
3121 			return r;
3122 
3123 		switch (btf_kind(t)) {
3124 		case BTF_KIND_STRUCT:
3125 		case BTF_KIND_UNION: {
3126 			struct btf_member *m = btf_members(t);
3127 			__u16 vlen = btf_vlen(t);
3128 
3129 			for (j = 0; j < vlen; j++) {
3130 				r = fn(&m->name_off, ctx);
3131 				if (r)
3132 					return r;
3133 				m++;
3134 			}
3135 			break;
3136 		}
3137 		case BTF_KIND_ENUM: {
3138 			struct btf_enum *m = btf_enum(t);
3139 			__u16 vlen = btf_vlen(t);
3140 
3141 			for (j = 0; j < vlen; j++) {
3142 				r = fn(&m->name_off, ctx);
3143 				if (r)
3144 					return r;
3145 				m++;
3146 			}
3147 			break;
3148 		}
3149 		case BTF_KIND_FUNC_PROTO: {
3150 			struct btf_param *m = btf_params(t);
3151 			__u16 vlen = btf_vlen(t);
3152 
3153 			for (j = 0; j < vlen; j++) {
3154 				r = fn(&m->name_off, ctx);
3155 				if (r)
3156 					return r;
3157 				m++;
3158 			}
3159 			break;
3160 		}
3161 		default:
3162 			break;
3163 		}
3164 	}
3165 
3166 	if (!d->btf_ext)
3167 		return 0;
3168 
3169 	line_data_cur = d->btf_ext->line_info.info;
3170 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3171 	rec_size = d->btf_ext->line_info.rec_size;
3172 
3173 	while (line_data_cur < line_data_end) {
3174 		struct btf_ext_info_sec *sec = line_data_cur;
3175 		struct bpf_line_info_min *line_info;
3176 		__u32 num_info = sec->num_info;
3177 
3178 		r = fn(&sec->sec_name_off, ctx);
3179 		if (r)
3180 			return r;
3181 
3182 		line_data_cur += sizeof(struct btf_ext_info_sec);
3183 		for (i = 0; i < num_info; i++) {
3184 			line_info = line_data_cur;
3185 			r = fn(&line_info->file_name_off, ctx);
3186 			if (r)
3187 				return r;
3188 			r = fn(&line_info->line_off, ctx);
3189 			if (r)
3190 				return r;
3191 			line_data_cur += rec_size;
3192 		}
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3199 {
3200 	struct btf_dedup *d = ctx;
3201 	__u32 str_off = *str_off_ptr;
3202 	long old_off, new_off, len;
3203 	const char *s;
3204 	void *p;
3205 	int err;
3206 
3207 	/* don't touch empty string or string in main BTF */
3208 	if (str_off == 0 || str_off < d->btf->start_str_off)
3209 		return 0;
3210 
3211 	s = btf__str_by_offset(d->btf, str_off);
3212 	if (d->btf->base_btf) {
3213 		err = btf__find_str(d->btf->base_btf, s);
3214 		if (err >= 0) {
3215 			*str_off_ptr = err;
3216 			return 0;
3217 		}
3218 		if (err != -ENOENT)
3219 			return err;
3220 	}
3221 
3222 	len = strlen(s) + 1;
3223 
3224 	new_off = d->strs_len;
3225 	p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len);
3226 	if (!p)
3227 		return -ENOMEM;
3228 
3229 	memcpy(p, s, len);
3230 
3231 	/* Now attempt to add the string, but only if the string with the same
3232 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3233 	 * string exists, we'll get its offset in old_off (that's old_key).
3234 	 */
3235 	err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off,
3236 			      HASHMAP_ADD, (const void **)&old_off, NULL);
3237 	if (err == -EEXIST) {
3238 		*str_off_ptr = d->btf->start_str_off + old_off;
3239 	} else if (err) {
3240 		return err;
3241 	} else {
3242 		*str_off_ptr = d->btf->start_str_off + new_off;
3243 		d->strs_len += len;
3244 	}
3245 	return 0;
3246 }
3247 
3248 /*
3249  * Dedup string and filter out those that are not referenced from either .BTF
3250  * or .BTF.ext (if provided) sections.
3251  *
3252  * This is done by building index of all strings in BTF's string section,
3253  * then iterating over all entities that can reference strings (e.g., type
3254  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3255  * strings as used. After that all used strings are deduped and compacted into
3256  * sequential blob of memory and new offsets are calculated. Then all the string
3257  * references are iterated again and rewritten using new offsets.
