1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 __u32 btf__type_cnt(const struct btf *btf) 452 { 453 return btf->start_id + btf->nr_types; 454 } 455 456 const struct btf *btf__base_btf(const struct btf *btf) 457 { 458 return btf->base_btf; 459 } 460 461 /* internal helper returning non-const pointer to a type */ 462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 463 { 464 if (type_id == 0) 465 return &btf_void; 466 if (type_id < btf->start_id) 467 return btf_type_by_id(btf->base_btf, type_id); 468 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 469 } 470 471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 472 { 473 if (type_id >= btf->start_id + btf->nr_types) 474 return errno = EINVAL, NULL; 475 return btf_type_by_id((struct btf *)btf, type_id); 476 } 477 478 static int determine_ptr_size(const struct btf *btf) 479 { 480 static const char * const long_aliases[] = { 481 "long", 482 "long int", 483 "int long", 484 "unsigned long", 485 "long unsigned", 486 "unsigned long int", 487 "unsigned int long", 488 "long unsigned int", 489 "long int unsigned", 490 "int unsigned long", 491 "int long unsigned", 492 }; 493 const struct btf_type *t; 494 const char *name; 495 int i, j, n; 496 497 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 498 return btf->base_btf->ptr_sz; 499 500 n = btf__type_cnt(btf); 501 for (i = 1; i < n; i++) { 502 t = btf__type_by_id(btf, i); 503 if (!btf_is_int(t)) 504 continue; 505 506 if (t->size != 4 && t->size != 8) 507 continue; 508 509 name = btf__name_by_offset(btf, t->name_off); 510 if (!name) 511 continue; 512 513 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 514 if (strcmp(name, long_aliases[j]) == 0) 515 return t->size; 516 } 517 } 518 519 return -1; 520 } 521 522 static size_t btf_ptr_sz(const struct btf *btf) 523 { 524 if (!btf->ptr_sz) 525 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 526 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 527 } 528 529 /* Return pointer size this BTF instance assumes. The size is heuristically 530 * determined by looking for 'long' or 'unsigned long' integer type and 531 * recording its size in bytes. If BTF type information doesn't have any such 532 * type, this function returns 0. In the latter case, native architecture's 533 * pointer size is assumed, so will be either 4 or 8, depending on 534 * architecture that libbpf was compiled for. It's possible to override 535 * guessed value by using btf__set_pointer_size() API. 536 */ 537 size_t btf__pointer_size(const struct btf *btf) 538 { 539 if (!btf->ptr_sz) 540 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 541 542 if (btf->ptr_sz < 0) 543 /* not enough BTF type info to guess */ 544 return 0; 545 546 return btf->ptr_sz; 547 } 548 549 /* Override or set pointer size in bytes. Only values of 4 and 8 are 550 * supported. 551 */ 552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 553 { 554 if (ptr_sz != 4 && ptr_sz != 8) 555 return libbpf_err(-EINVAL); 556 btf->ptr_sz = ptr_sz; 557 return 0; 558 } 559 560 static bool is_host_big_endian(void) 561 { 562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 563 return false; 564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 565 return true; 566 #else 567 # error "Unrecognized __BYTE_ORDER__" 568 #endif 569 } 570 571 enum btf_endianness btf__endianness(const struct btf *btf) 572 { 573 if (is_host_big_endian()) 574 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 575 else 576 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 577 } 578 579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 580 { 581 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 582 return libbpf_err(-EINVAL); 583 584 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 585 if (!btf->swapped_endian) { 586 free(btf->raw_data_swapped); 587 btf->raw_data_swapped = NULL; 588 } 589 return 0; 590 } 591 592 static bool btf_type_is_void(const struct btf_type *t) 593 { 594 return t == &btf_void || btf_is_fwd(t); 595 } 596 597 static bool btf_type_is_void_or_null(const struct btf_type *t) 598 { 599 return !t || btf_type_is_void(t); 600 } 601 602 #define MAX_RESOLVE_DEPTH 32 603 604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 605 { 606 const struct btf_array *array; 607 const struct btf_type *t; 608 __u32 nelems = 1; 609 __s64 size = -1; 610 int i; 611 612 t = btf__type_by_id(btf, type_id); 613 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 614 switch (btf_kind(t)) { 615 case BTF_KIND_INT: 616 case BTF_KIND_STRUCT: 617 case BTF_KIND_UNION: 618 case BTF_KIND_ENUM: 619 case BTF_KIND_ENUM64: 620 case BTF_KIND_DATASEC: 621 case BTF_KIND_FLOAT: 622 size = t->size; 623 goto done; 624 case BTF_KIND_PTR: 625 size = btf_ptr_sz(btf); 626 goto done; 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 case BTF_KIND_VAR: 632 case BTF_KIND_DECL_TAG: 633 case BTF_KIND_TYPE_TAG: 634 type_id = t->type; 635 break; 636 case BTF_KIND_ARRAY: 637 array = btf_array(t); 638 if (nelems && array->nelems > UINT32_MAX / nelems) 639 return libbpf_err(-E2BIG); 640 nelems *= array->nelems; 641 type_id = array->type; 642 break; 643 default: 644 return libbpf_err(-EINVAL); 645 } 646 647 t = btf__type_by_id(btf, type_id); 648 } 649 650 done: 651 if (size < 0) 652 return libbpf_err(-EINVAL); 653 if (nelems && size > UINT32_MAX / nelems) 654 return libbpf_err(-E2BIG); 655 656 return nelems * size; 657 } 658 659 int btf__align_of(const struct btf *btf, __u32 id) 660 { 661 const struct btf_type *t = btf__type_by_id(btf, id); 662 __u16 kind = btf_kind(t); 663 664 switch (kind) { 665 case BTF_KIND_INT: 666 case BTF_KIND_ENUM: 667 case BTF_KIND_ENUM64: 668 case BTF_KIND_FLOAT: 669 return min(btf_ptr_sz(btf), (size_t)t->size); 670 case BTF_KIND_PTR: 671 return btf_ptr_sz(btf); 672 case BTF_KIND_TYPEDEF: 673 case BTF_KIND_VOLATILE: 674 case BTF_KIND_CONST: 675 case BTF_KIND_RESTRICT: 676 case BTF_KIND_TYPE_TAG: 677 return btf__align_of(btf, t->type); 678 case BTF_KIND_ARRAY: 679 return btf__align_of(btf, btf_array(t)->type); 680 case BTF_KIND_STRUCT: 681 case BTF_KIND_UNION: { 682 const struct btf_member *m = btf_members(t); 683 __u16 vlen = btf_vlen(t); 684 int i, max_align = 1, align; 685 686 for (i = 0; i < vlen; i++, m++) { 687 align = btf__align_of(btf, m->type); 688 if (align <= 0) 689 return libbpf_err(align); 690 max_align = max(max_align, align); 691 } 692 693 return max_align; 694 } 695 default: 696 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 697 return errno = EINVAL, 0; 698 } 699 } 700 701 int btf__resolve_type(const struct btf *btf, __u32 type_id) 702 { 703 const struct btf_type *t; 704 int depth = 0; 705 706 t = btf__type_by_id(btf, type_id); 707 while (depth < MAX_RESOLVE_DEPTH && 708 !btf_type_is_void_or_null(t) && 709 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 710 type_id = t->type; 711 t = btf__type_by_id(btf, type_id); 712 depth++; 713 } 714 715 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 716 return libbpf_err(-EINVAL); 717 718 return type_id; 719 } 720 721 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 722 { 723 __u32 i, nr_types = btf__type_cnt(btf); 724 725 if (!strcmp(type_name, "void")) 726 return 0; 727 728 for (i = 1; i < nr_types; i++) { 729 const struct btf_type *t = btf__type_by_id(btf, i); 730 const char *name = btf__name_by_offset(btf, t->name_off); 731 732 if (name && !strcmp(type_name, name)) 733 return i; 734 } 735 736 return libbpf_err(-ENOENT); 737 } 738 739 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 740 const char *type_name, __u32 kind) 741 { 742 __u32 i, nr_types = btf__type_cnt(btf); 743 744 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 745 return 0; 746 747 for (i = start_id; i < nr_types; i++) { 748 const struct btf_type *t = btf__type_by_id(btf, i); 749 const char *name; 750 751 if (btf_kind(t) != kind) 752 continue; 753 name = btf__name_by_offset(btf, t->name_off); 754 if (name && !strcmp(type_name, name)) 755 return i; 756 } 757 758 return libbpf_err(-ENOENT); 759 } 760 761 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 762 __u32 kind) 763 { 764 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 765 } 766 767 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 768 __u32 kind) 769 { 770 return btf_find_by_name_kind(btf, 1, type_name, kind); 771 } 772 773 static bool btf_is_modifiable(const struct btf *btf) 774 { 775 return (void *)btf->hdr != btf->raw_data; 776 } 777 778 void btf__free(struct btf *btf) 779 { 780 if (IS_ERR_OR_NULL(btf)) 781 return; 782 783 if (btf->fd >= 0) 784 close(btf->fd); 785 786 if (btf_is_modifiable(btf)) { 787 /* if BTF was modified after loading, it will have a split 788 * in-memory representation for header, types, and strings 789 * sections, so we need to free all of them individually. It 790 * might still have a cached contiguous raw data present, 791 * which will be unconditionally freed below. 792 */ 793 free(btf->hdr); 794 free(btf->types_data); 795 strset__free(btf->strs_set); 796 } 797 free(btf->raw_data); 798 free(btf->raw_data_swapped); 799 free(btf->type_offs); 800 free(btf); 801 } 802 803 static struct btf *btf_new_empty(struct btf *base_btf) 804 { 805 struct btf *btf; 806 807 btf = calloc(1, sizeof(*btf)); 808 if (!btf) 809 return ERR_PTR(-ENOMEM); 810 811 btf->nr_types = 0; 812 btf->start_id = 1; 813 btf->start_str_off = 0; 814 btf->fd = -1; 815 btf->ptr_sz = sizeof(void *); 816 btf->swapped_endian = false; 817 818 if (base_btf) { 819 btf->base_btf = base_btf; 820 btf->start_id = btf__type_cnt(base_btf); 821 btf->start_str_off = base_btf->hdr->str_len; 822 } 823 824 /* +1 for empty string at offset 0 */ 825 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 826 btf->raw_data = calloc(1, btf->raw_size); 827 if (!btf->raw_data) { 828 free(btf); 829 return ERR_PTR(-ENOMEM); 830 } 831 832 btf->hdr = btf->raw_data; 833 btf->hdr->hdr_len = sizeof(struct btf_header); 834 btf->hdr->magic = BTF_MAGIC; 835 btf->hdr->version = BTF_VERSION; 836 837 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 838 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 839 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 840 841 return btf; 842 } 843 844 struct btf *btf__new_empty(void) 845 { 846 return libbpf_ptr(btf_new_empty(NULL)); 847 } 848 849 struct btf *btf__new_empty_split(struct btf *base_btf) 850 { 851 return libbpf_ptr(btf_new_empty(base_btf)); 852 } 853 854 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 855 { 856 struct btf *btf; 857 int err; 858 859 btf = calloc(1, sizeof(struct btf)); 860 if (!btf) 861 return ERR_PTR(-ENOMEM); 862 863 btf->nr_types = 0; 864 btf->start_id = 1; 865 btf->start_str_off = 0; 866 btf->fd = -1; 867 868 if (base_btf) { 869 btf->base_btf = base_btf; 870 btf->start_id = btf__type_cnt(base_btf); 871 btf->start_str_off = base_btf->hdr->str_len; 872 } 873 874 btf->raw_data = malloc(size); 875 if (!btf->raw_data) { 876 err = -ENOMEM; 877 goto done; 878 } 879 memcpy(btf->raw_data, data, size); 880 btf->raw_size = size; 881 882 btf->hdr = btf->raw_data; 883 err = btf_parse_hdr(btf); 884 if (err) 885 goto done; 886 887 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 888 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 889 890 err = btf_parse_str_sec(btf); 891 err = err ?: btf_parse_type_sec(btf); 892 if (err) 893 goto done; 894 895 done: 896 if (err) { 897 btf__free(btf); 898 return ERR_PTR(err); 899 } 900 901 return btf; 902 } 903 904 struct btf *btf__new(const void *data, __u32 size) 905 { 906 return libbpf_ptr(btf_new(data, size, NULL)); 907 } 908 909 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 910 struct btf_ext **btf_ext) 911 { 912 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 913 int err = 0, fd = -1, idx = 0; 914 struct btf *btf = NULL; 915 Elf_Scn *scn = NULL; 916 Elf *elf = NULL; 917 GElf_Ehdr ehdr; 918 size_t shstrndx; 919 920 if (elf_version(EV_CURRENT) == EV_NONE) { 921 pr_warn("failed to init libelf for %s\n", path); 922 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 923 } 924 925 fd = open(path, O_RDONLY | O_CLOEXEC); 926 if (fd < 0) { 927 err = -errno; 928 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 929 return ERR_PTR(err); 930 } 931 932 err = -LIBBPF_ERRNO__FORMAT; 933 934 elf = elf_begin(fd, ELF_C_READ, NULL); 935 if (!elf) { 936 pr_warn("failed to open %s as ELF file\n", path); 937 goto done; 938 } 939 if (!gelf_getehdr(elf, &ehdr)) { 940 pr_warn("failed to get EHDR from %s\n", path); 941 goto done; 942 } 943 944 if (elf_getshdrstrndx(elf, &shstrndx)) { 945 pr_warn("failed to get section names section index for %s\n", 946 path); 947 goto done; 948 } 949 950 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 951 pr_warn("failed to get e_shstrndx from %s\n", path); 952 goto done; 953 } 954 955 while ((scn = elf_nextscn(elf, scn)) != NULL) { 956 GElf_Shdr sh; 957 char *name; 958 959 idx++; 960 if (gelf_getshdr(scn, &sh) != &sh) { 961 pr_warn("failed to get section(%d) header from %s\n", 962 idx, path); 963 goto done; 964 } 965 name = elf_strptr(elf, shstrndx, sh.sh_name); 966 if (!name) { 967 pr_warn("failed to get section(%d) name from %s\n", 968 idx, path); 969 goto done; 970 } 971 if (strcmp(name, BTF_ELF_SEC) == 0) { 972 btf_data = elf_getdata(scn, 0); 973 if (!btf_data) { 974 pr_warn("failed to get section(%d, %s) data from %s\n", 975 idx, name, path); 976 goto done; 977 } 978 continue; 979 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 980 btf_ext_data = elf_getdata(scn, 0); 981 if (!btf_ext_data) { 982 pr_warn("failed to get section(%d, %s) data from %s\n", 983 idx, name, path); 984 goto done; 985 } 986 continue; 987 } 988 } 989 990 err = 0; 991 992 if (!btf_data) { 993 err = -ENOENT; 994 goto done; 995 } 996 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 997 err = libbpf_get_error(btf); 998 if (err) 999 goto done; 1000 1001 switch (gelf_getclass(elf)) { 1002 case ELFCLASS32: 1003 btf__set_pointer_size(btf, 4); 1004 break; 1005 case ELFCLASS64: 1006 btf__set_pointer_size(btf, 8); 1007 break; 1008 default: 1009 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1010 break; 1011 } 1012 1013 if (btf_ext && btf_ext_data) { 1014 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1015 err = libbpf_get_error(*btf_ext); 1016 if (err) 1017 goto done; 1018 } else if (btf_ext) { 1019 *btf_ext = NULL; 1020 } 1021 done: 1022 if (elf) 1023 elf_end(elf); 1024 close(fd); 1025 1026 if (!err) 1027 return btf; 1028 1029 if (btf_ext) 1030 btf_ext__free(*btf_ext); 1031 btf__free(btf); 1032 1033 return ERR_PTR(err); 1034 } 1035 1036 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1037 { 1038 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1039 } 1040 1041 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1042 { 1043 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1044 } 1045 1046 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1047 { 1048 struct btf *btf = NULL; 1049 void *data = NULL; 1050 FILE *f = NULL; 1051 __u16 magic; 1052 int err = 0; 1053 long sz; 1054 1055 f = fopen(path, "rb"); 1056 if (!f) { 1057 err = -errno; 1058 goto err_out; 1059 } 1060 1061 /* check BTF magic */ 1062 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1063 err = -EIO; 1064 goto err_out; 1065 } 1066 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1067 /* definitely not a raw BTF */ 1068 err = -EPROTO; 1069 goto err_out; 1070 } 1071 1072 /* get file size */ 1073 if (fseek(f, 0, SEEK_END)) { 1074 err = -errno; 1075 goto err_out; 1076 } 1077 sz = ftell(f); 1078 if (sz < 0) { 1079 err = -errno; 1080 goto err_out; 1081 } 1082 /* rewind to the start */ 1083 if (fseek(f, 0, SEEK_SET)) { 1084 err = -errno; 1085 goto err_out; 1086 } 1087 1088 /* pre-alloc memory and read all of BTF data */ 1089 data = malloc(sz); 1090 if (!data) { 1091 err = -ENOMEM; 1092 goto err_out; 1093 } 1094 if (fread(data, 1, sz, f) < sz) { 1095 err = -EIO; 1096 goto err_out; 1097 } 1098 1099 /* finally parse BTF data */ 1100 btf = btf_new(data, sz, base_btf); 1101 1102 err_out: 1103 free(data); 1104 if (f) 1105 fclose(f); 1106 return err ? ERR_PTR(err) : btf; 1107 } 1108 1109 struct btf *btf__parse_raw(const char *path) 1110 { 1111 return libbpf_ptr(btf_parse_raw(path, NULL)); 1112 } 1113 1114 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1115 { 1116 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1117 } 1118 1119 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1120 { 1121 struct btf *btf; 1122 int err; 1123 1124 if (btf_ext) 1125 *btf_ext = NULL; 