3258  */
3259 static int btf_dedup_strings(struct btf_dedup *d)
3260 {
3261 	char *s;
3262 	int err;
3263 
3264 	if (d->btf->strs_deduped)
3265 		return 0;
3266 
3267 	/* temporarily switch to use btf_dedup's strs_data for strings for hash
3268 	 * functions; later we'll just transfer hashmap to struct btf as is,
3269 	 * along the strs_data
3270 	 */
3271 	d->btf->strs_data_ptr = &d->strs_data;
3272 
3273 	d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf);
3274 	if (IS_ERR(d->strs_hash)) {
3275 		err = PTR_ERR(d->strs_hash);
3276 		d->strs_hash = NULL;
3277 		goto err_out;
3278 	}
3279 
3280 	if (!d->btf->base_btf) {
3281 		s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1);
3282 		if (!s)
3283 			return -ENOMEM;
3284 		/* initial empty string */
3285 		s[0] = 0;
3286 		d->strs_len = 1;
3287 
3288 		/* insert empty string; we won't be looking it up during strings
3289 		 * dedup, but it's good to have it for generic BTF string lookups
3290 		 */
3291 		err = hashmap__insert(d->strs_hash, (void *)0, (void *)0,
3292 				      HASHMAP_ADD, NULL, NULL);
3293 		if (err)
3294 			goto err_out;
3295 	}
3296 
3297 	/* remap string offsets */
3298 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3299 	if (err)
3300 		goto err_out;
3301 
3302 	/* replace BTF string data and hash with deduped ones */
3303 	free(d->btf->strs_data);
3304 	hashmap__free(d->btf->strs_hash);
3305 	d->btf->strs_data = d->strs_data;
3306 	d->btf->strs_data_cap = d->strs_cap;
3307 	d->btf->hdr->str_len = d->strs_len;
3308 	d->btf->strs_hash = d->strs_hash;
3309 	/* now point strs_data_ptr back to btf->strs_data */
3310 	d->btf->strs_data_ptr = &d->btf->strs_data;
3311 
3312 	d->strs_data = d->strs_hash = NULL;
3313 	d->strs_len = d->strs_cap = 0;
3314 	d->btf->strs_deduped = true;
3315 	return 0;
3316 
3317 err_out:
3318 	free(d->strs_data);
3319 	hashmap__free(d->strs_hash);
3320 	d->strs_data = d->strs_hash = NULL;
3321 	d->strs_len = d->strs_cap = 0;
3322 
3323 	/* restore strings pointer for existing d->btf->strs_hash back */
3324 	d->btf->strs_data_ptr = &d->strs_data;
3325 
3326 	return err;
3327 }
3328 
3329 static long btf_hash_common(struct btf_type *t)
3330 {
3331 	long h;
3332 
3333 	h = hash_combine(0, t->name_off);
3334 	h = hash_combine(h, t->info);
3335 	h = hash_combine(h, t->size);
3336 	return h;
3337 }
3338 
3339 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3340 {
3341 	return t1->name_off == t2->name_off &&
3342 	       t1->info == t2->info &&
3343 	       t1->size == t2->size;
3344 }
3345 
3346 /* Calculate type signature hash of INT. */
3347 static long btf_hash_int(struct btf_type *t)
3348 {
3349 	__u32 info = *(__u32 *)(t + 1);
3350 	long h;
3351 
3352 	h = btf_hash_common(t);
3353 	h = hash_combine(h, info);
3354 	return h;
3355 }
3356 
3357 /* Check structural equality of two INTs. */
3358 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3359 {
3360 	__u32 info1, info2;
3361 
3362 	if (!btf_equal_common(t1, t2))
3363 		return false;
3364 	info1 = *(__u32 *)(t1 + 1);
3365 	info2 = *(__u32 *)(t2 + 1);
3366 	return info1 == info2;
3367 }
3368 
3369 /* Calculate type signature hash of ENUM. */
3370 static long btf_hash_enum(struct btf_type *t)
3371 {
3372 	long h;
3373 
3374 	/* don't hash vlen and enum members to support enum fwd resolving */
3375 	h = hash_combine(0, t->name_off);
3376 	h = hash_combine(h, t->info & ~0xffff);
3377 	h = hash_combine(h, t->size);
3378 	return h;
3379 }
3380 
3381 /* Check structural equality of two ENUMs. */
3382 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3383 {
3384 	const struct btf_enum *m1, *m2;
3385 	__u16 vlen;
3386 	int i;
3387 
3388 	if (!btf_equal_common(t1, t2))
3389 		return false;
3390 
3391 	vlen = btf_vlen(t1);
3392 	m1 = btf_enum(t1);
3393 	m2 = btf_enum(t2);
3394 	for (i = 0; i < vlen; i++) {
3395 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3396 			return false;
3397 		m1++;
3398 		m2++;
3399 	}
3400 	return true;
3401 }
3402 
3403 static inline bool btf_is_enum_fwd(struct btf_type *t)
3404 {
3405 	return btf_is_enum(t) && btf_vlen(t) == 0;
3406 }
3407 
3408 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3409 {
3410 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3411 		return btf_equal_enum(t1, t2);
3412 	/* ignore vlen when comparing */
3413 	return t1->name_off == t2->name_off &&
3414 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3415 	       t1->size == t2->size;
3416 }
3417 
3418 /*
3419  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3420  * as referenced type IDs equivalence is established separately during type
3421  * graph equivalence check algorithm.
3422  */
3423 static long btf_hash_struct(struct btf_type *t)
3424 {
3425 	const struct btf_member *member = btf_members(t);
3426 	__u32 vlen = btf_vlen(t);
3427 	long h = btf_hash_common(t);
3428 	int i;
3429 
3430 	for (i = 0; i < vlen; i++) {
3431 		h = hash_combine(h, member->name_off);
3432 		h = hash_combine(h, member->offset);
3433 		/* no hashing of referenced type ID, it can be unresolved yet */
3434 		member++;
3435 	}
3436 	return h;
3437 }
3438 
3439 /*
3440  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3441  * IDs. This check is performed during type graph equivalence check and
3442  * referenced types equivalence is checked separately.
3443  */
3444 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3445 {
3446 	const struct btf_member *m1, *m2;
3447 	__u16 vlen;
3448 	int i;
3449 
3450 	if (!btf_equal_common(t1, t2))
3451 		return false;
3452 
3453 	vlen = btf_vlen(t1);
3454 	m1 = btf_members(t1);
3455 	m2 = btf_members(t2);
3456 	for (i = 0; i < vlen; i++) {
3457 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3458 			return false;
3459 		m1++;
3460 		m2++;
3461 	}
3462 	return true;
3463 }
3464 
3465 /*
3466  * Calculate type signature hash of ARRAY, including referenced type IDs,
3467  * under assumption that they were already resolved to canonical type IDs and
3468  * are not going to change.
3469  */
3470 static long btf_hash_array(struct btf_type *t)
3471 {
3472 	const struct btf_array *info = btf_array(t);
3473 	long h = btf_hash_common(t);
3474 
3475 	h = hash_combine(h, info->type);
3476 	h = hash_combine(h, info->index_type);
3477 	h = hash_combine(h, info->nelems);
3478 	return h;
3479 }
3480 
3481 /*
3482  * Check exact equality of two ARRAYs, taking into account referenced
3483  * type IDs, under assumption that they were already resolved to canonical
3484  * type IDs and are not going to change.
3485  * This function is called during reference types deduplication to compare
3486  * ARRAY to potential canonical representative.
3487  */
3488 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3489 {
3490 	const struct btf_array *info1, *info2;
3491 
3492 	if (!btf_equal_common(t1, t2))
3493 		return false;
3494 
3495 	info1 = btf_array(t1);
3496 	info2 = btf_array(t2);
3497 	return info1->type == info2->type &&
3498 	       info1->index_type == info2->index_type &&
3499 	       info1->nelems == info2->nelems;
3500 }
3501 
3502 /*
3503  * Check structural compatibility of two ARRAYs, ignoring referenced type
3504  * IDs. This check is performed during type graph equivalence check and
3505  * referenced types equivalence is checked separately.
3506  */
3507 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3508 {
3509 	if (!btf_equal_common(t1, t2))
3510 		return false;
3511 
3512 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3513 }
3514 
3515 /*
3516  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3517  * under assumption that they were already resolved to canonical type IDs and
3518  * are not going to change.
3519  */
3520 static long btf_hash_fnproto(struct btf_type *t)
3521 {
3522 	const struct btf_param *member = btf_params(t);
3523 	__u16 vlen = btf_vlen(t);
3524 	long h = btf_hash_common(t);
3525 	int i;
3526 
3527 	for (i = 0; i < vlen; i++) {
3528 		h = hash_combine(h, member->name_off);
3529 		h = hash_combine(h, member->type);
3530 		member++;
3531 	}
3532 	return h;
3533 }
3534 
3535 /*
3536  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3537  * type IDs, under assumption that they were already resolved to canonical
3538  * type IDs and are not going to change.
3539  * This function is called during reference types deduplication to compare
3540  * FUNC_PROTO to potential canonical representative.
3541  */
3542 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3543 {
3544 	const struct btf_param *m1, *m2;
3545 	__u16 vlen;
3546 	int i;
3547 
3548 	if (!btf_equal_common(t1, t2))
3549 		return false;
3550 
3551 	vlen = btf_vlen(t1);
3552 	m1 = btf_params(t1);
3553 	m2 = btf_params(t2);
3554 	for (i = 0; i < vlen; i++) {
3555 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3556 			return false;
3557 		m1++;
3558 		m2++;
3559 	}
3560 	return true;
3561 }
3562 
3563 /*
3564  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3565  * IDs. This check is performed during type graph equivalence check and
3566  * referenced types equivalence is checked separately.
3567  */
3568 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3569 {
3570 	const struct btf_param *m1, *m2;
3571 	__u16 vlen;
3572 	int i;
3573 
3574 	/* skip return type ID */
3575 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3576 		return false;
3577 
3578 	vlen = btf_vlen(t1);
3579 	m1 = btf_params(t1);
3580 	m2 = btf_params(t2);
3581 	for (i = 0; i < vlen; i++) {
3582 		if (m1->name_off != m2->name_off)
3583 			return false;
3584 		m1++;
3585 		m2++;
3586 	}
3587 	return true;
3588 }
3589 
3590 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3591  * types and initializing the rest of the state (canonical type mapping) for
3592  * the fixed base BTF part.
3593  */
3594 static int btf_dedup_prep(struct btf_dedup *d)
3595 {
3596 	struct btf_type *t;
3597 	int type_id;
3598 	long h;
3599 
3600 	if (!d->btf->base_btf)
3601 		return 0;
3602 
3603 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3604 		t = btf_type_by_id(d->btf, type_id);
3605 
3606 		/* all base BTF types are self-canonical by definition */
3607 		d->map[type_id] = type_id;
3608 
3609 		switch (btf_kind(t)) {
3610 		case BTF_KIND_VAR:
3611 		case BTF_KIND_DATASEC:
3612 			/* VAR and DATASEC are never hash/deduplicated */
3613 			continue;
3614 		case BTF_KIND_CONST:
3615 		case BTF_KIND_VOLATILE:
3616 		case BTF_KIND_RESTRICT:
3617 		case BTF_KIND_PTR:
3618 		case BTF_KIND_FWD:
3619 		case BTF_KIND_TYPEDEF:
3620 		case BTF_KIND_FUNC:
3621 			h = btf_hash_common(t);
3622 			break;
3623 		case BTF_KIND_INT:
3624 			h = btf_hash_int(t);
3625 			break;
3626 		case BTF_KIND_ENUM:
3627 			h = btf_hash_enum(t);
3628 			break;
3629 		case BTF_KIND_STRUCT:
3630 		case BTF_KIND_UNION:
3631 			h = btf_hash_struct(t);
3632 			break;
3633 		case BTF_KIND_ARRAY:
3634 			h = btf_hash_array(t);
3635 			break;
3636 		case BTF_KIND_FUNC_PROTO:
3637 			h = btf_hash_fnproto(t);
3638 			break;
3639 		default:
3640 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3641 			return -EINVAL;
3642 		}
3643 		if (btf_dedup_table_add(d, h, type_id))
3644 			return -ENOMEM;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Deduplicate primitive types, that can't reference other types, by calculating
3652  * their type signature hash and comparing them with any possible canonical
3653  * candidate. If no canonical candidate matches, type itself is marked as
3654  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3655  */
3656 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3657 {
3658 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3659 	struct hashmap_entry *hash_entry;
3660 	struct btf_type *cand;
3661 	/* if we don't find equivalent type, then we are canonical */
3662 	__u32 new_id = type_id;
3663 	__u32 cand_id;
3664 	long h;
3665 
3666 	switch (btf_kind(t)) {
3667 	case BTF_KIND_CONST:
3668 	case BTF_KIND_VOLATILE:
3669 	case BTF_KIND_RESTRICT:
3670 	case BTF_KIND_PTR:
3671 	case BTF_KIND_TYPEDEF:
3672 	case BTF_KIND_ARRAY:
3673 	case BTF_KIND_STRUCT:
3674 	case BTF_KIND_UNION:
3675 	case BTF_KIND_FUNC:
3676 	case BTF_KIND_FUNC_PROTO:
3677 	case BTF_KIND_VAR:
3678 	case BTF_KIND_DATASEC:
3679 		return 0;
3680 
3681 	case BTF_KIND_INT:
3682 		h = btf_hash_int(t);
3683 		for_each_dedup_cand(d, hash_entry, h) {
3684 			cand_id = (__u32)(long)hash_entry->value;
3685 			cand = btf_type_by_id(d->btf, cand_id);
3686 			if (btf_equal_int(t, cand)) {
3687 				new_id = cand_id;
3688 				break;
3689 			}
3690 		}
3691 		break;
3692 
3693 	case BTF_KIND_ENUM:
3694 		h = btf_hash_enum(t);
3695 		for_each_dedup_cand(d, hash_entry, h) {
3696 			cand_id = (__u32)(long)hash_entry->value;
3697 			cand = btf_type_by_id(d->btf, cand_id);
3698 			if (btf_equal_enum(t, cand)) {
3699 				new_id = cand_id;
3700 				break;
3701 			}
3702 			if (d->opts.dont_resolve_fwds)
3703 				continue;
3704 			if (btf_compat_enum(t, cand)) {
3705 				if (btf_is_enum_fwd(t)) {
3706 					/* resolve fwd to full enum */
3707 					new_id = cand_id;
3708 					break;
3709 				}
3710 				/* resolve canonical enum fwd to full enum */
3711 				d->map[cand_id] = type_id;
3712 			}
3713 		}
3714 		break;
3715 
3716 	case BTF_KIND_FWD:
3717 		h = btf_hash_common(t);
3718 		for_each_dedup_cand(d, hash_entry, h) {
3719 			cand_id = (__u32)(long)hash_entry->value;
3720 			cand = btf_type_by_id(d->btf, cand_id);
3721 			if (btf_equal_common(t, cand)) {
3722 				new_id = cand_id;
3723 				break;
3724 			}
3725 		}
3726 		break;
3727 
3728 	default:
3729 		return -EINVAL;
3730 	}
3731 
3732 	d->map[type_id] = new_id;
3733 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3734 		return -ENOMEM;
3735 
3736 	return 0;
3737 }
3738 
3739 static int btf_dedup_prim_types(struct btf_dedup *d)
3740 {
3741 	int i, err;
3742 
3743 	for (i = 0; i < d->btf->nr_types; i++) {
3744 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3745 		if (err)
3746 			return err;
3747 	}
3748 	return 0;
3749 }
3750 
3751 /*
3752  * Check whether type is already mapped into canonical one (could be to itself).