1126 1127 btf = btf_parse_raw(path, base_btf); 1128 err = libbpf_get_error(btf); 1129 if (!err) 1130 return btf; 1131 if (err != -EPROTO) 1132 return ERR_PTR(err); 1133 return btf_parse_elf(path, base_btf, btf_ext); 1134 } 1135 1136 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1137 { 1138 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1139 } 1140 1141 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1142 { 1143 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1144 } 1145 1146 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1147 1148 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1149 { 1150 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1151 __u32 buf_sz = 0, raw_size; 1152 char *buf = NULL, *tmp; 1153 void *raw_data; 1154 int err = 0; 1155 1156 if (btf->fd >= 0) 1157 return libbpf_err(-EEXIST); 1158 if (log_sz && !log_buf) 1159 return libbpf_err(-EINVAL); 1160 1161 /* cache native raw data representation */ 1162 raw_data = btf_get_raw_data(btf, &raw_size, false); 1163 if (!raw_data) { 1164 err = -ENOMEM; 1165 goto done; 1166 } 1167 btf->raw_size = raw_size; 1168 btf->raw_data = raw_data; 1169 1170 retry_load: 1171 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1172 * initially. Only if BTF loading fails, we bump log_level to 1 and 1173 * retry, using either auto-allocated or custom log_buf. This way 1174 * non-NULL custom log_buf provides a buffer just in case, but hopes 1175 * for successful load and no need for log_buf. 1176 */ 1177 if (log_level) { 1178 /* if caller didn't provide custom log_buf, we'll keep 1179 * allocating our own progressively bigger buffers for BTF 1180 * verification log 1181 */ 1182 if (!log_buf) { 1183 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1184 tmp = realloc(buf, buf_sz); 1185 if (!tmp) { 1186 err = -ENOMEM; 1187 goto done; 1188 } 1189 buf = tmp; 1190 buf[0] = '\0'; 1191 } 1192 1193 opts.log_buf = log_buf ? log_buf : buf; 1194 opts.log_size = log_buf ? log_sz : buf_sz; 1195 opts.log_level = log_level; 1196 } 1197 1198 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1199 if (btf->fd < 0) { 1200 /* time to turn on verbose mode and try again */ 1201 if (log_level == 0) { 1202 log_level = 1; 1203 goto retry_load; 1204 } 1205 /* only retry if caller didn't provide custom log_buf, but 1206 * make sure we can never overflow buf_sz 1207 */ 1208 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1209 goto retry_load; 1210 1211 err = -errno; 1212 pr_warn("BTF loading error: %d\n", err); 1213 /* don't print out contents of custom log_buf */ 1214 if (!log_buf && buf[0]) 1215 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1216 } 1217 1218 done: 1219 free(buf); 1220 return libbpf_err(err); 1221 } 1222 1223 int btf__load_into_kernel(struct btf *btf) 1224 { 1225 return btf_load_into_kernel(btf, NULL, 0, 0); 1226 } 1227 1228 int btf__fd(const struct btf *btf) 1229 { 1230 return btf->fd; 1231 } 1232 1233 void btf__set_fd(struct btf *btf, int fd) 1234 { 1235 btf->fd = fd; 1236 } 1237 1238 static const void *btf_strs_data(const struct btf *btf) 1239 { 1240 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1241 } 1242 1243 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1244 { 1245 struct btf_header *hdr = btf->hdr; 1246 struct btf_type *t; 1247 void *data, *p; 1248 __u32 data_sz; 1249 int i; 1250 1251 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1252 if (data) { 1253 *size = btf->raw_size; 1254 return data; 1255 } 1256 1257 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1258 data = calloc(1, data_sz); 1259 if (!data) 1260 return NULL; 1261 p = data; 1262 1263 memcpy(p, hdr, hdr->hdr_len); 1264 if (swap_endian) 1265 btf_bswap_hdr(p); 1266 p += hdr->hdr_len; 1267 1268 memcpy(p, btf->types_data, hdr->type_len); 1269 if (swap_endian) { 1270 for (i = 0; i < btf->nr_types; i++) { 1271 t = p + btf->type_offs[i]; 1272 /* btf_bswap_type_rest() relies on native t->info, so 1273 * we swap base type info after we swapped all the 1274 * additional information 1275 */ 1276 if (btf_bswap_type_rest(t)) 1277 goto err_out; 1278 btf_bswap_type_base(t); 1279 } 1280 } 1281 p += hdr->type_len; 1282 1283 memcpy(p, btf_strs_data(btf), hdr->str_len); 1284 p += hdr->str_len; 1285 1286 *size = data_sz; 1287 return data; 1288 err_out: 1289 free(data); 1290 return NULL; 1291 } 1292 1293 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1294 { 1295 struct btf *btf = (struct btf *)btf_ro; 1296 __u32 data_sz; 1297 void *data; 1298 1299 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1300 if (!data) 1301 return errno = ENOMEM, NULL; 1302 1303 btf->raw_size = data_sz; 1304 if (btf->swapped_endian) 1305 btf->raw_data_swapped = data; 1306 else 1307 btf->raw_data = data; 1308 *size = data_sz; 1309 return data; 1310 } 1311 1312 __attribute__((alias("btf__raw_data"))) 1313 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1314 1315 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1316 { 1317 if (offset < btf->start_str_off) 1318 return btf__str_by_offset(btf->base_btf, offset); 1319 else if (offset - btf->start_str_off < btf->hdr->str_len) 1320 return btf_strs_data(btf) + (offset - btf->start_str_off); 1321 else 1322 return errno = EINVAL, NULL; 1323 } 1324 1325 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1326 { 1327 return btf__str_by_offset(btf, offset); 1328 } 1329 1330 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1331 { 1332 struct bpf_btf_info btf_info; 1333 __u32 len = sizeof(btf_info); 1334 __u32 last_size; 1335 struct btf *btf; 1336 void *ptr; 1337 int err; 1338 1339 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1340 * let's start with a sane default - 4KiB here - and resize it only if 1341 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1342 */ 1343 last_size = 4096; 1344 ptr = malloc(last_size); 1345 if (!ptr) 1346 return ERR_PTR(-ENOMEM); 1347 1348 memset(&btf_info, 0, sizeof(btf_info)); 1349 btf_info.btf = ptr_to_u64(ptr); 1350 btf_info.btf_size = last_size; 1351 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1352 1353 if (!err && btf_info.btf_size > last_size) { 1354 void *temp_ptr; 1355 1356 last_size = btf_info.btf_size; 1357 temp_ptr = realloc(ptr, last_size); 1358 if (!temp_ptr) { 1359 btf = ERR_PTR(-ENOMEM); 1360 goto exit_free; 1361 } 1362 ptr = temp_ptr; 1363 1364 len = sizeof(btf_info); 1365 memset(&btf_info, 0, sizeof(btf_info)); 1366 btf_info.btf = ptr_to_u64(ptr); 1367 btf_info.btf_size = last_size; 1368 1369 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1370 } 1371 1372 if (err || btf_info.btf_size > last_size) { 1373 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1374 goto exit_free; 1375 } 1376 1377 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1378 1379 exit_free: 1380 free(ptr); 1381 return btf; 1382 } 1383 1384 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1385 { 1386 struct btf *btf; 1387 int btf_fd; 1388 1389 btf_fd = bpf_btf_get_fd_by_id(id); 1390 if (btf_fd < 0) 1391 return libbpf_err_ptr(-errno); 1392 1393 btf = btf_get_from_fd(btf_fd, base_btf); 1394 close(btf_fd); 1395 1396 return libbpf_ptr(btf); 1397 } 1398 1399 struct btf *btf__load_from_kernel_by_id(__u32 id) 1400 { 1401 return btf__load_from_kernel_by_id_split(id, NULL); 1402 } 1403 1404 static void btf_invalidate_raw_data(struct btf *btf) 1405 { 1406 if (btf->raw_data) { 1407 free(btf->raw_data); 1408 btf->raw_data = NULL; 1409 } 1410 if (btf->raw_data_swapped) { 1411 free(btf->raw_data_swapped); 1412 btf->raw_data_swapped = NULL; 1413 } 1414 } 1415 1416 /* Ensure BTF is ready to be modified (by splitting into a three memory 1417 * regions for header, types, and strings). Also invalidate cached 1418 * raw_data, if any. 1419 */ 1420 static int btf_ensure_modifiable(struct btf *btf) 1421 { 1422 void *hdr, *types; 1423 struct strset *set = NULL; 1424 int err = -ENOMEM; 1425 1426 if (btf_is_modifiable(btf)) { 1427 /* any BTF modification invalidates raw_data */ 1428 btf_invalidate_raw_data(btf); 1429 return 0; 1430 } 1431 1432 /* split raw data into three memory regions */ 1433 hdr = malloc(btf->hdr->hdr_len); 1434 types = malloc(btf->hdr->type_len); 1435 if (!hdr || !types) 1436 goto err_out; 1437 1438 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1439 memcpy(types, btf->types_data, btf->hdr->type_len); 1440 1441 /* build lookup index for all strings */ 1442 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1443 if (IS_ERR(set)) { 1444 err = PTR_ERR(set); 1445 goto err_out; 1446 } 1447 1448 /* only when everything was successful, update internal state */ 1449 btf->hdr = hdr; 1450 btf->types_data = types; 1451 btf->types_data_cap = btf->hdr->type_len; 1452 btf->strs_data = NULL; 1453 btf->strs_set = set; 1454 /* if BTF was created from scratch, all strings are guaranteed to be 1455 * unique and deduplicated 1456 */ 1457 if (btf->hdr->str_len == 0) 1458 btf->strs_deduped = true; 1459 if (!btf->base_btf && btf->hdr->str_len == 1) 1460 btf->strs_deduped = true; 1461 1462 /* invalidate raw_data representation */ 1463 btf_invalidate_raw_data(btf); 1464 1465 return 0; 1466 1467 err_out: 1468 strset__free(set); 1469 free(hdr); 1470 free(types); 1471 return err; 1472 } 1473 1474 /* Find an offset in BTF string section that corresponds to a given string *s*. 1475 * Returns: 1476 * - >0 offset into string section, if string is found; 1477 * - -ENOENT, if string is not in the string section; 1478 * - <0, on any other error. 1479 */ 1480 int btf__find_str(struct btf *btf, const char *s) 1481 { 1482 int off; 1483 1484 if (btf->base_btf) { 1485 off = btf__find_str(btf->base_btf, s); 1486 if (off != -ENOENT) 1487 return off; 1488 } 1489 1490 /* BTF needs to be in a modifiable state to build string lookup index */ 1491 if (btf_ensure_modifiable(btf)) 1492 return libbpf_err(-ENOMEM); 1493 1494 off = strset__find_str(btf->strs_set, s); 1495 if (off < 0) 1496 return libbpf_err(off); 1497 1498 return btf->start_str_off + off; 1499 } 1500 1501 /* Add a string s to the BTF string section. 1502 * Returns: 1503 * - > 0 offset into string section, on success; 1504 * - < 0, on error. 1505 */ 1506 int btf__add_str(struct btf *btf, const char *s) 1507 { 1508 int off; 1509 1510 if (btf->base_btf) { 1511 off = btf__find_str(btf->base_btf, s); 1512 if (off != -ENOENT) 1513 return off; 1514 } 1515 1516 if (btf_ensure_modifiable(btf)) 1517 return libbpf_err(-ENOMEM); 1518 1519 off = strset__add_str(btf->strs_set, s); 1520 if (off < 0) 1521 return libbpf_err(off); 1522 1523 btf->hdr->str_len = strset__data_size(btf->strs_set); 1524 1525 return btf->start_str_off + off; 1526 } 1527 1528 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1529 { 1530 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1531 btf->hdr->type_len, UINT_MAX, add_sz); 1532 } 1533 1534 static void btf_type_inc_vlen(struct btf_type *t) 1535 { 1536 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1537 } 1538 1539 static int btf_commit_type(struct btf *btf, int data_sz) 1540 { 1541 int err; 1542 1543 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1544 if (err) 1545 return libbpf_err(err); 1546 1547 btf->hdr->type_len += data_sz; 1548 btf->hdr->str_off += data_sz; 1549 btf->nr_types++; 1550 return btf->start_id + btf->nr_types - 1; 1551 } 1552 1553 struct btf_pipe { 1554 const struct btf *src; 1555 struct btf *dst; 1556 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1557 }; 1558 1559 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1560 { 1561 struct btf_pipe *p = ctx; 1562 long mapped_off; 1563 int off, err; 1564 1565 if (!*str_off) /* nothing to do for empty strings */ 1566 return 0; 1567 1568 if (p->str_off_map && 1569 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1570 *str_off = mapped_off; 1571 return 0; 1572 } 1573 1574 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1575 if (off < 0) 1576 return off; 1577 1578 /* Remember string mapping from src to dst. It avoids 1579 * performing expensive string comparisons. 1580 */ 1581 if (p->str_off_map) { 1582 err = hashmap__append(p->str_off_map, *str_off, off); 1583 if (err) 1584 return err; 1585 } 1586 1587 *str_off = off; 1588 return 0; 1589 } 1590 1591 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1592 { 1593 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1594 struct btf_type *t; 1595 int sz, err; 1596 1597 sz = btf_type_size(src_type); 1598 if (sz < 0) 1599 return libbpf_err(sz); 1600 1601 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1602 if (btf_ensure_modifiable(btf)) 1603 return libbpf_err(-ENOMEM); 1604 1605 t = btf_add_type_mem(btf, sz); 1606 if (!t) 1607 return libbpf_err(-ENOMEM); 1608 1609 memcpy(t, src_type, sz); 1610 1611 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1612 if (err) 1613 return libbpf_err(err); 1614 1615 return btf_commit_type(btf, sz); 1616 } 1617 1618 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1619 { 1620 struct btf *btf = ctx; 1621 1622 if (!*type_id) /* nothing to do for VOID references */ 1623 return 0; 1624 1625 /* we haven't updated btf's type count yet, so 1626 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1627 * add to all newly added BTF types 1628 */ 1629 *type_id += btf->start_id + btf->nr_types - 1; 1630 return 0; 1631 } 1632 1633 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1634 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1635 1636 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1637 { 1638 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1639 int data_sz, sz, cnt, i, err, old_strs_len; 1640 __u32 *off; 1641 void *t; 1642 1643 /* appending split BTF isn't supported yet */ 1644 if (src_btf->base_btf) 1645 return libbpf_err(-ENOTSUP); 1646 1647 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1648 if (btf_ensure_modifiable(btf)) 1649 return libbpf_err(-ENOMEM); 1650 1651 /* remember original strings section size if we have to roll back 1652 * partial strings section changes 1653 */ 1654 old_strs_len = btf->hdr->str_len; 1655 1656 data_sz = src_btf->hdr->type_len; 1657 cnt = btf__type_cnt(src_btf) - 1; 1658 1659 /* pre-allocate enough memory for new types */ 1660 t = btf_add_type_mem(btf, data_sz); 1661 if (!t) 1662 return libbpf_err(-ENOMEM); 1663 1664 /* pre-allocate enough memory for type offset index for new types */ 1665 off = btf_add_type_offs_mem(btf, cnt); 1666 if (!off) 1667 return libbpf_err(-ENOMEM); 1668 1669 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1670 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1671 if (IS_ERR(p.str_off_map)) 1672 return libbpf_err(-ENOMEM); 1673 1674 /* bulk copy types data for all types from src_btf */ 1675 memcpy(t, src_btf->types_data, data_sz); 1676 1677 for (i = 0; i < cnt; i++) { 1678 sz = btf_type_size(t); 1679 if (sz < 0) { 1680 /* unlikely, has to be corrupted src_btf */ 1681 err = sz; 1682 goto err_out; 1683 } 1684 1685 /* fill out type ID to type offset mapping for lookups by type ID */ 1686 *off = t - btf->types_data; 1687 1688 /* add, dedup, and remap strings referenced by this BTF type */ 1689 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1690 if (err) 1691 goto err_out; 1692 1693 /* remap all type IDs referenced from this BTF type */ 1694 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1695 if (err) 1696 goto err_out; 1697 1698 /* go to next type data and type offset index entry */ 1699 t += sz; 1700 off++; 1701 } 1702 1703 /* Up until now any of the copied type data was effectively invisible, 1704 * so if we exited early before this point due to error, BTF would be 1705 * effectively unmodified. There would be extra internal memory 1706 * pre-allocated, but it would not be available for querying. But now 1707 * that we've copied and rewritten all the data successfully, we can 1708 * update type count and various internal offsets and sizes to 1709 * "commit" the changes and made them visible to the outside world. 1710 */ 1711 btf->hdr->type_len += data_sz; 1712 btf->hdr->str_off += data_sz; 1713 btf->nr_types += cnt; 1714 1715 hashmap__free(p.str_off_map); 1716 1717 /* return type ID of the first added BTF type */ 1718 return btf->start_id + btf->nr_types - cnt; 1719 err_out: 1720 /* zero out preallocated memory as if it was just allocated with 1721 * libbpf_add_mem() 1722 */ 1723 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1724 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1725 1726 /* and now restore original strings section size; types data size 1727 * wasn't modified, so doesn't need restoring, see big comment above */ 1728 btf->hdr->str_len = old_strs_len; 1729 1730 hashmap__free(p.str_off_map); 1731 1732 return libbpf_err(err); 1733 } 1734 1735 /* 1736 * Append new BTF_KIND_INT type with: 1737 * - *name* - non-empty, non-NULL type name; 1738 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1739 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1740 * Returns: 1741 * - >0, type ID of newly added BTF type; 1742 * - <0, on error. 