3753  */
3754 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3755 {
3756 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3757 }
3758 
3759 /*
3760  * Resolve type ID into its canonical type ID, if any; otherwise return original
3761  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3762  * STRUCT/UNION link and resolve it into canonical type ID as well.
3763  */
3764 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3765 {
3766 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3767 		type_id = d->map[type_id];
3768 	return type_id;
3769 }
3770 
3771 /*
3772  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3773  * type ID.
3774  */
3775 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3776 {
3777 	__u32 orig_type_id = type_id;
3778 
3779 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3780 		return type_id;
3781 
3782 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3783 		type_id = d->map[type_id];
3784 
3785 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3786 		return type_id;
3787 
3788 	return orig_type_id;
3789 }
3790 
3791 
3792 static inline __u16 btf_fwd_kind(struct btf_type *t)
3793 {
3794 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3795 }
3796 
3797 /* Check if given two types are identical ARRAY definitions */
3798 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3799 {
3800 	struct btf_type *t1, *t2;
3801 
3802 	t1 = btf_type_by_id(d->btf, id1);
3803 	t2 = btf_type_by_id(d->btf, id2);
3804 	if (!btf_is_array(t1) || !btf_is_array(t2))
3805 		return 0;
3806 
3807 	return btf_equal_array(t1, t2);
3808 }
3809 
3810 /*
3811  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3812  * call it "candidate graph" in this description for brevity) to a type graph
3813  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3814  * here, though keep in mind that not all types in canonical graph are
3815  * necessarily canonical representatives themselves, some of them might be
3816  * duplicates or its uniqueness might not have been established yet).
3817  * Returns:
3818  *  - >0, if type graphs are equivalent;
3819  *  -  0, if not equivalent;
3820  *  - <0, on error.
3821  *
3822  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3823  * equivalence of BTF types at each step. If at any point BTF types in candidate
3824  * and canonical graphs are not compatible structurally, whole graphs are
3825  * incompatible. If types are structurally equivalent (i.e., all information
3826  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3827  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3828  * If a type references other types, then those referenced types are checked
3829  * for equivalence recursively.
3830  *
3831  * During DFS traversal, if we find that for current `canon_id` type we
3832  * already have some mapping in hypothetical map, we check for two possible
3833  * situations:
3834  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3835  *     happen when type graphs have cycles. In this case we assume those two
3836  *     types are equivalent.
3837  *   - `canon_id` is mapped to different type. This is contradiction in our
3838  *     hypothetical mapping, because same graph in canonical graph corresponds
3839  *     to two different types in candidate graph, which for equivalent type
3840  *     graphs shouldn't happen. This condition terminates equivalence check
3841  *     with negative result.
3842  *
3843  * If type graphs traversal exhausts types to check and find no contradiction,
3844  * then type graphs are equivalent.
3845  *
3846  * When checking types for equivalence, there is one special case: FWD types.
3847  * If FWD type resolution is allowed and one of the types (either from canonical
3848  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3849  * flag) and their names match, hypothetical mapping is updated to point from
3850  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3851  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3852  *
3853  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3854  * if there are two exactly named (or anonymous) structs/unions that are
3855  * compatible structurally, one of which has FWD field, while other is concrete
3856  * STRUCT/UNION, but according to C sources they are different structs/unions
3857  * that are referencing different types with the same name. This is extremely
3858  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3859  * this logic is causing problems.
3860  *
3861  * Doing FWD resolution means that both candidate and/or canonical graphs can
3862  * consists of portions of the graph that come from multiple compilation units.
3863  * This is due to the fact that types within single compilation unit are always
3864  * deduplicated and FWDs are already resolved, if referenced struct/union
3865  * definiton is available. So, if we had unresolved FWD and found corresponding
3866  * STRUCT/UNION, they will be from different compilation units. This
3867  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3868  * type graph will likely have at least two different BTF types that describe
3869  * same type (e.g., most probably there will be two different BTF types for the
3870  * same 'int' primitive type) and could even have "overlapping" parts of type
3871  * graph that describe same subset of types.
3872  *
3873  * This in turn means that our assumption that each type in canonical graph
3874  * must correspond to exactly one type in candidate graph might not hold
3875  * anymore and will make it harder to detect contradictions using hypothetical
3876  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3877  * resolution only in canonical graph. FWDs in candidate graphs are never
3878  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3879  * that can occur:
3880  *   - Both types in canonical and candidate graphs are FWDs. If they are
3881  *     structurally equivalent, then they can either be both resolved to the
3882  *     same STRUCT/UNION or not resolved at all. In both cases they are
3883  *     equivalent and there is no need to resolve FWD on candidate side.
3884  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3885  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3886  *   - Type in canonical graph is FWD, while type in candidate is concrete
3887  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3888  *     unit, so there is exactly one BTF type for each unique C type. After
3889  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3890  *     in canonical graph mapping to single BTF type in candidate graph, but
3891  *     because hypothetical mapping maps from canonical to candidate types, it's
3892  *     alright, and we still maintain the property of having single `canon_id`
3893  *     mapping to single `cand_id` (there could be two different `canon_id`
3894  *     mapped to the same `cand_id`, but it's not contradictory).
3895  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3896  *     graph is FWD. In this case we are just going to check compatibility of
3897  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3898  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3899  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3900  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3901  *     canonical graph.
3902  */
3903 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3904 			      __u32 canon_id)
3905 {
3906 	struct btf_type *cand_type;
3907 	struct btf_type *canon_type;
3908 	__u32 hypot_type_id;
3909 	__u16 cand_kind;
3910 	__u16 canon_kind;
3911 	int i, eq;
3912 
3913 	/* if both resolve to the same canonical, they must be equivalent */
3914 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3915 		return 1;
3916 
3917 	canon_id = resolve_fwd_id(d, canon_id);
3918 
3919 	hypot_type_id = d->hypot_map[canon_id];
3920 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3921 		/* In some cases compiler will generate different DWARF types
3922 		 * for *identical* array type definitions and use them for
3923 		 * different fields within the *same* struct. This breaks type
3924 		 * equivalence check, which makes an assumption that candidate
3925 		 * types sub-graph has a consistent and deduped-by-compiler
3926 		 * types within a single CU. So work around that by explicitly
3927 		 * allowing identical array types here.
3928 		 */
3929 		return hypot_type_id == cand_id ||
3930 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3931 	}
3932 
3933 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3934 		return -ENOMEM;
3935 
3936 	cand_type = btf_type_by_id(d->btf, cand_id);
3937 	canon_type = btf_type_by_id(d->btf, canon_id);
3938 	cand_kind = btf_kind(cand_type);
3939 	canon_kind = btf_kind(canon_type);
3940 
3941 	if (cand_type->name_off != canon_type->name_off)
3942 		return 0;
3943 
3944 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3945 	if (!d->opts.dont_resolve_fwds
3946 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3947 	    && cand_kind != canon_kind) {
3948 		__u16 real_kind;
3949 		__u16 fwd_kind;
3950 
3951 		if (cand_kind == BTF_KIND_FWD) {
3952 			real_kind = canon_kind;
3953 			fwd_kind = btf_fwd_kind(cand_type);
3954 		} else {
3955 			real_kind = cand_kind;
3956 			fwd_kind = btf_fwd_kind(canon_type);
3957 			/* we'd need to resolve base FWD to STRUCT/UNION */
3958 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3959 				d->hypot_adjust_canon = true;
3960 		}
3961 		return fwd_kind == real_kind;
3962 	}
3963 
3964 	if (cand_kind != canon_kind)
3965 		return 0;
3966 
3967 	switch (cand_kind) {
3968 	case BTF_KIND_INT:
3969 		return btf_equal_int(cand_type, canon_type);
3970 
3971 	case BTF_KIND_ENUM:
3972 		if (d->opts.dont_resolve_fwds)
3973 			return btf_equal_enum(cand_type, canon_type);
3974 		else
3975 			return btf_compat_enum(cand_type, canon_type);
3976 
3977 	case BTF_KIND_FWD:
3978 		return btf_equal_common(cand_type, canon_type);
3979 
3980 	case BTF_KIND_CONST:
3981 	case BTF_KIND_VOLATILE:
3982 	case BTF_KIND_RESTRICT:
3983 	case BTF_KIND_PTR:
3984 	case BTF_KIND_TYPEDEF:
3985 	case BTF_KIND_FUNC:
3986 		if (cand_type->info != canon_type->info)
3987 			return 0;
3988 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3989 
3990 	case BTF_KIND_ARRAY: {
3991 		const struct btf_array *cand_arr, *canon_arr;
3992 
3993 		if (!btf_compat_array(cand_type, canon_type))
3994 			return 0;
3995 		cand_arr = btf_array(cand_type);
3996 		canon_arr = btf_array(canon_type);
3997 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3998 		if (eq <= 0)
3999 			return eq;
4000 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4001 	}
4002 
4003 	case BTF_KIND_STRUCT:
4004 	case BTF_KIND_UNION: {
4005 		const struct btf_member *cand_m, *canon_m;
4006 		__u16 vlen;
4007 
4008 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4009 			return 0;
4010 		vlen = btf_vlen(cand_type);
4011 		cand_m = btf_members(cand_type);
4012 		canon_m = btf_members(canon_type);
4013 		for (i = 0; i < vlen; i++) {
4014 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4015 			if (eq <= 0)
4016 				return eq;
4017 			cand_m++;
4018 			canon_m++;
4019 		}
4020 
4021 		return 1;
4022 	}
4023 
4024 	case BTF_KIND_FUNC_PROTO: {
4025 		const struct btf_param *cand_p, *canon_p;
4026 		__u16 vlen;
4027 
4028 		if (!btf_compat_fnproto(cand_type, canon_type))
4029 			return 0;
4030 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4031 		if (eq <= 0)
4032 			return eq;
4033 		vlen = btf_vlen(cand_type);
4034 		cand_p = btf_params(cand_type);
4035 		canon_p = btf_params(canon_type);
4036 		for (i = 0; i < vlen; i++) {
4037 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4038 			if (eq <= 0)
4039 				return eq;
4040 			cand_p++;
4041 			canon_p++;
4042 		}
4043 		return 1;
4044 	}
4045 
4046 	default:
4047 		return -EINVAL;
4048 	}
4049 	return 0;
4050 }
4051 
4052 /*
4053  * Use hypothetical mapping, produced by successful type graph equivalence
4054  * check, to augment existing struct/union canonical mapping, where possible.
4055  *
4056  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4057  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4058  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4059  * we are recording the mapping anyway. As opposed to carefulness required
4060  * for struct/union correspondence mapping (described below), for FWD resolution
4061  * it's not important, as by the time that FWD type (reference type) will be
4062  * deduplicated all structs/unions will be deduped already anyway.