1743 */ 1744 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1745 { 1746 struct btf_type *t; 1747 int sz, name_off; 1748 1749 /* non-empty name */ 1750 if (!name || !name[0]) 1751 return libbpf_err(-EINVAL); 1752 /* byte_sz must be power of 2 */ 1753 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1754 return libbpf_err(-EINVAL); 1755 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1756 return libbpf_err(-EINVAL); 1757 1758 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1759 if (btf_ensure_modifiable(btf)) 1760 return libbpf_err(-ENOMEM); 1761 1762 sz = sizeof(struct btf_type) + sizeof(int); 1763 t = btf_add_type_mem(btf, sz); 1764 if (!t) 1765 return libbpf_err(-ENOMEM); 1766 1767 /* if something goes wrong later, we might end up with an extra string, 1768 * but that shouldn't be a problem, because BTF can't be constructed 1769 * completely anyway and will most probably be just discarded 1770 */ 1771 name_off = btf__add_str(btf, name); 1772 if (name_off < 0) 1773 return name_off; 1774 1775 t->name_off = name_off; 1776 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1777 t->size = byte_sz; 1778 /* set INT info, we don't allow setting legacy bit offset/size */ 1779 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1780 1781 return btf_commit_type(btf, sz); 1782 } 1783 1784 /* 1785 * Append new BTF_KIND_FLOAT type with: 1786 * - *name* - non-empty, non-NULL type name; 1787 * - *sz* - size of the type, in bytes; 1788 * Returns: 1789 * - >0, type ID of newly added BTF type; 1790 * - <0, on error. 1791 */ 1792 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1793 { 1794 struct btf_type *t; 1795 int sz, name_off; 1796 1797 /* non-empty name */ 1798 if (!name || !name[0]) 1799 return libbpf_err(-EINVAL); 1800 1801 /* byte_sz must be one of the explicitly allowed values */ 1802 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1803 byte_sz != 16) 1804 return libbpf_err(-EINVAL); 1805 1806 if (btf_ensure_modifiable(btf)) 1807 return libbpf_err(-ENOMEM); 1808 1809 sz = sizeof(struct btf_type); 1810 t = btf_add_type_mem(btf, sz); 1811 if (!t) 1812 return libbpf_err(-ENOMEM); 1813 1814 name_off = btf__add_str(btf, name); 1815 if (name_off < 0) 1816 return name_off; 1817 1818 t->name_off = name_off; 1819 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1820 t->size = byte_sz; 1821 1822 return btf_commit_type(btf, sz); 1823 } 1824 1825 /* it's completely legal to append BTF types with type IDs pointing forward to 1826 * types that haven't been appended yet, so we only make sure that id looks 1827 * sane, we can't guarantee that ID will always be valid 1828 */ 1829 static int validate_type_id(int id) 1830 { 1831 if (id < 0 || id > BTF_MAX_NR_TYPES) 1832 return -EINVAL; 1833 return 0; 1834 } 1835 1836 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1837 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1838 { 1839 struct btf_type *t; 1840 int sz, name_off = 0; 1841 1842 if (validate_type_id(ref_type_id)) 1843 return libbpf_err(-EINVAL); 1844 1845 if (btf_ensure_modifiable(btf)) 1846 return libbpf_err(-ENOMEM); 1847 1848 sz = sizeof(struct btf_type); 1849 t = btf_add_type_mem(btf, sz); 1850 if (!t) 1851 return libbpf_err(-ENOMEM); 1852 1853 if (name && name[0]) { 1854 name_off = btf__add_str(btf, name); 1855 if (name_off < 0) 1856 return name_off; 1857 } 1858 1859 t->name_off = name_off; 1860 t->info = btf_type_info(kind, 0, 0); 1861 t->type = ref_type_id; 1862 1863 return btf_commit_type(btf, sz); 1864 } 1865 1866 /* 1867 * Append new BTF_KIND_PTR type with: 1868 * - *ref_type_id* - referenced type ID, it might not exist yet; 1869 * Returns: 1870 * - >0, type ID of newly added BTF type; 1871 * - <0, on error. 1872 */ 1873 int btf__add_ptr(struct btf *btf, int ref_type_id) 1874 { 1875 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1876 } 1877 1878 /* 1879 * Append new BTF_KIND_ARRAY type with: 1880 * - *index_type_id* - type ID of the type describing array index; 1881 * - *elem_type_id* - type ID of the type describing array element; 1882 * - *nr_elems* - the size of the array; 1883 * Returns: 1884 * - >0, type ID of newly added BTF type; 1885 * - <0, on error. 1886 */ 1887 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1888 { 1889 struct btf_type *t; 1890 struct btf_array *a; 1891 int sz; 1892 1893 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1894 return libbpf_err(-EINVAL); 1895 1896 if (btf_ensure_modifiable(btf)) 1897 return libbpf_err(-ENOMEM); 1898 1899 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1900 t = btf_add_type_mem(btf, sz); 1901 if (!t) 1902 return libbpf_err(-ENOMEM); 1903 1904 t->name_off = 0; 1905 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1906 t->size = 0; 1907 1908 a = btf_array(t); 1909 a->type = elem_type_id; 1910 a->index_type = index_type_id; 1911 a->nelems = nr_elems; 1912 1913 return btf_commit_type(btf, sz); 1914 } 1915 1916 /* generic STRUCT/UNION append function */ 1917 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1918 { 1919 struct btf_type *t; 1920 int sz, name_off = 0; 1921 1922 if (btf_ensure_modifiable(btf)) 1923 return libbpf_err(-ENOMEM); 1924 1925 sz = sizeof(struct btf_type); 1926 t = btf_add_type_mem(btf, sz); 1927 if (!t) 1928 return libbpf_err(-ENOMEM); 1929 1930 if (name && name[0]) { 1931 name_off = btf__add_str(btf, name); 1932 if (name_off < 0) 1933 return name_off; 1934 } 1935 1936 /* start out with vlen=0 and no kflag; this will be adjusted when 1937 * adding each member 1938 */ 1939 t->name_off = name_off; 1940 t->info = btf_type_info(kind, 0, 0); 1941 t->size = bytes_sz; 1942 1943 return btf_commit_type(btf, sz); 1944 } 1945 1946 /* 1947 * Append new BTF_KIND_STRUCT type with: 1948 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1949 * - *byte_sz* - size of the struct, in bytes; 1950 * 1951 * Struct initially has no fields in it. Fields can be added by 1952 * btf__add_field() right after btf__add_struct() succeeds. 1953 * 1954 * Returns: 1955 * - >0, type ID of newly added BTF type; 1956 * - <0, on error. 1957 */ 1958 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1959 { 1960 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1961 } 1962 1963 /* 1964 * Append new BTF_KIND_UNION type with: 1965 * - *name* - name of the union, can be NULL or empty for anonymous union; 1966 * - *byte_sz* - size of the union, in bytes; 1967 * 1968 * Union initially has no fields in it. Fields can be added by 1969 * btf__add_field() right after btf__add_union() succeeds. All fields 1970 * should have *bit_offset* of 0. 1971 * 1972 * Returns: 1973 * - >0, type ID of newly added BTF type; 1974 * - <0, on error. 1975 */ 1976 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1977 { 1978 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1979 } 1980 1981 static struct btf_type *btf_last_type(struct btf *btf) 1982 { 1983 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1984 } 1985 1986 /* 1987 * Append new field for the current STRUCT/UNION type with: 1988 * - *name* - name of the field, can be NULL or empty for anonymous field; 1989 * - *type_id* - type ID for the type describing field type; 1990 * - *bit_offset* - bit offset of the start of the field within struct/union; 1991 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1992 * Returns: 1993 * - 0, on success; 1994 * - <0, on error. 1995 */ 1996 int btf__add_field(struct btf *btf, const char *name, int type_id, 1997 __u32 bit_offset, __u32 bit_size) 1998 { 1999 struct btf_type *t; 2000 struct btf_member *m; 2001 bool is_bitfield; 2002 int sz, name_off = 0; 2003 2004 /* last type should be union/struct */ 2005 if (btf->nr_types == 0) 2006 return libbpf_err(-EINVAL); 2007 t = btf_last_type(btf); 2008 if (!btf_is_composite(t)) 2009 return libbpf_err(-EINVAL); 2010 2011 if (validate_type_id(type_id)) 2012 return libbpf_err(-EINVAL); 2013 /* best-effort bit field offset/size enforcement */ 2014 is_bitfield = bit_size || (bit_offset % 8 != 0); 2015 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2016 return libbpf_err(-EINVAL); 2017 2018 /* only offset 0 is allowed for unions */ 2019 if (btf_is_union(t) && bit_offset) 2020 return libbpf_err(-EINVAL); 2021 2022 /* decompose and invalidate raw data */ 2023 if (btf_ensure_modifiable(btf)) 2024 return libbpf_err(-ENOMEM); 2025 2026 sz = sizeof(struct btf_member); 2027 m = btf_add_type_mem(btf, sz); 2028 if (!m) 2029 return libbpf_err(-ENOMEM); 2030 2031 if (name && name[0]) { 2032 name_off = btf__add_str(btf, name); 2033 if (name_off < 0) 2034 return name_off; 2035 } 2036 2037 m->name_off = name_off; 2038 m->type = type_id; 2039 m->offset = bit_offset | (bit_size << 24); 2040 2041 /* btf_add_type_mem can invalidate t pointer */ 2042 t = btf_last_type(btf); 2043 /* update parent type's vlen and kflag */ 2044 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2045 2046 btf->hdr->type_len += sz; 2047 btf->hdr->str_off += sz; 2048 return 0; 2049 } 2050 2051 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2052 bool is_signed, __u8 kind) 2053 { 2054 struct btf_type *t; 2055 int sz, name_off = 0; 2056 2057 /* byte_sz must be power of 2 */ 2058 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2059 return libbpf_err(-EINVAL); 2060 2061 if (btf_ensure_modifiable(btf)) 2062 return libbpf_err(-ENOMEM); 2063 2064 sz = sizeof(struct btf_type); 2065 t = btf_add_type_mem(btf, sz); 2066 if (!t) 2067 return libbpf_err(-ENOMEM); 2068 2069 if (name && name[0]) { 2070 name_off = btf__add_str(btf, name); 2071 if (name_off < 0) 2072 return name_off; 2073 } 2074 2075 /* start out with vlen=0; it will be adjusted when adding enum values */ 2076 t->name_off = name_off; 2077 t->info = btf_type_info(kind, 0, is_signed); 2078 t->size = byte_sz; 2079 2080 return btf_commit_type(btf, sz); 2081 } 2082 2083 /* 2084 * Append new BTF_KIND_ENUM type with: 2085 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2086 * - *byte_sz* - size of the enum, in bytes. 2087 * 2088 * Enum initially has no enum values in it (and corresponds to enum forward 2089 * declaration). Enumerator values can be added by btf__add_enum_value() 2090 * immediately after btf__add_enum() succeeds. 2091 * 2092 * Returns: 2093 * - >0, type ID of newly added BTF type; 2094 * - <0, on error. 2095 */ 2096 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2097 { 2098 /* 2099 * set the signedness to be unsigned, it will change to signed 2100 * if any later enumerator is negative. 2101 */ 2102 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2103 } 2104 2105 /* 2106 * Append new enum value for the current ENUM type with: 2107 * - *name* - name of the enumerator value, can't be NULL or empty; 2108 * - *value* - integer value corresponding to enum value *name*; 2109 * Returns: 2110 * - 0, on success; 2111 * - <0, on error. 2112 */ 2113 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2114 { 2115 struct btf_type *t; 2116 struct btf_enum *v; 2117 int sz, name_off; 2118 2119 /* last type should be BTF_KIND_ENUM */ 2120 if (btf->nr_types == 0) 2121 return libbpf_err(-EINVAL); 2122 t = btf_last_type(btf); 2123 if (!btf_is_enum(t)) 2124 return libbpf_err(-EINVAL); 2125 2126 /* non-empty name */ 2127 if (!name || !name[0]) 2128 return libbpf_err(-EINVAL); 2129 if (value < INT_MIN || value > UINT_MAX) 2130 return libbpf_err(-E2BIG); 2131 2132 /* decompose and invalidate raw data */ 2133 if (btf_ensure_modifiable(btf)) 2134 return libbpf_err(-ENOMEM); 2135 2136 sz = sizeof(struct btf_enum); 2137 v = btf_add_type_mem(btf, sz); 2138 if (!v) 2139 return libbpf_err(-ENOMEM); 2140 2141 name_off = btf__add_str(btf, name); 2142 if (name_off < 0) 2143 return name_off; 2144 2145 v->name_off = name_off; 2146 v->val = value; 2147 2148 /* update parent type's vlen */ 2149 t = btf_last_type(btf); 2150 btf_type_inc_vlen(t); 2151 2152 /* if negative value, set signedness to signed */ 2153 if (value < 0) 2154 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2155 2156 btf->hdr->type_len += sz; 2157 btf->hdr->str_off += sz; 2158 return 0; 2159 } 2160 2161 /* 2162 * Append new BTF_KIND_ENUM64 type with: 2163 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2164 * - *byte_sz* - size of the enum, in bytes. 2165 * - *is_signed* - whether the enum values are signed or not; 2166 * 2167 * Enum initially has no enum values in it (and corresponds to enum forward 2168 * declaration). Enumerator values can be added by btf__add_enum64_value() 2169 * immediately after btf__add_enum64() succeeds. 2170 * 2171 * Returns: 2172 * - >0, type ID of newly added BTF type; 2173 * - <0, on error. 2174 */ 2175 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2176 bool is_signed) 2177 { 2178 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2179 BTF_KIND_ENUM64); 2180 } 2181 2182 /* 2183 * Append new enum value for the current ENUM64 type with: 2184 * - *name* - name of the enumerator value, can't be NULL or empty; 2185 * - *value* - integer value corresponding to enum value *name*; 2186 * Returns: 2187 * - 0, on success; 2188 * - <0, on error. 2189 */ 2190 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2191 { 2192 struct btf_enum64 *v; 2193 struct btf_type *t; 2194 int sz, name_off; 2195 2196 /* last type should be BTF_KIND_ENUM64 */ 2197 if (btf->nr_types == 0) 2198 return libbpf_err(-EINVAL); 2199 t = btf_last_type(btf); 2200 if (!btf_is_enum64(t)) 2201 return libbpf_err(-EINVAL); 2202 2203 /* non-empty name */ 2204 if (!name || !name[0]) 2205 return libbpf_err(-EINVAL); 2206 2207 /* decompose and invalidate raw data */ 2208 if (btf_ensure_modifiable(btf)) 2209 return libbpf_err(-ENOMEM); 2210 2211 sz = sizeof(struct btf_enum64); 2212 v = btf_add_type_mem(btf, sz); 2213 if (!v) 2214 return libbpf_err(-ENOMEM); 2215 2216 name_off = btf__add_str(btf, name); 2217 if (name_off < 0) 2218 return name_off; 2219 2220 v->name_off = name_off; 2221 v->val_lo32 = (__u32)value; 2222 v->val_hi32 = value >> 32; 2223 2224 /* update parent type's vlen */ 2225 t = btf_last_type(btf); 2226 btf_type_inc_vlen(t); 2227 2228 btf->hdr->type_len += sz; 2229 btf->hdr->str_off += sz; 2230 return 0; 2231 } 2232 2233 /* 2234 * Append new BTF_KIND_FWD type with: 2235 * - *name*, non-empty/non-NULL name; 2236 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2237 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2238 * Returns: 2239 * - >0, type ID of newly added BTF type; 2240 * - <0, on error. 2241 */ 2242 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2243 { 2244 if (!name || !name[0]) 2245 return libbpf_err(-EINVAL); 2246 2247 switch (fwd_kind) { 2248 case BTF_FWD_STRUCT: 2249 case BTF_FWD_UNION: { 2250 struct btf_type *t; 2251 int id; 2252 2253 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2254 if (id <= 0) 2255 return id; 2256 t = btf_type_by_id(btf, id); 2257 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2258 return id; 2259 } 2260 case BTF_FWD_ENUM: 2261 /* enum forward in BTF currently is just an enum with no enum 2262 * values; we also assume a standard 4-byte size for it 2263 */ 2264 return btf__add_enum(btf, name, sizeof(int)); 2265 default: 2266 return libbpf_err(-EINVAL); 2267 } 2268 } 2269 2270 /* 2271 * Append new BTF_KING_TYPEDEF type with: 2272 * - *name*, non-empty/non-NULL name; 2273 * - *ref_type_id* - referenced type ID, it might not exist yet; 2274 * Returns: 2275 * - >0, type ID of newly added BTF type; 2276 * - <0, on error. 2277 */ 2278 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2279 { 2280 if (!name || !name[0]) 2281 return libbpf_err(-EINVAL); 2282 2283 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2284 } 2285 2286 /* 2287 * Append new BTF_KIND_VOLATILE type with: 2288 * - *ref_type_id* - referenced type ID, it might not exist yet; 2289 * Returns: 2290 * - >0, type ID of newly added BTF type; 2291 * - <0, on error. 2292 */ 2293 int btf__add_volatile(struct btf *btf, int ref_type_id) 2294 { 2295 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2296 } 2297 2298 /* 2299 * Append new BTF_KIND_CONST type with: 2300 * - *ref_type_id* - referenced type ID, it might not exist yet; 2301 * Returns: 2302 * - >0, type ID of newly added BTF type; 2303 * - <0, on error. 2304 */ 2305 int btf__add_const(struct btf *btf, int ref_type_id) 2306 { 2307 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2308 } 2309 2310 /* 2311 * Append new BTF_KIND_RESTRICT type with: 2312 * - *ref_type_id* - referenced type ID, it might not exist yet; 2313 * Returns: 2314 * - >0, type ID of newly added BTF type; 2315 * - <0, on error. 2316 */ 2317 int btf__add_restrict(struct btf *btf, int ref_type_id) 2318 { 2319 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2320 } 2321 2322 /* 2323 * Append new BTF_KIND_TYPE_TAG type with: 2324 * - *value*, non-empty/non-NULL tag value; 2325 * - *ref_type_id* - referenced type ID, it might not exist yet; 2326 * Returns: 2327 * - >0, type ID of newly added BTF type; 2328 * - <0, on error. 2329 */ 2330 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2331 { 2332 if (!value|| !value[0]) 2333 return libbpf_err(-EINVAL); 2334 2335 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2336 } 2337 2338 /* 2339 * Append new BTF_KIND_FUNC type with: 2340 * - *name*, non-empty/non-NULL name; 2341 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2342 * Returns: 2343 * - >0, type ID of newly added BTF type; 2344 * - <0, on error. 2345 */ 2346 int btf__add_func(struct btf *btf, const char *name, 2347 enum btf_func_linkage linkage, int proto_type_id) 2348 { 2349 int id; 2350 2351 if (!name || !name[0]) 2352 return libbpf_err(-EINVAL); 2353 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2354 linkage != BTF_FUNC_EXTERN) 2355 return libbpf_err(-EINVAL); 2356 2357 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2358 if (id > 0) { 2359 struct btf_type *t = btf_type_by_id(btf, id); 2360 2361 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2362 } 2363 return libbpf_err(id); 2364 } 2365 2366 /* 2367 * Append new BTF_KIND_FUNC_PROTO with: 2368 * - *ret_type_id* - type ID for return result of a function. 2369 * 2370 * Function prototype initially has no arguments, but they can be added by 2371 * btf__add_func_param() one by one, immediately after 2372 * btf__add_func_proto() succeeded. 2373 * 2374 * Returns: 2375 * - >0, type ID of newly added BTF type; 2376 * - <0, on error. 2377 */ 2378 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2379 { 2380 struct btf_type *t; 2381 int sz; 2382 2383 if (validate_type_id(ret_type_id)) 2384 return libbpf_err(-EINVAL); 2385 2386 if (btf_ensure_modifiable(btf)) 2387 return libbpf_err(-ENOMEM); 2388 2389 sz = sizeof(struct btf_type); 2390 t = btf_add_type_mem(btf, sz); 2391 if (!t) 2392 return libbpf_err(-ENOMEM); 2393 2394 /* start out with vlen=0; this will be adjusted when adding enum 2395 * values, if necessary 2396 */ 2397 t->name_off = 0; 2398 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2399 t->type = ret_type_id; 2400 2401 return btf_commit_type(btf, sz); 2402 } 2403 2404 /* 2405 * Append new function parameter for current FUNC_PROTO type with: 2406 * - *name* - parameter name, can be NULL or empty; 2407 * - *type_id* - type ID describing the type of the parameter. 2408 * Returns: 2409 * - 0, on success; 2410 * - <0, on error. 2411 */ 2412 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2413 { 2414 struct btf_type *t; 2415 struct btf_param *p; 2416 int sz, name_off = 0; 2417 2418 if (validate_type_id(type_id)) 2419 return libbpf_err(-EINVAL); 2420 2421 /* last type should be BTF_KIND_FUNC_PROTO */ 2422 if (btf->nr_types == 0) 2423 return libbpf_err(-EINVAL); 2424 t = btf_last_type(btf); 2425 if (!btf_is_func_proto(t)) 2426 return libbpf_err(-EINVAL); 2427 2428 /* decompose and invalidate raw data */ 2429 if (btf_ensure_modifiable(btf)) 2430 return libbpf_err(-ENOMEM); 2431 2432 sz = sizeof(struct btf_param); 2433 p = btf_add_type_mem(btf, sz); 2434 if (!p) 2435 return libbpf_err(-ENOMEM); 2436 2437 if (name && name[0]) { 2438 name_off = btf__add_str(btf, name); 2439 if (name_off < 0) 2440 return name_off; 2441 } 2442 2443 p->name_off = name_off; 2444 p->type = type_id; 2445 2446 /* update parent type's vlen */ 2447 t = btf_last_type(btf); 2448 btf_type_inc_vlen(t); 2449 2450 btf->hdr->type_len += sz; 2451 btf->hdr->str_off += sz; 2452 return 0; 2453 } 2454 2455 /* 2456 * Append new BTF_KIND_VAR type with: 2457 * - *name* - non-empty/non-NULL name; 2458 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2459 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2460 * - *type_id* - type ID of the type describing the type of the variable. 2461 * Returns: 2462 * - >0, type ID of newly added BTF type; 2463 * - <0, on error. 2464 */ 2465 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2466 { 2467 struct btf_type *t; 2468 struct btf_var *v; 2469 int sz, name_off; 2470 2471 /* non-empty name */ 2472 if (!name || !name[0]) 2473 return libbpf_err(-EINVAL); 2474 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2475 linkage != BTF_VAR_GLOBAL_EXTERN) 2476 return libbpf_err(-EINVAL); 2477 if (validate_type_id(type_id)) 2478 return libbpf_err(-EINVAL); 2479 2480 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2481 if (btf_ensure_modifiable(btf)) 2482 return libbpf_err(-ENOMEM); 2483 2484 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2485 t = btf_add_type_mem(btf, sz); 2486 if (!t) 2487 return libbpf_err(-ENOMEM); 2488 2489 name_off = btf__add_str(btf, name); 2490 if (name_off < 0) 2491 return name_off; 2492 2493 t->name_off = name_off; 2494 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2495 t->type = type_id; 2496 2497 v = btf_var(t); 2498 v->linkage = linkage; 2499 2500 return btf_commit_type(btf, sz); 2501 } 2502 2503 /* 2504 * Append new BTF_KIND_DATASEC type with: 2505 * - *name* - non-empty/non-NULL name; 2506 * - *byte_sz* - data section size, in bytes. 2507 * 2508 * Data section is initially empty. Variables info can be added with 2509 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2510 * 2511 * Returns: 2512 * - >0, type ID of newly added BTF type; 2513 * - <0, on error. 2514 */ 2515 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2516 { 2517 struct btf_type *t; 2518 int sz, name_off; 2519 2520 /* non-empty name */ 2521 if (!name || !name[0]) 2522 return libbpf_err(-EINVAL); 2523 2524 if (btf_ensure_modifiable(btf)) 2525 return libbpf_err(-ENOMEM); 2526 2527 sz = sizeof(struct btf_type); 2528 t = btf_add_type_mem(btf, sz); 2529 if (!t) 2530 return libbpf_err(-ENOMEM); 2531 2532 name_off = btf__add_str(btf, name); 2533 if (name_off < 0) 2534 return name_off; 2535 2536 /* start with vlen=0, which will be update as var_secinfos are added */ 2537 t->name_off = name_off; 2538 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2539 t->size = byte_sz; 2540 2541 return btf_commit_type(btf, sz); 2542 } 2543 2544 /* 2545 * Append new data section variable information entry for current DATASEC type: 2546 * - *var_type_id* - type ID, describing type of the variable; 2547 * - *offset* - variable offset within data section, in bytes; 2548 * - *byte_sz* - variable size, in bytes. 2549 * 2550 * Returns: 2551 * - 0, on success; 2552 * - <0, on error. 2553 */ 2554 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2555 { 2556 struct btf_type *t; 2557 struct btf_var_secinfo *v; 2558 int sz; 2559 2560 /* last type should be BTF_KIND_DATASEC */ 2561 if (btf->nr_types == 0) 2562 return libbpf_err(-EINVAL); 2563 t = btf_last_type(btf); 2564 if (!btf_is_datasec(t)) 2565 return libbpf_err(-EINVAL); 2566 2567 if (validate_type_id(var_type_id)) 2568 return libbpf_err(-EINVAL); 2569 2570 /* decompose and invalidate raw data */ 2571 if (btf_ensure_modifiable(btf)) 2572 return libbpf_err(-ENOMEM); 2573 2574 sz = sizeof(struct btf_var_secinfo); 2575 v = btf_add_type_mem(btf, sz); 2576 if (!v) 2577 return libbpf_err(-ENOMEM); 2578 2579 v->type = var_type_id; 2580 v->offset = offset; 2581 v->size = byte_sz; 2582 2583 /* update parent type's vlen */ 2584 t = btf_last_type(btf); 2585 btf_type_inc_vlen(t); 2586 2587 btf->hdr->type_len += sz; 2588 btf->hdr->str_off += sz; 2589 return 0; 2590 } 2591 2592 /* 2593 * Append new BTF_KIND_DECL_TAG type with: 2594 * - *value* - non-empty/non-NULL string; 2595 * - *ref_type_id* - referenced type ID, it might not exist yet; 2596 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2597 * member or function argument index; 2598 * Returns: 2599 * - >0, type ID of newly added BTF type; 2600 * - <0, on error. 2601 */ 2602 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2603 int component_idx) 2604 { 2605 struct btf_type *t; 2606 int sz, value_off; 2607 2608 if (!value || !value[0] || component_idx < -1) 2609 return libbpf_err(-EINVAL); 2610 2611 if (validate_type_id(ref_type_id)) 2612 return libbpf_err(-EINVAL); 2613 2614 if (btf_ensure_modifiable(btf)) 2615 return libbpf_err(-ENOMEM); 2616 2617 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2618 t = btf_add_type_mem(btf, sz); 2619 if (!t) 2620 return libbpf_err(-ENOMEM); 2621 2622 value_off = btf__add_str(btf, value); 2623 if (value_off < 0) 2624 return value_off; 2625 2626 t->name_off = value_off; 2627 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2628 t->type = ref_type_id; 2629 btf_decl_tag(t)->component_idx = component_idx; 2630 2631 return btf_commit_type(btf, sz); 2632 } 2633 2634 struct btf_ext_sec_setup_param { 2635 __u32 off; 2636 __u32 len; 2637 __u32 min_rec_size; 2638 struct btf_ext_info *ext_info; 2639 const char *desc; 2640 }; 2641 2642 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2643 struct btf_ext_sec_setup_param *ext_sec) 2644 { 2645 const struct btf_ext_info_sec *sinfo; 2646 struct btf_ext_info *ext_info; 2647 __u32 info_left, record_size; 2648 size_t sec_cnt = 0; 2649 /* The start of the info sec (including the __u32 record_size). */ 2650 void *info; 2651 2652 if (ext_sec->len == 0) 2653 return 0; 2654 2655 if (ext_sec->off & 0x03) { 2656 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2657 ext_sec->desc); 2658 return -EINVAL; 2659 } 2660 2661 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2662 info_left = ext_sec->len; 2663 2664 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2665 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2666 ext_sec->desc, ext_sec->off, ext_sec->len); 2667 return -EINVAL; 2668 } 2669 2670 /* At least a record size */ 2671 if (info_left < sizeof(__u32)) { 2672 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2673 return -EINVAL; 2674 } 2675 2676 /* The record size needs to meet the minimum standard */ 2677 record_size = *(__u32 *)info; 2678 if (record_size < ext_sec->min_rec_size || 2679 record_size & 0x03) { 2680 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2681 ext_sec->desc, record_size); 2682 return -EINVAL; 2683 } 2684 2685 sinfo = info + sizeof(__u32); 2686 info_left -= sizeof(__u32); 2687 2688 /* If no records, return failure now so .BTF.ext won't be used. */ 2689 if (!info_left) { 2690 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2691 return -EINVAL; 2692 } 2693 2694 while (info_left) { 2695 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2696 __u64 total_record_size; 2697 __u32 num_records; 2698 2699 if (info_left < sec_hdrlen) { 2700 pr_debug("%s section header is not found in .BTF.ext\n", 2701 ext_sec->desc); 2702 return -EINVAL; 2703 } 2704 2705 num_records = sinfo->num_info; 2706 if (num_records == 0) { 2707 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2708 ext_sec->desc); 2709 return -EINVAL; 2710 } 2711 2712 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2713 if (info_left < total_record_size) { 2714 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2715 ext_sec->desc); 2716 return -EINVAL; 2717 } 2718 2719 info_left -= total_record_size; 2720 sinfo = (void *)sinfo + total_record_size; 2721 sec_cnt++; 2722 } 2723 2724 ext_info = ext_sec->ext_info; 2725 ext_info->len = ext_sec->len - sizeof(__u32); 2726 ext_info->rec_size = record_size; 2727 ext_info->info = info + sizeof(__u32); 2728 ext_info->sec_cnt = sec_cnt; 2729 2730 return 0; 2731 } 2732 2733 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2734 { 2735 struct btf_ext_sec_setup_param param = { 2736 .off = btf_ext->hdr->func_info_off, 2737 .len = btf_ext->hdr->func_info_len, 2738 .min_rec_size = sizeof(struct bpf_func_info_min), 2739 .ext_info = &btf_ext->func_info, 2740 .desc = "func_info" 2741 }; 2742 2743 return btf_ext_setup_info(btf_ext, ¶m); 2744 } 2745 2746 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2747 { 2748 struct btf_ext_sec_setup_param param = { 2749 .off = btf_ext->hdr->line_info_off, 2750 .len = btf_ext->hdr->line_info_len, 2751 .min_rec_size = sizeof(struct bpf_line_info_min), 2752 .ext_info = &btf_ext->line_info, 2753 .desc = "line_info", 2754 }; 2755 2756 return btf_ext_setup_info(btf_ext, ¶m); 2757 } 2758 2759 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2760 { 2761 struct btf_ext_sec_setup_param param = { 2762 .off = btf_ext->hdr->core_relo_off, 2763 .len = btf_ext->hdr->core_relo_len, 2764 .min_rec_size = sizeof(struct bpf_core_relo), 2765 .ext_info = &btf_ext->core_relo_info, 2766 .desc = "core_relo", 2767 }; 2768 2769 return btf_ext_setup_info(btf_ext, ¶m); 2770 } 2771 2772 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2773 { 2774 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2775 2776 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2777 data_size < hdr->hdr_len) { 2778 pr_debug("BTF.ext header not found"); 2779 return -EINVAL; 2780 } 2781 2782 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2783 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2784 return -ENOTSUP; 2785 } else if (hdr->magic != BTF_MAGIC) { 2786 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2787 return -EINVAL; 2788 } 2789 2790 if (hdr->version != BTF_VERSION) { 2791 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2792 return -ENOTSUP; 2793 } 2794 2795 if (hdr->flags) { 2796 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2797 return -ENOTSUP; 2798 } 2799 2800 if (data_size == hdr->hdr_len) { 2801 pr_debug("BTF.ext has no data\n"); 2802 return -EINVAL; 2803 } 2804 2805 return 0; 2806 } 2807 2808 void btf_ext__free(struct btf_ext *btf_ext) 2809 { 2810 if (IS_ERR_OR_NULL(btf_ext)) 2811 return; 2812 free(btf_ext->func_info.sec_idxs); 2813 free(btf_ext->line_info.sec_idxs); 2814 free(btf_ext->core_relo_info.sec_idxs); 2815 free(btf_ext->data); 2816 free(btf_ext); 2817 } 2818 2819 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2820 { 2821 struct btf_ext *btf_ext; 2822 int err; 2823 2824 btf_ext = calloc(1, sizeof(struct btf_ext)); 2825 if (!btf_ext) 2826 return libbpf_err_ptr(-ENOMEM); 2827 2828 btf_ext->data_size = size; 2829 btf_ext->data = malloc(size); 2830 if (!btf_ext->data) { 2831 err = -ENOMEM; 2832 goto done; 2833 } 2834 memcpy(btf_ext->data, data, size); 2835 2836 err = btf_ext_parse_hdr(btf_ext->data, size); 2837 if (err) 2838 goto done; 2839 2840 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2841 err = -EINVAL; 2842 goto done; 2843 } 2844 2845 err = btf_ext_setup_func_info(btf_ext); 2846 if (err) 2847 goto done; 2848 2849 err = btf_ext_setup_line_info(btf_ext); 2850 if (err) 2851 goto done; 2852 2853 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2854 goto done; /* skip core relos parsing */ 2855 2856 err = btf_ext_setup_core_relos(btf_ext); 2857 if (err) 2858 goto done; 2859 2860 done: 2861 if (err) { 2862 btf_ext__free(btf_ext); 2863 return libbpf_err_ptr(err); 2864 } 2865 2866 return btf_ext; 2867 } 2868 2869 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2870 { 2871 *size = btf_ext->data_size; 2872 return btf_ext->data; 2873 } 2874 2875 struct btf_dedup; 2876 2877 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2878 static void btf_dedup_free(struct btf_dedup *d); 2879 static int btf_dedup_prep(struct btf_dedup *d); 2880 static int btf_dedup_strings(struct btf_dedup *d); 2881 static int btf_dedup_prim_types(struct btf_dedup *d); 2882 static int btf_dedup_struct_types(struct btf_dedup *d); 2883 static int btf_dedup_ref_types(struct btf_dedup *d); 2884 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 2885 static int btf_dedup_compact_types(struct btf_dedup *d); 2886 static int btf_dedup_remap_types(struct btf_dedup *d); 2887 2888 /* 2889 * Deduplicate BTF types and strings. 