4063  *
4064  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4065  * not required for correctness. It needs to be done carefully to ensure that
4066  * struct/union from candidate's type graph is not mapped into corresponding
4067  * struct/union from canonical type graph that itself hasn't been resolved into
4068  * canonical representative. The only guarantee we have is that canonical
4069  * struct/union was determined as canonical and that won't change. But any
4070  * types referenced through that struct/union fields could have been not yet
4071  * resolved, so in case like that it's too early to establish any kind of
4072  * correspondence between structs/unions.
4073  *
4074  * No canonical correspondence is derived for primitive types (they are already
4075  * deduplicated completely already anyway) or reference types (they rely on
4076  * stability of struct/union canonical relationship for equivalence checks).
4077  */
4078 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4079 {
4080 	__u32 canon_type_id, targ_type_id;
4081 	__u16 t_kind, c_kind;
4082 	__u32 t_id, c_id;
4083 	int i;
4084 
4085 	for (i = 0; i < d->hypot_cnt; i++) {
4086 		canon_type_id = d->hypot_list[i];
4087 		targ_type_id = d->hypot_map[canon_type_id];
4088 		t_id = resolve_type_id(d, targ_type_id);
4089 		c_id = resolve_type_id(d, canon_type_id);
4090 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4091 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4092 		/*
4093 		 * Resolve FWD into STRUCT/UNION.
4094 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4095 		 * mapped to canonical representative (as opposed to
4096 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4097 		 * eventually that struct is going to be mapped and all resolved
4098 		 * FWDs will automatically resolve to correct canonical
4099 		 * representative. This will happen before ref type deduping,
4100 		 * which critically depends on stability of these mapping. This
4101 		 * stability is not a requirement for STRUCT/UNION equivalence
4102 		 * checks, though.
4103 		 */
4104 
4105 		/* if it's the split BTF case, we still need to point base FWD
4106 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4107 		 * will be resolved against base FWD. If we don't point base
4108 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4109 		 * FWDs in split BTF won't be correctly resolved to a proper
4110 		 * STRUCT/UNION.
4111 		 */
4112 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4113 			d->map[c_id] = t_id;
4114 
4115 		/* if graph equivalence determined that we'd need to adjust
4116 		 * base canonical types, then we need to only point base FWDs
4117 		 * to STRUCTs/UNIONs and do no more modifications. For all
4118 		 * other purposes the type graphs were not equivalent.
4119 		 */
4120 		if (d->hypot_adjust_canon)
4121 			continue;
4122 
4123 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4124 			d->map[t_id] = c_id;
4125 
4126 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4127 		    c_kind != BTF_KIND_FWD &&
4128 		    is_type_mapped(d, c_id) &&
4129 		    !is_type_mapped(d, t_id)) {
4130 			/*
4131 			 * as a perf optimization, we can map struct/union
4132 			 * that's part of type graph we just verified for
4133 			 * equivalence. We can do that for struct/union that has
4134 			 * canonical representative only, though.
4135 			 */
4136 			d->map[t_id] = c_id;
4137 		}
4138 	}
4139 }
4140 
4141 /*
4142  * Deduplicate struct/union types.
4143  *
4144  * For each struct/union type its type signature hash is calculated, taking
4145  * into account type's name, size, number, order and names of fields, but
4146  * ignoring type ID's referenced from fields, because they might not be deduped
4147  * completely until after reference types deduplication phase. This type hash
4148  * is used to iterate over all potential canonical types, sharing same hash.
4149  * For each canonical candidate we check whether type graphs that they form
4150  * (through referenced types in fields and so on) are equivalent using algorithm
4151  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4152  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4153  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4154  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4155  * potentially map other structs/unions to their canonical representatives,
4156  * if such relationship hasn't yet been established. This speeds up algorithm
4157  * by eliminating some of the duplicate work.
4158  *
4159  * If no matching canonical representative was found, struct/union is marked
4160  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4161  * for further look ups.
4162  */
4163 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4164 {
4165 	struct btf_type *cand_type, *t;
4166 	struct hashmap_entry *hash_entry;
4167 	/* if we don't find equivalent type, then we are canonical */
4168 	__u32 new_id = type_id;
4169 	__u16 kind;
4170 	long h;
4171 
4172 	/* already deduped or is in process of deduping (loop detected) */
4173 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4174 		return 0;
4175 
4176 	t = btf_type_by_id(d->btf, type_id);
4177 	kind = btf_kind(t);
4178 
4179 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4180 		return 0;
4181 
4182 	h = btf_hash_struct(t);
4183 	for_each_dedup_cand(d, hash_entry, h) {
4184 		__u32 cand_id = (__u32)(long)hash_entry->value;
4185 		int eq;
4186 
4187 		/*
4188 		 * Even though btf_dedup_is_equiv() checks for
4189 		 * btf_shallow_equal_struct() internally when checking two
4190 		 * structs (unions) for equivalence, we need to guard here
4191 		 * from picking matching FWD type as a dedup candidate.
4192 		 * This can happen due to hash collision. In such case just
4193 		 * relying on btf_dedup_is_equiv() would lead to potentially
4194 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4195 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4196 		 */
4197 		cand_type = btf_type_by_id(d->btf, cand_id);
4198 		if (!btf_shallow_equal_struct(t, cand_type))
4199 			continue;
4200 
4201 		btf_dedup_clear_hypot_map(d);
4202 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4203 		if (eq < 0)
4204 			return eq;
4205 		if (!eq)
4206 			continue;
4207 		btf_dedup_merge_hypot_map(d);
4208 		if (d->hypot_adjust_canon) /* not really equivalent */
4209 			continue;
4210 		new_id = cand_id;
4211 		break;
4212 	}
4213 
4214 	d->map[type_id] = new_id;
4215 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4216 		return -ENOMEM;
4217 
4218 	return 0;
4219 }
4220 
4221 static int btf_dedup_struct_types(struct btf_dedup *d)
4222 {
4223 	int i, err;
4224 
4225 	for (i = 0; i < d->btf->nr_types; i++) {
4226 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4227 		if (err)
4228 			return err;
4229 	}
4230 	return 0;
4231 }
4232 
4233 /*
4234  * Deduplicate reference type.