2890 * 2891 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2892 * section with all BTF type descriptors and string data. It overwrites that 2893 * memory in-place with deduplicated types and strings without any loss of 2894 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2895 * is provided, all the strings referenced from .BTF.ext section are honored 2896 * and updated to point to the right offsets after deduplication. 2897 * 2898 * If function returns with error, type/string data might be garbled and should 2899 * be discarded. 2900 * 2901 * More verbose and detailed description of both problem btf_dedup is solving, 2902 * as well as solution could be found at: 2903 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2904 * 2905 * Problem description and justification 2906 * ===================================== 2907 * 2908 * BTF type information is typically emitted either as a result of conversion 2909 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2910 * unit contains information about a subset of all the types that are used 2911 * in an application. These subsets are frequently overlapping and contain a lot 2912 * of duplicated information when later concatenated together into a single 2913 * binary. This algorithm ensures that each unique type is represented by single 2914 * BTF type descriptor, greatly reducing resulting size of BTF data. 2915 * 2916 * Compilation unit isolation and subsequent duplication of data is not the only 2917 * problem. The same type hierarchy (e.g., struct and all the type that struct 2918 * references) in different compilation units can be represented in BTF to 2919 * various degrees of completeness (or, rather, incompleteness) due to 2920 * struct/union forward declarations. 2921 * 2922 * Let's take a look at an example, that we'll use to better understand the 2923 * problem (and solution). Suppose we have two compilation units, each using 2924 * same `struct S`, but each of them having incomplete type information about 2925 * struct's fields: 2926 * 2927 * // CU #1: 2928 * struct S; 2929 * struct A { 2930 * int a; 2931 * struct A* self; 2932 * struct S* parent; 2933 * }; 2934 * struct B; 2935 * struct S { 2936 * struct A* a_ptr; 2937 * struct B* b_ptr; 2938 * }; 2939 * 2940 * // CU #2: 2941 * struct S; 2942 * struct A; 2943 * struct B { 2944 * int b; 2945 * struct B* self; 2946 * struct S* parent; 2947 * }; 2948 * struct S { 2949 * struct A* a_ptr; 2950 * struct B* b_ptr; 2951 * }; 2952 * 2953 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2954 * more), but will know the complete type information about `struct A`. While 2955 * for CU #2, it will know full type information about `struct B`, but will 2956 * only know about forward declaration of `struct A` (in BTF terms, it will 2957 * have `BTF_KIND_FWD` type descriptor with name `B`). 2958 * 2959 * This compilation unit isolation means that it's possible that there is no 2960 * single CU with complete type information describing structs `S`, `A`, and 2961 * `B`. Also, we might get tons of duplicated and redundant type information. 2962 * 2963 * Additional complication we need to keep in mind comes from the fact that 2964 * types, in general, can form graphs containing cycles, not just DAGs. 2965 * 2966 * While algorithm does deduplication, it also merges and resolves type 2967 * information (unless disabled throught `struct btf_opts`), whenever possible. 2968 * E.g., in the example above with two compilation units having partial type 2969 * information for structs `A` and `B`, the output of algorithm will emit 2970 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2971 * (as well as type information for `int` and pointers), as if they were defined 2972 * in a single compilation unit as: 2973 * 2974 * struct A { 2975 * int a; 2976 * struct A* self; 2977 * struct S* parent; 2978 * }; 2979 * struct B { 2980 * int b; 2981 * struct B* self; 2982 * struct S* parent; 2983 * }; 2984 * struct S { 2985 * struct A* a_ptr; 2986 * struct B* b_ptr; 2987 * }; 2988 * 2989 * Algorithm summary 2990 * ================= 2991 * 2992 * Algorithm completes its work in 7 separate passes: 2993 * 2994 * 1. Strings deduplication. 2995 * 2. Primitive types deduplication (int, enum, fwd). 2996 * 3. Struct/union types deduplication. 2997 * 4. Resolve unambiguous forward declarations. 2998 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2999 * protos, and const/volatile/restrict modifiers). 3000 * 6. Types compaction. 3001 * 7. Types remapping. 3002 * 3003 * Algorithm determines canonical type descriptor, which is a single 3004 * representative type for each truly unique type. This canonical type is the 3005 * one that will go into final deduplicated BTF type information. For 3006 * struct/unions, it is also the type that algorithm will merge additional type 3007 * information into (while resolving FWDs), as it discovers it from data in 3008 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3009 * that type is canonical, or to some other type, if that type is equivalent 3010 * and was chosen as canonical representative. This mapping is stored in 3011 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3012 * FWD type got resolved to. 3013 * 3014 * To facilitate fast discovery of canonical types, we also maintain canonical 3015 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3016 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3017 * that match that signature. With sufficiently good choice of type signature 3018 * hashing function, we can limit number of canonical types for each unique type 3019 * signature to a very small number, allowing to find canonical type for any 3020 * duplicated type very quickly. 3021 * 3022 * Struct/union deduplication is the most critical part and algorithm for 3023 * deduplicating structs/unions is described in greater details in comments for 3024 * `btf_dedup_is_equiv` function. 3025 */ 3026 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3027 { 3028 struct btf_dedup *d; 3029 int err; 3030 3031 if (!OPTS_VALID(opts, btf_dedup_opts)) 3032 return libbpf_err(-EINVAL); 3033 3034 d = btf_dedup_new(btf, opts); 3035 if (IS_ERR(d)) { 3036 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3037 return libbpf_err(-EINVAL); 3038 } 3039 3040 if (btf_ensure_modifiable(btf)) { 3041 err = -ENOMEM; 3042 goto done; 3043 } 3044 3045 err = btf_dedup_prep(d); 3046 if (err) { 3047 pr_debug("btf_dedup_prep failed:%d\n", err); 3048 goto done; 3049 } 3050 err = btf_dedup_strings(d); 3051 if (err < 0) { 3052 pr_debug("btf_dedup_strings failed:%d\n", err); 3053 goto done; 3054 } 3055 err = btf_dedup_prim_types(d); 3056 if (err < 0) { 3057 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3058 goto done; 3059 } 3060 err = btf_dedup_struct_types(d); 3061 if (err < 0) { 3062 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3063 goto done; 3064 } 3065 err = btf_dedup_resolve_fwds(d); 3066 if (err < 0) { 3067 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3068 goto done; 3069 } 3070 err = btf_dedup_ref_types(d); 3071 if (err < 0) { 3072 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3073 goto done; 3074 } 3075 err = btf_dedup_compact_types(d); 3076 if (err < 0) { 3077 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3078 goto done; 3079 } 3080 err = btf_dedup_remap_types(d); 3081 if (err < 0) { 3082 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3083 goto done; 3084 } 3085 3086 done: 3087 btf_dedup_free(d); 3088 return libbpf_err(err); 3089 } 3090 3091 #define BTF_UNPROCESSED_ID ((__u32)-1) 3092 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3093 3094 struct btf_dedup { 3095 /* .BTF section to be deduped in-place */ 3096 struct btf *btf; 3097 /* 3098 * Optional .BTF.ext section. When provided, any strings referenced 3099 * from it will be taken into account when deduping strings 3100 */ 3101 struct btf_ext *btf_ext; 3102 /* 3103 * This is a map from any type's signature hash to a list of possible 3104 * canonical representative type candidates. Hash collisions are 3105 * ignored, so even types of various kinds can share same list of 3106 * candidates, which is fine because we rely on subsequent 3107 * btf_xxx_equal() checks to authoritatively verify type equality. 3108 */ 3109 struct hashmap *dedup_table; 3110 /* Canonical types map */ 3111 __u32 *map; 3112 /* Hypothetical mapping, used during type graph equivalence checks */ 3113 __u32 *hypot_map; 3114 __u32 *hypot_list; 3115 size_t hypot_cnt; 3116 size_t hypot_cap; 3117 /* Whether hypothetical mapping, if successful, would need to adjust 3118 * already canonicalized types (due to a new forward declaration to 3119 * concrete type resolution). In such case, during split BTF dedup 3120 * candidate type would still be considered as different, because base 3121 * BTF is considered to be immutable. 3122 */ 3123 bool hypot_adjust_canon; 3124 /* Various option modifying behavior of algorithm */ 3125 struct btf_dedup_opts opts; 3126 /* temporary strings deduplication state */ 3127 struct strset *strs_set; 3128 }; 3129 3130 static long hash_combine(long h, long value) 3131 { 3132 return h * 31 + value; 3133 } 3134 3135 #define for_each_dedup_cand(d, node, hash) \ 3136 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3137 3138 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3139 { 3140 return hashmap__append(d->dedup_table, hash, type_id); 3141 } 3142 3143 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3144 __u32 from_id, __u32 to_id) 3145 { 3146 if (d->hypot_cnt == d->hypot_cap) { 3147 __u32 *new_list; 3148 3149 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3150 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3151 if (!new_list) 3152 return -ENOMEM; 3153 d->hypot_list = new_list; 3154 } 3155 d->hypot_list[d->hypot_cnt++] = from_id; 3156 d->hypot_map[from_id] = to_id; 3157 return 0; 3158 } 3159 3160 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3161 { 3162 int i; 3163 3164 for (i = 0; i < d->hypot_cnt; i++) 3165 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3166 d->hypot_cnt = 0; 3167 d->hypot_adjust_canon = false; 3168 } 3169 3170 static void btf_dedup_free(struct btf_dedup *d) 3171 { 3172 hashmap__free(d->dedup_table); 3173 d->dedup_table = NULL; 3174 3175 free(d->map); 3176 d->map = NULL; 3177 3178 free(d->hypot_map); 3179 d->hypot_map = NULL; 3180 3181 free(d->hypot_list); 3182 d->hypot_list = NULL; 3183 3184 free(d); 3185 } 3186 3187 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3188 { 3189 return key; 3190 } 3191 3192 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3193 { 3194 return 0; 3195 } 3196 3197 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3198 { 3199 return k1 == k2; 3200 } 3201 3202 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3203 { 3204 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3205 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3206 int i, err = 0, type_cnt; 3207 3208 if (!d) 3209 return ERR_PTR(-ENOMEM); 3210 3211 if (OPTS_GET(opts, force_collisions, false)) 3212 hash_fn = btf_dedup_collision_hash_fn; 3213 3214 d->btf = btf; 3215 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3216 3217 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3218 if (IS_ERR(d->dedup_table)) { 3219 err = PTR_ERR(d->dedup_table); 3220 d->dedup_table = NULL; 3221 goto done; 3222 } 3223 3224 type_cnt = btf__type_cnt(btf); 3225 d->map = malloc(sizeof(__u32) * type_cnt); 3226 if (!d->map) { 3227 err = -ENOMEM; 3228 goto done; 3229 } 3230 /* special BTF "void" type is made canonical immediately */ 3231 d->map[0] = 0; 3232 for (i = 1; i < type_cnt; i++) { 3233 struct btf_type *t = btf_type_by_id(d->btf, i); 3234 3235 /* VAR and DATASEC are never deduped and are self-canonical */ 3236 if (btf_is_var(t) || btf_is_datasec(t)) 3237 d->map[i] = i; 3238 else 3239 d->map[i] = BTF_UNPROCESSED_ID; 3240 } 3241 3242 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3243 if (!d->hypot_map) { 3244 err = -ENOMEM; 3245 goto done; 3246 } 3247 for (i = 0; i < type_cnt; i++) 3248 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3249 3250 done: 3251 if (err) { 3252 btf_dedup_free(d); 3253 return ERR_PTR(err); 3254 } 3255 3256 return d; 3257 } 3258 3259 /* 3260 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3261 * string and pass pointer to it to a provided callback `fn`. 3262 */ 3263 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3264 { 3265 int i, r; 3266 3267 for (i = 0; i < d->btf->nr_types; i++) { 3268 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3269 3270 r = btf_type_visit_str_offs(t, fn, ctx); 3271 if (r) 3272 return r; 3273 } 3274 3275 if (!d->btf_ext) 3276 return 0; 3277 3278 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3279 if (r) 3280 return r; 3281 3282 return 0; 3283 } 3284 3285 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3286 { 3287 struct btf_dedup *d = ctx; 3288 __u32 str_off = *str_off_ptr; 3289 const char *s; 3290 int off, err; 3291 3292 /* don't touch empty string or string in main BTF */ 3293 if (str_off == 0 || str_off < d->btf->start_str_off) 3294 return 0; 3295 3296 s = btf__str_by_offset(d->btf, str_off); 3297 if (d->btf->base_btf) { 3298 err = btf__find_str(d->btf->base_btf, s); 3299 if (err >= 0) { 3300 *str_off_ptr = err; 3301 return 0; 3302 } 3303 if (err != -ENOENT) 3304 return err; 3305 } 3306 3307 off = strset__add_str(d->strs_set, s); 3308 if (off < 0) 3309 return off; 3310 3311 *str_off_ptr = d->btf->start_str_off + off; 3312 return 0; 3313 } 3314 3315 /* 3316 * Dedup string and filter out those that are not referenced from either .BTF 3317 * or .BTF.ext (if provided) sections. 3318 * 3319 * This is done by building index of all strings in BTF's string section, 3320 * then iterating over all entities that can reference strings (e.g., type 3321 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3322 * strings as used. After that all used strings are deduped and compacted into 3323 * sequential blob of memory and new offsets are calculated. Then all the string 3324 * references are iterated again and rewritten using new offsets. 3325 */ 3326 static int btf_dedup_strings(struct btf_dedup *d) 3327 { 3328 int err; 3329 3330 if (d->btf->strs_deduped) 3331 return 0; 3332 3333 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3334 if (IS_ERR(d->strs_set)) { 3335 err = PTR_ERR(d->strs_set); 3336 goto err_out; 3337 } 3338 3339 if (!d->btf->base_btf) { 3340 /* insert empty string; we won't be looking it up during strings 3341 * dedup, but it's good to have it for generic BTF string lookups 3342 */ 3343 err = strset__add_str(d->strs_set, ""); 3344 if (err < 0) 3345 goto err_out; 3346 } 3347 3348 /* remap string offsets */ 3349 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3350 if (err) 3351 goto err_out; 3352 3353 /* replace BTF string data and hash with deduped ones */ 3354 strset__free(d->btf->strs_set); 3355 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3356 d->btf->strs_set = d->strs_set; 3357 d->strs_set = NULL; 3358 d->btf->strs_deduped = true; 3359 return 0; 3360 3361 err_out: 3362 strset__free(d->strs_set); 3363 d->strs_set = NULL; 3364 3365 return err; 3366 } 3367 3368 static long btf_hash_common(struct btf_type *t) 3369 { 3370 long h; 3371 3372 h = hash_combine(0, t->name_off); 3373 h = hash_combine(h, t->info); 3374 h = hash_combine(h, t->size); 3375 return h; 3376 } 3377 3378 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3379 { 3380 return t1->name_off == t2->name_off && 3381 t1->info == t2->info && 3382 t1->size == t2->size; 3383 } 3384 3385 /* Calculate type signature hash of INT or TAG. */ 3386 static long btf_hash_int_decl_tag(struct btf_type *t) 3387 { 3388 __u32 info = *(__u32 *)(t + 1); 3389 long h; 3390 3391 h = btf_hash_common(t); 3392 h = hash_combine(h, info); 3393 return h; 3394 } 3395 3396 /* Check structural equality of two INTs or TAGs. */ 3397 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3398 { 3399 __u32 info1, info2; 3400 3401 if (!btf_equal_common(t1, t2)) 3402 return false; 3403 info1 = *(__u32 *)(t1 + 1); 3404 info2 = *(__u32 *)(t2 + 1); 3405 return info1 == info2; 3406 } 3407 3408 /* Calculate type signature hash of ENUM/ENUM64. */ 3409 static long btf_hash_enum(struct btf_type *t) 3410 { 3411 long h; 3412 3413 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3414 h = hash_combine(0, t->name_off); 3415 return h; 3416 } 3417 3418 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3419 { 3420 const struct btf_enum *m1, *m2; 3421 __u16 vlen; 3422 int i; 3423 3424 vlen = btf_vlen(t1); 3425 m1 = btf_enum(t1); 3426 m2 = btf_enum(t2); 3427 for (i = 0; i < vlen; i++) { 3428 if (m1->name_off != m2->name_off || m1->val != m2->val) 3429 return false; 3430 m1++; 3431 m2++; 3432 } 3433 return true; 3434 } 3435 3436 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3437 { 3438 const struct btf_enum64 *m1, *m2; 3439 __u16 vlen; 3440 int i; 3441 3442 vlen = btf_vlen(t1); 3443 m1 = btf_enum64(t1); 3444 m2 = btf_enum64(t2); 3445 for (i = 0; i < vlen; i++) { 3446 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3447 m1->val_hi32 != m2->val_hi32) 3448 return false; 3449 m1++; 3450 m2++; 3451 } 3452 return true; 3453 } 3454 3455 /* Check structural equality of two ENUMs or ENUM64s. */ 3456 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3457 { 3458 if (!btf_equal_common(t1, t2)) 3459 return false; 3460 3461 /* t1 & t2 kinds are identical because of btf_equal_common */ 3462 if (btf_kind(t1) == BTF_KIND_ENUM) 3463 return btf_equal_enum_members(t1, t2); 3464 else 3465 return btf_equal_enum64_members(t1, t2); 3466 } 3467 3468 static inline bool btf_is_enum_fwd(struct btf_type *t) 3469 { 3470 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3471 } 3472 3473 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3474 { 3475 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3476 return btf_equal_enum(t1, t2); 3477 /* At this point either t1 or t2 or both are forward declarations, thus: 3478 * - skip comparing vlen because it is zero for forward declarations; 3479 * - skip comparing size to allow enum forward declarations 3480 * to be compatible with enum64 full declarations; 3481 * - skip comparing kind for the same reason. 