4235  *
4236  * Once all primitive and struct/union types got deduplicated, we can easily
4237  * deduplicate all other (reference) BTF types. This is done in two steps:
4238  *
4239  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4240  * resolution can be done either immediately for primitive or struct/union types
4241  * (because they were deduped in previous two phases) or recursively for
4242  * reference types. Recursion will always terminate at either primitive or
4243  * struct/union type, at which point we can "unwind" chain of reference types
4244  * one by one. There is no danger of encountering cycles because in C type
4245  * system the only way to form type cycle is through struct/union, so any chain
4246  * of reference types, even those taking part in a type cycle, will inevitably
4247  * reach struct/union at some point.
4248  *
4249  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4250  * becomes "stable", in the sense that no further deduplication will cause
4251  * any changes to it. With that, it's now possible to calculate type's signature
4252  * hash (this time taking into account referenced type IDs) and loop over all
4253  * potential canonical representatives. If no match was found, current type
4254  * will become canonical representative of itself and will be added into
4255  * btf_dedup->dedup_table as another possible canonical representative.
4256  */
4257 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4258 {
4259 	struct hashmap_entry *hash_entry;
4260 	__u32 new_id = type_id, cand_id;
4261 	struct btf_type *t, *cand;
4262 	/* if we don't find equivalent type, then we are representative type */
4263 	int ref_type_id;
4264 	long h;
4265 
4266 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4267 		return -ELOOP;
4268 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4269 		return resolve_type_id(d, type_id);
4270 
4271 	t = btf_type_by_id(d->btf, type_id);
4272 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4273 
4274 	switch (btf_kind(t)) {
4275 	case BTF_KIND_CONST:
4276 	case BTF_KIND_VOLATILE:
4277 	case BTF_KIND_RESTRICT:
4278 	case BTF_KIND_PTR:
4279 	case BTF_KIND_TYPEDEF:
4280 	case BTF_KIND_FUNC:
4281 		ref_type_id = btf_dedup_ref_type(d, t->type);
4282 		if (ref_type_id < 0)
4283 			return ref_type_id;
4284 		t->type = ref_type_id;
4285 
4286 		h = btf_hash_common(t);
4287 		for_each_dedup_cand(d, hash_entry, h) {
4288 			cand_id = (__u32)(long)hash_entry->value;
4289 			cand = btf_type_by_id(d->btf, cand_id);
4290 			if (btf_equal_common(t, cand)) {
4291 				new_id = cand_id;
4292 				break;
4293 			}
4294 		}
4295 		break;
4296 
4297 	case BTF_KIND_ARRAY: {
4298 		struct btf_array *info = btf_array(t);
4299 
4300 		ref_type_id = btf_dedup_ref_type(d, info->type);
4301 		if (ref_type_id < 0)
4302 			return ref_type_id;
4303 		info->type = ref_type_id;
4304 
4305 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4306 		if (ref_type_id < 0)
4307 			return ref_type_id;
4308 		info->index_type = ref_type_id;
4309 
4310 		h = btf_hash_array(t);
4311 		for_each_dedup_cand(d, hash_entry, h) {
4312 			cand_id = (__u32)(long)hash_entry->value;
4313 			cand = btf_type_by_id(d->btf, cand_id);
4314 			if (btf_equal_array(t, cand)) {
4315 				new_id = cand_id;
4316 				break;
4317 			}
4318 		}
4319 		break;
4320 	}
4321 
4322 	case BTF_KIND_FUNC_PROTO: {
4323 		struct btf_param *param;
4324 		__u16 vlen;
4325 		int i;
4326 
4327 		ref_type_id = btf_dedup_ref_type(d, t->type);
4328 		if (ref_type_id < 0)
4329 			return ref_type_id;
4330 		t->type = ref_type_id;
4331 
4332 		vlen = btf_vlen(t);
4333 		param = btf_params(t);
4334 		for (i = 0; i < vlen; i++) {
4335 			ref_type_id = btf_dedup_ref_type(d, param->type);
4336 			if (ref_type_id < 0)
4337 				return ref_type_id;
4338 			param->type = ref_type_id;
4339 			param++;
4340 		}
4341 
4342 		h = btf_hash_fnproto(t);
4343 		for_each_dedup_cand(d, hash_entry, h) {
4344 			cand_id = (__u32)(long)hash_entry->value;
4345 			cand = btf_type_by_id(d->btf, cand_id);
4346 			if (btf_equal_fnproto(t, cand)) {
4347 				new_id = cand_id;
4348 				break;
4349 			}
4350 		}
4351 		break;
4352 	}
4353 
4354 	default:
4355 		return -EINVAL;
4356 	}
4357 
4358 	d->map[type_id] = new_id;
4359 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4360 		return -ENOMEM;
4361 
4362 	return new_id;
4363 }
4364 
4365 static int btf_dedup_ref_types(struct btf_dedup *d)
4366 {
4367 	int i, err;
4368 
4369 	for (i = 0; i < d->btf->nr_types; i++) {
4370 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4371 		if (err < 0)
4372 			return err;
4373 	}
4374 	/* we won't need d->dedup_table anymore */
4375 	hashmap__free(d->dedup_table);
4376 	d->dedup_table = NULL;
4377 	return 0;
4378 }
4379 
4380 /*
4381  * Compact types.
4382  *
4383  * After we established for each type its corresponding canonical representative
4384  * type, we now can eliminate types that are not canonical and leave only
4385  * canonical ones layed out sequentially in memory by copying them over
4386  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4387  * a map from original type ID to a new compacted type ID, which will be used
4388  * during next phase to "fix up" type IDs, referenced from struct/union and
4389  * reference types.