3482 */ 3483 return t1->name_off == t2->name_off && 3484 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3485 } 3486 3487 /* 3488 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3489 * as referenced type IDs equivalence is established separately during type 3490 * graph equivalence check algorithm. 3491 */ 3492 static long btf_hash_struct(struct btf_type *t) 3493 { 3494 const struct btf_member *member = btf_members(t); 3495 __u32 vlen = btf_vlen(t); 3496 long h = btf_hash_common(t); 3497 int i; 3498 3499 for (i = 0; i < vlen; i++) { 3500 h = hash_combine(h, member->name_off); 3501 h = hash_combine(h, member->offset); 3502 /* no hashing of referenced type ID, it can be unresolved yet */ 3503 member++; 3504 } 3505 return h; 3506 } 3507 3508 /* 3509 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3510 * type IDs. This check is performed during type graph equivalence check and 3511 * referenced types equivalence is checked separately. 3512 */ 3513 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3514 { 3515 const struct btf_member *m1, *m2; 3516 __u16 vlen; 3517 int i; 3518 3519 if (!btf_equal_common(t1, t2)) 3520 return false; 3521 3522 vlen = btf_vlen(t1); 3523 m1 = btf_members(t1); 3524 m2 = btf_members(t2); 3525 for (i = 0; i < vlen; i++) { 3526 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3527 return false; 3528 m1++; 3529 m2++; 3530 } 3531 return true; 3532 } 3533 3534 /* 3535 * Calculate type signature hash of ARRAY, including referenced type IDs, 3536 * under assumption that they were already resolved to canonical type IDs and 3537 * are not going to change. 3538 */ 3539 static long btf_hash_array(struct btf_type *t) 3540 { 3541 const struct btf_array *info = btf_array(t); 3542 long h = btf_hash_common(t); 3543 3544 h = hash_combine(h, info->type); 3545 h = hash_combine(h, info->index_type); 3546 h = hash_combine(h, info->nelems); 3547 return h; 3548 } 3549 3550 /* 3551 * Check exact equality of two ARRAYs, taking into account referenced 3552 * type IDs, under assumption that they were already resolved to canonical 3553 * type IDs and are not going to change. 3554 * This function is called during reference types deduplication to compare 3555 * ARRAY to potential canonical representative. 3556 */ 3557 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3558 { 3559 const struct btf_array *info1, *info2; 3560 3561 if (!btf_equal_common(t1, t2)) 3562 return false; 3563 3564 info1 = btf_array(t1); 3565 info2 = btf_array(t2); 3566 return info1->type == info2->type && 3567 info1->index_type == info2->index_type && 3568 info1->nelems == info2->nelems; 3569 } 3570 3571 /* 3572 * Check structural compatibility of two ARRAYs, ignoring referenced type 3573 * IDs. This check is performed during type graph equivalence check and 3574 * referenced types equivalence is checked separately. 3575 */ 3576 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3577 { 3578 if (!btf_equal_common(t1, t2)) 3579 return false; 3580 3581 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3582 } 3583 3584 /* 3585 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3586 * under assumption that they were already resolved to canonical type IDs and 3587 * are not going to change. 3588 */ 3589 static long btf_hash_fnproto(struct btf_type *t) 3590 { 3591 const struct btf_param *member = btf_params(t); 3592 __u16 vlen = btf_vlen(t); 3593 long h = btf_hash_common(t); 3594 int i; 3595 3596 for (i = 0; i < vlen; i++) { 3597 h = hash_combine(h, member->name_off); 3598 h = hash_combine(h, member->type); 3599 member++; 3600 } 3601 return h; 3602 } 3603 3604 /* 3605 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3606 * type IDs, under assumption that they were already resolved to canonical 3607 * type IDs and are not going to change. 3608 * This function is called during reference types deduplication to compare 3609 * FUNC_PROTO to potential canonical representative. 3610 */ 3611 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3612 { 3613 const struct btf_param *m1, *m2; 3614 __u16 vlen; 3615 int i; 3616 3617 if (!btf_equal_common(t1, t2)) 3618 return false; 3619 3620 vlen = btf_vlen(t1); 3621 m1 = btf_params(t1); 3622 m2 = btf_params(t2); 3623 for (i = 0; i < vlen; i++) { 3624 if (m1->name_off != m2->name_off || m1->type != m2->type) 3625 return false; 3626 m1++; 3627 m2++; 3628 } 3629 return true; 3630 } 3631 3632 /* 3633 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3634 * IDs. This check is performed during type graph equivalence check and 3635 * referenced types equivalence is checked separately. 3636 */ 3637 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3638 { 3639 const struct btf_param *m1, *m2; 3640 __u16 vlen; 3641 int i; 3642 3643 /* skip return type ID */ 3644 if (t1->name_off != t2->name_off || t1->info != t2->info) 3645 return false; 3646 3647 vlen = btf_vlen(t1); 3648 m1 = btf_params(t1); 3649 m2 = btf_params(t2); 3650 for (i = 0; i < vlen; i++) { 3651 if (m1->name_off != m2->name_off) 3652 return false; 3653 m1++; 3654 m2++; 3655 } 3656 return true; 3657 } 3658 3659 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3660 * types and initializing the rest of the state (canonical type mapping) for 3661 * the fixed base BTF part. 3662 */ 3663 static int btf_dedup_prep(struct btf_dedup *d) 3664 { 3665 struct btf_type *t; 3666 int type_id; 3667 long h; 3668 3669 if (!d->btf->base_btf) 3670 return 0; 3671 3672 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3673 t = btf_type_by_id(d->btf, type_id); 3674 3675 /* all base BTF types are self-canonical by definition */ 3676 d->map[type_id] = type_id; 3677 3678 switch (btf_kind(t)) { 3679 case BTF_KIND_VAR: 3680 case BTF_KIND_DATASEC: 3681 /* VAR and DATASEC are never hash/deduplicated */ 3682 continue; 3683 case BTF_KIND_CONST: 3684 case BTF_KIND_VOLATILE: 3685 case BTF_KIND_RESTRICT: 3686 case BTF_KIND_PTR: 3687 case BTF_KIND_FWD: 3688 case BTF_KIND_TYPEDEF: 3689 case BTF_KIND_FUNC: 3690 case BTF_KIND_FLOAT: 3691 case BTF_KIND_TYPE_TAG: 3692 h = btf_hash_common(t); 3693 break; 3694 case BTF_KIND_INT: 3695 case BTF_KIND_DECL_TAG: 3696 h = btf_hash_int_decl_tag(t); 3697 break; 3698 case BTF_KIND_ENUM: 3699 case BTF_KIND_ENUM64: 3700 h = btf_hash_enum(t); 3701 break; 3702 case BTF_KIND_STRUCT: 3703 case BTF_KIND_UNION: 3704 h = btf_hash_struct(t); 3705 break; 3706 case BTF_KIND_ARRAY: 3707 h = btf_hash_array(t); 3708 break; 3709 case BTF_KIND_FUNC_PROTO: 3710 h = btf_hash_fnproto(t); 3711 break; 3712 default: 3713 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3714 return -EINVAL; 3715 } 3716 if (btf_dedup_table_add(d, h, type_id)) 3717 return -ENOMEM; 3718 } 3719 3720 return 0; 3721 } 3722 3723 /* 3724 * Deduplicate primitive types, that can't reference other types, by calculating 3725 * their type signature hash and comparing them with any possible canonical 3726 * candidate. If no canonical candidate matches, type itself is marked as 3727 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3728 */ 3729 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3730 { 3731 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3732 struct hashmap_entry *hash_entry; 3733 struct btf_type *cand; 3734 /* if we don't find equivalent type, then we are canonical */ 3735 __u32 new_id = type_id; 3736 __u32 cand_id; 3737 long h; 3738 3739 switch (btf_kind(t)) { 3740 case BTF_KIND_CONST: 3741 case BTF_KIND_VOLATILE: 3742 case BTF_KIND_RESTRICT: 3743 case BTF_KIND_PTR: 3744 case BTF_KIND_TYPEDEF: 3745 case BTF_KIND_ARRAY: 3746 case BTF_KIND_STRUCT: 3747 case BTF_KIND_UNION: 3748 case BTF_KIND_FUNC: 3749 case BTF_KIND_FUNC_PROTO: 3750 case BTF_KIND_VAR: 3751 case BTF_KIND_DATASEC: 3752 case BTF_KIND_DECL_TAG: 3753 case BTF_KIND_TYPE_TAG: 3754 return 0; 3755 3756 case BTF_KIND_INT: 3757 h = btf_hash_int_decl_tag(t); 3758 for_each_dedup_cand(d, hash_entry, h) { 3759 cand_id = hash_entry->value; 3760 cand = btf_type_by_id(d->btf, cand_id); 3761 if (btf_equal_int_tag(t, cand)) { 3762 new_id = cand_id; 3763 break; 3764 } 3765 } 3766 break; 3767 3768 case BTF_KIND_ENUM: 3769 case BTF_KIND_ENUM64: 3770 h = btf_hash_enum(t); 3771 for_each_dedup_cand(d, hash_entry, h) { 3772 cand_id = hash_entry->value; 3773 cand = btf_type_by_id(d->btf, cand_id); 3774 if (btf_equal_enum(t, cand)) { 3775 new_id = cand_id; 3776 break; 3777 } 3778 if (btf_compat_enum(t, cand)) { 3779 if (btf_is_enum_fwd(t)) { 3780 /* resolve fwd to full enum */ 3781 new_id = cand_id; 3782 break; 3783 } 3784 /* resolve canonical enum fwd to full enum */ 3785 d->map[cand_id] = type_id; 3786 } 3787 } 3788 break; 3789 3790 case BTF_KIND_FWD: 3791 case BTF_KIND_FLOAT: 3792 h = btf_hash_common(t); 3793 for_each_dedup_cand(d, hash_entry, h) { 3794 cand_id = hash_entry->value; 3795 cand = btf_type_by_id(d->btf, cand_id); 3796 if (btf_equal_common(t, cand)) { 3797 new_id = cand_id; 3798 break; 3799 } 3800 } 3801 break; 3802 3803 default: 3804 return -EINVAL; 3805 } 3806 3807 d->map[type_id] = new_id; 3808 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3809 return -ENOMEM; 3810 3811 return 0; 3812 } 3813 3814 static int btf_dedup_prim_types(struct btf_dedup *d) 3815 { 3816 int i, err; 3817 3818 for (i = 0; i < d->btf->nr_types; i++) { 3819 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3820 if (err) 3821 return err; 3822 } 3823 return 0; 3824 } 3825 3826 /* 3827 * Check whether type is already mapped into canonical one (could be to itself). 3828 */ 3829 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3830 { 3831 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3832 } 3833 3834 /* 3835 * Resolve type ID into its canonical type ID, if any; otherwise return original 3836 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3837 * STRUCT/UNION link and resolve it into canonical type ID as well. 3838 */ 3839 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3840 { 3841 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3842 type_id = d->map[type_id]; 3843 return type_id; 3844 } 3845 3846 /* 3847 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3848 * type ID. 3849 */ 3850 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3851 { 3852 __u32 orig_type_id = type_id; 3853 3854 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3855 return type_id; 3856 3857 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3858 type_id = d->map[type_id]; 3859 3860 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3861 return type_id; 3862 3863 return orig_type_id; 3864 } 3865 3866 3867 static inline __u16 btf_fwd_kind(struct btf_type *t) 3868 { 3869 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3870 } 3871 3872 /* Check if given two types are identical ARRAY definitions */ 3873 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3874 { 3875 struct btf_type *t1, *t2; 3876 3877 t1 = btf_type_by_id(d->btf, id1); 3878 t2 = btf_type_by_id(d->btf, id2); 3879 if (!btf_is_array(t1) || !btf_is_array(t2)) 3880 return false; 3881 3882 return btf_equal_array(t1, t2); 3883 } 3884 3885 /* Check if given two types are identical STRUCT/UNION definitions */ 3886 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3887 { 3888 const struct btf_member *m1, *m2; 3889 struct btf_type *t1, *t2; 3890 int n, i; 3891 3892 t1 = btf_type_by_id(d->btf, id1); 3893 t2 = btf_type_by_id(d->btf, id2); 3894 3895 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3896 return false; 3897 3898 if (!btf_shallow_equal_struct(t1, t2)) 3899 return false; 3900 3901 m1 = btf_members(t1); 3902 m2 = btf_members(t2); 3903 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3904 if (m1->type != m2->type && 3905 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 3906 !btf_dedup_identical_structs(d, m1->type, m2->type)) 3907 return false; 3908 } 3909 return true; 3910 } 3911 3912 /* 3913 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3914 * call it "candidate graph" in this description for brevity) to a type graph 3915 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3916 * here, though keep in mind that not all types in canonical graph are 3917 * necessarily canonical representatives themselves, some of them might be 3918 * duplicates or its uniqueness might not have been established yet). 3919 * Returns: 3920 * - >0, if type graphs are equivalent; 3921 * - 0, if not equivalent; 3922 * - <0, on error. 3923 * 3924 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3925 * equivalence of BTF types at each step. If at any point BTF types in candidate 3926 * and canonical graphs are not compatible structurally, whole graphs are 3927 * incompatible. If types are structurally equivalent (i.e., all information 3928 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3929 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3930 * If a type references other types, then those referenced types are checked 3931 * for equivalence recursively. 3932 * 3933 * During DFS traversal, if we find that for current `canon_id` type we 3934 * already have some mapping in hypothetical map, we check for two possible 3935 * situations: 3936 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3937 * happen when type graphs have cycles. In this case we assume those two 3938 * types are equivalent. 3939 * - `canon_id` is mapped to different type. This is contradiction in our 3940 * hypothetical mapping, because same graph in canonical graph corresponds 3941 * to two different types in candidate graph, which for equivalent type 3942 * graphs shouldn't happen. This condition terminates equivalence check 3943 * with negative result. 3944 * 3945 * If type graphs traversal exhausts types to check and find no contradiction, 3946 * then type graphs are equivalent. 3947 * 3948 * When checking types for equivalence, there is one special case: FWD types. 3949 * If FWD type resolution is allowed and one of the types (either from canonical 3950 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3951 * flag) and their names match, hypothetical mapping is updated to point from 3952 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3953 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3954 * 3955 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3956 * if there are two exactly named (or anonymous) structs/unions that are 3957 * compatible structurally, one of which has FWD field, while other is concrete 3958 * STRUCT/UNION, but according to C sources they are different structs/unions 3959 * that are referencing different types with the same name. This is extremely 3960 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3961 * this logic is causing problems. 3962 * 3963 * Doing FWD resolution means that both candidate and/or canonical graphs can 3964 * consists of portions of the graph that come from multiple compilation units. 3965 * This is due to the fact that types within single compilation unit are always 3966 * deduplicated and FWDs are already resolved, if referenced struct/union 3967 * definiton is available. So, if we had unresolved FWD and found corresponding 3968 * STRUCT/UNION, they will be from different compilation units. This 3969 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3970 * type graph will likely have at least two different BTF types that describe 3971 * same type (e.g., most probably there will be two different BTF types for the 3972 * same 'int' primitive type) and could even have "overlapping" parts of type 3973 * graph that describe same subset of types. 3974 * 3975 * This in turn means that our assumption that each type in canonical graph 3976 * must correspond to exactly one type in candidate graph might not hold 3977 * anymore and will make it harder to detect contradictions using hypothetical 3978 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3979 * resolution only in canonical graph. FWDs in candidate graphs are never 3980 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3981 * that can occur: 3982 * - Both types in canonical and candidate graphs are FWDs. If they are 3983 * structurally equivalent, then they can either be both resolved to the 3984 * same STRUCT/UNION or not resolved at all. In both cases they are 3985 * equivalent and there is no need to resolve FWD on candidate side. 3986 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3987 * so nothing to resolve as well, algorithm will check equivalence anyway. 3988 * - Type in canonical graph is FWD, while type in candidate is concrete 3989 * STRUCT/UNION. In this case candidate graph comes from single compilation 3990 * unit, so there is exactly one BTF type for each unique C type. After 3991 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3992 * in canonical graph mapping to single BTF type in candidate graph, but 3993 * because hypothetical mapping maps from canonical to candidate types, it's 3994 * alright, and we still maintain the property of having single `canon_id` 3995 * mapping to single `cand_id` (there could be two different `canon_id` 3996 * mapped to the same `cand_id`, but it's not contradictory). 3997 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3998 * graph is FWD. In this case we are just going to check compatibility of 3999 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4000 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4001 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4002 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4003 * canonical graph. 4004 */ 4005 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4006 __u32 canon_id) 4007 { 4008 struct btf_type *cand_type; 4009 struct btf_type *canon_type; 4010 __u32 hypot_type_id; 4011 __u16 cand_kind; 4012 __u16 canon_kind; 4013 int i, eq; 4014 4015 /* if both resolve to the same canonical, they must be equivalent */ 4016 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4017 return 1; 4018 4019 canon_id = resolve_fwd_id(d, canon_id); 4020 4021 hypot_type_id = d->hypot_map[canon_id]; 4022 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4023 if (hypot_type_id == cand_id) 4024 return 1; 4025 /* In some cases compiler will generate different DWARF types 4026 * for *identical* array type definitions and use them for 4027 * different fields within the *same* struct. This breaks type 4028 * equivalence check, which makes an assumption that candidate 4029 * types sub-graph has a consistent and deduped-by-compiler 4030 * types within a single CU. So work around that by explicitly 4031 * allowing identical array types here. 4032 */ 4033 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4034 return 1; 4035 /* It turns out that similar situation can happen with 4036 * struct/union sometimes, sigh... Handle the case where 4037 * structs/unions are exactly the same, down to the referenced 4038 * type IDs. Anything more complicated (e.g., if referenced 4039 * types are different, but equivalent) is *way more* 4040 * complicated and requires a many-to-many equivalence mapping. 4041 */ 4042 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4043 return 1; 4044 return 0; 4045 } 4046 4047 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4048 return -ENOMEM; 4049 4050 cand_type = btf_type_by_id(d->btf, cand_id); 4051 canon_type = btf_type_by_id(d->btf, canon_id); 4052 cand_kind = btf_kind(cand_type); 4053 canon_kind = btf_kind(canon_type); 4054 4055 if (cand_type->name_off != canon_type->name_off) 4056 return 0; 4057 4058 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4059 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4060 && cand_kind != canon_kind) { 4061 __u16 real_kind; 4062 __u16 fwd_kind; 4063 4064 if (cand_kind == BTF_KIND_FWD) { 4065 real_kind = canon_kind; 4066 fwd_kind = btf_fwd_kind(cand_type); 4067 } else { 4068 real_kind = cand_kind; 4069 fwd_kind = btf_fwd_kind(canon_type); 4070 /* we'd need to resolve base FWD to STRUCT/UNION */ 4071 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4072 d->hypot_adjust_canon = true; 4073 } 4074 return fwd_kind == real_kind; 4075 } 4076 4077 if (cand_kind != canon_kind) 4078 return 0; 4079 4080 switch (cand_kind) { 4081 case BTF_KIND_INT: 4082 return btf_equal_int_tag(cand_type, canon_type); 4083 4084 case BTF_KIND_ENUM: 4085 case BTF_KIND_ENUM64: 4086 return btf_compat_enum(cand_type, canon_type); 4087 4088 case BTF_KIND_FWD: 4089 case BTF_KIND_FLOAT: 4090 return btf_equal_common(cand_type, canon_type); 4091 4092 case BTF_KIND_CONST: 4093 case BTF_KIND_VOLATILE: 4094 case BTF_KIND_RESTRICT: 4095 case BTF_KIND_PTR: 4096 case BTF_KIND_TYPEDEF: 4097 case BTF_KIND_FUNC: 4098 case BTF_KIND_TYPE_TAG: 4099 if (cand_type->info != canon_type->info) 4100 return 0; 4101 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4102 4103 case BTF_KIND_ARRAY: { 4104 const struct btf_array *cand_arr, *canon_arr; 4105 4106 if (!btf_compat_array(cand_type, canon_type)) 4107 return 0; 4108 cand_arr = btf_array(cand_type); 4109 canon_arr = btf_array(canon_type); 4110 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4111 if (eq <= 0) 4112 return eq; 4113 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4114 } 4115 4116 case BTF_KIND_STRUCT: 4117 case BTF_KIND_UNION: { 4118 const struct btf_member *cand_m, *canon_m; 4119 __u16 vlen; 4120 4121 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4122 return 0; 4123 vlen = btf_vlen(cand_type); 4124 cand_m = btf_members(cand_type); 4125 canon_m = btf_members(canon_type); 4126 for (i = 0; i < vlen; i++) { 4127 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4128 if (eq <= 0) 4129 return eq; 4130 cand_m++; 4131 canon_m++; 4132 } 4133 4134 return 1; 4135 } 4136 4137 case BTF_KIND_FUNC_PROTO: { 4138 const struct btf_param *cand_p, *canon_p; 4139 __u16 vlen; 4140 4141 if (!btf_compat_fnproto(cand_type, canon_type)) 4142 return 0; 4143 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4144 if (eq <= 0) 4145 return eq; 4146 vlen = btf_vlen(cand_type); 4147 cand_p = btf_params(cand_type); 4148 canon_p = btf_params(canon_type); 4149 for (i = 0; i < vlen; i++) { 4150 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4151 if (eq <= 0) 4152 return eq; 4153 cand_p++; 4154 canon_p++; 4155 } 4156 return 1; 4157 } 4158 4159 default: 4160 return -EINVAL; 4161 } 4162 return 0; 4163 } 4164 4165 /* 4166 * Use hypothetical mapping, produced by successful type graph equivalence 4167 * check, to augment existing struct/union canonical mapping, where possible. 4168 * 4169 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4170 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4171 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4172 * we are recording the mapping anyway. As opposed to carefulness required 4173 * for struct/union correspondence mapping (described below), for FWD resolution 4174 * it's not important, as by the time that FWD type (reference type) will be 4175 * deduplicated all structs/unions will be deduped already anyway. 4176 * 4177 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4178 * not required for correctness. It needs to be done carefully to ensure that 4179 * struct/union from candidate's type graph is not mapped into corresponding 4180 * struct/union from canonical type graph that itself hasn't been resolved into 4181 * canonical representative. The only guarantee we have is that canonical 4182 * struct/union was determined as canonical and that won't change. But any 4183 * types referenced through that struct/union fields could have been not yet 4184 * resolved, so in case like that it's too early to establish any kind of 4185 * correspondence between structs/unions. 4186 * 4187 * No canonical correspondence is derived for primitive types (they are already 4188 * deduplicated completely already anyway) or reference types (they rely on 4189 * stability of struct/union canonical relationship for equivalence checks). 4190 */ 4191 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4192 { 4193 __u32 canon_type_id, targ_type_id; 4194 __u16 t_kind, c_kind; 4195 __u32 t_id, c_id; 4196 int i; 4197 4198 for (i = 0; i < d->hypot_cnt; i++) { 4199 canon_type_id = d->hypot_list[i]; 4200 targ_type_id = d->hypot_map[canon_type_id]; 4201 t_id = resolve_type_id(d, targ_type_id); 4202 c_id = resolve_type_id(d, canon_type_id); 4203 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4204 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4205 /* 4206 * Resolve FWD into STRUCT/UNION. 4207 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4208 * mapped to canonical representative (as opposed to 4209 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4210 * eventually that struct is going to be mapped and all resolved 4211 * FWDs will automatically resolve to correct canonical 4212 * representative. This will happen before ref type deduping, 4213 * which critically depends on stability of these mapping. This 4214 * stability is not a requirement for STRUCT/UNION equivalence 4215 * checks, though. 4216 */ 4217 4218 /* if it's the split BTF case, we still need to point base FWD 4219 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4220 * will be resolved against base FWD. If we don't point base 4221 * canonical FWD to the resolved STRUCT/UNION, then all the 4222 * FWDs in split BTF won't be correctly resolved to a proper 4223 * STRUCT/UNION. 4224 */ 4225 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4226 d->map[c_id] = t_id; 4227 4228 /* if graph equivalence determined that we'd need to adjust 4229 * base canonical types, then we need to only point base FWDs 4230 * to STRUCTs/UNIONs and do no more modifications. For all 4231 * other purposes the type graphs were not equivalent. 4232 */ 4233 if (d->hypot_adjust_canon) 4234 continue; 4235 4236 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4237 d->map[t_id] = c_id; 4238 4239 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4240 c_kind != BTF_KIND_FWD && 4241 is_type_mapped(d, c_id) && 4242 !is_type_mapped(d, t_id)) { 4243 /* 4244 * as a perf optimization, we can map struct/union 4245 * that's part of type graph we just verified for 4246 * equivalence. We can do that for struct/union that has 4247 * canonical representative only, though. 4248 */ 4249 d->map[t_id] = c_id; 4250 } 4251 } 4252 } 4253 4254 /* 4255 * Deduplicate struct/union types. 4256 * 4257 * For each struct/union type its type signature hash is calculated, taking 4258 * into account type's name, size, number, order and names of fields, but 4259 * ignoring type ID's referenced from fields, because they might not be deduped 4260 * completely until after reference types deduplication phase. This type hash 4261 * is used to iterate over all potential canonical types, sharing same hash. 4262 * For each canonical candidate we check whether type graphs that they form 4263 * (through referenced types in fields and so on) are equivalent using algorithm 4264 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4265 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4266 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4267 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4268 * potentially map other structs/unions to their canonical representatives, 4269 * if such relationship hasn't yet been established. This speeds up algorithm 4270 * by eliminating some of the duplicate work. 4271 * 4272 * If no matching canonical representative was found, struct/union is marked 4273 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4274 * for further look ups. 4275 */ 4276 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4277 { 4278 struct btf_type *cand_type, *t; 4279 struct hashmap_entry *hash_entry; 4280 /* if we don't find equivalent type, then we are canonical */ 4281 __u32 new_id = type_id; 4282 __u16 kind; 4283 long h; 4284 4285 /* already deduped or is in process of deduping (loop detected) */ 4286 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4287 return 0; 4288 4289 t = btf_type_by_id(d->btf, type_id); 4290 kind = btf_kind(t); 4291 4292 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4293 return 0; 4294 4295 h = btf_hash_struct(t); 4296 for_each_dedup_cand(d, hash_entry, h) { 4297 __u32 cand_id = hash_entry->value; 4298 int eq; 4299 4300 /* 4301 * Even though btf_dedup_is_equiv() checks for 4302 * btf_shallow_equal_struct() internally when checking two 4303 * structs (unions) for equivalence, we need to guard here 4304 * from picking matching FWD type as a dedup candidate. 4305 * This can happen due to hash collision. In such case just 4306 * relying on btf_dedup_is_equiv() would lead to potentially 4307 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4308 * FWD and compatible STRUCT/UNION are considered equivalent. 4309 */ 4310 cand_type = btf_type_by_id(d->btf, cand_id); 4311 if (!btf_shallow_equal_struct(t, cand_type)) 4312 continue; 4313 4314 btf_dedup_clear_hypot_map(d); 4315 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4316 if (eq < 0) 4317 return eq; 4318 if (!eq) 4319 continue; 4320 btf_dedup_merge_hypot_map(d); 4321 if (d->hypot_adjust_canon) /* not really equivalent */ 4322 continue; 4323 new_id = cand_id; 4324 break; 4325 } 4326 4327 d->map[type_id] = new_id; 4328 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4329 return -ENOMEM; 4330 4331 return 0; 4332 } 4333 4334 static int btf_dedup_struct_types(struct btf_dedup *d) 4335 { 4336 int i, err; 4337 4338 for (i = 0; i < d->btf->nr_types; i++) { 4339 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4340 if (err) 4341 return err; 4342 } 4343 return 0; 4344 } 4345 4346 /* 4347 * Deduplicate reference type. 4348 * 4349 * Once all primitive and struct/union types got deduplicated, we can easily 4350 * deduplicate all other (reference) BTF types. This is done in two steps: 4351 * 4352 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4353 * resolution can be done either immediately for primitive or struct/union types 4354 * (because they were deduped in previous two phases) or recursively for 4355 * reference types. Recursion will always terminate at either primitive or 4356 * struct/union type, at which point we can "unwind" chain of reference types 4357 * one by one. There is no danger of encountering cycles because in C type 4358 * system the only way to form type cycle is through struct/union, so any chain 4359 * of reference types, even those taking part in a type cycle, will inevitably 4360 * reach struct/union at some point. 4361 * 4362 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4363 * becomes "stable", in the sense that no further deduplication will cause 4364 * any changes to it. With that, it's now possible to calculate type's signature 4365 * hash (this time taking into account referenced type IDs) and loop over all 4366 * potential canonical representatives. If no match was found, current type 4367 * will become canonical representative of itself and will be added into 4368 * btf_dedup->dedup_table as another possible canonical representative. 