4390  */
4391 static int btf_dedup_compact_types(struct btf_dedup *d)
4392 {
4393 	__u32 *new_offs;
4394 	__u32 next_type_id = d->btf->start_id;
4395 	const struct btf_type *t;
4396 	void *p;
4397 	int i, id, len;
4398 
4399 	/* we are going to reuse hypot_map to store compaction remapping */
4400 	d->hypot_map[0] = 0;
4401 	/* base BTF types are not renumbered */
4402 	for (id = 1; id < d->btf->start_id; id++)
4403 		d->hypot_map[id] = id;
4404 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4405 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4406 
4407 	p = d->btf->types_data;
4408 
4409 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4410 		if (d->map[id] != id)
4411 			continue;
4412 
4413 		t = btf__type_by_id(d->btf, id);
4414 		len = btf_type_size(t);
4415 		if (len < 0)
4416 			return len;
4417 
4418 		memmove(p, t, len);
4419 		d->hypot_map[id] = next_type_id;
4420 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4421 		p += len;
4422 		next_type_id++;
4423 	}
4424 
4425 	/* shrink struct btf's internal types index and update btf_header */
4426 	d->btf->nr_types = next_type_id - d->btf->start_id;
4427 	d->btf->type_offs_cap = d->btf->nr_types;
4428 	d->btf->hdr->type_len = p - d->btf->types_data;
4429 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4430 				       sizeof(*new_offs));
4431 	if (d->btf->type_offs_cap && !new_offs)
4432 		return -ENOMEM;
4433 	d->btf->type_offs = new_offs;
4434 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4435 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4436 	return 0;
4437 }
4438 
4439 /*
4440  * Figure out final (deduplicated and compacted) type ID for provided original
4441  * `type_id` by first resolving it into corresponding canonical type ID and
4442  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4443  * which is populated during compaction phase.
4444  */
4445 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4446 {
4447 	__u32 resolved_type_id, new_type_id;
4448 
4449 	resolved_type_id = resolve_type_id(d, type_id);
4450 	new_type_id = d->hypot_map[resolved_type_id];
4451 	if (new_type_id > BTF_MAX_NR_TYPES)
4452 		return -EINVAL;
4453 	return new_type_id;
4454 }
4455 
4456 /*
4457  * Remap referenced type IDs into deduped type IDs.
4458  *
4459  * After BTF types are deduplicated and compacted, their final type IDs may
4460  * differ from original ones. The map from original to a corresponding
4461  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4462  * compaction phase. During remapping phase we are rewriting all type IDs
4463  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4464  * their final deduped type IDs.
4465  */
4466 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4467 {
4468 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4469 	int i, r;
4470 
4471 	switch (btf_kind(t)) {
4472 	case BTF_KIND_INT:
4473 	case BTF_KIND_ENUM:
4474 		break;
4475 
4476 	case BTF_KIND_FWD:
4477 	case BTF_KIND_CONST:
4478 	case BTF_KIND_VOLATILE:
4479 	case BTF_KIND_RESTRICT:
4480 	case BTF_KIND_PTR:
4481 	case BTF_KIND_TYPEDEF:
4482 	case BTF_KIND_FUNC:
4483 	case BTF_KIND_VAR:
4484 		r = btf_dedup_remap_type_id(d, t->type);
4485 		if (r < 0)
4486 			return r;
4487 		t->type = r;
4488 		break;
4489 
4490 	case BTF_KIND_ARRAY: {
4491 		struct btf_array *arr_info = btf_array(t);
4492 
4493 		r = btf_dedup_remap_type_id(d, arr_info->type);
4494 		if (r < 0)
4495 			return r;
4496 		arr_info->type = r;
4497 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4498 		if (r < 0)
4499 			return r;
4500 		arr_info->index_type = r;
4501 		break;
4502 	}
4503 
4504 	case BTF_KIND_STRUCT:
4505 	case BTF_KIND_UNION: {
4506 		struct btf_member *member = btf_members(t);
4507 		__u16 vlen = btf_vlen(t);
4508 
4509 		for (i = 0; i < vlen; i++) {
4510 			r = btf_dedup_remap_type_id(d, member->type);
4511 			if (r < 0)
4512 				return r;
4513 			member->type = r;
4514 			member++;
4515 		}
4516 		break;
4517 	}
4518 
4519 	case BTF_KIND_FUNC_PROTO: {
4520 		struct btf_param *param = btf_params(t);
4521 		__u16 vlen = btf_vlen(t);
4522 
4523 		r = btf_dedup_remap_type_id(d, t->type);
4524 		if (r < 0)
4525 			return r;
4526 		t->type = r;
4527 
4528 		for (i = 0; i < vlen; i++) {
4529 			r = btf_dedup_remap_type_id(d, param->type);
4530 			if (r < 0)
4531 				return r;
4532 			param->type = r;
4533 			param++;
4534 		}
4535 		break;
4536 	}
4537 
4538 	case BTF_KIND_DATASEC: {
4539 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4540 		__u16 vlen = btf_vlen(t);
4541 
4542 		for (i = 0; i < vlen; i++) {
4543 			r = btf_dedup_remap_type_id(d, var->type);
4544 			if (r < 0)
4545 				return r;
4546 			var->type = r;
4547 			var++;
4548 		}
4549 		break;
4550 	}
4551 
4552 	default:
4553 		return -EINVAL;
4554 	}
4555 
4556 	return 0;
4557 }
4558 
4559 static int btf_dedup_remap_types(struct btf_dedup *d)
4560 {
4561 	int i, r;
4562 
4563 	for (i = 0; i < d->btf->nr_types; i++) {
4564 		r = btf_dedup_remap_type(d, d->btf->start_id + i);
4565 		if (r < 0)
4566 			return r;
4567 	}
4568 	return 0;
4569 }
4570 
4571 /*
4572  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4573  * data out of it to use for target BTF.
4574  */
4575 struct btf *libbpf_find_kernel_btf(void)
4576 {
4577 	struct {
4578 		const char *path_fmt;
4579 		bool raw_btf;
4580 	} locations[] = {
4581 		/* try canonical vmlinux BTF through sysfs first */
4582 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4583 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4584 		{ "/boot/vmlinux-%1$s" },
4585 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4586 		{ "/lib/modules/%1$s/build/vmlinux" },
4587 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4588 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4589 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4590 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4591 	};
4592 	char path[PATH_MAX + 1];
4593 	struct utsname buf;
4594 	struct btf *btf;
4595 	int i;
4596 
4597 	uname(&buf);
4598 
4599 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4600 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4601 
4602 		if (access(path, R_OK))
4603 			continue;
4604 
4605 		if (locations[i].raw_btf)
4606 			btf = btf__parse_raw(path);
4607 		else
4608 			btf = btf__parse_elf(path, NULL);
4609 
4610 		pr_debug("loading kernel BTF '%s': %ld\n",
4611 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4612 		if (IS_ERR(btf))
4613 			continue;
4614 
4615 		return btf;
4616 	}
4617 
4618 	pr_warn("failed to find valid kernel BTF\n");
4619 	return ERR_PTR(-ESRCH);
4620 }
4621