4369 */ 4370 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4371 { 4372 struct hashmap_entry *hash_entry; 4373 __u32 new_id = type_id, cand_id; 4374 struct btf_type *t, *cand; 4375 /* if we don't find equivalent type, then we are representative type */ 4376 int ref_type_id; 4377 long h; 4378 4379 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4380 return -ELOOP; 4381 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4382 return resolve_type_id(d, type_id); 4383 4384 t = btf_type_by_id(d->btf, type_id); 4385 d->map[type_id] = BTF_IN_PROGRESS_ID; 4386 4387 switch (btf_kind(t)) { 4388 case BTF_KIND_CONST: 4389 case BTF_KIND_VOLATILE: 4390 case BTF_KIND_RESTRICT: 4391 case BTF_KIND_PTR: 4392 case BTF_KIND_TYPEDEF: 4393 case BTF_KIND_FUNC: 4394 case BTF_KIND_TYPE_TAG: 4395 ref_type_id = btf_dedup_ref_type(d, t->type); 4396 if (ref_type_id < 0) 4397 return ref_type_id; 4398 t->type = ref_type_id; 4399 4400 h = btf_hash_common(t); 4401 for_each_dedup_cand(d, hash_entry, h) { 4402 cand_id = hash_entry->value; 4403 cand = btf_type_by_id(d->btf, cand_id); 4404 if (btf_equal_common(t, cand)) { 4405 new_id = cand_id; 4406 break; 4407 } 4408 } 4409 break; 4410 4411 case BTF_KIND_DECL_TAG: 4412 ref_type_id = btf_dedup_ref_type(d, t->type); 4413 if (ref_type_id < 0) 4414 return ref_type_id; 4415 t->type = ref_type_id; 4416 4417 h = btf_hash_int_decl_tag(t); 4418 for_each_dedup_cand(d, hash_entry, h) { 4419 cand_id = hash_entry->value; 4420 cand = btf_type_by_id(d->btf, cand_id); 4421 if (btf_equal_int_tag(t, cand)) { 4422 new_id = cand_id; 4423 break; 4424 } 4425 } 4426 break; 4427 4428 case BTF_KIND_ARRAY: { 4429 struct btf_array *info = btf_array(t); 4430 4431 ref_type_id = btf_dedup_ref_type(d, info->type); 4432 if (ref_type_id < 0) 4433 return ref_type_id; 4434 info->type = ref_type_id; 4435 4436 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4437 if (ref_type_id < 0) 4438 return ref_type_id; 4439 info->index_type = ref_type_id; 4440 4441 h = btf_hash_array(t); 4442 for_each_dedup_cand(d, hash_entry, h) { 4443 cand_id = hash_entry->value; 4444 cand = btf_type_by_id(d->btf, cand_id); 4445 if (btf_equal_array(t, cand)) { 4446 new_id = cand_id; 4447 break; 4448 } 4449 } 4450 break; 4451 } 4452 4453 case BTF_KIND_FUNC_PROTO: { 4454 struct btf_param *param; 4455 __u16 vlen; 4456 int i; 4457 4458 ref_type_id = btf_dedup_ref_type(d, t->type); 4459 if (ref_type_id < 0) 4460 return ref_type_id; 4461 t->type = ref_type_id; 4462 4463 vlen = btf_vlen(t); 4464 param = btf_params(t); 4465 for (i = 0; i < vlen; i++) { 4466 ref_type_id = btf_dedup_ref_type(d, param->type); 4467 if (ref_type_id < 0) 4468 return ref_type_id; 4469 param->type = ref_type_id; 4470 param++; 4471 } 4472 4473 h = btf_hash_fnproto(t); 4474 for_each_dedup_cand(d, hash_entry, h) { 4475 cand_id = hash_entry->value; 4476 cand = btf_type_by_id(d->btf, cand_id); 4477 if (btf_equal_fnproto(t, cand)) { 4478 new_id = cand_id; 4479 break; 4480 } 4481 } 4482 break; 4483 } 4484 4485 default: 4486 return -EINVAL; 4487 } 4488 4489 d->map[type_id] = new_id; 4490 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4491 return -ENOMEM; 4492 4493 return new_id; 4494 } 4495 4496 static int btf_dedup_ref_types(struct btf_dedup *d) 4497 { 4498 int i, err; 4499 4500 for (i = 0; i < d->btf->nr_types; i++) { 4501 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4502 if (err < 0) 4503 return err; 4504 } 4505 /* we won't need d->dedup_table anymore */ 4506 hashmap__free(d->dedup_table); 4507 d->dedup_table = NULL; 4508 return 0; 4509 } 4510 4511 /* 4512 * Collect a map from type names to type ids for all canonical structs 4513 * and unions. If the same name is shared by several canonical types 4514 * use a special value 0 to indicate this fact. 4515 */ 4516 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4517 { 4518 __u32 nr_types = btf__type_cnt(d->btf); 4519 struct btf_type *t; 4520 __u32 type_id; 4521 __u16 kind; 4522 int err; 4523 4524 /* 4525 * Iterate over base and split module ids in order to get all 4526 * available structs in the map. 4527 */ 4528 for (type_id = 1; type_id < nr_types; ++type_id) { 4529 t = btf_type_by_id(d->btf, type_id); 4530 kind = btf_kind(t); 4531 4532 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4533 continue; 4534 4535 /* Skip non-canonical types */ 4536 if (type_id != d->map[type_id]) 4537 continue; 4538 4539 err = hashmap__add(names_map, t->name_off, type_id); 4540 if (err == -EEXIST) 4541 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4542 4543 if (err) 4544 return err; 4545 } 4546 4547 return 0; 4548 } 4549 4550 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4551 { 4552 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4553 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4554 __u16 cand_kind, kind = btf_kind(t); 4555 struct btf_type *cand_t; 4556 uintptr_t cand_id; 4557 4558 if (kind != BTF_KIND_FWD) 4559 return 0; 4560 4561 /* Skip if this FWD already has a mapping */ 4562 if (type_id != d->map[type_id]) 4563 return 0; 4564 4565 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4566 return 0; 4567 4568 /* Zero is a special value indicating that name is not unique */ 4569 if (!cand_id) 4570 return 0; 4571 4572 cand_t = btf_type_by_id(d->btf, cand_id); 4573 cand_kind = btf_kind(cand_t); 4574 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4575 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4576 return 0; 4577 4578 d->map[type_id] = cand_id; 4579 4580 return 0; 4581 } 4582 4583 /* 4584 * Resolve unambiguous forward declarations. 4585 * 4586 * The lion's share of all FWD declarations is resolved during 4587 * `btf_dedup_struct_types` phase when different type graphs are 4588 * compared against each other. However, if in some compilation unit a 4589 * FWD declaration is not a part of a type graph compared against 4590 * another type graph that declaration's canonical type would not be 4591 * changed. Example: 4592 * 4593 * CU #1: 4594 * 4595 * struct foo; 4596 * struct foo *some_global; 4597 * 4598 * CU #2: 4599 * 4600 * struct foo { int u; }; 4601 * struct foo *another_global; 4602 * 4603 * After `btf_dedup_struct_types` the BTF looks as follows: 4604 * 4605 * [1] STRUCT 'foo' size=4 vlen=1 ... 4606 * [2] INT 'int' size=4 ... 4607 * [3] PTR '(anon)' type_id=1 4608 * [4] FWD 'foo' fwd_kind=struct 4609 * [5] PTR '(anon)' type_id=4 4610 * 4611 * This pass assumes that such FWD declarations should be mapped to 4612 * structs or unions with identical name in case if the name is not 4613 * ambiguous. 4614 */ 4615 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4616 { 4617 int i, err; 4618 struct hashmap *names_map; 4619 4620 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4621 if (IS_ERR(names_map)) 4622 return PTR_ERR(names_map); 4623 4624 err = btf_dedup_fill_unique_names_map(d, names_map); 4625 if (err < 0) 4626 goto exit; 4627 4628 for (i = 0; i < d->btf->nr_types; i++) { 4629 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4630 if (err < 0) 4631 break; 4632 } 4633 4634 exit: 4635 hashmap__free(names_map); 4636 return err; 4637 } 4638 4639 /* 4640 * Compact types. 4641 * 4642 * After we established for each type its corresponding canonical representative 4643 * type, we now can eliminate types that are not canonical and leave only 4644 * canonical ones layed out sequentially in memory by copying them over 4645 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4646 * a map from original type ID to a new compacted type ID, which will be used 4647 * during next phase to "fix up" type IDs, referenced from struct/union and 4648 * reference types. 4649 */ 4650 static int btf_dedup_compact_types(struct btf_dedup *d) 4651 { 4652 __u32 *new_offs; 4653 __u32 next_type_id = d->btf->start_id; 4654 const struct btf_type *t; 4655 void *p; 4656 int i, id, len; 4657 4658 /* we are going to reuse hypot_map to store compaction remapping */ 4659 d->hypot_map[0] = 0; 4660 /* base BTF types are not renumbered */ 4661 for (id = 1; id < d->btf->start_id; id++) 4662 d->hypot_map[id] = id; 4663 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4664 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4665 4666 p = d->btf->types_data; 4667 4668 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4669 if (d->map[id] != id) 4670 continue; 4671 4672 t = btf__type_by_id(d->btf, id); 4673 len = btf_type_size(t); 4674 if (len < 0) 4675 return len; 4676 4677 memmove(p, t, len); 4678 d->hypot_map[id] = next_type_id; 4679 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4680 p += len; 4681 next_type_id++; 4682 } 4683 4684 /* shrink struct btf's internal types index and update btf_header */ 4685 d->btf->nr_types = next_type_id - d->btf->start_id; 4686 d->btf->type_offs_cap = d->btf->nr_types; 4687 d->btf->hdr->type_len = p - d->btf->types_data; 4688 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4689 sizeof(*new_offs)); 4690 if (d->btf->type_offs_cap && !new_offs) 4691 return -ENOMEM; 4692 d->btf->type_offs = new_offs; 4693 d->btf->hdr->str_off = d->btf->hdr->type_len; 4694 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4695 return 0; 4696 } 4697 4698 /* 4699 * Figure out final (deduplicated and compacted) type ID for provided original 4700 * `type_id` by first resolving it into corresponding canonical type ID and 4701 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4702 * which is populated during compaction phase. 4703 */ 4704 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4705 { 4706 struct btf_dedup *d = ctx; 4707 __u32 resolved_type_id, new_type_id; 4708 4709 resolved_type_id = resolve_type_id(d, *type_id); 4710 new_type_id = d->hypot_map[resolved_type_id]; 4711 if (new_type_id > BTF_MAX_NR_TYPES) 4712 return -EINVAL; 4713 4714 *type_id = new_type_id; 4715 return 0; 4716 } 4717 4718 /* 4719 * Remap referenced type IDs into deduped type IDs. 4720 * 4721 * After BTF types are deduplicated and compacted, their final type IDs may 4722 * differ from original ones. The map from original to a corresponding 4723 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4724 * compaction phase. During remapping phase we are rewriting all type IDs 4725 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4726 * their final deduped type IDs. 4727 */ 4728 static int btf_dedup_remap_types(struct btf_dedup *d) 4729 { 4730 int i, r; 4731 4732 for (i = 0; i < d->btf->nr_types; i++) { 4733 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4734 4735 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4736 if (r) 4737 return r; 4738 } 4739 4740 if (!d->btf_ext) 4741 return 0; 4742 4743 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4744 if (r) 4745 return r; 4746 4747 return 0; 4748 } 4749 4750 /* 4751 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4752 * data out of it to use for target BTF. 4753 */ 4754 struct btf *btf__load_vmlinux_btf(void) 4755 { 4756 const char *locations[] = { 4757 /* try canonical vmlinux BTF through sysfs first */ 4758 "/sys/kernel/btf/vmlinux", 4759 /* fall back to trying to find vmlinux on disk otherwise */ 4760 "/boot/vmlinux-%1$s", 4761 "/lib/modules/%1$s/vmlinux-%1$s", 4762 "/lib/modules/%1$s/build/vmlinux", 4763 "/usr/lib/modules/%1$s/kernel/vmlinux", 4764 "/usr/lib/debug/boot/vmlinux-%1$s", 4765 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 4766 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 4767 }; 4768 char path[PATH_MAX + 1]; 4769 struct utsname buf; 4770 struct btf *btf; 4771 int i, err; 4772 4773 uname(&buf); 4774 4775 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4776 snprintf(path, PATH_MAX, locations[i], buf.release); 4777 4778 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 4779 continue; 4780 4781 btf = btf__parse(path, NULL); 4782 err = libbpf_get_error(btf); 4783 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4784 if (err) 4785 continue; 4786 4787 return btf; 4788 } 4789 4790 pr_warn("failed to find valid kernel BTF\n"); 4791 return libbpf_err_ptr(-ESRCH); 4792 } 4793 4794 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4795 4796 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4797 { 4798 char path[80]; 4799 4800 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4801 return btf__parse_split(path, vmlinux_btf); 4802 } 4803 4804 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4805 { 4806 int i, n, err; 4807 4808 switch (btf_kind(t)) { 4809 case BTF_KIND_INT: 4810 case BTF_KIND_FLOAT: 4811 case BTF_KIND_ENUM: 4812 case BTF_KIND_ENUM64: 4813 return 0; 4814 4815 case BTF_KIND_FWD: 4816 case BTF_KIND_CONST: 4817 case BTF_KIND_VOLATILE: 4818 case BTF_KIND_RESTRICT: 4819 case BTF_KIND_PTR: 4820 case BTF_KIND_TYPEDEF: 4821 case BTF_KIND_FUNC: 4822 case BTF_KIND_VAR: 4823 case BTF_KIND_DECL_TAG: 4824 case BTF_KIND_TYPE_TAG: 4825 return visit(&t->type, ctx); 4826 4827 case BTF_KIND_ARRAY: { 4828 struct btf_array *a = btf_array(t); 4829 4830 err = visit(&a->type, ctx); 4831 err = err ?: visit(&a->index_type, ctx); 4832 return err; 4833 } 4834 4835 case BTF_KIND_STRUCT: 4836 case BTF_KIND_UNION: { 4837 struct btf_member *m = btf_members(t); 4838 4839 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4840 err = visit(&m->type, ctx); 4841 if (err) 4842 return err; 4843 } 4844 return 0; 4845 } 4846 4847 case BTF_KIND_FUNC_PROTO: { 4848 struct btf_param *m = btf_params(t); 4849 4850 err = visit(&t->type, ctx); 4851 if (err) 4852 return err; 4853 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4854 err = visit(&m->type, ctx); 4855 if (err) 4856 return err; 4857 } 4858 return 0; 4859 } 4860 4861 case BTF_KIND_DATASEC: { 4862 struct btf_var_secinfo *m = btf_var_secinfos(t); 4863 4864 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4865 err = visit(&m->type, ctx); 4866 if (err) 4867 return err; 4868 } 4869 return 0; 4870 } 4871 4872 default: 4873 return -EINVAL; 4874 } 4875 } 4876 4877 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4878 { 4879 int i, n, err; 4880 4881 err = visit(&t->name_off, ctx); 4882 if (err) 4883 return err; 4884 4885 switch (btf_kind(t)) { 4886 case BTF_KIND_STRUCT: 4887 case BTF_KIND_UNION: { 4888 struct btf_member *m = btf_members(t); 4889 4890 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4891 err = visit(&m->name_off, ctx); 4892 if (err) 4893 return err; 4894 } 4895 break; 4896 } 4897 case BTF_KIND_ENUM: { 4898 struct btf_enum *m = btf_enum(t); 4899 4900 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4901 err = visit(&m->name_off, ctx); 4902 if (err) 4903 return err; 4904 } 4905 break; 4906 } 4907 case BTF_KIND_ENUM64: { 4908 struct btf_enum64 *m = btf_enum64(t); 4909 4910 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4911 err = visit(&m->name_off, ctx); 4912 if (err) 4913 return err; 4914 } 4915 break; 4916 } 4917 case BTF_KIND_FUNC_PROTO: { 4918 struct btf_param *m = btf_params(t); 4919 4920 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4921 err = visit(&m->name_off, ctx); 4922 if (err) 4923 return err; 4924 } 4925 break; 4926 } 4927 default: 4928 break; 4929 } 4930 4931 return 0; 4932 } 4933 4934 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4935 { 4936 const struct btf_ext_info *seg; 4937 struct btf_ext_info_sec *sec; 4938 int i, err; 4939 4940 seg = &btf_ext->func_info; 4941 for_each_btf_ext_sec(seg, sec) { 4942 struct bpf_func_info_min *rec; 4943 4944 for_each_btf_ext_rec(seg, sec, i, rec) { 4945 err = visit(&rec->type_id, ctx); 4946 if (err < 0) 4947 return err; 4948 } 4949 } 4950 4951 seg = &btf_ext->core_relo_info; 4952 for_each_btf_ext_sec(seg, sec) { 4953 struct bpf_core_relo *rec; 4954 4955 for_each_btf_ext_rec(seg, sec, i, rec) { 4956 err = visit(&rec->type_id, ctx); 4957 if (err < 0) 4958 return err; 4959 } 4960 } 4961 4962 return 0; 4963 } 4964 4965 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4966 { 4967 const struct btf_ext_info *seg; 4968 struct btf_ext_info_sec *sec; 4969 int i, err; 4970 4971 seg = &btf_ext->func_info; 4972 for_each_btf_ext_sec(seg, sec) { 4973 err = visit(&sec->sec_name_off, ctx); 4974 if (err) 4975 return err; 4976 } 4977 4978 seg = &btf_ext->line_info; 4979 for_each_btf_ext_sec(seg, sec) { 4980 struct bpf_line_info_min *rec; 4981 4982 err = visit(&sec->sec_name_off, ctx); 4983 if (err) 4984 return err; 4985 4986 for_each_btf_ext_rec(seg, sec, i, rec) { 4987 err = visit(&rec->file_name_off, ctx); 4988 if (err) 4989 return err; 4990 err = visit(&rec->line_off, ctx); 4991 if (err) 4992 return err; 4993 } 4994 } 4995 4996 seg = &btf_ext->core_relo_info; 4997 for_each_btf_ext_sec(seg, sec) { 4998 struct bpf_core_relo *rec; 4999 5000 err = visit(&sec->sec_name_off, ctx); 5001 if (err) 5002 return err; 5003 5004 for_each_btf_ext_rec(seg, sec, i, rec) { 5005 err = visit(&rec->access_str_off, ctx); 5006 if (err) 5007 return err; 5008 } 5009 } 5010 5011 return 0; 5012 } 5013